Catalyst surfaces for the chromous/chromic redox couple
NASA Technical Reports Server (NTRS)
Giner, J. D.; Cahill, K. J. (Inventor)
1981-01-01
An electricity producing cell of the reduction-oxidation (REDOX) type divided into two compartments by a membrane is disclosed. A ferrous/ferric couple in a chloride solution serves as a cathode fluid to produce a positive electric potential. A chromic/chromous couple in a chloride solution serves as an anode fluid to produce a negative potential. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which has been added to the anode fluid. If the REDOX cell is then discharged, the lead deplates from the negative electrode and the metal coating on the electrode acts as a catalyst to increase current density.
Geftic, S G; Heymann, H; Adair, F W
1979-01-01
A strain of Pseudomonas cepacia that survived for 14 years (1963 to 1977) as a contaminant in an inorganic salt solution which contained commercial 0.05% benzalkonium chloride (CBC) as an antimicrobial preservative, was compared to a recent clinical isolate of P. cepacia. Ammonium acetate was present in the concentrated stock CBC solution, and served as a carbon and nitrogen source for growth when carried over into the salts solution with the CBC. The isolate's resistance to pure benzalkonium chloride was increased step-wise to a concentration of 16%. Plate counts showed 4 x 10(3) colony-forming units per ml in the salts solution. Comparison of growth rates, mouse virulence, antibiotics resistance spectra, and substrate requirements disclosed no differences between the contaminant and a recently isolated clinical strain of P. cepacia. The results indicate that it is critical that pharmaceutical solutions containing benzalkonium chloride as an antimicrobial preservative be formulated without extraneous carbon and nitrogen sources or be preserved with additional antimicrobial agents. PMID:453827
Stankovičová, Mária; Lašáková, Andrea; Medlenová, Veronika; Bezáková, Zelmíra; Cižmárik, Jozef
2014-08-01
The paper studies the kinetics of alkaline hydrolysis and stability under non-isothermal conditions of heptacainium chloride and carbisocainium chloride in the medium of aqueous-ethanolic solution of sodium hydroxide c = 0.1 mol/l and buffer solutions of values of pH 7.0 and pH 8.0. The results of the study of the kinetics of hydrolysis by means of a non-isothermal test - rate constants and activation energy values served as the basis for exact evaluation of the stability of these potential pharmaceuticals. The objective of the paper links up with the previous studies of these substances.
Vote, D J; Platter, W J; Tatum, J D; Schmidt, G R; Belk, K E; Smith, G C; Speer, N C
2000-04-01
Beef strip loins (46 U.S. Choice loins and 49 U.S. Select loins) were used to evaluate the potential for enhancing beef tenderness, juiciness, and flavor by injecting fresh cuts with solutions containing sodium tripolyphosphate, sodium lactate, and sodium chloride. One half of each loin served as an untreated control, and the other half was injected with either distilled water (110% of raw weight) or a solution containing phosphate/lactate/chloride solution (107.5, 110, 112.5, or 115% of raw weight). All phosphate/lactate/chloride solutions were formulated to produce injected product concentrations of .25% sodium tripolyphosphate, .5% sodium chloride, and 2.5% sodium lactate. Ten additional U.S. Select loins were injected to 110% of raw weight with a phosphate-only solution (final product concentration of .25% sodium tripolyphosphate) for comparison with Select loins injected to 110% with phosphate/lactate/chloride and with distilled water. Steaks from each control and treated loin section were cooked to two final internal temperatures (66 degrees C and 77 degrees C) for sensory panel evaluation and shear force measurement. Injection of subprimal cuts with phosphate/lactate/chloride solutions improved tenderness (P < .05), juiciness (P < .05), and cooked beef flavor (P < .10) of strip loin steaks and was especially effective for maintaining tenderness and juiciness of steaks cooked to the higher final internal temperature. Injection of Select loins with a solution containing only sodium tripolyphosphate was not effective for improving beef tenderness or juiciness and tended to impart off-flavors characterized by sensory panelists as soapy and sour. Injection of fresh cuts with phosphate/lactate/chloride solutions could assist the beef industry's efforts to improve product quality and consistency.
Catalyst surfaces for the chromous/chromic redox couple
NASA Technical Reports Server (NTRS)
Giner, J. D.; Cahill, K. J. (Inventor)
1980-01-01
An electricity producing cell of the reduction-oxidation (REDOX) type is described. The cell is divided into two compartments by a membrane, each compartment containing a solid inert electrode. A ferrous/ferric couple in a chloride solution serves as a cathode fluid which is circulated through one of the compartments to produce a positive electric potential disposed therein. A chromic/chromous couple in a chloride solution serves as an anode fluid which is circulated through the second compartment to produce a negative potential on an electrode disposed therein. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which was added to the anode fluid. If the REDOX cell is then discharged, the current flows between the electrodes causing the lead to deplate from the negative electrode and the metal coating on the electrode will act as a catalyst to cause increased current density.
Clor, Laura E.; McCleskey, R. Blaine; Huebner, Mark A.; Lowenstern, Jacob B.; Heasler, Henry P.; Mahony, Dan L.; Maloney, Tim; Evans, William C.
2012-01-01
This study aims to quantify relations between solute concentrations (especially chloride) and electrical conductivity for several rivers in Yellowstone National Park (YNP), by using automated samplers and conductivity meters. Norton and Friedman (1985) found that chloride concentrations and electrical conductivity have a good correlation in the Falls, Snake, Madison, and Yellowstone Rivers. However, their results are based on limited sampling and hydrologic conditions and their relation with other solutes was not determined. Once the correlations are established, conductivity measurements can then be used as a proxy for chloride concentrations, thereby enabling continuous heat-flow estimation on a much finer timescale and at lower cost than is currently possible with direct sampling. This publication serves as a repository for all data collected during the course of the study from May 2010 through July 2011, but it does not include correlations between solutes and conductivity or recommendations for quantification of chloride through continuous electrical conductivity measurements. This will be the object of a future document.
Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5.
Santos-Sacchi, Joseph; Song, Lei
2016-06-07
In general, SLC26 solute carriers serve to transport a variety of anions across biological membranes. However, prestin (SLC26a5) has evolved, now serving as a motor protein in outer hair cells (OHCs) of the mammalian inner ear and is required for cochlear amplification, a mechanical feedback mechanism to boost auditory performance. The mechanical activity of the OHC imparted by prestin is driven by voltage and controlled by anions, chiefly intracellular chloride. Current opinion is that chloride anions control the Boltzmann characteristics of the voltage sensor responsible for prestin activity, including Qmax, the total sensor charge moved within the membrane, and Vh, a measure of prestin's operating voltage range. Here, we show that standard narrow-band, high-frequency admittance measures of nonlinear capacitance (NLC), an alternate representation of the sensor's charge-voltage (Q-V) relationship, is inadequate for assessment of Qmax, an estimate of the sum of unitary charges contributed by all voltage sensors within the membrane. Prestin's slow transition rates and chloride-binding kinetics adversely influence these estimates, contributing to the prevalent concept that intracellular chloride level controls the quantity of sensor charge moved. By monitoring charge movement across frequency, using measures of multifrequency admittance, expanded displacement current integration, and OHC electromotility, we find that chloride influences prestin kinetics, thereby controlling charge magnitude at any particular frequency of interrogation. Importantly, however, this chloride dependence vanishes as frequency decreases, with Qmax asymptoting at a level irrespective of the chloride level. These data indicate that prestin activity is significantly low-pass in the frequency domain, with important implications for cochlear amplification. We also note that the occurrence of voltage-dependent charge movements in other SLC26 family members may be hidden by inadequate interrogation timescales, and that revelation of such activity could highlight an evolutionary means for kinetic modifications within the family to address hearing requirements in mammals. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Nephelometric determination of fluorine
Stevens, R.E.
1936-01-01
Fluorine in minerals may be determined with the nephelometer to about 1 per cent of the fluorine. The determination is made on an aliquot of the sodium chloride solution of the fluorine, obtained by the Berzelius method of extraction. The fluorine is precipitated as colloidal calcium fluoride in alcoholic solution, gelatin serving as a protective colloid. Arsenates, sulfates, and phosphates, which interfere with the determination, must be removed.
Characterization of Localized Corrosion in an Al-Cu-Li Alloy
NASA Astrophysics Data System (ADS)
Luo, Chen; Zhang, Xinxin; Zhou, Xiaorong; Sun, Zhihua; Zhang, Xiaoyun; Tang, Zhihui; Lu, Feng; Thompson, George E.
2016-05-01
Corrosion behaviors of recently developed 2A97-T6 aluminum-copper-lithium alloy in sodium chloride solution are investigated using scanning electron and transmission electron microscopies in conjunction with electron backscatter diffraction. It has been found that corrosion product rings were established on the alloy surface as early as 5 min during immersion in sodium chloride solution. Meanwhile, hydrogen continuously evolved from within the rings. Pitting corrosion is evident with crystallographic dependant corrosion channel facets mainly parallel to {100} planes. Non-uniform distribution of misorientation in the 2A97 aluminum alloy results in a portion of grains of relatively high stored energy. Such grains were preferentially attacked, serving as local anodes, during the development of crystallographic pitting.
REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS
Schulz, W.W.
1959-08-01
The removal of chlorides from aqueons solutions is described. The process involves contacting the aqueous chloride containing solution with a benzene solution about 0.005 M in phenyl mercuric acetate whereby the chloride anions are taken up by the organic phase and separating the organic phase from the aqueous solutions.
Prombonas, Anthony; Yannikakis, Stavros; Karampotsos, Thanasis; Katsarou, Martha-Spyridoula; Drakoulis, Nikolaos
2016-01-01
Introduction Surface integrity of dental elastomeric impression materials that are subjected to disinfection is of major importance for the quality of the final prosthetic restorations. Aim The aim of this qualitative Scanning Electronic Microscopy (SEM) study was to reveal the effects of immersion or ozone disinfection on the surface of four dental elastomeric impression materials. Materials and Methods Four dental elastomeric impression material brands were used (two vinyl polysiloxane silicones, one polyether, and one vinyl polyether silicone). Total of 32 specimens were fabricated, eight from each impression material. Specimens were immersion (0.525% sodium hypochlorite solution or 0.3% benzalkonium chloride solution) or ozone disinfected or served as controls and examined with SEM. Results Surface degradation was observed on several speci-mens disinfected with 0.525% sodium hypochlorite solution. Similar wavy-wrinkling surface structures were observed in almost all specimens, when treated either with 0.3% benzalkonium chloride solution or ozone. Conclusion The SEM images obtained from this study revealed that both immersion disinfectants and ozone show similar impression material surface alterations. Ozone seems to be non-inferior as compared to immersion disinfectants, but superior as to environmental protection. PMID:28208993
NASA Astrophysics Data System (ADS)
Wang, Linqian; Wang, Richu; Feng, Yan; Deng, Min; Wang, Naiguang
2017-12-01
Mg-Al-Pb alloy can serve as a good candidate for the anode material in seawater-activated batteries. The effect of solution and aging treatment on electrochemical properties of Mg-9 wt.%Al-2.5 wt.%Pb alloy in 3.5 wt.% NaCl solution was investigated through scanning electron microscopy and electrochemical tests. The results indicate that the discharge activity of Mg-9 wt.%Al-2.5 wt.%Pb alloy decreases after solution treatment, although its anodic efficiency increases slightly. In contrast, its discharge performance and anodic efficiency, which are crucial for the application of batteries, are both enhanced after aging at 200°C for 12 h.
Kim, Jimin P; Xie, Zhiwei; Creer, Michael; Liu, Zhiwen; Yang, Jian
2017-01-01
Chloride is an essential electrolyte that maintains homeostasis within the body, where abnormal chloride levels in biological fluids may indicate various diseases such as Cystic Fibrosis. However, current analytical solutions for chloride detection fail to meet the clinical needs of both high performance and low material or labor costs, hindering translation into clinical settings. Here we present a new class of fluorescence chloride sensors derived from a facile citrate -based synthesis platform that utilize dynamic quenching mechanisms. Based on this low-cost platform, we demonstrate for the first time a selective sensing strategy that uses a single fluorophore to detect multiple halides simultaneously, promising both selectivity and automation to improve performance and reduce labor costs. We also demonstrate the clinical utility of citrate-based sensors as a new sweat chloride test method for the diagnosis of Cystic Fibrosis by performing analytical validation with sweat controls and clinical validation with sweat from individuals with or without Cystic Fibrosis. Lastly, molecular modeling studies reveal the structural mechanism behind chloride sensing, serving to expand this class of fluorescence sensors with improved chloride sensitivities. Thus citrate-based fluorescent materials may enable low-cost, automated multi-analysis systems for simpler, yet accurate, point-of-care diagnostics that can be readily translated into clinical settings. More broadly, a wide range of medical, industrial, and environmental applications can be achieved with such a facile synthesis platform, demonstrated in our citrate-based biodegradable polymers with intrinsic fluorescence sensing.
A chloride-anion insensitive colorimetric chemosensor for trinitrobenzene and picric acid.
Kim, Dae-Sik; Lynch, Vincent M; Nielsen, Kent A; Johnsen, Carsten; Jeppesen, Jan O; Sessler, Jonathan L
2009-09-01
A new receptor, the bisTTF-calix[2]thiophene[2]pyrrole derivative 3, has been prepared from the Lewis acid-catalyzed condensation of 2,5-bis(1-hydroxymethylethyl)thiopheno-TTF and pyrrole. This new system is found to form complexes with the electron-deficient guests, trinitrobenzene (TNB) and picric acid (PA), which serve as models for nitroaromatic explosives. The binding phenomenon, which has been studied in organic solution using proton nuclear magnetic resonance and absorption spectroscopies, results in an easy-to-visualize color change in chloroform that is independent of the presence of chloride anion, a known interferant for an earlier tetrakisTTF-calix[4]pyrrole TNB chemosensor. Support for the proposed binding mode comes from a preliminary solid state structure of the complex formed from TNB, namely TNB subset3. A color change is also observed when dichloromethane solutions of chemosensor 3 are added to solvent-free samples of TNB, PA, and 2,4,6-trinitrotoluene supported on silica gel.
Henn, S; Monfort, P; Vigneron, J H; Hoffman, M A; Hoffman, M
1999-10-01
To investigate the stability of methacholine chloride in 0.9% sodium chloride solutions. Methacholine powder was mixed with diluent to a final concentration of 5 and 10 mg/ml. Duplicates of each admixture were divided and stored in glass vials at 25 degrees C, 4 degrees C and -20 degrees C for 12 months. At appropriate times intervals, samples were removed from solutions and analysed. Methacholine concentrations were measured using a high performance capillary electrophoresis assay. No colour or other visual changes were seen in any sample. However, an additional peak was observed in some samples. Methacholine chloride solutions 5 mg/ml were stable in isotonic sodium chloride after refrigeration or freezing over a period of one year; methacholine chloride solutions 10 mg/ml were stable for one year after freezing. The solutions stored at ambient temperature were stable for 35 days and for less than 14 days, respectively, for the 5 and the 10 mg/ml solutions.
[Sodium chloride 0.9%: nephrotoxic crystalloid?].
Dombre, Vincent; De Seigneux, Sophie; Schiffer, Eduardo
2016-02-03
Sodium chloride 0.9%, often incorrectly called physiological saline, contains higher concentration of chloride compared to plasma. It is known that the administration of sodium chloride 0.9% can cause hyperchloremic metabolic acidosis in a reproducible manner. The elevated chloride concentration in 0.9% NaCl solution can also adversely affect renal perfusion. This effect is thought to be induced by hyperchloremia that causes renal artery vasoconstriction. For these reasons, the use of 0.9% NaCl solution is raising attention and some would advocate the use of a more "physiological" solution, such as balanced solutions that contain a level of chloride closer to that of plasma. Few prospective, randomized, controlled trials are available today and most were done in a perioperative setting. Some studies suggest that the chloride excess in 0.9% NaCl solution could have clinical consequences; however, this remains to be established by quality randomized controlled trials.
Method of separating thorium from plutonium
Clifton, David G.; Blum, Thomas W.
1984-01-01
A method of chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.
Method of separating thorium from plutonium
Clifton, D.G.; Blum, T.W.
A method of chemically separating plutonium from thorium is claimed. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.
Method of separating thorium from plutonium
Clifton, D.G.; Blum, T.W.
1984-07-10
A method is described for chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.
Turan, Erkut; Gules, Ozay; Kilimci, Figen Sevil; Kara, Mehmet Erkut; Dilek, Omer Gurkan; Sabanci, Seyyid Said; Tatar, Musa
2017-01-01
The present study investigates the efficiency of liquid foam soap, ethanol, citric acid and benzalkonium chloride as a fixative-preservative solution (a soap-and ethanol-based fixing solution, or SEFS). In this study, ethanol serves as the fixative and preservative, liquid foam soap as the modifying agent, citric acid as the antioxidant and benzalkonium chloride as the disinfectant. The goat cadavers perfused with SEFS (n=8) were evaluated over a period of one year with respect to hardness, colour and odour using objective methods. Colour and hardness were compared between one fresh cadaver and the SEFS-embalmed cadavers. Histological and microbiological examinations were also performed in tissue samples. Additionally, the cadavers were subjectively evaluated after dissection and palpation. The SEFS provided the effectiveness expected over a 1-year embalming period for the animal cadavers. No bacteria or fungi were isolated except for some non-pathogenic Bacillus species. Visible mould was not present on either cadavers or in the surrounding environment. The cadavers maintained an appearance close to their original anatomical appearance, with muscles having good hardness and elasticity for dissection. Copyright © 2016 Elsevier GmbH. All rights reserved.
Anderson, Collin; MacKay, Mark
2016-11-01
Calcium and phosphate precipitation is an ongoing concern when compounding pediatric parenteral nutrition (PN) solutions. Considerable effort has been expended in producing graphs, tables, and equations to guide the practitioner in prescribing PN that will remain stable. Calcium gluconate is preferred over calcium chloride when compounding PN because of its superior compatibility with inorganic phosphates. PN solutions containing calcium gluconate carry a higher aluminum load than equivalent solutions compounded with calcium chloride, leading to increased potential for aluminum toxicity. This study tested the solubility of calcium chloride in PN solutions compounded with an organic phosphate component, sodium glycerophosphate (NaGP), in place of sodium phosphate. Five PN solutions were compounded by adding calcium chloride at 10, 20, 30, 40, and 50 mEq/L and corresponding concentrations of NaGP at 10, 20, 30, 40, and 50 mmol/L. Each of the 5 solutions was compounded using 1.5% and 4% amino acids, cysteine, and lipids. The physical stability was evaluated by visual inspection (precipitation, haze, and color change). Solutions were evaluated microscopically for any microcrystals using U.S. Pharmacopeia <788> standards. Compatibility testing showed no changes in the PN solution in any of the concentrations tested. Calcium chloride was found to be physically compatible with NaGP in PN at the tested concentrations. Utilization of NaGP in PN solutions would eliminate the need for precipitation curves and allow for the use of calcium chloride. Compounding with NaGP and calcium chloride allows the practitioner a mechanism for reducing the aluminum load in PN. © 2015 American Society for Parenteral and Enteral Nutrition.
Anion exchange membranes for electrochemical oxidation-reduction energy storage system
NASA Technical Reports Server (NTRS)
Odonnell, P. M.; Sheibley, D. W.; Gahn, R. F.
1977-01-01
Oxidation-reduction couples in concentrated solutions separated by appropriate ion selective membranes were considered as an attractive approach to bulk electrical energy storage. A key problem is the development of the membrane. Several promising types of anionic membranes are discussed which were developed and evaluated for redox energy storage systems. The copolymers of ethyleneglycoldimethacrylate with either 2-vinylpyridine or vinylbenzl chloride gave stable resistance values compared to the copolymer of vinylbenzlchloride and divinylbenzene which served as the baseline membrane. A polyvinylchloride film aminated with tetraethylenepentamine had a low resistance but a high ion transfer rate. A slurry coated vinylpyridine had the lowest ion transfer rate. All these membranes functioned well in laboratory cells at ambient temperatures with the acidic chloride oxidant/reductant system, Fe 3, Fe 2/Ti 3, Ti 4.
Wang, Rui; Luo, Ou; He, Liu; Li, Jia-Xin; Zhang, Ming-Guang
2012-11-01
In Mainland China, heparin saline solution is commonly used for flushing and locking peripheral intravenous access devices in clinical practice for a long time. We conducted a prospective controlled trial to compare the effectiveness and safety of preservative-free 0.9% sodium chloride solution versus heparin saline solution as flushing and locking solution for peripheral intravenous access devices. Patients with gastroenterological or hepatic diseases were enrolled for this study from August 2011 to October 2011. After non-randomized allocation, preservative-free 0.9% sodium chloride was used as flushing and locking solution in the sodium chloride solution group, while hepatic solution (10 U/mL) was given in the heparin saline solution group. The device related complications and its maintenance duration were compared between two groups. One-way ANOVA, Chi(2), or Mantel-Haenszel test were performed using SPSS 13.0 and RevMan 5.0. Totally, 181 and 178 peripheral intravenous access devices in the sodium chloride solution and heparin saline solution groups were included and analyzed. Results indicated than sodium chloride solution did not increase the risks of occlusion (7.7% vs. 7.9%) and other adverse events of peripheral intravenous access devices (P = 0.163). Sodium chloride solution neither shortened the duration of peripheral intravenous access devices maintenance (3.6 ± 1.1 days vs. 3.7 ± 1.2 days, P = 0.651), nor increased the proportion of abnormal withdrawal (29.3% vs. 31.5%, P = 0.654). Sodium chloride solution is as effective and safe as conventional heparin saline solution for flushing and locking peripheral intravenous access devices, which results from our evidence-based study and should be transferred to other nurses in China. © 2012 Wiley Publishing Asia Pty Ltd and Chinese Cochrane Center, West China Hospital of Sichuan University.
46 CFR 151.50-75 - Ferric chloride solution.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Ferric chloride solution. 151.50-75 Section 151.50-75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-75 Ferric chloride solution...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-17
... determined that Halflytely and Bisacodyl Tablets Bowel Prep Kit (polyethylene glycol (PEG) 3350, sodium chloride, sodium bicarbonate, and potassium chloride for oral solution and two bisacodyl delayed release... kits containing PEG-3350, sodium chloride, sodium bicarbonate, and potassium chloride for oral solution...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-19
... determined that HALFLYTELY AND BISACODYL TABLETS BOWEL PREP KIT (polyethylene glycol (PEG) 3350, sodium chloride, sodium bicarbonate, and potassium chloride for oral solution and 4 bisacodyl delayed release... kits containing PEG-3350, sodium chloride, sodium bicarbonate, and potassium chloride for oral solution...
Stress Corrosion Cracking of an Austenitic Stainless Steel in Nitrite-Containing Chloride Solutions
Singh Raman, R. K.; Siew, Wai Hoong
2014-01-01
This article describes the susceptibility of 316L stainless steel to stress corrosion cracking (SCC) in a nitrite-containing chloride solution. Slow strain rate testing (SSRT) in 30 wt. % MgCl2 solution established SCC susceptibility, as evidenced by post-SSRT fractography. Addition of nitrite to the chloride solution, which is reported to have inhibitive influence on corrosion of stainless steels, was found to increase SCC susceptibility. The susceptibility was also found to increase with nitrite concentration. This behaviour is explained on the basis of the passivation and pitting characteristics of 316L steel in chloride solution. PMID:28788276
Tang, Hailong; Erzat, Aris; Liu, Yangsheng
2014-01-01
Water washing is widely used as the pretreatment method to treat municipal solid waste incineration fly ash, which facilitates the further solidification/stabilization treatment or resource recovery of the fly ash. The wastewater generated during the washing process is a kind of hydrosaline solution, usually containing high concentrations of alkali chlorides and sulphates, which cause serious pollution to environment. However, these salts can be recycled as resources instead of discharge. This paper explored an effective and practical recovery method to separate sodium chloride, potassium chloride, and calcium chloride salts individually from the hydrosaline water. In laboratory experiments, a simulating hydrosaline solution was prepared according to composition of the waste washing water. First, in the three-step evaporation-crystallization process, pure sodium chloride and solid mixture of sodium and potassium chlorides were obtained separately, and the remaining solution contained potassium and calcium chlorides (solution A). And then, the solid mixture was fully dissolved into water (solution B obtained). Finally, ethanol was added into solutions A and B to change the solubility of sodium, potassium, and calcium chlorides within the mixed solvent of water and ethanol. During the ethanol-adding precipitation process, each salt was separated individually, and the purity of the raw production in laboratory experiments reached about 90%. The ethanol can be recycled by distillation and reused as the solvent. Therefore, this technology may bring both environmental and economic benefits.
A Simplified Extemporaneously Prepared Potassium Chloride Oral Solution.
Tannous, Elias; Tal, Yana; Amarny, Kamal
2016-01-01
Although commercial preparations of oral potassium supplements are usually available, there are times when our Medical Center is faced with situations in which the oral solution of potassium chloride is not available. This solution is necessary for our pediatric outpatients who cannot swallow tablets and need an oral solution. Moreover, there are no studies available which describe an extemporaneously prepared potassium chloride oral solution on which we can rely for assigning a beyond-use date. The aim of this study was to formulate an extemporaneous pediatric oral solution of potassium chloride and to determine the physical and chemical stability of this preparation. We prepared 1 mMoL/mL by withdrawing 25 mL of potassium chloride 14.9%. Ora-Sweet SF was added to 50 mL in a metered flask. The solution was kept refrigerated (2°C to 8°C). Samples were withdrawn to measure potassium concentration, pH, and microbial overgrowth. The test was performed by our biochemical laboratory. The oral solution of potassium chloride 1 mMoL/mL stored at 2°C to 8°C maintained at least 91% of the initial concentration for 28 days. There were no notable changes in pH, and the solution remained physically stable with no visual microbial growth. The oral solution of potassium chloride 1 mMoL/mL prepared in Ora-Sweet and stored at 2°C to 8°C in amber glass bottles is expected to remain stable for 28 days. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Clausen, Lauge Peter Westergaard; Broholm, Mette Martina; Gosewinkel, Ulrich; Trapp, Stefan
2017-08-01
Trichloroethylene (TCE) is a widespread soil and groundwater pollutant and clean-up is often problematic and expensive. Phytoremediation may be a cost-effective solution at some sites. This study investigates TCE degradation by willows (S. viminalis) and willows inoculated with three strains of B. cepacia (301C, PR1-31 and VM1330-pTOM), using chloride formation as an indicator of dehalogenation. Willows were grown in non-sterile, hydroponic conditions for 3 weeks in chloride-free nutrient solution spiked with TCE. TCE was added weekly due to rapid loss by volatilization. Chloride and TCE in solution were measured every 2-3 days and chloride and metabolite concentrations in plants were measured at test termination. Based on transpiration, no tree toxicity of TCE exposure was observed. However, trees grown in chloride-free solution showed severely inhibited transpiration. No or very little chloride was formed during the test, and levels of chloride in TCE-exposed trees were not elevated. Chloride concentrations in chloride containing TCE-free nutrient solution doubled within 23 days, indicating active exclusion of chloride by root cell membranes. Only traces of TCE-metabolites were detected in plant tissue. We conclude that TCE is not, or to a limited extent (less than 3%), aerobically degraded by the willow trees. The three strains of B. cepacia did not enhance TCE mineralization. Future successful application of rhizo- and phytodegradation of TCE requires measures to be taken to improve the degradation rates.
[Determination of Chloride Salt Solution by NIR Spectroscopy].
Zhang, Bin; Chen, Jian-hong; Jiao, Ming-xing
2015-07-01
Determination of chloride salt solution by near infrared spectrum plays a very important role in Biomedicine. The near infrared spectrum analysis of Sodium chloride, potassium chloride, calcium chloride aqueous solution shows that the concentration change of chloride salt can affect hydrogen bond, resulting in the variation of near infrared spectrum of water. The temperature influence on NIR spectrum has been decreased by choosing reasonable wavelength range and the wavelength where the temperature effects are zero (isosbestic point). Chlorine salt prediction model was established based on partial least squares method and used for predicting the concentration of the chlorine ion. The impact on near infrared spectrum of the cation ionic radius, the number of ionic charge, the complex effect of ionic in water has also discussed in this article and the reason of every factor are analysed. Experimental results show that the temperature and concentration will affect the near-infrared spectrum of the solution, It is found that the effect of temperature plays the dominant role at low concentrations of chlorine salt; rather, the ionic dominates at high concentration. Chloride complexes are formed in aqueous solution, It has an effect on hydrogen bond of water combining with the cations in chlorine salt solution, Comparing different chloride solutions at the same concentration, the destruction effects of chloride complexes and catnions on the hydrogen bond of water increases in the sequences: CaCl2 >NaCl>KC. The modeling result shows that the determination coefficients (R2) = 99.97%, the root mean square error of cross validation (RM- SECV) = 4.51, and the residual prediction deviation (RPD) = 62.7, it meets the daily requirements of biochemical detection accuracy.
2009-01-01
greatest reduction was seen with castile soap, which lowered the photon count to 13% of the pretreatment level. This was followed by benzalkonium chloride ...castile soap was significantly greater than that with the normal saline solution (p = 0.0069), while the reductions with benzalkonium chloride (p...the goats were assigned to four treatment groups: normal saline solution, bacitracin solution, castile soap, and benzalkonium chloride . All wounds
Chlorination Revisited: Does Cl- Serve as a Catalyst in the Chlorination of Phenols?
Lau, Stephanie S; Abraham, Sonali M; Roberts, A Lynn
2016-12-20
The aqueous chlorination of (chloro)phenols is one of the best-studied reactions in the environmental literature. Previous researchers have attributed these reactions to two chlorine species: HOCl (at circum-neutral and high pH) and H 2 OCl + (at low pH). In this study, we seek to examine the roles that two largely overlooked chlorine species, Cl 2 and Cl 2 O, may play in the chlorination of (chloro)phenols. Solution pH, chloride concentration, and chlorine dose were systematically varied in order to assess the importance of different chlorine species as chlorinating agents. Our findings indicate that chlorination rates at pH < 6 increase substantially when chloride is present, attributed to the formation of Cl 2 . At pH 6.0 and a chlorine dose representative of drinking water treatment, Cl 2 O is predicted to have at best a minor impact on chlorination reactions, whereas Cl 2 may contribute more than 80% to the overall chlorination rate depending on the (chloro)phenol identity and chloride concentration. While it is not possible to preclude H 2 OCl + as a chlorinating agent, we were able to model our low-pH data by considering Cl 2 only. Even traces of chloride can generate sufficient Cl 2 to influence chlorination kinetics, highlighting the role of chloride as a catalyst in chlorination reactions.
Ptachcinski, R J; Logue, L W; Burckart, G J; Venkataramanan, R
1986-01-01
The stability of cyclosporine in commonly used i.v. solutions and the percentage of the drug delivered via polyvinyl chloride administration tubing were studied. Cyclosporine injection was prepared according to the manufacturer's instructions and diluted with 5% dextrose injection (D5W) or with 0.9% sodium chloride injection (NS). Admixtures containing cyclosporine 2 mg/mL were prepared in polyvinyl chloride minibags (five for each solution) and in glass containers (three for each solution). The sample obtained at time zero from a glass container protected from light was the control. Additional samples were prepared in minibags and run through 70-inch polyvinyl chloride administration sets. An HPLC assay for cyclosporine was used. Exposure to room light did not significantly affect cyclosporine concentrations. More than 90% of the initial drug concentration remained after 24 hours under all storage conditions, but less than 95% remained after 6 hours in samples diluted with NS and stored in plastic. At times up to 60 minutes, cyclosporine concentrations were significantly different in solutions infused from the minibags through polyvinyl chloride tubing from those in control solutions. Under these conditions, cyclosporine is stable in D5W in glass containers or polyvinyl chloride minibags for 24 hours and in NS for 6 hours (polyvinyl chloride) to 12 hours (glass). However, because of the potential for leaching of plasticizers, cyclosporine admixtures should be stored in glass or used within six hours if stored in polyvinyl chloride minibags. Approximately 10% of the initial drug concentration is lost to 70-inch length polyvinyl chloride infusion tubing.
NASA Astrophysics Data System (ADS)
Oh, Gye-Jeong; Lee, Kwangmin; Lee, Doh-Jae; Lim, Hyun-Pil; Yun, Kwi-Dug; Ban, Jae-Sam; Lee, Kyung-Ku; Fisher, John G.; Park, Sang-Won
2012-10-01
The effect of three kinds of transition metal dopants on the color and biaxial flexural strength of zirconia ceramics for dental applications was evaluated. Presintered zirconia discs were colored through immersion in aqueous chromium, molybdenum and vanadium chloride solutions and then sintered at 1450 °C. The color of the doped specimens was measured using a digital spectrophotometer. For biaxial flexural strength measurements, specimens infiltrated with 0.3 wt% of each aqueous chloride solution were used. Uncolored discs were used as a control. Zirconia specimens infiltrated with chromium, molybdenum and vanadium chloride solutions were dark brown, light yellow and dark yellow, respectively. CIE L*, a*, and b* values of all the chromium-doped specimens and the specimens infiltrated with 0.1 wt% molybdenum chloride solution were in the range of values for natural teeth. The biaxial flexural strengths of the three kinds of metal chloride groups were similar to the uncolored group. These results suggest that chromium and molybdenum dopants can be used as colorants to fabricate tooth colored zirconia ceramic restorations.
NuLYTELY (PEG 3350, sodium chloride, sodium bicarbonate and potassium chloride for oral solution).
Swartz, M L
1992-02-01
NuLYTELY (PEG 3350, Sodium Chloride, Sodium Bicarbonate, and Potassium Chloride for Oral Solution), a product from Braintree Laboratories, Inc. is a modification of GoLYTELY (PEG 3350 and Electrolytes for Oral Solution) that has been found to have the same therapeutic advantages in terms of safety, efficacy, speed and patient acceptance. This product was developed to improve upon the taste of GoLYTELY. NuLYTELY represents an effective alternative for bowel cleansing prior to colonoscopy that may be more acceptable to some patients.
Myers, Alan L; Zhang, Yang-Ping; Kawedia, Jitesh D; Trinh, Van A; Tran, Huyentran; Smith, Judith A; Kramer, Mark A
2016-02-01
Carboplatin is a platinum-containing compound with efficacy against various malignancies. The physico-chemical stability of carboplatin in dextrose 5% water (D5W) has been thoroughly studied; however, there is a paucity of stability data in clinically relevant 0.9% sodium chloride infusion solutions. The manufacturer's limited stability data in sodium chloride solutions hampers the flexibility of carboplatin usage in oncology patients. Hence, the purpose of this study is to determine the physical and chemical stability of carboplatin-sodium chloride intravenous solutions under different storage conditions. The physico-chemical stability of 0.5 mg/mL, 2.0 mg/mL, and 4.0 mg/mL carboplatin-sodium chloride solutions prepared in polyvinyl chloride bags was determined following storage at room temperature under ambient fluorescent light and under refrigeration in the dark. Concentrations of carboplatin were measured at predetermined time points up to seven days using a stability-indicating high-performance liquid chromatography method. All tested solutions were found physically stable for at least seven days. The greatest chemical stability was observed under refrigerated storage conditions. At 4℃, all tested solutions were found chemically stable for at least seven days, with nominal losses of ≤6%. Following storage at room temperature exposed to normal fluorescent light, the chemical stability of 0.5 mg/mL, 2.0 mg/mL, and 4.0 mg/mL solutions was three days, five days, and seven days, respectively. The extended physico-chemical stability of carboplatin prepared in sodium chloride reported herein permits advance preparation of these admixtures, facilitating pharmacy utility and operations. Since no antibacterial preservative is contained within these carboplatin solutions, we recommend storage, when prepared under specified aseptic conditions, no greater than 24 h at room temperature or three days under refrigeration. © The Author(s) 2014.
Leaching of diethylhexyl phthalate from polyvinyl chloride bags into intravenous etoposide solution.
Demoré, B; Vigneron, J; Perrin, A; Hoffman, M A; Hoffman, M
2002-04-01
To compare the release of diethylhexyl phthalate (DEHP) from polyvinyl chloride (PVC) bags from four different manufacturers into intravenous etoposide solutions. Etoposide solutions, 0.4 mg/mL, containing the vehicle polysorbate 80 were prepared in 5% dextrose or 0.9% sodium chloride injection PVC bags and stored at room temperature for 24 h. DEHP content was analysed by high-performance liquid chromatography. Substantial amounts of DEHP (up to 20 microg/mL at room temperature) leached into the etoposide solutions. However, no significant differences were found in the amounts of DEHP leached into the etoposide infusion solutions prepared using either 5% dextrose or 0.9% sodium chloride injection and stored in the four different containers. To minimize patient exposure o DEHP, etoposide solutions should ideally be stored in a glass or polyolefin container.
Metal chloride cathode for a battery
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V. (Inventor); Distefano, Salvador (Inventor); Bankston, C. Perry (Inventor)
1991-01-01
A method of fabricating a rechargeable battery is disclosed which includes a positive electrode which contains a chloride of a selected metal when the electrode is in its active state. The improvement comprises fabricating the positive electrode by: providing a porous matrix composed of a metal; providing a solution of the chloride of the selected metal; and impregnating the matrix with the chloride from the solution.
Hygroscopic salts and the potential for life on Mars.
Davila, Alfonso F; Duport, Luis Gago; Melchiorri, Riccardo; Jänchen, Jochen; Valea, Sergio; de Los Rios, Asunción; Fairén, Alberto G; Möhlmann, Diedrich; McKay, Christopher P; Ascaso, Carmen; Wierzchos, Jacek
2010-01-01
Hygroscopic salts have been detected in soils in the northern latitudes of Mars, and widespread chloride-bearing evaporitic deposits have been detected in the southern highlands. The deliquescence of hygroscopic minerals such as chloride salts could provide a local and transient source of liquid water that would be available for microorganisms on the surface. This is known to occur in the Atacama Desert, where massive halite evaporites have become a habitat for photosynthetic and heterotrophic microorganisms that take advantage of the deliquescence of the salt at certain relative humidity (RH) levels. We modeled the climate conditions (RH and temperature) in a region on Mars with chloride-bearing evaporites, and modeled the evolution of the water activity (a(w)) of the deliquescence solutions of three possible chloride salts (sodium chloride, calcium chloride, and magnesium chloride) as a function of temperature. We also studied the water absorption properties of the same salts as a function of RH. Our climate model results show that the RH in the region with chloride-bearing deposits on Mars often reaches the deliquescence points of all three salts, and the temperature reaches levels above their eutectic points seasonally, in the course of a martian year. The a(w) of the deliquescence solutions increases with decreasing temperature due mainly to the precipitation of unstable phases, which removes ions from the solution. The deliquescence of sodium chloride results in transient solutions with a(w) compatible with growth of terrestrial microorganisms down to 252 K, whereas for calcium chloride and magnesium chloride it results in solutions with a(w) below the known limits for growth at all temperatures. However, taking the limits of a(w) used to define special regions on Mars, the deliquescence of calcium chloride deposits would allow for the propagation of terrestrial microorganisms at temperatures between 265 and 253 K, and for metabolic activity (no growth) at temperatures between 253 and 233 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, C.J.; Du, R.G.; Nguyen, T.
2000-01-01
Combination solid silver-silver chloride (Ag-AgCl) and liquid membrane Cl{sup {minus}} ion-selective microelectrodes were designed and constructed. These microelectrodes, which had a micrometer-sized tip, contained two compartments: one served as the reference electrode and the other as the Cl{sup {minus}} ion-selective electrode. The microelectrodes were used to map in-situ Cl{sup {minus}} ion distribution in several localized corrosion systems. When used with a computerized scanning stage, the microelectrodes provided information on the distribution of Cl{sup {minus}} ions near the metal/electrolyte interface. Cl{sup {minus}} ions were observed migrating toward and accumulating near the anodic region forming a Cl{sup {minus}}ion-rich island on the metalmore » surface. Scanning combination Cl{sup {minus}} ion-selective microelectrodes may provide a useful tool for mechanistic studies of localized corrosion.« less
de Oliveira, Fabrício Singaretti
2014-07-01
Anatomical specimens used in human or veterinary anatomy laboratories are usually prepared with formaldehyde (a cancerous and teratogenic substance), glycerin (an expensive and viscous fluid), or ethanol (which is flammable). This research aimed to verify the viability of an aqueous 30% sodium chloride solution for preservation of anatomical specimens previously fixed with formaldehyde. Anatomical specimens of ruminant, carnivorous, equine, swine and birds were used. All were previously fixed with an aqueous 20% formaldehyde solution and held for 7 days in a 10% aqueous solution of the same active ingredient. During the first phase of the experiment, small specimens of animal tissue previously fixed in formaldehyde were distributed in vials with different concentrations of formaldehyde, with or without 30% sodium chloride solution, a group containing only 30% sodium chloride, and a control group containing only water. During this phase, no contamination was observed in any specimen containing 30% sodium chloride solution, whether alone or in combination with different concentrations of formaldehyde. In the second phase of the experiment, the 30% sodium chloride solution, found to be optimal in the first phase of the experiment, was tested for its long-term preservation properties. For a period of 5 years, the preserved specimens were evaluated three times a week for visual contamination, odors, and changes in color and texture. There was no visual contamination or decay found in any specimen. Furthermore, no strange odors, or changes in color or softness were noted. The 30% sodium chloride solution was determined to be effective in the preservation of anatomic specimens previously fixed in formaldehyde. © 2014 Anatomical Society.
de Oliveira, Fabrício Singaretti
2014-01-01
Anatomical specimens used in human or veterinary anatomy laboratories are usually prepared with formaldehyde (a cancerous and teratogenic substance), glycerin (an expensive and viscous fluid), or ethanol (which is flammable). This research aimed to verify the viability of an aqueous 30% sodium chloride solution for preservation of anatomical specimens previously fixed with formaldehyde. Anatomical specimens of ruminant, carnivorous, equine, swine and birds were used. All were previously fixed with an aqueous 20% formaldehyde solution and held for 7 days in a 10% aqueous solution of the same active ingredient. During the first phase of the experiment, small specimens of animal tissue previously fixed in formaldehyde were distributed in vials with different concentrations of formaldehyde, with or without 30% sodium chloride solution, a group containing only 30% sodium chloride, and a control group containing only water. During this phase, no contamination was observed in any specimen containing 30% sodium chloride solution, whether alone or in combination with different concentrations of formaldehyde. In the second phase of the experiment, the 30% sodium chloride solution, found to be optimal in the first phase of the experiment, was tested for its long-term preservation properties. For a period of 5 years, the preserved specimens were evaluated three times a week for visual contamination, odors, and changes in color and texture. There was no visual contamination or decay found in any specimen. Furthermore, no strange odors, or changes in color or softness were noted. The 30% sodium chloride solution was determined to be effective in the preservation of anatomic specimens previously fixed in formaldehyde. PMID:24762210
Changes in the IR Spectra of Aqueous Solutions of Alkali Metal Chlorides during Crystallization
NASA Astrophysics Data System (ADS)
Koroleva, A. V.; Matveev, V. K.; Koroleva, L. A.; Pentin, Yu. A.
2018-02-01
The IR spectra of aqueous solutions of sodium chloride and rubidium chloride with the same concentration of 0.1 M upon freezing are studied in the middle IR region. The changes that occur in the absorption bands of the bending ν2, compound ν2 + νL, and stretching (ν1, 2ν2, and ν3) vibrations of water molecules with gradual crystallization of the solutions are studied. The obtained spectra of crystallized solutions are compared to the IR spectrum of ice Ih. Analysis allows conclusions about the structure of the investigated frozen crystallized solutions.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-ethylamino-6-isopropylamino-5-triazine solution # Choline chloride solution D Clay slurry III Coal slurry III... acid, dimethylamine salt solution * Y Choline chloride solutions Z Clay slurry OS Coal slurry OS...
Chou, A; Hori, S; Takase, M
1985-01-01
Subconjunctival injection of 0.2 ml of the following solutions was carried out once a day for two weeks in the albino and pigmented rabbit: commercial 0.5% timolol or 1% befunolol ophthalmic solutions, both containing benzalkonium chloride, and also these drug solutions containing no preservative, ophthalmic base solutions containing benzalkonium chloride, physiological saline solution or phosphate buffer solution. One week after daily injections of the commercial drug solutions or base solutions with benzalkonium chloride, the electroretinogram (ERG) showed a marked reduction in the a- and b-wave amplitudes in the pigmented rabbit, but the ERG changes were slight in the albino rabbit. After two weeks of injections, histological studies of the pigmented rabbit eyes revealed retinal detachment, visual cell loss and atrophy of the retinal pigment epithelium and choroid; the changes in the albino rabbit eyes were minimal. Injections of the beta-blockers containing no benzalkonium resulted in no significant changes in the ERG or in the tissue structures of all rabbits. Injections of only physiological saline or phosphate buffer had no deleterious effects. Therefore, the ocular toxicity of the beta-blockers was thought to be minor and the toxic effects seen in this study were thought to be due to benzalkonium chloride, which possibly accumulates in the ocular pigments.
Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar.
Lee, Yunsu; Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin; Lim, Seungmin
2018-04-05
This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)₂ saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER.
The impact of sulphate and magnesium on chloride binding in Portland cement paste
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Weerdt, K., E-mail: klaartje.d.weerdt@ntnu.no; SINTEF Building and Infrastructure, Trondheim; Orsáková, D.
2014-11-15
The effect of magnesium and sulphate present in sea water on chloride binding in Portland cement paste was investigated. Ground well hydrated cement paste was exposed to MgCl{sub 2}, NaCl, NaCl + MgCl{sub 2}, MgSO{sub 4} + MgCl{sub 2} and artificial sea water solutions with a range of concentrations at 20 °C. Chloride binding isotherms are determined and pH of the solutions were measured. A selection of samples was examined by SEM-EDS to identify phase changes upon exposure. The experimental data were compared with calculations of a thermodynamic model. Chloride binding from sea water was similar to chloride binding formore » NaCl solutions. The magnesium content in the sea water lead to a slight decrease in pH, but this did not result in a notable increase in chloride binding. The sulphate present in sea water reduces both chloride binding in C–S–H and AFm phases, as the C–S–H incorporates more sulphates instead of chlorides, and part of the AFm phases converts to ettringite.« less
Savolainen, J.E.
1963-01-29
A method is described for reducing the chloride content of a solution derived from the dissolution of a stainless steel clad nuclear fuel element with an aqua regia dissolution medium. The solutlon is adjusted to a nitric acid concentration in the range 5 to 10 M and is countercurrently contacted at room temperature with a gaseous oxide of nitrogen selected from NO, NO/sub 2/, N/sub 2/ O/sub 3/, and N/sub 2/O/sub 4/. Chlo ride is recovered from the contacted solution as nitrosyl chloride. After reduction of the chloride content, the solution is then contacted with gaseous NO to reduce the nitric acid molarity to a desired level. (AEC)
Evaluation of chloride/bicarbonate. Exchange in the human colon in vivo.
Davis, G R; Morawski, S G; Santa Ana, C A; Fordtran, J S
1983-01-01
During perfusion of a plasma-like solution, colonic absorption rate of chloride was much higher than the secretion rate of bicarbonate (34 vs. 3.5 meq/h, respectively). This might suggest that anion exchange (Cl/HCO3) accounts for only a small fraction of total chloride absorption. However, if the colon absorbs as well as secretes bicarbonate, this reasoning would underestimate the magnitude of the anion exchange. To see if the colon absorbs bicarbonate, we perfused a chloride-free solution (which would eliminate bicarbonate secretion via (Cl/HCO3 exchange) and found that the colon absorbed bicarbonate at a rate of 5.1 meq/h. Calculation of electrochemical gradients and measurement of luminal fluid PCO2 indicated that this bicarbonate absorption was mediated passively in response to electrical gradients, rather than via reversed Cl/HCO3 exchange or acid secretion. The combined results of the plasma-like and chloride-free perfusion experiments suggest Cl/HCO3 exchange at a rate of 8.6 meq/h (the sum of bicarbonate movements, 3.5 and 5.1 meq/h, observed in the two experiments). To obtain a second estimate under different experimental conditions, a choline chloride-choline bicarbonate (sodium-free) solution was perfused; with this solution, chloride and bicarbonate absorption dependent on active sodium transport should be eliminated or markedly reduced, and the magnitude of Cl/HCO3 exchange should be revealed. This experiment suggested a Cl/HCO3 exchange rate of 9.3 meq/h, similar to the first estimate. As chloride was absorbed at a rate of 34 meq/h during perfusion of the plasma-like solution, the Cl/HCO3 exchange provides for approximately one-fourth of total chloride absorption. PMID:6401766
Evaluation of chloride/bicarbonate. Exchange in the human colon in vivo.
Davis, G R; Morawski, S G; Santa Ana, C A; Fordtran, J S
1983-02-01
During perfusion of a plasma-like solution, colonic absorption rate of chloride was much higher than the secretion rate of bicarbonate (34 vs. 3.5 meq/h, respectively). This might suggest that anion exchange (Cl/HCO3) accounts for only a small fraction of total chloride absorption. However, if the colon absorbs as well as secretes bicarbonate, this reasoning would underestimate the magnitude of the anion exchange. To see if the colon absorbs bicarbonate, we perfused a chloride-free solution (which would eliminate bicarbonate secretion via (Cl/HCO3 exchange) and found that the colon absorbed bicarbonate at a rate of 5.1 meq/h. Calculation of electrochemical gradients and measurement of luminal fluid PCO2 indicated that this bicarbonate absorption was mediated passively in response to electrical gradients, rather than via reversed Cl/HCO3 exchange or acid secretion. The combined results of the plasma-like and chloride-free perfusion experiments suggest Cl/HCO3 exchange at a rate of 8.6 meq/h (the sum of bicarbonate movements, 3.5 and 5.1 meq/h, observed in the two experiments). To obtain a second estimate under different experimental conditions, a choline chloride-choline bicarbonate (sodium-free) solution was perfused; with this solution, chloride and bicarbonate absorption dependent on active sodium transport should be eliminated or markedly reduced, and the magnitude of Cl/HCO3 exchange should be revealed. This experiment suggested a Cl/HCO3 exchange rate of 9.3 meq/h, similar to the first estimate. As chloride was absorbed at a rate of 34 meq/h during perfusion of the plasma-like solution, the Cl/HCO3 exchange provides for approximately one-fourth of total chloride absorption.
Particulate and microbial contamination in in-use admixed intravenous infusions.
Yorioka, Katsuhiro; Oie, Shigeharu; Oomaki, Masafumi; Imamura, Akihisa; Kamiya, Akira
2006-11-01
We compared particulate and microbial contamination in residual solutions of peripheral intravenous admixtures after the termination of drip infusion between intravenous fluids admixed with glass ampoule drugs and those admixed with pre-filled syringe drugs. The mean number of particles>or=1.3 microm in diameter per 1 ml of residual solution was 758.4 for fluids (n=60) admixed with potassium chloride in a glass ampoule (20 ml volume), 158.6 for fluids (n=63) admixed with potassium chloride in a pre-filled syringe (20 ml volume), 736.5 for fluids (n=66) admixed with sodium chloride in a glass ampoule (20 ml volume), 179.2 for fluids (n=15) admixed with sodium chloride in a pre-filled syringe (20 ml volume), 1884.5 in fluids (n=30) admixed with dobutamine hydrochloride in 3 glass ampoules (5 ml volume), and 178.9 (n=10) in diluted dobutamine hydrochloride in pre-filled syringes (50 ml volume: For these samples alone, particulate and microbial contamination were evaluated in sealed products.) Thus, for potassium chloride or sodium chloride for injection, the number of particles>or=1.3 microm in diameter in the residual intravenous solution was significantly higher for fluids admixed with glass ampoule drugs than for those admixed with pre-filled syringe drugs (p<0.0001). For dobutamine hydrochloride for injection, the number of particles>or=1.3 microm in diameter in the residual intravenous solution was estimated to be higher for fluids admixed with its glass ampoule drug than for those admixed with its pre-filled syringe drug. Observation of the residual solutions of fluids admixed with potassium chloride, sodium chloride, or dobutamine hydrochloride in glass ampoules using an electron microscope with an X-ray analyzer showed glass fragments in each residual solution. Therefore, for the prevention of glass particle contamination in peripheral intravenous admixtures, the use of pre-filled syringe drugs may a useful method. No microbial contamination was observed in any of the residual solutions of 5 types of admixture.
Thostenson, J O; Mourouvin, R; Hawkins, B T; Ngaboyamahina, E; Sellgren, K L; Parker, C B; Deshusses, M A; Stoner, B R; Glass, J T
2018-09-01
Electrochemical disinfection (ECD) has become an important blackwater disinfection technology. ECD is a promising solution for the 2 billion people without access to conventional sanitation practices and in areas deficient in basic utilities (e.g., sewers, electricity, waste treatment). Here, we report on the disinfection of blackwater using potential cycling compared to potentiostatic treatment methods in chloride-containing and chloride-free solutions of blackwater (i.e., untreated wastewater containing feces, urine, and flushwater from a toilet). Potentiodynamic treatment is demonstrated to improve disinfection energy efficiency of blackwater by 24% and 124% compared to static oxidation and reduction methods, respectively. The result is shown to be caused by electrochemical advanced oxidation processes (EAOP) and regeneration of sp 2 -surface-bonded carbon functional groups that serve the dual purpose of catalysts and adsorption sites of oxidant intermediates. Following 24 h electrolysis in blackwater, electrode fouling is shown to be minimized by the potential cycling method when compared to equivalent potentiostatic methods. The potential cycling current density is 40% higher than both the static oxidative and reductive methods. This work enhances the understanding of oxygen reduction catalysts using functionalized carbon materials and electrochemical disinfection anodes, both of which have the potential to bring a cost-effective, energy efficient, and practical solution to the problem of disinfecting blackwater. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Bray, Lane Allan; DesChane, Jaquetta R.
1998-01-01
A method for separating .sup.213 Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon .sup.213 Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as .sup.225 Ra, .sup.225 Ac, and .sup.221 Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The .sup.213 Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the .sup.213 Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the .sup.213 Bi. A preferred stripping solution for purification of .sup.213 Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc, to receive the .sup.213 Bi as it is being released from the anion exchange resin.
Bray, L.A.; DesChane, J.R.
1998-05-05
A method is described for separating {sup 213}Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon {sup 213}Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as {sup 225}Ra, {sup 225}Ac, and {sup 221}Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The {sup 213}Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the {sup 213}Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the {sup 213}Bi. A preferred stripping solution for purification of {sup 213}Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc receives the {sup 213}Bi as it is being released from the anion exchange resin. 10 figs.
Ruas, Alexandre; Simonin, Jean-Pierre; Turq, Pierre; Moisy, Philippe
2005-12-08
This work is aimed at a description of the thermodynamic properties of actinide salt solutions at high concentration. The predictive capability of the binding mean spherical approximation (BIMSA) theory to describe the thermodynamic properties of electrolytes is assessed in the case of aqueous solutions of lanthanide(III) nitrate and chloride salts. Osmotic coefficients of cerium(III) nitrate and chloride were calculated from other lanthanide(III) salts properties. In parallel, concentrated binary solutions of cerium nitrate were prepared in order to measure experimentally its water activity and density as a function of concentration, at 25 degrees C. Water activities of several binary solutions of cerium chloride were also measured to check existing data on this salt. Then, the properties of cerium chloride and cerium nitrate solutions were compared within the BIMSA model. Osmotic coefficient values for promethium nitrate and promethium chloride given by this theory are proposed. Finally, water activity measurements were made to examine the fact that the ternary system Ce(NO3)3/HNO3/H2O and the quaternary system Ce(NO3)3/HNO3/N2H5NO3/H2O may be regarded as "simple solutions" (in the sense of Zdanovskii and Mikulin).
URANIUM RECOVERY AND PURIFICATION PROCESS AND PRODUCTION OF HIGH PURITY URANIUM TETRAFLUORIDE
Bailes, R.H.; Long, R.S.; Grinstead, R.R.
1957-09-17
A process is described wherein an anionic exchange technique is employed to separate uramium from a large variety of impurities. Very efficient and economical purification of contamimated uranium can be achieved by treatment of the contaminated uranium to produce a solution containing a high concentration of chloride. Under these conditions the uranium exists as an aniomic chloride complex. Then the uranium chloride complex is adsorbed from the solution on an aniomic exchange resin, whereby a portion of the impurities remain in the solution and others are retained with the uramium by the resin. The adsorbed impurities are then removed by washing the resin with pure concentrated hydrochloric acid, after which operation the uranium is eluted with pure water yielding an acidic uranyl chloride solution of high purity.
Asada, Hiroyuki; Takaoka-Shichijo, Yuko; Nakamura, Masatsugu; Kimura, Akio
2010-06-01
Optimization of benzalkonium chloride (alkyl dimethylbenzylammonium chloride: BAK) concentration as preservative in 0.0015% tafluprost ophthalmic solution (Tapros 0.0015% ophthalmic solution), an anti-glaucoma medicine, was examined from the points of ocular surface safety and preservative efficacy. BAKC(12), which is dodecyl dimethylbenzylammonium chloride, and BAKmix, which is the mixture of dodecyl, tetradecyl and hexadecyl dimethylbenzylammonium chloride were used in this study. The effects of BAKC(12) concentrations and the BAK types, BAKC(12) and BAKmix, in tafluprost ophthalmic solution on ocular surface safety were evaluated using the in vitro SV 40-immobilized human corneal epithelium cell line (HCE-T). Following treatments of Tafluprost ophthalmic solutions with BAKC(12), its concentration dependency was observed on cell viability of HCE-T. The cell viability of HCE-T after treatment of these solutions with 0.001% to 0.003% BAKC(12) for 5 minutes were the same level as that after treatment of the solution without BAK. Tafluprost ophthalmic solution with 0.01% BAKC(12) was safer for the ocular surface than the same solution with 0.01% BAKmix. Preservatives-effectiveness tests of tafluprost ophthalmic solutions with various concentrations of BAKC(12) were performed according to the Japanese Pharmacopoeia (JP), and solutions with more than 0.0005% BAKC(12) conformed to JP criteria. It was concluded that 0.0005% to 0.003% of BAKC(12) in tafluprost ophthalmic solution was optimal, namely, well-balanced from the points of ocular surface safety and preservative efficacy.
Fabrication and Performance of All-Solid-State Chloride Sensors in Synthetic Concrete Pore Solutions
Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei
2010-01-01
One type of all-solid-state chloride sensor was fabricated using a MnO2 electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K+, Ca2+, Na+ and SO42− ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments. PMID:22163467
Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei
2010-01-01
One type of all-solid-state chloride sensor was fabricated using a MnO(2) electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K(+), Ca(2+), Na(+) and SO(4) (2-) ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments.
Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar
Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin
2018-01-01
This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)2 saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER. PMID:29621188
Costa, P M; Fernandes, P L; Ferreira, H G; Ferreira, K T; Giraldez, F
1987-12-01
1. Membrane potential and conductances and short-circuit current were continuously measured with microelectrodes and conventional electrophysiological techniques in a stripped preparation of frog skin epithelium. The effects of the removal of chloride or sodium ions and the concentration or dilution of the serosal (inner) bathing solution were studied. 2. Chloride- or sodium-free solutions produced a cell depolarization of about 30 mV in parallel with a fall in the short-circuit current. Mucosal and serosal membrane conductances both decreased and the sodium permeability of the mucosal barrier was calculated to fall to about one-half its value in standard Ringer solution. The observed decrease in the short-circuit current is probably related to the combined effect of the decrease in sodium permeability and the decrease in the driving force across the mucosal membrane. 3. The removal of chloride or sodium ions reduced the depolarization caused by serosal perfusion with high-potassium solutions (50 mM-KCl). The ratio of the change in cell membrane potential under short-circuit conditions to the change in the potassium equilibrium potential (delta Ec(s.c.)/delta EK), was 0.59 in standard Ringer solution and 0.26 and 0.24 after the removal of chloride or sodium respectively. The depolarizing effect of barium-containing solutions (2 mM-BaCl2) was also markedly reduced in chloride- or sodium-free solutions, suggesting a decrease of the potassium selectivity of the serosal membrane in these conditions. 4. Increasing the osmolality of the serosal bathing solution produced similar effects, i.e. cell depolarization, fall in the short-circuit current and membrane conductances and reduction of the depolarizing effect of high-potassium and barium solutions. On the contrary, dilution of the serosal bath produced the opposite effects, consistent with an increase in the serosal permeability to potassium. 5. The effects of chloride- or sodium-free solutions were reversed by the dilution of the serosal bath. Cells repolarized when exposed to low-osmolality solutions after being in the absence of serosal chloride or sodium. The repolarization ran in parallel with the restoration of the short-circuit current and the potassium selectivity of the serosal membrane. 6. The results show that the effects produced by the removal of sodium or chloride ions from the serosal bathing solution are most probably mediated by a reduction in cell volume. Cell volume changes would lead to changes in the serosal membrane selectivity to potassium and thus to changes in cell membrane potential and sodium transport.(ABSTRACT TRUNCATED AT 400 WORDS)
Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions
NASA Technical Reports Server (NTRS)
Forsythe, Elizabeth L.; Judge, Russell A.; Pusey, Marc L.
1998-01-01
The solubility of chicken egg white lysozyme, crystallized in the tetragonal form was measured in sodium chloride solutions from 1.6 to 30.7 C, using a miniature column solubility apparatus. Sodium chloride solution concentrations ranged from 1 to 7% (w/v). The solutions were buffered with 0.1 M sodium acetate buffer with the solubility being measured at pH values in 0.2 pH unit increments in the range pH 4.0 to 5.4, with data also included at pH 4.5. Lysozyme solubility was found to increase with increases in temperature and decreasing salt concentration. Solution pH has a varied and unpredictable effect on solubility.
NASA Technical Reports Server (NTRS)
Ballou, E. V.; Wydeven, T.; Leban, M. I.
1971-01-01
Hyperfiltration of sodium chloride and urea was studied with porous glass membranes in closed-end capillary form, to determine the effect of pressure, temperature, and concentration variations, and lifetime rejection and flux characteristics. Rejection data for sodium chloride were consistent with the functioning of the porous glass as a low-capacity ion-exchange membrane.
Action of some foreign cations and anions on the chloride permeability of frog muscle
Hutter, O. F.; Warner, Anne E.
1967-01-01
1. Evidence for the existence in skeletal muscle of a specific cation binding system capable of lowering the chloride permeability was obtained by testing the effect of several metal ion species upon the efflux of 36Cl from frog muscles equilibrated in high-KCl solution. 2. Cu2+, Zn2+ and UO22+ ions, when present in concentrations of approximately 10-4 M in inactive wash solution at pH 7·4 slowed the efflux of 36Cl to half its original value. At pH 5·0, when the chloride permeability was already low as a consequence of hydrogen ion binding, these metal ions had little further effect. 3. Presence of Ni2+, Co2+, Pb2+, Ce3+ and La3+ in 10-4 M or higher concentrations had no detectable influence on the 36Cl efflux. Wide variations in Ca2+ concentration were similarly ineffective. 4. The influence of more adsorbable anions on the chloride permeability was examined at different pH values. Extracellular iodide greatly slowed the rapid efflux of 36Cl into alkaline solution. In acid solutions, when the chloride permeability was already low, the effect of iodide was less pronounced, but still demonstrable. The chloride permeability was consequently increased to a lesser extent by a rise in pH in the presence of iodide. 5. The efflux of iodide and bromide was measured at different pH values under conditions of self exchange. In alkaline solution the permeabilities to iodide and bromide were considerably lower than that to chloride. In acid solution the membrane differentiated less between anion species of different adsorbability. PMID:6040156
USDA-ARS?s Scientific Manuscript database
The rheological properties of aqueous solutions and films made from blends of polyvinyl alcohol (PVOH) and amylose-hexadecylammonium chloride inclusion complexes (Hex-Am) were investigated to better understand the polymer interactions and processing parameters. Aqueous solutions of Hex-Am displayed ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, K.S.; Chang, F.; Levy, M.
1993-07-01
Pitting corrosion of molybdenum-ion-implanted, depleted uranium -0 75 Ti (DU -0 75 Ti) has been studied electrochemically in acidic, neutral, and alkaline solutions containing sodium chloride, and the results have been compared to those of the unimplanted DU -0 75 Ti. The data show that Mo implantation shifts the pitting potential of DU -0 75 Ti in the noble direction in acidic and alkaline solutions. In neutral 50 ppm Cl- solution, however, there is no beneficial effect of Mo implantation. Auger analysis studies show that before exposure to the solutions, all the molybdenum is in the oxide, which is approximatelymore » l000 A thick. After electrochemical scans in the acidic and alkaline chloride solutions, most of the Mo disappears from the oxide. However, no decrease in Mo concentration is found after exposure in neutral chloride solution. It is proposed that the implanted molybdenum dissolves in the acidic and alkaline solutions and forms simple or complex molybdates that inhibit pitting corrosion. The implanted molybdenum does not dissolve in the neutral chloride solution and inhibition does not occur.« less
Bukiet, Frédéric; Couderc, Guillaume; Camps, Jean; Tassery, Hervé; Cuisinier, Frederic; About, Imad; Charrier, Anne; Candoni, Nadine
2012-11-01
The purposes of the present study were to (1) assess the effect of the addition of benzalkonium chloride to sodium hypochlorite on its wetting properties, contact angle, and surface energy; (2) determine the critical micellar concentration of benzalkonium chloride in sodium hypochlorite; and (3) investigate the influence of addition of benzalkonium chloride on the free chlorine level, cytotoxicity, and antiseptic properties of the mixture. Solutions of benzalkonium chloride, with concentrations ranging from 0%-1%, were mixed in 2.4% sodium hypochlorite and tested as follows. The wetting properties were investigated by measuring the contact angle of the solutions on a nondehydrated dentin surface by using the static sessile drop method. The pending drop technique was subsequently used to determine the surface energy of the solutions. The critical micellar concentration of benzalkonium chloride mixed in sodium hypochlorite was calculated from the data. When 2.4% NaOCl was mixed with benzalkonium chloride at the critical micellar concentration, 3 parameters were tested: free chloride content, cytotoxicity, and antibacterial effects against Enterococcus faecalis. The contact angle (P < .001) as well as the surface energy (P < .001) significantly decreased with increasing benzalkonium chloride concentrations. The critical micellar concentration of benzalkonium chloride in sodium hypochlorite was 0.008%. At this concentration, the addition of benzalkonium chloride had no effect on the free chlorine content, cytotoxicity, or antibacterial efficiency of the mixture. The addition of benzalkonium chloride to sodium hypochlorite at the critical micellar concentration reduced the contact angle by 51.2% and the surface energy by 53.4%, without affecting the free chloride content, cytotoxicity, or antibacterial properties of the mixture. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Chloride supporting electrolytes for all-vanadium redox flow batteries.
Kim, Soowhan; Vijayakumar, M; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Chen, Feng; Hu, Jianzhi; Li, Liyu; Yang, Zhenguo
2011-10-28
This paper examines vanadium chloride solutions as electrolytes for an all-vanadium redox flow battery. The chloride solutions were capable of dissolving more than 2.3 M vanadium at varied valence states and remained stable at 0-50 °C. The improved stability appeared due to the formation of a vanadium dinuclear [V(2)O(3)·4H(2)O](4+) or a dinuclear-chloro complex [V(2)O(3)Cl·3H(2)O](3+) in the solutions over a wide temperature range. The all-vanadium redox flow batteries with the chloride electrolytes demonstrated excellent reversibility and fairly high efficiencies. Only negligible, if any, gas evolution was observed. The improved energy capacity and good performance, along with the ease in heat management, would lead to substantial reduction in capital cost and life-cycle cost, making the vanadium chloride redox flow battery a promising candidate for stationary applications. This journal is © the Owner Societies 2011
NASA Astrophysics Data System (ADS)
Hodyss, R. P.; Thomas, E. C.; Vu, T. H.; Johnson, P. V.; Choukroun, M.
2017-12-01
Subsurface brines on Ceres containing natrite (Na2CO3) and smaller amounts of NH4Cl or NH4HCO3 have been proposed to reach the dwarf planet's surface from an internal reservoir, where the brines freeze and result in bright spots across Ceres. Kinetically frozen solutions containing the likely constituents of Ceres' subsurface brines (ammonium, sodium, carbonate, and chloride ions) were studied via infrared and micro-Raman spectroscopy, where the flash-frozen mixtures were found to preferentially form ammonium chloride and ammonium bicarbonate, even in sodium-dominated solutions. Additionally, sodium chloride only formed when sodium or chloride (or both) were present in excess in the brine solutions. Raman spectroscopy was further employed to analyze the effect of vacuum exposure on these frozen brines over longer periods of time to simulate the surface conditions of Ceres.
A novel method for improving cerussite sulfidization
NASA Astrophysics Data System (ADS)
Feng, Qi-cheng; Wen, Shu-ming; Zhao, Wen-juan; Cao, Qin-bo; Lü, Chao
2016-06-01
Evaluation of flotation behavior, solution measurements, and surface analyses were performed to investigate the effects of chloride ion addition on the sulfidization of cerussite in this study. Micro-flotation tests indicate that the addition of chloride ions prior to sulfidization can significantly increase the flotation recovery of cerussite, which is attributed to the formation of more lead sulfide species on the mineral surface. Solution measurement results suggest that the addition of chloride ions prior to sulfidization induces the transformation of more sulfide ions from pulp solution onto the mineral surface by the formation of more lead sulfide species. X-ray diffraction and energy-dispersive spectroscopy indicate that more lead sulfide species form on the mineral surface when chloride ions are added prior to sulfidization. These results demonstrate that the addition of chloride ions prior to sulfidization can significantly improve the sulfidization of cerussite, thereby enhancing the flotation performance.
In situ bioinspired synthesis of silver chloride nanocrystals on silk fibroin fibers
NASA Astrophysics Data System (ADS)
Su, Huilan; Han, Jie; Dong, Qun; Xu, Jia; Chen, Ying; Gu, Yu; Song, Weiqiang; Zhang, Di
2011-02-01
Silver chloride (AgCl) nanocrystals were formed and grown on silk fibroin fibers (SFFs) by a room-temperature process. Practically, the degummed SFFs were immersed into silver nitrate solution and sodium chloride solution in turn. The amino acids on the SFF surface were negatively charged in alkaline impregnant, providing locations to immobilize silver ions and form silver chloride seeds. AgCl nanocrystals can further grow into cubic AgCl nanocrystals with an edge of about 100 nm. The morphologies of the AgCl nanocrystals were mostly influenced by the concentration of sodium chloride solution and the special configurations of the SFFs. The target AgCl/SFF nanocomposites constructed by AgCl nanocrystals and substrate SFFs could be used as photocatalysts in water splitting and antibacterial agents. This work provides an important example in the introduction of natural biofibers to the synthesis of functional hybrid nanocomposites by a green and mild technique.
Savoie, Félix A; Asselin, Audrey; Goulet, Eric D B
2016-10-01
Savoie, FA, Asselin, A, and Goulet, EDB. Comparison of sodium chloride tablets-induced, sodium chloride solution-induced, and glycerol-induced hyperhydration on fluid balance responses in healthy men. J Strength Cond Res 30(10): 2880-2891, 2016-Sodium chloride solution-induced hyperhydration (NaCl-SolIH) is a powerful strategy to increase body water before exercise. However, NaCl-SolIH is associated with an unpleasant salty taste, potentially dissuading some athletes from using it and coaches from recommending it. Therefore, we evaluated the hyperhydrating potential of sodium chloride tablets-induced hyperhydration (NaCl-TabIH), which bypasses the palatability issue of NaCl-SolIH without sacrificing sodium chloride content, and compared it to NaCl-SolIH and glycerol-induced hyperhydration (GIH). Sixteen healthy males (age: 21 ± 2 years; fat-free mass (FFM): 65 ± 6 kg) underwent three, 3-hour long passive hyperhydration protocols during which they drank, over the first 60 minutes, 30-ml·kg FFM of an artificially sweetened solution. During NaCl-TabIH, participants swallowed 7.5, 1 g each, sodium chloride tablets with every liter of solution. During NaCl-SolIH, an equal quantity of sodium chloride tablets was dissolved in each liter of solution. With GIH, the glycerol concentration was 46.7 g·L. Urine production, fluid retention, hemoglobin, hematocrit, plasma volume, and perceptual variables were monitored throughout the trials. Total fluid intake was 1948 ± 182 ml. After 3 hour, there were no significant differences among treatments for hemoglobin, hematocrit, and plasma volume changes. Fluid retention was significantly greater with NaCl-SolIH (1150 ± 287 ml) than NaCl-TabIH (905 ± 340 ml) or GIH (800 ± 211 ml), with no difference between NaCl-TabIH and GIH. No differences were found among treatments for perceptual variables. NaCl-TabIH and GIH are equally effective, but inferior than NaCl-SolIH. NaCl-TabIH represents an alternative to hyperhydration induced with glycerol, which is prohibited by the World Anti-Doping Agency.
Osmosis-driven viscous fingering of oil-in-water emulsions
NASA Astrophysics Data System (ADS)
Liu, Ying; Rallabandi, Bhargav; Baskaran, Mrudhula; Stone, Howard
2017-11-01
Viscous fingering occurs when a low viscosity fluid invades a more viscous fluid. Fingering of two miscible fluids is more complicated than that of immiscible fluids in that there is no sharp fluid-fluid interface and diffusion occurs between the phases. We experimentally studied the fingering of two miscible fluids: an oil-in-water emulsion and a sodium chloride solution. When the concentration of sodium chloride in the water phase in the emulsion exceeds that in the sodium chloride solution, the consequent osmotic flow automatically facilitates the occurrence of the fingering. On the contrary, when the sodium chloride solution has higher concentration, the spreading of emulsion is more uniform than the case without the concentration difference. We provide a model to rationalize and quantify these observations.
NASA Astrophysics Data System (ADS)
Brandt, Nikolai N.; Chikishev, Andrey Y.
2002-05-01
Kinetics of background decay in Raman spectra of aqueous solutions of ricin agglutinin in the presence of guanidine chloride were measured. The differences in the kinetics of photobleaching are discussed.
21 CFR 184.1138 - Ammonium chloride.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The...
Role of calcium on chloride binding in hydrated Portland cement–metakaolin–limestone blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Zhenguo; Geiker, Mette Rica; De Weerdt, Klaartje
Chloride binding is investigated for Portland cement–metakaolin–limestone pastes exposed to CaCl{sub 2} and NaCl solutions. The phase assemblages and the amount of Friedel's salt are evaluated using TGA, XRD and thermodynamic modeling. A larger amount of Friedel's salt is observed in the metakaolin blends compared to the pure Portland cement. A higher total chloride binding is observed for the pastes exposed to the CaCl{sub 2} solution relative to those in the NaCl solution. This is reflected by the fact that calcium increases the quantity of Friedel's salt in the metakaolin blends by promoting the transformation of strätlingite and/or monocarbonate tomore » Friedel's salt. Calcium increases also the amount of chloride in the diffuse layer of the C-S-H for the pure cement. A linear correlation between the total bound chloride and the uptake of calcium from the CaCl{sub 2} solution is obtained and found to be independent on the type of cement blend.« less
Zhao, Yang; Luo, Guangping; Luo, Hong; Ye, Xin; Rong, Xia; Huang, Kejun
2010-10-01
The ACP 215 was a functional closed system for preparing glycerolized and deglycerolized RBCs, CSBT had approved the technique of long term storage glycerolized rare blood lower than -65°C, and then deglycerolized by this machine. From the manual method to use ACP 215, Chinese blood banks chose 9% sodium chloride and 0.9% sodium chloride in deglycerolization process, while the AABB guideline prescribed that 12% sodium chloride and 0.9% sodium chloride-0.2% glucose were acceptable in washing step of ACP 215. In addition, 0.9% sodium chloride was the only solution which was permitted by CSBT to be added into postwash RBCs, while in America many kinds of additive solutions like AS-3 could be added into postwash RBCs and stored at 4°C for 14 days. Changes of washing solutions and preservation solution were much different from the original procedure of ACP 215 approved by the FDA. It was necessary to assess the quality of deglyceroled and postwash RBCs by this modified process in ACP 215 in China. Two-unit whole bloods were collected from each volunteer and preserved in CP2D for anticoagulant. It was then centrifuged to separate the plasma, and suspending RBCs were stored at 4°C in MAP for 6 days. Each unit of RBC was transferred to a 1000-ml PVC plastic bag, an improved procedure including the single-disposable glycerolization set in an automated, functionally closed system (ACP 215, Haemonetics) was used to glycerolize RBC with 40% (wt/vol) glycerol, then frozen at -80°C. Two modified washing solutions of 9% sodium chloride and 0.9% sodium chloride were used to deglycerolize the same RBCs with single disposable deglycerolization set in ACP 215. The deglycerolized RBCs were stored at 4°C in 0.9% sodium chloride for 24h. The freeze-thaw recovery value was 95.3±1.8% (mean±SD); the freeze-thaw-wash recovery value was 82.3±5.94% (mean±SD); the residure glycerol was 6.1±1.66 mg/dl (mean±SD), storage at 4°C in 0.9% sodium chloride within 24h after deglycerolization the supernatant Hb was 43±12 mg/dl (mean±SD); the hemolysis rate was 0.2±0.1% (mean±SD); the supernatant potassium level was 4.03±0.81 mM (mean±SD); and the postwash units were negative for both aerobic and anaerobic bacteria. The postwash of deglycerolized RBC had an acceptable FTW recovery value, and stored in 0.9% sodium chloride for 24h at 4°C, had an acceptable hemolysis. Modified washing solutions of 9% sodium chloride and 0.9% sodium chloride and without any of preservation had not affected the quality of frozen RBCs prepared in ACP 215 and postwash stored at 4°C in 0.9% sodium chloride within 24h. Copyright © 2010 Elsevier Ltd. All rights reserved.
Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels
Vocke, Kerstin; Dauner, Kristin; Hahn, Anne; Ulbrich, Anne; Broecker, Jana; Keller, Sandro; Frings, Stephan
2013-01-01
Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca2+/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca2+/calmodulin, one at submicromolar Ca2+ concentrations and one in the micromolar Ca2+ range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca2+/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca2+ signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca2+ regulation in anoctamin Cl− channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types. PMID:24081981
SOLVENT EXTRACTION PROCESS FOR URANIUM FROM CHLORIDE SOLUTIONS
Blake, C.A. Jr.; Brown, K.B.; Horner, D.E.
1960-05-24
An improvement was made in a uranium extraction process wherein the organic extractant is a phosphine oxide. An aqueous solution containing phosphate ions or sulfate ions together with uranium is provided with a source of chloride ions during the extraction step. The presence of the chloride ions enables a phosphine oxide to extract uranium in the presence of strong uranium- complexing ions such as phosphate or sulfate ions.
The Underpotential Deposition of Copper on Pt(311): Site Selective Deposition and Anion Effects
1994-03-14
water (18 MOhms Millipore Milli-Q water). Aqueous acid solutions were prepared from high-purity (ULTREX) sulfuric acid . Copper ion solutions were...prepared by dissolution of CuSO 4 .5H 2 0 (Aldrich Gold Label 5N5) in sulfuric acid solutions. Chloride and bromide containing solutions were prepared by...Voltammetric characteristics of a Pt(311) electrode in acidic solutions containing chloride and bromide. Fig. 1 shows cyclic voltammograxns for the
Taltavull, C; Shi, Z; Torres, B; Rams, J; Atrens, A
2014-02-01
This research studied the influence of the chloride ion concentration on the corrosion behaviour of high-purity magnesium (Mg) and two Mg alloys in Hank's solution, using hydrogen evolution and weight loss. A buffer based on CO2 and NaHCO3 was used to maintain the pH constant. The corrosion behaviour was governed by a partially protective surface film, and film breakdown by the chloride ions. The carbonated calcium phosphate layer that formed in Hank's solution was important in determining the protective properties of the surface film.
NASA Astrophysics Data System (ADS)
McCarter, Colin P. R.; Price, Jonathan S.
2017-06-01
Ladder fen peatlands have excellent potential for wastewater polishing as they naturally contain both open water (pools) and subsurface (peat) treatment landforms; however, there is a poor understanding of solute transport in ladder fens with and without the increased hydrological load imposed by wastewater discharge. To better understand solute transport in ladder fens under wastewater polishing conditions a continuous solute (NaCl) tracer experiment (38 m3 day-1 of water, chloride - 47.2 mg L-1, and sodium - 25.3 mg L-1) was conducted during the summer of 2014 (day of year 192-243) in a small ladder fen in the James Bay Lowland. The transmissivity distribution and effective porosity (average 0.5) of the peat ribs were determined through repeated bail tests and the drainable porosity of 18 peat cores at -100 mb, respectively. Water samples were taken at least every 7 days to capture the solute (sodium and chloride) plumes. Both solute plumes never reached the site outflow (∼250 m downgradient) and displayed complex plume morphology, typically following the patterns of higher hydraulic conductivity within the upper 0.1 m of the saturated peat, rather than the microtopography. Based on the 50% breakthrough isotherms, sodium and chloride were transported at an average solute velocity of 1.9 and 1.1 m day-1, respectively (average linear groundwater velocity = 2.1 m day-1); thus, the solutes were retarded by a factor of 2.1 and 1.2 for sodium and chloride, respectively. Due to the inherent retardation of solutes into inactive pores and relatively high solute residence times, this study demonstrates the potential for wastewater polishing in ladder fens.
Kennedy, V.C.; Jackman, A.P.; Zand, S.M.; Zellweger, G.W.; Avanzino, R.J.
1984-01-01
Stream sediments adsorb certain solutes from streams, thereby significantly changing the solute composition; but little is known about the details and rates of these adsorptive processes. To investigate such processes, a 24-hr. injection of a solution containing chloride, strontium, potassium, sodium and lead was made at the head of a 640-m reach of Uvas Creek in west-central Santa Clara County, California. Uvas Creek is a cobble-bed pool-and-riffle stream draining the eastern slopes of the Santa Cruz Mountains. By September 12, 1973, after a long dry season, Uvas Creek had a low (0.0215 m3s-1 average) flow which varied diurnally, from 0.018 to 0.025 m3s-1. Because stream discharge varied while the injection rate was constant, the concentration of tracers (injected solutes), after mixing in the stream, varied inversely with discharge. Chloride, a nonreactive solute, served as a tracer of water movement. Analysis of extensive chloride concentration data at five sites below the injection point during and after the injection demonstrated that there was considerable underflow of water through the stream gravels; however, the extent of underflow varied greatly within the study reach. Pre-injection water, displaced by tracer-laden water percolating through the gravels, diluted tracers in the stream channel, giving the mistaken impression of groundwater inflow at some points. Accurate measurement of total discharge in such streams requires prolonged tracer injection unless a reach can be found where underflow is negligible. Strontium and potassium were adsorbed by the bed sediments to a moderate extent and lead was strongly adsorbed. A high proportion of these metals could be removed by adsorption from percolating underflow because of extensive and intimate contact with bed sediments. After channel clearing following injection cutoff, 51% of the added strontium and 96% of the lead remained in the study reach, whereas only 19% of the chloride remained. Packets of sized sediment, placed in the stream before the experiment and withdrawn during and after the injection, indicated that the strontium absorbed on the 0.42-0.50-mm size sediment appeared to achieve near equilibrium with dissolved strontium within less than 2 hr. whereas 3.4-4.0-mm grains had not reached that stage after 24 hr. The cation-exchange capacity (CEC) of the sediments shows a "bimodal" distribution with grain size. Largest values are in the finest sizes, lower values in the fine-to-medium sand-size range, intermediate values in the coarse- to very coarse-grained sand, and decreasing values with size above very coarse-grained sand. This considerable exchange capacity in coarse-sand to granule-size particles means that a streambed, that has not been infilled with fines to reduce permeability, can be highly reactive and accessible throughout a rather thick sediment layer and hence have a large and available reactive capacity. As stream discharge increases from low flow, the ratio of underflow to channel flow should decrease rapidly with resultant diminution in percent of solutes sorbed within a particular stream reach. ?? 1984.
PROCESS FOR SEPARATING AMERICIUM AND CURIUM FROM RARE EARTH ELEMENTS
Baybarz, R.D.; Lloyd, M.H.
1963-02-26
This invention relates to methods of separating americium and curium values from rare earth values. In accordance with the invention americium, curium, and rare earth values are sorbed on an anion exchange resin. A major portion of the rare earth values are selectively stripped from the resin with a concentrated aqueous solution of lithium chloride, and americium, curium, and a minor portion of rare earth values are then stripped from the resin with a dilute aqueous solution of lithium chloride. The americium and curium values are further purified by increasing the concentration of lithium chloride in the solution to at least 8 molar and selectively extracting rare earth values from the resulting solution with a monoalkylphosphoric acid. (AEC)
NASA Astrophysics Data System (ADS)
Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong
2017-01-01
Al(OH)3 and Ca(OH)2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. Ca-Al precursor (C3A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO4 LDH product. Ca-Al-CrO4 LDH phase occurred preferentially to Ca-Al-MCl2 LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist.
Jiang, Li; Zhao, Xinyuan; Fei, Yue; Yu, Dongdong; Qian, Jun; Tong, Jinguang; Chen, Guangdi; He, Sailing
2016-01-01
A measurement system for the relative permittivity of a physiological solution under 50 Hz magnetic fields (MF) is presented. It is based on a phase-sensitive surface plasmon resonance (SPR) system. Relative permittivity was analyzed for different solute concentrations of sodium chloride under various MF exposure parameters. We found that MF exposure at 0.2–4.0 mT step-wise decreased significantly the SPR phase signal of a 0.9% sodium chloride solution while 0.1 mT of MF exposure did not. The decreases in the SPR phase signal depended on the duration of MF exposure, and the signal reached a plateau after 15 min of exposure. Interestingly, the decreased SPR phase signal showed a gradual increase and approached the background level when the exposure was drawn off. In addition, we found that the response of the sodium chloride solution to MF also depended on its concentration. In brief, the relative permittivity of sodium chloride in solutions appears to be practically affected by 50 Hz MF exposure. Our data indicates that the relative permittivity of the saline solution influenced by MF exposure should be considered when investigating the biological effects of MF exposure on organisms in experimental study. PMID:27121618
Correlation of second virial coefficient with solubility for proteins in salt solutions.
Mehta, Chirag M; White, Edward T; Litster, James D
2012-01-01
In this work, osmotic second virial coefficients (B(22)) were determined and correlated with the measured solubilities for the proteins, α-amylase, ovalbumin, and lysozyme. The B(22) values and solubilities were determined in similar solution conditions using two salts, sodium chloride and ammonium sulfate in an acidic pH range. An overall decrease in the solubility of the proteins (salting out) was observed at high concentrations of ammonium sulfate and sodium chloride solutions. However, for α-amylase, salting-in behavior was also observed in low concentration sodium chloride solutions. In ammonium sulfate solutions, the B(22) are small and close to zero below 2.4 M. As the ammonium sulfate concentrations were further increased, B(22) values decreased for all systems studied. The effect of sodium chloride on B(22) varies with concentration, solution pH, and the type of protein studied. Theoretical models show a reasonable fit to the experimental derived data of B(22) and solubility. B(22) is also directly proportional to the logarithm of the solubility values for individual proteins in salt solutions, so the log-linear empirical models developed in this work can also be used to rapidly predict solubility and B(22) values for given protein-salt systems. Copyright © 2011 American Institute of Chemical Engineers (AIChE).
NASA Astrophysics Data System (ADS)
Riyanto; Prawidha, A. D.
2018-01-01
Electrochemical degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode in sodium chloride have been done. The aim of this work was to degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC). Carbon chitosan composite electrode was preparing by Carbon and Chitosan powder and PVC in 4 mL tetrahydrofuran (THF) solvent and swirled flatly to homogeneous followed by drying in an oven at 100 °C for 3 h. The mixture was placed in stainless steel mould and pressed at 10 ton/cm2. Sodium chloride was used electrolyte solution. The effects of the current and electrolysis time were investigated using spectrophotometer UV-Visible. The experimental results showed that the carbon-chitosan composite electrode have higher effect in the electrochemical degradation of methylene blue in sodium chloride. Based on UV-visible spectra analysis shows current and electrolysis time has high effect to degradation of methylene blue in sodium chloride. Chitosan and polyvinyl chloride can strengthen the bond between the carbons so that the material has the high stability and conductivity. As conclusions is Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode have a high electrochemical activity for degradation of methylene blue in sodium chloride.
Lead induced stress corrosion cracking of Alloy 690 in high temperature water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, K.K.; Lim, J.K.; Moriya, Shinichi
1995-12-31
Recent investigations of cracked steam generator tubes at nuclear power plants concluded that lead significantly contributed to cracking the Alloy 600 materials. In order to investigate the stress corrosion cracking (SCC) behavior of Alloy 690, slow strain rate tests (SSRT) and anodic polarization measurements were performed. The SSRTs were conducted in a lead-chloride solution (PbCl{sub 2}) and in a chloride but lead free solution (NaCl) at pH of 3 and 4.5 at 288 C. The anodic polarization measurements were carried out at 30 C using the same solutions as in SSRT. The SSRT results showed that Alloy 690 was susceptiblemore » to SCC in both solutions. In the lead chloride solution, cracking had slight dependence on lead concentration and pH. Cracking tend to increase with a higher lead concentration and a lower pH and was mainly intergranular and was to be a few tens to hundreds micrometers in length. In the chloride only solution, cracking was similar to the lead induced SCC. The results of anodic polarization measurement and electron probe micro analysis (EPMA) helped to understand lead induced SCC. Lead was a stronger active corrosive element but had a minor affect on cracking susceptibility of the alloy. While, chloride was quite different from lead effect to SCC. A possible mechanism of lead induced SCC of Alloy 690 was also discussed based on the test results.« less
NASA Astrophysics Data System (ADS)
Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang
2018-03-01
This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.
Making Positive Electrodes For Sodium/Metal Chloride Cells
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V.; Distefano, Salvador; Bankston, C. Perry
1992-01-01
High coulombic yields provided by sodium/metal chloride battery in which cathode formed by impregnating sintered nickel plaque with saturated solution of nickel chloride. Charge/discharge cycling of nickel chloride electrode results in very little loss of capacity. Used in spacecraft, electric land vehicles, and other applications in which high-energy-density power systems required.
Prediction of Physical Properties of Nanofiltration Membranes for Neutral and Charged Solutes
Two commercial nanofiltration (NF) membranes viz., NF 300 MWCO and NF 250 MWCO were used for neutral and charged solute species viz., glucose, sodium chloride and magnesium chloride to investigate their rejection rates using Donnan steric pore model (DSPM) and DSPM-dielectric exc...
40 CFR 415.165 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Sodium Chloride Production... bitterns may be returned to the body of water from which the process brine solution was originally... chloride. (b) Any new source subject to this subpart and using the solution brine-mining process must...
Effect of chlorides on solution corrosivity of methyldiethanolamine (MDEA) solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rooney, P.C.; Bacon, T.R.; DuPart, M.S.
1997-08-01
Solution corrosivity of MDEA/water solutions containing added HCl or NaCl have been measured by weight loss coupons at 250 F and by linear polarization resistance (LPR) at 208 F using carbon steel, 304SS, 316SS and 410SS. General corrosion as well as pitting or crevice corrosion tendencies were recorded for each species. Based on these results, recommendations are made for chlorides in MDEA that minimizes corrosion in gas treating operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lachut, J. S.
Laboratory tests have been completed to test the validity of automated solubility measurement equipment using sodium nitrate and sodium chloride solutions (see test plan WRPS-1404441, “Validation Testing for Automated Solubility Measurement Equipment”). The sodium nitrate solution results were within 2-3% of the reference values, so the experiment is considered successful using the turbidity meter. The sodium chloride test was done by sight, as the turbidity meter did not work well using sodium chloride. For example, the “clear” turbidity reading was 53 FNU at 80 °C, 107 FNU at 55 °C, and 151 FNU at 20 °C. The sodium chloride didmore » not work because it is granular and large; as the solution was stirred, the granules stayed to the outside of the reactor and just above the stir bar level, having little impact on the turbidity meter readings as the meter was aimed at the center of the solution. Also, the turbidity meter depth has an impact. The salt tends to remain near the stir bar level. If the meter is deeper in the slurry, it will read higher turbidity, and if the meter is raised higher in the slurry, it will read lower turbidity (possibly near zero) because it reads the “clear” part of the slurry. The sodium chloride solution results, as measured by sight rather than by turbidity instrument readings, were within 5-6% of the reference values.« less
Smithwick, R W; Stratigos, C B; David, H L
1975-01-01
A method is presented for the decontamination, liquefaction, and concentration of sputum specimens that are in transport more than 24 h. The method is inexpensive, and culture results compare well with those obtained with the accepted N-acetyl-L-cysteine and sodium hydroxide method for the isolation of tubercle bacilli. The working solution, 1% cetylpyridinium chloride and 2% sodium chloride, is mixed in equal volumes with sputum before the specimens are shipped. Tubercle bacilli remained viable after 8 days of exposure to this solution. Only Lowenstein-Jensen medium was used because the cetylpyridinium chloride in the inoculum remains active on 7H10 or other agar base media and partially inhibits the growth of tubercle bacilli. PMID:809478
Stability of Alprostadil in 0.9% Sodium Chloride Stored in Polyvinyl Chloride Containers.
McCluskey, Susan V; Kirkham, Kylian; Munson, Jessica M
2017-01-01
The stability of alprostadil diluted in 0.9% sodium chloride stored in polyvinyl chloride (VIAFLEX) containers at refrigerated temperature, protected from light, is reported. Five solutions of alprostadil 11 mcg/mL were prepared in 250 mL 0.9% sodium chloride polyvinyl chloride (PL146) containers. The final concentration of alcohol was 2%. Samples were stored under refrigeration (2°C to 8°C) with protection from light. Two containers were submitted for potency testing and analyzed in duplicate with the stability-indicating high-performance liquid chromatography assay at specific time points over 14 days. Three containers were submitted for pH and visual testing at specific time points over 14 days. Stability was defined as retention of 90% to 110% of initial alprostadil concentration, with maintenance of the original clear, colorless, and visually particulate-free solution. Study results reported retention of 90% to 110% initial alprostadil concentration at all time points through day 10. One sample exceeded 110% potency at day 14. pH values did not change appreciably over the 14 days. There were no color changes or particle formation detected in the solutions over the study period. This study concluded that during refrigerated, light-protected storage in polyvinyl chloride (VIAFLEX) containers, a commercial alcohol-containing alprostadil formulation diluted to 11 mcg/mL with 0.9% sodium chloride 250 mL was stable for 10 days. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
21 CFR 175.270 - Poly(vinyl fluoride) resins.
Code of Federal Regulations, 2013 CFR
2013-04-01
... polymerization of vinyl fluoride. (b) The poly(vinyl fluoride) basic resins have an intrinsic viscosity of not... Dilute Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference. Copies may be... Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference; see paragraph (b) of...
21 CFR 175.270 - Poly(vinyl fluoride) resins.
Code of Federal Regulations, 2012 CFR
2012-04-01
... polymerization of vinyl fluoride. (b) The poly(vinyl fluoride) basic resins have an intrinsic viscosity of not... Dilute Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference. Copies may be... Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference; see paragraph (b) of...
Nickel extraction from nickel matte
NASA Astrophysics Data System (ADS)
Subagja, R.
2018-01-01
In present work, the results of research activities to make nickel metal from nickel matte are presented. The research activities were covering a) nickel matte characterization using Inductively Couple plasma (ICP), Electron Probe Micro Analyzer (EPMA) and X-Ray Diffraction (XRD), b) nickel matte dissolution process to dissolve nickel from nickel matte into the spent electrolyte solutions that contains hydrochloric acid, c) purification of nickel chloride leach solution by copper cementation process to remove copper using nickel matte, selective precipitation process to remove iron, solvent extraction using Tri normal octyl amine to separate cobalt from nickel chloride solutions and d) Nickel electro winning process to precipitate nickel into the cathode surface from purified nickel chloride solution by using direct current. The research activities created 99, 72 % pure nickel metal as the final product of the process.
Presence of Li Clusters in Molten LiCl-Li
Merwin, Augustus; Phillips, William C.; Williamson, Mark A.; Willit, James L.; Motsegood, Perry N.; Chidambaram, Dev
2016-01-01
Molten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. In the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy. The Raman spectra obtained from these solutions were in agreement with the previously reported spectrum of the lithium cluster, Li8. This observation is indicative of a nanofluid type colloidal suspension of Li8 in a molten salt matrix. It is suggested that the formation and suspension of lithium clusters in lithium chloride is the cause of various phenomena exhibited by these solutions that were previously unexplainable. PMID:27145895
Sherif, El-Sayed M
2014-07-09
In this work, the results obtained from studying the anodic dissolution of pure iron and API X-65 5L pipeline steel after 40 min and 12 h exposure period in 4.0 wt % NaCl solutions at room temperature were reported. Potential-time, electrochemical impedance spectroscopy, potentiodynamic polarization, and chronoamperometric current-time at constant potential techniques were employed. It has been found that the iron electrode corrodes in the chloride test solutions faster than the API X-65 5L steel does under the same conditions. Increasing the exposure period for the electrodes from 40 min to 12 h showed a significant reduction in the corrosion parameters for both iron and steel in the 4.0 wt % NaCl solution. Results together confirmed clearly that the X-65 steel is superior to iron against corrosion in sodium chloride solutions.
Preparation and Properties of Methylammonium, Perchlorate.
1978-05-01
accident which occurred during the preparation of MAP is described and discussed in Appendix III. 2.2 Chloride Silver nitrate solution was added to...placing it in a furnace at 200WC and heating to 830 C. The chloride formed was determined by titration with standard silver nitrate solution using...calculated by: V M x 3.545 m where V = net volume of silver nitrate solution (cm*) M = molarity of silver nitrate solution and m = mass of MAP (g) 2.7 Purity
21 CFR 184.1426 - Magnesium chloride.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS Reg. No. 7786-30-3) is a... prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous hydrochloric acid solution and...
Salt, chloride, bleach, and innate host defense
Wang, Guoshun; Nauseef, William M.
2015-01-01
Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979
Salt, chloride, bleach, and innate host defense.
Wang, Guoshun; Nauseef, William M
2015-08-01
Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.
40 CFR 415.161 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Sodium Chloride Production... apply to this subpart. (b) The term product shall mean sodium chloride. (c) The term bitterns shall mean the saturated brine solution remaining after precipitation of sodium chloride in the solar evaporation...
NASA Astrophysics Data System (ADS)
Burov, S. V.; Piotrovskaya, E. M.
2006-08-01
The thermodynamic and structural properties of spherical and cylindrical hexadecyltrimethylammonium chloride micelles in water and a solution of sodium benzoate were studied by the Monte Carlo method. The local densities of particles in the systems, orientations of benzoate ions, two-particle distribution functions, and the influence of sodium benzoate admixtures on the properties and structure of micellar solutions were studied.
Dipsogenic and feeding influences of intraventricularly infused anionic choline solutions.
Mandal, M B; Badgaiyan, R D
1991-10-01
Chloride and bicarbonate solutions of choline were infused into the anteroventral part of the third ventricle of two different groups of rats through chronically implanted stainless steel cannulae. Dipsogenic and feeding responses elicited by these solutions were studied by observations taken at half hour intervals up to two h and then, after 24 h of infusions. Results were compared with the control response evoked by similar infusion of artificial cerebrospinal fluid (aCSF). Food and water intakes were recorded in different groups (n = 18 each) of rats. Dipsogenic response elicited by choline chloride solution in the observation taken 24 h after infusion, however, was higher only as compared to the control. Dipsogenic effect of bicarbonate solution was not significantly different from the control in the first two observations (30 and 60 min), but in the later observations (90, 120 min and 24 h), it was significantly higher. None of the choline solutions significantly alter feeding response within 2 h of infusions. However, in the observation taken 24 h after infusion, the response evoked by choline chloride was greater than that elicited by aCSF. The results support our earlier observation that chloride concentration of third ventricular CSF significantly influences water and food consumption. Intraventricularly administered choline also appears to have positive influence on these behaviors.
Chemical and physical compatibility of an intravenous solution of epinephrine with calcium chloride.
Weeks, Phillip A; Teng, Yang; Wu, Lei; Sun, Mary; Yang, Zhen; Chow, Diana S-L
2014-01-01
An infusion of epinephrine combined with calcium chloride has been used historically as an intravenous inotropic solution to support critically ill heart failure patients with severe cardiogenic shock. There is no reliable data on the stability of this solution beyond three hours. This study was conducted to evaluate the chemical and physical compatibility of epinephrine (0.032 mg/mL) combined with calcium chloride (4 mg/mL) in a solution for intravenous administration up to 26 hours at room temperature. The chemical stability of epinephrine was monitored by measuring epinephrine concentrations using high-performance liquid chromatography. The physical compatibility of the mixture was determined by measuring spectrophotometric absorbance between 400 to 700 nm. Absorbance greater than 0.010 AU was considered an indicator of the presence of precipitation. The results showed epinephrine with calcium chloride was stable together in normal saline up to 26 hours at room temperature, irrespective of exposure to light. The absorbance of epinephrine throughout the study was less than 0.010 AU, indicating no significant precipitation. Conclusions indicate that epinephrine (0.032 mg/mL) combined with calcium chloride (4 mg/mL) in normal saline at room temperature is acceptably stable up to 26 hours for intravenous administration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wixtroma, Alex I.; Buhlera, Jessica E.; Reece, Charles E.
2013-06-01
Recent research has shown that choline chloride-based solutions can be used to replace acid-based electrochemical polishing solutions. In this study niobium metal was successfully deposited on the surface of copper substrate via electrochemical deposition using a novel choline chloride-based ionic liquid. The niobium metal used for deposition on the Cu had been dissolved in the solution from electrochemical polishing of a solid niobium piece prior to the deposition. The visible coating on the surface of the Cu was analyzed using scanning electron microscopy (SEM) and electron dispersive x-ray spectroscopy (EDX). This deposition method effectively recycles previously dissolved niobium from electrochemicalmore » polishing.« less
Stabilized gold nanoparticles by laser ablation in ferric chloride solutions
NASA Astrophysics Data System (ADS)
Nouraddini, M. I.; Ranjbar, M.; Dobson, P. J.; Farrokhpour, H.; Johnston, C.; Jurkschat, K.
2017-12-01
In this study, laser ablation of gold was performed in different ferric chloride solutions and water as a reference. The ferric chloride solutions included hexachloro iron(III) and aquachloro iron(III) having low and high hydrolysis degree. Transmission electron microscope (TEM) images showed spherical gold nanoparticles (GNPs) in water, particles which are strongly agglomerated with intimate contact at their interfaces in hexachloro iron(III) and individual separated particles with a halo of an iron component in aquachloro iron(III). In addition, no combination of Au and Fe was found in HAADF analysis or X-ray diffraction (XRD) patterns. In optical investigations, it was observed that gold nanoparticles made in hexachloro iron(III) solutions have localized surface plasmon resonance (LSPR) peaks broader than in the case of water that are quenched after a few hours, while ablation in the aquachloro iron(III) solution provides narrow LSPR absorption with a long-term stability. According to X-ray photoelectron spectroscopy (XPS) there are metallic Au and Fe2+ states in the drop-casted samples. By comparison of cyclic voltammetry of solutions before and after laser ablation, strong agglomeration in hexachloro iron(III) was attributed to the reducing role of iron(III) creating an unstable gold surface in the chloride solution. In aquachloro iron(III), however, the observed stability was attributed to the formation of the halo of an iron compound around the particles.
Unraveling the cytotoxicity and metabolic pathways of binary natural deep eutectic solvent systems
Mbous, Yves Paul; Hayyan, Maan; Wong, Won Fen; Looi, Chung Yeng; Hashim, Mohd Ali
2017-01-01
In this study, the anticancer potential and cytotoxicity of natural deep eutectic solvents (NADESs) were assessed using HelaS3, PC3, A375, AGS, MCF-7, and WRL-68 hepatic cell lines. NADESs were prepared from choline chloride, fructose, or glucose and compared with an N,N-diethyl ethanolammonium chloride:triethylene glycol DES. The NADESs (98 ≤ EC50 ≥ 516 mM) were less toxic than the DES (34 ≤ EC50 ≥ 120 mM). The EC50 values of the NADESs were significantly higher than those of the aqueous solutions of their individual components but were similar to those of the aqueous solutions of combinations of their chief elements. Due to the uniqueness of these results, the possibility that NADESs could be synthesized intracellularly to counterbalance the cytotoxicity of their excess principal constituents must be entertained. However, further research is needed to explore this avenue. NADESs exerted cytotoxicity by increasing membrane porosity and redox stress. In vivo, they were more destructive than the DES and induced liver failure. The potential of these mixtures was evidenced by their anticancer activity and intracellular processing. This infers that they can serve as tools for increasing our understanding of cell physiology and metabolism. It is likely that we only have begun to comprehend the nature of NADESs. PMID:28145498
Unraveling the cytotoxicity and metabolic pathways of binary natural deep eutectic solvent systems
NASA Astrophysics Data System (ADS)
Mbous, Yves Paul; Hayyan, Maan; Wong, Won Fen; Looi, Chung Yeng; Hashim, Mohd Ali
2017-02-01
In this study, the anticancer potential and cytotoxicity of natural deep eutectic solvents (NADESs) were assessed using HelaS3, PC3, A375, AGS, MCF-7, and WRL-68 hepatic cell lines. NADESs were prepared from choline chloride, fructose, or glucose and compared with an N,N-diethyl ethanolammonium chloride:triethylene glycol DES. The NADESs (98 ≤ EC50 ≥ 516 mM) were less toxic than the DES (34 ≤ EC50 ≥ 120 mM). The EC50 values of the NADESs were significantly higher than those of the aqueous solutions of their individual components but were similar to those of the aqueous solutions of combinations of their chief elements. Due to the uniqueness of these results, the possibility that NADESs could be synthesized intracellularly to counterbalance the cytotoxicity of their excess principal constituents must be entertained. However, further research is needed to explore this avenue. NADESs exerted cytotoxicity by increasing membrane porosity and redox stress. In vivo, they were more destructive than the DES and induced liver failure. The potential of these mixtures was evidenced by their anticancer activity and intracellular processing. This infers that they can serve as tools for increasing our understanding of cell physiology and metabolism. It is likely that we only have begun to comprehend the nature of NADESs.
Bhattacharya, Sisir; Parekh, Satish; Dedhiya, Mahendra
2015-01-01
The objective of this study was to determine in-use stability of ceftaroline fosamil infusion solution of concentrations up to 12 mg/mL in elastomeric home infusion system prefilled with 0.9% Sodium Chloride Injection USP or 5% Dextrose Injection USP and MINI-BAG Plus Container delivery devices prefilled with 0.9% sodium chloride injection. In-use ceftaroline fosamil infusion solution (12 mg/mL) was prepared for elastomeric home infusion systems (Homepump Eclipse, Baxter Intermate, and AccuRx Elastomeric Pump) pre-filled with either 0.9% sodium chloride injection or 5% dextrose; or Baxter MINI-BAG Plus Containers pre-filled with 0.9% Sodium Chloride Injection USP (4 mg/mL to 12 mg/mL ceftaroline fosamil in final solution). The systems were stored refrigerated for 24 hours followed by up to 6 hours of storage at room temperature. Samples were analyzed at various time points for assay and degradation product by a validated stability-indicating high-performance liquid chromatography method. In-use ceftaroline fosamil infusion solution, ranging from 4-mg/mL to a maximum of 12-mg/mL concentration, in elastomeric home infusion systems prefilled with 0.9% sodium chloride injection or 5% dextrose, and MINI-BAG Plus Containers prefilled with 0.9% sodium chloride injection were chemically stable for up to 24 hours refrigerated at 2°C to 8°C (36°F to 46°F) and up to 6 hours at room temperature and had acceptable compatibility with material used. Ceftaroline fosamil (4 mg/mL to 12 mg/mL) maintains its potency for up to 24 hours refrigerated at 2°C to 8°C (36°F to 46°F) and up to 6 hours of storage at room temperature upon reconstitution in infusion solution with 0.9% sodium chloride or 5% dextrose when used in elastomeric home infusion system and MINI-BAG Plus Containers delivery devices prefilled with 0.9% sodium chloride injection.
Ai, Zhiyong; Sun, Wei; Jiang, Jinyang; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian
2016-01-01
The electrochemical behaviour for passivation of new alloy corrosion-resistant steel Cr10Mo1 immersed in alkaline solutions with different pH values (13.3, 12.0, 10.5, and 9.0) and chloride contents (0.2 M and 1.0 M), was investigated by various electrochemical techniques: linear polarization resistance, electrochemical impedance spectroscopy and capacitance measurements. The chemical composition and structure of passive films were determined by XPS. The morphological features and surface composition of the immersed steel were evaluated by SEM together with EDS chemical analysis. The results evidence that pH plays an important role in the passivation of the corrosion-resistant steel and the effect is highly dependent upon the chloride contents. In solutions with low chloride (0.2 M), the corrosion-resistant steel has notably enhanced passivity with pH falling from 13.3 to 9.0, but does conversely when in presence of high chloride (1.0 M). The passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer enriched in Fe oxides and hydroxides, and an inner layer, rich in Cr species. The film composition varies with pH values and chloride contents. As the pH drops, more Cr oxides are enriched in the film while Fe oxides gradually decompose. Increasing chloride promotes Cr oxides and Fe oxides to transform into their hydroxides with little protection, and this is more significant at lower pH (10.5 and 9.0). These changes annotate passivation characteristics of the corrosion-resistant steel in the solutions of different electrolyte. PMID:28773867
Ai, Zhiyong; Sun, Wei; Jiang, Jinyang; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian
2016-09-01
The electrochemical behaviour for passivation of new alloy corrosion-resistant steel Cr10Mo1 immersed in alkaline solutions with different pH values (13.3, 12.0, 10.5, and 9.0) and chloride contents (0.2 M and 1.0 M), was investigated by various electrochemical techniques: linear polarization resistance, electrochemical impedance spectroscopy and capacitance measurements. The chemical composition and structure of passive films were determined by XPS. The morphological features and surface composition of the immersed steel were evaluated by SEM together with EDS chemical analysis. The results evidence that pH plays an important role in the passivation of the corrosion-resistant steel and the effect is highly dependent upon the chloride contents. In solutions with low chloride (0.2 M), the corrosion-resistant steel has notably enhanced passivity with pH falling from 13.3 to 9.0, but does conversely when in presence of high chloride (1.0 M). The passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer enriched in Fe oxides and hydroxides, and an inner layer, rich in Cr species. The film composition varies with pH values and chloride contents. As the pH drops, more Cr oxides are enriched in the film while Fe oxides gradually decompose. Increasing chloride promotes Cr oxides and Fe oxides to transform into their hydroxides with little protection, and this is more significant at lower pH (10.5 and 9.0). These changes annotate passivation characteristics of the corrosion-resistant steel in the solutions of different electrolyte.
21 CFR 175.270 - Poly(vinyl fluoride) resins.
Code of Federal Regulations, 2014 CFR
2014-04-01
...(vinyl fluoride) basic resins have an intrinsic viscosity of not less than 0.75 deciliter per gram as determined by ASTM method D1243-79, “Standard Test Method for Dilute Solution Viscosity of Vinyl Chloride... (ASTM method D1243-79, “Standard Test Method for Dilute Solution Viscosity of Vinyl Chloride Polymers...
NASA Astrophysics Data System (ADS)
Tugay, A. V.; Zakordonskiy, V. P.
2006-06-01
The association of cationogenic benzethonium chloride with polymethacrylic acid in aqueous solutions was studied by nephelometry, conductometry, tensiometry, viscometry, and pH-metry. The critical concentrations of aggregation and polymer saturation with the surface-active substance were determined. A model describing processes in such systems step by step was suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmutz, P.; Frankel, G.S.
1998-07-01
The localized corrosion of AA2024-T3, and the behavior of intermetallic particles in particular, were studied using different capabilities of the atomic force microscope (AFM). The role of intermetallic particles in determining the locations and rates of localized corrosion was determined using scanning Kelvin probe force microscopy in air after exposure to chloride solutions. Al-Cu-Mg particles, which have a noble Volta potential in air because of an altered surface film, are actively dissolved in chloride solution after a certain induction time. Al-Cu(Fe, Mn) particles are heterogeneous in nature and exhibit nonuniform dissolution in chloride solution as well as trenching of themore » matrix around the particles. Light scratching of the surface by rastering with the AFM tip in contact mode in chloride solution results in accelerated dissolution of both pure Al and alloy 2024-T3. The abrasion associated with contact AFM in situ resulted in the immediate dissolution of the Al-Cu-Mg particles because of a destabilization of the surface film.« less
[Determination of high concentrations of rubidium chloride by ICP-OES].
Zhong, Yuan; Sun, Bai; Li, Hai-jun; Wang, Tao; Li, Wu; Song, Peng-sheng
2015-01-01
The method of ICP-OES for the direct determination of high content of rubidium in rubidium chloride solutions was studied through mass dilution method and optimizing parameters of the instrument in the present paper. It can reduce the times of dilution and the error introduced by the dilution, and improve the accuracy of determination results of rubidium. Through analyzing the sensitivity of the three detection spectral lines for rubidium ion, linearly dependent coefficient and the relative errors of the determination results, the spectral line of Rb 780. 023 nm was chosen as the most suitable wavelength to measure the high content of rubidium in the rubidium chloride solutions. It was found that the instrument parameters of ICP-OES such as the atomizer flow, the pump speed and the high-frequency power are the major factors for the determination of rubidium ion in the rubidium chloride solutions. As we know instrument parameters of ICP-OES have an important influence on the atomization efficiency as well as the emissive power of the spectral lines of rubidium, they are considered as the significant factors for the determination of rubidium. The optimization parameters of the instrument were obtained by orthogonal experiments and further single factor experiment, which are 0. 60 L . min-1 of atomizer flow, 60 r . min-1 of pump speed, and 1 150 W of high-frequency power. The same experiments were repeated a week later with the optimization parameters of the instrument, and the relative errors of the determination results are less than 0. 5% when the concentration of rubidium chloride ranged from 0. 09% to 0. 18%. As the concentration of rubidium chloride is 0. 06%, the relative errors of the determination results are -1. 7%. The determination of lithium chloride and potassium chloride in the high concentration of the aqueous solutions was studied under the condition of similar instrument parameters. It was found by comparison that the determination results of lithium chloride are better than that of potassium chloride and rubidium chloride. The method of ICP-OES used for determination of high content of rubidium is fast and simple for operation, and the results are accurate. It is suitable for studying the equilibrium in the salt-water system containing rubidium and for analysis of products of rubidium with high content.
NASA Astrophysics Data System (ADS)
Pujar, M. G.; Anita, T.; Shaikh, H.; Dayal, R. K.; Khatak, H. S.
2007-08-01
In the present paper, studies were conducted on AISI Type 316 stainless steel (SS) in deaerated solutions of sodium sulfate as well as sodium chloride to establish the effect of sulfate and chloride ions on the electrochemical corrosion behavior of the material. The experiments were conducted in deaerated solutions of 0.5 M sodium sulfate as well as 0.5 M sodium chloride using electrochemical noise (EN) technique at open circuit potential (OCP) to collect the correlated current and potential signals. Visual records of the current and potential, analysis of data to arrive at the statistical parameters, spectral density estimation using the maximum entropy method (MEM) showed that sulfate ions were incorporated in the passive film to strengthen the same. However, the adsorption of chloride ions resulted in pitting corrosion thereby adversely affecting noise resistance ( R N). Distinct current and potential signals were observed for metastable pitting, stable pitting and passive film build-up. Distinct changes in the values of the statistical parameters like R N and the spectral noise resistance at zero frequency ( R°SN) revealed adsorption and incorporation of sulfate and chloride ions on the passive film/solution interface.
New uses for calcium chloride solution as a mounting medium.
Herr, J M
1992-01-01
Fresh cross sections of stems (Psilotum nudum, Coleus blumei, and Pelargonium peltatum) and roots (Setcreasea purpurea) 120 microns thick were fixed in FPA50 (formalin: propionic acid: 50% ethanol, 5:5:90, v/v) for 24 hr and stored in 70% ethanol. The sections were transferred to water and then to 1% phloroglucin in 20% calcium chloride solution plus either hydrochloric, nitric, or lactic acid in the following ratios of phloroglucin-CaCl2 solution:acid: 25:4, 20:2, or 15:5. The sections were mounted on slides either in one of the three mixtures or in fresh 20% calcium chloride solution. A rapid reaction of the acid-phloroglucin with lignin produced a deep red color in tracheary elements and an orange-red color in sclerenchyma. Fixed and stored leaf pieces from Nymphaea odorata were autoclaved in lactic acid, washed in two changes of 95% ethanol, transferred to water, and treated with the three acid-phloroglucin-calcium chloride mixtures. The abundant astrosclereids stained an orange-red color similar to that of sclerenchyma in the sections. In addition, a new method is reported for specifically staining lignified tissues. When sections or leaf pieces are stained in aqueous 0.05% toluidine blue O, then placed in 20% calcium chloride solution, all tissues destain except those with lignified or partially lignified cell walls. Thus, toluidine blue O applied as described becomes a reliable specific test for lignin comparable to the acid-phloroglucin test.
Presence of Li clusters in molten LiCl-Li
Merwin, Augustus; Phillips, William C.; Williamson, Mark A.; ...
2016-05-05
Molten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. ln the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy. The Raman spectra obtained from these solutions were in agreement with the previously reported spectrum of the lithium cluster, Li 8. Furthermore, this observation is indicative of a nanofluid type colloidal suspension of Li 8, in a moltenmore » salt matrix. It is suggested that the formation and suspension of lithium clusters in lithium chloride is the cause of various phenomena exhibited by these solutions that were previously unexplainable.« less
McCluskey, Susan V; Sztajnkrycer, Matthew D; Jenkins, Donald A; Zietlow, Scott P; Berns, Kathleen S; Park, Myung S
2014-01-01
Tranexamic acid has recently been demonstrated to decrease all-cause mortality and deaths due to hemorrhage in trauma patients. The optimal administration of tranexamic acid is within one hour of injury, but not more than three hours from the time of injury. To aid with timely administration, a premixed solution of 1 gram tranexamic acid and 0.9% sodium chloride was proposed to be stocked as a medication in both the aeromedical transport helicopters and Emergency Department at Mayo Clinic Hospital--Rochester Saint Marys Campus. Since no published stability data exists for tranexamic acid diluted with 0.9% sodium chloride, this study was undertaken to determine the stability of tranexamic acid diluted with 0.9% sodium chloride while being stored in two types of containers. Stability was determined through the use of a stability-indicating high-performance liquid reverse phase chromatography assay, pH, and visual tests. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 65 mL were studied at predetermined intervals for 90 days in ethylene/propylene copolymer plastic containers, protected from light, and at both controlled room and refrigerated temperatures. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 50 mL were studied at predetermined intervals for 180 days in clear Type 1 borosilicate glass vials sealed with intact elastomeric, Flourotec-coated stoppers, stored protected from light at controlled room temperature. Solutions stored in the ethylene/propylene copolymer plastic containers at both storage temperatures maintained at least 98% of initial potency throughout the 90-day study period. Solutions stored in glass vials at controlled room temperature maintained at least 92% of initial potency throughout the 180-day study period. Visual and pH tests revealed stable, clear, colorless, and particulate-free solutions throughout the respective study periods.
Li, Yu-jiao; Hu, Peng-jie; Zhao, Jie; Dong, Chang-xun
2015-04-01
Composite washing of cadmium (Cd)- and lead (Pb)-contaminated agricultural soil from Hunan province in China using mixtures of chlorides (FeCl3, CaCl2) and citric acid (CA) was investigated. The concentrations of composite washing agents for metal removal were optimized. Sequential extraction was conducted to study the changes in metal fractions after soil washing. The removal of two metals at optimum concentration was reached. Using FeCl3 mixed with CA, 44% of Cd and 23% of Pb were removed, and 49 and 32% by CaCl2 mixed with CA, respectively. The mechanism of composite washing was postulated. A mixture of chlorides and CA enhanced metal extraction from soil through the formation of metal-chloride and metal-citrate complexes. CA in extract solutions promoted the formation of metal-chloride complexes and reduced the solution pH. Composite washing reduced Cd and Pb in Fe-Mn oxide forms significantly. Chlorides and CA exerted a synergistic effect on metal extraction during composite washing.
NASA Astrophysics Data System (ADS)
Hugues, Jonathan; Andrieu, Eric; Blanc, Christine; Cloué, Jean-Marc
The electrochemical behavior of alloy 718 in a chloride-containing boric acid solution was studied to determine the influence of chloride ions as contaminants of pool water of nuclear power plants on the corrosion behavior of the alloy. Experiments were performed at 20°C and 60°C with chloride concentrations from 1.5 to 15 000 ppm, using stationary measurements i.e. OCP versus time measurements and plotting of current-potential curves. After the electrochemical tests, the samples were observed using optical microscopy. Immersion tests in chloride-containing boric acid solutions were also carried out: samples were immersed for a time as long as 17 weeks at open circuit potential and their residual mechanical properties were measured. Results showed that, whatever the chloride concentration, there was no corrosion for samples immersed at open circuit potential. However, when the samples were polarized at high potentials, intergranular corrosion might be observed in occluded zones.
TOLERANCE OF STAPHYLOCOCCUS AUREUS TO SODIUM CHLORIDE
Parfentjev, I. A.; Catelli, Anna R.
1964-01-01
Parfentjev, I. A. (Institute of Applied Biology, New York, N.Y.), and Anna R. Catelli. Tolerance of Staphylococcus aureus to sodium chloride. J. Bacteriol. 88:1–3. 1964.—The tolerance of Staphylococcus aureus to high concentrations of sodium chloride in liquid medium has been reported. We found that S. aureus grows at 37 C in Tryptose Phosphate Broth saturated with sodium chloride. No difference was noticed between possibly pathogenic and nonpathogenic strains. Under the conditions of our tests, no changes in the original properties of S. aureus strains occurred. In contrast, solutions of sodium chloride in distilled water were injurious to staphylococci and killed most of these organisms in 1 hr. Staphylococci were killed faster at 37 C than at room temperature in a solution of 0.85% sodium chloride in water. Addition of traces of Tryptose Phosphate Broth had a protective effect and prolonged the life of these organisms in physiological saline. All tests were performed at pH 7.2. PMID:14197887
High Intracellular Chloride Slows the Decay of Glycinergic Currents
Pitt, Samantha J.; Sivilotti, Lucia G.; Beato, Marco
2009-01-01
The time course of currents mediated by native and recombinant glycine receptors was examined with a combination of rapid agonist applications to outside-out patches and single-channel recording. The deactivation time constant of currents evoked by brief, saturating pulses of glycine is profoundly affected by the chloride concentration on the intracellular side of the cell membrane. Deactivation was threefold slower when intracellular chloride was increased from a low level (10 mm), similar to that observed in living mature neurons, to 131 mm (“symmetrical” chloride, often used in pipette internal solutions). Single-channel analysis revealed that high chloride has its greatest effect on the channel closing rate, slowing it by a factor of 2 compared with the value we estimated in the cell-attached mode (in which the channels are at physiological intracellular chloride concentrations). The same effect of chloride was observed when glycinergic evoked synaptic currents were recorded from juvenile rat spinal motoneurons in vitro, because the decay time constant was reduced from ∼7ms to ∼3 ms when cells were dialyzed with 10 mm chloride intracellular recording solution. Our results indicate that the time course of glycinergic synaptic inhibition in intact neurons is much faster than is estimated by measurements in symmetrical chloride and can be modulated by changes in intracellular chloride concentration in the range that can occur in physiological or pathological conditions. PMID:18987182
40 CFR 415.161 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Sodium Chloride Production... the saturated brine solution remaining after precipitation of sodium chloride in the solar evaporation...
Reddy, M.M.; Reddy, M.B.; Kipp, K.L.; Burman, A.; Schuster, P.; Rawlik, P.S.
2008-01-01
Water quality is a key aspect of the Everglades Restoration Project, the largest water reclamation and ecosystem management project proposed in the United States. Movement of nutrients and contaminants to and from Everglades peat porewater could have important consequences for Everglades water quality and ecosystem restoration activities. In a study of Everglades porewater, we observed complex, seasonally variable peat porewater chloride concentration profiles at several locations. Analyses and interpretation of these changing peat porewater chloride concentration profiles identifies processes controlling conservative solute movement at the peat-surface water interface, that is, solutes whose transport is minimally affected by chemical and biological reactions. We examine, with an advection-diffusion model, how alternating wet and dry climatic conditions in the Florida Everglades mediate movement of chloride between peat porewater and marsh surface water. Changing surface water-chloride concentrations alter gradients at the interface between peat and overlying water and hence alter chloride flux across that interface. Surface water chloride concentrations at two frequently monitored sites vary with marsh water depth, and a transfer function was developed to describe daily marsh surface water chloride concentration as a function of marsh water depth. Model results demonstrate that porewater chloride concentrations are driven by changing surface water chloride concentrations, and a sensitivity analysis suggests that inclusion of advective transport in the model improves the agreement between the calculated and the observed chloride concentration profiles. Copyright ?? 2007 John Wiley & Sons, Ltd.
The behaviour of water and sodium chloride solution confined into asbestos nanotube
NASA Astrophysics Data System (ADS)
Fomin, Yu. D.; Ryzhov, V. N.; Tsiok, E. N.
2016-08-01
We present the molecular simulation study of the behaviour of water and sodium chloride solution confined in lizardite asbestos nanotube which is a typical example of hydrophilic confinement. The local structure and orientational and dynamic properties are studied. It is shown that at low enough temperatures there is a well-defined orientational ordering of the water molecules. At high local densities corresponding to the maxima of the density distribution function, the water molecules are oriented parallel to the axis of the tube. It is also shown that the diffusion coefficient drops about two orders of magnitude comparing to the bulk case. The behaviour of sodium chloride solutions is also considered and the formation of double layer is observed.
Gu, Baohua; Cole, David R.; Brown, Gilbert M.
2004-10-05
A method is described to decompose perchlorate in a FeCl.sub.3 /HCl aqueous solution such as would be used to regenerate an anion exchange resin used to remove perchlorate. The solution is mixed with a reducing agent, preferably an organic alcohol and/or ferrous chloride, and can be heated to accelerate the decomposition of perchlorate. Lower temperatures may be employed if a catalyst is added.
Callahan, Karen M; Casillas-Ituarte, Nadia N; Roeselová, Martina; Allen, Heather C; Tobias, Douglas J
2010-04-22
Magnesium dication plays many significant roles in biochemistry. While it is available to the environment from both ocean waters and mineral salts on land, its roles in environmental and atmospheric chemistry are still relatively unknown. Several pieces of experimental evidence suggest that contact ion pairing may not exist at ambient conditions in solutions of magnesium chloride up to saturation concentrations. This is not typical of most ions. There has been disagreement in the molecular dynamics literature concerning the existence of ion pairing in magnesium chloride solutions. Using a force field developed during this study, we show that contact ion pairing is not energetically favorable. Additionally, we present a concentration-dependent Raman spectroscopic study of the Mg-O(water) hexaaquo stretch that clearly supports the absence of ion pairing in MgCl(2) solutions, although a transition occurring in the spectrum between 0.06x and 0.09x suggests a change in solution structure. Finally, we compare experimental and calculated observables to validate our force field as well as two other commonly used magnesium force fields, and in the process show that ion pairing of magnesium clearly is not observed at higher concentrations in aqueous solutions of magnesium chloride, independent of the choice of magnesium force field, although some force fields give better agreement to experimental results than others.
Influence of the marinating type on the morphological and sensory properties of horse meat.
Vlahova-Vangelova, Dessislava B; Abjanova, Sholpan; Dragoev, Stefan G
2014-01-01
The aim of this study was to explore the influence of acid, alkaline and water-oil marinating on morphological changes and sensory properties of horse meat (m. Longissimus dorsi). Nine samples (C - control stored in air, AL - alkaline marinated in 2% polyphosphates and 2% sodium chloride brine solution, AC - acid marinated in 2% sodium lactate and 2% sodium chloride brine solution, WO - marinated in water-oil emulsion (50/50) contained and 2% sodium chloride and SC - marinated in 2% sodium chloride brine solution) were examined. After 24 h and 48 h of marinating changes in morphology of marinated meat, pH and sensory properties of raw and roasted samples were established. It was determined that sensory properties (aroma, flavor and tenderness) after roasting were classified as follows: AL48 > AL24 > AC24 > AC48 > SC48 > SC24 > WO24 > WO48 > С. Meat tenderness in AL48, AL24, AC24 and AC48 showed better results due to stronger morphological changes in connective and muscle tissues. Alkaline solutions were more suitable for horse meat marinating compared to acid solutions and the possible reason for strong action of alkaline solutions was lower internal meat pH. Alkaline marinating should be conducted for 24 h because after 48 h the meat acquires a soft and unusually tender texture. Water-oil marinating was not appropriate for horse meat.
Modeling chloride movement in the alluvial aquifer at the Rocky Mountain Arsenal, Colorado
Konikow, Leonard F.
1977-01-01
A solute-transport model that can be used to predict the movement of dissolved chemicals in flowing ground water was applied to a problem of ground-water contamination at the Rocky Mountain Arsenal, near Denver, Colo. The model couples a finite-difference solution to the ground-water flow equation with the method-of-characteristics solution to the solute-transport equation. From 1943 to 1956 liquid industrial wastes containing high chloride concentrations were disposed into unlined ponds at the Arsenal. Wastes seeped out of the unlined disposal ponds and spread for many square miles in the underlying shallow alluvial aquifer. Since 1956 disposal has been into an asphalt-lined reservoir, which contributed to a decline in ground-water contamination by 1972. The simulation model quantitatively integrated the effects of the major factors that controlled changes in chloride concentrations and accurately reproduced the 30-year history of chloride ground-water contamination. Analysis of the simulation results indicates that the geologic framework of the area markedly restricted the transport and dispersion of dissolved chemicals in the alluvium. Dilution, from irrigation recharge and seepage from unlined canals, was an important factor in reducing the level of chloride concentrations downgradient from the Arsenal. Similarly, recharge of uncontaminated water from the unlined ponds since 1956 has helped to dilute and flush the contaminated ground water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estill, C.F.; Kovein, R.J.; Jones, J.H.
1999-03-26
The National Institute for Occupational Safety and Health (NIOSH) is currently conducting research on ventilation controls to reduce furniture stripping exposures to methylene chloride to the OSHA PEL of 25 ppm. Low cost ventilation systems were designed by NIOSH researchers along with Benny Bixenman of Benco Sales, Inc. (Forney, TX). The controls were constructed and installed by Benco Sales. This report compares the methylene chloride levels of one worker stripping furniture using the recently installed ventilation controls and using the existing controls. During the survey, two different chemical stripping solutions (a standard formulation and a low methylene chloride content formulation)more » were used and compared. This survey tested three control combinations: (1) new ventilation, low methylene chloride stripper, (2) new ventilation, standard stripping solution, and (3) old ventilation, standard stripping solution. During each test, sorbent tube sampling and real-time sampling were employed. Sorbent tube, data collected in the worker's breathing zone, ranged from 300 to 387 ppm. Real-time data showed breathing zone exposures to range from 211 to 383 ppm while stripping and 164 to 230 ppm while rinsing. Data were inconclusive to determine which ventilation system or stripping solution produced the lowest exposures. Recommendations are made in the report to improve the newly installed ventilation controls.« less
The effect of plasma on shear bond strength between resin cement and colored zirconia
2017-01-01
PURPOSE To investigate the effect of non-thermal atmospheric pressure plasma (NTAPP) treatment on shear bond strength (SBS) between resin cement and colored zirconia made with metal chlorides. MATERIALS AND METHODS 60 zirconia specimens were divided into 3 groups using coloring liquid. Each group was divided again into 2 sub-groups using plasma treatment; the experimental group was treated with plasma, and the control group was untreated. The sub-groups were: N (non-colored), C (0.1 wt% aqueous chromium chloride solution), M (0.1 wt% aqueous molybdenum chloride solution), NP (non-colored with plasma), CP (0.1 wt% aqueous chromium chloride solution with plasma), and MP (0.1 wt% aqueous molybdenum chloride solution with plasma). Composite resin cylinders were bonded to zirconia specimens with MDP-based resin cement, and SBS was measured using a universal testing machine. All data was analyzed statistically using a 2-way ANOVA test and a Tukey test. RESULTS SBS significantly increased when specimens were treated with NTAPP regardless of coloring (P<.001). Colored zirconia containing molybdenum showed the highest value of SBS, regardless of NTAPP. The molybdenum group showed the highest SBS, whereas the chromium group showed the lowest. CONCLUSION NTAPP may increase the SBS of colored zirconia and resin cement. The NTAPP effect on SBS is not influenced by the presence of zirconia coloring. PMID:28435621
NASA Astrophysics Data System (ADS)
Liu, Yang; Jeon, Ho Seok; Lee, Man Seung
2015-09-01
The possibility of separation of Pr and Nd from La in a chloride leaching solution of monazite sand has been investigated by using a binary mixture of Cyanex 272 (bis(2,4,4-trimethylpentyl) phosphinic acid) and Alamine 336 (tri-octyl/decyl amine). The binary mixture showed synergism on the extraction of the three metals and led to an increase in the separation factor between Pr/Nd and La compared to Cyanex 272 alone. Although the addition of chloride ion into aqueous increased the extraction of the metals, this addition had negative effect on the separation of Nd/Pr and La. McCabe-Thiele diagrams for the extraction of Pr and Nd with the binary mixture were constructed. Stripping of metals from the loaded organic phase was achieved with 0.7 M HCl. The difference in the solvent extraction of the rare earth elements from chloride solution between the binary mixture and saponified extractants was also discussed.
Ratner, Martha A; Decker, Sarah E; Aller, Stephen G; Weber, Gerhard; Forrest, John N
2006-03-01
In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action. Copyright 2006 Wiley-Liss, Inc.
Gold(I) Carbenoids: On‐Demand Access to Gold(I) Carbenes in Solution
Sarria Toro, Juan M.; García‐Morales, Cristina; Raducan, Mihai; Smirnova, Ekaterina S.
2017-01-01
Abstract Chloromethylgold(I) complexes of phosphine, phosphite, and N‐heterocyclic carbene ligands are easily synthesized by reaction of trimethylsilyldiazomethane with the corresponding gold chloride precursors. Activation of these gold(I) carbenoids with a variety of chloride scavengers promotes reactivity typical of metallocarbenes in solution, namely homocoupling to ethylene, olefin cyclopropanation, and Buchner ring expansion of benzene. PMID:28090747
Ion-exchange sorption of silver(I) chloride complexes from aqueous HCl solutions
NASA Astrophysics Data System (ADS)
Kononova, O. N.; Duba, E. V.; Medovikov, D. V.; Efimova, A. S.; Ivanov, A. I.; Krylov, A. S.
2017-12-01
The ion-exchange sorption of silver(I) chloride complexes from 1-4 M aqueous solutions of HCl on a series of Purolite anionites with various functional groups was studied. The ion-exchange equilibria in the systems were found to be anomalous according to Raman spectroscopy, which does not significantly affect the sorption properties of the ionites.
REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS
Hyman, M.L.; Savolainen, J.E.
1960-01-01
A method is given for dissolving reactor fuel elements in which the uranium is associated with a relatively inert chromium-containing alloy such as stainless steel. An aqueous mixture of acids comprising 2 to 2.5 molar hydrochloric acid and 4 to 8 molar nitric acid is employed in dissolving the fuel element. In order io reduce corrosion in subsequent processing of the resulting solution, chloride values are removed from the solution by contacting it with concentrated nitric acid at an elevated temperature.
Effect of three ophthalmic solutions on chemical conjunctivitis in the neonate.
Yasunaga, S
1977-02-01
In an attempt to reduce chemical conjunctivitis after silver nitrate prophylaxis, three different ophthalmic solutions (sodium chloride, sterile water, and a boric acid-sodium borate solution) were used to irrigate the eyes immediately after prophylaxis in 450 neonates. Sterile water significantly reduced (P less than .02) the prevalence of chemical conjunctivitis when compared to the conventional sodium chloride rinse. A significantly greater prevalence of chemical irritation in low-birth-weight infants was also noted (P less than .02).
Jenke, Dennis; Couch, Tom; Gillum, Amy
2010-01-01
Material/water equilibrium binding constants (E(b)) were determined for 11 organic solutes and 2 plastic materials commonly used in pharmaceutical product containers (plasticized polyvinyl chloride and polyolefin). In general, solute binding by the plasticized polyvinyl chloride material was greater, by nearly an order of magnitude, than the binding by the polyolefin (on an equal weight basis). The utilization of the binding constants to facilitate container compatibility assessments (e.g., drug loss by container binding) for drug-containing products is discussed.
Detection of colloidal silver chloride near solubility limit
NASA Astrophysics Data System (ADS)
Putri, K. Y.; Adawiah, R.
2018-03-01
Detection of nanoparticles in solution has been made possible by several means; one of them is laser-induced breakdown detection (LIBD). LIBD is able to distinguish colloids of various sizes and concentrations. This technique has been used in several solubility studies. In this study, the formation of colloids in a mixed system of silver nitrate and sodium chloride was observed by acoustic LIBD. Silver chloride has low solubility limit, therefore LIBD measurement is appropriate. Silver and chloride solutions with equal concentrations, set at below and above the solubility of silver chloride as the expected solid product, were mixed and the resulting colloids were observed. The result of LIBD measurement showed that larger particles were present as more silver and chloride introduced. However, once the concentrations exceeded the solubility limit of silver chloride, the detected particle size seemed to be decreasing, hence suggested the occurrence of coprecipitation process. This phenomenon indicated that the ability of LIBD to detect even small changes in colloid amounts might be a useful tool in study on formation and stability of colloids, i.e. to confirm whether nanoparticles synthesis has been successfully performed and whether the system is stable or not.
The Mechanism of Sodium and Chloride Uptake by the Gills of a Fresh-Water Fish, Carassius auratus
García Romeu, F.; Maetz, J.
1964-01-01
Carassius auratus placed in a dilute sodium chloride solution (400 µM) is able to absorb sodium and chloride ions at very different rates, or to absorb one ion and to lose the other. This is the case not only for fish which have been previously kept in choline chloride or sodium sulfate solutions or deionized water, in order to stimulate their absorption processes, but also in control fish which have not been deprived of sodium or chloride. The absorption of sodium or chloride appears to be unaffected by the presence of a nonpermeant co-ion such as choline or sulfate. Conductivity measurements of the external medium show that during ion uptake the conductivity is constant or increases slowly. This suggests the existence of exchange processes between the ions absorbed and endogenous ions excreted. It is unlikely that potassium or calcium is exchanged for sodium, because of the low permeability of the gills to these ions. Finally, the flux ratios observed for both sodium and chloride ions in the present investigation can only be explained, in relation to their electrochemical gradients across the gills, in terms of active transport. PMID:14192553
Experimental performance study of a proposed desiccant based air conditioning system.
Bassuoni, M M
2014-01-01
An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system.
Experimental performance study of a proposed desiccant based air conditioning system
Bassuoni, M.M.
2013-01-01
An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475
Opie, Eugene L.
1949-01-01
During the initial period following immersion of parenchymatous cells of liver, kidney, or pancreas in various fluids immediately after their removal from the body water exchange is like that which occurs when water passes by osmosis through a semipermeable membrane; intake of water is proportional to the square root of the elapsed time and when liver tissue is immersed in solutions of sodium chloride movement of water is approximately proportional to the concentration of the solution. Solutions of sodium chloride isotonic for parenchymatous cells of liver have twice the molar concentration of sodium chloride in the blood serum; for those of the kidney slightly less than twice and for those of the pancreas three times this concentration. When interstitial tissue of thymus, omentum, or pancreas is immersed in water, it undergoes edema-like swelling caused by hydration of the colloids of the fibrous tissue; quantitative water exchange in an initial period accords with water movement by osmosis and is proportional to the square root of the elapsed time. Solutions of sodium chloride isotonic for fibrous tissue of the omentum have slightly greater molar concentration than the sodium chloride in the blood serum and for that of the thymus approximately the same as that of blood serum. Sodium chloride produces changes in fibrous tissue which increase with increasing concentration its power to hold water; the dense fibrous tissue of the corium of the skin and of the wall of the aorta takes up water in both weak an strong solutions of sodium chloride. The initial movement of water induced in tissues in the period immediately following removal from the body is dependent upon forces which are active during life but soon impaired by injury to the tissues. The molar concentration of the contents of secreting cells is greater than that of the blood serum and of the fluid surrounding them. These conditions are favorable to the passage of water from the tissue spaces to the cells. PMID:18107971
Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex.
Lengke, Maggy F; Ravel, Bruce; Fleet, Michael E; Wanger, Gregory; Gordon, Robert A; Southam, Gordon
2006-10-15
The mechanisms of gold bioaccumulation by cyanobacteria (Plectonema boryanum UTEX 485) from gold(III)-chloride solutions have been studied at three gold concentrations (0.8,1.7, and 7.6 mM) at 25 degrees C, using both fixed-time laboratory and real-time synchrotron radiation absorption spectroscopy (XAS) experiments. Interaction of cyanobacteria with aqueous gold(III)-chloride initially promoted the precipitation of nanoparticles of amorphous gold(I)-sulfide at the cell walls, and finally deposited metallic gold in the form of octahedral (111) platelets (approximately 10 nm to 6 microm) near cell surfaces and in solutions. The XAS results confirm that the reduction mechanism of gold(III)-chloride to metallic gold by cyanobacteria involves the formation of an intermediate Au(I) species, gold(I)-sulfide.
Li, Sheng-Hong; Liao, Xuan; Zhou, Tian-En; Xiao, Li-Ling; Chen, Yuan-Wen; Wu, Fan; Wang, Jing-Ru; Cheng, Biao; Song, Jian-Xing; Liu, Hong-Wei
2017-01-01
The present study was conducted to compare 2 purification methods for isolation of human adipose-derived stromal vascular fraction or stem cells (ADSCs) based on red blood cell (RBC) lysis with 155 mM ammonium chloride (NH4Cl) and hypotonic sodium chloride (NaCl) solution, and try to develop a safe, convenient, and cost-effective purification method for clinical applications. Adipose-derived stem cells and RBC were harvested from the fatty and fluid portions of liposuction aspirates, respectively. The suitable concentration of hypotonic NaCl solution on RBC lysis for purification of ADSCs was developed by RBC osmotic fragility test and flow cytometry analysis. The effects of 155 mM NH4Cl or 0.3% NaCl solution on ADSCs proliferation and RBC lysis efficiency were examined by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide assay and lysis efficiency test, respectively. In addition, the adipogenic and osteogenic capabilities, phenotype and genetic stability of ADSCs were evaluated by oil red staining, alkaline phosphatase activity measurement, flow cytometry, and karyotype analysis, respectively. Sodium chloride solution in 0.3% concentration effectively removed RBCs and did not influence the survival of ADSCs in the 10-minute incubation time. The lysis efficiency did not differ significantly between 0.3% NaCl and 155 mM NH4Cl. Moreover, the adipogenic and osteogenic capabilities, surface marker expression and karyotype of the ADSCs were not affected by lysis solutions or by lysis per se. However, the proliferation capacity in the 0.3% NaCl group was superior to that in 155 mM NH4Cl group. Our data suggest that 0.3% NaCl solution is useful for isolating ADSCs from liposuction aspirate for clinical applications with safety, convenience, and cost-effect.
Hot and cold water as a supercritical solvent
NASA Astrophysics Data System (ADS)
Fuentevilla, Daphne Anne
This dissertation addresses the anomalous properties of water at high temperatures near the vapor-liquid critical point and at low temperatures in the supercooled liquid region. The first part of the dissertation is concerned with the concentration dependence of the critical temperature, density, and pressure of an aqueous sodium chloride solution. Because of the practical importance of an accurate knowledge of critical parameters for industrial, geochemical, and biological applications, an empirical equation for the critical locus of aqueous sodium chloride solutions was adopted in 1999 by the International Association for the Properties of Water and Steam (IAPWS) as a guideline. However, since this original Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride was developed, two new theoretical developments occurred, motivating the first part of this dissertation. Here, I present a theory-based formulation for the critical parameters of aqueous sodium chloride solutions as a proposed replacement for the empirical formulation currently in use. This formulation has been published in the International Journal of Thermophysics and recommended by the Executive Committee of IAPWS for adoption as a Revised Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride. The second part of the dissertation addresses a new concept, considering cold water as a supercritical solvent. Based on the idea of a second, liquid-liquid, critical point in supercooled water, we explore the possibility of supercooled water as a novel supercooled solvent through the thermodynamics of critical phenomena. In 2006, I published a Physical Review letter presenting a parametric scaled equation of state for supercooled-water. Further developments based on this work led to a phenomenological mean-field "two-state" model, clarifying the nature of the phase separation in a polyamorphic single-component liquid. In this dissertation, I modify this two-state model to incorporate solutes. Critical lines emanating from the pure-water critical point show how even small additions of solute may significantly affect the thermodynamic properties and phase behavior of supercooled aqueous solutions. Some solutes, such as glycerol, can prevent spontaneous crystallization, thus making liquid-liquid separation in supercooled water experimentally accessible. This work will help in resolving the question on liquid polyamorphism in supercooled water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lihua; He, Xiaoman; Qu, Jun
Al(OH){sub 3} and Ca(OH){sub 2} powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kineticsmore » with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. - Graphical abstract: Activated Ca-Al hydroxides (C{sub 3}A) transformed into Ca-Al-OH compound when agitated in water. Ca-Al precursor (C{sub 3}A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO{sub 4} LDH product. Ca-Al-CrO{sub 4} LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. - Highlights: • Activated Ca-Al hydroxides transformed into LDH when agitated in water with some inorganic substances. • Hexavalent Cr was incorporated in the LDH structure at high adsorption capacity. • Ca-Al-Cr LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases with coexistence. • The prepared Ca-Al hydroxides had high performance as adsorbent even with high salinity of the solution.« less
Surface-enhanced Raman scattering from silver nanostructures with different morphologies
NASA Astrophysics Data System (ADS)
Zhang, W. C.; Wu, X. L.; Kan, C. X.; Pan, F. M.; Chen, H. T.; Zhu, J.; Chu, Paul K.
2010-07-01
Scanning electron microscopy and X-ray diffraction reveal that four different types of crystalline silver nanostructures including nanoparticles, nanowires, nanocubes, and bipyramids are synthesized by a solvothermal method by reducing silver nitrate with ethylene glycol using poly(vinylpyrrolidone) as an adsorption agent and adding different quantities of sodium chloride to the solution. These nanostructures which exhibit different surface plasma resonance properties in the ultraviolet-visible region are shown to be good surface-enhanced Raman scattering (SERS) substrates using rhodamine 6G molecules. Our results demonstrate that the silver nanocubes, bipyramids with sharp corners and edges, and aggregated silver nanoparticles possess better SERS properties than the silver nanowires, indicating that they can serve as high-sensitivity substrates in SERS-based measurements.
Preparation and characterization of silver chloride nanoparticles as an antibacterial agent
NASA Astrophysics Data System (ADS)
Duong Trinh, Ngoc; Thanh Binh Nguyen, Thi; Hai Nguyen, Thanh
2015-12-01
Silver chloride nanoparticles were prepared by the precipitation reaction between silver nitrate and sodium chloride in an aqueous solution containing poly(vinyl alcohol) as a stabilizing agent. Different characteristics of the nanoparticles in suspension and in lyophilized powder such as size, morphology, chemical nature, interaction with stabilizing agent and photo-stability were investigated. Biological tests showed that the obtained silver chloride nanoparticles displayed antibacterial activities against Escherichia coli and Staphylococcus aureus.
Goertz, Ole; Lauer, Henrik; Hirsch, Tobias; Daigeler, Adrien; Harati, Kamran; Stricker, Ingo; Lehnhardt, Marcus; von der Lohe, Leon
2016-12-01
The purpose of this study was to investigate the effect of polyhexanide and a new developed chitin-based wound dressing on skin microcirculation, epithelialisation and angiogenesis. A full-thickness dermal layer extending to the underlying cartilage was excised on the dorsal side of hairless mice (n = 27; 2·3 ± 0·3 mm 2 ). A polyhexanide ointment, a chitosan solution and a sodium chloride group as control were analysed using intravital fluorescence microscopy. Angiogenesis, epithelialisation and microcirculatory standard parameters were measured over a time period of 20 days. The non-perfused area is regarded as a parameter for angiogenesis and showed the following results: on days 12, 16 and 20, the sodium chloride group was significantly superior to chitosan solution (P < 0·05) and, on days 8, 12, 16 and 20, the polyhexanide group was superior to chitosan solution (P < 0·05). The epithelialisation was measured significantly faster in the polyhexanide and control group on day 8 versus chitosan solution. Whereas polyhexanide and sodium chloride were nearly completely epithelialised, treatment with chitosan solution showed still an open wound of 11% of the initial wound size. Altogether, we could demonstrate the advantageous effects of a polyhexanide ointment on microcirculation, angiogenesis and epithelialisation. Chitosan solution appears to inhibit angiogenesis and delays epithelialisation. Further studies in different models would be worthwhile to confirm these results. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
40 CFR 415.165 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Sodium Chloride Production... chloride. (b) Any new source subject to this subpart and using the solution brine-mining process must...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etschmann, Barbara E.; Liu, Weihua; Pring, Allan
2016-05-01
Tellurium (Te) and bismuth (Bi) are two metal(loid)s often enriched together with gold (Au) in hydrothermal deposits; however the speciation and transport properties for these two metals in hydrothermal systems are poorly understood. We investigated the effect of chloride on the speciation of Te(IV) and Bi(III) in hydrothermal solutions using in-situ XAS spectroscopy. At ambient temperature, oxy-hydroxide complexes containing the [TeO3] moiety (e.g., H3TeO3+ under highly acidic conditions) predominate in salty solutions over a wide range in pH and salt concentrations. Te(IV)-Cl complexes only appear at pH(25 degrees C) <= 2 and high Cl- activity (>= 10). The highest ordermore » Te(IV) chloride complex detected is TeCl4(aq), and contains the [TeCl4] moiety. Upon heating to 199 degrees C, the Te(IV)-Cl complexes become more stable; however they still required highly acidic conditions which are likely to exist only in very limited environments in nature. At ambient temperature, Bi(III) is coordinated to 5.5(5) Cl atoms in high salinity, acidic (HCl >= 0.5 m) chloride solutions. This, combined with large EXAFS-derived structural disorder parameters, suggests that the Bi(III) complex is most likely present as both BiCl52- and BiCl63-. The number of Cl atoms coordinated to Bi(III) decreases with increasing temperature; at around 200 degrees C and above, Bi(III) is coordinated to three Cl atoms. Overall the data show that Te(IV) chloride complexes can be ignored in predicting Te mobility under oxidizing conditions in most geological environments, but that Bi(III) chloride complexes are expected to account for Bi mobility in acidic brines. New thermodynamic properties for Bi(III) chloride complexes are provided to improve reactive transport modeling of Bi up to 500 degrees C. Although higher order complexes such as BiCl52- and BiCl63- exist at ambient temperature, the BiCl3(aq) complex becomes the predominant chloride complex in saline solutions at T >= 200 degrees C.« less
Organic Electrochemistry in Aluminum Chloride Melts.
1976-08-15
establishing a new, room temperature molten salt system. The low temperature fused salt was prepared by combining aluminum...narrow (600 mY) potential range. Organic electrosynthesis was conducted in a 50-50 by volume molten salt - benzene solution. This mixed solvent...room temperature molten salt system, namely a 67:33 mole percent aluminum chloride: ethylpyridinium bromide melt and in a 50-50 by volume solution of the
NASA Astrophysics Data System (ADS)
Halalay, Ion C.
A study of the structural glass transition trough impulsive stimulated light scattering experiments has been carried out in concentrated aqueous lithium chloride solutions, at temperatures ranging from ambient to cryogenic. A specially designed sample cell made it possible to cover the whole temperature interval from simple liquid, to viscoelastic supercooled liquid, to glass. It is shown that a phenomenological description of the results of these experiments in terms of a spectrum of relaxation times through the use of a Kohlrausch-Williams-Watts relaxation function is inadequate. Based on predictions of mode-coupling theory of the liquid-glass transition, an alternative approach to data interpretation is proposed. It is shown that for an aqueous lithium chloride solution, the prediction of simple scaling and identical scaling for mechanical and electrical susceptibilities seems to be valid. However, another prediction of theory is called into question: instead of a power-law behavior on temperature difference, it is found experimentally that the behavior of the susceptibility spectrum minimum is exponential. Similar disagreements are found for other two materials, triphenyl phosphite and polypropylene oxide. The causes for these discrepancies are discussed and it is concluded that additional experimentation is necessary to verify theoretical claims. Experiments are proposed which can test these predictions and serve as guide for the construction of theoretical models for the glass transition in real systems. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).
Hydration patterns and salting effects in sodium chloride solution.
Li, Weifeng; Mu, Yuguang
2011-10-07
The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics
40 CFR 415.160 - Applicability; description of the sodium chloride production subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT... the production of sodium chloride by the solution brine-mining process and by the solar evaporation...
Silva, Claudineia R; Vieira, Heberth J; Canaes, Larissa S; Nóbrega, Joaquim A; Fatibello-Filho, Orlando
2005-02-28
A flow injection (FI) spectrophotometric method was proposed for the determination of chloride ion in natural waters. The determination of chloride was carried out by reaction with Hg(SCN)(2) immobilized in an epoxy resin bead in a solid-phase reactor (SPR) and the thiocyanate ions released were determined spectrophotometrically at 480nm after complexing reaction with Fe(III). The analytical curve for chloride was linear in the concentration range from 5.6 x 10(-5) to 2.2 x 10(-4)moll(-1) with a detection limit of 1.4 x 10(-5)moll(-1). The relative standard deviation (R.S.D.) was 2.2% for a solution containing 2.2 x 10(-4)moll(-1) (n = 10). The simple manifold allows a routine analytical frequency of 100 determinations per hour. The main advantage of the developed method is the 400% reduction of the Hg waste solution generated when compared to conventional methods for chloride determination based on the same spectrophotometric reaction.
Amperometric Sensor for Detection of Chloride Ions.
Trnkova, Libuse; Adam, Vojtech; Hubalek, Jaromir; Babula, Petr; Kizek, Rene
2008-09-15
Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE) and at a CPE modified with solid AgNO₃, a solution of AgNO₃ and/or solid silver particles. Detection limits (3 S/N) for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO₃, solution of AgNO₃ and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV) we estimated the limit of detection (3 S/N) as 500 nM.
Adair, Frank W.; Geftic, Sam G.; Gelzer, Justus
1969-01-01
Resistant cells of Pseudomonas aeruginosa and a waterborne Pseudomonas sp. (strain Z-R) were able to multiply in nitrogen-free minimal salts solution containing various concentrations of commercially prepared, ammonium acetate-buffered benzalkonium chloride (CBC), a potent antimicrobial agent. As the CBC concentration increased, growth increased until a point was reached at which the extent of growth leveled off or was completely depressed. Minimal salts solutions of pure benzalkonium chloride (PBC) containing no ammonium acetate did not support bacterial growth. When ammonium acetate was added to PBC solutions in the same concentrations found in CBC solutions, growth patterns developed that were comparable to those found with CBC. Likewise, (NH4)2SO4 added to PBC solutions supported growth of both organisms. P. aeruginosa was initially resistant to CBC levels of 0.02% and it was adapted to tolerate levels as high as 0.36%. Strain Z-R was naturally resistant to 0.4% CBC. Since ammonium acetate, carried over by the CBC used in drug formulations and disinfectant solutions, has the potential to support the growth of resistant bacteria and thus make possible the risk of serious infection, it is suggested that regulations allowing the presence of ammonium acetate in CBC solution be reconsidered. PMID:4984761
Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong; Ryou, Jae-Suk
2018-05-14
Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl₂ deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl₂ solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases.
Characterization of injury in isolated rat proximal tubules during cold incubation and rewarming.
Bienholz, Anja; Walter, Björn; Pless-Petig, Gesine; Guberina, Hana; Kribben, Andreas; Witzke, Oliver; Rauen, Ursula
2017-01-01
Organ shortage leads to an increased utilization of marginal organs which are particularly sensitive to storage-associated damage. Cold incubation and rewarming-induced injury is iron-dependent in many cell types. In addition, a chloride-dependent component of injury has been described. This work examines the injury induced by cold incubation and rewarming in isolated rat renal proximal tubules. The tissue storage solution TiProtec® and a chloride-poor modification, each with and without iron chelators, were used for cold incubation. Incubation was performed 4°C for up to 168 h, followed by rewarming in an extracellular buffer (3 h at 37°C). After 48, 120 and 168 h of cold incubation LDH release was lower in solutions containing iron chelators. After rewarming, injury increased especially after cold incubation in chelator-free solutions. Without addition of iron chelators LDH release showed a tendency to be higher in chloride-poor solutions. Following rewarming after 48 h of cold incubation lipid peroxidation was significantly decreased and metabolic activity was tendentially better in tubules incubated with iron chelators. Morphological alterations included mitochondrial swelling and fragmentation being partially reversible during rewarming. ATP content was better preserved in chloride-rich solutions. During rewarming, there was a further decline of ATP content in the so far best conditions and minor alterations under the other conditions, while oxygen consumption was not significantly different compared to non-stored control tubules. Results show an iron-dependent component of preservation injury during cold incubation and rewarming in rat proximal renal tubules and reveal a benefit of chloride for the maintenance of tubular energy state during cold incubation.
Characterization of injury in isolated rat proximal tubules during cold incubation and rewarming
Bienholz, Anja; Walter, Björn; Pless-Petig, Gesine; Guberina, Hana; Kribben, Andreas; Witzke, Oliver; Rauen, Ursula
2017-01-01
Organ shortage leads to an increased utilization of marginal organs which are particularly sensitive to storage-associated damage. Cold incubation and rewarming-induced injury is iron-dependent in many cell types. In addition, a chloride-dependent component of injury has been described. This work examines the injury induced by cold incubation and rewarming in isolated rat renal proximal tubules. The tissue storage solution TiProtec® and a chloride-poor modification, each with and without iron chelators, were used for cold incubation. Incubation was performed 4°C for up to 168 h, followed by rewarming in an extracellular buffer (3 h at 37°C). After 48, 120 and 168 h of cold incubation LDH release was lower in solutions containing iron chelators. After rewarming, injury increased especially after cold incubation in chelator-free solutions. Without addition of iron chelators LDH release showed a tendency to be higher in chloride-poor solutions. Following rewarming after 48 h of cold incubation lipid peroxidation was significantly decreased and metabolic activity was tendentially better in tubules incubated with iron chelators. Morphological alterations included mitochondrial swelling and fragmentation being partially reversible during rewarming. ATP content was better preserved in chloride-rich solutions. During rewarming, there was a further decline of ATP content in the so far best conditions and minor alterations under the other conditions, while oxygen consumption was not significantly different compared to non-stored control tubules. Results show an iron-dependent component of preservation injury during cold incubation and rewarming in rat proximal renal tubules and reveal a benefit of chloride for the maintenance of tubular energy state during cold incubation. PMID:28672023
21 CFR 177.1960 - Vinyl chloride-hexene-1 copolymers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... determined by any suitable analytical procedure of generally accepted applicability. (ii) Inherent viscosity... D1243-79, “Standard Test Method for Dilute Solution Viscosity of Vinyl Chloride Polymers,” which is...
Hydrolysis of ferric chloride in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lussiez, G.; Beckstead, L.
1996-11-01
The Detox{trademark} process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves amore » two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200{degrees}C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl{sub 3 liquid} + H{sub 2}O {r_arrow} FeOCl{sub solid} + 2 HCl{sub gas} During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl{sub solid} + H{sub 2}O {r_arrow} Fe{sub 2}O{sub 3 solid} + 2 HCl{sub gas}. The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way.« less
NASA Astrophysics Data System (ADS)
Banda, Raju; Jeon, Ho Seok; Lee, Man Seung
2014-12-01
Precipitation and solvent extraction experiments have been performed to recover light rare earths from simulated monazite sand chloride leach solutions. Precipitation conditions were obtained to recover Ce by adding NaClO as an oxidant. Among some cationic extractants (PC 88A, D2EHPA, Cyanex 272, LIX 63), PC 88A showed the best performance to separate La from the resulting chloride solution. Furthermore, the mixture of PC 88A with other solvating (TBP, TOPO) and amine extractants (Alamine 336, Aliquat 336) was tested to increase the separation factor of La from Pr and Nd. The use of mixed extractants greatly enhanced the separation of La from the two other metals. McCabe-Thiele diagrams for the extraction of Pr and Nd with the PC 88A/Alamine 336 mixture were constructed.
Nozdrenko, D M; Abramchuk, O M; Soroca, V M; Miroshnichenko, N S
2015-01-01
We studied enzymatic activity and measured strain-gauge contraction properties of the frog Rana temporaria m. tibialis anterior muscle fascicles during the action of aluminum chloride solution. It was shown that AlCl3 solutions did not affect the dynamic properties of skeletal muscle preparation in concentrations less than 10(-4) M Increasing the concentration of AlCl3 to 10(-2) M induce complete inhibition of muscle contraction. A linear correlation between decrease in Ca2+,Mg(2+)-ATPase activity of sarcoplasmic reticulum and the investigated concentrations range of aluminum chloride was observed. The reduction in the dynamic contraction performance and the decrease Ca2+,Mg(2+)-ATPase activity of the sarcoplasmic reticulum under the effect of the investigated AlCl3 solution were minimal in pre-tetanus period of contraction.
Comparative assessment of the methods for exchangeable acidity measuring
NASA Astrophysics Data System (ADS)
Vanchikova, E. V.; Shamrikova, E. V.; Bespyatykh, N. V.; Zaboeva, G. A.; Bobrova, Yu. I.; Kyz"yurova, E. V.; Grishchenko, N. V.
2016-05-01
A comparative assessment of the results of measuring the exchangeable acidity and its components by different methods was performed for the main mineral genetic horizons of texturally-differentiated gleyed and nongleyed soddy-podzolic and gley-podzolic soils of the Komi Republic. It was shown that the contents of all the components of exchangeable soil acidity determined by the Russian method (with potassium chloride solution as extractant, c(KCl) = 1 mol/dm3) were significantly higher than those obtained by the international method (with barium chloride solution as extractant, c(BaCl2) = 0.1 mol/dm3). The error of the estimate of the concentration of H+ ions extracted with barium chloride solution equaled 100%, and this allowed only qualitative description of this component of the soil acidity. In the case of the extraction with potassium chloride, the error of measurements was 50%. It was also shown that the use of potentiometric titration suggested by the Russian method overestimates the results of soil acidity measurement caused by the exchangeable metal ions (Al(III), Fe(III), and Mn(II)) in comparison with the atomic emission method.
NASA Astrophysics Data System (ADS)
Park, Sun-Ah; Kim, Seon-Hong; Yoo, Yun-Ha; Kim, Jung-Gu
2015-05-01
The influence of the addition of HCl on the corrosion behavior of low-alloy steel containing copper and antimony was investigated using electrochemical (potentiodynamic and potentiostatic polarization tests, and electrochemical impedance spectroscopy) and weight loss tests in a 1.6M H2SO4 solution with different concentrations of hydrochloric acid (0.00, 0.08, 0.15 and 0.20 M HCl) at 60 °C. The result showed that the corrosion rate decreased with increasing HCl by the formation of protective layers. SEM, EDS and XPS examinations of the corroded surfaces after the immersion test indicated that the corrosion production layer formed in the solution containing HCl was highly comprised of metallic Cu, Cu chloride and metallic (Fe, Cu, Sb) compounds. The corrosion resistance was improved by the Cu-enriched layer, in which chloride ions are an accelerator for cupric ion reduction during copper deposition. Furthermore, cuprous and antimonious chloride species are complex salts for cuprous ions adsorbed on the surface during copper deposition.
Haas, John L.
1978-01-01
The total pressure for the system H2O-CH 4 is given by p(total) = P(H2O,t) + exp10[log x(CH 4) - a - b x(CH4)], where P(H2O,t) is the vapor pressure of H2O liquid at the temperature t (?C) and x(CH 4) is the molal concentration of methane in the solution. The terms a and b are functions of temperature only. Where the total pressure and temperature are known, the concentration of methane, x(CH4), is found by iteration. The concentration of methane in a sodium chloride brine, y(CH4), is estimated using the function log y(CH4) = log x(CH4) - A I, where A is the salting out constant and I is the ionic strength. For sodium chloride solutions, the ionic strength is equal to the molality of the salt. The equations are valid to 360?C, 138 MPa, and 25 weight percent sodium chloride.
Junsomboon, Jaroon; Jakmunee, Jaroon
2008-07-15
A simple flow injection system using three 3-way solenoid valves as an electric control injection valve and with a simple home-made chloride ion selective electrode based on Ag/AgCl wire as a sensor for determination of water soluble chloride in admixtures and aggregates for cement has been developed. A liquid sample or an extract was injected into a water carrier stream which was then merged with 0.1M KNO(3) stream and flowed through a flow cell where the solution will be in contact with the sensor, producing a potential change recorded as a peak. A calibration graph in range of 10-100 mg L(-1) was obtained with a detection limit of 2 mg L(-1). Relative standard deviations for 7 replicates injecting of 20, 60 and 90 mg L(-1) chloride solutions were 1.0, 1.2 and 0.6%, respectively. Sample throughput of 60 h(-1) was achieved with the consumption of 1 mL each of electrolyte solution and water carrier. The developed method was validated by the British Standard methods.
Shiyan, Anna; Thompson, Melanie; Köcher, Saskia; Tausendschön, Michaela; Santos, Helena; Hänelt, Inga; Müller, Volker
2014-01-01
Halobacillus halophilus, a moderately halophilic bacterium isolated from salt marshes, produces various compatible solutes to cope with osmotic stress. Glutamate and glutamine are dominant compatible solutes at mild salinities. Glutamine synthetase activity in cell suspensions of Halobacillus halophilus wild type was shown to be salt dependent and chloride modulated. A possible candidate to catalyze glutamine synthesis is glutamine synthetase A2, whose transcription is stimulated by chloride. To address the role of GlnA2 in the biosynthesis of the osmolytes glutamate and glutamine, a deletion mutant (ΔglnA2) was generated and characterized in detail. We compared the pool of compatible solutes and performed transcriptional analyses of the principal genes controlling the solute production in the wild type strain and the deletion mutant. These measurements did not confirm the hypothesized role of GlnA2 in the osmolyte production. Most likely the presence of another, yet to be identified enzyme has the main contribution in the measured activity in crude extracts and probably determines the total chloride-modulated profile. The role of GlnA2 remains to be elucidated. PMID:24782854
Waligórska, Agnieszka; Wianecka-Skoczeń, Magdalena; Korohoda, Włodzimierz
2007-01-01
Cell movement in the amoebae Dictyostelium discoideum has been examined in media differing in monovalent cation concentration (i.e. Na+ and K+). Under isotonic or even slightly hypertonic conditions, the cells move equally well in solutions in which either potassium or sodium ions dominate. However, in strongly hypertonic solutions the amoebae showed motility in a 2% potassium chloride solution, but remained motionless in a hypertonic 2% sodium chloride solution. This inhibition of D. discoideum amoebae movement in a hypertonic sodium chloride solution was fully reversible. Such behaviour corresponds to that of plant, fungi, and some invertebrate animal cells rather than protozoan or vertebrate cells. These observations suggest that studies using D. discoideum as a model for cell motility in vertebrate animal tissue cells should be considered with caution, and would seem to confirm the classification of cellular slime moulds as related rather to Fungi than to Protista. This also shows that the cell membrane models should consider the asymmetry in sodium/potassium ion concentrations found in vertebrate animal cells as one of various possibilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viklund, H.I.; Kennedy, R.H.
Uranium precipitates obtained from Congo leach liquors by an ion exchange process contained more than 0.1% chloride. Attempts were made to reduce the chloride content of typical precipitates by calcination of dried precipitate, releaching of dried precipitate with water, and washing of wet precipitate with water. Washing of wet precipitate with an aqueous solution of 0.25% Na/sub 2/SO/ sub 4/, to prevent peptization, provided a simple solution to the problem. Precipitation tests on Congo ion exchange eluates showed a marked advantage in subsequent thickening and filtration operations for precipitation from hot solution. (auth)
Wang, Guoshun
2016-09-01
Phagocytes, such as neutrophils and macrophages, engulf microbes into phagosomes and launch chemical attacks to kill and degrade them. Such a critical innate immune function necessitates ion participation. Chloride, the most abundant anion in the human body, is an indispensable constituent of the myeloperoxidase (MPO)-H2 O2 -halide system that produces the potent microbicide hypochlorous acid (HOCl). It also serves as a balancing ion to set membrane potentials, optimize cytosolic and phagosomal pH, and regulate phagosomal enzymatic activities. Deficient supply of this anion to or defective attainment of this anion by phagocytes is linked to innate immune defects. However, how phagocytes acquire chloride from their residing environment especially when they are deployed to epithelium-lined lumens, and how chloride is intracellularly transported to phagosomes remain largely unknown. This review article will provide an overview of chloride protein carriers, potential mechanisms for phagocytic chloride preservation and acquisition, intracellular chloride supply to phagosomes for oxidant production, and methods to measure chloride levels in phagocytes and their phagosomes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tatematsu, Masae; Mutai, Mamoru; Inoue, Kaoru; Ozaki, Keisuke; Furihata, Chie; Ito, Nobuyuki
1989-01-01
In an approach to early detection of gastric carcinogens and promoters in an in vivo test system, promotion by sodium chloride (NaCl) and the synergistic effects of NaCl and sodium taurocholate (Na‐TC) on development of pepsinogen‐altered pyloric glands (PAPG) in rat glandular stomach after initiation with N‐methyl‐N′‐nitro‐N‐nitrosoguanidine (MNNG) were investigated. A total of 205 male WKY/NCrj rats were divided into 8 groups. Group 1 was given a single dose of MNNG of 160 mg/ kg body weight by gastric intubation, and starting 2 weeks later basal diet containing Na‐TC for 18 weeks. In addition, 1 ml doses of saturated NaCl solution were given by gastric intubation at weeks 4, 6, 8 and 10. Similarly, group 2 was treated with MNNG and Na‐TC, while group 3 animals received MNNG and NaCl. Group 4 was given MNNG alone. Groups 5–8 served as equivalent controls without MNNG initiation. The results revealed significantly enhanced induction of immunohisto‐chemically defined PAPG in the Na‐TC + NaCl (P< 0.001), Na‐TC (P<0.01) and NaCl (P<0.01) treated animals initiated with MNNG. Sodium chloride demonstrated a clear synergistic effect with Na‐TC in promoting the development of PAPG, suggesting possible advantage for its use in medium‐term in vivo assays for detection of gastric carcinogens and promoters. PMID:2514164
Nakashima, A K; Highsmith, A K; Martone, W J
1987-01-01
In an epidemic of septic arthritis due to Serratia marcescens, the intra-articular injection of contaminated methylprednisolone may have played a key role. The epidemic strain was found in used multiple-dose vials of methylprednisolone and in a canister of cotton balls soaked in benzalkonium chloride. The cotton balls had been used for antisepsis and disinfection. Growth characteristics of the epidemic strain of S. marcescens were compared with those of control strains of S. marcescens which had been obtained from unrelated nosocomial outbreaks. The epidemic strain was able to survive in 1:100 dilutions of benzalkonium chloride and was able to grow to greater than 10(5) CFU/ml in multiple-dose vials of methylprednisoline; control strains could not be recovered after 24 h in the same solutions. The preservative in methylprednisolone is gamma-myristyl picolinium chloride, a compound chemically related to benzalkonium chloride. We speculate that the epidemic strain of S. marcescens, which was resistant to benzalkonium chloride, had cross-resistance to gamma-myristyl picolinium chloride. If the cotton balls were used to disinfect the tops of the multiple-dose vials of methylprednisolone, small numbers of organisms subsequently introduced into the solution could have grown to high concentrations. PMID:3298309
Iron binding to caseins in the presence of orthophosphate.
Mittal, V A; Ellis, A; Ye, A; Edwards, P J B; Das, S; Singh, H
2016-01-01
As adding >5mM ferric chloride to sodium caseinate solutions results in protein precipitation, the effects of orthophosphate (0-64 mM) addition to sodium caseinate solution (2% w/v protein) on iron-induced aggregation of the caseins were studied at pH 6.8. Up to 20mM ferric chloride could be added to sodium caseinate solution containing 32 mM orthophosphate without any protein precipitation. The addition of iron to sodium caseinate solution containing orthophosphate reduced the diffusible phosphorus content in a concentration-dependent manner. Added iron appeared to interact simultaneously with phosphoserine on the caseins and inorganic phosphorus. The relative sizes of the casein aggregates were governed by the concentration of orthophosphate and the aggregates consisted of all casein fractions, even at the lowest level of ferric chloride addition (5mM). It is hypothesised that the addition of iron to caseins in the presence of orthophosphate results in the formation of colloidal structures involving casein-iron-orthophosphate interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tellurium: A new sensitive test
Lakin, H.W.; Thompson, C.E.
1963-01-01
A new, extremely sensitive method for the quantitative determination of tellurium is based on the induced precipitation of elemental gold from a 6N HCl solution containing gold chloride, cupric chloride, and hypophosphorous acid; the amount of gold reduced is proportional to the amount of tellurium present. As little as 1 nanogram (1 ?? 70-9 g) of tellurium gives a measurable reaction with 1 mg of gold in 50 ml of solution.
Waters, Brian W; Hung, Yen-Con
2014-04-01
Chlorinated water and electrolyzed oxidizing (EO) water solutions were made to compare the free chlorine stability and microbicidal efficacy of chlorine-containing solutions with different properties. Reduction of Escherichia coli O157:H7 was greatest in fresh samples (approximately 9.0 log CFU/mL reduction). Chlorine loss in "aged" samples (samples left in open bottles) was greatest (approximately 40 mg/L free chlorine loss in 24 h) in low pH (approximately 2.5) and high chloride (Cl(-) ) concentrations (greater than 150 mg/L). Reduction of E. coli O157:H7 was also negatively impacted (<1.0 log CFU/mL reduction) in aged samples with a low pH and high Cl(-) . Higher pH values (approximately 6.0) did not appear to have a significant effect on free chlorine loss or numbers of surviving microbial cells when fresh and aged samples were compared. This study found chloride levels in the chlorinated and EO water solutions had a reduced effect on both free chlorine stability and its microbicidal efficacy in the low pH solutions. Greater concentrations of chloride in pH 2.5 samples resulted in decreased free chlorine stability and lower microbicidal efficacy. © 2014 Institute of Food Technologists®
Restaurant consumer acceptance of beef loin strip steaks tenderized with calcium chloride.
Hoover, L C; Cook, K D; Miller, M F; Huffman, K L; Wu, C K; Lansdell, J L; Ramsey, C B
1995-12-01
Beef strip loins from either the right or left side of 22 carcasses of Bos indicus-type steers were injected with 200 mM calcium chloride (CaCl2) solution at 5% (wt/wt) to determine its effect on tenderness and other selected quality traits of steaks. Loins from opposite sides of the carcasses were untreated and served as the control. The steaks were evaluated for tenderness, juiciness, flavor intensity, tenderness acceptability, and overall acceptability by 62 restaurant consumers over a 6-wk period. The CaCl2 injection improved (P < .05) tenderness and flavor intensity ratings by the restaurant consumers. Tenderness acceptability and overall acceptability were improved 23 and 17%, respectively, by the CaCl2 injection. Flavor was not compromised by the CaCl2 injection. The CaCl2-treated steaks were rated superior(P < .05) for flavor compared to the control steaks. Restaurant consumers preferred the beef loin strip steaks injected with 200 mM CaCl2 at 5% (wt/wt). The results of this study are interpreted to indicate that, from a restaurant consumer perspective, CaCl2 injection is an acceptable means of making beef a more consistently tender product.
Performance of a Multifunctional Space Evaporator- Absorber-Radiator (SEAR)
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Bue, Grant; Quinn, Gregory
2013-01-01
The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 sq ft prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable heat rejection from the LCAR.
Thermodynamic properties of potassium chloride aqueous solutions
NASA Astrophysics Data System (ADS)
Zezin, Denis; Driesner, Thomas
2017-04-01
Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.
NON-AQUEOUS DISSOLUTION OF MASSIVE PLUTONIUM
Reavis, J.G.; Leary, J.A.; Walsh, K.A.
1959-05-12
A method is presented for obtaining non-aqueous solutions or plutonium from massive forms of the metal. In the present invention massive plutonium is added to a salt melt consisting of 10 to 40 weight per cent of sodium chloride and the balance zinc chloride. The plutonium reacts at about 800 deg C with the zinc chloride to form a salt bath of plutonium trichloride, sodium chloride, and metallic zinc. The zinc is separated from the salt melt by forcing the molten mixture through a Pyrex filter.
2011-10-01
general terms the use of alternative paint strippers formulated with water, formic acids, benzyl alcohol, and peroxides . Facilities testing these...based on benzyl alcohol and peroxide .6 In this system the benzyl alcohol serves as a carrier to penetrate and soften the coating while the peroxide ...34 27. FTIR spectrum of the epoxy primer exposed to 20% benzyl alcohol in methylene chloride
METHOD OF SEPARATING FISSION PRODUCTS FROM FUSED BISMUTH-CONTAINING URANIUM
Wiswall, R.H.
1958-06-24
A process is described for removing metal selectively from liquid metal compositions. The method effects separation of flssion product metals selectively from dilute solution in fused bismuth, which contains uraniunn in solution without removal of more than 1% of the uranium. The process comprises contacting the fused bismuth with a fused salt composition consisting of sodium, potassium and lithium chlorides, adding to fused bismuth and molten salt a quantity of bismuth chloride which is stoichiometrically required to convert the flssion product metals to be removed to their chlorides which are more stable in the fused salt than in the molten metal and are, therefore, preferentially taken up in the fused salt phase.
Efficacy of Two Novel Anodic Coatings for Enhanced Corrosion Protection of Aluminum Armor Alloys
2014-01-01
nitrate solution of a given metal electrolytically impregnating the porous oxide with the desired metal (5)—for example, silicon (Si) and silver (Ag...performed using the same equipment and data acquisition program previously described. Cells were filled with a 3.5% sodium chloride solution and the...electrochemical impedance spectroscopy h hour HATE Hydraulic Adhesion Test Equipment in inch NaCl sodium chloride OCP open circuit potential OSD
Test data from the chloride-monitor well at Sun City Center, Hillsborough County, Florida
Sinclair, William C.
1979-01-01
A test well drilled for Southwest Florida Water Management District at Sun City Center in Hillsborough County, will serve to monitor the interface between freshwater in the aquifer and the underlying chloride water. The sulfate content of the water in the aquifer at the well site exceeds 250 mg/L below a depth of about 700 feet. Wells for domestic and public supply in the area bottom at less than 500 feet and are separated from the sulfate water by about 100 feet of poorly-permeable limestone. The freshwater-chloride water interface is quite sharp and occurs at a depth of 1,410 feet. The chloride water is similar in composition to seawater but nearly twice as saline. (Woodard-USGS).
Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong
2018-01-01
Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl2 deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl2 solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases. PMID:29758008
Conductivity and electrochemical stability of concentrated aqueous choline chloride solutions
NASA Astrophysics Data System (ADS)
Grishina, E. P.; Kudryakova, N. O.
2017-10-01
The conductivity and electrochemical stability of choline chloride (ChCl) solutions with water contents ranging from 20 to 39 wt % are studied. Exposing ChCl to moist ambient air yields a highly concentrated aqueous solution that, as an electrolyte, exhibits the properties and variations in conductivity with temperature and concentration characteristic of other similar systems. Its electrochemical stability window, determined by cyclic voltammetry, is comparable to that of ChCl-based deep eutectic solvents (DESs). Products of the electrolysis of ChCl‒H2O mixtures seem to be less toxic than those of Reline, Ethaline, and Maline.
Chemical model for the solvent extraction of GdCl3 from a chloride solution with saponified PC88A
NASA Astrophysics Data System (ADS)
Lee, Man-Seung; Lee, Jin-Young; Kim, Joon-Soo
2005-12-01
Solvent extraction experiments of Gd with 40% saponified PC88A have been conducted from a chloride solution under different extraction conditions. The effect of saponification of an acidic extractant on the extraction of Gd was investigated. To analyze the ionic equilibria of a GdCl3 solution, we estimated the necessary thermodynamic properties from reported values. Moreover, when applying the chemical model developed in this study, we used experimental data to estimate the equilibrium constant for the extraction of Gd with partially saponified PC88A.
NASA Astrophysics Data System (ADS)
Junaidi, Triyana, Kuwat; Harsojo, Suharyadi, Edi
2016-04-01
We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.
Amperometric Sensor for Detection of Chloride Ions†
Trnkova, Libuse; Adam, Vojtech; Hubalek, Jaromir; Babula, Petr; Kizek, Rene
2008-01-01
Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE) and at a CPE modified with solid AgNO3, a solution of AgNO3 and/or solid silver particles. Detection limits (3 S/N) for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO3, solution of AgNO3 and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV) we estimated the limit of detection (3 S/N) as 500 nM. PMID:27873832
Bourdeaux, Chris P; Brown, Jules M
2011-08-01
Hypertonic sodium chloride solutions are routinely used to control raised intracranial pressure (ICP) after traumatic brain injury but have the potential to cause a hyperchloremic metabolic acidosis. Sodium bicarbonate 8.4% has previously been shown to reduce ICP and we have therefore conducted a randomized controlled trial to compare these two solutions. Patients with severe traumatic brain injury were randomly allocated to receive an equiosmolar dose of either 100 ml of sodium chloride 5% or 85 ml of sodium bicarbonate 8.4% for each episode of intracranial hypertension. ICP and blood pressure were measured continuously. Arterial pCO(2), sodium, chloride, osmolality, and pH were measured at intervals. We studied 20 episodes of intracranial hypertension in 11 patients. Treatments with 8.4% sodium bicarbonate and 5% sodium chloride reduced raised ICP effectively with a significant fall in ICP from baseline at all time points (P < 0.001). There was no significant difference in ICP with time between those episodes treated with 5% sodium chloride or 8.4% sodium bicarbonate, P = 0.504. Arterial pH was raised after treatment with 8.4% sodium bicarbonate. An equiosmolar infusion of 8.4% sodium bicarbonate is as effective as 5% sodium chloride for reduction of raised ICP after traumatic brain injury when infused over 30 min.
A novel device for quantitative measurement of chloride concentration by fluorescence indicator
NASA Astrophysics Data System (ADS)
Wang, Junsheng; Wu, Xudong; Chon, Chanhee; Gonska, Tanja; Li, Dongqing
2012-02-01
Cystic fibrosis (CF) is a life-threatening genetic disease. At present, the common method for diagnosis of CF is to detect the chloride concentration in sweat using ion-selective electrodes. However, the current sweat testing methods require a relatively large quantity of sweat sample, at least 25 µL, which is very difficult to obtain, especially for newborns. This paper presents a new method and a new device for rapid detection of the chloride concentration from a small volume of solution. In this method, the chloride concentration is determined quantitatively by the fluorescence intensity of MQAE, a chloride ion fluorescent indicator. In this device, the sample is carried by a small piece of filter paper on a cover glass exposed to an UV LED light source. The resulting fluorescent signals are detected by a Si photodiode. Data acquisition and processing are accomplished by LabVIEW software in a PDA. Based on the Stern-Volmer relationship, the effects of different parameters on the fluorescence intensity were analyzed. The observed significant difference between 40 and 60 mM (the borderline of chloride concentration for CF) is discussed in this paper. The results show that detection can be completed within 10 s. The minimum detectable volume of the chloride solution is 1 μL. The novel method and the device are of great potential for CF diagnosis.
Shear bond strength between resin cement and colored zirconia made with metal chlorides.
Kim, Ga-Hyun; Park, Sang-Won; Lee, Kwangmin; Oh, Gye-Jeong; Lim, Hyun-Pil
2015-06-01
Although the application of zirconia in esthetic prostheses has increased, the shear bond strength (SBS) between colored zirconia and resin cement has not been investigated. The purpose of this study was to compare the SBS between resin cement and colored zirconia made with metal chlorides. Sixty-four zirconia specimens were divided into 2 groups: one in which the specimens were bonded with resin cement, including 4-META (4-methacryloxyethyl trimellitic anhydride), and one in which the specimens were bonded with resin cement (SEcure, Sun Medical) after being processed with zirconia primer (Zirconia Liner), including 4-META. Each group was then divided into 4 subgroups depending on the coloring liquid. The subgroups were noncolored (control), commercial coloring liquid VITA In-Ceram 2000 YZ LL1, aqueous chromium chloride solution 0.1 wt%, and aqueous molybdenum chloride solution 0.1 wt%. Composite resin cylinders (Filtek Z250, 3M ESPE) were fabricated and bonded to the surface of the zirconia specimen with resin cement (SEcure). All specimens were stored in 37°C distilled water for 24 hours, and the SBS was measured with a universal testing machine. All data were analyzed statistically with 2-way ANOVA and tested post hoc with the Tukey test (α=.05). Significant differences were observed among the SBS values of the colored zirconia depending on the coloring liquid (P<.001) and whether they were processed with zirconia primer (P<.001). The SBS between colored zirconia and resin cement was significantly higher than that of noncolored zirconia and resin cement in groups processed with zirconia primer (P<.05). Colored zirconia immersed in aqueous molybdenum chloride solution showed a significantly higher SBS. Coloring liquid enhanced the SBS between resin cement and zirconia processed with zirconia primer. In particular, colored zirconia immersed in aqueous molybdenum chloride solution showed the highest SBS. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Petrezselyova, Silvia; Dominguez, Angel; Herynkova, Pavla; Macias, Juan F; Sychrova, Hana
2013-10-01
Cation–chloride co-transporters serve to transport Cl– and alkali metal cations. Whereas a large family of these exists in higher eukaryotes, yeasts only possess one cation–chloride co-transporter, Vhc1, localized to the vacuolar membrane. In this study, the human cation–chloride co-transporter NKCC2 complemented the phenotype of VHC1 deletion in Saccharomyces cerevisiae and its activity controlled the growth of salt-sensitive yeast cells in the presence of high KCl, NaCl and LiCl. A S. cerevisiae mutant lacking plasma-membrane alkali–metal cation exporters Nha1 and Ena1-5 and the vacuolar cation–chloride co-transporter Vhc1 is highly sensitive to increased concentrations of alkali–metal cations, and it proved to be a suitable model for characterizing the substrate specificity and transport activity of human wild-type and mutated cation–chloride co-transporters. Copyright © 2013 John Wiley & Sons, Ltd.
Ion chromatography in the manufacture of multilayer circuit boards
NASA Astrophysics Data System (ADS)
Smith, R. E.
1987-10-01
Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. IC provides results on ions not expected in the production solutions. Thus, solution contamination and breakdown products can be monitored in every phase of the circuit board manufacturing. During the first phase, epoxy laminates experience an etchback, first in chromic acid, which can be analyzed for trace chloride and sulfate, then in ammonium bifluoride/HCl, which can be analyzed for fluoride and chloride. Following a wet blasting to roughen up the surface, 20 mu in. of copper are deposited using an electroless bath. Again, IC is applicable for monitoring formate, tartarate, and sulfate levels. Next, an acid copper bath is used to electroplate the through holes with 0.001 in. of ductile copper. This bath is analyzed for trace chloride. Photoimaging is then performed, and the organic solvents used can be assayed for trace ionic chloride. Finally, a fluoroboric acid-based tin-lead bath is used to deposit a solderable alloy. This bath is analyzed for total fluoroborate, tin, and lead. In addition, mobile phase ion chromatography (MPIC) is used to monitor the nonionic organic brighteners in the baths.
Ion chromatography in the manufacture of multilayer circuit boards
NASA Astrophysics Data System (ADS)
Smith, Robert E.
1990-01-01
Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. Unlike other chemical quantification techniques, IC provides results on ions not expected in the production solutions. Thus, solution contamination and break-down products can be monitored in every phase of the circuit board manufacturing. During the first phase, epoxy laminates experience an etchback, first in chromic acid, which can be analyzed for trace chloride and sulfate, then in ammonium bifluoride/HCl, which can be analyzed for fluoride and chloride. Following a wet-blasting to roughen up the surface, 20 microinches of copper are deposited using an electroless bath. Again, IC is applicable for monitoring formate, tartarate, and sulfate levels. Next, an acid copper bath is used to electroplate the through holes with 0.001 inches of ductile copper. This bath is analyzed for trace chloride. Photoimaging is then performed, and the organic solvents used can be assayed for trace ionic chloride. Finally, a fluoroboric acid-based tin-lead bath is used to deposit a solderable alloy. This bath is analyzed for fluoroborate, tin, and lead. In addition, mobile phase ion chromatography (MPIC) is used to monitor the nonionic organic brighteners in the baths.
Effect of salt on the response of birds to sucrose
Rogers, J.G.; Maller, O.
1973-01-01
The preference of male red-winged blackbirds for solutions of sucrose and sucrose with 0.03 M sodium chloride was tested, using a two-bottle choice test. Preliminary experiments demonstrated that the birds were indifferent to 0.03 M NaCl in water. Both control and experimental animals exhibited indifference to the solutions at the lowest concentration and aversion at the highest. The data suggest that the added sodium chloride makes the sucrose stimulus more discriminable.
Extraction of steroidal glucosiduronic acids from aqueous solutions by anionic liquid ion-exchangers
Mattox, Vernon R.; Litwiller, Robert D.; Goodrich, June E.
1972-01-01
A pilot study on the extraction of three steroidal glucosiduronic acids from water into organic solutions of liquid ion-exchangers is reported. A single extraction of a 0.5mm aqueous solution of either 11-deoxycorticosterone 21-glucosiduronic acid or cortisone 21-glucosiduronic acid with 0.1m-tetraheptylammonium chloride in chloroform took more than 99% of the conjugate into the organic phase; under the same conditions, the very polar conjugate, β-cortol 3-glucosiduronic acid, was extracted to the extent of 43%. The presence of a small amount of chloride, acetate, or sulphate ion in the aqueous phase inhibited extraction, but making the aqueous phase 4.0m with ammonium sulphate promoted extraction strongly. An increase in the concentration of ion-exchanger in the organic phase also promoted extraction. The amount of cortisone 21-glucosiduronic acid extracted by tetraheptylammonium chloride over the pH range of 3.9 to 10.7 was essentially constant. Chloroform solutions of a tertiary, a secondary, or a primary amine hydrochloride also will extract cortisone 21-glucosiduronic acid from water. The various liquid ion exchangers will extract steroidal glucosiduronic acid methyl esters from water into chloroform, although less completely than the corresponding free acids. The extraction of the glucosiduronic acids from water by tetraheptylammonium chloride occurs by an ion-exchange process; extraction of the esters does not involve ion exchange. PMID:5075264
Stability studies of lincomycin hydrochloride in aqueous solution and intravenous infusion fluids.
Czarniak, Petra; Boddy, Michael; Sunderland, Bruce; Hughes, Jeff D
2016-01-01
The purpose of this study was to evaluate the chemical stability of Lincocin(®) (lincomycin hydrochloride) in commonly used intravenous fluids at room temperature (25°C), at accelerated-degradation temperatures and in selected buffer solutions. The stability of Lincocin(®) injection (containing lincomycin 600 mg/2 mL as the hydrochloride) stored at 25°C±0.1°C in sodium lactate (Hartmann's), 0.9% sodium chloride, 5% glucose, and 10% glucose solutions was investigated over 31 days. Forced degradation of Lincocin(®) in hydrochloric acid, sodium hydroxide, and hydrogen peroxide was performed at 60°C. The effect of pH on the degradation rate of lincomycin hydrochloride stored at 80°C was determined. Lincomycin hydrochloride w as found to maintain its shelf life at 25°C in sodium lactate (Hartmann's) solution, 0.9% sodium chloride solution, 5% glucose solution, and 10% glucose solution, with less than 5% lincomycin degradation occurring in all intravenous solutions over a 31-day period. Lincomycin hydrochloride showed less rapid degradation at 60°C in acid than in basic solution, but degraded rapidly in hydrogen peroxide. At all pH values tested, lincomycin followed first-order kinetics. It had the greatest stability near pH 4 when stored at 80°C (calculated shelf life of 4.59 days), and was least stable at pH 2 (calculated shelf life of 0.38 days). Lincocin(®) injection was chemically found to have a shelf life of at least 31 days at 25°C when added to sodium lactate (Hartmann's) solution, 0.9% sodium chloride solution, 5% glucose solution, and 10% glucose solution. Solutions prepared at approximately pH 4 are likely to have optimum stability.
METHOD OF APPLYING NICKEL COATINGS ON URANIUM
Gray, A.G.
1959-07-14
A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.
NASA Astrophysics Data System (ADS)
Bogoslovskii, S. Yu; Kuznetsov, N. N.; Boldyrev, V. S.
2017-11-01
Electrochlorination parameters were optimized in flowing and non-flowing modes for a cell with a volume of 1 l. At a current density of 0.1 A/cm2 in the range of flow rates from 0.8 to 6.0 l/h with a temperature of the initial solution below 20°C the outlet temperature is maintained close to the optimal 40°C. The pH of the solution during electrolysis increases to 8.8 ÷ 9.4. There was studied a process in which a solution with a temperature of 7-8°C and a concentration of sodium chloride of 25 and 35 g/l in non-flowing cell was used. The dependence of the concentration of active chlorine on the electrolysis time varies with the concentration of the initial solution of sodium chloride. In case of chloride concentration of 25 g/l virtually linear relationship makes it easy to choose the time of electrolysis with the aim of obtaining the needed concentration of the product.
Calculated mineral precipitation upon evaporation of a model Martian groundwater near 0 C
NASA Technical Reports Server (NTRS)
Debraal, J. D.; Reed, M. H.; Plumlee, G. S.
1992-01-01
Previously, the effect of weathering a basalt of Shergotty meteorite composition with pure water buffered at martian atmospheric values of CO2 and O2, to place constraints upon the composition of martian groundwater, and to determine possible equilibrium mineral assemblages was calculated. A revised calculation of the composition of the aqueous phase in the weathering reaction as a function of the amount of basalt titrated into the solution is shown. The concentrations of sulfate and chloride ions increase in the solution from high water/rock ratios (w/r) on the left to low water/rock ratios on the right, until at w/r = 1, where 1 kg of basalt has been titrated, sulfate concentration is 1564 ppm and chloride is 104 ppm. This resulting fluid is dominated by sulfate and sodium, with bicarbonate and chloride at about the same concentration. This solution was evaporated in an attempt to determine if the resulting evaporite can explain the Viking XRF data. The program CHILLER was used to evaporate this solution at 0.1 C.
Su, Yao-Dong; Zhu, Wen-Ying; Ma, Hong-Mei; Chen, Long-Wu
2006-09-01
Using yttrium phosphate as the coprecipitation collector for the separation and preconcentration of trace lead and iron in nickel chloride and manganese sulfate, flame atomic absorption spectrometric (FAAS) determination was described in the present paper. Coprecipitation parameters including the pH of the solution, and the amounts of YCl3 and H3 PO4 were discussed. It was found that lead and iron in nickel chloride could be coprecipitated quantitatively in the range of pH 3.0-4.0, and so could be lead in manganese sulfate. The detection limits (3sigma) of lead and iron in 20 mL solution were 1.63 x 10(-2) mg x L(-1) and 4.58 x 10(-2) mg x L(-1) respectively. In NiCl2 solution the standard addition recoveries for lead and iron were 100.91% and 99.73% respectively, and in MnSO4 solution the standard addition recoveries were 99.45% and 98.98% respectively. The method has eliminated the interference of matrix, and the result is satisfied.
Bencala, Kenneth E.
1984-01-01
Solute transport in streams is determined by the interaction of physical and chemical processes. Data from an injection experiment for chloride and several cations indicate significant influence of solutestreambed processes on transport in a mountain stream. These data are interpreted in terms of transient storage processes for all tracers and sorption processes for the cations. Process parameter values are estimated with simulations based on coupled quasi-two-dimensional transport and first-order mass transfer sorption. Comparative simulations demonstrate the relative roles of the physical and chemical processes in determining solute transport. During the first 24 hours of the experiment, chloride concentrations were attenuated relative to expected plateau levels. Additional attenuation occurred for the sorbing cation strontium. The simulations account for these storage processes. Parameter values determined by calibration compare favorably with estimates from other studies in mountain streams. Without further calibration, the transport of potassium and lithium is adequately simulated using parameters determined in the chloride-strontium simulation and with measured cation distribution coefficients.
Duboué-Dijon, Elise; Mason, Philip E; Fischer, Henry E; Jungwirth, Pavel
2018-04-05
Magnesium and zinc dications possess the same charge and have an almost identical size, yet they behave very differently in aqueous solutions and play distinct biological roles. It is thus crucial to identify the origins of such different behaviors and to assess to what extent they can be captured by force-field molecular dynamics simulations. In this work, we combine neutron scattering experiments in a specific mixture of H 2 O and D 2 O (the so-called null water) with ab initio molecular dynamics simulations to probe the difference in the hydration structure and ion-pairing properties of chloride solutions of the two cations. The obtained data are used as a benchmark to develop a scaled-charge force field for Mg 2+ that includes electronic polarization in a mean field way. We show that using this electronic continuum correction we can describe aqueous magnesium chloride solutions well. However, in aqueous zinc chloride specific interaction terms between the ions need to be introduced to capture ion pairing quantitatively.
Storage of red blood cells with improved maintenance of 2,3-bisphosphoglycerate.
Högman, Claes F; Löf, Helena; Meryman, Harold T
2006-09-01
During storage, red blood cells (RBCs) rapidly lose 2,3-bisphosphoglycerate (2,3-DPG) leading to an increase in the affinity for O(2) and a temporary impairment of O(2) transport. Recent clinical evaluations indicate that the quality of transfused RBCs may be more important for patient survival than previously recognized. Glucose-free additive solutions (ASs) were prepared with sodium citrate, sodium gluconate, adenine, mannitol, and phosphates at high pH, a solution that can be heat-sterilized. CP2D was used as an anticoagulant. Additional CP2D was added to the AS to supply glucose. RBCs were stored at 4 degrees C and assayed periodically for intracellular pH (pHi), extracellular pH, glucose, lactate, phosphate, ATP, 2,3-DPG, hemolysis, and morphology. Storage in 175 mL of the chloride-free, hypotonic medium at a hematocrit (Hct) level of 59 to 60 percent resulted in an elevated pHi and the maintenance of 2,3-DPG at or above the initial value for 2 weeks without loss of ATP. The addition of 400 mL of storage solution followed by centrifugation and removal of 300 mL of excess solution to a Hct level of 60 to 66 percent further reduced the chloride concentration, resulting in the maintenance of 2,3-DPG for 4 weeks. Hemolysis was at 0.1 percent at 6 weeks. Improvements in the maintenance of 2,3-DPG were achieved with 175 mL of a chloride-free storage solution with familiar additives at nontoxic concentrations to increase pHi. Adding, instead, 400 mL of storage solution followed by the removal of 300 mL reduced the chloride concentration, increasing the pHi and extending the maintenance of 2,3-DPG to 4 weeks.
View of Sodium Chloride inserted onto blueberry jelly within a metal loop on Expedition Six
2003-03-15
ISS006-E-39282 (15 March 2003) --- A view of sodium chloride inserted onto blueberry jelly within a 50-millimeter (mm) metal loop was photographed by an Expedition Six crewmember. The water in the sodium chloride solution evaporates as it leaves larger three-dimensional crystals while the blueberry jelly hardens. The experiment took place in the Destiny laboratory on the International Space Station (ISS).
Cyclic voltammetric and spectroscopic studies of SOCl2 solutions
NASA Astrophysics Data System (ADS)
Venkatasetty, H. V.
1980-11-01
Cyclic voltammetric data on thionyl chloride (SOCl2) is presented as a function of SOCl2 concentration and scan rate in different aprotic organic solvents such as dimethyl-sulfite (DMSI), dimethylformamide (DMF), and acetonitrile (ACN) with lithium aluminum chloride and tetrabutylammonium hexafluorophosphate as supporting electrolytes. Using the diagnostic criteria of Nicholson and Shain (1964), the data are treated showing plots of current function vs voltage sweep rate which are consistent with an irreversible charge transfer followed by a chemical reaction. It is suggested that this type of chemical process occurring in a lithium-thionyl chloride battery might be important in regards to safety problems. Other experiments use constant potential electrolysis and ultraviolet spectroscopy of solutions of SOCl2 in acetonitrile with 0.1M tetrabutylammonium hexafluorophosphate.
Shen, Shaobo; Pan, Tonglin; Liu, Xinqiang; Yuan, Lei; Zhang, Yongjian; Wang, Jinchao; Guo, Zhanchen
2010-05-01
It was found that Rh, Pd and Pt contained in the spent ceramic automotive catalysts could be effectively extracted by dry chlorination with chlorine. In order to concentrate Pd(II) contained in the chloride solution obtained from the dry chlorination process, thermodynamic and kinetics studies for adsorption of Pd(II) complexes from the chloride solutions on anionic exchange resin Diaion WA21J were carried out. It was found that Pd, Pt, Rh, Al, Fe, Si, Zn and Pb from the chloride solution could be adsorbed on the resin. The isothermal adsorption of Pd(II) was found to fit Freundlich, Langmuir and Dubinin-Kaganer-Radushkevich models under the adsorption conditions. The adsorption of Pd(II) on the resin was favorable according to the values of 1/n and R(L) from Freundlich and Langmuir adsorption isotherms, respectively. The maximum monolayer adsorption capacities Q(max) based on Langmuir adsorption isotherms were 5.70, 4.84 and 4.05 mg/g and the corresponding value X(m) based on Dubinin-Kaganer-Radushkevich were 5.55, 4.69 and 4.01 mg/g at temperatures 18 degrees C, 28 degrees C and 40 degrees C, respectively. The apparent adsorption energies (E(ad)) based on Dubinin-Kaganer-Radushkevich isotherm were -15.43, -16.22 and -23.57 kJ/mol for the temperatures 18 degrees C, 28 degrees C and 40 degrees C, respectively. Chemical adsorption was a main mechanism involved in the adsorption process. Pd(II) adsorption on the resin could be accelerated by increasing the adsorption temperature. The adsorption of Pd(II) from the chloride solution on the resin underwent pseudo-first order kinetic process and the apparent adsorption activation energy E(a) was 15.0 kJ/mol. The intra-particle diffusion was a main rate controlling step in the Pd(II) adsorption process under the adsorption conditions. Copyright 2010 Elsevier Inc. All rights reserved.
Pitting Corrosion of alloy 690 in thiosulfate-containing chloride solutions
NASA Astrophysics Data System (ADS)
Tsai, Wen-Ta; Wu, Tsung-Feng
2000-01-01
The effects of thiosulfate ion and solution pH on pitting corrosion of Alloy 690 in chloride solution were explored. Potentiodynamic polarization measurements were conducted to evaluate pitting corrosion susceptibility of Alloy 690 in these environments. The results showed that pitting corrosion occurred in the mill-annealed (1050°C/5min) Alloy 690 in 1 wt% NaCl solution but not in 0.1 M Na 2S 2O 3 solution. The value of pitting nucleation potential ( Enp) determined in 1 wt% NaCl solution (without Na 2S 2O 3 ) increased with increasing solution pH value in the range of 2-10. The addition of Na 2S 2O 3 to 1 wt% NaCl solution greatly affected the pitting corrosion behavior, which was dependent on concentration. The preformed nickel sulfide surface film due to the presence of Na 2S 2O 3 caused Alloy 690 to become more susceptible to pitting corrosion in 1 wt% NaCl solution.
Antimicrobial activity of N-alkoxycarbonylmethyl-N-alkyl-piperidinium chlorides.
Woźniak, Edyta; Mozrzymas, Anna; Czarny, Anna; Kocieba, Maja; Rózycka-Roszak, Bozenna; Dega-Szafran, Zofia; Dulewicz, Ewa; Petryna, Magdalena
2004-01-01
The aim of the study was to assay antibacterial and antifungal activity of newly synthesised N-alkoxycarbonylmethyl-N-alkyl-piperidinium chlorides. The compounds tested were found to inhibit the growth of some Gram-negative bacteria, Gram-positive strains and some representatives of yeast-type Candida. From microbiological experiments two of the compounds tested, N-dodecyloxycarbonylmethyl-N-methyl-piperidinium chloride (3) and N-dodecyl-N-ethoxycarbonylmethyl-piperidinium chloride (6), emerged as more active than the other compounds. Since the resistance of biofilms to biocides should be noted during the design and testing of new antimicrobial agents therefore, we have analysed antibacterial properties of the most active compounds towards biofilms. Our study focused on strains of Pseudomonas aeruginosa and Staphylococcus aureus that served as main model organisms for the biofilm studies.
Water and chloride transport in a fine-textured soil in a feedlot pen.
Veizaga, E A; Rodríguez, L; Ocampo, C J
2015-11-01
Cattle feeding in feedlot pens produces large amounts of manure and animal urine. Manure solutions resulting from surface runoff are composed of numerous chemical constituents whose leaching causes salinization of the soil profile. There is a relatively large number of studies on preferential flow characterization and modeling in clayed soils. However, research on water flow and solute transport derived from cattle feeding operations in fine-textured soils under naturally occurring precipitation events is less frequent. A field monitoring and modeling investigation was conducted at two plots on a fine-textured soil near a feedlot pen in Argentina to assess the potential of solute leaching into the soil profile. Soil pressure head and chloride concentration of the soil solution were used in combination with HYDRUS-1D numerical model to simulate water flow and chloride transport resorting to the concept of mobile/immobile-MIM water for solute transport. Pressure head sensors located at different depths registered a rapid response to precipitation suggesting the occurrence of preferential flow-paths for infiltrating water. Cracks and small fissures were documented at the field site where the % silt and % clay combined is around 94%. Chloride content increased with depth for various soil pressure head conditions, although a dilution process was observed as precipitation increased. The MIM approach improved numerical results at one of the tested sites where the development of cracks and macropores is likely, obtaining a more dynamic response in comparison with the advection-dispersion equation. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wydeven, T.; Leban, M.
1973-01-01
Cellulose acetate butyrate (CAB) membranes are shown to give high salt and urea rejection with water flux of about 3 gallons/sq ft per day at 600 psig. Membranes prepared from a formulation containing glyoxal show a significant increase in flux and decrease in salt and urea rejection with drying time. Zero drying time gives maximum urea and salt rejection and is therefore most suitable for hyperfiltration of sodium chloride and urea feed solution.
Entani, E; Asai, M; Tsujihata, S; Tsukamoto, Y; Ohta, M
1997-05-01
Bactericidal effects of various kinds of AWASEZU (processed vinegar, 2.5% acidity) on food-borne pathogenic bacteria including Escherichia coli O157:H7 and other bacteria were examined. the order of bactericidal activities was NIHAIZU (3.5% NaCl was added) > SANBA-IZU (3.5% NaCl and 10% sucrose were added) > plain vinegar (spirit vinegar) > AMAZU (10% sucrose was added). This indicates that their activities were enhanced by the addition of sodium chloride and suppressed by the addition of sugar. On the other hand, when soy sauce was used instead of sodium chloride, the order of bactericidal activities was plain vinegar > AMAZU > NIHAIZU > SANBAIZU. This is mainly because their activities were suppressed by the increase in the pH value. The effect of sodium chloride (0.01-15%) and temperature (10-50 degrees C) on bactericidal activities against E. coli O157:H7 in spirit vinegar (0.5-2.5% acidity) was further examined. When vinegar was used in combination with sodium chloride, predominant synergism on the bactericidal activity was observed. Their activities were markedly enhanced by the addition of sodium chloride in proportion to the concentration. In addition to this, at higher temperatures spirit vinegar killed bacteria much more rapidly. It should be noted that the bactericidal activity of spirit vinegar was extremely enhanced by the combined use of the addition of sodium chloride and the rise of temperature. For example, in 2.5% acidity vinegar, the time required for 3 log decrease in viable cell numbers at 20 degrees C was shortened to 1/140-fold by the addition of 5% sodium chloride, shortened to 1/51-fold by the rise of the reaction temperature at 40 degrees C, and shortened to 1/830-fold; 0.89 minutes by both the addition of 5% sodium chloride and the rise of temperature at 40 degrees C. In order to propose the methods to prevent food poisoning by bacterial infection, bactericidal activities of vinegar solution containing sodium chloride on cooking tools and raw vegetables were examined. Vinegar solution (1-2% acidity, 3-7% NaCl) produced more than 3 log decrease in viable cell numbers of E. coli O157:H7 on the surface of cutting board, and cabbage and cucumber at 20-50 degrees C. These results suggested that the treatment with vinegar solution containing sodium chloride may be one of the useful methods to prevent food poisoning.
Investigation of passive films formed on the surface of alloy 690 in borate buffer solution
NASA Astrophysics Data System (ADS)
Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Wenli, Guo
2015-10-01
The passive film formed on the surface of the alloy 690 in borate buffer solution was studied by potentiodynamic curves and electrochemical impedance spectroscopy. With the increasing of the passivation potential, the corrosion resistance of the alloy 690 reduced. Moreover, the corrosion resistance of the passive film was the lowest in the vicinity of 0.6 VSCE. These results were supported by XPS and Mott-Schottky analyses. The corrosion resistance of the alloy 690 increased with the increasing of passivated potential in borate buffer solution with chloride ion. The chloride ion decreased corrosion resistance of the alloy 690 according to point defect model.
Changes in water and solute fluxes in the vadose zone after switching crops
NASA Astrophysics Data System (ADS)
Turkeltaub, Tuvia; Dahan, Ofer; Kurtzman, Daniel
2015-04-01
Switching crop type and therefore changing irrigation and fertilization regimes leads to alternation in deep percolation and concentrations of solutes in pore water. Changes of fluxes of water, chloride and nitrate under a commercial greenhouse due to a change from tomato to green spices were observed. The site, located above the a coastal aquifer, was monitored for the last four years. A vadose-zone monitoring system (VMS) was implemented under the greenhouse and provided continuous data on both the temporal variation in water content and the chemical composition of pore water at multiple depths in the deep vadose zone (~20 m). Chloride and nitrate profiles, before and after the crop type switching, indicate on a clear alternation in soil water solutes concentrations. Before the switching of the crop type, the average chloride profile ranged from ~130 to ~210, while after the switching, the average profile ranged from ~34 to ~203 mg L-1, 22% reduction in chloride mass. Counter trend was observed for the nitrate concentrations, the average nitrate profile before switching ranged from ~11 to ~44 mg L-1, and after switching, the average profile ranged from ~500 to ~75 mg L-1, 400% increase in nitrate mass. A one dimensional unsaturated water flow and chloride transport model was calibrated to transient deep vadose zone data. A comparison between the simulation results under each of the surface boundary conditions of the vegetables and spices cultivation regime, clearly show a distinct alternation in the quantity and quality of groundwater recharge.
49 CFR Appendix D to Part 180 - Hazardous Materials Corrosive to Tanks or Service Equipment
Code of Federal Regulations, 2013 CFR
2013-10-01
... internal coating or lining appropriately based on its knowledge of the chemical and not rely simply on this... Ferric chloride, solution Fertilizer ammoniating solution (Nitrogen fertilizer solution) Fluoroboric acid...
49 CFR Appendix D to Part 180 - Hazardous Materials Corrosive to Tanks or Service Equipment
Code of Federal Regulations, 2012 CFR
2012-10-01
... internal coating or lining appropriately based on its knowledge of the chemical and not rely simply on this... Ferric chloride, solution Fertilizer ammoniating solution (Nitrogen fertilizer solution) Fluoroboric acid...
49 CFR Appendix D to Part 180 - Hazardous Materials Corrosive to Tanks or Service Equipment
Code of Federal Regulations, 2014 CFR
2014-10-01
... internal coating or lining appropriately based on its knowledge of the chemical and not rely simply on this... Ferric chloride, solution Fertilizer ammoniating solution (Nitrogen fertilizer solution) Fluoroboric acid...
Wang, Yu; Mu, Ya-bing; Miao, Lei-ying; Sun, Hong-chen; Li, Cheng-ku
2007-03-01
To study the methods of decalcification for making united slices of tooth and affiliated periodontic tissues. Twenty-one samples containing dog molars and affiliated periodontic tissues were divided into seven mean groups. The pH value of solution, time of decalcification, weight and volume of samples, and content of decalcified calcium were detected. The slices were observed by HE, specific, and immunohistochemical stain. The velocity of decalcification increased with decrease of solution pH. The weight of samples lightened by 37.61%, the volume reduced by 25.97% on average, and calcium decalcified was 174.49 mg per gram humid samples. The EDTA decalcification was slowest, but it was best. Decalcification was fast in Plank-Rycho solution while the section was worst, and faster in the formyl solution containing aluminium chloride than in EDTA, and the section was better. The 50% formyl solution containing aluminium chloride is an ideal decalcifying solution.
2013-11-01
magnetic field as a heat source for the polymerization avoids some of these difficulties. EXPERIMENTAL SECTION Iron (III) chloride hexahydrate (ACS...reagent, 97%), iron (II) chloride tetrahydrate (ReagentPlus®, 98%), tetramethylammonium hydroxide solution (25 wt. % in water), and oleic acid (technical...Edwards Air Force Base and used without further purification. Preparation of Iron Oxide Magnetic Nanoparticles.51 Iron (III) chloride hexahydrate (11.75
Richards, R M; Xing, J Z; Weir, L F
1996-04-01
The purpose of this investigation was to determine the influence on the antimicrobial activity of cetylpyridinium chloride of the various components of the formulation of each of six candy based lozenges. In vivo activity was investigated using six volunteers by determining the reduction in colony forming units recoverable from the oropharynx after sucking each lozenge separately on different days. In vitro determinations investigated the relative activity of aqueous solutions of the lozenges, the effect on activity of additional active ingredients, pH and lozenge base ingredients against separate inocula of each of the test organisms Staphylococcus aureus, Streptococcus pyogenes and Candida albicans. Both in vivo and in vitro results showed that the pH of the dissolved lozenge solution was the single most influential readily adjustable formulation parameter which significantly influenced the activity of cetylpyridinium chloride activity in candy based lozenges. Lozenges containing cetylpyridinium chloride as the active ingredient should be formulated at a pH greater than 5.5.
Absorption and desorption of SO2 in aqueous solutions of diamine-based molten salts.
Lim, Seung Rok; Hwang, Junhyeok; Kim, Chang Soo; Park, Ho Seok; Cheong, Minserk; Kim, Hoon Sik; Lee, Hyunjoo
2015-05-30
SO2 absorption and desorption behaviors were investigated in aqueous solutions of diamine-derived molten salts with a tertiary amine group on the cation and a chloride anion, including butyl-(2-dimethylaminoethyl)-dimethylammonium chloride ([BTMEDA]Cl, pKb=8.2), 1-butyl-1,4-dimethylpiperazinium chloride ([BDMP]Cl, pKb=9.8), and 1-butyl-4-aza-1-azoniabicyclo[2,2,2]octane chloride ([BDABCO]Cl, pKb=11.1). The SO2 absorption and desorption performance of the molten salt were greatly affected by the basicity of the molten salt. Spectroscopic, X-ray crystallographic, and computational results for the interactions of SO2 with molten salts suggest that two types of SO2-containg species could be generated depending on the basicity of the unquaternized amino group: a dicationic species comprising two different anions, HSO3(-) and Cl(-), and a monocationic species bearing Cl(-) interacting with neutral H2SO3. Copyright © 2015 Elsevier B.V. All rights reserved.
Mitigation of corrosion attack on carbon steel coated cermet alloy in different anion contents
NASA Astrophysics Data System (ADS)
Khalid, Muhamad Azrin Mohd; Ismail, Azzura
2017-12-01
This research study evaluated the corrosion mechanism attack on carbon steel coated with cermet alloys (WC-9% Ni) in seawater at different sulphate-to-chloride ratios. The four different sulphate-to-chloride ratios were synthesised with the same seawater salinity of 3.5 % and same pH of real seawater. The corrosion tests involved immersion and electrochemical tests. The immersion test is used to determine the cermet coating ability to withstand the corrosion attack based on different ratios of anions present in the seawater at different periods of immersion. The corrosion attack was characterized by optical and Scanning Electron Microscopy (SEM). The aggressive anions present in the seawater influenced the corrosion attack on the cermet coating. For immersion test, results revealed that increasing sulphate more than chloride, increased the weight loss of cermets. The electrochemistry analysis showed that the passive layer forms on cermet coating prevented the material from further corrosion attack. However, due to its porosity, the passive layer collapsed and exposed the material for other corrosion reaction. For electrochemical test, the result shows that the solution with sulphate-to-chloride ratio of 0.14 (real seawater) has the highest corrosion current and Open Circuit Potential (OCP) compared to other solutions (different sulphate-to-chloride ratio). In conclusion, sulfate and chloride show their competition to attack the cermet coating on carbon steel and the higher the amount of chloride present in seawater, the higher the corrosion rate and pits formed on the cermet coating.
Lüttge, U
1966-03-01
The transport of chloride in isolated tissue from Nepenthes pitchers was investigated using (36)Cl(-), an Aminco-Cotlove chloride-titrator for the determinations of Cl(-) concentrations, and KCN and AsO 4 (-) -as metabolic inhibitors.The tissue was brought in contact with different experimental solutions (=medium). The surface corresponding to the outside of the pitchers was cut with a razor blade to remove the cutinized epidermal layer. At this surface the Cl(-) uptake from the medium is a metabolic process which depends on the Cl(-)-concentration of the medium in a manner that corresponds to the MICHAELIS-MENTEN kinetics. The Michaelis-constant of this transport step was 3×10(-2)M. The Cl(-)-efflux into the medium, however, is a passive process.The opposite surface of the tissue slices (corresponding to the inside of the pitchers) carries the glands. The chloride secretion taking place here is also dependent on metabolism. In vitro it occurs even when a high gradient of chloride concentration has been set up between the medium and the solution which is in contact with the glands. In vivo the Cl(-)-concentration of the pitcher fluid and the amount of Cl(-) per gram of tissue water are almost equal.The rôle of chloride in the physiology of Nepenthes is still under investigation, A correlation between the chloride content of the pitcher fluid and its enzymatic activity (Casein-test), however, could already be demonstrated.
NASA Astrophysics Data System (ADS)
Peiffert, Chantal; nguyen-Trung, Chinh; Cuney, Michel
1996-05-01
The solubility of uranium oxide was investigated in both aqueous halide (Cl, F) fluid and granitic melt in equilibrium in the system uranium oxide-haplogranite-H 2O-NaCl (0.1-5.0 molal), NaF (0.1-0.5 molal) at 770°C, 2 kbar, and fO 2 conditions controlled by Ni-NiO, Fe 3O 4-Fe 2O 3, and Cu 2O- CuO buffers. Three distinct uranium oxides UO (2+ x) with x = 0.01 ± 0.01; 0.12 ± 0.02; and 0.28 ± 0.02, respec- tively, were obtained in both chloride and fluoride systems, under the three fO 2 conditions cited above. Changes in the composition of aqueous solutions and silicate melt were observed after the runs. These changes were more pronounced for the fluoride-bearing experiments. Quench pH decreased from 5.9 to 2.1 with increasing chloride molality from 0.085-4.38 molal. For fluoride solutions, the decrease of pH from 5.4 to 3.4 corresponded to the increase of fluoride molality from 0.02-0.23 molal. The U solubility in chloride solutions was in the range 10-967 ppm. For the same molality, fluoride solutions appeared to dissolve up to twenty times more uranium than chloride solutions. The increase of halide molality and oxidation led to increase the U solubility. The U solubility in silicate glasses was in the range 10-1.8 × 10 4 ppm and increased with increasing oxidation and halide concentration. In addition, increasing agpaicity also increased U solubility in the chloride system. This effect was not observed in the fluoride system. The chloride concentration in the silicate melt increased from 100-790 ppm with increasing initial aqueous chloride concentration from 0.1-5.0 m. The fluoride concentration in the silicate melt increased from 2.8 × 10 3 to 1.1 × 10 4 ppm with increasing initial fluoride concentra- tion from 0.1-0.5 m. In the chloride system, the partition coefficient of U (log D)(U) fluid/melt) increased from -1.2-0 with increasing agpaicity from 0.92-1.36, for increasing chloride concentration from 0.085-4.38 molal and for increasing fO 2 from 10 -15 to 10 -4 bar. In the fluoride system, a linear correlation was established between the partition coefficient of U and the log fO 2. In F-rich system, D(U) fluid/melt values was in the range 2.4 × 10 -2-4.2 × 10 -2 for increasing fluoride concentration from 0.02-0.22 molal and for the same increasing of fO 2. In the chloride system, the partition coefficients of Na ( D (Na) fluid/melt) and K ( D) (K) fluid/melt) are in good agreement up to 1.0 m NaCl with the two linear equations established by Holland (1972) : D (Na) fluid/melt = 0.46 × (Cl)(m) (1) and D(Na) fluid/melt = 0.34 × (Cl)(m) (2). However, in initial 5.0 m NaCl, slopes of Eqns. 1 and 2 decreased to 0.41 and 0.16, respectively. Data obtained in the present study provide useful information for the understanding of the behaviour of U in the fractionation processes of halide rich magmas. Fluid/melt partition coefficients higher than one, favorable for the genesis of magmatic U mineralization, can be reached for peraluminous leucogran- ites in equilibrium with chloride-rich solutions.
NASA Astrophysics Data System (ADS)
Hasani, M.; Khodadadi, A.; Koleini, S. M. J.; Saeedi, A. H.; Meléndez, A. M.
2017-01-01
Dissolution of platinum group metals (PGM; herein Pt, Pd and Rh) in different chloride-based leaching systems from spent auto catalysts was performed. Response surface methodology and a five-level-five-factor central composite design were used to evaluate the effects of 1) temperature, 2) liquid-to-solid ratio, 3) stirring speed, 4) acid concentration and 5) particle size on extraction yield of PGM by aqua regia. Analysis of variance was used to determine the optimum conditions and most significant factors affecting the overall metal extraction. In the optimum conditions, leaching of Pt, Pd and Rh was 91.58%, 93.49% and 60.15%, respectively. The effect of different oxidizing agents on the PGM dissolution in chloride medium was studied comparatively in the following leaching systems: a) aqua regia/sulfuric acid mixture, b) hydrogen peroxide in sulfuric acid (piranha solution), c) sodium hypochlorite and d) copper(II). Dissolution of Rh is increased in both aqua regia and hydrogen peroxide/hydrochloric acid solutions by adding sulfuric acid.
Lee, Han-Seung; Ryu, Hwa-Sung; Park, Won-Jun; Ismail, Mohamed A.
2015-01-01
In this study, the ability of lithium nitrite and amino alcohol inhibitors to provide corrosion protection to reinforcing steel was investigated. Two types of specimens—reinforcing steel and a reinforced concrete prism that were exposed to chloride ion levels resembling the chloride attack environment—were prepared. An autoclave accelerated corrosion test was then conducted. The variables tested included the chloride-ion concentration and molar ratios of anti-corrosion ingredients in a CaOH2-saturated aqueous solution that simulated a cement-pore solution. A concentration of 25% was used for the lithium nitrite inhibitor LiNO2, and an 80% solution of dimethyl ethanolamine ((CH3)2NCH2CH2OH, hereinafter DMEA) was used for the amino alcohol inhibitor. The test results indicated that the lithium nitrite inhibitor displayed anti-corrosion properties at a molar ratio of inhibitor of ≥0.6; the amino alcohol inhibitor also displayed anti-corrosion properties at molar ratios of inhibitor greater than approximately 0.3. PMID:28787936
The crevice corrosion of cathodically modified titanium in chloride solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingen, E. van der
1995-12-01
The susceptibility of titanium to crevice corrosion in low-pH chloride solutions at elevated temperatures can result in major practical problems. Although Grade 7 titanium is considered the most crevice-corrosion resistant material available for these environments, the price increase of palladium has limited the utilization of this alloy. A cost-effective titanium alloy, containing 0.2% ruthenium by mass, has been developed for use in environments of increased chloride concentration and temperature. The crevice corrosion resistance of the Ti-0.2% Ru alloy has been evaluated and compared with that of ASTM commercially pure Grade 2 titanium, Grade 7 titanium (Ti-0.12 to 0.25% palladium bymore » mass) and Grade 12 titanium (Ti-0.8% Ni-0.3% Mo). The results indicated that the cathodically modified titanium alloys, Ti-0.2% Ru and Grade 7 titanium, showed similar resistance to crevice corrosion attack in all the solutions tested, and that their behavior was significantly better than that of Grade 2 and Grade 12 titanium.« less
Tseng, Shi-Chang; Wu, Tong-Yu; Chou, Jung-Chuan; Liao, Yi-Hung; Lai, Chih-Hsien; Yan, Siao-Jie; Tseng, Ting-Wei
2018-02-20
We investigate the temperature effect on sensing characteristics and drift effect of an arrayed flexible ruthenium dioxide (RuO₂)/graphene oxide (GO) chloride sensor at different solution temperatures between 10 °C and 50 °C. The average sensor sensitivities according to our experimental results were 28.2 ± 1.4 mV/pCl (10 °C), 42.5 ± 2.0 mV/pCl (20 °C), 47.1 ± 1.8 mV/pCl (30 °C), 54.1 ± 2.01 mV/pCl (40 °C) and 46.6 ± 2.1 mV/pCl (50 °C). We found the drift effects of an arrayed flexible RuO₂/GO chloride sensor in a 1 M NaCl solution to be between 8.2 mV/h and 2.5 mV/h with solution temperatures from 10 °C to 50 °C.
Tseng, Shi-Chang; Wu, Tong-Yu; Liao, Yi-Hung; Lai, Chih-Hsien; Yan, Siao-Jie; Tseng, Ting-Wei
2018-01-01
We investigate the temperature effect on sensing characteristics and drift effect of an arrayed flexible ruthenium dioxide (RuO2)/graphene oxide (GO) chloride sensor at different solution temperatures between 10 °C and 50 °C. The average sensor sensitivities according to our experimental results were 28.2 ± 1.4 mV/pCl (10 °C), 42.5 ± 2.0 mV/pCl (20 °C), 47.1 ± 1.8 mV/pCl (30 °C), 54.1 ± 2.01 mV/pCl (40 °C) and 46.6 ± 2.1 mV/pCl (50 °C). We found the drift effects of an arrayed flexible RuO2/GO chloride sensor in a 1 M NaCl solution to be between 8.2 mV/h and 2.5 mV/h with solution temperatures from 10 °C to 50 °C. PMID:29461506
Role of U(VI) Reduction by Geobacter species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovely, Derrick
2008-12-23
Previous work had suggested that Acholeplasma palmae has a higher capacity for uranium sorption than other bacteria studied. Sorption studies were performed with cells in suspension in various solutions containing uranium, and results were used to generate uranium-biosorption isotherms. Results from this study showed that the U(VI) sorption capacity of G. uraniireducens was relatively similar in simple solutions, such as sodium chloride or bicarbonate. However, this ability to sorb uranium significantly decreased in groundwater. This suggested that certain chemicals present in the groundwater were inhibiting the ability of cell components of Geobacter to adsorb uranium. It was hypothesized that uraniummore » removal would also be diminished in the bicarbonate solution. However, this did not seem to be the case, as uranium was as easily removed in the bicarbonate solution as in the sodium chloride solution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lengke, M. F.; Ravel, B.; Fleet, M. E.
2007-10-01
The mechanisms of gold precipitation by the interaction of cyanobacteria (Plectonema boryanum UTEX 485) and gold(III) chloride aqueous solutions (7.6 mmol/L final gold) have been studied at 25, 60, and 80 C, using both laboratory and real-time synchrotron radiation absorption spectroscopy experiments. Addition of aqueous gold(III) chloride to the cyanobacterial culture initially promoted the precipitation of amorphous gold(I) sulfide at the cell walls and finally caused the formation of octahedral (111) platelets (<1 to 6 {micro}m) of gold metal near cell surfaces and in solutions. X-ray absorption spectroscopy results confirmed that the reduction mechanism of gold(III) chloride to elemental goldmore » by cyanobacteria involves the formation of an intermediate Au(I) species, gold(I) sulfide, with sulfur originating from cyanobacterial proteins, presumably cysteine or methionine. Although the bioreduction of gold(III) chloride to gold(I) sulfide was relatively rapid at all temperatures, the reaction rate increased with the increase in temperature. At the completion of the experiments, elemental gold was the major species present at all temperatures.« less
Stability of tacrolimus solutions in polyolefin containers.
Lee, Jun H; Goldspiel, Barry R; Ryu, Sujung; Potti, Gopal K
2016-02-01
Results of a study to determine the stability of tacrolimus solutions stored in polyolefin containers under various temperature conditions are reported. Triplicate solutions of tacrolimus (0.001, 0.01, and 0.1 mg/mL) in 0.9% sodium chloride injection or 5% dextrose injection were prepared in polyolefin containers. Some samples were stored at room temperature (20-25 °C); others were refrigerated (2-8 °C) for 20 hours and then stored at room temperature for up to 28 hours. The solutions were analyzed by stability-indicating high-performance liquid chromatography (HPLC) assay at specified time points over 48 hours. Solution pH was measured and containers were visually inspected at each time point. Stability was defined as retention of at least 90% of the initial tacrolimus concentration. All tested solutions retained over 90% of the initial tacrolimus concentration at all time points, with the exception of the 0.001-mg/mL solution prepared in 0.9% sodium chloride injection, which was deemed unstable beyond 24 hours. At all evaluated concentrations, mean solution pH values did not change significantly over 48 hours; no particle formation was detected. During storage in polyolefin bags at room temperature, a 0.001-mg/mL solution of tacrolimus was stable for 24 hours when prepared in 0.9% sodium chloride injection and for at least 48 hours when prepared in 5% dextrose injection. Solutions of 0.01 and 0.1 mg/mL prepared in either diluent were stable for at least 48 hours, and the 0.01-mg/mL tacrolimus solution was also found to be stable throughout a sequential temperature protocol. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Shen, Shaobo; Pan, Tonglin; Liu, Xinqiang; Yuan, Lei; Wang, Jinchao; Zhang, Yongjian; Guo, Zhanchen
2010-07-15
It was found that Rh, Pd and Pt contained in the spent ceramic automotive catalysts could be effectively extracted by dry chlorination with chlorine. In order to concentrate Rh(III) ions contained in the chloride solutions obtained, thermodynamic and kinetics studies for adsorption of Rh(III) complexes from the chloride solutions on an anionic exchange resin Diaion WA21J were carried out. Rh, Pd, Pt, Al, Fe, Si, Zn and Pb from the chloride solution could be adsorbed on the resin. The distribution coefficients (K(d)) of Rh(III) decreased with the increase in initial Rh(III) concentration or in adsorption temperature. The isothermal adsorption of Rh(III) was found to fit Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich models under the adsorption conditions. The maximum monolayer adsorption capacities Q(max) based on Langmuir adsorption isotherms were 6.39, 6.61 and 5.81 mg/g for temperatures 18, 28 and 40 degrees C, respectively. The apparent adsorption energy of Rh was about -7.6 kJ/mol and thus Rh(III) adsorption was a physical type. The experimental data obtained could be better simulated by pseudo-first-order kinetic model and the activation energy obtained was 6.54 J/mol. The adsorption rate of Rh(III) was controlled by intraparticle diffusion in most of time of adsorption process. 2010 Elsevier B.V. All rights reserved.
Ferguson, Stephen A; Meyerhoff, Mark E
2017-10-27
The detection of four different polyquaterniums (PQs) using a fully reversible potentiometric polyion sensor in three different detection modes is described. The polyion sensing "pulstrodes" serve as the detector for direct dose-response experiments, beaker titrations, and in a flow-injection analysis (FIA) system. Direct polycation response toward PQ-2, PQ-6, PQ-10, and poly(2-methacryloxyethyltrimethylammonium) chloride (PMETAC) yields characteristic information about each PQ species (e.g., relative charge densities, etc.) via syringe pump addition of each PQ species to a background electrolyte solution. Quantitative titrations are performed using a syringe pump to deliver heparin as the polyanion titrant to quantify all four PQs at μg/mL levels. Both the direct and indirect methods incorporate the use of a three-electrode system including counter, double junction reference, and working electrodes. The working electrode possesses a plasticized poly(vinyl chloride) (PVC) membrane containing the neutral lipophilic salt of dinonylnaphthalenesulfonate (DNNS - ) tridodecylmethylammonium (TDMA + ). Further, the titration method is shown to be useful to quantify PQ-6 levels in recreational swimming pool water collected in Ann Arbor, MI. Finally, a FIA system equipped with a pulstrode detector is used to demonstrate the ability to potentially quantify PQ levels via a more streamlined and semiautomated testing platform.
Environmental factors affecting corrosion of munitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bundy, K.; Bricka, M.; Morales, A.
1995-12-31
Spent small arms munitions have accumulated for years at outdoor firing ranges operated by the DoD and other groups. Used bullets are often subjected to moisture sources. There is increasing concern that accumulations of lead-based munitions represent potential sources of water and soil pollution. To understand both the severity of and solutions to this problem, it is necessary to measure how rapidly bullets corrode and to determine the soil variables affecting the process. In this study M16 bullets were buried in samples of soil taken from Louisiana army firing ranges. Four environmental conditions were simulated; rain water, acid rain, seamore » water, and 50% sea water/50% acid rain. The three electrode technique was used to measure the bullet corrosion. Graphite rods served as counter electrodes. A saturated calomel reference electrode was used along with a specially constructed salt bridge. Electrochemical measurements were conducted using a computer-controlled potentiostat to determine corrosion potential, soil resistance, and corrosion current. The rate of corrosion was found to markedly increase with decreasing soil pH and increasing chloride and moisture contents, with the chloride content being the most influential variable. High soil resistance and noble corrosion potential were found to be associated with low corrosion rates. This is important since both parameters can be readily measured in the field.« less
NASA Astrophysics Data System (ADS)
Junaidi, Yunus, Muhammad; Triyana, Kuwat; Harsojo, Suharyadi, Edi
2016-04-01
We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junaidi; Departement of Physics, Lampung University, Bandar Lampung; Triyana, Kuwat, E-mail: triyana@ugm.ac.id
2016-04-19
We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able tomore » control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id; Department of Physics, Lampung University, Bandar Lampung; Yunus, Muhammad, E-mail: muhammad.yunus@mail.ugm.ac.id
2016-04-19
We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were alsomore » able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.« less
2011-01-01
Background Sphingomonas wittichii strain RW1 can completely oxidize dibenzo-p-dioxins and dibenzofurans, which are persistent contaminants of soils and sediments. For successful application in soil bioremediation systems, strain RW1 must cope with fluctuations in water availability, or water potential. Thus far, however, little is known about the adaptive strategies used by Sphingomonas bacteria to respond to changes in water potential. To improve our understanding, strain RW1 was perturbed with either the cell-permeating solute sodium chloride or the non-permeating solute polyethylene glycol with a molecular weight of 8000 (PEG8000). These solutes are assumed to simulate the solute and matric components of the total water potential, respectively. The responses to these perturbations were then assessed and compared using a combination of growth assays, transcriptome profiling, and membrane fatty acid analyses. Results Under conditions producing a similar decrease in water potential but without effect on growth rate, there was only a limited shared response to perturbation with sodium chloride or PEG8000. This shared response included the increased expression of genes involved with trehalose and exopolysaccharide biosynthesis and the reduced expression of genes involved with flagella biosynthesis. Mostly, the responses to perturbation with sodium chloride or PEG8000 were very different. Only sodium chloride triggered the increased expression of two ECF-type RNA polymerase sigma factors and the differential expression of many genes involved with outer membrane and amino acid metabolism. In contrast, only PEG8000 triggered the increased expression of a heat shock-type RNA polymerase sigma factor along with many genes involved with protein turnover and repair. Membrane fatty acid analyses further corroborated these differences. The degree of saturation of membrane fatty acids increased after perturbation with sodium chloride but had the opposite effect and decreased after perturbation with PEG8000. Conclusions A combination of growth assays, transcriptome profiling, and membrane fatty acid analyses revealed that permeating and non-permeating solutes trigger different adaptive responses in strain RW1, suggesting these solutes affect cells in fundamentally different ways. Future work is now needed that connects these responses with the responses observed in more realistic scenarios of soil desiccation. PMID:22082453
NASA Astrophysics Data System (ADS)
Shi, Jin-jie; Ming, Jing; Liu, Xin
2017-10-01
In this study, two types of reinforcing steels (conventional low-carbon steel and a novel duplex alloy steel with Cr and Mo) were exposed to chloride-contaminated extract solutions (ordinary Portland cement (OPC) extract and alkali-activated slag (AAS) extract) to investigate their pitting corrosion resistance. The results confirm that the pitting corrosion resistance of the alloy steel is much higher than that of the low-carbon steel in both extract solutions with various NaCl concentrations. Moreover, for each type of steel, the AAS extract contributes to a higher pitting corrosion resistance compared with the OPC extract in the presence of chloride ions, likely because of the formation of flocculent precipitates on the steel surface.
Reid, Brian; Graue-Hernandez, Enrique O; Mannis, Mark J; Zhao, Min
2011-03-01
To measure electric current in human corneal wounds and test the feasibility of pharmacologically enhancing the current to promote corneal wound healing. Using a noninvasive vibrating probe, corneal electric current was measured before and after wounding of the epithelium of donated postmortem human corneas. The effects of drug aminophylline and chloride-free solution on wound current were also tested. Unwounded cornea had small outward currents (0.07 μA/cm²). Wounding increased the current more than 5 fold (0.41 μA/cm²). Monitoring the wound current over time showed that it seemed to be actively regulated and maintained above normal unwounded levels for at least 6 hours. The time course was similar to that previously measured in rat cornea. Drug treatment or chloride-free solution more than doubled the size of wound currents. Electric current at human corneal wounds can be significantly increased with aminophylline or chloride-free solution. Because corneal wound current directly correlates with wound healing rate, our results suggest a role for chloride-free and/or aminophylline eyedrops to enhance healing of damaged cornea in patients with reduced wound healing such as the elderly or diabetic patient. This novel approach offers bioelectric stimulation without electrodes and can be readily tested in patients.
NASA Astrophysics Data System (ADS)
Zona, Robert; Solar, Sonja
2003-02-01
The gamma-radiation-induced degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in aerated (A) and in during irradiation air saturated (AS) solutions. Whereas the decomposition rates were not influenced by AS, chloride elimination, detoxification as well as mineralization were significantly enhanced. In the range 50-500 μmol dm -3 2,4-D, degradation showed proportionality to concentration, while chloride formation was successively retarded. The ratios of the pseudo first-order rate constants for degradation and chloride formation, kde/ kCl, increase in AS solutions from 1.4 (50 μmol dm -3) to 2.7 (500 μmol dm -3) and in A solutions from 1.4 to 3.3. In AS for total chloride release 0.7 kGy (50 μmol dm -3) to 10 kGy (500 μmol dm -3) were required, the reduction of organic carbon at 10 kGy was 95% (50 μmol dm -3) and 50% (500 μmol dm -3). Increase and decrease of toxicity during irradiation correlated well with formation and degradation of intermediate phenolic products. The doses for detoxification corresponded to those of total dehalogenation. The oxygen uptake was ˜1.1 ppm 100 Gy -1. The presence of the inorganic components of Vienna drinking water affect the degradation parameters insignificantly.
2012-11-01
disinfectant solutions containing benzalkonium chloride (BAC); a molluscicide and antifouling chemical. In order to determine the efficacy of this...formulations. The methods and results presented herein will be used in a separate study to assess the efficacy of BACs as antifouling agents under
Howell, J M
1991-11-01
Alkaline cleaning products are a cause of serious esophageal injury. Over time, legislation has diminished the concentration of many such non-industrial solutions and solids; however several products presently do not list either the pH or relative concentrations of alkaline constituents. This study measures the pHs of several non-industrial cleaning products containing either ammonium chloride, sodium hydroxide, or potassium hydroxide. Three pH measurements were performed on each of 10 non-industrial alkaline cleaning products (eight liquid, two solid). Two 0.1% ammonium chloride solutions had pHs of 12.06 +/- 0.00 and 12.06 +/- 0.01, whereas a pH of 12.43 +/- 0.00 was recorded in a 0.2% ammonium chloride solution. Concentrations of sodium hydroxide and potassium hydroxide were listed on only one of five liquid cleaning product labels. The pHs for these five products varied between 12.83 +/- 0.009 and 13.5 +/- .0.2. The pHs of three sodium hydroxide solutions differed from values reported in Micromedex (Micromedex Inc, Denver CO) by up to 0.32 pH units. Ten percent (v/v) solutions of two solid lye products had pHs of 13.62 +/- 0.008 and 13.74 +/- 0.02. The investigator found that selected non-industrial cleaning products, including ammonia solutions, retain the ability to cause clinically important esophageal damage.
Rizzi, George P
2008-08-27
Effects of cationic species on Maillard browning were examined after heating (ca. 100 degrees C) aqueous pH 7.2 buffered solutions of amino acids and pentose sugars. Metallic ions of Group I metals (Li, Na, K, Rb and Cs) produced a small increase in browning (A420), but somewhat greater effects were observed with ions of Group II metals Ca and Mg. Browning was suppressed by triethylammonium ion, but unaffected by a salt of the stronger base, guanidine. The quaternary amine salt choline chloride produced enhanced browning and served as a model for phospholipid involvement in Maillard reactions. With alpha,omega-diamino acids increases in browning were observed which related to lowered pK2 values resulting from positively charged omega-substituents in these molecules.
High resolution laser-based detection of ammonia
NASA Astrophysics Data System (ADS)
Giubileo, G.; Puiu, A.; Dell'Unto, F.; Tomasi, M.; Fagnani, A.
2009-02-01
In the present paper we compare the response of two types of photoacoustic cells (resonant and nonresonant) to determine the amount of ammonia volatilized from biological liquid samples at constant temperature, pressure and pH. The home made detector was a photoacoustic spectroscopy apparatus developed by Molecular Spectroscopy Laboratory staff at ENEA Frascati Research Centre in Italy. The sensor makes use of photo-acoustic cells equipped with commercially available high sensitivity miniaturized microphones. The radiation source was a line-tunable stabilized 10 W CW CO2 laser. Ammonia measurements were performed by tuning the laser source on the 9R30 laser line (9.2197 µm radiation wavelength). Ammonium chloride standard solutions were prepared by us in laboratory, to serve as reproducible ideal samples. The photoacoustic response of the two type of photoacoustic cells was determined and compared. The feasibility study was reported.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Category 2-Amino-2-hydroxymethyl-1,3-propanediol solution III Ammonium hydrogen phosphate solution D...) D Ammonium phosphate, Urea solution, see also Urea, Ammonium phosphate solution D Ammonium..., Magnesium nitrate, Potassium chloride solution III Caramel solutions III Chlorinated paraffins (C14-C17...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, B.S.; Davis, F.; Johnson, B.
1985-04-01
Concern about upper respiratory tract irritation and other symptoms among workers at a glass bottle manufacturing plant led to an epidemiologic and an industrial hygiene survey. Questionnaire responses from 35 hot end and 53 cold end workers indicated that the incidence of wheezing, chest pain, dyspnea on exertion, and cough was significantly elevated among hot end workers. Among both smokers and nonsmokers, hot end workers reported higher, but not significantly higher, rates of wheezing and chest pain. Among smokers, hot end workers reported significantly higher rates of dyspnea on exertion and cough than did cold end workers. Data suggest thatmore » reported exposure to stannic chloride solution likely caused these symptoms. The industrial hygiene survey, conducted when stannic chloride use had been reduced, cleaning had been done, and ventilation improved, focused on measuring air contaminants that might possibly cause symptoms. Levels of hydrogen chloride, which apparently was formed by the combination of stannic chloride and water in the presence of heat, were elevated. The finding of increased prevalence of respiratory symptoms among hot end workers was consistent with this exposure. Recommendations were made to reduce hazardous exposures at this plant. Individuals responsible for occupational health should be aware that relatively benign substances, such as stannic chloride and water, can combine spontaneously to form hazardous substances.« less
Bauer, Brad A.; Ou, Shuching; Patel, Sandeep
2014-01-01
We present results from all-atom molecular dynamics simulations of large-scale hydrophobic plates solvated in NaCl and NaI salt solutions. As observed in studies of ions at the air-water interface, the density of iodide near the water-plate interface is significantly enhanced relative to chloride and in the bulk. This allows for the partial hydration of iodide while chloride remains more fully hydrated. In 1M solutions, iodide directly pushes the hydrophobes together (contributing −2.51 kcal/mol) to the PMF. Chloride, however, strengthens the water-induced contribution to the PMF by ~ −2.84 kcal/mol. These observations are enhanced in 3M solutions, consistent with the increased ion density in the vicinity of the hydrophobes. The different salt solutions influence changes in the critical hydrophobe separation distance and characteristic wetting/dewetting transitions. These differences are largely influenced by the ion-specific expulsion of iodide from bulk water. Results of this study are of general interest to the study of ions at interfaces and may lend insight to the mechanisms underlying the Hofmeister series. PMID:22231014
Synthesis of non-hydrazine solution processed Cu2(ZnSn)S4 thin films for solar cells applications
NASA Astrophysics Data System (ADS)
Gupta, Indu; Gupta, Preeti; Mohanty, Bhaskar Chandra
2017-05-01
Solution processing provides a versatile and inexpensive means to prepare Cu2ZnSnS4 (CZTS) thin films for photovoltaic applications. Differently with the reported growth of CZTS films from hydrazine based toxic solutions, we demonstrate a simple non-toxic ethanol based solution approach to synthesize the films. Using the chemical bath deposition (CBD) method, the CZTS thin films were grown from metal salts (copper chloride, zinc chloride, and tin chloride) in ethanol and monoethanol amine (MEA) and thioacetamide in ethanol as sulfur source in a single dip followed by sulfurization. The structure, composition, morphology and optical properties of the CZTS film were studied by X-ray diffraction, scanning electron microscopy and UV-vis spectroscopy. The results revealed that a post-deposition sulfurization is necessary to the phase formation and among all, sulfurization at 450°C for 60 min yielded phase pure CZTS films having kesterite structure, relatively compact morphology and an optical band gap of ˜1.52 eV indicating its suitability for solar cell applications. The results clearly validate the CBD method as a potential scalable route of preparation of CZTS thin films.
ELECTRODE MEASUREMENT OF REDOX POTENTIAL IN ANAEROBIC FERRIC/FERROUS CHLORIDE SYSTEMS
The behaviour of two inert redox electrodes (Pt and wax-impregnated graphite) was investigated in anaerobic ferrous and ferric chloride solutions in order to establish if these electrodes respond to the Fe3+/Fe2+ couple in a Nernstian manner. A new method fo...
DEVELOPMENT OF A CL-IMPREGNATED ACTIVATED CARBON FOR ENTRAINED-FLOW CAPTURE OF ELEMENTAL MERCURY
Efforts to discern the role of an activated carbon's surface functional groups on the adsorption of elemental mercury [Hg(0)] and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to incre...
21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... deciliter per gram as determined by ASTM method D1243-79, “Standard Test Method for Dilute Solution... vinyl chloride-ethylene copol-ymer per 100 grams of sample tested as determined from the organic... using duplicate blanks. Approximately 400 grams of sample (accurately weighed) shall be placed in a 2...
21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... deciliter per gram as determined by ASTM method D1243-79, “Standard Test Method for Dilute Solution... vinyl chloride-ethylene copol-ymer per 100 grams of sample tested as determined from the organic... using duplicate blanks. Approximately 400 grams of sample (accurately weighed) shall be placed in a 2...
Functional magnetic microspheres
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Landel, Robert F. (Inventor); Yen, Shiao-Ping S. (Inventor)
1981-01-01
Functional magnetic particles are formed by dissolving a mucopolysaccharide such as chitosan in acidified aqueous solution containing a mixture of ferrous chloride and ferric chloride. As the pH of the solution is raised magnetite is formed in situ in the solution by raising the pH. The dissolved chitosan is a polyelectrolyte and forms micelles surrounding the granules at pH of 8-9. The chitosan precipitates on the granules to form microspheres containing the magnetic granules. On addition of the microspheres to waste aqueous streams containing dissolved ions, the hydroxyl and amine functionality of the chitosan forms chelates binding heavy metal cations such as lead, copper, and mercury and the chelates in turn bind anions such as nitrate, fluoride, phosphate and borate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venugopal, A.; Selvam, P.; Raja, V.S.
1997-10-01
Oxide films on Al and an Al-Sn alloy were analyzed by x-ray photoelectron spectroscopy (XPS) after immersion in 3.5% sodium chloride (NaCl) solution. Results showed Sn exhibited both Sn{sup 2+} and Sn{sup 4+} oxidation stats in the oxide film. It was proposed that incorporation of these cations in the film would result in generation of more anionic and cationic vacancies in aluminum oxide (Al{sub 2}O{sub 3}), leading to active dissolution of Al.
27 CFR 21.59 - Formula No. 32.
Code of Federal Regulations, 2014 CFR
2014-04-01
....Collodion, U.S.P. 311.Ethyl cellulose compounds (dehydration). 332.Processing miscellaneous food products... solutions. 481.Photoengraving and rotogravure solutions and dyes. (2) As a raw material: 522.Ethyl chloride...
27 CFR 21.59 - Formula No. 32.
Code of Federal Regulations, 2013 CFR
2013-04-01
....Collodion, U.S.P. 311.Ethyl cellulose compounds (dehydration). 332.Processing miscellaneous food products... solutions. 481.Photoengraving and rotogravure solutions and dyes. (2) As a raw material: 522.Ethyl chloride...
27 CFR 21.59 - Formula No. 32.
Code of Federal Regulations, 2012 CFR
2012-04-01
....Collodion, U.S.P. 311.Ethyl cellulose compounds (dehydration). 332.Processing miscellaneous food products... solutions. 481.Photoengraving and rotogravure solutions and dyes. (2) As a raw material: 522.Ethyl chloride...
Liu, Shan-Wen; Li, Yuan; Zou, Li-Li; Guan, Yu-Tao; Peng, Shuang; Zheng, Li-Xin; Deng, Shun-Mei; Zhu, Lin-Yan; Wang, Li-Wei; Chen, Li-Xin
2017-01-01
Human spermatozoa encounter an osmotic decrease from 330 to 290 mOsm l−1 when passing through the female reproductive tract. We aimed to evaluate the role of chloride channels in volume regulation and sperm motility from patients with asthenozoospermia. Spermatozoa were purified using Percoll density gradients. Sperm volume was measured as the forward scatter signal using flow cytometry. Sperm motility was analyzed using computer-aided sperm analysis (CASA). When transferred from an isotonic solution (330 mOsm l−1) to a hypotonic solution (290 mOsm l−1), cell volume was not changed in spermatozoa from normozoospermic men; but increased in those from asthenozoospermic samples. The addition of the chloride channel blockers, 4,4′-diisothiocyanatostilbene-2,2′- isulfonic acid (DIDS) or 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) to the hypotonic solution caused the normal spermatozoa to swell but did not increase the volume of those from the asthenozoospermic semen. DIDS and NPPB decreased sperm motility in both sets of semen samples. The inhibitory effect of NPPB on normal sperm motility was much stronger than on spermatozoa from the asthenozoospermic samples. Both sperm types expressed ClC-3 chloride channels, but the expression levels in the asthenozoospermic samples were much lower, especially in the neck and mid-piece areas. Spermatozoa from men with asthenozoospermia demonstrated lower volume regulating capacity, mobility, and ClC-3 expression levels (especially in the neck) than did normal spermatozoa. Thus, chloride channels play important roles in the regulation of sperm volume and motility and are downregulated in cases of asthenozoospermia. PMID:27270342
Influence of corrosive solutions on microhardness and chemistry of magnesium oxide /001/ surfaces
NASA Technical Reports Server (NTRS)
Ishigaki, H.; Miyoshi, K.; Buckley, D. H.
1982-01-01
X-ray photoelectron spectroscopy analyses and hardness experiments were conducted on cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved to specimen size along the /001/ surface, and indentations were made on the cleaved surface in corrosive solutions containing HCl, NaOH, or HNO3 and in water without exposing the specimen to any other environment. The results indicated that chloride (such as MgCl2) and sodium films are formed on the magnesium oxide surface as a result of interactions between an HCl-containing solution and a cleaved magnesium oxide surface. The chloride films soften the magnesium oxide surface. In this case microhardness is strongly influenced by the pH value of the solution. The lower the pH, the lower the microhardness. Sodium films, which are formed on the magnesium oxide surface exposed to an NaOH containing solution, do not soften the magnesium oxide surface.
Inhibitory effect of DIDS, NPPB, and phloretin on intracellular chloride channels.
Malekova, Lubica; Tomaskova, Jana; Novakova, Marie; Stefanik, Peter; Kopacek, Juraj; Lakatos, Boris; Pastorekova, Silvia; Krizanova, Olga; Breier, Albert; Ondrias, Karol
2007-11-01
We studied the effects of the chloride channel blockers, 5-nitro-2-(phenylpropylamino)-benzoate (NPPB), dihydro-4,4' diisothiocyanostilbene-2,2'-disulphonic acid (DIDS), and phloretin on H2O2-induced primary culture cardiomyocyte apoptosis and activity of intracellular chloride channels obtained from rat heart mitochondrial and lysosomal vesicles. The chloride channel blockers (100 micromol/l) inhibited the H2O2-induced cardiomyocytes apoptosis. We characterized the effect of the blockers on single channel properties of the chloride channels derived from the mitochondrial and lysosomal vesicles incorporated into a bilayer lipid membrane. The single chloride channel currents were measured in 250:50 mmol/l KCl cis/trans solutions. NPPB, DIDS, and phloretin inhibited the chloride channels by decreasing the channel open probability in a concentration-dependent manner with EC50 values of 42, 7, and 20 micromol/l, respectively. NPPB and phloretin inhibited the channel's conductance and open dwell time, indicating that they could affect the chloride selective filter, pore permeability, and gating mechanism of the chloride channels. DIDS and NPPB inhibited the channels from the other side than bongkrekic acid and carboxyatractyloside. The results may contribute to understand a possible involvement of intracellular chloride channels in apoptosis and cardioprotection.
Meng, Lina; Nguyen, Cherwyn M; Patel, Samit; Mlynash, Michael; Caulfield, Anna Finley
2018-03-01
One institution's experience with use of peripheral i.v. (PIV) catheters for prolonged infusions of 3% sodium chloride injection at rates up to 100 mL/hr is described. A prospective, observational, 13-month quality assurance project was conducted at an academic medical center to evaluate frequencies of patient and catheter phlebitis among adult inpatients who received both an infusion of 3% sodium chloride injection for a period of ≥4 hours through a dedicated PIV catheter and infusions of routine-care solutions (RCSs) through separate PIV catheters during the same hospital stay. Sixty patients received PIV infusions through a total of 291 catheters during the study period. The majority of patients (78%) received infusions of 3% sodium chloride injection for intracranial hypertension, with 30% receiving such infusions in the intensive care unit. Phlebitis occurred in 28 patients (47%) during infusions of 3% sodium chloride and 26 patients (43%) during RCS infusions ( p = 0.19). Catheter phlebitis occurred in 73 catheters (25%), with no significant difference in the frequencies of catheter phlebitis with infusion of 3% sodium chloride versus RCSs (30% [32 of 106 catheters]) versus 22% [41 of 185 catheters]), p = 0.16). Patient and catheter phlebitis rates were not significantly different with infusions of 3% sodium chloride injection versus RCSs, suggesting that an osmolarity cutoff value of 900 mOsm/L for peripheral infusions of hypertonic saline solutions may not be warranted. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Measuring Sodium Chloride Contents of Aerosols
NASA Technical Reports Server (NTRS)
Sinha, M. P.; Friedlander, S. K.
1986-01-01
Amount of sodium chloride in individual aerosol particles measured in real time by analyzer that includes mass spectrometer. Analyzer used to determine mass distributions of active agents in therapeutic or diagnostic aerosols derived from saline solutions and in analyzing ocean spray. Aerosol particles composed of sodium chloride introduced into oven, where individually vaporized on hot wall. Vapor molecules thermally dissociated, and some of resulting sodium atoms ionized on wall. Ions leave oven in burst and analyzed by spectrometer, which is set to monitor sodium-ion intensity.
1990-09-26
50 ml. Glycerine R -etch 17 ml. Benzalkonium Chloride 35 ml. Ethanol Kroll - etch 2 ml. Hydrofluoric Acid ( 50 %) 4 ml. Nitric Acid Conc. 100 ml...The amount of work given ( 60 % reduction in area ) in this last step was found to be sufficient to recrystallize all of the alloys within 12 hours at...formed at the center of thedisc with the following solution: 10 gins. Zinc Chloride 5 gms. Aluminum Chloride 300 ml. Methanol 50 ml. N - Butanol A JEOL
Studies on the electrodeposition of tin from acidic chloride-gluconate solutions
NASA Astrophysics Data System (ADS)
Rudnik, Ewa; Włoch, Grzegorz
2013-01-01
Electrodeposition of tin from acidic chloride-gluconate baths was investigated. Equilibrium distribution of tin(II) species showed domination of Sn(II)-gluconate complexes, but for Sn2+ concentrations 50 mM or higher increased percentage of Sn(II)-chloride complexes was found. Cyclic voltammetry, anodic stripping analysis and potentiostatic measurements indicated that rate of the cathodic process is determined by the release of metal cations from gluconate complexes in diluted bath (5 mM), but for more concentrated solutions reduction of Sn(II) ions run under diffusion control. Studies of anodic response showed that it depends on the Sn(II)/Glu ratio in the bath and deposition potential due to development of different planes of metal crystal. Average effective diffusion coefficients of metal species were determined. Morphology and structure tin deposits were also presented.
Kaiser, Jeanette; Krämer, Irene
2012-06-01
The aim of this study was to investigate the physicochemical stability of clofarabine (CAFdA) injection concentrate and ready-to-use CAFdA infusion solutions over a prolonged period of 28 days. To determine the stability of CAFdA infusion solutions, the injection concentrate (Evoltra®, 1 mg/mL, Genzyme) was diluted either with 0.9% sodium chloride or 5% glucose infusion solution. The resulting concentrations of 0.2 mg/mL or 0.6 mg/mL, respectively, were chosen to represent the lower and upper limit of the ordinary concentration range. Test solutions were stored under refrigeration (2-8°C) or at room temperature either light protected or exposed to light. CAFdA concentrations and pH values were determined at different time intervals throughout a 28-day storage period. Compatibility of diluted CAFdA infusion solutions (0.1-0.4 mg/mL) with different container materials (polyvinyl chloride (PVC), glass, and polypropylene/polyethylene (PP/PE)) was tested over a 48-h storage period. CAFdA concentrations were measured by a stability-indicating reversed phase high-performance liquid chromatography (HPLC) assay with ultraviolet detection. CAFdA injection concentrate and CAFdA infusion solutions remained physicochemically stable (>90% CAFdA) for 4 weeks. Results are independent of storage conditions, drug concentrations (0.2, 0.6, and 1.0 mg/mL) and diluents (0.9% sodium chloride, 5% glucose infusion solution). Adsorption of CAFdA to container material can be excluded. CAFdA injection concentrate and diluted infusion solutions in commonly used vehicles are stable for at least 28 days either refrigerated or at room temperature. Physicochemical stability favors pharmacy-based centralized preparation. Due to microbiological reasons, strict aseptic handling and storage of the products under refrigeration is recommended.
ZnO/graphite composites and its antibacterial activity at different conditions.
Dědková, Kateřina; Janíková, Barbora; Matějová, Kateřina; Čabanová, Kristina; Váňa, Rostislav; Kalup, Aleš; Hundáková, Marianna; Kukutschová, Jana
2015-10-01
The paper reports laboratory preparation, characterization and in vitro evaluation of antibacterial activity of ZnO/graphite nanocomposites. Zinc chloride and sodium carbonate served as precursors for synthesis of zinc oxide, while micromilled and natural graphite were used as the matrix for ZnO nanoparticles anchoring. During the reaction of ZnCl2 with saturated aqueous solution of Na2CO3a new compound is created. During the calcination at the temperature of 500 °C this new precursors decomposes and ZnO nanoparticles are formed. Composites ZnO/graphite with 50 wt.% of ZnO particles were prepared. X-ray powder diffraction and Raman microspectroscopy served as phase-analytical methods. Scanning electron microscopy technique was used for morphology characterization of the prepared samples and EDS mapping for visualization of elemental distribution. A developed modification of the standard microdilution test was used for in vitro evaluation of daylight induced antibacterial activity and antibacterial activity at dark conditions. Common human pathogens served as microorganism for antibacterial assay. Antibacterial activity of ZnO/graphite composites could be based on photocatalytic reaction; however there is a role of Zn(2+) ions on the resulting antibacterial activity which proved the experiments in dark condition. There is synergistic effect between Zn(2+) caused and reactive oxygen species caused antibacterial activity. Copyright © 2015 Elsevier B.V. All rights reserved.
Photochemical oxidation of chloride ion by ozone in acid aqueous solution.
Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V
2015-11-01
The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end.
Torres-Luque, Magda; Sánchez-Silva, Mauricio
2017-01-01
Chloride presence affects different environments (soil, water, concrete) decreasing their qualities. In order to assess chloride concentration this paper proposes a novel sensor for detecting and measuring it. This sensor is based on electric changes of commercial monocalcium aluminate (CA) when it interacts with chloride aqueous solutions. CA is used as a dielectric material between two coplanar capacitors. The geometry proposed for this sensor allows to assess the chloride content profile, or to make four times the same measurement. Besides, the experimental design gives us the possibility of study not just the chloride effect, but also the time and some geometric effects due to the sensor design. As a result, this sensor shows a limit of detection, sensitivity, and response time: 0.01 wt % Cl− and 0.06 wt % Cl−, and 2 min, respectively, comparable with other non invasive techniques as optical fibre sensors. PMID:28902147
Rabin, B M; Hunt, W A
1983-04-01
A series of experiments were run to evaluate the effect of antiemetics on the acquisition and recall of a conditioned taste aversion induced by exposure to ionizing radiation or by injection of lithium chloride. Groups of male rats were exposed to 100 rad gamma radiation or 3 mEq/kg lithium chloride following consumption of a 10% sucrose solution. They were then injected with saline or with one of three antiemetics (prochlorperazine, trimethobenzamide, or cyclizine) at dose levels that have been reported to be effective in attenuating a previously acquired lithium chloride-induced taste aversion. The pretreatments with antiemetics had no effect on the acquisition or recall of either the lithium chloride- or radiation-induced taste aversion. The data suggest that antiemetics do not disrupt lithium chloride-induced taste aversions as previously reported, nor do they effect radiation-induced taste aversion learning.
Steady-state solidification of aqueous ammonium chloride
NASA Astrophysics Data System (ADS)
Peppin, S. S. L.; Huppert, Herbert E.; Worster, M. Grae
We report on a series of experiments in which a Hele-Shaw cell containing aqueous solutions of NH4Cl was translated at prescribed rates through a steady temperature gradient. The salt formed the primary solid phase of a mushy layer as the solution solidified, with the salt-depleted residual fluid driving buoyancy-driven convection and the development of chimneys in the mushy layer. Depending on the operating conditions, several morphological transitions occurred. A regime diagram is presented quantifying these transitions as a function of freezing rate and the initial concentration of the solution. In general, for a given concentration, increasing the freezing rate caused the steady-state system to change from a convecting mushy layer with chimneys to a non-convecting mushy layer below a relatively quiescent liquid, and then to a much thinner mushy layer separated from the liquid by a region of active secondary nucleation. At higher initial concentrations the second of these states did not occur. At lower concentrations, but still above the eutectic, the mushy layer disappeared. A simple mathematical model of the system is developed which compares well with the experimental measurements of the intermediate, non-convecting state and serves as a benchmark against which to understand some of the effects of convection. Movies are available with the online version of the paper.
Russo, Michael A.; Högenauer, Christoph; Coates, Stephen W.; Santa Ana, Carol A.; Porter, Jack L.; Rosenblatt, Randall L.; Emmett, Michael; Fordtran, John S.
2003-01-01
Due to genetic defects in apical membrane chloride channels, the cystic fibrosis (CF) intestine does not secrete chloride normally. Depressed chloride secretion leaves CF intestinal absorptive processes unopposed, which results in net fluid hyperabsorption, dehydration of intestinal contents, and a propensity to inspissated intestinal obstruction. This theory is based primarily on in vitro studies of jejunal mucosa. To determine if CF patients actually hyperabsorb fluid in vivo, we measured electrolyte and water absorption during steady-state perfusion of the jejunum. As expected, chloride secretion was abnormally low in CF, but surprisingly, there was no net hyperabsorption of sodium or water during perfusion of a balanced electrolyte solution. This suggested that fluid absorption processes are reduced in CF jejunum, and further studies revealed that this was due to a marked depression of passive chloride absorption. Although Na+-glucose cotransport was normal in the CF jejunum, absence of passive chloride absorption completely blocked glucose-stimulated net sodium absorption and reduced glucose-stimulated water absorption 66%. This chloride absorptive abnormality acts in physiological opposition to the classic chloride secretory defect in the CF intestine. By increasing the fluidity of intraluminal contents, absence of passive chloride absorption may reduce the incidence and severity of intestinal disease in patients with CF. PMID:12840066
Hu, Yue; Boyer, Treavor H
2017-05-15
The application of bicarbonate-form anion exchange resin and sodium bicarbonate salt for resin regeneration was investigated in this research is to reduce chloride ion release during treatment and the disposal burden of sodium chloride regeneration solution when using traditional chloride-form ion exchange (IX). The target contaminant in this research was dissolved organic carbon (DOC). The performance evaluation was conducted in a completely mixed flow reactor (CMFR) IX configuration. A process model that integrated treatment and regeneration was investigated based on the characteristics of configuration. The kinetic and equilibrium experiments were performed to obtain required parameters for the process model. The pilot plant tests were conducted to validate the model as well as provide practical understanding on operation. The DOC concentration predicted by the process model responded to the change of salt concentration in the solution, and showed a good agreement with pilot plant data with less than 10% difference in terms of percentage removal. Both model predictions and pilot plant tests showed over 60% DOC removal by bicarbonate-form resin for treatment and sodium bicarbonate for regeneration, which was comparable to chloride-form resin for treatment and sodium chloride for regeneration. Lastly, the DOC removal was improved by using higher salt concentration for regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.
21 CFR 178.3950 - Tetrahydrofuran.
Code of Federal Regulations, 2014 CFR
2014-04-01
... solvent in the casting of film from a solution of polymeric resins of vinyl chloride, vinyl acetate, or..., or it may be used as a solvent in the casting of film prepared from vinyl chloride copolymers complying with § 177.1980 of this chapter. (b) The residual amount of tetrahydrofuran in the film does not...
A Green Alternative to Aluminum Chloride Alkylation of Xylene
ERIC Educational Resources Information Center
Sereda, Grigoriy A.; Rajpara, Vikul B.
2007-01-01
An acutely less toxic 2-bromobutane is used to develop a simple graphite-promoted procedure of alkylation of p-xylene. It is further demonstrated that aluminum chloride is not required, the need for aqueous workup is eliminated, waste solutions are not produced and the multiple use of the catalyst is allowed.
Chen, Kewei; Zhan, Hongbin; Burns, Erick; Ingebritsen, Steven E.; Agrinier, Pierre
2018-01-01
Springs at La Soufrière of Guadeloupe have been monitored for nearly four decades since the phreatic eruption and associated seismic activity in 1976. We conceptualize degassing vapor/gas mixtures as square‐wave sources of chloride and heat and apply a new semianalytic solution to demonstrate that chloride and heat pulses with the same timing and duration result in good matches between measured and simulated spring temperatures and concentrations. While the concentration of chloride pulses is variable, the local boiling temperature of 96°C was assigned to all thermal pulses. Because chloride is a conservative tracer, chloride breakthrough is only affected by one‐dimensional advection and dispersion. The thermal tracer is damped and lagged relative to chloride due to conductive heat exchange with the overlying and underlying strata. Joint analysis of temperature and chloride allows estimation of the onset and duration of degassing pulses, refining the chronology of recent magmatic intrusion.
NASA Astrophysics Data System (ADS)
Chen, Kewei; Zhan, Hongbin; Burns, Erick R.; Ingebritsen, Steven E.; Agrinier, Pierre
2018-04-01
Springs at La Soufrière of Guadeloupe have been monitored for nearly four decades since the phreatic eruption and associated seismic activity in 1976. We conceptualize degassing vapor/gas mixtures as square-wave sources of chloride and heat and apply a new semianalytic solution to demonstrate that chloride and heat pulses with the same timing and duration result in good matches between measured and simulated spring temperatures and concentrations. While the concentration of chloride pulses is variable, the local boiling temperature of 96°C was assigned to all thermal pulses. Because chloride is a conservative tracer, chloride breakthrough is only affected by one-dimensional advection and dispersion. The thermal tracer is damped and lagged relative to chloride due to conductive heat exchange with the overlying and underlying strata. Joint analysis of temperature and chloride allows estimation of the onset and duration of degassing pulses, refining the chronology of recent magmatic intrusion.
21 CFR 522.1020 - Gelatin solution.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Gelatin solution. 522.1020 Section 522.1020 Food... Gelatin solution. (a) Specifications. It is sterile and each 100 cubic centimeters contains 8 grams of gelatin in an 0.85 percent sodium chloride solution. (b) Sponsor. See No. 000856 in § 510.600(c) of this...
21 CFR 522.1020 - Gelatin solution.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Gelatin solution. 522.1020 Section 522.1020 Food... Gelatin solution. (a) Specifications. It is sterile and each 100 cubic centimeters contains 8 grams of gelatin in an 0.85 percent sodium chloride solution. (b) Sponsor. See No. 000856 in § 510.600(c) of this...
21 CFR 522.1020 - Gelatin solution.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Gelatin solution. 522.1020 Section 522.1020 Food... Gelatin solution. (a) Specifications. It is sterile and each 100 cubic centimeters contains 8 grams of gelatin in an 0.85 percent sodium chloride solution. (b) Sponsor. See No. 000856 in § 510.600(c) of this...
21 CFR 522.1020 - Gelatin solution.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gelatin solution. 522.1020 Section 522.1020 Food... Gelatin solution. (a) Specifications. It is sterile and each 100 cubic centimeters contains 8 grams of gelatin in an 0.85 percent sodium chloride solution. (b) Sponsor. See No. 000856 in § 510.600(c) of this...
Mueller, Wolf-Dieter; de Mele, Monica Fernández Lorenzo; Nascimento, Maria Lucia; Zeddies, Miriam
2009-08-01
Magnesium and its alloys are highly degradable metals that are potentially useful as biomaterials, especially in orthopaedic and cardiovascular applications. However, the in vivo corrosion has proved to be too high. Because of the complexity of in vivo conditions, a careful study of the corrosion of magnesium in synthetic solutions that simulate the in vivo environment is necessary as a first approach to predict the actual in vivo situation. The aim of this work was to evaluate the influence of the electrolyte composition on the corrosion behavior of magnesium and two Mg-alloys in synthetic biological media. Pure magnesium and its alloys (AZ31 and LAE442) were employed in the experiments. Electrochemical potentiodynamic polarization curves were recorded in sodium chloride and PBS electrolytes with different chloride ion and albumin concentration. Optical and SEM observations complemented by EDX analysis were made. The results showed that magnesium corrosion is localized in chloride- and albumin-containing buffer solutions. They also showed that the chloride concentration and the presence of buffer and protein strongly affect the electrochemical behavior of magnesium and magnesium alloys.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) (with 52% Chlorine) III 2-Chloro-4-ethylamino-6-isopropylamino-5-triazine solution # Choline chloride...-5-triazine solution # 4-Chloro-2-methylphenoxyacetic acid, dimethylamine salt solution * Y Choline...
NASA Astrophysics Data System (ADS)
Kustov, A. V.; Smirnova, N. L.; Berezin, B. D.; Trostin, V. N.
2010-04-01
The thermal effects of mixing of aqueous calcium chloride with sodium citrate and ethylenedi-aminetetraacetate in the absence and presence of sodium oxalate have been measured at 25°C. The thermal effects of dilution of aqueous calcium chloride solutions were determined. The thermal effects of calcium oxalate precipitation and formation of calcium complexes with citrate and ethylenediaminetetraacetate ions were calculated. The 1% solution of sodium citrate inhibited the formation of CaC2O4 (s); in a 1% solution of sodium ethylenediaminetetraacetate with [Ca2+][C2O{4/2-}] > 10-5, the endothermal formation of the [CaEdta]2- complex quickly changed to exothermal precipitation. The 3 and 5% solutions of complexons showed a pronounced inhibiting effect on the formation of urinary stones even when the concentration of calcium and oxalate ions in solution exceeded the product of solubility of CaC2O4 by four and more orders of magnitude.
Cathodic Deposition of Mg(OH)2 Coatings on Pure mg in Three mg Salts Aqueous Solutions
NASA Astrophysics Data System (ADS)
Yongjun, Zhang; Xiaomeng, Pei; Shugong, Jia
Film-forming effects of cathodic deposition on pure Mg substrate at constant DC in aqueous solutions of magnesium nitrate (Mg(NO3)2ṡ6H2O), magnesium chloride (MgCl2ṡ6H2O) and magnesium sulfate (MgSO4ṡ7H2O) respectively were investigated systematically. Typical processes were studied by potentiodynamic cathodic polarization and galvanostatic polarization and typical samples were analyzed by SEM and XRD. The results indicate that the depositing efficiency is not only the highest but stablest, and deposited coatings show the best uniformity with Mg(NO3)2ṡ6H2O solution employed as depositing medium and applied current density ≥1.0mA cm-2. Cathodic deposition leads to regular mass loss of Mg substrate. The cathodic polarization curve of pure Mg in magnesium nitrate solution shows more obvious pseudo-passivation, several Tafel regions with different slopes appearing before diffusion-limited current density region, and oxygen consumption is the major cathodic reduction reaction under specified current density. However, hydrogen evolution reaction is dominant in both Mg chloride and Mg sulfate solutions. The deposition coatings are all composed of continuous and uniform mesh-like “basic layer” adjacent to substrate and discrete distributed snowball-like particles on the microscopic scale. The phase compositions are all crystal Mg(OH)2, and the coatings deposited in Mg chloride solution have (011) preferred orientation.
Ueira-Vieira, C; Tavares, R R; Morelli, S; Pereira, B B; Silva, R P; Torres-Mariano, A R; Kerr, W E; Bonetti, A M
2013-06-20
In order to optimize preparations of bee metaphases, we tested cobalt chloride, which has been used as a metaphase inducer in other organisms, such as hamsters and fish. Four microliters of 65 mM cobalt chloride aqueous solution was topically applied to larval and pupal stages of the stingless bee Melipona scutellaris. The cerebral ganglion was removed after treatment and prepared for cytogenetic analysis. Identically manipulated untreated individuals were used as controls. The number of metaphases was increased 3-fold in treated individuals compared to controls. The micronucleus test showed no mutagenic effects of cobalt chloride on M. scutellaris cells. We concluded that cobalt chloride is a metaphase-inducing agent in M. scutellaris, thus being useful for cytogenetic analyses.
Simescu, Florica; Idrissi, Hassane
2008-12-01
We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 . After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.
NASA Astrophysics Data System (ADS)
Simescu, Florica; Idrissi, Hassane
2008-12-01
We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO4)6(OH)2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.
Chloride toxicity in critically ill patients: What's the evidence?
Soussi, Sabri; Ferry, Axelle; Chaussard, Maité; Legrand, Matthieu
2017-04-01
Crystalloids have become the fluid of choice in critically ill patients and in the operating room both for fluid resuscitation and fluid maintenance. Among crystalloids, NaCl 0.9% has been the most widely used fluid. However, emerging evidence suggests that administration of 0.9% saline could be harmful mainly through high chloride content and that the use of fluid with low chloride content may be preferable in major surgery and intensive care patients. Administration of NaCl 0.9% is the leading cause of metabolic hyperchloraemic acidosis in critically ill patients and side effects might target coagulation, renal function, and ultimately increase mortality. More balanced solutions therefore may be used especially when large amount of fluids are administered in high-risk patients. In this review, we discuss physiological background favouring the use of balanced solutions as well as the most recent clinical data regarding the use of crystalloid solutions in critically ill patients and patients undergoing major surgery. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.
Simescu, Florica; Idrissi, Hassane
2008-01-01
We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO4)6(OH)2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating. PMID:27878037
Zhou, Zhuang; Rajabzadeh, Saeid; Fang, Lifeng; Miyoshi, Taro; Kakihana, Yuriko; Matsuyama, Hideto
2017-08-01
Braid-reinforced hollow fiber membranes with high mechanical properties and considerable antifouling surface were prepared by blending poly(vinyl chloride) (PVC) with poly(vinyl chloride-co-poly(ethylene glycol) methyl ether methacrylate) (poly(VC-co-PEGMA)) copolymer via non-solvent induced phase separation (NIPS). The tensile strength of the braid-reinforced PVC hollow fiber membranes were significantly larger than those of previously reported various types of PVC hollow fiber membranes. The high interfacial bonding strength indicated the good compatibility between the coating materials and the surface of polyethylene terephthalate (PET)-braid. Owing to the surface segregation phenomena, the membrane surface PEGMA coverage increased upon increasing the poly(VC-co-PEGMA)/PVC blending ratio, resulting in higher hydrophilicities and bovine serum albumin (BSA) repulsion. To compare the fouling properties, membranes with similar PWPs were prepared by adjusting the dope solution composition to eliminate the effect of hydrodynamic conditions on the membrane fouling performance. The blend membranes surface exhibited considerable fouling resistance to the molecular adsorption from both BSA solution and activated sludge solution. In both cases, the flux recovered to almost 80% of the initial flux using only water backflush. Considering their great mechanical properties and antifouling resistance to activated sludge solution, these novel membranes show good potential for application in wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Heparin or 0.9% sodium chloride to maintain central venous catheter patency: a randomized trial.
Schallom, Marilyn E; Prentice, Donna; Sona, Carrie; Micek, Scott T; Skrupky, Lee P
2012-06-01
To compare heparin (3 mL, 10 units/mL) and 0.9% sodium chloride (NaCl, 10 mL) flush solutions with respect to central venous catheter lumen patency. Single-center, randomized, open label trial. Medical intensive care unit and Surgical/Burn/Trauma intensive care unit at Barnes-Jewish Hospital, St. Louis, MO. Three hundred forty-one patients with multilumen central venous catheters. Patients with at least one lumen with a minimum of two flushes were included in the analysis. Patients were randomly assigned within 12 hrs of central venous catheter insertion to receive either heparin or 0.9% sodium chloride flush. The primary outcome was lumen nonpatency. Secondary outcomes included the rates of loss of blood return, inability to infuse or flush through the lumen (flush failure), heparin-induced thrombocytopenia, and catheter-related blood stream infection. Assessment for patency was performed every 8 hrs in lumens without continuous infusions for the duration of catheter placement or discharge from intensive care unit. Three hundred twenty-six central venous catheters were studied yielding 709 lumens for analysis. The nonpatency rate was 3.8% in the heparin group (n = 314) and 6.3% in the 0.9% sodium chloride group (n = 395) (relative risk 1.66, 95% confidence interval 0.86-3.22, p = .136). The Kaplan-Meier analysis for time to first patency loss was not significantly different (log rank = 0.093) between groups. The rates of loss of blood return and flush failure were similar between the heparin and 0.9% sodium chloride groups. Pressure-injectable central venous catheters had significantly greater rates of nonpatency (10.6% vs. 4.3%, p = .001) and loss of blood return (37.0% vs. 18.8%, p <.001) compared to nonpressure-injectable catheters. The frequencies of heparin-induced thrombocytopenia and catheter-related blood stream infection were similar between groups. 0.9% sodium chloride and heparin flushing solutions have similar rates of lumen nonpatency. Given potential safety concerns with the use of heparin, 0.9% sodium chloride may be the preferred flushing solution for short-term use central venous catheter maintenance.
Common buffers, media, and stock solutions.
2001-05-01
This appendix describes the preparation of selected bacterial media and of buffers and reagents used in the manipulation of nucleic acids and proteins. Recipes for cell culture media and reagents are located elsewhere in the manual. RECIPES: Acids, concentrated stock solutions; Ammonium acetate, 10 M; Ammonium hydroxide, concentrated stock solution; ATP, 100 mM; BCIP, 5% (w/v); BSA (bovine serum albumin), 10% (100 mg/ml); Denhardt solution, 100x; dNTPs: dATP, dTTP, dCTP, and dGTP; DTT, 1 M; EDTA, 0.5 M (pH 8.0); Ethidium bromide solution; Formamide loading buffer, 2x; Gel loading buffer, 6x; HBSS (Hanks balanced salt solution); HCl, 1 M; HEPES-buffered saline, 2x; KCl, 1 M; LB medium; LB plates; Loading buffer; 2-ME, (2-mercaptoethanol)50 mM; MgCl(2), 1 M; MgSO(4), 1 M; NaCl, 5 M; NaOH, 10 M; NBT (nitroblue tetrazolium chloride), 5% (w/v); PCR amplification buffer, 10x; Phosphate-buffered saline (PBS), pH approximately 7.3; Potassium acetate buffer, 0.1 M; Potassium phosphate buffer, 0.1 M; RNase a stock solution (DNase-free), 2 mg/ml; SDS, 20%; SOC medium; Sodium acetate, 3 M; Sodium acetate buffer, 0.1 M; Sodium phosphate buffer, 0.1 M; SSC (sodium chloride/sodium citrate), 20x; SSPE (sodium chloride/sodium phosphate/EDTA), 20x; T4 DNA ligase buffer, 10x; TAE buffer, 50x; TBE buffer, 10x; TBS (Tris-buffered saline); TCA (trichloroacetic acid), 100% (w/v); TE buffer; Terrific broth (TB); TrisCl, 1 M; TY medium, 2x; Urea loading buffer, 2x.
NASA Astrophysics Data System (ADS)
Darnault, C. J. G.; Pullano, C. P.; Mutty, T.; L'Ollivier, C.; Dubey, J. P.; Dumetre, A.
2017-12-01
The pathogenic microorganism Toxoplasma gondii is a current public health threat. Knowledge of the fate and transport of T. gondii in the environment, especially the subsurface, is critical to evaluate the risk of soil and groundwater contaminations. The physico-chemcial properties of groundwater systems, i.e. solution chemistry and aquifer materials, play a key role in the interaction of biocolloids with surfaces and therefore their mobility. This research examines how different salt solutions alter the mobility of T. gondii through saturated porous media. Salt solutions containing varying ionic strengths and concentrations of sodium chloride, calcium chloride, and magnesium chloride were used to test the transport of the T. gondii oocysts. These tests were performed using quartz silica sand columns fed by a peristaltic pump in order to generate flow and transport of the biocolloids. The salt solution was pumped though the column followed by a pulse of the T. gondii oocysts, then a pulse of salt solution without oocysts, and then lastly a pulse of distilled water. Sampling of the solution exiting the columns was tested for T. gondii oocysts using qPCR in order to quantify the oocysts present. The breakthough curve results were then compared to a conservative bromide tracer test in order to determine the factors associated with the movement of these biocolloids through the sand columns. A model of the flow of the toxoplasma colloids through the sand matrix was made in order to characterize the parameters affecting the transport and retention of T. gondii occysts though saturated porous media.
Boutegrabet, Lemia; Kanawati, Basem; Gebefügi, Istvan; Peyron, Dominique; Cayot, Philippe; Gougeon, Régis D; Schmitt-Kopplin, Philippe
2012-10-08
A new method for efficient ionization of sugars in the negative-ion mode of electrospray mass spectrometry is presented. Instead of using strongly hydrophobic dopants such as dichloromethane or chloroform, efficient ionization of sugars has been achieved by using aqueous HCl solution for the first time. This methodology makes it possible to use hydrophilic dopants, which are more appropriate for chromatographic separation techniques with efficient sugar ionization and detection in mass spectrometry. The interaction between chloride anions and monosaccharides (glucose and galactose) was studied by DFT in the gas phase and by implementing the polarizable continuum model (PCM) for calculations in solution at the high B3LYP/6-31+G(d,p)//B3LYP/6-311+G(2d,p) level of theory. In all optimized geometries of identified [M+Cl](-) anions, a non-covalent interaction exists. Differences were revealed between monodentate and bidentate complex anions, with the latter having noticeably higher binding energies. The calculated affinity of glucose and galactose toward the chloride anion in the gas phase and their chloride anion binding energies in solution are in excellent agreement with glucose and galactose [M+Cl](-) experimental intensity profiles that are represented as a function of the chloride ion concentration. Density functional calculations of gas-phase affinities toward chloride anion were also performed for the studied disaccharides sucrose and gentiobiose. All calculations are in excellent agreement with the experimental data. An example is introduced wherein HCl was used to effectively ionize sugars and form chlorinated adduct anions to detect sugars and glycosylated metabolites (anthocyanins) in real biological systems (Vitis vinifera grape extracts and wines), whereas they would not have been easily detectable under standard infusion electrospray mass spectrometry conditions as deprotonated species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Identification of irradiated mushrooms (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muenzner, R.
1973-01-01
A very simple method is described using a 2,3,5-triphenyltetrazolium chloride solution as an indicator. The experiments have shown that only non- irradiated mushrooms could reduce the indicator solution to the red triphenylfornsazane. In the case of irradiated mushrooms, the solution retains its brown color. (GE)
Charge Effects on the Efflorescence in Single Levitated Droplets.
Hermann, Gunter; Zhang, Yan; Wassermann, Bernhard; Fischer, Henry; Quennet, Marcel; Rühl, Eckart
2017-09-14
The influence of electrical excess charges on the crystallization from supersaturated aqueous sodium chloride solutions is reported. This is accomplished by efflorescence studies on single levitated microdroplets using optical and electrodynamic levitation. Specifically, a strong increase in efflorescence humidity is observed as a function of the droplet's negative excess charge, ranging up to -2.1 pC, with a distinct threshold behavior, increasing the relative efflorescence humidity, at which spontaneous nucleation occurs, from 44% for the neutral microparticle to 60%. These findings are interpreted by using molecular dynamics simulations for determining plausible structural patterns located near the particle surface that could serve as suitable precursors for the formation of critical clusters overcoming the nucleation barrier. These results, facilitating heterogeneous nucleation in the case of negatively charged microparticles, are compared to recent work on charge-induced nucleation of neat supercooled water, where a distinctly different nucleation behavior as a function of droplet charge has been observed.
Acetone-based cellulose solvent.
Kostag, Marc; Liebert, Tim; Heinze, Thomas
2014-08-01
Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bi, Xiaoguo; Dong, Yingnan; Li, Yingjie; Niu, Wei; Tang, Jian; Ding, Shuang; Li, Meiyang
2017-09-01
Oxalate coprecipitation is applied in this paper, high purity titanium tetrachloride, and after the purification of strontium chloride, match with a certain concentration of solution, oxalate and strontium chloride and titanium tetrachloride in 1.005:1.000 make strontium titanium mixture ratio, slowly under 60°C to join in oxalic acid solution, aging around 4 h, get oxygen titanium strontium oxalate (SrTiO(C2O4)2 • 4H2 ) precipitation, after washing, drying and other process made oxygen titanium strontium oxalate powder.
AN OSMOTIC SYSTEM WITHIN THE CYTOPLASM OF CELLS
Opie, Eugene L.
1948-01-01
The cytoplasm of cells of the liver and of the kidney is in large part occupied by bodies which respond to the water content of these cells and are modified by dissolved substances in the surrounding fluid or by physical change such as freezing. These bodies, in part mitochondria but designated more broadly cytochondria, constitute an osmotic system within the cytoplasm of cells. When the specific gravity of liver or kidney tissue is used as an index of changes in the water content of tissue, swelling of cytochondria in general follows the intake of water but this relation may be modified by a variety of conditions. When liver that has been frozen and thawed is immersed in water, cytochondria become swollen though the containing cells diminish in size. Solutions of sodium and of potassium chloride isotonic with blood plasma cause delayed swelling of cells and cytochondria, greater with the potassium salt; solutions of calcium chloride of equal molar concentration cause immediate swelling of cells and cytochondria. The basophile material of the cytoplasm (ribonucleic acid and related substances) and the material that gives to mitochondria their characteristic stain are removed by immersion in water but their disappearance is retarded by isotonic solutions of sodium or of potassium chloride and further delayed by hypertonic solutions. When the intensity of staining reactions is diminished by the partial loss of basophile substance or of the distinctive mitochondrial material, these are found at the surfaces of the cytoplasmic bodies, held perhaps by adsorption. When water, isotonic solutions of sodium chloride, or Ringer's solution comes into contact with immersed liver, they remove basophile and mitochondrial material from a superficial zone and substances with similar staining reactions appear in the cytoplasm of cells at a deeper level. Osmotic changes in the cytoplasmic bodies may be reversible. When liver tissue which has been for a short time immersed in water is transferred to a solution that is approximately isotonic in relation to blood plasma, swollen cytochondria return in part or completely to their former size; but with continued immersion in water, this reversibility becomes increasingly less complete. PMID:18912893
Raphael, Chenzira D; Zhao, Fang; Hughes, Susan E; Juba, Katherine M
2015-01-01
Levetiracetam is a commonly used antiepileptic medication for tumor-related epilepsy. However, the 100 mL intravenous (IV) infusion volume can be burdensome to imminently dying hospice patients. A reduced infusion volume would improve patient tolerability. The purpose of this study was to evaluate the stability of 1000 mg/25 mL (40 mg/mL) levetiracetam IV solution in sodium chloride 0.9%. We prepared levetiracetam 40 mg/mL IV solution and added it to polyvinyl chloride (PVC) bags, polyolefin bags, and polypropylene syringes. Triplicate samples of each product were stored at refrigeration (2-8°C) and analyzed on days 0, 1, 4, 7, and 14. Samples were subjected to visual inspection, pH measurement, and stability-indicating high-performance liquid chromatography (HPLC) analysis. Over the 2-week storage period, there was no significant change in visual appearance or pH for any of the stability samples. The HPLC results confirmed that all stability samples retained 94.2-101.3% of initial drug concentration and no degradation products or leachable material from the packaging materials were observed. We conclude that levetiracetam 1000 mg/25 mL IV solution in sodium chloride 0.9% is physically and chemically stable for up to 14 days under refrigeration in polypropylene syringes, PVC bags, and polyolefin bags.
New methods allowing the detection of protein aggregates
Demeule, Barthélemy; Palais, Caroline; Machaidze, Gia; Gurny, Robert
2009-01-01
Aggregation compromises the safety and efficacy of therapeutic proteins. According to the manufacturer, the therapeutic immunoglobulin trastuzumab (Herceptin®) should be diluted in 0.9% sodium chloride before administration. Dilution in 5% dextrose solutions is prohibited. The reason for the interdiction is not mentioned in the Food and Drug Administration (FDA) documentation, but the European Medicines Agency (EMEA) Summary of Product Characteristics states that dilution of trastuzumab in dextrose solutions results in protein aggregation. In this paper, asymmetrical flow field-flow fractionation (FFF), fluorescence spectroscopy, fluorescence microscopy and transmission electron microscopy (TEM) have been used to characterize trastuzumab samples diluted in 0.9% sodium chloride, a stable infusion solution, as well as in 5% dextrose (a solution prone to aggregation). When trastuzumab samples were injected in the FFF channel using a standard separation method, no difference could be seen between trastuzumab diluted in sodium chloride and trastuzumab diluted in dextrose. However, during FFF measurements made with appropriate protocols, aggregates were detected in 5% dextrose. The parameters enabling the detection of reversible trastuzumab aggregates are described. Aggregates could also be documented by fluorescence microscopy and TEM. Fluorescence spectroscopy data were indicative of conformational changes consistent with increased aggregation and adsorption to surfaces. The analytical methods presented in this study were able to detect and characterize trastuzumab aggregates. PMID:20061815
Hitomi, S; Baba, S; Yano, H; Morisawa, Y; Kimura, S
1998-11-01
We examined the in vitro bactericidal effects and efficacy on handwashing of water containing electrolytic products of sodium chloride (electrolytic water). The electrolytic water, whose pH and concentration of free residual chlorine were 6.7-6.9 and 20-22 ppm, respectively, showed equal reduction of both Staphylococcus aureus and Escherichia coli to dilution of commercially available sodium hypochlorite containing 60 ppm of free residual chlorine. This bactericidal effect was calculated to be due to hypochlorous acid, based on the pH and the amount of chlorine in solution. Handwashing with the electrolytic water reduced the numbers of S. aureus on hands by 1/10(2), while running water and 0.2% benzalkonium chloride with 80% ethanol gave a 1/10 and 1/10(5) reduction, respectively. We conclude that electrolytic water might be applicable for handwashing in place of running water.
Study to establish cost predictions for the production of Redox chemicals
NASA Technical Reports Server (NTRS)
Ammann, P. R.; Loreth, M.; Harvey, W. W.
1982-01-01
The chromium and iron chloride chemicals are significant first costs for NASA Redox energy storage systems. This study was performed to determine the lowest cost at which chromium and iron chlorides could be obtained for a complex of redox energy storage systems. In addition, since the solutions gradually become intermixed during the course of operation of Redox units, it was an objective to evaluate schemes for regeneration of the operating solutions. Three processes were evaluated for the production of chromium and iron chlorides. As a basis for the preliminary plant design and economic evaluation, it was assumed that the plant would produce about 25,000 tons of contained chromium as CrCl3 and an equivalent molar quantity of FeCl2. Preliminary plant designs, including materials and energy balances and sizing of major equipment, were prepared, and capital and operating costs were estimated.
Catalytic conversion of cellulose to levulinic acid by metal chlorides.
Peng, Lincai; Lin, Lu; Zhang, Junhua; Zhuang, Junping; Zhang, Beixiao; Gong, Yan
2010-08-02
The catalytic performance of various metal chlorides in the conversion of cellulose to levulinic acid in liquid water at high temperatures was investigated. The effects of reaction parameters on the yield of levulinic acid were also explored. The results showed that alkali and alkaline earth metal chlorides were not effective in conversion of cellulose, while transition metal chlorides, especially CrCl(3), FeCl(3) and CuCl(2) and a group IIIA metal chloride (AlCl(3)), exhibited high catalytic activity. The catalytic performance was correlated with the acidity of the reaction system due to the addition of the metal chlorides, but more dependent on the type of metal chloride. Among those metal chlorides, chromium chloride was found to be exceptionally effective for the conversion of cellulose to levulinic acid, affording an optimum yield of 67 mol % after a reaction time of 180 min, at 200 degrees C, with a catalyst dosage of 0.02 M and substrate concentration of 50 wt %. Chromium metal, most of which was present in its oxide form in the solid sample and only a small part in solution as Cr3+ ion, can be easily separated from the resulting product mixture and recycled. Finally, a plausible reaction scheme for the chromium chloride catalyzed conversion of cellulose in water was proposed.
Effect of chloride in soil solution on the plant availability of biosolid-borne cadmium.
Weggler, Karin; McLaughlin, Michael J; Graham, Robin D
2004-01-01
Increasing chloride (Cl) concentration in soil solution has been shown to increase cadmium (Cd) concentration in soil solution and Cd uptake by plants, when grown in phosphate fertilizer- or biosolid-amended soils. However, previous experiments did not distinguish between the effect of Cl on biosolid-borne Cd compared with soil-borne Cd inherited from previous fertilizer history. A factorial pot experiment was conducted with biosolid application rates of 0, 20, 40, and 80 g biosolids kg(-1) and Cl concentration in soil solution ranging from 1 to 160 mM Cl. The Cd uptake of wheat (Triticum aestivum L. cv. Halberd) was measured and major cations and anions in soil solution were determined. Cadmium speciation in soil solution was calculated using GEOCHEM-PC. The Cd concentration in plant shoots and soil solution increased with biosolid application rates up to 40 g kg(-1), but decreased slightly in the 80 g kg(-1) biosolid treatment. Across biosolid application rates, the Cd concentration in soil solution and plant shoots was positively correlated with the Cl concentration in soil solution. This suggests that biosolid-borne Cd is also mobilized by chloride ligands in soil solution. The soil solution CdCl+ activity correlated best with the Cd uptake of plants, although little of the variation in plant Cd concentrations was explained by activity of CdCl+ in higher sludge treatments. It was concluded that chlorocomplexation of Cd increased the phytoavailability of biosolid-borne Cd to a similar degree as soil (fertilizer) Cd. There was a nonlinear increase in plant uptake and solubility of Cd in biosolid-amended soils, with highest plant Cd found at the 40 g kg(-1) rate of biosolid application, and higher rates (80 g kg(-1)) producing lower plant Cd uptake and lower Cd solubility in soil. This is postulated to be a result of Cd retention by CaCO3 formed as a result of the high alkalinity induced by biosolid application.
Comparison of the efficacy of preservative free ipratropium bromide and Atrovent nebuliser solution.
Rafferty, P; Beasley, R; Holgate, S T
1988-01-01
The paradoxical bronchoconstriction observed with commercially available isotonic ipratropium bromide nebuliser solution (Atrovent) in patients with asthma results from an adverse reaction to the preservatives, benzalkonium chloride and ethylenediaminetetra-acetic acid (EDTA). The airway response to inhaled Atrovent and preservative free ipratropium bromide nebuliser solutions has been examined in a double blind study. On separate occasions 30 asthmatic subjects inhaled 2 ml of the solutions and airway calibre was measured in terms of FEV1 for 45 minutes. Atrovent nebuliser solution provoked a greater than 20% fall in FEV1 in five of the 30 subjects, whereas this did not occur after preservative free ipratropium bromide. Inhalation of the preservative free solution resulted in more rapid and greater overall bronchodilatation than Atrovent, with mean maximum increases in FEV1 of 29.2% and 18.5% respectively. It is concluded that the risk of paradoxical bronchoconstriction with ipratropium bromide is considerably reduced by removal of benzalkonium chloride and EDTA and that preservative free ipratropium bromide is a more potent bronchodilator than the currently available Atrovent solution. PMID:2971274
Influence of convection on free growth of dendrite crystals from solution
NASA Technical Reports Server (NTRS)
Hallett, J.; Wedum, E.
1979-01-01
The free growth of dendrites in a uniformly supercooled solution was examined using cine photography with a Schlieren optical system. Crystals were grown in the bulk of the solution from a centrally located capillary tube, nucleated at the interface with a liquid nitrogen cooled wire. Crystals propagated along the tube, the slower growing orientations eliminated, and emerged at the tip, usually growing parallel to the tube direction. For both sodium sulfate decahydrate from its solution and ice from sodium chloride solution, growth rate and fineness of dendrites increased with supercooling. In sodium sulfate, upward convection of the less dense depleted solution occurs; downward convection was observed for the rejected, more concentrated sodium chloride solution. In both cases, there was a spatial and temporal delay in the release of the convective plume from the moving dendrite tip. The role of this convection on the growth characteristics and the production of secondary crystals is examined. A proposed low-g experiment to examine differences in growth rate, crystal texture, and secondary nucleation in a reduced convective regime where molecular diffusion is the dominant transfer process is discussed.
Method for calcining nuclear waste solutions containing zirconium and halides
Newby, Billie J.
1979-01-01
A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.
Huston, Robert K; Christensen, J Mark; Alshahrani, Sultan M; Mohamed, Sumeia M; Clark, Sara M; Nason, Jeffrey A; Wu, Ying Xing
2015-01-01
Previous studies of compatibility of calcium chloride (CaCl2) and phosphates have not included particle counts in the range specified by the United States Pharmacopeia. Micro-flow imaging techniques have been shown to be comparable to light obscuration when determining particle count and size in pharmaceutical solutions. The purpose of this study was to do compatibility testing for parenteral nutrition (PN) solutions containing CaCl2 using dynamic light scattering and micro-flow imaging techniques. Solutions containing TrophAmine (Braun Medical Inc, Irvine, CA), CaCl2, and sodium phosphate (NaPhos) were compounded with and without cysteine. All solutions contained standard additives to neonatal PN solutions including dextrose, trace metals, and electrolytes. Control solutions contained no calcium or phosphate. Solutions were analyzed for particle size and particle count. Means of Z-average particle size and particle counts of controls were determined. Study solutions were compared to controls and United States Pharmacopeia (USP) Chapter 788 guidelines. The maximum amount of Phos that was compatible in solutions that contained at least 10 mmol/L of Ca in 2.5% amino acids (AA) was determined. Compatibility of these solutions was verified by performing analyses of 5 repeats of these solutions. Microscopic analyses of the repeats were also performed. Amounts of CaCl2 and NaPhos that were compatible in solutions containing 1.5%, 2%, 2.5%, and 3% AA were determined. The maximum amount of NaPhos that could be added to TrophAmine solutions of > = 2.5% AA containing at least 10 mmol/L of CaCl2 was 7.5 mmol/L. Adding 50 mg/dL of cysteine increased the amount of NaPhos that could be added to solutions containing 10 mmol/L of CaCl2 to 10 mmol/L. Calcium chloride can be added to neonatal PN solutions containing NaPhos in concentrations that can potentially provide an intravenous intake of adequate amounts of calcium and phosphorus.
Recovery of cesium and palladium from nuclear reactor fuel processing waste
Campbell, David O.
1976-01-01
A method of recovering cesium and palladium values from nuclear reactor fission product waste solution involves contacting the solution with a source of chloride ions and oxidizing palladium ions present in the solution to precipitate cesium and palladium as Cs.sub.2 PdCl.sub.6.
Programmatic Summary: Self-Regulating, Self-Pressurizing Tubules for Integrated Circulatory Systems
2009-02-01
Conditions: (i) 3- aminopropyl silane; (ii) 2-furoyl chloride, Et3N, CH2Cl2, 0 C to RT, 24 h; (iii) Compound 2, THF, RT, 24 h.; and (iv) Toluene, reflux... aminopropyl )trimethoxy silane. Next, we treated the amino-terminated slides with a solution of 2-furoyl chloride to yield furan functionalized slides...Conditions: (i) 3- aminopropyl silane; (ii) 2-furoyl chloride, Et3N, CH2Cl2, 0 C to RT, 24 h; (iii) Compound 2, THF, RT, 24 h.; and (iv) Toluene, reflux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.
2013-06-01
Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopymore » (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.« less
Electrochemical Polishing Applications and EIS of a Novel Choline Chloride-Based Ionic Liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.
2013-06-01
Minimal surface roughness is a critical feature for high-field superconducting radio frequency (SRF) cavities used to engineer particle accelerators. Current methods for polishing Niobium cavities typically utilize solutions containing a mixture of concentrated sulfuric and hydrofluoric acid. Polishing processes such as these are effective, yet there are many hazards and costs associated with the use (and safe disposal) of the concentrated acid solutions. An alternative method for electrochemical polishing of the cavities was explored using a novel ionic liquid solution containing choline chloride. Potentiostatic electrochemical impedance spectroscopy (EIS) was used to analyze the ionic polishing solution. Final surface roughness ofmore » the Nb was found to be comparable to that of the acid-polishing method, as assessed by atomic force microscopy (AFM). This indicates that ionic liquid-based electrochemical polishing of Nb is a viable replacement for acid-based methods for preparation of SRF cavities.« less
Shiozawa, Maho; Takahashi, Hidekazu; Iwasaki, Naohiko; Uo, Motohiro
2013-01-01
The objective of this study was to evaluate the effect of the concentration of calcium chloride (CaCl2) solution on the surface hardness of restorative glass ionomer cements (GICs). Two high-viscosity GICs, Fuji IX GP and GlasIonomer FX-II, were immersed in several concentrations of CaCl2 solution for 1 day and 1 week. The immersed specimen surfaces were evaluated using microhardness testing, grazing incidence X-ray diffraction, and energy-dispersive X-ray spectroscopy. Immersion in a higher concentration of CaCl2 solution produced a greater increase in the surface hardness. No crystalline substance was observed on the immersed surface. Calcium ions were selectively absorbed in the matrix of the GIC surface after immersion. They reacted with the non-reacted carboxylic acid groups remaining in the cement matrix. These reactions were considered to cause an increase in the surface hardness of the GICs.
The Effect of Different Tea Varieties on Iron Chelation
NASA Astrophysics Data System (ADS)
Truong, S. K.; Karim, R.
2016-12-01
The chief objectives of this experiment are to distinguish which type of tea of four variants, pomegranate blackberry green, green, lemon chamomile (herbal), and earl grey (black), are capable of chelating the most iron (III) chloride (FeCl3) through titration. We hypothesized that if each tea variety chelates differing amounts of iron chloride, and if we conduct an experiment in which four different teas are mixed in the same amount of water, iron chloride, and iron chloride indicator EDTA, then the pomegranate blackberry green tea will bind to the most iron due to its large amount of fruit antioxidants. To summarize our methodology, we prepared three solutions of each tea, dissolved with 1 gram of FeCl3 to test three trials per tea variety. The chelation process took place overnight as teas cooled. Six drops of iron chloride indicator added to each solution began the titration. The necessary amount of 0.1M EDTA (ethylenediaminetetraacetic acid) drops required for each solution to turn to a universal amber color from its original dark tone indicates how many free iron molecules were left unbound by the tea solution. After careful analysis of the data, we discovered that blackberry pomegranate green tea possessed the best chelating abilities with 97.48% of FeCl3 adsorbed. Green tea followed with 96.67%. Herbal tea chelated 94.24% of the iron while earl grey absorbed the least amount at 93.43%. From our conclusion, we drew that since blackberry pomegranate green tea contained the highest amount of polyphenols and antioxidants as well as epigallocatechin gallate (EGCG) found in green teas, it was able to chelate the most amount of iron. The substances mentioned in blackberry pomegranate green tea possess the ability to form strong bonds with multiple heavy metals, such as iron (III) chloride atoms. Overall, each variety of tea contains different organic substances. Each of these substances possesses a unique chelating ability, determining how well the type of tea can bond to iron. Among the teas being tested in this experiment, blackberry pomegranate green tea absorbed the most iron, thus acting as the superior chelating agent. Our experiment opens up new opportunities for investigations in chelation therapy and heavy metal poisoning through the knowledge of biological chelating agents.
Desmaris, Romain-Pacôme; Mercier, Lionel; Paci, Angelo
2015-09-01
Melphalan is an alkylating agent frequently used in an intravenous formulation to treat hematologic malignancies and solid tumors in both adults and children. According to the manufacturer, melphalan is stable in sterile 0.9% sodium chloride for 90 min at room temperature (RT). Several authors have studied the stability of different concentrations of melphalan; however, most were not adapted to the current manufacturing process applied in pharmaceutical centralized units. This study was conducted to determine the stability of melphalan in 0.9% sodium chloride solutions at concentrations used for intravenous injection in practice. Melphalan is commonly prepared in diluted solutions ranging from 2 to 4 mg/ml for the treatment of adult patients and at lower concentrations (down to 0.5 mg/ml) for pediatric use. Accordingly, these were the three concentrations chosen for this study. Melphalan concentrations were measured with high-performance thin-layer chromatography (HPTLC). At RT, admixtures prepared at 4 mg/ml were stable for up to 8 h without protection from light; however, at lower concentrations, such as 0.5 and 2 mg/ml, stability did not exceed 2 h. When refrigerated, melphalan was stable for 24 h at 2 mg/ml; however, at 0.5 and 4 mg/ml, the drug was not stable. Melphalan solutions present with limited stability at 0.5, 2, and 4 mg/ml and are not adapted for delayed administration in pharmaceutical centralized units. However, at 4 mg/ml and at RT, a stability of 8 h is very interesting in practice and allows sufficient time for preparation, pharmaceutical control, transport, and administration.
Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory
2014-01-01
The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.
Haden, R L; Orr, T G
1923-06-30
Experiments to determine the effect of furnishing an ample supply of sodium chloride on the toxemia of pyloric and intestinal obstruction are reported. A fall in chlorides is the first and seemingly most significant change to take place in the blood after pyloric and intestinal obstruction. The chloride is apparently utilized by the body as a protective measure against the primary toxic substance. Two dogs with pyloric obstruction were given 50 cc. of 10 per cent NaCl subcutaneously daily. One lived 3 days, the other 4. The blood showed little change, except a marked terminal rise in chlorides. Animals given a like amount of distilled water or 25 per cent glucose showed the changes typical of untreated animals. The obstruction of the pylorus was released in six dogs 48 to 72 hours after the initial operation. Two died within 24 hours after the second operation with a high non-protein nitrogen in the blood. Two survived but showed a high level of non-protein nitrogen in the blood and a high nitrogen excretion in the urine, low blood chlorides, and a marked alkalosis. One dog in such a state died on the 13th day from peritonitis, arising in a wound infection. The other showed a marked fall in non-protein nitrogen in the blood following the administration of 10 gm. of sodium chloride by mouth, but died following the intravenous injection of 25 per cent sodium chloride. Two animals were given 50 cc. of 10 per cent NaCl subcutaneously, at the time of the second operation. The blood rapidly returned to normal and complete recovery followed. Two dogs with the duodenum obstructed by section and inversion of the cut ends were treated with 10 per cent sodium chloride after the obstruction had existed for 48 hours and the characteristic blood changes had developed. The non-protein nitrogen returned to normal within 48 hours after treatment was begun. One dog died following a lateral anastomosis for relief of the obstruction. A second operation was not attempted in the other animal. Two dogs in which the duodenum was obstructed by section and inversion of the cut ends were given 500 cc. of 0.85 per cent NaCl subcutaneously on the day of operation and each day thereafter until death. One dog lived 21 days, the other 28. Both dogs showed a marked alkalosis, but never any rise in the non-protein nitrogen of the blood. The animals at autopsy showed intussusception of the ileum with extensive ulceration. In one there was a perforation and terminal peritonitis. The operation wounds healed normally. Three dogs with section of the duodenum were given 500 cc. of distilled water every day. One died in 24 hours, one in 48 hours, and the third in 72 hours. Autopsy showed no cause for death other than toxemia. One dog with section of the duodenum was given 500 cc. of 2 per cent glucose every day. The blood showed a rapid rise in non-protein nitrogen and carbon dioxide-combining power, and a fall in chlorides. The animal died 72 hours after operation. Three dogs with section of the duodenum were given 500 cc. of 1 per cent sodium bicarbonate every day. One dog died in 72 hours, one lived 7 days, and the third lived 9 days. All developed a high non-protein nitrogen in the blood and two showed marked clinical symptoms of an alkalosis. These results demonstrate that solutions of sodium chloride have a marked effect in preventing and controlling the toxemia of pyloric and intestinal obstruction as shown in clinical symptoms and in chemical changes in the blood. Dogs given an abundant supply of distilled water died more quickly than untreated control animals. Solutions of glucose have no specific value, and sodium bicarbonate solutions prolong life only a short while. Good therapeutic results have been obtained with very concentrated sodium chloride solutions, and with dry sodium chloride given by mouth. It seems evident that sodium chloride has a specific action in preventing and possibly in controlling the changes produced by the toxic body. Sodium chloride is a valuable therapeutic agent in pyloric and high intestinal obstruction.
Numerical simulation of crevice corrosion of titanium: Effect of the bold surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evitts, R.W.; Postlethwaite, J.; Watson, M.K.
1996-12-01
A rigorous crevice corrosion model has been developed that accounts for the bold metal surfaces exterior to the crevice. The model predicts the time change in concentration of all specified chemical species in the crevice and bulk solution, and has the ability to predict active corrosion. It is applied to the crevice corrosion of a small titanium crevice in both oxygenated and anaerobic sodium chloride solutions. The numerical predictions confirm that oxygen is the driving force for crevice corrosion. During the simulations where oxygen is initially present in both the crevice and bulk solution an acidic chloride solution is developed;more » this is the precursor required for crevice corrosion. The anaerobic case displays no tendency to form such a solution. It is also confirmed that those areas in the crevice that are deoxygenated become anodic and the bold metal surface becomes cathodic. As expected, active corrosion is not attained as the simulations are based on electrochemical and chemical parameters at 25 C.« less
Sazou, Dimitra; Pavlidou, Maria; Pagitsas, Michael
2009-10-21
This work analyses the nature of temporal patterning of the anodic potential induced by chlorides during polarization of iron under current-controlled conditions in acid solutions. It is shown that potential oscillations emerged as a result of the local chloride attack of a thin oxide layer, which covers the iron surface in its passive state. The mechanism by which both the local oxide breakdown and the subsequent localized active dissolution (pitting) occur is explained by considering a point defect model (PDM) developed to describe the oxide growth and breakdown. According to the PDM, chlorides occupy oxygen vacancies resulting in the inhibition of oxide growth and autocatalytic generation of cation vacancies that destabilize the oxide layer. Simultaneous transformation of the outer surface of the inner oxide layer to non-adherent ferrous chloride or oxo-chloride species leads to a further thinning of the oxide layer and its lifting-on from the iron surface. The process repeats again yielding sustained oscillations of the anodic potential. Analysis of the oscillatory response obtained under current-controlled conditions as a function of either the current or the time allows the suggestion of a set of alternate diagnostic criteria, which might be used to characterize localized corrosion of iron in acid solutions.
Lu, Zhe; Wilsily, Ashraf; Fu, Gregory C.
2011-01-01
A new family of stereoconvergent cross-couplings of unactivated secondary alkyl electrophiles has been developed, specifically, arylamine-directed alkyl–alkyl Suzuki reactions. This represents the first such investigation to be focused on the use of alkyl chlorides as substrates. Structure-enantioselectivity studies are consistent with the nitrogen, not the aromatic ring, serving as the primary site of coordination of the arylamine to the catalyst. The rate law for this asymmetric cross-coupling is compatible with transmetalation being the turnover-limiting step of the catalytic cycle. PMID:21553917
Freeze-thawing behaviour of highly concentrated aqueous alkali chloride-glucose systems.
Kajiwara, K; Motegi, A; Murase, N
2001-01-01
The freeze-thawing behaviour of highly concentrated aqueous alkali chloride-glucose systems was investigated by differential scanning calorimetry (DSC). In the aqueous NaCl-glucose solution system, single or double glass transitions followed by the corresponding devitrification exotherms were observed during rewarming. In the aqueous KCl-glucose solution system, on the other hand, a single glass transition followed by an exotherm was observed during rewarming. The presence of double glass transitions observed for a certain composition of the aqueous NaCl-glucose solution was taken as an evidence for the liquid-liquid immiscibility at low temperatures. Two kinds of crystallisation accompanied by exotherms during rewarming were identified by X-ray diffraction as ice and ice/NaCl x 2H(2)O, or ice/KCl eutectic component.
Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.
Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A
2014-10-21
Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability of the co-ions also appeared to influence permselectivity leading to ion-specific effects; co-ions that are charge dense and have low polarizability tended to result in high membrane permselectivity.
Interaction of palladium ions with the skin.
Santucci, B; Cristaudo, A; Cannistraci, C; Picardo, M
1995-08-01
87 subjects sensitive to both nickel sulfate and palladium-chloride pet., were contemporaneously patch retested to nickel sulfate 5% pet., metallic palladium chloride 1% pet. and to palladium chloride 1% aq. Whilst all subjects reacted to nickel sulfate and palladium chloride pet., only 3 reacted to palladium chloride aq. No positive reactions were found to metallic palladium. The negative results to palladium chloride aq. are probably due to the formation of a new palladium ion (PdCl4)2-, achieved on adding an amount of hydrocloric acid to the aqueous solution of PdCl2. The findings seem to demonstrate that the allergic reaction to palladium depends on the arrangement of the metal electrons. The sensitization to palladium does not seem to be dependent on the element itself but on the complexes formed by the different compounds. The concomitant reactions to nickel and palladium ions could be dependent on the generation of similar complexes between the ions and the skin proteins.
Chemical openness and potential for misinterpretation of the solute environment of coastal sabkhat
Wood, W.W.; Sanford, W.E.; Frape, S.K.
2005-01-01
Sabkha deposits in the geologic record are commonly used to interpret the environmental conditions of deposition. Implicit in this use is the assumption that the solute system is chemically closed, that is, the authigenic minerals represent the composition of the fluids in their environment of origin. Thermodynamic and mass-balance calculations based on measurements of water and solute flux of contemporary Abu Dhabi coastal sabkha system, however, demonstrate that the system is open for sodium and chloride, where nearly half of the input is lost, but closed for sulfur, where nearly 100% is retained. Sulfur and chloride isotopes were consistent with this observation. If these sabkha deposits were preserved in the geologic record, they would suggest a solute environment rich in sulfate and poor in chloride; yet the reverse is true. In most coastal-sabkha environments, capillary forces bring solutes and water to the surface, where the water evaporates and halite, carnallite, sylvite, and other soluble minerals are precipitated. Retrograde minerals, such as anhydrite, calcite, dolomite, and gypsum, however, precipitate and accumulate in the capillary zone beneath the surface of the coastal sabkha. Because they possess relatively low solubility and are below the surface, these retrograde minerals are protected from dissolution and physical erosion occurring from infrequent but intense rainfall events. Thus, they are more likely to be preserved in the geological record than highly soluble minerals formed on the surface. ?? 2004 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fazayel, A. S.; Khorasani, M.; Sarabi, A. A.
2018-05-01
In this study, the effects of polycarboxylate derivatives with different comonomers and functional groups on the control or reduction of corrosion in steel specimens were evaluated through electrochemical impedance spectroscopy (EIS) and potentiodynamic analysis. A highly alkaline contaminated concrete pore solution (CPS) containing chlorides was used to simulate the pitting corrosion, and according to the results, the mechanism of inhibitive action was determined. Both the inhibition efficiency and pitting corrosion inhibition of methacrylate-copolymers were in the order of poly methacrylate-co acrylamide > poly methacrylate-co-2-acrylamido-2 methylpropane sulfonic acid > poly methacrylate-co-hydroxyethyl methacrylate. In addition, the corrosion potential of steel specimens in all studied concentrations of NaCl with different concentrations of polymethacrylate-co acrylamide (as the best inhibitor in this study) in saturated Ca(OH)2 solution showed almost an identical trend. Polymethacrylic acid-co-acrylamide showed a 92.35% inhibitor efficiency in the saturated Ca(OH)2 solution containing 1.8 wt.% chlorides and could effectively reduce the corrosion rate. Even at 3.5 wt.% of NaCl, this inhibitor could remarkably reduce the destructive effect of chloride ion attacks on the steel surface and passive film. The inhibition effect of these polymeric inhibitors seemed to be due to the formation of a barrier layer on the metal surface, approved by the well-known adsorption mechanism of organic molecules at the metal/solution interface. The results of SEM, EDS and AFM investigations were also in agreement with the outcomes of electrochemical studies.
FUSED SALT METHOD FOR COATING URANIUM WITH A METAL
Eubank, L.D.
1959-02-01
A method is presented for coating uranium with a less active metal such as Cr, Ni, or Cu comprising immersing the U in a substantially anhydrous molten solution of a halide of these less active metals in a ternary chloride composition which consists of selected percentages of KCl, NaCl and another chloride such as LiCl or CaCl/sub 2/.
Photooxidation of chloride by oxide minerals: implications for perchlorate on Mars.
Schuttlefield, Jennifer D; Sambur, Justin B; Gelwicks, Melissa; Eggleston, Carrick M; Parkinson, B A
2011-11-09
We show that highly oxidizing valence band holes, produced by ultraviolet (UV) illumination of naturally occurring semiconducting minerals, are capable of oxidizing chloride ion to perchlorate in aqueous solutions at higher rates than other known natural perchlorate production processes. Our results support an alternative to atmospheric reactions leading to the formation of high concentrations of perchlorate on Mars.
Enhanced Microbial Survivability in Subzero Brines.
Heinz, Jacob; Schirmack, Janosch; Airo, Alessandro; Kounaves, Samuel P; Schulze-Makuch, Dirk
2018-04-17
It is well known that dissolved salts can significantly lower the freezing point of water and thus extend habitability to subzero conditions. However, most investigations thus far have focused on sodium chloride as a solute. In this study, we report on the survivability of the bacterial strain Planococcus halocryophilus in sodium, magnesium, and calcium chloride or perchlorate solutions at temperatures ranging from +25°C to -30°C. In addition, we determined the survival rates of P. halocryophilus when subjected to multiple freeze/thaw cycles. We found that cells suspended in chloride-containing samples have markedly increased survival rates compared with those in perchlorate-containing samples. In both cases, the survival rates increase with lower temperatures; however, this effect is more pronounced in chloride-containing samples. Furthermore, we found that higher salt concentrations increase survival rates when cells are subjected to freeze/thaw cycles. Our findings have important implications not only for the habitability of cold environments on Earth but also for extraterrestrial environments such as that of Mars, where cold brines might exist in the subsurface and perhaps even appear temporarily at the surface such as at recurring slope lineae. Key Words: Brines-Halophile-Mars-Perchlorate-Subzero-Survival. Astrobiology 18, xxx-xxx.
Peng, Siwei; Zhang, Weijun; He, Jie; Yang, Xiaofang; Wang, Dongsheng; Zeng, Guisheng
2016-03-01
Fenton oxidation is generally inhibited in the presence of a high concentration of chloride ions. This study investigated the feasibility of using benzoquinone (BQ) and hydroxylamine hydrochloride (HA) as Fenton enhancers for the removal of glycerin from saline water under ambient temperature by accelerating the ferric system. It was found that organics removal was not obviously affected by chloride ions of low concentration (less than 0.1mol/L), while the mineralization rate was strongly inhibited in the presence of a large amount of chloride ions. In addition, ferric hydrolysis-precipitation was significantly alleviated in the presence of HA and BQ, and HA was more effective in reducing ferric ions into ferrous ions than HA, while the H2O2 decomposition rate was higher in the BQ-Fenton system. Electron spin resonance analysis revealed that OH production was reduced in high salinity conditions, while it was enhanced after the addition of HA and BQ (especially HA). This study provided a possible solution to control and alleviate the inhibitory effect of chloride ions on the Fenton process for organics removal. Copyright © 2015. Published by Elsevier B.V.
Phase Changes of Monosulfoaluminate in NaCl Aqueous Solution
Yoon, Seyoon; Ha, Juyoung; Chae, Sejung Rosie; ...
2016-05-21
Monosulfoaluminate (Ca 4Al 2(SO 4)(OH) 12∙6H 2O) plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO 4 2- and OH -) with chloride ions. In this study, scanning transmission X-ray microscope (STXM), X-ray absorption near edge structure (XANES) spectroscopy, and X-ray diffraction (XRD) were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formedmore » ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel’s salt or Friedel’s salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC) fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed.« less
Bradley, P.M.; Chapelle, F.H.; Wilson, J.T.
1998-01-01
Intrinsic bioremediation of chlorinated ethenes in anaerobic aquifers previously has not been considered feasible, due, in large part, to 1) the production of vinyl chloride during microbial reductive dechlorination of higher chlorinated contaminants and 2) the apparent poor biodegradability of vinyl chloride under anaerobic conditions. In this study, a combination of field geochemical analyses and laboratory radiotracer ([1,2-14C] vinyl chloride) experiments was utilized to assess the potential for intrinsic biodegradation of vinyl chloride contamination in an Fe(III)-reducing, anaerobic aquifer. Microcosm experiments conducted under Fe(III)-reducing conditions with material from the Fe(III)-reducing, chlorinated-ethene contaminated aquifer demonstrated significant oxidation of [1,2-14C] vinyl chloride to 14CO2 with no detectable production of ethene or other reductive dehalogenation products. Rates of degradation derived from the microcosm experiments (0.9-1.3% d-1) were consistent with field-estimated rates (0.03-0.2% d-1) of apparent vinyl chloride degradation. Field estimates of apparent vinyl chloride biodegradation were calculated using two distinct approaches; 1) a solute dispersion model and 2) a mass balance assessment. These findings demonstrate that degradation under Fe(III) reducing conditions can be an environmentally significant mechanism for intrinsic bioremediation of vinyl chloride in anaerobic ground-water systems.
Marina, A S; Kutina, A V; Shakhmatoba, E I; Natochin, Yu V
2017-02-01
An increase of total glucagon-like peptide-1 (GLP-1) concentration in the plasma in rats was revealed 5 min after oral, but not intraperitoneal administration of NaCl or Trizma HCl solutions. The increase in GLP-1 level was similar to that after oral glucose administration. After intraperitoneal administration of 2.5% NaCl, GLP-1 mimetic exenatide accelerated natriuresis and urinary chloride excretion. Under conditions of normonatriemia and hyperchloremia induced by injection of 6.7% Trizma HCl, exenatide stimulated chloride excretion and reabsorption of sodium ions in the kidneys. These findings suggest that GLP-1 participates in selective regulation of the balance of sodium and chloride ions.
NASA Astrophysics Data System (ADS)
Kusmanov, S. A.; Grishina, E. P.; Belkin, P. N.; Kusmanova, Yu. V.; Kudryakova, N. O.
2017-05-01
Structural features of the external oxide layer and internal nitrided, carbonitrided and carburized layers in steels 10, 20 and St3 produced by the method of electrolytic plasma treatment are studied. Specimens of the steels are tested for corrosion in a naturally aerated 1-N solution of sodium chloride. The condition of the metal/sodium chloride solution interface is studied by the method of electrochemical impedance spectroscopy. It is shown that the corrosion resistance of low-carbon steels can be raised by anode electrolytic-plasma saturation with nitrogen and carbon. Recommendations are given on the choice of carbonitriding modes for structural steels.
[Antiperspirants for the therapy of focal hyperhidrosis].
Streker, M; Kerscher, M
2012-06-01
In Europe often no clear distinction is made between deodorant and antiperspirant. Particularly in Germany, the labeling "deo" is used for both. Only antiperspirants are capable of influencing the activity of eccrine sweat glands. In the treatment of focal hyperhidrosis, the use of aluminum chloride solutions represents the first choice. The efficacy is well documented in a variety of studies. Subjective side effects include pruritus and - less often - irritant dermatitis, which can be treated symptomatically and usually does not require discontinuation of the treatment. Rare variants of focal hyperhidrosis like auriculotemporal syndrome, Ross syndrome and nevus sudoriferus also are suitable for treatment with topical aluminum chloride hexahydrate solutions.
Thermodynamics of rock forming crystalline solutions
NASA Technical Reports Server (NTRS)
Saxena, S. K.
1971-01-01
Analysis of phase diagrams and cation distributions within crystalline solutions as means of obtaining thermodynamic data on rock forming crystalline solutions is discussed along with some aspects of partitioning of elements in coexisting phases. Crystalline solutions, components in a silicate mineral, and chemical potentials of these components were defined. Examples were given for calculating thermodynamic mixing functions in the CaW04-SrW04, olivine-chloride solution, and orthopyroxene systems.
NASA Astrophysics Data System (ADS)
Mehta, Yashwant; Chaudhari, Gajanan P.; Dabhade, Vikram V.
2018-03-01
The corrosion behaviour of high phosphorous steels containing varying amounts of silicon and nitrogen was studied by potentiodynamic polarization, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) measurements. The morphology of a steel specimen tested in chloride containing concrete pore solution was studied using scanning electron microscope (SEM) and the elemental distribution at the pitting corrosion area was investigated using electron dispersive spectroscopy (EDS). The results showed that the capacitance increased and resistance declined with immersion time in Ca(OH)2 solution containing 0.1% chloride for plain carbon steel. The opposite was observed in the case of the high phosphorous steels. The potentiodynamic polarization and LPR results complement the EIS findings. Corrosion behaviour could be described with an equivalent circuit having two time constants. The creation, expansion and degradation of the passive layer were discussed with the help of the equivalent circuit elements. The SEM-EDS studies revealed that MnS inclusions at the surface could have a role in the initiation and growth of pits and that phosphorous was present at the pit free surface of the steel.
Jäppinen, A; Kokki, H; Naaranlahti, T J; Rasi, A S
1999-12-01
Combinations of opioids and adjuvant drug solutions are often used in clinical practice while little information is available on their microbiological or chemical stability. Currently there are no commercially available, prepacked, ready-to-use epidural or subcutaneous mixtures. Thus, epidural and subcutaneous analgesic mixtures must be prepared in the pharmacy on an as-needed basis. Such mixtures are typically used for the treatment of severe pain in cancer patients. The aim of this study was to investigate the microbiological and chemical stability of a buprenorphine, haloperidol and glycopyrrolate mixture in a 0.9% sodium chloride solution. A high performance liquid chromatographic (HPLC) method and pH-meter were used to conduct the analyses. Antimicrobial activity of each component was studied by an agar dilution method. According to the results from the chemical and microbiological stability studies, this mixture can be stored in polypropylene (PP) syringes and polyvinyl chloride (PVC) medication cassettes for at least 30 days at either 21 degrees C or 4 degrees C, and for 16 days in PP syringes at 36 degrees C, and for 9 days in PVC medication cassettes at 36 degrees C.
Stability of levothyroxine sodium 0.4 microg/mL in 0.9% sodium chloride injection.
Stadalman, Kelli A; Kelner, Michael J; Box, Kevin; Dominguez, Alex; Rigby, Joseph F
2009-12-01
Intravenous levothyroxine therapy decreases vasopressor requirements and prevents cardiovascular collapse in hemodynamically unstable patients eligible for organ donation. The stability of levothyroxine when used in this manner is unknown. To determine the stability of levothyroxine solution for intravenous use at a concentration of 0.4 microg/mL diluted in 0.9% sodium chloride. Triplicate sample sets were prepared by reconstituting levothyroxine 200 microg for injection with 5 mL of 0.9% sodium chloride with further dilution in 500 mL of 0.9% sodium chloride. One sample set was protected from light and the other was left unprotected. Both sample sets were stored at room temperature, and samples from each were analyzed for initial concentration and 4, 8, 12, and 24 hours later. Levothyroxine sodium 0.4 microg/mL in 500 mL 0.9% sodium chloride is stable for 24 hours at room temperature when protected from light.
Active ion transport in dog tongue: a possible role in taste.
DeSimone, J A; Heck, G L; DeSimone, S K
1981-11-27
An in vitro preparation of the dorsal epithelium of the dog tongue actively transports ions, producing a transepithelial potential difference characteristic of the ions and their concentration. Hypertonic sodium chloride solutions generally cause increased potentials and short-circuit currents and reduced resistances when placed on the mucosal surface. This hypertonic flux is eliminated by ouabain and is not found in ventral lingual epithelia. When either sodium acetate or tetramethylammonium chloride is substituted for sodium chloride in the mucosal medium, the currents are diminished but their sum at a given concentration approximates that for sodium chloride at the same concentration. This result suggests a current composed of inward sodium ion movement and outward chloride ion movement. Actively regulated potentials and currents, whether generated in the taste buds or in supporting cells, may be important in both normal chemotransduction and in taste responses evoked by currents passing through the tongue.
27 CFR 21.59 - Formula No. 32.
Code of Federal Regulations, 2011 CFR
2011-04-01
... vaccines. 344.Processing medicinal chemicals (including alkaloids). 430.Sterilizing and preserving solutions. 481.Photoengraving and rotogravure solutions and dyes. (2) As a raw material: 522.Ethyl chloride.... 575.Drugs and medicinal chemicals. 579.Other chemicals. 580.Synthetic rubber. (3) Miscellaneous uses...
Lakshminarayanaiah, N.; Rojas, E.
1973-01-01
1. Single barnacle muscle fibres from Megabalanus psittacus (Darwin) were internally perfused with a number of K salt solutions (200 mM) which were made isotonic to the barnacle saline with sucrose. 2. 200 mM-K acetate solution, in general, was found to be more effective than other solutions of K salts in generating and maintaining stable resting membrane potential of -56·0 ± 0·7 mV (all potentials are referred to the external solutions as ground). The various K salts, on the basis of the magnitude of the resting potential they generated in the muscle fibres, followed the sequence, acetate > isethionate > aspartate > glutamate > fluoride > monohydrogen phosphate > succinate > citrate > sulphate > oxalate > iodobenzoate > ferrocyanide > chlorate > nitrate > chloride > thiocyanate > iodide > bromide > cyanide. 3. The resting potential in muscle fibres perfused with solutions of acetate, aspartate and glutamate increased linearly with the logarithm of the K concentration (slope = 30·4 mV for K acetate and 27·4 for K aspartate and glutamate) when the ionic strength of the solutions was progressively increased from 50 to 650 mM. On the other hand, similar increase of ionic strength beyond 200 mM of solutions of K isethionate, fluoride, monohydrogen phosphate, succinate and citrate depolarized the muscle fibres. 4. Perfusion of acetate solutions of other alkali metal ions gave low values for the resting potential and followed the sequence K > Na > Rb > Li > Cs. Also NH4 and Tris ions gave low values for the resting potential which underwent oscillations associated with the twitching of the fibre and occasionally became positive in value (action potential). 5. Addition of tetraethyl ammonium chloride (TEA-Cl), 20-100 mM, to K acetate solutions (200 mM) depolarized the fibre membrane and the consequent reduction of resting potential varied linearly with the logarithm of TEA concentration. 6. Replacement of chloride ion by acetate or isethionate in the external solution did not change significantly the resting potential although the values were consistently lower by about 2 mV. 7. Complete elimination of K in the external solution and reduction of its ionic strength using sucrose depolarized the muscle fibres by about 27 mV when Na was changed from 475 to 1 mM. Under these conditions, external solutions completely in acetate form gave resting potentials which were more positive than those observed in completely chloride solutions by 6-8 mV. 8. Replacement of Na by Li, Tris, choline, tetramethyl or tetraethyl ammonium ion in the external solution made the values of the resting potential more positive (depolarization). Similarly increasing the concentration of K (or Cs or Rb in place of K) by correspondingly decreasing the concentration of Na in the outside solution depolarized the fibres and the resting potential became zero at a concentration of 280 mM (or 308 or 1500 mM for Rb or Cs, respectively) on extrapolation. PMID:4754874
Engineering and Design: Precipitation/Coagulation/Flocculation
2001-11-15
Flocculation 7-3 7-3 Jar Test Analysis 10-1 10-3 Alternating Flow Diversion Equalization System 11-1 11-1 Intermittent Flow Diversion System...EM 1110-1-4012 15 NOV 01 (2) Polyaluminum chloride (PAC), another aluminum derivative, is a partially hydrolyzed aluminum chloride solution...derived from natural products include starch, starch derivatives, proteins, and tannins (EPA, 1987). Of these, starch is the most widely used. The
Dynamics of Magnesite Formation at Low-Temperature and High pCO2 in Aqueous Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qafoku, Odeta; Dixon, David A.; Rosso, Kevin M.
2015-09-17
Like many metal carbonate minerals, despite conditions of supersaturation, precipitation of magnesite from aqueous solution is kinetically hindered at low temperatures, for reasons that remain poorly understood. The present study examines precipitation products from reaction of Mg(OH)2 in aqueous solutions saturated with supercritical CO2 at high pressures (90 atm and 110 atm) and low temperatures (35 °C and 50 °C). Traditional bulk characterization (X-ray diffraction) of the initial solid formed indicated the presence of hydrated magnesium carbonates (hydromagnesite and nesquehonite), thermodynamically metastable phases that were found to slowly react during ageing to the more stable anhydrous form, magnesite, at temperaturesmore » as low as 35 °C (135-140 days) and at a faster rate at 50 °C (56 days). Undetected by bulk measurements, detailed examination of the precipitates by scanning electron microscopy (SEM) showed that magnesite is present as a minor component at relatively early reaction times (7 days) at 50 °C. In addition to magnesite dominating the solid phases over time, we find that mangesite nucleation and growth occurs more quickly with increasing partial pressure of CO2, and in electrolyte solutions with high bicarbonate content. Furthermore, formation of magnesite was found to be enhanced in sulfate-rich solutions, compared to chloride-rich solutions. We speculate that much of this behavior is possibly due to sulfate serving as sink of protons generated during carbonation reactions. These results support the importance of integrating magnesite as an equilibrium phase in reactive transport calculations of the effects of carbon dioxide sequestration on subsurface formations at long time scales.« less
Hänelt, Inga; Müller, Volker
2013-01-01
The capability of osmoadaptation is a prerequisite of organisms that live in an environment with changing salinities. Halobacillus halophilus is a moderately halophilic bacterium that grows between 0.4 and 3 M NaCl by accumulating both chloride and compatible solutes as osmolytes. Chloride is absolutely essential for growth and, moreover, was shown to modulate gene expression and activity of enzymes involved in osmoadaptation. The synthesis of different compatible solutes is strictly salinity- and growth phase-dependent. This unique hybrid strategy of H. halophilus will be reviewed here taking into account the recently published genome sequence. Based on identified genes we will speculate about possible scenarios of the synthesis of compatible solutes and the uptake of potassium ion which would complete our knowledge of the fine-tuned osmoregulation and intracellular osmolyte balance in H. halophilus. PMID:25371341
Polymer-treated woody biomass: a filtration medium for removing phosphate from water
Thomas L Eberhardt
2006-01-01
A two-stage treatment of refined aspen wood fiber with solutions of carboxymethyl cellulose (CMC) and ferrous chloride afforded a filtration medium that was effective in removing phosphate from test solutions. To assess the stability of the filtration medium, samples exposed to the test solutions were analyzed by FTIR spectroscopy. The resultant spectra indicated that...
Road Salts as Environmental Constraints in Urban Pond Food Webs
Van Meter, Robin J.; Swan, Christopher M.
2014-01-01
Freshwater salinization is an emerging environmental filter in urban aquatic ecosystems that receive chloride road salt runoff from vast expanses of impervious surface cover. Our study was designed to evaluate the effects of chloride contamination on urban stormwater pond food webs through changes in zooplankton community composition as well as density and biomass of primary producers and consumers. From May – July 2009, we employed a 2×2×2 full-factorial design to manipulate chloride concentration (low = 177 mg L−1 Cl−/high = 1067 mg L−1 Cl−), gray treefrog (Hyla versicolor) tadpoles (presence/absence) and source of stormwater pond algae and zooplankton inoculum (low conductance/high conductance urban ponds) in 40, 600-L mesocosms. Road salt did serve as a constraint on zooplankton community structure, driving community divergence between the low and high chloride treatments. Phytoplankton biomass (chlorophyll [a] µg L−1) in the mesocosms was significantly greater for the high conductance inoculum (P<0.001) and in the high chloride treatment (P = 0.046), whereas periphyton biomass was significantly lower in the high chloride treatment (P = 0.049). Gray treefrog tadpole time to metamorphosis did not vary significantly between treatments. However, mass at metamorphosis was greater among tadpoles that experienced a faster than average time to metamorphosis and exposure to high chloride concentrations (P = 0.039). Our results indicate differential susceptibility to chloride salts among algal resources and zooplankton taxa, and further suggest that road salts can act as a significant environmental constraint on urban stormwater pond communities. PMID:24587259
Hilgen, Gerrit; Huebner, Antje K.; Tanimoto, Naoyuki; Sothilingam, Vithiyanjali; Seide, Christina; Garrido, Marina Garcia; Schmidt, Karl-Friedrich; Seeliger, Mathias W.; Löwel, Siegrid; Weiler, Reto
2012-01-01
Regulation of ion and pH homeostasis is essential for normal neuronal function. The sodium-driven chloride bicarbonate exchanger NCBE (Slc4a10), a member of the SLC4 family of bicarbonate transporters, uses the transmembrane gradient of sodium to drive cellular net uptake of bicarbonate and to extrude chloride, thereby modulating both intracellular pH (pHi) and chloride concentration ([Cl−]i) in neurons. Here we show that NCBE is strongly expressed in the retina. As GABAA receptors conduct both chloride and bicarbonate, we hypothesized that NCBE may be relevant for GABAergic transmission in the retina. Importantly, we found a differential expression of NCBE in bipolar cells: whereas NCBE was expressed on ON and OFF bipolar cell axon terminals, it only localized to dendrites of OFF bipolar cells. On these compartments, NCBE colocalized with the main neuronal chloride extruder KCC2, which renders GABA hyperpolarizing. NCBE was also expressed in starburst amacrine cells, but was absent from neurons known to depolarize in response to GABA, like horizontal cells. Mice lacking NCBE showed decreased visual acuity and contrast sensitivity in behavioral experiments and smaller b-wave amplitudes and longer latencies in electroretinograms. Ganglion cells from NCBE-deficient mice also showed altered temporal response properties. In summary, our data suggest that NCBE may serve to maintain intracellular chloride and bicarbonate concentration in retinal neurons. Consequently, lack of NCBE in the retina may result in changes in pHi regulation and chloride-dependent inhibition, leading to altered signal transmission and impaired visual function. PMID:23056253
Chen, Fuchao; Fang, Baoxia; Li, Peng; Zhu, Xuesong; Zhou, Benhong
2014-08-01
This study was to investigate the physical and chemical compatibility of butorphanol with tramadol or fentanyl in 0.9% sodium chloride injections for patient controlled analgesia administration. The solutions were prepared in polyvinyl chloride (PVC) infusion bags and stored without protected from light exposure at room temperature (25 degrees C) or refrigerated (4 degrees C). Over a period of 168 hours, stabilities were determined by visual inspection, pH measurement, and high-pressure liquid chromatography (HPLC) assay of drug concentrations. At both temperatures, admixtures of butorphanol-tramadol and butorphanol-fentanyl were clear in appearance, and no color change or precipitation was observed during the study period. The maximum losses obtained were lower than 5% for the three drugs after 168 hours of storage. The results indicate that, at ambient or refrigerated storage conditions, the drug mixtures of butorphanol-tramadol and butorphanol-fentanyl in 0.9% sodium chloride injections were physically and chemically stable for at least 168 hours when stored in PVC syringes.
Silver nanoparticle aggregation not triggered by an ionic strength mechanism
NASA Astrophysics Data System (ADS)
Botasini, Santiago; Méndez, Eduardo
2013-04-01
The synthesis of stable colloidal solutions of silver nanoparticles is a major goal in the industry to control their fate in aqueous solutions. The present work studies 10-20-nm silver nanoparticle aggregation triggered by the presence of chloride ions. The aggregation process was followed by UV-Vis-NIR spectroscopy and transmission electron microscopy. We found that the mechanism involved differs from the classic explanation of nanoparticle aggregation triggered by an increase in the ionic strength. Moreover, our results give evidence that even when nanoparticles are resistant to an increment of the total amount of ions, the formation of insoluble salts in the vicinity of the nanoparticle is enough to induce the aggregation. The presence of silver chloride around the silver nanoparticles was documented by an X-ray diffraction pattern and electrochemical methods because chloride anions are ubiquitous in real media; this alternative process jeopardized the development of many applications with silver nanoparticles that depend on the use of stable colloids.
NASA Astrophysics Data System (ADS)
Hachemi, Hania; Azzaz, Mohamed; Djeghlal, Mohamed Elamine
2016-10-01
The passivity behavior of a 2209 duplex stainless steel welded joint was investigated using potentiodynamic polarization, Mott-Schottky analysis and EIS measurements. In order to evaluate the contribution of temperature, chloride concentration and microstructure, a sequence of polarization tests were carried out in aerated NaCl solutions selected according to robust design of a three level-three factors Taguchi L9 orthogonal array. Analysis of signal-to-noise ratio and ANOVA were achieved on all measured data, and the contribution of every control factor was estimated. The results showed that the corrosion resistance of 2209 duplex stainless steel welded joint is related to the evolution of the passive film formed on the surface. It was found that the passive film on the welded zone possessed n- and p-type semiconductor characteristics. With the increase of solution temperature and chlorides concentration, the corrosion resistance of the passive film is more affected in the weldment than in the base metal.
Polybenzoxazole via aromatic nucleophilic displacement
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor)
1993-01-01
Polybenzoxazoles (PBO) are heterocyclic macromolecules which were first synthesized in a two-step process by the initial formation of aromatic diacid chlorides with bis(o-aminophenol)s through solution condensation of aromatic diacid chlorides with bis(o-aminophenol)s followed by thermal cyclodehydration. Since then several methods were utilized in their synthesis. The most common synthetic method for PBO involves a polycondensation of bis(o-aminophenol)s with aromatic diacid diphenyl esters. Another preparative route involves the solution polycondensation of the hydrochloride salts of bis(o-amino phenol)s with aromatic diacids in polyphosphoric acid. Another synthetic method involves the initial formation of poly(o-hydroxy amide)s from silylated bis(o-aminophenol)s with aromatic diacid chlorides followed by thermal cyclodehydration to PBO. A recent preparative route involves the reaction of aromatic bisphenols with bis(fluorophenyl) benzoxazoles by the displacement reaction to form PBO. The novelty of the present invention is that high molecular weight PBO of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.
Location of Bromide Ions in Tetragonal Lysozyme Crystals
NASA Technical Reports Server (NTRS)
Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.
1998-01-01
Anions have been shown to play a dominant role in the crystallization of chicken egg white lysozyme from salt solutions. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystal grown in bromide and chloride solutions. Five possible anion binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four of these sites corresponded to four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed.
Locations of Bromide Ions in Tetragonal Lysozyme Crystals
NASA Technical Reports Server (NTRS)
Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.
1998-01-01
Anions have been shown to play a dominant role in the crystallization of chicken egg-white lysozyme from salt solutions. Previous studies employing X-ray crystallography have found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystals grown in bromide and chloride solutions. Five possible anion-binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four further sites were found which corresponded to the four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion-binding sites in lysozyme remain unchanged even when different anions and different crystal forms of lysozyme are employed.
Corrosion behavior of a superduplex stainless steel in chloride aqueous solution
NASA Astrophysics Data System (ADS)
Dabalà, Manuele; Calliari, Irene; Variola, Alessandra
2004-04-01
Super duplex stainless steels (SDSS) have been widely used as structural materials for chemical plants (especially in those engaged in phosphoric acid production), in the hydrometallurgy industries, and as materials for offshore applications due to their excellent corrosion resistance in chloride environments, compared with other commercial types of ferritic stainless steels. These alloys also possess superior weldability and better mechanical properties than austenitic stainless steels. However, due to their two-phase structure, the nature of which is very dependent on their composition and thermal history, the behavior of SDSS regarding localized corrosion appears difficult to predict, especially in chloride environments. To improve their final properties, the effect of the partition of the alloying elements between the two phases, and the composition and microstructure of each phase are the key to understanding the localized corrosion phenomena of SDSS. This paper concerns the effects of the SDSS microstructure and heat treatment on the SDSS corrosion resistance in aqueous solutions, containing different amounts of NaCl at room temperature.
NASA Astrophysics Data System (ADS)
Zhou, BeiBei; Wang, QuanJiu
2017-09-01
Studies on solute transport under different pore water velocity and solute input methods in undisturbed soil could play instructive roles for crop production. Based on the experiments in the laboratory, the effect of solute input methods with small pulse input and large pulse input, as well as four pore water velocities, on chloride transport in the undisturbed soil columns obtained from the Loess Plateau under controlled condition was studied. Chloride breakthrough curves (BTCs) were generated using the miscible displacement method under water-saturated, steady flow conditions. Using the 0.15 mol L-1 CaCl2 solution as a tracer, a small pulse (0.1 pore volumes) was first induced, and then, after all the solution was wash off, a large pulse (0.5 pore volumes) was conducted. The convection-dispersion equation (CDE) and the two-region model (T-R) were used to describe the BTCs, and their prediction accuracies and fitted parameters were compared as well. All the BTCs obtained for the different input methods and the four pore water velocities were all smooth. However, the shapes of the BTCs varied greatly; small pulse inputs resulted in more rapid attainment of peak values that appeared earlier with increases in pore water velocity, whereas large pulse inputs resulted in an opposite trend. Both models could fit the experimental data well, but the prediction accuracy of the T-R was better. The values of the dispersivity, λ, calculated from the dispersion coefficient obtained from the CDE were about one order of magnitude larger than those calculated from the dispersion coefficient given by the T-R, but the calculated Peclet number, Pe, was lower. The mobile-immobile partition coefficient, β, decreased, while the mass exchange coefficient increased with increases in pore water velocity.
Hossain, Mirza Akram; Friciu, Mihaela; Aubin, Sebastien; Leclair, Grégoire
2014-04-15
The stability of penicillin G sodium solutions stored in polyvinyl chloride (PVC) bags or elastomeric pump containers was studied. Test samples were prepared by diluting powdered penicillin G sodium (10 million units/10-mL vial) to solutions of 2,500 or 50,000 units/mL with 0.9% sodium chloride injection or 5% dextrose injection. The preparations were transferred to 250-mL PVC bags and elastomeric pump containers. All samples were prepared in triplicate and stored at 5°C. Chemical stability was measured by a stability-indicating high-performance liquid chromatographic (HPLC) assay and by pH evaluation. Particulate matter was evaluated according to compendial standards using a light-obscuration particle count test. Preparations were visually examined throughout the study. After 21 days of storage, all test samples remained chemically stable, with an HPLC assay recovery value of more than 90% of the initial value. After 28 days, all samples prepared with either diluent and stored in PVC bags, as well as the samples diluted to 2,500 units/mL with sodium chloride injection and stored in elastomeric pump containers, did not meet the recovery acceptance limit. For all test samples, the mean pH consistently decreased during storage, from about 6.4 to about 5.5. Particle counts remained acceptable throughout the study, and no change in appearance was observed. Penicillin G for injection (2,500 and 50,000 units/mL) diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 5°C in PVC containers or elastomeric pump containers was physically and chemically stable for a period of at least 21 days.
Rosenbaek, Lena L; Rizzo, Federica; MacAulay, Nanna; Staub, Olivier; Fenton, Robert A
2017-08-01
The thiazide-sensitive sodium chloride cotransporter NCC is important for maintaining serum sodium (Na + ) and, indirectly, serum potassium (K + ) levels. Functional studies on NCC have used cell lines with native NCC expression, transiently transfected nonpolarized cell lines, or Xenopus laevis oocytes. Here, we developed the use of polarized Madin-Darby canine kidney type I (MDCKI) mammalian epithelial cell lines with tetracycline-inducible human NCC expression to study NCC activity and membrane abundance in the same system. In radiotracer assays, induced cells grown on filters had robust thiazide-sensitive and chloride dependent sodium-22 ( 22 Na) uptake from the apical side. To minimize cost and maximize throughput, assays were modified to use cells grown on plastic. On plastic, cells had similar thiazide-sensitive 22 Na uptakes that increased following preincubation of cells in chloride-free solutions. NCC was detected in the plasma membrane, and both membrane abundance and phosphorylation of NCC were increased by incubation in chloride-free solutions. Furthermore, in cells exposed for 15 min to low or high extracellular K + , the levels of phosphorylated NCC increased and decreased, respectively. To demonstrate that the system allows rapid and systematic assessment of mutated NCC, three phosphorylation sites in NCC were mutated, and NCC activity was examined. 22 Na fluxes in phosphorylation-deficient mutants were reduced to baseline levels, whereas phosphorylation-mimicking mutants were constitutively active, even without chloride-free stimulation. In conclusion, this system allows the activity, cellular localization, and abundance of wild-type or mutant NCC to be examined in the same polarized mammalian expression system in a rapid, easy, and low-cost fashion. Copyright © 2017 the American Physiological Society.
Walker, Jim S; Wills, Jon B; Reid, Jonathan P; Wang, Liangyu; Topping, David O; Butler, Jason R; Zhang, Yun-Hong
2010-12-09
Holographic optical tweezers are used to make comparative measurements of the hygroscopic properties of single component aqueous aerosol containing sodium chloride and ammonium sulfate over a range of relative humidity from 84% to 96%. The change in RH over the course of the experiment is monitored precisely using a sodium chloride probe droplet with accuracy better than ±0.09%. The measurements are used to assess the accuracy of thermodynamic treatments of the relationship between water activity and solute mass fraction with particular attention focused on the dilute solute limit approaching saturation vapor pressure. The consistency of the frequently used Clegg-Brimblecombe-Wexler (CBW) treatment for predicting the hygroscopic properties of sodium chloride and ammonium sulfate aerosol is confirmed. Measurements of the equilibrium size of ammonium sulfate aerosol are found to agree with predictions to within an uncertainty of ±0.2%. Given the accuracy of treating equilibrium composition, the inconsistencies highlighted in recent calibration measurements of critical supersaturations of sodium chloride and ammonium sulfate aerosol cannot be attributed to uncertainties associated with the thermodynamic predictions and must have an alternative origin. It is concluded that the CBW treatment can allow the critical supersaturation to be estimated for sodium chloride and ammonium sulfate aerosol with an accuracy of better than ±0.002% in RH. This corresponds to an uncertainty of ≤1% in the critical supersaturation for typical supersaturations of 0.2% and above. This supports the view that these systems can be used to accurately calibrate instruments that measure cloud condensation nuclei concentrations at selected supersaturations. These measurements represent the first study in which the equilibrium properties of two particles of chemically distinct composition have been compared simultaneously and directly alongside each other in the same environment.
NASA Technical Reports Server (NTRS)
Nelson, H. G.
1974-01-01
The physical characteristics of stress corrosion cracking of titanium in an aqueous chloride environment are compared with those of embrittlement of titanium by a gaseous hydrogen environment in an effort to help contribute to the understanding of the possible role of hydrogen in the complex stress corrosion cracking process. Based on previous studies, the two forms of embrittlement are shown to be similar at low hydrogen pressures (100 N/sq m) but dissimilar at higher hydrogen pressures. In an effort to quantify this comparison, tests were conducted in an aqueous chloride solution using the same material and test techniques as had previously been employed in a gaseous hydrogen environment. The results of these tests strongly support models based on hydrogen as the embrittling species in an aqueous chloride environment.
Development of a thresholding algorithm for calcium classification at multiple CT energies
NASA Astrophysics Data System (ADS)
Ng, LY.; Alssabbagh, M.; Tajuddin, A. A.; Shuaib, I. L.; Zainon, R.
2017-05-01
The objective of this study was to develop a thresholding method for calcium classification with different concentration using single-energy computed tomography. Five different concentrations of calcium chloride were filled in PMMA tubes and placed inside a water-filled PMMA phantom (diameter 10 cm). The phantom was scanned at 70, 80, 100, 120 and 140 kV using a SECT. CARE DOSE 4D was used and the slice thickness was set to 1 mm for all energies. ImageJ software inspired by the National Institute of Health (NIH) was used to measure the CT numbers for each calcium concentration from the CT images. The results were compared with a developed algorithm for verification. The percentage differences between the measured CT numbers obtained from the developed algorithm and the ImageJ show similar results. The multi-thresholding algorithm was found to be able to distinguish different concentrations of calcium chloride. However, it was unable to detect low concentrations of calcium chloride and iron (III) nitrate with CT numbers between 25 HU and 65 HU. The developed thresholding method used in this study may help to differentiate between calcium plaques and other types of plaques in blood vessels as it is proven to have a good ability to detect the high concentration of the calcium chloride. However, the algorithm needs to be improved to solve the limitations of detecting calcium chloride solution which has a similar CT number with iron (III) nitrate solution.
NASA Astrophysics Data System (ADS)
Oh, Su-ji; Choi, Eunju; Choi, Nagchoul; Park, Cheonyoung
2013-04-01
Recently, due to the realization of environmental problems of cyanide, it is a worldwide quest to find viable alternatives. One of the alternatives is a chloride solvent(chlorine-hypochlorite acid) with an appropriate oxidizing agent. The rate of dissolution of Au by chloride solvent is much faster than that by cyanide. Also, due to presence of chloride ions, there is no passivation of gold surfaces during chlorination. The objective of this work was to investigate the effect of Au extraction efficiency under various experimental conditions(pulp density, chlorine-hypochlorite ratio and concentration of NaCl) from scrap of the used computer by chloride solvent. In addition, the recovery experiment was conducted to examine of the precipitation efficiency of Au under various metabisulfite concentration from extracted solution. In an EDS analysis, valuable metals such as Cu, Sn, Sb, Al, Ni, Pb and Au were observed in scrap of the used computer. The result of extraction experiment showed that the highest extraction rate was obtained under 1% of pulp density with a chlorine-hypochlorite ratio of 2:1, and a concentration of NaCl at 2M. The highest Au recovery(precipitation) rate was observed the addition of sodium metabisulfite at 2M concentration. Under these conditions, chlorine-hypochlorite could effectively Au extraction from scrap of the used computer sections and the additive reagent using sodium metabisulfite could easily precipitate the Au from the chlorine-hypochlorite solution.
López de Frutos, Laura; Cebolla, Jorge J; Irún, Pilar; Köhler, Ralf; Giraldo, Pilar
2018-05-01
Erythrocyte volume regulation and membrane elasticity are essential for adaptation to osmotic and mechanical stress, and life span. Here, we evaluated whether defective cholesterol trafficking caused by the rare lysosomal storages diseases (LSDs), Niemann-Pick type C (NPC) and Lysosomal acid lipase (LAL) deficiency (LALD) impairs these properties. Moreover, we tested whether measurements of cholesterol membrane content and osmotic resistance serve as a screening test for these LSDs. Patients were genotyped for mutations in NPC1, NPC2, or LIPA genes. We measured LSD plasma biomarkers and LAL activity. Red blood cells (RBC) membrane cholesterol content was evaluated in 73 subjects. Osmotic resistance tests (ORT) were conducted in 121 blood samples from LSD suspected patients and controls. We did not find statistically significant differences between RBC cholesterol content between subjects and controls. However, the ORT, particularly at 0.49% (w/v) hypotonic sodium chloride solution, revealed a significant higher osmotic resistance in LSDs patients than in controls. We established a cut-off value of ≤51% of haemolysis with sensibility and specificity values of 80% and 70%, respectively. NPC and LALD do not alter cholesterol content in the RBC membrane but increase osmotic resistance. Therefore, ORT serves as screening test for the studied LSDs. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Hui
Effects of reinforcement and coarse aggregate on chloride ingression into concrete and reinforcement corrosion initiation have been studied with experimental and modeling (finite element method) analyses. Once specimens were fabricated and exposed to a chloride solution, various experimental techniques were employed to determine the effect of reinforcement and coarse aggregate on time-to-corrosion and chloride ingress and concentration at corrosion locations. Model analyses were performed to verify and explain the experimental results. Based upon the results, it was determined that unexpectedly higher chloride concentrations were present on the top of the rebar trace than that to the side at the same depth and an inverse concentration gradient (increasing [ Cl-] with increasing depth) occurred near the top of rebars. Also, coarse aggregate volume profile in close proximity to the rebar and spatial distribution of these aggregates, in conjunction with the physical obstruction afforded by reinforcement to chloride flow, complicates concrete sampling for Cl- intended to define the critical concentration of this species to initiate corrosion. Modeling analyses that considered cover thickness, chloride threshold concentration, reinforcement size and shape, and coarse aggregate type and percolation confirmed the experimental findings. The results, at least in part, account for the relatively wide spread in chloride corrosion threshold values reported in the literature and illustrate that more consistent chloride threshold concentrations can be acquired from mortar or paste specimens than from concrete ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.M.; Hunt, W.A.; Lee, J.
1988-12-01
The preexposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired preexposures to lithium chloride (3.0 mEq/kg, IP) blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium chloride (3.0 or 1.5 mEq/kg). Preexposure to ethanol (4 g/kg, PO)more » disrupted the acquisition of an ethanol-induced taste aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiation or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.« less
Granato, Gregory E.; DeSimone, Leslie A.; Barbaro, Jeffrey R.; Jeznach, Lillian C.
2015-09-04
Scientists, engineers, regulators, and decisionmakers need information about potential sources of chloride, water and solute budgets, and methods for collecting water-quality data to help identify potential sources. This information is needed to evaluate potential sources of chloride in areas where chloride may have adverse ecological effects or may degrade water supplies used for drinking water, agriculture, or industry. Knowledge of potential sources will help decisionmakers identify the best mitigation measures to reduce the total background chloride load, thereby reducing the potential for water-quality exceedances that occur because of superposition on rising background concentrations. Also, knowledge of potential sources may help decisionmakers identify the potential for the presence of contaminants that have toxic, carcinogenic, mutagenic, or endocrine-disrupting effects at concentrations that are lower by orders of magnitude than the chloride concentrations in the source water. This report is a comprehensive synthesis of relevant information, but it is not the result of an exhaustive search for literature on each topic. The potential adverse effects of chloride on infrastructure and the environment are not discussed in this report because these issues have been extensively documented elsewhere.
Rabin, B M; Hunt, W A; Lee, J
1988-12-01
The preexposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired preexposures to lithium chloride (3.0 mEq/kg, IP) blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium chloride (3.0 or 1.5 mEq/kg). Preexposure to ethanol (4 g/kg, PO) disrupted the acquisition of an ethanol-induced taste aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiation or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.
Exploratory studies on some electrochemical cell systems
NASA Astrophysics Data System (ADS)
Chaudhuri, Srikumar; Guha, D.
Exploratory studies were conducted on cell systems with different metal anodes, and iodine and sulphur mixed with graphite powder in a polymer matrix as cathodes, using different electrolytes in non-aqueous and aqueous media as ionic charge carriers. The electrical conductance of the electrolyte solutions in aqueous and non-aqueous solvents, the open circuit voltage (OCV) and short circuit current (SCC) for the different cell systems were measured. To date, the non-aqueous solvents used in our studies were dimethylformamide, formamide, dioxan, and nitrobenzene, and the electrolytes used were potassium iodide, caustic potash, cetyltrimethylammonium bromide (CTAB), sodium lauryl sulphate (SLS) and calcium chloride. These electrolytes were used in both non-aqueous and aqueous media. In general, aqueous electrolyte solutions gave a better performance than non-aqueous electrolyte solutions. Of the aqueous electrolytes, the highest conductance was shown by potassium chloride solution in water (conductance=0.0334 mho). However, the best OCV and SCC were shown by aluminium as anode and iodine as cathode with a saturated solution of caustic potash in water. The OCV was 1.85 V and the SCC was 290 mA cm -2. The highest conductance among the non-aqueous systems was shown by caustic potash in formamide. (Conductance=0.013 mho.) The best OCV and SCC, however, were shown by a zinc anode and iodine cathode with saturated potassium chloride in formamide, having an OCV of 1.55 V and an SCC of 150 mA cm -2. Further studies are in progress to obtain detailed performance data and recharging characteristics of some of the more promising systems reported here.
Electrodeposition of copper composites from deep eutectic solvents based on choline chloride.
Abbott, Andrew P; El Ttaib, Khalid; Frisch, Gero; McKenzie, Katy J; Ryder, Karl S
2009-06-07
Here we describe for the first time the electrolytic deposition of copper and copper composites from a solution of the metal chloride salt in either urea-choline chloride, or ethylene glycol-choline chloride based eutectics. We show that the deposition kinetics and thermodynamics are quite unlike those in aqueous solution under comparable conditions and that the copper ion complexation is also different. The mechanism of copper nucleation is studied using chronoamperometry and it is shown that progressive nucleation leads to a bright nano-structured deposit. In contrast, instantaneous nucleation, at lower concentrations of copper ions, leads to a dull deposit. This work also pioneers the use of the electrochemical quartz crystal microbalance (EQCM) to monitor both current efficiency and the inclusion of inert particulates into the copper coatings. This technique allows the first in situ quantification or particulate inclusion. It was found that the composition of composite material was strongly dependent on the amount of species suspended in solution. It was also shown that the majority of material was dragged onto the surface rather than settling on to it. The distribution of the composite material was found to be even throughout the coating. This technology is important because it facilitates deposition of bright copper coatings without co-ligands such as cyanide. The incorporation of micron-sized particulates into ionic liquids has resulted, in one case, in a decrease in viscosity. This observation is both unusual and surprising; we explain this here in terms of an increase in the free volume of the liquid and local solvent perturbation.
Chemistry and Spectroscopy of Frozen Chloride Salts on Icy Bodies
NASA Astrophysics Data System (ADS)
Johnson, Paul; Thomas, Elena C.; Hodyss, Robert; Vu, Tuan; Choukroun, Mathieu
2016-10-01
Currently, our understanding of the chemical composition of Europa's surface is our best means of inferring constraints on the subsurface ocean composition and its subsequent habitability. The bulk of our knowledge of Europa surface chemistry can be traced to near infrared spectra recorded by the Near Infrared Mapping Spectrometer on the Galileo spacecraft. However, the usefulness of this and other remote sensing data is limited by the availability of spectral libraries of candidate materials under relevant conditions (temperature, thermal/radiation history, etc.). Chloride salts are expected to exist on the surface of Europa, and other icy bodies, based on geochemical predictions of the ocean composition. In order to help improve our understanding of Europa's surface composition, we have conducted a study of frozen chloride-salt brines prepared under simulated Europa surface conditions (vacuum, temperature, and UV irradiation) using both near IR and Raman spectroscopies. Specifically, Raman spectroscopy was used to determine the hydration states of various chloride salts as a function of temperature. Near IR spectroscopy of identically prepared samples was used to provide reference reflectance spectra of the identified hydrated salts. Our results indicate that at temperatures ranging from 80 K to 233 K, hydrohalite is formed from the freezing of NaCl brines, while the freezing of KCl solutions does not form KCl hydrates. In addition, the freezing of MgCl2 solutions forms a stable hexahydrate, and the freezing of CaCl2 solutions forms a hexahydrate, a tetrahydrate, and a dihydrate. Dehydration of the salts was observed as temperatures were increased, leading to a succession of hydration states in the case of CaCl2.
Lugli, S M; Lutz, W K
1999-01-01
Three questions associated with the stimulation of cell division by chloride salts have been investigated: (i) whether cations other than sodium show a similar effect, (ii) whether vitamins can have a preventive activity, and (iii) whether subchronic treatment with sodium chloride in the diet is also effective. Male Fischer 344 rats were given solutions of the chloride salts of sodium, potassium, magnesium, and calcium by oral gavage. Water was used for control. After 4 h, a 24-h osmotic minipump containing 5-bromo-2'-deoxyuridine was implanted subcutaneously. The forestomach and glandular stomach, as well as liver and bladder were analyzed immunohistochemically 24 h later for the proportion of cells in S phase as an indicator of the rate of replicative DNA synthesis. For both the forestomach and the glandular stomach, potassium was as potent as sodium, and the divalent cations Mg and Ca were even more potent on a molar basis. Supplementation of the diet with ascorbic acid (2 g/kg food) or beta-carotene (12.5 mg/kg food) for 1 week before gavage of the sodium chloride solution resulted in an inhibition of the stimulation of cell division. A putative tumor-chemopreventive activity of the two vitamins might therefore not only rely on their antioxidative properties but may include effects on the cell cycle. A 4-week treatment with a sodium chloride supplement in the diet (2% and 4% supplement) resulted in a significant stimulation of cell division not only in both parts of the stomach and in the bladder (with the 4% supplement) but also in the liver (even with the 2% supplement). Sodium-chloride-stimulated cell turnover therefore is a sustained effect.
Projection structure of a ClC-type chloride channel at 6.5Å resolution
NASA Astrophysics Data System (ADS)
Mindell, Joseph A.; Maduke, Merritt; Miller, Christopher; Grigorieff, Nikolaus
2001-01-01
Virtually all cells in all eukaryotic organisms express ion channels of the ClC type, the only known molecular family of chloride-ion-selective channels. The diversity of ClC channels highlights the multitude and range of functions served by gated chloride-ion conduction in biological membranes, such as controlling electrical excitability in skeletal muscle, maintaining systemic blood pressure, acidifying endosomal compartments, and regulating electrical responses of GABA (γ-aminobutyric acid)-containing interneurons in the central nervous system. Previously, we expressed and purified a prokaryotic ClC channel homologue. Here we report the formation of two-dimensional crystals of this ClC channel protein reconstituted into phospholipid bilayer membranes. Cryo-electron microscopic analysis of these crystals yields a projection structure at 6.5Å resolution, which shows off-axis water-filled pores within the dimeric channel complex.
NASA Astrophysics Data System (ADS)
Cerchier, Pietrogiovanni; Dabalà, Manuele; Brunelli, Katya
2017-09-01
In this work, SnO2 and Ag nanoparticles were produced with a raw material nitric acid solution, which came from the leaching of printed circuit boards. First, a precursor of tin oxide was precipitated from the nitric acid solution by three different techniques: (I) conventional heating, (II) microwave irradiation, and (III) ultrasound treatment. Second, this precursor was transformed into tin oxide nanoparticles by heat treatment in a furnace. Third, hydrochloric acid was added to the nitric acid solution to induce the precipitation of silver chloride. Fourth, silver chloride was reduced to metallic silver nanoparticles in an ammonia solution using glucose syrup as both the reducing agent and the capping agent. The reduction reaction was carried out through (I) conventional heating, (II) microwave irradiation, and (III) ultrasound treatment. The nanoparticles were characterized by scanning electron microscope (SEM), x-ray diffractometer (XRD), infrared (IR)-spectroscopy, transmission electron microscope (TEM), ultraviolet (UV)-spectroscopy, and laser diffraction particle size analyzer.
Deicing chemicals as source of constituents of highway runoff
Granato, G.E.
1996-01-01
The dissolved major and trace constituents of deicing chemicals as a source of constituents in highway runoff must be quantified for interpretive studies of highway runoff and its effects on surface water and groundwater. Dissolved constituents of the deicing chemicals-sodium chloride, calcium chloride, and premix (a mixture of sodium and calcium chloride)-were determined by analysis of salt solutions created in the laboratory and are presented as mass ratios to chloride. Deicing chemical samples studied are about 98 and 97 percent pure sodium chloride and calcium chloride, respectively: however, each has a distinct major and trace ion constituent signature. The greatest impurity in sodium chloride road sail samples was sulfate, followed by calcium, potassium, bromide, vanadium, magnesium, fluoride, and other constituents with a ratio to chloride of less than 0.0001 by mass. The greatest impurity in the calcium chloride road salt samples was sodium, followed by potassium, sulfate, bromide, silica, fluoride. strontium, magnesium, and other constituents with a ratio to chloride of less than 0.0001 by mass. Major constituents of deicing chemicals in highway runoff may account for a substantial source of annual chemical loads. Comparison of estimated annual loads and first flush concentrations of deicing chemical constituents in highway runoff with those reported in the literature indicate that although deicing chemicals are not a primary source of trace constituents, they are not a trivial source, either. Therefore, deicing chemicals should be considered as a source of many major and trace constituents in highway and urban runoff.
Compatibility of azathioprine sodium with intravenous fluids.
Johnson, C A; Porter, W A
1981-06-01
The effects of storage containers, diluent, temperature, and illumination on the stability and compatibility of azathioprine sodium were studied. Reconstituted solutions were stored in the manufacturer's vial and a plastic syringe. Diluted solutions were stored in mini-bags mixed with standard intravenous solutions (5% dextrose injection, 0.9% sodium chloride injection, and 0.45% sodium chloride injection). Samples were stored at 4 degrees C in the dark and at 23 degrees C under constant illumination. Samples containing an internal standard, 6-methylmercaptopurine, were assayed by ion exchange chromatography at 0, 8, and 16 days. Accelerated decomposition studies at 70 degrees C also were performed to determine the chromatographic method's capability for separating azathioprine from its breakdown products. No solutions or admixtures differed significantly (p greater than 0.13) from initial concentrations after 16 days at 23 degrees C under constant illumination. Mixture with 5% dextrose injection caused precipitation by day 16. Azathioprine sodium reconstituted and stored in the manufacturer's vial or a plastic syringe at 4 degrees C formed a precipitate by day 4. Sterility is the limiting factor determining suitability for use of azathioprine solutions kept less than four days.
Corrosion Behavior of Cu40Zn in Sulfide-Polluted 3.5% NaCl Solution
NASA Astrophysics Data System (ADS)
Song, Q. N.; Xu, N.; Bao, Y. F.; Jiang, Y. F.; Gu, W.; Yang, Z.; Zheng, Y. G.; Qiao, Y. X.
2017-10-01
The corrosion behavior of a duplex-phase brass Cu40Zn in clean and sulfide-polluted 3.5% NaCl solutions was investigated by conducting electrochemical and gravimetric measurements. The corrosion product films were analyzed by scanning electron microscopy, energy-dispersive spectroscopy and x-ray diffraction. The presence of sulfide shifted the corrosion potential of Cu40Zn toward a more negative value by 100 mV and increased the mass loss rate by a factor of 1.257 compared with the result in the clean solution. The corrosion product film in the clean solution was thin and compact; it mainly consisted of oxides, such as ZnO and Cu2O. By contrast, the film in the sulfide-polluted solution was thick and porous. It mainly contained sulfides and zinc hydroxide chloride (i.e., Zn5(OH)8Cl2·H2O). The presence of sulfide ions accelerated the corrosion damage of Cu40Zn by hindering the formation of protective oxides and promoting the formation of a defective film which consisted of sulfides and hydroxide chlorides.
Kim, Hyun-Wook; Choi, Yun-Sang; Choi, Ji-Hun; Kim, Hack-Youn; Hwang, Ko-Eun; Song, Dong-Heon; Lee, Soo-Yoen; Lee, Mi-Ai; Kim, Cheon-Jei
2013-11-01
This study was conducted to evaluate the antioxidant effects of soy sauce on lipid oxidation and color stability of raw beef patties. Raw beef patties were formulated with four solutions such as NaCl (sodium chloride solution), NaCl/SS (1:1 ratio of sodium chloride and soy sauce solution), SS (soy sauce solution), or SS/A (soy sauce solution combined with 0.05% ascorbic acid) in the same salt concentration. Addition of soy sauce resulted in the decreased pH, lightness, and increased yellowness. Treatment SS/A had the lowest percent of metmyoglobin during storage (P<0.05). A reduction (P<0.05) in the 2-thiobarbituric acid, peroxide, and conjugated diene concentration as result of soy sauce addition were observed in treatments SS and SS/A at the end of the storage period. There were no differences (P>0.05) in free fatty acid concentration at the end of storage. The combined addition of soy sauce and ascorbic acid greatly improved (P<0.05) color stability and retarded lipid oxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Capacitive Deionization of High-Salinity Solutions
Sharma, Ketki; Gabitto, Jorge; Mayes, Richard T.; ...
2014-12-22
Desalination of high salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization for water desalination. Experiments were conducted with a flow-through capacitive deionization cell designed for neutron imaging and with lithium chloride ( 6LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of lithium chloride ( 6LiCl) solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionicmore » concentration profiles inside mesoporous carbon electrodes has been used to simulate the capacitive deionization process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why capacitive deionization is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of capacitive deionization devices, which can improve the process for high ionic-strength solutions.« less
1994-09-08
SHIP LR500 000218201816 07/28/94 P N N 25 8237 SHIP LR500 000218201905 07/30/94 P N N 26 8301 SHIP LR500 000218201910 07/30/94 P N N 27 7395 SHIP...24 25 8237 SHIP LR500 000218201905 07/30/94 P 561 512 PASS 537 500 PASS 24 26 8301 SHIP LR500 000218201910 07/30/94 P 562 513 PASS 538 501 PASS 24
Dhanuskodi, S; Manivannan, S; Kirschbaum, K
2006-05-15
1-Ethyl-2,6-dimethyl-4-hydroxy pyridinium chloride dihydrate and bromide dihydrate salts have been synthesized and their single crystals were grown by the slow evaporation of aqueous solution at 30 degrees C. The grown crystals were characterized by elemental analysis, FT-NMR and FT-IR techniques to confirm the formation of the expected compound. Optical transmittance window in aqueous solution was found to be 275-1100 nm by UV-vis-NIR technique. Thermogravimetric and differential thermal analyses reveal thermal stability and the presence of two water molecules in the crystal lattices. The crystal structure of chloride salt was also determined by X-ray diffraction method.
Hurley, H J; Shelley, W B
1978-12-01
A new topical approach to acne treatment--the use of aluminum chloride hexahydrate in anhydrous ethanol (ACAE)--was studied in 141 patients. Using sequential treatment schedules, paired comparison techniques, and various concentrations of ACAE, we established maximal efficacy with minimal local irritation for the 6.25% strength solution. Clinical efficacy and lack of toxicity of this formulation were confirmed by the additional clinical study of 65 patients. The antiperspirant and antibacterial actions of 6.25% ACAE solution were then verified on acne skin areas. It is postulated that the clinical improvement in acne that follows the topical use of ACAE results from one or both of these actions.
Chloride Transport in Porous Lipid Bilayer Membranes
Andreoli, Thomas E.; Watkins, Mary L.
1973-01-01
This paper describes dissipative Cl- transport in "porous" lipid bilayer membranes, i.e., cholesterol-containing membranes exposed to 1–3 x 10-7 M amphotericin B. P DCl (cm·s-1), the diffusional permeability coefficient for Cl-, estimated from unidirectional 36Cl- fluxes at zero volume flow, varied linearly with the membrane conductance (Gm, Ω-1·cm-2) when the contributions of unstirred layers to the resistance to tracer diffusion were relatively small with respect to the membranes; in 0.05 M NaCl, P DCl was 1.36 x 10-4 cm·s-1 when Gm was 0.02 Ω-1·cm-2. Net chloride fluxes were measured either in the presence of imposed concentration gradients or electrical potential differences. Under both sets of conditions: the values of P DCl computed from zero volume flow experiments described net chloride fluxes; the net chloride fluxes accounted for ∼90–95% of the membrane current density; and, the chloride flux ratio conformed to the Ussing independence relationship. Thus, it is likely that Cl- traversed aqueous pores in these anion-permselective membranes via a simple diffusion process. The zero current membrane potentials measured when the aqueous phases contained asymmetrical NaCl solutions could be expressed in terms of the Goldman-Hodgkin-Katz constant field equation, assuming that the P DNa/P DCl ratio was 0.05. In symmetrical salt solutions, the current-voltage properties of these membranes were linear; in asymmetrical NaCl solutions, the membranes exhibited electrical rectification consistent with constant-field theory. It seems likely that the space charge density in these porous membranes is sufficiently low that the potential gradient within the membranes is approximately linear; and, that the pores are not electrically neutral, presumably because the Debye length within the membrane phase approximates the membrane thickness. PMID:4708408
The effect of deep eutectic solvents on catalytic function and structure of bovine liver catalase.
Harifi-Mood, Ali Reza; Ghobadi, Roohollah; Divsalar, Adeleh
2017-02-01
Aqueous solutions of reline and glyceline, the most common deep eutectic solvents, were used as a medium for Catalase reaction. By some spectroscopic methods such as UV-vis, fluorescence and circular dichroism (CD) function and structure of Catalase were investigated in aqueous solutions of reline and glyceline. These studies showed that the binding affinity of the substrate to the enzyme increased in the presence of 100mM glyceline solution, which contrasts with reline solution that probably relates to instructive changes in secondary structure of protein. Meanwhile, enzyme remained nearly 70% and 80% active in this concentration of glyceline and reline solutions respectively. In the high concentration of DES solutions, enzyme became mainly inactive but surprisingly stayed in nearly 40% active in choline chloride solution, which is the common ion species in reline and glyceline solvents. It is proposed that the chaotropic nature of choline cation might stop the reducing trend of activity in concentrated choline chloride solutions but this instructive effect is lost in aqueous deep eutectic solvents. In this regard, the presence of various concentrations of deep eutectic solvents in the aqueous media of human cells would be an activity adjuster for this important enzyme in its different operation conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Denson, D D; Crews, J C; Grummich, K W; Stirm, E J; Sue, C A
1991-03-01
The stability of methadone hydrochloride in 0.9% sodium chloride injection in flexible polyvinyl chloride containers was studied. Commercially available methadone hydrochloride 20 mg/mL and 25-mL single-dose bags of 0.9% sodium chloride injection were used. Six samples each were prepared at methadone hydrochloride concentrations of 1, 2, and 5 mg/mL. The solutions were stored at room temperature and were not protected from light. Immediately after preparation and after two, three, and four weeks of storage, each of the 18 samples was divided into three aliquots, each of which was analyzed in duplicate for methadone hydrochloride concentration by gas chromatography. There was less than 10% change in methadone hydrochloride concentration in any sample throughout the four-week study period. Methadone hydrochloride at concentrations of 1, 2, and 5 mg/mL prepared in commercially available flexible polyvinyl chloride containers of 0.9% sodium chloride injection and stored at room temperature without deliberate protection from light is stable for at least four weeks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.M.; Hunt, W.A.; Lee, J.
1989-01-01
The pre-exposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride, and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired pre-exposures to lithium chloride blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiationmore » or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.« less
Estimating contamination potential at waste-disposal sites using a natural tracer
NASA Astrophysics Data System (ADS)
Stone, William J.
1992-05-01
Chloride is a conservative, natural tracer found in precipitation, soil water, and groundwater. The chloride mass-balance approach, long used to estimate groundwater recharge, also provides a downward flux of moisture and solute at sites where there is a potential for groundwater contamination. The flux is obtained by dividing the product of the mean annual precipitation and total annual chloride input (via precipitation and dust) by the mean soil-water chloride content. Chlorideversusdepth profiles can also be used to determine optimum depth of waste burial to minimize deterioration of waste containers. The method has been applied to three sites in arid alluvial-basin settings in New Mexico, U.S.A.: a proposed landfill, a battery recycling plant, and a hazardous-waste disposal facility. It is concluded that the method is reliable, economical, and practical. Furthermore, it can be applied at any stage in the development of a site. The chloride method should apply in any recharge area where the base of the root zone is separated from the water table by at least 3 m or so and chloride in soil water comes only from precipitation and dust.
Design of a safe cylindrical lithium/thionyl chloride cell
NASA Technical Reports Server (NTRS)
Johnson, D. H.
1983-01-01
Cell design criteria were established which can result in a safe lithium/thionyl chloride cell. A cell vent, a low area internal anode cell, cell balance and composition of the cathode-electrolyte solution were found to be important factors in the design of a safe cell. In addition to routine testing, both undischarged and discharged cells were subjected to electrical abuse, environmental abuse and mechanical abuse without disassembly.
Liu, Jun; Tang, Kaifeng; Qiu, Qiwen; Pan, Dong; Lei, Zongru; Xing, Feng
2014-01-01
In this paper, the pore structure characterization of concrete exposed to deionised water and 5% NaCl solution was evaluated using mercury intrusion porosity (MIP), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of calcium leaching, fly ash incorporation, and chloride ions on the evolution of pore structure characteristics were investigated. The results demonstrate that: (i) in ordinary concrete without any fly ash, the leaching effect of the cement products is more evident than the cement hydration effect. From the experimental data, Ca(OH)2 is leached considerably with the increase in immersion time. The pore structure of concrete can also be affected by the formation of an oriented structure of water in concrete materials; (ii) incorporation of fly ash makes a difference for the performance of concrete submersed in solutions as the total porosity and the pore connectivity can be lower. Especially when the dosage of fly ash is up to 30%, the pores with the diameter of larger than 100 nm show significant decrease. It demonstrates that the pore properties are improved by fly ash, which enhances the resistance against the calcium leaching; (iii) chlorides have a significant impact on microstructure of concrete materials because of the chemical interactions between the chlorides and cement hydrates. PMID:28788204
Cheng, Sy-Chyi; Wang, Chin-Hsiung; Shiea, Jentaie
2016-05-17
A flame-induced atmospheric pressure chemical ionization (FAPCI) source, consisting of a miniflame, nebulizer, and heated tube, was developed to ionize analytes. The ionization was performed by reacting analytes with a charged species generated in a flame. A stainless steel needle deposited with saturated alkali chloride solution was introduced into the mini oxyacetylene flame to generate alkali ions, which were reacted with analytes (M) generated in a heated nebulizer. The alkali-adducted 18-crown-6 ether ions, including (M + Li)(+), (M + Na)(+), (M + K)(+), (M + Rb)(+), and (M + Cs)(+), were successfully detected on the FAPCI mass spectra when the corresponding alkali chloride solutions were separately introduced to the flame. When an alkali chloride mixture was introduced, all alkali-adducted analyte ions were simultaneously detected. Their intensity order was as follows: (M + Cs)(+) > (M + Rb)(+) > (M + K)(+) > (M + Na)(+) > (M + Li)(+), and this trend agreed with the lattice energies of alkali chlorides. Besides alkali ions, other transition metal ions such as Ni(+), Cu(+), and Ag(+) were generated in a flame for analyte ionization. Other than metal ions, the reactive species generated in the fossil fuel flame could also be used to ionize analytes, which formed protonated analyte ions (M + H)(+) in positive ion mode and deprotonated analyte ions (M - H)(-) in negative ion mode.
Phase-separable aqueous amide solutions as a thermal history indicator.
Kitsunai, Makoto; Miyajima, Kentaro; Mikami, Yuzuru; Kim, Shokaku; Hirasawa, Akira; Chiba, Kazuhiro
2008-12-01
Aqueous solutions of several new amide compounds for use as simple thermal history indicators in the low-temperature transport of food and other products were synthesized. The phase transition temperatures of the aqueous solutions can be freely adjusted by changing the amide-water ratio in solution, the sodium chloride concentration of the water, and the type of amide compound. It is expected that these aqueous solutions can be applied as new thermal history indicators.
Diffusion of aqueous solutions of ionic, zwitterionic, and polar solutes
NASA Astrophysics Data System (ADS)
Teng, Xiaojing; Huang, Qi; Dharmawardhana, Chamila Chathuranga; Ichiye, Toshiko
2018-06-01
The properties of aqueous solutions of ionic, zwitterionic, and polar solutes are of interest to many fields. For instance, one of the many anomalous properties of aqueous solutions is the behavior of water diffusion in different monovalent salt solutions. In addition, solutes can affect the stabilities of macromolecules such as proteins in aqueous solution. Here, the diffusivities of aqueous solutions of sodium chloride, potassium chloride, tri-methylamine oxide (TMAO), urea, and TMAO-urea are examined in molecular dynamics simulations. The decrease in the diffusivity of water with the concentration of simple ions and urea can be described by a simple model in which the water molecules hydrogen bonded to the solutes are considered to diffuse at the same rate as the solutes, while the remainder of the water molecules are considered to be bulk and diffuse at almost the same rate as pure water. On the other hand, the decrease in the diffusivity of water with the concentration of TMAO is apparently affected by a decrease in the diffusion rate of the bulk water molecules in addition to the decrease due to the water molecules hydrogen bonded to TMAO. In other words, TMAO enhances the viscosity of water, while urea barely affects it. Overall, this separation of water molecules into those that are hydrogen bonded to solute and those that are bulk can provide a useful means of understanding the short- and long-range effects of solutes on water.
Transepithelial nasal potential difference (NPD) measurements in cystic fibrosis (CF).
Sands, Dorota
2013-01-01
The main underlying physiologic abnormality in cystic fibrosis (CF) is dysfunction of the CF transmembrane conductance regulator (CFTR), which results in abnormal transport of sodium and chloride across epithelial surfaces. CFTR function could be tested in vivo using measurements of nasal transepithelial potential difference (PD). Nasal measurements show characteristic features of CF epithelia, including hyperpolarized baseline readings (basal PD), excessive depolarization in response to sodium channel inhibitors, such as amiloride (ΔAmiloride), and little or no chloride (Cl-) secretion in response to isoproterenol in a chloride-free solution (ΔCl- free-isoproterenol). PD test is applied for CF diagnosis and monitoring of new therapeutic modulations and corrections.
Synthesis, spectroscopic and thermal studies of the copper(II) aspartame chloride complex
NASA Astrophysics Data System (ADS)
Çakır, S.; Coşkun, E.; Naumov, P.; Biçer, E.; Bulut, İ.; İçbudak, H.; Çakır, O.
2002-08-01
Aspartame adduct of copper(II) chloride Cu(Asp) 2Cl 2·2H 2O (Asp=aspartame) is synthesized and characterized by elemental analysis, FT IR, UV/vis, ESR spectroscopies, TG, DTG, DTA measurements and molecular mechanics calculations. Aqueous solution of the green solid absorbs strongly at 774 and 367 nm. According to the FT IR spectra, the aspartame moiety coordinates to the copper(II) ion via its carboxylate ends, whereas the ammonium terminal groups give rise to hydrogen bonding network with the water, the chloride ions or neighboring carboxylate groups. The results suggest tetragonally distorted octahedral environment of the copper ions.
Abnormal Ion Permeation through Cystic Fibrosis Respiratory Epithelium
NASA Astrophysics Data System (ADS)
Knowles, M. R.; Stutts, M. J.; Spock, A.; Fischer, N.; Gatzy, J. T.; Boucher, R. C.
1983-09-01
The epithelium of nasal tissue excised from subjects with cystic fibrosis exhibited higher voltage and lower conductance than tissue from control subjects. Basal sodium ion absorption by cystic fibrosis and normal nasal epithelia equaled the short-circuit current and was amiloride-sensitive. Amiloride induced chloride ion secretion in normal but not cystic fibrosis tissue and consequently was more effective in inhibiting the short-circuit current in cystic fibrosis epithelia. Chloride ion-free solution induced a smaller hyperpolarization of cystic fibrosis tissue. The increased voltage and amiloride efficacy in cystic fibrosis reflect absorption of sodium ions across an epithelium that is relatively impermeable to chloride ions.
Swimming-Induced Taste Aversion and Its Prevention by a Prior History of Swimming
ERIC Educational Resources Information Center
Masaki, Takahisa; Nakajima, Sadahiko
2004-01-01
In two experiments, the evidence showed that 20 min of forced swimming by rats caused aversion to a taste solution consumed before swimming. When one of two taste solutions (sodium saccharin or sodium chloride, counterbalanced across rats) was paired with swimming and the other was not, the rats' intakes of these two solutions showed less…
Installation Assessment of Frankford Arsenal.
1977-10-01
sulfate , sulfuric acid , ac ’solution 40 Hot water bath 41 Nickel plate Nickel sulfate and chloride sulfuric acid , acid ...solution 42 Chromium Copper plate Copper sulfate and sulfuric acid , acid solution 11-14 TABLE 11-2 (continued) Tank No. Plating Process Use Contents...46 Water rinse Water 47 Water rinse Water 48 Water rinse Water 49 Acid Chromic acid , acetic acid , nickel sulfate and sulfuric
Deshwal, Bal Raj; Jin, Dong Seop; Lee, Si Hyun; Moon, Seung Hyun; Jung, Jong Hyeon; Lee, Hyung Keun
2008-02-11
The present study attempts to clean up nitric oxide from the simulated flue gas using aqueous chlorine-dioxide solution in the bubbling reactor. Chlorine-dioxide is generated by chloride-chlorate process. Experiments are carried out to examine the effect of various operating variables like input NO concentration, presence of SO(2), pH of the solution and NaCl feeding rate on the NO(x) removal efficiency at 45 degrees C. Complete oxidation of nitric oxide into nitrogen dioxide occurred on passing sufficient ClO(2) gas into the scrubbing solution. NO is finally converted into nitrate and ClO(2) is reduced into chloride ions. A plausible reaction mechanism concerning NO(x) removal by ClO(2) is suggested. DeNO(x) efficiency increased slightly with the increasing input NO concentration. The presence of SO(2) improved the NO(2) absorption but pH of solution showed marginal effect on NO(2) absorption. NO(x) removal mechanism changed when medium of solution changed from acidic to alkaline. A constant NO(x) removal efficiency of about 60% has been achieved in the wide pH range of 3-11 under optimized conditions.
"Mud" + "Blood"--A Very Colorful Demonstration.
ERIC Educational Resources Information Center
Hambly, Gordon
1998-01-01
Describes a demonstration in which a bloodred-colored solution of hydrogen peroxide, sodium hydroxide, and phenolphthalein indicator is added to a mud-colored solution of potassium permanganate, hydrated manganous chloride, and sulfuric acid. The mixture turns clear when added together. Draws parallels between the demonstration and the Old…
NASA Astrophysics Data System (ADS)
Dang, N. T.; Quan, P. T.; Sang, P. H. P.
2017-06-01
This article studies the use of acacia auriculiformis wood sawdust modified with 4,5-dihydroxy-1,3-bis (methoxymethyl) imidazolidin-2-one (m-DMDHEU) and choline chloride for separating CrO4 2- and H2AsO4 - ions in water. NaOH 0.2N/ethanol 70° solution was used to remove lignin from the raw material, the material was then immersed in m-DMDHEU/choline chloride aqueous solution for 24 hours, after that the material was activated at 140oC for one hour. The ability to adsorb and exchange ions of the material was examined using solutions containing CrO4 2- and H2AsO4 - ions in different conditions. The results suggested that the ability to separate CrO4 2- and H2AsO4 - ions of the modified material was better than that of anion resin at pH = 7.0; the chromate adsorption capacity was the highest in acidic condition; the presence of arsenate (V) anions had no effect on the ability to remove chromate. Lastly, the modified material was used to treat water samples containing concentrations of arsenic similar to groundwater in several arsenic-contaminated areas of Vietnam.
Sudan, B J
2000-08-01
This case study demonstrates that the normal human body frequency, which can be disturbed by electromagnetic influences of the environment, can be modulated by 0.9% sodium chloride solutions (physiological saline) and that occurrence of allergic reactions have subsequently been suppressed as a result of this modulation. The use of distilled water as control showed no effect on occurrence of allergic reactions. Further observations on the growth of various plants in a greenhouse exposed to various geomagnetic fields support the previous observations on humans. The neutralization of electromagnetic influences on humans using 0.9% sodium chloride solution or by enclosure of plants within a copper wire Faraday cage resulting in a normal and uniform growth of plants as compared with disturbed and irregular growth in unenclosed controls, is demonstrated. These original observations propose a new strategy to suppress or prevent allergic reactions and possibly other effects observed in various human pathologies in relation to a disturbance of human body frequencies. It is hypothesized that the double helix structure of desoxyribonucleic acid (DNA) could be modified by environmental electromagnetic fields and that disresonance between the two chains of DNA could lead to the expression of specific pathology. Copyright 2000 Harcourt Publishers Ltd.
An electrochemical rebalance cell for Redox systems
NASA Technical Reports Server (NTRS)
Acevedo, J. C.; Stalnaker, D. K.
1983-01-01
An electrochemical rebalance cell for maintaining electrochemical balance, at the system level, of the acidified aqueous iron chloride and chromium chloride reactant solutions in the redox energy storage system was constructed and evaluated. The electrochemical reaction for the cathode is Fe(+3) + e(-) yields Fe(+2), and that for the anode is 1/2H2 yields H(+) + e(-). The iron (carbon felt) electrode and the hydrogen (platinized carbon) electrode are separated by an anion exchange membrane. The performance of the rebalance cell is discussed as well as the assembly of a single rebalance cell and multicell stacks. Various cell configurations were tested and the results are presented and discussed. The rebalance cell was also used to demonstrate its ability, as a preparative tool, for making high purity solutions of soluble reduced metal ionic species. Preparations of titanium, copper, vanadium and chromium ions in acidified solutions were evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Lepry, William C.; Crum, Jarrod V.
Chlorosodalite has the general form of Na8(AlSiO4)6Cl2 and this paper describes experiments conducted to synthesize sodalite to immobilize a mixed chloride salt using solution-based techniques. Sodalites were made using different Group IV contributions from either Si(OC2H5)4 or Ge(OC2H5)4, NaAlO2, and a simulated spent electrorefiner salt solution containing a mixture of alkali, alkaline earth, and lanthanide chlorides. Additionally, 6 glass binders at low loadings of 5 mass% were evaluated as sintering aids for the consolidation process. The approach of using the organic Group IV additives can be used to produce large quantities of sodalite at room temperature and shows promise overmore » a method where colloidal silica is used as the silica source. However, the small particle sizes inhibited densification during pressure-less sintering.« less
Mid-infrared spectroscopic analysis of saccharides in aqueous solutions with sodium chloride.
Kanou, Mikihito; Kameoka, Takaharu; Suehara, Ken-Ichiro; Hashimoto, Atsushi
2017-04-01
The infrared spectral characteristics of three different types of disaccharides (trehalose, maltose, and sucrose) and four different types of monosaccharides (glucose, mannose, galactose, and fructose) in aqueous solutions with sodium chloride (NaCl) were determined. The infrared spectra were obtained using the FT-IR/ATR method and the absorption intensities respected the interaction between the saccharide and water with NaCl were determined. This study also focused on not only the glycosidic linkage position and the constituent monosaccharides, but also the concentration of the saccharides and NaCl and found that they have a significant influence on the infrared spectroscopic characterization of the disaccharides in an aqueous solution with NaCl. The absorption intensities representing the interaction between a saccharide and water with NaCl were spectroscopically determined. Additionally, the applications of MIR spectroscopy to obtain information about saccharide-NaCl interactions in foods and biosystems were suggested.
Liu, Jingjing; Liu, Dian; Yokoyama, Yuuichi; Yusa, Shin-Ichi; Nakashima, Kenichi
2009-01-20
Polymeric micelles from a new triblock copolymer, polystyrene-block-poly[(3-(methacryloylamino)propyl)trimethylammonium chloride]-block-poly(ethylene oxide) (PS-b-PMAPTAC-b-PEO), were prepared in aqueous solutions and characterized by various techniques including dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence spectroscopy. The micelle consists of a PS core, PMAPTAC shell, and PEO corona. It was revealed by SEM and DLS measurements that the micelles have a spherical structure with a hydrodynamic diameter about 75 nm. The addition of tungstate to the micellar solution caused a morphological change in the micelles from extended to shrunken spheres, which can be attributed to the fact that electrostatic repulsion among the cationic PMAPTAC blocks is canceled by the negative charge of the bound tungstate ions. Effective incorporation of tungstate ions into the micelles were confirmed by TEM and zeta-potential measurements.
The electrodeposition of silver composites using deep eutectic solvents.
Abbott, Andrew P; El Ttaib, Khalid; Frisch, Gero; Ryder, Karl S; Weston, David
2012-02-21
Silver is an important metal for electronic connectors, however, it is extremely soft and wear can be a significant issue. This paper describes how improved wear resistant silver coatings can be obtained from the electrolytic deposition of silver from a solution of AgCl in an ethylene glycol/choline chloride based Deep Eutectic Solvent. An up to 10-fold decrease in the wear volume is observed by the incorporation of SiC or Al(2)O(3) particles. The work also addresses the fundamental aspect of speciation of silver chloride in solution using EXAFS to probe solution structure. The size but not the nature of the composite particles is seen to change the morphology and grain size of the silver deposit. Grain sizes are shown to be consistent with previous nucleation studies. The addition of LiF is found to significantly affect the deposit morphology and improve wear resistance.
Abang, Sariah; Chan, Eng-Seng; Poncelet, Denis
2012-01-01
The objective of this study was to investigate the effects of process variables on the encapsulation of oil in a calcium alginate membrane using an inverse gelation technique. A dispersion of calcium chloride solution in sunflower oil (water-in-oil emulsion) was added dropwise to the alginate solution. The migration of calcium ions to the alginate solution initiates the formation of a ca-alginate membrane around the emulsion droplets. The membrane thickness of wet capsules and the elastic modulus of dry capsules increased following first-order kinetics with an increasing curing time. An increase in the calcium chloride concentration increased the membrane thickness of wet capsules and the elastic modulus of dry capsules. An increase in the alginate concentration decreased the mean diameter of wet capsules but increased the elastic modulus of dry capsules.
Accelerating effect of silica on the indicator reaction o-dianisidine-H(2)O(2).
Beklemishev, M K; Kapanadze, A L; Bakhilina, N V; Dolmanova, I F
2000-02-07
Reaction of oxidation of o-dianisidine (o-D) with H(2)O(2) which is widely used in catalytic methods of analysis in solution has been conducted on silica plates for thin-layer chromatography. The rate of the reaction catalyzed by model compounds (p-toluenesulphonyl chloride, methyl benzoate, benzoic acid, and acrylamide) is noticeably higher on silica than in solution in comparable conditions. The degree of acceleration varies depending on the catalyst and is more pronounced at its lower concentrations. By use of p-toluenesulphonyl chloride determination as an example it has been shown that the accelerating effect of silica enables to decrease the detection limit down to 0.07 nmol cm(-2) (as compared with 4 nmol.cm(-2) in solution); the accuracy is not diminished. It is concluded that catalytic indicator reactions on solid supports may represent high interest for analytical chemists.
Saum, Stephan H; Pfeiffer, Friedhelm; Palm, Peter; Rampp, Markus; Schuster, Stephan C; Müller, Volker; Oesterhelt, Dieter
2013-05-01
Salt acclimation in moderately halophilic bacteria is the result of action of a grand interplay orchestrated by signals perceived from the environment. To elucidate the cellular players involved in sensing and responding to changing salinities we have determined the genome sequence of Halobacillus halophilus, a Gram-positive moderate halophilic bacterium that has a strict requirement for the anion chloride. Halobacillus halophilus synthesizes a multitude of different compatible solutes and switches its osmolyte strategy with the external salinity and growth phase. Based on the emerging genome sequence, the compatible solutes glutamate, glutamine, proline and ectoine have already been experimentally studied. The biosynthetic routes for acetyl ornithine and acetyl lysine are also delineated from the genome sequence. Halobacillus halophilus is nutritionally very versatile and most compatible solutes cannot only be produced but also used as carbon and energy sources. The genome sequence unravelled isogenes for many pathways indicating a fine regulation of metabolism. Halobacillus halophilus is unique in integrating the concept of compatible solutes with the second fundamental principle to cope with salt stress, the accumulation of molar concentrations of salt (Cl(-)) in the cytoplasm. Extremely halophilic bacteria/archaea, which exclusively rely on the salt-in strategy, have a high percentage of acidic proteins compared with non-halophiles with a low percentage. Halobacillus halophilus has an intermediate position which is consistent with its ability to integrate both principles. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Price, Jonathan S.; Woo, Ming-Ko
1990-12-01
A two-dimensional advection dispersion model of solute transport is used to simulate the long-term changes in the chloride distribution of the young isostatically raised beach ridge and depression sequences in a James Bay coastal marsh. The USGS-SUTRA model reproduces the hydraulic conditions in the wetland, causing recharge of freshwater to the ridges and discharge of saline water to the inter-ridge depressions, demonstrating the importance of vertical water fluxes of water and chloride. Even though water velocities are very low, molecular diffusion alone cannot explain the observed chloride distribution. Imposing the characteristics of a frozen surface during winter eliminated the vertical fluxes, and doubled the time required for the simulated chloride distribution to match the field data. The model correctly predicts the observed pattern of suppressed salinity beneath the ridges and a general decrease of salinity with distance inland. The results are useful in understanding the processes which operate in the first 100 years of marsh development.
Tanakamaru, Z; Nishikawa, A; Furukawa, F; Imazawa, T; Lee, I S; Kasahara, K; Tanaka, T; Takahashi, M
1997-11-25
The modifying effects of alpha-difluoromethylomithine (DFMO) on glandular stomach carcinogenesis after initiation with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and sodium chloride were investigated in male outbred Wistar rats. Animals were simultaneously given MNNG solution (100 ppm) as their drinking water and diet supplemented with 10% sodium chloride for 8 weeks, and administered DFMO (dietary levels of 2000 ppm or 500 ppm) and tap water for the following 70 weeks. The DFMO treatment did not show any tendency to inhibit the development of gastric adenocarcinomas. The incidences and multiplicities of atypical hyperplasias in the glandular stomachs were also comparable in all groups of rats given MNNG/sodium chloride. Neither gastric carcinomas nor atypical hyperplasias were observed without the carcinogen treatment. Thus, DFMO did not exert any inhibitory effects when given during the post-initiation phase of two-stage glandular stomach carcinogenesis in rats initiated with MNNG and sodium chloride for 8 weeks.
NASA Technical Reports Server (NTRS)
Nelson, H. G.
1973-01-01
The physical characteristics of stress corrosion cracking of titanium in an aqueous chloride environment are compared with those of embrittlement of titanium by a gaseous hydrogen environment in an effort to help contribute to the understanding of the possible role of hydrogen in the complex stress corrosion cracking process. Based on previous studies, the two forms of embrittlement are shown to be similar at low hydrogen pressures (100 N/sqm) but dissimilar at higher hydrogen pressures. In an effort to quantify this comparison, tests were conducted in an aqueous chloride solution using the same material and test techniques as had previously been employed in a gaseous hydrogen environment. The results of these tests strongly support models based on hydrogen as the embrittling species in an aqueous chloride environment. Further, it is shown that if hydrogen is the causal species, the effective hydrogen fugacity at the surface of titanium exposed to an aqueous chloride environment is equivalent to a molecular hydrogen pressure of approximately 10 N/sqm.
SLC26A9-mediated chloride secretion prevents mucus obstruction in airway inflammation
Anagnostopoulou, Pinelopi; Riederer, Brigitte; Duerr, Julia; Michel, Sven; Binia, Aristea; Agrawal, Raman; Liu, Xuemei; Kalitzki, Katrin; Xiao, Fang; Chen, Mingmin; Schatterny, Jolanthe; Hartmann, Dorothee; Thum, Thomas; Kabesch, Michael; Soleimani, Manoocher; Seidler, Ursula; Mall, Marcus A.
2012-01-01
Asthma is a chronic condition with unknown pathogenesis, and recent evidence suggests that enhanced airway epithelial chloride (Cl–) secretion plays a role in the disease. However, the molecular mechanism underlying Cl– secretion and its relevance in asthma pathophysiology remain unknown. To determine the role of the solute carrier family 26, member 9 (SLC26A9) Cl– channel in asthma, we induced Th2-mediated inflammation via IL-13 treatment in wild-type and Slc26a9-deficient mice and compared the effects on airway ion transport, morphology, and mucus content. We found that IL-13 treatment increased Cl– secretion in the airways of wild-type but not Slc26a9-deficient mice. While IL-13–induced mucus overproduction was similar in both strains, treated Slc26a9-deficient mice exhibited airway mucus obstruction, which did not occur in wild-type controls. In a study involving healthy children and asthmatics, a polymorphism in the 3′ UTR of SLC26A9 that reduced protein expression in vitro was associated with asthma. Our data demonstrate that the SLC26A9 Cl– channel is activated in airway inflammation and suggest that SLC26A9-mediated Cl– secretion is essential for preventing airway obstruction in allergic airway disease. These results indicate that SLC26A9 may serve as a therapeutic target for airway diseases associated with mucus plugging. PMID:22945630
DOE Office of Scientific and Technical Information (OSTI.GOV)
Migdisov, A. A.; Boukhalfa, H.; Timofeev, A.
The speciation of U in NaCl-bearing solutions at temperatures up to 250 °C and concentrations of NaCl up to 1.5 m has been investigated using an in situ spectroscopic technique. The recorded spectra permit us to identify the species present in the solutions as UO 2 2+, UO 2Cl +, and UO 2Cl 2°. UO 2Cl 3 - is also likely present at high temperatures and NaCl concentrations, but concentrations of this species are insufficient for derivation of the formation constants. No evidence was found for species of higher ligand (Cl-) number. Thermodynamic stability constants derived for these species showmore » fair agreement with published data for 25 °C, but differ significantly from those predicted by an earlier high-temperature study (Dargent et al., 2013), which suggested that UO 2Cl 4 2- and UO 2Cl 5 3- contribute significantly to the mass balance of uranyl chloride complexes, especially at high temperature. In contrast, our data suggest that the main uranyl-chloride complex present in aqueous solutions at T >150 °C and concentrations of NaCl relevant to natural hydrothermal systems is UO 2Cl 2°. The values of the logarithms of thermodynamic formation constants (β) for the reaction UO 2 2+ + Cl - = UO 2Cl + are 0.02, 0.25, 0.55, 1.09, 1.59, and 2.28 derived at 25, 50, 100, 150, 200, and 250 °C, respectively. For the reaction UO 2 2+ + 2Cl - = UO 2Cl 2° the values of log β derived at these temperatures are 0.4, 0.58, 0.74, 1.44, 2.18, and 3.42. Values of the formation constant estimated for uranyl-chloride species predict the high concentrations of U observed by Richard et al. (2011) in fluid inclusions of the giant McArthur River unconformity-type uranium deposit.« less
Migdisov, A. A.; Boukhalfa, H.; Timofeev, A.; ...
2017-10-24
The speciation of U in NaCl-bearing solutions at temperatures up to 250 °C and concentrations of NaCl up to 1.5 m has been investigated using an in situ spectroscopic technique. The recorded spectra permit us to identify the species present in the solutions as UO 2 2+, UO 2Cl +, and UO 2Cl 2°. UO 2Cl 3 - is also likely present at high temperatures and NaCl concentrations, but concentrations of this species are insufficient for derivation of the formation constants. No evidence was found for species of higher ligand (Cl-) number. Thermodynamic stability constants derived for these species showmore » fair agreement with published data for 25 °C, but differ significantly from those predicted by an earlier high-temperature study (Dargent et al., 2013), which suggested that UO 2Cl 4 2- and UO 2Cl 5 3- contribute significantly to the mass balance of uranyl chloride complexes, especially at high temperature. In contrast, our data suggest that the main uranyl-chloride complex present in aqueous solutions at T >150 °C and concentrations of NaCl relevant to natural hydrothermal systems is UO 2Cl 2°. The values of the logarithms of thermodynamic formation constants (β) for the reaction UO 2 2+ + Cl - = UO 2Cl + are 0.02, 0.25, 0.55, 1.09, 1.59, and 2.28 derived at 25, 50, 100, 150, 200, and 250 °C, respectively. For the reaction UO 2 2+ + 2Cl - = UO 2Cl 2° the values of log β derived at these temperatures are 0.4, 0.58, 0.74, 1.44, 2.18, and 3.42. Values of the formation constant estimated for uranyl-chloride species predict the high concentrations of U observed by Richard et al. (2011) in fluid inclusions of the giant McArthur River unconformity-type uranium deposit.« less
NASA Astrophysics Data System (ADS)
Migdisov, A. A.; Boukhalfa, H.; Timofeev, A.; Runde, W.; Roback, R.; Williams-Jones, A. E.
2018-02-01
The speciation of U in NaCl-bearing solutions at temperatures up to 250 °C and concentrations of NaCl up to 1.5 m has been investigated using an in situ spectroscopic technique. The recorded spectra permit us to identify the species present in the solutions as UO22+, UO2Cl+, and UO2Cl2°. UO2Cl3- is also likely present at high temperatures and NaCl concentrations, but concentrations of this species are insufficient for derivation of the formation constants. No evidence was found for species of higher ligand (Cl-) number. Thermodynamic stability constants derived for these species show fair agreement with published data for 25 °C, but differ significantly from those predicted by an earlier high-temperature study (Dargent et al., 2013), which suggested that UO2Cl42- and UO2Cl53- contribute significantly to the mass balance of uranyl chloride complexes, especially at high temperature. In contrast, our data suggest that the main uranyl-chloride complex present in aqueous solutions at T > 150 °C and concentrations of NaCl relevant to natural hydrothermal systems is UO2Cl2°. The values of the logarithms of thermodynamic formation constants (β) for the reaction UO22+ + Cl- = UO2Cl+ are 0.02, 0.25, 0.55, 1.09, 1.59, and 2.28 derived at 25, 50, 100, 150, 200, and 250 °C, respectively. For the reaction UO22+ + 2Cl- = UO2Cl2° the values of log β derived at these temperatures are 0.4, 0.58, 0.74, 1.44, 2.18, and 3.42. Values of the formation constant estimated for uranyl-chloride species predict the high concentrations of U observed by Richard et al. (2011) in fluid inclusions of the giant McArthur River unconformity-type uranium deposit.
NASA Astrophysics Data System (ADS)
Tagirov, Boris R.; Baranova, Nina N.; Zotov, Alexandr V.; Akinfiev, Nikolay N.; Polotnyanko, Natalya A.; Shikina, Nadezhda D.; Koroleva, Lyudmila A.; Shvarov, Yuri V.; Bastrakov, Evgeniy N.
2013-09-01
The solubility of PdO(cr) was measured in NaOH (to 0.1m, mol/kg H2O) solutions at 400 °C, 1 kbar, and the solubility of Pd(cr) was determined at 400-500 °C, 1 kbar in acidic chloride solutions (to 1.5m NaCl) buffered with respect to hydrogen. The Pd electrode potential Eo(PdCl42-)/Pd for the reaction PdCl42- + 2e- = Pd(cr) + 4 Cl- was determined at 50 and 70 °C in 1m chloride solutions. These data, together with reliable literature values, were used for calculation of the standard thermodynamic properties and the formation constants for Pd-OH, Pd-Cl, and Pd-S-HS complexes within the framework of the revised Helgeson-Kirkham-Flowers model. It was found that PdCl3- and PdCl42- become the most important Pd complexes in high temperature (t > 300 °C), chloride-rich fluids, and PdCl42- predominates at m(Cl) > 0.1. The stability of Pd-Cl complexes increases sharply with increase in temperature. The near-neutral chloride-sulfide solutions (1m NaCl, <0.1m Stot) can transport Pd at ppm concentration levels at t ⩾ 600 °C, whereas decrease in temperature and increase in pH can lead to effective deposition of Pd minerals. The stability of Pd-S-HS complexes (Pd(°, Pd(HS)3- and PdS(HS)2-) decreases with increase in temperature. Therefore, the role of these complexes in hydrothermal transport of palladium is restricted to the low temperature solutions (t < 100 °C) and sulfur can be considered an efficient depositing agent for Pd. The calculated HKF Equation of State parameters were used to predict thermodynamic properties of Pd2+, Pd-OH, Pd-Cl, and Pd-S-HS complexes to 700 °C, 2 kbar. These parameters are incorporated into the FreeGs web-enabled database (http://www-b.ga.gov.au/minerals/research/methodology/geofluids/thermo/calculator/search.jsp) that can be used for geochemical application of thermodynamic data obtained in the present study.
A mathematical model of a lithium/thionyl chloride primary cell
NASA Technical Reports Server (NTRS)
Evans, T. I.; Nguyen, T. V.; White, R. E.
1987-01-01
A 1-D mathematical model for the lithium/thionyl chloride primary cell was developed to investigate methods of improving its performance and safety. The model includes many of the components of a typical lithium/thionyl chloride cell such as the porous lithium chloride film which forms on the lithium anode surface. The governing equations are formulated from fundamental conservation laws using porous electrode theory and concentrated solution theory. The model is used to predict 1-D, time dependent profiles of concentration, porosity, current, and potential as well as cell temperature and voltage. When a certain discharge rate is required, the model can be used to determine the design criteria and operating variables which yield high cell capacities. Model predictions can be used to establish operational and design limits within which the thermal runaway problem, inherent in these cells, can be avoided.
Djamali, Essmaiil; Chen, Keith; Murray, Richard C; Turner, Peter J; Cobble, James W
2009-02-26
Integral heat of solution measurements of barium chloride to 619.81 K, copper oxide in an excess of perrhenic acid to 585 K, and cobalt perrhenate in perrhenic acid to 573 K were measured in a high dilution calorimeter (< or =10(-3) m) at psat, from which the high temperature thermodynamic properties of aqueous barium chloride, copper perrhenate, and cobalt perrhenate were obtained. From the known differences between the corresponding properties for aqueous perrhenate and chloride ions, the thermodynamic properties of completely ionized aqueous copper and cobalt chloride were obtained from ionic additivity. The enthalpy and derived heat capacity data at higher temperatures (T > 473.15 K) suggest that the ligand field stabilization energy of Co2+(aq) may be disappearing.
NASA Astrophysics Data System (ADS)
Park, Jong-Seok; Kuang, Jia; Gwon, Hui-Jeong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Seob Khil, Myung; Nho, Young-Chang
2013-07-01
In this study, the characterization of zinc chloride incorporated into a poly(acrylic acid) (PAAc) hydrogel prepared by gamma-ray irradiation was investigated. Zinc chloride powder with different concentrations was dissolved in the PAAc solution, and it was crosslinked with gamma-ray irradiation. The effects of various parameters such as zinc ion concentration and irradiation doses on characteristics of the hydrogel formed were investigated in detail for obtaining an antibacterial wound dressing. In addition, the gel content, pH-sensitive (pH 4 or 7) swelling ratio, and UV-vis absorption spectra of the zinc particles in the hydrogels were characterized. Moreover, antibacterial properties of these new materials against Staphylococcus aureus and Escherichia coli strains were observed on solid growth media. The antibacterial tests indicated that the zinc chloride containing PAAc hydrogels have good antibacterial activity.
Goldfarb, P. S. G.; Rodnight, R.
1970-01-01
1. The intrinsic Na+, K+, Mg2+ and Ca2+ contents of a preparation of membrane fragments from ox brain were determined by emission flame photometry. 2. Centrifugal washing of the preparation with imidazole-buffered EDTA solutions decreased the bound Na+ from 90±20 to 24±12, the bound K+ from 27±3 to 7±2, the bound Mg2+ from 20±2 to 3±1 and the bound calcium from 8±1 to <1nmol/mg of protein. 3. The activities of the Na++K++Mg2+-stimulated adenosine triphosphatase and the Na+-dependent reaction forming bound phosphate were compared in the unwashed and washed preparations at an ATP concentration of 2.5μm (ATP/protein ratio 12.5pmol/μg). 4. The Na+-dependent hydrolysis of ATP as well as the plateau concentration of bound phosphate and the rate of dephosphorylation were decreased in the washed preparation. The time-course of formation and decline of bound phosphate was fully restored by the addition of 2.5μm-magnesium chloride and 2μm-potassium chloride. Addition of 2.5μm-magnesium chloride alone fully restored the plateau concentration of bound phosphate, but the rate of dephosphorylation was only slightly increased. Na+-dependent ATP hydrolysis was partly restored with 2.5μm-magnesium chloride; addition of K+ in the range 2–10μm-potassium chloride then further restored hydrolysis but not to the control rate. 5. Pretreatment of the washed preparation at 0°C with 0.5nmol of K+/mg of protein so that the final added K+ in the reaction mixture was 0.1μm restored the Na+-dependent hydrolysis of ATP and the time-course of the reaction forming bound phosphate. 6. The binding of [42K]potassium chloride by the washed membrane preparation was examined. Binding in a solution containing 10nmol of K+/mg of protein was linear over a period of 20min and was inhibited by Na+. Half-maximal inhibition of 42K+-binding required a 100-fold excess of sodium chloride. 7. It was concluded (a) that a significant fraction of the apparent Na+-dependent hydrolysis of ATP observed in the unwashed preparation is due to activation by bound K+ and Mg2+ of the Na++K++Mg2+-stimulated adenosine triphosphatase system and (b) that the enzyme system is able to bind K+ from a solution of 0.5μm-potassium chloride. PMID:4250237
The influence of the chloride gradient across red cell membranes on sodium and potassium movements
Cotterrell, D.; Whittam, R.
1971-01-01
1. A study has been made to see whether active and passive movements of sodium and potassium in human red blood cells are influenced by changing the chloride gradient and hence the potential difference across the cell membrane. 2. Chloride distribution was measured between red cells and isotonic solutions with a range of concentrations of chloride and non-penetrating anions (EDTA, citrate, gluconate). The cell chloride concentration was greater than that outside with low external chloride, suggesting that the sign of the membrane potential was reversed. The chloride ratio (internal/external) was approximately equal to the inverse of the hydrogen ion ratio at normal and low external chloride, and inversely proportional to external pH. These results show that chloride is passively distributed, making it valid to calculate the membrane potential from the chloride ratio. 3. Ouabain-sensitive (pump) potassium influx and sodium efflux were decreased by not more than 20 and 40% respectively on reversing the chloride gradient, corresponding to a change in membrane potential from -9 to +30 mV. In contrast, passive (ouabain-insensitive) movements were reversibly altered — potassium influx was decreased about 60% and potassium efflux was increased some tenfold. Sodium influx was unaffected by the nature of the anion and depended only on the external sodium concentration, whereas ouabain-insensitive sodium efflux was increased about threefold. When external sodium was replaced by potassium there was a decrease in ouabain-insensitive sodium efflux with normal chloride, but an increase in low-chloride medium. 4. Net movements of sodium and potassium were roughly in accord with the unidirectional fluxes. 5. The results suggest that reversing the chloride gradient and, therefore, the sign of the membrane potential, had little effect on the sodium pump, but caused a marked increase in passive outward movements of both sodium and potassium ions. PMID:4996368
Liao, S B; Cheung, K H; Cheung, M P L; To, Y T; O, W S; Tang, F
2013-10-01
The oviduct serves as a site for the fertilization of the ovum and the transport of the conceptus down to the uterus for implantation. In this study, we investigated the presence of adrenomedullin (ADM) and its receptor component proteins in the pig oviduct. The effect of ADM on oviductal secretion, the specific receptor, and the mechanisms involved were also investigated. The presence of ADM and its receptor component proteins in the pig oviduct were confirmed using immunostaining. Short-circuit current (I(sc)) technique was employed to study chloride ion secretion in the oviductal epithelium. ADM increased I(sc) through cAMP- and calcium-activated chloride channels, and this effect could be inhibited by the CGRP receptor antagonist, hCGRP8-37. In contrast, the nitric oxide synthase inhibitor, L-NG-nitroarginine methyl ester (L-NAME), could not block the effect of ADM on I(sc). In summary, ADM may increase oviductal fluid secretion via chloride secretion independent of the nitric oxide pathway for the transport of sperm and the conceptus.
Carmona, Jesús; Climent, Miguel-Ángel; Antón, Carlos; de Vera, Guillem; Garcés, Pedro
2015-01-01
This article shows the research carried out by the authors focused on how the shape of structural reinforced concrete elements treated with electrochemical chloride extraction can affect the efficiency of this process. Assuming the current use of different anode systems, the present study considers the comparison of results between conventional anodes based on Ti-RuO2 wire mesh and a cement-based anodic system such as a paste of graphite-cement. Reinforced concrete elements of a meter length were molded to serve as laboratory specimens, to closely represent authentic structural supports, with circular and rectangular sections. Results confirm almost equal performances for both types of anode systems when electrochemical chloride extraction is applied to isotropic structural elements. In the case of anisotropic ones, such as rectangular sections with no uniformly distributed rebar, differences in electrical flow density were detected during the treatment. Those differences were more extreme for Ti-RuO2 mesh anode system. This particular shape effect is evidenced by obtaining the efficiencies of electrochemical chloride extraction in different points of specimens.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) (with 52% Chlorine) III 2-Chloro-4-ethylamino-6-isopropylamino-5-triazine solution # Choline chloride... Ethylenediaminetetraacetic acid, tetrasodium salt solution Titanium dioxide slurry III 1,1,1-Trichloroethane C 1,1,2...
River Chemistry and Solute Flux in Yellowstone National Park
Hurwitz, Shaul; Eagan, Sean; Heasler, Henry; Mahony, Dan; Huebner, Mark A.; Lowenstern, Jacob B.
2007-01-01
Introduction The Yellowstone Volcano Observatory (YVO) was established to 'To strengthen the long-term monitoring of volcanic and earthquake unrest in the Yellowstone National Park region'. Yellowstone National Park is underlain by a voluminous magmatic system overlain by the most active hydrothermal system on Earth. Tracking changes in water and gas chemistry is of great importance because anomalous fluxes might signal one of the earliest warnings of volcanic unrest. Because of the tremendous number, chemical diversity, and large aerial coverage of Yellowstone's thermal features, it remains daunting to monitor individual features that might serve as proxies for anomalous activity in the hydrothermal system. Sampling rivers provides some advantages, because they integrate chemical fluxes over a very large area and therefore, river fluxes may reveal large-scale spatial patterns (Hurwitz et al., 2007). In addition, based on the application of the chloride-enthalpy method (Fournier, 1979), quantifying chloride flux in rivers provides an estimate of the total heat discharge from the Yellowstone volcanic system (Norton and Friedman 1985; Fournier, 1989; Friedman and Norton, in press). Intermittent sampling of the large rivers draining Yellowstone National Park began in the 1960's (Fournier et al., 1976) and continuous sampling has been carried out since water year (1 October - 30 September) 1983 excluding water years 1995 and 1996 (Norton and Friedman, 1985, 1991; Friedman and Norton, 1990, 2000, 2007). Between 1983 and 2001 only Cl concentrations and fluxes were determined. Starting in water year 2002, the concentrations and fluxes of other anions of possible magmatic origin (F-, Br-, HCO3- , and SO42-) were also determined, and several new sampling sites were established (Hurwitz et al., 2007). The ongoing sampling and analysis of river solute flux is a key component in the current monitoring program of YVO, and it is a collaboration between the U.S. Geological Survey and Yellowstone National Park.
Klager, Brian J.; Kelly, Brian P.; Ziegler, Andrew C.
2014-01-01
The Equus Beds aquifer in south-central Kansas is a primary water-supply source for the city of Wichita. Water-level declines because of groundwater pumping for municipal and irrigation needs as well as sporadic drought conditions have caused concern about the adequacy of the Equus Beds aquifer as a future water supply for Wichita. In March 2006, the city of Wichita began construction of the Equus Beds Aquifer Storage and Recovery project, a plan to artificially recharge the aquifer with excess water from the Little Arkansas River. Artificial recharge will raise groundwater levels, increase storage volume in the aquifer, and deter or slow down a plume of chloride brine approaching the Wichita well field from the Burrton, Kansas area caused by oil production activities in the 1930s. Another source of high chloride water to the aquifer is the Arkansas River. This study was prepared in cooperation with the city of Wichita as part of the Equus Beds Aquifer Storage and Recovery project. Chloride transport in the Equus Beds aquifer was simulated between the Arkansas and Little Arkansas Rivers near the Wichita well field. Chloride transport was simulated for the Equus Beds aquifer using SEAWAT, a computer program that combines the groundwater-flow model MODFLOW-2000 and the solute-transport model MT3DMS. The chloride-transport model was used to simulate the period from 1990 through 2008 and the effects of five well pumping scenarios and one artificial recharge scenario. The chloride distribution in the aquifer for the beginning of 1990 was interpolated from groundwater samples from around that time, and the chloride concentrations in rivers for the study period were interpolated from surface water samples. Five well-pumping scenarios and one artificial-recharge scenario were assessed for their effects on simulated chloride transport and water levels in and around the Wichita well field. The scenarios were: (1) existing 1990 through 2008 pumping conditions, to serve as a baseline scenario for comparison with the hypothetical scenarios; (2) no pumping in the model area, to demonstrate the chloride movement without the influence of well pumping; (3) double municipal pumping from the Wichita well field with existing irrigation pumping; (4) existing municipal pumping with no irrigation pumping in the model area; (5) double municipal pumping in the Wichita well field and no irrigation pumping in the model area; and (6) increasing artificial recharge to the Phase 1 Artificial Storage and Recovery project sites by 2,300 acre-feet per year. The effects of the hypothetical pumping and artificial recharge scenarios on simulated chloride transport were measured by comparing the rate of movement of the 250-milligrams-per-liter-chloride front for each hypothetical scenario with the baseline scenario at the Arkansas River area near the southern part of the Wichita well field and the Burrton plume area. The scenarios that increased the rate of movement the most compared to the baseline scenario of existing pumping between the Arkansas River and the southern boundary of the well field were those that doubled the city of Wichita’s pumping from the well field (scenarios 3 and 5), increasing the rate of movement by 50 to 150 feet per year, with the highest rate increases in the shallow layer and the lowest rate increases in the deepest layer. The no pumping and no irrigation pumping scenarios (2 and 4) slowed the rate of movement in this area by 150 to 210 feet per year and 40 to 70 feet per year, respectively. In the double Wichita pumping scenario (3), the rate of movement in the shallow layer of the Burrton area decreased by about 50 feet per year. Simulated chloride rate of movement in the deeper layers of the Burrton area was decreased in the no pumping and no irrigation scenarios (2 and 4) by 80 to 120 feet per year and 50 feet per year, respectively, and increased in the scenarios that double Wichita’s pumping (3 and 5) from the well field by zero to 130 feet per year, with the largest increases in the deepest layer. In the increased Phase 1 artificial recharge scenario (6), the rate of chloride movement in the Burrton area increased in the shallow layer by about 30 feet per year, and decreased in the middle and deepest layer by about 10 and 60 feet per year, respectively. Comparisons of the rate of movement of the simulated 250-milligrams-per-liter-chloride front in the hypothetical scenarios to the baseline scenario indicated that, in general, increases to pumping in the well field area increased the rate of simulated chloride movement toward the well field area by as much as 150 feet per year. Reductions in pumping slowed the advance of chloride toward the well field by as much as 210 feet per year, although reductions did not stop the movement of chloride toward the well field, including when pumping rates were eliminated. If pumping is completely discontinued, the rate of chloride movement is about 500 to 600 feet per year in the area between the Arkansas River and the southern part of the Wichita well field, and 70 to 500 feet per year in the area near Burrton with the highest rate of movement in the shallow aquifer layer. The averages of simulated water-levels in index monitoring wells in the Wichita well field at the end of 2008 were calculated for each scenario. Compared to the baseline scenario, the average simulated water level was 5.05 feet higher for the no pumping scenario, 4.72 feet lower for the double Wichita pumping with existing irrigation scenario, 2.49 feet higher for the no irrigation pumping with existing Wichita pumping scenario, 1.53 feet lower for the double Wichita pumping with no irrigation scenario, and 0.48 feet higher for the increased Phase 1 artificial recharge scenario. The groundwater flow was simulated with a preexisting groundwater-flow model, which was not altered to calibrate the solute-transport model to observed chloride-concentration data. Therefore, some areas in the model had poor fit between simulated chloride concentrations and observed chloride concentrations, including the area between Arkansas River and the southern part of the Wichita well field, and the Hollow-Nikkel area about 6 miles north of Burrton. Compared to the interpreted location of the 250-milligrams per liter-chloride front based on data collected in 2011, in the Arkansas River area the simulated 250-milligrams per liter-chloride front moved from the river toward the well field about twice the rate of the actual 250-milligrams per liter-chloride front in the shallow layer and about four times the rate of the actual 250-milligrams per liter-chloride front in the deep layer. Future groundwater-flow and chloride-transport modeling efforts may achieve better agreement between observed and simulated chloride concentrations in these areas by taking the chloride-transport model fit into account when adjusting parameters such as hydraulic conductivity, riverbed conductance, and effective porosity during calibration. Results of the hypothetical scenarios simulated indicate that the Burrton chloride plume will continue moving toward the well field regardless of pumping in the area and that one alternative may be to increase pumping from within the plume area to reverse the groundwater-flow gradients and remove the plume. Additionally, the results of modeling these scenarios indicate that eastward movement of the Burrton plume could be slowed by the additional artificial recharge at the Phase 1 sites and that decreasing pumping along the Arkansas River or increasing water levels could retard the movement of chloride and may prevent further encroachment into the southern part of the well field area.
Axillary hyperhidrosis - topical treatment with aluminium chloride hexahydrate
Ellis, Harold; Scurr, John H.
1979-01-01
Forty-two patients with axillary hyperhidrosis on the waiting list for surgery were treated with topical saturated solution of aluminium chloride hexahydrate in absolute alcohol. There have been 7 failures. Three patients were unable to cope with the treatment and 4 more experienced severe local irritation or soreness; these 4 were submitted to local surgery. This is a simple and effective treatment for the majority of cases of severe axillary sweating. PMID:548949
1987-04-01
polymers such as poly[ diallyl dimethyl ammonium chloride] , poly [vinylbenzyl trimethyl ammonium chloride], poly[styrene sulfonic acid , sodium salt] and...poly[acrylic acid ], which would ordinarily dissolve from the electrode surface in aqueous solution unless crosslinked into a network, and several...Irradiation on a Water-Soluble Polymer: DDAC 8 E. Electrochemistry of DDAC Networks on Platinum and Graphite 10 F. Poly [acrylic acid ] Films on Graphite
NASA Astrophysics Data System (ADS)
Choi, Byung Sang
Compared to overwhelming technical data available in other advanced technologies, knowledge about particle technology, especially in particle synthesis from a solution, is still poor due to the lack of available equipment to study crystallization phenomena in a crystallizer. Recent technical advances in particle size measurement such as Coulter counter and laser light scattering have made in/ex situ study of some of particle synthesis, i.e., growth, attrition, and aggregation, possible with simple systems. Even with these advancements in measurement technology, to grasp fully the crystallization phenomena requires further theoretical and technical advances in understanding such particle synthesis mechanisms. Therefore, it is the motive of this work to establish the general processing parameters and to produce rigorous experimental data with reliable performance and characterization that rigorously account for the crystallization phenomena of nucleation, growth, aggregation, and breakage including their variations with time and space in a controlled continuous mixed-suspension mixed-product removal (CMSMPR) crystallizer. This dissertation reports the results and achievements in the following areas: (1) experimental programs to support the development and validation of the phenomenological models and generation of laboratory data for the purpose of testing, refining, and validating the crystallization process, (2) development of laboratory well-mixed crystallizer system and experimental protocols to generate crystal size distribution (CSD) data, (3) the effects of feed solution concentration, crystallization temperature, feed flow rate, and mixing speed, as well as different types of mixers resulting in the evolution of CSDs with time from a concentrated brine solution, (4) with statistically designed experiments the effects of processing variables on the resultant particle structure and CSD at steady state were quantified and related to each of those operating conditions by studying the detailed crystallization processes, such as nucleation, growth, and breakage, as well as agglomeration. The purification of CaCl2 solution involving the crystallization of NaCl from the solution mixture of CaCl2, KCl, and NaCl as shipped from Dow Chemical, Ludington, in a CMSMPR crystallizer was studied as our model system because of its nucleation and crystal growth tendencies with less agglomeration. This project also generated a significant body of experimental data that are available at URL that is http://www.che.utah.edu/˜ring/CrystallizationWeb.
Protons Regulate Vesicular Glutamate Transporters through an Allosteric Mechanism.
Eriksen, Jacob; Chang, Roger; McGregor, Matt; Silm, Katlin; Suzuki, Toshiharu; Edwards, Robert H
2016-05-18
The quantal nature of synaptic transmission requires a mechanism to transport neurotransmitter into synaptic vesicles without promoting non-vesicular efflux across the plasma membrane. Indeed, the vesicular transport of most classical transmitters involves a mechanism of H(+) exchange, which restricts flux to acidic membranes such as synaptic vesicles. However, vesicular transport of the principal excitatory transmitter glutamate depends primarily on membrane potential, which would drive non-vesicular efflux, and the role of protons is unclear. Adapting electrophysiology to record currents associated with the vesicular glutamate transporters (VGLUTs), we characterize a chloride conductance that is gated by lumenal protons and chloride and supports glutamate uptake. Rather than coupling stoichiometrically to glutamate flux, lumenal protons and chloride allosterically activate vesicular glutamate transport. Gating by protons serves to inhibit what would otherwise be substantial non-vesicular glutamate efflux at the plasma membrane, thereby restricting VGLUT activity to synaptic vesicles. Copyright © 2016 Elsevier Inc. All rights reserved.
Manufacturing Chemical Equipment from Titanium - USSR
1960-05-25
hydrochloric, sulfuric and orthophosphoric, oxalic, trichlor- and tri-flour- acetic acids , and of boiling solutions of formic and citric acids . Nor...sulfofrezon and oleinic acid . Titanium dust is explosive , therefore only wet grinding is being used. The cooling is done either by a ten percent solution of...pumping ore of various organic acids , solutions of chlorides, and of moderately concentrated hydrochloric acid.are made of titanium. Such apparatus
Assessment of ground-water contamination in the alluvial aquifer near West Point, Kentucky
Lyverse, M.A.; Unthank, M.D.
1988-01-01
Well inventories, water level measurements, groundwater quality samples, surface geophysical techniques (specifically, electromagnetic techniques), and test drilling were used to investigate the extent and sources of groundwater contamination in the alluvial aquifer near West Point, Kentucky. This aquifer serves as the principal source of drinking water for over 50,000 people. Groundwater flow in the alluvial aquifer is generally unconfined and moves in a northerly direction toward the Ohio River. Two large public supply well fields and numerous domestic wells are located in this natural flow path. High concentrations of chloride in groundwater have resulted in the abandonment of several public supply wells in the West Point areas. Chloride concentrations in water samples collected for this study were as high as 11,000 mg/L. Electromagnetic techniques indicated and test drilling later confirmed that the source of chloride in well waters was probably improperly plugged or unplugged, abandoned oil and gas exploration wells. The potential for chloride contamination of wells exists in the study area and is related to proximity to improperly abandoned oil and gas exploration wells and to gradients established by drawdowns associated with pumped wells. Periodic use of surface geophysical methods, in combination with added observation wells , could be used to monitor significant changes in groundwater quality related to chloride contamination. (USGS)
McNelis, K A
1998-12-01
This study compared the efficacy of a common medication diluent, bacteriostatic 0.9% sodium chloride containing the preservative benzyl alcohol with lidocaine hydrochloride 1% as an intradermal pretreatment for the relief of pain associated with intravenous cannulation. Forty adult presurgical patients requiring two large bore intravenous catheters were used. They served as their own controls. The inner aspect of one forearm received the usual pretreatment, lidocaine hydrochloride 1%, and the inner aspect of the opposite arm received intradermal pretreatment with bacteriostatic 0.9% sodium chloride with the preservative benzyl alcohol. Intravenous cannulation was accomplished on the first attempt, and pain reported with cannulation was rated using a visual analogue scale (VAS). A paired t test was used to compare differences in VAS scores with the pretreatment bacteriostatic 0.9% sodium chloride containing the preservative benzyl alcohol with the pretreatment lidocaine hydrochloride 1%. Analysis of the data revealed no significant difference in the report of perceived pain of intravenous cannulation based on the intradermal pretreatment. These findings suggest that intradermal bacteriostatic 0.9% sodium chloride containing the preservative benzyl alcohol is as effective as intradermal lidocaine hydrochloride 1% in the attenuation of intravenous cannulation pain.
Prabhakaran, Sreekala; Abu-Hasan, Mutasim; Hendeles, Leslie
2017-05-01
For convenience, many pediatric hospitals are preparing solutions for continuous nebulized albuterol using the 0.5% 20-ml multidose albuterol dropper bottle. This product contains benzalkonium chloride (BAC) that, by itself, produces bronchospasm that is dose dependent and cumulative. The bronchoconstrictive effects of BAC are greater in patients with more severe airway obstruction and increased airway responsiveness. Use of BAC-containing albuterol during severe acute asthma exacerbations may antagonize the bronchodilator response to albuterol, prolong treatment, and increase the risk of albuterol-related systemic adverse effects. Such a deleterious effect of BAC is difficult to detect because some patients improve slowly or may even worsen during treatment. We recommend that only preservative-free albuterol products be used. © 2017 Pharmacotherapy Publications, Inc.
PROCESS OF ELECTROPLATING METALS WITH ALUMINUM
Schickner, W.C.
1960-04-26
A process of electroplating aluminum on metals from a nonaqueous bath and a novel method of pretreating or conditioning the metal prior to electrodeposition of the aluminum are given. The process of this invention, as applied by way of example to the plating of uranium, comprises the steps of plating the uranium with the barrier inetal, immersing the barrier-coated uranium in fatty acid, and electrolyzing a water-free diethyl ether solution of aluminum chloride and lithium hydride while making the uranium the cathode until an aluminum deposit of the desired thickness has been formed. According to another preferred embodiment the barrier-coated uranium is immersed in an isopropyl alcohol solution of sterato chromic chloride prior to the fatty acid treatment of this invention.
Preparation, characterization and gas sensing performance of BaTiO3 nanostructured thin films
NASA Astrophysics Data System (ADS)
Suryawanshi, Dinesh N.; Pathan, Idris G.; Bari, Anil. R.; Patil, Lalchand A.
2018-05-01
Spray pyrolysis techniques was employed to prepare BaTiO3 thin films. AR grade solutions of Barium chloride (0.05 M) and Titanium chloride (0.05 M) were mixed in the proportion of 30:70, 50:50 and 70:30. The solutions were sprayed on quartz substrate heated at 350°C temperature to obtain the films. These thin films were annealed for a two hours at 600°C in air medium respectively. The prepared thin films were characterized using XRD, FESEM, EDAX, TEM. The electrical and gas sensing properties of these films were investigated. 50:50 film showed better response to Liquid Petroleum Gas (LPG) as compare 30:70 and 70:30 films.
Aqueous sodium chloride induced intergranular corrosion of Al-Li-Cu alloys
NASA Technical Reports Server (NTRS)
Pizzo, P. P.; Daeschner, D. L.
1986-01-01
Two methods have been explored to assess the susceptibility of Al-Li-Cu alloys to intergranular corrosion in aqueous sodium chloride solution. They are: (1) constant extension rate testing with and without alternate-immersion preexposure and (2) metallographic examination after exposure to a NaCl-H2O2 corrosive solution per Mil-H-6088F. Intergranular corrosion was found to occur in both powder and ingot metallurgy alloys of similar composition, using both methods. Underaging rendered the alloys most susceptible. The results correlate to stress-corrosion data generated in conventional time-to-failure and crack growth-rate tests. Alternate-immersion preexposure may be a reliable means to assess stress corrosion susceptibility of Al-Li-Cu alloys.
NASA Astrophysics Data System (ADS)
Gojani, A. B.; Ohtani, K.; Takayama, K.; Hosseini, S. H. R.
2016-01-01
This paper reports a result of experiments for the determination of reliable shock Hugoniot curves of liquids, in particular, at relatively low pressure region, which are needed to perform precise numerical simulations of shock wave/tissue interaction prior to the development of shock wave related therapeutic devices. Underwater shock waves were generated by explosions of laser ignited 10 mg silver azide pellets, which were temporally and spatially well controlled. Measuring temporal variation of shock velocities and over-pressures in caster oil, aqueous solutions of sodium chloride, sucrose and gelatin with various concentrations, we succeeded to determine shock Hugoniot curves of these liquids and hence parameters describing Tait type equations of state.
Simple guanidinium motif for the selective binding and extraction of sulfate
Seipp, Charles A.; Williams, Neil J.; Bryantsev, Vyacheslav S.; ...
2017-06-30
A simple bidentate anion receptor, shown previously to adopt a rigid pseudobicyclic conformation while binding anions in the solid state, selectively binds sulfate in aqueous solutions with logK1 and logK2 values of 3.78 ± 0.12 M-1 and 2.10 ± 0.23 M-1, respectively. This anion receptor has little to no affinity for nitrate and chloride in the same solutions. A lipophilic derivative was synthesized in four steps to yield an extractant that is capable of partitioning sulfate into 1,2 dichloroethane from water in the presence of large excesses of chloride. This extractant demonstrated D values as high as 2.5 with onlymore » 30 mM of anion receptor.« less
Simple guanidinium motif for the selective binding and extraction of sulfate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seipp, Charles A.; Williams, Neil J.; Bryantsev, Vyacheslav S.
A simple bidentate anion receptor, shown previously to adopt a rigid pseudobicyclic conformation while binding anions in the solid state, selectively binds sulfate in aqueous solutions with logK1 and logK2 values of 3.78 ± 0.12 M-1 and 2.10 ± 0.23 M-1, respectively. This anion receptor has little to no affinity for nitrate and chloride in the same solutions. A lipophilic derivative was synthesized in four steps to yield an extractant that is capable of partitioning sulfate into 1,2 dichloroethane from water in the presence of large excesses of chloride. This extractant demonstrated D values as high as 2.5 with onlymore » 30 mM of anion receptor.« less
Jackman, A.P.; Walters, R.A.; Kennedy, V.C.
1984-01-01
Three models describing solute transport of conservative ion species and another describing transport of species which adsorb linearly and reversibly on bed sediments are developed and tested. The conservative models are based on three different conceptual models of the transient storage of solute in the bed. One model assumes the bed to be a well-mixed zone with flux of solute into the bed proportional to the difference between stream concentration and bed concentration. The second model assumes solute in the bed is transported by a vertical diffusion process described by Fick's law. The third model assumes that convection occurs in a selected portion of the bed while the mechanism of the first model functions everywhere. The model for adsorbing species assumes that the bed consists of particles of uniform size with the rate of uptake controlled by an intraparticle diffusion process. All models are tested using data collected before, during and after a 24-hr. pulse injection of chloride, strontium, potassium and lead ions into Uvas Creek near Morgan Hill, California, U.S.A. All three conservative models accurately predict chloride ion concentrations in the stream. The model employing the diffusion mechanism for bed transport predicts better than the others. The adsorption model predicts both strontium and potassium ion concentrations well during the injection of the pulse but somewhat overestimates the observed concentrations after the injection ceases. The overestimation may be due to the convection of solute deep into the bed where it is retained longer than the 3-week post-injection observation period. The model, when calibrated for strontium, predicts potassium equally well when the adsorption equilibrium constant for strontium is replaced by that for potassium. ?? 1984.
Duff, J.H.; Murphy, F.; Fuller, C.C.; Triska, F.J.
1998-01-01
A new method for collecting pore-water samples in sand and gravel streambeds is presented. We developed a mini drivepoint solution sampling (MINIPOINT) technique to collect pore-water samples at 2.5-cm vertical resolution. The sampler consisted of six small-diameter stainless steel drivepoints arranged in a 10-cm-diameter circular array. In a simple procedure, the sampler was installed in the streambed to preset drivepoint depths of 2.5, 5.0, 7.5, 10.0, 12.5, and 15.0 cm. Sampler performance was evaluated in the Shingobee River, Minnesota, and Pinal Creek, Arizona, by measuring the vertical gradient of chloride concentration in pore water beneath the streambed that was established by the uninterrupted injection to the stream for 3 d. Pore-water samples were withdrawn from all drivepoints simultaneously. In the first evaluation, the vertical chloride gradient was unchanged at withdrawal rates between 0.3 and 4.0 ml min-1 but was disturbed at higher rates. In the second evaluation, up to 70 ml of pore water was withdrawn from each drivepoint at a withdrawal rate of 2.5 ml min-1 without disturbing the vertical chloride gradient. Background concentrations of other solutes were also determined with MINIPOINT sampling. Steep vertical gradients were present for biologically reactive solutes such as DO, NH4/+, NO3/-, and dissolved organic C in the top 20 cm of the streambed. These detailed solute profiles in the hyporheic zone could not have been determined without a method for close interval vertical sampling that does not disturb natural hydrologic mixing between stream water and groundwater.
Physical compatibility of plazomicin with select i.v. drugs during simulated Y-site administration.
Asempa, Tomefa E; Avery, Lindsay M; Kidd, James M; Kuti, Joseph L; Nicolau, David P
2018-06-12
The results of a study to determine the physical compatibility of plazomicin sulfate solution during simulated Y-site administration with 92 i.v. drugs are reported. Plazomicin injection solution (500 mg/10 mL) was diluted in 0.9% sodium chloride or 5% dextrose for injection to a final volume of 50 mL (final plazomicin concentration, 24 mg/mL), consistent with a 15-mg/kg dose administered to an 80-kg patient (i.e., 1,200 mg). All other i.v. drugs were reconstituted according to manufacturers' recommendations and diluted with 0.9% sodium chloride or 5% dextrose for injection to the upper range of concentrations used clinically. Y-site conditions were simulated by mixing 5 mL of plazomicin solution with 5 mL of tested drug solutions in a 1:1 ratio. Solutions were assessed for visual (via color and Tyndall beam testing), turbidity (using a laboratory-grade turbidimeter), and pH changes over a 60-minute observation period. Incompatibility was defined a priori as precipitation, color change, a positive Tyndall test, or a turbidity change of ≥0.5 nephelometric turbidity units at any time during the 60-minute observation period. Plazomicin was physically compatible with 79 of the 92 drugs tested. Determinations of physical incompatibility with plazomicin were made for 13 drugs: albumin, amiodarone, amphotericin B deoxycholate, anidulafungin, calcium chloride, daptomycin, esomeprazole, heparin, levofloxacin, methylprednisolone, micafungin, phenytoin, and propofol, CONCLUSION: Plazomicin at a concentration of 24 mg/mL was physically compatible with 85% of the drugs tested, including 31 of 36 antimicrobial agents. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Sorption of amiodarone to polyvinyl chloride infusion bags and administration sets.
Weir, S J; Myers, V A; Bengtson, K D; Ueda, C T
1985-12-01
The loss of amiodarone from i.v. admixtures to flexible polyvinyl chloride (PVC) infusion bags and i.v. administration sets was studied. Admixtures containing amiodarone hydrochloride 600 micrograms/mL and either 5% dextrose injection or 0.9% sodium chloride injection were stored at room temperature in glass bottles (both with and without contact of the drug solution with the rubber bottle closure), in flexible PVC bags, or in rigid PVC bottles. After 120 hours, the contents of each flexible PVC bag were emptied and replaced by methanol, which was allowed to remain in the bag for an additional 120 hours and was then analyzed for amiodarone content. To determine availability of amiodarone after infusion through a 1.8-m PVC i.v. administration set, solutions stored in glass containers were run through the set at 0.5 mL/min for 90 minutes. Samples of drug solutions were collected at appropriate intervals and analyzed by a stability-indicating high-performance liquid chromatography (HPLC) assay. Admixtures containing 0.9% sodium chloride injection were not stable; visual incompatibility was evident after 24 hours of storage in glass bottles, and no further testing was performed. In admixtures containing 5% dextrose injection that were stored in 50-mL flexible PVC bags, 60% of the initial amiodarone concentration remained after 120 hours; approximately half of the lost drug was recovered with the methanol. In effluent collected from the PVC administration set, 82% of the initial amiodarone concentration remained. Amiodarone concentrations did not decrease appreciably, after storage in glass or rigid PVC bottles, indicating that drug loss was probably affected by the plasticizer, di-2-ethylhexyl phthalate.(ABSTRACT TRUNCATED AT 250 WORDS)
Chen, Fu-Chao; Shi, Xiao-Ya; Li, Peng; Yang, Jin-Guo; Zhou, Ben-Hong
2015-02-01
Tropisetron is an adjuvant for butorphanol used in intravenous patient-controlled analgesia (PCA) and has been reported to provide superior pain control. It is efficacious in reducing the incidence of postoperative nausea and vomiting. However, this admixture is not available commercially and stability data applicable to hospital practice are limited. This study aimed to describe the drug compounding and evaluates the long-term (up to 14 days) stability of butorphanol and tropisetron in 0.9% sodium chloride injection for PCA use.In this study, commercial solutions of butorphanol tartrate and tropisetron hydrochloride were combined and further diluted with 0.9% sodium chloride injection to final concentrations of butorphanol tartrate 0.08 mg/mL and tropisetron hydrochloride 0.05 mg/mL. The polyolefin bags and glass bottles were stored at 4°C and 25°C for up to 14 days. The drug stabilities were determined by visual inspection, pH measurement, and high-pressure liquid chromatography assay of drug concentrations.The data obtained for admixtures prepared and stored at temperatures of 25°C and 4°C show the drugs have maintained at least 98% of the initial concentration. All solutions remained clear and colorless over the 14-day period, and the pH value did not change significantly.The results indicate that admixtures of butorphanol tartrate 0.08 mg/mL and tropisetron hydrochloride 0.05 mg/mL in 0.9% sodium chloride injection solution were stable for 14 days when stored in polyolefin bags or glass bottles at 4°C and 25°C and protected from light. The infusion is feasible for manufacturing in pharmacy aseptic units and can be stored for up to 14 days for routine use in PCA infusions.
Effects of pH on frog gustatory responses to chloride salts of alkali-metal and alkali-earth-metal.
Kumai, T; Nomura, H
1980-01-01
The pH effects on frog gustatory responses to alkali-metal and alkali-earth-metal chloride salts were examined using single fungi-form papilla preparations. Responses to 0.1-0.5 M NaCl were clearly dependent upon the pH of the stimulating solutions. The responses increased as the pH decreased from 6.5 to 4.5 and were almost completely suppressed at pH's above 6.5. There was no significant difference in the pH dependency of the response among alkali-metal chlorides. HCl solutions elicited only a poor response under conditions in which the water response was suppressed by the simultaneous presence of a low NaCl concentration. Responses to alkali-earth-metal chlorides varied in their pH dependency. Response to CaCl2 was slightly affected by pH changes from 4.5 to 9.0, response to SrCl2 was considerably suppressed in the alkaline region, and responses to BaCl2 and MgCl2 were strongly suppressed at pH's above 6.5. BeCl2 solutions showed less marked stimulating effects over the pH range tested. The differences in pH dependency described above suggest the existence of two kinds of receptor sites, one being pH-insensitive sites responsible for the calcium response and the other pH-sensitive sites responsible for the sodium response. A cross-adaptation test appeared to support this possibility. Assuming that the pH effect mentioned is related to changes in the state of ionization of the receptor molecule, the pKa of the ionizable group responsible for the sodium response was determined to be approximately 5.5.
Impact of switching crop type on water and solute fluxes in deep vadose zone
NASA Astrophysics Data System (ADS)
Turkeltaub, T.; Kurtzman, D.; Russak, E. E.; Dahan, O.
2015-12-01
Switching crop type and consequently changing irrigation and fertilization regimes lead to alterations in deep percolation and solute concentrations of pore water. Herein, observations from the deep vadose zone and model simulations demonstrate the changes in water, chloride, and nitrate fluxes under a commercial greenhouse following the change from tomato to lettuce cropping. The site, located above a phreatic aquifer, was monitored for 5 years. A vadose-zone monitoring system was implemented under the greenhouse and provided continuous data on both temporal variations in water content and chemical composition of the pore water at multiple depths in the deep vadose zone (up to 20 m). Following crop switching, a significant reduction in chloride concentration and dramatic increase in nitrate were observed across the unsaturated zone. The changes in chemical composition of the vadose-zone pore water appeared as sequential breakthroughs across the unsaturated zone, initiating at land surface and propagating down toward the water table. Today, 3 years after switching the crops, penetration of the impact exceeds 10 m depth. Variations in the isotopic composition of nitrate (18O and 15N) in water samples obtained from the entire vadose zone clearly support a fast leaching process and mobilization of solutes across the unsaturated zone following the change in crop type. Water flow and chloride transport models were calibrated to observations acquired during an enhanced infiltration experiment. Forward simulation runs were performed with the calibrated models, constrained to tomato and lettuce cultivation regimes as surface boundary conditions. Predicted chloride and nitrate concentrations were in agreement with the observed concentrations. The simulated water drainage and nitrogen leaching implied that the observed changes are an outcome of recommended agricultural management practices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J.G.; Buchanan, R.A.
Aqueous corrosion and corrosion-sensitive embrittlement of iron aluminides were characterized as functions of environment, alloying content, notch sensitivity, and strain rate. Polarization resistance and cyclic anodic polarization evaluations were performed in 3.5 wt % NaCl, 200 ppM Cl{sup {minus}} (pH = 4), and 1 N NaOH solutions. In the mild acid-chloride solution [200 ppM Cl{sup {minus}} (pH = 4)], the pitting-corrosion resistance of the new lean-aluminum iron aluminides (FAP-Y and CM-Mo) was comparable to that of the Fe{sub 3}Al-based FAL-Mo. In the higher-chloride 3.5 wt % NaCl, the resistance of CM-Mo was slightly less but FAP-Y showed quite similar behaviormore » to FAL-Mo. In 1 N NaOH solution, all materials exhibited ideal passive behavior. Under slow-strain-rate test conditions in the mild acid-chloride electrolyte, prior work had shown the ductilities (% elongations) of Fe{sub 3}Al-based materials to be {approximately}7% and {approximately}1% at the freely-corroding and hydrogen-charging potentials, respectively. Present studied on the lean-aluminum materials have shown the ductilities to be {approximately}17% and {approximately}5%, respectively. Thus, the present results indicate that these new materials have reasonably-good aqueous-corrosion properties in chloride environments and significantly-enhanced ductilities under aqueous corrosion conditions. The strain rate and notch sensitivities of high-aluminum iron aluminide (FA-129) were investigated by performing slow-strain-rate tests. The notch sensitivity was independent of strain rate and the notch sensitivity in the aqueous environment was similar to that in air.« less
Healy, Richard W.; Rice, Cynthia A.; Bartos, Timothy T.; P. McKinley, Michael
2008-01-01
Development of coal‐bed natural gas (CBNG) in the Powder River Basin, Wyoming, has increased substantially in recent years. Among environmental concerns associated with this development is the fate of groundwater removed with the gas. A preferred water‐management option is storage in surface impoundments. As of January 2007, permits for more than 4000 impoundments had been issued within Wyoming. A study was conducted on changes in water and sediment chemistry as water from an impoundment infiltrated the subsurface. Sediment cores were collected prior to operation of the impoundment and after its closure and reclamation. Suction lysimeters were used to collect water samples from beneath the impoundment. Large amounts of chloride (12,300 kg) and nitrate (13,500 kg as N), most of which accumulated naturally in the sediments over thousands of years, were released into groundwater by infiltrating water. Nitrate was more readily flushed from the sediments than chloride. If sediments at other impoundment locations contain similar amounts of chloride and nitrate, impoundments already permitted could release over 48 × 106 kg of chloride and 52 × 106 kg of nitrate into groundwater in the basin. A solute plume with total dissolved solid (TDS) concentrations at times exceeding 100,000 mg/L was created in the subsurface. TDS concentrations in the plume were substantially greater than those in the CBNG water (about 2300 mg/L) and in the ambient shallow groundwater (about 8000 mg/L). Sulfate, sodium, and magnesium are the dominant ions in the plume. The elevated concentrations are attributed to cation‐exchange‐enhanced gypsum dissolution. As gypsum dissolves, calcium goes into solution and is exchanged for sodium and magnesium on clays. Removal of calcium from solution allows further gypsum dissolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darkins, Robert; Sushko, Maria L.; Liu, Jun
2015-02-11
Amphiphilic aggregation at solid-liquid interfaces can generate mesostructured micelles that can serve as soft templates. In this study we have simulated the self-assembly of hexadecyltrimethylammonium chloride (C16TAC) surfactants at the Si(100)- and Si(111)-aqueous interfaces. The surfactants are found to form semicylindrical micelles on Si(100) but hemispherical micelles on Si(111). This difference in micelle structure is shown to be a consequence of the starkly different surface topographies that result from the reconstruction of the two silicon surfaces. This reveals that micelle structure can be governed by epitaxial matching even with non-polar substrates.
Zhang, Yiming; Zhang, Wei; Cházaro-Ruiz, Luis F
2018-05-01
In this work, polyvinylidene fluoride (PVDF)/polyaniline (PANI) heterogeneous anion-exchange membranes filled with pore-forming agents polyvinylpyrrolidone (PVP) and lithium chloride were prepared by the solution-casting technique using the solvent 1-methyl-2-pyrrolidone (NMP) and a two-step phase inversion procedure. Key properties of the as-prepared membranes, such as hydrophilicity, water content, ion exchange capacity, fixed ion concentration, conductivity and transport number were examined and compared between membranes in different conditions. The pore-forming hydrophilic additives PVP and lithium chloride to the casting solution appeared to improve the ion-exchange membranes (IEMs) by increasing the conductivity, transport number and hydrophilicity. The effects of increasing membrane drying time on the porosity of the as-prepared membranes were found to lower membrane porosity by reducing membrane water content. However, pore-forming agents were found to be able to stabilise membrane transport number with different drying times. As-prepared PVDF/PANI anion-exchange membrane with pore-forming agent is demonstrated to be a more efficient candidate for water purification (e.g. desalination) and other industrial applications.
Lu, Guojin; Zangari, Giovanni
2005-04-28
The electrochemical deposition of Pt on highly oriented pyrolytic graphite (HOPG) from H2PtCl6 solutions was investigated by cyclic voltammetry and chronoamperometry. The effects of deposition overpotential, H2PtCl6 concentration, supporting electrolyte, and anion additions on the deposition process were evaluated. Addition of chloride inhibits Pt deposition due to adsorption on the substrate and blocking of reduction sites, while SO4(2-) and ClO4- slightly promote Pt reduction. By comparing potentiostatic current-time transients with the Scharifker-Hills model, a transition from progressive to instantaneous nucleation was observed when increasing the deposition overpotential. Following addition of chloride anions the fit of experimental transients with the instantaneous nucleation mode improves, while the addition of SO4(2-) induces only small changes. Chloride anions strongly inhibit the reduction process, which is shifted in the cathodic direction. The above results indicate that the most appropriate conditions for growing Pt nanoparticles on HOPG with narrow size distribution are to use an H2PtCl6 solution with HCl as supporting electrolyte and to apply a high cathodic overpotential.
The Effect of Silver Chloride Formation on the Kinetics of Silver Dissolution in Chloride Solution
Ha, Hung; Payer, Joe
2011-01-01
The precipitation and growth of AgCl on silver in physiological NaCl solution were investigated. AgCl was found to form at bottom of scratches on the surface which may be the less effective sites for diffusion or the favorable sites for heterogeneous nucleation. Patches of silver chloride expanded laterally on the substrate until a continuous film formed. The ionic transport path through this newly formed continuous film was via spaces between AgCl patches. As the film grew, the spaces between AgCl patches closed and ion transport was primarily via micro-channels running through AgCl patches. The decrease of AgCl layer conductivity during film growth were attributed to the clogging of micro-channels or decrease in charge carrier concentration inside the micro-channels. Under thin AgCl layer, i.e. on the order of a micrometer, the dissolution of silver substrate was under mixed activation-Ohmic control. Under thick AgCl layer, i.e. on the order of tens of micrometers, the dissolution of silver substrate was mediated by the Ohmic resistance of AgCl layer. PMID:21516171
Engineering controls for furniture strippers to meet the OSHA methylene chloride PEL.
Estill, Cheryl Fairfield; Watkins, Daniel S; Shulman, Stanley A; Kurimo, Robert W; Kovein, Ronald J
2002-01-01
This case study demonstrates how methylene chloride exposures during furniture stripping can be reduced to below the Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) of 25 ppm (as an 8-hour time-weighted average). Five surveys were conducted at one facility; the first four resulted in employee exposure geometric means from 39 to 332 ppm. For the fifth survey local exhaust ventilation was used at the stripping tank and the rinsing area, which together exhausted 138 m3/min (4860 ft3/min). Additional controls included providing adequate make-up air, adding paraffin wax to the stripping solution, raising the level of the stripping solution in the tank, and discussing good work practices with the employee. The employees' methylene chloride exposures during the fifth survey resulted in a geometric mean of 5.6 ppm with a 95% upper confidence limit of 8.3 ppm, which was found to be significantly lower than the OSHA PEL and the OSHA action level of 12.5 ppm. The cost of the ventilation system was $8900.
Zinc Chloride Influence on The Resins Furan Polymerization to Foundry Moulds
NASA Astrophysics Data System (ADS)
de Miranda, Leila Figueiredo; Vale, Marcus; Júnior, Antonio Hortêncio Munhoz; Masson, Terezinha Jocelen; de Andrade e Silva, Leonardo Gondin
The resins used in foundry molds developed for the automotive market has led to major changes in the manufacturing method of foundry molds. The polymerization of these resins and a subsequent curing are used to connect to the foundry sand in a rigid structure capable of receiving and holding liquid metal. It is essential to know the process of polymerization of these resins and their impact on the final properties of the obtained molds, especially in the mechanical characteristics. In this work it was studied the influence of the addition of zinc chloride (in solution) in the sand-furan resin mixture, with the aim of reducing the relation between the extraction time intervals and time bench life. The results showed that addition of percentages of the order of 5.0wt% to 7.5wt% zinc chloride solution reduces this ratio between 10% and 17%; this means that the casting model may be extracted from the sand mass in a smaller time interval increasing the productivity of manufacturing molds. It was also observed that there was also an increase of 9% to 18% in bench life intervals.
Dumetz, André C; Lewus, Rachael A; Lenhoff, Abraham M; Kaler, Eric W
2008-09-16
When added to protein solutions, poly(ethylene glycol) (PEG) creates an effective attraction between protein molecules due to depletion forces. This effect has been widely used to crystallize proteins, and PEG is among the most successful crystallization agents in current use. However, PEG is almost always used in combination with a salt at either low or relatively high concentrations. Here the effects of sodium chloride and ammonium sulfate concentration on PEG 8000/ovalbumin liquid-liquid (L-L) phase separation are investigated. At low salt the L-L phase separation occurs at decreasing protein concentration with increasing salt concentration, presumably due to repulsive electrostatic interactions between proteins. At high salt concentration, the behavior depends on the nature of the salt. Sodium chloride has little effect on the L-L phase separation, but ammonium sulfate decreases the protein concentration at which the L-L phase separation occurs. This trend is attributed to the effects of critical fluctuations on depletion forces. The implications of these results for designing solution conditions optimal for protein crystallization are discussed.
Influence of perfusate temperature on nasal potential difference.
Bronsveld, Inez; Vermeulen, François; Sands, Dorotha; Leal, Teresinha; Leonard, Anissa; Melotti, Paola; Yaakov, Yasmin; de Nooijer, Roel; De Boeck, Kris; Sermet, Isabelle; Wilschanski, Michael; Middleton, Peter G
2013-08-01
Nasal potential difference (NPD) quantifies abnormal ion transport in cystic fibrosis. It has gained acceptance as an outcome measure for the investigation of new therapies. To quantify the effect of solution temperature on NPD, we first examined the effect of switching from room temperature (20-25°C) to warmed (32-37°C) solutions and vice versa during each perfusion step. Secondly, standard protocols were repeated at both temperatures in the same subjects. Changing solution temperature did not alter NPD during perfusion with Ringer's solution (<1 mV) (p>0.1). During perfusion with zero chloride solution, changing from room temperature to warmed solutions tended to decrease absolute NPD (i.e. it became less negative) by 0.9 mV (p>0.1); changing from warmed to room temperature increased NPD by 2.1 mV (p<0.05). During isoprenaline perfusion, changing from room temperature to warmed solutions increased NPD by 1.5 mV (p<0.01) and from warmed to room temperature decreased NPD by 1.4 mV (p<0.05). For full protocols at room temperature or warmed in the same subjects, mean values were similar (n = 24). During warmed perfusion, group results for total chloride response had a larger standard deviation. As this increased variability will probably decrease the power of trials, this study suggests that solutions at room temperature should be recommended for the measurement of NPD.
Characterization of cobalt(II) chloride-modified condensation polyimide films
NASA Technical Reports Server (NTRS)
Rancourt, J. D.; Taylor, L. T.
1988-01-01
The effect of solvent extraction on the properties of cobalt(II) chloride-modified polyimide films was investigated. Solvent-cast films were prepared from solutions of cobalt chloride in poly(amide acid)/N,N-dimethylacetamide (DMAc) and were subsequently dried and cured in static air, forced air, or inert gas ovens with controlled humidity. The films were extracted by either of the three processes (1) soaking in a tray with distilled water at room temperature, (2) soxhlett extraction with distilled water, or (3) soxhell extraction with DMAc. Extraction with DMAc was found to remove both cobalt and chlorine from the films and to slightly increase bulk thermal stability and both surface resistivity and electrical resistivity.
Chloride removal from recycled cooling water using ultra-high lime with aluminum process.
Abdel-Wahab, Ahmed; Batchelor, Bill
2002-01-01
Chloride is a deleterious ionic species in cooling water systems because it promotes corrosion, and most of the scale and corrosion inhibitors are sensitive to chloride concentration in the water. Chloride can be removed from cooling water by precipitation as calcium chloroaluminate [Ca4Al2Cl2(OH)12]. A set of equilibrium experiments and one kinetic experiment were conducted to evaluate chloride removal using the ultra-high lime with aluminum (UHLA) process and to characterize the equilibrium conditions of calcium chloroaluminate precipitation. A total of 48 batch-equilibrium experiments were conducted on a 30 mM NaCl solution over a range of values for lime dose (0 to 200 mM) and sodium aluminate dose (0 to 100 mM). Experimental results showed that the UHLA process can remove chloride and that the formation of a calcium chloroaluminate solid phase is a reasonable mechanism that is able to adequately describe experimental results. An average value of the ion activity product of 10(-94.75) was obtained and can be used as an estimate of the solubility product for Ca4Al2Cl2(OH)12.
ALT-114 and ALT-118 Alternative Approaches to NIST-Traceable Reference Gases
In 2016, US EPA approved two separate alternatives (ALT 114 and ALT 118) for the preparation and certification of Hydrogen Chloride (HCl) and Mercury (Hg) cylinder reference gas standards that can serve as EPA Protocol gases where EPA Protocol are required, but unavailable. The a...
Hemley, J.J.; Cygan, G.L.; Fein, J.B.; Robinson, G.R.; d'Angelo, W. M.
1992-01-01
Experimental studies, using cold-seal and extraction vessel techniques, were conducted on Fe, Pb, Zn, and Cu sulfide solubilities in chloride soultions at temperatures from 300?? to 700??C and pressures from 0.5 to 2 kbars. The solutions were buffered in pH by quartz monzonite and the pure potassium feldspar-muscovite-quartz assemblage and in fS2-fO2 largely by the assemblage pyrite-pyrrhotite-magnetite. Solubilities increase with increasing temperature and total chloride, and decrease with increasing pressure. The effect of increasing chloride concentration on solubility reflects primarily a shift to lower pH via the silicate buffer reactions. Similarity in behaviour with respect to the temperature and pressure of Fe, Zn, and Pb sulfide solubilities points to similarity in chloride speciation, and the neutral species appear to be dominant in the high-temperature region. -from Authors
Saum, Stephan H; Müller, Volker
2008-01-01
The moderate halophile Halobacillus halophilus is the paradigm for chloride dependent growth in prokaryotes. Recent experiments shed light on the molecular basis of the chloride dependence that is reviewed here. In the presence of moderate salinities Halobacillus halophilus mainly accumulates glutamine and glutamate to adjust turgor. The transcription of glnA2 (encoding a glutamine synthetase) as well as the glutamine synthetase activity were identified as chloride dependent steps. Halobacillus halophilus switches its osmolyte strategy and produces proline as the main compatible solute at high salinities. Furthermore, Halobacillus halophilus also shifts its osmolyte strategy at the transition from the exponential to the stationary phase where proline is exchanged by ectoine. Glutamate was found as a “second messenger” essential for proline production. This observation leads to a new model of sensing salinity by sensing the physico-chemical properties of different anions. PMID:18442383
DESCRIPTIVE ANALYSIS OF DIVALENT SALTS
YANG, HEIDI HAI-LING; LAWLESS, HARRY T.
2005-01-01
Many divalent salts (e.g., calcium, iron, zinc), have important nutritional value and are used to fortify food or as dietary supplements. Sensory characterization of some divalent salts in aqueous solutions by untrained judges has been reported in the psychophysical literature, but formal sensory evaluation by trained panels is lacking. To provide this information, a trained descriptive panel evaluated the sensory characteristics of 10 divalent salts including ferrous sulfate, chloride and gluconate; calcium chloride, lactate and glycerophosphate; zinc sulfate and chloride; and magnesium sulfate and chloride. Among the compounds tested, iron compounds were highest in metallic taste; zinc compounds had higher astringency and a glutamate-like sensation; and bitterness was pronounced for magnesium and calcium salts. Bitterness was affected by the anion in ferrous and calcium salts. Results from the trained panelists were largely consistent with the psychophysical literature using untrained judges, but provided a more comprehensive set of oral sensory attributes. PMID:16614749
Effect of alpha/gamma phase ratio on corrosion behavior of dual-phase stainless steels.
Lim, Y J; Reyes, M; Thongthammachat, S; Sukchit, K; Panich, M; Oshida, Y
1999-01-01
Dual-phase stainless steels have been developed in order to reduce the nickel content, which is potentially responsible to an allergic reaction when these steels are used as medical or dental applications. In this study, two different dual-phase stainless steels (2205 and Z100) were electrochemically tested to evaluate their corrosion resistance in three corrosive solutions (i.e., synthetic saliva, 0.9% NaCl solution, and Ringer solution). Particularly, an attempt was made to correlate the corrosion resistance to a metallographic parameter, which is, in this study, the alpha/gamma phase ratio. It was concluded that (1) type 2205 stainless steel exhibited excellent corrosion resistance in all three corrosion media; however 2205 stainless steel decreases its corrosion resistance by increasing chloride concentration in tested electrolytes from synthetic saliva through 0.9% NaCl solution to Ringer solution. (2) X-ray diffraction analysis indicated that the alpha/gamma phase ratio of 2205 (1.735) was higher than that of Z100 (0.905). As a result, it is suggested that by increasing the alpha/gamma phase ratio the material shows more corrosion-prone behavior when being subjected to a hostile environment containing higher chloride ion concentration.
Aoun, Georges; Cassia, Antoine; Berberi, Antoine
2015-06-01
Effective denture hygiene is important for patients suffering from denture stomatitis (DS). This study aimed to evaluate the efficacy of a solution containing 0.12% chlorhexidine (CHX) digluconate and 0.05% cetylpyridinium chloride (CPC) in eliminating Candida albicans colonizing dentures. Forty denture wearers (11 men, 29 women; age range 40 to 80 years) with clinical evidence of DS were randomly divided into two groups, one test and one control. The dentures of the test group were treated by immersion in a solution of 0.12% CHX and 0.05% CPC while those of the control group were immersed in distilled water. Swabs were collected from the fitting surfaces of the upper dentures prior and post cleaner use and examined mycologically. Reduction in the number of colony-forming units (CFU) of Candida albicans after immersion of the dentures in a solution of 0.12% CHX and 0.05% CPC was significantly greater than that of the control group. A solution of 0.12% CHX and 0.05% CPC tested as a product of disinfection of the acrylic dentures showed significant results after immersion of 8 night hours for 4 days.
1984-03-01
contains many inorganic and organic chemicals such as sodium , nitrate, detergents, and volatile organic compounds which can be toxic and render a ground...1983-- 51 24 . sodium in ground water, 1983---------------------------- 53 25 . chloride in ground water, 1983-------------------------- 54 26...contains elevated concentrations of chloride, sodium , boron, nitrogen, detergents, and other constituents of the treated sewage. The plume was
Modified Activated Carbon Perchlorate Sorbents
2007-01-25
Yield 4.64 g. Methyl Chloride Alkylated Activated Carbon Methyl chloride (MeCl) treatment was carried out in a tube furnace generally in...with alkylation agents lowers the solution pH as the basic sites are alkylated . In the case of Me2SO4 treatment , the low slurry pH is believed to be...by Cannon and coworkers, the alkylated carbons are not significantly better. In the case of the SAI carbons, ammonia treatment does not result in a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasschau, M.R.; Skaggs, M.M.; Chen, E.C.M.
Stress has been reported to accelerate protein catabolism in man and animals and as a result one can expect to observe changes in certain amino acids pools of these organisms. In the present study, the Gulf Coast sea anemone, Bunodosoma cavernata, was used as the test animal and free amino acid levels of whole animals were measured following stressed conditions. Sea anemones were chosen as the test animals since they are sessile and, due to the nature of their morphology, they have few mechanisms by which they can escape environmental stress. The animals were exposed to sublethal concentrations of mercuricmore » chloride and cadmium chloride and the organic amines, aniline, diethanol amine (DEA), and ethylene diamine (EDA). Chloride salts of mercury and cadmium were chosen rather than other anions since chloride is the most abundant anion in seawater. These two particular metals were chosen as challenge compounds due to their high toxicity in aquatic systems. The three organic amines were chosen for their relatively high water solubility and low vapor pressure in an aqueous solution, thus insuring that the toxic compound is retained in the test solution. Since organic amines are used extensively in the Gulf Coast industrial complex, there is a high probability of these compounds contaminating the marine environment. Results indicate that the reaction of B. cavernata to stress from organic amines is similar to the response to heavy metals, only more extensive.« less
Swaile, D F; Elstun, L T; Benzing, K W
2012-03-01
Individuals with axillary hyperhidrosis have much higher than average sweat rates and are often prescribed anhydrous aluminum chloride (AlCl(3)) solutions. Topical application of these solutions can be irritating to the skin, resulting in poor compliance and lower than desired efficacy. Demonstrate the efficacy of an over the counter "clinical strength" soft-solid antiperspirant using a night time application regimen and compare to a prescription aluminum chloride (6.5%) antiperspirant using male panelists. Gravimetric hot room efficacy testing (100 F and 35% Humidity) was performed comparing an over the counter soft-solid antiperspirant to placebo in a single test. Two separate gravimetric tests were placed comparing a prescription aluminum chloride (6.5%) antiperspirant to the same soft solid product using an intent to treat model. Skin irritation was assessed daily by a trained grader. Placebo testing resulted in 85% of panelists having a reduction in sweating rate greater than 50%. Comparison testing showed the over the counter soft solid reduced sweat rate by an average of 34% better than the prescription product while resulting significantly less skin irritation. Over the counter "clinical strength" soft-solid antiperspirants can be considered as an alternative treatment to aluminum chloride antiperspirants for the treatment of heavy sweating. © 2012 The Author. BJD © 2012 British Association of Dermatologists.
Su, Nan-Wei; Wang, Mei-Ling; Kwok, Kam-Fu; Lee, Min-Hsiung
2005-03-09
This study investigated the effects of temperature and sodium chloride concentration on the proteolytic and amylolytic activities of soy sauce koji. The optimal temperatures for both protease and amylase were found in the range of 50-55 degrees C. The protease was not stable at 55 degrees C and retained only approximately 20% residual activity after incubation at 55 degrees C for 4 h. The protease was labile in sodium chloride solution, whereas the amylase was quite stable. The residual protease activity in an 18% NaCl solution was only approximately 3%. The harvested koji was mixed with 1.5 volumes of water (v/w) and incubated at 45 degrees C for 48 h; the total nitrogen and amino nitrogen contents were 1.3 and 0.56%, respectively. The results indicated that the hydrolysis of koji at the critical temperature of 45 degrees C could be employed as a rapid fermentation method to reduce the time for soy sauce manufacturing. According to this study, the combination of 5% sodium chloride and fermentation at 45 degrees C was considered as the best condition for the prohydrolysis of koji for making soy sauce. In addition, the critical temperature of 45 degrees C was very important when used in the preparation of protein hydrolysates for the flavoring industry and for the preparation of biologically active peptides.
The three-dimensional movement of a tracer plume containing bromide and chloride is investigated using the data base from a large-scale natural gradient field experiment on groundwater solute transport. The analysis focuses on the zeroth-, first-, and second-order spatial moments...
A precise ion chromatography method has been developed for the determination of chloride in high ionic strength ammonium acetate solutions (10-5 M-5 M) using sodium carbonate/sodium bicarbonate as eluent. Negative ion electrospray ionization (ESI) mass spectrometry was used for q...
NASA Astrophysics Data System (ADS)
Hayashi, Yui; Takada, Noriharu; Wahyudiono, Kanda, Hideki; Goto, Motonobu
2017-05-01
Active chlorine species such as chlorine molecules and hypochlorous acid have been known as high performance sanitizers. They would act more reactive on chemical and biological substances when an electrical discharge was introduced in water containing an electrolyte substance. Here, the reaction of chloride (Cl-) ions were examined by introducing of a pulsed discharge plasma in sodium chloride (NaCl) solution as an electrolyte solution at room temperature. The results show that a large electrical current generated by the pulsed discharge plasma affected the reaction of Cl- ions to result available chlorine. The reaction pathway for available chlorine production was assumed similar with the reaction pathway as electrolysis. A pulsed discharge plasma in NaCl solution in the presence of argon (Ar) fine bubbles exhibited intense emissions and high electron density compared to when no Ar fine bubbles were introduced. At these conditions, the dissociation reaction rate of water increased drastically leads to the formation of 0 atoms. As a result, the reaction of Cl- ions and the available chlorine generation were also increased.
Milosev, I; Minović, A
2001-01-01
The mechanism of corrosion of Cu-xZn alloys (x = 10-40 wt %) in slightly alkaline chloride solutions was investigated by analysing solid reaction products by energy dispersive X-ray analysis (EDS) and dissolved reaction products by differential anodic pulse stripping (DAPS) voltammetry. The corrosion process was studied under open circuit and under potentiostatic conditions at selected potentials. Pure metals were studied comparatively so that an interacting effect of particular metal components in the alloy could be determined. All four Cu-xZn alloys show an improved behaviour compared to pure metals. Under open-circuit condition both components dissolve simultaneously in the solution. With increasing immersion time the preferential, dissolution of zinc in the solution becomes pronounced. It is the highest for Cu-10Zn and the lowest for Cu-30Zn alloy. Under potentiostatic control the dissolution mechanism depends on the electrode potential and changes from exclusive dissolution of zinc to simultaneous dissolution of both components with preferential dissolution of zinc. The latter decreases, as the electrode potential becomes more positive.
Broumand, Atefeh; Emam-Djomeh, Zahra; Khodaiyan, Faramarz; Mirzakhanlouei, Sasan; Davoodi, Driush; Moosavi-Movahedi, Ali A
2015-01-22
Electrospun nano-web structures (ENWSs) were successfully fabricated from ionized binary solution of cellulose(Mn30)/polyethylene oxide(Mn200) (CA/PEO of 0.5-1.5). Final concentration of polymers was 12% (w/v) in the solution, and lithium chloride was used as ionizing agent. Response surface methodology (RSM) was applied to the optimize fabrication of ENWSs. Results of multiple linear regression analysis revealed that the solution properties and ENWSs morphology were strongly influenced by CA/PEO. An increase in PEO amount increased the viscosity which is a function of molecular weight, and as a result raised the entanglement of polymeric solution but decreased the surface tension that all support nanofibers fabrication. The size of nanofibers decreased with reducing PEO and LiCl concentration. Increasing the content of LiCl promoted the electrical conductivity (EC) value; however, junction zones were formed. The overall optimum region was found to be at combined level of 1.5% CA/PEO and 0.49% (w/v) LiCl. Copyright © 2014 Elsevier Ltd. All rights reserved.
Isotonicity of liver and of kidney tissue in solutions of electrolytes.
OPIE, E L
1959-07-01
Solutions of a wide variety of electrolytes, isotonic with liver or with kidney tissue, have approximately the same osmotic pressure as solutions of sodium chloride isotonic with tissues of the two organs respectively; that is, with solutions approximately twice as concentrated as the sodium chloride of mammalian blood plasma. The molar concentration of various electrolytes isotonic with liver or with kidney tissue immediately after its removal from the body is determined by the molecular weight, valency, and ion-dissociation of these electrolytes in accordance with the well known conditions of osmosis. The plasma membranes of liver and of kidney cells are imperfectly semipermeable to electrolytes, and those that enter the cell, though retarded in so doing, bring about injury which increases permeability to water. The osmotic activity of cells of mammalian liver and kidney immediately after their removal from the body resembles that of plant cells, egg cells of marine invertebrates, and mammalian red blood corpuscles and presumably represents a basic property of living cells by which osmotic pressure may be adjusted to functional need.
ISOTONICITY OF LIVER AND OF KIDNEY TISSUE IN SOLUTIONS OF ELECTROLYTES
Opie, Eugene L.
1959-01-01
Solutions of a wide variety of electrolytes, isotonic with liver or with kidney tissue, have approximately the same osmotic pressure as solutions of sodium chloride isotonic with tissues of the two organs respectively; that is, with solutions approximately twice as concentrated as the sodium chloride of mammalian blood plasma. The molar concentration of various electrolytes isotonic with liver or with kidney tissue immediately after its removal from the body is determined by the molecular weight, valency, and ion-dissociation of these electrolytes in accordance with the well known conditions of osmosis. The plasma membranes of liver and of kidney cells are imperfectly semipermeable to electrolytes, and those that enter the cell, though retarded in so doing, bring about injury which increases permeability to water. The osmotic activity of cells of mammalian liver and kidney immediately after their removal from the body resembles that of plant cells, egg cells of marine invertebrates, and mammalian red blood corpuscles and presumably represents a basic property of living cells by which osmotic pressure may be adjusted to functional need. PMID:13664872
Williams, E L; Hildebrand, K L; McCormick, S A; Bedel, M J
1999-05-01
Animal studies have shown that large volumes of IV lactated Ringer's solution (LR) decrease serum osmolality, thereby increasing cerebral water. These studies have led to recommendations to limit LR to avoid cerebral edema in neurosurgical patients. Eighteen healthy human volunteers aged 20-48 yr received 50 mL/kg LR over 1 h on one occasion and 0.9% sodium chloride (NS) on another. Venous samples were taken at baseline (T1), at infusion end (T2), and 1 h after T2 (T3). Time until first urination was noted. With LR, serum osmolality decreased by 4+/-3 mOsm/kg from T1 to T2 and increased insignificantly with NS. At T3, osmolality returned almost to baseline in the LR group. Blood pH increased from T1 to T2 with LR by 0.04+/-0.04 and decreased with NS by 0.04+/-0.04. These pH changes persisted at T3. Subjective mental changes occurred only with NS. Abdominal discomfort was more common with NS. Time until first urination was longer with NS (106+/-11 min) than with LR (75+/-10 min) (P < 0.001). In healthy humans, an infusion of large volumes of LR, but not NS, transiently decreased serum osmolality, whereas acidosis associated with NS persisted and urinary output was slower with NS. Large volumes of lactated Ringer's solution administered to healthy humans produced small transient changes in serum osmolality. Large volumes of sodium chloride did not change osmolality but resulted in lower pH.
Ion Separation using a Y-Junction Carbon Nanotube
NASA Astrophysics Data System (ADS)
Park, Jae Hyun; Sinnott, Susan; Aluru, Narayana
2005-11-01
Using molecular dynamics simulations, we show that a Y-junction carbon nanotube can be used to separate potassium and chloride ions from a KCl solution. The system consists of a KCl solution chamber connected to an (8,8) carbon nanotube, which acts as the stem. Two carbon nanotube branches of sizes (5,5) and (6,6) are connected to the (8,8) nanotube forming the Y-junction. Uncharged (5,5) and (6,6) carbon nanotubes show close to zero occupancy for transport of potassium and chloride ions. By functionalizing a (5,5) carbon nanotube with a negative charge, we show that we can selectively transport potassium ions. Similarly, by functionalizing a (6,6) carbon nanotube with a positive charge, we can selectively transport chloride ions. By performing molecular dynamics simulations on the entire system comprising the two branches, stem and the KCl solution chamber, we show that perfect ion separation is observed when (5,5) and (6,6) nanotubes are charged with σw,(5,5)=-0.181 C/m^2 and σw,(6,6)=+0.143 C/m^2, respectively, whereas for the system with σw,(5,5)=-0.168 C/m^2 and σw,(6,6)=+0.131 C/m^2 the separation is not perfect because of the formation of ion pairs. We discuss the formation and control of ion pairing, which is a common phenomenon in confined nanochannels.
Rojas, Eduardo; Taylor, Robert E.; Atwater, Illani; Bezanilla, Francisco
1969-01-01
Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15–30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system. PMID:5823216
Rojas, E; Taylor, R E; Atwater, I; Bezanilla, F
1969-10-01
Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15-30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system.
Boronovskiĭ, S E; Nartsissov, Ia R
2009-01-01
Using the Brownian dynamics of the movement of hydrated ion in a viscous water solution, a mathematical model has been built, which describes the transport of charged particles through a single protein pore in a lipid membrane. The dependences of transmembrane ion currents on ion concentrations in solution have been obtained. It was shown that, if the geometry of a membrane pore is identical to that of the inner part of the glycine receptor channel and there is no ion selectivity, then the values of both chloride and sodium currents are not greater than 0.5 pA at the physiological concentrations of these ions. If local charge heterogeneity caused by charged amino acid residues of transmembrane protein segments is included into the model calculations, the chloride current increases to about 3.7 pA, which exceeds more than seven times the value for sodium ions under the conditions of the complex channel geometry in the range of physiological concentrations of ions in the solution. The model takes changes in the density of charge distribution both inside the channel and near the protein surface into account. The alteration of pore geometry can be also considered as a parameter at the researcher's option. Thus, the model appears as an effective tool for the description of transmembrane currents for other types of membrane channels.
NASA Astrophysics Data System (ADS)
Khobragade, Nilay N.; Bansod, Ankur V.; Patil, Awanikumar P.
2018-04-01
A study was undertaken in several selected mixed nitric acid/chloride ({{{{NO}}}3}-/{{{Cl}}}- ratio) electrolytes with the nitric acid concentration of 0.1 N and chloride concentration of 0, 10, 100, 1000 and 10 000 ppm. Electrochemical tests like potentiodynamic polarization test, electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis (M-S) were carried out when the electrolytes were in deaerated condition and were in open to air (OTA) condition, and the effect of dissolved oxygen was evaluated on the corrosion behavior of 304 SS. It was found that at a critical {{{{NO}}}3}-/{{{Cl}}}- ratio, a passive state is attained at the earliest in OTA condition. Also, the passive film resistance showed higher values in OTA condition than in deaerated condition exhibiting the effect of dissolved oxygen. The results of EIS results confirmed the results obtained by potentiodynamic polarization wherein the low passive current densities were obtained in OTA condition. Mott-Schottky analysis revealed the lowest defect densities in 100 ppm Cl‑ solution in OTA condition and in 10 ppm Cl‑ solution in deaerated condition indicating less defective films formed in these solutions. XPS analysis showed that the film was bilayer in nature in confirmation with M-S analysis. The results were discussed with point defect model (PDM) and by competitive surface adsorption.
Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel
NASA Astrophysics Data System (ADS)
Criado, Maria; Provis, John L.
2018-06-01
The pore solutions of alkali-activated slag cements and Portland-based cements are very different in terms of their chemical and redox characteristics, particularly due to the high alkalinity and high sulfide content of alkali-activated slag cement. Therefore, differences in corrosion mechanisms of steel elements embedded in these cements could be expected, with important implications for the durability of reinforced concrete elements. This study assesses the corrosion behaviour of steel embedded in alkali-activated blast furnace slag (BFS) mortars exposed to alkaline solution, alkaline chloride-rich solution, water, and standard laboratory conditions, using electrochemical techniques. White Portland cement (WPC) mortars and blended cement mortars (white Portland cement and blast furnace slag) were also tested for comparative purposes. The steel elements embedded in immersed alkali-activated slag mortars presented very negative redox potentials and high apparent corrosion current values; the presence of sulfide reduced the redox potential, and the oxidation of the reduced sulfur-containing species within the cement itself gave an electrochemical signal that classical electrochemical tests for reinforced concrete durability would interpret as being due to steel corrosion processes. However, the actual observed resistance to chloride-induced corrosion was very high, as measured by extraction and characterisation of the steel at the end of a 9-month exposure period, whereas the steel embedded in white Portland cement mortars was significantly damaged under the same conditions.
Owens, Brett D; White, Daniel W; Wenke, Joseph C
2009-01-01
There is much to learn about the effectiveness of different methods currently used for the irrigation of open wounds. The purpose of this study was to compare various approaches in a survival animal model. We used an established goat model involving the creation of a reproducible complex musculoskeletal wound followed by inoculation with Pseudomonas aeruginosa (lux) bacteria. This genetically altered luminescent bacterium provides the ability for quantitative analysis with a photon-counting camera system. For Study 1, wound irrigation was performed six hours after the injury and inoculation; the goats were assigned to four treatment groups: normal saline solution, bacitracin solution, castile soap, and benzalkonium chloride. All wounds received sharp débridement and irrigation with use of a pulsatile lavage device (19 psi). Images and photon counts were obtained prior to irrigation, after irrigation, and forty-eight hours after injury and inoculation. For Study 2, we used the same animal model and compared bulb syringe and pulsatile lavage irrigation with saline solution. In Study 1, the irrigation treatment lowered the bacterial counts in all treatment groups. The greatest reduction was seen with castile soap, which lowered the photon count to 13% of the pretreatment level. This was followed by benzalkonium chloride, bacitracin, and saline solution at 18%, 22%, and 29%, respectively. At forty-eight hours, imaging showed a rebound in bacterial counts in every group. The highest rebound was measured in the castile soap group, which rebounded to 120% of the pretreatment level. The benzalkonium chloride group experienced a rebound to 94% of the pretreatment level. These were followed by bacitracin solution (89%) and normal saline solution (68%). In Study 2, both treatment methods were effective in removing 75% of the bacteria initially. At forty-eight hours, the bacterial levels in the pulsed lavage group rebounded to 94% of the original levels (compared with 48% in the bulb syringe group). The difference in the mean photon count ratios at forty-eight hours was significant (p = 0.048). Approaches used to remove bacteria from wounds, such as irrigants other than saline solution or high-pressure devices, may not have the best clinical outcome.
NASA Astrophysics Data System (ADS)
Chasse, Kevin Robert
Duplex stainless steels (DSS) generally have superior strength and corrosion resistance as compared to most standard austenitic and ferritic stainless grades owing to a balanced microstructure of austenite and ferrite. As a result of having favorable properties, DSS have been selected for the construction of equipment in pulp and paper, chemical processing, nuclear, oil and gas as well as other industries. The use of DSS has been restricted in some cases because of stress corrosion cracking (SCC), which can initiate and grow in either the ferrite or austenite phase depending on the environment. Thorough understanding of SCC mechanisms of DSS in chloride- and hydrogen sulfide-containing solutions has been useful for material selection in many environments. However, understanding of SCC mechanisms of DSS in sulfide-containing caustic solutions is limited, which has restricted the capacity to optimize process and equipment design in pulp and paper environments. Process environments may contain different concentrations of hydroxide, sulfide, and chloride, altering corrosion and SCC susceptibility of each phase. Crack initiation and growth behavior will also change depending on the relative phase distribution and properties of austenite and ferrite. The role of microstructure and environment on the SCC of standard grade UNS S32205 and lean grade UNS S32101 in hot alkaline-sulfide solution were evaluated in this work using electrochemical, film characterization, mechanical testing, X-ray diffraction, and microscopy techniques. Microstructural aspects, which included residual stress state, phase distribution, phase ratio, and microhardness, were related to the propensity for SCC crack initiation in different simulated alkaline pulping liquors at 170 °C. Other grades of DSS and reference austenitic and superferritic grades of stainless steel were studied using exposure coupons for comparison to understand compositional effects and individual phase susceptibility. Environments having different ionic concentrations of inorganic salts, i.e. sodium hydroxide, sodium sulfide, and sodium chloride, were used to understand the effect of liquor alkalinity, percent sulfidity, and chloride content on the corrosion and SCC behavior. Hydrogen embrittlement of S32205 was studied to understand the electrochemical conditions and fracture features associated with this failure mode. The results showed that there is an appreciable increase in the susceptibility of DSS to SCC in the presence of sulfide and chloride in hot alkaline environments. Sulfide and chloride adsorption at active sites on the metal surface caused unstable passivity and defective film formation. Chloride and sulfide available at the electrolyte/film surface reduced the charge transfer resistance and shifted the response of the films to lower frequencies indicating the films became more defective. The surface films had an outer, discontinuous layer, and an inner, barrier layer. Fe, Mo, and Mn were selectively dissolved in hot alkaline environments. The onset of SCC was related to the extent of selective dissolution and was consistent with a slip-step dissolution mechanism. Selective corrosion of the austenite phase depended on percent sulfidity and liquor alkalinity. Chlorides enhanced crack initiation and coalescence along the austenite/ferrite boundaries. Crack initiation and transgranular growth strongly depended on the phase distribution in the banded microstructure of DSS. These findings will augment understanding of SCC in this alloy-environment combination and facilitate materials selection in hot alkaline-sulfide environments, particularly in the petrochemical, nuclear, chemical processing, and pulp and paper industries.