Sample records for chloride cap layer

  1. 0.9% sodium chloride injection with and without heparin for maintaining peripheral indwelling intermittent-infusion devices in infants.

    PubMed

    Nelson, T J; Graves, S M

    1998-03-15

    The use of 0.9% sodium chloride injection with and without heparin sodium for maintaining peripheral indwelling intermittent-infusion devices (PIIIDs) in infants was studied. In this double-blind study, children up to one year of age who had a 24-gauge PIIID through which a continuous i.v. infusion was no longer running were randomly assigned to have their PIIID capped with 0.9% sodium chloride injection with or without heparin sodium 10 units/mL. PIIIDs were capped every eight hours if no medications were administered; otherwise, they were capped after each dose of an i.v. drug. The heparin group had 26 patients with 28 evaluable PIIIDs, and the 0.9% sodium chloride injection group had 32 patients with 46 evaluable PIIIDs. The two groups did not differ significantly in variables assessing the duration of PIIID use, reasons for removal of PIIIDs, mean number of cappings, irritant potential of administered drugs, or severity of medication-related irritation. There was no significant difference between 0.9% sodium chloride injection with and without heparin sodium 10 units/mL in maintaining 24-gauge PIIIDs in children younger than one year.

  2. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized by polyol method

    NASA Astrophysics Data System (ADS)

    Junaidi, Triyana, Kuwat; Harsojo, Suharyadi, Edi

    2016-04-01

    We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  3. Effect of capping layer on spin-orbit torques

    NASA Astrophysics Data System (ADS)

    Sun, Chi; Siu, Zhuo Bin; Tan, Seng Ghee; Yang, Hyunsoo; Jalil, Mansoor B. A.

    2018-04-01

    In order to enhance the magnitude of spin-orbit torque (SOT), considerable experimental works have been devoted to studying the thickness dependence of the different layers in multilayers consisting of heavy metal (HM), ferromagnet (FM), and capping layers. Here, we present a theoretical model based on the spin-drift-diffusion formalism to investigate the effect of the capping layer properties such as its thickness on the SOT observed in experiments. It is found that the spin Hall-induced SOT can be significantly enhanced by incorporating a capping layer with an opposite spin Hall angle to that of the HM layer. The spin Hall torque can be maximized by tuning the capping layer thickness. However, in the absence of the spin Hall effect (SHE) in the capping layer, the torque decreases monotonically with the capping layer thickness. Conversely, the spin Hall torque is found to decrease monotonically with the FM layer thickness, irrespective of the presence or absence of the SHE in the capping layer. All these trends are in correspondence with experimental observations. Finally, our model suggests that capping layers with a long spin diffusion length and high resistivity would also enhance the spin Hall torque.

  4. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    NASA Astrophysics Data System (ADS)

    Junaidi, Yunus, Muhammad; Triyana, Kuwat; Harsojo, Suharyadi, Edi

    2016-04-01

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  5. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized by polyol method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junaidi; Departement of Physics, Lampung University, Bandar Lampung; Triyana, Kuwat, E-mail: triyana@ugm.ac.id

    2016-04-19

    We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able tomore » control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.« less

  6. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id; Department of Physics, Lampung University, Bandar Lampung; Yunus, Muhammad, E-mail: muhammad.yunus@mail.ugm.ac.id

    2016-04-19

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were alsomore » able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.« less

  7. Two halide-containing cesium manganese vanadates: synthesis, characterization, and magnetic properties

    DOE PAGES

    Smith Pellizzeri, Tiffany M.; McGuire, Michael A.; McMillen, Colin D.; ...

    2018-01-24

    In this study, two new halide-containing cesium manganese vanadates have been synthesized by a high-temperature (580 °C) hydrothermal synthetic method from aqueous brine solutions. One compound, Cs 3Mn(VO 3) 4Cl, (1) was prepared using a mixed cesium hydroxide/chloride mineralizer, and crystallizes in the polar noncentrosymmetric space group Cmm2, with a = 16.7820(8) Å, b = 8.4765(4) Å, c = 5.7867(3) Å. This structure is built from sinusoidal zig-zag (VO 3) n chains that run along the b-axis and are coordinated to Mn 2+ containing (MnO 4Cl) square-pyramidal units that are linked together to form layers. The cesium cations reside betweenmore » the layers, but also coordinate to the chloride ion, forming a cesium chloride chain that also propagates along the b-axis. The other compound, Cs 2Mn(VO 3) 3F, (2) crystallizes in space group Pbca with a = 7.4286(2) Å, b = 15.0175(5) Å, c = 19.6957(7) Å, and was prepared using a cesium fluoride mineralizer. The structure is comprised of corner sharing octahedral Mn 2+ chains, with trans fluoride ligands acting as bridging units, whose ends are capped by (VO 3) n vanadate chains to form slabs. The cesium atoms reside between the manganese vanadate layers, and also play an integral part in the structure, forming a cesium fluoride chain that runs along the b-axis. Both compounds were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, and single-crystal Raman spectroscopy. Additionally, the magnetic properties of 2 were investigated. Lastly, above 50 K, it displays behavior typical of a low dimensional system with antiferromagnetic interactions, as to be expected for linear chains of manganese(II) within the crystal structure.« less

  8. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination

    NASA Astrophysics Data System (ADS)

    Li, Xiyan; Zhao, Yong-Biao; Fan, Fengjia; Levina, Larissa; Liu, Min; Quintero-Bermudez, Rafael; Gong, Xiwen; Quan, Li Na; Fan, James; Yang, Zhenyu; Hoogland, Sjoerd; Voznyy, Oleksandr; Lu, Zheng-Hong; Sargent, Edward H.

    2018-03-01

    The external quantum efficiencies of state-of-the-art colloidal quantum dot light-emitting diodes (QLEDs) are now approaching the limit set by the out-coupling efficiency. However, the brightness of these devices is constrained by the use of poorly conducting emitting layers, a consequence of the present-day reliance on long-chain organic capping ligands. Here, we report how conductive and passivating halides can be implemented in Zn chalcogenide-shelled colloidal quantum dots to enable high-brightness green QLEDs. We use a surface management reagent, thionyl chloride (SOCl2), to chlorinate the carboxylic group of oleic acid and graft the surfaces of the colloidal quantum dots with passivating chloride anions. This results in devices with an improved mobility that retain high external quantum efficiencies in the high-injection-current region and also feature a reduced turn-on voltage of 2.5 V. The treated QLEDs operate with a brightness of 460,000 cd m-2, significantly exceeding that of all previously reported solution-processed LEDs.

  9. Crystallinity of tellurium capping and epitaxy of ferromagnetic topological insulator films on SrTiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jihwey; Soh, Yeong-Ah; Aeppli, Gabriel

    2015-06-30

    Thin films of topological insulators are often capped with an insulating layer since topological insulators are known to be fragile to degradation. However, capping can hinder the observation of novel transport properties of the surface states. To understand the influence of capping on the surface states, it is crucial to understand the crystal structure and the atomic arrangement at the interfaces. Here, we use x-ray diffraction to establish the crystal structure of magnetic topological insulator Cr-doped (Bi,Sb) 2Te 3 (CBST) films grown on SrTiO 3 (1 1 1) substrates with and without a Te capping layer. We find that bothmore » the film and capping layer are single crystal and that the crystal quality of the film is independent of the presence of the capping layer, but that x-rays cause sublimation of the CBST film, which is prevented by the capping layer. Our findings show that the different transport properties of capped films cannot be attributed to a lower crystal quality but to a more subtle effect such as a different electronic structure at the interface with the capping layer. Our results on the crystal structure and atomic arrangements of the topological heterostructure will enable modelling the electronic structure and design of topological heterostructures.« less

  10. Advantages of InGaN/GaN multiple quantum wells with two-step grown low temperature GaN cap layers

    NASA Astrophysics Data System (ADS)

    Zhu, Yadan; Lu, Taiping; Zhou, Xiaorun; Zhao, Guangzhou; Dong, Hailiang; Jia, Zhigang; Liu, Xuguang; Xu, Bingshe

    2017-11-01

    Two-step grown low temperature GaN cap layers (LT-cap) are employed to improve the optical and structural properties of InGaN/GaN multiple quantum wells (MQWs). The first LT-cap layer is grown in nitrogen atmosphere, while a small hydrogen flow is added to the carrier gas during the growth of the second LT-cap layer. High-resolution X-ray diffraction results indicate that the two-step growth method can improve the interface quality of MQWs. Room temperature photoluminescence (PL) tests show about two-fold enhancement in integrated PL intensity, only 25 meV blue-shift in peak energy and almost unchanged line width. On the basis of temperature-dependent PL characteristics analysis, it is concluded that the first and the second LT-cap layer play a different role during the growth of MQWs. The first LT-cap layer acts as a protective layer, which protects quantum well from serious indium loss and interface roughening resulting from the hydrogen over-etching. The hydrogen gas employed in the second LT-cap layer is in favor of reducing defect density and indium segregation. Consequently, interface/surface and optical properties are improved by adopting the two-step growth method.

  11. Performance Analysis of GaN Capping Layer Thickness on GaN/AlGaN/GaN High Electron Mobility Transistors.

    PubMed

    Sharma, N; Periasamy, C; Chaturvedi, N

    2018-07-01

    In this paper, we present an investigation of the impact of GaN capping layer and AlGaN layer thickness on the two-dimensional (2D)-electron mobility and the carrier concentration which was formed close to the AlGaN/GaN buffer layer for Al0.25Ga0.75N/GaN and GaN/Al0.25Ga0.75N/GaN heterostructures deposited on sapphire substrates. The results of our analysis clearly indicate that expanding the GaN capping layer thickness from 1 nm to 100 nm prompts an increment in the electron concentration at hetero interface. As consequence of which drain current was additionally increments with GaN cap layer thicknesses, and eventually saturates at approximately 1.85 A/mm for capping layer thickness greater than 40 nm. Interestingly, for the same structure, the 2D-electron mobility, decrease monotonically with GaN capping layer thickness, and saturate at approximately 830 cm2/Vs for capping layer thickness greater than 50 nm. A device with a GaN cap layer didn't exhibit gate leakage current. Furthermore, it was observed that the carrier concentration was first decrease 1.03 × 1019/cm3 to 6.65 × 1018/cm3 with AlGaN Layer thickness from 5 to 10 nm and after that it increases with the AlGaN layer thickness from 10 to 30 nm. The same trend was followed for electric field distributions. Electron mobility decreases monotonically with AlGaN layer thickness. Highest electron mobility 1354 cm2/Vs were recorded for the AlGaN layer thickness of 5 nm. Results obtained are in good agreement with published experimental data.

  12. Impact of laser-contaminant interaction on the performance of the protective capping layer of 1w high-reflection mirror coatings

    DOE PAGES

    Qiu, S. R.; Norton, M. A.; Raman, R. N.; ...

    2015-10-02

    In this paper, high dielectric constant multilayer coatings are commonly used on high-reflection mirrors for high-peak-power laser systems because of their high laser-damage resistance. However, surface contaminants often lead to damage upon laser exposure, thus limiting the mirror’s lifetime and performance. One plausible approach to improve the overall mirror resistance against laser damage, including that induced by laser-contaminant coupling, is to coat the multilayers with a thin protective capping (absentee) layer on top of the multilayer coatings. An understanding of the underlying mechanism by which laser-particle interaction leads to capping layer damage is important for the rational design and selectionmore » of capping materials of high-reflection multilayer coatings. In this paper, we examine the responses of two candidate capping layer materials, made of SiO 2 and Al 2O 3, over silica-hafnia multilayer coatings. These are exposed to a single oblique shot of a 1053 nm laser beam (fluence ~10 J/cm 2, pulse length 14 ns), in the presence of Ti particles on the surface. We find that the two capping layers show markedly different responses to the laser-particle interaction. The Al 2O 3 cap layer exhibits severe damage, with the capping layer becoming completely delaminated at the particle locations. The SiO 2 capping layer, on the other hand, is only mildly modified by a shallow depression. Combining the observations with optical modeling and thermal/mechanical calculations, we argue that a high-temperature thermal field from plasma generated by the laser-particle interaction above a critical fluence is responsible for the surface modification of each capping layer. The great difference in damage behavior is mainly attributed to the large disparity in the thermal expansion coefficient of the two capping materials, with that of Al 2O 3 layer being about 15 times greater than that of SiO 2.« less

  13. Impact of laser-contaminant interaction on the performance of the protective capping layer of 1w high-reflection mirror coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, S. R.; Norton, M. A.; Raman, R. N.

    In this paper, high dielectric constant multilayer coatings are commonly used on high-reflection mirrors for high-peak-power laser systems because of their high laser-damage resistance. However, surface contaminants often lead to damage upon laser exposure, thus limiting the mirror’s lifetime and performance. One plausible approach to improve the overall mirror resistance against laser damage, including that induced by laser-contaminant coupling, is to coat the multilayers with a thin protective capping (absentee) layer on top of the multilayer coatings. An understanding of the underlying mechanism by which laser-particle interaction leads to capping layer damage is important for the rational design and selectionmore » of capping materials of high-reflection multilayer coatings. In this paper, we examine the responses of two candidate capping layer materials, made of SiO 2 and Al 2O 3, over silica-hafnia multilayer coatings. These are exposed to a single oblique shot of a 1053 nm laser beam (fluence ~10 J/cm 2, pulse length 14 ns), in the presence of Ti particles on the surface. We find that the two capping layers show markedly different responses to the laser-particle interaction. The Al 2O 3 cap layer exhibits severe damage, with the capping layer becoming completely delaminated at the particle locations. The SiO 2 capping layer, on the other hand, is only mildly modified by a shallow depression. Combining the observations with optical modeling and thermal/mechanical calculations, we argue that a high-temperature thermal field from plasma generated by the laser-particle interaction above a critical fluence is responsible for the surface modification of each capping layer. The great difference in damage behavior is mainly attributed to the large disparity in the thermal expansion coefficient of the two capping materials, with that of Al 2O 3 layer being about 15 times greater than that of SiO 2.« less

  14. Synthesis and Characterization of Mercaptoacetic Acid Capped Cadmium Sulphide Quantum Dots.

    PubMed

    Wageh, S; Maize, Mai; Donia, A M; Al-Ghamdi, Ahmed A; Umar, Ahmad

    2015-12-01

    This paper reports the facile synthesis and detailed characterization of mercaptoacetic acid capped cadmium sulphide (CdS) quantum dots using various cadmium precursors. The mercaptoacetic acid capped CdS quantum dots were prepared by facile and simple wet chemical method and characterized by several techniques such as energy dispersive spectroscopy (EDS), X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, UV-vis. spectroscopy, photoluminescence spectroscopy, high-resolution transmission microscopy (HRTEM) and thremogravimetric analysis. The EDS studies revealed that the prepared quantum dots possess higher atomic percentage of sulfur compared to cadmium due to the coordination of thiolate to the quantum dots surfaces. The X-ray and absorption analyses exhibited that the size of quantum dots prepared by cadmium acetate is larger than the quantum dots prepared by cadmium chloride and cadmium nitrate. The increase in size can be attributed to the low stability constant of cadmium acetate in comparison with cadmium chloride and cadmium nitrate. The FTIR and thermogravimetric analysis showed that the nature of capping molecule on the surface of quantum dots are different depending on the cadmium precursors which affect the emission from CdS quantum dots. Photoemission spectroscopy revealed that the emission of quantum dots prepared by cadmium acetate has high intensity band edge emission along with low intensity trapping state emission. However the CdS quantum dots prepared by cadmium chloride and cadmium nitrate produced only trapping state emissions.

  15. A DFT study on NEA GaN photocathode with an ultrathin n-type Si-doped GaN cap layer

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Kong, Yike; Diao, Yu

    2016-10-01

    Due to the drawbacks of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, a new-type NEA GaN photocathodes with heterojunction surface dispense with Cs activation are proposed. This structure can be obtained through the coverage of an ultrathin n-type Si-doped GaN cap layer on the p-type Mg-doped GaN emission layer. The influences of the cap layer on the photocathode are calculated using DFT. This study indicates that the n-type cap layer can promote the photoemission characteristics of GaN photocathode and demonstrates the probability of the preparation of a NEA GaN photocathode with an n-type cap layer.

  16. Silicide formation process of Er films with Ta and TaN capping layers.

    PubMed

    Choi, Juyun; Choi, Seongheum; Kim, Jungwoo; Na, Sekwon; Lee, Hoo-Jeong; Lee, Seok-Hee; Kim, Hyoungsub

    2013-12-11

    The phase development and defect formation during the silicidation reaction of sputter-deposited Er films on Si with ∼20-nm-thick Ta and TaN capping layers were examined. TaN capping effectively prevented the oxygen incorporation from the annealing atmosphere, which resulted in complete conversion to the ErSi2-x phase. However, significant oxygen penetration through the Ta capping layer inhibited the ErSi2-x formation, and incurred the growth of several Er-Si-O phases, even consuming the ErSi2-x layer formed earlier. Both samples produced a number of small recessed defects at an early silicidation stage. However, large rectangular or square-shaped surface defects, which were either pitlike or pyramidal depending on the capping layer identity, were developed as the annealing temperature increased. The origin of different defect generation mechanisms was suggested based on the capping layer-dependent silicidation kinetics.

  17. Theoretical study for heterojunction surface of NEA GaN photocathode dispensed with Cs activation

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Wang, Honggang; Wang, Meishan; Kong, Yike

    2016-09-01

    For the disadvantages of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, new-type NEA GaN photocathodes with heterojunction surface dispensed with Cs activation are investigated based on first-principle study with density functional theory. Through the growth of an ultrathin n-type GaN cap layer on p-type GaN emission layer, a p-n heterojunction is formed on the surface. According to the calculation results, it is found that Si atoms tend to replace Ga atoms to result in an n-type doped cap layer which contributes to the decreasing of work function. After the growth of n-type GaN cap layer, the atom structure near the p-type emission layer is changed while that away from the surface has no obvious variations. By analyzing the E-Mulliken charge distribution of emission surface with and without cap layer, it is found that the positive charge of Ga and Mg atoms in the emission layer decrease caused by the cap layer, while the negative charge of N atom increases. The conduction band moves downwards after the growth of cap layer. Si atom produces donor levels around the valence band maximum. The absorption coefficient of GaN emission layer decreases and the reflectivity increases caused by n-type GaN cap layer.

  18. Effect of NiFeCr seed and capping layers on exchange bias and planar Hall voltage response of NiFe/Au/IrMn trilayer structures

    NASA Astrophysics Data System (ADS)

    Talantsev, Artem; Elzwawy, Amir; Kim, CheolGi

    2018-05-01

    Thin films and cross junctions, based on NiFe/Au/IrMn structures, were grown on Ta and NiFeCr seed layers by magnetron sputtering. The effects of substitution of Ta with NiFeCr in seed and capping layers on an exchange bias field are studied. A threefold improvement of the exchange bias value in the structures, grown with NiFeCr seed and capping layers, is demonstrated. The reasons for this effect are discussed. Formation of clusters in the NiFeCr capping layer is proved by atomic force microscopy technique. Ta replacement on NiFeCr in the capping layer results in the enhancement of magnetoresistive response and a reduction of noise.

  19. Controlling contamination in Mo/Si multilayer mirrors by Si surface capping modifications

    NASA Astrophysics Data System (ADS)

    Malinowski, Michael E.; Steinhaus, Chip; Clift, W. Miles; Klebanoff, Leonard E.; Mrowka, Stanley; Soufli, Regina

    2002-07-01

    The performance of Mo/Si multilayer mirrors (MLMs) used to reflect UV (EUV) radiation in an EUV + hydrocarbon (NC) vapor environment can be improved by optimizing the silicon capping layer thickness on the MLM in order to minimize the initial buildup of carbon on MLMs. Carbon buildup is undesirable since it can absorb EUV radiation and reduce MLM reflectivity. A set of Mo/Si MLMs deposited on Si wafers was fabricated such that each MLM had a different Si capping layer thickness ranging form 2 nm to 7 nm. Samples from each MLM wafer were exposed to a combination of EUV light + (HC) vapors at the Advanced Light Source (ALS) synchrotron in order to determine if the Si capping layer thickness affected the carbon buildup on the MLMs. It was found that the capping layer thickness had a major influence on this 'carbonizing' tendency, with the 3 nm layer thickness providing the best initial resistance to carbonizing and accompanying EUV reflectivity loss in the MLM. The Si capping layer thickness deposited on a typical EUV optic is 4.3 nm. Measurements of the absolute reflectivities performed on the Calibration and Standards beamline at the ALS indicated the EUV reflectivity of the 3 nm-capped MLM was actually slightly higher than that of the normal, 4 nm Si-capped sample. These results show that he use of a 3 nm capping layer represents an improvement over the 4 nm layer since the 3 nm has both a higher absolute reflectivity and better initial resistance to carbon buildup. The results also support the general concept of minimizing the electric field intensity at the MLM surface to minimize photoelectron production and, correspondingly, carbon buildup in a EUV + HC vapor environment.

  20. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures

    NASA Astrophysics Data System (ADS)

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L.; Zhang, Qianfan; Zhao, Weisheng

    2015-12-01

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.

  1. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures.

    PubMed

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L; Zhang, Qianfan; Zhao, Weisheng

    2015-12-11

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.

  2. South Polar Layers

    NASA Image and Video Library

    2016-08-25

    Southern hemisphere spring has arrived at the south polar cap. The ice layers that make up the cap are easily seen in this image from NASA 2001 Mars Odyssey spacecraft. Southern hemisphere spring has arrived at the south polar cap. The ice layers that make up the cap are easily seen in this VIS image. Orbit Number: 64531 Latitude: -86.6334 Longitude: 97.7916 Instrument: VIS Captured: 2016-07-01 06:55 http://photojournal.jpl.nasa.gov/catalog/PIA20972

  3. Effect of heat treatment on interface driven magnetic properties of CoFe films

    NASA Astrophysics Data System (ADS)

    Singh, Akhilesh Kr.; Hsu, Jen-Hwa

    2017-06-01

    We report systematic studies on non-magnetic Ta underlayer and cap layer driven microstructural and magnetic properties at a wide temperature range for CoFe films. All the films were grown at room temperature and post annealed at different annealing temperatures (TA = 200 °C, 250 °C, 300 °C, 350 °C, 400 °C and 450 °C). The in-plane magnetic hysteresis (M-H) loops of 10 nm thick CoFe single layer films, grown directly on thermally oxidized Si substrate, exhibit anisotropic nature for TA above 250 °C. However, the CoFe (10 nm) films grown on the 5 nm thick Ta underlayer show reduced anisotropy. Moreover, with underlayer and cap layers (2 nm) the anisotropy is disappeared. The in-plane coercivity (HC) shows a strong variation with TA, underlayer and cap layers. HC increases significantly with Ta underlayer and cap layers. The out of plane M-H loops exhibit increase in the remanence magnetization and squareness with both Ta underlayer and cap layers due to transition of in-plane magnetization component to the out of plane direction. The atomic force microscopic observations revealed that grain/particle size and shape depend strongly on TA and Ta layers. Moreover, a large reduction in the surface roughness is observed with the Ta cap layer. The magnetic domain patterns depend on the TA, and Ta layers. However, for Ta/CoFe/Ta films no clear domains were observed for all the TA. Hence, the Ta cap layers not only protect the CoFe magnetic layer against the heat treatment, but also show a smooth surface at a wide temperature range. These results could be discussed on the basis of random anisotropy model, TA, underlayer and cap layers driven microstructure and magnetization orientation of the CoFe films.

  4. Ruthenium (Ru) peeling and predicting robustness of the capping layer using finite element method (FEM) modeling

    NASA Astrophysics Data System (ADS)

    Jang, Il-Yong; John, Arun; Goodwin, Frank; Lee, Su-Young; Kim, Byung-Gook; Kim, Seong-Sue; Jeon, Chan-Uk; Kim, Jae Hyung; Jang, Yong Hoon

    2014-07-01

    Ruthenium (Ru) film used as capping layer in extreme ultraviolet (EUV) mask peeled off after annealing and in-situ UV (IUV) cleaning. We investigated Ru peeling and found out that the mechanical stress caused by the formation of Si oxide due to the penetration of oxygen atoms from ambient or cleaning media to top-Si of ML is the root cause for the problem. To support our experimental results, we developed a numerical model of finite element method (FEM) using commercial software (ABAQUS™) to calculate the stress and displacement forced on the capping layer. By using this model, we could observe that the displacement agrees well with the actual results measured from the transmission electron microscopy (TEM) image. Using the ion beam deposition (IBD) tool at SEMATECH, we developed four new types of alternative capping materials (RuA, RuB, B4C, B4C-buffered Ru). The durability of each new alternative capping layer observed by experiment was better than that of conventional Ru. The stress and displacement calculated from each new alternative capping layer, using modeling, also agreed well with the experimental results. A new EUV mask structure is proposed, inserting a layer of B4C (B4C-buffered Ru) at the interface between the capping layer (Ru) and the top-Si layer. The modeling results showed that the maximum displacement and bending stress observed from the B4C-buffered Ru are significantly lower than that of single capping layer cases. The durability investigated from the experiment also showed that the B4C-buffered structure is at least 3X stronger than that of conventional Ru.

  5. Enhanced annealing stability and perpendicular magnetic anisotropy in perpendicular magnetic tunnel junctions using W layer

    NASA Astrophysics Data System (ADS)

    Chatterjee, Jyotirmoy; Sousa, Ricardo C.; Perrissin, Nicolas; Auffret, Stéphane; Ducruet, Clarisse; Dieny, Bernard

    2017-05-01

    The magnetic properties of the perpendicular storage electrode (buffer/MgO/FeCoB/Cap) were studied as a function of annealing temperature by replacing Ta with W and W/Ta cap layers with variable thicknesses. W in the cap boosts up the annealing stability and increases the effective perpendicular anisotropy by 30% compared to the Ta cap. Correspondingly, an increase in the FeCoB critical thickness characterizing the transition from perpendicular to in-plane anisotropy was observed. Thicker W layer in the W(t)/Ta 1 nm cap layer makes the storage electrode highly robust against annealing up to 570 °C. The stiffening of the overall stack resulting from the W insertion due to its very high melting temperature seems to be the key mechanism behind the extremely high thermal robustness. The Gilbert damping constant of FeCoB with the W/Ta cap was found to be lower when compared with the Ta cap and stable with annealing. The evolution of the magnetic properties of bottom pinned perpendicular magnetic tunnel junctions (p-MTJ) stack with the W2/Ta1 nm cap layer shows back-end-of-line compatibility with increasing tunnel magnetoresistance up to the annealing temperature of 425 °C. The pMTJ thermal budget is limited by the synthetic antiferromagnetic hard layer which is stable up to 425 °C annealing temperature while the storage layer is stable up to 455 °C.

  6. Selective layer disordering in III-nitrides with a capping layer

    DOEpatents

    Wierer, Jr., Jonathan J.; Allerman, Andrew A.

    2016-06-14

    Selective layer disordering in a doped III-nitride superlattice can be achieved by depositing a dielectric capping layer on a portion of the surface of the superlattice and annealing the superlattice to induce disorder of the layer interfaces under the uncapped portion and suppress disorder of the interfaces under the capped portion. The method can be used to create devices, such as optical waveguides, light-emitting diodes, photodetectors, solar cells, modulators, laser, and amplifiers.

  7. Effect of capping layer on interlayer coupling in synthetic spin valves

    NASA Astrophysics Data System (ADS)

    Li, Kebin; Qiu, Jinjun; Han, Guchang; Guo, Zaibing; Zheng, Yuankai; Wu, Yihong; Li, Jinshan

    2005-01-01

    The magnetic and transport properties of high quality synthetic spin-valves with the structure of Ta/NiFe/IrMn/CoFe/Ru/CoFe/NOL/CoFe/Cu/CoFe/CL were studied by using magnetoresistance measurements. Here Ti, Hf, and Al are used as the capping layer. It is found that both the thickness and materials properties of the capping layers can affect the interlayer coupling field. The interlayer coupling field oscillates weakly with respect to the thickness of the Ti and Hf capping layers. Extremely strong ferromagnetic coupling has been observed when the thickness of the Al capping layer is in a certain range where resonant exchange coupling takes place. The strength of the interlayer coupling is inversely proportional to the square of the thickness of the spacer. It is a typical characteristic of quantum size effect.

  8. pH-responsive ion transport in polyelectrolyte multilayers of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA) bearing strong- and weak anionic groups.

    PubMed

    Maza, Eliana; Tuninetti, Jimena S; Politakos, Nikolaos; Knoll, Wolfgang; Moya, Sergio; Azzaroni, Omar

    2015-11-28

    The layer-by-layer construction of interfacial architectures displaying stimuli-responsive control of mass transport is attracting increasing interest in materials science. In this work, we describe the creation of interfacial architectures displaying pH-dependent ionic transport properties which until now have not been observed in polyelectrolyte multilayers. We describe a novel approach to create pH-controlled ion-rectifying systems employing polyelectrolyte multilayers assembled from a copolymer containing both weakly and strongly charged pendant groups, poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA), alternately deposited with poly(diallyldimethylammonium chloride) (PDADMAC). The conceptual framework is based on the very contrasting and differential interactions of PSS and MA units with PDADMAC. In our setting, sulfonate groups play a structural role by conferring stability to the multilayer due to the strong electrostatic interactions with the polycations, while the weakly interacting MA groups remain "silent" within the film and then act as on-demand pH-responsive units. When these multilayers are combined with a strong cationic capping layer that repels the passage of cationic probes, a pH-gateable rectified transport of anions is observed. Concomitantly, we also observed that these functional properties are significantly affected when multilayers are subjected to extensive pH cycling as a consequence of irreversible morphological changes taking place in the film. We envision that the synergy derived from combining weak and strong interactions within the same multilayer will play a key role in the construction of new interfacial architectures displaying tailorable ion transport properties.

  9. Method of forming an HTS article

    DOEpatents

    Bhattacharya, Raghu N.; Zhang, Xun; Selvamanickam, Venkat

    2014-08-19

    A method of forming a superconducting article includes providing a substrate tape, forming a superconducting layer overlying the substrate tape, and depositing a capping layer overlying the superconducting layer. The capping layer includes a noble metal and has a thickness not greater than about 1.0 micron. The method further includes electrodepositing a stabilizer layer overlying the capping layer using a solution that is non-reactive to the superconducting layer. The superconducting layer has an as-formed critical current I.sub.C(AF) and a post-stabilized critical current I.sub.C(PS). The I.sub.C(PS) is at least about 95% of the I.sub.C(AF).

  10. A large-scale field trial of thin-layer capping of PCDD/F-contaminated sediments: Sediment-to-water fluxes up to 5 years post-amendment.

    PubMed

    Cornelissen, Gerard; Schaanning, Morten; Gunnarsson, Jonas S; Eek, Espen

    2016-04-01

    The longer-term effect (3-5 y) of thin-layer capping on in situ sediment-to-surface water fluxes was monitored in a large-scale field experiment in the polychlorinated dibenzodioxin and dibenzofuran (PCDD/F) contaminated Grenlandfjords, Norway (4 trial plots of 10,000 to 40,000 m(2) at 30 to 100 m water depth). Active caps (designed thickness 2.5 cm) were established in 2 fjords, consisting of dredged clean clay amended with powdered activated carbon (PAC) from anthracite. These active caps were compared to 2 nonactive caps in one of the fjords (designed thickness 5 cm) consisting of either clay only (i.e., without PAC) or crushed limestone. Sediment-to-water PCDD/F fluxes were measured in situ using diffusion chambers. An earlier study showed that during the first 2 years after thin-layer capping, flux reductions relative to noncapped reference fields were more extensive at the fields capped with nonactive caps (70%-90%) than at the ones with PAC-containing caps (50%-60%). However, the present work shows that between 3 and 5 years after thin-layer capping, this trend was reversed and cap effectiveness in reducing fluxes was increasing to 80% to 90% for the PAC caps, whereas cap effectiveness of the nonactive caps decreased to 20% to 60%. The increasing effectiveness over time of PAC-containing "active" caps is explained by a combination of slow sediment-to-PAC mass transfer of PCDD/Fs and bioturbation by benthic organisms. The decreasing effectiveness of "nonactive" limestone and clay caps is explained by deposition of contaminated particles on top of the caps. The present field data indicate that the capping efficiency of thin active caps (i.e., enriched with PAC) can improve over time as a result of slow diffusive PCDD/F transfer from sediment to PAC particles and better mixing of the PAC by bioturbation. © 2015 SETAC.

  11. Devon island ice cap: core stratigraphy and paleoclimate.

    PubMed

    Koerner, R M

    1977-04-01

    Valuable paleoclimatic information can be gained by studying the distribution of melt layers in deep ice cores. A profile representing the percentage of ice in melt layers in a core drilled from the Devon Island ice cap plotted against both time and depth shows that the ice cap has experienced a period of very warm summers since 1925, following a period of colder summers between about 1600 and 1925. The earlier period was coldest between 1680 and 1730. There is a high correlation between the melt-layer ice percentage and the mass balance of the ice cap. The relation between them suggests that the ice cap mass balance was zero (accumulation equaled ablation) during the colder period but is negative in the present warmer one. There is no firm evidence of a present cooling trend in the summer conditions on the ice cap. A comparison with the melt-layer ice percentage in cores from the other major Canadian Arctic ice caps shows that the variation of summer conditions found for the Devon Island ice cap is representative for all the large ice caps for about 90 percent of the time. There is also a good correlation between melt-layer percentage and summer sea-ice conditions in the archipelago. This suggests that the search for the northwest passage was influenced by changing climate, with the 19th-century peak of the often tragic exploration coinciding with a period of very cold summers.

  12. Improving the photoresponse spectra of BaSi2 layers by capping with hydrogenated amorphous Si layers prepared by radio-frequency hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Xu, Zhihao; Gotoh, Kazuhiro; Deng, Tianguo; Sato, Takuma; Takabe, Ryota; Toko, Kaoru; Usami, Noritaka; Suemasu, Takashi

    2018-05-01

    We studied the surface passivation effect of hydrogenated amorphous silicon (a-Si:H) layers on BaSi2 films. a-Si:H was formed by an electron-beam evaporation of Si, and a supply of atomic hydrogen using radio-frequency plasma. Surface passivation effect was first investigated on a conventional n-Si(111) substrate by capping with 20 nm-thick a-Si:H layers, and next on a 0.5 μm-thick BaSi2 film on Si(111) by molecular beam epitaxy. The internal quantum efficiency distinctly increased by 4 times in a wide wavelength range for sample capped in situ with a 3 nm-thick a-Si:H layer compared to those capped with a pure a-Si layer.

  13. Communication: Distinguishing between bulk and interface-enhanced crystallization in nanoscale films of amorphous solid water.

    PubMed

    Yuan, Chunqing; Smith, R Scott; Kay, Bruce D

    2017-01-21

    The crystallization of amorphous solid water (ASW) nanoscale films was investigated using reflection absorption infrared spectroscopy. Two ASW film configurations were studied. In one case the ASW film was deposited on top of and capped with a decane layer ("sandwich" configuration). In the other case, the ASW film was deposited on top of a decane layer and not capped ("no cap" configuration). Crystallization of ASW films in the "sandwich" configuration is about eight times slower than in the "no cap." Selective placement of an isotopic layer (5% D 2 O in H 2 O) at various positions in an ASW (H 2 O) film was used to determine the crystallization mechanism. In the "sandwich" configuration, the crystallization kinetics were independent of the isotopic layer placement whereas in the "no cap" configuration the closer the isotopic layer was to the vacuum interface, the earlier the isotopic layer crystallized. These results are consistent with a mechanism whereby the decane overlayer suppresses surface nucleation and provide evidence that the observed ASW crystallization in "sandwich" films is the result of uniform bulk nucleation.

  14. Selective layer disordering in intersubband Al 0.028Ga 0.972 N/AlN superlattices with silicon nitride capping layer

    DOE PAGES

    Wierer, Jonathan J.; Allerman, Andrew A.; Skogen, Erik J.; ...

    2015-06-01

    We demonstrate the selective layer disordering in intersubband Al 0.028Ga 0.972 N/AlN superlattices using a silicon nitride (SiN x) capping layer. The (SiN x) capped superlattice exhibits suppressed layer disordering under high-temperature annealing. In addition, the rate of layer disordering is reduced with increased SiN x thickness. The layer disordering is caused by Si diffusion, and the SiN x layer inhibits vacancy formation at the crystal surface and ultimately, the movement of Al and Ga atoms across the heterointerfaces. In conclusion, patterning of the SiN x layer results in selective layer disordering, an attractive method to integrate active and passivemore » III–nitride-based intersubband devices.« less

  15. Hybrid grating reflectors: Origin of ultrabroad stopband

    NASA Astrophysics Data System (ADS)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug

    2016-04-01

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well as a weak guided mode (GM) resonance. Most of the reflected power results from the FP resonance, while the GM resonance plays a key role in achieving a reflectance close to 100% as well as broadening the stopband. An HG sample with 7 InGaAlAs quantum wells included in the cap layer has been fabricated by directly wafer-bonding a III-V cap layer onto a Si grating layer. Its reflection property has been characterized. This heterogeneously integrated HG reflector may allow for a hybrid III-V on Si laser to be thermally efficient, which has promising prospects for silicon photonics light sources and high-speed operation.

  16. The Residual Polar Caps of Mars: Geological Differences and Possible Consequences

    NASA Technical Reports Server (NTRS)

    Thomas, P. C.; Sullivan, R.; Ingersoll, A. P.; Murray, B. C.; Danielson, G. E.; Herkenhoff, K. E.; Soderblom, L.; Malin, M. C.; Edgett, K. S.; James, P. B.

    2000-01-01

    The Martian polar regions have been known to have thick layered sequences (presumed to consist of silicates and ice), CO2 seasonal frost, and residual frosts that remain through the summer: H2O in the north, largely CO2 in the south. The relationship of the residual frosts to the underlying layered deposits could not be determined from Viking images. The Mars Orbiter Camera on Mars Global Surveyor has provided a 50-fold increase in resolution that shows more differences between the two poles. The north residual cap surface has rough topography of pits, cracks, and knobs, suggestive of ablational forms. This topography is less than a few meters in height, and grades in to surfaces exposing the layers underneath. In contrast, the south residual cap has distinctive collapse and possibly ablational topography emplaced in four or more layers, each approx. two meters thick. The top surface has polygonal depressions suggestive of thermal contraction cracks. The collapse and erosional forms include circular and cycloidal depressions, long sinuous troughs, and nearly parallel sets of troughs. The distinctive topography occurs throughout the residual cap area, but not outside it. Unconformities exposed in polar layers, or other layered materials, do not approximate the topography seen on the south residual cap. The coincidence of a distinct geologic feature, several layers modified by collapse, ablation, and mass movement with the residual cap indicates a distinct composition and/or climate compared to both the remainder of the south polar layered units and those in the north.

  17. PLUTONIUM RECOVERY FROM NEUTRON-BOMBARDED URANIUM FUEL

    DOEpatents

    Moore, R.H.

    1962-04-10

    A process of recovering plutonium from neutronbombarded uranium fuel by dissolving the fuel in equimolar aluminum chloride-potassium chloride; heating the mass to above 700 deg C for decomposition of plutonium tetrachloride to the trichloride; extracting the plutonium trichloride into a molten salt containing from 40 to 60 mole % of lithium chloride, from 15 to 40 mole % of sodium chloride, and from 0 to 40 mole % of potassium chloride or calcium chloride; and separating the layer of equimolar chlorides containing the uranium from the layer formed of the plutonium-containing salt is described. (AEC)

  18. Spring Slide

    NASA Image and Video Library

    2013-10-30

    The North Polar region of Mars is capped with layers of water ice and dust, called the polar layered deposits. This permanent polar cap is covered in the winter with a layer of seasonal carbon dioxide ice as seen by NASA Mars Reconnaissance Orbiter.

  19. Surface acoustic waves in one-dimensional piezoelectric-metallic phononic crystal: Effect of a cap layer.

    PubMed

    Alami, M; El Boudouti, E H; Djafari-Rouhani, B; El Hassouani, Y; Talbi, A

    2018-06-18

    We study the propagation of transverse acoustic waves associated with the surface of a semi-infinite superlattice (SL) composed of piezoelectric-metallic layers and capped with a piezoelectric layer. We present closed-form expressions for localized surface waves, the so-called Bleustein-Gulyaev (BG) waves depending on whether the cap layer is open-circuited or short-circuited. These expressions are obtained by means of the Green's function method which enables to deduce also the densities of states. These theoretical results are illustrated by a few numerical applications to SLs made of piezoelectric layers of hexagonal symmetry belonging to the 6 mm class such as PZT4 and ZnO in contact with metallic layers such as Fe, Al, Au, Cu and boron-doped-diamond. We demonstrate a rule about the existence of surface modes when considering two complementary semi-infinite SLs obtained by the cleavage of an infinite SL along a plane parallel to the piezoelectric layers. Indeed, when the surface layers are open-circuited, one obtains one surface mode per gap, this mode is associated with one of the two complementary SLs. However, when the surface layers are short-circuited, this rule is not fulfilled and one can obtain zero, one or two modes inside each gap of the two complementary SLs depending on the position of the plane where the cleavage is produced. We show that in addition to the BG surface waves localized at the surface of the cap layer, there may exist true guided waves and pseudo-guided waves (i.e. leaky waves) induced by the cap layer either inside the gaps or inside the bands of the SL respectively. Also, we highlight the possibility of existence of interface modes between the SL and a cap layer as well as an interaction between these modes and the BG surface mode when both modes fall in the same band gaps of the SL. The strength of the interaction depends on the width of the cap layer. Finally, we show that the electromechanical coupling coefficient (ECC) is very sensitive to the cap layer thickness, in particular we calculate and discuss the behavior of the ECC as a function of the adlayer thickness for the low velocity surface modes of the SL which exhibit the highest ECC values. The effect of the nature of the metallic layers inside the SL on the ECC is also investigated. The different surface modes discussed in this work should have applications in sensing applications. Copyright © 2018. Published by Elsevier B.V.

  20. Static and dynamic properties of Co2FeAl thin films: Effect of MgO and Ta as capping layers

    NASA Astrophysics Data System (ADS)

    Husain, Sajid; Barwal, Vineet; Kumar, Ankit; Behera, Nilamani; Akansel, Serkan; Goyat, Ekta; Svedlindh, Peter; Chaudhary, Sujeet

    2017-05-01

    The influence of MgO and Ta capping layers on the static and dynamic magnetic properties of Co2FeAl (CFA) Heusler alloy thin films has been investigated. It is observed that the CFA film deposited with MgO capping layer is preeminent compared to the uncapped or Ta capped CFA film. In particular, the magnetic inhomogeneity contribution to the ferromagnetic resonance line broadening and damping constant are found to be minimal for the MgO capped CFA thin film i.e., 0.12±0.01 Oe and 0.0074±0.00014, respectively. The saturation magnetization was found to be 960±25emu/cc.

  1. Paracellular transport in the collecting duct

    PubMed Central

    Hou, Jianghui

    2016-01-01

    Purpose of review The paracellular pathway through the tight junction provides an important route for chloride reabsorption in the collecting duct of the kidney. This review describes recent findings of how defects in paracellular chloride permeation pathway may cause kidney diseases and how such a pathway may be regulated to maintain normal chloride homeostasis. Recent findings The tight junction in the collecting duct expresses two important claudin genes – claudin-4 and claudin-8. Transgenic knockout of either claudin gene causes hypotension, hypochloremia, and metabolic alkalosis in experimental animals. The claudin-4 mediated chloride permeability can be regulated by a protease endogenously expressed by the collecting duct cell – Cap1. Cap1 regulates the intercellular interaction of claudin-4 and its membrane stability. KLHL3, previously identified as a causal gene for Gordon’s syndrome, also known as pseudohypoaldosteronism II (PHA-II), directly interacts with claudin-8 and regulates its ubiquitination and degradation. The dominant PHA-II mutation (R528H) in KLHL3 abolishes claudin-8 binding, ubiquitination, and degradation. Summary The paracellular chloride permeation pathway in the kidney is an important but understudied area in nephrology. It plays vital roles in renal salt handling and regulation of extracellular fluid volume and blood pressure. Two claudin proteins – claudin-4 and claudin-8 contribute to the function of this paracellular pathway. Deletion of either claudin protein from the collecting duct causes renal chloride reabsorption defects and low blood pressure. Claudins can be regulated on post-translational levels by several mechanisms involving protease and ubiquitin ligase. Deregulation of claudins may cause human hypertension as exemplified in the Gordon’s syndrome. PMID:27490784

  2. Four Types of Deposits From Wet Conditions on Early Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Each of these four panels shows a close-up view of a different type of geological deposit formed with the involvement of water, based on observations by NASA's Mars Reconnaissance Orbiter. All four date from the earliest period of Martian history, called the Noachian Period.

    The upper-left panel shows carbonates overlying clays in the Nili Fossae region of Mars. The view combines color-coded information from infrared spectral observations by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) with an underlying black-and-white image from the High Resolution Imaging Science Experiment (HiRISE) camera. Beneath a rough-textured capping rock unit (purple) lie banded olivine-bearing layers (yellow), which in some places have been partially or wholly altered to carbonate (green).

    The upper-right panel shows phyllosilicates and chlorides in the Terra Sirenum region, observed by CRISM and HiRISE. Medium-toned, finely fractured rocks containing chloride salts either underlie higher-standing, light-toned phyllosilicates or fill in low spots between them. Both sit on dark, eroded volcanic material.

    The lower-left panel shows the upper portion of canyon wall in Coprates Chasma, observed by HiRISE and CRISM. The chasm rim cuts across the middle of the image. The wall slopes down to the top of the image and continues outside the region shown, exposing multiple phyllosilicate-bearing layers in a section of rock 7 kilometers (4 miles) thick. Two of the layers shown here are finely fractured aluminum clays that dominate the lower half of the image, underlain by thin beds of iron-magnesium clays at the top of the image. The dark material is a remnant of an overlying layer of basaltic sand that has been partly eroded away by the wind.

    The lower-right panel shows phyllosilicates with vertically layered compositions in Mawrth Vallis, observed by HiRISE (presented in enhanced color) and CRISM. The brown-colored knob in the middle of the scene is a remnant of cap rock that overlies aluminum clays (blue-gray), which in turn overlie iron-magnesium clays (buff).

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The Johns Hopkins University Applied Physics Laboratory led the effort to build the CRISM instrument and operates CRISM in coordination with an international team of researchers from universities, government and the private sector. The University of Arizona, Tucson, operates the HiRISE camera, which was built by Ball Aerospace & Technologies Corp., Boulder, Colo.

  3. Mo/Si multilayers with enhanced TiO II- and RuO II-capping layers

    NASA Astrophysics Data System (ADS)

    Yulin, Sergiy; Benoit, Nicolas; Feigl, Torsten; Kaiser, Norbert; Fang, Ming; Chandhok, Manish

    2008-03-01

    The lifetime of Mo/Si multilayer-coated projection optics is one of the outstanding issues on the road of commercialization of extreme-ultraviolet lithography (EUVL). The application of Mo/Si multilayer optics in EUVL requires both sufficient radiation stability and also the highest possible normal-incidence reflectivity. A serious problem of conventional high-reflective Mo/Si multilayers capped by silicon is the considerable degradation of reflective properties due to carbonization and oxidation of the silicon surface layer under exposure by EUV radiation. In this study, we focus on titanium dioxide (TiO II) and ruthenium dioxide (RuO II) as promising capping layer materials for EUVL multilayer coatings. The multilayer designs as well as the deposition parameters of the Mo/Si systems with different capping layers were optimized in terms of maximum peak reflectivity at the wavelength of 13.5 nm and longterm stability under high-intensive irradiation. Optimized TiO II-capped Mo/Si multilayer mirrors with an initial reflectivity of 67.0% presented a reflectivity drop of 0.6% after an irradiation dose of 760 J/mm2. The reflectivity drop was explained by the partial oxidation of the silicon sub-layer. No reflectivity loss after similar irradiation dose was found for RuO II-capped Mo/Si multilayer mirrors having initial peak reflectivity of 66%. In this paper we present data on improved reflectivity of interface-engineered TiO II- and RuO II-capped Mo/Si multilayer mirrors due to the minimization of both interdiffusion processes inside the multilayer stack and absorption loss in the oxide layer. Reflectivities of 68.5% at the wavelength of 13.4 nm were achieved for both TiO II- and RuO II-capped Mo/Si multilayer mirrors.

  4. North-south geological differences between the residual polar caps on Mars

    USGS Publications Warehouse

    Thomas, P.C.; Malin, M.C.; Edgett, K.S.; Carr, M.H.; Hartmann, W.K.; Ingersoll, A.P.; James, P.B.; Soderblom, L.A.; Veverka, J.; Sullivan, R.

    2000-01-01

    Polar processes can be sensitive indicators of global climate, and the geological features associated with polar ice caps can therefore indicate evolution of climate with time. The polar regions on Mars have distinctive morphologic and climatologic features: thick layered deposits, seasonal CO2 frost caps extending to mid latitudes, and near-polar residual frost deposits that survive the summer. The relationship of the seasonal and residual frost caps to the layered deposits has been poorly constrained, mainly by the limited spatial resolution of the available data. In particular, it has not been known if the residual caps represent simple thin frost cover or substantial geologic features. Here we show that the residual cap on the south pole is a distinct geologic unit with striking collapse and erosional topography; this is very different from the residual cap on the north pole, which grades into the underlying layered materials. These findings indicate that the differences between the caps are substantial (rather than reflecting short-lived differences in frost cover), and so support the idea of long-term asymmetry in the polar climates of Mars.

  5. Damage of multilayer optics with varying capping layers induced by focused extreme ultraviolet beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jody Corso, Alain; Nicolosi, Piergiorgio; Nardello, Marco

    2013-05-28

    Extreme ultraviolet Mo/Si multilayers protected by capping layers of different materials were exposed to 13.5 nm plasma source radiation generated with a table-top laser to study the irradiation damage mechanism. Morphology of single-shot damaged areas has been analyzed by means of atomic force microscopy. Threshold fluences were evaluated for each type of sample in order to determine the capability of the capping layer to protect the structure underneath.

  6. Hybrid calcium phosphate coatings for implants

    NASA Astrophysics Data System (ADS)

    Malchikhina, Alena I.; Shesterikov, Evgeny V.; Bolbasov, Evgeny N.; Ignatov, Viktor P.; Tverdokhlebov, Sergei I.

    2016-08-01

    Monophasic biomaterials cannot provide all the necessary functions of bones or other calcined tissues. It is necessary to create for cancer patients the multiphase materials with the structure and composition simulating the natural bone. Such materials are classified as hybrid, obtained by a combination of chemically different components. The paper presents the physical, chemical and biological studies of coatings produced by hybrid technologies (HT), which combine primer layer and calcium phosphate (CaP) coating. The first HT type combines the method of vacuum arc titanium primer layer deposition on a stainless steel substrate with the following micro-arc oxidation (MAO) in phosphoric acid solution with addition of calcium compounds to achieve high supersaturated state. MAO CaP coatings feature high porosity (2-8%, pore size 5-7 µm) and surface morphology with the thickness greater than 5 µm. The thickness of Ti primer layer is 5-40 µm. Amorphous MAO CaP coating micro-hardness was measured at maximum normal load Fmax = 300 mN. It was 3.1 ± 0.8 GPa, surface layer elasticity modulus E = 110 ± 20 GPa, roughness Ra = 0.9 ± 0.1 µm, Rz = 7.5 ± 0.2 µm, which is less than the titanium primer layer roughness. Hybrid MAO CaP coating is biocompatible, able to form calcium phosphates from supersaturated body fluid (SBF) solution and also stimulates osteoinduction processes. The second HT type includes the oxide layer formation by thermal oxidation and then CaP target radio frequency magnetron sputtering (RFMS). Oxide-RFMS CaP coating is a thin dense coating with good adhesion to the substrate material, which can be used for metal implants. The RFMS CaP coating has thickness 1.6 ± 0.1 µm and consists of main target elements calcium and phosphorus and Ca/P ratio 2.4. The second HT type can form calcium phosphates from SBF solution. In vivo study shows that hybrid RFMS CaP coating is biocompatible and produces fibrointegration processes.

  7. Optical and structural characteristics of high indium content InGaN/GaN multi-quantum wells with varying GaN cap layer thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.

    2015-02-07

    The optical and structural properties of InGaN/GaN multi-quantum wells (MQWs) with different thicknesses of low temperature grown GaN cap layers are investigated. It is found that the MQW emission energy red-shifts and the peak intensity decreases with increasing GaN cap layer thickness, which may be partly caused by increased floating indium atoms accumulated at quantum well (QW) surface. They will result in the increased interface roughness, higher defect density, and even lead to a thermal degradation of QW layers. An extra growth interruption introduced before the growth of GaN cap layer can help with evaporating the floating indium atoms, andmore » therefore is an effective method to improve the optical properties of high indium content InGaN/GaN MQWs.« less

  8. Hybrid grating reflectors: Origin of ultrabroad stopband

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug, E-mail: ilch@fotonik.dtu.dk

    2016-04-04

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well as a weak guided mode (GM) resonance. Most of the reflected power results from the FP resonance, while the GM resonance plays a key role in achieving a reflectance close to 100% as well as broadening the stopband. An HG sample with 7 InGaAlAs quantum wells included in the cap layer hasmore » been fabricated by directly wafer-bonding a III-V cap layer onto a Si grating layer. Its reflection property has been characterized. This heterogeneously integrated HG reflector may allow for a hybrid III-V on Si laser to be thermally efficient, which has promising prospects for silicon photonics light sources and high-speed operation.« less

  9. Synthesis and characterization of a novel potato starch derivative with cationic acetylcholine groups.

    PubMed

    Zhang, Bing; Ni, Boli; Lü, Shaoyu; Cui, Dapeng; Liu, Mingzhu; Gong, Honghong; Han, Fei

    2012-04-01

    A novel substance, cationic acetylcholine potato starch (CAPS), was developed for the first time. The synthesis process had three steps: first, carboxymethyl potato starch (CMPS) was synthesized under sodium hydroxide alkaline condition and in isopropyl alcohol organic media; second, bromocholine chloride (BCC) was synthesized with sulphuric acid as a catalytic agent; finally, CAPS was synthesized by the reaction of CMPS with BCC in N,N'-dimethylformamide (DMF). The degree of substitution (DS) of CAPS was determined by ammonia gas-sensing electrode and elemental analysis. CAPS was characterized by Fourier transformed infrared (FTIR) and near infrared (FTNIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Highly improved passivation of c-Si surfaces using a gradient i a-Si:H layer

    NASA Astrophysics Data System (ADS)

    Lee, Soonil; Ahn, Jaehyun; Mathew, Leo; Rao, Rajesh; Zhang, Zhongjian; Kim, Jae Hyun; Banerjee, Sanjay K.; Yu, Edward T.

    2018-04-01

    Surface passivation using intrinsic a-Si:H (i a-Si:H) films plays a key role in high efficiency c-Si heterojunction solar cells. In this study, we demonstrate improved passivation quality using i a-Si:H films with a gradient-layered structure consisting of interfacial, transition, and capping layers deposited on c-Si surfaces. The H2 dilution ratio (R) during deposition was optimized individually for the interfacial and capping layers, which were separated by a transition layer for which R changed gradually between its values for the interfacial and capping layers. This approach yielded a significant reduction in surface carrier recombination, resulting in improvement of the minority carrier lifetime from 1480 μs for mono-layered i a-Si:H passivation to 2550 μs for the gradient-layered passivation approach.

  11. Preventing Thin Film Dewetting via Graphene Capping.

    PubMed

    Cao, Peigen; Bai, Peter; Omrani, Arash A; Xiao, Yihan; Meaker, Kacey L; Tsai, Hsin-Zon; Yan, Aiming; Jung, Han Sae; Khajeh, Ramin; Rodgers, Griffin F; Kim, Youngkyou; Aikawa, Andrew S; Kolaczkowski, Mattew A; Liu, Yi; Zettl, Alex; Xu, Ke; Crommie, Michael F; Xu, Ting

    2017-09-01

    A monolayer 2D capping layer with high Young's modulus is shown to be able to effectively suppress the dewetting of underlying thin films of small organic semiconductor molecule, polymer, and polycrystalline metal, respectively. To verify the universality of this capping layer approach, the dewetting experiments are performed for single-layer graphene transferred onto polystyrene (PS), semiconducting thienoazacoronene (EH-TAC), gold, and also MoS 2 on PS. Thermodynamic modeling indicates that the exceptionally high Young's modulus and surface conformity of 2D capping layers such as graphene and MoS 2 substantially suppress surface fluctuations and thus dewetting. As long as the uncovered area is smaller than the fluctuation wavelength of the thin film in a dewetting process via spinodal decomposition, the dewetting should be suppressed. The 2D monolayer-capping approach opens up exciting new possibilities to enhance the thermal stability and expands the processing parameters for thin film materials without significantly altering their physical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cadmium-free junction fabrication process for CuInSe.sub.2 thin film solar cells

    DOEpatents

    Ramanathan, Kannan V.; Contreras, Miguel A.; Bhattacharya, Raghu N.; Keane, James; Noufi, Rommel

    1999-01-01

    The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface. A second thin film layer of semiconductor material comprising zinc oxide is then applied in two layers. The first layer comprises a thin layer of high resistivity zinc oxide. The second relatively thick layer of zinc oxide is doped to exhibit low resistivity.

  13. The effect of different thickness alumina capping layers on the final morphology of dewet thin Ni films

    NASA Astrophysics Data System (ADS)

    White, Benjamin C.; Behbahanian, Amir; Stoker, T. McKay; Fowlkes, Jason D.; Hartnett, Chris; Rack, Phillip D.; Roberts, Nicholas A.

    2018-03-01

    Nanoparticles on a substrate have numerous applications in nanotechnology, from enhancements to solar cell efficiency to improvements in carbon nanotube growth. Producing nanoparticles in a cost effective fashion with control over size and spacing is desired, but difficult to do. This work presents a scalable method for altering the radius and pitch distributions of nickel nanoparticles. The introduction of alumina capping layers to thin nickel films during a pulsed laser-induced dewetting process has yielded reductions in the mean and standard deviation of radii and pitch for dewet nanoparticles with no noticeable difference in final morphology with increased capping layer thickness. The differences in carbon nanotube mats grown, on the uncapped sample and one of the capped samples, is also presented here, with a more dense mat being present for the capped case.

  14. Optical and electrical characterizations of a single step ion beam milling mesa devices of chloride passivated PbS colloidal quantum dots based film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hechster, Elad, E-mail: elad.hechster@gmail.com; Sarusi, Gabby; Shapiro, Arthur

    Colloidal Quantum Dots (CQDs) are of increasing interest, thanks to their quantum size effect that gives rise to their usage in various applications, such as biological tagging, solar cells and as the sensitizing layer of night vision devices. Here, we analyze the optical absorbance of chloride passivated PbS CQDs as well as revealing a correlation between their photoluminescence and sizes distribution, using theoretical models and experimental results from the literature. Next, we calculate the CQDs resistivity as a film. Although resistivity can be calculated from sheet resistance measurement using four point probes, such measurement is usually carried-out on the layer’smore » surface that in most cases has dangling bonds and surface states, which might affect the charges flow and modify the resistivity. Therefore; our approach, which was applied in this work, is to extract the actual resistivity from measurements that are performed along the film’s thickness (z-direction). For this intent, we fabricated gold capped PbS mesas devices using a single step Ion Beam Milling (IBM) process where we milled the gold and the PbS film continually, and then measured the vertical resistance. Knowing the mesas’ dimensions, we calculate the resistivity. To the best of our knowledge, no previous work has extracted, vertically, the resistivity of chloride passivated PbS CQDs using the above method.« less

  15. The Mars water cycle at other epochs: Recent history of the polar caps and layered terrain

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The Martian polar caps and layered terrain presumably evolves by the deposition and removal of small amounts of water and dust each year, the current cap attributes therefore represent the incremental transport during a single year as integrated over long periods of time. The role was studied of condensation and sublimation of water ice in this process by examining the seasonal water cycle during the last 10(exp 7) yr. In the model, axial obliquity, eccentricity, and L sub s of perihelion vary according to dynamical models. At each epoch, the seasonal variations in temperature are calculated at the two poles, keeping track of the seasonal CO2 cap and the summertime sublimation of water vapor into the atmosphere; net exchange of water between the two caps is calculated based on the difference in the summertime sublimation between the two caps (or on the sublimation from one cap if the other is covered with CO2 frost all year). Results from the model can help to explain (1) the apparent inconsistency between the timescales inferred for layer formation and the much older crater retention age of the cap and (2) the difference in sizes of the two residual caps, with the south being smaller than the north.

  16. Magnetohydrodynamic generator electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.; Herman, Harold; Kuczen, Kenneth D.

    1979-01-01

    An improved electrode for use as a current collector in the channel of a magnetohydrodynamid (MHD) generator utilizes an elongated monolithic cap of dense refractory material compliantly mounted to the MHD channel frame for collecting the current. The cap has a central longitudinal channel which contains a first layer of porous refractory ceramic as a high-temperature current leadout from the cap and a second layer of resilient wire mesh in contact with the first layer as a low-temperature current leadout between the first layer and the frame. Also described is a monolithic ceramic insulator compliantly mounted to the frame parallel to the electrode by a plurality of flexible metal strips.

  17. South polar residual cap of Mars: Features, stratigraphy, and changes

    NASA Astrophysics Data System (ADS)

    Thomas, P. C.; Malin, M. C.; James, P. B.; Cantor, B. A.; Williams, R. M. E.; Gierasch, P.

    2005-04-01

    The south residual polar cap of Mars, rich in CO 2 ice, is compositionally distinct from the north residual cap which is dominantly H 2O ice. The south cap is also morphologically distinct, displaying a bewildering variety of depressions formed in thin layered deposits, which have been observed to change by scarp retreat over an interval of one Mars year (Malin et al., 2001, Science 294, 2146-2148). The climatically sensitive locale of the residual caps suggests that their behavior may help in the interpretation of recent fluctuations or repeatability of the Mars climate. We have used Mars Global Surveyor Mars Orbiter Camera (MOC) images obtained in three southern summers to map the variety of features in the south residual cap and to evaluate changes over two Mars years (Mars y). The images show that there are two distinct layered units which were deposited at different times separated by a period of degradation. The older unit, ˜10 m thick, has layers approximately 2 m thick. The younger unit has variable numbers of layers, each ˜1 m thick. The older unit is eroding by scarp retreat averaging 3.6 m/Mars y, a rate greater than the retreat of 2.2 m/Mars y observed for the younger unit. The rates of scarp retreat and sizes of the different types of depressions indicate that the history of the residual cap has been short periods of deposition interspersed with longer erosional periods. Erosion of the older unit probably occupied ˜100-150 Mars y. One layer may have been deposited after the Mariner 9 observations in 1972. Residual cap layers appear to differ from normal annual winter deposits by having a higher albedo and perhaps by having higher porosities. These properties might be produced by differences in the depositional meteorology that affect the fraction of high porosity snow included in the winter deposition.

  18. A comparison of the efficacy of organic and mixed-organic polymers with polyaluminium chloride in chemically assisted primary sedimentation (CAPS).

    PubMed

    De Feo, G; Galasso, M; Landi, R; Donnarumma, A; De Gisi, S

    2013-01-01

    CAPS is the acronym for chemically assisted primary sedimentation, which consists of adding chemicals to raw urban wastewater to increase the efficacy of coagulation, flocculation and sedimentation. The principal benefits of CAPS are: upgrading of urban wastewater treatment plants; increasing efficacy of primary sedimentation; and the major production of energy from the anaerobic digestion of primary sludge. Metal coagulants are usually used because they are both effective and cheap, but they can cause damage to the biological processes of anaerobic digestion. Generally, biodegradable compounds do not have these drawbacks, but they are comparatively more expensive. Both metal coagulants and biodegradable compounds have preferential and penalizing properties in terms of CAPS application. The problem can be solved by means of a multi-criteria analysis. For this purpose, a series of tests was performed in order to compare the efficacy of several organic and mixed-organic polymers with that of polyaluminium chloride (PACl) under specific conditions. The multi-criteria analysis was carried out coupling the simple additive weighting method with the paired comparison technique as a tool to evaluate the criteria priorities. Five criteria with the following priorities were used: chemical oxygen demand (COD) removal > turbidity, SV60 > coagulant dose, and coagulant cost. The PACl was the best alternative in 70% of the cases. The CAPS process using PACl made it possible to obtain an average COD removal of 68% compared with 38% obtained, on average, with natural sedimentation and 61% obtained, on average, with the best PACl alternatives (cationic polyacrylamide, natural cationic polymer, dicyandiamide resin).

  19. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].

    PubMed

    Tian, Zhihui; Zhang, Yu; Wang, Lichao; Nan, Kaihui

    2013-10-01

    To investigate the apatite forming ability of pure titanium implant after micro-arc oxidation treatment in simulated body fluid (SBF) and obtain implants with calcium phosphate (Ca-P) layers. The implants were immersed in (SBF) after micro-arc oxidation treatment for different time lengths, and their apatite forming ability and the morphology and constituents of the Ca-P layers formed on the sample surface were analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive electron probe. After immersion in SBF, large quantities of Ca-P layers were induced on the surface of the samples. The Ca-P layers were composed of octacalcium phosphate and carbonated hydroxyapatite, and the crystals showed a plate-like morphology with an oriented growth. The implants with micro-arc oxidation treatment show good apatite forming ability on the surface with rich calcium and phosphorus elements. The formed layers are composed of bone-like apatite including octacalcium phosphate and carbonated hydroxyapatite.

  20. Optimisation of readout performance of phase-change probe memory in terms of capping layer and probe tip

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wright, C. David; Aziz, Mustafa. M.; Yang, Ci Hui; Yang, Guo Wei

    2014-11-01

    The capping layer and the probe tip that serve as the protective layer and the recording tool, respectively, for phase-change probe memory play an important role on the writing performance of phase-change probe memory, thus receiving considerable attention. On the other hand, their influence on the readout performance of phasechange probe memory has rarely been reported before. A three-dimensional parametric study based on the Laplace equation was therefore conducted to investigate the effect of the capping layer and the probe tip on the resulting reading contrast for the two cases of reading a crystalline bit from an amorphous matrix and reading an amorphous bit from a crystalline matrix. The results indicated that a capping layer with a thickness of 2 nm and an electrical conductivity of 50 Ω-1m-1 is able to provide an appropriate reading contrast for both the cases, while satisfying the previous writing requirement, particularly with the assistance of a platinum silicide probe tip.

  1. Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge)

    NASA Astrophysics Data System (ADS)

    Simov, K. R.; Glans, P.-A.; Jenkins, C. A.; Liberati, M.; Reinke, P.

    2018-01-01

    Mn doping of group-IV semiconductors (Si/Ge) is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn) is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn-Mn bonding.

  2. Gilbert Damping Parameter in MgO-Based Magnetic Tunnel Junctions from First Principles

    NASA Astrophysics Data System (ADS)

    Tang, Hui-Min; Xia, Ke

    2017-03-01

    We perform a first-principles study of the Gilbert damping parameter (α ) in normal-metal/MgO-cap/ferromagnet/MgO-barrier/ferromagnetic magnetic tunnel junctions. The damping is enhanced by interface spin pumping, which can be parametrized by the spin-mixing conductance (G↑↓ ). The calculated dependence of Gilbert damping on the thickness of the MgO capping layer is consistent with experiment and indicates that the decreases in α with increasing thickness of the MgO capping layer is caused by suppression of spin pumping. Smaller α can be achieved by using a clean interface and alloys. For a thick MgO capping layer, the imaginary part of the spin-mixing conductance nearly equals the real part, and the large imaginary mixing conductance implies that the change in the frequency of ferromagnetic resonance can be observed experimentally. The normal-metal cap significantly affects the Gilbert damping.

  3. Chloride (Cl-) ion-mediated shape control of palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Nalajala, Naresh; Chakraborty, Arup; Bera, Bapi; Neergat, Manoj

    2016-02-01

    The shape control of Pd nanoparticles is investigated using chloride (Cl-) ions as capping agents in an aqueous medium in the temperature range of 60-100 °C. With weakly adsorbing and strongly etching Cl- ions, oxygen plays a crucial role in shape control. The experimental factors considered are the concentration of the capping agents, reaction time and reaction atmosphere. Thus, Pd nanoparticles of various shapes with high selectivity can be synthesized. Moreover, the removal of Cl- ions from the nanoparticle surface is easier than that of Br- ions (moderately adsorbing and etching) and I- ions (strongly adsorbing and weakly etching). The cleaned Cl- ion-mediated shape-controlled Pd nanoparticles are electrochemically characterized and the order of the half-wave potential of the oxygen reduction reaction in oxygen-saturated 0.1 M HClO4 solution is of the same order as that observed with single-crystal Pd surfaces.

  4. Thermophotovoltaic energy conversion system having a heavily doped n-type region

    DOEpatents

    DePoy, David M.; Charache, Greg W.; Baldasaro, Paul F.

    2000-01-01

    A thermophotovoltaic (TPV) energy conversion semiconductor device is provided which incorporates a heavily doped n-type region and which, as a consequence, has improved TPV conversion efficiency. The thermophotovoltaic energy conversion device includes an emitter layer having first and second opposed sides and a base layer in contact with the first side of the emitter layer. A highly doped n-type cap layer is formed on the second side of the emitter layer or, in another embodiment, a heavily doped n-type emitter layer takes the place of the cap layer.

  5. Method and Apparatus for Preventing Biofouling of Surfaces

    DTIC Science & Technology

    2011-06-14

    ammonium compounds that are suitable for this purpose include benzalkonium chloride , benzethonium chloride , methylbenzethonium chloride , cetalkonium... chloride , cetylpyridinium chloride , cetrimonium, cetrimide, dofanium chloride , tetraethylammonium bromide, didecyldimethylammonium chloride and domiphen...upon layers of impermeable nano-particles cause diffusing molecules to follow a tortuous, 8 slow path that results in a huge reduction in

  6. Selenium capped monolayer NbSe 2 for two-dimensional superconductivity studies

    DOE PAGES

    Onishi, Seita; Ugeda, Miguel M.; Zhang, Yi; ...

    2016-08-01

    Superconductivity in monolayer niobium diselenide (NbSe 2) on bilayer graphene is studied by electrical transport. Monolayer NbSe 2 is grown on bilayer graphene by molecular beam epitaxy and capped with a selenium film to avoid degradation in air. The selenium capped samples have T C = 1.9 K. In situ measurements down to 4 K in ultrahigh vacuum show that the effect of the selenium layer on the transport is negligible. Lastly, the superconducting transition and upper critical fields in air exposed and selenium capped samples are compared. Schematic of monolayer NbSe 2/bilayer graphene with selenium capping layer and electricalmore » contacts.« less

  7. Composite laminate free-edge reinforcement with U-shaped caps. I - Stress analysis. II - Theoretical-experimental correlation

    NASA Technical Reports Server (NTRS)

    Howard, W. E.; Gossard, Terry, Jr.; Jones, Robert M.

    1989-01-01

    The present generalized plane-strain FEM analysis for the prediction of interlaminar normal stress reduction when a U-shaped cap is bonded to the edge of a composite laminate gives attention to the highly variable transverse stresses near the free edge, cap length and thickness, and a gap under the cap due to the manufacturing process. The load-transfer mechanism between cap and laminate is found to be strain-compatibility, rather than shear lag. In the second part of this work, the three-dimensional composite material failure criteria are used in a progressive laminate failure analysis to predict failure loads of laminates with different edge-cap designs; symmetric 11-layer graphite-epoxy laminates with a one-layer cap of kevlar-epoxy are shown to carry 130-140 percent greater loading than uncapped laminates, under static tensile and tension-tension fatigue loading.

  8. North Polar Cap Layers and Ledges

    NASA Image and Video Library

    2016-08-24

    At the edge of Mars' permanent North Polar cap, we see an exposure of the internal layers, each with a different mix of water ice, dust and dirt. These layers are believed to correspond to different climate conditions over the past tens of thousands of years. When we zoom in closer, we see that the distinct layers erode differently. Some are stronger and more resistant to erosion, others only weakly cemented. The strong layers form ledges. http://photojournal.jpl.nasa.gov/catalog/PIA21022

  9. Enhancement of the Optoelectronic Properties of PEDOT: PSS-PbS Nanoparticles Composite Thin Films Through Nanoparticles' Capping Ligand Exchange

    NASA Astrophysics Data System (ADS)

    García-Gutiérrez, Diana F.; Hernández-Casillas, Laura P.; Sepúlveda-Guzmán, Selene; Vazquez-Rodriguez, Sofia; García-Gutiérrez, Domingo I.

    2018-02-01

    The influence of the capping ligand on nanoparticles' optical and electronic properties is a topic of great interest currently being investigated by several research groups in different countries. In the present study, PbS nanoparticles originally synthesized with oleic acid, myristic acid and hexanoic acid underwent a ligand exchange process to replace the original carboxylic acid for uc(l)-cysteine as the capping layer, and were thoroughly characterized by means of transmission electron microscopy and its related techniques, such as energy dispersive x-ray spectroscopy and scanning-transmission electron microscopy, and Fourier transform infrared, Raman and x-ray photoelectron spectroscopy. Afterwards, these PbS nanoparticles were dispersed into a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) matrix to fabricate a composite thin film which displayed the optical absorption properties of the PbS nanoparticles and the electrical transport properties of the PEDOT:PSS matrix, in order to evaluate the impact of the nanoparticles' capping ligand on the optoelectronic properties of the fabricated composite thin films. Composite thin films with PbS nanoparticles showing uc(l)-cysteine as the capping layer displayed clear photoresponse and a threefold increment in their conductivities compared to pristine PEDOT:PSS. The properties of PEDOT:PSS, known as a hole transport layer in most organic photovoltaic devices, were enhanced by adding PbS nanoparticles with different capping ligands, producing a promising composite material for optoelectronic applications by proper selection of the nanoparticles' capping layer.

  10. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhaka, Veer, E-mail: veer.dhaka@aalto.fi; Perros, Alexander; Kakko, Joona-Pekko

    2016-01-15

    Low temperature (∼200 °C) grown atomic layer deposition (ALD) films of AlN, TiN, Al{sub 2}O{sub 3}, GaN, and TiO{sub 2} were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP) nanowires (NWs), and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL) at low temperatures (15K), and the best passivation was achieved with a few monolayer thick (2Å) film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL) was achieved with a capping of 2nm thick Al{sub 2}O{sub 3}. All othermore » ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al{sub 2}O{sub 3} layer increased the carrier decay time from 251 ps (as-etched nanopillars) to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al{sub 2}O{sub 3} provides moderate surface passivation as well as long term protection from oxidation and environmental attack.« less

  11. Surface-Initiated Polymerization with Poly(n-hexylisocyanate) to Covalently Functionalize Silica Nanoparticles.

    PubMed

    Vatansever, Fatma; Hamblin, Michael R

    2017-02-01

    New methods are needed for covalent functionalization of nanoparticles-surface with organic polymer coronas to generate polymeric nanocomposite in a controlled manner. Here we report the use of a surface-initiated polymerization approach, mediated by titanium (IV) catalysis, to grow poly( n -hexylisocyanate) chains from silica surface. Two pathways were used to generate the interfacing in these nano-hybrids. In the first one, the nanoparticles was "seeded" with SiCl4, followed by reaction with 1,6-hexanediol to form hydroxyl groups attached directly to the surface via O-Si-O bonding. In the second pathway, the nanoparticles were initially exposed to a 9:1 mixture of trimethyl silyl chloride and chlorodimethyl octenyl silane which was then followed by hydroboration of the double bonds, to afford hydroxyl groups with a spatially controlled density and surface-attachment via O-Si-C bonding. These functionalized surfaces were then activated with the titanium tetrachloride catalyst. In our approach, thus surface tethered catalyst provided the sites for n -hexyl isocyanate monomer insertion, to "build up" the surface-grown polymer layers from the "bottom-up". A final end-capping, to seal off the chain ends, was done via acetyl chloride. Compounds were characterized by FT-IR, 1H-NMR, GC-MS, GPC, and thermogravimetric analyses.

  12. Surface-Initiated Polymerization with Poly(n-hexylisocyanate) to Covalently Functionalize Silica Nanoparticles

    PubMed Central

    Vatansever, Fatma; Hamblin, Michael R.

    2017-01-01

    New methods are needed for covalent functionalization of nanoparticles-surface with organic polymer coronas to generate polymeric nanocomposite in a controlled manner. Here we report the use of a surface-initiated polymerization approach, mediated by titanium (IV) catalysis, to grow poly(n-hexylisocyanate) chains from silica surface. Two pathways were used to generate the interfacing in these nano-hybrids. In the first one, the nanoparticles was “seeded” with SiCl4, followed by reaction with 1,6-hexanediol to form hydroxyl groups attached directly to the surface via O-Si-O bonding. In the second pathway, the nanoparticles were initially exposed to a 9:1 mixture of trimethyl silyl chloride and chlorodimethyl octenyl silane which was then followed by hydroboration of the double bonds, to afford hydroxyl groups with a spatially controlled density and surface-attachment via O-Si-C bonding. These functionalized surfaces were then activated with the titanium tetrachloride catalyst. In our approach, thus surface tethered catalyst provided the sites for n-hexyl isocyanate monomer insertion, to “build up” the surface-grown polymer layers from the “bottom-up”. A final end-capping, to seal off the chain ends, was done via acetyl chloride. Compounds were characterized by FT-IR, 1H-NMR, GC-MS, GPC, and thermogravimetric analyses. PMID:28989336

  13. Heat pipe with improved wick structures

    DOEpatents

    Benson, David A.; Robino, Charles V.; Palmer, David W.; Kravitz, Stanley H.

    2000-01-01

    An improved planar heat pipe wick structure having projections formed by micromachining processes. The projections form arrays of interlocking, semi-closed structures with multiple flow paths on the substrate. The projections also include overhanging caps at their tops to increase the capillary pumping action of the wick structure. The capped projections can be formed in stacked layers. Another layer of smaller, more closely spaced projections without caps can also be formed on the substrate in between the capped projections. Inexpensive materials such as Kovar can be used as substrates, and the projections can be formed by electrodepositing nickel through photoresist masks.

  14. Interaction of Tamoxifen and noise induced damage to the cochlea

    PubMed Central

    Pillai, Jagan A; Siegel, Jonathan H

    2011-01-01

    Tamoxifen has been used extensively in the treatment of breast cancer and other neoplasms. In addition to its well-known action on estrogen receptors it is also known to acutely block chloride channels that participate in cell volume regulation. Tamoxifen’s role in preventing cochlear outer hair cell (OHC) swelling in vitro suggested that OHC swelling noted following noise exposure could potentially be a therapeutic target for Tamoxifen in its role as a chloride channel blocker to help prevent noise induced hearing loss. To investigate this possiblity, the effects of exposure to Tamoxifen on physiologic measures of cochlear function in the presence and absence of subsequent noise exposure were studied. Male Mongolian gerbils (2–4 months old) were randomly assigned to different groups. Tamoxifen at ~10 mg/kg was administered to one of the groups. Five hours later they were exposed to a one-third octave band of noise centered at 8 kHz in a sound isolation chamber for 30 minutes at 108dB SPL. Compound action potential (CAP) thresholds and distortion product otoacoustic emission (DPOAE) levels were measured 30–35 days following noise exposure. Tamoxifen administration did not produce any changes in CAP thresholds and DPOAE levels when administered by itself in the absence of noise. Tamoxifen causes a significant increase in CAP thresholds from 8–15 kHz following noise exposure compared to CAP thresholds in animals exposed to noise alone. No significant differences were seen in the DPOAE levels the f2 = 8–15 kHz frequency range where maximum noise-induced increases in CAP thresholds were seen. Contrary to our original expectation, it is concluded that Tamoxifen potentiates the degree of damage to the cochlea resulting from noise exposure. PMID:21907781

  15. Conductive atomic force microscopy studies on the transformation of GeSi quantum dots to quantum rings.

    PubMed

    Zhang, S L; Xue, F; Wu, R; Cui, J; Jiang, Z M; Yang, X J

    2009-04-01

    Conductive atomic force microscopy has been employed to study the topography and conductance distribution of individual GeSi quantum dots (QDs) and quantum rings (QRs) during the transformation from QDs to QRs by depositing an Si capping layer on QDs. The current distribution changes significantly with the topographic transformation during the Si capping process. Without the capping layer, the QDs are dome-shaped and the conductance is higher at the ring region between the center and boundary than that at the center. After capping with 0.32 nm Si, the shape of the QDs changes to pyramidal and the current is higher at both the center and the arris. When the Si capping layer increases to 2 nm, QRs are formed and the current of individual QRs is higher at the rim than that at the central hole. By comparing the composition distributions obtained by scanning Auger microscopy and atomic force microscopy combined with selective chemical etching, the origin of the current distribution change is discussed.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polat, Ozgur; Ertugrul, Memhet; Thompson, James R

    To obtain an engineered surface for deposition of high-Tc superconductors, nanoscale modulations of the surface of the underlying LaMnO3 (LMO) cap layer is a potential source for generating microstructural defects in YBa2Cu3O7- (YBCO) films. These defects may improve the flux-pinning and consequently increase the critical current density, Jc. To provide such nanoscale modulation via a practical and scalable process, tantalum (Ta) and palladium (Pd) nano-islands were deposited using dc-magnetron sputtering on the surface of the cap layer of commercial metal tape templates for second-generation wires. The size and density of these nano-islands can be controlled by changing sputtering conditions suchmore » as the power and deposition time. Compared to the reference sample grown on an untreated LMO cap layer, the YBCO films grown on the LMO cap layers with Ta or Pd nano-islands exhibited improved in-field Jc performance. Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) were used to assess the evolving size and density of the nano-islands.« less

  17. Inhibition of caudal fin regeneration in Corydoras aeneus by lithium chloride.

    PubMed

    Zarnescu, Otilia; Stavri, Simona; Moldovan, Lucia

    2013-03-01

    In the present study we examined the effects of lithium chloride on the Corydoras aeneus caudal fin regeneration. After caudal fin amputation, the fish were exposed 3h daily to 35 mM lithium chloride for 9 days. The effects of lithium chloride treatment were evaluated by analyzing the caudal fin structure at 3, 6 and 9 days after amputation. Comparison of normal and LiCl treated fish clearly shows that regeneration of amputated caudal fins was inhibited or delayed after lithium treatment. By the third day after amputation (dpa) either no epidermal cap or blastema ever formed or the epidermal cap had an abnormal morphology in lithium treated fish. By the 3 and 6 dpa no lepidotrichial matrix deposition was observed in the lithium treated fish compared to control fish. Unlike the control fish that completely regenerate their caudal fins after 9 dpa and have fully mineralized lepidotrichia, lithium treated fish have small blastema. In some treated fish, small amounts of new lepidotrichial matrix were observed at this time, in some fin rays. Ultrastructural observations have shown differences between control and lithium treated fish. Thus, in the lithium treated fish we observed expanded intercellular spaces between epidermal cells and many apoptotic cells. Results of this study suggest the use of this model in elucidating the molecular mechanisms that are responsible for regeneration of complex structures such as fish fins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. High average power scaleable thin-disk laser

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Payne, Stephen A.; Powell, Howard; Krupke, William F.; Sutton, Steven B.

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  19. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2005-10-18

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  20. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2003-09-09

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  1. Structure of catabolite activator protein with cobalt(II) and sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Ramya R.; Lawson, Catherine L., E-mail: cathy.lawson@rutgers.edu

    2014-04-15

    The crystal structure of E. coli catabolite activator protein with bound cobalt(II) and sulfate ions at 1.97 Å resolution is reported. The crystal structure of cyclic AMP–catabolite activator protein (CAP) from Escherichia coli containing cobalt(II) chloride and ammonium sulfate is reported at 1.97 Å resolution. Each of the two CAP subunits in the asymmetric unit binds one cobalt(II) ion, in each case coordinated by N-terminal domain residues His19, His21 and Glu96 plus an additional acidic residue contributed via a crystal contact. The three identified N-terminal domain cobalt-binding residues are part of a region of CAP that is important for transcriptionmore » activation at class II CAP-dependent promoters. Sulfate anions mediate additional crystal lattice contacts and occupy sites corresponding to DNA backbone phosphate positions in CAP–DNA complex structures.« less

  2. Heavy metal multilayers for switching of magnetic unit via electrical current without magnetic field, method and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Qinli; Li, Yufan; Chien, Chia-ling

    Provided is an electric-current-controllable magnetic unit, including: a substrate, an electric-current channel disposed on the substrate, the electric-current channel including a composite heavy-metal multilayer comprising at least one heavy-metal; a capping layer disposed over the electric-current channel; and at least one ferromagnetic layer disposed between the electric-current channel and the capping layer.

  3. Optimized capping layers for EUV multilayers

    DOEpatents

    Bajt, Sasa [Livermore, CA; Folta, James A [Livermore, CA; Spiller, Eberhard A [Livermore, CA

    2004-08-24

    A new capping multilayer structure for EUV-reflective Mo/Si multilayers consists of two layers: A top layer that protects the multilayer structure from the environment and a bottom layer that acts as a diffusion barrier between the top layer and the structure beneath. One embodiment combines a first layer of Ru with a second layer of B.sub.4 C. Another embodiment combines a first layer of Ru with a second layer of Mo. These embodiments have the additional advantage that the reflectivity is also enhanced. Ru has the best oxidation resistance of all materials investigated so far. B.sub.4 C is an excellent barrier against silicide formation while the silicide layer formed at the Si boundary is well controlled.

  4. Interfacial stability of CoSi2/Si structures grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    George, T.; Fathauer, R. W.

    1992-01-01

    The stability of CoSi2/Si interfaces was examined in this study using columnar silicide structures grown on (111) Si substrates. In the first set of experiments, Co and Si were codeposited using MBE at 800 C and the resulting columnar silicide layer was capped by epitaxial Si. Deposition of Co on the surface of the Si capping layer at 800 C results in the growth of the buried silicide columns. The buried columns grow by subsurface diffusion of the deposited Co, suppressing the formation of surface islands of CoSi2. The column sidewalls appear to be less stable than the top and bottom interfaces, resulting in preferential lateral growth and ultimately in the coalescence of the columns to form a continuous buried CoSi2 layer. In the second set of experiments, annealing of a 250 nm-thick buried columnar layer at 1000 C under a 100 nm-thick Si capping layer results in the formation of a surface layer of CoSi2 with a reduction in the sizes of the CoSi2 columns. For a sample having a thicker Si capping layer the annealing leads to Ostwald ripening producing buried equiaxed columns. The high CoSi2/Si interfacial strain could provide the driving force for the observed behavior of the buried columns under high-temperature annealing.

  5. Sensitivity of diamond-capped impedance transducer to Tröger's base derivative.

    PubMed

    Stehlik, Stepan; Izak, Tibor; Kromka, Alexander; Dolenský, Bohumil; Havlík, Martin; Rezek, Bohuslav

    2012-08-01

    Sensitivity of an intrinsic nanocrystalline diamond (NCD) layer to naphthalene Tröger's base derivative decorated with pyrrole groups (TBPyr) was characterized by impedance spectroscopy. The transducer was made of Au interdigitated electrodes (IDE) with 50 μm spacing on alumina substrate which were capped with the NCD layer. The NCD-capped transducer with H-termination was able to electrically distinguish TBPyr molecules (the change of surface resistance within 30-60 kΩ) adsorbed from methanol in concentrations of 0.04 mg/mL to 40 mg/mL. An exponential decay of the surface resistance with time was observed and attributed to the readsorption of air moisture after methanol evaporation. After surface oxidation the NCD cap layer did not show any leakage due to NCD grain boundaries. We analyzed electronic transport in the transducer and propose a model for the sensing mechanism based on surface ion replacement.

  6. Effects of a capping oxide layer on polycrystalline-silicon thin-film transistors fabricated by continuous-wave laser crystallization

    NASA Astrophysics Data System (ADS)

    Li, Yi-Shao; Wu, Chun-Yi; Chou, Chia-Hsin; Liao, Chan-Yu; Chuang, Kai-Chi; Luo, Jun-Dao; Li, Wei-Shuo; Cheng, Huang-Chung

    2018-06-01

    A tetraethyl-orthosilicate (TEOS) capping oxide was deposited by low-pressure chemical vapor deposition (LPCVD) on a 200-nm-thick amorphous Si (a-Si) film as a heat reservoir to improve the crystallinity and surface roughness of polycrystalline silicon (poly-Si) formed by continuous-wave laser crystallization (CLC). The effects of four thicknesses of the capping oxide layer to satisfy an antireflection condition, namely, 90, 270, 450, and 630 nm, were investigated. The largest poly-Si grain size of 2.5 × 20 µm2 could be achieved using a capping oxide layer with an optimal thickness of 450 nm. Moreover, poly-Si nanorod (NR) thin-film transistors (TFTs) fabricated using the aforementioned technique exhibited a superior electron field-effect mobility of 1093.3 cm2 V‑1 s‑1 and an on/off current ratio of 2.53 × 109.

  7. Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Changchun, Chai; Chunlei, Shi; Qingyang, Fan; Yuqian, Liu

    2016-12-01

    Simulations are carried out to explore the possibility of achieving high breakdown voltage of GaN HEMT (high-electron mobility transistor). GaN cap layers with gradual increase in the doping concentration from 2 × 1016 to 5 × 1019 cm-3 of N-type and P-type cap are investigated, respectively. Simulation results show that HEMT with P-doped GaN cap layer shows more potential to achieve higher breakdown voltage than N-doped GaN cap layer under the same doping concentration. This is because the ionized net negative space charges in P-GaN cap layer could modulate the surface electric field which makes more contribution to RESURF effect. Furthermore, a novel GaN/AlGaN/GaN HEMT with P-doped GaN buried layer in GaN buffer between gate and drain electrode is proposed. It shows enhanced performance. The breakdown voltage of the proposed structure is 640 V which is increased by 12% in comparison to UID (un-intentionally doped) GaN/AlGaN/GaN HEMT. We calculated and analyzed the distribution of electrons' density. It is found that the depleted region is wider and electric field maximum value is induced at the left edge of buried layer. So the novel structure with P-doped GaN buried layer embedded in GaN buffer has the better improving characteristics of the power devices. Project supported by the National Basic Research Program of China (No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (No. 2015-0214.XY.K).

  8. Application of a simplified calculation for full-wave microtremor H/ V spectral ratio based on the diffuse field approximation to identify underground velocity structures

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Masaki, Kazuaki; Irikura, Kojiro; Sánchez-Sesma, Francisco José

    2017-12-01

    Under the diffuse field approximation, the full-wave (FW) microtremor H/ V spectral ratio ( H/ V) is modeled as the square root of the ratio of the sum of imaginary parts of the Green's function of the horizontal components to that of the vertical one. For a given layered medium, the FW H/ V can be well approximated with only surface waves (SW) H/ V of the "cap-layered" medium which consists of the given layered medium and a new larger velocity half-space (cap layer) at large depth. Because the contribution of surface waves can be simply obtained by the residue theorem, the computation of SW H/ V of cap-layered medium is faster than that of FW H/ V evaluated by discrete wavenumber method and contour integration method. The simplified computation of SW H/ V was then applied to identify the underground velocity structures at six KiK-net strong-motion stations. The inverted underground velocity structures were used to evaluate FW H/ Vs which were consistent with the SW H/ Vs of corresponding cap-layered media. The previous study on surface waves H/ Vs proposed with the distributed surface sources assumption and a fixed Rayleigh-to-Love waves amplitude ratio for horizontal motions showed a good agreement with the SW H/ Vs of our study. The consistency between observed and theoretical spectral ratios, such as the earthquake motions of H/ V spectral ratio and spectral ratio of horizontal motions between surface and bottom of borehole, indicated that the underground velocity structures identified from SW H/ V of cap-layered medium were well resolved by the new method.[Figure not available: see fulltext.

  9. High temperature superconductor step-edge Josephson junctions using Ti-Ca-Ba-Cu-O

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Hohenwarter, Gert K. G.; Martens, Jon S.; Plut, Thomas A.; Tigges, Chris P.; Vawter, Gregory A.; Zipperian, Thomas E.

    1994-10-25

    A process for formulating non-hysteretic and hysteretic Josephson junctions using HTS materials which results in junctions having the ability to operate at high temperatures while maintaining high uniformity and quality. The non-hysteretic Josephson junction is formed by step-etching a LaAlO.sub.3 crystal substrate and then depositing a thin film of TlCaBaCuO on the substrate, covering the step, and forming a grain boundary at the step and a subsequent Josephson junction. Once the non-hysteretic junction is formed the next step to form the hysteretic Josephson junction is to add capacitance to the system. In the current embodiment, this is accomplished by adding a thin dielectric layer, LaA1O.sub.3, followed by a cap layer of a normal metal where the cap layer is formed by first depositing a thin layer of titanium (Ti) followed by a layer of gold (Au). The dielectric layer and the normal metal cap are patterned to the desired geometry.

  10. The role of temperature ramp-up time before barrier layer growth in optical and structural properties of InGaN/GaN multi-quantum wells

    NASA Astrophysics Data System (ADS)

    Xing, Yao; Zhao, Degang; Jiang, Desheng; Liu, Zongshun; Zhu, Jianjun; Chen, Ping; Yang, Jing; Liu, Wei; Liang, Feng; Liu, Shuangtao; Zhang, Liqun; Wang, Wenjie; Li, Mo; Zhang, Yuantao; Du, Guotong

    2018-05-01

    In InGaN/GaN multi-quantum wells (MQWs), a low temperature cap (LT-cap) layer is grown between the InGaN well layer and low temperature GaN barrier layer. During the growth, a temperature ramp-up and ramp-down process is added between LT-cap and barrier layer growth. The effect of temperature ramp-up time duration on structural and optical properties of quantum wells is studied. It is found that as the ramp-up time increases, the Indium floating layer on the top of the well layer can be diminished effectively, leading to a better interface quality between well and barrier layers, and the carrier localization effect is enhanced, thereby the internal quantum efficiency (IQE) of QWs increases surprisingly. However, if the ramp-up time is too long, the carrier localization effect is weaker, which may increase the probabilities of carriers to meet with nonradiative recombination centers. Meanwhile, more nonradiative recombination centers will be introduced into well layers due to the indium evaporation. Both of them will lead to a reduction of internal quantum efficiency (IQE) of MQWs.

  11. Effect of same-temperature GaN cap layer on the InGaN/GaN multiquantum well of green light-emitting diode on silicon substrate.

    PubMed

    Zheng, Changda; Wang, Li; Mo, Chunlan; Fang, Wenqing; Jiang, Fengyi

    2013-01-01

    GaN green LED was grown on Si (111) substrate by MOCVD. To enhance the quality of InGaN/GaN MQWs, same-temperature (ST) GaN protection layers with different thickness of 8 Å, 15 Å, and 30 Å were induced after the InGaN quantum wells (QWs) layer. Results show that a relative thicker cap layer is benefit to get InGaN QWs with higher In percent at fixed well temperature and obtain better QW/QB interface. As the cap thickness increases, the indium distribution becomes homogeneous as verified by fluorescence microscope (FLM). The interface of MQWs turns to be abrupt from XRD analysis. The intensity of photoluminescence (PL) spectrum is increased and the FWHM becomes narrow.

  12. Development of dental composites with reactive fillers that promote precipitation of antibacterial-hydroxyapatite layers.

    PubMed

    Aljabo, Anas; Abou Neel, Ensanya A; Knowles, Jonathan C; Young, Anne M

    2016-03-01

    The study aim was to develop light-curable, high strength dental composites that would release calcium phosphate and chlorhexidine (CHX) but additionally promote surface hydroxyapatite/CHX co-precipitation in simulated body fluid (SBF). 80 wt.% urethane dimethacrylate based liquid was mixed with glass fillers containing 10 wt.% CHX and 0, 10, 20 or 40 wt.% reactive mono- and tricalcium phosphate (CaP). Surface hydroxyapatite layer thickness/coverage from SEM images, Ca/Si ratio from EDX and hydroxyapatite Raman peak intensities were all proportional to both time in SBF and CaP wt.% in the filler. Hydroxyapatite was, however, difficult to detect by XRD until 4 weeks. XRD peak width and SEM images suggested this was due to the very small size (~10 nm) of the hydroxyapatite crystallites. Precipitate mass at 12 weeks was 22 wt.% of the sample CaP total mass irrespective of CaP wt.% and up to 7 wt.% of the specimen. Early diffusion controlled CHX release, assessed by UV spectrometry, was proportional to CaP and twice as fast in water compared with SBF. After 1 week, CHX continued to diffuse into water but in SBF, became entrapped within the precipitating hydroxyapatite layer. At 12 weeks CHX formed 5 to 15% of the HA layer with 10 to 40 wt.% CaP respectively. Despite linear decline of strength and modulus in 4 weeks from 160 to 101 MPa and 4 to 2.4 GPa, respectively, upon raising CaP content, all values were still within the range expected for commercial composites. The high strength, hydroxyapatite precipitation and surface antibacterial accumulation should reduce tooth restoration failure due to fracture, aid demineralised dentine repair and prevent subsurface carious disease respectively. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. A GCM Recent History of Northern Martian Polar Layered Deposits: Contribution from Past Equatorial Ice Reservoirs

    NASA Technical Reports Server (NTRS)

    Levrard, B.; Laskar, J.; Montmessin, F.; Forget, F.

    2005-01-01

    Polar layered deposits are exposed in the walls of the troughs cutting the north polar cap of Mars. They consist of alternating ice and dust layers or layers of an ice-dust mixture with varying proportions and are found throughout the cap. Layers thickness ranges from meters to several tens of meters with an approximately 30 meter dominant wavelength. Although their formation processes is not known, they are presumed to reflect changes in ice and dust stability over orbital and axial variations. Intensive 3-D LMD GCM simulations of the martian water cycle have been thus performed to determine the annual rates of exchange of surface ice between the northern cap and tropical areas for a wide range of obliquity and orbital parameters values.These rates have been employed to reconstruct an history of the northern cap and test simple models of dust-ice layers formation over the last 10 Ma orbital variations. We use the 3-D water cycle model simulated by the 3-D LMD GCM with an intermediate grid resolution (7.5 longitude x 5.625 latitude) and 25 vertical levels. The dust opacity is constant and set to 0,15. No exchange of ice with regolith is allowed. The evolution of the northern cap over obliquity and orbital changes (eccentricity, Longitude of perihelion) has been recently described with this model. High summer insolation favors transfer of ice from the northern pole to the Tharsis and Olympus Montes, while at low obliquity, unstable equatorial ice is redeposited in high-latitude and polar areas of both hemisphere. The disappearance of the equatorial ice reservoir leads to a poleward recession of icy high latitude reservoirs, providing an additional source for the cap accumulation during each obliquity or orbital cycle. Furthering the efforts, a quantitative evolution of ice reservoirs is here investigated for various astronomical conditions.

  14. Effective control of modified palygorskite to NH4+-N release from sediment.

    PubMed

    Chen, Lei; Zheng, Tianyuan; Zhang, Junjie; Liu, Jie; Zheng, Xilai

    2014-01-01

    Sediment capping is an in situ treatment technology that can effectively restrain nutrient and pollutant release from the sediment in lakes and reservoirs. Research on sediment capping has focused on the search for effective, non-polluting and affordable capping materials. The efficiency and mechanism of sediment capping with modified palygorskite in preventing sediment ammonia nitrogen (NH4+-N) release to surface water were investigated through a series of batch and sediment capping experiments. Purified palygorskite and different types of modified palygorskite (i.e. heated, acid-modified and NaCI-modified palygorskite) were used in this investigation. Factors affecting control efficiency, including the temperature, thickness and grain size of the capping layer, were also analysed. The batch tests showed that the adsorption of NH4+-N on modified palygorskite achieved an equilibration in the initial 45 min, and the adsorption isotherm followed the Freundlich equation. Sediment capping experiments showed that compared with non-capped condition, covering the sediment with modified palygorskite and sand both inhibited NH4+-N release to the overlying water. Given its excellent chemical stability and strong adsorption, heated palygorskite, which has a NH4+-N release inhibition ratio of 41.3%, is a more effective sediment capping material compared with sand. The controlling effectiveness of the modified palygorskite increases with thicker capping layer, lower temperature and smaller grain size of the capping material.

  15. P-type doping of GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Raechelle Kimberly

    2000-04-01

    After implantation of As, As + Be, and As + Ga into GaN and annealing for short durations at temperatures as high as 1500 C, the GaN films remained highly resistive. It was apparent from c-RBS studies that although implantation damage did not create an amorphous layer in the GaN film, annealing at 1500 C did not provide enough energy to completely recover the radiation damage. Disorder recovered significantly after annealing at temperatures up to 1500 C, but not completely. From SIMS analysis, oxygen contamination in the AIN capping layer causes oxygen diffusion into the GaN film above 1400 C.more » The sapphire substrate (A1203) also decomposed and oxygen penetrated into the backside of the GaN layer above 1400 C. To prevent donor-like oxygen impurities from the capping layer and the substrate from contaminating the GaN film and compensating acceptors, post-implantation annealing should be done at temperatures below 1500 C. Oxygen in the cap could be reduced by growing the AIN cap on the GaN layer after the GaN growth run or by depositing the AIN layer in a ultra high vacuum (UHV) system post-growth to minimize residual oxygen and water contamination. With longer annealing times at 1400 C or at higher temperatures with a higher quality AIN, the implantation drainage may fully recover.« less

  16. The effect of PVP on morphology, optical properties and electron paramagnetic resonance of Zn0.5Co0.5Fe2-xPrxO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Bitar, Z.; El-Said Bakeer, D.; Awad, R.

    2017-07-01

    Zinc Cobalt nano ferrite doped with Praseodymium, Zn0.5Co0.5Fe2-xPrxO4 (0 ≤ x ≤ 0.2), were prepared by co-precipitation method from an aqueous solution containing metal chlorides and two concentrations of poly(vinylpyrrolidone) (PVP) 0 and 30g/L as capping agent. The samples were characterized using X-ray powder diffraction (XRD), Transmission Electron Microscope (TEM), UV-visible optical spectroscopy, Fourier transform infrared (FTIR) and Electron Paramagnetic Resonance (EPR). XRD results display the formation of cubic spinel structure with space group Fd3m and the lattice parameter (a) is slightly decreased for PVP capping samples. The particle size that determined by TEM, decreases for PVP capping samples. The optical band energy Eg increases for PVP capping samples, confirming the variation of energy gap with the particle size. The FTIR results indicate that the metal oxide bands were shifted for the PVP capping samples. EPR data shows that the PVP addition increases the magnetic resonance field and hence decreases the g-factor.

  17. Effect of Same-Temperature GaN Cap Layer on the InGaN/GaN Multiquantum Well of Green Light-Emitting Diode on Silicon Substrate

    PubMed Central

    Zheng, Changda; Wang, Li; Mo, Chunlan; Fang, Wenqing; Jiang, Fengyi

    2013-01-01

    GaN green LED was grown on Si (111) substrate by MOCVD. To enhance the quality of InGaN/GaN MQWs, same-temperature (ST) GaN protection layers with different thickness of 8 Å, 15 Å, and 30 Å were induced after the InGaN quantum wells (QWs) layer. Results show that a relative thicker cap layer is benefit to get InGaN QWs with higher In percent at fixed well temperature and obtain better QW/QB interface. As the cap thickness increases, the indium distribution becomes homogeneous as verified by fluorescence microscope (FLM). The interface of MQWs turns to be abrupt from XRD analysis. The intensity of photoluminescence (PL) spectrum is increased and the FWHM becomes narrow. PMID:24369453

  18. Conversion of Nuclear Waste into Nuclear Waste Glass: Experimental Investigation and Mathematical Modeling

    DOE PAGES

    Hrma, Pavel

    2014-12-18

    The melter feed, slurry, or calcine charged on the top of a pool of molten glass forms a floating layer of reacting material called the cold cap. Between the cold-cap top, which is covered with boiling slurry, and its bottom, where bubbles separate it from molten glass, the temperature changes by up to 1000 K. The processes that occur over this temperature interval within the cold cap include liberation of gases, conduction and consumption of heat, dissolution of quartz particles, formation and dissolution of intermediate crystalline phases, and generation of foam and gas cavities. These processes have been investigated usingmore » thermal analyses, optical and electronic microscopies, x-ray diffraction, as well as other techniques. Properties of the reacting feed, such as heat conductivity and density, were measured as functions of temperature. Investigating the structure of quenched cold caps produced in a laboratory-scale melter complemented the crucible studies. The cold cap consists of two main layers. The top layer contains solid particles dissolving in the glass-forming melt and open pores through which gases are escaping. The bottom layer contains bubbly melt or foam where bubbles coalesce into larger cavities that move sideways and release the gas to the atmosphere. The feed-to-glass conversion became sufficiently understood for representing the cold-cap processes via mathematical models. These models, which comprise heat transfer, mass transfer, and reaction kinetics models, have been developed with the final goal to relate feed parameters to the rate of glass melting.« less

  19. High temperature superconductor step-edge Josephson junctions using Ti-Ca-Ba-Cu-O

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Hohenwarter, G.K.G.; Martens, J.S.; Plut, T.A.; Tigges, C.P.; Vawter, G.A.; Zipperian, T.E.

    1994-10-25

    A process is disclosed for formulating non-hysteretic and hysteretic Josephson junctions using HTS materials which results in junctions having the ability to operate at high temperatures while maintaining high uniformity and quality. The non-hysteretic Josephson junction is formed by step-etching a LaAlO[sub 3] crystal substrate and then depositing a thin film of TlCaBaCuO on the substrate, covering the step, and forming a grain boundary at the step and a subsequent Josephson junction. Once the non-hysteretic junction is formed the next step to form the hysteretic Josephson junction is to add capacitance to the system. In the current embodiment, this is accomplished by adding a thin dielectric layer, LaA1O[sub 3], followed by a cap layer of a normal metal where the cap layer is formed by first depositing a thin layer of titanium (Ti) followed by a layer of gold (Au). The dielectric layer and the normal metal cap are patterned to the desired geometry. 8 figs.

  20. Effects of Natural Organic Matter on PCB-Activated Carbon Sorption Kinetics: Implications for Sediment Capping Applications

    EPA Science Inventory

    In-situ capping of polychlorinated biphenyl (PCB) contaminated sediments with layers of sorbents such as activated carbon has been proposed, but several technical questions remain regarding long-term effectiveness. An activated carbon amended sediment cap was mimicked in laborat...

  1. Ultraviolet weathering of HDPE/wood-flour composites coextruded with a clear HDPE cap layer

    Treesearch

    Laurent M. Matuana; Shan Jin; Nicole M. Stark

    2011-01-01

    This study examined the effect coextruding a clear HDPE cap layer onto HDPE/wood-flour composites has on the discoloration of coextruded composites exposed to accelerated UV tests. Chroma meter, FTIRATR, XPS, SEM, and UV vis measurements accounted for the analysis of discoloration, functional groups, and degree of oxidation of both uncapped (control) and coextruded...

  2. Iron layer-dependent surface-enhanced raman scattering of hierarchical nanocap arrays

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Sun, Huanhuan; Zhao, Yue; Gao, Renxian; Wang, Yaxin; Liu, Yang; Zhang, Yongjun; Hua, Zhong; Yang, Jinghai

    2017-11-01

    In this report, we fabricated the multi-layer Ag/Fe/Ag sandwich cap-shaped films on monolayer non-closed packed (ncp) polystyrene colloidal particle (PSCP) templates through a layer-by-layer (LBL) depositing method. This research focused on the surface-enhanced Raman scattering (SERS) effect of the thickness of the deposited Fe film which was controlled by the sputtering time. The SERS intensities were increased firstly, and then decreased as the thickness of Fe layer grows gradually, which is attributed to the charge transition from the Fermi level of the Ag NPs to Fe layer. The use of multi-layer Ag/Fe/Ag sandwich cap-shaped films enables us to evaluate the contribution of surface plasmon resonance and charge distribution between Ag and Fe to SERS enhancement. Our work introduced a novel system (Ag/Fe/Ag) for high performance SERS and extended the SERS application of Fe. Furthermore, we have designed the Ag/Fe/Ag SERS-active substrate as the immunoassay chip for quantitative determination of AFP-L3 which is the biomarker of hepatocellular carcinoma (HCC). The proposed research demonstrates that the SERS substrates with Ag/Fe/Ag sandwich cap-shaped arrays have a high sensitivity for bioassay.

  3. Comparison of 120- and 140-μm SMILE Cap Thickness Results in Eyes With Thick Corneas.

    PubMed

    Liu, Manli; Zhou, Yugui; Wu, Xianghua; Ye, Tiantian; Liu, Quan

    2016-10-01

    To evaluate clinical outcomes after small incision lenticule extraction (SMILE) with different cap thicknesses in thick corneas. Forty patients with central corneal thickness of more than 560 μm were recruited in this prospective, randomized, masked, paired-eye study. Patients were randomized to receive SMILE with a 120-μm cap thickness in 1 eye and 140-μm cap thickness in the other. Uncorrected and corrected distance visual acuity (CDVA), contrast sensitivity (CS), higher-order aberrations (HOAs), and morphologic modifications of corneal architecture were measured during the 3-month follow-up period. Postoperative refractive outcomes, visual outcomes, CS, and the changes in HOAs were similar between both groups. The persistence of brightly reflective particles in the corneal interface layer was 1388.6 ± 219.5/mm in eyes with 120-μm cap thickness and 54.7 ± 8.6/mm in eyes with 140-μm cap thickness (P < 0.001). The hyperreflectivity line at the interface layer almost disappeared in all eyes with 140-μm cap thickness, and it still persisted in 43% of the fellow eyes at 3 months postoperatively. The anterior surfaces of lenticules in the 140-μm cap thickness group exhibited more smoothness than in the 120-μm cap thickness group. There was a lower level corneal wound-healing response after SMILE with a 140-μm cap thickness than with a 120-μm cap thickness, although the thickness of cap creation did not affect visual outcomes by 3 months postoperatively.

  4. Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete

    PubMed Central

    Liu, Jun; Qiu, Qiwen; Xing, Feng; Pan, Dong

    2014-01-01

    This paper presents an experimental study on the nature of permeation properties and pore structure of concrete surface layers containing fly ash. Concretes containing different dosages of fly ash as a replacement for cement (15% and 30% by weight of total cement materials, respectively) were investigated. Concrete without any fly ash added was also employed as the reference specimen. Laboratory tests were conducted to determine the surface layer properties of concrete including chloride transport, apparent water permeability and pore structure. The results demonstrate that incorporation of fly ash, for the early test period, promotes the chloride ingress at the surface layer of concrete but substituting proportions of fly ash may have little impact on it. With the process of chloride immersion, the chloride concentration at the surface layer of concrete with or without fly ash was found to be nearly the same. In addition, it is suggested that the water permeability at the concrete surface area is closely related to the fly ash contents as well as the chloride exposure time. Pore structure was characterized by means of mercury intrusion porosimetry (MIP) test and the scanning electron microscopy (SEM) images. The modification of pore structure of concrete submersed in distilled water is determined by the pozzolanic reaction of fly ash and the calcium leaching effect. The pozzolanic reaction was more dominant at the immersion time of 180 days while the calcium leaching effect became more evident after 270 days. PMID:28788677

  5. Detecting the Water-soluble Chloride Distribution of Cement Paste in a High-precision Way.

    PubMed

    Chang, Honglei; Mu, Song

    2017-11-21

    To improve the accuracy of the chloride distribution along the depth of cement paste under cyclic wet-dry conditions, a new method is proposed to obtain a high-precision chloride profile. Firstly, paste specimens are molded, cured, and exposed to cyclic wet-dry conditions. Then, powder samples at different specimen depths are grinded when the exposure age is reached. Finally, the water-soluble chloride content is detected using a silver nitrate titration method, and chloride profiles are plotted. The key to improving the accuracy of the chloride distribution along the depth is to exclude the error in the powderization, which is the most critical step for testing the distribution of chloride. Based on the above concept, the grinding method in this protocol can be used to grind powder samples automatically layer by layer from the surface inward, and it should be noted that a very thin grinding thickness (less than 0.5 mm) with a minimum error less than 0.04 mm can be obtained. The chloride profile obtained by this method better reflects the chloride distribution in specimens, which helps researchers to capture the distribution features that are often overlooked. Furthermore, this method can be applied to studies in the field of cement-based materials, which require high chloride distribution accuracy.

  6. Physical and chemical stability of palonosetron hydrochloride with five common parenteral drugs during simulated Y-site administration.

    PubMed

    Kupie, Thomas C; Trusley, Craig; Ben, Michel; Trissel, Lawrence A

    2008-09-15

    The physical and chemical compatibility of palonosetron hydrochloride with atropine sulfate, famotidine, heparin sodium, lidocaine hydrochloride, and potassium chloride during simulated Y-site administration were studied. Test samples were prepared in duplicate by separately mixing 7.5-mL samples of undiluted palonosetron hydrochloride 50 microg/mL with 7.5-mL samples of atropine sulfate 0.4 mg/mL, famotidine 2 mg/mL, undiluted heparin sodium 100 units/mL, lidocaine hydrochloride 10 mg/mL, and potassium chloride 0.1 meq/mL diluted in 5% dextrose in colorless 15-mL borosilicate glass screw-cap culture tubes with polypropylene caps. Physical stability of the admixtures was assessed by visual examination and by measuring turbidity and particle size and content. Chemical stability of atropine sulfate, famotidine, heparin sodium, and lidocaine hydrochloride was assessed by stability-indicating high-performance liquid chromatography. Potassium chloride concentration was determined by indirect potentiometry using a potassiumion selective electrode. All of the samples of palonosetron hydrochloride with the test drugs were initially clear and colorless in normal fluorescent room light and when viewed with a Tyndall beam. Changes in turbidity for the samples were minor throughout the study. Measured particulates of 10 mum or larger were found to be few in number in all samples and remained so throughout the observation period. The admixtures remained colorless throughout the study. No loss of palonosetron hydrochloride occurred with any of the drugs over four hours. Similarly, little or no loss of the other drugs occurred in four hours. Palonosetron hydrochloride is physically and chemically stable with atropine sulfate, famotidine, heparin sodium, lidocaine hydrochloride, and potassium chloride during simulated Y-site administration.

  7. Influence of reinforcement mesh configuration for improvement of concrete durability

    NASA Astrophysics Data System (ADS)

    Pan, Chong-gen; Jin, Wei-liang; Mao, Jiang-hong; Zhang, Hua; Sun, Li-hao; Wei, Dong

    2017-10-01

    Steel bar in concrete structures under harsh environmental conditions, such as chlorine corrosion, seriously affects its service life. Bidirectional electromigration rehabilitation (BIEM) is a new method of repair technology for reinforced concrete structures in such chloride corrosion environments. By applying the BIEM, chloride ions can be removed from the concrete and the migrating corrosion inhibit can be moved to the steel surface. In conventional engineering, the concrete structure is often configured with a multi-layer steel mesh. However, the effect of the BIEM in such structures has not yet been investigated. In this paper, the relevant simulation test is carried out to study the migration law of chloride ions and the migrating corrosion inhibitor in a concrete specimen with complex steel mesh under different energizing modes. The results show that the efficiency of the BIEM increases 50% in both the monolayer steel mesh and the double-layer steel mesh. By using the single-sided BIEM, 87% of the chloride ions are removed from the steel surface. The different step modes can affect the chloride ion removal. The chloride ions within the range of the reinforcement protective cover are easier to be removed than those in the concrete between the two layers of steel mesh. However, the amount of migrating corrosion inhibitor is larger in the latter circumstances.

  8. Reinforcement of composite laminate free edges with U-shaped caps

    NASA Technical Reports Server (NTRS)

    Howard, W. E.; Gossard, T., Jr.; Jones, R. M.

    1986-01-01

    Generalized plane strain finite element analysis is used to predict reduction of interlaminar normal stresses when a U-shaped cap is bonded to the edge of a laminate. Three-dimensional composite material failure criteria are used in a progressive laminate failure analysis to predict failure loads of laminates with different edge cap designs. In an experimental program, symmetric 11-layer graphite-epoxy laminates with a one-layer cap of Kevlar-epoxy cloth are shown to be 130 to 140 percent stronger than uncapped laminates under static tensile and tension-tension fatigue loading. In addition, the coefficient of variation of the static tensile failure load decreases from 24 to 8 percent when edge caps are added. The predicted failure load calculated with the finite element results is 10 percent lower than the actual failure load. For both capped and uncapped laminates, actual failure loads are much lower than those predicted using classical lamination theory stresses and a two-dimensional failure criterion. Possible applications of the free edge reinforcement concept are described, and future research is suggested.

  9. Martian Polar Impact Craters: A Preliminary Assessment Using Mars Orbiter Laser Altimeter (MOLA)

    NASA Technical Reports Server (NTRS)

    Sakimoto, S. E. H.; Garvin, J. B.

    1999-01-01

    Our knowledge of the age of the layered polar deposits and their activity in the volatile cycling and climate history of Mars is based to a large extent on their apparent ages as determined from crater counts. Interpretation of the polar stratigraphy (in terms of climate change) is complicated by reported differences in the ages of the northern and southern layered deposits. The north polar residual ice deposits are thought to be relatively young, based on the reported lack of any fresh impact craters in Viking Orbiter Images. Herkenhoff et al., report no craters at all on the North polar layered deposits or ice cap, and placed an upper bound on the surface age (or, alternatively, the vertical resurfacing rate) of 100 thousand years to 10 million years, suggesting that the north polar region is an active resurfacing site. In contrast, the southern polar region was found to have at least 15 impact craters in the layered deposits and cap. Plaut et al, concluded that the surface was less than or = 120 million years old. This reported age difference factor of 100 to 1000 increases complexity in climate and volatile modeling. Recent MOLA results for the topography of the northern polar cap document a handful or more of possible craters, which could result in revised age or resurfacing estimates for the northern cap. This study is a preliminary look at putative craters in both polar caps. Additional information is contained in the original extended abstract.

  10. A clinical comparison of cordless and conventional displacement systems regarding clinical performance and impression quality.

    PubMed

    Acar, Özlem; Erkut, Selim; Özçelik, Tuncer Burak; Ozdemır, Erdem; Akçil, Mehtap

    2014-05-01

    It is not clear whether newly introduced cordless displacement systems are better able to manage gingiva than conventional systems. The purpose of this in vivo study was to evaluate the gingival management ability of 4 different displacement methods with a standardized subgingival preparation finish line. The effects of 4 displacement techniques on gingival management and impression quality were evaluated by means of 6 evaluation criteria. A subgingival preparation finish line of between 1 and 2 mm was ensured, and the buccal aspects of 252 (n=63) teeth were clinically assessed for ease of application, time spent, bleeding, remnants, and dilatation. The complete reproduction of the preparation finish line and the bubble and void formations on polyether impressions were also evaluated. The data were statistically analyzed with the χ(2) test (α=.05). The Bonferroni correction was used to control Type I error for the pairwise comparison groups (α=.008). Statistically significant differences were found for all criteria among the groups (P<.05). The nonimpregnated displacement cord group was the least effective group in terms of bleeding and impression quality (P<.008). The aluminum chloride impregnated cord group and the displacement paste with cap group were found to be comparable in terms of remnants, dilatation, and impression quality (P>.008). The retraction cap with paste group showed better results for ease of application, time spent, and bleeding than the aluminum chloride impregnated cord group (P<.008). Although the group with aluminum chloride impregnated cord, displacement paste, and cap showed better results for dilatation, it was time consuming and difficult (P<.008). Except for the nonimpregnated cord group, all of the groups were comparable and clinically useful, with perfect or acceptable impression qualities. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Modeling large wind farms in conventionally neutral atmospheric boundary layers under varying initial conditions

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2014-05-01

    Atmospheric boundary layers (ABL) are frequently capped by an inversion layer limiting the entrainment rate and boundary layer growth. Commonly used analytical models state that the entrainment rate is inversely proportional to the inversion strength. The height of the inversion turns out to be a second important parameter. Conventionally neutral atmospheric boundary layers (CNBL) are ABLs with zero surface heat flux developing against a stratified free atmosphere. In this regime the inversion-filling process is merely driven by the downward heat flux at the inversion base. As a result, CNBLs are strongly dependent on the heating history of the boundary layer and strong inversions will fail to erode during the course of the day. In case of large wind farms, the power output of the farm inside a CNBL will depend on the height and strength of the inversion above the boundary layer. On the other hand, increased turbulence levels induced by wind farms may partially undermine the rigid lid effect of the capping inversion, enhance vertical entrainment of air into the farm, and increase boundary layer growth. A suite of large eddy simulations (LES) is performed to investigate the effect of the capping inversion on the conventionally neutral atmospheric boundary layer and on the wind farm performance under varying initial conditions. For these simulations our in-house pseudo-spectral LES code SP-Wind is used. The wind turbines are modelled using a non-rotating actuator disk method. In the absence of wind farms, we find that a decrease in inversion strength corresponds to a decrease in the geostrophic angle and an increase in entrainment rate and geostrophic drag. Placing the initial inversion base at higher altitudes further reduces the effect of the capping inversion on the boundary layer. The inversion can be fully neglected once it is situated above the equilibrium height that a truly neutral boundary layer would attain under the same external conditions such as geostrophic wind speed and surface roughness. Wind farm simulations show the expected increase in boundary layer height and growth rate with respect to the case without wind farms. Raising the initial strength of the capping inversion in these simulations dampens the turbulent growth of the boundary layer above the farm, decreasing the farms energy extraction. The authors acknowledge support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government.

  12. Results of hydraulic tests in U.S. Department of Energy's wells DOE-4, 5, 6, 7, 8, and 9, Salt Valley, Grand County, Utah

    USGS Publications Warehouse

    Wollitz, Leonard E.; Thordarson, William; Whitfield, Merrick S.; Weir, James E.

    1982-01-01

    Six exploratory wells were drilled into the cap rock underlying Salt Valley, Utah, for geologic, geophysical, and hydrologic data to augment information obtained from three previous test wells. Drilling of three other test holes was abandoned due to caving and loss of drilling tools, Before reaching the zone of saturation; the upper 100 meters of cap rock is unsaturated. Within the saturated part of the cap rock, hydraulic heads generally decrease with depth and to the northwest in this part of the valley.Hydraulic conductivity of the cap rock, as determined from pumping tests, ranged from 9.3 X 10-5 to 2.06 X 10-1 meters per day; as a result, groundwater flow rates in the cap rock are low. Water ranges from a calcium bicarbonate sulfate type on the western edge of the valley to a calcium magnesium sodium bicarbonate, sulfate, chloride type near the center of the valley. Carbon-14 specific activity for cap-rock water yielded an uncorrected age of about 17,000 to 26,000 years before present near the western edge of the valley and about 41,000 years before present near the center of the valley.

  13. Suppression of gate leakage current in in-situ grown AlN/InAlN/AlN/GaN heterostructures based on the control of internal polarization fields

    NASA Astrophysics Data System (ADS)

    Kotani, Junji; Yamada, Atsushi; Ishiguro, Tetsuro; Yamaguchi, Hideshi; Nakamura, Norikazu

    2017-03-01

    This paper investigates the gate leakage characteristics of in-situ AlN capped InAlN/AlN/GaN heterostructures grown by metal-organic vapor phase epitaxy. It was revealed that the leakage characteristics of AlN capped InAlN/AlN/GaN heterostructures are strongly dependent on the growth temperature of the AlN cap. For an AlN capped structure with an AlN growth temperature of 740 °C, the leakage current even increased although there exists a large bandgap material on InAlN/AlN/GaN heterostructures. On the other hand, a large reduction of the gate leakage current by 4-5 orders of magnitudes was achieved with a very low AlN growth temperature of 430 °C. X-ray diffraction analysis of the AlN cap grown at 740 °C indicated that the AlN layer is tensile-strained. In contrast to this result, the amorphous structure was confirmed for the AlN cap grown at 430 °C by transmission electron microscopy. Furthermore, theoretical analysis based on one-dimensional band simulation was carried out, and the large increase in two-dimensional electron gas (2DEG) observed in Hall measurements was well reproduced by taking into account the spontaneous and piezo-electric polarization in the AlN layer grown at 740 °C. For the AlN capped structure grown at 430 °C, it is believed that the reduced polarization field in the AlN cap suppressed the penetration of 2DEG into the InAlN barrier layer, resulting in a small impact on 2DEG mobility and density. We believe that an in-situ grown AlN cap with a very low growth temperature of 430 °C is a promising candidate for high-frequency/high-power GaN-based devices with low gate leakage current.

  14. The electrical resistance of gold-capped chromium thin films

    NASA Astrophysics Data System (ADS)

    Ohashi, Masashi; Sawabu, Masaki; Ohashi, Kohei; Miyagawa, Masahiro; Maeta, Kae; Kubota, Takahide; Takanashi, Koki

    2018-03-01

    We studied the electrical resistance of polycrystalline chromium films capped by a gold layer. No anomaly was detected by resistance measurements of 10 nm thick film around room temperature, indicating that the antiferromagnetic interaction may be suppressed as decreasing the thickness of the chromium film. The sheet resistance Rs (T) curves differ from polycrystalline chromium films in previous studies because of the electrical current flows through a gold capping layer. On the other hand, the resistance drop is observed at T C = 1.15±0.05 K as that of polycrystalline chromium films in the previous report. It means that such resistance drop is not related to the chromium oxide layer on a polycrystalline chromium films. However, it is difficult to conclude that superconducting transition occurs because of the large residual resistance below the temperature where the resistance drop is observed.

  15. Investigation of Martian H2O and CO2 via gamma-ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W.; Evans, Larry G.

    1987-01-01

    The evolution and present state of water and carbon dioxide on Mars are discussed. Researchers wished to determine how effectively questions regarding the distribution of water and carbon dioxide on Mars may be addressed with orbital gamma ray spectrometer data. Several simple, multi-layer models of the Martian surface were formulated to address problems such as the ice/dust ratio of layered deposits; the distribution, depth and concentration of ground ice; the thickness of north polar perennial ice; the thickness of the carbon dioxide layer over the south polar cap; the thickness of the seasonal carbon dioxide frost cap; and the water content of the seasonal frost cap. The results indicate that the Mars Observer gamma ray spectrometer will be a powerful tool for investigating the distribution and stratigraphy of volatiles on Mars.

  16. Achieving high field-effect mobility in amorphous indium-gallium-zinc oxide by capping a strong reduction layer.

    PubMed

    Zan, Hsiao-Wen; Yeh, Chun-Cheng; Meng, Hsin-Fei; Tsai, Chuang-Chuang; Chen, Liang-Hao

    2012-07-10

    An effective approach to reduce defects and increase electron mobility in a-IGZO thin-film transistors (a-IGZO TFTs) is introduced. A strong reduction layer, calcium, is capped onto the back interface of a-IGZO TFT. After calcium capping, the effective electron mobility of a-IGZO TFT increases from 12 cm(2) V(-1) s(-1) to 160 cm(2) V(-1) s(-1). This high mobility is a new record, which implies that the proposed defect reduction effect is key to improve electron transport in oxide semiconductor materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Combined Field and Laboratory Study on Activated Carbon-Based Thin Layer Capping in a PCB-Contaminated Boreal Lake.

    PubMed

    Abel, Sebastian; Akkanen, Jarkko

    2018-04-17

    The in situ remediation of aquatic sediments with activated carbon (AC)-based thin layer capping is a promising alternative to traditional methods, such as sediment dredging. Applying a strong sorbent like AC directly to the sediment can greatly reduce the bioavailability of organic pollutants. To evaluate the method under realistic field conditions, a 300 m 2 plot in the PCB-contaminated Lake Kernaalanjärvi, Finland, was amended with an AC cap (1.6 kgAC/m 2 ). The study lake showed highly dynamic sediment movements over the monitoring period of 14 months. This led to poor retention and rapid burial of the AC cap under a layer of contaminated sediment from adjacent sites. As a result, the measured impact of the AC amendment was low: Both the benthic community structure and PCB bioaccumulation were similar on the plot and in surrounding reference sites. Corresponding follow-up laboratory studies using Lumbriculus variegatus and Chironomus riparius showed that long-term remediation success is possible, even when an AC cap is covered with contaminated sediment. To retain a measurable effectiveness (reduction in contaminant bioaccumulation), a sufficient intensity and depth of bioturbation is required. On the other hand, the magnitude of the adverse effect induced by AC correlated positively with the measured remediation success.

  18. Electromagnetically induced reflectance and Fano resonance in one dimensional superconducting photonic crystal

    NASA Astrophysics Data System (ADS)

    Athe, Pratik; Srivastava, Sanjay; Thapa, Khem B.

    2018-04-01

    In the present work, we demonstrate the generation of optical Fano resonance and electromagnetically induced reflectance (EIR) in one-dimensional superconducting photonic crystal (1D SPC) by numerical simulation using transfer matrix method as analysis tool. We investigated the optical response of 1D SPC structure consisting of alternate layer of two different superconductors and observed that the optical spectra of this structure exhibit two narrow reflectance peaks with zero reflectivity of sidebands. Further, we added a dielectric cap layer to this 1D SPC structure and found that addition of dielectric cap layer transforms the line shape of sidebands around the narrow reflectance peaks which leads to the formation of Fano resonance and EIR line shape in reflectance spectra. We also studied the effects of the number of periods, refractive index and thickness of dielectric cap layer on the lineshape of EIR and Fano resonances. It was observed that the amplitude of peak reflectance of EIR achieves 100% reflectance by increasing the number of periods.

  19. High performance EUV multilayer structures insensitive to capping layer optical parameters.

    PubMed

    Pelizzo, Maria Guglielmina; Suman, Michele; Monaco, Gianni; Nicolosi, Piergiorgio; Windt, David L

    2008-09-15

    We have designed and tested a-periodic multilayer structures containing protective capping layers in order to obtain improved stability with respect to any possible changes of the capping layer optical properties (due to oxidation and contamination, for example)-while simultaneously maximizing the EUV reflection efficiency for specific applications, and in particular for EUV lithography. Such coatings may be particularly useful in EUV lithographic apparatus, because they provide both high integrated photon flux and higher stability to the harsh operating environment, which can affect seriously the performance of the multilayer-coated projector system optics. In this work, an evolutive algorithm has been developed in order to design these a-periodic structures, which have been proven to have also the property of stable performance with respect to random layer thickness errors that might occur during coating deposition. Prototypes have been fabricated, and tested with EUV and X-ray reflectometry, and secondary electron spectroscopy. The experimental results clearly show improved performance of our new a-periodic coatings design compared with standard periodic multilayer structures.

  20. Temporal patterning of the potential induced by localized corrosion of iron passivity in acid media. Growth and breakdown of the oxide film described in terms of a point defect model.

    PubMed

    Sazou, Dimitra; Pavlidou, Maria; Pagitsas, Michael

    2009-10-21

    This work analyses the nature of temporal patterning of the anodic potential induced by chlorides during polarization of iron under current-controlled conditions in acid solutions. It is shown that potential oscillations emerged as a result of the local chloride attack of a thin oxide layer, which covers the iron surface in its passive state. The mechanism by which both the local oxide breakdown and the subsequent localized active dissolution (pitting) occur is explained by considering a point defect model (PDM) developed to describe the oxide growth and breakdown. According to the PDM, chlorides occupy oxygen vacancies resulting in the inhibition of oxide growth and autocatalytic generation of cation vacancies that destabilize the oxide layer. Simultaneous transformation of the outer surface of the inner oxide layer to non-adherent ferrous chloride or oxo-chloride species leads to a further thinning of the oxide layer and its lifting-on from the iron surface. The process repeats again yielding sustained oscillations of the anodic potential. Analysis of the oscillatory response obtained under current-controlled conditions as a function of either the current or the time allows the suggestion of a set of alternate diagnostic criteria, which might be used to characterize localized corrosion of iron in acid solutions.

  1. High Performance 0.1 μm GaAs Pseudomorphic High Electron Mobility Transistors with Si Pulse-Doped Cap Layer for 77 GHz Car Radar Applications

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon; Noh, Hunhee; Jang, Kyoungchul; Lee, JaeHak; Seo, Kwangseok

    2005-04-01

    In this study, 0.1 μm double-recessed T-gate GaAs pseudomorphic high electron mobility transistors (PHEMT’s), in which an InGaAs layer and a Si pulse-doped layer in the cap structure are inserted, have been successfully fabricated. This cap structure improves ohmic contact. The ohmic contact resistance is as small as 0.07 Ωmm, consequently the source resistance is reduced by about 20% compared to that of a conventional cap structure. This device shows good DC and microwave performance such as an extrinsic transconductance of 620 mS/mm, a maximum saturated drain current of 780 mA/mm, a cut-off frequency fT of 140 GHz and a maximum oscillation frequency of 260 GHz. The reverse breakdown is 5.7 V at a gate current density of 1 mA/mm. The maximum available gain is about 7 dB at 77 GHz. It is well suited for car radar monolithic microwave integrated circuits (MMICs).

  2. The Mars water cycle at other epochs: History of the polar caps and layered terrain

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The atmospheric water cycle at the present epoch involves summertime sublimation of water from the north polar cap, transport of water through the atmosphere, and condensation on one or both winter CO2 caps. Exchange with the regolith is important seasonally, but the water content of the atmosphere appears to be controlled by the polar caps. The net annual transport through the atmosphere, integrated over long timescales, must be the driving force behind the long-term evolution of the polar caps; clearly, this feeds back into the evolution of the layered terrain. We have investigated the behavior of the seasonal water cycle and the net integrated behavior at the pole for the last 10 exp 7 years. Our model of the water cycle includes the solar input, CO2 condensation and sublimation, and summertime water sublimation through the seasonal cycles, and incorporates the long-term variations in the orbital elements describing the Martian orbit.

  3. A versatile synthesis of highly bactericidal Myramistin® stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Vertelov, G. K.; Krutyakov, Yu A.; Efremenkova, O. V.; Olenin, A. Yu; Lisichkin, G. V.

    2008-09-01

    Silver nanoparticles stabilized by a well-known antibacterial surfactant benzyldimethyl[3-(myristoylamino)propyl]ammonium chloride (Myramistin®) were produced for the first time by borohydride reduction of silver chloride sol in water. Stable aqueous dispersions of silver nanoparticles without evident precipitation for several months could be obtained. In vitro bactericidal tests showed that Myramistin® capped silver NPs exhibited notable activity against six different microorganisms—gram-positive and gram-negative bacteria, yeasts and fungi. The activity was up to 20 times higher (against E. coli) compared to Myramistin® at the same concentrations and on average 2 times higher if compared with citrate-stabilized NPs.

  4. Chloride ions induce order-disorder transition at water-oxide interfaces

    NASA Astrophysics Data System (ADS)

    Deshmukh, Sanket; Kamath, Ganesh; Ramanathan, Shriram; Sankaranarayanan, Subramanian K. R. S.

    2013-12-01

    Water can form quasi-two-dimensional ordered layers near a solid interface. The solvation dynamics and ionic transport phenomena through this ordered water structure is of direct relevance to a variety of problems in interface science. Molecular dynamics simulations are used to study the impact of local fluctuation of the chloride ion density in the vicinity of an oxide surface on the structure and dynamics of water layers. We demonstrate that local increase in chloride ions beyond a threshold concentration near the water-MgO (100) interface introduces an order-disorder transition of this two-dimensional layered network into bulklike water, leading to increased diffusional characteristics and reduced hydrogen bonding lifetimes. We find that the extent of this order-disorder transition can be tuned by modifying the defect chemistry and nature of the underlying substrate. The kinetic fluidity resulting from order-disorder transition at high chloride ion concentration has significance for a broad range of phenomena, ranging from freezing point depression of brine to onset of aqueous corrosion.

  5. Synthesis of specifically deuterated S-benzylcysteines and of oxytocin and related diastereomers deuterated in the half-cystine positions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upson, D.A.; Hruby, V.J.

    1976-04-16

    S-Benzylcysteine derivatives specifically deuterated at the ..cap alpha.. carbon only, the ..beta.. carbon only, and at both the ..cap alpha.. and ..beta.. carbons have been synthesized. These labeled compounds have been enzymatically resolved and the enantiomers and reacemates have been converted to the N-tert-butyloxycarbonyl derivatives. The deuterium labels were not exchanged under the conditions of the syntheses. Condensation of the sodium salt of diethyl ..cap alpha..-acetami-domalonate with benzyl chloromethyl sulfide followed by hydrolysis with DCl afforded S-benzyl-DL-(..cap alpha..-/sup 2/H/sub 1/) cysteine. Acetylation followed by treatment with hog renal acylase separated the stereoisomers. A Mannich reaction with (/sup 2/H/sub 2/) methylenemore » diacetate, diethyl ..cap alpha..-acetamido-..cap alpha..-dimethylamino(/sup 2/H/sub 2/)methylmalonate methiodide (15). Treatment of 15 with sodium benzylmercaptide gave diethyl ..cap alpha..-acetamido-..cap alpha..-benzylthio(/sup 2/H/sub 2/)methylmalonate, which was hydrolyzed with HCl to yield S-benzyl-DL-(..beta..,..beta..-/sup 2/H/sub 2/)cysteine or with DCl to afford S-benzyl-DL-(..cap alpha..,..beta..,..beta..,-/sup 2/H/sub 3/)cysteine. These compounds were resolved as before. The preparation of S-benzyl-DL-(..cap alpha..,..beta..,..beta..-/sup 2/H/sub 3/)cysteine required an efficient source of ethanol-d. This deuterated solvent was prepared in quantitative yield in 2 h from tetraethoxysilane, D/sub 2/O, and a catalytic amount of thionyl chloride. The protected deuterated amino acids were used in the preparation of several oxytocin analogues in which the specific deuteration appears in either the 1-hemicystine or the 6-hemicystine residues.« less

  6. The effect of a nonmagnetic cap layer on the spin-polarized tunneling and magnetoresistance in double-barrier planar junctions

    NASA Astrophysics Data System (ADS)

    Xie, Zheng-Wei; Li, Bo-Zang; Li, Yu-Xian

    2003-10-01

    Within the framework of the free-electron model, the tunneling magnetoresistance (TMR) and tunneling conductance (TC) in double magnetic tunnel junctions (DMTJ) with nonmagnetic cap layer, i.e. the NM/FM/I/NM/(FM)/I/FM/NM junction is investigated. FM, NM and I represent the ferromagnetic metal, nonmagnetic metal and insulator, respectively, NM(FM) indicates that the middle layer can be NM or FM. Our results show that, due to the spin-dependent interfacial potential barriers, the influences of the thickness of the FM layer on TC and TMR in DMTJ are large, and when the thicknesses of these two FM layers are suitable a large TMR can be obtained. (

  7. Cold-Cap Temperature Profile Comparison between the Laboratory and Mathematical Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.

    2015-06-01

    The rate of waste vitrification in an electric melter is connected to the feed-to-glass conversion process, which occurs in the cold cap, a layer of reacting feed on top of molten glass. The cold cap consists of two layers: a low temperature (~100°C – ~800°C) region of unconnected feed and a high temperature (~800°C – ~1100°C) region of foam with gas bubbles and cavities mixed in the connected glass melt. A recently developed mathematical model describes the effect of the cold cap on glass production. For verification of the mathematical model, a laboratory-scale melter was used to produce a coldmore » cap that could be cross-sectioned and polished in order to determine the temperature profile related to position in the cold cap. The cold cap from the laboratory-scale melter exhibited an accumulation of feed ~400°C due to radiant heat from the molten glass creating dry feed conditions in the melter, which was not the case in the mathematical model where wet feed conditions were calculated. Through the temperature range from ~500°C – ~1100°C, there was good agreement between the model and the laboratory cold cap. Differences were observed between the two temperature profiles due to the temperature of the glass melts and the lack of secondary foam, large cavities, and shrinkage of the primary foam bubbles upon the cooling of the laboratory-scale cold cap.« less

  8. Variability of Mars' North Polar Water Ice Cap: I. Analysis of Mariner 9 and Viking Orbiter Imaging Data

    USGS Publications Warehouse

    Bass, Deborah S.; Herkenhoff, Kenneth; Paige, David A.

    2000-01-01

    Previous studies interpreted differences in ice coverage between Mariner 9 and Viking Orbiter observations of Mars' north residual polar cap as evidence of interannual variability of ice deposition on the cap. However, these investigators did not consider the possibility that there could be significant changes in the ice coverage within the northern residual cap over the course of the summer season. Our more comprehensive analysis of Mariner 9 and Viking Orbiter imaging data shows that the appearance of the residual cap does not show large-scale variance on an interannual basis. Rather we find evidence that regions that were dark at the beginning of summer look bright by the end of summer and that this seasonal variation of the cap repeats from year to year. Our results suggest that this brightening was due to the deposition of newly formed water ice on the surface. We find that newly formed ice deposits in the summer season have the same red-to-violet band image ratios as permanently bright deposits within the residual cap. We believe the newly formed ice accumulates in a continuous layer. To constrain the minimum amount of deposited ice, we used observed albedo data in conjunction with calculations using Mie theory for single scattering and a delta-Eddington approximation of radiative transfer for multiple scattering. The brightening could have been produced by a minimum of (1) a ~35-μm-thick layer of 50-μm-sized ice particles with 10% dust or (2) a ~14-μm-thick layer of 10-μm-sized ice particles with 50% dust.

  9. Preliminary simulation of chloride transport in the Equus Beds aquifer and simulated effects of well pumping and artificial recharge on groundwater flow and chloride transport near the city of Wichita, Kansas, 1990 through 2008

    USGS Publications Warehouse

    Klager, Brian J.; Kelly, Brian P.; Ziegler, Andrew C.

    2014-01-01

    The Equus Beds aquifer in south-central Kansas is a primary water-supply source for the city of Wichita. Water-level declines because of groundwater pumping for municipal and irrigation needs as well as sporadic drought conditions have caused concern about the adequacy of the Equus Beds aquifer as a future water supply for Wichita. In March 2006, the city of Wichita began construction of the Equus Beds Aquifer Storage and Recovery project, a plan to artificially recharge the aquifer with excess water from the Little Arkansas River. Artificial recharge will raise groundwater levels, increase storage volume in the aquifer, and deter or slow down a plume of chloride brine approaching the Wichita well field from the Burrton, Kansas area caused by oil production activities in the 1930s. Another source of high chloride water to the aquifer is the Arkansas River. This study was prepared in cooperation with the city of Wichita as part of the Equus Beds Aquifer Storage and Recovery project. Chloride transport in the Equus Beds aquifer was simulated between the Arkansas and Little Arkansas Rivers near the Wichita well field. Chloride transport was simulated for the Equus Beds aquifer using SEAWAT, a computer program that combines the groundwater-flow model MODFLOW-2000 and the solute-transport model MT3DMS. The chloride-transport model was used to simulate the period from 1990 through 2008 and the effects of five well pumping scenarios and one artificial recharge scenario. The chloride distribution in the aquifer for the beginning of 1990 was interpolated from groundwater samples from around that time, and the chloride concentrations in rivers for the study period were interpolated from surface water samples. Five well-pumping scenarios and one artificial-recharge scenario were assessed for their effects on simulated chloride transport and water levels in and around the Wichita well field. The scenarios were: (1) existing 1990 through 2008 pumping conditions, to serve as a baseline scenario for comparison with the hypothetical scenarios; (2) no pumping in the model area, to demonstrate the chloride movement without the influence of well pumping; (3) double municipal pumping from the Wichita well field with existing irrigation pumping; (4) existing municipal pumping with no irrigation pumping in the model area; (5) double municipal pumping in the Wichita well field and no irrigation pumping in the model area; and (6) increasing artificial recharge to the Phase 1 Artificial Storage and Recovery project sites by 2,300 acre-feet per year. The effects of the hypothetical pumping and artificial recharge scenarios on simulated chloride transport were measured by comparing the rate of movement of the 250-milligrams-per-liter-chloride front for each hypothetical scenario with the baseline scenario at the Arkansas River area near the southern part of the Wichita well field and the Burrton plume area. The scenarios that increased the rate of movement the most compared to the baseline scenario of existing pumping between the Arkansas River and the southern boundary of the well field were those that doubled the city of Wichita’s pumping from the well field (scenarios 3 and 5), increasing the rate of movement by 50 to 150 feet per year, with the highest rate increases in the shallow layer and the lowest rate increases in the deepest layer. The no pumping and no irrigation pumping scenarios (2 and 4) slowed the rate of movement in this area by 150 to 210 feet per year and 40 to 70 feet per year, respectively. In the double Wichita pumping scenario (3), the rate of movement in the shallow layer of the Burrton area decreased by about 50 feet per year. Simulated chloride rate of movement in the deeper layers of the Burrton area was decreased in the no pumping and no irrigation scenarios (2 and 4) by 80 to 120 feet per year and 50 feet per year, respectively, and increased in the scenarios that double Wichita’s pumping (3 and 5) from the well field by zero to 130 feet per year, with the largest increases in the deepest layer. In the increased Phase 1 artificial recharge scenario (6), the rate of chloride movement in the Burrton area increased in the shallow layer by about 30 feet per year, and decreased in the middle and deepest layer by about 10 and 60 feet per year, respectively. Comparisons of the rate of movement of the simulated 250-milligrams-per-liter-chloride front in the hypothetical scenarios to the baseline scenario indicated that, in general, increases to pumping in the well field area increased the rate of simulated chloride movement toward the well field area by as much as 150 feet per year. Reductions in pumping slowed the advance of chloride toward the well field by as much as 210 feet per year, although reductions did not stop the movement of chloride toward the well field, including when pumping rates were eliminated. If pumping is completely discontinued, the rate of chloride movement is about 500 to 600 feet per year in the area between the Arkansas River and the southern part of the Wichita well field, and 70 to 500 feet per year in the area near Burrton with the highest rate of movement in the shallow aquifer layer. The averages of simulated water-levels in index monitoring wells in the Wichita well field at the end of 2008 were calculated for each scenario. Compared to the baseline scenario, the average simulated water level was 5.05 feet higher for the no pumping scenario, 4.72 feet lower for the double Wichita pumping with existing irrigation scenario, 2.49 feet higher for the no irrigation pumping with existing Wichita pumping scenario, 1.53 feet lower for the double Wichita pumping with no irrigation scenario, and 0.48 feet higher for the increased Phase 1 artificial recharge scenario. The groundwater flow was simulated with a preexisting groundwater-flow model, which was not altered to calibrate the solute-transport model to observed chloride-concentration data. Therefore, some areas in the model had poor fit between simulated chloride concentrations and observed chloride concentrations, including the area between Arkansas River and the southern part of the Wichita well field, and the Hollow-Nikkel area about 6 miles north of Burrton. Compared to the interpreted location of the 250-milligrams per liter-chloride front based on data collected in 2011, in the Arkansas River area the simulated 250-milligrams per liter-chloride front moved from the river toward the well field about twice the rate of the actual 250-milligrams per liter-chloride front in the shallow layer and about four times the rate of the actual 250-milligrams per liter-chloride front in the deep layer. Future groundwater-flow and chloride-transport modeling efforts may achieve better agreement between observed and simulated chloride concentrations in these areas by taking the chloride-transport model fit into account when adjusting parameters such as hydraulic conductivity, riverbed conductance, and effective porosity during calibration. Results of the hypothetical scenarios simulated indicate that the Burrton chloride plume will continue moving toward the well field regardless of pumping in the area and that one alternative may be to increase pumping from within the plume area to reverse the groundwater-flow gradients and remove the plume. Additionally, the results of modeling these scenarios indicate that eastward movement of the Burrton plume could be slowed by the additional artificial recharge at the Phase 1 sites and that decreasing pumping along the Arkansas River or increasing water levels could retard the movement of chloride and may prevent further encroachment into the southern part of the well field area.

  10. An Observational and Analytical Study of Marginal Ice Zone Atmospheric Jets

    DTIC Science & Technology

    2016-12-01

    layer or in the capping temperature inversion just above. The three strongest jets had maximum wind speeds at elevations near 350 m to 400 m...geostrophic wind due to horizontal temperature changes in the atmospheric boundary layer and capping inversion . The jets were detected using...temperature inversion just above. The three strongest jets had maximum wind speeds at elevations near 350 m to 400 m elevation; one of these jets had a

  11. Localized Control of Curie Temperature in Perovskite Oxide Film by Capping-Layer-Induced Octahedral Distortion

    DOE PAGES

    Thomas, S.; Kuiper, B.; Hu, J.; ...

    2017-10-27

    With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO 3 films by the deposition of a SrTiO 3 capping layer, which can be lithographically patterned to achieve local control. Here, using a scanning Sagnac magnetic microscope, we show an increasemore » in the Curie temperature of SrRuO 3 due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. Lastly, this capping-layer-based technique may open new possibilities for developing functional oxide materials.« less

  12. Localized Control of Curie Temperature in Perovskite Oxide Film by Capping-Layer-Induced Octahedral Distortion.

    PubMed

    Thomas, S; Kuiper, B; Hu, J; Smit, J; Liao, Z; Zhong, Z; Rijnders, G; Vailionis, A; Wu, R; Koster, G; Xia, J

    2017-10-27

    With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO_{3} films by the deposition of a SrTiO_{3} capping layer, which can be lithographically patterned to achieve local control. Using a scanning Sagnac magnetic microscope, we show an increase in the Curie temperature of SrRuO_{3} due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. This capping-layer-based technique may open new possibilities for developing functional oxide materials.

  13. Stability and compatibility of anakinra with ceftriaxone sodium injection in 0.9% sodium chloride or 5% dextrose injection.

    PubMed

    Nahata, M C; Morosco, R S; Sabados, B K; Weber, T R

    1997-06-01

    The stability and compatibility of anakinra (recombinant human interleukin-1 receptor antagonist) with ceftriaxone sodium in 0.9% sodium chloride or 5% dextrose injection was determined during a 4-h period at ambient room temperature and light. Anakinra was diluted in 0.9% sodium chloride or 5% dextrose to the concentrations of 4 and 36 mg/ml. Anakinra, at each concentration was mixed with ceftriaxone sodium (20 mg/ml) in a 50:50 proportion and stored in plastic culture vials with polypropylene caps. The samples were collected at 0, 2 and 4 h after mixing. Anakinra and ceftriaxone concentrations were measured using stability-indicating HPLC methods. In 0.9% sodium chloride injection, the mean concentrations of anakinra and ceftriaxone exceeded 98% of initial concentrations at the end of the study period. In 5% dextrose, however, anakinra concentrations were below 90% of the expected initial concentration at the time of first analysis (within 0.5 h). Thus, anakinra appears to be stable and compatible with ceftriaxone sodium when diluted in 0.9% sodium chloride injection, but not in 5% dextrose injection over 4 h at ambient room temperature and light.

  14. Textures in south polar ice cap #1

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Textures of the south polar permanent residual ice cap and polar layered terrains. This 30 x 29 km area image (frame 7709) is centered near 87 degrees south, 77 degrees west.

    Figure caption from Science Magazine

  15. Textures in south polar ice cap #2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Textures of the south polar permanent residual ice cap and polar layered terrains. This 15 x 14 km area image (frame 7306) is centered near 87 degrees south, 341 degrees west.

    Figure caption from Science Magazine

  16. Dry etching, surface passivation and capping processes for antimonide based photodetectors

    NASA Astrophysics Data System (ADS)

    Dutta, Partha; Langer, Jeffery; Bhagwat, Vinay; Juneja, Jasbir

    2005-05-01

    III-V antimonide based devices suffer from leakage currents. Surface passivation and subsequent capping of the surfaces are absolutely essential for any practical applicability of antimonide based devices. The quest for a suitable surface passivation technology is still on. In this paper, we will present some of the promising recent developments in this area based on dry etching of GaSb based homojunction photodiodes structures followed by various passivation and capping schemes. We have developed a damage-free, universal dry etching recipe based on unique ratios of Cl2/BCl3/CH4/Ar/H2 in ECR plasma. This novel dry plasma process etches all III-V compounds at different rates with minimal damage to the side walls. In GaSb based photodiodes, an order of magnitude lower leakage current, improved ideality factor and higher responsivity has been demonstrated using this recipe compared to widely used Cl2/Ar and wet chemical etch recipes. The dynamic zero bias resistance-area product of the Cl2/BCl3/CH4/Ar/H2 etched diodes (830 Ω cm2) is higher than the Cl2/Ar (300 Ω cm2) and wet etched (330 Ω cm2) diodes. Ammonium sulfide has been known to passivate surfaces of III-V compounds. In GaSb photodiodes, the leakage current density reduces by a factor of 3 upon sulfur passivation using ammonium sulfide. However, device performance degrades over a period of time in the absence of any capping or protective layer. Silicon Nitride has been used as a cap layer by various researchers. We have found that by using silicon nitride caps, the devices exhibit higher leakage than unpassivated devices probably due to plasma damage during SiNx deposition. We have experimented with various polymers for capping material. It has been observed that ammonium sulfide passivation when combined with parylene capping layer (150 Å), devices retain their improved performance for over 4 months.

  17. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments.

    PubMed

    Song, Yarong; Jiang, Guangming; Chen, Ying; Zhao, Peng; Tian, Yimei

    2017-07-31

    Chloride is reported to play a significant role in corrosion reactions, products and kinetics of ferrous metals. To enhance the understanding of the effects of soil environments, especially the saline soils with high levels of chloride, on the corrosion of ductile iron and carbon steel, a 3-month corrosion test was carried out by exposing ferrous metals to soils of six chloride concentrations. The surface morphology, rust compositions and corrosion kinetics were comprehensively studied by visual observation, scanning electron microscopy (SEM), X-Ray diffraction (XRD), weight loss, pit depth measurement, linear polarization and electrochemical impedance spectroscopy (EIS) measurements. It showed that chloride ions influenced the characteristics and compositions of rust layers by diverting and participating in corrosion reactions. α-FeOOH, γ-FeOOH and iron oxides were major corrosion products, while β-Fe 8 O 8 (OH) 8 Cl 1.35 rather than β-FeOOH was formed when high chloride concentrations were provided. Chloride also suppressed the decreasing of corrosion rates, whereas increased the difficulty in the diffusion process by thickening the rust layers and transforming the rust compositions. Carbon steel is more susceptible to chloride attacks than ductile iron. The corrosion kinetics of ductile iron and carbon steel corresponded with the probabilistic and bilinear model respectively.

  18. The Influence of Impurities and Metallic Capping Layers on the Microstructure of Copper Interconnects

    NASA Astrophysics Data System (ADS)

    Rizzolo, Michael

    As copper interconnects have scaled to ever smaller dimensions on semiconductor devices, the microstructure has become increasingly detrimental for performance and reliability. Small grains persist in interconnects despite annealing at high temperatures, leading to higher line resistance and more frequent electromigration-induced failures. Conventionally, it was believed that impurities from the electrodeposition pinned grain growth, but limitations in analytical techniques meant the effect was inferred rather than observed. Recent advances in analytical techniques, however, have enabled this work to quantify impurity content, location, and diffusion in relation to microstructural changes in electroplated copper. Surface segregation of impurities during the initial burst of grain growth was investigated. After no surface segregation was observed, a microfluidic plating cell was constructed to plate multilayer films with regions of intentionally high and low impurity concentrations to determine if grain growth could be pinned by the presence of impurities; it was not. An alternate mechanism for grain boundary pinning based on the texture of the seed layer is proposed, supported by time-resolved transmission electron microscopy and transmission electron backscatter diffraction data. The suggested model posits that the seed in narrow features has no preferred orientation, which results in rapid nucleation of subsurface grains in trench regions prior to recrystallization from the overburden down. These rapidly growing grains are able to block off several trenches from the larger overburden grains, inhibiting grain growth in narrow features. With this knowledge in hand, metallic capping layers were employed to address the problematic microstructure in 70nm lines. The capping layers (chromium, nickel, zinc, and tin) were plated on the copper overburden prior to annealing to manipulate the stress gradient and microstructural development during annealing. It appeared that regardless of as-plated stress, nickel capping altered the recrystallized texture of the copper over patterned features. The nickel capping also caused a 2x increase in the number of advantageous 'bamboo' grains that span the entire trench, which effectively block electromigration pathways. These data provides a more fundamental understanding of manipulating the microstructure in copper interconnects using pre-anneal capping layers, and demonstrates a strategy to improve the microstructure beyond the capabilities of simple annealing.

  19. Optical Tamm states in one-dimensional superconducting photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Abouti, O.; El Boudouti, E. H.; IEMN, UMR-CNRS 8520, UFR de Physique, Université de Lille 1, 59655 Villeneuve d'Ascq

    2016-08-15

    In this study, we investigate localized and resonant optical waves associated with a semi-infinite superlattice made out of superconductor-dielectric bilayers and terminated with a cap layer. Both transverse electric and transverse magnetic waves are considered. These surface modes are analogous to the so-called Tamm states associated with electronic states found at the surface of materials. The surface guided modes induced by the cap layer strongly depend on whether the superlattice ends with a superconductor or a dielectric layer, the thickness of the surface layer, the temperature of the superconductor layer as well as on the polarization of the waves. Differentmore » kinds of surface modes are found and their properties examined. These structures can be used to realize the highly sensitive photonic crystal sensors.« less

  20. Design of an optimised readout architecture for phase-change probe memory using Ge2Sb2Te5 media

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wright, C. David; Aziz, Mustafa M.; Yang, Ci-Hui; Yang, Guo-Wei

    2014-02-01

    Phase-change probe memory has recently received considerable attention on its writing performance, while its readout performance is rarely evaluated. Therefore, a three-dimensional readout model has been developed for the first time to calculate the reading contrast by varying the electrical conductivities and the thickness of the capping and under layers as well as the thickness of the Ge2Sb2Te5 layer. It is found that a phase-change probe architecture, consisting of a 10 nm Ge2Sb2Te5 layer sandwiched by a 2 nm, 50 Ω-1 m-1 capping layer and a 40 nm, 5 × 106 Ω-1 m-1 under layer, has the capability of providing the optimal readout performance.

  1. Evaluation of a laboratory-scale bioreactive in situ sediment cap for the treatment of organic contaminants.

    PubMed

    Himmelheber, David W; Pennell, Kurt D; Hughes, Joseph B

    2011-11-01

    The development of bioreactive sediment caps, in which microorganisms capable of contaminant transformation are placed within an in situ cap, provides a potential remedial design that can sustainably treat sediment and groundwater contaminants. The goal of this study was to evaluate the ability and limitations of a mixed, anaerobic dechlorinating consortium to treat chlorinated ethenes within a sand-based cap. Results of batch experiments demonstrate that a tetrachloroethene (PCE)-to-ethene mixed consortium was able to completely dechlorinate dissolved-phase PCE to ethene when supplied only with sediment porewater obtained from a sediment column. To simulate a bioreactive cap, laboratory-scale sand columns inoculated with the mixed culture were placed in series with an upflow sediment column and directly supplied sediment effluent and dissolved-phase chlorinated ethenes. The mixed consortium was not able to sustain dechlorination activity at a retention time of 0.5 days without delivery of amendments to the sediment effluent, evidenced by the loss of cis-1,2-dichloroethene (cis-DCE) dechlorination to vinyl chloride. When soluble electron donor was supplied to the sediment effluent, complete dechlorination of cis-DCE to ethene was observed at retention times of 0.5 days, suggesting that sediment effluent lacked sufficient electron donor to maintain active dechlorination within the sediment cap. Introduction of elevated contaminant concentrations also limited biotransformation performance of the dechlorinating consortium within the cap. These findings indicate that in situ bioreactive capping can be a feasible remedial approach, provided that residence times are adequate and that appropriate levels of electron donor and contaminant exist within the cap. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Basal sublimation and venting of the north seasonal cap of Mars

    NASA Astrophysics Data System (ADS)

    Piqueux, S.; Christensen, P. R.

    2007-12-01

    Spots, fans and dark polygonal patterns form during the spring on the southern seasonal cap of Mars as a consequence of 1) the basal sublimation of the translucent and impermeable slab of carbon dioxide and 2) the venting of the CO2 gas loaded with dust and sand size material scoured from the surface of the polar layered deposits. The dark polygons on the cap have a similar formation process as the spots but the dust and sand erupt from elongated vents rather than point sources. In the summer, spiders and etched polygons remain on the southern polar layered deposits. The spiders are shaped by the scouring action of confined CO2 gas flowing between the cap and the basement and converging toward point sources, whereas the etched polygons result form the forced migration of the CO2 gas over longer distances. Comparable observations during the spring near the north pole on the seasonal cap indicate that similar processes occur in both polar regions and that the venting model developed for the south seasonal cap also operates near the north pole. However, spider and etched polygonal features are extremely uncommon on the north substrate, indicating that the conditions for their formation (e.g. mechanical strength of the slab and the substrate, transparency of the seasonal cap) are not met. The continual erosion and re-sedimentation occurring at the surface of the polar layered deposits by the seasonal degassing is a major geomorphological agent shaping the polar regions. The polar layered deposits have been proposed to contain the stratigraphic record of climatic changes and catastrophic events of very high interest for future missions. Our observations suggest that both polar regions deposits may have been locally disrupted by the seasonal sub-ice gas flow and that the stratigraphic record may have been partially lost. The Phoenix landing site might have been affected in the past and the stratigraphic information associated with the original deposition of the polar material partially disrupted due to this surface reworking.

  3. Controlled release chamber for dispensing aromatic substances.

    PubMed

    Cilek, J E; Hallmon, C F

    2008-12-01

    A novel device for the containment and precise release of aromatic substances is described. The device consists of a threaded-tubular polyvinyl chloride chamber (and screw-top cap) with ports for introduction and release of gaseous compounds. This chamber is inexpensive, easy to assemble, and useful for evaluating the combined release of carbon dioxide and aromatic hygroscopic substances as mosquito attractants in field studies.

  4. Ballistocardiogram Artifact Removal with a Reference Layer and Standard EEG Cap

    PubMed Central

    Luo, Qingfei; Huang, Xiaoshan; Glover, Gary H.

    2014-01-01

    Background In simultaneous EEG-fMRI, the EEG recordings are severely contaminated by ballistocardiogram (BCG) artifacts, which are caused by cardiac pulsations. To reconstruct and remove the BCG artifacts, one promising method is to measure the artifacts in the absence of EEG signal by placing a group of electrodes (BCG electrodes) on a conductive layer (reference layer) insulated from the scalp. However, current BCG reference layer (BRL) methods either use a customized EEG cap composed of electrode pairs, or need to construct the custom reference layer through additional model-building experiments for each EEG-fMRI experiment. These requirements have limited the versatility and efficiency of BRL. The aim of this study is to propose a more practical and efficient BRL method and compare its performance with the most popular BCG removal method, the optimal basis sets (OBS) algorithm. New Method By designing the reference layer as a permanent and reusable cap, the new BRL method is able to be used with a standard EEG cap, and no extra experiments and preparations are needed to use the BRL in an EEG-fMRI experiment. Results The BRL method effectively removed the BCG artifacts from both oscillatory and evoked potential scalp recordings and recovered the EEG signal. Comparison with Existing Method Compared to the OBS, this new BRL method improved the contrast-to-noise ratios of the alpha-wave, visual, and auditory evoked potential signals by 101%, 76%, and 75% respectively, employing 160 BCG electrodes. Using only 20 BCG electrodes, the BRL improved the EEG signal by 74%/26%/41% respectively. Conclusion The proposed method can substantially improve the EEG signal quality compared with traditional methods. PMID:24960423

  5. What Lies Below a Martian Ice Cap

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger annotated version

    This image (top) taken by the Shallow Radar instrument on NASA's Mars Reconnaissance Orbiter reveals the layers of ice, sand and dust that make up the north polar ice cap on Mars. It is the most detailed look to date at the insides of this ice cap. The colored map below the radar picture shows the topography of the corresponding Martian terrain (red and white represent higher ground, and green and yellow lower).

    The radar image reveals four never-before-seen thick layers of ice and dust separated by layers of nearly pure ice. According to scientists, these thick ice-free layers represent approximately one-million-year-long cycles of climate change on Mars caused by variations in the planet's tilted axis and its eccentric orbit around the sun. Adding up the entire stack of ice gives an estimated age for the north polar ice cap of about 4 million years a finding that agrees with previous theoretical estimates. The ice cap is about 2 kilometers (1.2 miles) thick.

    The radar picture also shows that the boundary between the ice layers and the surface of Mars underneath is relatively flat (bottom white line on the right). This implies that the surface of Mars is not sagging, or bending, under the weight of the ice cap and this, in turn, suggests that the planet's lithosphere, a combination of the crust and the strong parts of the upper mantle, is thicker than previously thought.

    A thicker lithosphere on Mars means that temperatures increase more gradually with depth toward the interior. Temperatures warm enough for water to be liquid are therefore deeper than previously thought. Likewise, if liquid water does exist in aquifers below the surface of Mars, and if there are any organisms living in that water, they would have to be located deeper in the planet.

    The topography data are from Mars Orbiter Laser Altimeter, which was flown on NASA's Mars Global Surveyor mission.

    NPLD stands for the north polar layered deposits.

    BU stands for basal unit, an ice-sand deposit that lies beneath parts of the north polar layered deposits.

    The Shallow Radar instrument was provided by the Italian Space Agency. Its operations are led by the University of Rome and its data are analyzed by a joint U.S.-Italian science team. JPL, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science Mission Directorate, Washington.

  6. RNA Cap Methyltransferase Activity Assay

    PubMed Central

    Trotman, Jackson B.; Schoenberg, Daniel R.

    2018-01-01

    Methyltransferases that methylate the guanine-N7 position of the mRNA 5′ cap structure are ubiquitous among eukaryotes and commonly encoded by viruses. Here we provide a detailed protocol for the biochemical analysis of RNA cap methyltransferase activity of biological samples. This assay involves incubation of cap-methyltransferase-containing samples with a [32P]G-capped RNA substrate and S-adenosylmethionine (SAM) to produce RNAs with N7-methylated caps. The extent of cap methylation is then determined by P1 nuclease digestion, thin-layer chromatography (TLC), and phosphorimaging. The protocol described here includes additional steps for generating the [32P]G-capped RNA substrate and for preparing nuclear and cytoplasmic extracts from mammalian cells. This assay is also applicable to analyzing the cap methyltransferase activity of other biological samples, including recombinant protein preparations and fractions from analytical separations and immunoprecipitation/pulldown experiments. PMID:29644259

  7. Magneto-optical properties of CoFeB ultrathin films: Effect of Ta buffer and capping layer

    NASA Astrophysics Data System (ADS)

    Husain, Sajid; Gupta, Nanhe Kumar; Barwal, Vineet; Chaudhary, Sujeet

    2018-05-01

    The effect of adding Ta as a capping and buffer layer on ultrathin CFB(Co60Fe20B20) thin films has been investigated by magneto-optical Kerr effect. A large difference in the coercivity and saturation field is observed between the single layer CFB(2nm) and Ta(5nm)/CFB(2nm)/Ta(2nm) trilayer structure. In particular, the in-plane anisotropy energy is found to be 90kJ/m3 on CFB(2nm) and 2.22kJ/m3 for Ta(5nm)/CFB(2nm)/Ta(2nm) thin films. Anisotropy energy further reduced to 0.93kJ/m3 on increasing the CFB thinness in trilayer structure i.e., Ta(5nm)/CFB(4nm)/Ta(2nm). Using VSM measurement, the saturation magnetization is found to be 1230±50 kA/m. Low coercivity and anisotropy energy in capped and buffer layer thin films envisage the potential of employing CFB for low field switching applications of the spintronic devices.

  8. Morphological and functional changes in RAW264 macrophage-like cells in response to a hydrated layer of carbonate-substituted hydroxyapatite.

    PubMed

    Igeta, Kazuki; Kuwamura, Yuta; Horiuchi, Naohiro; Nozaki, Kosuke; Shiraishi, Daichi; Aizawa, Mamoru; Hashimoto, Kazuaki; Yamashita, Kimihiro; Nagai, Akiko

    2017-04-01

    Synthetic hydroxyapatite (HAp) is used clinically as a material for bone prostheses owing to its good bone-bonding ability; however, it does not contribute to bone remodeling. Carbonate-substituted hydroxyapatite (CAp) has greater bioresorption capacity than HAp while having similar bone-bonding potential, and is therefore considered as a next promising material for bone prostheses. However, the effects of the CAp instability on inflammatory and immune responses are unknown in detail. Here, we show that the surface layer of CAp is more hydrated than that of HAp and induces changes in the shape and function of macrophage-like cells. HAp and CAp were synthesized by wet method and molded into disks. The carbonate content of CAp disks was 6.2% as determined by Fourier transform (FT) infrared spectral analysis. Diffuse reflectance infrared FT analysis confirmed that physisorbed water and surface hydroxyl groups (OH - ) were increased whereas structural OH - was decreased on the CAp as compared to the HAp surface. The degree of hydroxylation in CAp was comparable to that in bone-apatite structures, and the CAp surface exhibited greater hydrophilicity and solubility than HAp. We investigated immune responses to these materials by culturing RAW264 cells (macrophage precursors) on their surfaces. Cell spreading on the CAp disk was suppressed and the secretion level of inflammatory cytokines was reduced as compared to cells grown on HAp. These results indicate that the greater surface hydration of CAp surface can attenuate adverse inflammatory responses to implanted bone prostheses composed of this material. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1063-1070, 2017. © 2017 Wiley Periodicals, Inc.

  9. Effect of chloride ions on the corrosion behavior of low-alloy steel containing copper and antimony in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Park, Sun-Ah; Kim, Seon-Hong; Yoo, Yun-Ha; Kim, Jung-Gu

    2015-05-01

    The influence of the addition of HCl on the corrosion behavior of low-alloy steel containing copper and antimony was investigated using electrochemical (potentiodynamic and potentiostatic polarization tests, and electrochemical impedance spectroscopy) and weight loss tests in a 1.6M H2SO4 solution with different concentrations of hydrochloric acid (0.00, 0.08, 0.15 and 0.20 M HCl) at 60 °C. The result showed that the corrosion rate decreased with increasing HCl by the formation of protective layers. SEM, EDS and XPS examinations of the corroded surfaces after the immersion test indicated that the corrosion production layer formed in the solution containing HCl was highly comprised of metallic Cu, Cu chloride and metallic (Fe, Cu, Sb) compounds. The corrosion resistance was improved by the Cu-enriched layer, in which chloride ions are an accelerator for cupric ion reduction during copper deposition. Furthermore, cuprous and antimonious chloride species are complex salts for cuprous ions adsorbed on the surface during copper deposition.

  10. Ferrocene-fused derivatives of acenes, tropones and thiepins

    NASA Astrophysics Data System (ADS)

    Maharjan, Bidhya Laxmi

    This research project is concentrated on tuning the properties of small organic molecules, namely polyacenes, tropones and thiepins, by incorporating redox-active transition metal centers pi-bonded to terminal cyclopentadienyl ligands. Organometallicfused acenequinones, tropones, thiepins and cyclopentadiene-capped polyacenes were synthesized and characterized. This work was divided into three parts: first, the synthesis of ferrocene-fused acenequinones, cyclopentadiene-capped acenequinones and their subsequent aromatization to polyacenes; second, the synthesis of ferrocene-fused tropones, thiotropones and tropone oxime; and third, the synthesis of ferrocene-fused thiepins. Ferrocene-fused quinones are the precursors to our target complexes. Our synthetic route to ferrocenequinones involved two-fold aldol condensation between 1,2- diformylferrocene and naphthalene-1,4-diol or anthracene-1,4-diol, and four-fold condensation between 1,2-diformylferrocene and 1,4-cyclohexanedione. Reduction of ferrocene-fused quinones with borane in THF resulted in ferrocene-fused dihydroacenes. Attempts to reduce ferrocene-fused acenequinones with sodium dithionite led to metalfree cyclopentadiene- (Cp-) capped acenequinones. Cp-capped acenequinones were aromatized to bis(triisopropylsilyl)ethynyl polyacenes by using lithium (triisopropylsilyl)acetylide (TIPSC≡CLi) with subsequent dehydroxylation by stannous chloride. The compounds were characterized by using spectroscopic methods and X-ray crystallography. Further, the electronic properties of these compounds were studied by using cyclic voltammetry and UV-visible spectroscopy. Cyclic voltammetry showed oxidation potentials of Cp-capped TIPS-tetracene and bis-Cp-capped TIPS-anthracene as 0.49 V and 0.61 V, respectively (vs. ferrocene/ferrocenium). The electrochemical band gaps were 2.15 eV and 2.58 eV, respectively. Organic thin-film transistor device performance of Cp-capped polyacenes was studied using solution deposition bottomcontact, bottom-gate (BCBG) device architecture and the resulting performance parameters are described herein. Similarly, we are also interested in potential applications of metallocene-fused tropones and derivatives as organic electronic materials. Condensation of 1,2- diformylferrocene with acetone or 1,3-diphenylacetone in the presence of KOH resulted in the ferrocene-fused tropone (eta5-2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a-eta)-1,6-dihydro- 6-oxo-1-azulenyl]iron (1, R = H, E = O) and its 5,7-diphenyl derivative (1, R = Ph, E = O) as previously reported by Tirouflet. The use of piperidine as base resulted in Michael addition of piperidine to one of the carbon-carbon double bonds of the tropones. Lawesson's reagent converted the ferrocene-fused tropones to either a thiotropone (1, R = H, E = S) or a detached 5,7-diphenylazulenethiol (2). Reaction of the ferrocene-fused thiotropone with hydroxylamine gave the corresponding oxime (1, R = H, E = NOH). Products were characterized by using spectroscopic methods and X-ray crystallography. Their electronic properties were studied by using cyclic voltammetry and UV-visible spectroscopy. The third project involved the two-fold aldol condensation of 1,2- diformylferrocene with dimethylthioglycolate S-oxide in the presence of freshly distilled triethylamine, which gave mono- and di-dehydrated products. Deoxygenation of the ferrocene-fused thiepin S-oxide with 2-chloro-1,3,2-benzodioxaphosphole in the presence of pyridine resulted in the corresponding thiepin. The ester groups of the thiepin and thiepin S-oxide were hydrolyzed under basic conditions to give carboxylic acids, which were converted into acid chlorides using oxalyl chloride. Attempts to decarboxylate the thiepin and thiepin S-oxide diacids resulted in decomposition.

  11. Design and characterization of thick InxGa1-xAs metamorphic buffer layers grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Schulte, K. L.; Zutter, B. T.; Wood, A. W.; Babcock, S. E.; Kuech, T. F.

    2014-03-01

    Thick InxGa1-xAs metamorphic buffer layers (MBLs) grown by hydride vapor phase epitaxy (HVPE) were studied. Relationships between MBL properties and growth parameters such as grading rate, cap layer thickness, final xInAs, and deposition temperature (TD) were explored. The MBLs were characterized by measurement of in-plane residual strain (ɛ¦¦), surface etch pit density (EPD), and surface roughness. Capping layer thickness had a strong effect on strain relaxation, with thickly capped samples exhibiting the lowest ɛ¦¦. EPD was higher in samples with thicker caps, reflecting their increased relaxation through dislocation generation. ɛ¦¦ and EPD were weakly affected by the grading rate, making capping layer thickness the primary structural parameter which controls these properties. MBLs graded in discrete steps had similar properties to MBLs with continuous grading. In samples with identical thickness and 10-step grading style, ɛ¦¦ increased almost linearly with final xInAs, while total relaxation stayed relatively constant. Relaxation as a function of xInAs could be described by an equilibrium model in which dislocation nucleation is impeded by the energy of the existing dislocation array. EPD was constant from xInAs = 0 to 0.24 then increased exponentially, which is related to the increased dislocation interaction and blocking seen at higher dislocation densities. RMS roughness increased with xInAs above a certain strain rate (0.15%/µm) samples grown below this level possessed large surface hillocks and high roughness values. The elimination of hillocks at higher values of xInAs is attributed to increased density of surface steps and is related to the out-of-plane component of the burgers vector of the dominant type of 60° dislocation. TD did not affect ɛ¦¦ for samples with a given xInAs. EPD tended to increase with TD, indicating dislocation glide likely is impeded at higher temperatures.

  12. Alternate approach slab reinforcement.

    DOT National Transportation Integrated Search

    2010-06-01

    The upper mat of reinforcing steel, in exposed concrete bridge approach slabs, is prone to corrosion damage. Chlorides applied to the highways : for winter maintenance can penetrate this concrete layer. Eventually chlorides reach the steel and begin ...

  13. Perspective of Life Search in Martian Econiches

    NASA Astrophysics Data System (ADS)

    Demidov, N. E.

    2017-05-01

    Mars may be divided on five ecological niches according to presence and state of water: permanent polar caps, dry regolith, subpermafrost aquifers, cryopegs and ice containing regolith. Basic limiting factors for the search of life in this econiches are: absence of water (dry regolith), depth of burial (cryopegs and subpermafrost aquifers), age (ice containing permafrost and polar caps). High priority targets for the search of life on Mars are represented by permanently frozen deposits of young polar volcanoes and ash layers in polar caps. During volcanic eruptions microorganisms from subpermafrost aquifers could propagate to the surface and survive in permafrost or ice for million years, as it is known to happen on Earth. Possibility of specific lithic habitats in dry layer must also be taken into account.

  14. Thermal annealing studies of GeTe-Sb2Te3 alloys with multiple interfaces

    NASA Astrophysics Data System (ADS)

    Bragaglia, Valeria; Mio, Antonio M.; Calarco, Raffaella

    2017-08-01

    A high degree of vacancy ordering is obtained by annealing amorphous GeTe-Sb2Te3 (GST) alloys deposited on a crystalline substrate, which acts as a template for the crystallization. Under annealing the material evolves from amorphous to disordered rocksalt, to ordered rocksalt with vacancies arranged into (111) oriented layers, and finally converts into the stable trigonal phase. The role of the interface in respect to the formation of an ordered crystalline phase is studied by comparing the transformation stages of crystalline GST with and without a capping layer. The capping layer offers another crystallization interface, which harms the overall crystalline quality.

  15. Oxidation preventative capping layer for deep-ultra-violet and soft x-ray multilayers

    DOEpatents

    Prisbrey, Shon T.

    2004-07-06

    The invention uses iridium and iridium compounds as a protective capping layer on multilayers having reflectivity in the deep ultra-violet to soft x-ray regime. The iridium compounds can be formed in one of two ways: by direct deposition of the iridium compound from a prepared target or by depositing a thin layer (e.g., 5-50 angstroms) of iridium directly onto an element. The deposition energy of the incoming iridium is sufficient to activate the formation of the desired iridium compound. The compounds of most interest are iridium silicide (IrSi.sub.x) and iridium molybdenide (IrMo.sub.x).

  16. Water chemistry near the closed Norman Landfill, Cleveland County, Oklahoma 1995

    USGS Publications Warehouse

    Schlottmann, Jamie L.

    2001-01-01

    The Norman Landfill was selected for study as part of the U.S. Geological Survey Toxic Substances Hydrology Program in 1994. The landfill is located south of the City of Norman on alluvial deposits of the Canadian River. Type of waste deposited in the landfill from 1922 to 1973 was largely unrestricted and may include substances now recognized as hazardous. Dissolved and suspended substances leached from wastes in the closed and capped landfill are now in ground water extending toward the Canadian River as a plume of leachate. Water samples were collected from two stock wells, one domestic well, temporary drive-point wells, the Canadian River, and a small intermittent stream hydraulically downgradient of the capped landfill known as the slough. Most constituent concentrations were greater in ground water downgradient from the capped landfill than in background ground water and were greater in the slough than in the Canadian River. Concentrations of most constituents in the Canadian River, other than sulfate, manganese, and iron, were similar to concentrations in background ground water. Some constituents measured in ground-water for this investigation are potential indicators of leachate contamination. Potential indicators that could be used to differentiate leachate contaminated water from uncontaminated ground water of the alluvial aquifer include specific conductance, chloride, alkalinity, dissolved organic carbon, boron, and dD. Specific conductance and chloride were greater in water from wells downgradient of the landfill than water from background wells. Dissolved organic carbon and boron also were greater in the leachate contaminated ground water than in background ground water.

  17. BEOL compatible high tunnel magneto resistance perpendicular magnetic tunnel junctions using a sacrificial Mg layer as CoFeB free layer cap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swerts, J., E-mail: Johan.Swerts@imec.be; Mertens, S.; Lin, T.

    Perpendicularly magnetized MgO-based tunnel junctions are envisaged for future generation spin-torque transfer magnetoresistive random access memory devices. Achieving a high tunnel magneto resistance and preserving it together with the perpendicular magnetic anisotropy during BEOL CMOS processing are key challenges to overcome. The industry standard technique to deposit the CoFeB/MgO/CoFeB tunnel junctions is physical vapor deposition. In this letter, we report on the use of an ultrathin Mg layer as free layer cap to protect the CoFeB free layer from sputtering induced damage during the Ta electrode deposition. When Ta is deposited directly on CoFeB, a fraction of the surface ofmore » the CoFeB is sputtered even when Ta is deposited with very low deposition rates. When depositing a thin Mg layer prior to Ta deposition, the sputtering of CoFeB is prevented. The ultra-thin Mg layer is sputtered completely after Ta deposition. Therefore, the Mg acts as a sacrificial layer that protects the CoFeB from sputter-induced damage during the Ta deposition. The Ta-capped CoFeB free layer using the sacrificial Mg interlayer has significantly better electrical and magnetic properties than the equivalent stack without protective layer. We demonstrate a tunnel magneto resistance increase up to 30% in bottom pinned magnetic tunnel junctions and tunnel magneto resistance values of 160% at resistance area product of 5 Ω.μm{sup 2}. Moreover, the free layer maintains perpendicular magnetic anisotropy after 400 °C annealing.« less

  18. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    NASA Technical Reports Server (NTRS)

    Williams, Jarrod; Meador, Mary Ann; McCorkle, Linda

    2014-01-01

    We report our ongoing research on polyamide aerogels made by step growth polymerization using a combination of terephthaloyl chloride, isophthaloyl chloride and m-phenylenediamine. Crosslinking of the amine capped polymer chains with 1,3,5-benzenetricarbonyl trichloride causes gelation in as little as two to five minutes. Removing the reaction solvent is accomplished through solvent exchange, followed by drying using supercritical CO2 extraction to give colorless aerogels with densities ranging from 0.07 to 0.33 grams per cubic centimeter and surface areas as high as 440 square meters per gram. Statistical experimental design methodology has been utilized to investigate dependence of properties of these aerogels, such as density, compressive modulus, and surface area, on changes in fabrication parameters including formulated number of amide oligomer repeat units (n-value), acid chloride (meta, para or combination), and solids concentration of solution used for gelation. For example, the density of these materials was found to be dependent on the acid chloride type and the solids concentration, but n was not a significant variable. However, surface area was significantly influenced by all three parameters. The polyamide aerogels represent a potential cost savings over previously reported polyimide aerogels, since monomers are all inexpensive and commercially available. Surface area and density were both highest when 100 terephthaloyl chloride was used but a combination of 5 solid concentration, 100 terephthaloyl chloride and n of 20 gave the best combination of properties.

  19. Pervaporation dehydration of ethanol by hyaluronic acid/sodium alginate two-active-layer composite membranes.

    PubMed

    Gao, Chengyun; Zhang, Minhua; Ding, Jianwu; Pan, Fusheng; Jiang, Zhongyi; Li, Yifan; Zhao, Jing

    2014-01-01

    The composite membranes with two-active-layer (a capping layer and an inner layer) were prepared by sequential spin-coatings of hyaluronic acid (HA) and sodium alginate (NaAlg) on the polyacrylonitrile (PAN) support layer. The SEM showed a mutilayer structure and a distinct interface between the HA layer and the NaAlg layer. The coating sequence of two-active-layer had an obvious influence on the pervaporation dehydration performance of membranes. When the operation temperature was 80 °C and water concentration in feed was 10 wt.%, the permeate fluxes of HA/Alg/PAN membrane and Alg/HA/PAN membrane were similar, whereas the separation factor were 1130 and 527, respectively. It was found that the capping layer with higher hydrophilicity and water retention capacity, and the inner layer with higher permselectivity could increase the separation performance of the composite membranes. Meanwhile, effects of operation temperature and water concentration in feed on pervaporation performance as well as membrane properties were studied. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Study on influences of TiN capping layer on time-dependent dielectric breakdown characteristic of ultra-thin EOT high-k metal gate NMOSFET with kMC TDDB simulations

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Yang, Hong; Luo, Wei-Chun; Xu, Ye-Feng; Wang, Yan-Rong; Tang, Bo; Wang, Wen-Wu; Qi, Lu-Wei; Li, Jun-Feng; Yan, Jiang; Zhu, Hui-Long; Zhao, Chao; Chen, Da-Peng; Ye, Tian-Chun

    2016-08-01

    The thickness effect of the TiN capping layer on the time dependent dielectric breakdown (TDDB) characteristic of ultra-thin EOT high-k metal gate NMOSFET is investigated in this paper. Based on experimental results, it is found that the device with a thicker TiN layer has a more promising reliability characteristic than that with a thinner TiN layer. From the charge pumping measurement and secondary ion mass spectroscopy (SIMS) analysis, it is indicated that the sample with the thicker TiN layer introduces more Cl passivation at the IL/Si interface and exhibits a lower interface trap density. In addition, the influences of interface and bulk trap density ratio N it/N ot are studied by TDDB simulations through combining percolation theory and the kinetic Monte Carlo (kMC) method. The lifetime reduction and Weibull slope lowering are explained by interface trap effects for TiN capping layers with different thicknesses. Project supported by the National High Technology Research and Development Program of China (Grant No. SS2015AA010601), the National Natural Science Foundation of China (Grant Nos. 61176091 and 61306129), and the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of MicroElectronics of Chinese Academy of Sciences.

  1. Millimeter-wave monolithic diode-grid frequency multiplier

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    A semiconductor diode structure useful for harmonic generation of millimeter or submillimeter wave radiation from a fundamental input wave is fabricated on a GaAs substrate. A heavily doped layer of n(sup ++) GaAs is produced on the substrate and then a layer of intrinsic GaAs on said heavily doped layer on top of which a sheet of heavy doping (++) is produced. A thin layer of intrinsic GaAs grown over the sheet is capped with two metal contacts separated by a gap to produce two diodes connected back to back through the n(sup ++) layer for multiplication of frequency by an odd multiple. If only one metal contact caps the thin layer of intrinsic GaAs, the second diode contact is produced to connect to the n(sup ++) layer for multiplication of frequency by an even number. The odd or even frequency multiple is selected by a filter. A phased array of diodes in a grid will increase the power of the higher frequency generated.

  2. Improving the electrical properties of lanthanum silicate films on ge metal oxide semiconductor capacitors by adopting interfacial barrier and capping layers.

    PubMed

    Choi, Yu Jin; Lim, Hajin; Lee, Suhyeong; Suh, Sungin; Kim, Joon Rae; Jung, Hyung-Suk; Park, Sanghyun; Lee, Jong Ho; Kim, Seong Gyeong; Hwang, Cheol Seong; Kim, HyeongJoon

    2014-05-28

    The electrical properties of La-silicate films grown by atomic layer deposition (ALD) on Ge substrates with different film configurations, such as various Si concentrations, Al2O3 interfacial passivation layers, and SiO2 capping layers, were examined. La-silicate thin films were deposited using alternating injections of the La[N{Si(CH3)3}2]3 precursor with O3 as the La and O precursors, respectively, at a substrate temperature of 310 °C. The Si concentration in the La-silicate films was further controlled by adding ALD cycles of SiO2. For comparison, La2O3 films were also grown using [La((i)PrCp)3] and O3 as the La precursor and oxygen source, respectively, at the identical substrate temperature. The capacitance-voltage (C-V) hysteresis decreased with an increasing Si concentration in the La-silicate films, although the films showed a slight increase in the capacitance equivalent oxide thickness. The adoption of Al2O3 at the interface as a passivation layer resulted in lower C-V hysteresis and a low leakage current density. The C-V hysteresis voltages of the La-silicate films with Al2O3 passivation and SiO2 capping layers was significantly decreased to ∼0.1 V, whereas the single layer La-silicate film showed a hysteresis voltage as large as ∼1.0 V.

  3. A Novel, Diazonium-Phenolic Resin Two-Layer Resist System Utilizing Photoinduced Interfacial Insolubilization

    NASA Astrophysics Data System (ADS)

    Uchino, Shou-ichi; Iwayanagi, Takao; Ueno, Takumi; Hashimoto, Michiaki; Nonogaki, Saburo

    1987-08-01

    This paper deals with a negative two-layer photoresist system utilizing a photoinduced insolubilization process at the interface. The bottom layer is a phenolic resin either with or without aromatic azide and the top layer is a photosensitive layer comprised of an aromatic diazonium compound and a water soluble polymer. Upon exposure to light, the diazo compound decomposes to cause insolubilization at the interface between the two layers. The system exhibits high contrast due to the combination of interfacial insolubilization and contrast enhancement by photobleaching of the diazonium compound. Patterns of 0.5 um lines and spaces are obtained using an i-line stepper and a resist system containing 4-diazo-N,N-dimethylaniline chloride zinc chloride in the top layer and 3-(4-azidostyry1)- 5,5-dimethyl- 2-cyclohexen-1-one in the bottom layer. Resists with varying spectral responses from mid-UV to g-line can be designed by selecting the kind of diazo compound used in the top layer.

  4. Observations of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes

    USGS Publications Warehouse

    Hansen, C.J.; Byrne, S.; Portyankina, G.; Bourke, M.; Dundas, C.; McEwen, A.; Mellon, M.; Pommerol, A.; Thomas, N.

    2013-01-01

    Spring sublimation of the seasonal CO2 northern polar cap is a dynamic process in the current Mars climate. Phenomena include dark fans of dune material propelled out onto the seasonal ice layer, polygonal cracks in the seasonal ice, sand flow down slipfaces, and outbreaks of gas and sand around the dune margins. These phenomena are concentrated on the north polar erg that encircles the northern residual polar cap. The Mars Reconnaissance Orbiter has been in orbit for three Mars years, allowing us to observe three northern spring seasons. Activity is consistent with and well described by the Kieffer model of basal sublimation of the seasonal layer of ice applied originally in the southern hemisphere. Three typical weak spots have been identified on the dunes for escape of gas sublimed from the bottom of the seasonal ice layer: the crest of the dune, the interface of the dune with the interdune substrate, and through polygonal cracks in the ice. Pressurized gas flows through these vents and carries out material entrained from the dune. Furrows in the dunes channel gas to outbreak points and may be the northern equivalent of southern radially-organized channels (“araneiform” terrain), albeit not permanent. Properties of the seasonal CO2 ice layer are derived from timing of seasonal events such as when final sublimation occurs. Modification of dune morphology shows that landscape evolution is occurring on Mars today, driven by seasonal activity associated with sublimation of the seasonal CO2 polar cap.

  5. Achieving high carrier mobility exceeding 70 cm2/Vs in amorphous zinc tin oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Sang Tae; Shin, Yeonwoo; Yun, Pil Sang; Bae, Jong Uk; Chung, In Jae; Jeong, Jae Kyeong

    2017-09-01

    This paper proposes a new defect engineering concept for low-cost In- and Ga-free zinc tin oxide (ZTO) thin-film transistors (TFTs). This concept is comprised of capping ZTO films with tantalum (Ta) and a subsequent modest thermal annealing treatment at 200 °C. The Ta-capped ZTO TFTs exhibited a remarkably high carrier mobility of 70.8 cm2/Vs, low subthreshold gate swing of 0.18 V/decade, threshold voltage of -1.3 V, and excellent ION/OFF ratio of 2 × 108. The improvement (> two-fold) in the carrier mobility compared to the uncapped ZTO TFT can be attributed to the effective reduction of the number of adverse tailing trap states, such as hydroxyl groups or oxygen interstitial defects, which stems from the scavenging effect of the Ta capping layer on the ZTO channel layer. Furthermore, the Ta-capped ZTO TFTs showed excellent positive and negative gate bias stress stabilities. [Figure not available: see fulltext.

  6. Quasi-periodic climatic changes on Mars and earth

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.; Pollack, J. B.; Toon, O. B.; Howard, A. D.

    1981-01-01

    Evidence of climatic changes on Mars and the earth due to geologic and astronomical variations is discussed. Finely striped ice-free bands in the Martian polar caps have been taken to indicate that long term variations in the orbit and axial tilt of Mars have precipitated these features at the rate of a mm/yr. Photogrammetric and photometric methods have contributed to measurements of the composition and depth of the Martian caps (14-46 m), and observations of higher solar energy absorption in the northern ice cap implies greater dust deposition in that region than on the south cap; however, the transport mechanisms are not well understood. Comparisons of earth and Martian climatic variations data are made, noting a lack of information on the age intervals of marine and nonmarine sediments on the earth. The possibilities of using quantitative data other than layer thickness to constrain climate models are discussed, and the slope or albedo of layers, or the spacing of polar undulations are suggested.

  7. Comparsion of an immunochromatographic strip with ELISA for simultaneous detection of thiamphenicol, florfenicol and chloramphenicol in food samples.

    PubMed

    Guo, Lingling; Song, Shanshan; Liu, Liqiang; Peng, Juan; Kuang, Hua; Xu, Chuanlai

    2015-09-01

    Rapid and sensitive indirect competitive enzyme-linked immunosorbent assays (ic-ELISA) and gold nanoparticle immunochromatographic strip tests were developed to detect thiamphenicol (TAP), florfenicol (FF) and chloramphenicol (CAP) in milk and honey samples. The generic monoclonal antibody for TAP, FF and CAP was prepared based on a hapten [D-threo-1-(4-aminophenyl)-2- dichloroacetylamino-1,3-propanediol], and the haptenwas linked to a carrier protein using the diazotization method. After the optimization of several parameters (coating, pH, sodium chloride content and methanol content), the ic-ELISA was established. The quantitative working range for TAP was 0.11-1.36 ng/mL, with an IC50 of 0.39 ng/mL. The optimized ELISA showed cross-reactivity to CAP (300%) and FF (15.6%), with IC50 values of 0.13 and 2.5 ng/mL, respectively. The analytical recovery of TAP, FF and CAP in milk and honey samples in the ic-ELISA ranged from 81.2 to 112.9%. Based on this monoclonal antibody, a rapid and sensitive immunochromatographic test strip was also developed. This strip had a detection limit of 1 ng/mL for TAP, FF and CAP in milk and honey samples. Moreover, the test was completed within 10 min. Our results showed that the proposed ic-ELISA and immunochromatographic test strip method are highly useful screening tools for TAP, FF and CAP detection in milk and honey samples. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Rocket measurements within a polar cap arc - Plasma, particle, and electric circuit parameters

    NASA Technical Reports Server (NTRS)

    Weber, E. J.; Ballenthin, J. O.; Basu, S.; Carlson, H. C.; Hardy, D. A.; Maynard, N. C.; Kelley, M. C.; Fleischman, J. R.; Pfaff, R. F.

    1989-01-01

    Results are presented from the Polar Ionospheric Irregularities Experiment (PIIE), conducted from Sondrestrom, Greenland, on March 15, 1985, designed for an investigation of processes which lead to the generation of small-scale (less than 1 km) ionospheric irregularities within polar-cap F-layer auroras. An instrumented rocket was launched into a polar cap F layer aurora to measure energetic electron flux, plasma, and electric circuit parameters of a sun-aligned arc, coordinated with simultaneous measurements from the Sondrestrom incoherent scatter radar and the AFGL Airborne Ionospheric Observatory. Results indicated the existence of two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability.

  9. Assembly of Layered Monetite-Chitosan Nanocomposite and Its Transition to Organized Hydroxyapatite.

    PubMed

    Ruan, Qichao; Liberman, David; Zhang, Yuzheng; Ren, Dongni; Zhang, Yunpeng; Nutt, Steven; Moradian-Oldak, Janet

    2016-06-13

    Bioinspired synthesis of hierarchically structured calcium phosphate (CaP) material is a highly promising strategy for developing improved bone substitute materials. However, synthesis of CaP materials with outstanding mechanical properties still remains an ongoing challenge. Inspired by the formation of lamellar structure in nacre, we designed an organic matrix composed of chitosan and cis-butenediolic acid (maleic acid, MAc) that could assemble into a layered complex and further guide the mineralization of monetite crystals, resulting in the formation of organized and parallel arrays of monetite platelets with a brick-and-mortar structure. Using the layered monetite-chitosan composite as a precursor, we were able to synthesize hydroxyapatite (HAp) with multiscale hierarchically ordered structure via a topotactic phase transformation process. On the nanoscale, needlelike HAp crystallites assembled into organized bundles that aligned to form highly oriented plates on the microscale. On the large-scale level, these plates with different crystal orientations were stacked together to form a layered structure. The organized structures and composite feature yielded CaP materials with improved mechanical properties close to those of bone. Our study introduces a biomimetic approach that may be practical for the design of advanced, mechanically robust materials for biomedical applications.

  10. Casein Aggregates Built Step-by-Step on Charged Polyelectrolyte Film Surfaces Are Calcium Phosphate-cemented*

    PubMed Central

    Nagy, Krisztina; Pilbat, Ana-Maria; Groma, Géza; Szalontai, Balázs; Cuisinier, Frédéric J. G.

    2010-01-01

    The possible mechanism of casein aggregation and micelle buildup was studied in a new approach by letting α-casein adsorb from low concentration (0.1 mg·ml−1) solutions onto the charged surfaces of polyelectrolyte films. It was found that α-casein could adsorb onto both positively and negatively charged surfaces. However, only when its negative phosphoseryl clusters remained free, i.e. when it adsorbed onto a negative surface, could calcium phosphate (CaP) nanoclusters bind to the casein molecules. Once the CaP clusters were in place, step-by-step building of multilayered casein architectures became possible. The presence of CaP was essential; neither Ca2+ nor phosphate could alone facilitate casein aggregation. Thus, it seems that CaP is the organizing motive in the casein micelle formation. Atomic force microscopy revealed that even a single adsorbed casein layer was composed of very small (in the range of tens of nanometers) spherical forms. The stiffness of the adsorbed casein layer largely increased in the presence of CaP. On this basis, we can imagine that casein micelles emerge according to the following scheme. The amphipathic casein monomers aggregate into oligomers via hydrophobic interactions even in the absence of CaP. Full scale, CaP-carrying micelles could materialize by interlocking these casein oligomers with CaP nanoclusters. Such a mechanism would not contradict former experimental results and could offer a synthesis between the submicelle and the block copolymer models of casein micelles. PMID:20921229

  11. The Effect of Silver Chloride Formation on the Kinetics of Silver Dissolution in Chloride Solution

    PubMed Central

    Ha, Hung; Payer, Joe

    2011-01-01

    The precipitation and growth of AgCl on silver in physiological NaCl solution were investigated. AgCl was found to form at bottom of scratches on the surface which may be the less effective sites for diffusion or the favorable sites for heterogeneous nucleation. Patches of silver chloride expanded laterally on the substrate until a continuous film formed. The ionic transport path through this newly formed continuous film was via spaces between AgCl patches. As the film grew, the spaces between AgCl patches closed and ion transport was primarily via micro-channels running through AgCl patches. The decrease of AgCl layer conductivity during film growth were attributed to the clogging of micro-channels or decrease in charge carrier concentration inside the micro-channels. Under thin AgCl layer, i.e. on the order of a micrometer, the dissolution of silver substrate was under mixed activation-Ohmic control. Under thick AgCl layer, i.e. on the order of tens of micrometers, the dissolution of silver substrate was mediated by the Ohmic resistance of AgCl layer. PMID:21516171

  12. Magnetospheric convection and the high-latitude F2 ionosphere

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.

    1974-01-01

    Behavior of the polar ionospheric F layer as it is convected through the cleft, over the polar cap, and through the nightside F layer trough zone is investigated. Passage through the cleft adds approximately 200,000 ions per cu cm in the vicinity of the F2 peak and redistributes the ionization above approximately 400-km altitude to conform with an increased electron temperature. The redistribution of ionization above 400-km altitude forms the 'averaged' plasma ring seen at 1000-km altitude. The F layer is also raised by approximately 20 km in altitude by the convection electric field. The time required for passage across the polar cap (25 deg) is about the same as that required for the F layer peak concentration to decay by e. The F layer response to passage through the nightside soft electron precipitation zone should be similar to but less than its response to passage through the cleft.

  13. Structural enhancement of ZnO on SiO2 for photonic applications

    NASA Astrophysics Data System (ADS)

    Ruth, Marcel; Meier, Cedrik

    2013-07-01

    Multi-layer thin films are often the basis of photonic devices. Zinc oxide (ZnO) with its excellent optoelectronic properties can serve as a high quality emitter in structures like microdisks or photonic crystals. Here, we present a detailed study on the enhancement of the structural properties of low-temperature MBE grown ZnO on silica (SiO2). By thermal annealing a grain coalescence of the initially polycrystalline layer leads to an enhancement of the electronic structure, indicated by a blue shift of the photoluminescence (PL) signal maximum. Oxygen atmosphere during the annealing process prevents the creation of intrinsic defects by out-diffusion. Pre-annealing deposited SiO2 capping layers instead obstruct the recrystallization and lead to less intense emission. While thin capping layers partially detach from the ZnO film at high temperatures and cause higher surface roughness and the weakest emission, thicker layers remain smoother and exhibit a significantly stronger photoluminescence.

  14. KSC-04pd0621

    NASA Image and Video Library

    2004-03-24

    KENNEDY SPACE CENTER, FLA. -- In the Thermal Protection System Facility, Pilar Ryan, with United Space Alliance, stitches a piece of insulation blanket for Atlantis' nose cap. Behind her is a cover for the nose cap. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.

  15. Process stability and morphology optimization of very thick 4H-SiC epitaxial layers grown by chloride-based CVD

    NASA Astrophysics Data System (ADS)

    Yazdanfar, M.; Stenberg, P.; Booker, I. D.; Ivanov, I. G.; Kordina, O.; Pedersen, H.; Janzén, E.

    2013-10-01

    The development of a chemical vapor deposition (CVD) process for very thick silicon carbide (SiC) epitaxial layers suitable for high power devices is demonstrated by epitaxial growth of 200 μm thick, low doped 4H-SiC layers with excellent morphology at growth rates exceeding 100 μm/h. The process development was done in a hot wall CVD reactor without rotation using both SiCl4 and SiH4+HCl precursor approaches to chloride based growth chemistry. A C/Si ratio <1 and an optimized in-situ etch are shown to be the key parameters to achieve 200 μm thick, low doped epitaxial layers with excellent morphology.

  16. Tunable self-organization of nanocomposite multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C. Q.; Pei, Y. T.; Shaha, K. P.

    In this letter we report the controlled growth and microstructural evolution of self-assembled nanocomposite multilayers that are induced by surface ion-impingement. The nanoscale structures together with chemical composition, especially at the growing front, have been investigated with high-resolution transmission electron microscopy. Concurrent ion impingement of growing films produces an amorphous capping layer 3 nm in thickness where spatially modulated phase separation is initiated. It is shown that the modulation of multilayers as controlled by the self-organization of nanocrystallites below the capping layer, can be tuned through the entire film.

  17. Measurements and Modeling of Turbulent Fluxes during Persistent Cold Air Pool Events in Salt Lake Valley, Utah

    NASA Astrophysics Data System (ADS)

    Ivey, C. E.; Sun, X.; Holmes, H.

    2017-12-01

    Land surface processes are important in meteorology and climate research since they control the partitioning of surface energy and water exchange at the earth's surface. The surface layer is coupled to the planetary boundary layer (PBL) by surface fluxes, which serve as sinks or sources of energy, moisture, momentum, and atmospheric pollutants. Quantifying the surface heat and momentum fluxes at the land-atmosphere interface, especially for different surface land cover types, is important because they can further influence the atmospheric dynamics, vertical mixing, and transport processes that impact local, regional, and global climate. A cold air pool (CAP) forms when a topographic depression (i.e., valley) fills with cold air, where the air in the stagnant layer is colder than the air aloft. Insufficient surface heating, which is not able to sufficiently erode the temperature inversion that forms during the nighttime stable boundary layer, can lead to the formation of persistent CAPs during wintertime. These persistent CAPs can last for days, or even weeks, and are associated with increased air pollution concentrations. Thus, realistic simulations of the land-atmosphere exchange are meaningful to achieve improved predictions of the accumulation, transport, and dispersion of air pollution concentrations. The focus of this presentation is on observations and modeling results using turbulence data collected in Salt Lake Valley, Utah during the 2010-2011 wintertime Persistent Cold Air Pool Study (PCAPS). Turbulent fluxes and the surface energy balance over seven land use types are quantified. The urban site has an energy balance ratio (EBR) larger than one (1.276). Negative Bowen ratio (-0.070) is found at the cropland site. In addition to turbulence observations, half-hourly WRF simulated net radiation, latent heat, sensible heat, ground heat fluxes during one persistent CAP event are evaluated using the PCAPS observations. The results show that sensible and latent heat fluxes during the CAP event are overestimated. The sensitivity of WRF results to large-scale forcing datasets, PBL schemes and land surface models (LSMs) are also investigated. The optimal WRF configuration for simulating surface turbulent fluxes and atmospheric mixing during CAP events is determined.

  18. EFFICIENCY OF CAPPING CONTAMINATED SEDIMENTS IN SITU: 2. MATHEMATICS OF DIFFUSION-ADSORPTION IN THE CAPPING LAYER. (R825513C009)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. Modeling polyvinyl chloride Plasma Modification by Neural Networks

    NASA Astrophysics Data System (ADS)

    Wang, Changquan

    2018-03-01

    Neural networks model were constructed to analyze the connection between dielectric barrier discharge parameters and surface properties of material. The experiment data were generated from polyvinyl chloride plasma modification by using uniform design. Discharge voltage, discharge gas gap and treatment time were as neural network input layer parameters. The measured values of contact angle were as the output layer parameters. A nonlinear mathematical model of the surface modification for polyvinyl chloride was developed based upon the neural networks. The optimum model parameters were obtained by the simulation evaluation and error analysis. The results of the optimal model show that the predicted value is very close to the actual test value. The prediction model obtained here are useful for discharge plasma surface modification analysis.

  20. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex

    PubMed Central

    Parthier, Daniel; Frings, Stephan; Möhrlen, Frank

    2015-01-01

    Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum. PMID:26558388

  1. Can the Solid State Greenhouse Effect Produce ~100 Year Cycles in the Mars South Polar Residual CO2 Ice Cap?

    NASA Astrophysics Data System (ADS)

    Line, M. R.; Ingersoll, A. P.

    2010-12-01

    Malin et al. (2001) reported that the south perennial cap consists of quasi-circular pits ~8 meters deep, with a flat surface in between. The walls of the pits are retreating at a rate of 1 to 3 meters per year. Byrne and Ingersoll (2003a, 2003b) showed evidence that the floors of the pits are water ice and the upper layer is CO2. This layer will be gone in a few Martian centuries, if the observations are taken at face value. This raises some difficult questions: How likely is it that mankind would be witnessing the final few hundred years of the residual CO2 frost on Mars? Can one imagine extreme weather events that could recharge the residual CO2 frost once it is gone? Both seem unlikely, and we propose a different mechanism. Kieffer et al. (2000) showed that sunlight can penetrate several meters through the seasonal CO2 frost, where it warms the surface below. We have observational evidence that the same is happening in the perennial CO2 frost. Further, we have a model that shows how this "solid-state greenhouse" can lead to cyclic behavior, in which layers of CO2 build up on a water ice substrate, are heated internally by sunlight and lose mass from within. Eventually the layer becomes too weak to support itself, and it collapses to form pits. Then a new CO2 layer accumulates and the process repeats. Our study addresses fundamental questions of long-term stability of the Martian polar caps and how the caps control the atmospheric pressure. Instead of invoking extreme climate events to explain the data, we propose that processes within the frost itself can lead to cyclic growth and collapse of the pits. Our model implies that there is no long-term change in the ~8 meter layer of CO2 and no extreme weather events to make it change.

  2. Liquid-phase-deposited siloxane-based capping layers for silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veith-Wolf, Boris; Wang, Jianhui; Hannu-Kuure, Milja

    2015-02-02

    We apply non-vacuum processing to deposit dielectric capping layers on top of ultrathin atomic-layer-deposited aluminum oxide (AlO{sub x}) films, used for the rear surface passivation of high-efficiency crystalline silicon solar cells. We examine various siloxane-based liquid-phase-deposited (LPD) materials. Our optimized AlO{sub x}/LPD stacks show an excellent thermal and chemical stability against aluminum metal paste, as demonstrated by measured surface recombination velocities below 10 cm/s on 1.3 Ωcm p-type silicon wafers after firing in a belt-line furnace with screen-printed aluminum paste on top. Implementation of the optimized LPD layers into an industrial-type screen-printing solar cell process results in energy conversion efficiencies ofmore » up to 19.8% on p-type Czochralski silicon.« less

  3. Indirect excitation of ultrafast demagnetization

    PubMed Central

    Vodungbo, Boris; Tudu, Bahrati; Perron, Jonathan; Delaunay, Renaud; Müller, Leonard; Berntsen, Magnus H.; Grübel, Gerhard; Malinowski, Grégory; Weier, Christian; Gautier, Julien; Lambert, Guillaume; Zeitoun, Philippe; Gutt, Christian; Jal, Emmanuelle; Reid, Alexander H.; Granitzka, Patrick W.; Jaouen, Nicolas; Dakovski, Georgi L.; Moeller, Stefan; Minitti, Michael P.; Mitra, Ankush; Carron, Sebastian; Pfau, Bastian; von Korff Schmising, Clemens; Schneider, Michael; Eisebitt, Stefan; Lüning, Jan

    2016-01-01

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. Our data thus confirm recent theoretical predictions. PMID:26733106

  4. Terahertz antireflection coating enabled by a subwavelength metallic mesh capped with a thin dielectric film

    DOE PAGES

    Huang, Li; Chen, Hou -Tong; Zeng, Beibei; ...

    2016-03-30

    Metamaterials/metasurfaces have enabled unprecedented manipulation of electromagnetic waves. Here we present a new design of metasurface structure functioning as antireflection coatings. The structure consists of a subwavelength metallic mesh capped with a thin dielectric layer on top of a substrate. By tailoring the geometric parameters of the metallic mesh and the refractive index and thickness of the capping dielectric film, reflection from the substrate can be completely eliminated at a specific frequency. Compared to traditional methods such as coatings with single- or multi-layer dielectric films, the metasurface antireflection coatings are much thinner and the requirement of index matching is largelymore » lifted. Here, this approach is particularly suitable for antireflection coatings in the technically challenging terahertz frequency range and is also applicable in other frequency regimes.« less

  5. Reducing the effect of parasitic capacitance on implantable passive resonant sensors.

    PubMed

    Drazan, John F; Abdoun, Omar T; Wassick, Michael T; Marcus, George A; Dahle, Reena; Beardslee, Luke A; Cady, Nathaniel C; Ledet, Eric H

    2016-08-01

    Passive, LC resonators have the potential to serve as small, robust, low cost, implantable sensors to wirelessly monitor implants following orthopedic surgery. One significant barrier to using LC sensors is the influence on the sensor's resonance of the surrounding conductive high permittivity media in vivo. The surrounding media can detune the resonant frequency of the LC sensor resulting in a bias. To mitigate the effects of the surrounding media, we added a "capping layer" to LC sensors to isolate them from the surrounding media. Several capping materials and thicknesses were tested to determine effectiveness at reducing the sensor's interaction with the surrounding media. Results show that a 1 mm glass capping layer on the outer surfaces of the sensor was sufficient to reduce the effects of the media on sensor signal to less than 1%.

  6. Black optic display

    DOEpatents

    Veligdan, James T.

    1997-01-01

    An optical display includes a plurality of stacked optical waveguides having first and second opposite ends collectively defining an image input face and an image screen, respectively, with the screen being oblique to the input face. Each of the waveguides includes a transparent core bound by a cladding layer having a lower index of refraction for effecting internal reflection of image light transmitted into the input face to project an image on the screen, with each of the cladding layers including a cladding cap integrally joined thereto at the waveguide second ends. Each of the cores is beveled at the waveguide second end so that the cladding cap is viewable through the transparent core. Each of the cladding caps is black for absorbing external ambient light incident upon the screen for improving contrast of the image projected internally on the screen.

  7. Desensitizing efficacy of nano-carbonate apatite dentifrice and Er,Cr:YSGG laser: a randomized clinical trial.

    PubMed

    Lee, Su-Young; Jung, Hoi-In; Jung, Bock-Young; Cho, Young-Sik; Kwon, Ho-Keun; Kim, Baek-Il

    2015-01-01

    The aim of this study was to evaluate the desensitizing effects of a dentifrice containing nano-carbonate apatite (n-CAP) and Er,Cr:YSGG laser in the treatment of dentin hypersensitivity. Most studies of hypersensitivity treatment have been conducted with different methods of professional treatment and self-care in each study. Moreover, clinical studies that compare self-care and professional treatment have not yet been published. Eighty-two patients with dentin hypersensitivity were divided randomly into three groups: (1) a control group with strontium chloride dentifrice (SC), (2) n-CAP dentifrice (n-CAP), and (3) an Er,Cr:YSGG laser (laser) group. The study was conducted for 4 weeks: a treatment period of 2 weeks and a maintenance period of 2 subsequent weeks. The SC and n-CAP groups were instructed to brush their teeth twice a day for 1 min. The laser group visited twice at 1 week intervals for irradiation of the sensitive teeth. The desensitizing effect was evaluated by assessing the tactile sensitivity using the visual analogue scale (VAS), and evaporative air sensitivity was determined using an air blast score (ABS). The n-CAP group and the laser group showed significantly different desensitizing effects in VAS after 4 weeks (69% and 63%, respectively) and a 33% (p<0.05) and 3% (p>0.05) desensitizing effect, respectively, in VAS during the maintenance period. The n-CAP and the laser were effective in reducing dentin hypersensitivity. The laser had a superior desensitizing effect at the initial stage, whereas the n-CAP maintained its effect for a relatively longer time in clinical situations.

  8. Photobleachable Diazonium Salt-Phenolic Resin Two-Layer Resist System

    NASA Astrophysics Data System (ADS)

    Uchino, Shou-ichi; Iwayanagi, Takao; Hashimoto, Michiaki

    1988-01-01

    This article describes a new negative two-layer photoresist system formed by a simple, successive spin-coating method. An aqueous acetic acid solution of diazonium salt and poly(N-vinylpyrrolidone) is deposited so as to contact a phenolic resin film spin-coated on a silicon wafer. The diazonium salt diffuses into the phenolic resin layer after standing for several minutes. The residual solution on the phenolic resin film doped with diazonium salt is spun to form the diazonium salt-poly(N-vinylpyrrolidone) top layer. This forms a uniform two-layer resist without phase separation or striation. Upon UV exposure, the diazonium salt in the top layer bleaches to act as a CEL dye, while the diazonium salt in the bottom layer decomposes to cause insolubilization. Half μm line-and-space patterns are obtained with an i-line stepper using 4-diazo-N,N-dimethylaniline chloride zinc chloride double salt as the diazonium salt and a cresol novolac resin for the bottom polymer layer. The resist formation processes, insolubilization mechanism, and the resolution capability of the new two-layer resist are discussed.

  9. A gel-based visual immunoassay for non-instrumental detection of chloramphenicol in food samples.

    PubMed

    Yuan, Meng; Sheng, Wei; Zhang, Yan; Wang, Junping; Yang, Yijin; Zhang, Shuguang; Goryacheva, Irina Yu; Wang, Shuo

    2012-11-02

    A gel-based non-instrumental immuno-affinity assay was developed for the rapid screening of chloramphenicol (CAP) in food samples with the limit of detection (LOD) of 1 μg L(-1). The immuno-affinity test column (IATC) consisted of a test layer containing anti-CAP antibody coupled gel, and a control layer with anti-HRP antibody coupled gel. Based on the direct competitive immuno-reaction and the horseradish peroxidase enzymatic reaction, the test results could be evaluated visually. Basically, blue color development represented the negative results, while the absence of color development represented the positive results. In this study, CAP spiked samples of raw milk, pasteurized milk, UHT milk, skimmed milk powder, acacia honey, date honey, fish and shrimp were tested. Little or none sample pretreatment was required for this assay. The whole procedure was completed within 10min. In conclusion, the gel-based immuno-affinity test is a simple, rapid, and promising on-site screening method for CAP residues in food samples, with no instrumental requirement. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Depositing spacing layers on magnetic film with liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Moody, J. W.; Shaw, R. W.; Sanfort, R. M.

    1975-01-01

    Liquid phase epitaxy spacing layer is compatible with systems which are hard-bubble proofed by use of second magnetic garnet film as capping layer. Composite is superior in that: circuit fabrication time is reduced; adherence is superior; visibility is better; and, good match of thermal expansion coefficients is provided.

  11. Response of marine benthic fauna to thin-layer capping with activated carbon in a large-scale field experiment in the Grenland fjords, Norway.

    PubMed

    Samuelsson, Göran S; Raymond, Caroline; Agrenius, Stefan; Schaanning, Morten; Cornelissen, Gerard; Gunnarsson, Jonas S

    2017-06-01

    A field experiment with thin-layer capping was conducted in the Grenland fjords, Norway, for remediation in situ of mercury and dioxin-contaminated sediments. Experimental fields at 30 and 95 m depth were capped with (i) powdered activated carbon (AC) mixed with clay (AC+cla`y), (ii) clay, and (iii) crushed limestone. Ecological effects on the benthic community and species-feeding guilds were studied 1 and 14 months after capping, and a total of 158 species were included in the analyses. The results show that clay and limestone had only minor effects on the benthic community, while AC+clay caused severe perturbations. AC+clay reduced the abundance, biomass, and number of species by up to 90% at both 30 and 95 m depth, and few indications of recovery were found during the period of this investigation. The negative effects of AC+clay were observed on a wide range of species with different feeding strategies, although the suspension feeding brittle star Amphiura filiformis was particularly affected. Even though activated carbon is effective in reducing sediment-to-water fluxes of dioxins and other organic pollutants, this study shows that capping with powdered AC can lead to substantial disturbances to the benthic community.

  12. Bioturbation delays attenuation of DDT by clean sediment cap but promotes sequestration by thin-layered activated carbon.

    PubMed

    Lin, Diana; Cho, Yeo-Myoung; Werner, David; Luthy, Richard G

    2014-01-21

    The effects of bioturbation on the performance of attenuation by sediment deposition and activated carbon to reduce risks from DDT-contaminated sediment were assessed for DDT sediment-water flux, biouptake, and passive sampler (PE) uptake in microcosm experiments with a freshwater worm, Lumbriculus variegatus. A thin-layer of clean sediment (0.5 cm) did not reduce the DDT flux when bioturbation was present, while a thin (0.3 cm) AC cap was still capable of reducing the DDT flux by 94%. Bioturbation promoted AC sequestration by reducing the 28-day DDT biouptake (66%) and DDT uptake into PE (>99%) compared to controls. Bioturbation further promoted AC-sediment contact by mixing AC particles into underlying sediment layers, reducing PE uptake (55%) in sediment compared to the AC cap without bioturbation. To account for the observed effects from bioturbation, a mass transfer model together with a biodynamic model were developed to simulate DDT flux and biouptake, respectively, and models confirmed experimental results. Both experimental measurements and modeling predictions imply that thin-layer activated carbon placement on sediment is effective in reducing the risks from contaminated sediments in the presence of bioturbation, while natural attenuation process by clean sediment deposition may be delayed by bioturbation.

  13. An analytical model of capped turbulent oscillatory bottom boundary layers

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji

    2010-03-01

    An analytical model of capped turbulent oscillatory bottom boundary layers (BBLs) is proposed using eddy viscosity of a quadratic form. The common definition of friction velocity based on maximum bottom shear stress is found unsatisfactory for BBLs under rotating flows, and a possible extension based on turbulent kinetic energy balance is proposed. The model solutions show that the flow may slip at the top of the boundary layer due to capping by the water surface or stratification, reducing the bottom shear stress, and that the Earth's rotation induces current and bottom shear stress components perpendicular to the interior flow with a phase lag (or lead). Comparisons with field and numerical experiments indicate that the model predicts the essential characteristics of the velocity profiles, although the agreement is rather qualitative due to assumptions of quadratic eddy viscosity with time-independent friction velocity and a well-mixed boundary layer. On the other hand, the predicted linear friction coefficients, phase lead, and veering angle at the bottom agreed with available data with an error of 3%-10%, 5°-10°, and 5°-10°, respectively. As an application of the model, the friction coefficients are used to calculate e-folding decay distances of progressive internal waves with a semidiurnal frequency.

  14. Effect of metallic capping layers on the superconductivity in FeSe thin films.

    NASA Astrophysics Data System (ADS)

    Shibayev, Pavel; Salehi, Maryam; Moon, Jisoo; Oh, Seongshik; Oh Lab Team

    In the past few years, there has been an increased interest in understanding the superconducting behavior of iron selenide (FeSe). Past efforts of others aimed at growing FeSe thin films yielded some success in reaching a Tc of 40K, but at present there is a stark lack of consensus among groups working on this problem. We set a goal of growing FeSe on insulating SrTiO3 (STO) substrates by optimizing both the growth temperature and the protection layer. In our quest to achieve this, we concentrate on keeping track of each compound's structural evolution with temperature via RHEED, an aspect often overlooked in papers describing FeSe growth, thus presenting a unique perspective to tackling this multifaceted challenge. Our group has grown 1, 3, and 30 unit-cell thick FeSe on STO using a state-of-the-art molecular beam epitaxy (MBE) system in our lab. Crucially, we expect to search for superconductivity in FeSe capped by unprecedented metallic protection layers. In addition, the FeSe/STO heterostructures with FeTe protection layers will be grown to enable comparison of existing transport data and scanning tunneling spectra (STS) to data involving our own novel cappings. Support: NSF EFRI Scholars program (1542798), EPiQS Initiative (GBMF4418).

  15. EVALUATION OF THE DURABILITY OF THE STRUCTURAL CONCRETE OF REACTOR BUILDINGS AT SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, A.; Reigel, M.

    2011-02-28

    The Department of Energy (DOE) intends to close 100-150 facilities in the DOE complex using an in situ decommissioning (ISD) strategy that calls for grouting the below-grade interior volume of the structure and leaving the above-grade interior open or demolishing it and disposing of it in the slit trenches in E Area. These closures are expected to persist and remain stable for centuries, but there are neither facility-specific monitoring approaches nor studies on the rate of deterioration of the materials used in the original construction or on the ISD components added during closure (caps, sloped roofs, etc). This report willmore » focus on the evaluation of the actual aging/degradation of the materials of construction used in the ISD structures at Savannah River Site (SRS) above grade, specifically P & R reactor buildings. Concrete blocks (six 2 to 5 ton blocks) removed from the outer wall of the P Reactor Building were turned over to SRNL as the first source for concrete cores. Larger cores were received as a result of grouting activities in P and R reactor facilities. The cores were sectioned and evaluated using microscopy, x-ray diffraction (XRD), ion chromatography (IC) and thermal analysis. Scanning electron microscopy shows that the aggregate and cement phases present in the concrete are consistent with the mix design and no degradation mechanisms are evident at the aggregate-cement interfaces. Samples of the cores were digested and analyzed for chloride ingress as well as sulfate attack. The concentrations of chloride and sulfate ions did not exceed the limits of the mix design and there is no indication of any degradation due to these mechanisms. Thermal analysis on samples taken along the longitudinal axis of the cores show that there is a 1 inch carbonation layer (i.e., no portlandite) present in the interior wall of the reactor building and a negligible carbonation layer in the exterior wall. A mixed layer of carbonate and portlandite extends deeper into the interior (2-3 inches) and exterior (1-2 inches) walls. This is more extensive than measured in previous SRS structures. Once the completely carbonated layer reaches the rebar that is approximately 2-3 inches into the concrete wall, the steel is susceptible to corrosion. The growth rate of the carbonated layer was estimated from current observations and previous studies. Based on the estimated carbonation rate, the steel rebar should be protected from carbonation induced corrosion for at least another 100 years. If degradation of these structures is dominated by the carbonation mechanism, the length of time before water intrusion is expected into the process room of P-reactor is estimated to be between 425-675 years.« less

  16. Protection of copper surface with phytic acid against corrosion in chloride solution.

    PubMed

    Peca, Dunja; Pihlar, Boris; Ingrid, Milošev

    2014-01-01

    Phytic acid (inositol hexaphosphate) was tested as a corrosion inhibitor for copper in 3% sodium chloride. Phytic acid is a natural compound derived from plants, it is not toxic and can be considered as a green inhibitor. Electrochemical methods of linear polarization and potentiodynamic polarization were used to study the electrochemical behaviour and evaluate the inhibition effectiveness. To obtain the optimal corrosion protection the following experimental conditions were investigated: effect of surface pre-treatment (abrasion and three procedures of surface roughening), pre-formation of the layer of phytic acid, time of immersion and concentration of phytic acid. To evaluate the surface pre-treatment procedures the surface roughness and contact angle were measured. Optimal conditions for formation of phytic layer were selected resulting in the inhibition effectiveness of nearly 80%. Morphology and composition of the layer were further studied by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The layer of phytic acid with thickness in the nanometer range homogeneously covers the copper surface. The obtained results show that this natural compound can be used as a mildly effective corrosion inhibitor for copper in chloride solution.

  17. Buffer architecture for biaxially textured structures and method of fabricating same

    DOEpatents

    Norton, David P.; Park, Chan; Goyal, Amit

    2004-04-06

    The invention relates to an article with an improved buffer layer architecture comprising a substrate having a metal surface, and an epitaxial buffer layer on the surface of the substrate. The epitaxial buffer layer comprises at least one of the group consisting of ZrO.sub.2, HfO.sub.2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of ZrO.sub.2 and/or HfO.sub.2. The article can also include a superconducting layer deposited on the epitaxial buffer layer. The article can also include an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article comprises providing a substrate with a metal surface, depositing on the metal surface an epitaxial buffer layer comprising at least one material selected from the group consisting of ZrO.sub.2, HfO.sub.2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of at least one of ZrO.sub.2 and HfO.sub.2. The epitaxial layer depositing step occurs in a vacuum with a background pressure of no more than 1.times.10.sup.-5 Torr. The method can further comprise depositing a superconducting layer on the epitaxial layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  18. Catalyst surfaces for the chromous/chromic redox couple

    NASA Technical Reports Server (NTRS)

    Giner, J. D.; Cahill, K. J. (Inventor)

    1981-01-01

    An electricity producing cell of the reduction-oxidation (REDOX) type divided into two compartments by a membrane is disclosed. A ferrous/ferric couple in a chloride solution serves as a cathode fluid to produce a positive electric potential. A chromic/chromous couple in a chloride solution serves as an anode fluid to produce a negative potential. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which has been added to the anode fluid. If the REDOX cell is then discharged, the lead deplates from the negative electrode and the metal coating on the electrode acts as a catalyst to increase current density.

  19. Aluminum Gallium Nitride (GaN)/GaN High Electron Mobility Transistor-Based Sensors for Glucose Detection in Exhaled Breath Condensate

    PubMed Central

    Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P.; Pearton, Stephen J.

    2010-01-01

    Background Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. Methods HEMT structures, consisting of a 3-μm-thick undoped GaN buffer, 30-Å-thick Al0.3Ga0.7N spacer, and 220-Å-thick silicon-doped Al0.3Ga0.7N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc2O3), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. Results The Sc2O3-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of ∼0.1 pH. A chloride ion detection limit of 10-8 M was achievedt with a HEMT sensor immobilized with the AgCl thin film. The drain–source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 μM. Conclusion There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensingt different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to measure the glucose concentration for diabetic applications. PMID:20167182

  20. Aluminum gallium nitride (GaN)/GaN high electron mobility transistor-based sensors for glucose detection in exhaled breath condensate.

    PubMed

    Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P; Pearton, Stephen J

    2010-01-01

    Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. HEMT structures, consisting of a 3-microm-thick undoped GaN buffer, 30-A-thick Al(0.3)Ga(0.7)N spacer, and 220-A-thick silicon-doped Al(0.3)Ga(0.7)N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc(2)O(3)), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. The Sc(2)O(3)-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of approximately 0.1 pH. A chloride ion detection limit of 10(-8) M was achieved with a HEMT sensor immobilized with the AgCl thin film. The drain-source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 microM. There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensing different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to measure the glucose concentration for diabetic applications. 2010 Diabetes Technology Society.

  1. Surfactant-Mediated Growth of Ge/Si(001) Interface Studied by XPD

    NASA Astrophysics Data System (ADS)

    Gunnella, R.; Castrucci, P.; Pinto, N.; Cucculelli, P.; Davoli, I.; Sébilleau, D.; de Crescenzi, M.

    The influence of Sb as a surfactant on the formation of Si/Ge interface is studied by means of XPD (X-ray photoelectron diffraction) and AED (Auger electron diffraction) from Ge and Si core levels. The technique employed is particularly suitable for checking the film tetragonal distortion, the growth morphology and the sharpness of the interface. We found a layer by layer growth mode for 3 ML of Ge on Si(001) and related values of strain of the film close to the value predicted by the elastic theory which enforces the use of such a surfactant to obtain high quality and sharp heterostructures. In addition, studying the influence of 3 ML of the Si cap layer on the 3 ML Ge, we obtain no indication of Ge segregation into the Si cap layer. Finally, evidences of quality degradation after high temperature (T > 600°C) annealing are shown.

  2. Indirect excitation of ultrafast demagnetization

    DOE PAGES

    Vodungbo, Boris; Tudu, Bahrati; Perron, Jonathan; ...

    2016-01-06

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset andmore » at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. As a result, our data thus confirm recent theoretical predictions.« less

  3. Mitigation of corrosion attack on carbon steel coated cermet alloy in different anion contents

    NASA Astrophysics Data System (ADS)

    Khalid, Muhamad Azrin Mohd; Ismail, Azzura

    2017-12-01

    This research study evaluated the corrosion mechanism attack on carbon steel coated with cermet alloys (WC-9% Ni) in seawater at different sulphate-to-chloride ratios. The four different sulphate-to-chloride ratios were synthesised with the same seawater salinity of 3.5 % and same pH of real seawater. The corrosion tests involved immersion and electrochemical tests. The immersion test is used to determine the cermet coating ability to withstand the corrosion attack based on different ratios of anions present in the seawater at different periods of immersion. The corrosion attack was characterized by optical and Scanning Electron Microscopy (SEM). The aggressive anions present in the seawater influenced the corrosion attack on the cermet coating. For immersion test, results revealed that increasing sulphate more than chloride, increased the weight loss of cermets. The electrochemistry analysis showed that the passive layer forms on cermet coating prevented the material from further corrosion attack. However, due to its porosity, the passive layer collapsed and exposed the material for other corrosion reaction. For electrochemical test, the result shows that the solution with sulphate-to-chloride ratio of 0.14 (real seawater) has the highest corrosion current and Open Circuit Potential (OCP) compared to other solutions (different sulphate-to-chloride ratio). In conclusion, sulfate and chloride show their competition to attack the cermet coating on carbon steel and the higher the amount of chloride present in seawater, the higher the corrosion rate and pits formed on the cermet coating.

  4. Oxyhydrochlorination catalyst

    DOEpatents

    Taylor, Charles E.; Noceti, Richard P.

    1992-01-01

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  5. Anti-corrosion activities of apen-class inhibitive drug on aluminium alloy in simulated chloride environment

    NASA Astrophysics Data System (ADS)

    Fayomi, O. S. I.; Anawe, PAL; Ayoola, A. A.; Joseph, O. O.

    2018-05-01

    In this study, aluminium material normally used in the underlie ship was immersed in simulated sodium chloride environment and its degradation properties was evaluated. Investigation of corrosion rate and mass weight loss through gravimetric tests measurements showed that less mass loss was recorded for tests in sodium chloride with 3-(2'-chloro-6' fluorophenyl) and lowest corrosion rate values were found at 10%. On the other hand, the mass loss deteriorated in all 3-(2'-chloro-6' fluorophenyl) with less uniform corrosion. The existence of chloride dissolved the interfacial surface layer resulting into pit initiation and growth. It is found that corrosion degradation of aluminum is dependent on chloride and inhibitive concentration.

  6. Contribution of Uranium-Bearing Evaporites to Plume Persistence Issues at a Former Uranium Mill Site Riverton, Wyoming, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Raymond; Dam, William; Campbell, Sam

    2016-08-01

    • Evaporites occur in an unsaturated silt layer, which is underlain by a sand and gravel aquifer. • These evaporites are rich in chloride across the site. • Uranium concentrations are higher in the evaporites that overlie the uranium contaminant plume. • Flooding can solubilize the evaporites in the silt layer and release chloride, sulfate (not shown), and uranium into the underlyingsand and gravel aquifer. • The uranium-rich evaporites can delay natural flushing, creating plume persistence near the Little Wind River.

  7. Genetic ablation of root cap cells in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Tsugeki, R.; Fedoroff, N. V.

    1999-01-01

    The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of a diphtheria toxin A-chain gene. Transgenic toxin-expressing plants are viable and have normal aerial parts but agravitropic roots, implying loss of root cap function. Several cell layers are missing from the transgenic root caps, and the remaining cells are abnormal. Although the radial organization of the roots is normal in toxin-expressing plants, the root tips have fewer cytoplasmically dense cells than do wild-type root tips, suggesting that root meristematic activity is lower in transgenic than in wild-type plants. The roots of transgenic plants have more lateral roots and these are, in turn, more highly branched than those of wild-type plants. Thus, root cap ablation alters root architecture both by inhibiting root meristematic activity and by stimulating lateral root initiation. These observations imply that the root caps contain essential components of the signaling system that determines root architecture.

  8. Photoluminescence Enhancement of Silole-Capped Silicon Quantum Dots Based on Förster Resonance Energy Transfer.

    PubMed

    Kim, Seongwoong; Kim, Sungsoo; Ko, Young Chun; Sohn, Honglae

    2015-07-01

    Photoluminescent porous silicon were prepared by an electrochemical etch of n-type silicon under the illumination with a 300 W tungsten filament bulb for the duration of etch. The red photoluminescence emitting at 650 nm with an excitation wavelength of 450 nm is due to the quantum confinement of silicon quantum dots in porous silicon. HO-terminated red luminescent PS was obtained by an electrochemical treatment of fresh PS with the current of 150 mA for 60 seconds in water and sodium chloride. As-prepared PS was sonicated, fractured, and centrifuged in toluene solution to obtain photoluminescence silicon quantum dots. Dichlorotetraphenylsilole exhibiting an emission band at 520 nm was reacted with HO-terminated silicon quantum dots to give a silole-capped silicon quantum dots. The optical characterization of silole-derivatized silicon quantum dots was investigated by UV-vis and fluorescence spectrometer. The fluorescence emission efficiency of silole-capped silicon quantum dots was increased by about 2.5 times due to F6rster resonance energy transfer from silole moiety to silicon quantum dots.

  9. EUVL mask patterning with blanks from commercial suppliers

    NASA Astrophysics Data System (ADS)

    Yan, Pei-Yang; Zhang, Guojing; Nagpal, Rajesh; Shu, Emily Y.; Li, Chaoyang; Qu, Ping; Chen, Frederick T.

    2004-12-01

    Extreme Ultraviolet Lithography (EUVL) reflective mask blank development includes low thermal expansion material fabrication, mask substrate finishing, reflective multi-layer (ML) and capping layer deposition, buffer (optional)/absorber stack deposition, EUV specific metrology, and ML defect inspection. In the past, we have obtained blanks deposited with various layer stacks from several vendors. Some of them are not commercial suppliers. As a result, the blank and patterned mask qualities are difficult to maintain and improve. In this paper we will present the evaluation results of the EUVL mask pattering processes with the complete EUVL mask blanks supplied by the commercial blank supplier. The EUVL mask blanks used in this study consist of either quartz or ULE substrates which is a type of low thermal expansion material (LTEM), 40 pairs of molybdenum/silicon (Mo/Si) ML layer, thin ruthenium (Ru) capping layer, tantalum boron nitride (TaBN) absorber, and chrome (Cr) backside coating. No buffer layer is used. Our study includes the EUVL mask blank characterization, patterned EUVL mask characterization, and the final patterned EUVL mask flatness evaluation.

  10. Probing the energetics of organic–nanoparticle interactions of ethanol on calcite

    PubMed Central

    Wu, Di; Navrotsky, Alexandra

    2015-01-01

    Knowing the nature of interactions between small organic molecules and surfaces of nanoparticles (NP) is crucial for fundamental understanding of natural phenomena and engineering processes. Herein, we report direct adsorption enthalpy measurement of ethanol on a series of calcite nanocrystals, with the aim of mimicking organic–NP interactions in various environments. The energetics suggests a spectrum of adsorption events as a function of coverage: strongest initial chemisorption on active sites on fresh calcite surfaces, followed by major chemical binding to form an ethanol monolayer and, subsequently, very weak, near-zero energy, physisorption. These thermochemical observations directly support a structure where the ethanol monolayer is bonded to the calcite surface through its polar hydroxyl group, leaving the hydrophobic ends of the ethanol molecules to interact only weakly with the next layer of adsorbing ethanol and resulting in a spatial gap with low ethanol density between the monolayer and subsequent added ethanol molecules, as predicted by molecular dynamics and density functional calculations. Such an ordered assembly of ethanol on calcite NP is analogous to, although less strongly bonded than, a capping layer of organics intentionally introduced during NP synthesis, and suggests a continuous variation of surface structure depending on molecular chemistry, ranging from largely disordered surface layers to ordered layers that nevertheless are mobile and can rearrange or be displaced by other molecules to strongly bonded immobile organic capping layers. These differences in surface structure will affect chemical reactions, including the further nucleation and growth of nanocrystals on organic ligand-capped surfaces. PMID:25870281

  11. 488-1D Ash Basin closure cap help modeling- Microdrain® liner option

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, J. A.

    At the request of Area Completion Engineering and in support of the 488-1D Ash Basin closure, the Savannah River National Laboratory (SRNL) performed hydrologic simulations of the revised 488-1D Ash Basin closure cap design using the Hydrologic Evaluation of Landfill Performance (HELP) model. The revised design substitutes a MicroDrain Liner®—60-mil low-density polyethylene geomembrane structurally integrated with 130-mil drainage layer—for the previously planned drainage/barrier system—300-mil geosynthetic drainage layer (GDL), 300-mil geosynthetic clay liner (GCL), and 6-inch common fill soil layer. For a 25-year, 24-hour storm event, HELP model v3.07 was employed to (1) predict the peak maximum daily hydraulic head formore » the geomembrane layer, and (2) ensure that South Carolina Department of Health and Environmental Control (SCDHEC) requirements for the barrier layer (i.e., ≤ 12 inches hydraulic head on top of a barrier having a saturated hydraulic conductivity ≤ 1.0E-05 cm/s) will not be exceeded. A 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches rainfall (Weber 1998). HELP model v3.07 results based upon the new planned cap design suggest that the peak maximum daily hydraulic head on the geomembrane barrier layer will be 0.15 inches for a minimum slope equal to 3%, which is two orders of magnitude below the SCDHEC upper limit of 12 inches.« less

  12. 488-1D Ash basin closure cap help modeling-Microdrain® liner option

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, J.

    At the request of Area Completion Engineering and in support of the 488-1D Ash Basin closure, the Savannah River National Laboratory (SRNL) performed hydrologic simulations of the revised 488-1D Ash Basin closure cap design using the Hydrologic Evaluation of Landfill Performance (HELP) model. The revised design substitutes a MicroDrain Liner®—50-mil linear low-density polyethylene geomembrane structurally integrated with 130-mil drainage layer—for the previously planned drainage/barrier system—300-mil geosynthetic drainage layer (GDL), 300-mil geosynthetic clay liner (GCL), and 6-inch common fill soil layer. For a 25-year, 24-hour storm event, HELP model v3.07 was employed to (1) predict the peak maximum daily hydraulic headmore » for the geomembrane layer, and (2) ensure that South Carolina Department of Health and Environmental Control (SCDHEC) requirements for the barrier layer (i.e., ≤ 12 inches hydraulic head on top of a barrier having a saturated hydraulic conductivity ≤ 1.0E-05 cm/s) will not be exceeded. A 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches rainfall (Weber 1998). HELP model v3.07 results based upon the new planned cap design suggest that the peak maximum daily hydraulic head on the geomembrane barrier layer will be 0.179 inches for a minimum slope equal to 3%, which is approximately two orders of magnitude below the SCDHEC upper limit of 12 inches.« less

  13. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    NASA Astrophysics Data System (ADS)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    Al(OH)3 and Ca(OH)2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. Ca-Al precursor (C3A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO4 LDH product. Ca-Al-CrO4 LDH phase occurred preferentially to Ca-Al-MCl2 LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist.

  14. Characterization, performance modeling, and design of an active capping remediation project in a heavily polluted urban channel.

    PubMed

    Yin, Ke; Viana, Priscilla; Zhao, Xiuhong; Rockne, Karl

    2010-07-15

    Collateral Channel is a heavily polluted former navigation slip to the Chicago Sanitary and Ship Canal (Illinois, USA). Characterization of sediment cores taken in the channel show high levels of heavy metals, polycyclic aromatic hydrocarbons (PAHs) and other contaminants in deposited sediment dating back to the 1800's. Of these, PAHs were the contaminants of greatest concern based upon exceedance of sediment contamination criteria (Sigma(16) PAHs up to 1500mg/kg). Benthic animal counts revealed a lack of biodiversity, with relatively low levels of small tubificid oligochaetes (generally <3000/m(2)) in surficial sediments. Comparison of surficial sediment contaminant levels between 1995 and 2005 showed few decreases in contaminant levels, indicating a lack of "natural recovery" processes occurring in the channel. These results led to an analysis of sediment amendments for an active capping demonstration project in the channel using transport models developed in our previous work (Viana et al., 2008). Based on the sediment characterization and modeling results, the active capping design will be focused on organic contaminant sequestration through the use of organoclay. A site-specific difficulty is the substantial rates of gas ebullition from anaerobic organic matter biodegradation in the sediments, particularly in the summer months. These gases can open advective channels that may result in substantial pollution release and compromise cap effectiveness, and thus the capping scenario must control for such releases. The active capping layer will underlay a sloped sand layer and a high permeability gas venting system to allow biogenically-produced gas migration to shoreline collectors through an innovative support grid. The cap will include an overlaying wetland to remove nutrients from the adjoining Chicago River and provide a public recreational space. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Effects of crystallinity and surface modification of calcium phosphate nanoparticles on the loading and release of tetracycline hydro-chloride

    NASA Astrophysics Data System (ADS)

    Zhang, Huaizhi; Yan, Dong; Menike Korale Gedara, Sriyani; Dingiri Marakkalage, Sajith Sudeepa Fernando; Gamage Kasun Methlal, Jothirathna; Han, YingChao; Dai, HongLian

    2017-03-01

    The influences of crystallinity and surface modification of calcium phosphate nanoparticles (nCaP) on their drug loading capacity and drug release profile were studied in the present investigation. The CaP nanoparticles with different crystallinity were prepared by precipitation method under different temperatures. CaP nanoparticles with lower crystallinity exhibited higher drug loading capacity. The samples were characterized by XRD, FT-IR, SEM, TEM and BET surface area analyzer respectively. The drug loading capacity of nCaP was evaluated to tetracycline hydro-chloride (TCH). The internalization of TCH loaded nCaP in cancer cell was observed by florescence microscope. nCaP could be stabilized and dispersed in aqueous solution by poly(acrylic acid) surface modification agent, leading to enhanced drug loading capacity. The drug release was conducted in different pH environment and the experimental data proved that nCaP were pH sensitive drug carrier, suggesting that nCaP could achieve the controlled drug release in intracellular acidic environment. Furthermore, nCaP with higher crystallinity showed lower drug release rate than that of lower crystallinity, indicating that the drug release profile could be adjusted by crystallinity of nCaP. nCaP with adjustable drug loading and release properties are promising candidate as drug carrier for disease treatment.

  16. Dichotomy Boundary at Aeolis Mensae, Mars: Fretted Terrain Developed in a Sedimentary Deposit

    NASA Astrophysics Data System (ADS)

    Irwin, R. P., III; Watters, T. R.; Howard, A. D.; Maxwell, T. A.; Craddock, R. A.

    2003-03-01

    Fretted terrain in Aeolis Mensae, Mars, developed in a sedimentary deposit. A thick, massive unit with a capping layer or duricrust overlies a more durable layered sequence. Wind, collapse, and minor fluvial activity contributed to degradation.

  17. Tracing groundwater input into Lake Vanda, Wright Valley, Antarctica using major ions, stable isotopes and noble gas

    NASA Astrophysics Data System (ADS)

    Dowling, C. B.; Poreda, R. J.; Snyder, G. T.

    2008-12-01

    The McMurdo Dry Valleys (MDV), Antarctica, is the largest ice-free region on Antarctica. Lake Vanda, located in central Wright Valley, is the deepest lake among the MDV lakes. It has a relatively fresh water layer above 50 m with a hypersaline calcium-chloride brine below (50-72 m). The Onyx River is the only stream input into Lake Vanda. It flows westward from the coastal Lower Wright Glacier and discharges into Lake Vanda. Suggested by the published literature and this study, there has been and may still be groundwater input into Lake Vanda. Stable isotopes, major ions, and noble gas data from this study coupled with previously published data indicate that the bottom waters of Lake Vanda have had significant contributions from a deep groundwater system. The dissolved gas of the bottom waters of Lake Vanda display solubility concentrations rather than the Ar-enriched dissolved gas seen in the Taylor Valley lakes (such as Lake Bonney). The isotopic data indicate that the bottom calcium-chloride-brine of Lake Vanda has undergone very little evaporation. The calcium-chloride chemistry of the groundwater that discharges into Lake Vanda most likely results from the chemical weathering and dissolution of cryogenic evaporites (antarcticite and gypsum) within the glacial sediments of Wright Valley. The high calcium concentrations of the brine have caused gypsum to precipitate on the lake bottom. Our work also supports previous physical and chemical observations suggesting that the upper portion actively circulates and the hypersaline bottom layer does not. The helium and calcium chloride values are concentrated at the bottom, with a very narrow transition layer between it and the above fresh water. If the freshwater layer did not actively circulate, then diffusion over time would have caused the helium and calcium chloride to slowly permeate upwards through the water column.

  18. Di-μ-chlorido-bis­[(2-amino­benzamide-κ2 N 2,O)chlorido­copper(II)

    PubMed Central

    Damous, Maamar; Dénès, George; Bouacida, Sofiane; Hamlaoui, Meriem; Merazig, Hocine; Daran, Jean-Claude

    2013-01-01

    The title compound, [Cu2Cl4(C7H8N2O)2], crystallizes as discrete [CuLCl2]2 (L = 2-amino­benzamide) dimers with inversion symmetry. Each CuII ion is five-coordinated and is bound to two bridging chloride ligands, a terminal chloride ligand and a bidentate 2-amino­benzamide ligand. The crystal structure exhibits alternating layers parallel to (010) along the b-axis direction. In the crystal, the components are linked via N—H⋯Cl hydrogen bonds, forming a three-dimensional network. These inter­actions link the mol­ecules within the layers and also link the layers together and reinforce the cohesion of the structure. PMID:24426988

  19. [Jejunal myenteric denervation induced by benzalkonium chloride].

    PubMed

    Ramalho, F S; Santos, G C; Ramalho, L N; Kajiwara, J K; Zucoloto, S

    1994-01-01

    The effects of benzalkonium chloride (BAC) on the number of myenteric neurons, muscle thickness and external perimeter after acute (until 10 days after BAC application) and chronic (30 and 60 days after BAC application) denervation of the proximal jejunum were determined in rats. There was a significant reduction in the number of myenteric neurons of all segments treated with BAC. The extent of denervation varied along the time, and it was reduced in the denervated segments of the chronic group in comparison with the acute group. This may be due to the neuroplasticity phenomenon appearing during the chronic phase. Myenteric denervation increased the thickness of the propria muscle layer, especially in the longitudinal muscle layer, suggesting a higher sensitivity of this layer to myenteric denervation.

  20. Nano-oxide-layer insertion and specular effects in spin valves: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Wang, L.; Qiu, J. J.; McMahon, W. J.; Li, K. B.; Wu, Y. H.

    2004-06-01

    We report a systematic study of NOL (nano-oxide-layer) insertion and specular effects on the giant magnetoresistance (GMR) of single, synthetic, and dual spin valves, using a semiclassical Boltzmann theory. It is confirmed that the GMR ratio is enhanced by NOL insertion inside the pinned layer or after the free layer. The enhancements are primarily due to the contribution of the majority carriers. The NOL insertions inside the inactive layers of spin valves such as the seed, under, and capping layers reduce the GMR ratio. Though introducing a NOL before or after the Cu spacer would, in principle, significantly suppress the GMR ratio due to the blocking effect or the average effect of different spin channels, large positive or negative (inverse) GMR is found by assuming spin-dependent NOL specular reflections. We have also demonstrated that specular reflection, even beyond a capping layer, may result in reduction of GMR. Upon appropriate NOL insertion, the amplitude of curve of GMR versus thickness of individual layer of spin valves may be generally enhanced, but the shape may change, depending on whether the distance of the NOL to the layer is small or large (distance effect). Finally, it is found that most results obtained for the single realistic spin valves are applicable to synthetic and dual spin valves.

  1. Studies of morphological instability and defect formation in heteroepitaxial Si(1-x)Ge(x) thin films via controlled annealing experiments

    NASA Astrophysics Data System (ADS)

    Ozkan, Cengiz Sinan

    Strained layer semiconductor structures provide possibilities for novel electronic devices. When a semiconductor layer is deposited epitaxially onto a single crystal substrate with the same structure but a slightly different lattice parameter, the semiconductor layer grows commensurately with a misfit strain that can be accommodated elastically below a critical thickness. When the critical thickness is exceeded, the elastic strain energy builds up to a point where it becomes energetically favorable to form misfit dislocations. In addition, in the absence of a capping layer, Sisb{1-x}Gesb{x} films exhibit surface roughening via surface diffusion under the effect of a compressive stress which is caused by a lattice mismatch. Surface roughening takes place in the form of ridges aligned along {<}100{>} or {<}110{>} directions depending on the film thickness and the rate of strain relief. Recent work has shown that surface roughening makes a very significant contribution to strain relaxation in heteroepitaxial thin films. At sharp valley regions on the surface, amplified local stresses can cause further defect nucleation and propagation, such as stacking faults and 90sp° dislocations. In addition, capping layers with suitable thickness will surpress surface roughening and keep most of the strain in the film. We study surface roughening and defect formation by conducting controlled annealing experiments on initially flat and defect free films grown by LPCVD in a hydrogen ambient. We study films with both subcritical and supercritical thicknesses. In addition, we compare the relaxation behaviour of capped and uncapped films where surface roughening was inhibited in films with a capping layer. TEM and AFM studies were conducted to study the morphology and microstructure of these films. X-ray diffraction measurements were made to determine the amount of strain relaxation in these films. Further studies of surface roughening on heteroepitaxial films under a positive biaxial stress have shown that, morphological evolution occurs regardless of the sign of stress in the film. Finally, we have studied surface roughening processes in real time by conducting in-situ TEM experiments. We have observed that the kinetics of roughening depend strongly on the annealing ambient.

  2. Catalysts and method

    DOEpatents

    Taylor, Charles E.; Noceti, Richard P.

    1991-01-01

    An improved catlayst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HC1 and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  3. InAs/GaAs quantum-dot intermixing: comparison of various dielectric encapsulants

    NASA Astrophysics Data System (ADS)

    Alhashim, Hala H.; Khan, Mohammed Zahed Mustafa; Majid, Mohammed A.; Ng, Tien K.; Ooi, Boon S.

    2015-10-01

    We report on the impurity-free vacancy-disordering effect in InAs/GaAs quantum-dot (QD) laser structure based on seven dielectric capping layers. Compared to the typical SiO2 and Si3N4 films, HfO2 and SrTiO3 dielectric layers showed superior enhancement and suppression of intermixing up to 725°C, respectively. A QD peak ground-state differential blue shift of >175 nm (>148 meV) is obtained for HfO2 capped sample. Likewise, investigation of TiO2, Al2O3, and ZnO capping films showed unusual characteristics, such as intermixing-control caps at low annealing temperature (650°C) and interdiffusion-promoting caps at high temperatures (≥675°C). We qualitatively compared the degree of intermixing induced by these films by extracting the rate of intermixing and the temperature for ground-state and excited-state convergences. Based on our systematic characterization, we established reference intermixing processes based on seven different dielectric encapsulation materials. The tailored wavelength emission of ˜1060-1200 nm at room temperature and improved optical quality exhibited from intermixed QDs would serve as key materials for eventual realization of low-cost, compact, and agile lasers. Applications include solid-state laser pumping, optical communications, gas sensing, biomedical imaging, green-yellow-orange coherent light generation, as well as addressing photonic integration via area-selective, and postgrowth bandgap engineering.

  4. Two-dimensional electron gases in MgZnO/ZnO and ZnO/MgZnO/ZnO heterostructures grown by dual ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Singh, Rohit; Arif Khan, Md; Sharma, Pankaj; Than Htay, Myo; Kranti, Abhinav; Mukherjee, Shaibal

    2018-04-01

    This work reports on the formation of high-density (~1013-1014 cm-2) two-dimensional electron gas (2DEG) in ZnO-based heterostructures, grown by a dual ion beam sputtering system. We probe 2DEG in bilayer MgZnO/ZnO and capped ZnO/MgZnO/ZnO heterostructures utilizing MgZnO barrier layers with varying thickness and Mg content. The effect of the ZnO cap layer thickness on the ZnO/MgZnO/ZnO heterostructure is also studied. Hall measurements demonstrate that the addition of a 5 nm ZnO cap layer results in an enhancement of the 2DEG density by about 1.5 times compared to 1.11 × 1014 cm-2 for the uncapped bilayer heterostructure with the same 30 nm barrier thickness and 30 at.% Mg composition in the barrier layer. From the low-temperature Hall measurement, the sheet carrier concentration and mobility are both found to be independent of the temperature. The capacitance-voltage measurement suggests a carrier density of ~1020 cm-3, confined in 2DEG at the MgZnO/ZnO heterointerface. The results presented are significant for the optimization of 2DEG for the eventual realization of cost-effective and large-area MgZnO/ZnO-based high-electron-mobility transistors.

  5. LES on Plume Dispersion in the Convective Boundary Layer Capped by a Temperature Inversion

    NASA Astrophysics Data System (ADS)

    Nakayama, Hiromasa; Tamura, Tetsuro; Abe, Satoshi

    Large-eddy simulation (LES) is applied to the problem of plume dispersion in the spatially-developing convective boundary layer (CBL) capped by a temperature inversion. In order to generate inflow turbulence with buoyant forcing, we first, simulate the neutral boundary layer flow (NBL) in the driver region using Lund's method. At the same time, the temperature profile possessing the inversion part is imposed at the entrance of the driver region and the temperature field is calculated as a passive scalar. Next, the buoyancy effect is introduced into the flow field in the main region. We evaluate the applicability of the LES model for atmospheric dispersion in the CBL flow and compare the characteristics of plume dispersion in the CBL flow with those in the neutral boundary layer. The Richardson number based on the temperature increment across the inversion obtained by the present LES model is 22.4 and the capping effect of the temperature inversion can be captured qualitatively in the upper portion of the CBL. Characteristics of flow and temperature fields in the main portion of CBL flow are similar to those of previous experiments[1],[2] and observations[3]. Concerning dispersion behavior, we also find that mean concentrations decrease immediately above the inversion height and the peak values of r.m.s concentrations are located near the inversion height at larger distances from the point source.

  6. Development of a Glass Reactor Lining for Chlorocarbon-Supercritical Water Reactions.

    DTIC Science & Technology

    1995-08-09

    by 1-chloro-3- phenylpropane which reacted rapidly and completely by both pyrolysis and with SW. The presence of SW produced only a minor shift in...aromatic chloride, 2 -chlorotoluene, over that of dry pyrolysis; metal chlorides were evident in the water layer and HCl was not detected in the SW

  7. Recovery of Lithium from Geothermal Brine with Lithium-Aluminum Layered Double Hydroxide Chloride Sorbents.

    PubMed

    Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi; Hoke, Thomas; Ucar, Huseyin; Moyer, Bruce A; Harrison, Stephen

    2017-11-21

    We report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloride from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ∼91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. The present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.

  8. Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites.

    PubMed

    Lu, Helen H; Tang, Amy; Oh, Seong Cheol; Spalazzi, Jeffrey P; Dionisio, Kathie

    2005-11-01

    Biodegradable polymer-ceramic composites are attractive systems for bone tissue engineering applications. These composites have the combined advantages of the component phases, as well as the inherent ease in optimization where desired material properties can be tailored in a well-controlled manner. This study focuses on the optimization of a polylactide-co-glycolide (PLAGA) and 45S5 bioactive glass (BG) composite for bone tissue engineering. The first objective is to examine the effects of composition or overall BG content on the formation of a Ca-P layer on the PLAGA-BG composite. It is expected that with increasing BG content (0%, 10%, 25%, 50% by weight), the required incubation time in a simulated body fluid (SBF) for the composite to form a detectable surface Ca-P layer will decrease. Both the kinetics and the chemistry will be determined using SEM+EDAX, FTIR, and mu-CT methods. Solution phosphorous and calcium concentrations will also be measured. The second objective of the study is to determine the effects of BG content on the maturation of osteoblast-like cells on the PLAGA-BG composite. It is hypothesized that mineralization will increase with increasing BG content, and the composite will support the proliferation and differentiation of osteoblasts. Specifically, cell proliferation, alkaline phosphatase activity and mineralization will be monitored as a function of BG content (0%, 10%, 50% by weight) and culturing time. It was found that the kinetics of Ca-P layer formation and the resulting Ca-P chemistry were dependent on BG content. The response of human osteoblast-like cells to the PLAGA-BG composite was also a function of BG content. The 10% and 25% BG composite supported greater osteoblast growth and differentiation compared to the 50% BG group. The results of this study suggest that there is a threshold BG content which is optimal for osteoblast growth, and the interactions between PLAGA and BG may modulate the kinetics of Ca-P formation and the overall cellular response.

  9. Layering and Ordering in Electrochemical Double Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yihua; Kawaguchi, Tomoya; Pierce, Michael S.

    Electrochemical double layers (EDL) form at electrified interfaces. While Gouy-Chapman model describes moderately charged EDL, formation of Stern layers was predicted for highly charged EDL. Our results provide structural evidence for a Stern layer of cations, at potentials close to hydrogen evolution in alkali fluoride and chloride electrolytes. Layering was observed by x-ray crystal truncation rods and atomic-scale recoil responses of Pt(111) surface layers. Ordering in the layer is confirmed by glancing-incidence in-plane diffraction measurements.

  10. Label-free potentiometric biosensor based on solid-contact for determination of total phenols in honey and propolis.

    PubMed

    Draghi, Patrícia Ferrante; Fernandes, Julio Cesar Bastos

    2017-03-01

    We developed a label-free potentiometric biosensor using tyrosinase extracted from Musa acuminata and immobilized by covalent bond on a surface of a solid-contact transducer. The transducer was manufactured containing two layers. The first layer contained a blend of poly(vinyl) chloride carboxylated (PVC-COOH), graphite and potassium permanganate. On this layer, we deposited a second layer containing just a mixture of poly(vinyl chloride) carboxylated and graphite. On the last layer of the transducer, we immobilized the tyrosinase enzyme by reaction with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride. The solid-contact potentiometric biosensor presented at low detection limit of 7.3×10 -7 M and a linear range to catechol concentration between 9.3×10 -7 M and 8.3×10 -2 M. This biosensor was applied to determine the amount of total phenols in different samples of honey and propolis. The results agreed with the Folin-Ciocalteu method. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. More South Polar "Swiss Cheese"

    NASA Image and Video Library

    2000-04-24

    This image is illuminated by sunlight from the upper left. Some of the surface of the residual south polar cap has a pattern that resembles that of sliced, swiss cheese. Shown here at the very start of southern spring is a frost-covered surface in which there are two layers evident--a brighter upper layer into which are set swiss cheese-like holes, and a darker, lower layer that lies beneath the "swiss cheese" pattern. Nothing like this exists anywhere on Mars except within the south polar cap. This is a Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image acquired on August 2, 1999. It is located near 84.8°S, 71.8°W, and covers an area 3 km across and about 6.1 km long (1.9 by 3.8 miles). http://photojournal.jpl.nasa.gov/catalog/PIA02368

  12. The Subsurface Ice Probe (SIPR): A Low-Power Thermal Probe for the Martian Polar Layered Deposits

    NASA Technical Reports Server (NTRS)

    Cardell, G.; Hecht, M. H.; Carsey, F. D.; Engelhardt, H.; Fisher, D.; Terrell, C.; Thompson, J.

    2004-01-01

    The distinctive layering visible in images from Mars Global Surveyor of the Martian polar caps, and particularly in the north polar cap, indicates that the stratigraphy of these polar layered deposits may hold a record of Martian climate history covering millions of years. On Earth, ice sheets are cored to retrieve a pristine record of the physical and chemical properties of the ice at depth, and then studied in exacting detail in the laboratory. On the Martian north polar cap, coring is probably not a practical method for implementation in an autonomous lander. As an alternative, thermal probes that drill by melting into the ice are feasible for autonomous operation, and are capable of reasonable approximations to the scientific investigations performed on terrestrial cores, while removing meltwater to the surface for analysis. The Subsurface Ice Probe (SIPR) is such a probe under development at JPL. To explore the dominant climate cycles, it is postulated that tens of meters of depth should be profiled, as this corresponds to the vertical separation of the major layers visible in the MOC images [1]. Optical and spectroscopic analysis of the layers, presumably demarcated by embedded dust and possibly by changes in the ice properties, would contribute to the construction of a chronology. Meltwater analysis may be used to determine the soluble chemistry of the embedded dust, and to monitor gradients of atmospheric gases, particularly hydrogen and oxygen, and isotopic variations that reflect atmospheric conditions at the time the layer was deposited. Thermal measurements can be used to determine the geothermal gradient and the bulk mechanical properties of the ice.

  13. High density nonmagnetic cobalt in thin films

    NASA Astrophysics Data System (ADS)

    Banu, Nasrin; Singh, Surendra; Basu, Saibal; Roy, Anupam; Movva, Hema C. P.; Lauter, V.; Satpati, B.; Dev, B. N.

    2018-05-01

    Recently high density (HD) nonmagnetic cobalt has been discovered in a nanoscale cobalt thin film, grown on Si(111) single crystal. This form of cobalt is not only nonmagnetic but also superconducting. These promising results have encouraged further investigations of the growth of the nonmagnetic (NM) phase of cobalt. In the original investigation, the cobalt film had a natural cobalt oxide at the top. We have investigated whether the growth of HD NM cobalt layers in the thin film depends on (i) a capping layer on the cobalt film, (ii) the thickness of the cobalt film and (iii) the nature of the substrate on which the cobalt film is grown. The results of such investigations indicate that for cobalt films capped with a thin gold layer, and for various film thicknesses, HD NM cobalt layers are formed. However, instead of a Si substrate, when the cobalt films are grown on oxide substrates, such as silicon oxide or cobalt oxide, HD NM cobalt layers are not formed. The difference is attributed to the nature—crystalline or amorphous—of the substrate.

  14. Design of bridging layers in geosynthetic-reinforced, column-supported embankments.

    DOT National Transportation Integrated Search

    2006-01-01

    The cost of column-supported embankments depends, in part, on the spacing between the columns and the size of the columns and pile caps. Geosynthetic reinforcement is often employed in bridging layers to enhance load transfer to the columns and to in...

  15. Dynamic XPS measurements of ultrathin polyelectrolyte films containing antibacterial Ag–Cu nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taner-Camcı, Merve; Suzer, Sefik, E-mail: suzer@fen.bilkent.edu.tr

    Ultrathin films consisting of polyelectrolyte layers prepared by layer-by-layer deposition technique and containing also Ag and Cu nanoparticles exhibit superior antibacterial activity toward Escherichia coli. These films have been investigated with XPS measurements under square wave excitation at two different frequencies, in order to further our understanding about the chemical/physical nature of the nanoparticles. Dubbed as dynamical XPS, such measurements bring out similarities and differences among the surface structures by correlating the binding energy shifts of the corresponding XPS peaks. Accordingly, it is observed that the Cu2p, Ag3d of the metal nanoparticles, and S2p of cysteine, the stabilizer and themore » capping agent, exhibit similar shifts. On the other hand, the C1s, N1s, and S2p peaks of the polyelectrolyte layers shift differently. This finding leads us the claim that the Ag and Cu atoms are in a nanoalloy structure, capped with cystein, as opposed to phase separated entities.« less

  16. Long Range Materials Research. Appendix 1. Synthesis and Characterization of Supported Organometallic Rhodium (I) Catalysts

    DTIC Science & Technology

    1974-06-30

    hydrosilates, 130 including irradiation by ultraviolet light, elevated temperatures (up to 3500) in sealed tubes, and free radical initiators (up to 10 mol...to 160 ml dry pyridine and stirred at 00 in a 250 ml Erlenmeyer flask fitted with a septum. After the temperature had equilibrated, p-toluene sulfonyl...chloride (80 g, 0.41 mol) was added slowly, carefully maintaining the temperature below 100. The vessel was tightly capped, the mixture stirred an

  17. Probing the energetics of organic–nanoparticle interactions of ethanol on calcite

    DOE PAGES

    Wu, Di; Navrotsky, Alexandra

    2015-04-13

    Knowing the nature of interactions between small organic molecules and surfaces of nanoparticles (NP) is crucial for fundamental understanding of natural phenomena and engineering processes. In this paper, we report direct adsorption enthalpy measurement of ethanol on a series of calcite nanocrystals, with the aim of mimicking organic–NP interactions in various environments. The energetics suggests a spectrum of adsorption events as a function of coverage: strongest initial chemisorption on active sites on fresh calcite surfaces, followed by major chemical binding to form an ethanol monolayer and, subsequently, very weak, near-zero energy, physisorption. Furthermore, these thermochemical observations directly support a structuremore » where the ethanol monolayer is bonded to the calcite surface through its polar hydroxyl group, leaving the hydrophobic ends of the ethanol molecules to interact only weakly with the next layer of adsorbing ethanol and resulting in a spatial gap with low ethanol density between the monolayer and subsequent added ethanol molecules, as predicted by molecular dynamics and density functional calculations. Such an ordered assembly of ethanol on calcite NP is analogous to, although less strongly bonded than, a capping layer of organics intentionally introduced during NP synthesis, and suggests a continuous variation of surface structure depending on molecular chemistry, ranging from largely disordered surface layers to ordered layers that nevertheless are mobile and can rearrange or be displaced by other molecules to strongly bonded immobile organic capping layers. Finally, these differences in surface structure will affect chemical reactions, including the further nucleation and growth of nanocrystals on organic ligand-capped surfaces.« less

  18. Topography of the South Polar Cap and Layered Deposits of Mars: Viking Stereo Grametry at Regional and Local Scales

    NASA Technical Reports Server (NTRS)

    Schenk, P.; Moore, J.; Stoker, C.

    1998-01-01

    Layered deposits and residual polar caps on Mars may record the deposition of ice and sediment modulated by periodic climate change. Topographic information relating to layer thicknesses, erosional processes, and formation of dark spirals within these deposits has been sparce or unreliable until the arrival of MOLA in orbit in September 1997. To assist in evaluating these terrains prior to launch and to assess formation and erosion processes in the polar deposits, we have assembled Viking stereo mosaics of the region and have produced the first reliable DEM models of the south polar deposits using automated stereogrammetry tools. Here we report our preliminary topographic results, pending final image pointing updates. The maximum total thickness of the layered deposits in the south polar region is 2.5 km. The thick layered deposits consist of a series of megaterraces. Each terrace is several tens of kilometers wide and is flat or slopes very gently toward the pole. These terraces step downward from a central plateau near the south pole. Terraces are bounded by relatively steep scarps 100-500 meters high that face toward the equator. These scarps correspond to the pattern of dark spirals observed within the residual cap in southern summer, and are interpreted as ice or frost-free surfaces warmed by solar insolation. Several tongue-shaped troughs, with rounded cirquelike heads, are observed near the margins of the deposit. These troughs are 300-600 meters in deep and may be similar to troughs observed in the northern polar deposit.

  19. Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    NASA Astrophysics Data System (ADS)

    Li, Honghong; Qin, Li; Feng, Ying; Hu, Lihua; Zhou, Chunhua

    2015-06-01

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe3O4 magnetic nanoparticles (Fe3O4-AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe3O4-AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe3O4-AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe3O4. Transmission electron microscopy (TEM) analysis confirmed that the Fe3O4-AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe3O4-AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe3O4-MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe3O4-AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature TB of Fe3O4-AOS-MN capped with double-layered AOS is 170 K.

  20. Compositional analysis of various layers of upper urinary tract stones by infrared spectroscopy

    PubMed Central

    He, Zhang; Jing, Zhang; Jing-Cun, Zheng; Chuan-Yi, Hu; Fei, Gao

    2017-01-01

    The objective of the present study was to determine the composition of various layers of upper urinary stones and assess the mechanisms of stone nucleation and aggregation. A total of 40 integrated urinary tract stones with a diameter of >0.8 cm were removed from the patients. All of the stones were cut in half perpendicularly to the longitudinal axis. Samples were selected from nuclear, internal and external layers of each stone. Fourier transform infrared spectroscopy (FT-IR) was adopted for qualitative and quantitative analysis of all of the fragments and compositional differences among nuclear, internal and external layers of various types of stone were subsequently investigated. A total of 25 cases of calcium oxalate (CaOx) stones and 10 cases of calcium phosphate (CaP) stones were identified to be mixed stones, while 5 uric acid (UA) calculi were pure stones (purity, >95%). In addition, the contents of CaOx and carbapatite (CA.AP) crystals in various layers of the mixed stones were found to be variable. In CaOx stones, the content of CA.AP in nuclear layers was significantly higher than that of the outer layers (32.0 vs. 6.8%; P<0.05), while the content of CaOx was lower in the inner than in the outer layers (57.6 vs. 86.6%; P<0.05). In CaP stones, the content of CA.AP in the nuclear layers was higher than that in the outer layers (74.0 vs. 47.3%; P<0.05), while the content of CaOx was lower in the inner than in the outer layers (7.0 vs. 40.0%; P<0.05). The UA stones showed no significant differences in their composition among different layers. In conclusion, FT-IR analysis of various layers of human upper urinary tract stones revealed that CaOx and CaP stones showed differences in composition between their core and surface, while all of the UA calculi were pure stones. The composition showed a marked variation among different layers of the stones, indicating that metabolism has an important role in different phases of the evolution of stones. The present study provided novel insight into the pathogenesis of urinary tract stones and may contribute to their prevention and treatment. PMID:28912866

  1. The Mars water cycle at other epochs - Recent history of the polar caps and layered terrain

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1993-01-01

    A numerical model is presented of the integrated role of seasonal water cycle on the evolution of polar deposits on Mars over the last 10 million years. From the model, it is concluded that the only major difference between the polar caps which affects their long-term behavior is ultimately the difference in their elevations. Because of that difference, there is a preference for CO2 frost to stay longer on the northern polar cap. The average difference in sublimation at the caps results in a net south-to-north transport of water ice over long time scales. Superimposed on any long-term behavior is a transfer of water ice between the caps on the 10 exp 5 - 10 exp 6 yr time scales. The amount of water exchanged is small compared to the total ice content of the polar deposits.

  2. The Mars water cycle at other epochs - Recent history of the polar caps and layered terrain

    NASA Astrophysics Data System (ADS)

    Jakosky, B. M.; Henderson, B. G.; Mellon, M. T.

    1993-04-01

    A numerical model is presented of the integrated role of seasonal water cycle on the evolution of polar deposits on Mars over the last 10 million years. From the model, it is concluded that the only major difference between the polar caps which affects their long-term behavior is ultimately the difference in their elevations. Because of that difference, there is a preference for CO2 frost to stay longer on the northern polar cap. The average difference in sublimation at the caps results in a net south-to-north transport of water ice over long time scales. Superimposed on any long-term behavior is a transfer of water ice between the caps on the 10 exp 5 - 10 exp 6 yr time scales. The amount of water exchanged is small compared to the total ice content of the polar deposits.

  3. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of molten glass. Knowing the temperature profile within a cold cap will help determine its characteristics and relate them to the rate of glass production. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Since a direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed where the textural features inmore » a laboratory-made cold cap with a high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. To correlate the temperature distribution to microstructures within the cold cap, microstructures were identified of individual feed samples that were heat treated to set temperatures between 400°C and 1200°C and quenched. The temperature distribution within the cold cap was then established by correlating cold-cap regions with the feed samples of nearly identical structures and was compared with the temperature profile from a mathematical model.« less

  4. Investigation on Surface Polarization of Al2O3-capped GaN/AlGaN/GaN Heterostructure by Angle-Resolved X-ray Photoelectron Spectroscopy.

    PubMed

    Duan, Tian Li; Pan, Ji Sheng; Wang, Ning; Cheng, Kai; Yu, Hong Yu

    2017-08-17

    The surface polarization of Ga-face gallium nitride (GaN) (2 nm)/AlGaN (22 nm)/GaN channel (150 nm)/buffer/Si with Al 2 O 3 capping layer is investigated by angle-resolved X-ray photoelectron spectroscopy (ARXPS). It is found that the energy band varies from upward bending to downward bending in the interface region, which is believed to be corresponding to the polarization variation. An interfacial layer is formed between top GaN and Al 2 O 3 due to the occurrence of Ga-N bond break and Ga-O bond forming during Al 2 O 3 deposition via the atomic layer deposition (ALD). This interfacial layer is believed to eliminate the GaN polarization, thus reducing the polarization-induced negative charges. Furthermore, this interfacial layer plays a key role for the introduction of the positive charges which lead the energy band downward. Finally, a N 2 annealing at 400 °C is observed to enhance the interfacial layer growth thus increasing the density of positive charges.

  5. Two-Dimensional Polymer Synthesized via Solid-State Polymerization for High-Performance Supercapacitors.

    PubMed

    Liu, Wei; Ulaganathan, Mani; Abdelwahab, Ibrahim; Luo, Xin; Chen, Zhongxin; Rong Tan, Sherman Jun; Wang, Xiaowei; Liu, Yanpeng; Geng, Dechao; Bao, Yang; Chen, Jianyi; Loh, Kian Ping

    2018-01-23

    Two-dimensional (2-D) polymer has properties that are attractive for energy storage applications because of its combination of heteroatoms, porosities and layered structure, which provides redox chemistry and ion diffusion routes through the 2-D planes and 1-D channels. Here, conjugated aromatic polymers (CAPs) were synthesized in quantitative yield via solid-state polymerization of phenazine-based precursor crystals. By choosing flat molecules (2-TBTBP and 3-TBQP) with different positions of bromine substituents on a phenazine-derived scaffold, C-C cross coupling was induced following thermal debromination. CAP-2 is polymerized from monomers that have been prepacked into layered structure (3-TBQP). It can be mechanically exfoliated into micrometer-sized ultrathin sheets that show sharp Raman peaks which reflect conformational ordering. CAP-2 has a dominant pore size of ∼0.8 nm; when applied as an asymmetric supercapacitor, it delivers a specific capacitance of 233 F g -1 at a current density of 1.0 A g -1 , and shows outstanding cycle performance.

  6. Photoluminescence Study of Plasma-Induced Damage of GaInN Single Quantum Well

    NASA Astrophysics Data System (ADS)

    Izumi, Shouichiro; Minami, Masaki; Kamada, Michiru; Tatsumi, Tetsuya; Yamaguchi, Atsushi A.; Ishikawa, Kenji; Hori, Masaru; Tomiya, Shigetaka

    2013-08-01

    Plasma-induced damage (PID) due to Cl2/SiCl4/Ar plasma etching of the GaN capping layer (CAP)/GaInN single quantum well (SQW)/GaN structure was investigated by conventional photoluminescence (PL), transmission electron microscopy (TEM), and time-resolved and temperature-dependent photoluminescence (TRPL). SQW PL intensity remained constant initially, although plasma etching of the CAP layer proceeded, but when the etching thickness reached a certain amount (˜60 nm above the SQW), PL intensity started to decrease sharply. On the other hand, TEM observations show that the physical damage (structural damage) was limited to the topmost surface region. These findings can be explained by the results of TRPL studies, which revealed that there exist two different causes of PID. One is an increase in the number of nonradiative recombination centers, which mainly affects the PL intensity. The other is an increase in the quantum level fluctuation owing mainly to physical damage.

  7. Effects of growth retardants and fumigations with ozone and sulfur dioxide on growth and flowering of Euphorbia pulcherrima Willd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathey, H.M.; Heggestad, H.E.

    1973-01-01

    Eight cultivars of poinsettia, Euphorbia pulcherrima Willd., were evaluated for sensitivity to ..cap alpha..-cyclopropyl-..cap alpha.. (4-methoxyphenyl)-5-pyrimidine methanol (ancymidol) and protection from ozone and sulfur dioxide injury afforded by applications of ancymidol and (2-chloroethyl) trimethyl ammonium chloride (chlormequat). Foliar sprays of ancymidol were at least 80 to 500 times and the soil drench 1000 times more active than chlormequat in retarding stem elongation. The diam of the bracts was reduced, but branching increased more on plants treated with ancymidol than on untreated plants. The cv. Annette Hegg (AH) was more sensitive to ozone fumigations than was Eckespoint C-1' (C-1). Sulfur dioxidemore » also caused more injury to AH than to C-1. Ancymidol and chlormequat reduced visible injury induced by ozone and sulfur dioxide.« less

  8. Superior magnetic properties of Ni ferrite nanoparticles synthesized by capping agent-free one-step coprecipitation route at different pH values

    NASA Astrophysics Data System (ADS)

    Iranmanesh, P.; Tabatabai Yazdi, Sh.; Mehran, M.; Saeednia, S.

    2018-03-01

    In this work, well-dispersed nanoparticles of NiFe2O4 with diameters less than 10 nm and good crystallinity and excellent magnetic properties were synthesized via a simple one-step capping agent-free coprecipitation route from metal chlorides. The ammonia was used as the precipitating agent and also the solution basicity controller. The effect of pH value during the coprecipitation process was investigated by details through microstructural, optical and magnetic characterizations of the synthesized particles using X-ray diffraction, transmission electron microscopy, Fourier transform infrared and UV-vis spectroscopy, and vibrating sample magnetometer. The results showed that the particle size, departure from the inverse spinel structure, the band gap value and the magnetization of Ni ferrite samples increase with pH value from 9 to 11 indicating the more pronounced surface effects in the smaller nanoparticles.

  9. Integration of Porogen-Based Low-k Films: Influence of Capping Layer Thickness and Long Thermal Anneals on Low-k Damage and Reliability

    NASA Astrophysics Data System (ADS)

    De Roest, David; Vereecke, Bart; Huffman, Craig; Heylen, Nancy; Croes, Kristof; Arai, Hirofumi; Takamure, Noboru; Beynet, Julien; Sprey, Hessel; Matsushita, Kiyohiro; Kobayashi, Nobuyoshi; Verdonck, Patrick; Demuynck, Steven; Beyer, Gerald; Tokei, Zsolt; Struyf, Herbert

    2010-05-01

    This paper discusses integration aspects of a porous low-k film (k ˜2.45) cured with a broadband UV lamp. Different process splits are discussed which could contribute to avoid integration induced damage and improve reliability. The main factor contributing to a successful integration is the presence of a thick (protecting) cap layer partially remaining after chemical mechanical polishing (CMP), which leads to yielding structures with a keff of ˜2.6, a breakdown voltage of ˜6.9 MV/cm and time dependent dielectric breakdown (TDDB) lifetimes in the excess of 100 years. Long thermal anneals restore the k-value but degrade lifetime.

  10. CryoScout: A Descent Through the Mars Polar Cap

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Saunders, R. S.

    2003-01-01

    CryoScout was proposed as a subsurface investigation of the stratigraphic climate record embedded in Mars North Polar cap. After landing on a gentle landscape in the midst of the mild summer season, CryoScout was to use the continuous polar sunlight to power the descent of a cryobot, a thermal probe, into the ice at a rate of about 1 m per day. CryoScout would probe deep enough into this time capsule to see the effects of planetary obliquity variations and discrete events such as dust storms or volcanic eruptions. By penetrating tens of meters of ice, the mission would explore at least one of the dominant "MOC layers" observed in exposed layered terrain.

  11. Room-temperature codeposition growth technique for pinhole reduction in epitaxial CoSi2 on Si (111)

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.; D'Anterroches, C.

    1988-01-01

    A solid-phase epitaxy has been developed for the growth of CoSi2 films on Si (111) with no observable pinholes (1000/sq cm detection limit). The technique utilizes room-temperature codeposition of Co and Si in stoichiometric ratio, followed by the deposition of an amorphous Si capping layer and subsequent in situ annealing at 550-600 C. CoSi2 films grown without the Si cap are found to have pinhole densities of (1-10) x 10 to the 7th/sq cm when annealed at similar temperatures. A CF4 plasma-etching technique was used to increase the visibility of the pinholes in the silicide layer.

  12. Hybrid III-V on Si grating as a broadband reflector and a high-Q resonator

    NASA Astrophysics Data System (ADS)

    Chung, Il-Sug; Taghizadeh, Alireza; Park, Gyeong Cheol

    2016-03-01

    Hybrid grating (HG) with a high-refractive-index cap layer added onto a high contrast grating (HCG), can provide a high reflectance close 100 % over a broader wavelength range than HCGs, or work as a ultrahigh quality (Q) factor resonator. The reflection and resonance properties of HGs have been investigated and the mechanisms leading to these properties are discussed. A HG reflector sample integrating a III-V cap layer with InGaAlAs quantum wells onto a Si grating has been fabricated and its reflection property has been characterized. The HG-based lasers have a promising prospect for silicon photonics light source or high-speed laser applications.

  13. Studies of Martian polar regions. [using CO2 flow

    NASA Technical Reports Server (NTRS)

    Smith, C. I.; Clark, B. R.; Eschman, D. F.

    1974-01-01

    The flow law determined experimentally for solid CO2 establishes that an hypothesis of glacial flow of CO2 at the Martian poles is not physically unrealistic. Compression experiments carried out under 1 atmosphere pressure and constant strain rate conditions demonstrate that the strength of CO2 near its sublimation point is considerably less than the strength of water ice near its melting point. A plausible glacial model for the Martian polar caps was constructed. The CO2 deposited near the pole would have flowed outward laterally to relieve high internal shear stresses. The topography of the polar caps, and the uniform layering and general extent of the layered deposits were explained using this model.

  14. The effect of chloride ions on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation.

    PubMed

    Wan, Tong; Xiao, Ning; Shen, Hanjie; Yong, Xingyue

    2016-11-01

    The effects of Cl(-) on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation in chloride solutions were investigated using nanoindentation in conjunction with XRD and XPS. The results demonstrate that Cl(-) had a strong effect on the nano-mechanical properties of the corroded surface layer under cavitation, and there was a threshold Cl(-) concentration. Furthermore, a close relationship between the nano-mechanical properties and the cavitation corrosion resistance of 00Cr22Ni5Mo3N duplex stainless steel was observed. The degradation of the nano-mechanical properties of the corroded surface layer was accelerated by the synergistic effect between cavitation erosion and corrosion. A key factor was the adsorption of Cl(-), which caused a preferential dissolution of the ferrous oxides in the passive film layer on the corroded surface layer. Cavitation further promoted the preferential dissolution of the ferrous oxides in the passive film layer. Simultaneously, cavitation accelerated the erosion of the ferrite in the corroded surface layer, resulting in the degradation of the nano-mechanical properties of the corroded surface layer on 00Cr22Ni5Mo3N duplex stainless steel under cavitation. Copyright © 2016. Published by Elsevier B.V.

  15. Enhanced characteristics of blue InGaN /GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length

    NASA Astrophysics Data System (ADS)

    Lin, Ray-Ming; Lu, Yuan-Chieh; Chou, Yi-Lun; Chen, Guo-Hsing; Lin, Yung-Hsiang; Wu, Meng-Chyi

    2008-06-01

    We have studied the characteristics of blue InGaN /GaN multiquantum-well light-emitting diodes (LEDs) after reducing the length of the lateral current path through the transparent layer through formation of a peripheral high-resistance current-blocking region in the Mg-doped GaN layer. To study the mechanism of selective activation in the Mg-doped GaN layer, we deposited titanium (Ti), gold (Au), Ti /Au, silver, and copper individually onto the Mg-doped GaN layer and investigated their effects on the hole concentration in the p-GaN layer. The Mg-doped GaN layer capped with Ti effectively depressed the hole concentration in the p-GaN layer by over one order of magnitude relative to that of the as-grown layer. This may suggest that high resistive regions are formed by diffusion of Ti and depth of high resistive region from the p-GaN surface depends on the capped Ti film thickness. Selective activation of the Mg-doped GaN layer could be used to modulate the length of the lateral current path. Furthermore, the external quantum efficiency of the LEDs was improved significantly after reducing the lateral current spreading length. In our best result, the external quantum efficiency was 52.3% higher (at 100mA) than that of the as-grown blue LEDs.

  16. Materials and methods for the preparation of nanocomposites

    DOEpatents

    Nag, Angshuman; Talapin, Dmitri V.

    2018-01-30

    Disclosed herein is an isolable colloidal particle comprising a nanoparticle and an inorganic capping agent bound to the surface of the nanoparticle, a method for making the same in a biphasic solvent mixture, and the formation of structures and solids from the isolable colloidal particle. The process can yield photovoltaic cells, piezoelectric crystals, thermoelectric layers, optoelectronic layers, light emitting diodes, ferroelectric layers, thin film transistors, floating gate memory devices, phase change layers, and sensor devices.

  17. Passivation Characteristics of Alloy Corrosion-Resistant Steel Cr10Mo1 in Simulating Concrete Pore Solutions: Combination Effects of pH and Chloride

    PubMed Central

    Ai, Zhiyong; Sun, Wei; Jiang, Jinyang; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-01-01

    The electrochemical behaviour for passivation of new alloy corrosion-resistant steel Cr10Mo1 immersed in alkaline solutions with different pH values (13.3, 12.0, 10.5, and 9.0) and chloride contents (0.2 M and 1.0 M), was investigated by various electrochemical techniques: linear polarization resistance, electrochemical impedance spectroscopy and capacitance measurements. The chemical composition and structure of passive films were determined by XPS. The morphological features and surface composition of the immersed steel were evaluated by SEM together with EDS chemical analysis. The results evidence that pH plays an important role in the passivation of the corrosion-resistant steel and the effect is highly dependent upon the chloride contents. In solutions with low chloride (0.2 M), the corrosion-resistant steel has notably enhanced passivity with pH falling from 13.3 to 9.0, but does conversely when in presence of high chloride (1.0 M). The passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer enriched in Fe oxides and hydroxides, and an inner layer, rich in Cr species. The film composition varies with pH values and chloride contents. As the pH drops, more Cr oxides are enriched in the film while Fe oxides gradually decompose. Increasing chloride promotes Cr oxides and Fe oxides to transform into their hydroxides with little protection, and this is more significant at lower pH (10.5 and 9.0). These changes annotate passivation characteristics of the corrosion-resistant steel in the solutions of different electrolyte. PMID:28773867

  18. Passivation Characteristics of Alloy Corrosion-Resistant Steel Cr10Mo1 in Simulating Concrete Pore Solutions: Combination Effects of pH and Chloride.

    PubMed

    Ai, Zhiyong; Sun, Wei; Jiang, Jinyang; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-09-01

    The electrochemical behaviour for passivation of new alloy corrosion-resistant steel Cr10Mo1 immersed in alkaline solutions with different pH values (13.3, 12.0, 10.5, and 9.0) and chloride contents (0.2 M and 1.0 M), was investigated by various electrochemical techniques: linear polarization resistance, electrochemical impedance spectroscopy and capacitance measurements. The chemical composition and structure of passive films were determined by XPS. The morphological features and surface composition of the immersed steel were evaluated by SEM together with EDS chemical analysis. The results evidence that pH plays an important role in the passivation of the corrosion-resistant steel and the effect is highly dependent upon the chloride contents. In solutions with low chloride (0.2 M), the corrosion-resistant steel has notably enhanced passivity with pH falling from 13.3 to 9.0, but does conversely when in presence of high chloride (1.0 M). The passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer enriched in Fe oxides and hydroxides, and an inner layer, rich in Cr species. The film composition varies with pH values and chloride contents. As the pH drops, more Cr oxides are enriched in the film while Fe oxides gradually decompose. Increasing chloride promotes Cr oxides and Fe oxides to transform into their hydroxides with little protection, and this is more significant at lower pH (10.5 and 9.0). These changes annotate passivation characteristics of the corrosion-resistant steel in the solutions of different electrolyte.

  19. Effects of chloride additives on the mechanical stability and environmental durability of porous MgF2 thin films

    NASA Astrophysics Data System (ADS)

    Schütz, F.; Scheurell, K.; Scholz, G.; Kemnitz, E.

    2016-09-01

    Porous antireflective thin films, prepared of nanoscopic MgF2 sols, exhibit a low refraction index and are useful for various optical applications. Due to their porosity, film stability and durability suffer from mechanical abrasion and water solubility, respectively. Hence, we present approaches of improved mechanical stability of MgF2 layers induced by chloride addition. Antireflective (AR) films were produced by dip-coating followed by thermal treatment. Afterwards, film stability and environmental durability was strained by crockmeter and water stability tests, respectively. In comparison to films prepared from chloride-free MgF2 sols, chloride mingled sols form coatings with increased mechanical stability and a lower solubility.

  20. INNOVATIVE IN-SITU REMEDIATION OF CONTAMINATED SEDIMENTS FOR SIMULTANEOUS CONTROL OF CONTAMINATION AND EROSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, A; Michael Paller, M; Danny D. Reible, D

    2007-11-28

    New technologies are needed that neutralize contaminant toxicity and control physical transport mechanisms that mobilize sediment contaminants. The last 12 months of this comprehensive project investigated the use of combinations of sequestering agents to develop in situ active sediment caps that stabilize mixtures of contaminants and act as a barrier to mechanical disturbance under a broad range of environmental conditions. Efforts focused on the selection of effective sequestering agents for use in active caps, the composition of active caps, and the effects of active cap components on contaminant bioavailability and retention. Results from this project showed that phosphate amendments, somemore » organoclays, and the biopolymer, chitosan, were very effective at removing metals from both fresh and salt water. These amendments also exhibited high retention (80% or more) of most metals indicating reduced potential for remobilization to the water column. Experiments on metal speciation and retention in contaminated sediment showed that apatite and organoclay can immobilize a broad range of metals under both reduced and oxidized conditions. These studies were followed by sequential extractions to evaluate the bioavailability and retention of metals in treated sediments. Metal fractions recovered in early extraction steps are more likely to be bioavailable and were termed the Potentially Mobile Fraction (PMF). Less bioavailable fractions collected in later extraction steps were termed the Recalcitrant Factor (RF). Apatite and organoclay reduced the PMF and increased the RF for several elements, especially Pb, Zn, Ni, Cr, and Cd. Empirically determined partitioning coefficients and modeling studies were used to assess the retention of organic contaminants on selected sequestering agents. Organoclays exhibited exceptionally high sorption of polycyclic aromatic hydrocarbons as indicated by a comparison of K{sub d} values among 12 amendments. These results suggested that organoclays have high potential for controlling organic contaminants. Measured partitioning coefficients were used to model the time required for a contaminant to penetrate sediment caps composed of organoclay. The results showed that a thin layer of highly sorptive organoclay can lead to very long migration times, perhaps longer than the expected lifetime of the contaminant in the sediment environment. A one-dimensional numerical model was used to examine the diffusion of metals through several cap material based on measured and assumed material and transport properties. These studies showed that active caps composed of apatite or organoclay have the potential to delay contaminant breakthrough due to diffusion by hundreds of years or more compared with passive caps composed of sand. Advectively dominated column experiments are currently underway to define effective sorption related retardation factors in promising amendments for various hydrophobic organic compounds. Upon completion of these experiments, advection transient models will be used to estimate the time required for the breakthrough of various contaminants in caps composed of different experimental materials. Biopolymer products for inclusion in active caps were evaluated on the basis of resistance to biodegradation, sorption capacity for organic and inorganic contaminants, and potential for erosion control. More than 20 biopolymer products were evaluated resulting in the selection of chitosan/guar gum cross-linked with borax and xanthan/chitosan cross-linked with calcium chloride for inclusion in active caps to produce a barrier that resists mechanical disturbance. A process was developed for coating sand with cross-linked biopolymers to provide a means for delivery to the sediment surface. Properties of biopolymer coated sand such as carbon fraction (indicating biopolymer coverage), porosity, bulk density, and biodegradability have been evaluated, and experiments are currently underway to assess the resistance of biopolymer coated sand to erosion. Although the ability of active cap materials to remediate contaminants has been emphasized in this study, it is also important to ensure that these materials do not have deleterious effects on the environment. Therefore, promising amendments were evaluated for toxicity using 10 day sediment toxicity tests, the standardized Toxicity Characteristic Leaching Procedure (TCLP), and measurement of metal concentrations in aqueous extracts from the amendments. Metal concentrations were below TCLP limits, EPA ambient water quality criteria, and other ecological screening values These results showed that apatite, organoclay, and biopolymer coated sand do not release metals. The sediment toxicity tests indicated that apatite and biopolymer coated sand are unlikely to adversely affect benthic organisms, even when used in high concentrations.« less

  1. Bi-layer sandwich film for antibacterial catheters

    PubMed Central

    Schamberger, Florian; Zare, Hamideh Heidari; Bröskamp, Sara Felicitas; Jocham, Dieter

    2017-01-01

    Background: Approximately one quarter of all nosocomial infections can be attributed to the urinary tract. The infections are supposed to be mainly caused by implantations of urethral catheters and stents. A new catheter design is introduced with the aim to lower the high number of nosocomial urethral infections. In order to avoid limitations to use, the design is first applied to conventional commercially available balloon catheters. Results: The main feature of the design is a sandwich layer on both sides of the catheter wall, which is composed of a fragmented base layer of silver capped by a thin film of poly(p-xylylene). This top layer is mainly designed to release a controlled amount of Ag+ ions, which is bactericidal, but not toxic to humans. Simultaneously, the lifetime is prolonged to at least one year. The base layer is electrolessly deposited applying Tollens’ reagens, the cap layer is deposited by using chemical vapor deposition. Conclusion: The three main problems of this process, electroless deposition of a fragmented silver film on the surface of an electrically insulating organic polymer, irreproducible evaporation during heating of the precursor, and exponential decrease of the layer thickness along the capillary, have been solved trough the application of a simple electrochemical reaction and two standard principles of physics: Papin’s pot and the principle of Le Chatelier. PMID:29046846

  2. Bi-layer sandwich film for antibacterial catheters.

    PubMed

    Franz, Gerhard; Schamberger, Florian; Zare, Hamideh Heidari; Bröskamp, Sara Felicitas; Jocham, Dieter

    2017-01-01

    Background: Approximately one quarter of all nosocomial infections can be attributed to the urinary tract. The infections are supposed to be mainly caused by implantations of urethral catheters and stents. A new catheter design is introduced with the aim to lower the high number of nosocomial urethral infections. In order to avoid limitations to use, the design is first applied to conventional commercially available balloon catheters. Results: The main feature of the design is a sandwich layer on both sides of the catheter wall, which is composed of a fragmented base layer of silver capped by a thin film of poly( p -xylylene). This top layer is mainly designed to release a controlled amount of Ag + ions, which is bactericidal, but not toxic to humans. Simultaneously, the lifetime is prolonged to at least one year. The base layer is electrolessly deposited applying Tollens' reagens, the cap layer is deposited by using chemical vapor deposition. Conclusion: The three main problems of this process, electroless deposition of a fragmented silver film on the surface of an electrically insulating organic polymer, irreproducible evaporation during heating of the precursor, and exponential decrease of the layer thickness along the capillary, have been solved trough the application of a simple electrochemical reaction and two standard principles of physics: Papin's pot and the principle of Le Chatelier.

  3. Low temperature processed complementary metal oxide semiconductor (CMOS) device by oxidation effect from capping layer.

    PubMed

    Wang, Zhenwei; Al-Jawhari, Hala A; Nayak, Pradipta K; Caraveo-Frescas, J A; Wei, Nini; Hedhili, M N; Alshareef, H N

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190 °C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  4. Cleaning of optical surfaces by capacitively coupled RF discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, P. K., E-mail: praveenyadav@rrcat.gov.in; Rai, S. K.; Nayak, M.

    2014-04-24

    In this paper, we report cleaning of carbon capped molybdenum (Mo) thin film by in-house developed radio frequency (RF) plasma reactor, at different powers and exposure time. Carbon capped Mo films were exposed to oxygen plasma for different durations at three different power settings, at a constant pressure. After each exposure, the thickness of the carbon layer and the roughness of the film were determined by hard x-ray reflectivity measurements. It was observed that most of the carbon film got removed in first 15 minutes exposure. A high density layer formed on top of the Mo film was also observedmore » and it was noted that this layer cannot be removed by successive exposures at different powers. A significant improvement in interface roughness with a slight improvement in top film roughness was observed. The surface roughness of the exposed and unexposed samples was also confirmed by atomic force microscopy measurements.« less

  5. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    PubMed Central

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, M. N.; Alshareef, H. N.

    2015-01-01

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field. PMID:25892711

  6. Raising the Corrosion Resistance of Low-Carbon Steels by Electrolytic-Plasma Saturation with Nitrogen and Carbon

    NASA Astrophysics Data System (ADS)

    Kusmanov, S. A.; Grishina, E. P.; Belkin, P. N.; Kusmanova, Yu. V.; Kudryakova, N. O.

    2017-05-01

    Structural features of the external oxide layer and internal nitrided, carbonitrided and carburized layers in steels 10, 20 and St3 produced by the method of electrolytic plasma treatment are studied. Specimens of the steels are tested for corrosion in a naturally aerated 1-N solution of sodium chloride. The condition of the metal/sodium chloride solution interface is studied by the method of electrochemical impedance spectroscopy. It is shown that the corrosion resistance of low-carbon steels can be raised by anode electrolytic-plasma saturation with nitrogen and carbon. Recommendations are given on the choice of carbonitriding modes for structural steels.

  7. Hexagonal bubble formation and nucleation in sodium chloride solution

    NASA Astrophysics Data System (ADS)

    Wang, Lifen; Liu, Lei; Mohsin, Ali; Wen, Jianguo; Gu, Gong; Miller, Dean

    The bubble is formed frequently at a solid-liquid interface when the surface of the solid or liquid has a tendency of accumulating molecular species due to unbalanced surface hydrophobicity attraction. Morphology and shape of the bubble are thought to be associated with the Laplace pressure that spherical-cap-shaped object are commonly observed. Dynamic surface nanobubble formation and nucleation in the controlled system have been not fully investigated due to the direct visualization challenge in liquid systems. Here, utilizing in situ TEM, dynamic formation and collapse of spherical-shaped nanobubbles were observed at the water-graphene interface, while hexagonal nanobubbles grew and merged with each other at water-crystalline sodium chloride interface. Our finding demonstrates that different hydrophobic-hydrophilic interaction systems give rise to the varied morphology of surface nanobubble, leading to the fundamental understanding of the interface-interaction-governed law on the formation of surface nanobubble.

  8. Complex Burial and Exhumation of South Polar Cap Pitted Terrain

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image is illuminated by sunlight from the upper left. The two prominent bright stripes at the left/center of the image are covered with bright frost and thus create the illusion that they are sunlit from the lower left.

    The large pits, troughs, and 'swiss cheese' of the south polar residual cap appear to have been formed in the upper 4 or 5 layers of the polar material. Each layer is approximately 2 meters (6.6 feet) thick. Some Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images of this terrain show examples in which older pitted and eroded layers have been previously buried and are now being exhumed. The example shown here includes two narrow, diagonal slopes that trend from upper left toward lower right at the left/center portion of the frame. Along the bottoms of these slopes are revealed a layer that underlies them in which there are many more pits and troughs than in the upper layer. It is likely in this case that the lower layer formed its pits and troughs before it was covered by the upper layer. This observation suggests that the troughs, pits, and 'swiss cheese' features of the south polar cap are very old and form over long time scales.

    The picture is located near 84.6oS, 45.1oW, and covers an area 3 km by 5 km (1.9 x 3.1 mi) at a resolution of about 3.8 meters (12 ft) per pixel. The image was taken during southern spring on August 29, 1999.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  9. Testing the "Mudball Earth" Hypothesis: Are Neoproterozoic Glacial Deposits Capped with Supraglacial Dust?

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.; Alvim Lage, C.

    2014-12-01

    The Snowball Earth hypothesis has inspired several variants which may help to explain some of the great mysteries of the Neoproterozoic glaciations. One of these, the "Mudball Earth", proposes that as the Earth remained completely frozen for millions of years, a layer of dust accumulated on the ice surface. This dust layer would darken the planet, making it easier for the Earth to escape from the highly stable snowball climate state. This hypothesis is testable: after the ice melted at the end of a glacial era, this dust would sink to the bottom of the ocean, possibly forming a distinct clay, mud, or silt layer on the top of the glacial till deposits: this "clay drape" would then be covered by the cap carbonates that mark a return to warm climate. Sublimation and ice flow during the glacial episode should make this layer thicker at the equator and thinner or absent in the poles. Is this clay layer actually present in the rock record? Is it more prevalent at the paleoequator, as predicted? A clay drape has been noticed anecdotally, but no global survey has been done to date. We conducted a thorough literature review of all sites where Neoproterozoic glacial diamictites have been observed, identifying the type of rock that lies between the diamictite and the postglacial cap carbonate, when present, during both Sturtian and Marinoan glacial periods. Only a few publications identify a distinct clay/silt/mud layer that might represent weathered dust. These sites are not grouped by paleolatitude in any obvious way. With access only to published reports, we cannot determine whether such a layer is absent, went unreported, or was misinterpreted by us. With this work we hope to attract the attention of Neoproterozoic field geologists, inviting them to comment on the presence or absence of strata which could confirm or reject the "Mudball" hypothesis.

  10. Tuning the interfacial charge, orbital, and spin polarization properties in La0.67Sr0.33MnO3/La1-xSrxMnO3 bilayers

    NASA Astrophysics Data System (ADS)

    Carreira, Santiago J.; Aguirre, Myriam H.; Briatico, Javier; Weschke, Eugen; Steren, Laura B.

    2018-01-01

    The possibility of controlling the interfacial properties of artificial oxide heterostructures is still attracting researchers in the field of materials engineering. Here, we used surface sensitive techniques and high-resolution transmission electron microscopy to investigate the evolution of the surface spin-polarization and lattice strains across the interfaces between La0.66Sr0.33MnO3 thin films and low-doped manganites as capping layers. We have been able to fine tune the interfacial spin-polarization by changing the capping layer thickness and composition. The spin-polarization was found to be the highest at a critical capping thickness that depends on the Sr doping. We explain the non-trivial magnetic profile by the combined effect of two mechanisms: On the one hand, the extra carriers supplied by the low-doped manganites that tend to compensate the overdoped interface, favouring locally a ferromagnetic double-exchange coupling. On the other hand, the evolution from a tensile-strained structure of the inner layers to a compressed structure at the surface that changes gradually the orbital occupation and hybridization of the 3d-Mn orbitals, being detrimental for the spin polarization. The finding of an intrinsic spin-polarization at the A-site cation observed in x-ray magnetic circular dichroism (XMCD) measurements also reveals the existence of a complex magnetic configuration at the interface, different from the magnetic phases observed at the inner layers.

  11. Ultraviolet emission enhancement in ZnO thin films modified by nanocrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Zheng, Gaige; Lu, Xi; Qian, Liming; Xian, Fenglin

    2017-05-01

    In this study, nanocrystalline TiO2 modified ZnO thin films were prepared by electron beam evaporation. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy, fluorescence spectroscopy, respectively. The composition of the films was examined by energy dispersive X-ray spectroscopy (EDX). The photoluminescent spectrum shows that the pure ZnO thin film exhibits an ultraviolet (UV) emission peak and a strong green emission band. Surface analysis indicates that the ZnO thin film contains many oxygen vacancy defects on the surface. After the ZnO thin film is modified by the nanocrystalline TiO2 layer, the UV emission of ZnO is largely enhanced and the green emission is greatly suppressed, which suggests that the surface defects such as oxygen vacancies are passivated by the TiO2 capping layer. As for the UV emission enhancement of the ZnO thin film, the optimized thickness of the TiO2 capping layer is ∼16 nm. When the thickness is larger than 16 nm, the UV emission of the ZnO thin film will decrease because the TiO2 capping layer absorbs most of the excitation energy. The UV emission enhancement in the nanocrystalline TiO2 modified ZnO thin film can be attributed to surface passivation and flat band effect.

  12. Linking Dynamics of the Near-surface Flow to Deeper Boundary Layer Forcing in the Nocturnal Boundary Layer

    DTIC Science & Technology

    2012-06-01

    Kaimal and Finnigan (1994), modified) Figure 2.2 illustrates the evolution from unstable CBL to a nocturnal Stable Bound- ary Layer ( SBL ) in the absence...mixed layer acts as a cap for the SBL . The SBL persists through the night until sunrise when surface heating resumes and a new unstable layer begins...to form at the surface, gradually returning to a CBL. 7 2.2.1 Dynamics of the stable boundary layer Because the SBL is stably stratified, buoyancy

  13. Buffer layers for REBCO films for use in superconducting devices

    DOEpatents

    Goyal, Amit; Wee, Sung-Hun

    2014-06-10

    A superconducting article includes a substrate having a biaxially textured surface. A biaxially textured buffer layer, which can be a cap layer, is supported by the substrate. The buffer layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different transition metal cations. A biaxially textured superconductor layer is deposited so as to be supported by the buffer layer. A method of making a superconducting article is also disclosed.

  14. Phosphate-based glass fiber vs. bulk glass: Change in fiber optical response to probe in vitro glass reactivity.

    PubMed

    Massera, J; Ahmed, I; Petit, L; Aallos, V; Hupa, L

    2014-04-01

    This paper investigates the effect of fiber drawing on the thermal and structural properties as well as on the glass reactivity of a phosphate glass in tris(hydroxymethyl)aminomethane-buffered (TRIS) solution and simulated body fluid (SBF). The changes induced in the thermal properties suggest that the fiber drawing process leads to a weakening and probable re-orientation of the POP bonds. Whereas the fiber drawing did not significantly impact the release of P and Ca, an increase in the release of Na into the solution was noticed. This was probably due to small structural reorientations occurring during the fiber drawing process and to a slight diffusion of Na to the fiber surface. Both the powders from the bulk and the glass fibers formed a Ca-P surface layer when immersed in SBF and TRIS. The layer thickness was higher in the calcium and phosphate supersaturated SBF than in TRIS. This paper for the first time presents the in vitro reactivity and optical response of a phosphate-based bioactive glass (PBG) fiber when immersed in SBF. The light intensity remained constant for the first 48h after which a decrease with three distinct slopes was observed: the first decrease between 48 and 200h of immersion could be correlated to the formation of the Ca-P layer at the fiber surface. After this a faster decrease in light transmission was observed from 200 to ~425h in SBF. SEM analysis suggested that after 200h, the surface of the fiber was fully covered by a thin Ca-P layer which is likely to scatter light. For immersion times longer than ~425h, the thickness of the Ca-P layer increased and thus acted as a barrier to the dissolution process limiting further reduction in light transmission. The tracking of light transmission through the PBG fiber allowed monitoring of the fiber dissolution in vitro. These results are essential in developing new bioactive fiber sensors that can be used to monitor bioresponse in situ. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Comparing XPS on bare and capped ZrN films grown by plasma enhanced ALD: Effect of ambient oxidation

    NASA Astrophysics Data System (ADS)

    Muneshwar, Triratna; Cadien, Ken

    2018-03-01

    In this article we compare x-ray photoelectron spectroscopy (XPS) measurements on bare- and capped- zirconium nitride (ZrN) films to investigate the effect of ambient sample oxidation on the detected bound O in the form of oxide ZrO2 and/or oxynitride ZrOxNy. ZrN films in both bare- and Al2O3/AlN capped- XPS samples were grown by plasma-enhanced atomic layer deposition (PEALD) technique using tetrakis dimethylamino zirconium (TDMAZr) precursor, forming gas (5% H2, rest N2) inductively coupled plasma (ICP), and as received research grade process gases under identical process conditions. Capped samples were prepared by depositing 1 nm thick PEALD AlN on ZrN, followed by additional deposition of 1 nm thick ALD Al2O3, without venting of ALD reactor. On bare ZrN sample at room temperature, spectroscopic ellipsometry (SE) measurements with increasing ambient exposure times (texp) showed a self-limiting surface oxidation with the oxide thickness (dox) approaching 3.7 ± 0.02 nm for texp > 120 min. In XPS data measured prior to sample sputtering (tsput = 0), ZrO2 and ZrOxNy were detected in bare- samples, whereas only ZrN and Al2O3/AlN from capping layer were detected in capped- samples. For bare-ZrN samples, appearance of ZrO2 and ZrOxNy up to sputter depth (dsput) of 15 nm in depth-profile XPS data is in contradiction with measured dox = 3.7 nm, but explained from sputtering induced atomic inter-diffusion within analyzed sample. Appearance of artifacts in the XPS spectra from moderately sputtered (dsput = 0.2 nm and 0.4 nm) capped-ZrN sample, provides an evidence to ion-bombardment induced modifications within analyzed sample.

  16. Analysis of Factors that Influence Infiltration Rates using the HELP Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, J.; Shipmon, J.

    The Hydrologic Evaluation of Landfill Performance (HELP) model is used by Savannah River National Laboratory (SRNL) in conjunction with PORFLOW groundwater flow simulation software to make longterm predictions of the fate and transport of radionuclides in the environment at radiological waste sites. The work summarized in this report supports preparation of the planned 2018 Performance Assessment for the E-Area Low-Level Waste Facility (LLWF) at the Savannah River Site (SRS). More specifically, this project focused on conducting a sensitivity analysis of infiltration (i.e., the rate at which water travels vertically in soil) through the proposed E-Area LLWF closure cap. A sensitivitymore » analysis was completed using HELP v3.95D to identify the cap design and material property parameters that most impact infiltration rates through the proposed closure cap for a 10,000-year simulation period. The results of the sensitivity analysis indicate that saturated hydraulic conductivity (Ksat) for select cap layers, precipitation rate, surface vegetation type, and geomembrane layer defect density are dominant factors limiting infiltration rate. Interestingly, calculated infiltration rates were substantially influenced by changes in the saturated hydraulic conductivity of the Upper Foundation and Lateral Drainage layers. For example, an order-of-magnitude decrease in Ksat for the Upper Foundation layer lowered the maximum infiltration rate from a base-case 11 inches per year to only two inches per year. Conversely, an order-of-magnitude increase in Ksat led to an increase in infiltration rate from 11 to 15 inches per year. This work and its results provide a framework for quantifying uncertainty in the radionuclide transport and dose models for the planned 2018 E-Area Performance Assessment. Future work will focus on the development of a nonlinear regression model for infiltration rate using Minitab 17® to facilitate execution of probabilistic simulations in the GoldSim® overall system model for the E-Area LLWF.« less

  17. High mobility, dual layer, c-axis aligned crystalline/amorphous IGZO thin film transistor

    NASA Astrophysics Data System (ADS)

    Chung, Chen-Yang; Zhu, Bin; Greene, Raymond G.; Thompson, Michael O.; Ast, Dieter G.

    2015-11-01

    We demonstrate a dual layer IGZO thin film transistor (TFT) consisting of a 310 °C deposited c-axis aligned crystal (CAAC) 20 nm thick channel layer capped by a second, 30 nm thick, 260 °C deposited amorphous IGZO layer. The TFT exhibits a saturation field-effect mobility of ˜20 cm2/V s, exceeding the mobility of 50 nm thick single layer reference TFTs fabricated with either material. The deposition temperature of the second layer influences the mobility of the underlying transport layer. When the cap layer is deposited at room temperature (RT), the mobility in the 310 °C deposited CAAC layer is initially low (6.7 cm2/V s), but rises continuously with time over 58 days to 20.5 cm2/V s, i.e., to the same value as when the second layer is deposited at 260 °C. This observation indicates that the two layers equilibrate at RT with a time constant on the order of 5 × 106 s. An analysis based on diffusive transport indicates that the room temperature diffusivity must be of the order of 1 × 10-18 cm2 s-1 with an activation enthalpy EA < 0.2 eV for the mobility limiting species. The findings are consistent with a hypothesis that the amorphous layer deposited on top of the CAAC has a higher solubility for impurities and/or structural defects than the underlying nanocrystalline transport layer, and that the equilibration of the mobility limiting species is rate limited by hydrogen diffusion, whose known diffusivity fits these estimates.

  18. A rare positively charged nicotinic acid di­sulfide: 2,2′-di­thio­dinicotinic acid hydro­chloride monohydrate

    PubMed Central

    McGuire, Chad M.; Albrecht-Schmitt, Thomas E.

    2018-01-01

    The title compound {systematic name: 3-carb­oxy-2-[2-(3-carb­oxy­pyridin-2-yl)disulfan-1-yl)]pyridin-1-ium chloride monohydrate}, C12H9N2O4S2 +·Cl−·H2O, crystallizes in the triclinic space group P . A pair of 2-mercaptonicotinic acid moieties is connected by a 2,2′-di­sulfide bond with a dihedral angle of 78.79 (3)°. One of the N atom is protonated, as are both carboxyl­ate groups, resulting in an overall +1 charge on the dimer. The structure comprises a zigzagging layer of the dimerized di­thio­dinicotinic acid rings, with charge-balancing chloride ions and water mol­ecules between the layers. Hydrogen bonding between the chloride and water sites with the dimer appears to hold the structure together. Nearest neighbor nicotinic acid rings are offset when viewed down the a axis, suggesting no added stability from ring stacking. The asymmetric unit corresponds to the empirical formula of the compound, and it packs with two formula units per unit cell.

  19. Comparison of B{sub 2}O{sub 3} and BN deposited by atomic layer deposition for forming ultrashallow dopant regions by solid state diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consiglio, Steven, E-mail: steve.consiglio@us.tel.com; Clark, Robert D.; O'Meara, David

    2016-01-15

    In this study, the authors investigated atomic layer deposition (ALD) of B{sub 2}O{sub 3} and BN for conformal, ultrashallow B doping applications and compared the effect of dopant-containing overlayers on sheet resistance (R{sub s}) and B profiles for both types of films subjected to a drive-in thermal anneal. For the deposition of B{sub 2}O{sub 3}, tris(dimethylamido)borane and O{sub 3} were used as coreactants and for the deposition of BN, BCl{sub 3} and NH{sub 3} were used as coreactants. Due to the extreme air instability of B{sub 2}O{sub 3} films, physical analysis was performed on B{sub 2}O{sub 3} films, which weremore » capped in-situ with ∼30 Å ALD grown Al{sub 2}O{sub 3} layers. For the BN films, in-situ ALD grown Si{sub 3}N{sub 4} capping layers (∼30 Å) were used for comparison. From spectroscopic ellipsometry, a thickness decrease was observed after 1000 °C, 30 s anneal for the B{sub 2}O{sub 3} containing stack with 60 ALD cycles of B{sub 2}O{sub 3}, whereas the BN containing stacks showed negligible thickness decrease after the annealing step, regardless of the number of BN cycles tested. The postanneal reduction in film thickness as well as decrease in R{sub s} for the B{sub 2}O{sub 3} containing stack suggests that the solid state diffusion dopant mechanism is effective, whereas for the BN containing stacks this phenomenon seems to be suppressed. Further clarification of the effectiveness of the B{sub 2}O{sub 3} containing layer compared to the film stacks with BN was evidenced in backside secondary ion mass spectrometry profiling of B atoms. Thus, B{sub 2}O{sub 3} formed by an ALD process and subsequently capped in-situ followed by a drive-in anneal offers promise as a dopant source for ultrashallow doping, whereas the same method using BN seems ineffective. An integrated approach for B{sub 2}O{sub 3} deposition and annealing on a clustered tool also demonstrated controllable R{sub s} reduction without the use of a capping layer.« less

  20. Multi-Scale Investigation of the Formation and Breakdown of Passive Films on Carbon Steel Rebar in Concrete

    NASA Astrophysics Data System (ADS)

    Ghods, Pouria

    The multi-scale investigation presented in this thesis was carried out to understand better the mechanisms of passivation and chloride-induced depassivation of carbon steel reinforcement in concrete. The study consisted of electrochemical experiments (electrochemical impedance spectroscopy, linear polarization resistance, free corrosion potential, anodic polarization), microscopic examinations (scanning electron microscopy, transmission electron microscopy, selected area diffraction, convergent beam electron diffraction), numerical modeling (finite element method), and spectroscopic studies (x-ray photoelectron, energy dispersed x-ray, electron energy loss). Electrochemical and microscopic studies showed that the composition of the pore solution and the surface conditions of the rebar affect the passivity and depassivation of carbon steel in concrete. It was demonstrated that crevices between mill scale and steel may become potential sites for depassivation and pit nucleation. The numerical investigation that was carried out to test this hypothesis confirmed that the ratio of chloride to hydroxide concentrations, Cl-/OH-, in crevices increased to levels higher than that of the bulk pore solution, making crevices more vulnerable to depassivation. Therefore, it was concluded that the variability associated with reported chloride thresholds might be attributed, at least in part, to the variability in mill scale properties resulting from the variability in manufacturing. The nano-scale microscopic and spectroscopic studies indicated the formation of 4-10 nm-thick passive oxide films on carbon steel in simulated concrete pore solutions, and these films consisted of two layers separated with an indistinct border. The inner layer was mainly composed of protective Fe2+-rich oxides that are in epitaxial relationship with the underlying steel surface; while the outer layer mostly consisted of (possibly porous) Fe3+-rich oxides, through which chlorides can penetrate. It was proposed that, in the presence of chlorides, Fe+2-rich oxides in the inner layer transform into Fe+3-rich oxides and potentially become un-protective. Although how this transformation occurs is still subject of future research, there are evidences showing that the process most likely leads to the formation of local anodic and cathodic sites on the steel surface.

  1. Surface Ages and Resurfacing Rates of the Polar Layered Deposits on Mars

    USGS Publications Warehouse

    Herkenhoff, K. E.; Plaut, J.J.

    2000-01-01

    Interpretation of the polar stratigraphy of Mars in terms of global climate changes is complicated by the significant difference in surface ages between the north and south polar layered terrains inferred from crater statistics. We have reassessed the cratering record in both polar regions using Viking Orbiter and Mariner 9 images. No craters have been found in the north polar layered terrain, but the surface of most of the south polar layered deposits appears to have been stable for many of the orbital/axial cycles that are thought to have induced global climate changes on Mars. The inferred surface age of the south polar layered deposits (about 10 Ma) is two orders of magnitude greater than the surface age of the north polar layered deposits and residual cap (at most 100 ka). Similarly, modeled resurfacing rates are at least 20 times greater in the north than in the south. These results are consistent with the hypotheses that polar layered deposit resurfacing rates are highest in areas covered by perennial ice and that the differences in polar resurfacing rates result from the 6.4 km difference in elevation between the polar regions. Deposition on the portion of the south polar layered deposits that is not covered by the perennial ice cap may have ceased about 5 million years ago when the obliquity of Mars no longer exceeded 40??. ?? 2000 Academic Press.

  2. Coordination-based gold nanoparticle layers.

    PubMed

    Wanunu, Meni; Popovitz-Biro, Ronit; Cohen, Hagai; Vaskevich, Alexander; Rubinstein, Israel

    2005-06-29

    Gold nanoparticle (NP) mono- and multilayers were constructed on gold surfaces using coordination chemistry. Hydrophilic Au NPs (6.4 nm average core diameter), capped with a monolayer of 6-mercaptohexanol, were modified by partial substitution of bishydroxamic acid disulfide ligand molecules into their capping layer. A monolayer of the ligand-modified Au NPs was assembled via coordination with Zr4+ ions onto a semitransparent Au substrate (15 nm Au, evaporated on silanized glass and annealed) precoated with a self-assembled monolayer of the bishydroxamate disulfide ligand. Layer-by-layer construction of NP multilayers was achieved by alternate binding of Zr4+ ions and ligand-modified NPs onto the first NP layer. Characterization by atomic force microscopy (AFM), ellipsometry, wettability, transmission UV-vis spectroscopy, and cross-sectional transmission electron microscopy showed regular growth of NP layers, with a similar NP density in successive layers and gradually increased roughness. The use of coordination chemistry enables convenient step-by-step assembly of different ligand-possessing components to obtain elaborate structures. This is demonstrated by introducing nanometer-scale vertical spacing between a NP layer and the gold surface, using a coordination-based organic multilayer. Electrical characterization of the NP films was carried out using conductive AFM, emphasizing the barrier properties of the organic spacer multilayer. The results exhibit the potential of coordination self-assembly in achieving highly controlled composite nanostructures comprising molecules, NPs, and other ligand-derivatized components.

  3. Evidence of a reduction reaction of oxidized iron/cobalt by boron atoms diffused toward naturally oxidized surface of CoFeB layer during annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Soshi, E-mail: sato.soshi@cies.tohoku.ac.jp; Honjo, Hiroaki; Niwa, Masaaki

    2015-04-06

    We have investigated the redox reaction on the surface of Ta/CoFeB/MgO/CoFeB magnetic tunnel junction stack samples after annealing at 300, 350, and 400 °C for 1 h using angle-resolved X-ray photoelectron spectroscopy for precise analysis of the chemical bonding states. At a capping tantalum layer thickness of 1 nm, both the capping tantalum layer and the surface of the underneath CoFeB layer in the as-deposited stack sample were naturally oxidized. By comparison of the Co 2p and Fe 2p spectra among the as-deposited and annealed samples, reduction of the naturally oxidized cobalt and iron atoms occurred on the surface of the CoFeB layer.more » The reduction reaction was more significant at higher annealing temperature. Oxidized cobalt and iron were reduced by boron atoms that diffused toward the surface of the top CoFeB layer. A single CoFeB layer was prepared on SiO{sub 2}, and a confirmatory evidence of the redox reaction with boron diffusion was obtained by angle-resolved X-ray photoelectron spectroscopy analysis of the naturally oxidized surface of the CoFeB single layer after annealing. The redox reaction is theoretically reasonable based on the Ellingham diagram.« less

  4. Sources of high-chloride water and managed aquifer recharge in an alluvial aquifer in California, USA

    USGS Publications Warehouse

    O'Leary, David; Izbicki, John A.; Metzger, Loren F.

    2015-01-01

    As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency’s secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100–2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.

  5. Influence of microclimate on the sustainability and reliability of weathering steel bridge

    NASA Astrophysics Data System (ADS)

    Kubzova, M.; Krivy, V.; Kreislova, K.

    2018-04-01

    Reliability and sustainability of bridge structures designed from weathering steel are influenced by the development of a sufficiently protective layer of corrosion products on its surface. The development of this protective layer is affected by several parameters such as air pollution around the bridge structure, the microclimate under the bridge, the location of surface within the bridge structure and the time of wetness. Design of structural details also significantly influences the development of the protective corrosion layer. The article deals with the results of the experimental tests carried out on the road bridge located in the city of Ostrava in the Czech Republic. The development of the protective corrosion layer on the surface of the bridge is significantly influenced by the intensive traffic under the bridge construction and the design solution of the bridge itself. Attention is focused mainly on the influence of chloride deposition on the protective function of the corrosion layer. Corrosion samples were placed on the bridge to evaluate the influence of the above-mentioned parameters. The deposition rate of chlorides spreading from the road to surfaces of the steel structure is also measured.

  6. One-dimensional cold cap model for melters with bubblers

    DOE PAGES

    Pokorny, Richard; Hilliard, Zachary J.; Dixon, Derek R.; ...

    2015-07-28

    The rate of glass production during vitrification in an all-electrical melter greatly impacts the cost and schedule of nuclear waste treatment and immobilization. The feed is charged to the melter on the top of the molten glass, where it forms a layer of reacting and melting material, called the cold cap. During the final stages of the batch-to-glass conversion process, gases evolved from reactions produce primary foam, the growth and collapse of which controls the glass production rate. The mathematical model of the cold cap was revised to include functional representation of primary foam behavior and to account for themore » dry cold cap surface. The melting rate is computed as a response to the dependence of the primary foam collapse temperature on the heating rate and melter operating conditions, including the effect of bubbling on the cold cap bottom and top surface temperatures. The simulation results are in good agreement with experimental data from laboratory-scale and pilot-scale melter studies. Lastly, the cold cap model will become part of the full three-dimensional mathematical model of the waste glass melter.« less

  7. Effect of layer number and metal-chloride dopant on multiple layers of graphene/porous Si solar cells

    NASA Astrophysics Data System (ADS)

    Shin, Dong Hee; Kim, Jong Min; Jang, Chan Wook; Kim, Ju Hwan; Kim, Sung; Choi, Suk-Ho

    2018-03-01

    Porous silicon (PSi) is an attractive building block for Si-based solar cells due to its low reflectance. Here, PSi is prepared by metal-assisted chemical etching of a Si wafer on which Au nanoparticles are formed by sputtering for 5 s. The layer number (Ln) of graphene is varied to optimize multiple layers of graphene/PSi Schottky junction solar cells because the sheet resistance, work function, transmittance, and reflectance of graphene strongly depend on Ln. At Ln = 2, the best condition for the highest power conversion efficiency (PCE), various metal chlorides are employed as dopants for graphene. The PCE is maximally enhanced to 9.15% by doping the graphene with RhCl3 and is reduced by only 20% of its original value (absolutely from 9.15% to 7.23%) during 10 days in air. These results are very meaningful in that even a single doping for graphene can be effective for achieving high PCE from graphene/PSi solar cells by controlling Ln.

  8. Radar Detection of Layering in Ice: Experiments on a Constructed Layered Ice Sheet

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Koenig, L.; Courville, Z.; Ghent, R. R.; Koutnik, M. R.

    2016-12-01

    The polar caps and glaciers of both Earth and Mars display internal layering that preserves a record of past climate. These layers are apparent both in optical datasets (high resolution images, core samples) and in ground penetrating radar (GPR) data. On Mars, the SHARAD (Shallow Radar) radar on the Mars Reconnaissance Orbiter shows fine layering that changes spatially and with depth across the polar caps. This internal layering has been attributed to changes in fractional dust contamination due to obliquity-induced climate variations, but there are other processes that can lead to internal layers visible in radar data. In particular, terrestrial sounding of ice sheets compared with core samples have revealed that ice density and composition differences account for the majority of the radar reflectors. The large cold rooms and ice laboratory facility at the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) provide us a unique opportunity to construct experimental ice sheets in a controlled setting and measure them with radar. In a CRREL laboratory, we constructed a layered ice sheet that is 3-m deep with a various snow and ice layers with known dust concentrations (using JSC Mars-1 basaltic simulant) and density differences. These ice sheets were profiled using a commercial GPR, at frequencies of 200, 400 and 900 MHz, to determine how the radar profile changes due to systematic and known changes in snow and ice layers, including layers with sub-wavelength spacing. We will report results from these experiments and implications for interpreting radar-detected layering in ice on Earth and Mars.

  9. Layer-by-Layer Self-Assembly of Plexcitonic Nanoparticles

    DTIC Science & Technology

    2013-08-12

    nitrate , trisodium citrate tribasic dihydrate, sodium poly(styrene sulfonate) (PSS, MW ~70,000), poly(diallyldimethyl ammonium chloride ) (PDADMAC...Abstract: Colloidal suspensions of multilayer nanoparticles composed of a silver core, a polyelectrolyte spacer layer (inner shell), and a J-aggregate...multilayer architecture served as a framework for examining the coupling of the localized surface plasmon resonance exhibited by the silver core with

  10. Asymmetric metal-insulator-metal (MIM) structure formed by pulsed Nd:YAG laser deposition with titanium nitride (TiN) and aluminum nitride (AlN)

    NASA Astrophysics Data System (ADS)

    Oshikane, Yasushi

    2017-08-01

    A novel nanostructured end cap for a truncated conical apex of optical fiber has been studied experimental and numerically. The peculiar cap is composed of asymmetric metal-insulator-metal (MIM) structure coupled with subwavelength holes. The MIM structure may act as reflective band cut filter or generator of surface plasmon polariton (SPP). And nano holes in the thicker metal layer could extract the SPP from the MIM structure and lead it to outer surface of the metal layer. For the purpose, the author has started to create the asymmetric MIM structure with TiN and AlN by pulsed laser deposition (PLD). The resultant structure was diagnosed by spectroscopic analyses.

  11. Spring and Summer Changes at the South Pole as Seen by the Mars Orbiter Camera

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.; Murray, B. C.; Byrne, S.; DeJong, E.; Danielson, G. E.; Herkenhoff, K. E.; Kieffer, H. H.; Soderblom, L. A.

    2000-01-01

    The Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft has been able to follow individual features as the CO2 frost disappears and exposes the material underneath. Because the orbit of MGS is inclined at an angle of 93 degrees relative to the equator, the spacecraft gets especially good coverage of the ring at 87 degrees latitude. The following is a list of phenomena that have been seen during the spring and summer at the South Pole: (1) Circular depressions that are approximately ten meters deep and hundreds of meters in diameter. They are found only within the residual polar cap, the part that survives the summer. The high areas between the depressions are flat-topped mesas whose sides are concave circular arcs. In some places the depressions form patterns that exhibit north-south symmetry, suggesting some control by sunlight; (2) Dark layers that are exposed on the walls of the mesas. Each layer is at most a few meters thick. The dark layers might accumulate during climatic episodes of high atmospheric dust content, or they might accumulate during the annual cycling of dusty CO2; (3) Albedo differences that develop during the summer within the residual cap. These include subtle darkening of the floors of the depressions relative to the mesas and occasional major darkening of the floors, especially near the edge of the cap. The floors and mesas form a distinct stratum, suggesting they represent a distinct compositional boundary. For instance the floors may be water and the mesas may be CO2; (4) Small dark features that appear in spring on the seasonal frost outside the residual cap. Some of the features have parallel tails that are clearly shaped by the wind. Others are more symmetric, like dark snowflakes, with multiple branching arms. After the CO2 frost has disappeared the arms are seen as troughs and the centers as topographic lows; (5) Polygons whose sides are dark troughs. Those that are outside the residual cap seem to disappear when the frost disappears. The polygons and the dark snowflakelike structures may be related, and suggest that CO2 frost may form cohesive slabs; (6) Irregular depressions outside the residual cap. They look like degraded versions of the circular depressions inside the residual cap, and may be a remnant of the cap's changing location; and (7) Areas of burial and exhumation of circular depressions. Thomas et al. give an example with a sharp boundary: On one side the depressions are buried and on the other side they are exposed. In other cases there are rounded troughs up to one kilometer wide, which are dark in summer and appear to have eroded down below the floor of the circular depressions.

  12. Feasibility of 3D printed air slab diode caps for small field dosimetry.

    PubMed

    Perrett, Benjamin; Charles, Paul; Markwell, Tim; Kairn, Tanya; Crowe, Scott

    2017-09-01

    Commercial diode detectors used for small field dosimetry introduce a field-size-dependent over-response relative to an ideal, water-equivalent dosimeter due to high density components in the body of the detector. An air gap above the detector introduces a field-size-dependent under-response, and can be used to offset the field-size-dependent detector over-response. Other groups have reported experimental validation of caps containing air gaps for use with several types of diodes in small fields. This paper examines two designs for 3D printed diode air caps for the stereotactic field diode (SFD)-a cap containing a sealed air cavity, and a cap with an air cavity at the face of the SFD. Monte Carlo simulations of both designs were performed to determine dimensions for an air cavity to introduce the desired dosimetric correction. Various parameter changes were also simulated to estimate the dosimetric uncertainties introduced by 3D printing. Cap layer dimensions, cap density changes due to 3D printing, and unwanted air gaps were considered. For the sealed design the optimal air gap size for water-equivalent cap material was 0.6 mm, which increased to 1.0 mm when acrylonitrile butadiene styrene in the cap was simulated. The unsealed design had less variation, a 0.4 mm air gap is optimal in both situations. Unwanted air pockets in the bore of the cap and density changes introduced by the 3D printing process can potentially introduce significant dosimetric effects. These effects may be limited by using fine print resolutions and minimising the volume of cap material.

  13. Characterizing near-surface firn from the scattered signal component of glacier surface reflections detected in airborne radio-echo sounding measurements

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Cawkwell, F.; Dowdeswell, J. A.

    2016-12-01

    With recent summer warming, surface melt on Canadian Arctic ice caps has intensified and extended to higher elevations in ice cap accumulation areas. Consequently, more meltwater percolates into the near-surface firn, and refreezes as ice layers where firn temperatures are below freezing. This process can increase firn densification rates, causing a lowering of the glacier surface height even in the absence of mass changes. Thus, knowledge of spatio-temporal variations in the near-surface firn stratigraphy is important for interpreting altimetrically-derived estimates of ice cap mass balance. We investigate the use of the scattering signal component of glacier surface reflections in airborne radio-echo sounding (RES) measurements to characterize the near-surface firn stratigraphy. The scattering signal distribution over Devon Ice Cap is compared to firn stratigraphy derived from ground-based radar data. We identify three distinct firn facies zones at different elevation ranges. The scattered signal component changes significantly between the different firn facies zones: low scattering correlates to laterally homogeneous firn containing thin, flat and continuous ice layers at elevations above 1800 m and below 1200 m, where firn consists mainly of ice. Higher scattering values are found from 1200-1800 m where the firn contains discrete, undulating ice layers. No correlation was found between the scattering component and surface roughness. Modelled scattering values for the measured roughness were significantly less than the observed values, and did not reproduce their observed spatial distribution. This indicates that the scattering component is determined mainly by the structure of near-surface firn. Our results suggest that the scattering component of surface reflections from airborne RES measurements has potential for characterizing heterogeneity in the spatial structure of firn that is affected by melting and refreezing processes.

  14. Chromatographic methods for determination of macrolide antibiotic residues in tissues and milk of food-producing animals.

    PubMed

    Moats, W A

    1985-01-01

    Tylosin, an antibiotic developed specifically for agricultural use, and erythromycin are the main macrolide antibiotics used in animal production. Two-dimensional thin layer chromatography has been used for detection of tylosin in poultry meat, eggs, and milk and for erythromycin in poultry meat. Detection limits reported are, for tylosin, 0.1 ppm in poultry meat, 0.05 ppm in egg, and 0.01 ppm in milk, and for erythromycin, 0.25 ppm in poultry meat. Liquid chromatography (LC) has also been used for determination of tylosin in milk, blood, and tissues of animals. Samples (milk, blood serum, or tissue homogenates in water or pH 2.2 buffer) were deproteinized with acetonitrile, tylosin was partitioned into methylene chloride, and the extracts were concentrated and dissolved in acetonitrile. Chromatography was done on a reverse phase end-capped C18 column using 0.002-0.005 M ammonium dihydrogen phosphate-acetonitrile-methanol (10 + 60 + 30-5 + 80 + 15). Solvent composition was varied with the type of sample analyzed. The method will detect 0.1 ppm tylosin in tissues and less in milk and blood serum. The LC method was more sensitive than microbiological assays for detection of tylosin in tissues of treated swine; recoveries of tylosin by the LC method were frequently several-fold higher.

  15. Interspace modification of titania-nanorod arrays for efficient mesoscopic perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Jin, Zhixin; Wang, Yinglin; Wang, Meiqi; Chen, Shixin; Zhang, Yang; Wang, Lingling; Zhang, Xintong; Liu, Yichun

    2017-04-01

    Morphology of electron transport layers (ETLs) has an important influence on the device architecture and electronic processes of mesostructured solar cells. In this work, we thoroughly investigated the effect of the interspace of TiO2 nanorod (NR) arrays on the photovoltaic performance of the perovskite solar cells (PSCs). Along with the interspace in TiO2-NR arrays increasing, the thickness as well as the crystal size of perovskite capping layer are reduced accordingly, and the filling of perovskite in the channel becomes incomplete. Electrochemical impedance spectroscopy measurements reveal that this variation of perovskite absorber layer, induced by interspace of TiO2 NR arrays, causes the change of charge recombination process at the TiO2/perovskite interface, suggesting that a balance between capping layer and the perovskite filling is critical to obtain high charge collection efficiency of PSCs. A power conversion efficiency of 10.3% could be achieved through careful optimization of interspace in TiO2-NR arrays. Our research will shed light on the morphology control of ETLs with 1D structure for heterojunction solar cells fabricated by solution-deposited method.

  16. Catalyst surfaces for the chromous/chromic redox couple

    NASA Technical Reports Server (NTRS)

    Giner, J. D.; Cahill, K. J. (Inventor)

    1980-01-01

    An electricity producing cell of the reduction-oxidation (REDOX) type is described. The cell is divided into two compartments by a membrane, each compartment containing a solid inert electrode. A ferrous/ferric couple in a chloride solution serves as a cathode fluid which is circulated through one of the compartments to produce a positive electric potential disposed therein. A chromic/chromous couple in a chloride solution serves as an anode fluid which is circulated through the second compartment to produce a negative potential on an electrode disposed therein. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which was added to the anode fluid. If the REDOX cell is then discharged, the current flows between the electrodes causing the lead to deplate from the negative electrode and the metal coating on the electrode will act as a catalyst to cause increased current density.

  17. Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank's solution.

    PubMed

    Taltavull, C; Shi, Z; Torres, B; Rams, J; Atrens, A

    2014-02-01

    This research studied the influence of the chloride ion concentration on the corrosion behaviour of high-purity magnesium (Mg) and two Mg alloys in Hank's solution, using hydrogen evolution and weight loss. A buffer based on CO2 and NaHCO3 was used to maintain the pH constant. The corrosion behaviour was governed by a partially protective surface film, and film breakdown by the chloride ions. The carbonated calcium phosphate layer that formed in Hank's solution was important in determining the protective properties of the surface film.

  18. Materials and methods for the preparation of nanocomposites

    DOEpatents

    Talapin, Dmitri V.; Kovalenko, Maksym V.; Lee, Jong-Soo; Jiang, Chengyang

    2016-05-24

    Disclosed herein is an isolable colloidal particle comprising a nanoparticle and an inorganic capping agent bound to the surface of the nanoparticle, a solution of the same, a method for making the same from a biphasic solvent mixture, and the formation of structures and solids from the isolable colloidal particle. The process can yield photovoltaic cells, piezoelectric crystals, thermoelectric layers, optoelectronic layers, light emitting diodes, ferroelectric layers, thin film transistors, floating gate memory devices, imaging devices, phase change layers, and sensor devices.

  19. Improved color coordinates of green monochromatic pc-LED capped with a band-pass filter.

    PubMed

    Oh, Ji Hye; Yang, Su Ji; Sung, Yeon-Goog; Do, Young Rag

    2013-02-25

    This study introduces a "greener" green monochromatic phosphor-converted light-emitting diode (pc-LED) using a band-pass filter (BPF) combined with a long-pass dichroic filter (LPDF) and a short-pass dichroic filter (SPDF) to improve the color quality of our previously developed LPDF-capped green pc-LED. This can also address the drawbacks of III-V semiconductor-type green LEDs, which show a low luminous efficacy and a poor current dependence of the efficacy and color coordinates compared to blue semiconductor-type LEDs. The optical properties of green monochromatic pc-LEDs using a BPF are compared with those of LPDF-capped green pc-LEDs, which have a broad band spectrum, and III-V semiconductor-type green LEDs by changing the transmittance wavelength range of the BPF and the peak wavelength of the green phosphors. BPF-capped green monochromatic pc-LEDs provide a high luminous efficacy (134 lm/W at 60 mA), and "greener" 1931 Commission Internationale d'Eclairage (CIE; CIEx, CIEy) color coordinates (0.24, 0.66) owing to the narrowed emission spectrum. We also propose a two-dimensional (2D) polystyrene (PS) microbead (2-μm diameter) monolayer as a scattering layer to overcome the poor angular dependence of the color coordinates of the transmitted light through a nano-multilayered dichroic filter such as an LPDF or BPF. The 2D PS scattering layer improves the angular dependence of the green color emitted from a BPF-capped green pc-LED with only 3% loss of luminous efficacy.

  20. Polarization-Engineered Ga-Face GaN-Based Heterostructures for Normally-Off Heterostructure Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Kim, Hyeongnam; Nath, Digbijoy; Rajan, Siddharth; Lu, Wu

    2013-01-01

    Polarization-engineered Ga-face GaN-based heterostructures with a GaN cap layer and an AlGaN/ p-GaN back barrier have been designed for normally-off field-effect transistors (FETs). The simulation results show that an unintentionally doped GaN cap and p-GaN layer in the buffer primarily deplete electrons in the channel and the Al0.2Ga0.8N back barrier helps to pinch off the channel. Experimentally, we have demonstrated a normally-off GaN-based field-effect transistor on the designed GaN cap/Al0.3Ga0.7N/GaN channel/Al0.2Ga0.8N/ p-GaN/GaN heterostructure. A positive threshold voltage of 0.2 V and maximum transconductance of 2.6 mS/mm were achieved for 80- μm-long gate devices. The device fabrication process does not require a dry etching process for gate recessing, while highly selective etching of the GaN cap against a very thin Al0.3GaN0.7N top barrier has to be performed to create a two-dimensional electron gas for both the ohmic and access regions. A self-aligned, selective etch of the GaN cap in the access region is introduced, using the gate metal as an etch mask. The absence of gate recess etching is promising for uniform and repeatable threshold voltage control in normally-off AlGaN/GaN heterostructure FETs for power switching applications.

  1. Effect of Silica Particle Size of Nuclear Waste-to-Glass Conversion - 17319

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Cutforth, Derek A.; Vanderveer, Bradley J.

    The process for converting nuclear waste-to-glass in an electric melter occurs in the cold cap, a crust of reacting solids floating on the glass pool. As the melter feed (a mixture of the nuclear waste and glass forming and modifying additives) heats up in the cold cap, glass-forming reactions ensue, causing the feed matrix to connect, trapping reaction gases to create a foam layer. The foam layer reduces the rate of melting by separating the reacting feed from the melt pool. The size of the silica particle additives in the melter feed affects melt viscosity and, hence, foam stability. Tomore » investigate this effect, seven nuclear waste simulant feeds of a high-level waste were batched as slurries and prepared with dissimilar ranges of silica particle size. Each slurry feed was charged into a laboratory-scale melter (LSM) to produce a cold cap and the propensity of feeds to foam was determined by pressing dried feeds into pellets and monitoring the change of pellet volume in response to heating. Two of these slurries were designed to have dissimilar glass viscosities at 1150°C. In the low temperature region of the cold cap, before the melter feed connects, the feeds without fine silica particles behaved similar to the high viscosity feed as their volume contracted while the feed with silica particles no larger than 5 µm reacted like the low viscosity feed. However, the feed volume similarities reversed as the feed connected and expanded through the foam region of the cold cap.« less

  2. The reaction of iodobenzene-p-sulphonyl chloride (pipsyl chloride) with certain amino acids and peptides, and with insulin

    PubMed Central

    Fletcher, J. C.

    1967-01-01

    1. A system of separation using buffered Celite columns is described that enables the pipsyl derivatives of most of the common amino acids to be separated. 2. The reaction of pipsyl chloride with several amino acids not included in previous studies has been investigated. In particular, knowledge of the acid-soluble pipsyl derivatives of arginine, histidine, lysine, tyrosine and cysteic acid has been extended. 3. Reproducible factors have been obtained that enable corrections to be applied for the breakdown of pipsylamino acids on acid hydrolysis. 4. The reaction of pipsyl chloride with peptides has been studied under various conditions. 5. The extent of the reaction between pipsyl chloride and insulin depends on the nature of the solvent–buffer system, and under the best conditions so far found is about 75% complete. 6. In an Appendix, the separation of pipsylamino acids by thin-layer chromatography is described. PMID:16742498

  3. Multi-instrument data analysis for interpretation of the Martian North polar layered deposits

    NASA Astrophysics Data System (ADS)

    Mirino, Melissa; Sefton-Nash, Elliot; Witasse, Olivier; Frigeri, Alessandro

    2017-04-01

    The Martian polar caps have engendered substantial study due to their spiral morphology, layered structure and the seasonal variability in thickness of the uppermost H2O and CO2 ice layers. We demonstrate a multi-instrument study of exposed and buried north polar layers using data from ESA's Mars Express (MEx) and NASA's Mars Reconnaissance Orbiter (MRO) missions. We perform analysis of high resolution images from MRO's HiRISE, which provide textural and morphological information about surface features larger than 0.3m, with NIR hyperspectral data from MRO CRISM, which allows study of surface mineralogy at a maximum resolution of 18 m/pixel. Stereo-derived topography is provided by MEx's HRSC. Together with these surficial observations we interpret radargrams from MRO SHARAD to obtain information about layered structures at a horizontal resolution between 0.3 and 3 kilometers and a free-space vertical resolution of 15 meters (vertical resolution depends on the dielectric properties of the medium). This combination of datasets allows us to attempt to correlate polar layering, made visible by dielectric interfaces between beds, with surface mineralogies and structures outcropping at specific stratigraphic levels. We analyse two opposite areas of the north polar cap with the intention to characterise in multiple datasets each geologic unit identified in the north polar cap's stratigraphy (mapped by e.g. [1]). We selected deposits observed in Chasma Boreale and Olympia Cavi because these areas allow us to observe and map strata at opposing sides of the north polar cap. Using the CRISM Analysis Tool and spectral summary parameters [2] we map the spectral characteristics of the two areas that show H2O and CO2 ice layering exposed on polar scarps. Through spatial-registration in a GIS with HRSC topography and HiRISE imagery we assess the mineralogical and morphological characteristics of exposed layers. In order to constrain the cross section between the two selected localities we choose SHARAD radargrams that most closely align with the transect between the sites. We interpret sub-horizontal features to be due to dielectric interfaces involving the deposits analysed. Our interpretation of radargrams in the context of compositional and structural constraints, from areas where pertinent beds outcrop, illustrates how joint analysis of surface and sub-surface data can benefit geological interpretation of planetary surfaces and subsurfaces. This technique applied to Mars' north polar layered deposits may offer additional constraint on morphology of internal layering resulting from seasonal deposition/sublimation cycles over varying obliquity [3]. References: [1] Tanaka et al. (2008), Icarus, 196, p. 318-358, doi:10.1016/j.icarus.2008.01.021. [2] Viviano-Beck et al. (2014), J. Geophys. Res. Planets, 119, p. 1403-1431, doi:10.1002/2014JE004627..[3] Putzig et al. (2009), Icarus, 204, p. 443-457, doi:10.1016/j.icarus.2009.07.034.

  4. Diagenesis, weathering and paleoenvironmental conditions from postglacial diamictite/cap carbonate transition layers of the Otavi Group (NW-Namibia)

    NASA Astrophysics Data System (ADS)

    Gyollai, I.; Popp, F.; Mader, D.; Koeberl, Ch.

    2012-04-01

    Introduction The so-called "Snowball Earth hypothesis" states that the "Sturtian" (710 Ma) and "Marinoan" glaciations (635 Ma) were of global extent and may have lasted for several million years. Our samples were collected from conspicuous transition layers on top of the glaciogenic Chuos (Sturtian) (10 samples) and Ghaub (Marinoan) formations (63 samples) of the Neoproterozoic Otavi Group in NW-Namibia. The goal of this study is to obtain information concerning the provenance and geochemical composition of postglacial diamictite/cap carbonate transition layers and to estimate the paleoenvironmental conditions with respect to glacio-marine sea water composition and attendant sediment accumulation in mineralogical-geochemical aspects. Methods The mineralogical composition of our samples was studied using the petrographic microscope, X-ray powder diffraction, cathodoluminescence microscopy, and micro-Raman spectrometry. Instrumental neutron activation and X-ray fluorescence analyses, as well as analytical electron microscopy, were used for the geochemical study. Results Detrital components derived from crystalline and/or dolomite platform source areas are enclosed within a diagenetically recrystallized matrix of carbonate and quartz minerals. Clay samples from both, Marinoan and some Sturtian postglacial layers are characterized by high Ni/Co, Cr/V, and low Th/Sc, La/Sc, V/Ni and Cr/Ni ratios compared to PAAS (Postarchean Australian shale, [1]), which could indicate mafic-ultramafic source material[1]. According to SEM-EDX measurements, only hematite, quartz, and feldspar make up the detrital composition, thus the Cr-Ni enrichment does not seem to be associated with any specific mineral phases. Specific results for the Sturtian postglacial transition layers: An U/Th ratio >0.75, and Mo-enrichment in the topmost iron-rich Sturtian diamictites (Chuos Fm.) and their superposed postglacial boundary layers (Rasthof Fm) indicates reducing conditions in the sea water [2,3 ]. The detritus of the basal cap carbonates is rich in kaolinite and montmorillonite and has low K/Cs values, indicating a high weathering rate. Specific results for the Marinoan postglacial transition layers: The Marinoan diamictites (Ghaub Fm.) and their superposed postglacial transition layers (basal Maieberg Fm) are characterized in a few cases by very high Th/Co, Th/Sc and LREE/HREE ratios, which indicate some influence of a felsic source area. The detrital/recrystallized components of these iron-poor diamictites are rich in pyrite and quartz and display a REE enrichment compared to PAAS, which indicates a hydrothermal component during their accumulation [3]. Conlusions 1) Sturtian layers: possibly different source areas supplied the sedimentary basins 2) Marinoan layers : sediments were influenced by hydrothermal fluids and diagenetic alteration 3) Reducing conditions existed in the marine environment during both of the "Snowball Earth" glaciation periods each followed by oxidative conditions reflected in the geochemical composition of related postglacial cap carbonates. Acknowledgement Our work is funded by the Austrian Academy of Sciences (IGCP 512) (to CK).

  5. Reactive composite compositions and mat barriers

    DOEpatents

    Langton, Christine A.; Narasimhan, Rajendran; Karraker, David G.

    2001-01-01

    A hazardous material storage area has a reactive multi-layer composite mat which lines an opening into which a reactive backfill and hazardous material are placed. A water-inhibiting cap may cover the hazardous material storage area. The reactive multi-layer composite mat has a backing onto which is placed an active layer which will neutralize or stabilize hazardous waste and a fronting layer so that the active layer is between the fronting and backing layers. The reactive backfill has a reactive agent which can stabilize or neutralize hazardous material and inhibit the movement of the hazardous material through the hazardous material storage area.

  6. Suppression of dislocations by Sb spray in the vicinity of InAs/GaAs quantum dots

    PubMed Central

    2014-01-01

    The effect of Sb spray prior to the capping of a GaAs layer on the structure and properties of InAs/GaAs quantum dots (QDs) grown by molecular beam epitaxy (MBE) is studied by cross-sectional high-resolution transmission electron microscopy (HRTEM). Compared to the typical GaAs-capped InAs/GaAs QDs, Sb-sprayed QDs display a more uniform lens shape with a thickness of about 3 ~ 4 nm rather than the pyramidal shape of the non-Sb-sprayed QDs. Particularly, the dislocations were observed to be passivated in the InAs/GaAs interface region and even be suppressed to a large extent. There are almost no extended dislocations in the immediate vicinity of the QDs. This result is most likely related to the formation of graded GaAsSb immediately adjacent to the InAs QDs that provides strain relief for the dot/capping layer lattice mismatch. PACS 81.05.Ea; 81.07.-b; 81.07.Ta PMID:24948897

  7. Experimental investigation of insolation-driven dust ejection from Mars' CO2 ice caps

    NASA Astrophysics Data System (ADS)

    Kaufmann, E.; Hagermann, A.

    2017-01-01

    Mars' polar caps are - depending on hemisphere and season - partially or totally covered with CO2 ice. Icy surfaces such as the polar caps of Mars behave differently from surfaces covered with rock and soil when they are irradiated by solar light. The latter absorb and reflect incoming solar radiation within a thin layer beneath the surface. In contrast, ices are partially transparent in the visible spectral range and opaque in the infrared. Due to this fact, the solar radiation can penetrate to a certain depth and raise the temperature of the ice or dust below the surface. This may play an important role in the energy balance of icy surfaces in the solar system, as already noted in previous investigations. We investigated the temperature profiles inside CO2 ice samples including a dust layer under Martian conditions. We have been able to trigger dust eruptions, but also demonstrated that these require a very narrow range of temperature and ambient pressure. We discuss possible implications for the understanding of phenomena such as arachneiform patterns or fan shaped deposits as observed in Mars' southern polar region.

  8. XAFS atomistic insight of the oxygen gettering in Ti/HfO 2 based OxRRAM

    NASA Astrophysics Data System (ADS)

    Viennet, R.; Roussel, H.; Rapenne, L.; Deschanvres, J. L.; Renevier, H.; Jousseaume, V.; Jalaguier, E.; Proietti, M. G.

    2018-05-01

    Hafnia-based resistive memories technology has come to maturation and acceded to the market of nonvolatile memories. Nevertheless, the physical mechanisms involved in resistive switching are not yet fully understood and the numerous ab initio simulations studies have few many atomic-scale experimental counterparts. In this study we investigate the oxygen migration mechanism from an amorphous HfO2 layer to the Ti cap layer at a local scale before and after a thermal treatment. X-ray absorption spectroscopy at the Ti K edge and Hf LIII edge has been performed on samples as-deposited and annealed in Ar at 400 ∘C to mimic the back-end-of-line thermal budget (BEOL) of CMOS technology. The short-range Ti and Hf environments have been determined, showing that annealing promotes the migration of O from HfO2 to Ti, the amount of which is quantified. This provokes an expansion and an increase of atomic disorder in the Ti lattice. The nature of the oxygen gettering mechanism by the Ti metal is understood by comparing samples with increasing Ti-capping thickness. We show that the Ti getter effect has to be activated by thermal treatment and that the O diffusion takes place in a region of a few nanometers close to the Ti /HfO2 interface. Therefore, the thermal budget history and the Ti cap-layer thickness determine the oxygen vacancy content in the HfO2 layer, which in turn controls the electrical properties, especially the forming operation.

  9. The Effects of Light Intensity, Casing Layers, and Layering Styles on Royal Sun Medicinal Mushroom, Agaricus brasiliensis (Higher Basidiomycetes) Cultivation in Turkey.

    PubMed

    Adanacioglu, Neşe; Boztok, Kaya; Akdeniz, Ramazan Cengiz

    2015-01-01

    The aim of this research is to evaluate the effects of light intensity, casing layers, and layering styles on the production of the culinary-medicinal mushroom Agaricus brasiliensis in Turkey. The experiments were designed in split-split plots and replicated twice. Three different light intensities-I1, 350 lux; I2, 450 lux; and I3, 750 lux-were used in main plots as environmental factors. A mixture of 4 different casing layers- peat (100%), peat-perlite (75%:25%), peat-clinoptilolite (75%:25%), and peat-perlite-clinoptilolite (60%:20%:20%)-were used at split plots and at split plots. S1, a flat, 3-cm casing layer; S2, a flat, 5-cm casing layer; and S3, casing soil ridges 10 cm wide × 4 cm high, 10 cm apart, were deposited on top of 1-cm overall soil casing layers. At the end of the harvest phase, the total yield was estimated per 100 kg of substrate. Biological efficiency (percentage) was determined from the fresh weight of the mushrooms and the dry weight of the compost at the end of the harvesting period. The highest total yield (7.2 kg/100 kg compost) and biological efficiency (27.63%) were achieved from I2 × peat-perlite-clinoptilolite × S2 treatment. Influence of light intensity, casing layer, layering style, and their interaction in treatments with color values (L*, a*, b*, chroma*, and hue*) also were examined. It has been shown that within color values, chroma* (saturation) values of mushroom caps were affected by light intensity, casing layer, and layering style treatments and light intensity × casing layer treatments and the brightness of mushroom caps tended to increase as light intensity increased.

  10. Method of making dense, conformal, ultra-thin cap layers for nanoporous low-k ILD by plasma assisted atomic layer deposition

    DOEpatents

    Jiang, Ying-Bing [Albuquerque, NM; Cecchi, Joseph L [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM

    2011-05-24

    Barrier layers and methods for forming barrier layers on a porous layer are provided. The methods can include chemically adsorbing a plurality of first molecules on a surface of the porous layer in a chamber and forming a first layer of the first molecules on the surface of the porous layer. A plasma can then be used to react a plurality of second molecules with the first layer of first molecules to form a first layer of a barrier layer. The barrier layers can seal the pores of the porous material, function as a diffusion barrier, be conformal, and/or have a negligible impact on the overall ILD k value of the porous material.

  11. Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground

    NASA Astrophysics Data System (ADS)

    Tang, Liang; Ling, Xianzhang; Xu, Pengju; Gao, Xia; Wang, Dongsheng

    2010-03-01

    This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three El Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.

  12. Mars Secular Obliquity Change Due to Water Ice Caps

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.

    1998-01-01

    Mars may have substantially changed its average axial tilt over geologic time due to the waxing and waning of water ice caps. Depending upon Mars' climate and internal structure, the average obliquity could have increased or decreased through climate friction by tens of degrees. A decrease could account for the apparent youthfulness of the polar layered terrain. Alternatively, Mars' average obliquity may have changed until it became "stuck" at its present value of 24.4 deg.

  13. Creating and maintaining a gas cap in tar sands formations

    DOEpatents

    Vinegar, Harold J.; Karanikas, John Michael; Dinkoruk, Deniz Sumnu; Wellington, Scott Lee

    2010-03-16

    Methods for treating a tar sands formation are disclosed herein. Methods for treating a tar sands formation may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. Pressure may be allowed to increase in an upper portion of the formation to provide a gas cap in the upper portion. At least some hydrocarbons are produced from a lower portion of the formation.

  14. Observations of the Early Morning Boundary-Layer Transition with Small Remotely-Piloted Aircraft

    NASA Astrophysics Data System (ADS)

    Wildmann, Norman; Rau, Gerrit Anke; Bange, Jens

    2015-12-01

    A remotely-piloted aircraft (RPA), equipped with a high resolution thermodynamic sensor package, was used to investigate physical processes during the morning transition of the atmospheric boundary layer over land. Experiments were conducted at a test site in heterogeneous terrain in south-west Germany on 5 days from June to September 2013 in an evolving shallow convective boundary layer, which then developed into a well-mixed layer later in the day. A combination of vertical profiling and constant-altitude profiling (CAP) at 100 m height above ground level was chosen as the measuring strategy throughout the experiment. The combination of flight strategies allows the application of mixed-layer scaling using the boundary-layer height z_i, convective velocity scale w_* and convective temperature scale θ _*. The hypothesis that mixed-layer theory is valid during the whole transition was not confirmed for all parameters. A good agreement is found for temperature variances, especially in the upper half of the boundary layer, and the normalized heat-flux profile. The results were compared to a previous study with the helicopter-borne turbulence probe Helipod, and it was found that similar data quality can be achieved with the RPA. On all days, the CAP flight level was within the entrainment zone for a short time, and the horizontal variability of temperature and water vapour along the flight path is presented as an example of the inhomogeneity of layer interfaces in the boundary layer. The study serves as a case study of the possibilities and limitations with state-of-the-art RPA technology in micrometeorology.

  15. Electron Beam-Induced Deposition for Atom Probe Tomography Specimen Capping Layers.

    PubMed

    Diercks, David R; Gorman, Brian P; Mulders, Johannes J L

    2017-04-01

    Six precursors were evaluated for use as in situ electron beam-induced deposition capping layers in the preparation of atom probe tomography specimens with a focus on near-surface features where some of the deposition is retained at the specimen apex. Specimens were prepared by deposition of each precursor onto silicon posts and shaped into sub-70-nm radii needles using a focused ion beam. The utility of the depositions was assessed using several criteria including composition and uniformity, evaporation behavior and evaporation fields, and depth of Ga+ ion penetration. Atom probe analyses through depositions of methyl cyclopentadienyl platinum trimethyl, palladium hexafluoroacetylacetonate, and dimethyl-gold-acetylacetonate [Me2Au(acac)] were all found to result in tip fracture at voltages exceeding 3 kV. Examination of the deposition using Me2Au(acac) plus flowing O2 was inconclusive due to evaporation of surface silicon from below the deposition under all analysis conditions. Dicobalt octacarbonyl [Co2(CO)8] and diiron nonacarbonyl [Fe2(CO)9] depositions were found to be effective as in situ capping materials for the silicon specimens. Their very different evaporation fields [36 V/nm for Co2(CO)8 and 21 V/nm for Fe2(CO)9] provide options for achieving reasonably close matching of the evaporation field between the capping material and many materials of interest.

  16. Enhanced biocorrosion resistance and biocompatibility of degradable Mg-Nd-Zn-Zr alloy by brushite coating.

    PubMed

    Niu, Jialin; Yuan, Guangyin; Liao, Yi; Mao, Lin; Zhang, Jian; Wang, Yongping; Huang, Feng; Jiang, Yao; He, Yaohua; Ding, Wenjiang

    2013-12-01

    To further improve the corrosion resistance and biocompatibility of Mg-Nd-Zn-Zr alloy (JDBM), a biodegradable calcium phosphate coating (Ca-P coating) with high bonding strength was developed using a novel chemical deposition method. The main composition of the Ca-P coating was brushite (CaHPO4·2H2O). The bonding strength between the coating and the JDBM substrate was measured to be over 10 MPa, and the thickness of the coating layer was about 10-30 μm. The in vitro corrosion tests indicated that the Ca-P treatment improved the corrosion resistance of JDBM alloy in Hank's solution. Ca-P treatment significantly reduced the hemolysis rate of JDBM alloy from 48% to 0.68%, and induced no toxicity to MC3T3-E1 cells. The in vivo implantation experiment in New Zealand's rabbit tibia showed that the degradation rate was reduced obviously by the Ca-P treatment and less gas was produced from Ca-P treated JDBM bone plates and screws in early stage of the implantation, and at least 10weeks degradation time can be prolonged by the present coating techniques. Both Ca-P treated and untreated JDBM Mg alloy induced bone growth. The primary results indicate that the present Ca-P treatment is a promising technique for the degradable Mg-based biomaterials for orthopedic applications. © 2013.

  17. The mechanism of RNA 5' capping with NAD +, NADH and desphospho-CoA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, Jeremy G.; Zhang, Yu; Tian, Yuan

    The chemical nature of the 5' end of RNA is a key determinant of RNA stability, processing, localization and translation efficiency and has been proposed to provide a layer of ‘epitranscriptomic’ gene regulation. Recently it has been shown that some bacterial RNA species carry a 5'-end structure reminiscent of the 5' 7-methylguanylate ‘cap’ in eukaryotic RNA. In particular, RNA species containing a 5'-end nicotinamide adenine dinucleotide (NAD+) or 3'-desphospho-coenzyme A (dpCoA) have been identified in both Gram-negative and Gram-positive bacteria. It has been proposed that NAD+, reduced NAD+ (NADH) and dpCoA caps are added to RNA after transcription initiation, inmore » a manner analogous to the addition of 7-methylguanylate caps. Here we show instead that NAD+, NADH and dpCoA are incorporated into RNA during transcription initiation, by serving as non-canonical initiating nucleotides (NCINs) for de novo transcription initiation by cellular RNA polymerase (RNAP). We further show that both bacterial RNAP and eukaryotic RNAP II incorporate NCIN caps, that promoter DNA sequences at and upstream of the transcription start site determine the efficiency of NCIN capping, that NCIN capping occurs in vivo, and that NCIN capping has functional consequences. We report crystal structures of transcription initiation complexes containing NCIN-capped RNA products. Our results define the mechanism and structural basis of NCIN capping, and suggest that NCIN-mediated ‘ab initio capping’ may occur in all organisms.« less

  18. Experimental Polyvinyl Chloride (PVC) Roofing: Field Test Results.

    DTIC Science & Technology

    1987-02-01

    construction. These were the single-ply membranes of the ethylene-propylene-diene monomer ( EPDM ) and polyvinyl chloride (PVC) types, and the sprayed-in-place...polyurethane foam (PUF) with an elastomeric coating. EPDM and PUF roofs were constructed in 19802 and the PVC roofs were completed during summer 1983...faced isocyanu- rate foam board in two layers . Roofing systems were installed loose-laid and ballasted. Specific membrane materials were Plymouth

  19. Recovery of Lithium from Geothermal Brine with Lithium–Aluminum Layered Double Hydroxide Chloride Sorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi

    In this paper, we report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloridemore » from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ~91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. Finally, the present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.« less

  20. Recovery of Lithium from Geothermal Brine with Lithium–Aluminum Layered Double Hydroxide Chloride Sorbents

    DOE PAGES

    Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi; ...

    2017-10-27

    In this paper, we report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloridemore » from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ~91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. Finally, the present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.« less

  1. Antiferroelectricity in lanthanum doped zirconia without metallic capping layers and post-deposition/-metallization anneals

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Gaskell, Anthony Arthur; Dopita, Milan; Kriegner, Dominik; Tasneem, Nujhat; Mack, Jerry; Mukherjee, Niloy; Karim, Zia; Khan, Asif Islam

    2018-05-01

    We report the effects of lanthanum doping/alloying on antiferroelectric (AFE) properties of ZrO2. Starting with pure ZrO2, an increase in La doping leads to the narrowing of the AFE double hysteresis loops and an increase in the critical voltage/electric field for AFE → ferroelectric transition. At higher La contents, the polarization-voltage characteristics of doped/alloyed ZrO2 resemble that of a non-linear dielectric without any discernible AFE-type hysteresis. X-ray diffraction based analysis indicates that the increased La content while preserving the non-polar, parent AFE, tetragonal P42/nmc phase leads to a decrease in tetragonality and the (nano-)crystallite size and an increase in the unit cell volume. Furthermore, antiferroelectric behavior is obtained in the as-deposited thin films without requiring any capping metallic layers and post-deposition/-metallization anneals due to which our specific atomic layer deposition system configuration crystallizes and stabilizes the AFE tetragonal phase during growth.

  2. Nanoscale electro-structural characterisation of ohmic contacts formed on p-type implanted 4H-SiC

    NASA Astrophysics Data System (ADS)

    Frazzetto, Alessia; Giannazzo, Filippo; Lo Nigro, Raffaella; di Franco, Salvatore; Bongiorno, Corrado; Saggio, Mario; Zanetti, Edoardo; Raineri, Vito; Roccaforte, Fabrizio

    2011-12-01

    This work reports a nanoscale electro-structural characterisation of Ti/Al ohmic contacts formed on p-type Al-implanted silicon carbide (4H-SiC). The morphological and the electrical properties of the Al-implanted layer, annealed at 1700°C with or without a protective capping layer, and of the ohmic contacts were studied using atomic force microscopy [AFM], transmission line model measurements and local current measurements performed with conductive AFM. The characteristics of the contacts were significantly affected by the roughness of the underlying SiC. In particular, the surface roughness of the Al-implanted SiC regions annealed at 1700°C could be strongly reduced using a protective carbon capping layer during annealing. This latter resulted in an improved surface morphology and specific contact resistance of the Ti/Al ohmic contacts formed on these regions. The microstructure of the contacts was monitored by X-ray diffraction analysis and a cross-sectional transmission electron microscopy, and correlated with the electrical results.

  3. GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications.

    PubMed

    Park, Suk In; Trojak, Oliver Joe; Lee, Eunhye; Song, Jin Dong; Kyhm, Jihoon; Han, Ilki; Kim, Jongsu; Yi, Gyu-Chul; Sapienza, Luca

    2018-05-18

    We report on the growth and optical characterization of droplet GaAs quantum dots (QDs) with extremely-thin (11 nm) capping layers. To achieve such result, an internal thermal heating step is introduced during the growth and its role in the morphological properties of the QDs obtained is investigated via scanning electron and atomic force microscopy. Photoluminescence measurements at cryogenic temperatures show optically stable, sharp and bright emission from single QDs, at visible wavelengths. Given the quality of their optical properties and the proximity to the surface, such emitters are good candidates for the investigation of near field effects, like the coupling to plasmonic modes, in order to strongly control the directionality of the emission and/or the spontaneous emission rate, crucial parameters for quantum photonic applications.

  4. GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications

    NASA Astrophysics Data System (ADS)

    In Park, Suk; Trojak, Oliver Joe; Lee, Eunhye; Song, Jin Dong; Kyhm, Jihoon; Han, Ilki; Kim, Jongsu; Yi, Gyu-Chul; Sapienza, Luca

    2018-05-01

    We report on the growth and optical characterization of droplet GaAs quantum dots (QDs) with extremely-thin (11 nm) capping layers. To achieve such result, an internal thermal heating step is introduced during the growth and its role in the morphological properties of the QDs obtained is investigated via scanning electron and atomic force microscopy. Photoluminescence measurements at cryogenic temperatures show optically stable, sharp and bright emission from single QDs, at visible wavelengths. Given the quality of their optical properties and the proximity to the surface, such emitters are good candidates for the investigation of near field effects, like the coupling to plasmonic modes, in order to strongly control the directionality of the emission and/or the spontaneous emission rate, crucial parameters for quantum photonic applications.

  5. Optimal doping control of magnetic semiconductors via subsurfactant epitaxy.

    PubMed

    Zeng, Changgan; Zhang, Zhenyu; van Benthem, Klaus; Chisholm, Matthew F; Weitering, Hanno H

    2008-02-15

    "Subsurfactant epitaxy" is established as a conceptually new approach for introducing manganese as a magnetic dopant into germanium. A kinetic pathway is devised in which the subsurface interstitial sites on Ge(100) are first selectively populated with Mn, while lateral diffusion and clustering on or underneath the surface are effectively suppressed. Subsequent Ge deposition as a capping layer produces a novel surfactantlike phenomenon as the interstitial Mn atoms float towards newly defined subsurface sites at the growth front. Furthermore, the Mn atoms that failed to float upwards are uniformly distributed within the Ge capping layer. The resulting doping levels of order 0.25 at. % would normally be considered too low for ferromagnetic ordering, but the Curie temperature exceeds room temperature by a comfortable margin. Subsurfactant epitaxy thus enables superior dopant control in magnetic semiconductors.

  6. Science goals for a Mars Polar Cap subsurface mission : optical approaches for investiagations of inclusions in ice

    NASA Technical Reports Server (NTRS)

    Mogensen, Claus T.; Carsey, Frank D.; Behar, Alberto; Engelhardt, Hermann; Lane, Arthur L.

    2002-01-01

    The Mars Polar Caps are highly interesting features of Mars and have received much recent attention with new and exciting data on morphology, basal units, and layered outcroppings. We have examined the climatological, glaciological, and geological issues associated with a subsurface exploration of the Mars North Polar Cap and have determined that a finescale optical examination of ice in a borehole, to examine the stratigraphy, geochemistry and geochronology of the ice, is feasible. This information will enable reconstruction of the development of the cap as well as predication of the properties of its ice. We present visible imagery taken of dust inclusions in archived Greenland ice cores as well as in-situ images of accreted lithologic inclusions in West Antarctica, and we argue for use of this kind of data in Mars climate reconstruction as has been successful with Greenland and Antarctic ice core anlaysis.

  7. Science goals for a Mars Polar Cap subsurface mission : optical approaches for investigations of inclusions in ice

    NASA Technical Reports Server (NTRS)

    Carsey, Frank; Mogensen, Claus T.; Behar, Alberto; Engelhardt, Hermann; Lane, Arthur L.

    2002-01-01

    The Mars Polar Caps are highly interesting features of Mars and have received much recent attention with new and exciting data on morphology, basal units, and layered outcroppings. We have examined the climatological, glaciological, and geological issues associated with a subsurface exploration of the Mars North Polar Cap and have determined that a finescale optical examination of ice in a borehole, to examine the stratigraphy, geochemistry and geochronology of the ice, is feasible. This information will enable reconstruction of the development of the cap as well as prediction of the properties of its ice. We present visible imagery taken of dust inclusions in archived Greenland ice cores as well as in-situ images of accreted lithologic inclusions in West Antarctica, and we argue for use of this kind of data in Mars climate reconstruction as has been successful with Greenland and Antarctic ice core analysis. .

  8. Investigation of factors influencing chloride extraction efficiency during electrochemical chloride extraction from reinforcing concrete

    NASA Astrophysics Data System (ADS)

    Sharp, Stephen R.

    2005-11-01

    Electrochemical chloride extraction (ECE) is an accelerated bridge restoration method similar to cathodic protection, but operates at higher current densities and utilizes a temporary installation. Both techniques prolong the life of a bridge by reducing the corrosion rate of the reinforcing bar when properly applied. ECE achieves this by moving chlorides away from the reinforcement and out of the concrete while simultaneously increasing the alkalinity of the electrolyte near the reinforcing steel. Despite the proven success, significant use of ECE has not resulted in part due to an incomplete understanding in the following areas: (1) An estimation of the additional service life that can be expected following treatment when the treated member is again subjected to chlorides; (2) The cause of the decrease in current flow and, therefore, chloride removal rate during treatment; (3) Influence of water-to-cement (w/c) ratio and cover depth on the time required for treatment. This dissertation covers the research that is connected to the last two areas listed above. To begin examining these issues, plain carbon steel reinforcing bars (rebar) were embedded in portland cement concrete slabs of varying water-to-cement (w/c) ratios and cover depths, and then exposed to chlorides. A fraction of these slabs had sodium chloride added as an admixture, with all of the slabs subjected to cyclical ponding with a saturated solution of sodium chloride. ECE was then used to remove the chlorides from these slabs while making electrical measurements in the different layers between the rebar (cathode) and the titanium mat (anode) to follow the progress of the ECE process. During this study, it was revealed that the resistance of the outer concrete surface layer increases during ECE, inevitably restricting current flow, while the resistance of the underlying concrete decreases or remains constant. During ECE treatment, a white residue formed on the surface of the concrete. Analyses of the residue revealed that it contains calcium carbonate, calcium chloride, and other yet unidentified minor components when calcium hydroxide was used as the electrolyte. The surface film can be completely removed mechanically or to some extent inhibited chemically, with both of these processes resulting in an increase in the efficiency of the electrochemical chloride extraction process. In addition, an obvious relationship between the cover depth, water-to-cement ratio, and chloride extraction efficiency does not exist, however, cover depth does influence the current density. The final phase of this study will be presented in a VTRC/FHWA final report. This report will include the results that are presented in this dissertation, in addition to the results from the ongoing research. It will also include an estimation of the additional service life that can be expected following treatment.

  9. Effect of permeability enhancers on paracellular permeability of acyclovir.

    PubMed

    Ates, Muge; Kaynak, Mustafa Sinan; Sahin, Selma

    2016-06-01

    According to Biopharmaceutics Classification System (BCS), acyclovir is a class III (high solubility, low permeability) compound, and it is transported through paracellular route by passive diffusion. The aim of this study was to investigate the effect of various pharmaceutical excipients on the intestinal permeability of acyclovir. The single-pass in-situ intestinal perfusion (SPIP) method was used to estimate the permeability values of acyclovir and metoprolol across different intestinal segments (jejunum, ileum and colon). Permeability coefficient (Peff ) of acyclovir was determined in the absence and presence of a permeation enhancer such as dimethyl β-cyclodextrin (DM-β-CD), sodium lauryl sulfate (SLS), sodium caprate (Cap-Na) and chitosan chloride. All enhancers increased the permeability of paracellularly transported acyclovir. Although Cap-Na has the highest permeability-enhancing effect in all segments, permeation-enhancing effect of chitosan and SLS was only significant in ileum. On the other hand, DM-β-CD slightly decreased the permeability in all intestinal segments. These findings have potential implication concerning the enhancement of absorption of paracellularly transported compounds with limited oral bioavailability. In the case of acyclovir, Cap-Na either alone or in combination with SLS or chitosan has the potential to improve its absorption and bioavailability and has yet to be explored. © 2016 Royal Pharmaceutical Society.

  10. Atomically resolved calcium phosphate coating on a gold substrate.

    PubMed

    Metoki, Noah; Baik, Sung-Il; Isheim, Dieter; Mandler, Daniel; Seidman, David N; Eliaz, Noam

    2018-05-10

    Some articles have revealed that the electrodeposition of calcium phosphate (CaP) coatings entails a precursor phase, similarly to biomineralization in vivo. The chemical composition of the initial layer and its thickness are, however, still arguable, to the best of our knowledge. Moreover, while CaP and electrodeposition of metal coatings have been studied utilizing atom-probe tomography (APT), the electrodeposition of CaP ceramics has not been heretofore studied. Herein, we present an investigation of the CaP deposition on a gold substrate. Using APT and transmission electron microscopy (TEM) it is found that a mixture of phases, which could serve as transient precursor phases to hydroxyapatite (HAp), can be detected. The thickness of these phases is tens of nanometers, and they consist of amorphous CaP (ACP), dibasic calcium phosphate dihydrate (DCPD), and octacalcium phosphate (OCP). This demonstrates the value of using atomic-resolved characterization techniques for identifying the precursor phases. It also indicates that the kinetics of their transformation into the more stable HAp is not too fast to enable their observation. The coating gradually displays higher Ca/P atomic ratios, a porous nature, and concomitantly a change in its density.

  11. Hafnium Oxide Film Etching Using Hydrogen Chloride Gas

    NASA Astrophysics Data System (ADS)

    Habuka, Hitoshi; Yamaji, Masahiko; Kobori, Yoshitsugu; Horii, Sadayoshi; Kunii, Yasuo

    2009-12-01

    Hydrogen chloride gas removes the hafnium oxide film formed by atomic layer deposition at the etch rate of about 1 nm/min. A 100 nm-thick hafnium oxide film was perfectly etched off at 1173 K for 60 min by 100% hydrogen chloride gas at 100 sccm. A weight decrease in the hafnium oxide film was observed at temperatures higher than ca. 600 K, which corresponds to the sublimation point of hafnium tetrachloride. The etching by-product is considered to be hafnium tetrachloride. The etching technique developed in this study is expected to be applicable to various processes, such as the cleaning of a hafnium oxide film deposition reactor.

  12. IR spectral properties of dust and ice at the Mars south polar cap

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Kieffer, H. H.

    2001-11-01

    Removal of atmospheric dust effects is required to derive surface IR spectral emissivity. Commonly, the atmospheric-surface separation is based on radiative transfer (RT) spectral inversion methods using nadir-pointing observations. This methodology depends on a priori knowledge of the spectral shape of each atmospheric aerosol (e.g. dust or water ice) and a large thermal contrast between the surface and atmosphere. RT methods fail over the polar caps due to low thermal contrast between the atmosphere and the surface. We have used multi-angle Emission Phase Function (EPF) observations to estimate the opacity spectrum of dust over the springtime south polar cap and the underlying surface radiance, and thus, the surface emissivity. We include a few EPFs from Hellas Basin as a basis for comparisons between the spectral shape of polar and non-polar dust. Surface spectral emissivities over the seasonal cap are compared to CO2 models. Our results show that the spectral shape of the polar dust opacity is not constant, but is a two-parameter family that can be characterized by the 9 um and 20 um opacities. The 9 um opacity varies from 0.15 to 0.45 and characterizes the overall atmospheric conditions. The 9 um to 20 um opacity ratio varies from 2.0 to 5.1, suggesting changes in dust size distribution over the polar caps. Derived surface temperatures from the EPFs confirm that the slightly elevated temperatures (relative to CO2 frost temperature) observed in ``cryptic'' regions are a surface effect, not atmospheric. Comparison of broad-band reflectivity and surface emissivities to model spectra suggest the bright regions (e.g. perennial cap, Mountains of Mitchell) have higher albedos due to a thin surface layer of fine-grain CO2 (perhaps either frost or fractured ice) with an underlying layer of either coarse grain or slab CO2 ice.

  13. Engineering of electric field distribution in GaN(cap)/AlGaN/GaN heterostructures: theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Gladysiewicz, M.; Janicki, L.; Misiewicz, J.; Sobanska, M.; Klosek, K.; Zytkiewicz, Z. R.; Kudrawiec, R.

    2016-09-01

    Polarization engineering of GaN-based heterostructures opens a way to develop advanced transistor heterostructures, although measurement of the electric field in such heterostructures is not a simple task. In this work, contactless electroreflectance (CER) spectroscopy has been applied to measure the electric field in GaN-based heterostructures. For a set of GaN(d  =  0, 5, 15, and 30 nm)/AlGaN(20 nm)/GaN(buffer) heterostructures a decrease of electric field in the GaN(cap) layer from 0.66 MV cm-1 to 0.27 MV cm-1 and an increase of the electric field in the AlGaN layer from 0.57 MV cm-1 to 0.99 MV cm-1 have been observed with the increase in the GaN(cap) thickness from 5-30 nm. For a set of GaN(20 nm)/AlGaN(d  =  10, 20, 30, and 40 nm)/GaN(buffer) heterostructures a decrease of the electric field in the AlGaN layer from 1.77 MV cm-1 to 0.64 MV cm-1 and an increase of the electric field in the GaN layer from 0.57 MV cm-1 to 0.99 MV cm-1 were observed with the increase in the AlGaN thickness from 10-40 nm. To determine the distribution of the electric field in these heterostructures the Schrödinger and Poisson equations are solved in a self-consistent manner and matched with experimental data. It is shown that the built-in electric field in the GaN(cap) and AlGaN layers obtained from measurements does not reach values of electric field resulting only from polarization effects. The measured electric fields are smaller due to a screening of polarization effects by free carriers, which are inhomogeneously distributed across the heterostructure and accumulate at interfaces. The results clearly demonstrate that CER measurements supported by theoretical calculations are able to determine the electric field distribution in GaN-based heterostructures quantitatively, which is very important for polarization engineering in this material system.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Leyre; Cebrian, Virginia; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid

    Graphical abstract: - Highlights: • Morphological changes are observed for CTABr capped gold nanorods over time. • Polystyrenesulfonate (PSS) and polyethyleneglycol (PEG) coated nanorods are stable. • Re-suspendible and sterilizable colloids are prepared using those capping agents. • Those materials are efficient heat sinks potentially used in photothermal therapy. - Abstract: Suspensions in phosphate buffered saline (PBS) of gold nanorods stabilized with cetyltrimethyl ammonium chloride (CTABr), polystyrenesulfonate (PSS) and methyl-polyethyleneglycol-thiol (m-PEG-SH) have been prepared and the evolution of their colloidal stability and plasmonic response over time has been evaluated. Their performance after lyophilization, alcoholic sterilization and resuspension has also beenmore » characterized. Sub-cytotoxic doses on HeLa cells were calculated for the three surface functionalizations used. Their heating efficiency at different exposure times was also evaluated after being irradiated with near infrared light. The best results were obtained for m-PEG-SH stabilized rods, which were not only stable, sterilizable and lyophilizable, but also biocompatible at all doses tested, showing potential as a stable, re-suspendible and biocompatible hyperthermic agent.« less

  15. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  16. Role of Halides in the Ordered Structure Transitions of Heated Gold Nanocrystal Superlattices

    PubMed Central

    2015-01-01

    Dodecanethiol-capped gold (Au) nanocrystal superlattices can undergo a surprisingly diverse series of ordered structure transitions when heated (Goodfellow, B. W.; Rasch, M. R.; Hessel, C. M.; Patel, R. N.; Smilgies, D.-M.; Korgel, B. A. Nano Lett.2013, 13, 5710–5714). These are the result of highly uniform changes in nanocrystal size, which subsequently force a spontaneous rearrangement of superlattice structure. Here, we show that halide-containing surfactants play an essential role in these transitions. In the absence of any halide-containing surfactant, superlattices of dodecanethiol-capped (1.9-nm-diameter) Au nanocrystals do not change size until reaching about 190–205 °C, at which point the gold cores coalesce. In the presence of halide-containing surfactant, such as tetraoctylphosphonium bromide (TOPB) or tetraoctylammounium bromide (TOAB), the nanocrystals ripen at much lower temperature and superlattices undergo various ordered structure transitions upon heating. Chloride- and iodide-containing surfactants induce similar behavior, destabilizing the Au–thiol bond and reducing the thermal stability of the nanocrystals. PMID:26013597

  17. Heat treatment of bulk gallium arsenide using a phosphosilicate glass cap

    NASA Technical Reports Server (NTRS)

    Mathur, G.; Wheaton, M. L.; Borrego, J. M.; Ghandhi, S. K.

    1985-01-01

    n-type bulk GaAs crystals, capped with chemically vapor-deposited phosphosilicate glass, were heat treated at temperatures in the range of 600 to 950 C. Measurements on Schottky diodes and solar cells fabricated on the heat-treated material, after removal of a damaged surface layer, show an increase in free-carrier concentration, in minority-carrier-diffusion length, and in solar-cell short-circuit current. The observed changes are attributed to a removal of lifetime-reducing acceptorlike impurities, defects, or their complexes.

  18. Exposure of Water Ice in the Northern Mid-lattitudes of Mars

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Kanner, Lisa C.

    2007-01-01

    Water ice is exposed in the martian north polar cap, and is occasionally exposed beyond the cap boundary. Orbital gamma ray spectrometry data strongly imply the presence of water ice within meters of the surface at latitudes north of approximately 60 deg. We have examined midlatitude areas of the northern plains displaying evidence of residual ice-rich layers, and report possible present-day exposures of ice. These exposures, if confirmed, could constrain the latitudinal and temporal stability of surface ice on Mars.

  19. Electrochemical characteristics of calcium-phosphatized AZ31 magnesium alloy in 0.9 % NaCl solution.

    PubMed

    Hadzima, Branislav; Mhaede, Mansour; Pastorek, Filip

    2014-05-01

    Magnesium alloys suffer from their high reactivity in common environments. Protective layers are widely created on the surface of magnesium alloys to improve their corrosion resistance. This article evaluates the influence of a calcium-phosphate layer on the electrochemical characteristics of AZ31 magnesium alloy in 0.9 % NaCl solution. The calcium phosphate (CaP) layer was electrochemically deposited in a solution containing 0.1 M Ca(NO3)2, 0.06 M NH4H2PO4 and 10 ml l(-1) of H2O2. The formed surface layer was composed mainly of brushite [(dicalcium phosphate dihidrate (DCPD)] as proved by energy-dispersive X-ray analysis. The surface morphology was observed by scanning electron microscopy. Immersion test was performed in order to observe degradation of the calcium phosphatized surfaces. The influence of the phosphate layer on the electrochemical characteristics of AZ31, in 0.9 % NaCl solution, was evaluated by potentiodynamic measurements and electrochemical impedance spectroscopy. The obtained results were analysed by the Tafel-extrapolation method and equivalent circuits method. The results showed that the polarization resistance of the DCPD-coated surface is about 25 times higher than that of non-coated surface. The CaP electro-deposition process increased the activation energy of corrosion process.

  20. Exchange coupled CoPt/FePtC media for heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Dutta, Tanmay; Piramanayagam, S. N.; Ru, Tan Hui; Saifullah, M. S. M.; Bhatia, C. S.; Yang, Hyunsoo

    2018-04-01

    L10 FePtC granular media are being studied as potential future magnetic recording media and are set to be used in conjunction with heat assisted magnetic recording (HAMR) to enable recording at write fields within the range of current day recording heads. Media structures based on a FePtC storage layer and a capping layer can alleviate the switching field distribution (SFD) requirements of HAMR and reduce the noise originating from the writing process. However, the current designs suffer from SFD issues due to high temperature writing. To overcome this problem, we study a CoPt/FePtC exchange coupled composite structure, where FePtC serves as the storage layer and CoPt (with higher Curie temperature, Tc) as the capping layer. CoPt remains ferromagnetic at near Tc of FePtC. Consequently, the counter exchange energy from CoPt would reduce the noise resulting from the adjacent grain interactions during the writing process. CoPt/FePtC bilayer samples with different thicknesses of CoPt were investigated. Our studies found that CoPt forms a continuous layer at a thickness of 6 nm and leads to considerable reduction in the saturation field and its distribution.

  1. High-Efficiency Silicon/Organic Heterojunction Solar Cells with Improved Junction Quality and Interface Passivation.

    PubMed

    He, Jian; Gao, Pingqi; Ling, Zhaoheng; Ding, Li; Yang, Zhenhai; Ye, Jichun; Cui, Yi

    2016-12-27

    Silicon/organic heterojunction solar cells (HSCs) based on conjugated polymers, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and n-type silicon (n-Si) have attracted wide attention due to their potential advantages of high efficiency and low cost. However, the state-of-the-art efficiencies are still far from satisfactory due to the inferior junction quality. Here, facile treatments were applied by pretreating the n-Si wafer in tetramethylammonium hydroxide (TMAH) solution and using a capping copper iodide (CuI) layer on the PEDOT:PSS layer to achieve a high-quality Schottky junction. Detailed photoelectric characteristics indicated that the surface recombination was greatly suppressed after TMAH pretreatment, which increased the thickness of the interfacial oxide layer. Furthermore, the CuI capping layer induced a strong inversion layer near the n-Si surface, resulting in an excellent field effect passivation. With the collaborative improvements in the interface chemical and electrical passivation, a competitive open-circuit voltage of 0.656 V and a high fill factor of 78.1% were achieved, leading to a stable efficiency of over 14.3% for the planar n-Si/PEDOT:PSS HSCs. Our findings suggest promising strategies to further exploit the full voltage as well as efficiency potentials for Si/organic solar cells.

  2. Electromagnetic methods for mapping freshwater lenses on Micronesian atoll islands

    USGS Publications Warehouse

    Anthony, S.S.

    1992-01-01

    The overall shape of freshwater lenses can be determined by applying electromagnetic methods and inverse layered-earth modeling to the mapping of atoll island freshwater lenses. Conductivity profiles were run across the width of the inhabited islands at Mwoakilloa, Pingelap, and Sapwuahfik atolls of the Pohnpei State, Federated States of Micronesia using a dual-loop, frequency-domain, electromagnetic profiling system. Six values of apparent conductivity were recorded at each sounding station and were used to interpret layer conductivities and/or thicknesses. A three-layer model that includes the unsaturated, freshwater, and saltwater zones was used to simulate apparent-conductivity data measured in the field. Interpreted results were compared with chloride-concentration data from monitoring wells and indicate that the interface between freshwater and saltwater layers, defined from electromagnetic data, is located in the upper part of the transition zone, where the chloride-concentration profile shows a rapid increase with depth. The electromagnetic method can be used to interpret the thickness of the freshwater between monitoring wells, but can not be used to interpret the thickness of freshwater from monitoring wells to the margin of an island. ?? 1992.

  3. Chemically exfoliating large sheets of phosphorene via choline chloride urea viscosity-tuning

    NASA Astrophysics Data System (ADS)

    Ng, A.; Sutto, T. E.; Matis, B. R.; Deng, Y.; Ye, P. D.; Stroud, R. M.; Brintlinger, T. H.; Bassim, N. D.

    2017-04-01

    Exfoliation of two-dimensional phosphorene from bulk black phosphorous through chemical means is demonstrated where the solvent system of choice (choline chloride urea diluted with ethanol) has the ability to successfully exfoliate large-area multi-layer phosphorene sheets and further protect the flakes from ambient degradation. The intercalant solvent molecules, aided by low-powered sonication, diffuse between the layers of the bulk black phosphorus, allowing for the exfoliation of the multi-layer phosphorene through breaking of the interlayer van der Waals bonds. Through viscosity tuning, the optimal parameters (1:1 ratio between the intercalant and the diluting solvent) at which the exfoliation takes place is determined. Our exfoliation technique is shown to produce multi-layer phosphorene flakes with surface areas greater than 3 μm2 (a factor of three larger than what has previously been reported for a similar exfoliation method) while limiting exposure to the ambient environment, thereby protecting the flakes from degradation. Characterization techniques such as optical microscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, and (scanning) transmission electron microscopy are used to investigate the quality, quantity, and thickness of the exfoliated flakes.

  4. Corrosion and runoff rates of Cu and three Cu-alloys in marine environments with increasing chloride deposition rate.

    PubMed

    Odnevall Wallinder, Inger; Zhang, Xian; Goidanich, Sara; Le Bozec, Nathalie; Herting, Gunilla; Leygraf, Christofer

    2014-02-15

    Bare copper sheet and three commercial Cu-based alloys, Cu15Zn, Cu4Sn and Cu5Al5Zn, have been exposed to four test sites in Brest, France, with strongly varying chloride deposition rates. The corrosion rates of all four materials decrease continuously with distance from the coast, i.e. with decreasing chloride load, and in the following order: Cu4Sn>Cu sheet>Cu15Zn>Cu5Al5Zn. The patina on all materials was composed of two main layers, Cu2O as the inner layer and Cu2(OH)3Cl as the outer layer, and with a discontinuous presence of CuCl in between. Additional minor patina constituents are SnO2 (Cu4Sn), Zn5(OH)6(CO3)2 (Cu15Zn and Cu5Al5Zn) and Zn6Al2(OH)16CO3·4H2O/Zn2Al(OH)6Cl·2H2O/Zn5Cl2(OH)8·H2O and Al2O3 (Cu5Al5Zn). The observed Zn- and Zn/Al-containing corrosion products might be important factors for the lower sensitivity of Cu15Zn and Cu5Al5Zn against chloride-induced atmospheric corrosion compared with Cu sheet and Cu4Sn. Decreasing corrosion rates with exposure time were observed for all materials and chloride loads and attributed to an improved adherence with time of the outer patina to the underlying inner oxide. Flaking of the outer patina layer was mainly observed on Cu4Sn and Cu sheet and associated with the gradual transformation of CuCl to Cu2(OH)3Cl of larger volume. After three years only Cu5Al5Zn remains lustrous because of a patina compared with the other materials that appeared brownish-reddish. Significantly lower release rates of metals compared with corresponding corrosion rates were observed for all materials. Very similar release rates of copper from all four materials were observed during the fifth year of marine exposure due to an outer surface patina that with time revealed similar constituents and solubility properties. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  5. South Polar Cap Erosion and Aprons

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This scene is illuminated by sunlight from the upper left.

    While Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images have shown that the north and south polar cap surfaces are very different from each other, one thing that the two have in common is that they both seem to have been eroded. Erosion in the north appears mostly to come in the form of pits from which ice probably sublimed to vapor and was transported away from the polar cap by wind. Erosion in the south takes on a wider range of possible processes that include collapse, slumping and mass-movement on slopes, and probably sublimation. Among the landforms created by these process on the south polar cap are the 'aprons' that surround mesas and buttes of remnant layers such as the two almost triangular features in the lower quarter of this image. The upper slopes of the two triangular features show a stair-stepped pattern that suggest these hills are layered.

    This image shows part of the south polar residual cap near 86.9oS, 78.5oW, and covers an area approximately 1.2 by 1.0 kilometers (0.7 x 0.6 miles) in size. The image has a resolution of 2.2 meters per pixel. The picture was taken on September 11, 1999.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  6. Design Guide: Designing and Building High Voltage Power Supplies. Volume 2

    DTIC Science & Technology

    1988-08-01

    and edges. * Isolation system: * One layer ol’ Tedlar: or type 120 glass fabric with a compatible resin : or finish. 199 5.4.2 Composite Joints...plastics Cellulose esters Asphalt Cork Chloride flux Epoxy resins Copper (bare) Masonite Fiber board Melamine resins Greases Nylon Polyvinyl chloride resins ...cycloaliphatic epoxy to a level inferior to the porcelain. In one application having a glass -cloth epoxy- based laminate coated with cycloaliphatic epoxy the

  7. Production and Engineering Methods for CARB-TEX (Trade Name) Batteries in Fork Lift Trucks

    DTIC Science & Technology

    1974-12-01

    Temperature Batteries Tellurium Tetra Chloride Battery Pilot Line TO ABSTRACT (Contfinue on reverse side !I mvc.esy mid Identify by block number) This...chloride -1- as the electrolyte, and a tellurium tetrachloride additive. The porous carbon cathode is an aggregation of active carbon particles which have...energy storage using the Helmholtz double-layer princi- ple. However, after treating the carbon with the tellurium tetrachloride additve, the carbon

  8. Synthesis of SnO2 and Ag Nanoparticles from Electronic Wastes with the Assistance of Ultrasound and Microwaves

    NASA Astrophysics Data System (ADS)

    Cerchier, Pietrogiovanni; Dabalà, Manuele; Brunelli, Katya

    2017-09-01

    In this work, SnO2 and Ag nanoparticles were produced with a raw material nitric acid solution, which came from the leaching of printed circuit boards. First, a precursor of tin oxide was precipitated from the nitric acid solution by three different techniques: (I) conventional heating, (II) microwave irradiation, and (III) ultrasound treatment. Second, this precursor was transformed into tin oxide nanoparticles by heat treatment in a furnace. Third, hydrochloric acid was added to the nitric acid solution to induce the precipitation of silver chloride. Fourth, silver chloride was reduced to metallic silver nanoparticles in an ammonia solution using glucose syrup as both the reducing agent and the capping agent. The reduction reaction was carried out through (I) conventional heating, (II) microwave irradiation, and (III) ultrasound treatment. The nanoparticles were characterized by scanning electron microscope (SEM), x-ray diffractometer (XRD), infrared (IR)-spectroscopy, transmission electron microscope (TEM), ultraviolet (UV)-spectroscopy, and laser diffraction particle size analyzer.

  9. Microsurgical removal of epidermal and cortical cells: evidence that the gravitropic signal moves through the outer cell layers in primary roots of maize

    NASA Technical Reports Server (NTRS)

    Yang, R. L.; Evans, M. L.; Moore, R.

    1990-01-01

    There is general agreement that during root gravitropism some sort of growth-modifying signal moves from the cap to the elongation zone and that this signal ultimately induces the curvature that leads to reorientation of the root. However, there is disagreement regarding both the nature of the signal and the pathway of its movement from the root cap to the elongation zone. We examined the pathway of movement by testing gravitropism in primary roots of maize (Zea mays L.) from which narrow (0.5 mm) rings of epidermal and cortical tissue were surgically removed from various positions within the elongation zone. When roots were girdled in the apical part of the elongation zone gravitropic curvature occurred apical to the girdle but not basal to the girdle. Filling the girdle with agar allowed curvature basal to the girdle to occur. Shallow girdles, in which only two or three cell layers (epidermis plus one or two cortical cell layers) were removed, prevented or greatly delayed gravitropic curvature basal to the girdle. The results indicate that the gravitropic signal moves basipetally through the outermost cell layers, perhaps through the epidermis itself.

  10. Analysis of buried interfaces in multilayer mirrors using grazing incidence extreme ultraviolet reflectometry near resonance edges.

    PubMed

    Sertsu, M G; Nardello, M; Giglia, A; Corso, A J; Maurizio, C; Juschkin, L; Nicolosi, P

    2015-12-10

    Accurate measurements of optical properties of multilayer (ML) mirrors and chemical compositions of interdiffusion layers are particularly challenging to date. In this work, an innovative and nondestructive experimental characterization method for multilayers is discussed. The method is based on extreme ultraviolet (EUV) reflectivity measurements performed on a wide grazing incidence angular range at an energy near the absorption resonance edge of low-Z elements in the ML components. This experimental method combined with the underlying physical phenomenon of abrupt changes of optical constants near EUV resonance edges enables us to characterize optical and structural properties of multilayers with high sensitivity. A major advantage of the method is to perform detailed quantitative analysis of buried interfaces of multilayer structures in a nondestructive and nonimaging setup. Coatings of Si/Mo multilayers on a Si substrate with period d=16.4  nm, number of bilayers N=25, and different capping structures are investigated. Stoichiometric compositions of Si-on-Mo and Mo-on-Si interface diffusion layers are derived. Effects of surface oxidation reactions and carbon contaminations on the optical constants of capping layers and the impact of neighboring atoms' interactions on optical responses of Si and Mo layers are discussed.

  11. FT-IR study of CO 2 interaction with Na-rich montmorillonite

    DOE PAGES

    Krukowski, Elizabeth G.; Goodman, Angela; Rother, Gernot; ...

    2015-05-27

    Here, carbon capture, utilization and storage (CCUS) in saline reservoirs in sedimentary formations has the potential to reduce the impact of fossil fuel combustion on climate change by reducing CO 2 emissions to the atmosphere and storing the CO 2 in geologic formations in perpetuity. At pressure and temperature (PT) conditions relevant to CCUS, CO 2 is less dense than the pre-existing brine in the formation, and the more buoyant CO 2 will migrate to the top of the formation where it will be in contact with cap rock. Interactions between clay-rich shale cap rocks and CO 2 are poorlymore » understood at PT conditions appropriate for CCUS in saline formations. In this study, the interaction of CO 2 with clay minerals in the cap rock overlying a saline formation has been examined using Na + exchanged montmorillonite (Mt) (Na +-STx-1) (Na + Mt) as an analog for clay-rich shale. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) was used to discern mechanistic information for CO 2 interaction with hydrated (both one- and two-water layers) and relatively dehydrated (both dehydrated layers and one-water layers) Na+-STx-1 at 35 °C and 50 C and CO 2 pressure from 0 5.9 MPa. CO 2-induced perturbations associated with the water layer and Na+-STx-1 vibrational modes such as AlAlOH and AlMgOH were examined. Data indicate that CO 2 is preferentially incorporated into the interlayer space, with relatively dehydrated Na +-STx-1 capable of incorporating more CO 2 compared to hydrated Na +-STx-1. Spectroscopic data provide no evidence of formation of carbonate minerals or the interaction of CO 2 with sodium cations in the Na +-STx-1 structure.« less

  12. Enhanced direct-gap light emission from Si-capped n+-Ge epitaxial layers on Si after post-growth rapid cyclic annealing: impact of non-radiative interface recombination toward Ge/Si double heterostructure lasers.

    PubMed

    Higashitarumizu, Naoki; Ishikawa, Yasuhiko

    2017-09-04

    Enhanced direct-gap light emission is reported for Si-capped n + -Ge layers on Si after post-growth rapid cyclic annealing (RCA), and impact of non-radiative recombination (NRR) at the Ge/Si interface is discussed toward Ge/Si double heterostructure (DH) lasers. P-doped n + -Ge layer (1 × 10 19 cm -3 , 400 nm) is grown on Si by ultra-high vacuum chemical vapor deposition, followed by a growth of Si capping layer (5 nm) to form a Si/Ge/Si DH structure. Post-growth RCA to eliminate defects in Ge is performed in N 2 at temperatures between 900°C and 780°C, where the annealing time is minimized to be 5 s in each RCA cycle to prevent an out-diffusion of P dopants from the Ge surface. Direct-gap photoluminescence (PL) intensity at 1.6 µm increases with the RCA cycles up to 40, although the threading dislocation density in Ge is not reduced after 3 cycles in the present condition. The PL enhancement is ascribed to the suppression of NRR at the Ge/Si interface, where an intermixed SiGe alloy is formed. For Ge/Si DH lasers, NRR at the Ge/Si interface is found to have a significant impact on the threshold current density Jth. In order to achieve Jth on the order of 1 kA/cm 2 , similar to III-V lasers, the interface recombination velocity S is required below 10 3 cm/s in spite of S as large as 10 5 cm/s at the ordinary defect-rich Ge/Si interface.

  13. Martian Polar Caps: Folding, Faulting, Flowing Glaciers of Multiple Interbedded Ices

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.

    2001-12-01

    The Martian south polar cap (permanent CO2 cap and polar layered deposits), exhibit abundant, varied, and widespread deformational phenomena. Folding and boudinage are very common. Strike-slip or normal faults are rarer. Common in the vicinity of major troughs and scarps are signs of convergent flow tectonics manifested as wrinkle-ridge-like surface folds, thrust faults, and viscous forebulges with thin-skinned extensional crevasses and wrinkle-ridge folds. Such flow convergence is predicted by theory. Boudinage and folding at the 300-m wavelength scale, indicating rheologically contrasting materials, is widely exposed at deep levels along erosional scarps. Independent morphologic evidence indicates south polar materials of contrasting volatility. Hence, the south polar cap appears to be a multiphase structure of interbedded ices. The north polar cap locally also exhibits flow indicators, though they are neither as common nor as varied as in the south. The large-scale quasi-spiral structure of the polar caps could be a manifestation of large-scale boudinage. According to this scenario, deep-level boudinage continuously originates under the glacial divide (the polar cap summit). Rod-like boudin structures are oriented transverse to flow and migrate outward with the large-scale flow field. Troughs develop over areas between major boudins. A dynamic competition, and possibly a rough balance, develops between the local flow field in the vicinity of a trough (which tends to close the trough by lateral closure and upwelling flow) and sublimation erosion (which tends to widen and deepen them). Over time, the troughs flow to the margins of the polar cap where they, along with other polar structures, are destroyed by sublimation. Major ice types contributing to rheological and volatility layering may include, in order of highest to lowest mechanical strength, CO2 clathrate hydrate, water ice containing inert/insoluble dust, pure water ice, water ice containing traces of liquid-soluble salts, water ice containing traces of solid-soluble acids, CO2 ice. This is also nearly the same sequence of highest to lowest melting/dissociation points, but it is different than the sequence of volatility. This geologic-structural interpretation and specific chemical models are amenable to testing by computational means and point the way toward future needed observations, including complete high-resolution imaging of the polar caps, measurement of flow fields (possibly by laser interferometry), mapping of subsurface structures (by radar and/or seismic methods), and determination of composition (by penetrators, drillers, or borers). New lab data are needed on the physical properties of candidate ices.

  14. Capping of rare earth silicide nanowires on Si(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appelfeller, Stephan; Franz, Martin; Kubicki, Milan

    The capping of Tb and Dy silicide nanowires grown on Si(001) was studied using scanning tunneling microscopy and cross-sectional high-resolution transmission electron microscopy. Several nanometers thick amorphous Si films deposited at room temperature allow an even capping, while the nanowires maintain their original structural properties. Subsequent recrystallization by thermal annealing leads to more compact nanowire structures and to troughs in the Si layer above the nanowires, which may even reach down to the nanowires in the case of thin Si films, as well as to V-shaped stacking faults forming along (111) lattice planes. This behavior is related to strain duemore » to the lattice mismatch between the Si overlayer and the nanowires.« less

  15. The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor.

    PubMed

    Krivec, M; Dillert, R; Bahnemann, D W; Mehle, A; Štrancar, J; Dražić, G

    2014-07-28

    Photocatalytic degradation of dichloroacetic acid (DCA) was studied in a continuous-flow set-up using a titanium microreactor with an immobilized double-layered TiO2 nanoparticle/nanotube film. Chloride ions, formed during the degradation process, negatively affect the photocatalytic efficiency and at a certain concentration (approximately 0.5 mM) completely stop the reaction in the microreactor. Two proposed mechanisms of inhibition with chloride ions, competitive adsorption and photogenerated-hole scavenging, have been proposed and investigated by adsorption isotherms and electron paramagnetic resonance (EPR) measurements. The results show that chloride ions block the DCA adsorption sites on the titania surface and reduce the amount of adsorbed DCA molecules. The scavenging effect of chloride ions during photocatalysis through the formation of chlorine radicals was not detected.

  16. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent massmore » loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.« less

  17. Biomimetic Deposition of Hydroxyapatite by Mixed Acid Treatment of Titanium Surfaces.

    PubMed

    Zhao, J M; Park, W U; Hwang, K H; Lee, J K; Yoon, S Y

    2015-03-01

    A simple chemical method was established for inducing bioactivity of Ti metal. In the present study, two kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coatings successfully formed on the Ti surfaces in the simulated body fluid. Strong mixed acid etching was used to increase the roughness of the metal surface, because the porous and rough surfaces allow better adhesion between Ca-P coatings and substrate. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Some specimens were treated with a 5 M NaOH aqueous solution, and then heat treated at 600 °C in order to form an amorphous sodium titanate layer on their surface. This treated titanium metal is believed to form a dense and uniform bone-like apatite layer on its surface in a simulated body fluid (SBF). This study proved that mixed acid treatment is not only important for surface passivation but is also another bioactive treatment for titanium surfaces, an alternative to alkali treatment. In addition, mixed acid treatment uses a lower temperature and shorter time period than alkali treatment.

  18. A wind tunnel study of gaseous tracer dispersion in the convective boundary layer capped by a temperature inversion

    NASA Astrophysics Data System (ADS)

    Fedorovich, E.; Thäter, J.

    Results are presented from wind tunnel simulations of gaseous pollutant dispersion in the atmospheric convective boundary layer (CBL) capped by a temperature inversion. The experiments were performed in the thermally stratified wind tunnel of the University of Karlsruhe, Germany. In the tunnel, the case of horizontally evolving, sheared CBL is reproduced. This distinguishes the employed experimental setup from the preceding laboratory and numerical CBL dispersion studies. The diffusive and mixing properties of turbulence in the studied CBL case have been found to be essentially dependent on the stage of the CBL evolution. Effects of the point source elevation on the horizontal variability of the concentration field, and on the ground level concentration as function of distance from the source have been investigated. The applicability of bottom-up/top-down diffusion concept in the simulated CBL case has been evaluated. The influence of surface wind shear and capping inversion strength on the pollutant dispersion and turbulent exchange across the CBL top has been demonstrated. The imposed positive shear across the inversion has been identified as inhibitor of the CBL growth. Comparisons of concentration patterns from the wind tunnel with water tank data are presented.

  19. Deposition and properties of cobalt- and ruthenium-based ultra-thin films

    NASA Astrophysics Data System (ADS)

    Henderson, Lucas Benjamin

    Future copper interconnect systems will require replacement of the materials that currently comprise both the liner layer(s) and the capping layer. Ruthenium has previously been considered as a material that could function as a single material liner, however its poor ability to prevent copper diffusion makes it incompatible with liner requirements. A recently described chemical vapor deposition route to amorphous ruthenium-phosphorus alloy films could correct this problem by eliminating the grain boundaries found in pure ruthenium films. Bias-temperature stressing of capacitor structures using 5 nm ruthenium-phosphorus film as a barrier to copper diffusion and analysis of the times-to-failure at accelerated temperature and field conditions implies that ruthenium-phosphorus performs acceptably as a diffusion barrier for temperatures above 165°C. The future problems associated with the copper capping layer are primarily due to the poor adhesion between copper and the current Si-based capping layers. Cobalt, which adheres well to copper, has been widely proposed to replace the Si-based materials, but its ability to prevent copper diffusion must be improved if it is to be successfully implemented in the interconnect. Using a dual-source chemistry of dicobaltoctacarbonyl and trimethylphosphine at temperatures from 250-350°C, amorphous cobalt-phosphorus can be deposited by chemical vapor deposition. The films contain elemental cobalt and phosphorus, plus some carbon impurity, which is incorporated in the film as both graphitic and carbidic (bonded to cobalt) carbon. When deposited on copper, the adhesion between the two materials remains strong despite the presence of phosphorus and carbon at the interface, but the selectivity for growth on copper compared to silicon dioxide is poor and must be improved prior to consideration for application in interconnect systems. A single molecule precursor containing both cobalt and phosphorus atoms, tetrakis(trimethylphosphine)cobalt(0), yields cobalt-phosphorus films without any co-reactant. However, the molecule does not contain sufficient amounts of amorphizing agents to fully eliminate grain boundaries, and the resulting film is nanocrystalline.

  20. Light-Induced Acid Generation on a Gatekeeper for Smart Nitric Oxide Delivery.

    PubMed

    Choi, Hyung Woo; Kim, Jihoon; Kim, Jinhwan; Kim, Yonghwi; Song, Hyun Beom; Kim, Jeong Hun; Kim, Kimoon; Kim, Won Jong

    2016-04-26

    We report herein the design of a light-responsive gatekeeper for smart nitric oxide (NO) delivery. The gatekeeper is composed of a pH-jump reagent as an intermediary of stimulus and a calcium phosphate (CaP) coating as a shielding layer for NO release. The light irradiation and subsequent acid generation are used as triggers for uncapping the gatekeeper and releasing NO. The acids generated from a light-activated pH-jump agent loaded in the mesoporous nanoparticles accelerated the degradation of the CaP-coating layers on the nanoparticles, facilitating the light-responsive NO release from diazeniumdiolate by exposing a NO donor to physiological conditions. Using the combination of the pH-jump reagent and CaP coating, we successfully developed a light-responsive gatekeeper system for spatiotemporal-controlled NO delivery.

  1. Biomedical engineering tasks. [electrode development for electrocardiography and electroencephalography

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Electrocardiographic and vectorcardiographic bioinstrumentation work centered on the development of a new electrode system harness for Project Skylab. Evaluation of several silver electrode configurations proved superior impedance voltage performance for silver/silver chloride electrodes mounted flush by using a paste adhesive. A portable ECG processor has been designed and a breadboard unit has been built to sample ECG input data at a rate of 500 samples per second for arrhythmia detection. A small real time display driver program has been developed for statistical analysis on selected QPS features. Engineering work on a sleep monitoring cap assembly continued.

  2. The structure of crystallographic damage in GaN formed during rare earth ion implantation with and without an ultrathin AlN capping layer

    NASA Astrophysics Data System (ADS)

    Gloux, F.; Ruterana, P.; Wojtowicz, T.; Lorenz, K.; Alves, E.

    2006-10-01

    The crystallographic nature of the damage created in GaN implanted by rare earth ions at 300 keV and room temperature has been investigated by transmission electron microscopy versus the fluence, from 7×10 13 to 2×10 16 at/cm 2, using Er, Eu or Tm ions. The density of point defect clusters was seen to increase with the fluence. From about 3×10 15 at/cm 2, a highly disordered 'nanocrystalline layer' (NL) appears on the GaN surface. Its structure exhibits a mixture of voids and misoriented nanocrystallites. Basal stacking faults (BSFs) of I 1, E and I 2 types have been noticed from the lowest fluence, they are I 1 in the majority. Their density increases and saturates when the NL is observed. Many prismatic stacking faults (PSFs) with Drum atomic configuration have been identified. The I 1 BSFs are shown to propagate easily through GaN by folding from basal to prismatic planes thanks to the PSFs. When implanting through a 10 nm AlN cap, the NL threshold goes up to about 3×10 16 at/cm 2. The AlN cap plays a protective role against the dissociation of the GaN up to the highest fluences. The flat surface after implantation and the absence of SFs in the AlN cap indicate its high resistance to the damage formation.

  3. Polar Cap Energy Deposition Events During the 5-6 August 2011 Magnetic Storm

    NASA Astrophysics Data System (ADS)

    Horvath, Ildiko; Lovell, Brian C.

    2018-03-01

    We study the 5-6 August 2011 storm for its energy deposition events occurring deep in the polar cap region, where the consequential localized intensifications of earthward directed Poynting flux led to the development of their related localized neutral density increases. For unraveling the underlying physical processes, we investigate the relations among Poynting flux intensifications, flow channels (FCs), and localized neutral density enhancements plus the nature of the underlying reconnection events. Observational results demonstrate Poynting flux increase deep in the polar cap in a FC-2 type FC during magnetopause reconnections and in a FC-4 type FC during lobe reconnections. During the latter stages of these different types of reconnection events, energy/momentum transfer occurred along old-open field lines and commonly led to the development of localized neutral density increases during their respective upwelling events fueled by field-aligned currents and above/within these polar FCs. The prevailing BY domination and the pulsed nature of this storm created favorable conditions for the development of these FC-2 and FC-4 types in the sunlit northern summer hemisphere and caused the observed Poynting flux intensifications deep in the polar cap. The solar wind source of these reconnections taking place along old-open field lines was situated in the high-latitude boundary layer. Thus, the high-latitude boundary layer dynamo provided a vigorous source of energy/momentum transfer during the latter-stage reconnections unfolding along old-open field lines.

  4. An electromagnetic compressive force by cell exciter stimulates chondrogenic differentiation of bone marrow-derived mesenchymal stem cells.

    PubMed

    Park, Sang-Hyug; Sim, Woo Young; Park, Sin Wook; Yang, Sang Sik; Choi, Byung Hyune; Park, So Ra; Park, Kwideok; Min, Byoung-Hyun

    2006-11-01

    In this study, we present a biological micro-electromechanical system and its application to the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (MSCs). Actuated by an electromagnetic force, the micro cell exciter was designed to deliver a cyclic compressive load (CCL) with various magnitudes. Two major parts in the system are an actuator and a cartridge-type chamber. The former has a permanent magnet and coil, and the latter is equipped with 7 sample dishes and 7 metal caps. Mixed with a 2.4% alginate solution, the alginate/MSC layers were positioned in the sample dishes; the caps contained chondrogenic defined medium without transforming growth factor-beta (TGF-beta). Once powered, the actuator coil-derived electromagnetic force pulled the metal caps down, compressing the samples. The cyclic load was given at 1-Hz frequency for 10 min twice a day. Samples in the dishes without a cap served as a control. The samples were analyzed at 3, 5, and 7 days after stimulation for cell viability, biochemical assays, histologic features, immunohistochemistry, and gene expression of the chondrogenic markers. Applied to the alginate/MSC layer, the CCL system enhanced the synthesis of cartilage-specific matrix proteins and the chondrogenic markers, such as aggrecan, type II collagen, and Sox9. We found that the micromechanically exerted CCL by the cell exciter was very effective in enhancing the chondrogenic differentiation of MSCs, even without using exogenous TGF-beta.

  5. Growth and behavior of chondrocytes on nano engineered surfaces and construction of micropatterned co-culture platforms using layer-by-layer platforms using layer-by-layer assembly lift-off method

    NASA Astrophysics Data System (ADS)

    Shaik, Jameel

    Several approaches such as self-assembled monolayers and layer-by-layer assembled multilayer films are being used as tools to study the interactions of cells with biomaterials in vitro. In this study, the layer-by-layer assembly approach was used to create monolayer, bilayer, trilayer, five, ten and twenty-bilayer beds of eleven different biomaterials. The various biomaterials used were poly(styrene-sulfonate), fibronectin, poly-L-lysine, poly-D-lysine, laminin, bovine serum albumin, chondroitin sulfate, poly(ethyleneimine), polyethylene glycol amine, collagen and poly(dimethyldiallyl-ammonium chloride) with unmodified tissue-culture polystyrene as standard control. Three different cell lines---primary bovine articular chondrocytes, and two secondary cell lines, human chondrosarcoma cells and canine chondrocytes were used in these studies. Chondrocyte morphology and attachment, viability, proliferation, and functionality were determined using bright field microscopy, the Live/Dead viability assay, MTT assay, and immunocytochemistry, respectively. Atomic force microscopy of the nanofilms indicated an increase in surface roughness with increasing number of layers. The most important observations from the studies on primary bovine articular chondrocytes were that these cells exhibited increasing viability and cell metabolic activity with increasing number of bilayers. The increase in viability was more pronounced than the increase in cell metabolic activity. Also, bovine chondrocytes on bilayers of poly(dimethyldiallyl-ammonium chloride, poly-L-lysine, poly(styrene-sulfonate), and bovine serum albumin were substantially bigger in size and well-attached when compared to the cells grown on monolayer and trilayers. Lactate dehydrogenase assay performed on chondrosarcoma cells grown on 5- and 10-bilayer multilayer beds indicated that the 10-bilayer beds had reduced cytotoxicity compared to the 5-bilayer beds. MTT assay performed on canine chondrocytes grown on 5-, 10-, and 20-bilayer nanofilm beds revealed increasing cell metabolic activity for BSA with increasing bilayers. Micropatterned multilayer beds having poly-L-lysine, poly-D-lysine, laminin poly(dimethyldiallyl-ammonium chloride) and poly(ethyleneimine) as the terminating layers were fabricated using the Layer-by-layer Lift-off (LbL-LO) method that combines photolithography and LbL self-assembly. Most importantly, micropatterned co-culture platforms consisting of anti-CD 44 rat monoclonal and anti-rat osteopontin (MPIIIB101) antibodies were constructed using the LbL-LO method for the first time. These co-culture platforms have several applications especially for studies of stem and progenitor cells. Co-culture platforms exhibiting spatiotempora-based differentiation can be built with LbL-LO for the differentiation of stem cells into the desired cell lineage.

  6. 3D solid supported inter-polyelectrolyte complexes obtained by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate)

    PubMed Central

    Maestro, Armando; Llamas, Sara; Álvarez-Rodríguez, Jesús; Ortega, Francisco; Maroto-Valiente, Ángel

    2016-01-01

    Summary This work addresses the formation and the internal morphology of polyelectrolyte layers obtained by the layer-by-layer method. A multimodal characterization showed the absence of stratification of the films formed by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Indeed the final organization might be regarded as three-dimensional solid-supported inter-polyelectrolyte films. The growth mechanism of the multilayers, followed using a quartz crystal microbalance, evidences two different growth trends, which show a dependency on the ionic strength due to its influence onto the polymer conformation. The hydration state does not modify the multilayer growth, but it contributes to the total adsorbed mass of the film. The water associated with the polyelectrolyte films leads to their swelling and plastification. The use of X-ray photoelectron spectroscopy has allowed for deeper insights on the internal structure and composition of the polyelectrolyte multilayers. PMID:26977377

  7. 3D solid supported inter-polyelectrolyte complexes obtained by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate).

    PubMed

    Guzmán, Eduardo; Maestro, Armando; Llamas, Sara; Álvarez-Rodríguez, Jesús; Ortega, Francisco; Maroto-Valiente, Ángel; Rubio, Ramón G

    2016-01-01

    This work addresses the formation and the internal morphology of polyelectrolyte layers obtained by the layer-by-layer method. A multimodal characterization showed the absence of stratification of the films formed by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Indeed the final organization might be regarded as three-dimensional solid-supported inter-polyelectrolyte films. The growth mechanism of the multilayers, followed using a quartz crystal microbalance, evidences two different growth trends, which show a dependency on the ionic strength due to its influence onto the polymer conformation. The hydration state does not modify the multilayer growth, but it contributes to the total adsorbed mass of the film. The water associated with the polyelectrolyte films leads to their swelling and plastification. The use of X-ray photoelectron spectroscopy has allowed for deeper insights on the internal structure and composition of the polyelectrolyte multilayers.

  8. Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.

    1999-01-01

    Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.

  9. Modeling study of a proposed field calibration source using K-40 and high-Z targets for sodium iodide detectors

    DOE PAGES

    Rogers, Jeremy; Marianno, Craig; Kallenbach, Gene; ...

    2016-06-01

    Calibration sources based on the primordial isotope potassium-40 ( 40K) have reduced controls on the source’s activity due to its terrestrial ubiquity and very low specific activity. Potassium–40’s beta emissions and 1,460.8 keV gamma ray can be used to induce K-shell fluorescence x rays in high-Z metals between 60 and 80 keV. A gamma ray calibration source that uses potassium chloride salt and a high-Z metal to create a two-point calibration for a sodium iodide field gamma spectroscopy instrument is thus proposed. The calibration source was designed in collaboration with the Sandia National Laboratory using the Monte Carlo N-Particle eXtendedmore » (MCNPX) transport code. Two methods of x-ray production were explored. First, a thin high-Z layer (HZL) was interposed between the detector and the potassium chloride-urethane source matrix. Second, bismuth metal powder was homogeneously mixed with a urethane binding agent to form a potassium chloride-bismuth matrix (KBM). The bismuth-based source was selected as the development model because it is inexpensive, nontoxic, and outperforms the high-Z layer method in simulation. As a result, based on the MCNPX studies, sealing a mixture of bismuth powder and potassium chloride into a thin plastic case could provide a light, inexpensive field calibration source.« less

  10. Interlayer interaction in Ca-Fe layered double hydroxides intercalated with nitrate and chloride species

    NASA Astrophysics Data System (ADS)

    Al-Jaberi, Muayad; Naille, Sébastien; Dossot, Manuel; Ruby, Christian

    2015-12-01

    Ca-Fe layered double hydroxide (LDH) intercalated with chloride and nitrate ions has been synthesized with varying CaII:FeIII molar ratios of the initial solution. Phase pure LDH is observed with CaII:FeIII molar ratio of 2:1 and a mixture of LDH and Ca(OH)2 is formed for CaII:FeIII molar ratios higher than 2:1. Vibrational spectroscopies (Raman and IR) were used successfully to understand the interaction between the cationic and anionic sheets. The Raman bands positions at lower frequencies (150-600 cm-1) are intimately correlated to the nature of the divalent and trivalent ions but also to the nature of the anions. Indeed, a shift of ˜9 cm-1 is observed for the Raman double bands situated in the 300-400 cm-1 region when comparing Raman spectra of CaFe-LDH containing either nitrate or chloride ions. Two types of nitrate environments are observed namely free (non-hydrogen bonded) nitrate and nitrate hydrogen bonded to the interlayer water or to the 'brucite-like' hydroxyl surface. Multiple types of water structure are observed and would result from different hydrogen bond structures. Water bending modes are identified at 1645 cm-1 greater than the one observed for LDH intercalated with chloride anions (1618 cm-1), indicating that the water is strongly hydrogen bonded to the nitrate anions.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abboud, Alexander; Guillen, Donna Post; Pokorny, Richard

    At the Hanford site in the state of Washington, more than 56 million gallons of radioactive waste is stored in underground tanks. The cleanup plan for this waste is vitrification at the Waste Treatment Plant (WTP), currently under construction. At the WTP, the waste will be blended with glass-forming materials and heated to 1423K, then poured into stainless steel canisters to cool and solidify. A fundamental understanding of the glass batch melting process is needed to optimize the process to reduce cost and decrease the life cycle of the cleanup effort. The cold cap layer that floats on the surfacemore » of the glass melt is the primary reaction zone for the feed-to-glass conversion. The conversion reactions include water release, melting of salts, evolution of batch gases, dissolution of quartz and the formation of molten glass. Obtaining efficient heat transfer to this region is crucial to achieving high rates of glass conversion. Computational fluid dynamics (CFD) modeling is being used to understand the heat transfer dynamics of the system and provide insight to optimize the process. A CFD model was developed to simulate the DM1200, a pilot-scale melter that has been extensively tested by the Vitreous State Laboratory (VSL). Electrodes are built into the melter to provide Joule heating to the molten glass. To promote heat transfer from the molten glass into the reactive cold cap layer, bubbling of the molten glass is used to stimulate forced convection within the melt pool. A three-phase volume of fluid approach is utilized to model the system, wherein the molten glass and cold cap regions are modeled as separate liquid phases, and the bubbling gas and plenum regions are modeled as one lumped gas phase. The modeling of the entire system with a volume of fluid model allows for the prescription of physical properties on a per-phase basis. The molten glass phase and the gas phase physical properties are obtained from previous experimental work. Finding representative properties for the cold cap region is more difficult, as this region is not a true liquid, but rather a multilayer region consisting of a porous and a foamy layer. Physical properties affecting heat transfer, namely the thermal conductivity and heat capacity, have been fit to closely match data and observations from laboratory experiments. Data from xray tomography and quenching of laboratory-scale cold caps provide insight into the topology of bubble distribution within the cold cap at various temperatures. Heat transfer within the melter was validated by comparison with VSL data for the pilot-scale melter.« less

  12. Landscape Evolution and the Reincarnation of the Residual CO2 Ice Cap of Mars

    NASA Astrophysics Data System (ADS)

    Byrne, S.; Zuber, M.

    2006-12-01

    Observations of the southern residual CO2 cap of Mars reveal a wide range of landforms including flat-floored quasi-circular pits with steep walls (dubbed Swiss-cheese features). Interannual comparisons show that these depressions are expanding laterally at rates of ~2m/yr to ~4m/yr, prompting suggestions of climate change. The residual CO2 ice cap is up to 10m thick and underlain by an involatile basement, it also contains layers roughly 2m thick representing different accumulation episodes in the recent past. Changes in the appearance of the residual ice between the Mariner 9 and Viking missions indicate that the top-most layer was deposited in that time-frame, soon after the global dust storm of 1971. The spatial density of the Swiss-cheese features, and the rate at which they expand, mean that it is unlikely that any part of the residual ice cap is older than a few centuries. Given this, we may ask: how can there be a residual cap present today for us to observe? To answer this and other questions we have developed a model to examine the evolution of a CO2 ice landscape. This model reproduces the morphologies and expansion rates seen in the actual residual CO2 ice cap. Our model results indicate that the fate of CO2 ice surfaces is controlled by their surface roughness. Surface roughness always increases with time, which results in an unstable situation. When the surface roughness exceeds a critical point small pits can begin to develop. The walls of these pits rapidly steepen and begin retreating which enlarges and deepens the pit. This situation always occurs even if the surface of the CO2 slab has a high enough albedo to have a net mass gain each year. Once these pits begin expanding they quickly erode the entire ice slab. When the underlying non-CO2 material is exposed, it will not frost over again if Mars were to repeat like clockwork every year. We conclude that interannual climatic variability is actually a requirement for the continued existence of a residual CO2 ice cap. We invoke unusual depositional episodes (which have a surface smoothing effect) after which the cap can begin accumulating mass and growing in thickness again. This continues until the surface roughness again exceeds a stable state and the process repeats itself. The thickness of the residual cap therefore oscillates on timescales of centuries. The total cap volume may also be affected by variations in residual cap extent. The cap is not 'stable' in the usual sense of the word, but instead is constantly being destroyed and recreated. Evidence suggests that these rejuvenating depositional events are linked to global dust storms. The 10m thick stratigraphic record thus provides a unique measure of interannual variability of the current climate, the expanding Swiss-cheese features do not indicate secular climate change, but instead are just part of the larger life-cycle of this ice deposit. We will report on this surface modeling which reproduces other morphologies within the residual cap and present a historical model based on combining our modeling with the feature sizes and ablation rates found within the present residual ice cap.

  13. Diatom ooze as weak layer for submarine mega-slides off Northwest Africa: Evidence from core-seismic integration in the Cap Blanc Slide area

    NASA Astrophysics Data System (ADS)

    Urlaub, Morelia; Geersen, Jacob; Krastel, Sebastian; Schwenk, Tilmann

    2017-04-01

    The continental slope off Northwest Africa has experienced at least four mega-landslides, each affecting over 20,000 km2 of seafloor. Although the landslides lie more than 400 km apart, they have many similar characteristics, including stepped headwall patterns and several bedding-parallel glide planes at slope angles of <2°. This morphology suggests that failures took place along multiple mechanically weak sedimentary layers that are present at different stratigraphic depths. From all Northwest African mega-landslides the Cap Blanc Slide, situated off the coasts of Mauretania and West Sahara, offers an unprecedented possibility to advance our understanding of landslide causes. ODP site 658 (Leg 108) was drilled within the evacuation area of the slide, recovering its glide plane. In addition, site 658 also recovered the glide plane and the overlying undisturbed sedimentary sequence of a younger slope failure, which took place within the evacuation are of the main Cap Blanc Slide at some distance to the borehole. We use core-seismic integration to characterize the glide planes as well as to determine the timing of slope failures. The sediments just above both glide planes have particularly high biogenic opal contents owing to the presence of large amounts of diatom microfossils. Diatoms are hollow structures of microfossil skeletons, which contain large amounts of bound and intraskeletal water. When a critical stress level is exceeded during compaction, the microfossil shells break. The stored water is released causing a sudden increase in pore pressure, which may facilitate slope failure. We therefore suggest that diatom oozes acted as weak layers in the case of the Cap Blanc Slide. Pronounced biogenic opal maxima occur during glacial terminations and are expected all along the Northwest African continental margin. We thus hypothesize that mega-slides off Northwest Africa, and potentially also at other continental margins, are preconditioned by episodically high deposition of biogenic opal.

  14. Gigantic perpendicular magnetic anisotropy of heavy transition metal cappings on Fe/MgO(0 0 1)

    NASA Astrophysics Data System (ADS)

    Taivansaikhan, P.; Odkhuu, D.; Rhim, S. H.; Hong, S. C.

    2017-11-01

    Effects of capping layer by 5d transition metals (TM = Hf, Ta, W, Re, Os, Ir, Pt, and Au) on Fe/MgO(0 0 1), a typical magnetic tunneling junction, are systematically investigated using first-principles calculation for magnetism and magnetocrystalline-anisotropy (MCA). The early TMs having less than half-filled d bands favor magnetization antiparallel to Fe, whereas the late TMs having more than half-filled d bands favor parallel, which is explained in the framework of kinetic exchange energy. The Os capping, isovalent to Fe, enhances MCA significantly to gigantic energy of +11.31 meV/cell, where positive contribution is mostly from the partially filled majority d bands of magnetic quantum number of |m| = 1 along with stronger spin-orbit coupling of Os than Fe. Different TM cappings give different MCA energies as the Fermi level shifts according to the valence of TM: Re and Ir, just one valence more or less than Os, have still large PMCA but smaller than the Os. In the W and Pt cappings, valence difference by two, PMCA are further reduced; MCAs are lowered compared to Fe/MgO(0 0 1) by the cappings of the very early TMs (Hf and Ta), while the very late TM (Au) switches sign to in-plane MCA.

  15. Selective etching of InGaAs/GaAs(100) multilayers of quantum-dot chains

    NASA Astrophysics Data System (ADS)

    Wang, Zh. M.; Zhang, L.; Holmes, K.; Salamo, G. J.

    2005-04-01

    We report selective chemical etching as a promising procedure to study the buried quantum dots in multiple InGaAs/GaAs layers. The dot layer-by-dot layer etching is demonstrated using a mixed solution of NH4OH:H2O2:H2O. Regular plan-view atomic force microscopy reveals that all of the exposed InGaAs layers have a chain-like lateral ordering despite the potential of significant In-Ga intermixing during capping. The vertical self-correlation of quantum dots in the chains is observed.

  16. Understanding the Underground Hydrous Minerals on Mars: Stability Field, Phase Transitions, and Environmental Implications

    NASA Astrophysics Data System (ADS)

    Wang, A.; Chou, I. M.; Ling, Z.; Sobron, P.

    2017-12-01

    Three types of studies form the bases of our understandings: (1) systematic laboratory experiments on the thermodynamics and kinetic properties of hydrous (Mg, Fe2+, Fe3+, Ca, Al, Na) -sulfates, -chlorides, and -perchlorates, made by this and many other teams. (2) the thermal modeling of two-layer regolith with very different thermal inertia (TI) and its validating observation on Mars [Mellon et al., 2004, 2009]. (3) the mission observations on Mars and the field investigations at analog sites. Following are some examples of these understandings, with more to be presented at AGU. Hydrous salts (sulfates, chlorides, perchlorates) in an enclosure could keep a relatively stable RH%, i.e., they are environmental RH buffers. Underground layers of hydrous salty soils (high TI) on Mars could be considered as a quasi-closed system, equilibrated within their environments. The RH% range kept by them would help to stabilize many hydrous salts. For example, Mg- & Fe3+-sulfates with high hydration degrees (6-20 H2O) were observed in the subsurface layers in a terrestrial hyperarid region and at Gusev on Mars. A general trend was found that the RH% levels kept by hydrous sulfates in an enclosure are much higher than those by hydrous perchlorates and by hydrous chlorides. This implies that in an underground layer of mixed hydrous salts, one type of salts (e.g. sulfates) can provide the necessary RH-buffering for the phase transition of other types,, e.g., the deliquescence of perchlorates or chlorides, to trigger RSL or to provide liquid H2O at relatively warm T. The dehydration rates of hydrous sulfates have a high dependence on cation types. Among them, Mg and Fe2+-sulfate have higher dehydration rates, and ferric sulfates dehydrate much slow. This lab-observation was validated by MER mission observation, i.e., the finding of highly hydrated ferric sulfates, i.e. Fe4.67(SO4)6(OH)2.20H2O, in subsurface at Gusev crater. However, the dehydration rate of hydrous sulfates can also be affected by their structural details and by the catalysis of co-existing phases. Overall, underground hydrous salt layers not only provide a stable, long-lived habitable environments, their phase changes would contribute to the current hydrological (and S, Cl) circulation, and they would certainly represent a major portion of the water budget on Mars.

  17. Corrosion resistance of alumina forming alloys against molten chlorides for energy production. II: Electrochemical impedance spectroscopy under thermal cycling conditions

    DOE PAGES

    Gomez-Vidal, Judith C.; Fernandez, A. G.; Tirawat, R.; ...

    2017-04-01

    Next-generation power systems require higher temperatures to increase the efficiency of electricity production in the power block. Concentrating solar power (CSP) technology is looking for high temperature thermal fluids able to work in the range of 550–750 °C. Molten chlorides containing NaCl, KCl, MgCl 2, and/or ZnCl 2 are being considered for solar receivers and/or sensible- or latent- thermal energy storage systems. Vapor pressures of chlorides are high enough that in combination with oxygen gaseous compounds will produce a harsh atmosphere that is generally very aggressive to common chromia forming alloys. Corrosion mitigations must consider a solution in which bothmore » zones (immersed in fluid and exposed to vapor phase) will be protected. This could easily be obtained using alloy surface modification approaches. Surface passivation, produced after pre-oxidation treatments, of alumina forming alloys (Inconel 702, Haynes 224 and Kanthal APMT) was evaluated in molten 35.59 wt% MgCl2 – 64.41 wt% KCl thermally cycled from 550 °C to 700 °C in flowing Ar and static zero air (ZA) atmospheres. Electrochemical impedance spectroscopy tests and metallographic characterization showed that the best performing alloy was pre-oxidized In702 in ZA at 1050 °C for 4 h due to the formation of protective, dense and continuous alumina layers. The alumina layers were unstable when flowing Ar was used as the inert atmosphere during corrosion evaluations. Corrosion results in static ZA are promising for next-generation CSP applications using molten chlorides because alumina scales were stable after 185 h of immersion in the oxygen-containing atmosphere. Alumina layers in pre-oxidized Al-FA In702 grew from 5 µm (before immersion) to 13 µm (after 185 h of immersion). As a result, the use of these alloys could be commercial feasibility and cost-effective because of the possibility of using oxygen-containing atmospheres instead of keeping enclosed systems with inert atmospheres to protect alloys from corrosion in molten chlorides.« less

  18. Corrosion resistance of alumina forming alloys against molten chlorides for energy production. II: Electrochemical impedance spectroscopy under thermal cycling conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez-Vidal, Judith C.; Fernandez, A. G.; Tirawat, R.

    Next-generation power systems require higher temperatures to increase the efficiency of electricity production in the power block. Concentrating solar power (CSP) technology is looking for high temperature thermal fluids able to work in the range of 550–750 °C. Molten chlorides containing NaCl, KCl, MgCl 2, and/or ZnCl 2 are being considered for solar receivers and/or sensible- or latent- thermal energy storage systems. Vapor pressures of chlorides are high enough that in combination with oxygen gaseous compounds will produce a harsh atmosphere that is generally very aggressive to common chromia forming alloys. Corrosion mitigations must consider a solution in which bothmore » zones (immersed in fluid and exposed to vapor phase) will be protected. This could easily be obtained using alloy surface modification approaches. Surface passivation, produced after pre-oxidation treatments, of alumina forming alloys (Inconel 702, Haynes 224 and Kanthal APMT) was evaluated in molten 35.59 wt% MgCl2 – 64.41 wt% KCl thermally cycled from 550 °C to 700 °C in flowing Ar and static zero air (ZA) atmospheres. Electrochemical impedance spectroscopy tests and metallographic characterization showed that the best performing alloy was pre-oxidized In702 in ZA at 1050 °C for 4 h due to the formation of protective, dense and continuous alumina layers. The alumina layers were unstable when flowing Ar was used as the inert atmosphere during corrosion evaluations. Corrosion results in static ZA are promising for next-generation CSP applications using molten chlorides because alumina scales were stable after 185 h of immersion in the oxygen-containing atmosphere. Alumina layers in pre-oxidized Al-FA In702 grew from 5 µm (before immersion) to 13 µm (after 185 h of immersion). As a result, the use of these alloys could be commercial feasibility and cost-effective because of the possibility of using oxygen-containing atmospheres instead of keeping enclosed systems with inert atmospheres to protect alloys from corrosion in molten chlorides.« less

  19. Achievement of normally-off AlGaN/GaN high-electron mobility transistor with p-NiOx capping layer by sputtering and post-annealing

    NASA Astrophysics Data System (ADS)

    Huang, Shyh-Jer; Chou, Cheng-Wei; Su, Yan-Kuin; Lin, Jyun-Hao; Yu, Hsin-Chieh; Chen, De-Long; Ruan, Jian-Long

    2017-04-01

    In this paper, we present a technique to fabricate normally off GaN-based high-electron mobility transistor (HEMT) by sputtering and post-annealing p-NiOx capping layer. The p-NiOx layer is produced by sputtering at room temperature and post-annealing at 500 °C for 30 min in pure O2 environment to achieve high hole concentration. The Vth shifts from -3 V in the conventional transistor to 0.33 V, and on/off current ratio became 107. The forward and reverse gate breakdown increase from 3.5 V and -78 V to 10 V and -198 V, respectively. The reverse gate leakage current is 10-9 A/mm, and the off-state drain-leakage current is 10-8 A/mm. The Vth hysteresis is extremely small at about 33 mV. We also investigate the mechanism that increases hole concentration of p-NiOx after annealing in oxygen environment resulted from the change of Ni2+ to Ni3+ and the surge of (111)-orientation.

  20. Patterning of magnetic thin films and multilayers using nanostructured tantalum gettering templates.

    PubMed

    Qiu, Wenlan; Chang, Long; Lee, Dahye; Dannangoda, Chamath; Martirosyan, Karen; Litvinov, Dmitri

    2015-03-25

    This work demonstrates that a nonmagnetic thin film of cobalt oxide (CoO) sandwiched between Ta seed and capping layers can be effectively reduced to a magnetic cobalt thin film by annealing at 200 °C, whereas CoO does not exhibit ferromagnetic properties at room temperature and is stable at up to ∼400 °C. The CoO reduction is attributed to the thermodynamically driven gettering of oxygen by tantalum, similar to the exothermic reduction-oxidation reaction observed in thermite systems. Similarly, annealing at 200 °C of a nonmagnetic [CoO/Pd]N multilayer thin film sandwiched between Ta seed and Ta capping layers results in the conversion into a magnetic [Co/Pd]N multilayer, a material with perpendicular magnetic anisotropy that is of interest for magnetic data storage applications. A nanopatterning approach is introduced where [CoO/Pd]N multilayers is locally reduced into [Co/Pd]N multilayers to achieve perpendicular magnetic anisotropy nanostructured array. This technique can potentially be adapted to nanoscale patterning of other systems for which thermodynamically favorable combination of oxide and gettering layers can be identified.

  1. Superfund Record of Decision (EPA Region 3): Allegany Ballistics Laboratory (USNavy), Operable Unit 1, Mineral, WV, February 12, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    This decision document presents the selected remedial action for Site 5 Landfill Contents and Surface Soil at the Allegany Ballistics Laboratory (ABL), Rocket Center, West Virginia. The major components of the selected remedy are: Deed notation along with property use and limited access restrictions; Installation of a composite CAP-GCL and FMC; Installation of a drainage layer utilizing a geonet; Installation of a passive landfill gas (LFG) venting system; Revegetation of the capped area; Installation of perimeter drainage system; and Post-closure requirements.

  2. Present-day Exposures of Water Ice in the Northern Mid-latitudes of Mars

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Kanner, Lisa C.

    2007-01-01

    Water ice is exposed in the martian north polar cap, but is rarely exposed beyond the cap boundary. Orbital gamma ray spectrometry data strongly imply the presence of water ice within meters of the surface at latitudes north of approximately 60deg. We have examined mid-latitude areas of the northern plains displaying residual ice-rich layers, and report evidence of present-day surface exposures of water ice. These exposures, if confirmed, could con-strain the latitudinal and temporal stability of surface ice on Mars.

  3. Microbial chlorination of organic matter in forest soil: investigation using 36Cl-chloride and its methodology.

    PubMed

    Rohlenová, J; Gryndler, M; Forczek, S T; Fuksová, K; Handova, V; Matucha, M

    2009-05-15

    Chloride, which comes into the forest ecosystem largely from the sea as aerosol (and has been in the past assumed to be inert), causes chlorination of soil organic matter. Studies of the chlorination showed that the content of organically bound chlorine in temperate forest soils is higher than that of chloride, and various chlorinated compounds are produced. Our study of chlorination of organic matter in the fermentation horizon of forest soil using radioisotope 36Cl and tracer techniques shows that microbial chlorination clearly prevails over abiotic, chlorination of soil organic matter being enzymatically mediated and proportional to chloride content and time. Long-term (>100 days) chlorination leads to more stable chlorinated substances contained in the organic layer of forest soil (overtime; chlorine is bound progressively more firmly in humic acids) and volatile organochlorines are formed. Penetration of chloride into microorganisms can be documented by the freezing/thawing technique. Chloride absorption in microorganisms in soil and in litter residues in the fermentation horizon complicates the analysis of 36Cl-chlorinated soil. The results show that the analytical procedure used should be tested for every soil type under study.

  4. Stable carbon and oxygen isotope record of central Lake Erie sediments

    USGS Publications Warehouse

    Tevesz, M.J.S.; Spongberg, A.L.; Fuller, J.A.

    1998-01-01

    Stable carbon and oxygen isotope data from mollusc aragonite extracted from sediment cores provide new information on the origin and history of sedimentation in the southwestern area of the central basin of Lake Erie. Sediments infilling the Sandusky subbasin consist of three lithologic units overlying glacial deposits. The lowest of these is a soft gray mud overlain by a shell hash layer containing Sphaerium striatinum fragments. A fluid mud unit caps the shell hash layer and extends upwards to the sediment-water interface. New stable isotope data suggest that the soft gray mud unit is of postglacial, rather than proglacial, origin. These data also suggest that the shell hash layer was derived from erosional winnowing of the underlying soft gray mud layer. This winnowing event may have occurred as a result of the Nipissing flood. The Pelee-Lorain moraine, which forms the eastern boundary of the Sandusky subbasin, is an elevated area of till capped by a sand deposit that originated as a beach. The presence of both the shell hash layer and relict beach deposit strengthens the interpretation that the Nipissing flood was a critical event in the development of the southwestern area of the central basin of Lake Erie. This event, which returned drainage from the upper lakes to the Lake Erie basin, was a dominant influence on regional stratigraphy, bathymetry, and depositional setting.

  5. Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Primetzhofer, D.; Lu, J.; Hultman, L.

    2017-02-01

    We present the first measurements of x-ray photoelectron spectroscopy (XPS) core level binding energies (BE:s) for the widely-applicable group IVb-VIb polycrystalline transition metal nitrides (TMN's) TiN, VN, CrN, ZrN, NbN, MoN, HfN, TaN, and WN as well as AlN and SiN, which are common components in the TMN-based alloy systems. Nitride thin film samples were grown at 400 °C by reactive dc magnetron sputtering from elemental targets in Ar/N2 atmosphere. For XPS measurements, layers are either (i) Ar+ ion-etched to remove surface oxides resulting from the air exposure during sample transfer from the growth chamber into the XPS system, or (ii) in situ capped with a few nm thick Cr or W overlayers in the deposition system prior to air-exposure and loading into the XPS instrument. Film elemental composition and phase content is thoroughly characterized with time-of-flight elastic recoil detection analysis (ToF-E ERDA), Rutherford backscattering spectrometry (RBS), and x-ray diffraction. High energy resolution core level XPS spectra acquired with monochromatic Al Kα radiation on the ISO-calibrated instrument reveal that even mild etching conditions result in the formation of a nitrogen-deficient surface layer that substantially affects the extracted binding energy values. These spectra-modifying effects of Ar+ ion bombardment increase with increasing the metal atom mass due to an increasing nitrogen-to-metal sputter yield ratio. The superior quality of the XPS spectra obtained in a non-destructive way from capped TMN films is evident from that numerous metal peaks, including Ti 2p, V 2p, Zr 3d, and Hf 4f, exhibit pronounced satellite features, in agreement with previously published spectra from layers grown and analyzed in situ. In addition, the N/metal concentration ratios are found to be 25-90% higher than those obtained from the corresponding ion-etched surfaces, and in most cases agree very well with the RBS and ToF-E ERDA values. The N 1 s BE:s extracted from capped TMN films, thus characteristic of a native surface, show a systematic trend, which contrasts with the large BE spread of literature "reference" values. Hence, non-destructive core level XPS employing capping layers provides an opportunity to obtain high-quality spectra, characteristic of virgin in situ grown and analyzed TMN films, although with larger versatility, and allows for extracting core level BE values that are more reliable than those obtained from sputter-cleaned N-deficient surfaces. Results presented here, recorded from a consistent set of binary TMN's grown under the same conditions and analyzed in the same instrument, provide a useful reference for future XPS studies of multinary materials systems allowing for true deconvolution of complex core level spectra.

  6. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lihua; He, Xiaoman; Qu, Jun

    Al(OH){sub 3} and Ca(OH){sub 2} powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kineticsmore » with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. - Graphical abstract: Activated Ca-Al hydroxides (C{sub 3}A) transformed into Ca-Al-OH compound when agitated in water. Ca-Al precursor (C{sub 3}A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO{sub 4} LDH product. Ca-Al-CrO{sub 4} LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. - Highlights: • Activated Ca-Al hydroxides transformed into LDH when agitated in water with some inorganic substances. • Hexavalent Cr was incorporated in the LDH structure at high adsorption capacity. • Ca-Al-Cr LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases with coexistence. • The prepared Ca-Al hydroxides had high performance as adsorbent even with high salinity of the solution.« less

  7. In vitro and in vivo study of sustained nitric oxide release coating using diazeniumdiolate-oped poly(vinyl chloride) matrix with poly(lactide-co-glycolide) additive

    PubMed Central

    Handa, Hitesh; Brisbois, Elizabeth J.; Major, Terry C.; Refahiyat, Lahdan; Amoako, Kagya A.; Annich, Gail M.; Bartlett, Robert H.; Meyerhoff, Mark E.

    2013-01-01

    Nitric oxide (NO) is an endogenous vasodilator as well as natural inhibitor of platelet adhesion and activation that can be released from a NO donor species, such as diazeniumdiolated dibutylhexanediamine (DBHD/N2O2) within a polymer coating. In this study, various Food and Drug Administration approved poly(lactic-co-glycolic acid) (PLGA) species were evaluated as additives to promote a prolonged NO release from DBHD/N2O2 within a plasticized poly(vinyl chloride) (PVC) matrix. When using an ester-capped PLGA additive with a slow hydrolysis time, the resulting coatings continuously release between 7–18×10-10 mol cm-2 min-1 NO for 14 d at 37°C in PBS buffer. The corresponding pH changes within the polymer films were visualized using pH sensitive indicators and are shown to correlate with the extended NO release pattern. The optimal combined diazeniumdiolate/PLGA-doped NO release (NOrel) PVC coating was evaluated in vitro and its effect on the hemodynamics was also studied within a 4 h in vivo extracorporeal circulation (ECC) rabbit model of thrombogenicity. Four out of 7 control circuits clotted within 3 h, whereas all the NOrel coated circuits were patent after 4 h. Platelet counts on the NOrel ECC were preserved (79 ± 11% compared to 54 ± 6% controls). The NOrel coatings showed a significant decrease in the thrombus area as compared to the controls. Results suggest that by using ester-capped PLGAs as additives to a conventional plasticized PVC material containing a lipophilic diazeniumdiolates, the NO release can be prolonged for up to 2 weeks by controlling the pH within the organic phase of the coating. PMID:23914297

  8. Antifungal activity of wide band gap Thioglycolic acid capped ZnS:Mn semiconductor nanoparticles against some pathogenic fungi.

    PubMed

    Ibrahim, Isam M; Ali, Iftikhar M; Dheeb, Batol Imran; Abas, Qayes A; Asmeit Ramizy; Eisa, M H; Aljameel, A I

    2017-04-01

    The manganese doped zinc sulfide nanoparticles were synthesized by simple aqueous chemical reaction of manganese chloride, zinc acetate and thioacitamide in aqueous solution. Thioglycolic acid is used as capping agent for controlling the nanoparticle size. The main advantage of the ZnS:Mn nanoparticles of diameter ~2.73nm is that the sample is prepared by using non-toxic precursors in a cost effective and eco-friendly way. The structural, morphological and chemical composition of the nanoparticles have been investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with energy dispersion spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy. The nanosize of the prepared nanoparticles was elucidated by Scanning Electron Microscopy (SEM). FTIR result ensures that Thioglycolic acid is well bonded on the surface of ZnS:Mn NPs. The antifungal effects of Thioglycolic acid capped ZnS:Mn nanoparticles exhibited a potent antifungal activity against tested fungal strains, so deserving further investigation for clinical applications. The antifungal property of manganese doped zinc sulphide nanoparticles is attributed to the generation of reactive oxygen species due to the interaction of nanoparticles with water. Additionally, the presence of Zn and S in the zone of inhibition area leads to perturbation of fungi cell membranes resulting in growth inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Analysis of snow-cap pollution for air quality assessment in the vicinity of an oil refinery.

    PubMed

    Krastinyte, Viktorija; Baltrenaite, Edita; Lietuvninkas, Arvydas

    2013-01-01

    Snow-cap can be used as a simple and effective indicator of industrial air pollution. In this study snow-cap samples were collected from 11 sites located in the vicinity of an oil refinery in Mazeikiai, a region in the north-west of Lithuania, in the winter of 2011. Analysis of snowmelt water and snow-dust was used to determine anthropogenic pollutants such as: sulphates and chlorides, nitrites, nitrates, ammonium nitrogen, total carbon, total nitrogen; heavy metals: lead (Pb), copper (Cu), chromium (Cr), cadmium (Cd). Concentrations of heavy metals in snow-dust were detected thousands of times higher than those in the snowmelt water. In this study, analysis of heavy metal concentration was conducted considering different distances and the wind direction within the impact zone of the oil refinery. The sequence of heavy metals according to their mean concentrations in the snow-dust samples was the following: Pb > Cr > Cu > Cd. Heavy metals highly correlated among each other. The load of snow-dust was evaluated to determine the pollution level in the study area. The highest daily load of snow-dust was 45.81 +/- 12.35 mg/m2 in the north-western direction from the oil refinery. According to classification of the daily load of snow-dust a lower than medium-risk level of pollution was determined in the vicinity of the oil refinery.

  10. Porous Proton- and Chloride-Ion Conducting Layers Based on Ethanolamine Derivatives of PVC on the Surfaces of Fabrics

    NASA Astrophysics Data System (ADS)

    Tsivadze, A. Yu.; Fridman, A. Ya.; Morozova, E. M.; Sokolova, N. P.; Voloshchuk, A. M.; Bardyshev, I. I.; Gorbunov, A. M.; Novikov, A. K.; Polyakova, I. Ya.; Titova, B. N.; Yavich, A. A.

    2018-02-01

    Materials are produced with porous layers based on ethanolamine derivatives of PVC or compounds of active carbon with hydroxyethylcyclam derivatives of PVC with aqua complexes of chloride hydrogen cross-linked with the surface of cellulose or asbestos fabric. Their capacity for sorption with respect to hexane and benzene in the saturated vapor and liquid phases is determined. The dependences of current on voltage in a circuit are determined for bridges composed of these materials in air, and in the vapor and liquid phases of benzene and hexane between 3 M HCl solutions and 3 M HCl solutions containing 3 M CaCl2. It is established that only H+ ions migrate along the bridges between the HCl solutions, and H+ and Cl- ions were the only species that moved along the bridges between the HCl solutions containing CaCl2. The voltages at which the movement of ions starts are determined, and constants characterizing the conductivity of the layers are found. It is shown that these parameters depend on the structure of a layer, the nature of the fabric, and the medium surrounding a bridge.

  11. Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei

    2017-05-01

    Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO3 LDHs, Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.

  12. Study of Growth Kinetics in One Dimensional and Two Dimensional ZnO Nanostructures

    NASA Astrophysics Data System (ADS)

    Yin, Xin

    Because of the merits arising from the unique geometry, nanostructure materials have been an essential class of materials, which have shown great potentials in the fields of electronics, photonics, and biology. With various nanostructures being intensively investigated and successfully complemented into device applications, there has been one increasing demand to the investigation of the growth mechanism devoted to the controlled nanostructure synthesis. Motivated by this situation, this thesis is focused on the fundamental understanding of the nanostructure growth. Specifically, by taking zinc oxide as an example material, through controlling the basic driving force, that is, the supersaturation, I have rationally designed and synthesized various of nanostructures, and further applied the classical layer-by-layer growth mechanism to the understanding on the formation of these nanostructures, they are, the convex-plate-capped nanowires, the concave-plate-capped nanowires, the facet evolution at the tip of the nanowires, and the ultrathin 2D nanosheets.

  13. Modeling the Martian seasonal CO2 cycle. I - Fitting the Viking Lander pressure curves. II - Interannual variability

    NASA Technical Reports Server (NTRS)

    Wood, Stephen E.; Paige, David A.

    1992-01-01

    The present diurnal and seasonal thermal model for Mars, in which surface CO2 frost condensation and sublimation are determined by the net effects of radiation, latent heat, and heat conduction in subsurface soil layers, in order to simulate seasonal exchanges of CO2 between the polar caps and atmosphere, successfully reproduces the measured pressured variations at the Viking Lander 1 site. In the second part of this work, the year-to-year differences between measured surface pressures at Viking sites as a function of season are used as upper limits on the potential magnitudes of interannual variations in the Martian atmosphere's mass. Simulations indicate that the dust layers deposited onto the condensing north seasonal polar cap during dust storms can darken seasonal frost deposits upon their springtime uncovering, while having little effect on seasonal pressure variations.

  14. Tuning charge transport in pentacene thin-film transistors using the strain-induced electron-phonon coupling modification

    NASA Astrophysics Data System (ADS)

    Lin, Yow-Jon; Chang, Hsing-Cheng; Liu, Day-Shan

    2015-03-01

    Tuning charge transport in the bottom-contact pentacene-based organic thin-film transistors (OTFTs) using a MoO x capping layer that serves to the electron-phonon coupling modification is reported. For OTFTs with a MoO x front gate, the enhanced field-effect carrier mobility is investigated. The time domain data confirm the electron-trapping model. To understand the origin of a mobility enhancement, an analysis of the temperature-dependent Hall-effect characteristics is presented. Similarly, the Hall-effect carrier mobility was dramatically increased by capping a MoO x layer on the pentacene front surface. However, the carrier concentration is not affected. The Hall-effect carrier mobility exhibits strong temperature dependence, indicating the dominance of tunneling (hopping) at low (high) temperatures. A mobility enhancement is considered to come from the electron-phonon coupling modification that results from the contribution of long-lifetime electron trapping.

  15. Controlled assembly of graphene-capped nickel, cobalt and iron silicides

    PubMed Central

    Vilkov, O.; Fedorov, A.; Usachov, D.; Yashina, L. V.; Generalov, A. V.; Borygina, K.; Verbitskiy, N. I.; Grüneis, A.; Vyalikh, D. V.

    2013-01-01

    The unique properties of graphene have raised high expectations regarding its application in carbon-based nanoscale devices that could complement or replace traditional silicon technology. This gave rise to the vast amount of researches on how to fabricate high-quality graphene and graphene nanocomposites that is currently going on. Here we show that graphene can be successfully integrated with the established metal-silicide technology. Starting from thin monocrystalline films of nickel, cobalt and iron, we were able to form metal silicides of high quality with a variety of stoichiometries under a Chemical Vapor Deposition grown graphene layer. These graphene-capped silicides are reliably protected against oxidation and can cover a wide range of electronic materials/device applications. Most importantly, the coupling between the graphene layer and the silicides is rather weak and the properties of quasi-freestanding graphene are widely preserved. PMID:23835625

  16. Electrical characteristics of proton-irradiated Sc2O3 passivated AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Luo, B.; Kim, Jihyun; Ren, F.; Gillespie, J. K.; Fitch, R. C.; Sewell, J.; Dettmer, R.; Via, G. D.; Crespo, A.; Jenkins, T. J.; Gila, B. P.; Onstine, A. H.; Allums, K. K.; Abernathy, C. R.; Pearton, S. J.; Dwivedi, R.; Fogarty, T. N.; Wilkins, R.

    2003-03-01

    Sc2O3-passivated AlGaN/GaN high electron mobility transistors (HEMTs) were irradiated with 40 MeV protons to a fluence corresponding to approximately 10 years in low-earth orbit (5×109 cm-2). Devices with an AlGaN cap layer showed less degradation in dc characteristics than comparable GaN-cap devices, consistent with differences in average band energy. The changes in device performance could be attributed completely to bulk trapping effects, demonstrating that the effectiveness of the Sc2O3 layers in passivating surface states in the drain-source region was undiminished by the proton irradiation. Sc2O3-passivated AlGaN/HEMTs appear to be attractive candidates for space and terrestrial applications where resistance to high fluxes of ionizing radiation is a criteria.

  17. Corrosion inhibition performance of imidazolium ionic liquids and their influence on surface ferrous carbonate layer formation

    NASA Astrophysics Data System (ADS)

    Yang, Dongrui

    Corrosion inhibitors as effective anti-corrosion applications were widely studied and drawn much attention in both academe and industrial area. In this work, a systematic work, including inhibitors selection, anti-corrosion property and characterization, influence on scale formation, testing system design and so on, were reported. The corrosion inhibition performance of four imidazolium ionic liquids in carbon dioxide saturated NaCl solution was investigated by using electrochemical and surface analysis technologies. The four compounds are 1-ethyl-3-methylimidazolium chloride (a), 1-butyl-3-methylimidazolium chloride (b), 1-hexyl-3-methylimidazolium chloride (c), 1-decyl-3-methylimidazolium chloride (d). Under the testing conditions, compound d showed the highest inhibition efficiency and selected as the main object of further study. As a selected representative formula, 1-decyl-3-methylimidazolium chloride was studied in detail about its corrosion inhibition performance on mild steel in carbon dioxide saturated NaCl brine at pH 3.8 and 6.8. Electrochemical and surface analysis techniques were used to characterize the specimen corrosion process during the immersion in the blank and inhibiting solutions. The precorrosion of specimen surface showed significant and different influences on the anti-corrosion property of DMICL at pH 3.8 and 6.8. The corrosion inhibition efficiency (IE) was calculated based on parameters obtained from electrochemical techniques; the achieved IE was higher than 98% at the 25th hour for the steel with a well-polished surface at pH 3.8. The fitting parameters obtained from electrochemical data helped to account for the interfacial changes. As proved in previous research, 1-decyl-3-methylimidazolium chloride could be used as good corrosion inhibitors under certain conditions. However, under other conditions, such chemicals, as well as other species in oil transporting system, could be a factor influencing the evolution of protective surface inorganic layer. In this part, the FeCO3 layer evolution process for API 5L X52 carbon steel in CO2-saturated NaCl brine in the absence and in the presence of 1-decyl-3-methylimidazolium chloride ionic liquid was characterized using electrochemical techniques. Two models were developed to account for the interfacial evolution: the first model considered the balance of positive and negative charges at the interface of the metal and electrolyte in blank solution, while the second one considered the layer coverage and evolution with the imidazolium compound. The corrosion testing system is scientifically and practically critical for corrosion testing and simulations. In this part, a flowing fluid loop cell (FFLC) system was constructed to simulate the corrosion environment in the pipeline. Main content of this work include the construction of the flowing fluid cell loop (FFLC) system, as well as FFLC-based corrosion/anticorrosion tests under simulated acid conditions. Electrochemical Impedance Spectroscopy (EIS) and Linear Polarization Resistance (LPR) were used as prime techniques to quantify and characterize the corrosion behaviors of carbon steel specimen. The Eff vs. Reynolds number (Re) plots for the specimen located in the chamber and in the loop branch were provided.

  18. Inverted channel deposits on the floor of Miyamoto crater, Mars

    USGS Publications Warehouse

    Newsom, Horton E.; Lanza, N.L.; Ollila, A.M.; Wiseman, S.M.; Roush, T.L.; Marzo, G.A.; Tornabene, L.L.; Okubo, C.H.; Osterloo, M.M.; Hamilton, V.E.; Crumpler, L.S.

    2010-01-01

    Morphological features on the western floor of Miyamoto crater in southwestern Meridiani Planum, Mars, are suggestive of past fluvial activity. Imagery from the High Resolution Imaging Science Experiment (HiRISE) gives a detailed view of raised curvilinear features that appear to represent inverted paleochannel deposits. The inverted terrain appears to be capped with a resistant, dark-toned deposit that is partially covered by unconsolidated surficial materials. Subsequent to deposition of the capping layer, erosion of the surrounding material has left the capping materials perched on pedestals of uneroded basal unit material. Neither the capping material nor the surrounding terrains show any unambiguous morphological evidence of volcanism or glaciation. The capping deposit may include unconsolidated or cemented stream deposits analogous to terrestrial inverted channels in the Cedar Mountain Formation near Green River, Utah. In addition to this morphological evidence for fluvial activity, phyllosilicates have been identified in the basal material on the floor of Miyamoto crater by orbital spectroscopy, providing mineralogical evidence of past aqueous activity. Based on both the morphological and mineralogical evidence, Miyamoto crater represents an excellent site for in situ examination and sampling of a potentially habitable environment. ?? 2009 Elsevier Inc.

  19. Effect of Organic Capping Layers over Monodisperse Platinum Nanoparticles upon Activity for Ethylene Hydrogenation and Carbon Monoxide Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhn, John N.; Tsung, Chia-Kuang; Huang, Wenyu

    2009-03-24

    The influence of oleylamine (OA), trimethyl tetradecyl ammonium bromide (TTAB), and polyvinlypyrrolidone (PVP) capping agents upon the catalytic properties of Pt/silica catalysts was evaluated. Pt nanoparticles that were 1.5 nm in size were synthesized by the same procedure (ethylene glycol reduction under basic conditions) with the various capping agents added afterward for stabilization. Before examining catalytic properties for ethylene hydrogenation and CO oxidation, the Pt NPs were deposited onto mesoporous silica (SBA-15) supports and characterized by transmission electron microscopy (TEM), H{sub 2} chemisorption, and elemental analysis (ICP-MS). PVP- and TTAB-capped Pt yielded mass-normalized reaction rates that decreased with increasing pretreatmentmore » temperature, and this trend was attributed to the partial coverage of the Pt surface with decomposition products from the organic capping agent. Once normalized to the Pt surface area, similar intrinsic activities were obtained regardless of the pretreatment temperature, which indicated no influence on the nature of the active sites. Consequently, a chemical probe technique using intrinsic activity for ethylene hydrogenation was demonstrated as an acceptable method for estimating the metallic surface areas of Pt. Amine (OA) capping exhibited a detrimental influence on the catalytic properties as severe deactivation and low activity were observed for ethylene hydrogenation and CO oxidation, respectively. These results were consistent with amine groups being strong poisons for Pt surfaces, and revealed the need to consider the effects of capping agents on the catalytic properties.« less

  20. Chasma Boreale in the North Polar Region

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This images shows a Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) full-resolution 'targeted image' of the edge of Mars' north polar cap. The region in the image, Chasma Boreale, is a valley several kilometers or miles deep that cuts about 400 kilometers (about 250 miles) into the edge of the cap.

    This image was acquired at 0851 UTC (4:51 a.m. EDT) on Oct. 1, 2006, near 84.6 degrees north latitude, 3.6 degrees east longitude. It covers an area about 13 kilometers (8 miles) long and, at the narrowest point, about 9 kilometers (5.6 miles) wide. At the center of the image the spatial resolution is as good as 18 meters (60 feet) per pixel. The image was taken in 544 colors covering wavelengths of 0.36 to 3.92 micrometers. Two renderings of the data are shown here, both draped over topography without vertical exaggeration, and then viewed from a perspective diagonally above the site. The top view is an approximately true-color representation. The bottom view, constructed from infrared wavelengths, shows strength of the spectral signature of ice. Brighter areas are rich in ice, and dark areas have little ice.

    The polar cap has long been recognized to contain layers composed of dust and ice, and hence has been named the polar layered deposit. This sits atop an underlying 'basal unit.' The upper part of the basal unit is dark at visible wavelengths and steeply sloped, whereas the lower part of the basal unit is brighter, redder, and layered like the polar layered deposits. The chasma floor is cratered, and in the foreground it is covered by dunes that are outliers of a north polar sand sea that surrounds the polar cap. The polar layered deposits and the basal unit form a steeply sloping scarp about 1.1 kilometers (0.7 miles) high.

    CRISM's image of this region shows a number of previously unrecognized characteristics of the polar layered deposits and the basal unit. First, the ice-rich polar layered deposits exhibit coherent banding both at visible and infrared wavelengths. This banding shows a history of differences in the abundance of dust that accumulated in polar ice, differences in ice grain size, or both. Second, both parts of the basal unit are depleted in ice, except for triangle-shaped regions on the side of the scarp. Third, the spectral properties of the brighter, layered lower basal unit resemble those of the polar layered deposits. In contrast, the upper basal unit is distinct from both of them. Finally, spectral properties of the foreground dunes closely resemble those of the darkest layers within the upper basal unit, and may be debris from it.

    CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad.

    CRISM's mission: Find the spectral fingerprints of aqueous and hydrothermal deposits and map the geology, composition and stratigraphy of surface features. The instrument will also watch the seasonal variations in Martian dust and ice aerosols, and water content in surface materials -- leading to new understanding of the climate.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter mission for the NASA Science Mission Directorate. Lockheed Martin Space Systems, Denver, is the prime contractor and built the spacecraft.

  1. Nocturnal cooling in a very shallow cold air pool

    NASA Astrophysics Data System (ADS)

    Rakovec, Jože; Skok, Gregor; Žabkar, Rahela; Žagar, Nedjeljka

    2015-04-01

    Cold air pools (CAPs) may develop during nights in very shallow depressions. The depth of the stagnant air within a CAP influences the process of the cooling of nocturnal air and the resulting minimum temperature. A seven-month long field experiment was performed during winter 2013/2014 in an orchard near Kr\\vsko, Slovenia, located inside a very shallow basin only a few meters deep and approximately 500 m wide. Two locations at different elevations inside the basin were selected for measurement. The results showed that the nights (in terms of cooling) can be classified into three main categories; nights with overcast skies and weak cooling, windy nights with clear sky and strong cooling but with no difference in temperatures between locations inside the basin, and calm nights with even stronger cooling and significant temperature differences between locations inside the basin. On calm nights with clear skies, the difference at two measuring sites inside the basin can be up to 5 °C but the presence of even weak winds can cause sufficient turbulent mixing to negate any difference in temperature. To better understand the cooling process on calm, clear nights, we developed a simple 1-D thermodynamic conceptual model focusing on a very shallow CAP. The model has 5-layers (including two air layers representing air inside the CAP), and an analytical solution was obtained for the equilibrium temperatures. Sensitivity analysis of the model was performed. As expected, a larger soil heat conductivity or higher temperature in the ground increases the morning minimum temperatures. An increase in temperature of the atmosphere also increases the simulated minimum temperatures, while the temperature difference between the higher and lower locations remains almost the same. An increase in atmosphere humidity also increases the modelled equilibrium temperatures, while an increase of the humidity of the air inside the CAP results in lower equilibrium temperatures. The humidity of the air within the CAP and that of the free atmosphere strongly influence the differences in equilibrium temperatures at higher and lower locations. The more humid the air, the stronger the cooling at the lower location compared to the higher location.

  2. The behaviour of water and sodium chloride solution confined into asbestos nanotube

    NASA Astrophysics Data System (ADS)

    Fomin, Yu. D.; Ryzhov, V. N.; Tsiok, E. N.

    2016-08-01

    We present the molecular simulation study of the behaviour of water and sodium chloride solution confined in lizardite asbestos nanotube which is a typical example of hydrophilic confinement. The local structure and orientational and dynamic properties are studied. It is shown that at low enough temperatures there is a well-defined orientational ordering of the water molecules. At high local densities corresponding to the maxima of the density distribution function, the water molecules are oriented parallel to the axis of the tube. It is also shown that the diffusion coefficient drops about two orders of magnitude comparing to the bulk case. The behaviour of sodium chloride solutions is also considered and the formation of double layer is observed.

  3. Effect of the Type of Surface Treatment and Cement on the Chloride Induced Corrosion of Galvanized Reinforcements

    NASA Astrophysics Data System (ADS)

    Tittarelli, Francesca; Mobili, Alessandra; Vicerè, Anna Maria; Roventi, Gabriella; Bellezze, Tiziano

    2017-10-01

    The effect of a new passivation treatment, obtained by immersion of the galvanized reinforcements in a trivalent chromium salts based solution, on the chlorides induced corrosion has been investigated. To investigate also the effect of cement alkalinity on corrosion behaviour of reinforcements, concretes manufactured with three different European cements were compared. The obtained results show that the alternative treatment based on hexavalent chromium-free baths forms effective protection layers on the galvanized rebar surfaces. The higher corrosion rates of zinc coating in concrete manufactured with Portland cement compared to those recorded for bars in concrete manufactured with pozzolanic cement depends strongly on the higher chloride content at the steel concrete interface.

  4. Role of calcium on chloride binding in hydrated Portland cement–metakaolin–limestone blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zhenguo; Geiker, Mette Rica; De Weerdt, Klaartje

    Chloride binding is investigated for Portland cement–metakaolin–limestone pastes exposed to CaCl{sub 2} and NaCl solutions. The phase assemblages and the amount of Friedel's salt are evaluated using TGA, XRD and thermodynamic modeling. A larger amount of Friedel's salt is observed in the metakaolin blends compared to the pure Portland cement. A higher total chloride binding is observed for the pastes exposed to the CaCl{sub 2} solution relative to those in the NaCl solution. This is reflected by the fact that calcium increases the quantity of Friedel's salt in the metakaolin blends by promoting the transformation of strätlingite and/or monocarbonate tomore » Friedel's salt. Calcium increases also the amount of chloride in the diffuse layer of the C-S-H for the pure cement. A linear correlation between the total bound chloride and the uptake of calcium from the CaCl{sub 2} solution is obtained and found to be independent on the type of cement blend.« less

  5. Detecting Near-Surface Ice Formation Over Time Using the Kennaugh Elements Approach From TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Fernandes, L.

    2016-12-01

    The summer melting has increased substantially at higher elevations on the Canadian Arctic ice caps. The resulting meltwater percolates into the upper layers of snow and firn and then refreeze, building massive ice bodies. It seems likely that these within-firn ice bodies now limit meltwater penetration into the firn and may be creating a feedback whereby the fraction of melt that runs off to the ocean is increasing. Although changes in firn structure as presence of ice layers and ice bodies are well documented over the Devon ice cap, the firm has shown that it exerts a crucial role to predict more accurately the contribution of small ice caps to the sea level rise. However it is still challenging to assess the extent of these features within the shallow subsurface using ice cores and GPR (Ground Penetrating Radar) data collected along a limited number of linear transects. Studying changes in the distribution of ice bodies' formation over time has the potential to provide information about how the growth of ice bodies in the firn is affecting the pattern of water flow in the firn layer. The objective is investigate the potential of Kennaugh Elements (KE) derived from x-band SAR (Synthetic Aperture Radar) for mapping the distribution and growth of large ice bodies within the firn and the evolution of their distribution over time. The evaluation of this method could reveal a new approach suitable for other glacierized regions that would reduce the costs and amount of field work for studying such properties.

  6. A novel tomato mutant, Solanum lycopersicum elongated fruit1 (Slelf1), exhibits an elongated fruit shape caused by increased cell layers in the proximal region of the ovary.

    PubMed

    Chusreeaeom, Katarut; Ariizumi, Tohru; Asamizu, Erika; Okabe, Yoshihiro; Shirasawa, Kenta; Ezura, Hiroshi

    2014-06-01

    Genes controlling fruit morphology offer important insights into patterns and mechanisms determining organ shape and size. In cultivated tomato (Solanum lycopersicum L.), a variety of fruit shapes are displayed, including round-, bell pepper-, pear-, and elongate-shaped forms. In this study, we characterized a tomato mutant possessing elongated fruit morphology by histologically analyzing its fruit structure and genetically analyzing and mapping the genetic locus. The mutant line, Solanum lycopersicum elongated fruit 1 (Slelf1), was selected in a previous study from an ethylmethane sulfonate-mutagenized population generated in the background of Micro-Tom, a dwarf and rapid-growth variety. Histological analysis of the Slelf1 mutant revealed dramatically increased elongation of ovary and fruit. Until 6 days before flowering, ovaries were round and they began to elongate afterward. We also determined pericarp thickness and the number of cell layers in three designated fruit regions. We found that mesocarp thickness, as well as the number of cell layers, was increased in the proximal region of immature green fruits, making this the key sector of fruit elongation. Using 262 F2 individuals derived from a cross between Slelf1 and the cultivar Ailsa Craig, we constructed a genetic map, simple sequence repeat (SSR), cleaved amplified polymorphism sequence (CAPS), and derived CAPS (dCAPS) markers and mapped to the 12 tomato chromosomes. Genetic mapping placed the candidate gene locus within a 0.2 Mbp interval on the long arm of chromosome 8 and was likely different from previously known loci affecting fruit shape.

  7. Retention of Electronic Conductivity in LaAlO3/SrTiO3 Nanostructures Using a SrCuO2 Capping Layer

    NASA Astrophysics Data System (ADS)

    Aurino, P. P.; Kalabukhov, A.; Borgani, R.; Haviland, D. B.; Bauch, T.; Lombardi, F.; Claeson, T.; Winkler, D.

    2016-08-01

    The interface between two wide band-gap insulators, LaAlO3 and SrTiO3 (LAO/STO) offers a unique playground to study the interplay and competitions between different ordering phenomena in a strongly correlated two-dimensional electron gas. Recent studies of the LAO/STO interface reveal the inhomogeneous nature of the 2DEG that strongly influences electrical-transport properties. Nanowires needed in future applications may be adversely affected, and our aim is, thus, to produce a more homogeneous electron gas. In this work, we demonstrate that nanostructures fabricated in the quasi-2DEG at the LaAlO3/SrTiO3 interface, capped with a SrCuO2 layer, retain their electrical resistivity and mobility independent of the structure size, ranging from 100 nm to 30 μ m . This is in contrast to noncapped LAO/STO structures, where the room-temperature electrical resistivity significantly increases when the structure size becomes smaller than 1 μ m . High-resolution intermodulation electrostatic force microscopy reveals an inhomogeneous surface potential with "puddles" of a characteristic size of 130 nm in the noncapped samples and a more uniform surface potential with a larger characteristic size of the puddles in the capped samples. In addition, capped structures show superconductivity below 200 mK and nonlinear current-voltage characteristics with a clear critical current observed up to 700 mK. Our findings shed light on the complicated nature of the 2DEG at the LAO/STO interface and may also be used for the design of electronic devices.

  8. Green synthesis of chondroitin sulfate-capped silver nanoparticles: characterization and surface modification.

    PubMed

    Cheng, Kuang-ming; Hung, Yao-wen; Chen, Cheng-cheung; Liu, Cheng-che; Young, Jenn-jong

    2014-09-22

    A one-step route for the green synthesis of highly stable and nanosized silver metal particles with narrow distribution is reported. In this environmentally friendly synthetic method, silver nitrate was used as silver precursor and biocompatible chondroitin sulfate (ChS) was used as both reducing agent and stabilizing agent. The reaction was carried out in a stirring aqueous medium at the room temperature without any assisted by microwave, autoclave, laser irradiation, γ-ray irradiation or UV irradiation. The transparent colorless solution was converted to the characteristics light red then deep red-brown color as the reaction proceeds, indicating the formation of silver nanoparticles (Ag NPs). The Ag NPs were characterized by UV-visible spectroscopy (UV-vis), photon correlation spectroscopy, laser Doppler anemometry, transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were Ag NPs capped with ChS. In this report, dynamic light scattering (DLS) was used as a routinely analytical tool for measuring size and distribution in a liquid environment. The effects of the reaction time, reaction temperature, concentration and the weight ratio of ChS/Ag+ on the particle size and zeta potential were investigated. The TEM image clearly shows the morphology of the well-dispersed ChS-capped Ag NPs are spherical in shape, and the average size (<20 nm) is much smaller than the Z-average value (76.7 nm) measured by DLS. Meanwhile, the ChS-capped Ag NPs coated with N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC) were prepared by an ionic gelation method and the surface charge of Ag NPs was switched from negative to positive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    NASA Astrophysics Data System (ADS)

    Arízaga, Gregorio Guadalupe Carbajal

    2012-01-01

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn5(OH)8Cl2·2H2O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 °C while the exothermic event in ZHN was 366 °C and in the LDH at 276 °C.

  10. The Use of Neutron Analysis Techniques for Detecting The Concentration And Distribution of Chloride Ions in Archaeological Iron

    PubMed Central

    Watkinson, D; Rimmer, M; Kasztovszky, Z; Kis, Z; Maróti, B; Szentmiklósi, L

    2014-01-01

    Chloride (Cl) ions diffuse into iron objects during burial and drive corrosion after excavation. Located under corrosion layers, Cl is inaccessible to many analytical techniques. Neutron analysis offers non-destructive avenues for determining Cl content and distribution in objects. A pilot study used prompt gamma activation analysis (PGAA) and prompt gamma activation imaging (PGAI) to analyse the bulk concentration and longitudinal distribution of Cl in archaeological iron objects. This correlated with the object corrosion rate measured by oxygen consumption, and compared well with Cl measurement using a specific ion meter. High-Cl areas were linked with visible damage to the corrosion layers and attack of the iron core. Neutron techniques have significant advantages in the analysis of archaeological metals, including penetration depth and low detection limits. PMID:26028670

  11. Unraveling the Role of Monovalent Halides in Mixed-Halide Organic-Inorganic Perovskites.

    PubMed

    Deepa, Melepurath; Ramos, F Javier; Shivaprasad, S M; Ahmad, Shahzada

    2016-03-16

    The performance of perovskite solar cells is strongly influenced by the composition and microstructure of the perovskite. A recent approach to improve the power conversion efficiencies utilized mixed-halide perovskites, but the halide ions and their roles were not directly studied. Unraveling their precise location in the perovskite layer is of paramount importance. Here, we investigated four different perovskites by using X-ray photoelectron spectroscopy, and found that among the three studied mixed-halide perovskites, CH3 NH3 Pb(I0.74 Br0.26 )3 and CH3 NH3 PbBr3-x Clx show peaks that unambiguously demonstrate the presence of iodide and bromide in the former, and bromide and chloride in the latter. The CH3 NH3 PbI3-x Clx perovskite shows anomalous behavior, the iodide content far outweighs that of the chloride; a small proportion of chloride, in all likelihood, resides deep within the TiO2 /absorber layer. Our study reveals that there are many distinguishable structural differences between these perovskites, and that these directly impact the photovoltaic performances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Evaluating the influence of shallow magma degassing on the groundwater temperature distribution in volcanic system

    NASA Astrophysics Data System (ADS)

    Chen, K.; Zhan, H.; Burns, E. R.; Ingebritsen, S.

    2017-12-01

    The temperature and geochemical composition at the springs of La Soufrière of Guadeloupe have been monitored for more than three decades since the latest major eruption in 1976-1977. The breakthrough curves (BTCs) of the chloride and temperature exhibit distinctive difference. For the proximal spring ( 75 m to the volcanic dome), the BTC of chloride is very spiky, demonstrating the pulsatory magma degassing. However, the BTC of temperature is smooth while dropping from 70 C to 20 C. For a distal spring ( 3km), the BTC of chloride shows the characteristic of advective and dispersive transport, but the BTC of temperature is nearly constant. To explain the difference between the BTCs of chloride and temperature, a semi-analytical solution is proposed to describe the heat transport in the groundwater. The model considers one-dimensional heat conduction and convection along the flowpath and one-dimensional heat conduction to vadose zone and underlying layers. It is found that the pulse signal released from the recharge face of groundwater attenuates fast with the heat flux to the adjacent layers in consideration. The thermal response of groundwater is strongly dependent on the duration of injected pulse. A one-year pulse of 90 °C will attenuate to 33 °C at the proximal spring. For the temperature of proximal spring to reach 90 °C, the pulse duration is at the timescale of thousand years.

  13. Synthesis of Environmentally Friendly Highly Dispersed Magnetite Nanoparticles Based on Rosin Cationic Surfactants as Thin Film Coatings of Steel

    PubMed Central

    Atta, Ayman M.; El-Mahdy, Gamal A.; Al-Lohedan, Hamad A.; Al-Hussain, Sami A.

    2014-01-01

    This work presents a new method to prepare monodisperse magnetite nanoparticles capping with new cationic surfactants based on rosin. Core/shell type magnetite nanoparticles were synthesized using bis-N-(3-levopimaric maleic acid adduct-2-hydroxy) propyl-triethyl ammonium chloride (LPMQA) as capping agent. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanoparticles chemical structure. Transmittance electron microscopies (TEM) and X-ray powder diffraction (XRD) were used to examine the morphology of the modified magnetite nanoparticles. The magnetite dispersed aqueous acid solution was evaluated as an effective anticorrosion behavior of a hydrophobic surface on steel. The inhibition effect of magnetite nanoparticles on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Results obtained from both potentiodynamic polarisation and EIS measurements reveal that the magnetite nanoparticle is an effective inhibitor for the corrosion of steel in 1.0 M HCl solution. Polarization data show that magnetite nanoparticles behave as a mixed type inhibitor. The inhibition efficiencies obtained from potentiodynamic polarization and EIS methods are in good agreement. PMID:24758936

  14. Synthesis of environmentally friendly highly dispersed magnetite nanoparticles based on rosin cationic surfactants as thin film coatings of steel.

    PubMed

    Atta, Ayman M; El-Mahdy, Gamal A; Al-Lohedan, Hamad A; Al-Hussain, Sami A

    2014-04-22

    This work presents a new method to prepare monodisperse magnetite nanoparticles capping with new cationic surfactants based on rosin. Core/shell type magnetite nanoparticles were synthesized using bis-N-(3-levopimaric maleic acid adduct-2-hydroxy) propyl-triethyl ammonium chloride (LPMQA) as capping agent. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanoparticles chemical structure. Transmittance electron microscopies (TEM) and X-ray powder diffraction (XRD) were used to examine the morphology of the modified magnetite nanoparticles. The magnetite dispersed aqueous acid solution was evaluated as an effective anticorrosion behavior of a hydrophobic surface on steel. The inhibition effect of magnetite nanoparticles on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Results obtained from both potentiodynamic polarisation and EIS measurements reveal that the magnetite nanoparticle is an effective inhibitor for the corrosion of steel in 1.0 M HCl solution. Polarization data show that magnetite nanoparticles behave as a mixed type inhibitor. The inhibition efficiencies obtained from potentiodynamic polarization and EIS methods are in good agreement.

  15. Control of surface topography in biomimetic calcium phosphate coatings.

    PubMed

    Costa, Daniel O; Allo, Bedilu A; Klassen, Robert; Hutter, Jeffrey L; Dixon, S Jeffrey; Rizkalla, Amin S

    2012-02-28

    The behavior of cells responsible for bone formation, osseointegration, and bone bonding in vivo are governed by both the surface chemistry and topography of scaffold matrices. Bone-like apatite coatings represent a promising method to improve the osteoconductivity and bonding of synthetic scaffold materials to mineralized tissues for regenerative procedures in orthopedics and dentistry. Polycaprolactone (PCL) films were coated with calcium phosphates (CaP) by incubation in simulated body fluid (SBF). We investigated the effect of SBF ion concentration and soaking time on the surface properties of the resulting apatite coatings. CaP coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and energy dispersive X-ray spectrometry (EDX). Young's modulus (E(s)) was determined by nanoindentation, and surface roughness was assessed by atomic force microscopy (AFM) and mechanical stylus profilometry. CaP such as carbonate-substituted apatite were deposited onto PCL films. SEM and AFM images of the apatite coatings revealed an increase in topographical complexity and surface roughness with increasing ion concentration of SBF solutions. Young's moduli (E(s)) of various CaP coatings were not significantly different, regardless of the CaP phase or surface roughness. Thus, SBF with high ion concentrations may be used to coat synthetic polymers with CaP layers of different surface topography and roughness to improve the osteoconductivity and bone-bonding ability of the scaffold. © 2012 American Chemical Society

  16. Superfund record of decision amendment (EPA Region 5): Woodstock Municipal LF, Woodstock, IL, July 15, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This decision document represents the United States Environmental Protection Agency`s (US EPA) selected final remedial action for the Site located in Woodstock, Illinois. The US EPA, in consultation with the IEPA, is modifying the landfill cap profile, and the requirement to construct a groundwater pump-and-treat system to address residual vinyl chloride contamination in the upper water-bearing unit, down gradient of the landfill. This remedy is intended to be the final action for the site, and addresses all contaminated media, including: contaminated soil, sediment, and groundwater, landfilled wastes, leachate generation and emission of landfill gases.

  17. Multi-MICE: Nuclear Powered Mobile Probes to Explore Deep Interiors of the Ice Sheets on Mars and the Jovian Moons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maise, George; Powell, James; Paniagua, John

    2007-01-30

    The multi-kilometer thick Polar Caps on Mars contain unique and important data about the multi-million year history of its climate, geology, meteorology, volcanology, cosmic ray and solar activity, and meteor impacts. They also may hold evidence of past life on Mars, including microbes, microfossils and biological chemicals. The objective of this paper is to describe a probe that can provide access to the data locked in the Polar Caps. The MICE (Mars Ice Cap Explorer) system would explore the Polar Cap interiors using mobile probes powered by compact, lightweight nuclear reactors. The probes would travel 100's of meters per daymore » along melt channels in the ice sheets created by hot water jets from the 500 kW(th) nuclear reactors, ascending and descending, either vertically or at an angle to the vertical, reaching bedrock at kilometers beneath the surface. The powerful reactor will be necessary to provide sufficient hot water at high velocity to penetrate the extensive horizontal dust/sand layers that separate layers of ice in the Mars Ice Caps. MICE reactors can operate at 500 kW(th) for more than 4 years, and much longer in practice, since power level will be much lower when the probes are investigating locations in detail at low or zero speed. Multiple probes, e.g. six, would be deployed in an interactive network, continuously communicating by RF and acoustic signals with each other and with the surface lander spacecraft. In turn, the lander would continuously communicate in real time, subject to speed of light delays, with scientists on Earth to transmit data and receive instructions for the MICE probes. Samples collected by the probes could be brought to the lander, for return to the Earth at the end of the mission.« less

  18. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    DOEpatents

    Ruffner, Judith A.; Bullington, Jeff A.; Clem, Paul G.; Warren, William L.; Brinker, C. Jeffrey; Tuttle, Bruce A.; Schwartz, Robert W.

    1999-01-01

    A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

  19. Effect of nano oxide layer on exchange bias and GMR in Mn-Ir-Pt based spin valve

    NASA Astrophysics Data System (ADS)

    Jeon, D. M.; Lee, J. P.; Lee, D. H.; Yoon, S. Y.; Kim, Y. S.; Suh, S. J.

    2004-05-01

    We have investigated the effect of nano oxide layers (NOLs), which were fabricated by a plasma oxidation of CoFe layer on the magnetic properties and magneto-resistance (MR) in a Mn-Ir-Pt based spin valve. The adjusted NOL could result in the high MR and the strong exchange coupling field ( Hex). From a high resolution electron microscopy analysis the oxide was about 1 nm. The strong reflectivity at the interface of a free and oxide capping layer should lead to the decrease of an interlayer coupling field, which could possibly improve the Hex.

  20. Improved photoluminescence quantum yield and stability of CdSe-TOP, CdSe-ODA-TOPO, CdSe/CdS and CdSe/EP nanocomposites

    NASA Astrophysics Data System (ADS)

    Wei, Shutian; Zhu, Zhilin; Wang, Zhixiao; Wei, Gugangfen; Wang, Pingjian; Li, Hai; Hua, Zhen; Lin, Zhonghai

    2016-07-01

    Size-controllable monodisperse CdSe nanocrystals with different organic capping were prepared based on the hot-injection method. The effective separation of nucleation and growth was achieved by rapidly mixing two highly reactive precursors. As a contrast, we prepared CdSe/CdS nanocrystals (NCs) successfully based on the selective ion layer adsorption and reaction (SILAR) technique. This inorganic capping obtained higher photoluminescence quantum yield (PLQY) of 59.3% compared with organic capping of 40.8%. Furthermore, the CdSe-epoxy resin (EP) composites were prepared by adopting a flexible ex situ method, and showed excellent stability in the ambient environment for one year. So the composites with both high PLQY of nanocrystals and excellent stability are very promising to device application.

  1. Albedo models for the residual south polar cap on Mars: Implications for the stability of the cap under near-perihelion global dust storm conditions

    NASA Astrophysics Data System (ADS)

    Bonev, Boncho P.; Hansen, Gary B.; Glenar, David A.; James, Philip B.; Bjorkman, Jon E.

    2008-02-01

    It is uncertain whether the residual (perennial) south polar cap on Mars is a transitory or a permanent feature in the current Martian climate. While there is no firm evidence for complete disappearance of the cap in the past, clearly observable changes have been documented. Observations suggest that the perennial cap lost more CO 2 material in the spring/summer season prior to the Mariner 9 mission than in those same seasons monitored by Viking and Mars Global Surveyor. In this paper we examine one process that may contribute to these changes - the radiative effects of a planet encircling dust storm that starts during late Martian southern spring on the stability of the perennial south polar cap. To approach this, we model the radiative transfer through a dusty planetary atmosphere bounded by a sublimating CO 2 surface. A critical parameter for this modeling is the surface albedo spectrum from the near-UV to the thermal-IR, which was determined from both space-craft and Earth-based observations covering multiple wavelength regimes. Such a multi-wavelength approach is highly desirable since one spectral band by itself cannot tightly constrain the three-parameter space for polar surface albedo models, namely photon "scattering length" in the CO 2 ice and the amounts of intermixed water and dust. Our results suggest that a planet-encircling dust storm with onset near solstice can affect the perennial cap's stability, leading to advanced sublimation in a "dusty" year. Since the total amount of solid CO 2 removed by a single storm may be less than the total CO 2 thickness, a series of dust storms would be required to remove the entire residual CO 2 ice layer from the south perennial cap.

  2. Content and bioconcentration of mercury in mushrooms from northern Poland.

    PubMed

    Falandysz, J; Gucia, M; Brzostowski, A; Kawano, M; Bielawski, L; Frankowska, A; Wyrzykowska, B

    2003-03-01

    Mercury (Hg) was quantified using cold vapour-atomic absorption spectrometry (CV-AAS) in the fruiting bodies of nine edible and five inedible mushrooms and in underlying soil substrate samples. In total, 404 samples comprising caps and stalks and 202 samples of soil substrate (0-10 cm layer) were collected in 1996 from Trójmiejski Landscape Park, northern Poland. Mean Hg concentrations in the soil substrate for different species varied between 10 +/- 3 and 780 +/- 500 ng x g(-1) dry wt (range 2.3-1700). Among edible mushroom species, Horse Mushroom (Agaricus arvensis), Brown Birch Scaber Stalk (Leccinum scabrum), Parasol Mushroom (Macrolepiota procera), King Bolete (Boletus edulis) and Yellow-cracking Bolete (Xerocomus subtomentosus) contained elevated concentrations of Hg ranging from 1600 +/- 930 to 6800 +/- 4000 ng x g(-1) dry wt in the caps. Concentrations of Hg in the stalks were 2.6 +/- 1.1 to 1.7 +/- 1.0 times lower than those in the caps. Some mushroom species investigated had high Hg levels when compared with specimens collected from the background reference sites elsewhere (located far away from the big cities) in northern Poland. Bioconcentration factors of Hg in the caps of Horse Mushroom, Parasol Mushroom and Brown Birch Scaber Stalk were between 150 +/- 58 and 230 +/- 150 ng x g(-1) dry wt, respectively, and for inedible Pestle-shaged Puffball (Claviata excipulformis) was 960 +/- 300 ng x g(-1) dry wt. Linear regression coefficients between Hg in caps and in stalks and Hg soil concentrations showed a positive relationship for A. arvensis and Horse mushroom (p < 0.05) and a negative correlation for the caps of Death Caps (Amanita phalloides) and Woolly Milk Cap (Lactarius torminosus) (p < 0.05), while for other species no clear trend was found.

  3. The little ice age as recorded in the stratigraphy of the tropical quelccaya ice cap.

    PubMed

    Thompson, L G; Mosley-Thompson, E; Dansgaard, W; Grootes, P M

    1986-10-17

    The analyses of two ice cores from a southern tropical ice cap provide a record of climatic conditions over 1000 years for a region where other proxy records are nearly absent. Annual variations in visible dust layers, oxygen isotopes, microparticle concentrations, conductivity, and identification of the historical (A.D. 1600) Huaynaputina ash permit accurate dating and time-scale verification. The fact that the Little Ice Age (about A.D. 1500 to 1900) stands out as a significant climatic event in the oxygen isotope and electrical conductivity records confirms the worldwide character of this event.

  4. Recurring Slope Lineae (RSL) and Chloride Hydrates within Mars Subsurface

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Wang, A.

    2012-12-01

    RSL is an important phenomenon revealed by HiRISE-MRO observations on Mars (McEwen et al., 2011). The RSL form and grow on some equator-facing slopes during warm seasons on Mars when temperature (T in afternoon) is in the range of ~250-300K. We hypothesize that chloride hydrates may exist in some areas within the subsurface of southern hemisphere on Mars, and the deliquescence of these chloride hydrates at elevated temperature may have produced large quantity of brine that caused the RSL observed by HiRISE team. This hypothesis is based on three lines of reasoning: (1) chlorine (Cl) is found to be broadly distributed on Mars (GRS-ODY) and has been detected in the chemistry of every surface samples during all Mars surface exploration missions (Vikings, Pathfinder, Spirit, Opportunity, and Phoenix). In addition, the existence of chlorides in martian southern hemisphere was suggested by a set of THEMIS-ODY data analyses (Osterloo et al., 2008, 2010). In terrestrial saline playas, large amounts of chlorides invariably appears in the precipitates from salty brines (Zheng et al., 2009, Wang et al., 2009), although the precipitation sequence of chlorides on Mars might be different from that on Earth (Tosca et al., 2008, McLennan et al., 2012). (2) A subsurface layer when enriched with ice, or hydrous sulfates or chloride hydrates (all have high thermal inertia) and covered by a dry layer of surface soils (very low thermal inertia) will be able to maintain a lower Tmax and a much smaller delta-T that are not affected by the large temperature variations at Mars surface during diurnal and seasonal cycles (Mellon, 2004). (3) Chloride hydrates (such as MgCl2.12H2O, FeCl2.6H2O, CaCL2.6H2O, etc) would form from Cl-bearing brine at low T; they would be stable in a large T range (beyond room T in lab) and their deliquescence would occur abruptly at elevated temperatures (Baumgartner & Bakker 2009, and many others). We have started a systematic laboratory investigation on the thermodynamics and kinetics properties of chloride hydrates. The goals are to determine (1) the stability fields of Mg-, Fe2+-, Fe3+-, Ca-, Al-, Na-chloride hydrates in RH-T space, especially the phase boundaries of hydrates-deliquescence; (2) the rate of their dehydration, and especially the rate of their deliquescence as function of T, P, and PH2O; (3) the RH level that each chloride hydrate can maintain in an enclosure at T relevant to those within Mars subsurface. We will report the experimental results from (3), and will compare them with a similar set of data from hydrous sulfates (Mg, Fe, Ca, Al). The criticality of learning the property (3) is that the deliquescence of a hydrous salt at a T only occurs when RH is higher than a threshold. For example, deliquescence of ferricopiapite would happen when RH > 75% at 0°C. If the environmental RH is lower, the dehydration of hydrous salt will go through solid-solid phase transition, instead of deliquescence, such that water would be released to the atmosphere and brine would not form. It is possible that deliquescence of both hydrous sulfates and chlorides (as well as the melting of Cl-enriched brines) contributed the RSL. Our working hypothesis favors chloride hydrates because dry chloride (after releasing water) in RSL would not be visible by Vis-NIR spectroscopy, which is consistent with the mission observations.

  5. Electrostatic Functionalization and Passivation of Water-Exfoliated Few-Layer Black Phosphorus by Poly Dimethyldiallyl Ammonium Chloride and Its Ultrafast Laser Application.

    PubMed

    Feng, Qingliang; Liu, Hongyan; Zhu, Meijie; Shang, Jing; Liu, Dan; Cui, Xiaoqi; Shen, Diqin; Kou, Liangzhi; Mao, Dong; Zheng, Jianbang; Li, Chun; Zhang, Jin; Xu, Hua; Zhao, Jianlin

    2018-03-21

    Few-layer black phosphorus (BP) which exhibits excellent optical and electronic properties, has great potential applications in nanodevices. However, BP inevitably suffers from the rapid degradation in ambient air because of the high reactivity of P atoms with oxygen and water, which greatly hinders its wide applications. Herein, we demonstrate the electrostatic functionalization as an effective way to simultaneously enhance the stability and dispersity of aqueous phase exfoliated few-layer BP. The poly dimethyldiallyl ammonium chloride (PDDA) is selected to spontaneously and uniformly adsorb on the surface of few-layer BP via electrostatic interaction. The positive charge-center of the N atom of PDDA, which passivates the lone-pair electrons of P, plays a critical role in stabilizing the BP. Meanwhile, the PDDA could serve as hydrophilic ligands to improve the dispersity of exfoliated BP in water. The thinner PDDA-BP nanosheets can stabilize in both air and water even after 15 days of exposure. Finally, the uniform PDDA-BP-polymer film was used as a saturable absorber to realize passive mode-locking operations in a fiber laser, delivering a train of ultrafast pulses with the duration of 1.2 ps at 1557.8 nm. This work provides a new way to obtain highly stable few-layer BP, which shows great promise in ultrafast optics application.

  6. Exhaustive thin-layer cyclic voltammetry for absolute multianalyte halide detection.

    PubMed

    Cuartero, Maria; Crespo, Gastón A; Ghahraman Afshar, Majid; Bakker, Eric

    2014-11-18

    Water analysis is one of the greatest challenges in the field of environmental analysis. In particular, seawater analysis is often difficult because a large amount of NaCl may mask the determination of other ions, i.e., nutrients, halides, and carbonate species. We demonstrate here the use of thin-layer samples controlled by cyclic voltammetry to analyze water samples for chloride, bromide, and iodide. The fabrication of a microfluidic electrochemical cell based on a Ag/AgX wire (working electrode) inserted into a tubular Nafion membrane is described, which confines the sample solution layer to less than 15 μm. By increasing the applied potential, halide ions present in the thin-layer sample (X(-)) are electrodeposited on the working electrode as AgX, while their respective counterions are transported across the perm-selective membrane to an outer solution. Thin-layer cyclic voltammetry allows us to obtain separated peaks in mixed samples of these three halides, finding a linear relationship between the halide concentration and the corresponding peak area from about 10(-5) to 0.1 M for bromide and iodide and from 10(-4) to 0.6 M for chloride. This technique was successfully applied for the halide analysis in tap, mineral, and river water as well as seawater. The proposed methodology is absolute and potentially calibration-free, as evidenced by an observed 2.5% RSD cell to cell reproducibility and independence from the operating temperature.

  7. Biocompatible Nanocoatings of Fluorinated Polyphosphazenes through Aqueous Assembly

    DOE PAGES

    Selin, Victor; Albright, Victoria; Ankner, John Francis; ...

    2018-02-23

    Nonionic fluorinated polyphosphazenes, such as poly[bis(trifluoroethoxy)phosphazene] (PTFEP), display superb biocompatibility, yet their deposition to surfaces has been limited to solution casting from organic solvents or thermal molding. Here in this paper, hydrophobic coatings of fluorinated polyphosphazenes are demonstrated through controlled deposition of ionic fluorinated polyphosphazenes (iFPs) from aqueous solutions using the layer-by-layer (LbL) technique. Specifically, the assemblies included poly[(carboxylatophenoxy)(trifluoroethoxy)phosphazenes] with varied content of fluorine atoms as iFPs (or poly[bis(carboxyphenoxy)phosphazene] (PCPP) as a control nonfluorinated polyphosphazene) and a variety of polycations. Hydrophobic interactions largely contributed to the formation of LbL films of iFPs with polycations, leading to linear growth and extremelymore » low water uptake. Hydrophobicity-enhanced ionic pairing within iFP/BPEI assemblies gave rise to large-amplitude oscillations in surface wettability as a function of capping layer, which were the largest for the most fluorinated iFP, while control PCPP/polycation systems remained hydrophilic regardless of the film top layer. Neutron reflectometry (NR) studies indicated superior layering and persistence of such layering in salt solution for iFP/BPEI films as compared to control PCPP/polycation systems. Hydrophobicity of iFP-capped LbL coatings could be further enhanced by using a highly porous polyester surgical felt rather than planar substrates for film deposition. Importantly, iFP/polycation coatings displayed biocompatibility which was similar to or superior to that of solution-cast coatings of a clinically validated material (PTFEP), as demonstrated by the hemolysis of the whole blood and protein adsorption studies.« less

  8. Biocompatible Nanocoatings of Fluorinated Polyphosphazenes through Aqueous Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selin, Victor; Albright, Victoria; Ankner, John Francis

    Nonionic fluorinated polyphosphazenes, such as poly[bis(trifluoroethoxy)phosphazene] (PTFEP), display superb biocompatibility, yet their deposition to surfaces has been limited to solution casting from organic solvents or thermal molding. Here in this paper, hydrophobic coatings of fluorinated polyphosphazenes are demonstrated through controlled deposition of ionic fluorinated polyphosphazenes (iFPs) from aqueous solutions using the layer-by-layer (LbL) technique. Specifically, the assemblies included poly[(carboxylatophenoxy)(trifluoroethoxy)phosphazenes] with varied content of fluorine atoms as iFPs (or poly[bis(carboxyphenoxy)phosphazene] (PCPP) as a control nonfluorinated polyphosphazene) and a variety of polycations. Hydrophobic interactions largely contributed to the formation of LbL films of iFPs with polycations, leading to linear growth and extremelymore » low water uptake. Hydrophobicity-enhanced ionic pairing within iFP/BPEI assemblies gave rise to large-amplitude oscillations in surface wettability as a function of capping layer, which were the largest for the most fluorinated iFP, while control PCPP/polycation systems remained hydrophilic regardless of the film top layer. Neutron reflectometry (NR) studies indicated superior layering and persistence of such layering in salt solution for iFP/BPEI films as compared to control PCPP/polycation systems. Hydrophobicity of iFP-capped LbL coatings could be further enhanced by using a highly porous polyester surgical felt rather than planar substrates for film deposition. Importantly, iFP/polycation coatings displayed biocompatibility which was similar to or superior to that of solution-cast coatings of a clinically validated material (PTFEP), as demonstrated by the hemolysis of the whole blood and protein adsorption studies.« less

  9. Capping Layer (CL) Induced Antidamping in CL/Py/β-W System (CL: Al, β-Ta, Cu, β-W).

    PubMed

    Behera, Nilamani; Guha, Puspendu; Pandya, Dinesh K; Chaudhary, Sujeet

    2017-09-13

    For achieving ultrafast switching speed and minimizing dissipation losses, the spin-based data storage device requires a control on effective damping (α eff ) of nanomagnetic bits. Incorporation of interfacial antidamping spin orbit torque (SOT) in spintronic devices therefore has high prospects for enhancing their performance efficiency. Clear evidence of such an interfacial antidamping is found in Al capped Py(15 nm)/β-W(t W )/Si (Py = Ni 81 Fe 19 and t W = thickness of β-W), which is in contrast to the increase of α eff (i.e., damping) usually associated with spin pumping as seen in Py(15 nm)/β-W(t W )/Si system. Because of spin pumping, the interfacial spin mixing conductance (g ↑↓ ) at Py/β-W interface and spin diffusion length (λ SD ) of β-W are found to be 1.63(±0.02) × 10 18 m -2 (1.44(±0.02) × 10 18 m -2 ) and 1.42(±0.19) nm (1.00(±0.10) nm) for Py(15 nm)/β-W(t W )/Si (β-W(t W )/Py(15 nm)/Si) bilayer systems. Other different nonmagnetic capping layers (CL), namely, β-W(2 nm), Cu(2 nm), and β-Ta(2,3,4 nm) were also grown over the same Py(15 nm)/β-W(t W ). However, antidamping is seen only in β-Ta(2,3 nm)/Py(15 nm)/β-W(t W )/Si. This decrease in α eff is attributed to the interfacial Rashba like SOT generated by nonequilibrium spin accumulation subsequent to the spin pumping. Contrary to this, when interlayer positions of Py(15 nm) and β-W(t W ) is interchanged irrespective of the fixed top nonmagnetic layer, an increase of α eff is observed, which is ascribed to spin pumping from Py to β-W layer.

  10. Three-dimensional radar imaging of structures and craters in the Martian polar caps.

    PubMed

    Putzig, Nathaniel E; Smith, Isaac B; Perry, Matthew R; Foss, Frederick J; Campbell, Bruce A; Phillips, Roger J; Seu, Roberto

    2018-07-01

    Over the last decade, observations acquired by the Shallow Radar (SHARAD) sounder on individual passes of the Mars Reconnaissance Orbiter have revealed the internal structure of the Martian polar caps and provided new insights into the formation of the icy layers within and their relationship to climate. However, a complete picture of the cap interiors has been hampered by interfering reflections from off-nadir surface features and signal losses associated with sloping structures and scattering. Foss et al. (2017) addressed these limitations by assembling three-dimensional data volumes of SHARAD observations from thousands of orbital passes over each polar region and applying geometric corrections simultaneously. The radar volumes provide unprecedented views of subsurface features, readily imaging structures previously inferred from time-intensive manual analysis of single-orbit data (e.g., trough-bounding surfaces, a buried chasma, and a basal unit in the north, massive carbon-dioxide ice deposits and discontinuous layered sequences in the south). Our new mapping of the carbon-dioxide deposits yields a volume of 16,500 km 3 , 11% larger than the prior estimate. In addition, the radar volumes newly reveal other structures, including what appear to be buried impact craters with no surface expression. Our first assessment of 21 apparent craters at the base of the north polar layered deposits suggests a Hesperian age for the substrate, consistent with that of the surrounding plains as determined from statistics of surface cratering rates. Planned mapping of similar features throughout both polar volumes may provide new constraints on the age of the icy layered deposits. The radar volumes also provide new topographic data between the highest latitudes observed by the Mars Orbiter Laser Altimeter and those observed by SHARAD. In general, mapping of features in these radar volumes is placing new constraints on the nature and evolution of the polar deposits and associated climate changes.

  11. Three-dimensional radar imaging of structures and craters in the Martian polar caps

    NASA Astrophysics Data System (ADS)

    Putzig, Nathaniel E.; Smith, Isaac B.; Perry, Matthew R.; Foss, Frederick J.; Campbell, Bruce A.; Phillips, Roger J.; Seu, Roberto

    2018-07-01

    Over the last decade, observations acquired by the Shallow Radar (SHARAD) sounder on individual passes of the Mars Reconnaissance Orbiter have revealed the internal structure of the Martian polar caps and provided new insights into the formation of the icy layers within and their relationship to climate. However, a complete picture of the cap interiors has been hampered by interfering reflections from off-nadir surface features and signal losses associated with sloping structures and scattering. Foss et al. (The Leading Edge 36, 43-57, 2017, https://doi.org/10.1190/tle36010043.1) addressed these limitations by assembling three-dimensional data volumes of SHARAD observations from thousands of orbital passes over each polar region and applying geometric corrections simultaneously. The radar volumes provide unprecedented views of subsurface features, readily imaging structures previously inferred from time-intensive manual analysis of single-orbit data (e.g., trough-bounding surfaces, a buried chasma, and a basal unit in the north, massive carbon-dioxide ice deposits and discontinuous layered sequences in the south). Our new mapping of the carbon-dioxide deposits yields a volume of 16,500 km3, 11% larger than the prior estimate. In addition, the radar volumes newly reveal other structures, including what appear to be buried impact craters with no surface expression. Our first assessment of 21 apparent craters at the base of the north polar layered deposits suggests a Hesperian age for the substrate, consistent with that of the surrounding plains as determined from statistics of surface cratering rates. Planned mapping of similar features throughout both polar volumes may provide new constraints on the age of the icy layered deposits. The radar volumes also provide new topographic data between the highest latitudes observed by the Mars Orbiter Laser Altimeter and those observed by SHARAD. In general, mapping of features in these radar volumes is placing new constraints on the nature and evolution of the polar deposits and associated climate changes.

  12. The role of titanium aluminide in n-gallium nitride ohmic contact technology

    NASA Astrophysics Data System (ADS)

    Pelto, Christopher M.

    Ohmic contacts are essential to the realization of efficient and affordable nitride-based electronic and optoelectronic devices. Currently, the most successful ohmic contact schemes to n-GaN are based on the Al/Ti bilayer structure, although the mechanism responsible for the low resistance in these contacts is not sufficiently understood. In this work, the intermetallic TiAl3 has been employed both as a model ohmic contact system to help understand the essential features of the Al/Ti standard contact, as well as a thermally stable oxidation cap for the bilayer structure. A quaternary isotherm of the Al-Ti-Ga-N system was calculated at 600°C, which showed that a sufficient phase topology was present to apply the exchange mechanism to the TiAl 3/GaN couple. The exchange mechanism rationalized the selection of the TiAl3 intermetallic by predicting that an Al-rich AlGaN layer will form at the metal/semiconductor interface. As part of the investigation of these novel contact systems, a thorough characterization was undertaken on both a standard Al/Ti and Au/Ni/Al/Ti contact to n-GaN in which the essential processing parameters and metallurgical properties were identified. The TiAl 3 contact was found to exhibit inferior electrical behavior compared to the Al/Ti bilayer, requiring significantly higher annealing temperatures to achieve comparable specific contact resistance. It is conjectured that this is due to the early formation of a TiN layer at the metal/semiconductor interface of the bilayer contact, even though both contacts are suspected to form the Al-rich nitride layer at higher temperature. As an oxidation cap, the TiAl3 metallization was found to provide much improved performance characteristics compared to the four-layer Au/Al/Ni/Ti standard. The TiAl 3/Al/Ti contact proved to achieve optimal performance at a much lower temperature than the standard, and furthermore showed complete insensitivity to the oxidation content of the annealing ambient. Reaction mechanisms for the TiAl3-capped and the four-layer contact metallizations are suggested that account for both the morphology and the expected interfacial phases of each system.

  13. Stereo Topography of the South Polar of Mar: Volatile Inventory and Mars Polar Landing Landing Site

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.; Moore, Jeffrey M.

    2000-01-01

    Viking stereo images and topographic maps reveal that the south polar layered deposits of Mars are topographically complex and morphologically distinct from the north polar layered deposits. The dominant feature is a 500-km-wide topographic dome that rises 3 km above the surrounding plains. This dome underlies the residual ice cap but is at least 50% larger in area. Erosional scarps and terraces indicate that this dome was once more extensive and has undergone erosional retreat. Adjacent to the dome, layered deposits form a vast plateau 1-1.5 km high extending approximately 1000 km beyond and to one side of the residual south polar cap. This plateau is relatively flat at kilometer scales, although it is cut in places by troughs and depressions, which have locally steep scarps up to 2 km high and sloping up to roughly 10 deg. Contiguously flat kilometer-scale regions the size of the Mars Polar Lander (MPL) landing ellipse are present. These are in the form of plateaus 100-300 km wide and 1-2 km high. One of the largest of these plateaus has been proposed as a landing site for the Mars Polar Lander (MPL). The volume associated with the south polar layered deposits may be comparable to those of the layered deposits at the north pole. Although this doubles the current probable inventory of surface ice on Mars, it still falls far short of accounting for the inferred volume of water on Mars in the past.

  14. On the role of electric field direction in the formation of sporadic E-layers in the southern polar cap ionosphere

    NASA Astrophysics Data System (ADS)

    Parkinson, M. L.; Dyson, P. L.; Monselesan, D. P.; Morris, R. J.

    1998-03-01

    Measurements of the occurrence of sporadic E (Es)-layers and F-region electric fields were obtained with a modern, HF digital ionosonde located at Casey, Antarctica (66.3°S, 110.5°E, 81°S CGM latitude) during the late austral summer of 1995/96. The occurrence of Es-layers was inferred from the presence of appropriate traces in normal swept-frequency ionograms, and the electric fields were inferred from F-region ``drift-mode'' velocities assuming that the plasma convection velocities given by E × B/B2 were measured, on average, by the interferometer. The theory of formation of high-latitude Es-layers predicts that electric fields directed toward the south west (SW) should be particularly effective at producing thin layers in the southern hemisphere. Our measurements made at a true polar cap station are consistent with this expectation, and are contrasted with observations made by incoherent scatter radars in the northern hemisphere, which also show the importance of SW electric fields, whereas the same theory predicts that NW electric fields should be important at northern latitudes. We reconcile the interhemispheric differences with simple calculations of ion convergence driven by the electric fields specified by the IZMIRAN electrodynamic model (IZMEM) in both hemispheres. The importance of the interplanetary magnetic field in the control of high-latitude Es formation is emphasised as an important adjunct to space weather modelling and forecasting.

  15. More South Polar 'Swiss Cheese'

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image is illuminated by sunlight from the upper left.

    Some of the surface of the residual south polar cap has a pattern that resembles that of sliced, swiss cheese. Shown here at the very start of southern spring is a frost-covered surface in which there are two layers evident--a brighter upper layer into which are set swiss cheese-like holes, and a darker, lower layer that lies beneath the 'swiss cheese' pattern. Nothing like this exists anywhere on Mars except within the south polar cap.

    This is a Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image acquired on August 2,1999. It is located near 84.8oS, 71.8oW, and covers an area 3 km across and about 6.1 km long (1.9 by 3.8 miles).

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanheusden, K.; Warren, W.L.; Devine, R.A.B.

    It is shown how mobile H{sup +} ions can be generated thermally inside the oxide layer of Si/SiO{sub 2}/Si structures. The technique involves only standard silicon processing steps: the nonvolatile field effect transistor (NVFET) is based on a standard MOSFET with thermally grown SiO{sub 2} capped with a poly-silicon layer. The capped thermal oxide receives an anneal at {approximately}1100 C that enables the incorporation of the mobile protons into the gate oxide. The introduction of the protons is achieved by a subsequent 500-800 C anneal in a hydrogen-containing ambient, such as forming gas (N{sub 2}:H{sub 2} 95:5). The mobile protonsmore » are stable and entrapped inside the oxide layer, and unlike alkali ions, their space-charge distribution can be controlled and rapidly rearranged at room temperature by an applied electric field. Using this principle, a standard MOS transistor can be converted into a nonvolatile memory transistor that can be switched between normally on and normally off. Switching speed, retention, endurance, and radiation tolerance data are presented showing that this non-volatile memory technology can be competitive with existing Si-based non-volatile memory technologies such as the floating gate technologies (e.g. Flash memory).« less

  17. Electrolytic Deposition and Diffusion of Lithium onto Magnesium-9 Wt Pct Yttrium Bulk Alloy in Low-Temperature Molten Salt of Lithium Chloride and Potassium Chloride

    NASA Astrophysics Data System (ADS)

    Dong, Hanwu; Wu, Yaoming; Wang, Lidong; Wang, Limin

    2009-10-01

    The electrolytic deposition and diffusion of lithium onto bulk magnesium-9 wt pct yttrium alloy cathode in molten salt of 47 wt pct lithium chloride and 53 wt pct potassium chloride at 693 K were investigated. Results show that magnesium-yttrium-lithium ternary alloys are formed on the surface of the cathodes, and a penetration depth of 642 μm is acquired after 2 hours of electrolysis at the cathodic current density of 0.06 A·cm-2. The diffusion of lithium results in a great amount of precipitates in the lithium containing layer. These precipitates are the compound of Mg41Y5, which arrange along the grain boundaries and hinder the diffusion of lithium, and solid solution of yttrium in magnesium. The grain boundaries and the twins of the magnesium-9 wt pct yttrium substrate also have negative effects on the diffusion of lithium.

  18. Numerical model of RC beam response to corrosion

    NASA Astrophysics Data System (ADS)

    German, Magdalena; Pamin, Jerzy

    2018-01-01

    The chloride-induced corrosion of reinforcement used to be represented by Tuutti's model with initiation and propagation phases. During the initiation phase chlorides penetrate the concrete cover and accumulate around reinforcement bars. The chloride concentration in concrete increases until it reaches a chloride threshold value, causing deterioration of the passive layer of reinforcement. Then the propagation phase begins. During the propagation phase steel has no natural anti-corrosion protection, a corrosion current flows and this induces the production of rust. A growing volume of corrosion products generates stresses in concrete, which leads to cracking, splitting, delamination and loss of strength. The mechanical response of RC elements to reinforcement corrosion has mostly been examined on the basis of a 2D cross-section analysis. However, with this approach it is not possible to represent both corrosion and static loading. In the paper a 3D finite element model of an RC beam with the two actions applied is presented. Rust is represented as an interface between steel and concrete, considering the volumetric expansion of rust.

  19. Investigation of Various Active Layers for Their Performance on Organic Solar Cells.

    PubMed

    Huang, Pao-Hsun; Wang, Yeong-Her; Ke, Jhong-Ciao; Huang, Chien-Jung

    2016-08-09

    The theoretical mechanism of open-circuit voltages (V OC ) in OSCs based on various small molecule organic materials is studied. The structure under investigation is simple planar heterojunction (PHJ) by thermal vacuum evaporation deposition. The various wide band gaps of small molecule organic materials are used to enhance the power conversion efficiency (PCE). The donor materials used in the device include: Alpha-sexithiophene (α-6T), Copper(II) phthalocyanine (CuPc), boron subnaphthalocyanine chloride (SubNc) and boron Subphthalocyanine chloride (SubPc). It is combined with fullerene or SubPc acceptor material to obtain a comprehensive understanding of the charge transport behavior. It is found that the V OC of the device is largely limited by charge transport. This was associated with the space charge effects and hole accumulation. These results are attributed to the improvement of surface roughness and work function after molybdenum trioxide (MoO₃) is inserted as an anode buffer layer.

  20. Respiratory monitoring by porphyrin modified quartz crystal microbalance sensors.

    PubMed

    Selyanchyn, Roman; Korposh, Serhiy; Wakamatsu, Shunichi; Lee, Seung-Woo

    2011-01-01

    A respiratory monitoring system based on a quartz crystal microbalance (QCM) sensor with a functional film was designed and investigated. Porphyrins 5,10,15,20-tetrakis-(4-sulfophenyl)-21H,23H-porphine (TSPP) and 5,10,15,20-tetrakis-(4-sulfophenyl)-21H, 23H-porphine manganese (III) chloride (MnTSPP) used as sensitive elements were assembled with a poly(diallyldimethyl ammonium chloride) (PDDA). Films were deposited on the QCM resonators using layer-by-layer method in order to develop the sensor. The developed system, in which the sensor response reflects lung movements, was able to track human respiration providing respiratory rate (RR) and respiratory pattern (RP). The sensor system was tested on healthy volunteers to compare RPs and calculate RRs. The operation principle of the proposed system is based on the fast adsorption/desorption behavior of water originated from human breath into the sensor films deposited on the QCM electrode.

  1. Respiratory Monitoring by Porphyrin Modified Quartz Crystal Microbalance Sensors

    PubMed Central

    Selyanchyn, Roman; Korposh, Serhiy; Wakamatsu, Shunichi; Lee, Seung-Woo

    2011-01-01

    A respiratory monitoring system based on a quartz crystal microbalance (QCM) sensor with a functional film was designed and investigated. Porphyrins 5,10,15,20-tetrakis-(4-sulfophenyl)-21H,23H-porphine (TSPP) and 5,10,15,20-tetrakis-(4-sulfophenyl)-21H, 23H-porphine manganese (III) chloride (MnTSPP) used as sensitive elements were assembled with a poly(diallyldimethyl ammonium chloride) (PDDA). Films were deposited on the QCM resonators using layer-by-layer method in order to develop the sensor. The developed system, in which the sensor response reflects lung movements, was able to track human respiration providing respiratory rate (RR) and respiratory pattern (RP). The sensor system was tested on healthy volunteers to compare RPs and calculate RRs. The operation principle of the proposed system is based on the fast adsorption/desorption behavior of water originated from human breath into the sensor films deposited on the QCM electrode. PMID:22346621

  2. Low-Noise Large-Area Photoreceivers with Low Capacitance Photodiodes

    NASA Technical Reports Server (NTRS)

    Joshi, Abhay M. (Inventor); Datta, Shubhashish (Inventor)

    2013-01-01

    A quad photoreceiver includes a low capacitance quad InGaAs p-i-n photodiode structure formed on an InP (100) substrate. The photodiode includes a substrate providing a buffer layer having a metal contact on its bottom portion serving as a common cathode for receiving a bias voltage, and successive layers deposited on its top portion, the first layer being drift layer, the second being an absorption layer, the third being a cap layer divided into four quarter pie shaped sections spaced apart, with metal contacts being deposited on outermost top portions of each section to provide output terminals, the top portions being active regions for detecting light. Four transimpedance amplifiers have input terminals electrically connected to individual output terminals of each p-i-n photodiode.

  3. pH-Responsive Layer-by-Layer Nanoshells for Direct Regulation of Cell Activity

    DTIC Science & Technology

    2012-01-01

    PVPON1,300), a monomer of metharcylic acid (MAA), hydrochloric acid, sodium hydroxide, sodium chloride , monobasic sodium phosphate, and 1-ethyl-3...dimethylamino- propyl )carbodiimide hydrochloride (EDC) were purchased from Sigma-Aldrich. Initiator, 2,20-azobis(2-methylpropionitrile) (AIBN), was purchased...butoxycarbonylaminopropyl)methacrylamide (t-BOCAPMA) for synthesis of amine-functionalized PMAA, and 4.0 ( 0.2 μm silica particles as 10% aqueous suspension were

  4. Pilot project for maximum heat of mass concrete.

    DOT National Transportation Integrated Search

    2013-04-01

    A 3-D finite element model was developed for prediction of early age behavior of mass concrete footing placed on a soil layer. Three bridge pier footings and one bridge pier cap in Florida were monitored for temperature development. The measured temp...

  5. Novel composite membrane coated with a poly(diallyldimethylammonium chloride)/urushi semi-interpenetrating polymer network for non-aqueous redox flow battery application

    NASA Astrophysics Data System (ADS)

    Cho, Eunhae; Won, Jongok

    2016-12-01

    Novel composite membranes of a semi-interpenetrating network (semi-IPN) coated on the surfaces of a porous Celgard 2400 support are prepared and investigate for application in a non-aqueous redox flow battery (RFB). A natural polymer, urushi, is used for the matrix because of its high mechanical robustness, and poly(diallyldimethylammonium chloride) (PDDA) provides anionic exchange sites. The PDDA/urushi (P/U) semi-IPN film is prepared by the photo polymerization of urushiol in the presence of PDDA. The thin layer composed of the P/U semi-IPN on the porous support provides selectivity while maintaining the ion conductivity. The coulombic and energy efficiencies increase with increasing amounts of PDDA in the P/U semi-IPN layer, and the values reach 69.5% and 42.5%, respectively, for the one containing 40 wt% of PDDA. These values are substantially higher than those of the Neosepta AHA membrane and the Celgard membrane, indicating that the selective layer reduces the crossover of the redox active species through the membrane. This result implies that the formation of composite membranes using semi-IPN selective layers on the dimensionally stable porous membrane enable the successful use of a non-aqueous RFB for future energy storage systems.

  6. Buried CO2 Ice traces in South Polar Layered Deposits of Mars detected by radar sounder

    NASA Astrophysics Data System (ADS)

    Castaldo, L.; Mège, D.; Orosei, R.; Séjourné, A.

    2014-12-01

    SHARAD (SHAllow RADar) is the subsurface sounding radar provided by the Italian Space Agency (ASI) as a facility instrument to NASA's 2005 Mars Reconnaissance Orbiter (MRO). The Reduced Data Record of SHARAD data covering the area of the South Polar Layered Deposits (SPLD), has been used. The elaboration and interpretation of the data, aimed to estimate electromagnetic properties of surface layers, has been performed in terms of permittivity. The theory of electromagnetic scattering from fractal surfaces, and the estimation of geometric parameters from topographic data by Mars Orbiter Laser Altimeter (MOLA) which was one of five instruments on board the Mars Global Surveyor (MGS) spacecraft, has been used. A deep analysis of inversion has been made on all Mars and extended to the South Polar Caps in order to extract the area with a permittivity constant of CO2 ice. Several corrections have been applied to the data, moreover the calibration of the signal requires the determination of a constant that takes into account the power gain due to the radar system and the surface in order to compensate the power losses due to the orbitographic phenomena. The determination of regions with high probability of buried CO2 ice in the first layer of the Martian surface, is obtained extracting the real part of the permittivity constant of the CO2 ice (~2), estimated by other means. The permittivity of CO2ice is extracted from the Global Permittivity Map of Mars using the global standard deviation of itself as following: ɛCO2ice=ɛCO2ice+ Σ (1)where Σ=±std(ɛMapMars)/2Figure 1(a) shows the south polar areas where the values of the permittivity point to the possibility of a CO2 ice layer. Figure 1(b) is the corresponding geologic map. The comparison between the two maps indicates that the area with probable buried CO2 overlaps Hesperian and Amazonian polar units (Hp, Hesperian plains-forming deposits marked by narrow sinuous, anabranching ridges and irregular depressions, and Apu, Amazonian layered plateaus). From this analysis, the south polar cap could be covered by a thin frozen carbon dioxide coating. The perennial south polar cap is probably made of frozen carbon dioxide ca. 8 meters thick.

  7. Carbon Nanotubes: On the Origin of Helicity

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Avetik

    2015-03-01

    The mechanism of helicity formation of carbon nanotubes still remains elusive that hinders their applications. Current explanations mainly rely on the planar interrelationship between the structure of nanotube and corresponding facet of catalyst in 2D geometry that could amend the structure of grown carbon layer, specifically due to the epitaxial interaction. Yet, the structure of carbon nanotube and circumference of the rims assume involvement of more than one facet i.e. it is 3D problem. By aiming this problem we find that the nanotube nucleation is initiated by cap formation via evolving of graphene embryo across the adjacent facets of catalyst particle. As a result the graphene embryos incorporate in their hexagonic network various polygons to accommodate the curved 3D geometry that initiates cap formation following by elongation of the circumferential rims. Based on these results, also on the census of nanotube caps and the fact that given cap fit only one nanotube wall, we consider carbon cap responsible for the helicity of carbon nanotube. This understanding could provide new avenues towards engineering particles to explicitly accommodate certain helicities via exploitation of the angular distribution of catalyst adjacent facets. Our recent progresses in production of carbon nanotubes, nanotube reinforced composites and their potential applications also will be presented.

  8. Model for capping of membrane receptors based on boundary surface effects

    PubMed Central

    Gershon, N. D.

    1978-01-01

    Crosslinking of membrane surface receptors may lead to their segregation into patches and then into a single large aggregate at one pole of the cell. This process is called capping. Here, a novel explanation of such a process is presented in which the membrane is viewed as a supersaturated solution of receptors in the lipid bilayer and the adjacent two aqueous layers. Without a crosslinking agent, a patch of receptors that is less than a certain size cannot stay in equilibrium with the solution and thus should dissolve. Patches greater than a certain size are stable and can, in principle, grow by the precipitation of the remaining dissolved receptors from the supersaturated solution. The task of the crosslinking molecules is to form such stable patches. These considerations are based on a qualitative thermodynamic calculation that takes into account the existence of a boundary tension in a patch (in analogy to the surface tension of a droplet). Thermodynamically, these systems should cap spontaneously after the patches have reached a certain size. But, in practice, such a process can be very slow. A suspension of patches may stay practically stable. The ways in which a cell may abolish this metastable equilibrium and thus achieve capping are considered and possible effects of capping inhibitors are discussed. PMID:274724

  9. Mars South Polar Cap "Fingerprint" Terrain

    NASA Image and Video Library

    2000-04-24

    This picture is illuminated by sunlight from the upper left. Some portions of the martian south polar residual cap have long, somewhat curved troughs instead of circular pits. These appear to form in a layer of material that may be different than that in which "swiss cheese" circles and pits form, and none of these features has any analog in the north polar cap or elsewhere on Mars. This picture shows the "fingerprint" terrain as a series of long, narrow depressions considered to have formed by collapse and widening by sublimation of ice. Unlike the north polar cap, the south polar region stays cold enough in summer to retain frozen carbon dioxide. Viking Orbiter observations during the late 1970s showed that very little water vapor comes off the south polar cap during summer, indicating that any frozen water that might be there remains solid throughout the year. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image was obtained in early southern spring on August 4, 1999. It shows an area 3 x 5 kilometers (1.9 x 3.1 miles) at a resolution of about 7.3 meters (24 ft) per pixel. Located near 86.0°S, 53.9°W. http://photojournal.jpl.nasa.gov/catalog/PIA02373

  10. Effect of thin oxide layers incorporated in spin valve structures

    NASA Astrophysics Data System (ADS)

    Gillies, M. F.; Kuiper, A. E. T.; Leibbrandt, G. W. R.

    2001-06-01

    The enhancement of the magnetoresistance effect, induced by incorporating nano-oxide layers (NOLs) in a bottom-type spin valve, was studied for various preparation conditions. The effect of a NOL in the Co90Fe10 pinned layer was found to depend critically on the oxygen pressure applied to form the thin oxide film. Pressures over 10-3 Torr O2 yield oxides thicker than about 0.7 nm, which apparently deteriorate the biasing field which exists over the oxide. The magnetoresistance values can further be raised by forming a specular reflecting oxide on top of the sense layer. Promising results were obtained with an Al2O3 capping layer formed in a solid-state oxidation reaction that occurs spontaneously when a thin Al layer is deposited on the oxidized surface of the Co90Fe10 sense layer.

  11. Sputtering growth of Y3Fe5O12/Pt bilayers and spin transfer at Y3Fe5O12/Pt interfaces

    NASA Astrophysics Data System (ADS)

    Chang, Houchen; Liu, Tao; Reifsnyder Hickey, Danielle; Janantha, P. A. Praveen; Mkhoyan, K. Andre; Wu, Mingzhong

    2017-12-01

    For the majority of previous work on Y3Fe5O12 (YIG)/normal metal (NM) bi-layered structures, the YIG layers were grown on Gd3Ga5O12 first and were then capped by an NM layer. This work demonstrates the sputtering growth of a Pt/YIG structure where the Pt layer was grown first and the YIG layer was then deposited on the top. The YIG layer shows well-oriented (111) texture, a surface roughness of 0.15 nm, and an effective Gilbert damping constant less than 4.7 × 10-4, and the YIG/Pt interface allows for efficient spin transfers. This demonstration indicates the feasibility of fabricating high-quality NM/YIG/NM tri-layered structures for new physics studies.

  12. A solar escalator on Mars: Self-lifting of dust layers by radiative heating

    NASA Astrophysics Data System (ADS)

    Daerden, F.; Whiteway, J. A.; Neary, L.; Komguem, L.; Lemmon, M. T.; Heavens, N. G.; Cantor, B. A.; Hébrard, E.; Smith, M. D.

    2015-09-01

    Dust layers detected in the atmosphere of Mars by the light detection and ranging (LIDAR) instrument on the Phoenix Mars mission are explained using an atmospheric general circulation model. The layers were traced back to observed dust storm activity near the edge of the north polar ice cap where simulated surface winds exceeded the threshold for dust lifting by saltation. Heating of the atmospheric dust by solar radiation caused buoyant instability and mixing across the top of the planetary boundary layer (PBL). Differential advection by wind shear created detached dust layers above the PBL that ascended due to radiative heating and arrived at the Phoenix site at heights corresponding to the LIDAR observations. The self-lifting of the dust layers is similar to the "solar escalator" mechanism for aerosol layers in the Earth's stratosphere.

  13. High power RF window deposition apparatus, method, and device

    DOEpatents

    Ives, Lawrence R.; Lucovsky, Gerald; Zeller, Daniel

    2017-07-04

    A process for forming a coating for an RF window which has improved secondary electron emission and reduced multipactor for high power RF waveguides is formed from a substrate with low loss tangent and desirable mechanical characteristics. The substrate has an RPAO deposition layer applied which oxygenates the surface of the substrate to remove carbon impurities, thereafter has an RPAN deposition layer applied to nitrogen activate the surface of the substrate, after which a TiN deposition layer is applied using Titanium tert-butoxide. The TiN deposition layer is capped with a final RPAN deposition layer of nitridation to reduce the bound oxygen in the TiN deposition layer. The resulting RF window has greatly improved titanium layer adhesion, reduced multipactor, and is able to withstand greater RF power levels than provided by the prior art.

  14. Interannual observations and quantification of summertime H2O ice deposition on the Martian CO2 ice south polar cap

    USGS Publications Warehouse

    Brown, Adrian J.; Piqueux, Sylvain; Titus, Timothy N.

    2014-01-01

    The spectral signature of water ice was observed on Martian south polar cap in 2004 by the Observatoire pour l'Mineralogie, l'Eau les Glaces et l'Activite (OMEGA) ( Bibring et al., 2004). Three years later, the OMEGA instrument was used to discover water ice deposited during southern summer on the polar cap ( Langevin et al., 2007). However, temporal and spatial variations of these water ice signatures have remained unexplored, and the origins of these water deposits remains an important scientific question. To investigate this question, we have used observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter (MRO) spacecraft of the southern cap during austral summer over four Martian years to search for variations in the amount of water ice. We report below that for each year we have observed the cap, the magnitude of the H2O ice signature on the southern cap has risen steadily throughout summer, particularly on the west end of the cap. The spatial extent of deposition is in disagreement with the current best simulations of deposition of water ice on the south polar cap (Montmessin et al., 2007). This increase in water ice signatures is most likely caused by deposition of atmospheric H2O ice and a set of unusual conditions makes the quantification of this transport flux using CRISM close to ideal. We calculate a ‘minimum apparent‘ amount of deposition corresponding to a thin H2O ice layer of 0.2 mm (with 70% porosity). This amount of H2O ice deposition is 0.6–6% of the total Martian atmospheric water budget. We compare our ‘minimum apparent’ quantification with previous estimates. This deposition process may also have implications for the formation and stability of the southern CO2 ice cap, and therefore play a significant role in the climate budget of modern day Mars.

  15. Confining the nucleation and overgrowth of Rh to the {111} facets of Pd nanocrystal seeds: the roles of capping agent and surface diffusion.

    PubMed

    Xie, Shuifen; Peng, Hsin-Chieh; Lu, Ning; Wang, Jinguo; Kim, Moon J; Xie, Zhaoxiong; Xia, Younan

    2013-11-06

    This article describes a systematic study of the spatially confined growth of Rh atoms on Pd nanocrystal seeds, with a focus on the blocking effect of a surface capping agent and the surface diffusion of adatoms. We initially used Pd cuboctahedrons as the seeds to illustrate the concept and to demonstrate the capabilities of our approach. Because the Pd{100} facets were selectively capped by a layer of chemisorbed Br(–) or I(–) ions, we were able to confine the nucleation and deposition of Rh atoms solely on the {111} facets of a Pd seed. When the synthesis was conducted at a relatively low temperature, the deposition of Rh atoms followed an island growth mode because of the high Rh–Rh interatomic binding energy. We also facilitated the surface diffusion of deposited Rh atoms by increasing the reaction temperature and decreasing the injection rate for the Rh precursor. Under these conditions, the deposition of Rh on the Pd{111} facets was switched to a layered growth mode. We further successfully extended this approach to a variety of other types of Pd polyhedral seeds that contained Pd{111} and Pd{100} facets in different proportions on the surface. As expected, a series of Pd–Rh bimetallic nanocrystals with distinctive elemental distributions were obtained. We could remove the Pd cores through selective chemical etching to generate Rh hollow nanoframes with different types and degrees of porosity. This study clearly demonstrates the importance of facet capping, surface diffusion, and reaction kinetics in controlling the morphologies of bimetallic nanocrystals during a seed-mediated process. It also provides a new direction for the rational design and synthesis of nanocrystals with spatially controlled distributions of elements for a variety of applications.

  16. Use of life cycle assessments to evaluate the environmental footprint of contaminated sediment remediation.

    PubMed

    Sparrevik, Magnus; Saloranta, Tuomo; Cornelissen, Gerard; Eek, Espen; Fet, Annik Magerholm; Breedveld, Gijs D; Linkov, Igor

    2011-05-15

    Ecological and human risks often drive the selection of remedial alternatives for contaminated sediments. Traditional human and ecological risk assessment (HERA) includes assessing risk for benthic organisms and aquatic fauna associated with exposure to contaminated sediments before and after remediation as well as risk for human exposure but does not consider the environmental footprint associated with implementing remedial alternatives. Assessment of environmental effects over the whole life cycle (i.e., Life Cycle Assessment, LCA) could complement HERA and help in selecting the most appropriate sediment management alternative. Even though LCA has been developed and applied in multiple environmental management cases, applications to contaminated sediments and marine ecosystems are in general less frequent. This paper implements LCA methodology for the case of the polychlorinated dibenzo-p-dioxins and -furans (PCDD/F)-contaminated Grenland fjord in Norway. LCA was applied to investigate the environmental footprint of different active and passive thin-layer capping alternatives as compared to natural recovery. The results showed that capping was preferable to natural recovery when analysis is limited to effects related to the site contamination. Incorporation of impacts related to the use of resources and energy during the implementation of a thin layer cap increase the environmental footprint by over 1 order of magnitude, making capping inferior to the natural recovery alternative. Use of biomass-derived activated carbon, where carbon dioxide is sequestered during the production process, reduces the overall environmental impact to that of natural recovery. The results from this study show that LCA may be a valuable tool for assessing the environmental footprint of sediment remediation projects and for sustainable sediment management.

  17. KSC-04pd0618

    NASA Image and Video Library

    2004-03-24

    KENNEDY SPACE CENTER, FLA. -- In the Thermal Protection System Facility, Pilar Ryan, with United Space Alliance, stitches a piece of insulation blanket for Atlantis's nose cap. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.

  18. Ultrastable BSA-capped gold nanoclusters with a polymer-like shielding layer against reactive oxygen species in living cells

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjuan; Cao, Yuqing; Sui, Dandan; Guan, Weijiang; Lu, Chao; Xie, Jianping

    2016-05-01

    The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells.The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells. Electronic supplementary information (ESI) available: Detailed experimental materials, apparatus, experimental procedures and characterization data. See DOI: 10.1039/c6nr02178f

  19. (Photo)physical Properties of New Molecular Glasses End-Capped with Thiophene Rings Composed of Diimide and Imine Units

    PubMed Central

    2014-01-01

    New symmetrical arylene bisimide derivatives formed by using electron-donating–electron-accepting systems were synthesized. They consist of a phthalic diimide or naphthalenediimide core and imine linkages and are end-capped with thiophene, bithiophene, and (ethylenedioxy)thiophene units. Moreover, polymers were obtained from a new diamine, N,N′-bis(5-aminonaphthalenyl)naphthalene-1,4,5,8-dicarboximide and 2,5-thiophenedicarboxaldehyde or 2,2′-bithiophene-5,5′-dicarboxaldehyde. The prepared azomethine diimides exhibited glass-forming properties. The obtained compounds emitted blue light with the emission maximum at 470 nm. The value of the absorption coefficient was determined as a function of the photon energy using spectroscopic ellipsometry. All compounds are electrochemically active and undergo reversible electrochemical reduction and irreversible oxidation processes as was found in cyclic voltammetry and differential pulse voltammetry (DPV) studies. They exhibited a low electrochemically (DPV) calculated energy band gap (Eg) from 1.14 to 1.70 eV. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels and Eg were additionally calculated theoretically by density functional theory at the B3LYP/6-31G(d,p) level. The photovoltaic properties of two model compounds as the active layer in organic solar cells in the configuration indium tin oxide/poly(3,4-(ethylenedioxy)thiophene):poly(styrenesulfonate)/active layer/Al under an illumination of 1.3 mW/cm2 were studied. The device comprising poly(3-hexylthiophene) with the compound end-capped with bithiophene rings showed the highest value of Voc (above 1 V). The conversion efficiency of the fabricated solar cell was in the range of 0.69–0.90%. PMID:24966893

  20. Evidence for Possible Exposed Water Ice Deposits in Martian Low Latitude Chasms and Chaos

    NASA Technical Reports Server (NTRS)

    Leovy, C.; Wood, S. E.; Catling, D.; Montgomery, D. R.; Moore, J.; Barnhart, C.; Ginder, E.; Louie, M.

    2004-01-01

    A light-toned interior layer deposit (ILD) on the floor of the deep martian depression Juventae Chasma is found to have a relatively high thermal inertia approx. 500 J m(exp -2) s(exp -1/2) K(exp -1). This could imply rock, but is also similar to the average value of thermal inertia found for north polar layered deposits. Furthermore, ILD-B is found to exhibit a bluff and terrace structure . A terrace structure arises naturally in model simulations of the sublimation of large ice deposits. Such a staircase terrain, of course, is a further characteristic of north polar layered terrain. Morphological similarity, thermal inertia in the range of thermal inertias of the north polar cap layered terrain, and relatively high albedo lead us to propose that the ILD-B may consist of residual water ice partially covered by, and perhaps mixed with, varying amounts of dust or sand. Other ILDs (A-C) are also found in Juventae Chasma. While these ILDs lack the close morphological resemblance to the north polar cap, they share many other common features and appear to be part of the same formation. Similar ILDs are found in chaotic terrain elsewhere in the martian tropics. This leads us to propose that water ice may exist in the martian tropics today and may be implicit in the formation of chaotic terrain.

  1. High reflectance and low stress Mo2C/Be multilayers

    DOEpatents

    Bajt, Sasa; Barbee, Jr., Troy W.

    2001-01-01

    A material for extreme ultraviolet (EUV) multilayers that will reflect at about 11.3 nm, have a high reflectance, low stress, and high thermal and radiation stability. The material consists of alternating layers of Mo.sub.2 C and Be deposited by DC magnetron sputtering on a substrate, such as silicon. In one example a Mo.sub.2 C/Be multilayer gave 65.2% reflectance at 11.25 nm measured at 5 degrees off normal incidence angle, and consisted of 70 bilayers with a deposition period of 5.78 nm, and was deposited at 0.83 mTorr argon (Ar) sputtering pressure, with the first and last layers being Be. The stress of the multilayer is tensile and only +88 MPa, compared to +330 MPa of a Mo/Be multilayers of the same thickness. The Mo.sub.2 C/Be multilayer was capped with carbon which produced an increase in reflectivity of about 7% over a similar multilayer with no carbon capping material, thus raising the reflectivity from 58.3% to over 65%. The multilayers were formed using either Mo.sub.2 C or Be as the first and last layers, and initial testing has shown the formation of beryllium carbide at the interfaces between the layers which both stabilizes and has a smoothing effect, and appear to be smoother than the interfaces in Mo/Be multilayers.

  2. Detection of altered extracellular matrix in surface layers of unstable carotid plaque: an optical spectroscopy, birefringence and microarray genetic analysis.

    PubMed

    Korol, Renee M; Canham, Peter B; Liu, Li; Viswanathan, Kasinath; Ferguson, Gary G; Hammond, Rob R; Finlay, Helen M; Baker, Henry V; Lopez, Cecilia; Lucas, Alexandra R

    2011-01-01

    Erosion and rupture of surface layers in atherosclerotic plaque can cause heart attack and stroke; however, changes in luminal surface composition are incompletely defined. Laser-induced fluorescence spectroscopy (LIFS), with limited tissue penetration, was used to investigate the surface of unstable carotid plaque and correlated with microscopy, birefringence and gene expression. Arterial matrix collagens I, III and elastin were assessed in unstable plaques (n = 25) and reference left internal mammary arteries (LIMA, n = 10). LIFS in addition to selective histological staining with picrosirius red, Movat pentachrome and immunostaining revealed decreased elastin and increased collagen I and III (P < 0.05) in carotid plaque when compared with LIMA. Within plaque, collagen I was elevated in the internal carotid region versus the common carotid region. Polarized light microscopy detected layers of aligned collagen and associated mechanical rigidity of the fibrous cap. Microarray analysis of three carotid and three LIMA specimens confirmed up-regulation of collagen I, III and IV, lysyl oxidase and MMP-12. In conclusion, LIFS analysis coupled with microscopy revealed marked regional differences in collagen I, III and elastin in surface layers of carotid plaque; indicative of plaque instability. Birefringence measurements demonstrated mechanical rigidity and weakening of the fibrous cap with complementary changes in ECM gene expression. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  3. Ferroelectric HfZrOx-based MoS2 negative capacitance transistor with ITO capping layers for steep-slope device application

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Jiang, Shu-Ye; Zhang, Min; Zhu, Hao; Chen, Lin; Sun, Qing-Qing; Zhang, David Wei

    2018-03-01

    A negative capacitance field-effect transistor (NCFET) built with hafnium-based oxide is one of the most promising candidates for low power-density devices due to the extremely steep subthreshold swing (SS) and high on-state current induced by incorporating the ferroelectric material in the gate stack. Here, we demonstrated a two-dimensional (2D) back-gate NCFET with the integration of ferroelectric HfZrOx in the gate stack and few-layer MoS2 as the channel. Instead of using the conventional TiN capping metal to form ferroelectricity in HfZrOx, the NCFET was fabricated on a thickness-optimized Al2O3/indium tin oxide (ITO)/HfZrOx/ITO/SiO2/Si stack, in which the two ITO layers sandwiching the HfZrOx film acted as the control back gate and ferroelectric gate, respectively. The thickness of each layer in the stack was engineered for distinguishable optical identification of the exfoliated 2D flakes on the surface. The NCFET exhibited small off-state current and steep switching behavior with minimum SS as low as 47 mV/dec. Such a steep-slope transistor is compatible with the standard CMOS fabrication process and is very attractive for 2D logic and sensor applications and future energy-efficient nanoelectronic devices with scaling power supply.

  4. Columnar and subsurface silicide growth with novel molecular beam epitaxy techniques

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; George, T.; Pike, W. T.

    1992-01-01

    We have found novel growth modes for epitaxial CoSi2 at high temperatures coupled with Si-rich flux ratios or low deposition rates. In the first of these modes, codeposition of metal and Si at 600-800 C with excess Si leads to the formation of epitaxial silicide columns surrounded by single-crystal Si. During the initial stages of the deposition, the excess Si grows homoepitaxially in between the silicide, which forms islands, so that the lateral growth of the islands is confined. Once a template layer is established by this process, columns of silicide form as a result of selective epitaxy of silicide on silicide and Si on Si. This growth process allows nanometer control over silicide particles in three dimensions. In the second of these modes, a columnar silicide seed layer is used as a template to nucleate subsurface growth of CoSi2. With a 100 nm Si layer covering CoSi2 seeds, Co deposited at 800C and 0.01 nm/s diffuses down to grow on the buried seeds rather than nucleating surface silicide islands. For thicker Si caps or higher deposition rates, the surface concentration of Co exceeds the critical concentration for nucleation of islands, preventing this subsurface growth mode from occurring. Using this technique, single-crystal layers of CoSi2 buried under single-crystal Si caps have been grown.

  5. Characterization of gate recessed GaN/AlGaN/GaN high electron mobility transistors fabricated using a SiCl4/SF6 dry etch recipe

    NASA Astrophysics Data System (ADS)

    Green, R. T.; Luxmoore, I. J.; Lee, K. B.; Houston, P. A.; Ranalli, F.; Wang, T.; Parbrook, P. J.; Uren, M. J.; Wallis, D. J.; Martin, T.

    2010-07-01

    Incorporating GaN capping layers in conjunction with recessing has been identified as a means to maximize the high frequency performance of AlGaN/GaN high electron mobility transistors (HEMTs). Doping the cap heavily n-type is required in order to ensure minimal loss of carriers from the channel. Using a SiCl4/SF6 dry etch plasma recipe, 250 nm gate length HEMTs with recess lengths varying from 300 nm to 5 μm are fabricated. Heavily doped n+GaN caps enabled contact resistances of 0.3 Ω mm to be achieved. Recessing using a SiCl4/SF6 recipe does not introduce significant numbers of bulk traps. Gate recessing in conjunction with Si3N4 passivation reduces rf dispersion to negligible levels.

  6. Pore fluid geochemistry from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Torres, M.E.; Collett, T.S.; Rose, K.K.; Sample, J.C.; Agena, W.F.; Rosenbaum, E.J.

    2011-01-01

    The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled and cored from 606.5 to 760.1. m on the North Slope of Alaska, to evaluate the occurrence, distribution and formation of gas hydrate in sediments below the base of the ice-bearing permafrost. Both the dissolved chloride and the isotopic composition of the water co-vary in the gas hydrate-bearing zones, consistent with gas hydrate dissociation during core recovery, and they provide independent indicators to constrain the zone of gas hydrate occurrence. Analyses of chloride and water isotope data indicate that an observed increase in salinity towards the top of the cored section reflects the presence of residual fluids from ion exclusion during ice formation at the base of the permafrost layer. These salinity changes are the main factor controlling major and minor ion distributions in the Mount Elbert Well. The resulting background chloride can be simulated with a one-dimensional diffusion model, and the results suggest that the ion exclusion at the top of the cored section reflects deepening of the permafrost layer following the last glaciation (???100 kyr), consistent with published thermal models. Gas hydrate saturation values estimated from dissolved chloride agree with estimates based on logging data when the gas hydrate occupies more than 20% of the pore space; the correlation is less robust at lower saturation values. The highest gas hydrate concentrations at the Mount Elbert Well are clearly associated with coarse-grained sedimentary sections, as expected from theoretical calculations and field observations in marine and other arctic sediment cores. ?? 2009 Elsevier Ltd.

  7. [Investigations on the physiology of the glands of carnivorous plants : IV. The kinetics of chloride secretion by the gland tissue of Nepenthes].

    PubMed

    Lüttge, U

    1966-03-01

    The transport of chloride in isolated tissue from Nepenthes pitchers was investigated using (36)Cl(-), an Aminco-Cotlove chloride-titrator for the determinations of Cl(-) concentrations, and KCN and AsO 4 (-) -as metabolic inhibitors.The tissue was brought in contact with different experimental solutions (=medium). The surface corresponding to the outside of the pitchers was cut with a razor blade to remove the cutinized epidermal layer. At this surface the Cl(-) uptake from the medium is a metabolic process which depends on the Cl(-)-concentration of the medium in a manner that corresponds to the MICHAELIS-MENTEN kinetics. The Michaelis-constant of this transport step was 3×10(-2)M. The Cl(-)-efflux into the medium, however, is a passive process.The opposite surface of the tissue slices (corresponding to the inside of the pitchers) carries the glands. The chloride secretion taking place here is also dependent on metabolism. In vitro it occurs even when a high gradient of chloride concentration has been set up between the medium and the solution which is in contact with the glands. In vivo the Cl(-)-concentration of the pitcher fluid and the amount of Cl(-) per gram of tissue water are almost equal.The rôle of chloride in the physiology of Nepenthes is still under investigation, A correlation between the chloride content of the pitcher fluid and its enzymatic activity (Casein-test), however, could already be demonstrated.

  8. Synthesis, structural characterization and luminescence properties of 1-carboxymethyl-3-ethylimidazolium chloride

    DOE PAGES

    Prodius, Denis; Wilk-Kozubek, Magdalena; Mudring, Anja -Verena

    2018-05-08

    A microcrystalline carboxyl-functionalized imidazolium chloride, namely 1-carboxymethyl-3-ethylimidazolium chloride, C 7H 11N 2O 2 +·Cl –, has been synthesized and characterized by elemental analysis, attenuated total reflectance Fourier transform IR spectroscopy (ATR-FT-IR), single-crystal X-ray diffraction, thermal analysis (TGA/DSC), and photoluminescence spectroscopy. In the crystal structure, cations and anions are linked by C—H...Cl and C—H...O hydrogen bonds to create a helix along the [010] direction. Adjacent helical chains are further interconnected through O—H...Cl and C—H...O hydrogen bonds to form a (101¯) layer. Finally, neighboring layers are joined together via C—H...Cl contacts to generate a three-dimensional supramolecular architecture. Thermal analyses reveal that themore » compound melts at 449.7 K and is stable up to 560.0 K under a dynamic air atmosphere. Photoluminescence measurements show that the compound exhibits a blue fluorescence and a green phosphorescence associated with spin-allowed ( 1π← 1π*) and spin-forbidden ( 1π← 3π*) transitions, respectively. As a result, the average luminescence lifetime was determined to be 1.40 ns for the short-lived ( 1π← 1π*) transition and 105 ms for the long-lived ( 1π← 3π*) transition.« less

  9. Synthesis, structural characterization and luminescence properties of 1-carboxymethyl-3-ethylimidazolium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodius, Denis; Wilk-Kozubek, Magdalena; Mudring, Anja -Verena

    A microcrystalline carboxyl-functionalized imidazolium chloride, namely 1-carboxymethyl-3-ethylimidazolium chloride, C 7H 11N 2O 2 +·Cl –, has been synthesized and characterized by elemental analysis, attenuated total reflectance Fourier transform IR spectroscopy (ATR-FT-IR), single-crystal X-ray diffraction, thermal analysis (TGA/DSC), and photoluminescence spectroscopy. In the crystal structure, cations and anions are linked by C—H...Cl and C—H...O hydrogen bonds to create a helix along the [010] direction. Adjacent helical chains are further interconnected through O—H...Cl and C—H...O hydrogen bonds to form a (101¯) layer. Finally, neighboring layers are joined together via C—H...Cl contacts to generate a three-dimensional supramolecular architecture. Thermal analyses reveal that themore » compound melts at 449.7 K and is stable up to 560.0 K under a dynamic air atmosphere. Photoluminescence measurements show that the compound exhibits a blue fluorescence and a green phosphorescence associated with spin-allowed ( 1π← 1π*) and spin-forbidden ( 1π← 3π*) transitions, respectively. As a result, the average luminescence lifetime was determined to be 1.40 ns for the short-lived ( 1π← 1π*) transition and 105 ms for the long-lived ( 1π← 3π*) transition.« less

  10. Pile group program for full material modeling and progressive failure.

    DOT National Transportation Integrated Search

    2008-12-01

    Strain wedge (SW) model formulation has been used, in previous work, to evaluate the response of a single pile or a group of piles (including its : pile cap) in layered soils to lateral loading. The SW model approach provides appropriate prediction f...

  11. EXPERIMENTS ON BUOYANT PLUME DISPERSION IN A LABORATORY CONVENTION TANK

    EPA Science Inventory

    Buoyant plume dispersion in the convective boundary layer (CBL) is investigated experimentally in a laboratory convection tank. The focus is on highly-buoyant plumes that loft near the CBL capping inversion and resist downward mixing. Highly- buoyant plumes are those with dimen...

  12. Efficiency enhancement of blue light emitting diodes by eliminating V-defects from InGaN/GaN multiple quantum well structures through GaN capping layer control

    NASA Astrophysics Data System (ADS)

    Tsai, Sheng-Chieh; Li, Ming-Jui; Fang, Hsin-Chiao; Tu, Chia-Hao; Liu, Chuan-Pu

    2018-05-01

    A facile method for fabricating blue light-emitting diodes (B-LEDs) with small embedded quantum dots (QDs) and enhanced light emission is demonstrated by tuning the temperature of the growing GaN capping layer to eliminate V-defects. As the growth temperature increases from 770 °C to 840 °C, not only does the density of the V-defects reduce from 4.12 ∗ 108 #/cm2 nm to zero on a smooth surface, but the QDs also get smaller. Therefore, the growth mechanism of smaller QDs assisted by elimination of V-defects is discussed. Photoluminescence and electroluminescence results show that smaller embedded QDs can improve recombination efficiency, and thus achieve higher peak intensity with smaller peak broadening. Accordingly, the external quantum efficiency of the B-LEDs with smaller QDs is enhanced, leading to a 6.8% increase in light output power in lamp-form package LEDs.

  13. Preferential sites for InAsP/InP quantum wire nucleation using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Nuñez-Moraleda, Bernardo; Pizarro, Joaquin; Guerrero, Elisa; Guerrero-Lebrero, Maria P.; Yáñez, Andres; Molina, Sergio Ignacio; Galindo, Pedro Luis

    2014-11-01

    In this paper, stress fields at the surface of the capping layer of self-assembled InAsP quantum wires grown on an InP (001) substrate have been determined from atomistic models using molecular dynamics and Stillinger-Weber potentials. To carry out these calculations, the quantum wire compositional distribution was extracted from previous works, where the As and P distributions were determined by electron energy loss spectroscopy and high-resolution aberration-corrected Z-contrast imaging. Preferential sites for the nucleation of wires on the surface of the capping layer were studied and compared with (i) previous simulations using finite element analysis to solve anisotropic elastic theory equations and (ii) experimentally measured locations of stacked wires. Preferential nucleation sites of stacked wires were determined by the maximum stress location at the MD model surface in good agreement with experimental results and those derived from finite element analysis. This indicates that MD simulations based on empirical potentials provide a suitable and flexible tool to study strain dependent atom processes.

  14. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide

    NASA Astrophysics Data System (ADS)

    Tsang, S. C.; Harris, P. J. F.; Green, M. L. H.

    1993-04-01

    THE discovery1 and bulk synthesis2 of carbon nanotubes has stimulated great interest. It has been suggested that these structures may have useful electronic3-5 and mechanical6 properties, and these might be modified by introducing foreign materials into the nanotubes. But the tubes are invariably capped at the ends. Ajayan and lijima7 have succeeded in drawing molten material (lead or one of its compounds) into the tubes by heating them in the presence of lead and oxygen; less than 1% of the tubes in the sample studied could be filled in this way. Here we report that heating in carbon dioxide gas can result in the partial or complete destruction of the tube caps and stripping of the outer layers to produce thinner tubes. In some cases, we have thinned the extremity of tubes to a single layer. The opened tubes can be regarded as nanoscale test-tubes for adsorption of other molecules, and this controlled method of thinning may allow studies of the properties of single tubes.

  15. Conformal doping of topographic silicon structures using a radial line slot antenna plasma source

    NASA Astrophysics Data System (ADS)

    Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Horigome, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro; Nozawa, Toshihisa; Kawakami, Satoru

    2014-06-01

    Fin extension doping for 10 nm front end of line technology requires ultra-shallow high dose conformal doping. In this paper, we demonstrate a new radial line slot antenna plasma source based doping process that meets these requirements. Critical to reaching true conformality while maintaining fin integrity is that the ion energy be low and controllable, while the dose absorption is self-limited. The saturated dopant later is rendered conformal by concurrent amorphization and dopant containing capping layer deposition followed by stabilization anneal. Dopant segregation assists in driving dopants from the capping layer into the sub silicon surface. Very high resolution transmission electron microscopy-Energy Dispersive X-ray spectroscopy, used to prove true conformality, was achieved. We demonstrate these results using an n-type arsenic based plasma doping process on 10 to 40 nm high aspect ratio fins structures. The results are discussed in terms of the different types of clusters that form during the plasma doping process.

  16. Stability and electrostatics of mercaptoundecanoic acid-capped gold nanoparticles with varying counterion size.

    PubMed

    Laaksonen, Timo; Ahonen, Päivi; Johans, Christoffer; Kontturi, Kyösti

    2006-10-13

    The solubility of charged nanoparticles is critically dependent on pH. However, the concentration range available with bases such as NaOH is quite narrow, since the particles precipitate due to compression of the electric double layer when the ionic strength is increased. The stability of mercaptoundecanoic acid-capped Au nanoparticles is studied at a set pH using the hydroxide as base and different cations of various sizes. The counterions used are sodium (Na(+)), tetramethylammonium (TMA(+)), tetraethylammonium (TEA(+)), and tetrabutylammonium (TBA(+)). The particles precipitate in the 70-90 mM range with Na(+) as the counterion, but with quaternary ammonium hydroxides the particles are stable even in concentrations exceeding 1 M. The change in solubility is linked to a strongly adsorbed layer on the surface of the ligand shell of the nanoparticles. The increased concentration range obtained with TEAOH is further used to facilitate thiol exchange which occurs at a greater extent than would be achieved in NaOH solution.

  17. Theory of the mode stabilization mechanism in concave-micromirror-capped vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Park, Si-Hyun; Park, Yeonsang; Jeon, Heonsu

    2003-08-01

    We have investigated theoretically the transverse mode stabilization mechanism in oxide-confined concave-micromirror-capped vertical-cavity surface-emitting lasers (CMC-VCSELs) as reported by Park et al. [Appl. Phys. Lett. 80, 183 (2002)]. From detailed numerical calculations on a model CMC-VCSEL structure, we found that mode discrimination factors appear to be periodic in the micromirror layer thickness with a periodicity of λ/2. We also found that there are two possible concave micromirror structures for the fundamental transverse mode laser operation. These structures can be grouped according to the thickness of the concave micromirror layer: whether it is an integer or a half-integer multiple of λ/2. The optimal micromirror curvature radius differs accordingly for each case. In an optimally designed CMC-VCSEL model structure, the fundamental transverse mode can be favored as much as 4, 8, and 13 times more strongly than the first, second, and third excited modes, respectively.

  18. Subannual layer variability in Greenland firn cores

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Vallelonga, Paul; Vinther, Bo; Winstrup, Mai; Simonsen, Marius; Maffezzoli, Niccoló; Jensen, Camilla Marie

    2017-04-01

    Ice cores are used to infer information about the past and modern techniques allow for high resolution (< cm) continuous flow analysis (CFA) of the ice. Such analysis is often used to inform on annual layers to constrain dating of ice cores, but can also be extended to provide information on sub-annual deposition patterns. In this study we use available high resolution data from multiple shallow cores around Greenland to investigate the seasonality and trends in the most often continuously measured components sodium, insoluble dust, calcium, ammonium and conductivity (or acidity) from 1800 AD to today. We evaluate the similarities and differences between the records and discuss the causes from different sources and transport to deposition and post-deposition effects over differences in measurement set up. Further we add to the array of cores already published with measurements from the newly drilled ReCAP ice core from a coastal ice cap in eastern Greenland and from a shallow core drilled at the high accumulation site at the Greenland South Dome.

  19. Formation of Gas Traps in the Martian Soil and Implications for Methane Variability on Mars.

    NASA Astrophysics Data System (ADS)

    Pavlov, A.; Davis, J.; Redwing, E.; Trainer, M. G.; Johnson, C.

    2017-12-01

    Several independent groups have reported on the detection of methane in the Martian atmosphere. Mars Science Laboratory (MSL) methane observations display rapid increase of the atmospheric methane abundance from 1 ppb to 7 ppb levels followed by an abrupt disappearance suggest the possibility of small, local, near-surface sources of methane. Such sources may take the form of shallow subsurface cemented soil caps which can trap gases and are readily activated by either motion of the MSL rover itself, by impacts of small meteorites, or even annual climate oscillations. We have simulated the formation of such soil caps in the shallow subsurface Martian-like condition. We show that the initially uniform sample of icy soil (JSC-Mars-1A) with Mg perchlorate exhibit quick stratification on the scale of several cm under Martian pressures over the period of several days. Briny water migrates towards the top of the sample resulting in the enhanced abundance of perchlorates in the top few cm. As water evaporates and ice sublimates from the top of the sample, perchlorate remains in the top layer of soil causing soil cementation and formation of the cap. The observed caps were solid, ice-free and effectively shut off sublimation of ice from underneath the cap. We tested whether similar soil caps can trap various gases (including methane) in the shallow subsurface of Mars. We injected neon gas at the bottom of the soil sample and monitored neon gas permeability through the soil sample by measuring gas pressure differential above and below the soil sample. We found that a mixture of JSC-Mars-1A and 5% of Mg perchlorate produce gas impermeable soil cap capable of withstanding an excess of 5 mbars of neon under the cap at the soil temperatures +0.5 C - +9 C. The cap remained gas impermeable after subsequent cooling of the sample soil sample to the subzero temperatures. Gas permeability of the soil caps under various temperatures and atmospheric pressures will be reported. Our results suggest that the formation of cemented soil caps can be widespread phenomena on Mars in the areas of shallow permafrost and abundant perchlorates or RSL slopes. Potentially, soil caps can form gas pockets for trace species (like methane) which can be relatively easily disturbed causing abrupt changes in the atmospheric methane abundance detected by MSL's Curiosity rover.

  20. Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance.

    PubMed

    Abdulagatov, A I; Yan, Y; Cooper, J R; Zhang, Y; Gibbs, Z M; Cavanagh, A S; Yang, R G; Lee, Y C; George, S M

    2011-12-01

    Al(2)O(3) and TiO(2) atomic layer deposition (ALD) were employed to develop an ultrathin barrier film on copper to prevent water corrosion. The strategy was to utilize Al(2)O(3) ALD as a pinhole-free barrier and to protect the Al(2)O(3) ALD using TiO(2) ALD. An initial set of experiments was performed at 177 °C to establish that Al(2)O(3) ALD could nucleate on copper and produce a high-quality Al(2)O(3) film. In situ quartz crystal microbalance (QCM) measurements verified that Al(2)O(3) ALD nucleated and grew efficiently on copper-plated quartz crystals at 177 °C using trimethylaluminum (TMA) and water as the reactants. An electroplating technique also established that the Al(2)O(3) ALD films had a low defect density. A second set of experiments was performed for ALD at 120 °C to study the ability of ALD films to prevent copper corrosion. These experiments revealed that an Al(2)O(3) ALD film alone was insufficient to prevent copper corrosion because of the dissolution of the Al(2)O(3) film in water. Subsequently, TiO(2) ALD was explored on copper at 120 °C using TiCl(4) and water as the reactants. The resulting TiO(2) films also did not prevent the water corrosion of copper. Fortunately, Al(2)O(3) films with a TiO(2) capping layer were much more resilient to dissolution in water and prevented the water corrosion of copper. Optical microscopy images revealed that TiO(2) capping layers as thin as 200 Å on Al(2)O(3) adhesion layers could prevent copper corrosion in water at 90 °C for ~80 days. In contrast, the copper corroded almost immediately in water at 90 °C for Al(2)O(3) and ZnO films by themselves on copper. Ellipsometer measurements revealed that Al(2)O(3) films with a thickness of ~200 Å and ZnO films with a thickness of ~250 Å dissolved in water at 90 °C in ~10 days. In contrast, the ellipsometer measurements confirmed that the TiO(2) capping layers with thicknesses of ~200 Å on the Al(2)O(3) adhesion layers protected the copper for ~80 days in water at 90 °C. The TiO(2) ALD coatings were also hydrophilic and facilitated H(2)O wetting to copper wire mesh substrates. © 2011 American Chemical Society

  1. Nitrogen reduction using bioreactive thin-layer capping (BTC) with biozeolite: A field experiment in a eutrophic river.

    PubMed

    Zhou, Zhenming; Huang, Tinglin; Yuan, Baoling

    2016-04-01

    Bioreactive thin-layer capping (BTC) with biozeolite provides a potential remediation design that can sustainably treat N contamination from sediment and overlying water in eutrophic water bodies. Nitrogen (N) reduction using BTC with biozeolite was examined in a field incubation experiment in a eutrophic river in Yangzhou, Jiangsu Province, China. The biozeolite was zeolite with attached bacteria, including two isolated heterotrophic nitrifiers (Bacillus spp.) and two isolated aerobic denitrifiers (Acinetobacter spp.). The results showed that the total nitrogen (TN) reduction efficiency of the overlying water by BTC with biozeolite (with thickness of about 2mm) reached a maximum (56.69%) at day 34, and simultaneous heterotrophic nitrification and aerobic denitrification occurred in the BTC system until day 34. There was a significant difference in the TN concentrations of the overlying water between biozeolite capping and control (t-test; p<0.05). The biozeolite had very strong in situ bioregeneration ability. Carbon was the main source of nitrifier growth. However, both dissolved oxygen (DO) and carbon concentrations affected denitrifier growth. In particular, DO concentrations greater than 3mg/L inhibited denitrifier growth. Therefore, BTC with biozeolite was found to be a feasible technique to reduce N in a eutrophic river. However, it is necessary to further strengthen the adaptability of aerobic denitrifiers through changing domestication methods or conditions. Copyright © 2015. Published by Elsevier B.V.

  2. Tuning the Kondo effect in thin Au films by depositing a thin layer of Au on molecular spin-dopants.

    PubMed

    Ataç, D; Gang, T; Yilmaz, M D; Bose, S K; Lenferink, A T M; Otto, C; de Jong, M P; Huskens, J; van der Wiel, W G

    2013-09-20

    We report on the tuning of the Kondo effect in thin Au films containing a monolayer of cobalt(II) terpyridine complexes by altering the ligand structure around the Co(2+) ions by depositing a thin Au capping layer on top of the monolayer on Au by magnetron sputtering (more energetic) and e-beam evaporation (softer). We show that the Kondo effect is slightly enhanced with respect to that of the uncapped film when the cap is deposited by evaporation, and significantly enhanced when magnetron sputtering is used. The Kondo temperature (TK) increases from 3 to 4.2/6.2 K for the evaporated/sputtered caps. X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy investigation showed that the organic ligands remain intact upon Au e-beam evaporation; however, sputtering inflicts significant change in the Co(2+) electronic environment. The location of the monolayer-on the surface or embedded in the film-has a small effect. However, the damage of Co-N bonds induced by sputtering has a drastic effect on the increase of the impurity-electron interaction. This opens up the way for tuning of the magnetic impurity states, e.g. spin quantum number, binding energy with respect to the host Fermi energy, and overlap via the ligand structure around the ions.

  3. Clean induced feature CD shift of EUV mask

    NASA Astrophysics Data System (ADS)

    Nesládek, Pavel; Schedel, Thorsten; Bender, Markus

    2016-05-01

    EUV developed in the last decade to the most promising <7nm technology candidate. Defects are considered to be one of the most critical issues of the EUV mask. There are several contributors which make the EUV mask so different from the optical one. First one is the significantly more complicated mask stack consisting currently of 40 Mo/Si double layers, covered by Ru capping layer and TaN/TaO absorber/anti-reflective coating on top of the front face of the mask. Backside is in contrary to optical mask covered as well by conductive layer consisting of Cr or CrN. Second contributor is the fact that EUV mask is currently in contrary to optical mask not yet equipped with sealed pellicle, leading to much higher risk of mask contamination. Third reason is use of EUV mask in vacuum, possibly leading to deposition of vacuum contaminants on the EUV mask surface. Latter reason in combination with tight requirements on backside cleanliness lead to the request of frequent recleaning of the EUV mask, in order to sustain mask lifetime similar to that of optical mask. Mask cleaning process alters slightly the surface of any mask - binary COG mask, as well as phase shift mask of any type and naturally also of the EUV mask as well. In case of optical masks the changes are almost negligible, as the mask is exposed to max. 10-20 re-cleans within its life time. These modifications can be expressed in terms of different specified parameters, e.g. CD shift, phase/trans shift, change of the surface roughness etc. The CD shift, expressed as thinning (or exceptionally thickening) of the dark features on the mask is typically in order of magnitude 0.1nm per process run, which is completely acceptable for optical mask. Projected on the lifetime of EUV mask, assuming 100 clean process cycles, this will lead to CD change of about 10nm. For this reason the requirements for EUV mask cleaning are significantly tighter, << 0.1 nm per process run. This task will look even more challenging, when considering, that the tools for CD measurement at the EUV mask are identical as for optical mask. There is one aspect influencing the CD shift, which demands attention. The mask composition of the EUV mask is significantly different from the optical mask. More precisely there are 2 materials influencing the estimated CD in case of EUV mask, whereas there is one material only in case of optical masks, in first approximation. For optical masks, the CD changes can be attributed to modification of the absorber/ARC layer, as the quartz substrate can be hardly modified by the wet process. For EUV Masks chemical modification of the Ru capping layer - thinning, oxidization etc. are rather more probable and we need to take into account, how this effects can influence the CD measurement process. CD changes measured can be interpreted as either change in the feature size, or modification of the chemical nature of both absorber/ARC layer stack and the Ru capping layer. In our work we try to separate the effect of absorber and Ru/capping layer on the CD shift observed and propose independent way of estimation both parameters.

  4. Surface modification to improve fireside corrosion resistance of Fe-Cr ferritic steels

    DOEpatents

    Park, Jong-Hee; Natesan, Krishnamurti; Rink, David L.

    2010-03-16

    An article of manufacture and a method for providing an Fe--Cr ferritic steel article of manufacture having a surface layer modification for corrosion resistance. Fe--Cr ferritic steels can be modified to enhance their corrosion resistance to liquid coal ash and other chemical environments, which have chlorides or sulfates containing active species. The steel is modified to form an aluminide/silicide passivating layer to reduce such corrosion.

  5. Optically pumped lasing and electroluminescence of formamidinium perovskite semiconductors prepared by the cast-capping method

    NASA Astrophysics Data System (ADS)

    Sasaki, Fumio; Nguyen, Van-Cao; Yanagi, Hisao

    2018-03-01

    Optically pumped lasing and electroluminescence (EL) have been observed in solution-processed perovskite semiconducting materials of formamidinium lead bromide, CH(NH2)2PbBr3. Microcavities with flat surfaces and sharp edges have been easily obtained by the simple solution process called the “cast-capping method”. The crystals show clear multimode lasing of Fabry-Pérot cavities. The mode intervals are well explained by the optical constants with large dispersions of the materials. We have also fabricated EL devices and obtained clear EL in a single layer of the materials, but the EL intensity has been quenched rapidly.

  6. Fabrication of nanobaskets by sputter deposition on porous substrates and uses thereof

    NASA Technical Reports Server (NTRS)

    Johnson, Paige Lea (Inventor); Teeters, Dale (Inventor)

    2010-01-01

    A method of producing a nanobasket and the applications or uses thereof. The method includes the steps of providing a substrate with at least one (1) pore having diameters of about one (1) nanometer to about ten (10) micrometers. Material is deposited by sputter-coating techniques along continuous edges of the pores to form a capped or partially capped nanotube or microtube structure, termed a nanobasket. Either a single material may be used to form nanobaskets over the pores or, alternately, a layered structure may be created wherein an initial material is deposited followed by one or more other materials to form nanobaskets over the pores.

  7. Method to improve commercial bonded SOI material

    DOEpatents

    Maris, Humphrey John; Sadana, Devendra Kumar

    2000-07-11

    A method of improving the bonding characteristics of a previously bonded silicon on insulator (SOI) structure is provided. The improvement in the bonding characteristics is achieved in the present invention by, optionally, forming an oxide cap layer on the silicon surface of the bonded SOI structure and then annealing either the uncapped or oxide capped structure in a slightly oxidizing ambient at temperatures greater than 1200.degree. C. Also provided herein is a method for detecting the bonding characteristics of previously bonded SOI structures. According to this aspect of the present invention, a pico-second laser pulse technique is employed to determine the bonding imperfections of previously bonded SOI structures.

  8. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    PubMed

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  9. Hybrid 2D photonic crystal-assisted Lu3Al5O12:Ce ceramic-plate phosphor and free-standing red film phosphor for white LEDs with high color-rendering index.

    PubMed

    Park, Hoo Keun; Oh, Ji Hye; Kang, Heejoon; Zhang, Jian; Do, Young Rag

    2015-03-04

    This paper reports the combined optical effects of a two-dimensional (2D) SiNx photonic crystal layer (PCL)-assisted Lu3Al5O12:Ce (LuAG:Ce) green ceramic-plate phosphor (CPP) and a free-standing (Sr,Ca)AlSiN3:Eu red film phosphor to enhance luminous efficacy, color rendering index (CRI), and special CRI (R9) of LuAG:Ce CPP-capped white light-emitting diodes (LEDs) for high-power white LEDs at 350 mA. By introducing the 2D SiNx PCL, the luminous efficacy was improved by a factor of 1.25 and 1.15 compared to that of the conventional flat CPP-capped LED and the thickness-increased CPP-capped LED (with a thickness of 0.15 mm), respectively, while maintaining low color-rendering properties. The combining of the free-standing red film phosphor in the flat CPP-capped, the 2D PCL-assisted CPP-capped, and the thickness-increased CPP-capped LEDs led to enhancement of the CRI and the special CRI (R9); it also led to a decrease of the correlated color temperature (CCT) due to broad wavelength coverage via the addition of red emission. High CRI (94), natural white CCT (4450 K), and acceptable luminous efficacy (71.1 lm/W) were attained from the 2D PCL-assisted LuAG:Ce CPP/free-standing red film phosphor-based LED using a red phosphor concentration of 7.5 wt %. It is expected that the combination of the 2D PCL and the free-standing red film phosphor will be a good candidate for achieving a high-power white CPP-capped LED with excellent CRI.

  10. Innovative research of plasma physics for life sciences

    NASA Astrophysics Data System (ADS)

    Boonyawan, D.

    2017-06-01

    In medicine, cold atmospheric plasma (CAP) for the medical treatment is a new field in plasma application, called plasma medicine. CAP contains mix of excited atoms and molecules, UV photons, charged particles as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Typical species in air-CAPs are O3, OH, NxOx, and HNOx. The current developments in this field have fuelled the hope that CAP could be an interesting new therapeutic approach in the treatment of cancer. CAP apparently demonstrated effect on cancer cell apoptosis which did not induce cell necrosis or disruption. Moreover, CAP seemed to be selective for cancer cells since it was more effective in tumor cells than in normal non-neoplastic cells. In bioscience, dentistry and veterinary medicine : Since CAP, is delivered at room temperature, which results in less damaging effects on living tissue, while still has the efficiency in disinfection and sterilization. Recent studies proved that it is able to inactivate gram-negative and gram-positive bacteria, fungi, virus, spore, various parasites, and foreign organisms or pathogens without harming tissue. Moreover, cold plasma has been used effectively in medical field such as dental use, inducing apoptosis of malignant cells, stopping bleeding, promoting wound healing and tissue regeneration. Sericin hydrolysates, originating from silkworm is found support cell proliferation, expand cell adhesion and increase cell yield. The covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer can slow down the release rate of protein compound into the phosphate buffer saline (PBS) solution. We found that a-C films and a-C:N2 films show good attachment of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). All of carbon modified-Polystyrene(PS) dishes revealed the less release rate of sericin molecules into PBS solution than PS control.

  11. Direct Free Carrier Photogeneration in Single Layer and Stacked Organic Photovoltaic Devices.

    PubMed

    Chandran, Hrisheekesh Thachoth; Ng, Tsz-Wai; Foo, Yishu; Li, Ho-Wa; Qing, Jian; Liu, Xiao-Ke; Chan, Chiu-Yee; Wong, Fu-Lung; Zapien, Juan Antonio; Tsang, Sai-Wing; Lo, Ming-Fai; Lee, Chun-Sing

    2017-06-01

    High performance organic photovoltaic devices typically rely on type-II P/N junctions for assisting exciton dissociation. Heremans and co-workers recently reported a high efficiency device with a third organic layer which is spatially separated from the active P/N junction; but still contributes to the carrier generation by passing its energy to the P/N junction via a long-range exciton energy transfer mechanism. In this study the authors show that there is an additional mechanism contributing to the high efficiency. Some bipolar materials (e.g., subnaphthalocyanine chloride (SubNc) and subphthalocyanine chloride (SubPc)) are observed to generate free carriers much more effectively than typical organic semiconductors upon photoexcitation. Single-layer devices with SubNc or SubPc sandwiched between two electrodes can give power conversion efficiencies 30 times higher than those of reported single-layer devices. In addition, internal quantum efficiencies (IQEs) of bilayer devices with opposite stacking sequences (i.e., SubNc/SubPc vs SubPc/SubNc) are found to be the sum of IQEs of single layer devices. These results confirm that SubNc and SubPc can directly generate free carriers upon photoexcitation without assistance from a P/N junction. These allow them to be stacked onto each other with reversible sequence or simply stacking onto another P/N junction and contribute to the photocarrier generation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Interfacially polymerized layers for oxygen enrichment: a method to overcome Robeson's upper-bound limit.

    PubMed

    Tsai, Ching-Wei; Tsai, Chieh; Ruaan, Ruoh-Chyu; Hu, Chien-Chieh; Lee, Kueir-Rarn

    2013-06-26

    Interfacial polymerization of four aqueous phase monomers, diethylenetriamine (DETA), m-phenylenediamine (mPD), melamine (Mela), and piperazine (PIP), and two organic phase monomers, trimethyl chloride (TMC) and cyanuric chloride (CC), produce a thin-film composite membrane of polymerized polyamide layer capable of O2/N2 separation. To achieve maximum efficiency in gas permeance and O2/N2 permselectivity, the concentrations of monomers, time of interfacial polymerization, number of reactive groups in monomers, and the structure of monomers need to be optimized. By controlling the aqueous/organic monomer ratio between 1.9 and 2.7, we were able to obtain a uniformly interfacial polymerized layer. To achieve a highly cross-linked layer, three reactive groups in both the aqueous and organic phase monomers are required; however, if the monomers were arranged in a planar structure, the likelihood of structural defects also increased. On the contrary, linear polymers are less likely to result in structural defects, and can also produce polymer layers with moderate O2/N2 selectivity. To minimize structural defects while maximizing O2/N2 selectivity, the planar monomer, TMC, containing 3 reactive groups, was reacted with the semirigid monomer, PIP, containing 2 reactive groups to produce a membrane with an adequate gas permeance of 7.72 × 10(-6) cm(3) (STP) s(-1) cm(-2) cm Hg(-1) and a high O2/N2 selectivity of 10.43, allowing us to exceed the upper-bound limit of conventional thin-film composite membranes.

  13. Phase-separated, epitaxial composite cap layers for electronic device applications and method of making the same

    DOEpatents

    Aytug, Tolga [Knoxville, TN; Paranthaman, Mariappan Parans [Knoxville, TN; Polat, Ozgur [Knoxville, TN

    2012-07-17

    An electronic component that includes a substrate and a phase-separated layer supported on the substrate and a method of forming the same are disclosed. The phase-separated layer includes a first phase comprising lanthanum manganate (LMO) and a second phase selected from a metal oxide (MO), metal nitride (MN), a metal (Me), and combinations thereof. The phase-separated material can be an epitaxial layer and an upper surface of the phase-separated layer can include interfaces between the first phase and the second phase. The phase-separated layer can be supported on a buffer layer comprising a composition selected from the group consisting of IBAD MgO, LMO/IBAD-MgO, homoepi-IBAD MgO and LMO/homoepi-MgO. The electronic component can also include an electronically active layer supported on the phase-separated layer. The electronically active layer can be a superconducting material, a ferroelectric material, a multiferroic material, a magnetic material, a photovoltaic material, an electrical storage material, and a semiconductor material.

  14. Detecting Hydrogen Chloride (HCl) in the Polluted Marine Boundary Layer Using Cavity Ring-Down Spectroscopy (CRDS)

    NASA Astrophysics Data System (ADS)

    Furlani, T.; Dawe, K.; VandenBoer, T. C.; Young, C.

    2017-12-01

    Oxidation initiated with chlorine atoms yields more ozone than oxidation initiated with hydroxyl radicals. Reasons for this are not fully understood, but the implications for mechanisms of oxidation chemistry are significant.1,2 Chlorine atoms have not been directly measured to date in the atmosphere and its abundance is usually inferred through steady-state approximations from all known formation and loss processes. A major reservoir for chlorine in the troposphere is by proton abstraction of organic compounds to form HCl.3 HCl can also be formed heterogeneously via acid displacement reactions with ubiquitously-found sodium chloride (NaCl) on solid surfaces with nitric acid (HNO3). The majority of the available chloride in the marine boundary layer comes from the sea salt in and around marine derived sea-spray aerosols. HCl is not a perfect sink and can react with hydroxyl radicals or be photolyzed to form chlorine atoms. The balance between loss and formation processes of chlorine atoms from HCl is highly dependent on many external factors, such as the wet and dry deposition rate of HCl. Measuring HCl in the gas and aerosol phase is important to the understanding of chlorine chemistry in the polluted marine boundary layer. HCl levels in the polluted marine boundary layer are typically between 100pptv-1ppbv,3 requiring the sensitive and selective detection capabilities of cavity ring-down spectroscopy (CRDS).4 We measured HCl using a Picarro CRDS in the polluted marine boundary layer for the first time. Measurements were conducted during April and May of 2017 in St. John's, Newfoundland and Labrador. The performance of the instrument will be discussed, as well as observations of HCl in the context of local conditions. References1Osthoff, H. D. et al. Nat. Geosci 1, 324-328 (2008). 2Young, C. J. et al. Atmos. Chem. Phys. 14, 3427-3440 (2014). 3Crisp, T. a et al. J. Geophys. Res. Atmos. 6897-6915 (2014). 4Hagen, C. L. et al. Atmos. Meas. Tech. 7, 345-357 (2014).

  15. Role of the wetting layer in the enhanced responsivity of InAs/GaAsSb quantum dot infrared photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzmán, Álvaro, E-mail: guzman@die.upm.es; Yamamoto, Kenji; Ulloa, J. M.

    2015-07-06

    InAs/GaAs{sub 1−x}Sb{sub x} Quantum Dot (QD) infrared photodetectors are analyzed by photocurrent spectroscopy. We observe that the integrated responsivity of the devices is improved with the increasing Sb mole fraction in the capping layer, up to 4.2 times for x = 17%. Since the QD layers are not vertically aligned, the vertical transport of the carriers photogenerated within the QDs takes place mainly through the bulk material and the wetting layer of the additional QD regions. The lower thickness of the wetting layer for high Sb contents results in a reduced capture probability of the photocarriers, thus increasing the photoconductive gain andmore » hence, the responsivity of the device. The growth of not vertically aligned consecutive QD layers with a thinner wetting layer opens a possibility to improve the performance of quantum dot infrared photodetectors.« less

  16. Numerical investigation of metal-semiconductor-insulator-semiconductor passivated hole contacts based on atomic layer deposited AlO x

    NASA Astrophysics Data System (ADS)

    Ke, Cangming; Xin, Zheng; Ling, Zhi Peng; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    Excellent c-Si tunnel layer surface passivation has been obtained recently in our lab, using atomic layer deposited aluminium oxide (ALD AlO x ) in the tunnel layer regime of 0.9 to 1.5 nm, investigated to be applied for contact passivation. Using the correspondingly measured interface properties, this paper compares the theoretical collection efficiency of a conventional metal-semiconductor (MS) contact on diffused p+ Si to a metal-semiconductor-insulator-semiconductor (MSIS) contact on diffused p+ Si or on undoped n-type c-Si. The influences of (1) the tunnel layer passivation quality at the tunnel oxide interface (Q f and D it), (2) the tunnel layer thickness and the electron and hole tunnelling mass, (3) the tunnel oxide material, and (4) the semiconductor capping layer material properties are investigated numerically by evaluation of solar cell efficiency, open-circuit voltage, and fill factor.

  17. Polar Stratigraphy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  18. Growth of a delta-doped silicon layer by molecular beam epitaxy on a charge-coupled device for reflection-limited ultraviolet quantum efficiency

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, R. W.; Fattahi, Masoud; Tseng, Hsin-Fu

    1992-01-01

    Low-temperature silicon molecular beam epitaxy is used to grow a delta-doped silicon layer on a fully processed charge-coupled device (CCD). The measured quantum efficiency of the delta-doped backside-thinned CCD is in agreement with the reflection limit for light incident on the back surface in the spectral range of 260-600 nm. The 2.5 nm silicon layer, grown at 450 C, contained a boron delta-layer with surface density of about 2 x 10 exp 14/sq cm. Passivation of the surface was done by steam oxidation of a nominally undoped 1.5 nm Si cap layer. The UV quantum efficiency was found to be uniform and stable with respect to thermal cycling and illumination conditions.

  19. Hexagonal MoTe2 with Amorphous BN Passivation Layer for Improved Oxidation Resistance and Endurance of 2D Field Effect Transistors.

    PubMed

    Sirota, Benjamin; Glavin, Nicholas; Krylyuk, Sergiy; Davydov, Albert V; Voevodin, Andrey A

    2018-06-06

    Environmental and thermal stability of two-dimensional (2D) transition metal dichalcogenides (TMDs) remains a fundamental challenge towards enabling robust electronic devices. Few-layer 2H-MoTe 2 with an amorphous boron nitride (a-BN) covering layer was synthesized as a channel for back-gated field effect transistors (FET) and compared to uncovered MoTe 2 . A systematic approach was taken to understand the effects of heat treatment in air on the performance of FET devices. Atmospheric oxygen was shown to negatively affect uncoated MoTe 2 devices while BN-covered FETs showed considerably enhanced chemical and electronic characteristic stability. Uncapped MoTe 2 FET devices, which were heated in air for one minute, showed a polarity switch from n- to p-type at 150 °C, while BN-MoTe 2 devices switched only after 200 °C of heat treatment. Time-dependent experiments at 100 °C showed that uncapped MoTe 2 samples exhibited the polarity switch after 15 min of heat treatment while the BN-capped device maintained its n-type conductivity for the maximum 60 min duration of the experiment. X-ray photoelectron spectroscopy (XPS) analysis suggests that oxygen incorporation into MoTe 2 was the primary doping mechanism for the polarity switch. This work demonstrates the effectiveness of an a-BN capping layer in preserving few-layer MoTe 2 material quality and controlling its conductivity type at elevated temperatures in an atmospheric environment.

  20. Role of 4- tert -Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shen; Sina, Mahsa; Parikh, Pritesh

    2016-09-14

    Hybrid organic-inorganic materials for high efficiency, low cost photovoltaic devices have seen rapid progress since the introduction of lead based perovskites and solid-state hole transport layers. Although majority of the materials used for perovskite solar cells (PSC) are introduced from dye-sensitized solar cells (DSSCs), the presence of a perovskite capping layer as opposed to a single dye molecule (in DSSCs) changes the interactions between the various layers in perovskite solar cells. 4-tert-butylpyridine (tBP), commonly used in PSCs, is assumed to function as a charge recombination inhibitor, similar to DSSCs. However, the presence of a perovskite capping layer calls for amore » re-evaluation of its function in PSCs. Using TEM (transmission electron microscopy), we first confirm the role of tBP as a HTL morphology controller in PSCs. Our observations suggest that tBP significantly improves the uniformity of the HTL and avoids accumulation of Li salt. We also study degradation pathways by using FTIR (Fourier transform infrared spectroscopy) and APT (atom probe tomography) to investigate and visualize in 3-dimensions the moisture content associated with the Li salt. Long term effects, over 1000 hours, due to evaporation of tBP have also been studied. Based on our findings, a PSC failure mechanism associated with the morphological change of the HTL is proposed. tBP, the morphology controller in HTL, plays a key role in this process and thus this study highlights the need for additive materials with higher boiling points for consistent long term performance of PSCs.« less

Top