Science.gov

Sample records for chlorine 40

  1. 40 CFR 704.43 - Chlorinated naphthalenes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Chlorinated naphthalenes. 704.43... § 704.43 Chlorinated naphthalenes. (a) Definitions—(1) Extent of chlorination means the percent by... means the relative amounts of each isomeric chlorinated naphthalene that composes the chemical substance...

  2. 40 CFR 704.43 - Chlorinated naphthalenes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... weight of chlorine. (2) Import means to import in bulk form or as part of a mixture. (3) Isomeric ratio... the chlorine atom(s) on the naphthalene. (4) Polychlorinated biphenyl means any chemical...

  3. 40 CFR 704.45 - Chlorinated terphenyl.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... No. 61788-33-6, comprised of chlorinated ortho-, meta-, and paraterphenyl. (2) Extent of chlorination means the percent by weight of chlorine for each isomer (ortho, meta, and para). (3) Isomeric ratio means the ratios of ortho-, meta-, and parachlorinated terphenyls. (4) Polychlorinated biphenyl means...

  4. 40 CFR 704.43 - Chlorinated naphthalenes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT REPORTING AND RECORDKEEPING REQUIREMENTS Chemical-Specific Reporting and Recordkeeping Rules... means the relative amounts of each isomeric chlorinated naphthalene that composes the chemical substance... the chlorine atom(s) on the naphthalene. (4) Polychlorinated biphenyl means any chemical...

  5. 40 CFR 704.43 - Chlorinated naphthalenes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufacturer's waste contains one or more of the chemical substances identified in paragraph (b) of this... CONTROL ACT REPORTING AND RECORDKEEPING REQUIREMENTS Chemical-Specific Reporting and Recordkeeping Rules... means the relative amounts of each isomeric chlorinated naphthalene that composes the chemical...

  6. 40 CFR 704.45 - Chlorinated terphenyl.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subject to the rule: (1) Persons who manufacture or propose to manufacture chlorinated terphenyl. (2... or as part of a mixture. (c) What information to report. Persons subject to this rule as described in paragraph (b) of this section must notify EPA of current or proposed manufacture or import of...

  7. 40 CFR 704.45 - Chlorinated terphenyl.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subject to the rule: (1) Persons who manufacture or propose to manufacture chlorinated terphenyl. (2... or as part of a mixture. (c) What information to report. Persons subject to this rule as described in paragraph (b) of this section must notify EPA of current or proposed manufacture or import of...

  8. Chlorine Inactivation of Adenovirus Type 40 and Feline Calicivirus

    PubMed Central

    Thurston-Enriquez, Jeanette A.; Haas, Charles N.; Jacangelo, Joseph; Gerba, Charles P.

    2003-01-01

    Ct values, the concentration of free chlorine multiplied by time of contact with virus, were determined for free-chlorine inactivation experiments carried out with chloroform-extracted (dispersed) and non-chloroform-extracted (aggregated) feline calicivirus (FCV), adenovirus type 40 (AD40), and polio virus type 1 (PV-1). Experiments were carried out with high and low pH and temperature conditions. Ct values were calculated directly from bench-scale free-chlorine inactivation experiments and from application of the efficiency factor Hom model. For each experimental condition, Ct values were higher at pH 8 than at pH 6, higher at 5°C than at 15°C, and higher for dispersed AD40 (dAD40) than for dispersed FCV (dFCV). dFCV and dAD40 were more sensitive to free chlorine than dispersed PV-1 (dPV-1). Cts for 2 log inactivation of aggregated FCV (aFCV) and aggregated PV-1 (aPV-1) were 31.0 and 2.8 orders of magnitude higher than those calculated from experiments carried out with dispersed virus. Cts for 2 log inactivation of dFCV and dAD40 in treated groundwater at 15°C were 1.2 and 13.7 times greater than in buffered-demand-free (BDF) water experiments at 5°C. Ct values listed in the U.S. Environmental Protection Agency (EPA) Guidance Manual were close to, or lower than, Ct values generated for experiments conducted with dispersed and aggregated viruses suspended in BDF water and for dispersed viruses suspended in treated groundwater. Since the state of viruses in water is most likely to be aggregated and associated with organic or inorganic matter, reevaluation of the EPA Guidance Manual Ct values is necessary, since they would not be useful for ensuring inactivation of viruses in these states. Under the tested conditions, dAD40, dFCV, aFCV, dPV-1, and aPV-1 particles would be inactivated by commonly used free chlorine concentrations (1 mg/liter) and contact times (60 to 237 min) applied for drinking water treatment in the United States. PMID:12839771

  9. Chlorine

    Integrated Risk Information System (IRIS)

    Chlorine ; CASRN 7782 - 50 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  10. Chlorine

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical chlorine, produced in small quantities in the laboratory, is presented. The profile summarizes physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  11. Chlorine

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical chlorine, produced in small quantities in the laboratory, is presented. The profile summarizes physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  12. Chlorine

    SciTech Connect

    Talmage, Sylvia Smith

    2009-01-01

    Following a brief description of the use of chlorine as a chemical warfare agent in World War I, this chapter summarizes physical and chemical data and recent clinical and controlled laboratory studies on the irritant and lethal effects of chlorine. The mechanism of toxicity for both irritation and lethal effects is described. The mathematical relationship between concentration and exposure duration for a set endpoint is given for both an irritancy response and mortality. This information can be used to assist in time-scaling for the set endpoint to other exposure durations. Risk assessment addresses the potential for greater effects in sensitive populations such as asthmatics. A concentration of 0.5 ppm for up to 8 hours is a no-adverse-effect concentration in most sensitive subjects; whereas, a concentration of 1.0 ppm induces some sensory irritation and transient changes in respiratory tract airflow parameters. Treatment and intervention of exposed individuals is dependent upon symptoms

  13. 40 CFR 180.1095 - Chlorine gas; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Chlorine gas; exemptions from the requirement of a tolerance. 180.1095 Section 180.1095 Protection of Environment ENVIRONMENTAL PROTECTION... Exemptions From Tolerances § 180.1095 Chlorine gas; exemptions from the requirement of a tolerance....

  14. 40 CFR Appendix II to Part 266 - Tier I Feed Rate Screening Limits for Total Chlorine

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Tier I Feed Rate Screening Limits for Total Chlorine II Appendix II to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Screening Limits for Total Chlorine Terrain-adjusted effective stack height (m) Noncomplex Terrain Urban...

  15. 40 CFR 180.1095 - Chlorine gas; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Chlorine gas; exemptions from the requirement of a tolerance. 180.1095 Section 180.1095 Protection of Environment ENVIRONMENTAL PROTECTION... Exemptions From Tolerances § 180.1095 Chlorine gas; exemptions from the requirement of a tolerance....

  16. 40 CFR 180.1095 - Chlorine gas; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Chlorine gas; exemptions from the requirement of a tolerance. 180.1095 Section 180.1095 Protection of Environment ENVIRONMENTAL PROTECTION... Exemptions From Tolerances § 180.1095 Chlorine gas; exemptions from the requirement of a tolerance....

  17. 40 CFR Appendix II to Part 266 - Tier I Feed Rate Screening Limits for Total Chlorine

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Tier I Feed Rate Screening Limits for Total Chlorine II Appendix II to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Screening Limits for Total Chlorine Terrain-adjusted effective stack height (m) Noncomplex Terrain Urban...

  18. 40 CFR 180.1095 - Chlorine gas; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Chlorine gas; exemptions from the requirement of a tolerance. 180.1095 Section 180.1095 Protection of Environment ENVIRONMENTAL PROTECTION... Exemptions From Tolerances § 180.1095 Chlorine gas; exemptions from the requirement of a tolerance....

  19. 40 CFR 180.1095 - Chlorine gas; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Chlorine gas; exemptions from the requirement of a tolerance. 180.1095 Section 180.1095 Protection of Environment ENVIRONMENTAL PROTECTION... Exemptions From Tolerances § 180.1095 Chlorine gas; exemptions from the requirement of a tolerance....

  20. 40 CFR Appendix II to Part 266 - Tier I Feed Rate Screening Limits for Total Chlorine

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Tier I Feed Rate Screening Limits for Total Chlorine II Appendix II to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Screening Limits for Total Chlorine Terrain-adjusted effective stack height (m) Noncomplex Terrain Urban...

  1. 40 CFR Appendix II to Part 266 - Tier I Feed Rate Screening Limits for Total Chlorine

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Tier I Feed Rate Screening Limits for Total Chlorine II Appendix II to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Screening Limits for Total Chlorine Terrain-adjusted effective stack height (m) Noncomplex Terrain Urban...

  2. 40 CFR Appendix II to Part 266 - Tier I Feed Rate Screening Limits for Total Chlorine

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tier I Feed Rate Screening Limits for Total Chlorine II Appendix II to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Screening Limits for Total Chlorine Terrain-adjusted effective stack height (m) Noncomplex Terrain Urban...

  3. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wastes, radioactive wastes mixed with these wastes, and soil and debris contaminated with radioactive... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste specific prohibitions-chlorinated aliphatic wastes. 268.33 Section 268.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  4. 40 CFR Appendix III to Part 266 - Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride III Appendix III to Part 266 Protection of Environment... to Part 266—Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride...

  5. 40 CFR Appendix III to Part 266 - Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride III Appendix III to Part 266 Protection of Environment... to Part 266—Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride...

  6. 40 CFR Appendix III to Part 266 - Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride III Appendix III to Part 266 Protection of Environment... to Part 266—Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride...

  7. 40 CFR Appendix III to Part 266 - Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride III Appendix III to Part 266 Protection of Environment... to Part 266—Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride...

  8. 40 CFR Appendix III to Part 266 - Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride III Appendix III to Part 266 Protection of Environment... to Part 266—Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride...

  9. 40 CFR 63.1215 - What are the health-based compliance alternatives for total chlorine?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alternatives for total chlorine? 63.1215 Section 63.1215 Protection of Environment ENVIRONMENTAL PROTECTION... Waste Combustors Other § 63.1215 What are the health-based compliance alternatives for total chlorine... total chlorine under the procedures prescribed in this section for your hazardous waste combustors...

  10. 40 CFR 63.1215 - What are the health-based compliance alternatives for total chlorine?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alternatives for total chlorine? 63.1215 Section 63.1215 Protection of Environment ENVIRONMENTAL PROTECTION... Combustors Other § 63.1215 What are the health-based compliance alternatives for total chlorine? (a) General... chlorine under the procedures prescribed in this section for your hazardous waste combustors other...

  11. 40 CFR 63.1215 - What are the health-based compliance alternatives for total chlorine?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alternatives for total chlorine? 63.1215 Section 63.1215 Protection of Environment ENVIRONMENTAL PROTECTION... Combustors Other § 63.1215 What are the health-based compliance alternatives for total chlorine? (a) General... chlorine under the procedures prescribed in this section for your hazardous waste combustors other...

  12. Chlorine-39 in rainfall at a temperate latitude (40 degrees N).

    PubMed

    Papastefanou, C

    2007-01-01

    Rainwater samples were collected and measured for the radioactivity to confirm the presence of Chlorine-39 (T1/2=56.2 min) formed by the interaction of cosmic-ray slow negative muons, mu- with Argon-40 in the lower atmosphere. The presence of 39Cl was confirmed by estimating the half-life of a radionuclide present in the rainwater ranging from 58 to 63 min and averaging 60.4 min. The disintegration rate of this radionuclide varied from 2.1 to 2.7 Bq L(-1) (125-160 dpm/L) of rainwater and averaged 2.3 Bq L(-1) (140 dpm/L) of rainwater in Thessaloniki (40 degrees 38'N, 22 degrees 58'E), Northern Greece. This concentration is indicative of mid or temperate latitudes. This is clearly less than that reported in the literature, 1.7 Bq L(-1) (100 dpm/L) of rainwater, for a southern latitude 31 degrees 54'N, 34 degrees 49'E (Rehovot, Israel), due to the latitudinal effect of cosmic radiation.

  13. Dechlorination of the dietary nona-chlorinated toxaphene congeners 62 and 50 into the octa-chlorinated toxaphene congeners 44 and 40 in zebrafish (Danio rerio) and Atlantic salmon (Salmo salar).

    PubMed

    Berntssen, M H G; Lundebye, A-K; Hop-Johannessen, L; Lock, E-J

    2012-05-15

    The relative feed-to-fish accumulation and possible biotransformation of the nona-chlorinated toxaphene congeners currently included in EU-legislation (CHB-50 and -62) and the octa-chlorinated congeners recommended by the European Food Safety Authority to be included in future surveillance of fish samples (CHB-40, 41, and 44) were investigated in the present study. Model fish Danio rerio were fed either (a) diets spiked with a combination as well as the pure individual toxaphene congeners CHB-50 or 62 or (b) diets spiked with the combination of CHB ∑50+62 and/or CHB ∑40+41+44. In addition, seawater adapted Atlantic salmon smolts were fed technical toxaphene enriched feeds for 62 days. Zebrafish fed a diet containing CHB-50 and CHB-62 accumulated newly formed CHB-40&41 and CHB-44, respectively. The biomagnifications factors (BMF) of the toxaphene congeners in Atlantic salmon muscle from the feeds spiked with technical toxaphene were significantly correlated with their relative lipophilicity (expressed as logK(ow)). An exception was CHB-44 which had a higher BMF than could be expected from its specific logK(ow), reflecting that CHB-44 is a metabolite formed under dietary exposure to CHB-62. This paper reports the in vivo dechlorination of nona-chlorinated toxaphene congeners into octa-chlorinated congeners in feeding trials with a model fish (zebrafish) and an oily food fish (Atlantic salmon). Copyright © 2012 Elsevier B.V. All rights reserved.

  14. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...

  15. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...

  16. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...

  17. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...

  18. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...

  19. 40 CFR 141.535 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.535 Section 141.535 Protection of Environment... § 141.535 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone, or chlorine dioxide for primary disinfection, you must...

  20. 40 CFR 141.544 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.544 Section 141.544 Protection of Environment... Benchmark § 141.544 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone or chlorine dioxide for primary disinfection your system...

  1. 40 CFR 141.544 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.544 Section 141.544 Protection of Environment... Benchmark § 141.544 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone or chlorine dioxide for primary disinfection your system...

  2. 40 CFR 141.535 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.535 Section 141.535 Protection of Environment... § 141.535 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone, or chlorine dioxide for primary disinfection, you must...

  3. 40 CFR 141.535 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.535 Section 141.535 Protection of Environment... § 141.535 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone, or chlorine dioxide for primary disinfection, you must...

  4. 40 CFR 63.9914 - What test methods and other procedures must I use to demonstrate initial compliance with chlorine...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... must I use to demonstrate initial compliance with chlorine and hydrochloric acid emission limits? 63... chlorine and hydrochloric acid emission limits? (a) You must conduct each performance test that applies to... the applicable emission limits for chlorine and hydrochloric acid in Table 1 to this subpart, you...

  5. 40 CFR 63.9914 - What test methods and other procedures must I use to demonstrate initial compliance with chlorine...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must I use to demonstrate initial compliance with chlorine and hydrochloric acid emission limits? 63... chlorine and hydrochloric acid emission limits? (a) You must conduct each performance test that applies to... the applicable emission limits for chlorine and hydrochloric acid in Table 1 to this subpart, you...

  6. 40 CFR 141.535 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.535 Section 141.535 Protection of Environment... § 141.535 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone, or chlorine dioxide for primary disinfection, you must...

  7. 40 CFR 63.9914 - What test methods and other procedures must I use to demonstrate initial compliance with chlorine...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must I use to demonstrate initial compliance with chlorine and hydrochloric acid emission limits? 63... chlorine and hydrochloric acid emission limits? (a) You must conduct each performance test that applies to... the applicable emission limits for chlorine and hydrochloric acid in Table 1 to this subpart, you...

  8. 40 CFR 63.9914 - What test methods and other procedures must I use to demonstrate initial compliance with chlorine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... must I use to demonstrate initial compliance with chlorine and hydrochloric acid emission limits? 63... chlorine and hydrochloric acid emission limits? (a) You must conduct each performance test that applies to... the applicable emission limits for chlorine and hydrochloric acid in Table 1 to this subpart, you...

  9. 40 CFR 141.544 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.544 Section 141.544 Protection of Environment... Benchmark § 141.544 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone or chlorine dioxide for primary disinfection your system...

  10. 40 CFR 141.544 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.544 Section 141.544 Protection of Environment... Benchmark § 141.544 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone or chlorine dioxide for primary disinfection your system...

  11. 40 CFR 63.9914 - What test methods and other procedures must I use to demonstrate initial compliance with chlorine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... must I use to demonstrate initial compliance with chlorine and hydrochloric acid emission limits? 63... chlorine and hydrochloric acid emission limits? (a) You must conduct each performance test that applies to... the applicable emission limits for chlorine and hydrochloric acid in Table 1 to this subpart, you...

  12. 40 CFR 141.544 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.544 Section 141.544 Protection of Environment... Benchmark § 141.544 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone or chlorine dioxide for primary disinfection your system...

  13. 40 CFR 141.535 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.535 Section 141.535 Protection of Environment... REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Disinfection Profile § 141.535 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If...

  14. Chlorine poisoning

    MedlinePlus

    Chlorine reacts with water in and out of the body to form hydrochloric acid and hypochlorous acid. Both are extremely poisonous. ... chlorine) Throat swelling (may also cause breathing difficulty) ... Severe change in acid level of the blood (pH balance), which leads ...

  15. Chlorine-36 in fossil rat urine: An archive of cosmogenic nuclide deposition during the past 40,000 years

    SciTech Connect

    Plummer, M.A.; Phillips, F.M.; Fabryka-Martin, J.

    1997-07-25

    Knowledge of the production history of cosmogenic nuclides, which is needed for geological and archaeological dating, has been uncertain. Measurements of chlorine-36/chlorine ({sup 36}Cl/Cl) ratios in fossil packrat middens from Nevada that are radiocarbon-dated between about 38 thousand years ago (ka) and the present showed that {sup 36}Cl/Cl ratios were higher by a factor of about 2 before {approx} 11 ka. This raises the possibility that cosmogenic production rates just before the close of the Pleistocene were up to 50% higher than is suggested by carbon-14 calibration data. The discrepancy could be explained by addition of low-carbon-14 carbon dioxide to the atmosphere during that period, which would have depressed atmospheric radiocarbon activity. Alternatively, climatic effects on {sup 36}Cl deposition may have enhanced the {sup 36}Cl/Cl ratios. 49 refs., 3 figs.

  16. Chlorine dioxide

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 00 / 007 TOXICOLOGICAL REVIEW OF CHLORINE DIOXIDE AND CHLORITE ( CAS Nos . 10049 - 04 - 4 and 7758 - 19 - 2 ) In Support of Summary Information on the ( IRIS ) Integrated Risk Information System September 2000 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This docu

  17. Chlorine cyanide

    Integrated Risk Information System (IRIS)

    Chlorine cyanide ; CASRN 506 - 77 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  18. Chlorine Clues

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This plot shows that levels of the element chlorine rise dramatically in the deeper rocks lining the walls of the crater dubbed 'Endurance.' The data shown here were taken by the Mars Exploration Rover Opportunity's alpha particle X-ray spectrometer at Endurance and 'Eagle Crater,' the site where Opportunity first landed at Meridiani Planum.

    Opportunity has been inching down the walls of Endurance Crater, investigating distinct layers of rock as it goes for clues to Mars' buried past. The various Endurance layers have been informally labeled 'A' through 'F.' Targets within these layers are listed on the graph along with previous targets from Eagle Crater. All the rocks listed here were observed after they had been drilled by the rover's rock abrasion tool.

    The observations indicate that the elements making up the shallow rock layers of Endurance Crater resemble those of Eagle, while the deeper layers of Endurance possess increasingly higher concentrations of the element chlorine.

    Opportunity will continue to roll deeper into Endurance to see if this puzzling trend continues. Scientists hope the new data will help them figure out how the presence of chlorine fits into the history of water at Endurance Crater.

  19. Chlorine Clues

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This plot shows that levels of the element chlorine rise dramatically in the deeper rocks lining the walls of the crater dubbed 'Endurance.' The data shown here were taken by the Mars Exploration Rover Opportunity's alpha particle X-ray spectrometer at Endurance and 'Eagle Crater,' the site where Opportunity first landed at Meridiani Planum.

    Opportunity has been inching down the walls of Endurance Crater, investigating distinct layers of rock as it goes for clues to Mars' buried past. The various Endurance layers have been informally labeled 'A' through 'F.' Targets within these layers are listed on the graph along with previous targets from Eagle Crater. All the rocks listed here were observed after they had been drilled by the rover's rock abrasion tool.

    The observations indicate that the elements making up the shallow rock layers of Endurance Crater resemble those of Eagle, while the deeper layers of Endurance possess increasingly higher concentrations of the element chlorine.

    Opportunity will continue to roll deeper into Endurance to see if this puzzling trend continues. Scientists hope the new data will help them figure out how the presence of chlorine fits into the history of water at Endurance Crater.

  20. First spectra of chlorine, bromine, and iodine in the 1.8- to 4.0-micron region.

    NASA Technical Reports Server (NTRS)

    Humphreys, C. J.; Paul, E., Jr.

    1972-01-01

    Use of liquid-nitrogen-cooled lead sulfide detectors to extend observations of the first spectra of the halogens in the infrared region as far as 4.0 microns. Descriptions, comprising wavelengths, wave numbers, intensities, and classifications, are presented that serve to close the gap between the upper wavelength limit of the detailed published analyses of these spectra at about 2.5 microns and the groups of recently classified lines near 4 microns, and also to report newly observed lines in the 1.8- to 2.5-micron region made accessible by detectors of improved response characteristics. Listed wavelengths of observed and identified lines are calculated from established values of the energy levels. The descriptions should facilitate the identification of halogen lines in mixed spectra excited in electrodeless tubes containing halogen compounds.

  1. The Chlorination Quandary

    ERIC Educational Resources Information Center

    Josephson, Julian

    1978-01-01

    Current use of chlorination technology to disinfect water supplies can cause the production of undesirable products, among them chloroform and chlorobenzene. Alternatives to this methodology include the use of ozone, chlorine dioxide, and bromine chloride in place of chlorine. Presently, the methods are feasible in developed countries only. (MA)

  2. The Chlorination Quandary

    ERIC Educational Resources Information Center

    Josephson, Julian

    1978-01-01

    Current use of chlorination technology to disinfect water supplies can cause the production of undesirable products, among them chloroform and chlorobenzene. Alternatives to this methodology include the use of ozone, chlorine dioxide, and bromine chloride in place of chlorine. Presently, the methods are feasible in developed countries only. (MA)

  3. Biodegration of chlorinated ethenes

    USGS Publications Warehouse

    Bradley, Paul M.; Chapelle, Francis H.

    2010-01-01

    Biodegradation of chlorinated ethenes by naturally occurring or artificially enhanced processes is an important component of current site remediation strategies. At this writing, several microbial mechanisms for chlorinated ethene transformation and degradation have been identified. The purpose of this chapter is to briefly summarize the current understanding of those processes that lead to the biodegradation of chlorinated ethenes.

  4. Water chlorination Vol. 5

    SciTech Connect

    Jolley, R.L.; Bull, R.J.; Davis, W.P.; Katz, S.; Roberts, M.H.

    1985-01-01

    This book describes the significant original contributions in the field of water chlorination of the last three years. It includes chlorination research, developments and alternatives. Issues covered include: water chlorination; risk; epidemiology; carcinogenic and mutagenic effects; toxicology of disinfectants; aquatic models and tumor induction; environmental effects; disinfection; reaction dynamics; chemical methods; drinking water treatment and wastewater treatment.

  5. 40 CFR 141.65 - Maximum residual disinfectant levels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MRDL (mg/L) Chlorine 4.0 (as Cl2). Chloramines 4.0 (as Cl2). Chlorine dioxide 0.8 (as ClO2). (b... chlorine dioxide as a disinfectant or oxidant must comply with the chlorine dioxide MRDL beginning January 1, 2002. Subpart H systems serving fewer than 10,000 persons and using chlorine dioxide as...

  6. 40 CFR 141.65 - Maximum residual disinfectant levels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MRDL (mg/L) Chlorine 4.0 (as Cl2). Chloramines 4.0 (as Cl2). Chlorine dioxide 0.8 (as ClO2). (b... chlorine dioxide as a disinfectant or oxidant must comply with the chlorine dioxide MRDL beginning January 1, 2002. Subpart H systems serving fewer than 10,000 persons and using chlorine dioxide as...

  7. 40 CFR 141.65 - Maximum residual disinfectant levels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MRDL (mg/L) Chlorine 4.0 (as Cl2). Chloramines 4.0 (as Cl2). Chlorine dioxide 0.8 (as ClO2). (b... chlorine dioxide as a disinfectant or oxidant must comply with the chlorine dioxide MRDL beginning January 1, 2002. Subpart H systems serving fewer than 10,000 persons and using chlorine dioxide as...

  8. 40 CFR 141.65 - Maximum residual disinfectant levels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MRDL (mg/L) Chlorine 4.0 (as Cl2). Chloramines 4.0 (as Cl2). Chlorine dioxide 0.8 (as ClO2). (b... chlorine dioxide as a disinfectant or oxidant must comply with the chlorine dioxide MRDL beginning January 1, 2002. Subpart H systems serving fewer than 10,000 persons and using chlorine dioxide as...

  9. 40 CFR 141.65 - Maximum residual disinfectant levels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MRDL (mg/L) Chlorine 4.0 (as Cl2). Chloramines 4.0 (as Cl2). Chlorine dioxide 0.8 (as ClO2). (b... chlorine dioxide as a disinfectant or oxidant must comply with the chlorine dioxide MRDL beginning January 1, 2002. Subpart H systems serving fewer than 10,000 persons and using chlorine dioxide as...

  10. Hydrochloric Acid and the Chlorine Budget of the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Webster, C.; May, R.; Jaegle, L.; Hu, H.; Sander, S.; Gunson, M.; Toon, G.; Russell, J., III; Stimpfle, R.; Koplow, J.; hide

    1994-01-01

    Concentrations of hc1 measured in the lower stratosphere in 1993 by the ALIAS instrument on the ER-2 aircraft reveal that only 40% of inorganic chlorine (CL sub y, inferred from in situ measurements of organic chlorinated source gases) is present as HC1, significantly lower than model predictions.

  11. Hydrochloric Acid and the Chlorine Budget of the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Webster, C.; May, R.; Jaegle, L.; Hu, H.; Sander, S.; Gunson, M.; Toon, G.; Russell, J., III; Stimpfle, R.; Koplow, J.; Salawitch, R.; Michelsen, H.

    1994-01-01

    Concentrations of hc1 measured in the lower stratosphere in 1993 by the ALIAS instrument on the ER-2 aircraft reveal that only 40% of inorganic chlorine (CL sub y, inferred from in situ measurements of organic chlorinated source gases) is present as HC1, significantly lower than model predictions.

  12. Inhalation of chlorine gas.

    PubMed Central

    Williams, J. G.

    1997-01-01

    The clinical features of acute chlorine gas inhalation, and its management are reviewed. Current medical views on the chronic effects of an acute overwhelming exposure on lung function (reactive airways dysfunction syndrome), and the more controversial field of lung disease secondary to repeated inhalations of lower concentrations of chlorine gas are discussed. Images Figure PMID:9519180

  13. Aqueous chlorination of resorcinol

    USGS Publications Warehouse

    Heasley, V.L.; Burns, M.D.; Kemalyan, N.A.; Mckee, T.C.; Schroeter, H.; Teegarden, B.R.; Whitney, S.E.; Wershaw, R. L.

    1989-01-01

    An investigation of the aqueous chlorination (NaOCl) of resorcinol is reported. The following intermediates were detected in moderate to high yield at different pH values and varying percentages of chlorination: 2-chloro-, 4-chloro-, 2,4-dichloro-, 4,6-dichloro- and 2,4,6-trichlororesorcinol. Only trace amounts of the intermediates were detected when the chlorination was conducted in the presence of phosphate buffer. This result has significant implications since resorcinol in phosphate buffer has been used as a model compound in several recent studies on the formation of chlorinated hydrocarbons during chlorination of drinking water. Relative rates of chlorination were determined for resorcinol and several of the chlorinated resorcinols. Resorcinol was found to chlorinate only three times faster than 2,4,6-trichlororesorcinol. The structure 2,4,6-trichlororesorcinol was established as a monohydrate even after sublimation. A tetrachloro or pentachloro intermediate was not detected, suggesting that the ring-opening step of such an intermediate must be rapid. ?? 1989.

  14. Water Treatment Technology - Chlorination.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chlorination provides instructional materials for nine competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of chlorination, chlorine…

  15. Water Treatment Technology - Chlorination.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chlorination provides instructional materials for nine competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of chlorination, chlorine…

  16. Stability and bactericidal activity of chlorine solutions.

    PubMed

    Rutala, W A; Cole, E C; Thomann, C A; Weber, D J

    1998-05-01

    To determine the stability of sodium hypochlorite (diluted household bleach) when stored for 30 days in various types of containers and to determine the efficacy of low concentrations of free available chlorine to inactivate test bacteria. Laboratory-based study. Solutions of standard household bleach were prepared using tap water or sterile distilled water at dilutions of 1:100, 1:50, and 1:5. Chlorine concentrations were measured, and then the solutions were placed into five polyethylene containers and left at room temperature (20 degrees C) under various conditions (translucent containers with light exposure and with or without air; brown opaque container without light or air exposure). Samples for chlorine and pH determinations were taken at time 0 and on days 7, 14, 21, 30, and 40. Bactericidal activity of chlorine solutions was assessed using the Association of Official Analytical Chemists Use-Dilution Method. Test bacteria included Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella choleraesuis. Chlorine concentrations at 30 days varied from the 40% to 50% range for 1:50 or 1:100 dilutions stored in containers other than closed brown containers to 83% to 85% for the 1:5 dilution stored in closed but non-opaque containers to 97% to 100% for 1:50 or 1:5 solutions stored in closed brown containers. The lowest concentration of sodium hypochlorite solution that reliably inactivated all the test organisms was 100 ppm. These data suggest that chlorine solutions do not need to be prepared fresh daily, as is recommended currently, and the lowest concentration of chlorine that reliably inactivates S aureus, S choleraesuis, and P aeruginosa is 100 ppm.

  17. CHLORINATED SOLVENT PLUME CONTROL

    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  18. CHLORINATED SOLVENT PLUME CONTROL

    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  19. Bugs digest chlorinated organics

    SciTech Connect

    Not Available

    1993-02-01

    This article describes a new bioreactor that uses a consortium of aerobic bacteria to biodegrade chlorinated aromatic hydrocarbons. Methanotrophic bacteria are cultivated for their MMO enzyme. After the MMO enzyme breaks down the chlorinated organics by oxidation, non-methanotrophic bacteria consume the byproducts. Pilot-scale testing has demonstrated successful treatment of groundwater containing coal-tar constituents, toluene, trichloroethylene, vinyl chlorides, chlorobenzene, and methyl methacrylate from three Superfund sites.

  20. Breakpoint chlorination curves of greywater.

    PubMed

    March, J G; Gual, M

    2007-08-01

    A study on chlorination of raw greywater with hypochlorite is reported in this paper. Samples were chlorinated in a variety of conditions, and residual chlorine (Cl2) was measured spectrophotometrically. For each sample, the chlorination curve (chlorine residuals versus chlorine dose) was obtained. Curves showed the typical hump-and-dip profile attributable to the formation and destruction of chloramines. It was observed that, after reactions with strong reductants and chloramines-forming compounds, the remaining organic matter exerted a certain demand of chlorine. The evolution of chlorination curves with addition of ammonia and dodecylbencene sulfonate sodium salt and with dilution of the greywater sample were studied. In addition, chlorination curves at several contact times have been obtained, resulting in slower chlorine decay in the hump zone than in the dip zone. In addition, the decay of coliforms in chlorinated samples was also investigated. It was found that, for a chlorination dosage corresponding to the maximum of the hump zone (average 8.9 mg Cl2/ L), samples were negative in coliforms after 10 to 30 minutes of contact time. After-growth was not observed within 3 days after chlorination. Implications in chlorination treatments of raw greywater can be derived from these results.

  1. Review of chlorinated phenols

    SciTech Connect

    Exon, J.H.

    1984-12-01

    The chlorinated phenols are a group of 19 isomers composed of phenol with substituted chlorines. These chemicals are readily soluble in organic solvents but only slightly soluble in water, except for the chlorophenate salts. Chlorophenols with less than 3 chlorines are not used extensively except in the production of higher chlorophenols and chlorophenyloxyacetic acid herbicides. Pentachlorophenol and some tetrachlorophenols are used worldwide, primarily as wood preservatives or fungicides. Residues of chlorophenols have been found worldwide in soil, water and air samples, in food products, and in human and animal tissues and body fluids. Environmental contamination with these chemicals occurs from industrial effluents, agricultural runoff, breakdown of chlorophenyloxyacetic acid herbicides and hexachlorobenzene, and from spontaneous formation following chlorination of water for disinfection and deodorization. The acute toxicity of these chemicals is relatively low and little is known concerning their chronic effects. Chlorophenols have not been shown conclusively to be mutagens, teratogens or carcinogens. However, these compounds may act as promotors or cocarcinogens and the immune system is particularly sensitive to their toxic effects. Transplacental exposure to chlorophenols may result in embryotoxicity and abortion. The major mode of toxic action is as uncouplers of oxidative phosphorylation. The toxicity of chlorophenols decreases with decreasing chlorination. These chemicals are mild hepatotoxins and are stored mainly in hepatic and renal tissues.

  2. Chlorine characterization and thermal behavior in MSW and RDF.

    PubMed

    Ma, Wenchao; Hoffmann, Gaston; Schirmer, Mattias; Chen, Guanyi; Rotter, Vera Susanne

    2010-06-15

    Chlorine, as a key element causing high temperature corrosion and low efficiency in waste-to-energy plants, and its thermal behavior has widely drawn attention. In this study, the chlorine content in eight fractions of municipal solid waste (MSW) was quantified and characterized using five analytical methods. The influence of the operating temperature, and fuel additives like sulfur and silica on the volatilization of chlorine in combustion process was also investigated. The results showed: these fractions cover a wide range of chlorine content from 0.1 wt.% in wood to >6 wt.% in non-packaging plastics (dry basis). Polyvinylchloride (PVC) from packaging, electrical wire insulation etc. in plastics and chloride salts (mainly NaCl) in kitchen waste are the main sources of organic and inorganic chlorine. The increase of the operating temperature from 700 degrees C to 1000 degrees C has more influence on the HCl formation for kitchen waste than that for PVC. Sulfur addition leads to 20-40% higher HCl formation rate in most fractions. Silica supports the chlorine release at relatively low temperatures between 700 degrees C and 850 degrees C. These findings enhance to understand the thermal behavior of chlorine in MSW and RDF (refuse derived fuel) in waste-to-energy plants and lead to the suggestions for a fuel management for waste derived fuels in order to avoid chlorine induced corrosion. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Hydrodesulfurization of chlorinized coal

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Rohatgi, N. K. (Inventor)

    1983-01-01

    A method of desulfurization is described in which high sulfur coals are desulfurized by low temperature chlorinolysis of coal in liquid media, preferably water, followed by hydrodesulfurization at a temperature above 500 C. The coals are desulfurized to an extent of up to 90% by weight and simultaneously dechlorinated to a chlorine content below 0.1% by weight. The product coals have lower volatiles loss, lower oxygen and nitrogen content and higher fixed carbon than raw coals treated with hydrogen under the same conditions. Heating the chlorinated coal to a temperature above 500 C. in inert gas such as nitrogen results in significantly less desulfurization.

  4. Reaction products of chlorine dioxide.

    PubMed Central

    Stevens, A A

    1982-01-01

    Inspection of the available literature reveals that a detailed investigation of the aqueous organic chemistry of chlorine dioxide and systematic identification of products formed during water disinfection has not been considered. This must be done before an informed assessment can be made of the relative safety of using chlorine dioxide as a disinfectant alternative to chlorine. Although trihalomethanes are generally not formed by the action of chlorine dioxide, the products of chlorine dioxide treatment of organic materials are oxidized species, some of which also contain chlorine. The relative amounts of species types may depend on the amount of chlorine dioxide residual maintained and the concentration and nature of the organic material present in the source water. The trend toward lower concentrations of chlorinated by-products with increasing ClO2 concentration, which was observed with phenols, has not been observed with natural humic materials as measured by the organic halogen parameter. Organic halogen concentrations have been shown to increase with increasing chlorine dioxide dose, but are much lower than those observed when chlorine is applied. Aldehydes have been detected as apparent by-products of chlorine dioxide oxidation reactions in a surface water that is a drinking water source. Some other nonchlorinated products of chlorine dioxide treatment may be quinones and epoxides. The extent of formation of these moieties within the macromolecular humic structure is also still unknown. PMID:7151750

  5. Chlorine isotope variability in subglacial glasses from Iceland

    NASA Astrophysics Data System (ADS)

    Halldorsson, S. A.; Barnes, J.; Stefansson, A.; Hilton, D. R.; Hauri, E. H.

    2014-12-01

    Chlorine concentrations tend to be significantly enriched in surface reservoirs relative to that of the mantle. This large contrast in chlorine contents makes primary asthenospheric melts, highly susceptible to contamination by surficial chlorine in shallow-level crustal environments. Indeed, on the basis of both chlorine abundance systematics [e.g., 1], and chlorine isotopes [2], previous researchers have argued for a surficial chlorine component in controlling the chlorine systematics of MORB. In contrast, other studies suggest recycling of ancient chlorine via a subducted, altered oceanic lithospheric component as a means of controlling the chlorine isotope composition of the mantle [3]. So far, very few high precision chlorine isotope data are available from key oceanic islands, which potentially provide access to deeper parts of the mantle and thus allow for testing of the relative role of these ideas. We report new chlorine isotope (reported as δ37Cl; n=22) and abundance data (SIMS) derived from fresh subglacial glasses from Iceland. The glasses, which cover all the currently active volcanic zones of Iceland, span a wide range in their major element composition with MgO contents between 2.1 and 10.0 wt% and chlorine contents, that vary by almost two orders of magnitude, of 17 to 1270 ppm. Chlorine contents show significant correlations (R2 > 0.9) with incompatible elements such as potassium, consistent with earlier observations from Iceland and the adjacent Reykjanes Ridge [4, 5]. δ37Cl values range from -0.6‰ to +1.4‰. Significantly, δ37Cl values strongly correlate with Cl and MgO contents, with low δ37Cl values in samples with low Cl and high MgO concentrations. The data are consistent with mixing between two different reservoirs: a upper mantle reservoir with low Cl concentration and a slightly negative δ37Cl value and a crustal reservoir with a high Cl concentration and enriched in 37Cl. To further investigate the origin of these chlorine isotope

  6. Chlorine dioxide and hemodialysis

    SciTech Connect

    Smith, R.P. . Dept. of Pharmacology and Toxicology)

    1989-05-01

    Because it has little or no tendency to generate carcinogenic trihalomethanes such as chloroform, chlorine dioxide is an attractive alternative to chlorine for drinking water disinfection. There are, however, concerns about its acute toxicity, and the toxic effects of its by-products, chlorite and chlorate. The human experience with chlorine dioxide in both controlled, prospective studies and in actual use situations in community water supplies have as yet failed to reveal adverse health effects. The EPA has recommended standards of 0.06 mg/L for chlorine dioxide and standards of 0.007 mg/L for chlorite and chlorate in drinking water. Among groups who may be at special risk from oxychlorines in drinking water are patients who must undergro chronic extracorporeal hemodialysis. Although even units for home hemodialysis are supposed to be equipped with devices which effectively remove oxychlorines, there is a always a possibility of operator error or equipment failure. When the equipment is adequately maintained, it is likely that dialysis patients will have more intensive exposures from drinking water than from dialysis fluids despite the much larger volumes of water that are involved in dialysis. This paper discusses a hemodialysis and the standards and effects of oxychlorines. 90 refs., 2 tabs.

  7. Chlorine Dioxide (Gas)

    USDA-ARS?s Scientific Manuscript database

    Chlorine dioxide (ClO2) gas is registered by the U.S. Environmental Protection Agency (EPA) as a sterilant for use in manufacturing, laboratory equipment, medical devices, environmental surfaces, tools and clean rooms. Aqueous ClO2 is registered by the EPA as a surface disinfectant and sanitizer fo...

  8. Impacts of Water Chlorination

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1976

    1976-01-01

    To learn the consequences of one aspect of technology on man and his surroundings, scientists meeting at the Oak Ridge National Laboratory discussed what is known about the impacts of water chlorination. The conference produced state-of-the-art information about the technology and attempted to summarize all the information on the subject. (BT)

  9. Chlorination of lanthanum oxide.

    PubMed

    Gaviría, Juan P; Navarro, Lucas G; Bohé, Ana E

    2012-03-08

    The reactive system La(2)O(3)(s)-Cl(2)(g) was studied in the temperature range 260-950 °C. The reaction course was followed by thermogravimetry, and the solids involved were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results showed that the reaction leads to the formation of solid LaOCl, and for temperatures above 850 °C, the lanthanum oxychloride is chlorinated, producing LaCl(3)(l). The formation of the oxychloride progresses through a nucleation and growth mechanism, and the kinetic analysis showed that at temperatures below 325 °C the system is under chemical control. The influence of diffusive processes on the kinetics of production of LaOCl was evaluated by studying the effect of the reactive gas flow rate, the mass of the sample, and the chlorine diffusion through the boundary layer surrounding the solid sample. The conversion curves were analyzed and fitted according to the Johnson-Mehl-Avrami description, and the reaction order with respect to the chlorine partial pressure was obtained by varying this partial pressure between 10 and 70 kPa. The rate equation was obtained, which includes the influence of the temperature, chlorine partial pressure, and reaction degree.

  10. Impacts of Water Chlorination

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1976

    1976-01-01

    To learn the consequences of one aspect of technology on man and his surroundings, scientists meeting at the Oak Ridge National Laboratory discussed what is known about the impacts of water chlorination. The conference produced state-of-the-art information about the technology and attempted to summarize all the information on the subject. (BT)

  11. Effect of chlorination condition and permeability of chlorine species on the chlorination of a polyamide membrane.

    PubMed

    Gu, Joung-Eun; Jun, Byung-Moon; Kwon, Young-Nam

    2012-10-15

    Most studies on membrane chlorination have been investigated in an unpressurized chlorination mode, even if the polyamide membrane was continuously exposed to chlorine under high operating pressure in real water/wastewater treatment plants. In this study, performance changes due to polyamide membrane chlorination were investigated in both pressurized and unpressurized chlorination modes. Chlorination in an unpressurized mode showed a flux increase at high pH and a flux decline at low pH due to the compaction and swelling of the polyamide chains, respectively. On the other hand, chlorination performed in a pressurized mode decreased the water flux in both acidic and alkaline conditions, showing that compaction is overwhelming compared to swelling. The permeability of HOCl, a dominant species at low pH, through the polyamide membrane was pH independent and almost similar to the system recovery, but the permeability of OCl(-), which is dominant at high pH, was maxima at a neutral pH. The different performance behaviors of membranes chlorinated at various pH conditions in the presence or absence of applied pressure could be explained by the permeability of chlorine species and compaction/swelling of polymer chains after chlorination. The effect of membrane chlorination on the chemical property changes at the two different modes was confirmed using attenuated total reflection Fourier transform infrared analysis, and a conceptual model of performance change was proposed to explain the performance discrepancy between the two chlorination modes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Chlorine in Lunar Basalts

    NASA Technical Reports Server (NTRS)

    Barnes, J. J.; Anand, M.; Franchi, I. A.

    2017-01-01

    In the context of the lunar magma ocean (LMO) model, it is anticipated that chlorine (and other volatiles) should have been concentrated in the late-stage LMO residual melts (i.e., the dregs enriched in incompatible elements such as K, REEs, and P, collectively called KREEP, and in its primitive form - urKREEP, [1]), given its incompatibility in mafic minerals like olivine and pyroxene, which were the dominant phases that crystallized early in the cumulate pile of the LMO (e.g., [2]). When compared to chondritic meteorites and terrestrial rocks (e.g., [3-4]), lunar samples often display heavy chlorine isotope compositions [5-9]. Boyce et al. [8] found a correlation between delta Cl-37 (sub Ap) and bulk-rock incompatible trace elements (ITEs) in lunar basalts, and used this to propose that early degassing of Cl (likely as metal chlorides) from the LMO led to progressive enrichment in remaining LMO melt in Cl-37over Cl-35- the early degassing model. Barnes et al. [9] suggested that relatively late degassing of chlorine from urKREEP (to yield delta Cl-37 (sub urKREEP greater than +25 per mille) followed by variable mixing between KREEPy melts and mantle cumulates (characterized by delta Cl-370 per mille) could explain the majority of Cl isotope data from igneous lunar samples. In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed an in situ study of chlorine isotopes and abundances of volatiles in lunar apatite from a diverse suite of lunar basalts spanning a range of geochemical types.

  13. Formation and speciation characteristics of brominated trihalomethanes in seawater chlorination.

    PubMed

    Padhi, R K; Sowmya, M; Mohanty, A K; Bramha, S N; Satpathy, K K

    2012-11-01

    Formation character of brominated-trihalomethanes (Br-THMs) in chlorinated seawater and its dependence on applied chlorine dose, reaction time, and temperature were investigated in the laboratory. Seawater was collected from the east coast of India and a chlorine dose of 1, 3, 5, and 10 ppm was each applied at a temperature of 20, 30, and 40 degrees C to investigate the yield and kinetics of Br-THMs formation. Qualitative and quantitative estimation of THM formation at various intervals of time ranging from 5 min to 168 h was determined by a gas chromatograph equipped with an electron capture detector (GC-ECD). Chlorine dose, chlorine contact time, and reaction temperature positively affected the load of THMs. The ratio of chlorine dose to halogen incorporation decreased from 12% to 5% with increasing applied chlorine dose from 1 to 10 ppm. Significant levels of THMs were found to be formed within 0.5 h of reaction, followed by a very slow rate of formation. Elevated temperature favored both increased rate of formation and overall THM yield. The formation order of different trihalomethane species at all studied temperatures was observed to be bromodichloromethane (CHCl2Br) < dibromochloromethane (CHClBr2) < bromoform (CHBr3). Formation of chloroform was not observed, and bromoform was the dominant (96% to 98%) among the three THM species formed.

  14. Degradation mechanisms of geosmin and 2-MIB during UV photolysis and UV/chlorine reactions.

    PubMed

    Kim, Tae-Kyoung; Moon, Bo-Ram; Kim, Taeyeon; Kim, Moon-Kyung; Zoh, Kyung-Duk

    2016-11-01

    We conducted chlorination, UV photolysis, and UV/chlorin reactions to investigate the intermediate formation and degradation mechanisms of geosmin and 2-methylisoborneol (2-MIB) in water. Chlorination hardly removed geosmin and 2-MIB, while the UV/chlorine reaction at 254 nm completely removed geosmin and 2-MIB within 40 min and 1 h, respectively, with lesser removals of both compounds during UV photolysis. The kinetics during both UV photolysis and UV/chlorine reactions followed a pseudo first-order reaction. Chloroform was found as a chlorinated intermediate during the UV/chlorine reaction of both geosmin and 2-MIB. The pH affected both the degradation and chloroform production during the UV/chlorine reaction. The open ring and dehydration intermediates identified during UV/chlorine reactions were 1,4-dimethyl-adamantane, and 1,3-dimethyl-adamantane from geosmin, 2-methylenebornane, and 2-methyl-2-bornene from 2-MIB, respectively. Additionally, 2-methyl-3-pentanol, 2,4-dimethyl-1-heptene, 4-methyl-2-heptanone, and 1,1-dichloro-2,4-dimethyl-1-heptane were newly identified intermediates from UV/chlorine reactions of both geosmin and 2-MIB. These intermediates were degraded as the reaction progressed. We proposed possible degradation pathways during the UV photolysis and UV/chlorine reactions of both compounds using the identified intermediates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Chlorine Gas Inhalation

    PubMed Central

    White, Carl W.; Martin, James G.

    2010-01-01

    Humans can come into contact with chlorine gas during short-term, high-level exposures due to traffic or rail accidents, spills, or other disasters. By contrast, workplace and public (swimming pools, etc.) exposures are more frequently long-term, low-level exposures, occasionally punctuated by unintentional transient increases. Acute exposures can result in symptoms of acute airway obstruction including wheezing, cough, chest tightness, and/or dyspnea. These findings are fairly nonspecific, and might be present after exposures to a number of inhaled chemical irritants. Clinical signs, including hypoxemia, wheezes, rales, and/or abnormal chest radiographs may be present. More severely affected individuals may suffer acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS). Up to 1% of exposed individuals die. Humidified oxygen and inhaled β-adrenergic agents are appropriate therapies for victims with respiratory symptoms while assessments are underway. Inhaled bicarbonate and systemic or inhaled glucocorticoids also have been reported anecdotally to be beneficial. Chronic sequelae may include increased airways reactivity, which tends to diminish over time. Airways hyperreactivity may be more of a problem among those survivors that are older, have smoked, and/or have pre-existing chronic lung disease. Individuals suffering from irritant-induced asthma (IIA) due to workplace exposures to chlorine also tend to have similar characteristics, such as airways hyperresponsiveness to methacholine, and to be older and to have smoked. Other workplace studies, however, have indicated that workers exposed to chlorine dioxide/sulfur dioxide have tended to have increased risk for chronic bronchitis and/or recurrent wheezing attacks (one or more episodes) but not asthma, while those exposed to ozone have a greater incidence of asthma. Specific biomarkers for acute and chronic exposures to chlorine gas are currently lacking. Animal models for chlorine gas

  16. [Comparison of the quality and toxicity of wastewater after chlorine and chlorine dioxide disinfections].

    PubMed

    Wang, Li-sha; Zhang, Tong; Hu, Hong-ying

    2005-11-01

    The effects of chlorine and chlorine dioxide disinfections on quality and toxicity of wastewater were compared. The experiment results showed that chlorine disinfection had no obvious effect on wastewater color, while chlorine dioxide disinfection decreased wastewater color observably. The DOC of wastewater did not change much after chlorine and chlorine dioxide disinfections. Chlorine disinfection significantly increased UV230 of wastewater and chlorine dioxide disinfection slightly decreased UV230 of wastewater. When the disinfectants dosage was 30 mg/L, UV230 increased about 0.7 cm(-1) after chlorine disinfection and decreased about 0.05 cm(-1) after chlorine dioxide disinfection. The acute toxicity of wastewater increased with increasing disinfectants dosage for both chlorine and chlorine dioxide disinfections and the acute toxicity after chlorine disinfection is much stronger than that after chlorine dioxide disinfection. The genotoxicity of wastewater increased slightly after chlorine disinfection and decreased slightly after chlorine dioxide disinfection.

  17. Recent developments in enzymatic chlorination.

    PubMed

    Murphy, Cormac D

    2006-04-01

    While the existence of chlorinated natural products has been known for over 100 years, our understanding of the enzymology of biological chlorination reactions has been limited to chloroperoxidases, which are now known not to play a significant role in chlorometabolite biosynthesis. The discoveries of new classes of halogenases, described in this Highlight, have shed new light on the mechanisms of enzymatic chlorination of aromatic and aliphatic compounds.

  18. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... chlorinated polyethylene contains a maximum of 60 percent by weight of total chlorine, as determined by ASTM 1method D1303-55 (Reapproved 1979), “Standard Test Method for Total Chlorine in Vinyl Chloride...

  19. A comparison of chlorinated organic material produced by chlorine and chlorine dioxide bleaching

    SciTech Connect

    McKaque, A.B.; Reeve, D.W.

    1995-12-31

    Chlorine and chlorine dioxide react differently with pulp during bleaching and produce different types of organic by-products. The main differences are the large reduction in the amount of AOX (adsorbable organic halogen) in the effluent and EOX (extractable organic halogen) in the pulp. This talk reviews the differences in the amounts and types of chlorinated organic by-products produced by the two different bleaching agents.

  20. Chlorine-36 and chlorine concentrations within several compartments of a deciduous forest ecosystem in Meuse/Haute-Marne (France)

    NASA Astrophysics Data System (ADS)

    Pupier, Julie; Benedetti, Lucilla; Bourles, Didier; Leclerc, Elisabeth; Thiry, Yves

    2013-04-01

    Chlorine-36 is a cosmogenic nuclide mainly produced in the atmosphere by interactions between energetic particles originating from the cosmic radiations and 40Ar. Because of its long half-life (T1-2 = 3.01 105 yr) and its high mobility, chlorine-36 is a critical radionuclide concerning radioactive waste repository sites. Moreover, it has been shown that inorganic chlorine could be enriched along the trophic chain due to its high solubility and bioavailability (Ashworth and Shaw, 2006). Additionally, many studies during the last decades have established that due to chlorination process, organic chlorine may account for a large proportion of the total soil chlorine pool (more than 80 % in surface soils of temperate ecosystems. Redon et al., 2012). The aim of this study is thus to measure chlorine-36 in all the compartments of the biogeochemical cycle, to better understand its recycling in the biosphere. The study site is the experimental beech forest site of the Andra long-term monitoring and testing system (OPE*). It is located at Montiers-sur-Saulx, North-East of France and is associated to the future radioactive waste repository site of Bure. Since March 2012, rainwater above (rainfall collected from a 45 m high tower built on purpose) and below (throughfall and stemflow) the canopy, has been collected monthly, as well as soil solutions (gravitational and bound waters) at four depths (0, 10, 30, 60 cm deep). Chlorine-36 and chlorine have been measured in the rainfall samples between March and July 2012 and in water solutions collected from all compartments of the biosphere using isotope dilution mass spectrometry at the french AMS national facility ASTER located at CEREGE. The results yielded from the rainfall samples allow to study the temporal fluctuations of chlorine-36 in the atmosphere, which represents the main inflow of chlorine-36 in its biogeochemical cycle. The first results indicate a flow increase during the late spring-early summer. Santos et al

  1. Chlorine, Chloramine, Chlorine Dioxide, and Ozone Susceptibility of Mycobacterium avium

    PubMed Central

    Taylor, Robert H.; Falkinham, Joseph O.; Norton, Cheryl D.; LeChevallier, Mark W.

    2000-01-01

    Environmental and patient isolates of Mycobacterium avium were resistant to chlorine, monochloramine, chlorine dioxide, and ozone. For chlorine, the product of the disinfectant concentration (in parts per million) and the time (in minutes) to 99.9% inactivation for five M. avium strains ranged from 51 to 204. Chlorine susceptibility of cells was the same in washed cultures containing aggregates and in reduced aggregate fractions lacking aggregates. Cells of the more slowly growing strains were more resistant to chlorine than were cells of the more rapidly growing strains. Water-grown cells were 10-fold more resistant than medium-grown cells. Disinfectant resistance may be one factor promoting the persistence of M. avium in drinking water. PMID:10742264

  2. Chlorine transfer hose failure.

    PubMed

    Joseph, Giby

    2004-11-11

    On the morning of 14 August 2002, a 1 in. transfer hose used in a rail tank car unloading operation at DPC Enterprises, near Festus, Missouri, catastrophically ruptured and initiated a sequence of events that led to the release of 48,000 pounds of chlorine--a toxic gas--into neighboring areas. The facility repackages bulk dry liquid chlorine into 1 ton containers and 150 pound cylinders for commercial, industrial, and municipal use in the St. Louis metropolitan area. Fortunately, the wind direction on the day of the release limited the effects of the chlorine plume on the surrounding community. However, 63 people sought hospital treatment due to exposure, and hundreds of others were affected by the release (the community was advised to shelter-in-place for 4 h, and traffic was halted on Interstate 55 for 1.5 h). The US Chemical Safety and Hazard Investigation Board (CSB) investigated this incident for the following reasons: This paper presents the lesson-learned from this incident to help prevent similar occurrences. This paper is based on US Chemical Safety and Hazard Investigation Board Report Number 2002-04-I-MO, which was approved by the Board on 1 May 2003. This paper has not been independently approved by the Board and is published for general informational purposes only. Every effort has been made to accurately present the contents of the Board-approved report in this paper. Any material in the paper that did not originate in the Board-approved report is solely the responsibility of the author and does not represent an official finding, conclusion, or position of the Board. A complete copy of the Board investigation report upon which this paper is based is available on the CSB website at "Completed Investigations."

  3. Toxicity, pharmacokinetics, and photodynamic properties of chlorin e6

    NASA Astrophysics Data System (ADS)

    Kostenich, Gennady; Zhuravkin, Ivan N.; Gurinovich, G. P.; Zhavrid, Edvard A.

    1993-03-01

    Toxicity, pharmacokinetics, and the tumor damage effect of chlorin e6 after light irradiation were studied. The results show that chlorin e6 LD50 value in C57Bl mice was 189 +/- 10 mg/kg, in non-inbred white rats it was 99 +/- 14 mg/kg 14 days after the agent iv injection. The concentration of chlorin e6 in blood, liver, kidney, spleen, and tumors (sarcoma M-1 and sarcoma 45) of the rats was determined by the fluorescence method 3, 6, 12, 18, 24, 48, and 72 hours after the agent iv injection at the dose of 10 mg/kg. For this purpose chlorin e6 was extracted from tissues by detergent triton X-100. The depth of necrosis spreading in tumor tissue was evaluated after chlorin e6 injection at the doses of 1 - 10 mg/kg and subsequent irradiation by a krypton laser with light energy density of 90 J/cm2, using the method of vital staining with Evans blue. It was found that depending on the agent dose and time interval between chlorin e6 injection and photoradiation, the depth of tumor necrosis varied from 4.0 to 16.6 mm in sarcoma M-1 and from 5.0 to 15.0 in sarcoma 45.

  4. Susceptibility of Legionella pneumophila to chlorine in tap water.

    PubMed

    Kuchta, J M; States, S J; McNamara, A M; Wadowsky, R M; Yee, R B

    1983-11-01

    A study was conducted to compare the susceptibility of legionellae and coliforms to disinfection by chlorine. The chlorine residuals used were similar to concentrations that might be found in the distribution systems of large public potable water supplies. The effects of various chlorine concentrations, temperatures, and pH levels were considered. A number of different Legionella strains, both environmental and clinical, were tested. The results indicate that legionellae are much more resistant to chlorine than are coliform bacteria. At 21 degrees C, pH 7.6, and 0.1 mg of free chlorine residual per liter, a 99% kill of L. pneumophila was achieved within 40 min, compared with less than 1 min for Escherichia coli. The observed resistance is enhanced as conditions for disinfection become less optimal. The required contact time for the removal of L. pneumophilia was twice as long at 4 degrees C than it was at 21 degrees C. These data suggest that legionellae can survive low levels of chlorine for relatively long periods of time.

  5. Basic Gas Chlorination Workshop Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to introduce treatment plant operators to the safe operation and maintenance of gas chlorination systems employing the variable vacuum gas chlorinator. Each of the lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing…

  6. Disinfection kinetics of murine norovirus using chlorine and chlorine dioxide.

    PubMed

    Lim, Mi Young; Kim, Ju-Mi; Ko, Gwangpyo

    2010-05-01

    We determined the disinfection efficiency of chlorine and chlorine dioxide (ClO(2)) using murine norovirus (MNV) and coliphage MS2 as surrogates for human norovirus. Experiments were performed in oxidant demand-free buffer (pH 7.2) at 5 degrees C and 20 degrees C. The extent of virus inactivation by a disinfectant was quantified using three different analytical methods: plaque, short template real-time TaqMan reverse transcriptase-polymerase chain reaction (RT-PCR), and long template RT-PCR assays. Rapid inactivation of MNV by both chlorine and chlorine dioxide was observed by the plaque assay. According to the efficiency factor Hom model, Ct values of 0.314mg/Lmin and 0.247mg/Lmin were required for a 4-log reduction of MNV at 5 degrees C by chlorine and chlorine dioxide, respectively. Lower Ct values were required at 20 degrees C. Both long template and short template RT-PCR assays significantly underestimated the virus inactivation compared to the plaque assay. Our study demonstrates that adequate treatment of water with either chlorine or ClO(2) is likely to effectively control the waterborne transmission of human norovirus.

  7. Sulfonate activation of the electrophilic reactivity of chlorine and alkyl hypochlorides by the insertion of sulfur trioxide at the C1-C1 and O-C1 bonds. Addition of chlorine chloro- and ethoxysulfate to olefins

    SciTech Connect

    Zefirov, N.S.; Koz'min, A.S.; Sorokin, V.D.; Zhdankin, V.V.

    1986-10-10

    At low temperatures (-40 to -80/sup 0/C) sulfur trioxide enters the chlorine molecule (with the formation of chlorine chlorosulfate) and the ethyl hypochlorite molecule (giving chlorine ethoxysulfate). Both new compounds are highly reactive electrophilic chlorinating reagents and add to ethylene, activated alkenes (1-hexene and cyclohexene), and deactivated olefins (methyl methacrylate, tri- and tetrachloroethylene) in methylene chloride solution at low temperatures. The addition of chlorine chlorosulfate leads to the formation of ..beta..-chloroalkyl chlorosulfates with yields of 24-85%, and the addition of chlorine ethoxysulfate leads to ..beta..-chloroalkyl ethylsulfates with yields of 65-85%. The reactions with unsymmetrical olefins lead to mixtures of the regioisomers with a preference for the products from addition according to the Markovnikov rule; the addition to cyclohexene is trans-stereospecific. The investigated processes represent a new simple approach to the production of sulfate-activated chlorinating reagents and extend the possibilities for functional substitution of olefins.

  8. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species.

    PubMed

    Wang, Wen-Long; Wu, Qian-Yuan; Huang, Nan; Wang, Ting; Hu, Hong-Ying

    2016-07-01

    For successful wastewater reclamation, advanced oxidation processes have attracted attention for elimination of emerging contaminants. In this study, the synergistic treatment with UV irradiation and chlorine (UV/chlorine) was used to degrade carbamazepine (CBZ). Neither UV irradiation alone nor chlorination alone could efficiently degraded CBZ. UV/chlorine oxidation showed a significant synergistic effect on CBZ degradation through generation of radical species (OH and Cl), and this process could be well depicted by pseudo first order kinetic. The degradation rate constants (kobs,CBZ) of CBZ increased linearly with increasing UV irradiance and chlorine dosage. The degradation of CBZ by UV/chlorine in acidic solutions was more efficient than that in basic solutions mainly due to the effect of pH on the dissociation of HOCl and OCl(-) and then on the quantum yields and radical species quenching of UV/chlorine. When pH was increased from 5.5 to 9.5, the rate constants of degradation of CBZ by OH decreased from 0.65 to 0.14 min(-1) and that by Cl decreased from 0.40 to 0.11 min(-1). The rate constant for the reaction between Cl and CBZ was 5.6 ± 1.6 × 10(10) M(-1) s(-1). Anions of HCO3(-) (1-50 mM) showed moderate inhibition of CBZ degradation by UV/chlorine, while Cl(-) did not. UV/chlorine could efficiently degrade CBZ in wastewater treatment plant effluent, although the degradation was inhibited by about 30% compared with that in ultrapure water with chlorine dosage of 0.14-0.56 mM. Nine main oxidation products of the CBZ degradation by UV/chlorine were identified using the HPLC-QToF MS/MS. Initial oxidation products arose from hydroxylation, carboxylation and hydrogen atom abstraction of CBZ by OH and Cl, and were then further oxidized to generate acylamino cleavage and decarboxylation products of acridine and acridione. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Water chlorination and birth defects.

    PubMed

    Magnus, P; Jaakkola, J J; Skrondal, A; Alexander, J; Becher, G; Krogh, T; Dybing, E

    1999-09-01

    Chlorination of drinking water that contains organic compounds leads to the formation of by-products, some of which have been shown to have mutagenic or carcinogenic effects. As yet, too little is known about the possible teratogenic effects on the human fetus. We linked the Norwegian waterwork registry, containing 1994 data on chlorination practice and color (an indicator for natural organic matter), with the Medical Birth Registry for 1993-1995. The proportion of the population exposed to chlorination and a weighted mean color number in drinking water was computed for each municipality. Among 141,077 births, 2,608 (1.8%) had birth defects. In a comparison between exposed (high color; chlorination) and reference groups (low color; no chlorination), the adjusted odds ratio was 1.14 (0.99-1.31) for any malformation, 1.26 (0.61-2.62) for neural tube defects, and 1.99 (1.10-3.57) for urinary tract defects. This study provides further evidence of the role of chlorination of humic water as a potential cause of birth defects, in a country with relatively low levels of chlorination byproducts.

  10. Thermochemical hydrogen production by a vanadium/chlorine process

    NASA Astrophysics Data System (ADS)

    Knoche, K. F.; Schuster, P.; Ritterbex, T.

    A pure thermochemical cycle of the vanadium/chlorine family similar to the one proposed earlier by Funk et al. (1964) is investigated experimentally with respect to certain chemical reactions. A complete mass and energy balance of this cycle is given. The thermal efficiency is calculated to be approximately 40%.

  11. Free Chlorine and Cyanuric Acid Simulator Application ...

    EPA Pesticide Factsheets

    A web-based application designed to simulate the free chlorine in systems adding free chlorine and cyanuric acid, including the application of Dichlor and Trichlor. A web-based application designed to simulate the free chlorine in systems adding free chlorine and cyanuric acid, including the application of Dichlor and Trichlor.

  12. 46 CFR 151.50-31 - Chlorine.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Chlorine. 151.50-31 Section 151.50-31 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-31 Chlorine. (a) Chlorine barges. Subparts 98.03 and 98.20 of Part 98 of this chapter have been revoked. However, chlorine barges that...

  13. 46 CFR 151.50-31 - Chlorine.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Chlorine. 151.50-31 Section 151.50-31 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-31 Chlorine. (a) Chlorine barges. Subparts 98.03 and 98.20 of Part 98 of this chapter have been revoked. However, chlorine barges that...

  14. 46 CFR 151.50-31 - Chlorine.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Chlorine. 151.50-31 Section 151.50-31 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-31 Chlorine. (a) Chlorine barges. Subparts 98.03 and 98.20 of Part 98 of this chapter have been revoked. However, chlorine barges that...

  15. 21 CFR 173.300 - Chlorine dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Chlorine dioxide. 173.300 Section 173.300 Food and... Additives § 173.300 Chlorine dioxide. Chlorine dioxide (CAS Reg. No. 10049-04-4) may be safely used in food... the following methods: (i) Treating an aqueous solution of sodium chlorite with either chlorine gas...

  16. 21 CFR 173.300 - Chlorine dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Chlorine dioxide. 173.300 Section 173.300 Food and... Additives § 173.300 Chlorine dioxide. Chlorine dioxide (CAS Reg. No. 10049-04-4) may be safely used in food... the following methods: (i) Treating an aqueous solution of sodium chlorite with either chlorine gas...

  17. 46 CFR 151.50-31 - Chlorine.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Chlorine. 151.50-31 Section 151.50-31 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-31 Chlorine. (a) Chlorine barges. Subparts 98.03 and 98.20 of Part 98 of this chapter have been revoked. However, chlorine barges that...

  18. 46 CFR 151.50-31 - Chlorine.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Chlorine. 151.50-31 Section 151.50-31 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-31 Chlorine. (a) Chlorine barges. Subparts 98.03 and 98.20 of Part 98 of this chapter have been revoked. However, chlorine barges that...

  19. 21 CFR 173.300 - Chlorine dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chlorine dioxide. 173.300 Section 173.300 Food and... Additives § 173.300 Chlorine dioxide. Chlorine dioxide (CAS Reg. No. 10049-04-4) may be safely used in food... the following methods: (i) Treating an aqueous solution of sodium chlorite with either chlorine gas...

  20. 21 CFR 173.300 - Chlorine dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Chlorine dioxide. 173.300 Section 173.300 Food and... Additives § 173.300 Chlorine dioxide. Chlorine dioxide (CAS Reg. No. 10049-04-4) may be safely used in food... the following methods: (i) Treating an aqueous solution of sodium chlorite with either chlorine gas...

  1. Chlorinated hydrocarbons in peat

    SciTech Connect

    Rapaport, R.A.

    1985-01-01

    Concentrations (ng/g), accumulation rates (ug/m/sup 2/=yr) and burdens were determined for DDT (1,1,1-trichlorophenyl2-2'bis(p-chlorophenyl)ethane), polychlorinated biphenyls. Toxaphene, hexachlorobenzene (HCB) and a,b,g-hexachlorocyclohexanes (HCHs) in peat cores taken across the mid-latitudes of North America. Because peat bogs are ombrotrophic, thereby receiving all contaminant inputs from the atmosphere and because peat cores were dated, atmospheric input functions were constructed for all of the compounds listed above excepting the HCHs. Compound inventories (burdens) in peat cores of PCBs, HCB, HCHs, Toxaphene, DDT, Pb and Zn were compared, indicating a strong influence from areas proximate to industrial sources and the atmospheric transport from source regions. Untransformed parent DDT (p,p' and o,p'-DDT) in surface peat and in precipitation provides evidence for the long range transport of DDT from neighboring countries where use has increased over the past 10-15 years. Present accumulation rates of DDT in peat are about 10-20% of maximum levels associated with peak use in the US around 1960. The DDT input function that was developed can be used to date peat cores. Transformations of DDT and PCBs were also examined in peat cores. First order transformation rates of DDT (p,p' and o,p') to DDD in anaerobic peat core environments ranged from 0.03 to 0.09 yr/sup -1/ with differences related to temperature. Aerobic transformation of PCB congeners in peat cores and microcosms was rapid for 2,3 and several 4 chlorinated congeners (T/sub 1/2 less than or equal to 0.2 to 3 years) and declined with increasing chlorine number.

  2. Zebra mussel mortality with chlorine

    SciTech Connect

    Van Benschoten, J.E.; Jensen, J.N.; Harrington, D.; DeGirolamo, D.J.

    1995-05-01

    The rate of mortality of the zebra mussel in response to chlorine is described by a kinetic model that combines a statistical characterization of mussel mortality with a disinfection-type modeling approach. Parameter estimates were made with nine sets of data from experiments conducted in Niagara River water. From the kinetic model, an operational diagram was constructed that describes the time to 95% mortality as a function of chlorine concentration and temperature. Either the model or the diagram can be used to assist utilities in planning chlorination treatments for controlling zebra mussels.

  3. Effect of chlorination and ultraviolet disinfection on tetA-mediated tetracycline resistance of Escherichia coli.

    PubMed

    Huang, Jing-Jing; Hu, Hong-Ying; Wu, Yin-Hu; Wei, Bin; Lu, Yun

    2013-02-01

    Antibiotic-resistant bacteria are an emerging threat to public health during drinking water consumption and reclaimed water reuse. Several studies have shown that the proportions of antibiotic-resistant bacteria in waters may increase when exposed to low doses of UV light or chlorine. In this study, inactivation of tetracycline-resistant Escherichia coli and antibiotic-sensitive E. coli by UV disinfection and chlorination was compared to determine the tolerance of tetracycline-resistant E. coli to UV light and chlorine, and tetracycline resistance of a tetracycline-resistant E. coli population was studied under different doses of the disinfectants. Our results showed that relative to antibiotic-sensitive E. coli, tetracycline-resistant E. coli had the same tolerance to UV light and a potentially higher tolerance to chlorination. The mortality frequency distributions of tetracycline-resistant E. coli exposed to tetracycline were shifted by both chlorination and UV disinfection. When compared to the hemi-inhibitory concentrations (IC(50)) of tetracycline-resistant E. coli with no exposure to UV or chlorination, the IC(50) of tetracycline-resistant E. coli treated with tetracycline was 40% lower when inactivation by UV light or chlorination reached 3-log but was 1.18 times greater when inactivation by chlorination reached 4.3-log. Chlorination applied to drinking water or reclaimed water treatment may increase the risk of selection for highly tetracycline-resistant E. coli.

  4. Gaseous, chlorine-free chlorine dioxide for drinking water

    SciTech Connect

    Gordon, G.; Rosenblatt, A.

    1996-11-01

    The benefits of applying chlorine dioxide (ClO{sub 2}) for the oxidative treatment of drinking water are well established. Chlorine dioxide treated finished water typically has substantially lower trihalomethane (THM) levels because ClO{sub 2} will not form chlorinated organic species as a by-product of disinfection. The THMs that are formed are probably due to chlorine from the generator or chlorine used to maintain a post-disinfection residual. An emerging regulatory issue concerning the formation of disinfection by-products (DBPs) is causing the water industry to set standards for the generation and delivery of ClO{sub 2}. The Federal Register (11 February 1994) contains language developed to limit the production of the unwanted inorganic by-products chlorite (ClO{sub 2}{sup -}), chlorate (ClO{sub 3}{sup -}), and bromate (BrO{sub 3}{sup -}) ions by requiring utilities to maintain high (95%) generation efficiencies and by limiting the amount of excess Cl{sub 2} that can be used during the generation process. The efficiency and excess Cl{sub 2} regulations may be problematic for utilities that over-chlorinate to attain chlorine dioxide high yields. Many utilities will have to decide either to reduce the amount of Cl{sub 2} used to react with sodium chlorite (NaClO{sub 2}), thereby increasing the ClO{sub 2}{sup -} residual in finished water, or over-chlorinate to increase yields and surpass the excess Cl{sub 2} limits.

  5. Process for Photochemical Chlorination of Hydrocarbons

    DOEpatents

    Beanblossom, W S

    1951-08-28

    A process for chlorination of a major portion of the hydrogen atoms of paraffinic hydrocarbons of five or more carbon atoms may be replaced by subjecting the hydrocarbon to the action of chlorine under active light. The initial chlorination is begun at 25 to 30 deg C with the chlorine diluted with HCl. The later stages may be carried out with undiluted chlorine and the temperature gradually raised to about 129 deg C.

  6. Disinfection of bacteria in water systems by using electrolytically generated copper:silver and reduced levels of free chlorine.

    PubMed

    Yahya, M T; Landeen, L K; Messina, M C; Kutz, S M; Schulze, R; Gerba, C P

    1990-02-01

    As an alternative disinfectant to chlorination, electrolytically generated copper:silver (400 and 40 micrograms/L copper and silver, respectively) with and without free chlorine (0.3 mg/L) was evaluated over a period of 4 weeks in indoor and outdoor water systems (100 L tap water with natural body flora and urine). Numbers of total coliform, pseudomonas, and staphylococci were all less than drinking water standards in systems treated with copper:silver and free chlorine and systems treated with free chlorine alone (1.0 mg/L). No significant differences (p less than or equal to 0.05) in bacterial numbers were observed between systems with copper:silver and free chlorine and those with free chlorine alone. Overall, free-chlorine treatments (0.3 or 1.0 mg/L) showed significantly lower heterotrophic plate numbers than those without free chlorine. When challenged with a natural Staphylococcus sp. isolate, water with copper:silver and free chlorine had a 2.4 log10 reduction in bacterial numbers within 2 min, while free chlorine alone or copper:silver alone showed 1.5 and 0.03 log10 reductions, respectively. Addition of copper:silver to water systems may allow the concentration of free chlorine to be reduced while still providing comparable sanitary quality of the water.

  7. CHLORINE INACTIVATION OF BACILLUS ENDOSPORES

    EPA Science Inventory

    The possibility of a bioterrorism event resulting in the release of Bacillus anthracis endospores into a drinking water distribution system necessitates research into means by which these endospores can be inactivated. This study was designed to determine the chlorine resistance...

  8. CHLORINE INACTIVATION OF BACILLUS ENDOSPORES

    EPA Science Inventory

    The possibility of a bioterrorism event resulting in the release of Bacillus anthracis endospores into a drinking water distribution system necessitates research into means by which these endospores can be inactivated. This study was designed to determine the chlorine resistance...

  9. Bacterial glutathione: a sacrificial defense against chlorine compounds.

    PubMed Central

    Chesney, J A; Eaton, J W; Mahoney, J R

    1996-01-01

    Aerobic organisms possess a number of often overlapping and well-characterized defenses against common oxidants such as superoxide and hydrogen peroxide. However, much less is known of mechanisms of defense against halogens such as chlorine compounds. Although chlorine-based oxidants may oxidize a number of cellular components, sulfhydrl groups are particularly reactive. We have, therefore, assessed the importance of intracellular glutathione in protection of Escherichia coli cells against hydrogen peroxide, hypochlorous acid, and chloramines. Employing a glutathione-deficient E. coli strain (JTG10) and an otherwise isogenic glutathione-sufficient E. coli strain (AB1157), we find that glutathione-deficient organisms are approximately twice as sensitive to killing by both hydrogen peroxide and chlorine compounds. However, the mode of protection by glutathione in these two cases appears to differ: exogenous glutathione added to glutathione-deficient E. coli in amounts equal to those which would be present in a similar suspension of the wild-type bacteria fully restored resistance of glutathione-deficient bacteria to chlorine-based oxidants but did not change resistance to hydrogen peroxide. Furthermore, in protection against chlorine compounds, oxidized glutathione is almost as effective as reduced glutathione, implying that the tripeptide and/or oxidized thiol undergo further reactions with chlorine compounds. Indeed, in vitro, 1 mol of reduced glutathione will react with approximately 3.5 to 4.0 mol of hypochlorous acid. We conclude that glutathione defends E. coli cells against attack by chlorine compounds and hydrogen peroxide but, in the case of the halogen compounds, does so nonenzymatically and sacrificially. PMID:8606194

  10. 40 CFR 704.45 - Chlorinated terphenyl.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (a)(5)(ii) of this section. (ii) Second standard. A manufacturer of an existing chemical substance is... ACT REPORTING AND RECORDKEEPING REQUIREMENTS Chemical-Specific Reporting and Recordkeeping Rules § 704... degrees. (5) Small manufacturer means a manufacturer (importers are defined as manufacturers under TSCA...

  11. 40 CFR 704.43 - Chlorinated naphthalenes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the management decision described in § 704.3, whichever is later in time. (3) Persons who manufacture... this section on or after October 8, 1984. (3) Persons who manufacture a chemical substance identified... reporting. (1) Small manufacturers. (2) Persons described in § 704.5. (e) What information to...

  12. EFFECTS OF OZONE, CHLORINE DIOXIDE, CHLORINE, AND MONOCHLORAMINE ON CRYTOSPORIDIUM PARVUM OOCYST VIABILITY

    EPA Science Inventory

    Purified Cryptosporiodium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were compareatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlor...

  13. IDENTIFICATION OF NEW DRINKING WATER DISINFECTION BY-PRODUCTS FROM OZONE, CHLORINE DIOXIDE, CHLORAMINE, AND CHLORINE

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Ozone, chlorine dioxide, and chloramine are currently popular alternatives to ...

  14. IDENTIFICATION OF NEW DRINKING WATER DISINFECTION BY-PRODUCTS FROM OZONE, CHLORINE DIOXIDE, CHLORAMINE, AND CHLORINE

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Ozone, chlorine dioxide, and chloramine are currently popular alternatives to ...

  15. Chlorination of Pyridinium Compounds

    PubMed Central

    Daumer, Kathleen M.; Khan, Ahsan U.; Steinbeck, Marla J.

    2010-01-01

    Reactive oxygen species produced by activated neutrophils and monocytes are thought to be involved in mediating the loss of collagen and other matrix proteins at sites of inflammation. To evaluate their potential to oxidize the pyridinoline (Pyd) cross-links found in collagen types I and II, we reacted hydrogen peroxide (H2O2), hypochlorous acid/hypochlorite (HOCl/OCl−), and singlet oxygen (O2(1Δg)) with the Pyd substitutes, pyridoxamine dihydrochloride and vitamin B6, which share the same chemical structure and spectral properties of Pyd cross-links. Neither H2O2 (125–500 µm) nor O2(1Δg) (10–25 µm) significantly changed the spectral properties of pyridoxamine or vitamin B6. Reaction of HOCl/OCl− (12.5–50 µm) with pyridoxamine at pH 7.2 resulted in a concentration-dependent appearance of two new absorbance peaks and a decrease in fluorescence at 400 nm (excitation 325 nm). The new absorbance peaks correlated with the formation of an N-chloramine and the product of its subsequent reaction with pyridoxamine. In contrast, the extent to which HOCl reacted with vitamin B6, which lacks a primary amine group, was variable at this pH. At lysosomal pH 5.5, Cl2/HOCl/OCl− reacted with both pyridoxamine and vitamin B6. Four of the chlorinated products of this reaction were identified by gas chromatography-mass spectrometry and included 3-chloropyridinium, an aldehyde, and several chlorinated products with disrupted rings. To evaluate the effects of Cl2/HOCl/OCl− on Pyd cross-links in collagen, we exposed bone collagen type I and articular cartilage type II to HOCl. Treatment of either collagen type with HOCl at pH 5.0 or 7.2 resulted in the oxidation of amine groups and, for collagen type II, the specific decrease in Pyd cross-link fluorescence, suggesting that during inflammation both oxidations may be used by neutrophils and monocytes to promote the loss of matrix integrity. PMID:10940296

  16. Recovery and diversity of heterotrophic bacteria from chlorinated drinking waters.

    PubMed Central

    Maki, J S; LaCroix, S J; Hopkins, B S; Staley, J T

    1986-01-01

    Heterotrophic bacteria were enumerated from the Seattle drinking water catchment basins and distribution system. The highest bacterial recoveries were obtained by using a very dilute medium containing 0.01% peptone as the primary carbon source. Other factors favoring high recovery were the use of incubation temperatures close to that of the habitat and an extended incubation (28 days or longer provided the highest counts). Total bacterial counts were determined by using acridine orange staining. With one exception, all acridine orange counts in chlorinated samples were lower than those in prechlorinated reservoir water, indicating that chlorination often reduces the number of acridine orange-detectable bacteria. Source waters had higher diversity index values than did samples examined following chlorination and storage in reservoirs. Shannon index values based upon colony morphology were in excess of 4.0 for prechlorinated source waters, whereas the values for final chlorinated tap waters were lower than 2.9. It is not known whether the reduction in diversity was due solely to chlorination or in part to other factors in the water treatment and distribution system. Based upon the results of this investigation, we provide a list of recommendations for changes in the procedures used for the enumeration of heterotrophic bacteria from drinking waters. Images PMID:3524453

  17. A new approximate solution for chlorine concentration decay in pipes.

    PubMed

    Yeh, Hund-Der; Wen, Shi-Bin; Chang, Ya-Chi; Lu, Chung-Sying

    2008-05-01

    Biswas et al. (1993. A model for chlorine concentration decay in pipes. Water Res. 27(12), 1715-1724) presented an analytical solution of a two-dimensional (2-D) steady-state chlorine transport equation in a pipe under the turbulent condition and employed fractional error function and regression technique to develop an approximate solution. However, their approximate solution may not give a good result if the wall decay parameter is large. This paper provides a more accurate approximate solution of the 2-D steady-state chlorine transport equation under the turbulent condition. This new approximate solution has advantages of easy evaluation and good accuracy when compared with the approximate solution given by Biswas et al. (1993). In addition, this paper also develops a methodology that combines simulated annealing (SA) with this new approximate solution to determine the wall decay parameter. Two cases are chosen to demonstrate the application of the present approximate solution and methodology. The first case is to use this new approximate solution in simulating chlorine decay in pipes with the experiment-observed data given by Rossman (2006. The effect of advanced treatment on chlorine decay in metallic pipes. Water Res. 40(13), 2493-2502), while the second case presents the determination of the wall consumption at the end of the pipe network.

  18. Cleaning without chlorinated solvents

    NASA Technical Reports Server (NTRS)

    Thompson, L. M.; Simandl, R. F.

    1995-01-01

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92 percent. The program has been a twofold effort. Vapor degreasers used in batch cleaning operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting, and bonding. Cleaning ability was determined using techniques such as x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes, and swelling of epoxies.

  19. Cleaning without chlorinated solvents

    SciTech Connect

    Thompson, L.M.; Simandl, R.F.

    1994-12-31

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92%. The program has been a twofold effort. Vapor degreasers used in batch cleaning-operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting and bonding. Cleaning ability was determined using techniques such as X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes and swelling of epoxies.

  20. Variation in assimilable organic carbon formation during chlorination of Microcystis aeruginosa extracellular organic matter solutions.

    PubMed

    Sun, Xingbin; Yuan, Ting; Ni, Huishan; Li, Yanpeng; Hu, Yang

    2016-07-01

    This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter (EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water safety and the formation of assimilable organic carbon (AOC). The effects of chlorine dosages, coagulant dosage, reaction time and temperature on the formation of AOC were investigated during the disinfection of M.aeruginosa metabolite solutions. The concentration of AOC followed a decreasing and then increasing pattern with increasing temperature and reaction time. The concentration of AOC decreased and then increased with increasing chlorination dosage, followed by a slight decrease at the highest level of chlorination. However, the concentration of AOC decreased continuously with increasing coagulant dosage. The formation of AOC can be suppressed under appropriate conditions. In this study, chlorination at 4mg/L, combined with a coagulant dose of 40mg/L at 20°C over a reaction time of 12hr, produced the minimum AOC.

  1. Normal levels of total body sodium and chlorine by neutron activation analysis.

    PubMed

    Kennedy, N S; Eastell, R; Smith, M A; Tothill, P

    1983-03-01

    In vivo neutron activation analysis was used to measure total body sodium and chlorine in 18 male and 18 female normal adults. Corrections for body size were developed. Normalisation factors were derived which enable the prediction of the normal levels of sodium and chlorine in a subject. The coefficient of variation of normalised sodium was 5.9% in men and 6.9% in women, and of normalised chlorine 9.3% in men and 5.5% in women. In the range examined (40-70 years) no significant age dependence was observed for either element. Total body sodium was correlated with total body chlorine and total body calcium. Sodium excess, defined as the amount of body sodium in excess of that associated with chlorine, also correlated well with total body calcium. In females there was a mean annual loss of sodium excess of 1.2% after the menopause, similar to the loss of calcium.

  2. Chemistry of combined residual chlorination

    SciTech Connect

    Leao, S.F.; Selleck, R.E.

    1982-01-01

    The decay of the combined chlorine residual was investigated in this work. Recent concerns about the formation of undesirable compounds such as chloroform with free residual chlorination have focused attention on the alternative use of combined residual chlorination. This work investigates the applicability of reactions proposed to describe the transformations and decay of the combined residual with time. Sodium hypochlorite was added to buffered solutions of ammonia with the chlorine residual being monitored over periods extending up to 10 days. The reaction was studied at four initial concentrations of hypochlorite of 100, 50, 25 and 10 mg/L as Cl/sub 2/ with molar application ratios of chlorine to ammonia, defined herein as M ratios, of 0.90, 0.50, 0.25 and 0.05 at each hypochlorite dose. Sixty-eight experiments were conducted at the pH of 6.6 and 7.2. The conclusions are: (1) in the absence of free chlorine, the concentration of NH/sub 3/ does not seem to affect the rate of disappearance of the residual other than through the formation of NHCl/sub 2/ by NH/sub 2/Cl hydrolysis; (2) the reaction between NHCl/sub 2/ and NH/sub 4//sup +/ to form NH/sub 2/Cl is either much slower than reported by Gray et. al. or the mechanism is different with a rate limiting step not involving NH/sub 3/ or NH/sub 4//sup +/; (3) a redox reaction in addition to the first-order decomposition of NHCl/sub 2/ appears necessary. Model simulation results indicated that a reaction of the type NH/sub 2/Cl + NHCl/sub 2/ ..-->.. P added to the first-order NHCl/sub 2/ decomposition can explain the results observed except at the higher chlorine doses.

  3. A membrane process to recover chlorine from chloralkali plant tail gas

    SciTech Connect

    Lokhandwala, K.A.; Segelke, S.; Nguyen, P.; Baker, R.W.; Su, T.T.; Pinnau, I.

    1999-10-01

    Chlorine is manufactured by the electrolysis of brine. The chlorine product is a gas, which is collected, dried, compressed, and cooled to produce a liquid. This paper describes the development and field demonstration of a membrane process to recover chlorine from the liquefaction tail gas of chloralkali plants. The tail gas consists of about 20% chlorine and 50--70% air, with the balance being hydrogen and carbon dioxide. A number of membrane materials can achieve a selectivity of 20 or more for chlorine from nitrogen, but degradation of the membrane materials in the presence of high concentrations of chlorine gas often occurs. However, modified silicone rubber membranes are stable to chlorine gas streams. Silicone rubber composite membranes were prepared and formed into modules of 1--2 m{sup 2} membrane area. The modules were tested in the laboratory and in a field test on a slip stream from a chlorine liquefaction unit. In the laboratory, chlorine/nitrogen membrane selectivities of more than 40 were obtained, but selectivities of 6--10 were measured in the field test. This decrease in selectivity was caused by low gas flow rates through the modules, which resulted in concentration polarization effects. However, the membrane maintained essentially constant fluxes and selectivities in field tests lasting more than 1 month. Calculated plant designs based on a selectivity of 8 are able to recover more than 95% of the chlorine in the tail gas. Typical project payback times based on the value of the recovered chlorine and avoided caustic scrubber chemical use are expected to be 1--2 years.

  4. Evaluation of chlorine dioxide gas treatment to inactivate Salmonella enterica on mungbean sprouts.

    PubMed

    Prodduk, Vara; Annous, Bassam A; Liu, Linshu; Yam, Kit L

    2014-11-01

    Although freshly sprouted beans and grains are considered to be a source of nutrients, they have been associated with foodborne outbreaks. Sprouts provide good matrices for microbial localization and growth due to optimal conditions of temperature and humidity while sprouting. Also, the lack of a kill step postsprouting is a major safety concern. The objective of this work was to evaluate the effectiveness of chlorine dioxide gas treatment to reduce Salmonella on artificially inoculated mungbean sprouts. The effectiveness of gaseous chlorine dioxide (0.5 mg/liter of air) with or without tumbling (mechanical mixing) was compared with an aqueous chlorine (200 ppm) wash treatment. Tumbling the inoculated sprouts during the chlorine dioxide gas application for 15, 30, and 60 min reduced Salmonella populations by 3.0, 4.0, and 5.5 log CFU/g, respectively, as compared with 3.0, 3.0, and 4.0 log CFU/g reductions obtained without tumbling, respectively. A 2.0 log CFU/g reduction in Salmonella was achieved with an aqueous chlorine wash. The difference in microbial reduction between chlorine dioxide gas versus aqueous chlorine wash points to the important role of surface topography, pore structure, bacterial attachment, and/or biofilm formation on sprouts. These data suggested that chlorine dioxide gas was capable of penetrating and inactivating cells that are attached to inaccessible sites and/or are within biofilms on the sprout surface as compared with an aqueous chlorine wash. Consequently, scanning electron microscopy imaging indicated that chlorine dioxide gas treatment was capable of penetrating and inactivating cells attached to inaccessible sites and within biofilms on the sprout surfaces.

  5. Alkaline pretreatment for chlorine removal from high-chlorine rhodochrosite

    NASA Astrophysics Data System (ADS)

    Zhang, Xing-ran; Liu, Zuo-hua; Li, Wen-sheng; Cheng, Ya-ya; Du, Jun; Tao, Chang-yuan

    2016-11-01

    Chloride in manganese ore adversely affects mineral extraction. The mechanisms and the factors that influence an alkali pretreatment to removal chlorine from manganese ore were explored to eliminate hazards posed by chlorine during the electrolysis of manganese. The results showed that sodium carbonate, when used as an alkaline additive, promoted the dissolution of insoluble chloride, enhanced the migration of chloride ions, and effectively stabilized Mn2+. The optimal conditions were a sodium carbonate concentration of 0.45 mol·L-1, a liquid-solid ratio of 5:1 mL·g-1, a reaction time of 1 h, and a temperature of 25°C. The chlorine removal efficiency was greater than 95%, and the ore grade (Mn) was increased by 2.7%.

  6. Debate over phaseout of chlorine, chlorinated organics continues

    SciTech Connect

    Hileman, B. )

    1993-12-06

    During the past two months, the debate over whether to phase out the use and production of chlorine and chlorinated organics as a broad class of chemicals has continued on a number of fronts. This question was the major focus of discussion at the recent biennial meeting in Windsor Ontario, of the International Joint Commission (IJC)--a binational group that oversees implementation of the Great Lakes Water Quality Agreement. Just prior to the meeting, the governments of the US and Canada presented their views on this issue, and it was the topic most of the speakers discussed during the organized sessions and public hearings. IJC is working on its seventh Biennial Report, which will be completed shortly after the first of the year. The very large comprehensive study on the health and environmental effects of chlorinated organics being prepared by CanTox, a consulting group in Mississauga, Ontario, for CCC and the Chlorine Institute was originally scheduled to be published in June. It is now slated for release sometime in early 1994, and the conference on the health and environmental effects of chlorinated organics that was to be sponsored by CCC and held in September of this year was canceled and has not been rescheduled. The movement to phase out chlorine also may be gathering momentum in Europe. On Oct 15, the 21 nations party to the Barcelona Convention on pollution of the Mediterranean recommended that their governments phase out toxic, persistent, and bioaccumulative substances, especially organohalogens (which include organochlorine), by 2005. This action is similar to proposals made in September 1992 by the Paris Commission, which oversees discharges of pollutants in the northeast Atlantic Ocean.

  7. Photolytic effects in alumina chlorination

    NASA Astrophysics Data System (ADS)

    Soleiman, M. K.; Rao, Y. K.

    1987-06-01

    The temperature dependence of the rate of chlorination of α-alumina with CO/Cl2 gas mixtures exhibits an anomaly, a departure from the normal Arrhenius behavior, in the range 650 to 850°C; it is manifested as a local maximum in the Arrhenius plot at 670°C followed by a local minimum in the range 770 to 850°C. By carefully studying the effect of irradiation of the CO/Cl2 gas mixtures on the rate of chlorination of α-alumina, it is shown that such an anomaly, which has been observed in the chlorination of various metallic oxides, is most likely due to the photochemical formation of phosgene (COCl2) by ambient light incident on the reactant gas mixture during its transport to the main reactor. Phosgene is a better chlorinating agent than a CO/Cl2 mixture. The mechanism of chlorination of α-Al2O3 by CO/Cl2 mixtures subjected to the light emitted by a high-pressure Hg-vapor lamp is elucidated.

  8. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation.

    PubMed

    Sorlini, Sabrina; Gialdini, Francesca; Biasibetti, Michela; Collivignarelli, Carlo

    2014-05-01

    Disinfection is the last treatment stage of a Drinking Water Treatment Plant (DWTP) and is carried out to maintain a residual concentration of disinfectant in the water distribution system. Chlorine dioxide (ClO2) is a widely used chemical employed for this purpose. The aim of this work was to evaluate the influence of several treatments on chlorine dioxide consumption and on chlorite and chlorate formation in the final oxidation/disinfection stage. A number of tests was performed at laboratory scale employing water samples collected from the DWTP of Cremona (Italy). The following processes were studied: oxidation with potassium permanganate, chlorine dioxide and sodium hypochlorite, coagulation/flocculation with ferric chloride and aluminum sulfate, filtration and adsorption onto activated carbon. The results showed that the chlorine dioxide demand is high if sodium hypochlorite or potassium permanganate are employed in pre-oxidation. On the other hand, chlorine dioxide leads to the highest production of chlorite and chlorate. The coagulation/flocculation process after pre-oxidation shows that chlorine dioxide demand decreases if potassium permanganate is employed as an oxidant, both with ferric chloride and aluminum sulfate. Therefore, the combination of these processes leads to a lower production of chlorite and chlorate. Aluminum sulfate is preferable in terms of the chlorine dioxide demand reduction and minimization of the chlorite and chlorate formation. Activated carbon is the most effective solution as it reduced the chlorine dioxide consumption by about 50% and the DBP formation by about 20-40%.

  9. Reactions of aqueous chlorine and chlorine dioxide with model food compounds.

    PubMed Central

    Fukayama, M Y; Tan, H; Wheeler, W B; Wei, C I

    1986-01-01

    Chlorine and chlorine dioxide (ClO2), common disinfecting and bleaching chemicals used in the food industry, are potent oxidizing and chlorinating agents. Unfortunately, little is known about the nature of the reactions of chlorine with organic food constituents. This presentation reviews published information concerning the reactions of chlorine gas (Cl2[g]), aqueous chlorine, and ClO2 with model food compounds, the fate of chlorine during the chlorination of specific food products, and the potential toxicity of the reaction products. Fatty acids and their methyl esters react with chlorine with the degree of incorporation corresponding to their degree of unsaturation. Aqueous chlorine oxidizes and chlorinates lipids and amino acids much more readily than ClO2. Several amino acids are highly susceptible to oxidation and chlorination by chlorine compounds. Reactions of chlorine and ClO2 with several food products, including flour and shrimp, have also been characterized. In one model system, 99% of Cl2(g) either reacted with components of flour or was consumed by oxidation/chlorination reactions. The lipids extracted from the chlorinated flour contained significant amounts of chlorine. Exposure of shrimp to hypochlorous acid (HOCl) solution resulted in significant incorporation of chlorine into the edible portion. Although significant quantities of chlorine can be incorporated into specific model compounds and food products, the health risks associated with exposure to chlorinated organic products are unknown. Preliminary studies using the Ames Salmonella/microsome mutagenicity assay indicate that the reaction products from mixtures of aqueous chlorine and various lipids or tryptophan are nonmutagenic. Nevertheless, additional studies are warranted, so that the toxicological significance of these reaction products can be understood more fully. PMID:3545804

  10. Chlorinous flavor perception in drinking water.

    PubMed

    Piriou, P; Mackey, E D; Suffet, I H; Bruchet, A

    2004-01-01

    Chlorinous flavors at the tap are the leading cause of customers' complaints and dissatisfaction with drinking water. To characterize consumer perception and acceptance to chlorinous tastes, extensive taste testing was performed with both trained panelists and average consumers. Taste testing with trained panelists showed that chlorine perception is underestimated by disinfectant flavor thresholds reported in the literature. However, trained panelists significantly overestimate the average consumer's ability to perceive chlorine. In addition, consumer perception seems to be influenced by the chlorination practices of the country they live in. Among water quality characteristics that may influence chlorine perception, temperature was not found to induce any significant change. The influence of total dissolved solids (TDS) on chlorine perception remains unclear and, as reported elsewhere, background tastes such as musty, may significantly impact chlorine threshold.

  11. Chlorine chemistry relevant to urban air pollution

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Zhang, D.; Lei, W.

    2002-05-01

    Reactive chlorine is present in the atmosphere as a consequence of direct emissions and multiphase chemical processes, i.e., from oceanic and terrestrial biogenic emissions, sea-salt production and de-chlorination, biomass burning, and anthropogenic emissions. Recent studies have indicated the importance of anthropogenic sources of chlorine molecules and the related ozone formation in the urban atmosphere. Chlorine radicals react efficiently with atmospheric volatile organic compounds (VOCs) and hence the presence of chlorine radicals significantly enhances the ozone production rate in the urban environments. The talk presents laboratory and theoretical studies of Cl-initiated reactions of VOCs. Implications of related chlorine chemistry and the use of chlorine markers to obtain the atmospheric concentrations of reactive chlorine will be discussed.

  12. THE ROLE OF CHLORINE IN DIOXIN FORMATION

    EPA Science Inventory

    There is poor correlation between total chlorine in waste streams and formation of polychlorinated dibenzodioxin and polychlorinated dibenzofuran (PCDD/F) during waste combustion. This is because the active chlorine (Cl) species are strongly dependent upon combustion conditions. ...

  13. THE ROLE OF CHLORINE IN DIOXIN FORMATION

    EPA Science Inventory

    There is poor correlation between total chlorine in waste streams and formation of polychlorinated dibenzodioxin and polychlorinated dibenzofuran (PCDD/F) during waste combustion. This is because the active chlorine (Cl) species are strongly dependent upon combustion conditions. ...

  14. Detection of chlorinated aromatic compounds

    DOEpatents

    Ekechukwu, A.A.

    1996-02-06

    A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.

  15. Colorectal cancers and chlorinated water.

    PubMed

    El-Tawil, Ahmed Mahmoud

    2016-04-15

    Published reports have revealed increased risk of colorectal cancers in people exposed to chlorinated drinking water or chemical derivatives of chlorination. Oestrogen plays a dual positive functions for diminishing the possibilities of such risk by reducing the entrance, and increasing the excretion, of these chemicals. In addition, there are supplementary measures that could be employed in order to reduce this risk further, such as boiling the drinking water, revising the standard concentrations of calcium, magnesium and iron in the public drinking water and prescribing oestrogen in susceptible individuals. Hypo-methylation of genomic DNA could be used as a biological marker for screening for the potential development of colorectal cancers.

  16. Colorectal cancers and chlorinated water

    PubMed Central

    El-Tawil, Ahmed Mahmoud

    2016-01-01

    Published reports have revealed increased risk of colorectal cancers in people exposed to chlorinated drinking water or chemical derivatives of chlorination. Oestrogen plays a dual positive functions for diminishing the possibilities of such risk by reducing the entrance, and increasing the excretion, of these chemicals. In addition, there are supplementary measures that could be employed in order to reduce this risk further, such as boiling the drinking water, revising the standard concentrations of calcium, magnesium and iron in the public drinking water and prescribing oestrogen in susceptible individuals. Hypo-methylation of genomic DNA could be used as a biological marker for screening for the potential development of colorectal cancers. PMID:27096035

  17. The chlorine solar neutrino experiment

    NASA Astrophysics Data System (ADS)

    Rowley, J. K.; Cleveland, B. T.; Davis, R., Jr.

    1985-01-01

    The present consideration of the fourteen years' (1970-1984) results from the Homestake Gold Mine chlorine solar neutrino experiment gives attention to background processes generating Ar-37, as well as the constancy of the Ar-37 production rate. The counter background rates derived from a maximum likelihood treatment are noted to have been variable. The results of the chlorine experiment are clearly different from those of Monte Carlo simulations, with a production rate 3-4 times higher. Solar cycle variations and solar flare effects are also discussed.

  18. Radiolytic dechlorination of chlorinated organics

    NASA Astrophysics Data System (ADS)

    Taghipour, Fariborz; Evans, Greg J.

    1997-02-01

    The radiolytic dechlorination of 12 low molecular weight chlorinated organic compounds present in pulp mill effluent was investigated. For most of these chloro-organic compounds more than 90% dechlorination was obtained for gamma doses up to 20 kGy. Parameters such as the number of chlorine atoms and aqueous solution concentration were found to affect the dechlorination rate. A reaction set was also created to model the behavior of irradiated 0.49-49 mol m -3 chloroform solutions, giving good agreement with experimental results.

  19. STABLE CHLORINE ISOTOPE ANALYSIS OF CHLORINATED ORGANIC CONTAMINANTS

    EPA Science Inventory

    The biogeochemical cycling of chlorinated organic contaminants in the environment is often difficult to understand because of the complex distributions of these compounds and variability of sources. To address these issues from an isotopic perspective, we have measured the, 37Cl...

  20. 49 CFR 179.102-2 - Chlorine.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Chlorine. 179.102-2 Section 179.102-2... Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-2 Chlorine. (a) Each tank car used to transport chlorine must comply with all of the following: (1) Tanks must be fabricated from carbon...

  1. 49 CFR 179.102-2 - Chlorine.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Chlorine. 179.102-2 Section 179.102-2... Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-2 Chlorine. (a) Each tank car used to transport chlorine must comply with all of the following: (1) Tanks must...

  2. 21 CFR 173.300 - Chlorine dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Chlorine dioxide. 173.300 Section 173.300 Food and... FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.300 Chlorine dioxide. Chlorine dioxide (CAS Reg. No. 10049-04-4) may be safely used in food in accordance with...

  3. 49 CFR 179.102-2 - Chlorine.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Chlorine. 179.102-2 Section 179.102-2... Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-2 Chlorine. (a) Each tank car used to transport chlorine must comply with all of the following: (1) Tanks must be fabricated from carbon...

  4. 49 CFR 179.102-2 - Chlorine.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Chlorine. 179.102-2 Section 179.102-2... Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-2 Chlorine. (a) Each tank car used to transport chlorine must comply with all of the following: (1) Tanks must be fabricated from carbon...

  5. 49 CFR 179.102-2 - Chlorine.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Chlorine. 179.102-2 Section 179.102-2... Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-2 Chlorine. (a) Each tank car used to transport chlorine must comply with all of the following: (1) Tanks must be fabricated from carbon...

  6. BOOSTER CHLORINATION FOR MANAGING DISINFECTANT RESIDUALS

    EPA Science Inventory

    Booster chlorination is an approach to residual maintenance in which chlorine is applied at strategic locations within the distribution system. Situations in which booster chlorination may be most effective for maintaining a residual are explained informally in the context of a ...

  7. Chlorine demand of Savannah River water

    SciTech Connect

    Wilde, E.W.

    1989-01-01

    Savannah River water used for cooling SRS reactors was tested for chlorine demand and the rate of decay for both free and total residual chlorine on seven quarterly dates between 1986 and 1988. Test conditions included chlorine dosages of 1, 3, and 5 mg/l and a variety of contact times ranging from less than 1 minute to one day. Statistically significant differences were detected in the chlorine demand for the seven dates; however, there was no discernible seasonality to the variation. The chlorine demand, amount of combined residual chlorine formed and the persistence of total residual chlorine following a dose of 5 mg/l was significantly greater on one of the seven sampling dates (February, 1988) compared to all of the other dates. These differences could not be attributed to water temperature, pH, ammonia nitrogen concentration, or the amount of rainfall prior to or during the collection of the cooling water. Except as noted above, dissipation of chlorine was similar among the sampling dates. Most reactions of available chlorine with other constituents in the cooking water occurred in the first minute of contact, although measurable total chlorine residuals generally persisted for 24 hours after the dose had been administered. The results of this study indicate that, with occasional exceptions, a chlorine dose of between 3 and 5 mg/l will provide a free chlorine residual of 1 mg/l in Savannah River water. 14 refs., 3 figs., 4 tabs.

  8. BOOSTER CHLORINATION FOR MANAGING DISINFECTANT RESIDUALS

    EPA Science Inventory

    Booster chlorination is an approach to residual maintenance in which chlorine is applied at strategic locations within the distribution system. Situations in which booster chlorination may be most effective for maintaining a residual are explained informally in the context of a ...

  9. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene, chlorinated. 177.1610 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1610 Polyethylene, chlorinated. Chlorinated polyethylene identified in this section may be safely used as articles or components of articles that...

  10. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene, chlorinated. 177.1610 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1610 Polyethylene, chlorinated. Chlorinated polyethylene identified in this section may be safely used as articles or components of articles that...

  11. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene, chlorinated. 177.1610 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1610 Polyethylene, chlorinated. Chlorinated polyethylene identified in this section may be safely used as articles or components of articles that...

  12. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene, chlorinated. 177.1610 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1610 Polyethylene, chlorinated. Chlorinated polyethylene identified in this section may be safely used as articles or components of articles that...

  13. An Easy Way To Make Chlorine Water

    NASA Astrophysics Data System (ADS)

    Holmes, L. H., Jr.

    1997-11-01

    Chlorine water can be made easily by mixing hypochlorite and hydrochloric acid. The equilibrium lies toward Cl2 in the reaction HOCl + HCl -> Cl2 + H2O and this can be used to make chlorine water from sodium hypochlorite and hydrochloric acid if the presence of NaCl in the chlorine water does not interfere with its use.

  14. Disinfectants: Chlorine and chlorine dioxide. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning the antimicrobial properties of chlorine and chlorine dioxide. The use of chlorine for the inactivation of viruses, bacteria, and fungi in wastewater treatment plants is discussed, including the mode of action and factors influencing inactivation. The use of chlorine dioxide as an alternative to chlorine disinfection in swimming pools and water supplies, and possible adverse effects are also discussed. (Contains a minimum of 157 citations and includes a subject term index and title list.)

  15. Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan.

    PubMed

    Rule, Krista L; Ebbett, Virginia R; Vikesland, Peter J

    2005-05-01

    The widely used antimicrobial agent triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) readily reacts with free chlorine under drinking water treatment conditions. Overall second-order kinetics were observed, first-order in free chlorine and first-order in triclosan. Over the pH range of 4-11.5, the kinetics were pH sensitive as a result of the pH dependent speciation of both triclosan and free chlorine. Using a Marquardt-Levenberg routine, it was determined that this pH effect indicates that the dominant reaction in this system is between the ionized phenolate form of triclosan and hypochlorous acid (HOCl). The overall second-order rate coefficient was determined to be kArO- = 5.40 (+/- 1.82) x 10(3) M(-1) s(-1). Three chlorophenoxyphenols and two chlorophenols were identified by gas chromatographic-mass spectroscopic analysis. The chlorophenoxyphenol compounds include two monochlorinated triclosan derivatives (5,6-dichloro-2-(2,4-dichlorophenoy)phenol and 4,5-dichloro-2-(2,4-dichlorophenoxy)phenol) and one dichlorinated derivative (4,5,6-trichloro-(2,4-dichlorophenoxy)phenol); these species form via bimolecular electrophilic substitution of triclosan. 2,4-Dichlorophenol was detected under all reaction conditions and forms via ether cleavage of triclosan. In experiments with excess free chlorine, 2,4,6-trichlorophenol was formed via electrophilic substitution of 2,4-dichlorophenol. Chloroform formation was observed when an excess of free chlorine was present. A Hammett-type linear free-energy relationship (LFER) using Brown-Okamoto parameters (sigma+) was established to correlate the reactivity of HOCI and the phenolate forms of triclosan and other chlorophenols (log kArO- = -(10.7 +/- 2.2)Sigmasigma(+)o,m,p + 4.43). This LFER was used to obtain estimates of rate coefficients describing the reactivity of the intermediates 5,6-dichloro-2-(2,4-dichlorophenoy)phenol (kArO- approximately equal to 6 x 10(2)), 4,5-dichloro-2-(2,4-dichlorophenoxy)phenol (k

  16. Chlorine Abundances in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Bogard, D.D.; Garrison, D.H.; Park, J.

    2009-01-01

    Chlorine measurements made in martian surface rocks by robotic spacecraft typically give Chlorine (Cl) abundances of approximately 0.1-0.8%. In contrast, Cl abundances in martian meteorites appear lower, although data is limited, and martian nakhlites were also subjected to Cl contamination by Mars surface brines. Chlorine abundances reported by one lab for whole rock (WR) samples of Shergotty, ALH77005, and EET79001 range 108-14 ppm, whereas Cl in nakhlites range 73-1900 ppm. Measurements of Cl in various martian weathering phases of nakhlites varied 0.04-4.7% and reveal significant concentration of Cl by martian brines Martian meteorites contain much lower Chlorine than those measured in martian surface rocks and give further confirmation that Cl in these surface rocks was introduced by brines and weathering. It has been argued that Cl is twice as effective as water in lowering the melting point and promoting melting at shallower martian depths, and that significant Cl in the shergottite source region would negate any need for significant water. However, this conclusion was based on experiments that utilized Cl concentrations more analogous to martian surface rocks than to shergottite meteorites, and may not be applicable to shergottites.

  17. Environmental factors regulating soil organic matter chlorination

    NASA Astrophysics Data System (ADS)

    Svensson, Teresia; Montelius, Malin; Reyier, Henrik; Rietz, Karolina; Karlsson, Susanne; Lindberg, Cecilia; Andersson, Malin; Danielsson, Åsa; Bastviken, David

    2016-04-01

    Natural chlorination of organic matter is common in soils. Despite the widespread abundance of soil chlorinated soil organic matter (SOM), frequently exceeding soil chloride abundance in surface soils, and a common ability of microorganisms to produce chlorinated SOM, we lack fundamental knowledge about dominating processes and organisms responsible for the chlorination. To take one step towards resolving the terrestrial chlorine (Cl) puzzle, this study aims to analyse how environmental factors influence chlorination of SOM. Four factors were chosen for this study: soil moisture (W), nitrogen (N), chloride (Cl) and organic matter quality (C). These factors are all known to be important for soil processes. Laboratory incubations with 36Cl as a Cl tracer were performed in a two soil incubation experiments. It was found that addition of chloride and nitrogen seem to hamper the chlorination. For the C treatment, on the other hand, the results show that chlorination is enhanced by increased availability of labile organic matter (glucose and maltose). Even higher chlorination was observed when nitrogen and water were added in combination with labile organic matter. The effect that more labile organic matter strongly stimulated the chlorination rates was confirmed by the second separate experiment. These results indicate that chlorination was not primarily a way to cut refractory organic matter into digestible molecules, representing one previous hypothesis, but is related with microbial metabolism in other ways that will be further discussed in our presentation.

  18. The effect of pH and chloride concentration on the stability and antimicrobial activity of chlorine-based sanitizers.

    PubMed

    Waters, Brian W; Hung, Yen-Con

    2014-04-01

    Chlorinated water and electrolyzed oxidizing (EO) water solutions were made to compare the free chlorine stability and microbicidal efficacy of chlorine-containing solutions with different properties. Reduction of Escherichia coli O157:H7 was greatest in fresh samples (approximately 9.0 log CFU/mL reduction). Chlorine loss in "aged" samples (samples left in open bottles) was greatest (approximately 40 mg/L free chlorine loss in 24 h) in low pH (approximately 2.5) and high chloride (Cl(-) ) concentrations (greater than 150 mg/L). Reduction of E. coli O157:H7 was also negatively impacted (<1.0 log CFU/mL reduction) in aged samples with a low pH and high Cl(-) . Higher pH values (approximately 6.0) did not appear to have a significant effect on free chlorine loss or numbers of surviving microbial cells when fresh and aged samples were compared. This study found chloride levels in the chlorinated and EO water solutions had a reduced effect on both free chlorine stability and its microbicidal efficacy in the low pH solutions. Greater concentrations of chloride in pH 2.5 samples resulted in decreased free chlorine stability and lower microbicidal efficacy.

  19. Fate of Antibiotic Resistant Bacteria and Genes during Wastewater Chlorination: Implication for Antibiotic Resistance Control

    PubMed Central

    Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian

    2015-01-01

    This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L). The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L). By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L). However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination. PMID:25738838

  20. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control.

    PubMed

    Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian

    2015-01-01

    This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L). The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L). By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L). However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.

  1. Circular dichroism spectroscopy of chlorin e6 and its complexes with quantum dots in different media

    NASA Astrophysics Data System (ADS)

    Kundelev, E. V.; Orlova, A. O.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.

    2017-01-01

    The circular dichroism (CD) spectra of chlorin e6 and its complexes with ZnS:Mn/ZnS and CdSe/ZnS quantum dots (QDs) in aqueous solutions with different pH, in methanol, and in dimethyl sulfoxide (DMSO) have been experimentally investigated. The changes in the CD spectra of free chlorin e6 caused by its complexing with semiconductor QDs are analyzed. The application of CD spectroscopy made it possible to record for the first time the CD spectrum of luminescent dimer of chlorin e6 and reveal a nonluminescent aggregate of chlorin e6 (interpreted preliminary as a "tetramer"), the anisotropy factor of which exceeds that of its monomer by a factor of 40. An analysis of the experimental data shows that chlorin e6 in a complex with QDs can be either in the monomeric form or in the form of a nonluminescent "tetramer." The interaction with a relatively low-stable luminescent dimer of chlorin e6 with QDs leads to its partial monomerization and formation of complexes where chlorin e6 is in the monomeric form.

  2. Multi-species biofilms defined from drinking water microorganisms provide increased protection against chlorine disinfection.

    PubMed

    Schwering, Monika; Song, Joanna; Louie, Marie; Turner, Raymond J; Ceri, Howard

    2013-09-01

    A model biofilm, formed of multiple species from environmental drinking water, including opportunistic pathogens, was created to explore the tolerance of multi-species biofilms to chlorine levels typical of water-distribution systems. All species, when grown planktonically, were killed by concentrations of chlorine within the World Health Organization guidelines (0.2-5.0 mg l(-1)). Higher concentrations (1.6-40-fold) of chlorine were required to eradicate biofilm populations of these strains, ~70% of biofilms tested were not eradicated by 5.0 mg l(-1) chlorine. Pathogenic bacteria within the model multi-species biofilms had an even more substantial increase in chlorine tolerance; on average ~700-1100 mg l(-1) chlorine was required to eliminate pathogens from the biofilm, 50-300-fold higher than for biofilms comprising single species. Confocal laser scanning microscopy of biofilms showed distinct 3D structures and multiple cell morphologies and arrangements. Overall, this study showed a substantial increase in the chlorine tolerance of individual species with co-colonization in a multi-species biofilm that was far beyond that expected as a result of biofilm growth on its own.

  3. Chlorine, is there a better alternative?

    PubMed

    Robeck, G G

    1981-04-01

    In brief, the current status of our present knowledge regarding alternatives to free chlorine is as follows: 1. Biocidal Capabilities - Ozone is the most potent biocide of those under consideration. Chlorine dioxide is about on a par with hypochlorous acid, the most efficient form of free residual chlorine. Chlorine dioxide, in contrast to free residual chlorine, increases in efficiency as pH increases above 6. Chloramine is a much weaker biocide than hypochlorite ion, the least inefficient form of free residual chlorine. 2. Health effects - All of the potential alternatives may cause some adverse health effects. Chlorite and chlorate, two of the reaction products of chlorine dioxide, have been shown to cause a subclinical apparently compensated hemolytic anemia in rats. On the other hand, according to very preliminary studies, chlorine and all of the alternatives except chlorine dioxide have been shown to produce reaction products from substances in water that can initiate tumors in mice. Actually, all disinfectants are reactive molecules capable of altering the chemical nature of organic substances present in the water. Thus, the alternative disinfectants question relates to other aspects of water treatment particularly the use of processes for organic precursor removal prior to disinfection. 3. Technology and Economics - The simplest and most economical conversion for many utilities, would be to the use of chloramines and the most difficult and expensive would be to the use of ozone. Conversion to chlorine dioxide would be intermediate in cost.

  4. Detection of chlorinated aromatic compounds

    DOEpatents

    Ekechukwu, Amy A.

    1996-01-01

    A method for making a composition for measuring the concentration of chloated aromatic compounds in aqueous fluids, and an optical probe for use with the method. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis.

  5. Chlorine signal attenuation in concrete.

    PubMed

    Naqvi, A A; Maslehuddin, M; ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method.

  6. Reactions of aqueous chlorine and chlorine dioxide with model food compounds

    SciTech Connect

    Fukayama, M.Y.; Tan, H.; Wheeler, W.B.; Wei, C.

    1986-11-01

    This presentation reviews published information concerning the reactions of chlorine gas (CL/sub 2/(g)), aqueous chlorine, and ClO/sub 2/ with model food compounds, the fate of chlorine during the chlorination of specific food products, and the potential toxicity of the reaction products. Fatty acids and their methyl esters react with chlorine with the degree of incorporation corresponding to their degree of unsaturation. Aqueous chlorine oxidizes and chlorinates lipids and amino acids much more readily than ClO/sub 2/. Several amino acids are highly susceptible to oxidation and chlorination by chlorine compounds. Reactions of chlorine and ClO/sub 2/ with several food products, including flour and shrimp, have also been characterized. Although significant quantities of chlorine can be incorporated into specific model compounds and food products, the health risks associated with exposure to chlorinated organic products are unknown. Preliminary studies using the Ames Salmonella/microsome mutagenicity assay indicate that the reaction products from mixtures of aqueous chlorine and various lipids or tryptophan are nonmutagenic. Nevertheless, additional studies are warranted, so that the toxicological significance of these reaction products can be understood more fully.

  7. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection.

    PubMed

    Zyara, Alyaa M; Torvinen, Eila; Veijalainen, Anna-Maria; Heinonen-Tanski, Helvi

    2016-08-01

    Chlorine disinfection is a globally used method to ensure the safety of drinking water. However, it has not always been successful against viruses and, therefore, it is important to find new methods to disinfect water. Seventeen different coliphages were isolated from the treated municipal wastewater. These coliphages and MS2 were treated with different dosages of chlorine in drinking water, and a combined chlorine/ultraviolet irradiation treatment for the chlorine-resistant coliphages. Chlorine disinfection with 0.3-0.5 mg/L total chlorine (free Cl-dosage 0.12-0.21 mg/L) for 10 min achieved 2.5-5.7 Log10-reductions for 11 sensitive coliphages. The six most resistant coliphages showed no reduction with these chlorine concentrations. MS2 was intermediate in chlorine resistance, and thus it is not a good indicator for viruses in chlorine disinfection. In the combined treatment total chlorine of 0.05-0.25 mg/L (free Cl-dosage 0.02-0.08 mg/L) and ultraviolet irradiation (14-22 mWs/cm(2)) were more effective than chlorine alone, and 3-5 Log10-reductions were achieved for the chlorine-resistant strains. The chlorination efficiency could be increased by higher dosages and longer contact times, but this could increase the formation of disinfection by-products. Therefore, the combination treatment is a recommended disinfection method.

  8. UV/chlorine process for ammonia removal and disinfection by-product reduction: comparison with chlorination.

    PubMed

    Zhang, Xinran; Li, Weiguang; Blatchley, Ernest R; Wang, Xiaoju; Ren, Pengfei

    2015-01-01

    The combined application of UV irradiation at 254 nm and chlorination (UV/chlorine process) was investigated for ammonia removal in water treatment. The UV/chlorine process led to higher ammonia removal with less chlorine demand, as compared to breakpoint chlorination. Chlorination of NH₃ led to NH₂Cl formation in the first step. The photolysis of NH₂Cl and radical- mediated oxidation of ammonia appeared to represent the main pathways for ammonia removal. The trivalent nitrogen of ammonia was oxidized, presumably by reactions with aminyl radicals and chlorine radicals. Measured products included NO₃⁻and NO₂⁻; it is likely that N₂ and N₂O were also generated. In addition, UV irradiation appeared to have altered the reactivity of NOM toward free chlorine. The UV/chlorine process had lower chlorine demand, less C-DBPs (THMs and HAAs), but more HANs than chlorination. These results indicate that the UV/chlorine process could represent an alternative to conventional breakpoint chlorination for ammonia-containing water, with several advantages in terms of simplicity, short reaction time, and reduced chemical dosage.

  9. Chlorine compounds and stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Cicerone, R. J.; Walters, S.; Stolarski, R. S.

    1975-01-01

    A report by Cicerone et al. (1974) concerned with the potential size of the atmospheric perturbation produced by man-made chlorofluoromethanes is considered, giving attention to a number of errors made in the first investigation and their correction. However, the corrections do not significantly change the results reported. It had been found that chlorine oxides which arise from chlorofluoromethane usage will within 10 or 15 years provide a sink for stratospheric ozone which will dominate the natural sinks for ozone.

  10. Chlorine Abundances in Cool Stars

    NASA Astrophysics Data System (ADS)

    Maas, Zachary; Pilachowski, Catherine A.

    2016-01-01

    We measured the chlorine abundance in 15 evolved giants and one M dwarf in the solar neighborhood. High resolution L-Band spectra were obtained using the Phoenix infrared spectrometer on the Kitt Peak National Observatory Mayall 4m telescope. Chlorine is thought to be primarily produced in explosive oxygen burning but stellar chlorine abundances are virtually unknown. We measured the 35Cl abundance from an HCl feature at 3.69 microns.Analysis of our full sample of giants and dwarfs found the HCl feature is only present in stars with temperatures below 3900K. The [Cl/Fe] abundances in stars with solar metallicity matches the abundance seen in the Sun. Measurements of the [Cl/O] ratio in our sample stars is also consistent with [Cl/O] ratios found in planetary nebulae and H II regions. Our measured abundances are all within one standard deviation, 0.3 dex on average, and are consistent with current chemical evolution models for chlorine in the solar neighborhood. A slight decrease in [Cl/Fe] abundance as [Fe/H] increases may be present and must be verified with future Cl abundances measurements in lower metallicity stars. The average [Cl/Fe] ratio in our sample is -0.07 with a standard deviation of 0.13. An upper limit to the 37Cl isotope abundance in the star RZ Ari, measured from a feature at 3.70 microns, puts a lower limit of 2.5 on the Cl 35/37 isotope ratio for this star. This ratio is consistent with the solar system value of 35/37=3.11.

  11. Microbial based chlorinated ethene destruction

    DOEpatents

    Bagwell, Christopher E [Aiken, SC; Freedman, David L [Clemson, SC; Brigmon, Robin L [North Augusta, SC; Bratt, William B [Atlanta, GA; Wood, Elizabeth A [Marietta, GA

    2009-11-10

    A mixed culture of Dehalococcoides species is provided that has an ability to catalyze the complete dechlorination of polychlorinated ethenes such as PCE, TCE, cDCE, 1,1-DCE and vinyl chloride as well as halogenated ethanes such as 1,2-DCA and EDB. The mixed culture demonstrates the ability to achieve dechlorination even in the presence of high source concentrations of chlorinated ethenes.

  12. Coal desulfurization by aqueous chlorination

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K. (Inventor)

    1982-01-01

    A method of desulfurizing coal is described in which chlorine gas is bubbled through an aqueous slurry of coal at low temperature below 130 degrees C., and at ambient pressure. Chlorinolysis converts both inorganic and organic sulfur components of coal into water soluble compounds which enter the aqueous suspending media. The media is separated after chlorinolysis and the coal dechlorinated at a temperature of from 300 C to 500 C to form a non-caking, low-sulfur coal product.

  13. Perchlorate production by photodecomposition of aqueous chlorine solutions.

    PubMed

    Rao, Balaji; Estrada, Nubia; McGee, Shelly; Mangold, Jerry; Gu, Baohua; Jackson, W Andrew

    2012-11-06

    Aqueous chlorine solutions (defined as chlorine solutions (Cl(2,T)) containing solely or a combination of molecular chlorine (Cl(2)), hypochlorous acid (HOCl), and hypochlorite (OCl(-))) are known to produce toxic inorganic disinfection byproduct (e.g., chlorate and chlorite) through photoactivated transformations. Recent reports of perchlorate (ClO(4)(-)) production-a well-known thyroid hormone disruptor- from stored bleach solutions indicates the presence of unexplored transformation pathway(s). The evaluation of this potential ClO(4)(-) source is important given the widespread use of aqueous chlorine as a disinfectant. In this study, we perform detailed rate analysis of ClO(4)(-) generation from aqueous chlorine under varying environmental conditions including ultraviolet (UV) light sources, intensity, solution pH, and Cl(2,T) concentrations. Our results show that ClO(4)(-) is produced upon UV exposure of aqueous chlorine solutions with yields ranging from 0.09 × 10(-3) to 9.2 × 10(-3)% for all experimental conditions. The amount of ClO(4)(-) produced depends on the starting concentrations of Cl(2,T) and ClO(3)(-), UV source wavelength, and solution pH, but it is independent of light intensity. We hypothesize a mechanistic pathway derived from known reactions of Cl(2,T) photodecomposition that involves the reaction of Cl radicals with ClO(3)(-) to produce ClO(4)(-) with calculated rate coefficient (k(ClO4-)) of (4-40) × 10(5) M(-1) s(-1) and (3-250) × 10(5) M(-1) s(-1) for UV-B/C and UV-A, respectively. The measured ClO(4)(-) concentrations for both UV-B and UV-C experiments agreed well with our model (R(2) = 0.88-0.99), except under UV-A light exposure (R(2) = 0.52-0.93), suggesting the possible involvement of additional pathways at higher wavelengths. Based on our results, phototransformation of aqueous chlorine solutions at concentrations relevant to drinking water treatment would result in ClO(4)(-) concentrations (~0.1 μg L(-1)) much below the proposed

  14. IDENTIFICATION OF DRINKING WATER DISINFECTION BY-PRODUCTS FROM OZONE, CHLORINE DIOXIDE, CHLORAMINE, AND CHLORINE

    EPA Science Inventory

    Many drinking water treatment plants are currently using alternative disinfectants to treat drinking water, with ozone, chlorine dioxide, and chloramine being the most popular. However, compared to chlorine, which has been much more widely studied, there is little information abo...

  15. IDENTIFICATION OF DRINKING WATER DISINFECTION BY-PRODUCTS FROM OZONE, CHLORINE DIOXIDE, CHLORAMINE, AND CHLORINE

    EPA Science Inventory

    Many drinking water treatment plants are currently using alternative disinfectants to treat drinking water, with ozone, chlorine dioxide, and chloramine being the most popular. However, compared to chlorine, which has been much more widely studied, there is little information abo...

  16. Inactivation of Salmonella on Eggshells by Chlorine Dioxide Gas

    PubMed Central

    Yum, Bora; Yoon, Sung-Sik; Song, Kyoung-Ju; Kim, Jong-Rak

    2016-01-01

    Microbiological contamination of eggs should be prevented in the poultry industry, as poultry is one of the major reservoirs of human Salmonella. ClO2 gas has been reported to be an effective disinfectant in various industry fields, particularly the food industry. The aims of this study were to evaluate the antimicrobial effect of chlorine dioxide gas on two strains of Salmonella inoculated onto eggshells under various experimental conditions including concentrations, contact time, humidity, and percentage organic matter. As a result, it was shown that chlorine dioxide gas under wet conditions was more effective in inactivating Salmonella Enteritidis and Salmonella Gallinarum compared to that under dry conditions independently of the presence of organic matter (yeast extract). Under wet conditions, a greater than 4 log reduction in bacterial populations was achieved after 30 min of exposure to ClO2 each at 20 ppm, 40 ppm, and 80 ppm against S. Enteritidis; 40 ppm and 80 ppm against S. Gallinarum. These results suggest that chlorine dioxide gas is an effective agent for controlling Salmonella, the most prevalent contaminant in the egg industry. PMID:27499670

  17. Inactivation of Salmonella on Eggshells by Chlorine Dioxide Gas.

    PubMed

    Kim, Hyobi; Yum, Bora; Yoon, Sung-Sik; Song, Kyoung-Ju; Kim, Jong-Rak; Myeong, Donghoon; Chang, Byungjoon; Choe, Nong-Hoon

    2016-01-01

    Microbiological contamination of eggs should be prevented in the poultry industry, as poultry is one of the major reservoirs of human Salmonella. ClO2 gas has been reported to be an effective disinfectant in various industry fields, particularly the food industry. The aims of this study were to evaluate the antimicrobial effect of chlorine dioxide gas on two strains of Salmonella inoculated onto eggshells under various experimental conditions including concentrations, contact time, humidity, and percentage organic matter. As a result, it was shown that chlorine dioxide gas under wet conditions was more effective in inactivating Salmonella Enteritidis and Salmonella Gallinarum compared to that under dry conditions independently of the presence of organic matter (yeast extract). Under wet conditions, a greater than 4 log reduction in bacterial populations was achieved after 30 min of exposure to ClO2 each at 20 ppm, 40 ppm, and 80 ppm against S. Enteritidis; 40 ppm and 80 ppm against S. Gallinarum. These results suggest that chlorine dioxide gas is an effective agent for controlling Salmonella, the most prevalent contaminant in the egg industry.

  18. Observations of interstellar chlorine and phosphorus

    NASA Technical Reports Server (NTRS)

    Jura, M.; York, D. G.

    1978-01-01

    Copernicus observations of interstellar Cl I, Cl II, and P II UV lines toward 10 stars are reported. Column densities are estimated for each species, and upper limits are computed for HCl column densities. Derivation of the gas-phase abundances of chlorine and phosphorus indicates that the averages of both the chlorine and the phosphorus logarithmic abundances relative to hydrogen are between 5.0 and 5.1. It is suggested that interstellar chlorine may be depleted by about a factor of 3 relative to the solar abundance and that interstellar phosphorus is depleted by a factor of 2 to 3. The results are shown to support the prediction that chlorine is ionized in regions containing primarily atomic oxygen and is neutral in regions where there is a significant amount of molecular hydrogen. The photoionization rate of neutral chlorine toward 15 Mon is estimated, and it is concluded that most chlorine is contained within the gas phase.

  19. [Determination of chlorinated hydrocarbons in coffee beans].

    PubMed

    Wieczorek, Jolanta; Czyrska, Regina; Wieczorek, Zbigniew; Smoczyńska, Krystyna

    2002-01-01

    Chlorinated hydrocarbons (gamma-HCH, DDT and their analogous metabolites) were determined in coffee beans. Four sorts of green coffee beans and 18 sorts of burnt coffee beans were used in the research. The method was based on extraction of fat and its destruction with concentrated sulphuric acid. Chlorinated hydrocarbons were extracted with n-hexane, separated and quantitatively determined by gas chromatography. The presence of chlorinated hydrocarbons was detected in green coffee beans and, in smaller quantities, in burnt coffee beans. The concentration of chlorinated hydrocarbons was lower in medium and darkly burnt coffee beans than lightly burnt coffee. The level of DDT and its metabolites in final product decreased after coffee burning at higher temperatures. After brewing the grind coffee beans the remains of chlorinated hydrocarbons were detected in coffee-grounds at concentration to those found in coffee beans. Drinking of natural coffee does not influence an increase of intake the chlorinated hydrocarbons by human beings.

  20. Observations of interstellar chlorine and phosphorus

    NASA Technical Reports Server (NTRS)

    Jura, M.; York, D. G.

    1978-01-01

    Copernicus observations of interstellar Cl I, Cl II, and P II UV lines toward 10 stars are reported. Column densities are estimated for each species, and upper limits are computed for HCl column densities. Derivation of the gas-phase abundances of chlorine and phosphorus indicates that the averages of both the chlorine and the phosphorus logarithmic abundances relative to hydrogen are between 5.0 and 5.1. It is suggested that interstellar chlorine may be depleted by about a factor of 3 relative to the solar abundance and that interstellar phosphorus is depleted by a factor of 2 to 3. The results are shown to support the prediction that chlorine is ionized in regions containing primarily atomic oxygen and is neutral in regions where there is a significant amount of molecular hydrogen. The photoionization rate of neutral chlorine toward 15 Mon is estimated, and it is concluded that most chlorine is contained within the gas phase.

  1. Decomposition of free chlorine with tertiary ammonium.

    PubMed

    Katano, Hajime; Uematsu, Kohei; Tatsumi, Hirosuke; Tsukatani, Toshihide

    2010-01-01

    The reaction of free chlorine with tertiary ammonium or amine compounds in aqueous solution was studied by the amperometry at a rotating Pt-disk electrode. The amperometric method can be applied to follow the concentration of free chlorine (c(Cl)) even in the presence of chloramine species. By addition of mono- and dibutylammonium to the solution containing free chlorine, the step-like decrease in c(Cl) was observed, indicating the rapid formation of the stable chloramine species. By addition of tributylammonium, the c(Cl) was decreased exponentially to nearly zero even if the free chlorine was present initially in excess. The c(Cl)-t curves can be explained by tributylammonium-species-catalyzed decomposition of free chlorine to chloride ion. The catalytic decomposition was observed also with the tertiary-ammonium-based anion-exchange resins. Furthermore, the anion-exchange resins exhibited the decomposition of not only free chlorine but also chloramines in water.

  2. Indoor air: Spatial variations of chlorinated pesticides

    NASA Astrophysics Data System (ADS)

    Anderson, David J.; Hites, Ronald A.

    The concentrations of two classes of chlorinated pesticides were measured in various locations within four homes. The prevalent compounds were chlorinated derivatives of cyclopentadiene which had been used as termiticides. These compounds were found in basement areas at higher concentrations than in upstairs areas of the homes. Another class of chlorinated pesticide was represented by chlorpyrifos; its spatial profile was consistent with its application in upstairs areas.

  3. Field-usable portable analyzer for chlorinated organic compounds

    SciTech Connect

    Buttner, W.J.; Penrose, W.R.; Stetter, J.R.; Williams, R.D.

    1996-12-31

    In 1992, a chemical sensor was developed which showed almost perfect selectivity to vapors of chlorinated solvents. When interfaced to an instrument, a chemical analyzer will be produced that has near- absolute selectivity to vapors of volatile chlorinated organic compounds. TRI has just completed the second of a 2-phase program to develop this new instrument system, which is called the RCL MONITOR. In Phase II, this instrument was deployed in 5 EM40 operations. Phase II applications covered clean-up process monitoring, environmental modeling, routine monitoring, health and safety, and technology validation. Vapor levels between 0 and 100 ppM can be determined in 90 s with a lower detection limit of 0.5 ppM using the hand-portable instrument. Based on the favorable performance of the RCL MONITOR, the commercial instrument was released for commercial sales on Sept. 20, 1996.

  4. Characterization and identification of a chlorine-resistant bacterium, Sphingomonas TS001, from a model drinking water distribution system.

    PubMed

    Sun, Wenjun; Liu, Wenjun; Cui, Lifeng; Zhang, Minglu; Wang, Bei

    2013-08-01

    This study describes the identification and characterization of a new chlorine resistant bacterium, Sphingomonas TS001, isolated from a model drinking water distribution system. The isolate was identified by 16s rRNA gene analysis and morphological and physiological characteristics. Phylogenetic analysis indicates that TS001 belongs to the genus Sphingomonas. The model distribution system HPC results showed that, when the chlorine residual was greater than 0.7 mg L(-1), 100% of detected heterotrophic bacteria (HPC) was TS001. The bench-scale inactivation efficiency testing showed that this strain was very resistant to chlorine, and 4 mg L(-1) of chlorine with 240 min retention time provided only approximately 5% viability reduction of TS001. In contrast, a 3-log inactivation (99.9%) was obtained for UV fluencies of 40 mJ cm(-2). A high chlorine-resistant and UV sensitive bacterium, Sphingomonas TS001, was documented for the first time.

  5. The Radiothermoluminescence Of The Chlorinated Polyethylene

    NASA Astrophysics Data System (ADS)

    Polizov, Hristo T.

    2007-04-01

    The radiothermoluminescence (RTL) of the high density polyetilene (HDPE) by gamma-irradiation was studied together with the thermally stimulated currents (TSC). The investigation was carried for several kind of samples: pure high density polyethlene and chlorinated high density polyethlene with 7, 28 and 42 per cent chlorine. It has been established, that the intensity of the radiothermoluminescence decreases on the high density polyethylene with the chlorination and the thermally stimulated currents increase as a function of the temperature T has been observed as well that a new phase has been formed in the chlorinated polyethylene with the both methods of the investigation.

  6. Total residual chlorine as a regulatory tool

    SciTech Connect

    Mattice, J.S.; Tsai, S.C.

    1981-01-01

    Inherent in the choice of total residual chlorine (TRC) as a basis for establishing water quality criteria or effluent guidelines for chlorine are assumptions that components of TRC are roughly equivalent in toxicity to aquatic species and that the toxicities of these components are additive. Most of the studies of this assumption involved comparisons of mixtures of residual chlorine components and thus led to conflicting conclusions. In addition, studies designed to avoid the mixture problem omitted one or more of the most likely products of chlorination from the comparison(s). On the other hand, the assumption of additive toxicity of residual chlorine species has largely been ignored. In view of the continuing controversy that focused on the levels of residual chlorine which can be discharged without deleterious impact on receiving waters, it is important that these assumptions be evaluated comprehensively. New data on the toxicities to the mosquitofish, Gambusia affinis, of inorganic monochloramine, inorganic dichloramine, a mixture of these two compounds, and two mixtures with free chlorine are reported. These and other data on the toxicity of residual chlorine species to mosquitofish are then used to examine the questions of toxicity equivalence and additivity of species of residual chlorine. (ERB)

  7. Vanadium-catalyzed chlorination under molecular oxygen.

    PubMed

    Moriuchi, Toshiyuki; Fukui, Yasuhiro; Kato, Satoshi; Kajikawa, Tomomi; Hirao, Toshikazu

    2015-06-01

    A catalytic chlorination of ketones was performed by using a vanadium catalyst in the presence of Bu4NI and AlCl3 under atmospheric molecular oxygen. This catalytic chlorination could be applied to the chlorination of alkenes to give the corresponding vic-dichlorides. AlCl3 was found to serve as both a Lewis acid and a chloride source to induce the facile chlorination. A combination of Bu4NI and AlI3 in the presence of a vanadium catalyst under atmospheric molecular oxygen induced the iodination of ketones.

  8. Reactions of tetracycline antibiotics with chlorine dioxide and free chlorine.

    PubMed

    Wang, Pei; He, Yi-Liang; Huang, Ching-Hua

    2011-02-01

    Tetracyclines (TCs) are a group of widely used antibiotics that have been frequently found in the aquatic environment. The potential reactions of TCs with common water disinfection oxidants such as chlorine dioxide (ClO(2)) and free available chlorine (FAC) have not been studied in depth and are the focus of this study. The oxidation kinetics of tetracycline, oxytetracycline, chlorotetracycline and iso-chlorotetracycline by ClO(2) and FAC are very rapid (with large apparent second-order rate constants k(app) = 2.24 × 10(5)-1.26 × 10(6) M(-1) s(-1) with ClO(2) and k(app) = 1.12 × 10(4)-1.78 × 10(6) M(-1) s(-1) with FAC at pH 7.0) and highly dependent on pH. Species-specific rate constants are obtained by kinetic modeling that incorporates pH-speciation of TCs and the oxidants (for FAC), and reveal that TCs primarily react with ClO(2) and FAC by their unprotonated dimethylamino group and deprotonated phenolic-diketone group. The modest difference in reactivity among the four TCs toward the oxidants is consistent with expectation and can be explained by structural influences on the two reactive moieties. Product evaluation shows that oxidation of TCs by ClO(2) leads to (hydr)oxylation and breakage of TC molecules, while oxidation of TCs by FAC leads to chlorinated and (hydr)oxylated products without any substantial ring breakage. Results of this study indicate that rapid transformation of TCs by oxidants such as ClO(2) and FAC under water and wastewater treatment conditions can be expected.

  9. Effects of chain length, chlorination degree, and structure on the octanol-water partition coefficients of polychlorinated n-alkanes.

    PubMed

    Hilger, Bettina; Fromme, Hermann; Völkel, Wolfgang; Coelhan, Mehmet

    2011-04-01

    Log octanol-water partition coefficients (log Kow) of 40 synthesized polychlorinated n-alkanes (PCAs) with different chlorination degrees were determined using reversed-phase high performance liquid chromatography (RP-HPLC). In addition, log Kow values of a technical mixture namely Cereclor 63L as well as 15 individual in house synthesized C10, C11, and C12 chloroalkanes with known chlorine positions were estimated. Based on these results, the effects of chain length, chlorination degree, and structure were explored. The estimated log Kow values ranged from 4.10 (polychlorinated n-decanes with 50.2% chlorine content) to 11.34 (polychlorinated n-octacosanes with 54.8% chlorine content) for PCAs and from 3.82 (1,2,5,6,9,10-hexachlorodecane) to 7.75 (1,1,1,3,9,11,11,11-octachlorododecane) for the individual chloroalkanes studied. The results showed that log Kow value was influenced linearly at a given chlorine content by chain length, while a polynominal effect was observed in dependence on the chlorination degree of an alkane chain. Chlorine substitution pattern influenced markedly the log Kow value of chloroalkanes.

  10. Bioaccumulation factors for chlorinated benzenes, chlorinated butadienes and hexachloroethane

    SciTech Connect

    Burkhard, L.P.; Sheedy, B.R.; McCauley, D.J.; DeGraeve, G.M.

    1997-08-01

    A field study was performed that measured bioaccumulation factors (BAFs) for chlorinated benzenes, chlorinated butadienes, and hexachloroethane in four species, Fundulus heteroclitus (mummichog), Callinectes sapidus (blue crabs), Brevoortia patronus (gulf menhaden), and Micropoganias undulatus (Atlantic croaker). The measured BAFs were not significantly different among the fishes. The measured BAFs for the C. sapidus were in good agreement with those measured for the fishes except for hexachloroethane (HCE), E- and Z-1,1,2,3,4-pentachlorobuta-1,3-diene (E-and Z-PeCBD), and hexachlorobuta-1,3-diene (HCBD). Their measured BAFs were approximately an order of magnitude smaller than those measured for the fishes. The measured BAFs were also in good agreement with BAFs reported/derived from the literature and to BAFs predicted using two methods of the Environmental Protection Agency (EPA) except for HCE, E- and Z-PeCBD, and HCBD in the C. sapidus. These BAFs were much smaller than the reported/derived and predicted BAFs. The smaller BAFs for HCE, E- and Z-PeCBD, and HCBD were consistent with the metabolism abilities for the C. sapidus, and metabolism processes are believed to be the cause for the smaller BAFs. The predicted BAFs were within a factor of five of the measured BAFs for 90% (n = 48) and 94% (n = 32) using the two methods of the EPA.

  11. Lack of effect of drinking water chlorine on lipid and thyroid metabolism in healthy humans.

    PubMed Central

    Wones, R G; Deck, C C; Stadler, B; Roark, S; Hogg, E; Frohman, L A

    1993-01-01

    Animal studies and a single human epidemiological study have suggested that chlorine in drinking water may raise the level of blood cholesterol. The purpose of this study was to determine whether a 4-week exposure to drinking water chlorine (1.5 L per day) at a concentration of 20 ppm (ppm = mg/L) under controlled conditions would alter circulating parameters of lipid metabolism in healthy humans. Thirty men and thirty women each completed an 8-week protocol during which diet (600 mg cholesterol per day, 40% calories as fat) and other factors known to affect lipid metabolism were controlled. For the first 4 weeks of the protocol, all subjects consumed distilled water. For the second 4 weeks, half of the subjects were assigned randomly to drink 1.5 L per day of chlorinated water (20 ppm), while the others continued drinking distilled water. Four blood samples were collected from each subject at the end of each 4-week study period. Compared to the control group, those subjects given chlorine showed no significant changes in total plasma cholesterol, triglycerides, HDL-cholesterol, LDL-cholesterol, or apolipoproteins A1, A2, or B. There was a trend toward low serum thyroxine and triiodothyronine levels in men given chlorine, though thyroid-stimulating hormone levels were unchanged. This trend, if real, was not clinically significant. Thus, short-term exposure to chlorinated drinking water at 20 ppm appears to have no significant impact on parameters of lipid or thyroid metabolism in healthy humans. PMID:8319654

  12. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability.

    PubMed Central

    Korich, D G; Mead, J R; Madore, M S; Sinclair, N A; Sterling, C R

    1990-01-01

    Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 times more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water. PMID:2339894

  13. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability

    SciTech Connect

    Korich, D.G.; Mead, J.R.; Madore, M.S.; Sinclair, N.A.; Sterling, C.R. )

    1990-05-01

    Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 times more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water.

  14. Chlorination products: emerging links with allergic diseases.

    PubMed

    Bernard, A

    2007-01-01

    Exposure of the human population to chlorination products has considerably increased during the 20(th) century especially after the 1960s with the development of public and leisure pools. The present article summarizes current knowledge regarding the human exposure to chlorination products and reviews studies suggesting that these chemicals might be involved in the development or exacerbation of allergic diseases. Populations regularly in contact with chlorination products such as swimmers, lifeguards or workers using chlorine as cleaning or bleaching agent show increased risks of allergic diseases or of respiratory disorders frequently associated with allergy. Experimental evidence suggests that chlorination products promote allergic sensitization by compromising the permeability or the immunoregulatory function of epithelial barriers. These findings led to the chlorine hypothesis proposing that the rise of allergic diseases could result less from the declining exposure to microbial agents (the hygiene hypothesis) than from the increasing and largely uncontrolled exposure to products of chlorination, the most widely used method to achieve hygiene in the developed world. Giving the increasing popularity of water recreational areas, there is an obvious need to assess the effects of chlorine-based oxidants on human health and their possible implication in the epidemic of allergic diseases.

  15. Toxicity of chlorine to zebrafish embryos.

    PubMed

    Kent, Michael L; Buchner, Cari; Barton, Carrie; Tanguay, Robert L

    2014-01-16

    Surface disinfection of fertilized fish eggs is widely used in aquaculture to reduce extraovum pathogens that may be released from brood fish during spawning, and this is routinely used in zebrafish Danio rerio research laboratories. Most laboratories use approximately 25 to 50 ppm unbuffered chlorine solution for 5 to 10 min. Treatment of embryos with chlorine has significant germicidal effects for many Gram-negative bacteria, viruses, and trophozoite stages of protozoa, but is less effective against cyst or spore stages of protozoa and certain Mycobacterium spp. Therefore, we evaluated the toxicity of unbuffered and buffered chlorine solutions to embryos exposed at 6 or 24 h post-fertilization (hpf) to determine whether higher concentrations can be used for treating zebrafish embryos. Most of our experiments entailed using an outbred line (5D), with both mortality and malformations as endpoints. We found that 6 hpf embryos consistently were more resistant than 24 hpf embryos to the toxic effects of chlorine. Chlorine is more toxic and germicidal at lower pH, and chlorine causes elevated pH. Consistent with this, we found that unbuffered chlorine solutions (pH ca. 8-9) were less toxic at corresponding concentrations than solutions buffered to pH 7. Based on our findings here, we recommend treating 6 hpf embryos for 10 min and 24 hpf embryos for 5 min with unbuffered chlorine solution at 100 ppm.

  16. Chemotaxis of Pseudomonas putida toward chlorinated benzoates

    SciTech Connect

    Harwood, C.S.; Parales, R.E.; Dispensa, M. )

    1990-05-01

    The chlorinated aromatic acids 3-chlorobenzoate and 4-chlorobenzoate are chemoattractants for Pseudomonas putida PRS2000. These compounds are detected by a chromosomally encoded chemotactic response to benzoate which is inducible by {beta}-ketoadipate, and intermediate of benzoate catabolism. Plasmid pAC27, encoding enzymes for 3-chlorobenzoate degradation, does not appear to carry genes for chemotaxis toward chlorinated compounds.

  17. Factors Regulating Soil Organic Matter Chlorination

    NASA Astrophysics Data System (ADS)

    Svensson, T.; Gustavsson, M.; Reyier, H.; Rietz, K.; Karlsson, S.; Göransson, C.; Andersson, M.; Öberg, G.; Bastviken, D.

    2013-12-01

    Natural chlorination of organic matter is a common process in various soils. Despite the widespread abundance of soil organic chlorine, knowledge on the processes and regulation of soil organic matter chlorination are modest. The purpose of this study is to elucidate how environmental factors may influence chlorination of organic matter in soil. Four factors were chosen for this study; water content, and nitrogen, organic carbon, and chloride concentrations. The variables are all known in different ways as important for microbes and transformation of chlorine in soil. The soil was collected from 5-15 cm depth in a coniferous forest southeast of Sweden. To test how the selected factors influenced chlorination of organic matter, we used soil laboratory incubations using 36Cl-chloride as a radioisotopic marker. A multivariate factorial design with two levels of i) soil moisture, ii) chloride amendment, iii) nitrogen amendment, and iv) glucose and maltose addition was used to simultaneously test for possible combination effects for all factors. A known radioactivity of 36chloride was added to the soil samples and incubated with four different factor treatments during an incubation period of 15 and 60 days. This presentation will discuss the results of this study including what combination of factors enhanced or hampered chlorination and thereby discuss previous observed variability of organic chlorine and chloride in soil.

  18. Inactivation of Renibacterium salmoninarum by free chlorine

    USGS Publications Warehouse

    Pascho, Ronald J.; Landolt, Marsha L.; Ongerth, Jerry E.

    1995-01-01

    Salmonid fishes contract bacterial kidney disease by vertical or horizontal transmission of the pathogenic bacterium, Renibacterium salmoninarum. Procedures to reduce vertical transmission are under evaluation, but methods are still needed to eliminate sources of waterborne R. salmoninarum. We examined the efficacy of chlorine to inactivate R. salmoninarum. The bacterium was exposed to various levels of chlorine at pH 6, 7, or 8, and at 7.5 °C or 15 °C. At pH 7 and 15 °C, 99% inactivation occurred within 18 s, even at free chlorine concentrations as low as 0.05 mg/l. Chlorine was most effective at neutral or acidic pH, and 15 °C. The inactivation curves for 7.5 °C and pH 7, or 15 °C and pH 8, deviated from first-order kinetics by exhibiting shoulders or a tailing-off effect, suggesting that chlorine and the bacterial cells were not the sole reactants. A plot of the concentration-time (Ct) products for free chlorine at pH 7 and 15 °C produced a line with a slope less than 1, indicating that the duration of exposure was more important than the concentration of free chlorine. These data indicate that R. salmoninarum is very sensitive to chlorine, and that this disinfectant may be appropriate for use in fish hatcheries rearing salmonids affected by bacterial kidney disease.

  19. [Comparison of the effects of chlorine dioxide, sodium hypochlorite and their combination on simulative water disinfection].

    PubMed

    Wang, Ying; Li, Na; Lu, Yi; Wang, Yazhou

    2008-05-01

    To compare the effects of disinfection of chlorine dioxide (ClO2), sodium hypochlorite(NaClO) and their combination (ClO + NaClO) on simulative water samples. The simulative water samples containing 5.0 x 10(4) - 5.0 x 10(5) cfu/100ml Escherichia coli were prepared in laboratory and disinfected by different doses of chlorine dioxide, sodium hypochlorite and their combination for 60, 60, 30 + 60 min respectively. The kill ratio for Escherichia coli, and the residual chlorine dioxide, and the product of chlorite ion (ClO2-) and total residual chlorine were detected and compared by the membrane filter(MF) technique and electrometric titration. The minimum effective dosage (MED) for disinfect of simulative water samples were 0.4 mg/L of chlorine dioxide, 0.5 mg/L of sodium hypochlorite, and the 0.1 mg/L + 0.3 mg/L or 0.2 mg/L + 0.2 mg/L of their combination. By comparision with disinfection of ClO2 and NaClO alone, the residual chlorine dioxide increased 13.43% - 166.67% in simulative water sample under disinfection by the combination of ClO2 + NaClO, While chlorite ion decreased 13.11% - 19.97% and total residual chlorine increased 9.34% - 40.15%. The combination of chlorine dioxide and sodium hypochlorite for disinfection of drinking water could achieve better effect of disinfection and decrease disinfection by-products as well.

  20. Chloride and organic chlorine in forest soils: storage, residence times, and influence of ecological conditions.

    PubMed

    Redon, Paul-Olivier; Abdelouas, Abdesselam; Bastviken, David; Cecchini, Sébastien; Nicolas, Manuel; Thiry, Yves

    2011-09-01

    Recent studies have shown that extensive chlorination of natural organic matter significantly affects chlorine (Cl) residence time in soils. This natural biogeochemical process must be considered when developing the conceptual models used as the basis for safety assessments regarding the potential health impacts of 36-chlorine released from present and planned radioactive waste disposal facilities. In this study, we surveyed 51 French forested areas to determine the variability in chlorine speciation and storage in soils. Concentrations of total chlorine (Cl(tot)) and organic chlorine (Cl(org)) were determined in litterfall, forest floor and mineral soil samples. Cl(org) constituted 11-100% of Cl(tot), with the highest concentrations being found in the humus layer (34-689 mg Cl(org) kg(-1)). In terms of areal storage (53 - 400 kg Cl(org) ha(-1)) the mineral soil dominated due to its greater thickness (40 cm). Cl(org) concentrations and estimated retention of organochlorine in the humus layer were correlated with Cl input, total Cl concentration, organic carbon content, soil pH and the dominant tree species. Cl(org) concentration in mineral soil was not significantly influenced by the studied environmental factors, however increasing Cl:C ratios with depth could indicate selective preservation of chlorinated organic molecules. Litterfall contributions of Cl were significant but generally minor compared to other fluxes and stocks. Assuming steady-state conditions, known annual wet deposition and measured inventories in soil, the theoretical average residence time calculated for total chlorine (inorganic (Cl(in)) and organic) was 5-fold higher than that estimated for Cl(in) alone. Consideration of the Cl(org) pool is therefore clearly important in studies of overall Cl cycling in terrestrial ecosystems.

  1. Bacterial growth with chlorinated methanes.

    PubMed Central

    Leisinger, T; Braus-Stromeyer, S A

    1995-01-01

    Chlorinated methanes are important industrial chemicals and significant environmental pollutants. While the highly chlorinated methanes, trichloromethane and tetrachloromethane, are not productively metabolized by bacteria, chloromethane and dichloromethane are used by both aerobic and anaerobic methylotrophic bacteria as carbon and energy sources. Some of the dehalogenation reactions involved in the utilization of the latter two compounds have been elucidated. In a strictly anaerobic acetogenic bacterium growing with chloromethane, an inducible enzyme forming methyltetrahydrofolate and chloride from chloromethane and tetrahydrofolate catalyzes dehalogenation of the growth substrate. A different mechanism for the nucleophilic displacement of chloride is observed in aerobic methylotrophic bacteria utilizing dichloromethane as the sole carbon and energy source. These organisms possess the enzyme dichloromethane dehalogenase which, in a glutathione-dependent reaction, converts dichloromethane to inorganic chloride and formaldehyde, a central metabolite of methylotrophic growth. Sequence comparisons have shown that bacterial dichloromethane dehalogenases belong to the glutathione S-transferase enzyme family, and within this family to class Theta. The dehalogenation reactions underlying aerobic utilization of chloromethane by a pure culture and anaerobic growth with dichloromethane by an acetogenic mixed culture are not known. It appears that they are based on mechanisms other than nucleophilic attack by tetrahydrofolate or glutathione. PMID:8565906

  2. Soil peroxidase-mediated chlorination of fulvic acid

    NASA Astrophysics Data System (ADS)

    Asplund, Gunilla; Borén, Hans; Carlsson, Uno; Grimvall, Anders

    Humic matter has recently been shown to contain considerable quantities of naturally produced organohalogens. The present study investigated the possibility of a non-specific, enzymatically mediated halogenation of organic matter in soil. The results showed that, in the presence of chloride and hydrogen peroxide, the enzyme chloroperoxidase (CPO) from the fungus Caldariomyces fumago catalyzes chlorination of fulvic acid. At pH 2.5 - 6.0, the chlorine to fulvic acid ratio in the tested sample was elevated from 12 mg/g to approximately 40-50 mg/g. It was also shown that this reaction can take place at chloride and hydrogen peroxide concentrations found in the environment. An extract from spruce forest soil was shown to have a measurable chlorinating capacity. The activity of an extract of 0.5 kg soil corresponded to approximately 0.3 enzyme units, measured as CPO activity. Enzymatically mediated halogenation of humic substances may be one of the mechanisms explaining the widespread occurrence of adsorbable organic halogens (AOX) in soil and water.

  3. Detection of chlorinated methanes by tin oxide gas sensors.

    PubMed

    Park, S H; Son, Y C; Shaw, B R; Creasy, K E; Suib, S L

    2001-08-01

    Tin oxide thin films prepared by thermal oxidation of Sn films were used for the detection of chlorinated methanes (CH2Cl2, CHCl3 and CCl4). This resulted in better chemical selectivity, sensitivity, response speed and detection limit than seen with previous detectors. The temperature dependence of the sensing of 1% CCl4 gas was studied and the best sensing behavior was observed at 300 degrees C. The films showed different chemical selectivity in both speed and direction of sensing response to each gas and were stable for more than 3 weeks under operating conditions. The films showed rapid gas sensing (<40 s to reach 90% of full response) and low detection limits (< 4 ppm CCl4). The role of oxygen in the detection of chlorinated methanes and in resistance changes without chlorinated methanes was also studied. The changes at the surface of the film after gas sensing were examined using scanning electron microscopy with energy-dispersive X-ray spectrometry.

  4. Efficacy and Safety Evaluation of a Chlorine Dioxide Solution.

    PubMed

    Ma, Jui-Wen; Huang, Bin-Syuan; Hsu, Chu-Wei; Peng, Chun-Wei; Cheng, Ming-Long; Kao, Jung-Yie; Way, Tzong-Der; Yin, Hao-Chang; Wang, Shan-Shue

    2017-03-22

    In this study, a chlorine dioxide solution (UC-1) composed of chlorine dioxide was produced using an electrolytic method and subsequently purified using a membrane. UC-1 was determined to contain 2000 ppm of gaseous chlorine dioxide in water. The efficacy and safety of UC-1 were evaluated. The antimicrobial activity was more than 98.2% reduction when UC-1 concentrations were 5 and 20 ppm for bacteria and fungi, respectively. The half maximal inhibitory concentrations (IC50) of H1N1, influenza virus B/TW/71718/04, and EV71 were 84.65 ± 0.64, 95.91 ± 11.61, and 46.39 ± 1.97 ppm, respectively. A 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test revealed that the cell viability of mouse lung fibroblast L929 cells was 93.7% at a 200 ppm UC-1 concentration that is over that anticipated in routine use. Moreover, 50 ppm UC-1 showed no significant symptoms in a rabbit ocular irritation test. In an inhalation toxicity test, treatment with 20 ppm UC-1 for 24 h showed no abnormality and no mortality in clinical symptoms and normal functioning of the lung and other organs. A ClO₂ concentration of up to 40 ppm in drinking water did not show any toxicity in a subchronic oral toxicity test. Herein, UC-1 showed favorable disinfection activity and a higher safety profile tendency than in previous reports.

  5. Chlorine

    MedlinePlus

    ... Training Related Bioterrorism Resources Bacillus anthracis (Anthrax) Botulism (Clostridium botulinum toxin) Brucella species (brucellocis) Laboratory Information Surveillance & Investigation Burkholderia mallei (glanders) ...

  6. Evaluation of chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer for effectiveness in killing Bacillus cereus and Bacillus thuringiensis spores in suspensions, on the surface of stainless steel, and on apples.

    PubMed

    Kreske, Audrey C; Ryu, Jee-Hoon; Beuchat, Larry R

    2006-08-01

    Chlorine (10 to 200 microg/ml), chlorine dioxide (10 to 200 microg/ml), and a peroxyacetic acid-based sanitizer (40 and 80 microg/ ml) were evaluated for effectiveness in killing spores of Bacillus cereus and Bacillus thuringiensis in suspensions and on the surface of stainless steel and apples. Water and 5% horse serum were used as carriers for spore inoculum applied to the surface of stainless steel coupons, and 5% horse serum was used as a carrier for inoculum applied to apples. Inocula were dried on stainless steel for 5 h and on apples for 22 to 24 h before treating with sanitizers. At the concentrations of sanitizers tested, sensitivities of planktonic B. cereus and B. thuringiensis spores were similar. A portion of the spores surviving treatment with chlorine and, more markedly, chlorine dioxide had decreased tolerance to heat. Planktonic spores of both species were more sensitive to sanitizers than were spores on the surface of stainless steel or apples. At the same concentrations, chlorine was more effective than chlorine dioxide in killing spores in suspension and on stainless steel. The lethality of chlorine dioxide was markedly reduced when inoculum on stainless steel coupons was suspended in 5% horse serum as a carrier rather than water. Chlorine and chlorine dioxide at concentrations of 10 to 100 microg/ml were equally effective in killing spores on apples. Significant reductions of > or = 3.8 to 4.5 log CFU per apple were achieved by treatment with 100 microg/ml of either of the two sanitizers. The peroxyacetic acid sanitizer (40 and 80 microg/ml) was ineffective in killing Bacillus spores in the test systems investigated. Results provide information on the effectiveness of sanitizers commonly used in the food processing industry in killing Bacillus spores in suspension, on a food-contact surface, and on a ready-to-eat food.

  7. Decontamination of Pangasius fish (Pangasius hypophthalmus) with chlorine or peracetic acid in the laboratory and in a Vietnamese processing company.

    PubMed

    Tong Thi, Anh Ngoc; Sampers, Imca; Van Haute, Sam; Samapundo, Simbarashe; Ly Nguyen, Binh; Heyndrickx, Marc; Devlieghere, Frank

    2015-09-02

    This study evaluated the decontamination of Pangasius fillets in chlorine or peracetic acid treated wash water. First, the decontamination efficacy of the washing step with chlorinated water applied by a Vietnamese processing company during trimming of Pangasius fillets was evaluated and used as the basis for the experiments performed on a laboratory scale. As chlorine was only added at the beginning of the batch and used continuously without renewal for 239min; a rapid increase of the bacterial counts and a fast decrease of chlorine in the wash water were found. This could be explained by the rapid accumulation of organic matter (ca. 400mg O2/L of COD after only 24min). Secondly, for the experiments performed on a laboratory scale, a single batch approach (one batch of wash water for treating a fillet) was used. Chlorine and PAA were evaluated at 10, 20, 50 and 150ppm at contact times of 10, 20 and 240s. Washing with chlorine and PAA wash water resulted in a reduction of Escherichia coli on Pangasius fish which ranged from 0-1.0 and 0.4-1.4logCFU/g, respectively while less to no reduction of total psychrotrophic counts, lactic acid bacteria and coliforms on Pangasius fish was observed. However, in comparison to PAA, chlorine was lost rapidly. As an example, 53-83% of chlorine and 15-17% of PAA were lost after washing for 40s (COD=238.2±66.3mg O2/L). Peracetic acid can therefore be an alternative sanitizer. However, its higher cost will have to be taken into consideration. Where (cheaper) chlorine is used, the processors have to pay close attention to the residual chlorine level, pH and COD level during treatment for optimal efficacy.

  8. Formation of chlorinated lipids post-chlorine gas exposure.

    PubMed

    Ford, David A; Honavar, Jaideep; Albert, Carolyn J; Duerr, Mark A; Oh, Joo Yeun; Doran, Stephen; Matalon, Sadis; Patel, Rakesh P

    2016-08-01

    Exposure to chlorine (Cl2) gas can occur during accidents and intentional release scenarios. However, biomarkers that specifically indicate Cl2 exposure and Cl2-derived products that mediate postexposure toxicity remain unclear. We hypothesized that chlorinated lipids (Cl-lipids) formed by direct reactions between Cl2 gas and plasmalogens serve as both biomarkers and mediators of post-Cl2 gas exposure toxicities. The 2-chloropalmitaldehyde (2-Cl-Pald), 2-chlorostearaldehyde (2-Cl-Sald), and their oxidized products, free- and esterified 2-chloropalmitic acid (2-Cl-PA) and 2-chlorostearic acid were detected in the lungs and plasma of mouse and rat models of Cl2 gas exposure. Levels of Cl-lipids were highest immediately post-Cl2 gas exposure, and then declined over 72 h with levels remaining 20- to 30-fold higher at 24 h compared with baseline. Glutathione adducts of 2-Cl-Pald and 2-Cl-Sald also increased with levels peaking at 4 h in plasma. Notably, 3-chlorotyrosine also increased after Cl2 gas exposure, but returned to baseline within 24 h. Intranasal administration of 2-Cl-PA or 2-Cl-Pald at doses similar to those formed in the lung after Cl2 gas exposure led to increased distal lung permeability and inflammation and systemic endothelial dysfunction characterized by loss of eNOS-dependent vasodilation. These data suggest that Cl-lipids could serve as biomarkers and mediators for Cl2 gas exposure and toxicity. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  9. 40 CFR 423.11 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... part: (a) The term total residual chlorine (or total residual oxidants for intake water with bromides) means the value obtained using any of the “chlorine—total residual” methods in Table IB in 40 CFR 136.3... concentration as it relates to chlorine discharge means the average of analyses made over a single period...

  10. 40 CFR 423.11 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) The term total residual chlorine (or total residual oxidants for intake water with bromides) means the value obtained using the amperometric method for total residual chlorine described in 40 CFR part 136... established by best engineering practices. (k) The term average concentration as it relates to...

  11. 40 CFR 423.11 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) The term total residual chlorine (or total residual oxidants for intake water with bromides) means the value obtained using the amperometric method for total residual chlorine described in 40 CFR part 136... established by best engineering practices. (k) The term average concentration as it relates to...

  12. 40 CFR 63.453 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the chlorine outlet concentration of each gas scrubber used to comply with the bleaching system outlet... with 40 CFR 430.24, shall monitor the chlorine and hypochlorite application rates, in kg of bleaching... comply with the bleaching system requirements of § 63.445(c) or the sulfite pulping system...

  13. 40 CFR 63.453 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the chlorine outlet concentration of each gas scrubber used to comply with the bleaching system outlet... with 40 CFR 430.24, shall monitor the chlorine and hypochlorite application rates, in kg of bleaching... comply with the bleaching system requirements of § 63.445(c) or the sulfite pulping system...

  14. 40 CFR 63.453 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the chlorine outlet concentration of each gas scrubber used to comply with the bleaching system outlet... with 40 CFR 430.24, shall monitor the chlorine and hypochlorite application rates, in kg of bleaching... comply with the bleaching system requirements of § 63.445(c) or the sulfite pulping system...

  15. The occurrence of chlorine in serpentine minerals

    USGS Publications Warehouse

    Miura, Y.; Rucklidge, J.; Nord, G.L.

    1981-01-01

    Partially serpentinized dunites containing small amounts of Chlorine (< 0.5%) from Dumont, Quebec, and Horoman, Hokkaido, Japan, and one containing less than 0.05% Chlorine from Higashi-Akaishi-Yama, Ehime, Japan have been examined using the electron probe microanalyzer and scanning transmission electron microscope with X-ray analytical capabilities. Chlorine was found together with Si, Mg, Ca and Fe in the serpentine minerals of the Dumont and Hokkaido dunites but not in the Ehime dunite. Chlorine is found associated only with the most finely crystalline facies of the serpentine (grain size less than 10 nm). The Ehime dunite contained no such fine grained serpentine, and was thus effectively chlorine-free, as are the coarser grained serpentines of the other samples. The finegrained chlorine-bearing serpentine also has a much higher concentration of Fe, and can contain smaller amounts of Ca, Ni and Mn than the coarse-grained variety as well as minute awaruite (FeNi3) grains. This fine-grained serpentine probably represents an early stage in the transformation of olivine to serpentine, with chlorine from hydrothermal solutions assisting the necessary chemical changes. The Cl increases the reaction rate by lowering the activation barrier to reaction by the introduction of reaction steps. ?? 1981 Springer-Verlag.

  16. Chlorination of Wastewater, Manual of Practice No. 4.

    ERIC Educational Resources Information Center

    Water Pollution Control Federation, Washington, DC.

    This manual reviews chlorination practices in the treatment and disposal of wastes from the earliest known applications. The application of chlorination for various purposes is described but no attempt has been made to compare chlorination with other methods. Included are chapters on the development and practice of wastewater chlorination,…

  17. Influence of Chlorine Emissions on Ozone Levels in the Troposphere

    EPA Science Inventory

    Chlorine emissions from cooling towers are emitted mainly as hypochlous acid, not as molecular chlorine. Chlorine emissions from cooling towers in electric utilities in the U.S. are estimated to be 4,400 tons per year. Molecular chlorine increases more tropospheric ozone than hyp...

  18. Chlorination of Wastewater, Manual of Practice No. 4.

    ERIC Educational Resources Information Center

    Water Pollution Control Federation, Washington, DC.

    This manual reviews chlorination practices in the treatment and disposal of wastes from the earliest known applications. The application of chlorination for various purposes is described but no attempt has been made to compare chlorination with other methods. Included are chapters on the development and practice of wastewater chlorination,…

  19. Chlorination. Training Module 2.300.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with chlorine, the reasons for chlorination and safe operation and maintenance of gas chlorine, dry calcium hypochlorite and liquid sodium hypochlorite chlorination systems for water supply and wastewater treatment facilities. Included are…

  20. Influence of Chlorine Emissions on Ozone Levels in the Troposphere

    EPA Science Inventory

    Chlorine emissions from cooling towers are emitted mainly as hypochlous acid, not as molecular chlorine. Chlorine emissions from cooling towers in electric utilities in the U.S. are estimated to be 4,400 tons per year. Molecular chlorine increases more tropospheric ozone than hyp...

  1. Toxicity of chlorine to zebrafish embryos

    PubMed Central

    Kent, Michael L.; Buchner, Cari; Barton, Carrie; Tanguay, Robert L.

    2014-01-01

    Surface disinfection of fertilized fish eggs is widely used in aquaculture to reduce extraovum pathogens that may be released from brood fish during spawning, and this is routinely used in zebrafish (Danio rerio) research laboratories. Most laboratories use approximately 25 – 50 ppm unbuffered chlorine solution for 5 – 10 min. Treatment of embryos with chlorine has significant germicidal effects for many Gram-negative bacteria, viruses, and trophozoite stages of protozoa, it has reduced efficacy against cyst or spore stages of protozoa and certain Mycobacterium spp. Therefore, we evaluated the toxicity of unbufferred and buffered chlorine solution to embryos exposed at 6 or 24 hours post-fertilization (hpf) to determine if higher concentrations can be used for treating zebrafish embryos. Most of our experiments entailed using an outbred line (5D), with both mortality and malformations as endpoints. We found that 6 hpf embryos consistently were more resistant than 24 hpf embryos to the toxic effects of chlorine. Chlorine is more toxic and germicidal at lower pHs, and chlorine causes elevated pH. Consistent with this, we found that unbufferred chlorine solutions (pH ca 8–9) were less toxic at corresponding concentrations than solutions buffered to pH 7. Based on our findings here, we recommend treating 6 hpf embryos for 10 min and 24 hpf for 5 min with unbuffered chlorine solution at 100 ppm. One trial indicated that AB fish, a popular outbred line, are more susceptible to toxicity than 5Ds. This suggests that variability between zebrafish lines occurs, and researchers should evaluate each line or strain under their particular laboratory conditions for selection of the optimum chlorine treatment procedure. PMID:24429474

  2. Efficacy of chlorine dioxide mouthwash against halitosis

    NASA Astrophysics Data System (ADS)

    Bestari, M. D.; Sunarto, H.; Kemal, Y.

    2017-08-01

    To ascertain the effectiveness of using chlorine dioxide mouthwash in addressing halitosis. Forty people were divided equally into the test group (required to gargle with mouthwash containing chlorine dioxide) and the control group (required to gargle with aquadest). The volatile sulfur compound (VSC) and organoleptic scores were measured before gargling and 30 min, 2 h, 4 h, and 6 h after. The Wilcoxon test analysis showed a significant difference (p<0.05) in the mean value of VSC scores between the test group and the control group in four testing periods after gargling. Chlorine dioxide mouthwash is effective in addressing halitosis.

  3. Chlorine isn't Just for Swimming Pools Anymore... Chlorination of Organic Compounds in the Arctic

    NASA Astrophysics Data System (ADS)

    Han, A.; Raab, T. K.

    2013-12-01

    The cycling of chlorine between its organic and inorganic forms is known to occur in forest soils, but little is known about the generality of this mechanism, which soil components chlorine attaches to, and at what rate chlorination occurs. The study uses peat-rich tundra soils from Barrow, Alaska varying in age since formation of 50 yrs - 5500 yrs BP, and seeks to measure the rate at which organic molecules are chlorinated and to understand what changes those molecules undergo once chlorinated. Soil abundance of chlorine and bromine was estimated in soils of varying age using X-ray fluorescence, and org-Cl levels were measured using pyro-hydrolysis [Table 1]. We considered activity of the enzyme Chloroperoxidase, and data was gathered using absorbance scans of the organic molecule monochlorodimedone to determine whether it had been chlorinated and if so, at what rate. Additional information was gathered from the chlorination of small organic components of the macromolecule lignin, whose constituent molecules make up a large portion of humic materials critical to soil health, through emission scans and fluorescence scans. The results showed that the enzyme chloroperoxidase, which is found in nature and is associated with fungi or bacteria, attaches a chlorine atom to monochlorodimedone and that similar enzymes found in Arctic soils act on it, as well as the lignin model subunits cinnamaldehyde ((2E)-3-phenylprop-2-enal) and naringenin-7-rhamnoglucoside. The results may provide more information on chlorination rates in the Arctic and may contribute to an understanding of how and at what rate chlorine changes form in nature, and answer questions about ozone deterioration or anthropogenic chlorine impact(s) on the environment.Average Halogen Abundance in Arctic Soils xrf=Energy Dispersive X-Ray Fluorescencepyro= TOX Pyro-Hydrolysis

  4. Inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine.

    PubMed Central

    Berman, D; Hoff, J C

    1984-01-01

    The kinetics of inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine were studied at 5 degrees C with a purified preparation of single virions and a preparation of cell-associated virions. Inactivation of the virus preparations with chlorine and chlorine dioxide was studied at pH 6 and 10. The monochloramine studies were done at pH 8. With 0.5 mg of chlorine per liter at pH 6, more than 4 logs (99.99%) of the single virions were inactivated in less than 15 s. Both virus preparations were inactivated more rapidly at pH 6 than at pH 10. With chlorine dioxide, however, the opposite was true. Both virus preparations were inactivated more rapidly at pH 10 than at pH 6. With 0.5 mg of chlorine dioxide per liter at pH 10, more than 4 logs of the single-virus preparation were inactivated in less than 15 s. The cell-associated virus was more resistant to inactivation by the three disinfectants than was the preparation of single virions. Chlorine and chlorine dioxide, each at a concentration of 0.5 mg/liter and at pH 6 and 10, respectively, inactivated 99% of both virus preparations within 4 min. Monochloramine at a concentration of 10 mg/liter and at pH 8 required more than 6 h for the same amount of inactivation. Images PMID:6091546

  5. Behavior of chlorine during coal pyrolysis

    USGS Publications Warehouse

    Shao, D.; Hutchinson, E.J.; Cao, H.; Pan, W.-P.; Chou, C.-L.

    1994-01-01

    The behavior of chlorine in Illinois coals during pyrolysis was evaluated by combined thermo-gravimetry-Fourier transform infrared spectroscopy-ion chromatography (TG-FTIR-IC) techniques. It was found that more than 90% of chlorine in Illinois coals (IBC-103, 105, 106, and 109) was liberated as HCl gas during pyrolysis from 300 to 600??C, with the rate reaching a maximum at 440 ??C. Similarity of the HCl and NH3 release profiles during pyrolysis of IBC-109 supports the hypothesis that the chlorine in coal may be associated with nitrogen and the chlorine is probably bonded to the basic nitrogen sites on the inner walls of coal micropores. ?? 1994 American Chemical Society.

  6. Ozone depletion and chlorine loading potentials

    NASA Technical Reports Server (NTRS)

    Pyle, John A.; Wuebbles, Donald J.; Solomon, Susan; Zvenigorodsky, Sergei; Connell, Peter; Ko, Malcolm K. W.; Fisher, Donald A.; Stordal, Frode; Weisenstein, Debra

    1991-01-01

    The recognition of the roles of chlorine and bromine compounds in ozone depletion has led to the regulation or their source gases. Some source gases are expected to be more damaging to the ozone layer than others, so that scientific guidance regarding their relative impacts is needed for regulatory purposes. Parameters used for this purpose include the steady-state and time-dependent chlorine loading potential (CLP) and the ozone depletion potential (ODP). Chlorine loading potentials depend upon the estimated value and accuracy of atmospheric lifetimes and are subject to significant (approximately 20-50 percent) uncertainties for many gases. Ozone depletion potentials depend on the same factors, as well as the evaluation of the release of reactive chlorine and bromine from each source gas and corresponding ozone destruction within the stratosphere.

  7. Liquid-phase chlorination of perchloroethylene

    SciTech Connect

    Levanova, S.V.; Evstigneev, O.V.; Rodova, R.M.; Berlin, E.R.; Ul'yanov, A.A.

    1988-06-01

    The relationships in the liquid-phase chlorination of perchloroethylene to hexachlorethane in a thermal process and in the presence of an initiator have been studied. The rate constants and the activation parameters of the process have been determined.

  8. Chlorine Salts at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Hanley, J.; Horgan, B.

    2016-09-01

    Although chlorine salts (perchlorates, chlorides) are known to exist at the Phoenix landing site, their distribution and type have not been positively identified yet. We look for these salts through a novel NIR remote sensing technique.

  9. Innovative Technologies for Chlorinated Solvent Remediation

    NASA Astrophysics Data System (ADS)

    Pennell, Kurt D.; Cápiro, Natalie L.

    2014-07-01

    The following sections are included: * INTRODUCTION * TRADITIONAL REMEDIATION TECHNOLOGIES (1980s) * RESEARCH AND DEVELOPMENT OF INNOVATIVE REMEDIATION TECHNOLOGIES (1990s-2000s) * CURRENT TRENDS IN CHLORINATED SOLVENT REMEDIATION (2010s) * CLOSING THOUGHTS * REFERENCES

  10. Factors influencing inactivation of Klebsiella pneumoniae by chlorine and chloramine.

    PubMed

    Goel, Sudha; Bouwer, Edward J

    2004-01-01

    Inactivation of Klebsiella pneumoniae cultures by chlorine and chloramine was evaluated under different growth conditions by varying nutrient media dilution, concentrations of essential inorganic nutrients (FeCl3, MgSO4, phosphate, and ammonium salts), and temperature. All inactivation assays were performed at room temperature (22-23 degrees C) and near neutral pH (7.2-7.5). C*T(99.9) values for chlorine increased >20-fold and for chloramine increased 2.6-fold when cells were grown in 100-fold diluted nutrient broth (2NB) solutions (final TOC of 35-40 mg/L). Background levels of Mg: 6.75 x 10(-2) mM and Fe: 3.58 x 10(-5) mM or high levels of FeCl3 (0.01 mM) and MgSO4 (1 mM) during growth resulted in the highest resistances to chlorine with C*T(99.9) values of 13.06 (+/-0.91) and 13.78 (+/-1.97) mg-min/L, respectively. Addition of low levels of FeCl3 (0.001 mM) and MgSO4 (0.1 mM) to K. pneumoniae cultures during growth resulted in the lowest bacterial resistances to inactivation; C*T(99.9) values ranged from 0.28 (+/-0.06) to 1.88 (+/-0.53)mg-min/L in these cultures. Increase in growth temperature from 22.5 degrees C to 35 degrees C for unamended 2NB cultures resulted in a 42-fold decrease in C*T(99.9) values for chlorine. A similar change in temperature resulted in no significant change in C*T(99.9) values for chloramine. These results indicate that inactivation of K. pneumoniae cultures by chlorine was highly sensitive to changes in growth conditions unlike inactivation by chloramine.

  11. Reduction in horizontal transfer of conjugative plasmid by UV irradiation and low-level chlorination.

    PubMed

    Lin, Wenfang; Li, Shuai; Zhang, Shuting; Yu, Xin

    2016-03-15

    The widespread presence of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the drinking water system facilitates their horizontal gene transfer among microbiota. In this study, the conjugative gene transfer of RP4 plasmid after disinfection including ultraviolet (UV) irradiation and low-level chlorine treatment was investigated. It was found that both UV irradiation and low-level chlorine treatment reduced the conjugative gene transfer frequency. The transfer frequency gradually decreased from 2.75 × 10(-3) to 2.44 × 10(-5) after exposure to UV doses ranging from 5 to 20 mJ/cm(2). With higher UV dose of 50 and 100 mJ/cm(2), the transfer frequency was reduced to 1.77 × 10(-6) and 2.44 × 10(-8). The RP4 plasmid transfer frequency was not significantly affected by chlorine treatment at dosages ranging from 0.05 to 0.2 mg/l, but treatment with 0.3-0.5 mg/l chlorine induced a decrease in conjugative transfer to 4.40 × 10(-5) or below the detection limit. The mechanisms underlying these phenomena were also explored, and the results demonstrated that UV irradiation and chlorine treatment (0.3 and 0.5 mg/l) significantly reduced the viability of bacteria, thereby lowering the conjugative transfer frequency. Although the lower chlorine concentrations tested (0.05-0.2 mg/l) were not sufficient to damage the cells, exposure to these concentrations may still depress the expression of a flagellar gene (FlgC), an outer membrane porin gene (ompF), and a DNA transport-related gene (TraG). Additionally, fewer pili were scattered on the bacteria after chlorine treatment. These findings are important in assessing and controlling the risk of ARG transfer and dissemination in the drinking water system.

  12. Imidazole catalyzes chlorination by unreactive primary chloramines.

    PubMed

    Roemeling, Margo D; Williams, Jared; Beckman, Joseph S; Hurst, James K

    2015-05-01

    Hypochlorous acid and simple chloramines (RNHCl) are stable biologically derived chlorinating agents. In general, the chlorination potential of HOCl is much greater than that of RNHCl, allowing it to oxidize or chlorinate a much wider variety of reaction partners. However, in this study we demonstrate by kinetic analysis that the reactivity of RNHCl can be dramatically promoted by imidazole and histidyl model compounds via intermediary formation of the corresponding imidazole chloramines. Two biologically relevant reactions were investigated--loss of imidazole-catalyzed chlorinating capacity and phenolic ring chlorination using fluorescein and the tyrosine analog, 4-hydroxyphenylacetic acid (HPA). HOCl reacted stoichiometrically with imidazole, N-acetylhistidine (NAH), or imidazoleacetic acid to generate the corresponding imidazole chloramines which subsequently decomposed. Chloramine (NH2Cl) also underwent a markedly accelerated loss in chlorinating capacity when NAH was present, although in this case N-α-acetylhistidine chloramine (NAHCl) did not accumulate, indicating that the catalytic intermediate must be highly reactive. Mixing HOCl with 1-methylimidazole (MeIm) led to very rapid loss in chlorinating capacity via formation of a highly reactive chlorinium ion (MeImCl(+)) intermediate; this behavior suggests that the reactive forms of the analogous imidazole chloramines are their conjugate acids, e.g., the imidazolechlorinium ion (HImCl(+)). HOCl-generated imidazole chloramine (ImCl) reacted rapidly with fluorescein in a specific acid-catalyzed second-order reaction to give 3'-monochloro and 3',5'-dichloro products. Equilibrium constants for the transchlorination reactions HOCl + HIm = H2O + ImCl and NH2Cl + HIm = NH3 + ImCl were estimated from the dependence of the rate constants on [HIm]/[HOCl] and literature data. Acid catalysis again suggests that the actual chlorinating agent is HImCl(+); consistent with this interpretation, MeIm markedly catalyzed

  13. Imidazole catalyzes chlorination by unreactive primary chloramines

    PubMed Central

    Roemeling, Margo D.; Williams, Jared; Beckman, Joseph S.; Hurst, James K.

    2015-01-01

    Hypochlorous acid and simple chloramines (RNHCl) are stable biologically-derived chlorinating agents. In general, the chlorination potential of HOCl is much greater than that of RNHCl, allowing it to oxidize or chlorinate a much wider variety of reaction partners. However, in this study we demonstrate by kinetic analysis that the reactivity of RNHCl can be dramatically promoted by imidazole and histidyl model compounds via intermediary formation of the corresponding imidazole chloramines. Two biologically relevant reactions were investigated—loss of imidazole-catalyzed chlorinating capacity and phenolic ring chlorination using fluorescein and the tyrosine analog, 4-hydroxyphenylacetic acid (HPA). HOCl reacted stoichiometrically with imidazole, N-acetylhistidine (NAH), or imidazoleacetic acid to generate the corresponding imidazole chloramines which subsequently decomposed. Chloramine (NH2Cl) also underwent a markedly accelerated loss in chlorinating capacity when NAH was present, although in this case NAHCl did not accumulate, indicating that the catalytic intermediate must be highly reactive. Mixing HOCl with 1-methylimidazole (MeIm) led to very rapid loss in chlorinating capacity via formation of a highly reactive chlorinium ion (MeImCl+) intermediate; this behavior suggests that the reactive forms of the analogous imidazole chloramines are their conjugate acids, e.g., the imidazolechlorinium ion (HImCl+). HOCl-generated imidazole chloramine (ImCl) reacted rapidly with fluorescein in a specific acid-catalyzed second order reaction to give 3′-monochloro and 3′,5′-dichloro products. Equilibrium constants for the transchlorination reactions: HOCl + HIm = H2O + ImCl and NH2Cl + HIm = NH3 + ImCl were estimated from the dependence of the rate constants upon [HIm]/[HOCl] and literature data. Acid catalysis again suggests that the actual chlorinating agent is HImCl+; consistent with this interpretation, MeIm markedly catalyzed fluorescein chlorination by HOCl

  14. Stratospheric chlorine: Blaming it on nature

    SciTech Connect

    Taube, G.

    1993-06-11

    Much of the bitter public debate over ozone depletion has centered on the claim that chlorofluorocarbons (CFCs) pale into insignificance alongside natural sources of chlorine in the stratosphere. If so, goes the argument, chlorine could not be depleting ozone as atmospheric scientists claim, because the natural sources have been around since time immemorial, and the ozone layer is still there. The claim, put forward in a book by Rogelio Maduro and Ralf Schauerhammer, has since been touted by former Atomic Energy Commissioner Dixy Lee Ray and talk-show host Rush Limbaugh, and it forms the basis of much of the backlash now being felt by atmospheric scientists. The argument is simple: Maduro and Schauerhammer calculate that 600 million tons of chlorine enters the atmosphere annually from seawater, 36 million tons from volcanoes, 8.4 million tons from biomass burning, and 5 million tons from ocean biota. In contrast, CFCs account for a mere 750,000 tons of atmospheric chlorine a year. Besides disputing the numbers, scientists have both theoretical and observational bases for doubting that much of this chlorine is getting into the stratosphere, where it could affect the ozone layer. Linwood Callis of the National Aeronautics and Space Administration's (NASA) Langley Research Center points out one crucial problem with the argument: Chlorine from natural sources is soluble, and so it gets rained out of the lower atmosphere. CFCs, in contrast, are insoluble and inert and thus make it to the stratosphere to release their chlorine. What's more, observations of stratospheric chemistry don't support the idea that natural sources are contributing much to the chlorine there.

  15. Chemistry of saline-water chlorination

    SciTech Connect

    Haag, W.R.

    1981-06-01

    Vast quantities of natural waters are used by power plants for cooling purposes. This water is chlorinated to prevent slime build-up inside the cooling pipes, is circulated through the cooling system, and eventually discharged back into the water body. In order to assess the environmental impact of water chlorination, it is necessary to know what chemical compounds are produced and discharged into the receiving waters. To attack this problem, a review of the present state of knowledge of natural water chlorination chemistry was performed, and some experimental work explained the results of previous workers by showing that chlorine losses at very high doses in seawater are simply the result of chlorate and bromate formation which, however, is negligible at normal doses. The most important chlorine-produced oxidants, along with the relevant chemical reactions, were chosen as a basis for a kinetic model of saline water chlorination chemistry. Kinetic data were compiled in a computer program which simultaneously solves 24 differential equations, one for each species modelled. Estimates were made for the unknown rate constants. A purely predictive model was not possible due to the great variability in the organic demand; however, the model is applicable under a broad variety of conditions (except sunlight), and it provides a reasonably good description of a halamine chemistry under environmental conditions.

  16. New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems.

    PubMed

    Fisher, Ian; Kastl, George; Sathasivan, Arumugam

    2017-08-30

    Accurate modelling of chlorine concentrations throughout a drinking water system needs sound mathematical descriptions of decay mechanisms in bulk water and at pipe walls. Wall-reaction rates along pipelines in three different systems were calculated from differences between field chlorine profiles and accurately modelled bulk decay. Lined pipes with sufficiently large diameters (>500 mm) and higher chlorine concentrations (>0.5 mg/L) had negligible wall-decay rates, compared with bulk-decay rates. Further downstream, wall-reaction rate consistently increased (peaking around 0.15 mg/dm(2)/h) as chlorine concentration decreased, until mass-transport to the wall was controlling wall reaction. These results contradict wall-reaction models, including those incorporated in the EPANET software, which assume wall decay is of either zero-order (constant decay rate) or first-order (wall-decay rate reduces with chlorine concentration). Instead, results are consistent with facilitation of the wall reaction by biofilm activity, rather than surficial chemical reactions. A new model of wall reaction combines the effect of biofilm activity moderated by chlorine concentration and mass-transport limitation. This wall reaction model, with an accurate bulk chlorine decay model, is essential for sufficiently accurate prediction of chlorine residuals towards the end of distribution systems and therefore control of microbial contamination. Implementing this model in EPANET-MSX (or similar) software enables the accurate chlorine modelling required for improving disinfection strategies in drinking water networks. New insight into the effect of chlorine on biofilm can also assist in controlling biofilm to maintain chlorine residuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Mechanistic Aspects of the Formation of Adsorbable Organic Bromine during Chlorination of Bromide-containing Synthetic Waters.

    PubMed

    Langsa, Markus; Heitz, Anna; Joll, Cynthia A; von Gunten, Urs; Allard, Sebastien

    2017-05-02

    During chlorination of bromide-containing waters, a significant formation of brominated disinfection byproducts is expected. This is of concern because Br-DBPs are generally more toxic than their chlorinated analogues. In this study, synthetic water samples containing dissolved organic matter (DOM) extracts and bromide were treated under various disinfection scenarios to elucidate the mechanisms of Br-DBP formation. The total concentration of Br-DBPs was measured as adsorbable organic bromine (AOBr). A portion of the bromine (HOBr) was found to react with DOM via electrophilic substitution (≤40%), forming AOBr, and the remaining HOBr reacted with DOM via electron transfer with a reduction of HOBr to bromide (≥60%). During chlorination, the released bromide is reoxidized (recycled) by chlorine to HOBr, leading to further electrophilic substitution of unaltered DOM sites and chlorinated DOM moieties. This leads to an almost complete bromine incorporation to DOM (≥87%). The type of DOM (3.06 ≤ SUVA254 ≤ 4.85) is not affecting this process, as long as the bromine-reactive DOM sites are in excess and a sufficient chlorine exposure is achieved. When most reactive sites were consumed by chlorine, Cl-substituted functional groups (Cl-DOM) are reacting with HOBr by direct bromination leading to Br-Cl-DOM and by bromine substitution of chlorine leading to Br-DOM. The latter finding was supported by hexachlorobenzene as a model compound from which bromoform was formed during HOBr treatment. To better understand the experimental findings, a conceptual kinetic model allowing to assess the contribution of each AOBr pathway was developed. A simulation of distribution system conditions with a disinfectant residual of 1 mgC2 L(-1) showed complete conversion of Br(-) to AOBr, with about 10% of the AOBr formed through chlorine substitution by bromine.

  18. Evaluation of short-term exposure to heated water and chlorine for control of the Asiatic clam (Corbicula fluminea)

    SciTech Connect

    Mattice, J.S.; McLean, R.B.; Burch, M.B.

    1982-01-01

    Based on the need for development of efficient procedures for prevention or control of fouling by the Asiatic clam, Corbicula fluminea, the response of these clams to chlorine in combination with rapid increases in water temperature was examined. Small clams were acclimated to 10 and 25/sup 0/C, and large clams were acclimated to 25/sup 0/C. Experiments with each of these acclimation groups consisted of variables of total residual chlorine concentration (0, 5, 7.5, and 10 mg/L) and test temperature (ambient and 3 test temperatures ranging from 35 to 46/sup 0/C). The periods of exposure to increased temperature and chlorine were 40 and 30 min respectively. Clam mortalities were related to water temperature but not to chlorine exposure. At high temperatures at least 50% of the clams remained open through the entire chlorine exposure period. At higher temperatures all of the clams remained open. Even when clams remained open for the entire 30-min chlorine exposure period, all clams were not killed. However, virtually all clams exposed to 41 to 43/sup 0/C water temperatures were killed whether open or closed during the exposure period. Death due to temperature shock is the logical conclusion from these data. Combined application of heated water and chlorine at the concentrations used is not more effective in killing Corbicula than is heated water alone. Current regulations on the concentration of chlorine in power plant effluents indicate that further studies of control of Corbicula using chlorine offer little likelihood for success. (ERB)

  19. The effect of advanced treatment on chlorine decay in metallic pipes.

    PubMed

    Rossman, Lewis A

    2006-07-01

    Experiments were run to measure what effect advanced treatment might have on the kinetics of chlorine and chloramine decay in metallic pipes that comprise many drinking water distribution systems. A recirculating loop of 6-in diameter unlined ductile iron pipe was used to simulate turbulent flow conditions in a pipe with significant corrosion and tubercle buildup. Conventionally treated test water was subjected to either ozonation, carbon adsorption (GAC), reverse osmosis (RO) or no further treatment before being chlorinated and introduced into the pipeline simulator. Results showed that overall chlorine decay in the simulator was consistently dominated by wall reactions whose first-order rate constants were an order of magnitude higher than those for the bulk water. With free chlorine, the wall rate constants for ozonated and GAC-treated water were about twice those of conventional or RO-treated water. This behavior is believed due to the effect that changes in the organic content of water have on its ability to complex iron and the effect that changes in water conductivity have on pipe wall corrosion. Tests run with chloraminated water showed no statistically significant effect of treatment type and had wall rate constants that were only 40 to 70% as high as those using free chlorine.

  20. Chlorine isotope geochemistry of Icelandic thermal fluids: Implications for geothermal system behavior at divergent plate boundaries

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri; Barnes, Jaime D.

    2016-09-01

    The chlorine isotope composition of thermal fluids from Iceland were measured in order to evaluate the source of chlorine and possible chlorine isotope fractionation in geothermal systems at divergent plate boundaries. The geothermal systems studied have a wide range of reservoir temperatures from 40 to 437 °C and in-situ pH of 6.15 to 7.15. Chlorine concentrations range from 5.2 to 171 ppm and δ37 Cl values are -0.3 to + 2.1 ‰ (n = 38). The δ37 Cl values of the thermal fluids are interpreted to reflect the source of the chlorine in the fluids. Geothermal processes such as secondary mineral formation, aqueous and vapor speciation and boiling were found to have minimal effects on the δ37 Cl values. However, further work is needed on incorporation of Cl into secondary minerals and its effect on Cl isotope fractionation. Results of isotope geochemical modeling demonstrate that the range of δ37 Cl values documented in the natural thermal fluids can be explained by leaching of the basaltic rocks by meteoric source water under geothermal conditions. Magmatic gas partitioning may also contribute to the source of Cl in some cases. The range of δ37 Cl values of the fluids result mainly from the large range of δ37 Cl values observed for Icelandic basalts, which range from -0.6 to + 1.2 ‰.

  1. Influence of chlorine on the decomposition of ethylene over iron and cobalt particles

    SciTech Connect

    Chambers, A,; Baker, R.T.K.

    1997-02-27

    The interaction of cobalt and iron powders with ethylene and ethylene/hydrogen mixtures containing trace concentrations of chlorine has been studied using a combination of flow reactor and transmission electron microscopy techniques. Detailed analysis of both the gaseous products and the amount of solid carbon (a filamentous form) deposited on the metal surfaces has permitted us to gain an insight into some of the factors surrounding the promotional effect of low concentrations of chlorine on the catalytic action of both cobalt and iron. The optimum carbon deposition activity was achieved when either of these metals was treated at 400{degree}C in an ethylene/hydrogen environment containing 75-100 ppm chlorine. If the halogen was removed from the reactant, then the high activity for carbon filament growth could not be sustained. Reintroduction of chlorine after a suitable period of time resulted in restoration of the carbon deposition activity to its original level, demonstrating the reversible nature of the `activation-deactivation` processes. The results of this study are rationalized according to the notion that the presence of adsorbed chlorine species is responsible for causing reconstruction of the metal surface; however, the possibility that the halogen is capable of inducing a perturbation in the electronic properties of the particles is also considered. 40 refs., 16 figs., 4 tabs.

  2. Chlorine Abundances in Cool Stars

    NASA Astrophysics Data System (ADS)

    Maas, Z. G.; Pilachowski, C. A.; Hinkle, K.

    2016-12-01

    Chlorine abundances are reported in 15 evolved giants and 1 M dwarf in the solar neighborhood. The Cl abundance was measured using the vibration-rotation 1-0 P8 line of H35Cl at 3.69851 μm. The high-resolution L-band spectra were observed using the Phoenix infrared spectrometer on the Kitt Peak Mayall 4 m telescope. The average [35Cl/Fe] abundance in stars with -0.72 < [Fe/H] < 0.20 is [35Cl/Fe] = (-0.10 ± 0.15) dex. The mean difference between the [35Cl/Fe] ratios measured in our stars and chemical evolution model values is (0.16 ± 0.15) dex. The [35Cl/Ca] ratio has an offset of ˜0.35 dex above model predictions, suggesting that chemical evolution models are underproducing Cl at the high metallicity range. Abundances of C, N, O, Si, and Ca were also measured in our spectral region and are consistent with F and G dwarfs. The Cl versus O abundances from our sample match Cl abundances measured in planetary nebula and H ii regions. In one star where both H35Cl and H37Cl could be measured, a 35Cl/37Cl isotope ratio of 2.2 ± 0.4 was found, consistent with values found in the Galactic ISM and predicted chemical evolution models.

  3. Effects of chlorine and chlorine dioxide on human rotavirus infectivity and genome stability.

    PubMed

    Xue, Bin; Jin, Min; Yang, Dong; Guo, Xuan; Chen, Zhaoli; Shen, Zhiqiang; Wang, Xinwei; Qiu, Zhigang; Wang, Jingfeng; Zhang, Bin; Li, Junwen

    2013-06-15

    Despite the health risks posed by waterborne human rotavirus (HRV), little information is available concerning the effectiveness of chlorine or chlorine dioxide (ClO2), two common disinfectants of public water sources, against HRV and their effects on its genome remain poorly understood. This study investigated the effects of chlorine and ClO2 on purified HRV by using cell culture and RT-PCR to assess virus infectivity and genetic integrity, respectively. The disinfection efficacy of ClO2 was found to be higher than that of chlorine. According to the efficiency factor Hom model, Ct value (mg/L min) ranges required for a 4-log reduction of HRV at 20 °C by chlorine and ClO2 were 5.55-5.59 and 1.21-2.47 mg/L min, respectively. Detection of the 11 HRV genome segments revealed that damage to the 1227-2354 bp of the VP4 gene was associated with the disappearance of viral infectivity by chlorine. However, no complete accordance between culturing and RT-PCR assays was observed after treatment of HRV with ClO2. These results collectively indicate that the current practice of chlorine disinfection may be inadequate to manage the risk of waterborne HRV infection, and offer the potential to monitor the infectivity of HRV adapting PCR-based protocols in chlorine disinfection.

  4. Rapeseed lecithin hydroxylation by chlorine replacing with hydroxyl groups in chlorinated phospholipids.

    PubMed

    Górecki, Michał; Sosada, Marian; Boryczka, Monika; Fraś, Pawel; Pasker, Beata

    2012-01-01

    Rapeseed lecithin ethanol soluble fraction (LESF) was hydroxylated with 30% hydrogen peroxide in the presence of acetic acid. The product was compared to the one obtained by method based on nucleophilic substitution reaction of phospholipids chlorine derivatives. In this approach, hydrogen chloride was added to double bonds in unsaturated acyl groups of phospholipids. Next, chlorine was replaced with hydroxyl groups via the alkaline hydrolysis of chlorine derivatives. The surface active properties of the products obtained with the usage of two methods of rapeseed LESF hydroxylation were determined. The minimal surface tension (eta(min), mN/m) and the critical micelle concentration (CMC, g/L) of LESF hydroxylated with hydrogen peroxide (20.2 mN/m, 6.0 g/L) and obtained by chlorine replacing with hydroxyl groups in chlorinated phospholipids (25.0 mN/m, 9.8 g/L) were compared to LESF (31.8 mN/m, 17.8 g/L). Hydroxylated LESF obtained by lecithin chlorination and chlorine replacing with hydroxyl groups in the chlorine derivatives has no peroxides and the good surface active properties. The product as an effective emulsifier can be used in pharmacy and cosmetics.

  5. Bromate ion formation in dark chlorination and ultraviolet/chlorination processes for bromide-containing water.

    PubMed

    Huang, Xin; Gao, Naiyun; Deng, Yang

    2008-01-01

    Bormate (BrO3(-)) is a carcinogenic chemical produced in ozonation or chlorination of bromide-containing water. Although its formation in seawater with or without sunlight has been previously investigated, the formation of bromate in dilute solutions, particularly raw water for water treatment plant, is unknown. In this article, the results of bench scale tests to measure the formation rates of bromate formation in dilute solutions, including de-ionized water and raw water from Yangtze River, were presented in dark chlorination and ultraviolet (UV)/chlorination processes. And the effects of initial pH, initial concentration of NaOCl, and UV light intensity on bromate formation in UV/chlorination of the diluted solutions were investigated. Detectable bromate was formed in dark chlorination of the two water samples with a relatively slow production rate. Under routine disinfecting conditions, the amount of formed bromate is not likely to exceed the national standards (10 microg/L). UV irradiation enhanced the decay of free chlorine, and, simultaneously, 6.6%--32% of Br was oxidized to BrO3(-). And the formation of bromate exhibited three stages: rapid stage, slow stage and plateau. Under the experimental conditions (pH = 4.41--11.07, Ccl2 = 1.23--4.50 mg/L), low pH and high chlorine concentration favored the generation of bromate. High light intensity promoted the production rate of bromate, but decreased its total generation amount due to acceleration of chlorine decomposition.

  6. Effect of UV irradiation on the proportion of organic chloramines in total chlorine in subsequent chlorination.

    PubMed

    Zhang, Tian-Yang; Lin, Yi-Li; Xu, Bin; Xia, Sheng-Ji; Tian, Fu-Xiang; Gao, Nai-Yun

    2016-02-01

    This study investigated the changes of chlorine species and proportion of organic chloramines during the chlorination process after UV irradiation pretreatment in drinking water. It was found that the UV pretreatment could enhance the percentage of organic chloramines by increasing free chlorine consumption in the chlorination of raw waters. The percentage of organic chloramines in total chlorine increased with UV intensity and irradiation time in raw waters. However, for the humic acid synthesized water, the percentage of organic chloramines increased first and then decreased with the increase of UV irradiation time. The value of SUVA declined in both raw and humic acid synthesized waters over the UV irradiation time, which indicated that the decomposition of aromatic organic matter by UV could be a contributor to the increase of free chlorine consumption and organic chloramine proportion. The percentage of organic chloramines during chlorination of raw waters after 30-min UV irradiation pretreatment varied from 20.2% to 41.8%. Total chlorine decreased obviously with the increase of nitrate concentration, but the percentage of organic chloramines increased and was linearly correlated to nitrate concentration.

  7. Summary of airborne chlorine and hydrogen chloride gas measurements for August 20 and September 5, 1977 Voyager launches at Air Force Eastern Test Range, Florida

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Emerson, B. R., Jr.; Hudgins, C. H.

    1978-01-01

    Airborne chlorine and hydrogen chloride measurements were made in the tropospheric ground cloud following the Voyager launches of August 20 and September 5, 1977. The maximum observed hydrogen chloride concentration for both launches was about 25 to 30 parts per million (ppm) occurring typically 2 to 6 minutes after launch. By completion of the sampling mission (1-1/2 hours for August, 4-1/2 hours for September), the maximum in-cloud concentration decayed to about 1 to 2 ppm. Maximum observed chlorine concentrations were about 40 to 55 parts per billion (ppb) about 2 to 8 minutes after launch; by about 15 minutes after launch, chlorine concentrations were less than 10 ppb (detection limit). In-cloud chlorine concentrations were well below 1 percent of hydrogen chloride concentrations. The appendix of the report discusses the chlorine instrument and the laboratory evaluation of the detector.

  8. 40 CFR 415.63 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.63 Effluent limitations... Chlorine 0.0032 0.0019 (b) Except as provided in 40 CFR 125.30 through 125.32, any existing point source... (T) 0.0097 0.0037 Total Residual Chlorine 0.013 0.0079...

  9. 40 CFR 415.63 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.63 Effluent limitations... Chlorine 0.0032 0.0019 (b) Except as provided in 40 CFR 125.30 through 125.32, any existing point source... (T) 0.0097 0.0037 Total Residual Chlorine 0.013 0.0079...

  10. 40 CFR 415.63 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.63 Effluent limitations... Chlorine 0.0032 0.0019 (b) Except as provided in 40 CFR 125.30 through 125.32, any existing point source... (T) 0.0097 0.0037 Total Residual Chlorine 0.013 0.0079...

  11. Chlorine dioxide treatment for zebra mussel control

    SciTech Connect

    Rybarik, D.; Byron, J.; Germer, M.

    1995-06-01

    Chlorine is recognized and commonly used biocide for power plant cooling water and service water treatment programs, including the control of zebra mussels. Chlorine dioxide has recently become a popular method of zebra mussel control because of its economy, safety, environmental acceptability, and effectiveness when compared to other mussel control methods. This control technique was recently demonstrated at Dairyland Power Cooperative`s Alma Generating Station on the east bank of the upper Mississippi River in Alma, Wisconsin. The project was assisted with EPRI Tailored Collaboration Program funds. The Dairyland Power Alam Generating Station consists of five generating units that utilize raw, untreated Mississippi River water for condenser, circulating, and service water supplies. The first units were built in 1947, with the final and largest unit being completed in 1960. Total station generating capacity is 200 MW. Because of recent increases in the zebra mussel density at the station intake, Dairyland Power selected the team of Nalco and Rio Linda to perform a chlorine dioxide treatment of the station`s new water systems to eradicate and control the mussels before their presence created operational difficulties. This paper will present the results of the treatment including treatment theory, design and construction of the treatment system, the method of chlorine dioxide generation, treatment concentration, analytical methods o monitoring chlorine dioxide generation, residuals and trihalomethane (THM) concentrations, protocol for monitoring treatment mortality, and the effects of chlorine dioxide and detoxification on other water chemistry parameters and equipment materials. The goal of this paper is to inform and assist users with establishing consistent and uniform practices for safely utilizing and monitoring chlorine dioxide in the eradication and control of zebra mussels.

  12. Water chlorination: An enigma for modern-day environmental chemists

    SciTech Connect

    Johnson, J.D.; Jolley, R.L.

    1987-01-01

    The challenge of modern-day water chlorination is to reap the benefits of chlorine's excellent disinfection efficacy while minimizing its environmental impacts and byproduct toxicity. Chemists, biologists, and engineers need to work together to identify, quantify, and use most effectively the disinfectant forms of chlorine to maximize disinfection, while at the same time they also need to identify, quantify, and minimize the toxic forms of by-products produced by chlorine's reactions with the organic compounds found in water. To the extent that this is possible, we can enjoy the benefits of chlorine disinfection and minimize the human and environmental impacts of chlorination by-products. 22 refs.

  13. Influencing factors and degradation products of antipyrine chlorination in water with free chlorine.

    PubMed

    Cai, Meiquan; Zhang, Liqiu; Qi, Fei; Feng, Li

    2013-01-01

    Owing to its low cost, free chlorine is one of the most common disinfectants for wastewater and drinking water treatment. However, the formation of disinfection byproducts has been found to occur after free chlorine disinfection in recent decades. Antipyrine (ANT), an anti-inflammatory analgesic, has been frequently detected in the aquatic environment. In this work, the removal efficiency of ANT by free chlorine oxidation in ultrapure water was investigated with batch experiments. The influencing factors on the removal of ANT were explored at initial concentrations of ANT from 0.04 to 0.64 mg/L, free chlorine dosage from 0.30 to 1.31 mg/L, and pH from 1.5 to 9.0. The main degradation products were identified by solid phase extraction-gas chromatography-mass spectrometry. The results showed that ANT reacted rapidly with free chlorine in ultrapure water systems and up to 90.6% removal efficiency of ANT was achieved after 25 sec (initial free chlorine 1 mg/L, ANT 0.5 mg/L, pH 7.0). Higher oxidant dosage, lower ANT initial concentration and low pH favor the ANT removal. The main degradation product in ANT chlorination was a monochlorine substitution product (4-chloro-1,2-dihydro-1,5-dimethyl-2-phenyl-3H-pyrazol-3-one), which can be further chlorinated by free chlorine. In addition, the total organic carbon result indicated that ANT is difficult to be mineralized using chlorine.

  14. Killing of Chlorine-Resistant Bacteria by Chlorine-Bromine Solutions

    PubMed Central

    Farkas-Himsley, H.

    1964-01-01

    The disinfective power of chlorine, bromine, and mixtures of chlorine and bromine at different ratios was compared. The influence of pH was also studied. The experiments were carried out in “purified” water and in natural waters of swimming pools, river, and sea. In the presence of high amounts of nitrogenous growth-promoting material (at neutral pH), bromine was more effective than chlorine; in waters containing low amounts of nitrogenous growth-promoting material, chlorine was found superior. Mixtures of chlorine and bromine at various ratios were found to increase in effectiveness inversely to the percentage of hypobromite generated, down to 10 or 5%. Such effectiveness was found at pH levels of 5.4 to 8.6 in both purified and natural water containing high and low amounts of nitrogenous growth-promoting material. Therefore, the above mixtures seem of practical value for the disinfection of various natural waters. Escherichia coli isolated in the presence of chlorine, either from swimming pools or after deliberate exposure to the halogen, were shown to be chlorine-resistant mutants. Their resistance was maintained for at least nine passages in the absence of the disinfectant, which accounts for the number of passages tested. Chlorine-resistant mutants were not affected by bromine alone but did show a marked sensitivity to low concentrations of bromine active in the presence of chlorine. This was achieved by admixing small amounts of bromide to hypochlorite. A hypothetical model is presented to explain the synergistic sequential block by the two disinfectants. Some chlorine-resistant mutants were found to have changed into relatively slow-growing organisms with a changed phase-sensitivity pattern. Images FIG. 2 PMID:14106934

  15. Chemical additive to enhance antimicrobial efficacy of chlorine and control cross-contamination during immersion chill of broiler carcasses.

    PubMed

    Schambach, B T; Berrang, M E; Harrison, M A; Meinersmann, R J

    2014-09-01

    Immersion chilling of broiler carcasses can be a site for cross-contamination between the occasional highly contaminated carcass and those that are co-chilled. Chlorine is often used as an antimicrobial but can be overcome by organic material. A proprietary chlorine stabilizer (T-128) based on phosphoric acid-propylene glycol was tested as a chill tank additive in experiments simulating commercial broiler chilling. In bench-scale experiments, 0.5% T-128 was compared with plain water (control), 50 ppm of chlorine, and the combination of 0.5% T-128 with 50 ppm of chlorine to control transfer of Salmonella and Campylobacter from inoculated wing drummettes to co-chilled uninoculated drummettes. Both chlorine and T-128 lessened cross-contamination with Salmonella (P < 0.05); T-128 and T-128 with chlorine were significantly more effective (P < 0.05) than the control or plain chlorine for control of Campylobacter. T-128 treatments were noted to have a pH of less than 4.0; an additional experiment demonstrated that the antimicrobial effect of T-128 was not due merely to a lower pH. In commercial broiler chilling, a pH close to 6.0 is preferred to maximize chlorine effectiveness, while maintaining water-holding capacity of the meat. In a set of pilot-scale experiments with T-128, a near-ideal pH of 6.3 was achieved by using tap water instead of the distilled water used in bench-scale experiments. Pilot-scale chill tanks were used to compare the combination of 0.5% T-128 and 50 ppm of chlorine with 50 ppm of plain chlorine for control of cross-contamination between whole carcasses inoculated with Salmonella and Campylobacter and co-chilled uninoculated carcasses. The T-128 treatment resulted in significantly less crosscontamination by either direct contact or water transfer with both organisms compared with plain chlorine treatment. T-128 may have use in commercial broiler processing to enhance the effectiveness of chlorine in processing water.

  16. Formation of Chlorination Byproducts and Their Emission Pathways in Chlorine Mediated Electro-Oxidation of Urine on Active and Nonactive Type Anodes.

    PubMed

    Zöllig, Hanspeter; Remmele, Annette; Fritzsche, Cristina; Morgenroth, Eberhard; Udert, Kai M

    2015-09-15

    Chlorination byproducts (CBPs) are harmful to human health and the environment. Their formation in chlorine mediated electro-oxidation is a concern for electrochemical urine treatment. We investigated the formation of chlorate, perchlorate, and organic chlorination byproducts (OCBPs) during galvanostatic (10, 15, 20 mA · cm(-2)) electro-oxidation of urine on boron-doped diamond (BDD) and thermally decomposed iridium oxide film (TDIROF) anodes. In the beginning of the batch experiments, the production of perchlorate was prevented by competing active chlorine and chlorate formation as well as by direct oxidation of organic substances. Perchlorate was only formed at higher specific charges (>17 Ah · L(-1) on BDD and >29 Ah · L(-1) on TDIROF) resulting in chlorate and perchlorate being the dominant CBPs (>90% of initial chloride). BDD produced mainly short chained OCBPs (dichloromethane, trichloromethane, and tetrachloromethane), whereas longer chained OCBPs (1,2-dichloropropane and 1,2-dichloroethane) were more frequently found on TDIROF. The OCBPs were primarily eliminated by electrochemical stripping: On BDD, this pathway accounted for 40% (dichloromethane) to 100% (tetrachloromethane) and on TDIROF for 90% (1,2-dichloroethane) to 100% (trichloromethane) of what was produced. A post-treatment of the liquid as well as the gas phase should be foreseen if CBP formation cannot be prevented by eliminating chloride or organic substances in a pretreatment.

  17. Efficacy and Safety Evaluation of a Chlorine Dioxide Solution

    PubMed Central

    Ma, Jui-Wen; Huang, Bin-Syuan; Hsu, Chu-Wei; Peng, Chun-Wei; Cheng, Ming-Long; Kao, Jung-Yie; Way, Tzong-Der; Yin, Hao-Chang; Wang, Shan-Shue

    2017-01-01

    In this study, a chlorine dioxide solution (UC-1) composed of chlorine dioxide was produced using an electrolytic method and subsequently purified using a membrane. UC-1 was determined to contain 2000 ppm of gaseous chlorine dioxide in water. The efficacy and safety of UC-1 were evaluated. The antimicrobial activity was more than 98.2% reduction when UC-1 concentrations were 5 and 20 ppm for bacteria and fungi, respectively. The half maximal inhibitory concentrations (IC50) of H1N1, influenza virus B/TW/71718/04, and EV71 were 84.65 ± 0.64, 95.91 ± 11.61, and 46.39 ± 1.97 ppm, respectively. A 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test revealed that the cell viability of mouse lung fibroblast L929 cells was 93.7% at a 200 ppm UC-1 concentration that is over that anticipated in routine use. Moreover, 50 ppm UC-1 showed no significant symptoms in a rabbit ocular irritation test. In an inhalation toxicity test, treatment with 20 ppm UC-1 for 24 h showed no abnormality and no mortality in clinical symptoms and normal functioning of the lung and other organs. A ClO2 concentration of up to 40 ppm in drinking water did not show any toxicity in a subchronic oral toxicity test. Herein, UC-1 showed favorable disinfection activity and a higher safety profile tendency than in previous reports. PMID:28327506

  18. 78 FR 72633 - Chlorinated Isocyanurates From Spain: Final Results of Antidumping Duty Administrative Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... International Trade Administration Chlorinated Isocyanurates From Spain: Final Results of Antidumping Duty... chlorinated isocyanurates (chlorinated isos) from Spain.\\1\\ The period of review (``POR'') is June 1, 2011... notice. \\1\\ See Chlorinated Isocyanurates from Spain: Preliminary Results of the Antidumping...

  19. Characterization and Application of a Chlorine Microelectrode for Measuring Monochloramine within a Biofilm

    EPA Science Inventory

    Chlorine microelectrodes with tip sizes of 5-15 μm were developed and used to measure biofilm monochloramine penetration profiles. The chlorine microelectrode showed response to total chlorine, including free chlorine, monochloramine, and dichloramine under various conditions. ...

  20. Characterization and Application of a Chlorine Microelectrode for Measuring Monochloramine within a Biofilm

    EPA Science Inventory

    Chlorine microelectrodes with tip sizes of 5-15 μm were developed and used to measure biofilm monochloramine penetration profiles. The chlorine microelectrode showed response to total chlorine, including free chlorine, monochloramine, and dichloramine under various conditions. ...

  1. Accumulation of chlorinated benzenes in earthworms

    SciTech Connect

    Beyer, W.N.

    1996-12-31

    Chlorinated benzenes are widespread in the environment. Hexachlorobenzene, pentachlorobenzene and all isomers of dichlorobenzenes, trichlorobenzenes, and tetrachlorobenzenes, have been detected in fish, water, and sediments from the Great Lakes. They probably entered the water as leachates from chemical waste dumps and as effluents from manufacturing. Hexachlorobenzene and pentachlorobenzene are commonly present in Herring gull (Larus argentatus) eggs from the Great Lakes, and some of the isomers of trichlorobenzene and tetrachlorobenzene are occasionally detected at low concentrations. Hexachlorobenzene, which was formerly used as a fungicide, has been the most thoroughly studied chlorinated benzene, and has been detected in many species. Its use as a fungicide in the United States was canceled in 1984. Since about 1975 hexachlorobenzene has been formed mainly in the production of chlorinated solvents. It is highly persistent in the environment and some species are poisoned by hexachlorobenzene at very low chronic dietary exposures. As little as 1 ppm in the diet of mink (Mustela vison) reduced the birth weights of young, and 5 ppm in the diet of Japanese quail (Coturnix coturnix japonica) caused slight liver damage. This paper describes a long-term (26 wk) experiment relating the concentrations of chlorinated benzenes in earthworms to length of exposure and three 8 wk experiments relating concentration to the concentration in soil the soil organic matter content, and the degree of chlorination. 20 refs., 3 figs., 1 tab.

  2. Temporal Decrease in Upper Atmospheric Chlorine

    NASA Technical Reports Server (NTRS)

    Froidevaux, L.; Livesey, N. J.; Read, W. G.; Salawitch, R. J.; Waters, J. W.; Drouin, B.; MacKenzie, I. A.; Pumphrey, H. C.; Bernath, P.; Boone, C.; Nassar, R.; Montzka, S.; Elkins, J.; Cunnold, D.; Waugh, D.

    2006-01-01

    We report a steady decrease in the upper stratospheric and lower mesospheric abundances of hydrogen chloride (HCl) from August 2004 through January 2006, as measured by the Microwave Limb Sounder (MLS) aboard the Aura satellite. For 60(deg)S to 60(deg)N zonal means, the average yearly change in the 0.7 to 0.1 hPa (approx.50 to 65 km) region is -27 +/- 3 pptv/year, or -0.78 +/- 0.08 percent/year. This is consistent with surface abundance decrease rates (about 6 to 7 years earlier) in chlorine source gases. The MLS data confirm that international agreements to reduce global emissions of ozone-depleting industrial gases are leading to global decreases in the total gaseous chlorine burden. Tracking stratospheric HCl variations on a seasonal basis is now possible with MLS data. Inferred stratospheric total chlorine (CITOT) has a value of 3.60 ppbv at the beginning of 2006, with a (2-sigma) accuracy estimate of 7%; the stratospheric chlorine loading has decreased by about 43 pptv in the 18-month period studied here. We discuss the MLS HCl measurements in the context of other satellite-based HCl data, as well as expectations from surface chlorine data. A mean age of air of approx. 5.5 years and an age spectrum width of 2 years or less provide a fairly good fit to the ensemble of measurements.

  3. Chlorine truck attack consequences and mitigation.

    PubMed

    Barrett, Anthony Michael; Adams, Peter J

    2011-08-01

    We develop and apply an integrated modeling system to estimate fatalities from intentional release of 17 tons of chlorine from a tank truck in a generic urban area. A public response model specifies locations and actions of the populace. A chemical source term model predicts initial characteristics of the chlorine vapor and aerosol cloud. An atmospheric dispersion model predicts cloud spreading and movement. A building air exchange model simulates movement of chlorine from outdoors into buildings at each location. A dose-response model translates chlorine exposures into predicted fatalities. Important parameters outside defender control include wind speed, atmospheric stability class, amount of chlorine released, and dose-response model parameters. Without fast and effective defense response, with 2.5 m/sec wind and stability class F, we estimate approximately 4,000 (half within ∼10 minutes) to 30,000 fatalities (half within ∼20 minutes), depending on dose-response model. Although we assume 7% of the population was outdoors, they represent 60-90% of fatalities. Changing weather conditions result in approximately 50-90% lower total fatalities. Measures such as sheltering in place, evacuation, and use of security barriers and cryogenic storage can reduce fatalities, sometimes by 50% or more, depending on response speed and other factors.

  4. Temporal Decrease in Upper Atmospheric Chlorine

    NASA Technical Reports Server (NTRS)

    Froidevaux, L.; Livesey, N. J.; Read, W. G.; Salawitch, R. J.; Waters, J. W.; Drouin, B.; MacKenzie, I. A.; Pumphrey, H. C.; Bernath, P.; Boone, C.; hide

    2006-01-01

    We report a steady decrease in the upper stratospheric and lower mesospheric abundances of hydrogen chloride (HCl) from August 2004 through January 2006, as measured by the Microwave Limb Sounder (MLS) aboard the Aura satellite. For 60(deg)S to 60(deg)N zonal means, the average yearly change in the 0.7 to 0.1 hPa (approx.50 to 65 km) region is -27 +/- 3 pptv/year, or -0.78 +/- 0.08 percent/year. This is consistent with surface abundance decrease rates (about 6 to 7 years earlier) in chlorine source gases. The MLS data confirm that international agreements to reduce global emissions of ozone-depleting industrial gases are leading to global decreases in the total gaseous chlorine burden. Tracking stratospheric HCl variations on a seasonal basis is now possible with MLS data. Inferred stratospheric total chlorine (CITOT) has a value of 3.60 ppbv at the beginning of 2006, with a (2-sigma) accuracy estimate of 7%; the stratospheric chlorine loading has decreased by about 43 pptv in the 18-month period studied here. We discuss the MLS HCl measurements in the context of other satellite-based HCl data, as well as expectations from surface chlorine data. A mean age of air of approx. 5.5 years and an age spectrum width of 2 years or less provide a fairly good fit to the ensemble of measurements.

  5. Chlorination of organophosphorus pesticides in natural waters.

    PubMed

    Acero, Juan L; Benítez, F Javier; Real, Francisco J; González, Manuel

    2008-05-01

    Unknown second-order rate constants for the reactions of three organophosphorus pesticides (chlorpyrifos, chlorfenvinfos and diazinon) with chlorine were determined in the present study, and the influence of pH and temperature was established. It was found that an increase in the pH provides a negative effect on the pesticides degradation rates. Apparent second-order rate constants at 20 degrees C and pH 7 were determined to be 110.9, 0.004 and 191.6 M(-1) s(-1) for chlorpyrifos, chlorfenvinfos and diazinon, respectively. A higher reactivity of chlorine with the phosphorothioate group (chlorpyrifos and diazinon) than with the phosphate moiety (chlorfenvinfos) could explain these results. Intrinsic rate constant for the elementary reactions of chlorine species with chlorpyrifos and diazinon were also calculated, leading to the conclusion that the reaction between hypochlorous acid and the pesticide is predominant at neutral pH. The elimination of these pesticides in surface waters was also investigated. A chlorine dose of 2.5 mg L(-1) was enough to oxidize chlorpyrifos and diazinon almost completely, with a formation of trihalomethanes below the EU standard for drinking water. However, the removal of chlorfenvinfos was not appreciable. Therefore, chlorination is a feasible option for the removal of organophosphorus pesticides with phosphorothioate group during oxidation and disinfection processes, but not for the elimination of pesticides with phosphate moiety.

  6. Acute health effects after exposure to chlorine gas released after a train derailment.

    PubMed

    Van Sickle, David; Wenck, Mary Anne; Belflower, Amy; Drociuk, Dan; Ferdinands, Jill; Holguin, Fernando; Svendsen, Erik; Bretous, Lena; Jankelevich, Shirley; Gibson, James J; Garbe, Paul; Moolenaar, Ronald L

    2009-01-01

    In January 2005, a train derailment on the premises of a textile mill in South Carolina released 42 to 60 tons of chlorine gas in the middle of a small town. Medical records and autopsy reports were reviewed to describe the clinical presentation, hospital course, and pathology observed in persons hospitalized or deceased as a result of chlorine gas exposure. Eight persons died before reaching medical care; of the 71 persons hospitalized for acute health effects as a result of chlorine exposure, 1 died in the hospital. The mean age of the hospitalized persons was 40 years (range, 4 months-76 years); 87% were male. The median duration of hospitalization was 4 days (range, 1-29 days). Twenty-five (35%) persons were admitted to the intensive care unit; the median length of stay was 3 days. Many surviving victims developed significant pulmonary signs and severe airway inflammation; 41 (58%) hospitalized persons met PO2/FiO2 criteria for acute respiratory distress syndrome or acute lung injury. During their hospitalization, 40 (57%) developed abnormal x-ray findings, 74% of those within the first day. Hypoxia on room air and PO2/FiO2 ratio predicted severity of outcome as assessed by the duration of hospitalization and the need for intensive care support. This community release of chlorine gas caused widespread exposure and resulted in significant acute health effects and substantial health care requirements. Pulse oximetry and arterial blood gas analysis provided early indications of outcome severity.

  7. Acute health effects after exposure to chlorine gas released after a train derailment⋆

    PubMed Central

    Van Sickle, David; Wenck, Mary Anne; Belflower, Amy; Drociuk, Dan; Ferdinands, Jill; Holguin, Fernando; Svendsen, Erik; Bretous, Lena; Jankelevich, Shirley; Gibson, James J.; Garbe, Paul; Moolenaar, Ronald L.

    2015-01-01

    In January 2005, a train derailment on the premises of a textile mill in South Carolina released 42 to 60 tons of chlorine gas in the middle of a small town. Medical records and autopsy reports were reviewed to describe the clinical presentation, hospital course, and pathology observed in persons hospitalized or deceased as a result of chlorine gas exposure. Eight persons died before reaching medical care; of the 71 persons hospitalized for acute health effects as a result of chlorine exposure, 1 died in the hospital. The mean age of the hospitalized persons was 40 years (range, 4 months-76 years); 87% were male. The median duration of hospitalization was 4 days (range, 1-29 days). Twenty-five (35%) persons were admitted to the intensive care unit; the median length of stay was 3 days. Many surviving victims developed significant pulmonary signs and severe airway inflammation; 41 (58%) hospitalized persons met Po2/Fio2 criteria for acute respiratory distress syndrome or acute lung injury. During their hospitalization, 40 (57%) developed abnormal x-ray findings, 74% of those within the first day. Hypoxia on room air and Po2/Fio2 ratio predicted severity of outcome as assessed by the duration of hospitalization and the need for intensive care support. This community release of chlorine gas caused widespread exposure and resulted in significant acute health effects and substantial health care requirements. Pulse oximetry and arterial blood gas analysis provided early indications of outcome severity. PMID:19041527

  8. Separation of chlorinated diastereomers of decarboxy-betacyanins in myeloperoxidase catalyzed chlorinated Beta vulgaris L. extract.

    PubMed

    Wybraniec, Sławomir; Starzak, Karolina; Szneler, Edward; Pietrzkowski, Zbigniew

    2016-11-15

    A comparative chromatographic evaluation of chlorinated decarboxylated betanins and betanidins generated under activity of hypochlorous acid exerted upon these highly antioxidative potent decarboxylated pigments derived from natural sources was performed by LC-DAD-ESI-MS/MS. Comparison of the chromatographic profiles of the chlorinated pigments revealed two different directions of retention changes in relation to the corresponding substrates. Chlorination of all betacyanins that are decarboxylated at carbon C-17 results in an increase of their retention times. In contrast, all other pigments (the non-decarboxylated betacyanins as well as 2-decarboxy- and 15-decarboxy-derivatives) exhibit lower retention after chlorination. During further chromatographic experiments based upon chemical transformation of the related pigments (decarboxylation and deglucosylation), the compounds' structures were confirmed. The elaborated method for determination of chlorinated pigments enabled analysis of a chlorinated red beet root extract that was submitted to the MPO/H2O2/Cl(-) system acting under inflammation-like conditions (pH 5). This indicates a promising possibility for measurement of these chlorinated pigments as indicators of specific inflammatory states wherein betacyanins and decarboxylated betacyanins act as hypochlorite scavengers.

  9. Analysis to differentiate marine chlorine to industrial chlorine in the equatorial region of French Guiana

    NASA Astrophysics Data System (ADS)

    Gobinddass, M. L.; Molinie, J.; Richard, S.; Panechou-Pulcherie, K.; Jeannot, A.; jean-Louis, S.

    2014-12-01

    Marine Chlorine deposition data in French Guiana's east coast and wind speeds influences has been studied here. In 2001 and 2002 an INERIS's studies has shown that monitoring hydrogen chloride emitted by the rocket would be appropriate. Thus, with the help of the French Guiana Space Center, two measurement campaigns (2004-2008) have been implemented by the Regional Observatory Air (ROA). The purpose was to determine the impact of space activities in and around the city of Sinnamary. The ROA has made measurements of chlorine concentration during and outside periods of shooting to assess the chlorine from the rocket boosters of natural background chlorine due to its proximity with the Atlantic Ocean. A method is proposed here to differentiate natural from anthropogenic emissions from chlorine. The use of certain meteorological parameter (wind, humidity, temperature, etc…) will first be discussed for the transportation of chlorine. Then, we will try to classify chlorine dispersion according to the seasons and areas. Finally a comparison with a previous study in Brazil will be made.

  10. Impacts of water quality on chlorine and chlorine dioxide efficacy in natural waters.

    PubMed

    Barbeau, Benoit; Desjardins, Raymond; Mysore, Chandra; Prévost, Michele

    2005-05-01

    The impact of disinfection efficacy in natural waters was evaluated by performing disinfection assays using four untreated surface waters of various qualities and ultra-pure buffered waters as a baseline condition for comparison. Bacillus subtilis spores were spiked in these waters and disinfection assays were conducted at 22 degrees C using either free chlorine or chlorine dioxide. Assays using indigenous aerobic spores were also completed. The inactivation kinetics in natural and ultra-pure buffered waters were not statistically different (at p = 0.05) while using free chlorine, as long as disinfectant decay was taken into account. Filtering natural waters through a 0.45 microm did not improve the sporicidal efficacy of chlorine. For three out of the four waters tested, the efficacy of chlorine dioxide was greater in natural waters compared to that observed in ultra-pure buffered waters. Such results are consistent with previous observations using ultra-pure waters supplemented with NOM-extract from the Suwannee River. Similar to free chlorine results, the impact of filtration (0.45 microm) on the efficacy of chlorine dioxide was not statistically significant.

  11. Integrated carbon and chlorine isotope modeling: applications to chlorinated aliphatic hydrocarbons dechlorination.

    PubMed

    Jin, Biao; Haderlein, Stefan B; Rolle, Massimo

    2013-02-05

    We propose a self-consistent method to predict the evolution of carbon and chlorine isotope ratios during degradation of chlorinated hydrocarbons. The method treats explicitly the cleavage of isotopically different C-Cl bonds and thus considers, simultaneously, combined carbon-chlorine isotopologues. To illustrate the proposed modeling approach we focus on the reductive dehalogenation of chlorinated ethenes. We compare our method with the currently available approach, in which carbon and chlorine isotopologues are treated separately. The new approach provides an accurate description of dual-isotope effects regardless of the extent of the isotope fractionation and physical characteristics of the experimental system. We successfully applied the new approach to published experimental results on dehalogenation of chlorinated ethenes both in well-mixed systems and in situations where mass-transfer limitations control the overall rate of biodegradation. The advantages of our self-consistent dual isotope modeling approach proved to be most evident when isotope fractionation factors of carbon and chlorine differed significantly and for systems with mass-transfer limitations, where both physical and (bio)chemical transformation processes affect the observed isotopic values.

  12. The effects of low level chlorination and chlorine dioxide on biofouling control in a once-through service water system

    SciTech Connect

    Garrett, W.E. Jr.

    1995-06-01

    Continuous chlorination has been successfully used for the control of Corbicula at a nuclear power plant located on the Chattahoochee River in southeastern Alabama, since 1986. The purpose of this study was to investigate further minimization of chlorine usage and determine if chlorine dioxide is a feasible alternative. Four continuous biocide treatments were evaluated for macro and microfouling control effectiveness, operational feasibility, and environmental acceptability. One semi-continuous chlorination treatment was also evaluated for macrofouling control effectiveness. Higher treatment residuals were possible with chlorine dioxide than with chlorination due to the river discharge limitations. At the levels tested, continuous chlorine dioxide was significantly more effective in providing both macro and microfouling control. Semi-continuous chlorination was just as effective as continuous chlorination for controlling macrofouling. The Corbicula treatment programs that were tested should all provide sufficient control for zebra mussels. Chlorine dioxide was not as cost effective as chlorination for providing macrofouling control. The semi-continuous treatment save 50% on chemical usage and will allow for the simultaneous treatment of two service water systems. Chlorite levels produced during the chlorine dioxide treatments were found to be environmentally acceptable. Levels of trihalomethanes in the chlorinated service water were less than the maximum levels allowed in drinking water.

  13. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants.

    PubMed

    Hua, Guanghui; Reckhow, David A

    2007-04-01

    Seven diverse natural waters were collected and treated in the laboratory under five oxidation scenarios (chlorine, chloramine, both with and without preozonation, and chlorine dioxide). The impact of these disinfectants on the formation of disinfection byproducts was investigated. Results showed that preozonation decreased the formation of trihalomethanes (THMs), haloacetic acids (HAAs) and total organic halogen (TOX) for most waters during postchlorination. A net increase in THMs, HAAs and TOX was observed for a water of low humic content. Either decreases or increases were observed in dihaloacetic acids and unknown TOX (UTOX) as a result of preozonation when used with chloramination. Chloramines and chlorine dioxide produced a higher percentage of UTOX than free chlorine. They also formed more iodoform and total organic iodine (TOI) than free chlorine in the presence of iodide. Free chlorine produced a much higher level of total organic chlorine (TOCl) and bromine (TOBr) than chloramines and chlorine dioxide in the presence of bromide.

  14. Chlorination of Titanium Oxycarbide Produced by Carbothermal Reduction of Rutile

    NASA Astrophysics Data System (ADS)

    Adipuri, Andrew; Zhang, Guangqing; Ostrovski, Oleg

    2008-02-01

    Titanium oxycarbide was produced by carbothermal reduction of rutile. Mixtures of titania and graphite with different carbon to titania molar ratio were pressed into pellets and heated under argon atmosphere at 1450 °C. Titanium oxycarbide was chlorinated in a horizontal tube furnace. Effects of furnace temperature, chlorine partial pressure, gas flow rate, and particle size on the rate and extent of chlorination were examined. The chlorination was ignited at 150 °C to 200 °C. Chlorine partial pressure and gas flow rate strongly affected the chlorination rate, while the effect of particle size was insignificant. Best chlorination results were obtained for titanium oxycarbide produced with carbon to titania molar ratio 2.5, and chlorination was close to 100 pct in 30 minutes.

  15. Study on chlorine removal from mixture of waste plastics.

    PubMed

    Kakuta, Yusuke; Hirano, Katsumi; Sugano, Motoyuki; Mashimo, Kiyoshi

    2008-01-01

    The recycling of waste plastics that include plastics that contain chlorine, such as polyvinyl chloride, is difficult because the chlorine leads to the corrosion of equipment. Then, the dechlorination method of waste plastics containing chlorine (CCWP) that consists of a series of melt process and hot water process was examined. CCWP was put into the melt process with coal tar (HOB) and converter dust (CD) to inhibit the diffusion of the chlorine-containing gas. The results indicated that iron oxide of the principal element of CD combines with chlorine eliminated from CCWP, and forms water-soluble iron chloride on the melt process. HOB dissolves or adsorbs a part of the chlorine during the melt process, and inhibits the diffusion of the chlorine-containing gas. Approximately 98% of the chlorine in the CCWP reacts with CD and forms iron chloride, which can be extracted on the hot water process.

  16. A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site.

    PubMed

    Nijenhuis, Ivonne; Schmidt, Marie; Pellegatti, Eleonora; Paramatti, Enrico; Richnow, Hans Hermann; Gargini, Alessandro

    2013-10-01

    The stable carbon isotope composition of chlorinated aliphatic compounds such as chlorinated methanes, ethanes and ethenes was examined as an intrinsic fingerprint for apportionment of sources. A complex field site located in Ferrara (Italy), with more than 50years history of use of chlorinated aliphatic compounds, was investigated in order to assess contamination sources. Several contamination plumes were found in a complex alluvial sandy multi-aquifer system close to the river Po; sources are represented by uncontained former industrial and municipal dump sites as well as by spills at industrial areas. The carbon stable isotope signature allowed distinguishing 2 major sources of contaminants. One source of chlorinated aliphatic contaminants was strongly depleted in ¹³C (<-60‰) suggesting production lines which have used depleted methane for synthesis. The other source had typical carbon isotope compositions of >-40‰ which is commonly observed in recent production of chlorinated solvents. The degradation processes in the plumes could be traced interpreting the isotope enrichment and depletion of parent and daughter compounds, respectively. We demonstrate that, under specific production conditions, namely when highly chlorinated ethenes are produced as by-product during chloromethanes production, ¹³C depleted fingerprinting of contaminants can be obtained and this can be used to track sources and address the responsible party of the pollution in urban areas.

  17. Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection.

    PubMed

    Zhuang, Yao; Ren, Hongqiang; Geng, Jinju; Zhang, Yingying; Zhang, Yan; Ding, Lili; Xu, Ke

    2015-05-01

    This study investigated the inactivation of two antibiotic resistance genes (ARGs)-sul1 and tetG, and the integrase gene of class 1 integrons-intI1 by chlorination, ultraviolet (UV), and ozonation disinfection. Inactivation of sul1, tetG, and intI1 underwent increased doses of three disinfectors, and chlorine disinfection achieved more inactivation of ARGs and intI1 genes (chlorine dose of 160 mg/L with contact time of 120 min for 2.98-3.24 log reductions of ARGs) than UV irradiation (UV dose of 12,477 mJ/cm(2) for 2.48-2.74 log reductions of ARGs) and ozonation disinfection (ozonation dose of 177.6 mg/L for 1.68-2.55 log reductions of ARGs). The 16S rDNA was more efficiently removed than ARGs by ozone disinfection. The relative abundance of selected genes (normalized to 16S rDNA) increased during ozonation and with low doses of UV and chlorine disinfection. Inactivation of sul1 and tetG showed strong positive correlations with the inactivation of intI1 genes (for sul1, R (2)  = 0.929 with p < 0.01; for tetG, R (2)  = 0.885 with p < 0.01). Compared to other technologies (ultraviolet disinfection, ozonation disinfection, Fenton oxidation, and coagulation), chlorination is an alternative method to remove ARGs from wastewater effluents. At a chlorine dose of 40 mg/L with 60 min contact time, the selected genes inactivation efficiency could reach 1.65-2.28 log, and the cost was estimated at 0.041 yuan/m(3).

  18. Observational Constraints on the Tropospheric Chlorine Budget from the WINTER 2015 Aircraft Campaign

    NASA Astrophysics Data System (ADS)

    Haskins, J.; Thornton, J. A.; Jaegle, L.; Lopez-Hilfiker, F.; Lee, B. H.; Shah, V.; Brown, S. S.; Jimenez, J. L.; Weber, R. J.; Campuzano-Jost, P.; Day, D. A.; Dibb, J. E.; Fiddler, M. N.; Holloway, J. S.; Sullivan, A.; Veres, P. R.; Schroder, J. C.

    2016-12-01

    Chlorine atoms represent a potentially important but highly uncertain tropospheric oxidant. Measurements of ClNO2, HCl, Cl2, HOCl, and particle chloride taken during the 2015 Wintertime Investigation of Transportation, Emissions, & Reactivity (WINTER) aircraft campaign allow for a detailed investigation of the tropospheric budget of chlorine species with data from 13 winter flights over the eastern US. The range of concentrations in various chlorine species measured under urban, rural, maritime, and continental conditions are presented and compared to prior observations. We use WINTER observations of gas and particle composition as inputs to the offline thermodynamic equilibrium model, ISORROPIA II, to compare observed and modeled chlorine gas-to-particle partitioning. Observations show 0-40% of available chlorine partitions into submicron particles at sufficiently high relative humidities, low temperatures, and pH's above approximately 1.5, while initial model results indicate this range should be slightly higher (0-60%). The ability of the model to accurately predict the observed gas-to-particle partitioning is explored as a function of pH, temperature, and aerosol liquid water content. Direct comparisons to similar data from the Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT) 2011 campaign and literature data for these expected relationships governing chlorine partitioning are made. This work provides novel observational constraints on the value of the equilibrium constant for HCl under atmospherically relevant conditions, which remains highly uncertain. Furthermore, the ability of ISORROPIA to accurately predict particle chloride can be used in existing parameterizations of the yield of ClNO2 to model its production in global chemical transport models, like GEOS-Chem, to examine the role of wintertime multiphase chemistry in controlling the regional distribution and export of NOx and Cl- radicals downwind of sources, which ultimately

  19. Kinetics and mechanism of styrene epoxidation by chlorite: role of chlorine dioxide.

    PubMed

    Leigh, Jessica K; Rajput, Jonathan; Richardson, David E

    2014-07-07

    An investigation of the kinetics and mechanism for epoxidation of styrene and para-substituted styrenes by chlorite at 25 °C in the pH range of 5-6 is described. The proposed mechanism in water and water/acetonitrile includes seven oxidation states of chlorine (-I, 0, I, II, III, IV, and V) to account for the observed kinetics and product distributions. The model provides an unusually detailed quantitative mechanism for the complex reactions that occur in mixtures of chlorine species and organic substrates, particularly when the strong oxidant chlorite is employed. Kinetic control of the reaction is achieved by the addition of chlorine dioxide to the reaction mixture, thereby eliminating a substantial induction period observed when chlorite is used alone. The epoxidation agent is identified as chlorine dioxide, which is continually formed by the reaction of chlorite with hypochlorous acid that results from ClO produced by the epoxidation reaction. The overall stoichiometry is the result of two competing chain reactions in which the reactive intermediate ClO reacts with either chlorine dioxide or chlorite ion to produce hypochlorous acid and chlorate or chloride, respectively. At high chlorite ion concentrations, HOCl is rapidly eliminated by reaction with chlorite, minimizing side reactions between HOCl and Cl2 with the starting material. Epoxide selectivity (>90% under optimal conditions) is accurately predicted by the kinetic model. The model rate constant for direct reaction of styrene with ClO2(aq) to produce epoxide is (1.16 ± 0.07) × 10(-2) M(-1) s(-1) for 60:40 water/acetonitrile with 0.20 M acetate buffer. Rate constants for para substituted styrenes (R = -SO3(-), -OMe, -Me, -Cl, -H, and -NO2) with ClO2 were determined. The results support the radical addition/elimination mechanism originally proposed by Kolar and Lindgren to account for the formation of styrene oxide in the reaction of styrene with chlorine dioxide.

  20. Chlorine: Undergraduate Research on an Element of Controversy

    NASA Astrophysics Data System (ADS)

    Chang, Hasok

    2009-04-01

    If chemical elements were people, chlorine would be a celebrity. Although intrinsically no more or less important than any other element, chlorine has had a knack of making headlines. The genre of "object biography" has been quite successful in popular science recently. We took this opportunity to write a "biographical" study of chlorine. Chlorine's wide range of interesting controversies is well suited for attracting and maintaining the enthusiasm of the diverse range of students we teach in our department.

  1. Diurnal variation of stratospheric chlorine monoxide - A critical test of chlorine chemistry in the ozone layer

    NASA Technical Reports Server (NTRS)

    Solomon, P. M.; De Zafra, R.; Parrish, A.; Barrett, J. W.

    1984-01-01

    Ground-based observations of a mm-wave spectral line at 278 GHz have yielded stratospheric chlorine monoxide column density diurnal variation records which indicate that the mixing ratio and column density of this compound above 30 km are about 20 percent lower than model predictions based on 2.1 parts/billion of total stratospheric chlorine. The observed day-to-night variation is, however, in good agreement with recent model predictions, both confirming the existence of a nighttime reservoir for chlorine and verifying the predicted general rate of its storage and retrieval.

  2. A comparison of the virucidal properties of chlorine, chlorine dioxide, bromine chloride and iodine.

    PubMed Central

    Taylor, G. R.; Butler, M.

    1982-01-01

    Chlorine dioxide, bromine chloride and iodine were compared with chlorine as virucidal agents. Under optimal conditions all disinfectants were effective at low concentrations, but each disinfectant responded differently to acidity and alkalinity. Disinfection by chlorine was impaired by the presence of ammonia, but the other disinfectants retained much of their potency. Disinfection of poliovirus by iodine resulted in structural changes in the virions as seen by electron micrroscopy, but the other disinfectants were able to inactivate poliovirus without causing any apparent structural changes. Images Plate 1 PMID:6290566

  3. Determination of chlorine in silicate rocks

    USGS Publications Warehouse

    Peck, L.C.

    1959-01-01

    In a rapid accurate method for the determination of chlorine in silicate rocks, the rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate. The sinter cake is leached with water, the resulting solution is filtered, and the filtrate is acidified with nitric acid. Chlorine is determined by titrating this solution with mercuric nitrate solution using sodium nitroprusside as the indicator. The titration is made in the dark with a beam of light shining through the solution. The end point of the titration is found by visually comparing the intensity of this beam of light with that of a similar beam of light in a reference solution.

  4. Bromine and Chlorine Go Separate Ways

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graph shows the relative concentrations of bromine and chlorine at various locations on Earth and Mars. Typically, bromine and chlorine stick together in a fixed ratio, as in martian meteorites and Earth seawater. But sometimes the elements split apart and their relative quantities diverge. This separation is usually caused by evaporation processes, as in the Dead Sea on Earth. On Mars, at Meridiani Planum and Gusev Crater, this split has been observed to an even greater degree than seen on Earth. This puzzling result is currently being further explored by Mars Exploration Rover scientists. Data for the Mars locations were taken by the rover's alpha particle X-ray spectrometer.

  5. Production of chlorine from chloride salts

    DOEpatents

    Rohrmann, Charles A.

    1981-01-01

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  6. Bromine and Chlorine Go Separate Ways

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graph shows the relative concentrations of bromine and chlorine at various locations on Earth and Mars. Typically, bromine and chlorine stick together in a fixed ratio, as in martian meteorites and Earth seawater. But sometimes the elements split apart and their relative quantities diverge. This separation is usually caused by evaporation processes, as in the Dead Sea on Earth. On Mars, at Meridiani Planum and Gusev Crater, this split has been observed to an even greater degree than seen on Earth. This puzzling result is currently being further explored by Mars Exploration Rover scientists. Data for the Mars locations were taken by the rover's alpha particle X-ray spectrometer.

  7. 75 FR 61772 - Chlorinated Isocyanurates From China and Spain; Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... COMMISSION Chlorinated Isocyanurates From China and Spain; Determinations On the basis of the record \\1... antidumping duty orders on chlorinated isocyanurates from China and Spain would be likely to lead to... antidumping duty order on chlorinated isocyanurates from Spain would not be likely to lead to continuation...

  8. 49 CFR 176.225 - Stowage of chlorine.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Stowage of chlorine. 176.225 Section 176.225 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Requirements for Class 2 (Compressed Gas) Materials § 176.225 Stowage of chlorine. Chlorine (UN 1017) must...

  9. 49 CFR 176.225 - Stowage of chlorine.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Stowage of chlorine. 176.225 Section 176.225 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Requirements for Class 2 (Compressed Gas) Materials § 176.225 Stowage of chlorine. Chlorine (UN 1017) must...

  10. 49 CFR 176.225 - Stowage of chlorine.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Stowage of chlorine. 176.225 Section 176.225 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Requirements for Class 2 (Compressed Gas) Materials § 176.225 Stowage of chlorine. Chlorine (UN 1017) must...

  11. 49 CFR 176.225 - Stowage of chlorine.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Stowage of chlorine. 176.225 Section 176.225 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Requirements for Class 2 (Compressed Gas) Materials § 176.225 Stowage of chlorine. Chlorine (UN 1017) must...

  12. 49 CFR 176.225 - Stowage of chlorine.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Stowage of chlorine. 176.225 Section 176.225 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Requirements for Class 2 (Compressed Gas) Materials § 176.225 Stowage of chlorine. Chlorine (UN 1017) must...

  13. Determination of Free Available Chlorine in Denitrified Wastewater Effluent

    DTIC Science & Technology

    1993-01-01

    of chloramines, particularly monochloramine , on the free available chlorine residual measurements made using the DPD method was significant. The...hypochorous acid, hypochlorite ion, and aqueous chlorine, CI.,q)) and combined chlorine ( monochloramine , dichloramine, and nitrogen trichloride) was not...neutral molecule resembling water in structure, it diffuses across cell membranes quite easily. Chloramines, such as monochloramine , are much weaker

  14. EFFECT OF BROMIDE ION ON FORMATION OF HAAS DURING CHLORINATION

    EPA Science Inventory

    loacetic acids (HAAs) during chlorination and he effects of independent variables, including pH, reaction time, and chlorine dosage. Almost all of the indpendent loaetic acids (HAAs) during chlorin...designed to statistically evaluate the influence of bromide ion on the formatio...

  15. EFFECT OF BROMIDE ION ON FORMATION OF HAAS DURING CHLORINATION

    EPA Science Inventory

    loacetic acids (HAAs) during chlorination and he effects of independent variables, including pH, reaction time, and chlorine dosage. Almost all of the indpendent loaetic acids (HAAs) during chlorin...designed to statistically evaluate the influence of bromide ion on the formatio...

  16. Efficiency of Chlorine Dioxide as a Bactericide1

    PubMed Central

    Benarde, Melvin A.; Israel, Bernard M.; Olivieri, Vincent P.; Granstrom, Marvin L.

    1965-01-01

    We found chlorine dioxide to be a more effective disinfectant than chlorine in sewage effluent at pH 8.5. Chlorine dioxide was also found to be a more stable bactericide in relation to pH in the range studied. Images Fig. 1 PMID:5325940

  17. 21 CFR 177.2430 - Polyether resins, chlorinated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyether resins, chlorinated. 177.2430 Section... as Components of Articles Intended for Repeated Use § 177.2430 Polyether resins, chlorinated. Chlorinated polyether resins may be safely used as articles or components of articles intended for repeated...

  18. Efficacy of copper and silver ions and reduced levels of free chlorine in inactivation of Legionella pneumophila.

    PubMed Central

    Landeen, L K; Yahya, M T; Gerba, C P

    1989-01-01

    Water disinfection systems utilizing electrolytically generated copper and silver ions (200 and 20, 400 and 40, or 800 and 80 micrograms/liter) and low levels of free chlorine (0.1 to 0.4 mg/liter) were evaluated at room (21 to 23 degrees C) and elevated (39 to 40 degrees C) temperatures in filtered well water (pH 7.3) for their efficacy in inactivating Legionella pneumophila (ATCC 33155). At room temperature, a contact time of at least 24 h was necessary for copper and silver (400 and 40 micrograms/liter) to achieve a 3-log10 reduction in bacterial numbers. As the copper and silver concentration increased to 800 and 80 micrograms/liter, the inactivation rate significantly (P less than or equal to 0.05) increased from K = 2.87 x 10(-3) to K = 7.50 x 10(-3) (log10 reduction per minute). In water systems with and without copper and silver (400 and 40 micrograms/liter), the inactivation rates significantly increased as the free chlorine concentration increased from 0.1 mg/liter (K = 0.397 log10 reduction per min) to 0.4 mg/liter (K = 1.047 log10 reduction per min). Compared to room temperature, no significant differences were observed when 0.2 mg of free chlorine per liter with and without 400 and 40 micrograms of copper and silver per liter was tested at 39 to 40 degrees C. All disinfection systems, regardless of temperature or free chlorine concentration, showed increase inactivation rates when 400 and 40 micrograms of copper and silver per liter was added; however, this trend was significant only at 0.4 mg of free chlorine per liter. PMID:2619303

  19. Free residual chlorine in bathing water reduces the water-holding capacity of the stratum corneum in atopic skin.

    PubMed

    Seki, Taisuke; Morimatsu, Susumu; Nagahori, Hidefumi; Morohashi, Masaaki

    2003-03-01

    Some patients with atopic dermatitis (AD) develop dry skin or exacerbated cutaneous inflammations with frequent swimming in public pools or after bathing. We examined the effects of residual chlorine in bathing water on the function of the stratum corneum (SC) in patients with AD and determined the lowest chlorine concentration showing an effect. In addition, we investigated the relationship between the free residual chlorine concentration in bathing water and the water-holding capacity of the SC in patients with AD. Twenty patients with AD and 10 normal control (NC) subjects were included in this study. The hydration status of the SC on the flexor surface of the forearm was measured with a corneometer before and after the subject's arms were immersed in tubs filled with comfortably hot water (40 degrees C) containing residual chlorine at concentrations of 0, 0.5, 1.0 and 2.0 mg/L for 10 minutes in a room maintained at normal temperature (24 degrees C) and relative humidity (55%). The water-holding capacity of the SC after immersion was calculated by integration of the hydration status determined every 30 seconds over a period of 10 minutes. In the patients with AD, the average SC hydration status after immersion in comfortably hot water containing residual chlorine at 1.0 and 2.0 mg/L was significantly lower than that following immersion in water containing a negligible concentration of residual chlorine (i.e., less than 0.03 mg/L) (p<0.05). In the NC subjects, significant differences were observed only between the 2.0 mg/L and the negligible residual chlorine groups (p<0.05). The water-holding capacity of the SC was significantly decreased with a residual chlorine concentration of 0.5 mg/L or higher in the patients with AD (p<0.01). However, in the NC subjects, a significant decrease in water-holding capacity was observed only at a residual chlorine concentration of 2 mg/L (p<0.01). These results indicate, first, that the water-holding capacity of the SC in

  20. Influence of water chlorination on the counting of bacteria with DAPI (4',6-diamidino-2-phenylindole).

    PubMed Central

    Saby, S; Sibille, I; Mathieu, L; Paquin, J L; Block, J C

    1997-01-01

    Counting bacteria in drinking water samples by the epifluorescence technique after 4',6-diamidino-2-phenylindole (DAPI) staining is complicated by the fact that bacterial fluorescence varies with exposure of the cells to sodium hypochlorite. An Escherichia coli laboratory-grown suspension treated with sodium hypochlorite (5 to 15 mg of chlorine liter-1) for 90 min was highly fluorescent after DAPI staining probably due to cell membrane permeation and better and DAPI diffusion. At chlorine concentrations greater than 25 mg liter-1, DAPI-stained bacteria had only a low fluorescence. Stronger chlorine doses altered the DNA structure, preventing the DAPI from complexing with the DNA. When calf thymus DNA was exposed to sodium hypochlorite (from 15 to 50 mg of chlorine liter-1 for 90 min), the DNA lost the ability to complex with DAPI. Exposure to monochloramine did not have a similar effect. Treatment of drinking water with sodium hypochlorite (about 0.5 mg of chlorine liter-1) caused a significant increase in the percentage of poorly fluorescent bacteria, from 5% in unchlorinated waters (40 samples), to 35 to 39% in chlorinated waters (40 samples). The presence of the poorly fluorescent bacteria could explain the underestimation of the real number of bacteria after DAPI staining. Microscopic counting of both poorly and highly fluorescent bacteria is essential under these conditions to obtain the total number of bacteria. A similar effect of chlorination on acridine orange-stained bacteria was observed in treated drinking waters. The presence of the poorly fluorescent bacteria after DAPI staining could be interpreted as a sign of dead cells. PMID:9097452

  1. [Genotoxicity of drinking water during chlorine and chloramine disinfection and the influence of disinfection conditions using the umu-test].

    PubMed

    Liu, Qing; Zhang, Li-Ping; Liu, Wen-Jun; Nie, Xue-Biao; Zhang, Su-Xia; Zhang, Shun

    2010-01-01

    In this study, the effects of disinfectant dosage, reaction time and the ratio of Cl2 to N of disinfectant on genotoxicity of effluent of ozone-biological activated carbon (O3-BAC) during chlorine or chloramine disinfection were investigated using umu-test. It was found that, the genotoxicity of effluent of O3-BAC before disinfection ranged from 20-70 ng/L, and it increased after disinfection by chlorine or chloramines. With the same reaction time(24 h), genotoxicity after chlorination (40-95 ng/L) was higher than that after chloramination (20-40 ng/L) under same initial dosage. For chlorination, with initial dosage increasing from 0 mg/L to 10 mg/L, genotoxicity increased firstly, and got the maximum value at about 0.5-1 mg/L dosage, then decreased and got the minimum value at about 3-5 mg/L dosage, and finally increased again. For chloramination, genotoxicity didn't change that much. With the dosage of 3 mg/L and reaction time increasing from 0 h to 72 h, no matter for chlorine or chloramines disinfection, genotoxicity of effluent of O3-BAC both increased firstly, and got the maximum value at about 2 h, then decreased and got the minimum value at about 18 h, and finally increased again, and genotoxicity after chlorine disinfection (83-120 ng/L) was higher than that after chloramines disinfection (20-62 ng/L) under same reaction time. Further more, effects of the different ratios of Cl2 to N of disinfectant on genotoxicity of effluent of O3-BAC were also studied. Results of this study demonstrate that under test conditions, chloramine disinfection is safer than chlorine disinfection in the aspect of genotoxicity for drinking water, and the changes of genotoxicity are different from those of total HAAs.

  2. Relative rate studies of the reactions of chlorine atoms with simple alkanes and the chlorinated methanes

    SciTech Connect

    Wingen, L.; Lee, J.J.; Neavyn, R.

    1995-12-01

    The reactions of chlorine atoms with organics are of interest because atomic chlorine is a potential tropospheric oxidant. Relative rate constants for the reaction of pairs of simple alkanes (ethane/propane, ethane/n-butane, and isobutane/n-butane) and the chlorinated methanes (chloromethane, dichloromethane, and chloroform relative to methane) were measured, using the photolysis of Cl{sub 2} as the source of chlorine atoms and following the loss of the organics by GC-FID. The ratios of the relative rate constants were in excellent agreement with the literature except for ethane/n-butane, where our results are approximately 20% lower than recently published values, and for chloroform/methane, where our value is approximately 50% higher than the values recommended by JPL and JPCRD. Our results will be compard to previously published relative rate studies as well as to the results of absolute rate constant studies, and the differences will be discussed.

  3. Meta-analysis of studies on individual consumption of chlorinated drinking water and bladder cancer

    PubMed Central

    Villanueva, C; Fernandez, F; Malats, N; Grimalt, J; Kogevinas, M

    2003-01-01

    Design: A bibliographic search was conducted and the authors selected studies evaluating individual consumption of chlorinated drinking water and bladder cancer. The authors extracted from each study risk estimates for intermediate and long term (>40 years) consumption of chlorinated water, stratified by sex when possible, and performed meta-analysis for the two exposure levels. A meta-analysis was also performed of the dose-response regression slopes. Setting: Populations in Europe and North America. Participants: Those included in six case-control studies (6084 incident bladder cancer cases, 10 816 controls) and two cohort studies (124 incident bladder cancer cases) fulfilling the inclusion criteria. Main results: Ever consumption of chlorinated drinking water was associated with an increased risk of bladder cancer in men (combined OR=1.4, 95%CI 1.1 to 1.9) and women (combined OR=1.2, 95%CI 0.7 to 1.8). The combined OR for mid-term exposure in both genders was 1.1 (95% CI 1.0 to 1.2) and for long term exposure was 1.4 (95%CI 1.2 to 1.7). The combined estimate of the slope for a linear increase in risk was 1.13 (95% CI 1.08 to 1.20) for 20 years and 1.27 (95% CI 1.15 to 1.43) for 40 years of exposure in both sexes. Conclusions: This meta-analysis of the best available epidemiological evidence indicates that long term consumption of chlorinated drinking water is associated with bladder cancer, particularly in men. The observed relative risk is only moderately high, but the population attributable risk could be important as the vast majority of the population of industrialised countries is potentially exposed to chlorination byproducts for long time periods. PMID:12594192

  4. Shelf-Life of Chlorine Solutions Recommended in Ebola Virus Disease Response

    PubMed Central

    Iqbal, Qais; Lubeck-Schricker, Maya; Wells, Emma; Lantagne, Daniele

    2016-01-01

    In Ebola Virus Disease (EVD) outbreaks, it is widely recommended to wash living things (handwashing) with 0.05% (500 mg/L) chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% (5,000 mg/L) chlorine solution. Chlorine solutions used in EVD response are primarily made from powdered calcium hypochlorite (HTH), granular sodium dichloroisocyanurate (NaDCC), and liquid sodium hypochlorite (NaOCl), and have a pH range of 5–11. Chlorine solutions degrade following a reaction highly dependent on, and unusually sensitive to, pH, temperature, and concentration. We determined the shelf-life of 0.05% and 0.5% chlorine solutions used in EVD response, including HTH, NaDCC, stabilized NaOCl, generated NaOCl, and neutralized NaOCl solutions. Solutions were stored for 30 days at 25, 30, and 35°C, and tested daily for chlorine concentration and pH. Maximum shelf-life was defined as days until initial concentration fell to <90% of initial concentration in ideal laboratory conditions. At 25–35°C, neutralized-NaOCl solutions (pH = 7) had a maximum shelf-life of a few hours, NaDCC solutions (pH = 6) 2 days, generated NaOCl solutions (pH = 9) 6 days, and HTH and stabilized NaOCl solutions (pH 9–11) >30 days. Models were developed for solutions with maximum shelf-lives between 1–30 days. Extrapolating to 40°C, the maximum predicted shelf-life for 0.05% and 0.5% NaDCC solutions were 0.38 and 0.82 hours, respectively; predicted shelf-life for 0.05% and 0.5% generated NaOCl solutions were >30 and 5.4 days, respectively. Each chlorine solution type offers advantages and disadvantages to responders, as: NaDCC is an easy-to-import high-concentration effervescent powder; HTH is similar, but forms a precipitate that may clog pipes; and, NaOCl solutions can be made locally, but are difficult to transport. We recommend responders chose the most appropriate source chlorine compound for their use, and ensure solutions are stored at

  5. Removal of sulfur and chlorine from Illinois coals by wet-grinding and selective flocculation

    SciTech Connect

    Chou, C.L.

    1999-07-01

    A coal-cleaning method for removing sulfur and chlorine from Illinois Basin coals was developed. The method includes four steps: (1) crushing raw coal to {minus}10 mesh, (2) using a concentrating table to remove pyrite and other minerals, (3) wet-grinding coal to an ultrafine particle size to liberate coal from pyrite and other minerals, and (4) conducting selective flocculation to separate coal from mineral particles and chlorine-containing water. A sample of Illinois Basin coal IBC-106 (9.0% ash and 3.77% sulfur) was ground to {minus}10 mesh and separated into five fractions on a concentrating table. The pyritic sulfur content decreased from 1.85% in feed coal to 1.49%, 0.85%, and 0.82% in clean, fine, and overflow fractions, respectively. Wet-grinding and selective flocculation tests were conducted on another sample of Illinois Basin coal IBC-105 (18.6% ash and 4.55% sulfur). The coal was ground in a stirred ball mill to generate a coal slurry with a particle size distribution of 90% <19 micrometer. The slurry was dispersed to make a complete suspension. Sodium metaphosphate was added as a dispersant. Various polymeric flocculants were tested to determine the selective flocculation performance of each. The acidity of the slurry (pH) and the flocculant dosage are critical in selective flocculation tests. When flocculant Calgon WCL-762 was used, the ash content decreased from 18.6% to 8.1% (56% reduction) in a single-stage flocculation process, and to 5.7% (69% reduction) in a two-stage process. Chlorine removal from coal was investigated on a high-chlorine coal sample IBC-109 (8.2% ash, 1.13% sulfur, and 0.42% chlorine). Wet-grinding the coal to 90% <20 micrometer, and subsequently dewatering the slurry by selective flocculation reduced the chlorine content from 0.42% to between 0.11% and 0.15% (64% to 74% reduction). In addition, ash content was reduced from 8.2% to between 4.0% and 5.4% (34% to 51% reduction) and pyritic sulfur content from 0.50% to between 0

  6. Shelf-Life of Chlorine Solutions Recommended in Ebola Virus Disease Response.

    PubMed

    Iqbal, Qais; Lubeck-Schricker, Maya; Wells, Emma; Wolfe, Marlene K; Lantagne, Daniele

    2016-01-01

    In Ebola Virus Disease (EVD) outbreaks, it is widely recommended to wash living things (handwashing) with 0.05% (500 mg/L) chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% (5,000 mg/L) chlorine solution. Chlorine solutions used in EVD response are primarily made from powdered calcium hypochlorite (HTH), granular sodium dichloroisocyanurate (NaDCC), and liquid sodium hypochlorite (NaOCl), and have a pH range of 5-11. Chlorine solutions degrade following a reaction highly dependent on, and unusually sensitive to, pH, temperature, and concentration. We determined the shelf-life of 0.05% and 0.5% chlorine solutions used in EVD response, including HTH, NaDCC, stabilized NaOCl, generated NaOCl, and neutralized NaOCl solutions. Solutions were stored for 30 days at 25, 30, and 35°C, and tested daily for chlorine concentration and pH. Maximum shelf-life was defined as days until initial concentration fell to <90% of initial concentration in ideal laboratory conditions. At 25-35°C, neutralized-NaOCl solutions (pH = 7) had a maximum shelf-life of a few hours, NaDCC solutions (pH = 6) 2 days, generated NaOCl solutions (pH = 9) 6 days, and HTH and stabilized NaOCl solutions (pH 9-11) >30 days. Models were developed for solutions with maximum shelf-lives between 1-30 days. Extrapolating to 40°C, the maximum predicted shelf-life for 0.05% and 0.5% NaDCC solutions were 0.38 and 0.82 hours, respectively; predicted shelf-life for 0.05% and 0.5% generated NaOCl solutions were >30 and 5.4 days, respectively. Each chlorine solution type offers advantages and disadvantages to responders, as: NaDCC is an easy-to-import high-concentration effervescent powder; HTH is similar, but forms a precipitate that may clog pipes; and, NaOCl solutions can be made locally, but are difficult to transport. We recommend responders chose the most appropriate source chlorine compound for their use, and ensure solutions are stored at appropriate

  7. Chlorine-hydrocarbon photochemistry in the marine troposphere and lower stratosphere

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Kasting, J. F.

    1988-01-01

    The role of chlorine atoms in the oxidation of methane and nonmethane hydrocarbons (NMHCs) in the marine troposphere and lower stratosphere was investigated using a one-dimensional photochemical model that incorporated the chemistry of CH4, NMHCs, NO(x), O(x), and HO(x), as well as organic and inorganic halogens in the troposphere and lower stratosphere. The model predicted that chlorine atoms are present in the marine troposphere at the concentrations of about 1000/cu cm, mostly as a product of the reaction between OH and HCl released from sea spray. The results indicate that Cl atoms cause 20 to 40 percent of NMHC oxidation in the troposphere and 40 to 90 percent in the lower stratosphere. At 15 km, the NMHC-Cl reactions account for nearly 80 percent of the PAN produced. Where available, experimental data confirmed the model predictions.

  8. Ozone-destroying chlorine tops out

    SciTech Connect

    Kerr, R.A.

    1996-01-05

    This article explores the reality of whether the Montreal Protocol to protect the ozone layer has worked. The prime evidence for the success of the 1987 Protocal is that atmospheric chlorine has peaked and is on the way down. However, there are some concerns that gaps in the existing protocal could slow the recovery.

  9. Thermally dissociated chlorine and bromine molecular jets

    NASA Astrophysics Data System (ADS)

    Frick, J.

    1980-12-01

    High temperature nozzle sources producing thermal dissociation of chlorine and bromine are described. Scattering between molecular potential functions in nonelastic transfer of energy processes and chemical reactions was investigated by molecular beam technique. It is shown that the recombination freezes up faster when the nozzlehole duct is shorter.

  10. Method and apparatus for producing chlorine dioxide

    SciTech Connect

    Santillie, P.W.; Ramras, D.M.

    1984-05-29

    A continuous method and apparatus are described for the efficient production of gaseous chlorine dioxide by the reaction between gaseous sulfur dioxide and an aqueous solution of a metallic chlorate. The chlorate solution and a highly concentrated sulfur dioxide gas are introduced into a packed columnar chamber at closely adjacent locations at the bottom of the chamber so as to flood the chamber and maximize both the contact area and contact time of the two reactants. Throughout the reaction the chamber is subjected to high vacuum imposed by an eductor which exhausts the chlorine dioxide gas and spent reactants. For use of the chlorine dioxide to produce potable water or treat foodstuffs, the chlorine dioxide and spent reactants are exhausted from the chamber separately by respective eductors substantially balanced with respect to each other to impose comparable vacuums upon the chamber. Because of the high efficency of the reaction, substantial heat is generated therefrom which is absorbed by a coolant flowing through a jacket surrounding the chamber. The flow rate of the coolant and flow rate of the reactants into the chamber are porportional due to the dependency of the reactant flow rate on the coolant flow rate.

  11. Chlorinated organic compounds in urban river sediments

    SciTech Connect

    Soma, Y.; Shiraishi, H.; Inaba, K.

    1995-12-31

    Among anthropogenic chemicals, many chlorinated organic compounds have been used as insecticides and detected frequently as contaminants in urban river sediments so far. However, the number and total amount of chemicals produced commercially and used are increasing year by year, though each amount of chemicals is not so high. New types of contaminants in the environment may be detected by the use of newly developed chemicals. Chlorinated organic compounds in the urban river sediments around Tokyo and Kyoto, large cities in Japan, were surveyed and recent trends of contaminants were studied. Contaminants of the river sediments in industrial areas had a variety, but PCB (polychlorinated biphenyls) was detected in common in industrial areas. Concentration of PCB related well to the number of factories on both sides of rivers, although the use of PCB was stopped 20 years ago. In domestic areas, Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) and Triclocarban (3,4,4{prime}-trichlorocarbanilide)(both are contained in soap or shampoo for fungicides), p-dichlorobenzene (insecticides for wears) and TCEP(tris-chloroethyl phosphate) were detected. EOX(extracted organic halogen) in the sediments was 5 to 10 times of chlorinated organic compounds detected by GC/MS. Major part of organic halogen was suggested to be included in chlorinated organics formed by bleaching or sterilization.

  12. Nitrosamine carcinogens also swim in chlorinated pools.

    PubMed

    Walse, Spencer S; Mitch, William A

    2008-02-15

    Highly carcinogenic N-nitrosodialkylamine (nitrosamine) disinfection byproducts were quantified in chlorinated swimming pools, hot tubs, and aquaria. N-Nitrosodimethylamine, the most abundant nitrosamine detected, was measured in swimming pools and hot tubs at levels up to 500-fold greater than the drinking water concentration of 0.7 ng/L associated with a one in one million lifetime cancer risk. Temperature, enclosure, amine and nitrite precursor loading, and the use of disinfection schemes with reduced chlorine doses contributed to statistically significant variability in its occurrence. N-Nitrosodibutylamine and N-nitrosopiperidine were also detected but together represented <5% of the total analyte distribution. The presence of N-nitrodimethylamine at levels comparable to N-nitrosodimethylamine points to a competition between the nitration and nitrosation of amines in chlorinated recreational waters. Since nitrosamines can cause bladder cancer, the significance of our measurements needs clarification with respect to recent epidemiological results that are suggestive of a link between swimming in chlorinated pools and bladder cancer.

  13. CHLORINE ABSORPTION IN S(IV) SOLUTIONS

    EPA Science Inventory

    The report gives results of measurements of the rate of Chlorine (Cl2) absorption into aqueous sulfite/bisulfite -- S(IV) -- solutions at ambient temperature using a highly characterized stirred-cell reactor. The reactor media were 0 to 10 mM S(IV) with pHs of 3.5-8.5. Experiment...

  14. Toward A General Synthesis of Chlorins

    PubMed Central

    O’Neal, William G.

    2008-01-01

    Recently we described a new synthesis of C,D-ring symmetric chlorins 11, involving 2+2 condensation of bis-formyl-dihydrodipyrrins 9 with symmetrically substituted dipyrromethane diacids 10 (Method I). However, while versatile in many aspects, Method I was unsuited to the broader goal of synthesizing fully non-symmetric chlorins of general structure 15, which requires regioselective control over the reacting centers in the A,B- and C,D-ring components. In this paper we describe four new 2+2 strategies that accomplish this differentiation (Methods II-V). Of these, Method V, which combines operational simplicity with moderate to high product yields, proved to be the most effective route, exploiting reactivity differences between the two formyl groups of A,B-rings 9 to impart excellent regioselectivity. Methods II-IV are also useful alternatives to Method V, although in some cases the appropriately functionalized precursors are less readily available. All four approaches generate single regioisomers of diversely substituted chlorins, and in every case the 2+2 condensation is accomplished in a simple, one-flask procedure without need for additives such as oxidizing agents or metals. Taken together, these methodologies provide expanded access to an array of chlorins for SAR studies that may advance the effectiveness of PDT and other applications. PMID:18166060

  15. Chlorination Diversifies Cimicifuga racemosa Triterpene Glycosides

    PubMed Central

    Chen, Shao-Nong; Lankin, David C.; Nikolic, Dejan; Fabricant, Daniel S.; Lu, Zhi-Zhen; Ramirez, Benjamin; van Breemen, Richard B.; Fong, Harry H. S.; Farnsworth, Norman R.; Pauli, Guido F.

    2008-01-01

    Extracts from roots and rhizomes of black cohosh (Cimicifuga racemosa) are widely used as dietary supplements to alleviate menopausal symptoms. State-of-the-art QC measures involve phytochemical fingerprinting of the triterpene glycosides for species identification and chemical standardization by HPLC. In the course of developing materials and methods for standardization procedures, the major C. racemosa triterpene glycoside (1) was isolated ans initially thought to be cimicifugoside (2). Detailed HR-LC-MS and 1/2D NMR analysis of 1 and 2 unambiguously revealed that 1 is its chlorine-containing derivative of 2, namely 25-chlorodeoxycimigenol-3-O-β-D-xyloside. Accordingly, HPLC profiles of black cohosh preparations require revision of the assignments of the chlorinated (1) and non-chlorinated (2) pair. Besides explaining the substantial shift in polarity (ΔtR[RP-18] ca 20 min), 25-deoxychlorination opens a new pathway of structural diversification in triterpene glycosides chemistry. As chemical conversion of 2 into 1 could be demonstrated, deoxychlorination may be interpreted as artifact formation. Simultaneously, however, it is a potentially significant pathway for the gastric in vivo conversion (“nature's pro drug”) of the relatively polar triterpene glycosides into significantly less polar chlorinated derivatives with altered pharmacological properties. PMID:17555351

  16. SAM Chlorine Observations at Gale Crater

    NASA Astrophysics Data System (ADS)

    Conrad, P. G.; Farley, K. A.; Vasconcelos, P. M.; Malespin, C.; Franz, H.; McAdam, A.; Sutter, B.; Stern, J. C.; Clark, B. C.; Atreya, S. K.; Mahaffy, P. R.; Martín-Torres, J.; Zorzano, M. P.

    2014-12-01

    The Sample Analysis at Mars investigation has detected Cl-bearing phases of various oxidation states in its thermally evolved gas measurements of both a wind drift deposit of fines and three different rock samples delivered as sieved drill powders to the instrument suite. In addition to HCl (Leshin et al, 2013; Ming et al, 2013) and chlorinated hydrocarbon detections (Glavin et al, 2013; Freissinet et al, in review), oxygen releases consistent with the decomposition of perchlorate salts are also observed. We have also measured chlorine isotope ratios of the four different solid samples, which yielded variable and more negative δ37Cl than typically observed in SNC meteorite analyses. We summarize our chlorine observations in the context of other gases observed in the SAM solid sample analyses, including water, sulfur- and nitrogen-bearing compounds, and REMS observations of Relative Humidity and Temperature, and compare with knowledge of martian chlorine obtained from the SNC meteorites. Finally, we examine the implications of surface/atmosphere Cl interactions and isotopic ratios for the rise and decline of habitable surface environments on Mars. This research was supported by the National Aeronautics and Space Administration (NASA) Mars Science Laboratory mission.

  17. CHLORINE ABSORPTION IN S(IV) SOLUTIONS

    EPA Science Inventory

    The report gives results of measurements of the rate of Chlorine (Cl2) absorption into aqueous sulfite/bisulfite -- S(IV) -- solutions at ambient temperature using a highly characterized stirred-cell reactor. The reactor media were 0 to 10 mM S(IV) with pHs of 3.5-8.5. Experiment...

  18. Modelling Of Chlorine Inductive Discharges

    NASA Astrophysics Data System (ADS)

    Chabert P.; Despiau-Pujo, E.

    2010-07-01

    .02, which is much lower than the value predicted for stainless steel walls (? = 0.6). This is consistent with reactor wall contaminations classi- cally observed in such discharges. The plasma electronegativity decreases with RF power and increases with Cl2 content. At high pressure, the power absorption and distribution of charged particles become more localized below the quartz window. Although the experi- mental trends are well reproduced by the model, the calculated charged particle densities are systematically overestimated by a factor of 3-5. The reasons for this discrepancy are discussed in the paper. Experimental studies have also shown that low-pressure inductive discharges operating with electronegative gases are subject to instabilities near the transition between capacitive (E) and inductive (H) modes. A global model, consisting of two particle balance equations and one energy balance equation, has been previously proposed to describe the instability mechanism in SF6/ArSF6 (Lieberman et al. 1999). This model, which agrees qualitatively well with experimental observations, leaves significant quantitative differences. In this work, this global model is revisited with Cl2 as the feedstock gas (Despiau-Pujo and Chabert 2009). An alternative treatment of the inductive power deposition is evaluated and chlorine chemistry is included. Old and new models are systematically compared. The alternative inductive coupling description slightly modifies the results. The effect of gas chemistry is even more pronounced. The instability window is smaller in pressure and larger in absorbed power, the frequency is higher and the amplitudes of oscillations are reduced. The feedstock gas is weakly dissociated (~16%) and Cl2+ is the dominant positive ion, which is consistent with the moderate electron density during the instability cycle.

  19. Chlorinated hydrocarbons in the Sargasso sea atmosphere and surface water.

    PubMed

    Bidleman, T F; Olney, C E

    1974-02-08

    Polychlorinated biphenyls (PCB), DDT, and chlordane concentrations were measured in air sampled from a tower on the south shore of Bermuda and in Sargasso Sea surface water approximately 80 to 320 kilometers south of Bermuda. The atmospheric chlorinated hydrocarbons appeared to be gaseous, and the DDT concentration was two orders of magnitude higher than previously reported particulate values. The PCB and DDT were enriched in the surface microlayer (150 micrometers) relative to their concentrations in water at a depth of 30 centimeters. Atmospheric residence times for PCB and DDT of 40 to 50 days, calculated from the concentrations in the air and water, are 20 times shorter than values previously estimated for DDT from rainfall and DDT production data.

  20. Assimilation of chlorinated alkanes by hydrocarbon-utilizing fungi

    SciTech Connect

    Murphy, G.L.; Perry, J.J.

    1984-12-01

    The fatty acid compositions of two filamentous fungi (Cunninghamella elegans and Penicillium zonatum) and a yeast (Candida lipolytica) were determined after the organisms were grown on 1-chlorohexadecane or 1-chlorooctadecane. These organisms utilized the chlorinated alkanes as sole sources of carbon and energy. Analyses of the fatty acids present after growth on the chlorinated alkanes indicated that 60 to 70% of the total fatty acids in C. elegans were chlorinated. Approximately 50% of the fatty acids in C. lipolytica were also chlorinated. P. zonatum contained 20% 1-chlorohexadecanoic acid after growth on either substrate but did not incorporate C/sub 18/ chlorinated fatty acids.

  1. Halogenase-Inspired Oxidative Chlorination Using Flavin Photocatalysis.

    PubMed

    Hering, Thea; Mühldorf, Bernd; Wolf, Robert; König, Burkhard

    2016-04-18

    Chlorine gas or electropositive chlorine reagents are used to prepare chlorinated aromatic compounds, which are found in pharmaceuticals, agrochemicals, and polymers, and serve as synthetic precursors for metal-catalyzed cross-couplings. Nature chlorinates with chloride anions, FAD-dependent halogenases, and O2 as the oxidant. A photocatalytic oxidative chlorination is described based on the organic dye riboflavin tetraacetate mimicking the enzymatic process. The chemical process allows within the suitable arene redox potential window a broader substrate scope compared to the specific activation in the enzymatic binding pocket. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Halogenase‐Inspired Oxidative Chlorination Using Flavin Photocatalysis

    PubMed Central

    Hering, Thea; Mühldorf, Bernd

    2016-01-01

    Abstract Chlorine gas or electropositive chlorine reagents are used to prepare chlorinated aromatic compounds, which are found in pharmaceuticals, agrochemicals, and polymers, and serve as synthetic precursors for metal‐catalyzed cross‐couplings. Nature chlorinates with chloride anions, FAD‐dependent halogenases, and O2 as the oxidant. A photocatalytic oxidative chlorination is described based on the organic dye riboflavin tetraacetate mimicking the enzymatic process. The chemical process allows within the suitable arene redox potential window a broader substrate scope compared to the specific activation in the enzymatic binding pocket. PMID:26991557

  3. Development, characterization and conductivity studies of chlorinated EPDM

    NASA Astrophysics Data System (ADS)

    Nihmath, A.; Ramesan, M. T.

    2014-10-01

    Halogenation of EPDM has been carried out by passing chlorine gas by a simple and inexpensive chemical method. Chlorinated EPDM was characterized by FTIR and UV spectroscopy, SEM, TGA, DSC and AC conductivity measurements. FTIR and UV spectra revealed the attachment of chlorine to double bond of EPDM. SEM images showed the coarsen morphology arising from polar nature of the resulting polymer. TGA and DSC analysis indicated that the chlorination on EPDM affected the basic decomposition pattern and glass transition temperature of synthesized polymer. Conductivity of halogenated polymer was significantly increased with increase in chlorine content and also with increase in frequency.

  4. Diurnal variation of stratospheric chlorine monoxide: a critical test of chlorine chemistry in the ozone layer.

    PubMed

    Solomon, P M; de Zafra, R; Parrish, A; Barrett, J W

    1984-06-15

    This article reports measurements of the column density of stratospheric chlorine monoxide and presents a complete diurnal record of its variation (with 2-hour resolution) obtained from ground-based observations of a millimeter-wave spectral line at 278 gigahertz. Observations were carried out during October and December 1982 from Mauna Kea, Hawaii. The results reported here indicate that the mixing ratio and column density of chlorine monoxide above 30 kilometers during the daytime are approximately 20 percent lower than model predictions based on 2.1 parts per billion of total stratospheric chlorine. The observed day-to-night variation of chlorine monoxide is, however, in good agreement with recent model predictions, confirms the existence of a nighttime reservoir for chlorine, and verifies the predicted general rate of its storage and retrieval. From this evidence, it appears that the chlorine chemistry above 30 kilometers is close to being understood in current stratospheric models. Models based on this chemistry and measured reaction rates predict a reduction in the total stratospheric ozone content in the range of 3 to 5 percent in the final steady state for an otherwise unperturbed atmosphere, although the percentage decrease in the upper stratosphere is much higher.

  5. Kinetic models and pathways of ronidazole degradation by chlorination, UV irradiation and UV/chlorine processes.

    PubMed

    Qin, Lang; Lin, Yi-Li; Xu, Bin; Hu, Chen-Yan; Tian, Fu-Xiang; Zhang, Tian-Yang; Zhu, Wen-Qian; Huang, He; Gao, Nai-Yun

    2014-11-15

    Degradation kinetics and pathways of ronidazole (RNZ) by chlorination (Cl2), UV irradiation and combined UV/chlorine processes were investigated in this paper. The degradation kinetics of RNZ chlorination followed a second-order behavior with the rate constants calculated as (2.13 ± 0.15) × 10(2) M(-2) s(-1), (0.82 ± 0.52) × 10(-2) M(-1) s(-1) and (2.06 ± 0.09) × 10(-1) M(-1) s(-1) for the acid-catalyzed reaction, as well as the reactions of RNZ with HOCl and OCl(-), respectively. Although UV irradiation degraded RNZ more effectively than chlorination did, very low quantum yield of RNZ at 254 nm was obtained as 1.02 × 10(-3) mol E(-1). RNZ could be efficiently degraded and mineralized in the UV/chlorine process due to the generation of hydroxyl radicals. The second-order rate constant between RNZ and hydroxyl radical was determined as (2.92 ± 0.05) × 10(9) M(-1) s(-1). The degradation intermediates of RNZ during the three processes were identified with Ultra Performance Liquid Chromatography - Electrospray Ionization - mass spectrometry and the degradation pathways were then proposed. Moreover, the variation of chloropicrin (TCNM) and chloroform (CF) formation after the three processes were further evaluated. Enhanced formation of CF and TCNM precursors during UV/chlorine process deserves extensive attention in drinking water treatment.

  6. [Characterization of the change in DOM during wastewater chlorine and chlorine dioxide disinfections by 3DEEM].

    PubMed

    Wang, Li-sha; Hu, Hong-ying; Koichi, Fujie

    2007-07-01

    The change of DOM (dissolve organic matter) during wastewater chlorine and chlorine dioxide disinfections was characterized by 3DEEM (three-dimensional excitation emission matrix fluorescence spectroscopy) method. The results showed that the DOM in wastewater tested was quite different from drinking water and surface waters. It contained more aromatic proteins and soluble microbial products, and the humus were predominately microbially derived and had less aromatic moieties. After chlorine and chlorine dioxide disinfections, the excitation or emission wavelength of EEM (excitation emission matrix) peaks for aromatic proteins and soluble microbial products shifted to longer wavelength by several nanometers, which was probably caused by the decomposition of aromatic structure; while the excitation or emission wavelength of EEM peaks for humus shifted to shorter wavelength by several to more than twenty nanometers, which was different from surface waters, and this phenomenon was considered to be caused by their different resources. Similar to the change in genotoxicity, ammonia nitrogen significantly influenced the change in EEM during chlorine disinfection, but not during chlorine dioxide disinfection.

  7. Turbidity and chlorine demand reduction using alum and moringa flocculation before household chlorination in developing countries.

    PubMed

    Preston, Kelsey; Lantagne, Daniele; Kotlarz, Nadine; Jellison, Kristen

    2010-03-01

    Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.87 million deaths per year. The Safe Water System (SWS) is a household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l(-1) sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of two locally available chemical water treatments-alum and Moringa oleifera flocculation-to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. Both treatments effectively reduced turbidity (alum flocculation 23.0-91.4%; moringa flocculation 14.2-96.2%). Alum flocculation effectively reduced chlorine demand compared with controls at 30, 70, 100 and 300 NTU (p=0.01-0.06). Moringa flocculation increased chlorine demand to the point where adequate free chlorine residual was not maintained for 24 hours after treatment. Alum pretreatment is recommended in waters>or=30 NTU for optimum water disinfection. Moringa flocculation is not recommended before chlorination.

  8. Measuring chlorine bleach in biology and medicine.

    PubMed

    Kettle, Anthony J; Albrett, Amelia M; Chapman, Anna L; Dickerhof, Nina; Forbes, Louisa V; Khalilova, Irada; Turner, Rufus

    2014-02-01

    Chlorine bleach, or hypochlorous acid, is the most reactive two-electron oxidant produced in appreciable amounts in our bodies. Neutrophils are the main source of hypochlorous acid. These champions of the innate immune system use it to fight infection but also direct it against host tissue in inflammatory diseases. Neutrophils contain a rich supply of the enzyme myeloperoxidase. It uses hydrogen peroxide to convert chloride to hypochlorous acid. We give a critical appraisal of the best methods to measure production of hypochlorous acid by purified peroxidases and isolated neutrophils. Robust ways of detecting it inside neutrophil phagosomes where bacteria are killed are also discussed. Special attention is focused on reaction-based fluorescent probes but their visual charm is tempered by stressing their current limitations. Finally, the strengths and weaknesses of biomarker assays that capture the footprints of chlorine in various pathologies are evaluated. Detection of hypochlorous acid by purified peroxidases and isolated neutrophils is best achieved by measuring accumulation of taurine chloramine. Formation of hypochlorous acid inside neutrophil phagosomes can be tracked using mass spectrometric analysis of 3-chlorotyrosine and methionine sulfoxide in bacterial proteins, or detection of chlorinated fluorescein on ingestible particles. Reaction-based fluorescent probes can also be used to monitor hypochlorous acid during phagocytosis. Specific biomarkers of its formation during inflammation include 3-chlorotyrosine, chlorinated products of plasmalogens, and glutathione sulfonamide. These methods should bring new insights into how chlorine bleach is produced by peroxidases, reacts within phagosomes to kill bacteria, and contributes to inflammation. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. © 2013.

  9. DETERMINATION OF CHLORINATED ACID HERBICIDES AND RELATED COMPOUNDS IN WATER BY CAPILLARY ELECTROPHORESIS-ELECTROSPRAY NEGATIVE ION MASS SPECTROMETRY

    EPA Science Inventory

    Capillary electrophoresis electrospray negative ion mass spectrometry was investigated for the determination of chlorinated acid herbicides and several phenols in water. Sixteen analytes were separated as their anions in less than 40 min with a buffer consisting of 5 mM ammonium ...

  10. A comparison of the bleaching effectiveness of chlorine dioxide and hydrogen peroxide on dental composite.

    PubMed

    Agnihotry, Anirudha; Gill, Karanjot S; Singhal, Deepak; Fedorowicz, Zbys; Dash, Sambit; Pedrazzi, Vinicius

    2014-01-01

    This study was carried out to verify if composites could be bleached using chlorine dioxide as compared with hydrogen peroxide. 3M ESPE Filtek Z350 Universal Restorative discs were prepared (n=40), with dimensions 5 mm diameter x 2 mm thickness. The discs were divided into 4 groups of 10 discs each. Color assessment was performed by CIEDE2000. The discs were stained with coffee, tea, wine and distilled water (control) solutions for 14 days, 5 hours daily. Color assessment was repeated on stained discs and followed by bleaching of 5 discs from each group using chlorine dioxide and hydrogen peroxide in-office systems. Finally, a last color assessment was performed and compared statistically. DE2000 after bleaching was very close to baseline for both the bleaching agents, although chlorine dioxide showed better results than hydrogen peroxide. After staining, there was a clinically significant discoloration (∆E2000≥3.43) for the tea, coffee and wine groups, and discoloration (∆E2000) was seen more in the wine group as compared to tea and coffee. Overall, the control group (distilled water) had the least color change in the three intervals. After bleaching, the color in all specimens returned close to the baseline. The color differences between bleaching and baseline were less than 3.43 for all groups. The obtained results show that chlorine dioxide is slightly superior to hydrogen peroxide in the bleaching of composites, while maintaining the shade of the composite close to the baseline.

  11. Solid recovered fuel: influence of waste stream composition and processing on chlorine content and fuel quality.

    PubMed

    Velis, Costas; Wagland, Stuart; Longhurst, Phil; Robson, Bryce; Sinfield, Keith; Wise, Stephen; Pollard, Simon

    2012-02-07

    Solid recovered fuel (SRF) produced by mechanical-biological treatment (MBT) of municipal waste can replace fossil fuels, being a CO(2)-neutral, affordable, and alternative energy source. SRF application is limited by low confidence in quality. We present results for key SRF properties centered on the issue of chlorine content. A detailed investigation involved sampling, statistical analysis, reconstruction of composition, and modeling of SRF properties. The total chlorine median for a typical plant during summer operation was 0.69% w/w(d), with lower/upper 95% confidence intervals of 0.60% w/w(d) and 0.74% w/w(d) (class 3 of CEN Cl indicator). The average total chlorine can be simulated, using a reconciled SRF composition before shredding to <40 mm. The relative plastics vs paper mass ratios in particular result in an SRF with a 95% upper confidence limit for ash content marginally below the 20% w/w(d) deemed suitable for certain power plants; and a lower 95% confidence limit of net calorific value (NCV) at 14.5 MJ kg(ar)(-1). The data provide, for the first time, a high level of confidence on the effects of SRF composition on its chlorine content, illustrating interrelationships with other fuel properties. The findings presented here allow rational debate on achievable vs desirable MBT-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery.

  12. Thermal treatment for chlorine removal from coal. Final technical report, September 1, 1991--December 31, 1992

    SciTech Connect

    Muchmore, C.B.; Hesketh, H.E.; Chen, Han Lin

    1992-12-31

    It was the goal of this research to provide the technical basis for development of a process to remove chlorine from coal prior to combustion, based on a thermal treatment process. Reaction rate constants and activation energy have been determined, and energy and mass balances performed. Substitution of a synthetic flue gas (7% 0{sub 2}, 12% CO{sub 2}, 81% N{sub 2}) for nitrogen in the tube furnace resulted in at least equivalent chlorine removal (85.5%) compared to nitrogen. The fluidized bed dechlorination system modifications have resulted in a steady increase in performance, the most recent run providing 64% reduction in chlorine concentration. Addition of supplemental heat to the column should permit attainment of the slightly higher temperatures required to attain over 80% removal of the chlorine. Calcium chloride by-product of 67% purity has been produced. A bench scale catenary grid concentrator with supplemental heating coils and limited insulation is capable of concentrating CaCl{sub 2} solution up to essentially 40%, with no sign of scale or plugging. Further development of the process should include a thorough evaluation of the use of combustion gases to serve as the fluidizing medium and to provide the energy for the thermal dechlorination process.

  13. The natural chlorine cycle--fitting the scattered pieces.

    PubMed

    Oberg, G

    2002-04-01

    Chlorine is one of the most abundant elements on the surface of the earth. Until recently, it was widely believed that all chlorinated organic compounds were xenobiotic, that chlorine does not participate in biological processes and that it is present in the environment only as chloride. However, over the years, research has revealed that chlorine takes part in a complex biogeochemical cycle, that it is one of the major elements of soil organic matter and that the amount of naturally formed organic chlorine present in the environment can be counted in tons per km(2). Interestingly enough, some of the pieces of the chlorine puzzle have actually been known for decades, but the information has been scattered among a number of different disciplines with little or no exchange of information. The lack of communication appears to be due to the fact that the points of departure in the various fields have not corresponded; a number of paradoxes are actually revealed when the known pieces of the chlorine puzzle are fit together. It appears as if a number of generally agreed statements or tacit understandings have guided perceptions, and that these have obstructed the understanding of the chlorine-cycle as a whole. The present review enlightens four paradoxes that spring up when some persistent tacit understandings are viewed in the light of recent work as well as earlier findings in other areas. The paradoxes illuminated in this paper are that it is generally agreed that: (1) chlorinated organic compounds are xenobiotic even though more than 1,000 naturally produced chlorinated compounds have been identified; (2) only a few, rather specialised, organisms are able to convert chloride to organic chlorine even though it appears as if the ability among organisms to transform chloride to organic chlorine is more the rule than the exception; (3) all chlorinated organic compounds are persistent and toxic even though the vast majority of naturally produced organic chlorine is

  14. Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate.

    PubMed

    Rodríguez, Eva; Onstad, Gretchen D; Kull, Tomas P J; Metcalf, James S; Acero, Juan L; von Gunten, Urs

    2007-08-01

    As the World Health Organization (WHO) progresses with provisional Drinking Water Guidelines of 1 microg/L for microcystin-LR and a proposed Guideline of 1 microg/L for cylindrospermopsin, efficient treatment strategies are needed to prevent cyanotoxins such as these from reaching consumers. A kinetic database has been compiled for the oxidative treatment of three cyanotoxins: microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-a (ANTX) with ozone, chlorine, chlorine dioxide and permanganate. This kinetic database contains rate constants not previously reported and determined in the present work (e.g. for permanganate oxidation of ANTX and chlorine dioxide oxidation of CYN and ANTX), together with previously published rate constants for the remaining oxidation processes. Second-order rate constants measured in pure aqueous solutions of these toxins could be used in a kinetic model to predict the toxin oxidation efficiency of ozone, chlorine, chlorine dioxide and permanganate when applied to natural waters. Oxidants were applied to water from a eutrophic Swiss lake (Lake Greifensee) in static-dose testing and dynamic time-resolved experiments to confirm predictions from the kinetic database, and to investigate the effects of a natural matrix on toxin oxidation and by-product formation. Overall, permanganate can effectively oxidize ANTX and MC-LR, while chlorine will oxidize CYN and MC-LR and ozone is capable of oxidizing all three toxins with the highest rate. The formation of trihalomethanes (THMs) in the treated water may be a restriction to the application of sufficiently high-chlorine doses.

  15. Formation and speciation of haloacetamides and haloacetonitriles for chlorination, chloramination, and chlorination followed by chloramination.

    PubMed

    Huang, Huang; Chen, Bo-Yi; Zhu, Zi-Ru

    2017-01-01

    The formation of haloacetamides (HAcAms) and haloacetonitriles (HANs) from a solution containing natural organic matter and a secondary effluent sample was evaluated for disinfection by chlorination, chloramination, and chlorination followed by chloramination (Cl2NH2Cl process). The use of preformed monochloramine (NH2Cl) produced higher concentrations of HAcAms and lower concentrations of HANs than chlorination, while the Cl2NH2Cl process produced the highest concentrations of HAcAms and HANs. These results indicate that the Cl2NH2Cl process, which inhibited the formation of regulated trihalomethanes compared with chlorination, enhanced the formation of HAcAms and HANs. For disinfection in the presence of bromide, brominated dihaloacetamides and dihaloacetonitriles were formed, and the trends were similar to those observed for chlorinated species in the absence of bromide. The degrees of bromine substitution of dihaloacetamides and dihaloacetonitriles were highest for chlorination, followed by the Cl2NH2Cl process and then by the NH2Cl process. For the Cl2NH2Cl process, HAN formation kept gradually increasing with prechlorination time increasing from 0 to 120 min, while HAcAm formation increased only until it reached a maximum at around 10-30 min. These results suggest that the prechlorination time could be reduced to control the formation of HAcAms and HANs. During chloramination, the formation of HAcAms and HANs was lower when using preformed NH2Cl than when chloramines were formed in situ, with higher formation of HAcAms and HANs when chlorine was added before ammonia than vice versa for the secondary effluent; this finding suggests that preformed NH2Cl could be used to inhibit the formation of HAcAms and HANs during chloramination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report. [50 kWh

    SciTech Connect

    Zalosh, R. G.; Bajpai, S. N.; Short, T. P.; Tsui, R. K.

    1980-04-01

    Hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries are evaluated. Since commercial batteries are not yet available, this hazard assessment is based on both theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate (which is the form of chlorine storage in the charged battery). Six spill tests involving the chlorine hydrate equivalent of a 50-kWh battery indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm (30 to 38/sup 0/C) road surface. Other accidental chlorine release scenarios may also cause some distress, but are not expected to produce the type of life-threatening chlorine exposures that can result from large hydrate spills. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion model and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model was combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fataility rates are several times higher in a city such as Los Angeles with a warm and calm climate than in a colder and windier city such as Boston. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatality rates due to fires and asphyxiations. 37 figures, 19 tables.

  17. Virucidal effect of chlorinated water containing cyanuric acid.

    PubMed Central

    Yamashita, T.; Sakae, K.; Ishihara, Y.; Isomura, S.; Inoue, H.

    1988-01-01

    The inhibitory influence of cyanuric acid on the virucidal effect of chlorine was studied. The time required for 99.9% inactivation of ten enteroviruses and two adenoviruses by 0.5 mg/l free available chlorine at pH 7.0 and 25 degrees C was prolonged approximately 4.8-28.8 times by the addition of 30 mg/l cyanuric acid. Comparative inactivation of poliovirus 1 by free available chlorine with or without cyanuric acid revealed the following. The inactivation rate by 1.5 mg/l free available chlorine with 30 mg/l cyanuric acid or by 0.5 mg/l free available chlorine with 1 mg/l cyanuric acid was slower than by 0.5 mg/l free available chlorine alone. Temperature and pH did not affect the inhibitory influence of cyanuric acid on the disinfectant action of chlorine. In the swimming-pool and tap water, cyanuric acid delayed the virucidal effect of chlorine as much as in the 'clean' condition of chlorine-buffered distilled water. The available chlorine value should be increased to 1.5 mg/l when cyanuric acid is used in swimming-pool water. PMID:2850940

  18. Virucidal effect of chlorinated water containing cyanuric acid.

    PubMed

    Yamashita, T; Sakae, K; Ishihara, Y; Isomura, S; Inoue, H

    1988-12-01

    The inhibitory influence of cyanuric acid on the virucidal effect of chlorine was studied. The time required for 99.9% inactivation of ten enteroviruses and two adenoviruses by 0.5 mg/l free available chlorine at pH 7.0 and 25 degrees C was prolonged approximately 4.8-28.8 times by the addition of 30 mg/l cyanuric acid. Comparative inactivation of poliovirus 1 by free available chlorine with or without cyanuric acid revealed the following. The inactivation rate by 1.5 mg/l free available chlorine with 30 mg/l cyanuric acid or by 0.5 mg/l free available chlorine with 1 mg/l cyanuric acid was slower than by 0.5 mg/l free available chlorine alone. Temperature and pH did not affect the inhibitory influence of cyanuric acid on the disinfectant action of chlorine. In the swimming-pool and tap water, cyanuric acid delayed the virucidal effect of chlorine as much as in the 'clean' condition of chlorine-buffered distilled water. The available chlorine value should be increased to 1.5 mg/l when cyanuric acid is used in swimming-pool water.

  19. Stability and effectiveness of chlorine disinfectants in water distribution systems.

    PubMed

    Olivieri, V P; Snead, M C; Krusé, C W; Kawata, K

    1986-11-01

    A test system for water distribution was used to evaluate the stability and effectiveness of three residual disinfectants--free chlorine, combined chlorine, and chlorine dioxide--when challenged with a sewage contaminant. The test distribution system consisted of the street main and internal plumbing for two barracks at Fort George G. Meade, MD. To the existing pipe network, 152 m (500 ft) of 13-mm (0.5 in.) copper pipe were added for sampling, and 60 m (200 ft) of 2.54-cm (1.0 in.) plastic pipe were added for circulation. The levels of residual disinfectants tested were 0.2 mg/L and 1.0 mg/L as available chlorine. In the absence of a disinfectant residual, microorganisms in the sewage contaminant were consistently recovered at high levels. The presence of any disinfectant residual reduced the microorganism level and frequency of occurrence at the consumer's tap. Free chlorine was the most effective residual disinfectant and may serve as a marker or flag in the distribution network. Free chlorine and chlorine dioxide were the least stable in the pipe network. The loss of disinfectant in the pipe network followed first-order kinetics. The half-life determined in static tests for free chlorine, chlorine dioxide, and combined chlorine was 140, 93, and 1680 min.

  20. Stability and effectiveness of chlorine disinfectants in water distribution systems

    SciTech Connect

    Olivieri, V.P.; Snead, M.C.; Kruse, C.W.; Kawata, K.

    1986-11-01

    A test system for water distribution was used to evaluate the stability and effectiveness of three residual disinfectants - free chlorine, combined chlorine, and chlorine dioxide - when challenged with a sewage contaminant. The test distribution system consisted of the street main and internal plumbing for two barracks at Fort George G. Meade, MD. To the existing pipe network, 152 m (500 ft) of 13-mm (0.5 in.) copper pipe were added for sampling, and 60 m (200 ft) of 2.54-cm (1.0 in.) plastic pipe were added for circulation. The levels of residual disinfectants tested were 0.2 mg/L and 1.0 mg/L as available chlorine. In the absence of a disinfectant residual, microorganisms in the sewage contaminant were consistently recovered at high levels. The presence of any disinfectant residual reduced the microorganism level and frequency of occurrence at the consumer's tap. Free chlorine was the most effective residual disinfectant and may serve as a marker or flag in the distribution network. Free chlorine and chlorine dioxide were the least stable in the pipe network. The loss of disinfectant in the pipe network followed first-order kinetics. The half-life determined in static tests for free chlorine, chlorine dioxide, and combined chlorine was 140, 93, and 1680 min.

  1. Carbon and chlorine isotope analysis to identify abiotic degradation pathways of 1,1,1-trichloroethane.

    PubMed

    Palau, Jordi; Shouakar-Stash, Orfan; Hunkeler, Daniel

    2014-12-16

    This study investigates dual C-Cl isotope fractionation during 1,1,1-TCA transformation by heat-activated persulfate (PS), hydrolysis/dehydrohalogenation (HY/DH) and Fe(0). Compound-specific chlorine isotope analysis of 1,1,1-TCA was performed for the first time, and transformation-associated isotope fractionation ε bulk C and ε bulk Cl values were -4.0 ± 0.2‰ and no chlorine isotope fractionation with PS, -1.6 ± 0.2‰ and -4.7 ± 0.1‰ for HY/DH, -7.8 ± 0.4‰ and -5.2 ± 0.2‰ with Fe(0). Distinctly different dual isotope slopes (Δδ13C/Δδ37Cl): ∞ with PS, 0.33 ± 0.04 for HY/DH and 1.5 ± 0.1 with Fe(0) highlight the potential of this approach to identify abiotic degradation pathways of 1,1,1-TCA in the field. The trend observed with PS agreed with a C-H bond oxidation mechanism in the first reaction step. For HY/DH and Fe(0) pathways, different slopes were obtained although both pathways involve cleavage of a C-Cl bond in their initial reaction step. In contrast to the expected larger primary carbon isotope effects relative to chlorine for C-Cl bond cleavage, ε bulk C < ε bulk Cl was observed for HY/DH and in a similar range for reduction by Fe(0), suggesting the contribution of secondary chlorine isotope effects. Therefore, different magnitude of secondary chlorine isotope effects could at least be partly responsible for the distinct slopes between HY/DH and Fe(0) pathways. Following this dual isotope approach, abiotic transformation processes can unambiguously be identified and quantified.

  2. Transformation of acetaminophen during water chlorination treatment: kinetics and transformation products identification.

    PubMed

    Cao, Fei; Zhang, Mengtao; Yuan, Shoujun; Feng, Jingwei; Wang, Qiquan; Wang, Wei; Hu, Zhenhu

    2016-06-01

    As a high-consumption drug in the world, acetaminophen (AAP) has been widely detected in natural waters and wastewaters. Its reactivity and the transformation products formed during chlorination may greatly threaten the safety of drinking water. The reaction kinetics of AAP during chlorination was investigated in this study. The results showed that the reaction kinetics could be well described with a kinetics model of -d[AAP]/dt = k app[AAP]t (0.63)[Cl2]t (1.37). The values of apparent rate constant (k app) were dependent on reaction temperature, ammonium, and pH. With the increase in reaction temperature from 5.0 ± 1.0 to 40.0 ± 1.0 °C, the removal efficiency of AAP increased from 60 to 100 %. When ammonium was present in the solution at 2.0 mg/L, the transformation of AAP was inhibited due to the rapid formation of chloramines. The maximum of k app was 0.58 × 10(2) M(-1) · min(-1) at pH 9.0, and the minimum was 0.27 M(-1) · min(-1) at pH 11.0. A low mineralization of AAP (about 7.2 %) with chlorination was observed through TOC analysis, implying the formation of plenty of transformation products during chlorination. The main transformation products, hydroquinone and two kinds of chlorinated compounds, monochlorinated acetaminophen and dichlorinated acetaminophen, were detected in gas chromatography-mass spectrometry analysis.

  3. Chlorine-Free Red-Burning Pyrotechnics.

    PubMed

    Sabatini, Jesse J; Koch, Ernst-Christian; Poret, Jay C; Moretti, Jared D; Harbol, Seth M

    2015-09-07

    The development of a red, chlorine-free pyrotechnic illuminant of high luminosity and spectral purity was investigated. Red-light emission based solely on transient SrOH(g) has been achieved by using either 5-amino-1H-tetrazole or hexamine to deoxidize the combustion flame of a Mg/Sr(NO3 )2 /Epon-binder composition and reduce the amount of both condensed and gaseous SrO, which emits undesirable orange-red light. The new formulations were found to possess high thermal onset temperatures. Avoiding chlorine in these formulations eliminates the risk of the formation of PCBs, PCDDs, and PCDFs. This finding, hence, will have a great impact on both military pyrotechnics and commercial firework sectors.

  4. Behavioral toxicology, risk assessment, and chlorinated hydrocarbons.

    PubMed Central

    Evangelista de Duffard, A M; Duffard, R

    1996-01-01

    Behavioral end points are being used with greater frequency in neurotoxicology to detect and characterize the adverse effects of chemicals on the nervous system. Behavioral measures are particularly important for neurotoxicity risk assessment since many known neurotoxicants do not result in neuropathology. The chlorinated hydrocarbon class consists of a wide variety of chemicals including polychlorinated biphenyls, clioquinol, trichloroethylene, hexachlorophene, organochlorine insecticides (DDT, dicofol, chlordecone,dieldrin, and lindane), and phenoxyherbicides. Each of these chemicals has effects on motor, sensory, or cognitive function that are detectable using functional measures such as behavior. Furthermore, there is evidence that if exposure occurs during critical periods of development, many of the chlorinated hydrocarbons are developmental neurotoxicants. Developmental neurotoxicity is frequently expressed as alterations in motor function or cognitive abilities or changes in the ontogeny of sensorimotor reflexes. Neurotoxicity risk assessment should include assessments of the full range of possible neurotoxicological effects, including both structural and functional indicators of neurotoxicity. PMID:9182042

  5. Revisiting the thermochemistry of chlorine fluorides.

    PubMed

    Sánchez, Hernán R

    2017-08-15

    In this work, accurate calculations of standard enthalpies of formation of chlorine fluorides (ClFn, n = 1-7; Cl2 F and Cl3 F2 ) were performed through the isodesmic reactions scheme. It is argued that, for many chlorine fluorides, the gold standard method of quantum chemistry (CCSD(T)) is not capable to predict enthalpy values nearing chemical accuracy if atomization scheme is used. This is underpinned by a thorough analysis of total atomization energy results and the inspection of multireference features of these compounds. Other thermodynamic quantities were also calculated at different temperatures. To complement the energetic description, elimination curves were studied through density functional theory as a computationally affordable alternative to highly correlated wave function-based methods. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Behavioral toxicology, risk assessment, and chlorinated hydrocarbons

    SciTech Connect

    Evangelista de Duffard, A.M.; Duffard, R.

    1996-04-01

    Behavioral end points are being used with greater frequency in neurotoxicology to detect and characterize the adverse effects of chemicals on the nervous system. Behavioral measures are particularly important for neurotoxicity risk assessment since many known neurotoxicants do not result in neuropathology. The chlorinated hydrocarbon class consists of a wide variety of chemicals including polychlorinated biphenyls, clioquinol, trichloroethylene, hexachlorophene, organochlorine insecticides (DDT, dicofol, chlordecone, dieldrin, and lindane), and phenoxyherbicides. Each of these chemicals has effects on motor, sensory, or cognitive function that are detectable using functional measures such as behavior. Furthermore, there is evidence that if exposure occurs during critical periods of development, many of the chlorinated hydrocarbons are developmental neurotoxicants. Developmental neurotoxicity is frequently expressed as alterations in motor function or cognitive abilities or charges in the ontogeny of sensorimotor reflexes. Neurotoxicity risk assessment should include assessments of the full range of possible neurotoxicological effects, including both structural and functional indicators of neurotoxicity. 121 refs., 1 tab.

  7. Bacterial Responses to Reactive Chlorine Species

    PubMed Central

    Gray, Michael J.; Wholey, Wei-Yun; Jakob, Ursula

    2013-01-01

    Hypochlorous acid (HOCl), the active ingredient of household bleach, is the most common disinfectant in medical, industrial, and domestic use and plays an important role in microbial killing in the innate immune system. Given the critical importance of the antimicrobial properties of chlorine to public health, it is surprising how little is known about the ways in which bacteria sense and respond to reactive chlorine species (RCS). Although the literature on bacterial responses to reactive oxygen species (ROS) is enormous, work addressing bacterial responses to RCS has begun only recently. Transcriptomic and proteomic studies now provide new insights into how bacteria mount defenses against this important class of antimicrobial compounds. In this review, we summarize the current knowledge, emphasizing the overlaps between RCS stress responses and other more well-characterized bacterial defense systems, and identify outstanding questions that represent productive avenues for future research. PMID:23768204

  8. Bacterial responses to reactive chlorine species.

    PubMed

    Gray, Michael J; Wholey, Wei-Yun; Jakob, Ursula

    2013-01-01

    Hypochlorous acid (HOCl), the active ingredient of household bleach, is the most common disinfectant in medical, industrial, and domestic use and plays an important role in microbial killing in the innate immune system. Given the critical importance of the antimicrobial properties of chlorine to public health, it is surprising how little is known about the ways in which bacteria sense and respond to reactive chlorine species (RCS). Although the literature on bacterial responses to reactive oxygen species (ROS) is enormous, work addressing bacterial responses to RCS has begun only recently. Transcriptomic and proteomic studies now provide new insights into how bacteria mount defenses against this important class of antimicrobial compounds. In this review, we summarize the current knowledge, emphasizing the overlaps between RCS stress responses and other more well-characterized bacterial defense systems, and identify outstanding questions that represent productive avenues for future research.

  9. A comparison of iodinated trihalomethane formation from chlorine, chlorine dioxide and potassium permanganate oxidation processes.

    PubMed

    Zhang, Tian-Yang; Xu, Bin; Hu, Chen-Yan; Lin, Yi-Li; Lin, Lin; Ye, Tao; Tian, Fu-Xiang

    2015-01-01

    This study compared the formation of iodinated trihalomethanes (I-THMs) from iodide-containing raw waters oxidized by chlorine, chlorine dioxide (ClO₂) and potassium permanganate (KMnO₄) at different oxidant concentrations, reaction times, pHs, initial iodide concentrations and bromide to iodide mass ratios. Among the six investigated I-THMs, iodoform was the major species formed during the oxidation using chlorine, ClO₂ and KMnO₄. When oxidant concentration increased from 0.1 to 3.0 mg/L, the formation of I-THMs increased and then decreased for chlorine and ClO₂, but kept increasing for KMnO₄. As the reaction time went by, I-THM concentration increased to a plateau within 10 h (ClO₂ within only 1 h, especially) for all the three oxidants. I-THM formation gradually increased from pH 3.0 to 9.0 and remained stable at pH values higher than 7.5 for chlorine; however, for ClO₂ and KMnO₄ the highest I-THM formation showed at pH 7.0 and 7.5, respectively. As initial iodide concentration increased from 20 to 800 μg/L, the total amount and species of I-THMs increased for the three oxidants. Iodide contributed to I-THM formation much more significantly than bromide.

  10. Assessment of by-products of chlorination and photoelectrocatalytic chlorination of an azo dye.

    PubMed

    de Oliveira, Rafael Leite; Anderson, Marc A; Umbuzeiro, Gisela de Aragão; Zocolo, Guilherme Julião; Zanoni, Maria Valnice Boldrin

    2012-02-29

    The present work describes a more efficient methodology for the chlorination of water containing disperse dyes, where the chlorinated byproducts identified by mass spectra are compared. For this investigation, we tested the degradation of CI Disperse Blue 291 dye, 2-[(2-Bromo-4,6-dinitrophenyl)azo]-5-(diethylamino)-4-methoxyacetanilide) a commercial azo dye with mutagenic properties. The present work evaluates the photoelectrocatalytic efficiency of removing the CI Disperse Blue 291 dye from a wastewater of the textile industry. We employed NaCl as a supporting electrolyte. It should be noted that photoelectrocatalytic techniques are non-conventional method of generating chlorine radicals. The by-products formed in this process were analyzed using spectrophotometry, liquid chromatography, dissolved organic carbon, mass spectral analysis and mutagenicity assays. The process efficiency was compared with the conventional chlorination process adopted during sewage and effluents treatment processes. This conventional chlorination process is less efficient in removing color, total organic carbon than the photoelectrochemistry technique. Furthermore, we shall demonstrate that the mutagenicity of the generated by-products obtained using photoelectrocatalysis is completely different from that obtained by the conventional oxidation of chloride ions in the drinking water treatment process.

  11. Chlorine decay and trihalomethane formation following ferrate(VI) preoxidation and chlorination of drinking water.

    PubMed

    Li, Cong; Luo, Feng; Dong, Feilong; Zhao, Jingguo; Zhang, Tuqiao; He, Guilin; Cizmas, Leslie; Sharma, Virender K

    2017-11-01

    This paper presents the effect of preoxidation with ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) prior to chlorination on chlorine decay and formation of disinfection by-products in filtered raw water from a full-scale drinking water treatment plant. The rate of chlorine decay became significantly faster as the concentration of ferrate(VI) increased. Chlorine degradation followed two first-order decay reactions with rate constants k1 and k2 for fast and slow decay, respectively. Kinetic modeling established the relationships between k1 and k2 and varying dosages of chlorine and ferrate(VI). When ferrate(VI) was used as a pre-oxidant, the levels of trihalomethanes (trichloromethane (TCM), dichlorobromomethane (DCBM), dibromochloromethane (DBCM), and tribromomethane (TBM)) in water samples decreased as the ferrate(VI) concentration increased. The concentrations of these trihalomethanes followed the order TCM > DCBM ≈ DBCM > TBM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Microbial isotopic fractionation of perchlorate chlorine.

    PubMed

    Coleman, Max L; Ader, Magali; Chaudhuri, Swades; Coates, John D

    2003-08-01

    Perchlorate contamination can be microbially respired to innocuous chloride and thus can be treated effectively. However, monitoring a bioremediative strategy is often difficult due to the complexities of environmental samples. Here we demonstrate that microbial respiration of perchlorate results in a significant fractionation ( approximately -15 per thousand ) of the chlorine stable isotope composition of perchlorate. This can be used to quantify the extent of biotic degradation and to separate biotic from abiotic attenuation of this contaminant.

  13. Transformation of cocaine during water chlorination.

    PubMed

    González-Mariño, Iria; Quintana, José Benito; Rodríguez, Isaac; Sánchez-Méndez, Noemí; Cela, Rafael

    2012-12-01

    The stability of cocaine and its two main human metabolites, benzoylecgonine and ecgonine methyl ester, in chlorine-containing waters has been investigated by direct injection of different reaction time aliquots in a liquid chromatograph (LC) coupled to a quadrupole-time-of-flight mass spectrometer (QTOF-MS). Factors potentially affecting cocaine degradation (the only compound showing a significant decrease in the preliminary study) were evaluated in detail by means of a Box-Behnken experimental design. Sample pH resulted to be the most important variable, increasing both the rate of chlorination-mediated reactions and the ester hydrolysis process. From these reactions, and due to the high mass accuracy measurements obtained with the QTOF system, four by-products could be positively identified: benzoylecgonine, norcocaine, norbenzoylecgonine and N-formylnorcocaine. Finally, their formation and cocaine degradation yields were assessed under chlorination experiments with two real surface water samples. In one of them, showing a low anthropogenic impact, benzoylecgonine and norcocaine were notably generated even after only 1 h of reaction, whereas at higher contact times also norbenzoylecgonine and N-formylnorcocaine could be determined with a lower yield. On the other hand, the second sample, with a higher organic matter content, consumed rapidly the chlorine, so that only benzoylecgonine was produced. These findings point out the convenience of monitoring the described transformation products, in addition to the precursor illicit drug, during drinking water production, taking into account that cocaine traces might be present in water catchments and particularly in areas with high population densities.

  14. Accumulation of chlorinated benzenes in earthworms

    USGS Publications Warehouse

    Beyer, W.N.

    1996-01-01

    Chlorinated benzenes are widespread in the environment. Hexachlorobenzene, pentachlorobenzene and all isomers of dichlorobenzenes, trichlorobenzenes, and tetrachlorobenzenes, have been detected in fish, water, and sediments from the Great Lakes. This paper describes a long-term (26 week) experiment relating the concentrations of chlorinated benzenes in earthworms to 1) the length of exposure, and it describes three 8-week experiments relating concentrations of chlorinated benzenes in earthworms to 2) their concentration in soil 3) the soil organic matter content and, 4) the degree of chlorination. In the 26-week experiment, the concentration of 1,2,4 - trichlorobenzene in earthworms fluctuated only slightly about a mean of 0.63 ppm (Fig. 1). Although a statistically significant decrease can be demonstrated over the test (Pearson correlation coefficient, r = -0.62 p < 0.05), the decrease was minor. Hexachlorobenzene in earthworms showed a cyclical trend that coincided with replacement of the media, and a slight but statistically significant tendency to increase from about 2 to 3 ppm over the 26 weeks (r = 0.55, p < 0.05). Concentrations of both trichlorobenzene and hexachlorobenzene in earthworms increased as the concentrations in the soil increased (Fig. 2), but leveled off at the highest soil concentrations. The most surprising result of this study was the relatively low concentrations in earthworms compared to those in soils. The average concentration of each of the six isomers of trichlorobenzene and tetrachlorobenzene in earthworms was only about 1 ppm (Table 2); the isomeric structure did not affect accumulation. The concentration of organic matter in soil had a prominent effect on hexachlorobenzene concentrations in earthworms (Fig. 3). Hexachlorobenzene concentrations decreased steadily from 9.3 ppm in earthworms kept in soil without any peat moss added to about 1 ppm in soil containing 16 or 32% organic matter.

  15. Report on the chlorine solar neutrino experiment.

    NASA Astrophysics Data System (ADS)

    Davis, R., Jr.; Lande, K.; Cleveland, B. T.; Ullman, J.; Rowley, J. K.

    New results from the chlorine solar neutrino experiment are presented. Observations of the solar neutrino flux over the period 1970 to 1988 show an average 37Ar production rate of 2.33±0.25 SNU. The 37Ar production rate exhibits an apparent anti-correlation with the solar activity cycle. The current measurements (1986 - 1988) made during minimum solar activity give an 37Ar production rate of 4.2±0.8 SNU.

  16. Bioremediation and phytoremediation: Chlorinated and recalcitrant compounds

    SciTech Connect

    1998-12-31

    Bioremediation and phytoremediation have progressed, especially with regard to the treatment of hydrocarbon-contaminated sites. Sites contaminated with chlorinated and recalcitrant compounds have proven more resistant to these approaches, but exciting progress is being made both in the laboratory and in the field. This book brings together the latest breakthrough thinking and results in bioremediation, with chapters on cometabolic processes, aerobic and anaerobic mechanisms, biological reductive dechlorination processes, bioaugmentation, biomonitoring, and phytoremediation of recalcitrant organic compounds.

  17. Microbial Isotopic Fractionation of Perchlorate Chlorine

    PubMed Central

    Coleman, Max L.; Ader, Magali; Chaudhuri, Swades; Coates, John D.

    2003-01-01

    Perchlorate contamination can be microbially respired to innocuous chloride and thus can be treated effectively. However, monitoring a bioremediative strategy is often difficult due to the complexities of environmental samples. Here we demonstrate that microbial respiration of perchlorate results in a significant fractionation (∼−15‰) of the chlorine stable isotope composition of perchlorate. This can be used to quantify the extent of biotic degradation and to separate biotic from abiotic attenuation of this contaminant. PMID:12902300

  18. Selected alternatives to conventional chlorination. Final report

    SciTech Connect

    Garey, J.F.

    1980-10-01

    This study was jointly funded by EPRI and five electric utility companies in New England (New England Power, Northeast Utilities, United Illuminating, Vermont Yankee Nuclear, and Public Service of New Hampshire). Previous investigations had identified three major areas for further study: continuous low-level chlorination, dechlorination, and condenser biofouling control. Continuous low-level chlorination, studied at two locations, one on open coastal water and the other in an industrialized estuarine area, showed that 0.1 ppM total residual oxidant (TRO) prevented attachment of the blue mussel (Mytilus edulis) to concrete surfaces. Chronic bioassays showed that 0.075 ppM TRO reduced biofouling by indigenous organisms; 0.1 ppM TRO slightly increased mortalities of the Atlantic silversides (Menidia menidia) but had no effect on the American oyster (Crassostrea virginica). Dechlorination investigations showed that threespine sticklebacks (Gasterosteus aculeatus), Atlantic silversides (Menidia menidia), larval bay scallops (Argopecten irradians), and the copepod Acartia tonsa exposed to water chlorinated to 0.5 ppM TRO for 10, 100, and 1000 seconds, followed by dechlorination with sodium thiosulfate, all suffered significant toxic effects. Condenser tube biofouling studies showed that there was a strong correlation between condenser performance and condenser tube biofouling; biofilm induction varied inversely with ambient water temperature, but orientation of the tubes had no effect on biofilm formation; and all chemicals tested (mono-, di-, and trisodium phosphate; Polident; and TRO at 0.1 ppM) reduced but did not remove biofilms.

  19. Chlorine activation in the dark polar vortices

    NASA Astrophysics Data System (ADS)

    Grooß, Jens-Uwe; Spang, Reinhold; Wegner, Tobias; Rolf, Müller

    2017-04-01

    Simulations of polar stratospheric chemistry have been performed with the state-of-the-art Lagrangian Chemistry Transport Model CLaMS for both Antarctic and Arctic winters. CLaMS includes a Lagrangian sedimentation scheme that is able to successfully simulate the vertical NOy redistribution due to the sedimentation of large NAT particles. In general, observations of stratospheric trace species are very well reproduced by the model. However, during the time of the onset of chlorine activation, the simulations significantly over-estimate the HCl mixing ratio inside the polar vortex core where little sunlight is available. This discrepancy is seen in both hemispheres and points to some unrecognized process in stratospheric chemistry. The spatial and temporal development of the discrepancy is investigated in detail in order to search for possible processes missing in the model. HCl depletion rates derived from MLS observations correlate well with ice PSC detections derived from MIPAS. Possible reasons for this discrepancy in chlorine activation will be discussed. Since the discrepancy is mainly seen during the beginning of the chlorine activation period where the ozone loss rates are low, the impact on the overall ozone loss over the course of the winter and spring is rather low.

  20. The identification of a chlorinated MDMA.

    PubMed

    Maresova, V; Hampl, J; Chundela, Z; Zrcek, F; Polasek, M; Chadt, J

    2005-01-01

    The abuse of the designer amphetamines such as 3,4-methylenedioxymethamphetamine (MDMA) is increasing throughout the world. They have become popular drugs at all night techno dance parties, and their detection is an important issue. The objective of the presented study was to identify an unknown compound detected by thin-layer chromatography (TLC) in the urine of an illicit drug abuser. The compound was isolated by TLC and analyzed by gas chromatography-mass spectrometry (GC-MS) in electron ionization (EI) and positive ion chemical ionization (PICI) mode to elucidate its chemical structure. Based on EI-MS and PICI-MS mass spectral data, the unknown compound was indicated to be a structure similar to MDMA, substituted by a single chlorine atom-a chlorinated MDMA (Cl-MDMA). To confirm the Cl-MDMA structure, the unknown compound was silylated, trifluoroacetylated, acetylated, heptafluorobutyrylated, and analyzed by GC-MS. The position of the chlorine atom cannot be assigned exactly from the mass spectral data presented here; however, we believe that the unknown compound could be 6-Cl-MDMA.

  1. Effects of chlorine on freshwater fish under various time and chemical conditions: toxicity of chlorine to freshwater fish. Final report

    SciTech Connect

    Brooks, A.S.; Bartos, J.M.; Danos, P.T.

    1982-07-01

    Laboratory bioassays to determine the acute toxicity of monochloramine, dichloramine, hypochlorous acid, and hypochlorite ion to emerald shiners, channel catfish, and rainbow trout were conducted. Four exposure regimes typical of chlorination schedules at operating steam electric power plants were used. Fish were exposed to single 15-minute, 30-minute, 120-minute, and quadruple 30-minute periods. No mortality or LC50 values were determined for each species of fish and chemical species of chlorine. Hypochlorous acid was the most toxic form of chlorine studied, followed closely by dichloramine. Monochloramine and hypochlorite ion were three to four times less toxic than hypochlorous acid and dichloramine. On the average, emerald shiners were 1.8 times more sensitive to chlorine than channel catfish and 3.3 times more sensitive than rainbow trout to the four forms of chlorine. The fish were more tolerant of chlorine during short duration exposures and most sensitive during the continuous 120-minute exposures. The significant differences in toxicity noted among the various chlorine species suggest that careful attention should be paid not only to total residual chlorine but to both the chlorine and fish species present and the duration of exposure expected in establishing chlorination regimes.

  2. Hydrochloric acid and the chlorine budget of the lower statosphere

    NASA Technical Reports Server (NTRS)

    Webster, C. R.; May, R. D.; Jaegle, L.; Hu, H.; Sander, S. P.; Gunson, M. R.; Toon, G. C.; Russell, J. M., III; Stimpfle, R. M.; Koplow, J. P.

    1994-01-01

    Concentrations of HCl measurements in the lower stratosphere in 1993 by the ALIAS instrument on the ER-2 aircraft reveal that only 40% of inorganic chlorine (Cl(y), inferred from in situ measurements of organic chlorinated sources gases) is present as HCl, significantly lower than model predictions. Although the sum of measured HCl, ClO and ClONO2, the latter inferred from measurements of ClO and NO2 equals Cl(y) to within the incertainty of measurement, it is systematically less than Cl(y) by 30-50%. This discrepancy suggests that concentrations of ClONO2 may exceed those of HC; near 20 km altitude, consistent with a slower photolysis rate for ClONO2 than calculated using recommended cross sections. Comparison of profiles of HCl measured during 1992 and 1193 at mid-latitudes by balloon (BLISS and MARKIV), space shuttle (ATMOS), and satellite (HALOE) instruments with the aircraft data reveal an apparent pressure dependence to the HCl to Cl(y) ratio, consistent with a factor of 3-10 reduction in the photolysis rate for ClONO2 at ER-2 altitudes. However, the diurnal variation of ClO is well-simulated by models using the recommended photolysis rate, and simulations measurements of ClONO2 and HCl at mid-latitudes by ATMOS and MARKIV report HCl (HCL+ ClONO2) ratios greater than or equal to 50%. Premliminary measurements by ALIAS in the southern hemisphere report HCl/Cl(y) values of about 75%.

  3. Hydrochloric acid and the chlorine budget of the lower statosphere

    NASA Technical Reports Server (NTRS)

    Webster, C. R.; May, R. D.; Jaegle, L.; Hu, H.; Sander, S. P.; Gunson, M. R.; Toon, G. C.; Russell, J. M., III; Stimpfle, R. M.; Koplow, J. P.

    1994-01-01

    Concentrations of HCl measurements in the lower stratosphere in 1993 by the ALIAS instrument on the ER-2 aircraft reveal that only 40% of inorganic chlorine (Cl(y), inferred from in situ measurements of organic chlorinated sources gases) is present as HCl, significantly lower than model predictions. Although the sum of measured HCl, ClO and ClONO2, the latter inferred from measurements of ClO and NO2 equals Cl(y) to within the incertainty of measurement, it is systematically less than Cl(y) by 30-50%. This discrepancy suggests that concentrations of ClONO2 may exceed those of HC; near 20 km altitude, consistent with a slower photolysis rate for ClONO2 than calculated using recommended cross sections. Comparison of profiles of HCl measured during 1992 and 1193 at mid-latitudes by balloon (BLISS and MARKIV), space shuttle (ATMOS), and satellite (HALOE) instruments with the aircraft data reveal an apparent pressure dependence to the HCl to Cl(y) ratio, consistent with a factor of 3-10 reduction in the photolysis rate for ClONO2 at ER-2 altitudes. However, the diurnal variation of ClO is well-simulated by models using the recommended photolysis rate, and simulations measurements of ClONO2 and HCl at mid-latitudes by ATMOS and MARKIV report HCl (HCL+ ClONO2) ratios greater than or equal to 50%. Premliminary measurements by ALIAS in the southern hemisphere report HCl/Cl(y) values of about 75%.

  4. Chlorination of parabens: reaction kinetics and transformation product identification.

    PubMed

    Mao, Qianhui; Ji, Feng; Wang, Wei; Wang, Qiquan; Hu, Zhenhu; Yuan, Shoujun

    2016-11-01

    The reactivity and fate of parabens during chlorination were investigated in this work. Chlorination kinetics of methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP) were studied in the pH range of 4.0 to 11.0 at 25 ± 1 °C. Apparent rate constants (k app) of 9.65 × 10(-3) M(-0.614)·s(-1), 1.77 × 10(-2) M(-1.019)·s(-1), 2.98 × 10(-2) M(-0.851)·s(-1), and 1.76 × 10(-2) M(-0.860)·s(-1) for MeP, EtP, PrP, and BuP, respectively, were obtained at pH 7.0. The rate constants depended on the solution pH, temperature, and NH4(+) concentration. The maximum k app was obtained at pH 8.0, and the minimum value was obtained at pH 11.0. The reaction rate constants increased with increasing temperature. When NH4(+) was added to the solution, the reaction of parabens was inhibited due to the rapid formation of chloramines. Two main transformation products, 3-chloro-parabens and 3,5-dichloro-parabens, were identified by GC-MS and LCMS-IT-TOF, and a reaction pathway was proposed. Dichlorinated parabens accumulated in solution, which is a threat to human health and the aqueous environment.

  5. Comparison among commercially available gaseous chlorine warning devices and chlorine sensors

    NASA Astrophysics Data System (ADS)

    Dahlgren, E.; Haegglung, L.

    1982-01-01

    A gaseous chlorine sensor, based on solid state semiconductor technology, detecting electrical modifications which appear in a thin film under the influence of chlorine, was developed for concentrations around the hygenic threshold value of 0.5 ppm. The sensor was compared to one electrochemical sensor used as a warning device and to five different types of solid state sensors. Tests are reported and the perturbing influence of humidity variations or the presence of other substances as carbon tetrachloride, sulfur dioxide, hydrochloric acid, ammonia chlorohenzene, carbon monoxide or excess of oxygen were examined. No classification is given, but the described sensor is the most selective to chlorine and the most insensitive to temperature and humidity variations, among the solid state devices.

  6. ENDF/B-VI chlorine evaluation is deficient

    SciTech Connect

    Wright, R.Q.; Jordan, W.C.

    1995-09-01

    The criticality safety evaluations for the Fuel Cycle Facility Electrorefiner at Argonne-West were reviewed at Oak Ridge National Laboratory (ORNL) to help provide insight into problems that may be caused by inadequate cross-section data. The adequacy of ENDF/B chlorine was questioned because the evaluation was done in 1967 and is a nonresonance material even though chlorine has resonance structure. There are no validation experiments which are similar to the system being analyzed. The analysis strongly suggests that the ENDF/B-VI data for natural chlorine, MAT 1700, are not adequate for all criticality safety applications and must be considered to be deficient for this reason. This conclusion was reached by comparing several different XSDRNPM calculations using the ENDF/B chlorine evaluation with the same calculation using the JENDL-3.2 chlorine evaluation. All the other cross sections in these calculations are taken from ENDF/B-VI; only the chlorine cross sections were changed.

  7. Chlorine adsorption on the InAs (001) surface

    SciTech Connect

    Bakulin, A. V.; Eremeev, S. V.; Tereshchenko, O. E.; Kulkova, S. E.

    2011-01-15

    Chlorine adsorption on the In-stabilized InAs(001) surface with {zeta}-(4 Multiplication-Sign 2) and {beta}3 Prime -(4 Multiplication-Sign 2) reconstructions and on the Ga-stabilized GaAs (001)-{zeta}-(4 Multiplication-Sign 2) surface has been studied within the electron density functional theory. The equilibrium structural parameters of these reconstructions, surface atom positions, bond lengths in dimers, and their changes upon chlorine adsorption are determined. The electronic characteristics of the clean surface and the surface with adsorbed chlorine are calculated. It is shown that the most energetically favorable positions for chlorine adsorption are top positions over dimerized indium or gallium atoms. The mechanism of chlorine binding with In(Ga)-stabilized surface is explained. The interaction of chlorine atoms with dimerized surface atoms weakens surface atom bonds and controls the initial stage of surface etching.

  8. N-chlorinated poly(N-isopropylacrylamide) microgels.

    PubMed

    Wang, Zuohe; Lam, Wing Yan; Pelton, Robert

    2013-10-22

    The treatment of poly(N-isopropylacrylamide) (PNIPAM) microgels with aqueous bleach (NaClO) at pH 10.5 resulted in the partial conversion of the amide hydrogen to the corresponding chloramide. N-Chlorinated microgels poly(NIPAM-co-NIPAMCl) are more hydrophobic than the parent PNIPAM microgels. Thus, the volume phase transition temperature decreases with increasing chlorination. During chlorination, the microgels coagulate once they undergo a volume phase transition. The chlorination reaction stops once the microgels dehydrate and coagulate, presumably as a result of the decreased diffusion rate of the ClO(-) anion into the microgels. The microgels are reversibly dechlorinated by glutathione (GSH), first giving PNIPAM shell + poly(NIPAM-co-NIPAMCl) core microgels. Because GSH is an important redox actor in biological cells, this work suggests that chlorinated microgels may be employed to deliver active chlorine to targeted cells.

  9. Kinetic modelling of chlorination of nitrided ilmenite using MATLAB

    SciTech Connect

    Ramakrishnan, Sivakumar Kwok, Teong Chen Hamid, Sheikh Abdul Rezan Sheikh Abdul

    2016-07-19

    In the present study, chlorination of nitride ilmenite using 2{sup k} factorial design was investigated. The reduction experiments were carried out in a temperature range of 400°C to 500°C, chlorination duration from 1 hour to 3 hours and using different type of carbon reactant. Phases of raw materials and reduced samples were analyzed by X-ray diffraction (XRD). Ilmenite was reduced to TiO{sub x}C{sub y}N{sub z} through carbothermal and nitridation for further chlorination into titanium tetrachloride. The Design of Experiment analysis suggested that the types of carbon reactant contribute most influence to the extent of chlorination of nitride ilmenite. The extent of chlorination was highest at 500°C with 3 hours chlorination time and carbon nanotube as carbon reactant.

  10. Kinetic model for the chlorination of power plant cooling waters

    SciTech Connect

    Johnson, J.D.; Qualls, R.G.

    1983-01-01

    Concern over the environmental effects of chlorination has prompted efforts to minimize the amount of chlorine necessary to prevent fouling of power-plant condensers. Kinetic expressions are developed for the short-term reactions of chlorine consumption by organic substances in natural freshwater. These expressions were developed to use in a kinetic model to predict the free and total available chlorine discharged in cooling water. This model uses commonly available water-quality data. It assumes that most of the chlorine-consuming substances are: (1) NH/sub 3/, (2) chloramine-forming organic-N, and (3) humic substances. It uses the Morris-Wei model of chlorine-ammonia reactions. Chloramine formation from organic-N was represented by a model compound, glycylglycine.

  11. High temperature corrosion during use of chlorine containing gel

    SciTech Connect

    McNallan, M.

    1992-01-01

    The goal of this project is to characterize the role of chlorine in coal on the high temperature corrosion processes which can occur in coal combustion and conversion processes. The experiments include laboratory tests performed in well-controlled high temperature environments and field tests in industrial coal fired boilers. Evaluation of samples of boiler tubes which have been recovered from boilers which used both high and low chlorine coals does not indicate that the higher chlorine levels are associated with accelerated corrosion of either water wall tubes or superheater tubes in pulverized coal boilers. Laboratory testing of metal coupons in combustion gas environments produced from low sulfur, high chlorine coal IBC-109 and high sulfur-low chlorine coal IBC-101 has been performed at 700 and 800{degrees}C. Initial results indicate that more corrosion is produced in the high sulfur environment than in the high chlorine environment. Further testing at other temperatures and gas compositions is in progress.

  12. Are BKME effects on fish caused by chlorinated compounds?

    SciTech Connect

    Burnison, B.K.; Hodson, P.V.; Parrott, J.

    1995-12-31

    Much of the debate about the use and environmental impacts of chlorinated compounds has been fueled by attempts to regulate the effluents discharged by pulp and paper mills. Swedish field studies have associated effects on fish health and reproduction with the discharge of AOX. A recent study has demonstrated that the effect of black liquor is three orders of magnitude more potent than the first chlorine dioxide bleachery effluent on fish. Black liquors from various pulp mills, including a mill which uses alcohol to extract lignin, also suggest that effects on fish could be caused by non-chlorinated wood extractives, Chemical analysis of isolated fractions from final BKME effluent and pure compound bioassays also indicate the high probability that non-chlorinated compounds may be responsible for fish effects. While chlorination may increase the potency of these compounds, it is clear that chlorine is not essential for effects on fish.

  13. Comparison of chlorine-poisoned experiments to calculations

    SciTech Connect

    Hicks, J.; Wilson, R.E.

    2000-07-01

    The Rocky Flats Environmental Technology Site (RFETS) has fissile materials in salt, which could be processed for disposal more efficiently if the nuclear poison effect of the chlorine were validated. The authors conclude that chlorine can be credited as poison when present in thermal systems. The 27-, 44-, and 238-group libraries in SCALE and the ENDFB-B libraries with MCNP underpredict the poisonous effect of chlorine in thermal systems.

  14. Review of toxicology studies on cyanurate and its chlorinated derivatives

    SciTech Connect

    Hammond, B.G.; Barbee, S.J.; Inoue, T.; Ishida, N.; Levinskas, G.J.; Stevens, M.W.; Wheeler, A.G.; Cascieri, T.

    1986-11-01

    Chlorinated cyanurates are added to swimming pools as disinfectants. In the presence of water, these materials hydrolyze to yield cyanurate and hypochlorous acid. To evaluate the safety of exposure to these materials, a comprehensive testing program was undertaken. This review summarizes the results of acute subchronic tests on chlorinated isocyanurates. Findings from acute, subchronic, reproduction, metabolism, mutagenicity, and chronic/carcinogenicity tests on cyanurate are also summarized. Results from these tests indicate that chlorinated isocyanurates are safe for use in swimming pools.

  15. Reactions of chlorine and bromine fluorosulfates with perfluoroalkyl halides in a strongly acidic medium

    SciTech Connect

    Fokin, A.V.; Rapkin, A.I.; Seryanov, Y.V.; Studnev, Y.N.; Tatarinov, A.S.

    1986-01-01

    The authors find that in HSO/sub 3/F medium containing SbF/sub 5/ (preferably ca 20-40%), already at a temperature much lower than O C, ClOSO/sub 2/F exothermally substitutes bromine in 1,2-dibromotetrafluoroethane, leading to 1,2-bis(fluorosulfonxyloxy)tetrafluoroethane (I) in a high yield (greater than 80%). Bromine fluorosulfate BrOSO/sub 2/F was found to be less active than ClOSO/sub 2/F with respect to 1,2-dibromotetrafluoroethane in both the presence and in absence of the HSO/sub 3/F/SbF/sub 5/ mixture. In a fluorosulfonic acid medium containing antimony pentafluoride, the reaction with chlorine fluorosulfate leads to the substitution of the primary chlorine atom in perfluoroalkyl chlorides, and also the primary and secondary bromine atoms in perfluoroalkyl bromides by the fluorosulfate group under mild conditions.

  16. Palau'chlor: a practical and reactive chlorinating reagent.

    PubMed

    Rodriguez, Rodrigo A; Pan, Chung-Mao; Yabe, Yuki; Kawamata, Yu; Eastgate, Martin D; Baran, Phil S

    2014-05-14

    Unlike its other halogen atom siblings, the utility of chlorinated arenes and (hetero)arenes are twofold: they are useful in tuning electronic structure as well as acting as points for diversification via cross-coupling. Herein we report the invention of a new guanidine-based chlorinating reagent, CBMG or "Palau'chlor", inspired by a key chlorospirocyclization en route to pyrrole imidazole alkaloids. This direct, mild, operationally simple, and safe chlorinating method is compatible with a range of nitrogen-containing heterocycles as well as select classes of arenes, conjugated π-systems, sulfonamides, and silyl enol ethers. Comparisons with other known chlorinating reagents revealed CBMG to be the premier reagent.

  17. Direct measurement of chlorine penetration into biofilms during disinfection.

    PubMed Central

    De Beer, D; Srinivasan, R; Stewart, P S

    1994-01-01

    Transient chlorine concentration profiles were measured in biofilms during disinfection by use of a microelectrode developed for this investigation. The electrode had a tip diameter of ca. 10 microm and was sensitive to chlorine in the micromolar range. The biofilms contained Pseudomonas aeruginosa and Klebsiella pneumoniae. Chlorine concentrations measured in biofilms were typically only 20% or less of the concentration in the bulk liquid. Complete equilibration with the bulk liquid did not occur during the incubation time of 1 to 2 h. The penetration depth of chlorine into the biofilm and rate of penetration varied depending on the measurement location, reflecting heterogeneity in the distribution of biomass and in local hydrodynamics. The shape of the chlorine profiles, the long equilibration times, and the dependence on the bulk chlorine concentration showed that the penetration was a function of simultaneous reaction and diffusion of chlorine in the biofilm matrix. Frozen cross sections of biofilms, stained with a redox dye and a DNA stain, showed that the area of chlorine penetration overlapped with nonrespiring zones near the biofilm-bulk fluid interface. These data indicate that the limited penetration of chlorine into the biofilm matrix is likely to be an important factor influencing the reduced efficacy of this biocide against biofilms as compared with its action against planktonic cells. PMID:7811074

  18. Highly chlorinated Escherichia coli cannot be stained by propidium iodide.

    PubMed

    Phe, M-H; Dossot, M; Guilloteau, H; Block, J-C

    2007-05-01

    Several studies have shown that the staining by fluorochromes (DAPI, SYBR Green II, and TOTO-1) of bacteria is altered by chlorination. To evaluate the effect of chlorine (bleach solution) on propidium iodide (PI) staining, we studied Escherichia coli in suspension and biomolecules in solution (DNA, RNA, BSA, palmitic acid, and dextran) first subjected to chlorine and then neutralized by sodium thiosulphate. The suspensions and solutions were subsequently stained with PI. The fluorescence intensity of the PI-stained DNA and RNA in solution dramatically decreased with an increase in the chlorine concentration applied. These results explain the fact that for chlorine concentrations higher than 3 micromol/L Cl2, the E. coli cells were too damaged to be properly stained by PI. In the case of highly chlorinated bacteria, it was impossible to distinguish healthy cells (with a PI-impermeable membrane and undamaged nucleic acids), which were nonfluorescent after PI staining, from cells severely injured by chlorine (with a PI-permeable membrane and damaged nucleic acids) that were also nonfluorescent, as PI penetrated but did not stain chlorinated nucleic acids. Our results suggest that it would be prudent to be cautious in interpreting the results of PI staining, as PI false-negative cells (cells with compromised membranes but not stained by PI because of nucleic acid damage caused by chlorine) are obtained as a result of nucleic acid damage, leading to an underestimation of truly dead bacteria.

  19. Chlorination rates in forest soils - the importance of environmental factors

    NASA Astrophysics Data System (ADS)

    Gustavsson, M.; Karlsson, S.; Oberg, G.; Sandén, P.; Svensson, T.; Valinia, S.; Thiry, Y.; Bastviken, D.

    2011-12-01

    Transformation of chloride (Cl-) to organic chlorine (Clorg) occurs naturally in soil but it is poorly understood how and why transformation rates vary among environments. Even though formation of Clorg has been known for several decades, there are still few measurements of chlorination rates in soils. In the present study we compare organic matter (OM) chlorination rates, measured by 36Cl tracer experiments, in soils from eleven different locations. This comparison provides information on chlorination rates from different sites and gives an indication about how various environmental factors effect chlorination. A strong correlation was seen with environmental variables such as soil OM content and Cl- concentration and forest soil chlorination rates. Data presented support the hypothesis that OM levels give the framework for the soil chlorine cycling and that chlorination in more organic soils over time leads to a larger Clorg pool and in turn to a high internal supply of Cl- upon dechlorination. This can explain why soil Cl- locally can be more closely related to soil OM content and the amount organically bound chlorine than to Cl- deposition.

  20. Monsoon circulations and tropical heterogeneous chlorine chemistry in the stratosphere

    NASA Astrophysics Data System (ADS)

    Solomon, Susan; Kinnison, Doug; Garcia, Rolando R.; Bandoro, Justin; Mills, Michael; Wilka, Catherine; Neely, Ryan R.; Schmidt, Anja; Barnes, John E.; Vernier, Jean-Paul; Höpfner, Michael

    2016-12-01

    Model simulations presented in this paper suggest that transport processes associated with the summer monsoons bring increased abundances of hydrochloric acid into contact with liquid sulfate aerosols in the cold tropical lowermost stratosphere, leading to heterogeneous chemical activation of chlorine species. The calculations indicate that the spatial and seasonal distributions of chlorine monoxide and chlorine nitrate near the monsoon regions of the northern hemisphere tropical and subtropical lowermost stratosphere could provide indicators of heterogeneous chlorine processing. In the model, these processes impact the local ozone budget and decrease ozone abundances, implying a chemical contribution to longer-term northern tropical ozone profile changes at 16-19 km.

  1. Formation of organic chloramines during water disinfection: chlorination versus chloramination.

    PubMed

    Lee, Wontae; Westerhoff, Paul

    2009-05-01

    Many of the available studies on formation of organic chloramines during chlorination or chloramination have involved model organic nitrogen compounds (e.g., amino acids), but not naturally occurring organic nitrogen in water. This study assessed organic chloramine formation during chlorination and chloramination of 16 natural organic matter (NOM) solutions and 16 surface waters which contained dissolved organic nitrogen (DON). Chlorination rapidly formed organic chloramines within 10 min, whereas chloramination formed organic chloramination much more slowly, reaching the maximum concentration between 2 and 120 h after the addition of monochloramine into the solutions containing DON. The average organic chloramine formation upon addition of free chlorine and monochloramine into the NOM solutions were 0.78 mg-Cl(2)/mg-DON at 10 min and 0.16 mg-Cl(2)/mg-DON at 24h, respectively. Organic chloramine formation upon chlorination and chloramination increased as the dissolved organic carbon/dissolved organic nitrogen (DOC/DON) ratio decreased (i.e., DON contents increased). Chlorination of molecular weight (10,000 Da) fractionated water showed that molecular weight of DON would not impact the amount of organic chloramines produced. Comparison of three different disinfection schemes at water treatment plants (free chlorine, preformed monochloramine, and chlorine/ammonia additions) indicated organic chloramine formation could lead to a possible overestimation of disinfection capacity in many chloraminated water systems that add chlorine followed by an ammonia addition to form monochloramine.

  2. Production of macromolecular chloramines by chlorine-transfer reactions.

    PubMed

    Bedner, Mary; MacCrehan, William A; Helz, George R

    2004-03-15

    Chlorination of treated wastewaters is undertaken to prevent dispersal of human pathogens into the environment. Except in well-nitrified effluents, the primary agents in chlorination, Cl2(g) or NaOCl(aq), are short-lived and quickly transfer oxidative chlorine to secondary agents (N-chloramines), which then participate in the disinfection process. Maturation of residual chlorine resulting from chlorine-transfer reactions is still poorly characterized. Using gel permeation and reversed-phase liquid chromatography combined with a novel, oxidant-specific detector, unanticipated trends during the maturation of residual chlorine in wastewater are identified. Within 2 min after addition of NaOCl, and continuing for several hours at least, significant amounts of oxidative chlorine are transferred to secondary agents that are moderately to strongly hydrophobic and to agents that have high relative molecular masses (Mr 1300-25000). It is hypothesized that hydrophobic stabilization of organic chloramines (RNHCl(o)) thermodynamically drives these transfers, making macromolecular chloramines the ultimate oxidative chlorine carriers. Macromolecular chloramines are expected to be sluggish oxidants, as observed in their reduction by sulfite, and are expected to be poor disinfectants. If transfer of oxidative chlorine to high Mr components occurs widely at treatment plants, then this phenomenon offers a new, physicochemical explanation for the well-known impotency of organic chloramines in wastewater disinfection.

  3. Presence and distribution of chlorinated organic compounds in streambed sediments, new jersey

    USGS Publications Warehouse

    Stackelberg, P.E.

    1997-01-01

    Concentrations of 18 hydrophobic chlorinated organic compounds in streambed sediments from 100 sites throughout New Jersey were examined to determine (1) which compounds were detected most frequently, (2) whether detection frequencies differed among selected drainage basins, and (3) whether concentrations differed significantly among selected drainage basins. Twelve drainage basins across New Jersey that contain a range of land-use patterns and population densities were selected to represent various types and degrees of development. To ensure an adequate number of samples for statistical comparison among drainage basins, the 12 selected basins were consolidated into seven drainage areas on the basis of similarities in land- use patterns and population densities. Additionally, data for three classes of chlorinated organic compounds in streambed sediments from 255 sites throughout New Jersey were examined to determine whether the presence of these compounds in streambed sediments is related to the type and degree of development within the drainage area of each sampling site. Chlorinated organic compounds detected most frequently within the seven representative drainage areas were DDT, DDE, DDD, chlordane, dieldrin, and PCBs. DDT, DDE, and DDD, which were the most widely distributed organic compounds, were detected in about 60 to 100 percent of the samples from all drainage areas hut one (where the detection rate for these compounds was about 20 to 40 percent). Chlordane and dieldrin were detected in about 80 to 100 percent of samples from highly urbanized and populated drainage areas; detection frequencies for these compounds tended to be smaller in less developed and populated areas. PCBs were detected in about 40 to 85 percent of samples from all drainage areas; detection frequencies were highest in the most heavily developed and populated areas. Analysis of variance on rank-transformed organic compound concentrations normalized to sediment organic carbon content

  4. The effect of inorganic precursors on disinfection byproduct formation during UV-chlorine/chloramine drinking water treatment.

    PubMed

    Lyon, Bonnie A; Dotson, Aaron D; Linden, Karl G; Weinberg, Howard S

    2012-10-01

    Ultraviolet (UV) disinfection is being increasingly used in drinking water treatment. It is important to understand how its application to different types of water may influence finished water quality, particularly as anthropogenic activity continues to impact the quality of source waters. The objective of this study was to evaluate the effect of inorganic precursors on the formation of regulated and unregulated disinfection byproducts (DBPs) during UV irradiation of surface waters when combined with chlorination or chloramination. Samples were collected from three drinking water utilities supplied by source waters with varying organic and inorganic precursor content. The filtered samples were treated in the laboratory with a range of UV doses delivered from low pressure (LP, UV output at 253.7 nm) and medium pressure (MP, polychromatic UV output 200-400 nm) mercury lamps followed by chlorination or chloramination, in the presence and absence of additional bromide and nitrate. The regulated trihalomethanes and haloacetic acids were not affected by UV pretreatment at disinfection doses (40-186 mJ/cm²). With higher doses (1000 mJ/cm²), trihalomethane formation was increased 30-40%. While most effects on DBPs were only observed with doses much higher than typically used for UV disinfection, there were some effects on unregulated DBPs at lower doses. In nitrate-spiked samples (1-10 mg N/L), chloropicrin formation doubled and increased three- to six-fold with 40 mJ/cm² MP UV followed by chloramination and chlorination, respectively. Bromopicrin formation was increased in samples containing bromide (0.5-1 mg/L) and nitrate (1-10 mg N/L) when pretreated with LP or MP UV (30-60% with 40 mJ/cm² LP UV and four- to ten-fold increase with 40 mJ/cm² MP UV, after subsequent chlorination). The formation of cyanogen chloride doubled and increased three-fold with MP UV doses of 186 and 1000 mJ/cm², respectively, when followed by chloramination in nitrate-spiked samples but

  5. Inactivation of adenoviruses, enteroviruses, and murine norovirus in water by free chlorine and monochloramine.

    PubMed

    Cromeans, Theresa L; Kahler, Amy M; Hill, Vincent R

    2010-02-01

    Inactivation of infectious viruses during drinking water treatment is usually achieved with free chlorine. Many drinking water utilities in the United States now use monochloramine as a secondary disinfectant to minimize disinfectant by-product formation and biofilm growth. The inactivation of human adenoviruses 2, 40, and 41 (HAdV2, HAdV40, and HAdV41), coxsackieviruses B3 and B5 (CVB3 and CVB5), echoviruses 1 and 11 (E1 and E11), and murine norovirus (MNV) are compared in this study. Experiments were performed with 0.2 mg of free chlorine or 1 mg of monochloramine/liter at pH 7 and 8 in buffered reagent-grade water at 5 degrees C. CT values (disinfectant concentration x time) for 2- to 4-log(10) (99 to 99.99%) reductions in virus titers were calculated by using the efficiency factor Hom model. The enteroviruses required the longest times for chlorine inactivation and MNV the least time. CVB5 required the longest exposure time, with CT values of 7.4 and 10 mg x min/liter (pH 7 and 8) for 4-log(10) inactivation. Monochloramine disinfection was most effective for E1 (CT values ranged from 8 to 18 mg x min/liter for 2- and 3-log(10) reductions, respectively). E11 and HAdV2 were the least susceptible to monochloramine disinfection (CT values of 1,300 and 1,600 mg-min/liter for 3-log(10) reductions, respectively). Monochloramine inactivation was most successful for the adenoviruses, CVB5, and E1 at pH 7. A greater variation in inactivation rates between viruses was observed during monochloramine disinfection than during chlorine disinfection. These data will be useful in drinking water risk assessment studies and disinfection system planning.

  6. 77 FR 41746 - Chlorinated Isocyanurates From the People's Republic of China: Preliminary Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... chlorinated isocyanurates, which are derivatives of cyanuric acid, described as chlorinated s- triazine triones. There are three primary chemical compositions of chlorinated isos: (1) Trichloroisocyanuric acid... dichloroisocyanurates (anhydrous and dihydrate forms) and trichloroisocyanuric acid. The tariff classifications 2933.69...

  7. IDENTIFICATION OF CHLORINE DIOXIDE DRINKING WATER DISINFECTION BY-PRODUCTS FORMED AT HIGH BROMIDE LEVELS

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs), haloacetic acids, and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide is a popular alternative, with over 500 dri...

  8. IDENTIFICATION OF CHLORINE DIOXIDE DRINKING WATER DISINFECTION BY-PRODUCTS FORMED AT HIGH BROMIDE LEVELS

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs), haloacetic acids, and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide is a popular alternative, with over 500 dri...

  9. IDENTIFICATION OF CHLORINE DIOXIDE AND CHLORAMINE DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide and chloramine are two popular alternative disinfectants, with...

  10. THE EFFECT OF CHLORINE EMISSIONS ON TROPOSPHERIC OZONE IN THE UNITED STATES

    EPA Science Inventory

    The effect of chlorine emissions on atmospheric ozone in the continental United States was evaluated. Atmospheric chlorine chemistry was combined with the carbon bond mechanism and incorporated into the Community Multiscale Air Quality model. Sources of chlorine included anthrop...

  11. IDENTIFICATION OF CHLORINE DIOXIDE AND CHLORAMINE DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide and chloramine are two popular alternative disinfectants, with...

  12. Decontamination of a drinking water pipeline system contaminated with adenovirus and Escherichia coli utilizing peracetic acid and chlorine.

    PubMed

    Kauppinen, Ari; Ikonen, Jenni; Pursiainen, Anna; Pitkänen, Tarja; Miettinen, Ilkka T

    2012-09-01

    A contaminated drinking water distribution network can be responsible for major outbreaks of infections. In this study, two chemical decontaminants, peracetic acid (PAA) and chlorine, were used to test how a laboratory-scale pipeline system can be cleaned after simultaneous contamination with human adenovirus 40 (AdV40) and Escherichia coli. In addition, the effect of the decontaminants on biofilms was followed as heterotrophic plate counts (HPC) and total cell counts (TCC). Real-time quantitative polymerase chain reaction (qPCR) was used to determine AdV40 and plate counting was used to enumerate E. coli. PAA and chlorine proved to be effective decontaminants since they decreased the levels of AdV40 and E. coli to below method detection limits in both water and biofilms. However, without decontamination, AdV40 remained present in the pipelines for up to 4 days. In contrast, the concentration of cultivable E. coli decreased rapidly in the control pipelines, implying that E. coli may be an inadequate indicator for the presence of viral pathogens. Biofilms responded to the decontaminants by decreased HPCs while TCC remained stable. This indicates that the mechanism of pipeline decontamination by chlorine and PAA is inactivation rather than physical removal of microbes.

  13. Chlorinated and nitrogenous disinfection by-product formation from ozonation and post-chlorination of natural organic matter surrogates.

    PubMed

    Bond, Tom; Templeton, Michael R; Rifai, Omar; Ali, Hussain; Graham, Nigel J D

    2014-09-01

    Ozonation before chlorination is associated with enhanced formation of chloropicrin, a halonitromethane disinfection by-product (DBP), during drinking water treatment. In order to elucidate reasons for this, five natural organic matter (NOM) surrogates were treated using both chlorination and ozonation-chlorination under controlled laboratory conditions. Selected surrogates comprised two phenolic compounds, two free amino acids and one dipeptide; these were resorcinol, 3-aminophenol, L-aspartic acid, β-alanine and ala-ala, respectively. Quantified DBPs included chloropicrin, chloroform, dichloroacetonitrile and trichloroacetonitrile. Relative to chlorination alone, increases in the formation of chloropicrin from ozonation-chlorination varied from 138% for 3-aminophenol to 3740% for ala-ala for the four amine surrogates. This indicates that ozone is more effective than chlorine in mediating a rate-limiting oxidation step in chloropicrin formation, most plausibly involving conversion of an amine group to a nitro group. While both hydrophilic and hydrophobic surrogates acted as chloropicrin precursors, ala-ala was the most reactive precursor following ozonation-chlorination. Since peptides are far commoner in drinking water sources than free amino acids, further research into chemical oxidation of these species by ozone and chlorine is recommended. In contrast, oxidation with ozone prior to chlorination reduced chloroform formation moderately for the two phenolic compounds.

  14. Variations in Stratospheric Inorganic Chlorine Between 1991 and 2006

    NASA Technical Reports Server (NTRS)

    Lary, D. J.; Waugh, D. W.; Douglass, A. R.; Stolarski, R. S.; Newman, P. A.; Mussa, H.

    2007-01-01

    So how quickly will the ozone hole recover? This depends on how quickly the chlorine content (Cl2) of the atmosphere will decline. The ozone hole forms over the Antarctic each southern spring (September and October). The extremely small ozone amounts in the ozone hole are there because of chemical reactions of ozone with chlorine. This chlorine originates largely from industrially produced chlorofluorocarbon (CFC) compounds. An international agreement, the Montreal Protocol, is drastically reducing the amount of chlorine-containing compounds that we are releasing into the atmosphere. To be able to attribute changes in stratospheric ozone to changes in chlorine we need to know the distribution of atmospheric chlorine. However, due to a lack of continuous observations of all the key chlorine gases, producing a continuous time series of stratospheric chlorine has not been achieved to date. We have for the first time devised a technique to make a 17-year time series for stratospheric chlorine that uses the long time series of HCl observations made from several space borne instruments and a neural network. The neural networks allow us to both inter-calibrate the various HCl instruments and to infer the total amount of atmospheric chlorine from HCl. These new estimates of Cl, provide a much needed critical test for current global models that currently predict significant differences in both Cl(sub y) and ozone recovery. These models exhibit differences in their projection of the recovery time and our chlorine content time series will help separate the good from the bad in these projections.

  15. Chlorine residuals and haloacetic acid reduction in rapid sand filtration.

    PubMed

    Chuang, Yi-Hsueh; Wang, Gen-Shuch; Tung, Hsin-hsin

    2011-11-01

    It is quite rare to find biodegradation in rapid sand filtration for drinking water treatment. This might be due to frequent backwashes and low substrate levels. High chlorine concentrations may inhibit biofilm development, especially for plants with pre-chlorination. However, in tropical or subtropical regions, bioactivity on the sand surface may be quite significant due to high biofilm development--a result of year-round high temperature. The objective of this study is to explore the correlation between biodegradation and chlorine concentration in rapid sand filters, especially for the water treatment plants that practise pre-chlorination. In this study, haloacetic acid (HAA) biodegradation was found in conventional rapid sand filters practising pre-chlorination. Laboratory column studies and field investigations were conducted to explore the association between the biodegradation of HAAs and chlorine concentrations. The results showed that chlorine residual was an important factor that alters bioactivity development. A model based on filter influent and effluent chlorine was developed for determining threshold chlorine for biodegradation. From the model, a temperature independent chlorine concentration threshold (Cl(threshold)) for biodegradation was estimated at 0.46-0.5mgL(-1). The results imply that conventional filters with adequate control could be conducive to bioactivity, resulting in lower HAA concentrations. Optimizing biodegradable disinfection by-product removal in conventional rapid sand filter could be achieved with minor variation and a lower-than-Cl(threshold) influent chlorine concentration. Bacteria isolation was also carried out, successfully identifying several HAA degraders. These degraders are very commonly seen in drinking water systems and can be speculated as the main contributor of HAA loss.

  16. Chlorine gas exposure and the lung: a review.

    PubMed

    Das, R; Blanc, P D

    1993-01-01

    We conducted a review of the literature detailing the respiratory effects of chlorine, an extremely important but toxic halogen. Historically, the heaviest mass inhalational exposures to chlorine resulted from World War I gassing. Currently potential human exposure to chlorine inhalation occurs in a variety of settings in the workplace, as a result of inadvertent environmental releases, and even in the home due to household cleaning mishaps. Chlorine species are highly reactive; tissue injury results from exposure to chlorine, hydrochloric acid, hypochlorous acid, or chloramines. Acute, high level exposure to chlorine gas in occupational or environmental settings results in a variety of dose-related lung effects ranging from respiratory mucus membrane irritation to pulmonary edema. Pulmonary function testing can reveal either obstructive or restrictive deficits immediately following exposure, with resolution over time in the majority of cases. However, some of those exposed may demonstrate long-term persistent obstructive or restrictive pulmonary deficits or increased nonspecific airway reactivity after high level exposure to chlorine gas. Symptoms and signs following inhalation of mixtures of chlorine-containing cleaners in the home are similar to those after occupational exposures and environmental releases. Although generally less severe, these events may be extremely common. Controlled human exposure data suggest that some subjects may be more responsive to the effects of chlorine gas; epidemiologic data also indicate that certain subpopulations (e.g., smokers) may be at greater risk of adverse outcome after chlorine inhalation. Although these findings are intriguing, additional study is needed to better delineate the risk factors that predispose toward the development of long-term pulmonary sequelae following chlorine gas exposure.

  17. Aqueous chlorination of carbamazepine: kinetic study and transformation product identification.

    PubMed

    Soufan, M; Deborde, M; Delmont, A; Legube, B

    2013-09-15

    Carbamazepine reactivity and fate during chlorination was investigated in this study. From a kinetic standpoint, a third-order reaction (first-order relative to the CBZ concentration and second-order relative to the free chlorine concentration) was observed at neutral and slightly acidic pH, whereas a second-order reaction (first order relative to the CBZ concentration and first order relative to the free chlorine concentration) was noted under alkaline conditions. In order to gain insight into the observed pH-dependence of the reaction order, elementary reactions (i.e. reactions of Cl2, Cl2O, HOCl with CBZ and of ClO(-) with CBZ or of HOCl with the ionized form of CBZ) were highlighted and second order rate constants of each of them were calculated. Close correlations between the experimental and modeled values were obtained under these conditions. Cl2 and Cl2O were the main chlorination agents at neutral and acidic pH. These results indicate that, for a 1 mg/L free chlorine concentration and 1-10 mg/L chloride concentration at pH 7, halflives about 52-69 days can be expected. A low reactivity of chlorine with CBZ could thus occur under the chlorination steps used during water treatment. From a mechanistic viewpoint, several transformation products were observed during carbamazepine chlorination. As previously described for the chlorination of polynuclear aromatic or unsaturated compounds, we proposed monohydroxylated, epoxide, diols or chlorinated alcohol derivatives of CBZ for the chemical structures of these degradation products. Most of these compounds seem to accumulate in solution in the presence of excess chlorine.

  18. High Levels of Molecular Chlorine found in the Arctic Atmosphere

    NASA Astrophysics Data System (ADS)

    Liao, J.; Huey, L. G.; Liu, Z.; Tanner, D.; Cantrell, C. A.; Orlando, J. J.; Flocke, F. M.; Shepson, P. B.; Weinheimer, A. J.; Hall, S. R.; Beine, H.; Wang, Y.; Ingall, E. D.; Thompson, C. R.; Hornbrook, R. S.; Apel, E. C.; Fried, A.; Mauldin, L.; Smith, J. N.; Staebler, R. M.; Neuman, J. A.; Nowak, J. B.

    2014-12-01

    Chlorine radicals are a strong atmospheric oxidant, particularly in polar regions where levels of hydroxyl radicals can be quite low. In the atmosphere, chlorine radicals expedite the degradation of methane and tropospheric ozone and the oxidation of mercury to more toxic forms. Here, we present direct measurements of molecular chlorine levels in the Arctic marine boundary layer in Barrow, Alaska, collected in the spring of 2009 over a six-week period using chemical ionization mass spectrometry. We detected high levels of molecular chlorine of up to 400 pptv. Concentrations peaked in the early morning and late afternoon and fell to near-zero levels at night. Average daytime molecular chlorine levels were correlated with ozone concentrations, suggesting that sunlight and ozone are required for molecular chlorine formation. Using a time-dependent box model, we estimated that the chlorine radicals produced from the photolysis of molecular chlorine on average oxidized more methane than hydroxyl radicals and enhanced the abundance of short-lived peroxy radicals. Elevated hydroperoxyl radical levels, in turn, promoted the formation of hypobromous acid, which catalyzed mercury oxidation and the breakdown of tropospheric ozone. Therefore, we propose that molecular chlorine exerts a significant effect on the atmospheric chemistry in the Arctic. While the formation mechanisms of molecular chlorine are not yet understood, the main potential sources of chlorine include snowpack, sea salt, and sea ice. There is recent evidence of molecular halogen (Br2 and Cl2) formation in the Arctic snowpack. The coverage and composition of the snow may control halogen chemistry in the Arctic. Changes of sea ice and snow cover in the changing climate may affect air-snow-ice interaction and have a significant impact on the levels of radicals, ozone, mercury and methane in the Arctic troposphere.

  19. Cellular Response of the Amoeba Acanthamoeba castellanii to Chlorine, Chlorine Dioxide, and Monochloramine Treatments ▿

    PubMed Central

    Mogoa, Emerancienne; Bodet, Charles; Morel, Franck; Rodier, Marie-Hélène; Legube, Bernard; Héchard, Yann

    2011-01-01

    Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested on A. castellanii trophozoites. Doses of disinfectants leading to up to a 3-log reduction were compared by flow cytometry and electron microscopy. Chlorine treatment led to size reduction, permeabilization, and retraction of pseudopods. In addition, treatment with chlorine dioxide led to a vacuolization of the cytoplasm. Monochloramine had a dose-dependent effect. At the highest doses monochloramine treatment resulted in almost no changes in cell size and permeability, as shown by flow cytometry, but the cell surface became smooth and dense, as seen by electron microscopy. We show that these disinfectants globally induced size reduction, membrane permeabilization, and morphological modifications but that they have a different mode of action on A. castellanii. PMID:21602398

  20. Cellular response of the amoeba Acanthamoeba castellanii to chlorine, chlorine dioxide, and monochloramine treatments.

    PubMed

    Mogoa, Emerancienne; Bodet, Charles; Morel, Franck; Rodier, Marie-Hélène; Legube, Bernard; Héchard, Yann

    2011-07-01

    Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested on A. castellanii trophozoites. Doses of disinfectants leading to up to a 3-log reduction were compared by flow cytometry and electron microscopy. Chlorine treatment led to size reduction, permeabilization, and retraction of pseudopods. In addition, treatment with chlorine dioxide led to a vacuolization of the cytoplasm. Monochloramine had a dose-dependent effect. At the highest doses monochloramine treatment resulted in almost no changes in cell size and permeability, as shown by flow cytometry, but the cell surface became smooth and dense, as seen by electron microscopy. We show that these disinfectants globally induced size reduction, membrane permeabilization, and morphological modifications but that they have a different mode of action on A. castellanii.

  1. Scenarios Evaluation Tool for Chlorinated Solvent MNA

    SciTech Connect

    Vangelas, Karen; Michael J. Truex; Charles J. Newell; Brian Looney

    2007-02-28

    Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and journal articles, as well

  2. Fractionation of fluorine, chlorine and other trace elements during differentiation of a tholeiitic magma.

    NASA Technical Reports Server (NTRS)

    Greenland, L.; Lovering, J. F.

    1966-01-01

    Fluorine, chlorine and other trace elements determined through differentiated tholeiitic dolerite sill from Tasmania using statistical techniques, showing hydroxyl lattice sites by chlorine and fluorine

  3. Advantages and disadvantages of chemical oxidation and disinfection by ozone and chlorine dioxide.

    PubMed

    Fiessinger, F; Richard, Y; Montiel, A; Musquere, P

    1981-04-01

    Ozone and chlorine dioxide present definite advantages and disadvantages over chlorination. Chlorination, particularly for the removal of ammonia and the maintenance of a disinfectant residual in the distribution system has decisive advantages and will be difficult to replace. Ozone and chlorine dioxide seem to produce fewer carcinogenic by-products but the risk for acute toxicity, especially from the chlorites which follow chlorine dioxide, is higher than with chlorine. Chlorine dioxide and more particularly ozone should be considered as useful complements to chlorination, but no strong oxidative treatment should be applied before most of the organic matter has been removed.

  4. Chlorine isotope fractionation in the stratosphere.

    PubMed

    Laube, J C; Kaiser, J; Sturges, W T; Bönisch, H; Engel, A

    2010-09-03

    Chlorinated organic compounds are important contributors to the anthropogenic enhancement of stratospheric ozone depletion. We report measurements of stratospheric isotope fractionation in such a compound. Stratospheric and tropospheric difluorodichloromethane (CF2Cl2) were found to have the largest relative 37Cl/35Cl isotope ratio difference ever measured for a natural compound. The increase of the relative isotope ratio difference with altitude was tightly correlated to the corresponding decrease in the CF2Cl2 mixing ratio. The observed relationship has a high potential to provide new insights into atmospheric chemistry and transport processes.

  5. Chlorination of alumina in kaolinitic clay

    NASA Astrophysics Data System (ADS)

    Grob, B.; Richarz, W.

    1984-09-01

    The chlorination of alumina in kaolinitic clay with Cl2 and CO gas mixtures was studied gravimetrically. The effects of the calcination method and of NaCl addition on the reactivity of the clay were examined. Fast reaction rates were achieved only with samples previously exposed to a sulfating treatment. Optimum conditions, with maximum yield and selectivity to A1C13 and minimum SiO2 conversion, were found between 770 and 970 K. At higher temperatures the SiCl4 formed poisons the reactive alumina surface by selective chemisorption with a marked decrease of the reaction rate.

  6. Chlorine and gallium solar neutrino experiments

    NASA Astrophysics Data System (ADS)

    Bahcall, J. N.; Cleveland, B. T.; Davis, R., Jr.; Rowley, J. K.

    1985-05-01

    The authors reevaluate the expected capture rates and their uncertainties for the chlorine and gallium solar neutrino experiments using improved laboratory data and new theoretical calculations. They also derive a minimum value for the flux of solar neutrinos that is expected provided only (1) that the sun is currently producing energy by fusing light nuclei at the rate that it is emitting energy in the form of photons from its surface and (2) that nothing happens to solar neutrinos on their way to earth. These results are used - together with Monte Carlo simulations - to determine how much gallium is required for a solar neutrino experiment.

  7. Chlorinated didemnins from the tunicate Trididemnum solidum.

    PubMed

    Ankisetty, Sridevi; Khan, Shabana I; Avula, Bharathi; Gochfeld, Deborah; Khan, Ikhlas A; Slattery, Marc

    2013-11-11

    Chemical investigation of the tunicate Trididemnum solidum resulted in the isolation of two new chlorinated compounds belonging to the didemnin class, along with two known compounds didemnin A and didemnin B. The structural determination of the compounds was based on extensive NMR and mass spectroscopic analysis. The isolated compounds 1-4 were tested for their anti-inflammatory activity using in vitro assays for inhibition of inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB) activity. The anti-cell proliferative activity of the above compounds was also evaluated against four solid tumor cell lines.

  8. The isotopic composition of cosmic ray chlorine

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.

    1985-01-01

    The isotopic composition of galactic cosmic ray chlorine (approx. = 225 MeV/amu) has been studied using the high energy cosmic ray experiment on the International Sun Earth Explorer 3 (ISEE-3) spacecraft. The abundances of 35C1 and 37C1 are found to be consistent with the secondary production expected from a propagation model developed to account for both light and subiron secondaries. An upper limit on the abundance of the radioactive isotope 36C1 (halflife approx. = 0.3 Myr) is used to set a lower limit on the confinement time of cosmic rays of approximately 1 Myr.

  9. Immunogenic cell death due to a new photodynamic therapy (PDT) with glycoconjugated chlorin (G-chlorin)

    PubMed Central

    Tanaka, Mamoru; Kataoka, Hiromi; Yano, Shigenobu; Sawada, Takuya; Akashi, Haruo; Inoue, Masahiro; Suzuki, Shugo; Inagaki, Yusuke; Hayashi, Noriyuki; Nishie, Hirotada; Shimura, Takaya; Mizoshita, Tsutomu; Mori, Yoshinori; Kubota, Eiji; Tanida, Satoshi; Takahashi, Satoru; Joh, Takashi

    2016-01-01

    Both the pre-apoptotic exposure to calreticulin (CRT) and the post-apoptotic release of high-mobility group box 1 protein (HMGB1) are required for immunogenic cell death. Photodynamic therapy (PDT) uses non-toxic photosensitizers and visible light at a specific wavelength in combination with oxygen to produce cytotoxic reactive oxygen species that kill malignant cells by apoptosis and/or necrosis, shut down the tumor microvasculature, and stimulate the host immune system. We have previously shown that glycoconjugated chlorin (G-chlorin) has superior cancer cell selectivity and effectively suppresses the growth of xenograft tumors. In the present study, we evaluated the immunogenicity of PDT with G-chlorin treatment in colon cancer cells. PDT with G-chlorin suppressed CT26 (mouse colon cancer cells) tumor growth considerably more efficiently in immunocompetent mice (wild-type mice, allograft model) than in immune-deficient mice (nude mice, xenograft model), although control treatments were not different between the two. This treatment also induced CRT translocation and HMGB1 release in cells, as shown by western blot and immunofluorescence staining. To evaluate the use of PDT-treated cells as a tumor vaccine, we employed a syngeneic mouse tumor model (allograft model). Mice inoculated with PDT-treated CT26 cells were significantly protected against a subsequent challenge with live CT26 cells, and this protection was inhibited by siRNA for CRT or HMGB1. In conclusion, PDT with G-chlorin treatment induced immunogenic cell death in a mouse model, where the immunogenicity of this treatment was directed by CRT expression and HMGB1 release. PMID:27363018

  10. Mechanism of chloroform formation by chlorine and its inhibition by chlorine dioxide.

    PubMed

    Suh, D H; Abdel-Rahman, M S

    1985-04-01

    Chlorination of drinking waters leads to the formation of trihalomethanes arising from the reaction of chlorine and organic substances. Therefore, chlorine dioxide (ClO2) which does not produce trihalomethanes is being considered as an alternative disinfectant. It has been reported that rat blood chloroform levels were significantly decreased after treatment with ClO2. Studies were conducted to investigate the mechanisms of chloroform formation by chlorine (HOCl) and its inhibition by ClO2 (5 mg/liter) in the presence of HOCl (5, 10, 20 mg/liter) using sodium citrate (1 mM) as an organic substance. When citrate was reacted with HOCl, beta-ketoglutaric acid, monochloroacetone, dichloroacetone, and trichloroacetone were produced as reaction intermediates and chloroform as a final product. There was a linear relationship between the concentrations of HOCl and the formation of chloroform. When ClO2 was substituted for HOCl, neither chloroform was formed nor citrate concentration was changed. Further, chloroform formation was inhibited by ClO2 in the presence of HOCl and citrate and the degree of inhibition depends on the ratio of ClO2/HOCl. Gas chromatograph/mass spectrometer analysis indicates that this inhibition is related to the reaction of ClO2 with beta-ketoglutaric acid to form malonic acid. Chlorine dioxide also oxidizes other intermediates such as monochloroacetone and dichloroacetone to acetic acid. These studies indicate that ClO2 inhibits chloroform formation from citrate and HOCl by the oxidation of the intermediates which were involved in the reaction of chloroform formation.

  11. Modelling of the natural chlorine cycling in a coniferous stand: implications for chlorine-36 behaviour in a contaminated forest environment.

    PubMed

    Hoof, Catherine Van den; Thiry, Yves

    2012-05-01

    Considered as one of the most available radionuclide in soil-plant system, ³⁶Cl is of potential concern for long-term management of radioactive wastes, due to its high mobility and its long half-life. To evaluate the risk of dispersion and accumulation of ³⁶Cl in the biosphere as a consequence of a potential contamination, there is a need for an appropriate understanding of the chlorine cycling dynamics in the ecosystems. To date, a small number of studies have investigated the chlorine transfer in the ecosystem including the transformation of chloride to organic chlorine but, to our knowledge, none have modelled this cycle. In this study, a model involving inorganic as well as organic pools in soils has been developed and parameterised to describe the biogeochemical fate of chlorine in a pine forest. The model has been evaluated for stable chlorine by performing a range of sensitivity analyses and by comparing the simulated to the observed values. Finally a range of contamination scenarios, which differ in terms of external supply, exposure time and source, has been simulated to estimate the possible accumulation of ³⁶Cl within the different compartments of the coniferous stand. The sensitivity study supports the relevancy of the model and its compartments, and has highlighted the chlorine transfers affecting the most the residence time of chlorine in the stand. Compared to observations, the model simulates realistic values for the chlorine content within the different forest compartments. For both atmospheric and underground contamination scenarios most of the chlorine can be found in its organic form in the soil. However, in case of an underground source, about two times less chlorine accumulates in the system and proportionally more chlorine leaves the system through drainage than through volatilisation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Effects of isocyanuric acid on the monochlorodimedone chlorinating rates with free chlorine and ammonia chloramine in water.

    PubMed

    Tachikawa, Mariko; Sayama, Chiharu; Saita, Kiyotaka; Tezuka, Masakatsu; Sawamura, Ryoji

    2002-05-01

    Changes in monochlorodimedone (MCD) chlorinating rates with free chlorine (mixture of HOCl and OCl-) and ammonia monochloramine (NH2Cl) in water at pH 7 by the addition of isocyanuric acid (H3Cy) were determined at room temperature. Decreases in MCD absorbance at 290nm in equimolar (0.04mM) reactions of MCD and free available chlorine solutions containing H3Cy (0.01-1.60 mM) were recorded in a stopped-flow spectrophotometer. The rates indicate second-order reactions. Since the rate with free chlorine was high (> 7.6 x 10(6) M(-1) s(-1)), the amounts of free chlorine in the solutions could be distinguished from that of chlorinated cyanurates. The chlorinating rates with chlorinated cyanurates decreased with an increase in H3Cy concentrations. Plotting the rates against the molar ratio of chlorine to H3Cy showed a linear correlation and the rates with chlorinated cyanurates (H2ClCy) was estimated at 0.5 x 10(5) M(-1) s(-1). In contrast, the rates with the NH2Cl solution containing H3Cy increased with an increase in H3Cy concentrations, increasing from 1.2 x 10 to 2.7 x 10 M(-1) s(-1) by the addition of 1.55 mM H3Cy. The DPD color development rates (OD512/t1/2/M) with free available chlorine (0.015mM) declined from 1.3 x 10(5) to 0.9 x 10(5)M(-1) by the addition of 0.61 mM H3Cy.

  13. Trihalomethane formation by chlorination of ammonium- and bromide-containing groundwater in water supplies of Hanoi, Vietnam.

    PubMed

    Duong, Hong Anh; Berg, Michael; Hoang, Minh Hang; Pham, Hung Viet; Gallard, Hervé; Giger, Walter; von Gunten, Urs

    2003-07-01

    The occurrence and the fate of trihalomethanes (THMs) in the water supply system of Hanoi City, Vietnam was investigated from 1998 to 2001. The chlorination efficiency, THM speciation, and, THM formation potential (THMFP) was determined in the water works and in tap water. With regard to THM formation, three types of groundwater resources were identified: (I) high bromide, (II) low bromide, and (III) high bromide combined with high ammonia and high dissolved organic carbon (DOC) concentrations. Under typical treatment conditions (total chlorine residual 0.5-0.8 mg/L), the total THM formation was always below WHO, EU, and USEPA drinking water standards and decreased in the order type I > type II > type III, although the THMFP was > 400 micrograms/L for type III water. The speciation showed > 80% of bromo-THMs in type I water due to the noticeable high bromide level (< or = 140 micrograms/L). In type II water, the bromo-THMs still accounted for some 40% although the bromide concentration is significantly lower (< or = 30 micrograms/L). In contrast, only traces of bromo-THMs were formed (approximately 5%) in type III water, despite bromide levels were high (< or = 240 micrograms/L). This observation could be explained by competition kinetics of chlorine reacting with ammonia and bromide. Based on chlorine exposure (CT) estimations, it was concluded that the current chlorination practice for type I and II waters is sufficient for > or = 2-log inactivation of Giardia lamblia cysts. However, in type III water the applied chlorine is masked as chloramine with a much lower disinfection efficiency. In addition to high levels of ammonia, type III groundwater is also contaminated by arsenic that is not satisfactory removed during treatment. N-nitrosodimethylamine, a potential carcinogen suspected to be formed during chloramination processes, was below the detection limit of 0.02 microgram/L in type III water.

  14. ATRAZOME CHLORINATION TRANSFORMATION PRODUCTS UNDER DRINKING WATER DISTRIBUTION SYSTEM CONDITIONS

    EPA Science Inventory

    Chlorination is a commonly-used disinfectant step in drinking water treatment. Should free chlorine be added to water used as a drinking water source, it is widely understood that many biological species in the water, along with dissolved organic and inorganic chemicals, will rea...

  15. 75 FR 51113 - Chlorinated Isocyanurates From China and Spain

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... COMMISSION Chlorinated Isocyanurates From China and Spain AGENCY: United States International Trade... chlorinated isocyanurates from China and Spain. SUMMARY: The Commission hereby gives notice of the scheduling... from China and Spain would be likely to lead to continuation or recurrence of material injury within...

  16. MODELING CHLORINE RESIDUALS IN DRINKING-WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    A mass-transfer-based model is developed for predicting chlorine decay in drinking-water distribution networks. The model considers first-order reactions of chlorine to occur both in the bulk flow and at the pipe wall. The overall rate of the wall reaction is a function of the ...

  17. 78 FR 66767 - Chlorinated Isocyanurates From China and Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... COMMISSION Chlorinated Isocyanurates From China and Japan Determinations On the basis of the record \\1... injured by reason of imports from China and Japan of chlorinated isocyanurates, provided for in... than fair value (LTFV) from Japan and subsidized by the Government of China.\\2\\ \\1\\ The record is...

  18. Degradation Products of Benzophenone-3 in Chlorinated Seawater Swimming Pools.

    PubMed

    Manasfi, Tarek; Storck, Veronika; Ravier, Sylvain; Demelas, Carine; Coulomb, Bruno; Boudenne, Jean-Luc

    2015-08-04

    Oxybenzone (2-hydroxy-4-methoxyphenone, benzophenone-3) is one of the UV filters commonly found in sunscreens. Its presence in swimming pools and its reactivity with chlorine has already been demonstrated but never in seawater swimming pools. In these pools, chlorine added for disinfection results in the formation of bromine, due to the high levels of bromide in seawater, and leads to the formation of brominated disinfection byproducts, known to be more toxic than chlorinated ones. Therefore, it seems important to determine the transformation products of oxybenzone in chlorinated seawater swimming pools; especially that users of seawater swimming pools may apply sunscreens and other personal-care products containing oxybenzone before going to pools. This leads to the introduction of oxybenzone to pools, where it reacts with bromine. For this purpose, the reactivity of oxybenzone has been examined as a function of chlorine dose and temperature in artificial seawater to assess its potential to produce trihalomethanes and to determine the byproducts generated following chlorination. Increasing doses of chlorine and increasing temperatures enhanced the formation of bromoform. Experiments carried out with excess doses of chlorine resulted in the degradation of oxybenzone and allowed the determination of the degradation mechanisms leading to the formation of bromoform. In total, ten transformation products were identified, based on which the transformation pathway was proposed.

  19. MODELING CHLORINE RESIDUALS IN DRINKING-WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    A mass-transfer-based model is developed for predicting chlorine decay in drinking-water distribution networks. The model considers first-order reactions of chlorine to occur both in the bulk flow and at the pipe wall. The overall rate of the wall reaction is a function of the ...

  20. CHARACTERIZATION OF CHLORINATION TRANSFORMATION PRODUCTS OF SELECTED PESTICIDES

    EPA Science Inventory

    Chlorination is a commonly-used disinfectant step in drinking water treatment. Should free chlorine be added to water used as a drinking water source, it is widely understood that many biological species in the water along with dissolved organic and inorganic chemicals will react...

  1. Chlorine Analysis - Water. Training Module 5.260.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the procedures for chlorine residual analysis. It includes objectives, an instructor guide, and student handouts. The module addresses the determination of combined and free residual chlorine in water supply samples using three…

  2. Chlorine-resistant composite membranes with high organic rejection

    DOEpatents

    McCray, Scott B.; Friesen, Dwayne T.; Barss, Robert P.; Nelson, Leslie D.

    1996-01-01

    A method for making a chlorine-resistant composite polyamide membrane having high organic rejection, the essential step of which comprises treating a conventional composite membrane with an acyl halide. The novel membrane is especially suitable for the treatment of water containing chlorine or lower molecular weight organic compounds.

  3. Chlorine Dioxide Induced Multiple Chemical Sensitivity: MMPI Validity Problems.

    ERIC Educational Resources Information Center

    Tentoni, Stuart C.

    This paper discusses Minnesota Multiphasic Personality Inventory (MMPI) data obtained from individuals exposed to chlorine dioxide in the workplace who developed Multiple Chemical Sensitivity Syndrome. The paper explores current research on chlorine dioxide exposed persons who were misdiagnosed on the basis of MMPI interpretations. Difficulties…

  4. Chlorine isotope fractionation between chloride (Cl-) and dichlorine (Cl2)

    NASA Astrophysics Data System (ADS)

    Giunta, Thomas; Labidi, Jabrane; Eggenkamp, Hans G. M.

    2017-09-01

    The use of chlorine stable isotopes (35Cl and 37Cl) can help to constrain natural processes that involve chlorine species with different oxidation states. Theoretical studies based on thermodynamic and quantum mechanical approaches predict large isotope fractionation during redox reactions but to date, these reactions have not been studied experimentally.

  5. INACTIVATION OF BACILLUS GLOBIGII BY CHLORINATION: A HIERARCHICAL BAYESIAN MODEL

    EPA Science Inventory

    Recent events where spores of Bacillus anthracis have been used as a bioterrorist weapon have prompted interest in determining the resistance of this organism to commonly used disinfectants, such as chlorine, chlorine dioxide and ozone. This work was undertaken to study ...

  6. CHARACTERIZATION OF CHLORINATION TRANSFORMATION PRODUCTS OF SELECTED PESTICIDES

    EPA Science Inventory

    Chlorination is a commonly-used disinfectant step in drinking water treatment. Should free chlorine be added to water used as a drinking water source, it is widely understood that many biological species in the water along with dissolved organic and inorganic chemicals will react...

  7. Chlorine Dioxide Induced Multiple Chemical Sensitivity: MMPI Validity Problems.

    ERIC Educational Resources Information Center

    Tentoni, Stuart C.

    This paper discusses Minnesota Multiphasic Personality Inventory (MMPI) data obtained from individuals exposed to chlorine dioxide in the workplace who developed Multiple Chemical Sensitivity Syndrome. The paper explores current research on chlorine dioxide exposed persons who were misdiagnosed on the basis of MMPI interpretations. Difficulties…

  8. Effects of Chlorine Concentration on the Structure of Poliovirus

    PubMed Central

    Alvarez, Maria E.; O'Brien, R. T.

    1982-01-01

    Chlorine concentrations below 0.8 mg/liter inactivated poliovirus without causing separation of the viral components. These results indicate that the release of RNA from the capsids is the result, not the cause, of virus inactivation by chlorine. PMID:6275791

  9. Experimental and Theoretical Studies of Atmosphereic Inorganic Chlorine Chemistry

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.; Friedl, Randall R.

    1993-01-01

    Over the last five years substantial progress has been made in defining the realm of new chlorine chemistry in the polar stratosphere. Application of existing experimental techniques to potentially important chlorine-containing compounds has yielded quantitative kinetic and spectroscopic data as well as qualitative mechanistic insights into the relevant reactions.

  10. Predicting Chlorine Residuals and Formation of TTHMs in Drinking Water

    EPA Science Inventory

    Chlorination is the most widely practiced form of disinfection in the United States. It is highly effective against most microbiological contaminants. However, there is concern that the disinfection by-products (DBPs) formed by the use of chlorine might be carcinogenic. One class...

  11. INACTIVATION OF BACILLUS GLOBIGII BY CHLORINATION: A HIERARCHICAL BAYESIAN MODEL

    EPA Science Inventory

    Recent events where spores of Bacillus anthracis have been used as a bioterrorist weapon have prompted interest in determining the resistance of this organism to commonly used disinfectants, such as chlorine, chlorine dioxide and ozone. This work was undertaken to study ...

  12. [Inactivation and removal of chlorine dioxide on cyclops of zooplankton].

    PubMed

    Zhao, Zhi-Wei; Cui, Fu-Yi; Lin, Tao; Liu, Guo-Ping

    2007-08-01

    Comparative experiments on the inactivation of cyclops by chlorine dioxide and chlorine were conducted. Batch experiments were performed in order to analyze the influence of pH value, organic precursor concentration on the rate of inactivation of cyclops with chlorine dioxide. In addition, the synergistic effect of different pre-oxidation followed by coagulation process on removal of cyclops in raw water was evaluated. It was found that chlorine dioxide possessed better inactivation effect than chlorine. Cyclops can be completely inactivated after 30 min of contact time by low dosage of chlorine dioxide (1.0 mg/L). The rate of inactivation was essentially the same at pH 5.7 and 8.0, and pH 9.8 resulted in the 10% of decrease in inactivation rate of cyclops than pH 5.7 - 8.0 in same contact time. The organic precursor concentration had negative effects on inactivation, and the higher the organic precursor concentration was, the lower inactivation rate of cyclops was achieved. The coagulation jar test showed that cyclops in the raw water could be completely removed by synergistic effect of chlorine dioxide pre-oxidation followed by coagulation process at chlorine dioxide dosage of 0.9 mg/L.

  13. Altered UV absorbance and cytotoxicity of chlorinated sunscreen agents.

    PubMed

    Sherwood, Vaughn F; Kennedy, Steven; Zhang, Hualin; Purser, Gordon H; Sheaff, Robert J

    2012-12-01

    Sunscreens are widely utilized due to the adverse effects of ultraviolet (UV) radiation on human health. The safety of their active ingredients as well as that of any modified versions generated during use is thus of concern. Chlorine is used as a chemical disinfectant in swimming pools. Its reactivity suggests sunscreen components might be chlorinated, altering their absorptive and/or cytotoxic properties. To test this hypothesis, the UV-filters oxybenzone, dioxybenzone, and sulisobenzone were reacted with chlorinating agents and their UV spectra analyzed. In all cases, a decrease in UV absorbance was observed. Given that chlorinated compounds can be cytotoxic, the effect of modified UV-filters on cell viability was examined. Chlorinated oxybenzone and dioxybenzone caused significantly more cell death than unchlorinated controls. In contrast, chlorination of sulisobenzone actually reduced cytotoxicity of the parent compound. Exposing a commercially available sunscreen product to chlorine also resulted in decreased UV absorbance, loss of UV protection, and enhanced cytotoxicity. These observations show chlorination of sunscreen active ingredients can dramatically decrease UV absorption and generate derivatives with altered biological properties.

  14. ATRAZOME CHLORINATION TRANSFORMATION PRODUCTS UNDER DRINKING WATER DISTRIBUTION SYSTEM CONDITIONS

    EPA Science Inventory

    Chlorination is a commonly-used disinfectant step in drinking water treatment. Should free chlorine be added to water used as a drinking water source, it is widely understood that many biological species in the water, along with dissolved organic and inorganic chemicals, will rea...

  15. Mechanisms of Inactivation of Hepatitis A Virus by Chlorine

    PubMed Central

    Li, Jun Wen; Xin, Zhong Tao; Wang, Xin Wei; Zheng, Jin Lai; Chao, Fu Huan

    2002-01-01

    The study was intended to investigate the feasibility of reverse transcription-PCR (RT-PCR) for evaluation of the efficacy of inactivation of viruses in water and to elucidate the mechanisms of inactivation of hepatitis A virus (HAV) by chlorine. Cell culture, enzyme-linked immunosorbent assay, and long-overlap RT-PCR were used to detect the infectivity, antigenicity, and entire genome of HAV inactivated or destroyed by chlorine. The cell culture results revealed the complete inactivation of infectivity after 30 min of exposure to 10 or 20 mg of chlorine per liter and the highest level of sensitivity in the 5′ nontranslated regions (5′NTR), inactivation of which took as much time as the inactivation of infectivity of HAV by chlorine. However, antigenicity was not completely destroyed under these conditions. Some fractions in the coding region were resistant to chlorine. To determine the specific region of the 5′NTR lost, three segments of primers were redesigned to monitor the region from bp 1 to 1023 across the entire genome. It was shown that the sequence from bp 1 to 671 was the region most sensitive to chlorine. The results suggested that the inactivation of HAV by chlorine was due to the loss of the 5′NTR. It is believed that PCR can be used to assess the efficacy of disinfection of HAV by chlorine as well as to research the mechanisms of inactivation of viruses by disinfectants. PMID:12324343

  16. Competing chlorination of 1,1-dichloroethane and chlorobenzene

    SciTech Connect

    Aver'yanov, V.A.

    1988-04-20

    The competition between the substitutive chlorination of 1,1-dichloroethane and the additive chlorination of chlorobenzene under photoinitiation conditions with wide variation of the temperature (248-323/degree/K), the chlorine concentration (O-1.23 M), and the ratio of the competitors was investigated. The fraction of the substitutive chlorination of 1,1-dichloroethane increases with increase in the temperature and the (CH/sub 3/CHCl/sub 2/)/(C/sub 6/H/sub 5/Cl) ratio and with decrease in the concentration of molecular chlorine. The results were interpreted by a free-radical mechanism of chlorination involving the formation of /pi/ complexes between the chlorine atoms and the chlorobenzene molecules ArH /yields/ /dot char/Cl and rearrangement of the latter into /sigma/ complexes. On the basis of the proposed mechanism an equation was obtained for the selectivity of the chlorination of the system with parameters reflecting the complexing characteristics of the aromatic solvent. A comparative analysis of these parameters for chlorobenzene and o-dichlorobenzene in terms of the structure of these solvents is given.

  17. Increase of cytotoxicity during wastewater chlorination: Impact factors and surrogates.

    PubMed

    Du, Ye; Wu, Qian-Yuan; Lu, Yun; Hu, Hong-Ying; Yang, Yang; Liu, Rui; Liu, Feng

    2017-02-15

    Toxic and harmful disinfection byproducts (DBPs) were formed during wastewater chlorination. It was recently suggested that cytotoxicity to mammalian cells reflects risks posed by chlorinated wastewater. Here, ATP assays were performed to evaluate the cytotoxicity to mammalian cells. Chlorination significantly increased cytotoxicity of treated wastewater. Factors affecting cytotoxicity formation during wastewater chlorination were investigated. Quenching with sodium thiosulfate and ascorbic acid decreased the formed cytotoxicity, while ammonium kept the cytotoxicity stable. The chlorine dose required for the maximum cytotoxicity increase was dramatically affected by DOC and ammonia concentrations. The maximum cytotoxicity increase, defined as the cytotoxicity formation potential (CtFP), occurred when wastewater was treated for 48h with a chlorine dose of 2·DOC+11·NH3N+10 (mg-Cl2/L). During chlorination, the amounts of AOX formation was found to be significantly correlated with cytotoxicity formation when no DBPs were destroyed. AOX formation could be used as a surrogate to estimate cytotoxicity increase during wastewater chlorination. Besides, the CtFP of 14 treated wastewater samples was assessed ranged from 5.4-20.4mg-phenol/L. The CtFP could be estimated from UV254 of treated wastewater because CtFP and UV254 were strongly correlated.

  18. 21 CFR 177.2430 - Polyether resins, chlori-nated.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 177.2430 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... as Components of Articles Intended for Repeated Use § 177.2430 Polyether resins, chlori-nated. Chlorinated polyether resins may be safely used as articles or components of articles intended for...

  19. Intrinsic chemical sensor fibers for extended-length chlorine detection

    NASA Astrophysics Data System (ADS)

    Cordero, Steven R.; Ruiz, David; Huang, Weijie; Cohen, Leonard G.; Lieberman, Robert A.

    2004-12-01

    A fiber optic chlorine sensor having its entire length as the sensing element is reported here. The fiber consists of a silica core and a chlorine-sensitive cladding. Upon exposure to chlorine, the cladding very rapidly changes color resulting in attenuation of the light throughput of the fiber. A two-meter portion of sensor fiber responds to 10-ppm chlorine in milliseconds and to 1 ppm in several seconds. Furthermore, response to 100 ppb chlorine is realized in minutes. The high sensitivity suggests that the propagating modes of the light interact strongly with the cladding, and that these interactions are massively increased (Beers Law) due to the extended sensor length. The sensitivity to 1 ppm chlorine gas as a function of the length of fiber exposed between 0.3-30 meters is presented. The sensitivity to concentrations of chlorine from 0.1ppm-10ppm has been determined for a fixed 2 meter length of fiber. Pre-exposure fiber attenuation measures 70 dB/km (@ 633 nm) making it possible to detect chlorine on a continuous length of fiber on the scale of one hundred meters or more using standard detection methods (e.g. laser and photodetectors). This will replace the need of having a collection of point-detectors to cover large areas.

  20. Experimental and Theoretical Studies of Atmosphereic Inorganic Chlorine Chemistry

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.; Friedl, Randall R.

    1993-01-01

    Over the last five years substantial progress has been made in defining the realm of new chlorine chemistry in the polar stratosphere. Application of existing experimental techniques to potentially important chlorine-containing compounds has yielded quantitative kinetic and spectroscopic data as well as qualitative mechanistic insights into the relevant reactions.

  1. Chlorine disinfection of recreational water for Cryptosporidium parvum.

    PubMed Central

    Carpenter, C.; Fayer, R.; Trout, J.; Beach, M. J.

    1999-01-01

    We examined the effects of chlorine on oocyst viability, under the conditions of controlled pH and elevated calcium concentrations required for most community swimming pools. We found that fecal material may alter the Ct values (chlorine concentration in mg/L, multiplied by time in minutes) needed to disinfect swimming pools or other recreational water for Cryptosporidium parvum. PMID:10458969

  2. Preliminary GRS Measurement of Chlorine Distribution on Surface of Mars

    NASA Astrophysics Data System (ADS)

    Keller, J. M.; Boynton, W. V.; Taylor, G. J.; Hamara, D.; Janes, D. M.; Kerry, K.

    2003-12-01

    Ongoing measurements with the Gamma Ray Spectrometer (GRS) aboard Mars Odyssey provide preliminary detection of chlorine at the surface of Mars. Summing all data since boom deployment and using a forward calculation model, we estimate values for chlorine concentration at 5° resolution. Rebinning this data and smoothing with a 15-degree-radius boxcar filter reveal regions of noticeable chlorine enrichment at scales larger than the original 5° resolution and allow for preliminary comparison with previous Mars datasets. Analyzing chlorine concentrations within 30 degrees of the equator, we find a negative correlation with thermal inertia (R2=0.55) and positive correlation with albedo (R2=0.52), indicating that chlorine is associated with fine, non-rock surface materials. Although possibly a smoothing artifact, the spatial correlation is more noticeable in the region covering Tharsis and Amazonis than around Arabia and Elysium. Additionally, a noticeable region of chlorine enrichment appears west of Tharsis Montes ( ˜0 to 20N, ˜110 to 150W) and chlorine concentration is estimated to vary in the equatorial region by over a factor of two. A simplified two-component model involving chlorine-poor rocks and a homogenous chlorine-rich fine material requires rock abundance to vary from zero to over 50%, a result inconsistent with previous measurements and models. In addition to variations in rock composition and distribution, substantial variations in chlorine content of various types of fine materials including dust, sand, and duricrust appear important in explaining this preliminary observation. Surprisingly, visual comparison of surface units mapped by Christensen and Moore (1992) does not show enrichment in chlorine associated with regions of indurated surfaces, where cementation has been proposed. Rather, Tharsis, a region of active deposition with proposed mantling of 0.1 to 2 meters of recent dust (Christensen 1986), shows the greatest chlorine signal. In light of

  3. Low-Cost Graphite-Based Free Chlorine Sensor.

    PubMed

    Pan, Si; Deen, M Jamal; Ghosh, Raja

    2015-11-03

    Pencil lead was used to fabricate a graphite-based electrode for sensing applications. Its surface was electrochemically modified using ammonium carbamate to make it suitable for sensing free chlorine in water samples. Chlorine is widely used as a disinfectant in the water industry, and the residual free chlorine concentration in water distributed to the consumers must be lower than that stipulated by regulatory bodies. The graphite-based amperometric sensor gave a selective and linear response to free chlorine in the relevant concentration range and no response to commonly interfering ions. It was evaluated further for storage stability, response time, and hysteresis. This sensor is being proposed as a low-cost device for determining free chlorine in water samples. Its ease-of-use, limitations, and feasibility for mass-production and application is discussed.

  4. Automatic electrochemical ambient air monitor for chloride and chlorine

    DOEpatents

    Mueller, Theodore R.

    1976-07-13

    An electrochemical monitoring system has been provided for determining chloride and chlorine in air at levels of from about 10-1000 parts per billion. The chloride is determined by oxidation to chlorine followed by reduction to chloride in a closed system. Chlorine is determined by direct reduction at a platinum electrode in 6 M H.sub.2 SO.sub.4 electrolyte. A fully automated system is utilized to (1) acquire and store a value corresponding to electrolyte-containing impurities, (2) subtract this value from that obtained in the presence of air, (3) generate coulometrically a standard sample of chlorine mixed with air sample, and determine it as chlorine and/or chloride, and (4) calculate, display, and store for permanent record the ratio of the signal obtained from the air sample and that obtained with the standard.

  5. Brain but not lung functions impaired after a chlorine incident.

    PubMed

    Kilburn, Kaye H

    2003-10-01

    A workplace bleach exposure incident was studied in 13 women to determine whether chlorine caused neurobehavioral and pulmonary functional effects. We compared neurophysiological and neuropsychological measurements in 13 chlorine-exposed women, 4.5 years after exposure, and 41 unexposed women. Reaction times, balance, blink reflex latency, color discrimination and several psychological tests were measured. Pulmonary function was assessed by spirometry. A profile of mood states and frequencies of 35 symptoms were obtained. Chlorine exposed women performed statistically significantly below unexposed women for simple and choice reaction times, balance with eyes open and eyes closed, color discrimination, grip strength, Culture Fair, digit symbol substitution, vocabulary, trail making B and pegboard. Profile of mood states scores and frequency symptoms were elevated. Respiratory symptoms were elevated but pulmonary volumes and flows were not reduced. Chlorine bleach exposure was associated with impaired neurobehavioral functions and elevated POMS scores and symptom frequencies. Alternatives to chlorine should be used.

  6. Effects of short-chain chlorinated paraffins on soil organisms.

    PubMed

    Bezchlebová, Jitka; Cernohlávková, Jitka; Kobeticová, Klára; Lána, Jan; Sochová, Ivana; Hofman, Jakub

    2007-06-01

    Despite the fact that chlorinated paraffins have been produced in relatively large amounts, and high concentrations have been found in sewage sludge applied to soils, there is little information on their concentrations in soils and the effect on soil organisms. The aim of this study was to investigate the toxicity of chlorinated paraffins in soils. The effects of short-chain chlorinated paraffins (64% chlorine content) on invertebrates (Eisenia fetida, Folsomia candida, Enchytraeus albidus, Enchytraeus crypticus, Caenorhabditis elegans) and substrate-induced respiration of indigenous microorganisms were studied. Differences were found in the sensitivity of the tested organisms to short-chain chlorinated paraffins. F. candida was identified as the most sensitive organism with LC(50) and EC(50) values of 5733 and 1230 mg/kg, respectively. Toxicity results were compared with available studies and the predicted no effect concentration (PNEC) of 5.28 mg/kg was estimated for the soil environment, based on our data.

  7. Chlorinated ethenes from groundwater in tree trunks

    USGS Publications Warehouse

    Vroblesky, Don A.; Nietch, C.T.; Morris, J.T.

    1999-01-01

    The purpose of this investigation was to determine whether tree-core analysis could be used to delineate shallow groundwater contamination by chlorinated ethenes. Analysis of tree cores from bald cypress [Taxodium distichum (L.) Rich], tupelo (Nyssa aquatica L.), sweet gum (Liquidambar stryaciflua L.), oak (Quercus spp.), sycamore (Platanus occidentalis L.), and loblolly pine (Pinus taeda L.) growing over shallow groundwater contaminated with cis-1,2-dichloroethene (cDCE) and trichloroethene (TCE) showed that those compounds also were present in the trees. The cores were collected and analyzed by headspace gas chromatography. Bald cypress, tupelo, and loblolly pine contained the highest concentrations of TCE, with lesser amounts in nearby oak and sweet gum. The concentrations of cDCE and TCE in various trees appeared to reflect the configuration of the chlorinated-solvent groundwater contamination plume. Bald cypress cores collected along 18.6-m vertical transects of the same trunks showed that TCE concentrations decline by 30−70% with trunk height. The ability of the tested trees to take up cDCE and TCE make tree coring a potentially cost-effective and simple approach to optimizing well placement at this site. 

  8. Chlorinated hydrocarbons in women with repeated miscarriages.

    PubMed Central

    Gerhard, I; Daniel, V; Link, S; Monga, B; Runnebaum, B

    1998-01-01

    This study was conducted to investigate a possible etiological role of chlorinated hydrocarbons in the pathogenesis of repeated miscarriages. The blood levels of chlorinated hydrocarbons [CHCs: pentachlorophenol, hexachlorocyclohexane, hexachlorobenzene, the dichlorodiphenyltrichloroethane (DDT) group, polychlorinated biphenyls] were determined in 89 women with repeated miscarriages, who were referred to the University Hospital of Obstetrics and Gynecology of Heidelberg for investigations between 1989 and 1993, and compared to a previously investigated reference population. In more than 20% of the women, at least one of the CHC levels exceeded the reference range. CHC levels did not differ significantly between women with primary or secondary and early or late miscarriages; neither did they differ between women with hormonal or immunological disorders as causes of repeated miscarriages or women with idiopathic repeated miscarriages. No significant associations were detected between CHC levels and further conceptions or the outcome of further pregnancies. As significant associations were found between increasing CHC blood concentrations and immunological and hormonal changes, CHCs may have an impact on the pregnancy course in certain cases. PMID:9755145

  9. Lung function after acute chlorine exposure

    SciTech Connect

    Jones, R.N.; Hughes, J.M.; Glindmeyer, H.; Weill, H.

    1986-12-01

    Chlorine gas, spreading from a train derailment, caused the deaths of 8 persons and the hospitalization of 23 with sublethal respiratory injuries. Twenty-five others had at least one sign of lower respiratory abnormality but were not hospitalized. One hundred thirteen who were examined for gas effects in the forty-eight hours after exposure, including 20 of 23 of those hospitalized and 21 of 25 of those not hospitalized but with respiratory abnormality, participated in follow-up studies. Probability of admission to hospital was related to distance from the spill, but by 3 wk after exposure there was no detectable difference in lung function relating to distance or apparent severity of injury. In 60 adults tested multiple times over the following 6 yr, longitudinal change in lung function showed expected differences related to smoking but none related to distance or severity of injury. The average annual change in FEV was -34 ml/yr in current smokers and -18 ml/yr in ex and never-smokers. The lack of a discernible chlorine effect in this cohort accords with the findings in most previous studies. Without pre-exposure measurements, a single, lasting reduction in lung function cannot be excluded, but there is no evidence for a persisting abnormal rate of decline.

  10. In situ bioremediation of chlorinated solvents

    SciTech Connect

    Sack, W.A.; Carriere, P.E.; Whiteman, C.S.; Davis, M.P.; Raman, S.; Cuddeback, J.E.; Shiemke, A.K.

    1995-12-31

    In situ bioremediation of chlorinated organic is receiving growing support and widespread testing in the field. It is an attractive alternative with the potential to destroy contaminants almost completely. The research seeks to exploit the natural symbiotic relationship between methanogenic and methanotrophic microorganisms. The methanogens are able to carry out anaerobic reductive dehalogenation of highly chlorinated solvents while producing methane. The methanotrophs in turn utilize the end products of the methanogens, including the methane, to aerobically degrade the residual CAH compounds to environmentally acceptable end products. Both groups of organisms degrade the CAH compounds cometabolically and require a primary substrate. The purpose of the research is to evaluate and optimize the ability of methanotrophic, methanogenic, and other selected bacteria for cost-effective biotransformation of TCE and other volatile organic compounds (VOCs). This paper describes initial studies using separate anaerobic and aerobic columns. As soon as the initial column studies are complete, the anaerobic and aerobic columns will be combined in both sequential and simultaneous modes to evaluate complete CAH destruction.

  11. Ozone Depletion at Mid-Latitudes: Coupling of Volcanic Aerosols and Temperature Variability to Anthropogenic Chlorine

    NASA Technical Reports Server (NTRS)

    Solomon, S.; Portmann, R. W.; Garcia, R. R.; Randel, W.; Wu, F.; Nagatani, R.; Gleason, J.; Thomason, L.; Poole, L. R.; McCormick, M. P.

    1998-01-01

    Satellite observations of total ozone at 40-60 deg N are presented from a variety of instruments over the time period 1979-1997. These reveal record low values in 1992-3 (after Pinatubo) followed by partial but incomplete recovery. The largest post-Pinatubo reductions and longer-term trends occur in spring, providing a critical test for chemical theories of ozone depletion. The observations are shown to be consistent with current understanding of the chemistry of ozone depletion when changes in reactive chlorine and stratospheric aerosol abundances are considered along with estimates of wave-driven fluctuations in stratospheric temperatures derived from global temperature analyses. Temperature fluctuations are shown to make significant contributions to model calculated northern mid-latitude ozone depletion due to heterogeneous chlorine activation on liquid sulfate aerosols at temperatures near 200-210 K (depending upon water vapor pressure), particularly after major volcanic eruptions. Future mid-latitude ozone recovery will hence depend not only on chlorine recovery but also on temperature trends and/or variability, volcanic activity, and any trends in stratospheric sulfate aerosol.

  12. Public thresholds for chlorinous flavors in U.S. tap water.

    PubMed

    Mackey, E D; Baribeau, H; Crozes, G F; Suffet, I H; Piriou, P

    2004-01-01

    Considering this rapid growth in the purchasing of bottled water and home filtration devices, utilities are increasingly concerned about consumer dissatisfaction with tap water quality. This project aimed to characterize public perceptions of chlorinous flavors in drinking water, and how these impact customers' choices with respect to consumption of tap water alternatives. On-site taste tests at seven water utilities with 30 to 40 panelists at each site, were conducted using a forced-choice triangle test method (ASTM method E679-91) to measure public sensitivity to chlorine and chloramine in drinking water. The chlor(am)ine concentration increased from set to set. The best-estimate sensitivity limit for each panelist was the geometric mean of that concentration at which the last miss occurred and the next (adjacent) higher concentration. The measured sensitivity limit of average American populations to free chlorine (159 persons tested) and chloramine (93 persons tested) in tap water were 0.8 and 3.7 mg/L Cl2, respectively. These thresholds are much higher than those previously reported in the literature using trained FPA panels. No significant differences were observed between tap water users and users of tap water alternatives or between the various markets tested with respect to average sensitivity, though individual sensitivity varied widely.

  13. Ozone Depletion at Mid-Latitudes: Coupling of Volcanic Aerosols and Temperature Variability to Anthropogenic Chlorine

    NASA Technical Reports Server (NTRS)

    Solomon, S.; Portmann, R. W.; Garcia, R. R.; Randel, W.; Wu, F.; Nagatani, R.; Gleason, J.; Thomason, L.; Poole, L. R.; McCormick, M. P.

    1998-01-01

    Satellite observations of total ozone at 40-60 deg N are presented from a variety of instruments over the time period 1979-1997. These reveal record low values in 1992-3 (after Pinatubo) followed by partial but incomplete recovery. The largest post-Pinatubo reductions and longer-term trends occur in spring, providing a critical test for chemical theories of ozone depletion. The observations are shown to be consistent with current understanding of the chemistry of ozone depletion when changes in reactive chlorine and stratospheric aerosol abundances are considered along with estimates of wave-driven fluctuations in stratospheric temperatures derived from global temperature analyses. Temperature fluctuations are shown to make significant contributions to model calculated northern mid-latitude ozone depletion due to heterogeneous chlorine activation on liquid sulfate aerosols at temperatures near 200-210 K (depending upon water vapor pressure), particularly after major volcanic eruptions. Future mid-latitude ozone recovery will hence depend not only on chlorine recovery but also on temperature trends and/or variability, volcanic activity, and any trends in stratospheric sulfate aerosol.

  14. Enrichment of marine sediment colloids with polychlorinated biphenyls: Trends resulting from PCB solubility and chlorination

    SciTech Connect

    Burgess, R.M. |; McKinney, R.A.; Brown, W.A.

    1996-08-01

    In this study, the three phase distributions (i.e., dissolved, colloidal, and particulate) of approximately 75 PCB congeners were measured in a marine sediment core from New Bedford Harbor, M.A. These distributions are the first report of colloid-PCB interactions in an environmentally contaminated sediment. Colloids <1.2 {mu}m in size were isolated from interstitial waters using reverse-phase chromatography with size-selected C{sub 18}. Regardless of solubility or chlorination, the majority of PCBs were associated with the particulate phase. PCBs were distributed in filtered interstitial waters between colloidal and dissolved phases as a function of solubility and degree of chlorination. Interstitial dissolved PCB concentrations generally agreed with literature-reported solubilities. The magnitude of colloid-PCB interactions increased with decreasing PCB solubility and increasing PCB chlorination. Di- and trichlorinated PCBs were approximately 40% and 65% colloidally bound, respectively, while tetra-, penta-, hexa-, hepta-, and octachlorinated PCBs were about 80% colloidally bound. As core depth increased, the magnitude of PCB-colloid interactions also increased. The relationships of organic carbon-normalized colloidal partitioning coefficient(K{sub coc}) to K{sub ow} for several PCB congeners were not linear and suggest that interstitial waters were not equilibrated. 62 refs., 8 figs., 3 tabs.

  15. Acute toxicity of copper, ammonia, and chlorine to glochidia and juveniles of freshwater mussels (Unionidae)

    USGS Publications Warehouse

    Wang, N.; Ingersoll, C.G.; Hardesty, D.K.; Ivey, C.D.; Kunz, J.L.; May, T.W.; Dwyer, F.J.; Roberts, A.D.; Augspurger, T.; Kane, C.M.; Neves, R.J.; Barnhart, M.C.

    2007-01-01

    The objective of the present study was to determine acute toxicity of copper, ammonia, or chlorine to larval (glochidia) and juvenile mussels using the recently published American Society for Testing and Materials (ASTM) Standard guide for conducting laboratory toxicity tests with freshwater mussels. Toxicity tests were conducted with glochidia (24- to 48-h exposures) and juveniles (96-h exposures) of up to 11 mussel species in reconstituted ASTM hard water using copper, ammonia, or chlorine as a toxicant. Copper and ammonia tests also were conducted with five commonly tested species, including cladocerans (Daphnia magna and Ceriodaphnia dubia; 48-h exposures), amphipod (Hyalella azteca; 48-h exposures), rainbow trout (Oncorhynchus mykiss; 96-h exposures), and fathead minnow (Pimephales promelas; 96-h exposures). Median effective concentrations (EC50s) for commonly tested species were >58 ??g Cu/L (except 15 ??g Cu/L for C. dubia) and >13 mg total ammonia N/L, whereas the EC50s for mussels in most cases were 40 ??g/L and above the FAV in the WQC for chlorine. The results indicate that the early life stages of mussels generally were more sensitive to copper and ammonia than other organisms and that, including mussel toxicity data in a revision to the WQC, would lower the WQC for copper or ammonia. Furthermore, including additional mussel data in 2007 WQC for copper based on biotic ligand model would further lower the WQC. ?? 2007 SETAC.

  16. Synergetic inactivation of microorganisms in drinking water by short-term free chlorination and subsequent monochloramination.

    PubMed

    Zhang, Xiao-Jian; Chen, Chao; Wang, Yun

    2007-10-01

    To introduce synergetic inactivation of microorganisms in drinking water by short-term free chlorination for less than 15 minutes followed by monochloramination. Indicator microorganisms such as Escherichia coli, Staphylococcus aureus, Candida albicans, and spores of Bacillus subtilis were used to assess the efficiency of sequential chlorination and free chlorination. The sequential chlorination was more efficient in inactivating these microorganisms than free chlorination, indicating that synergy was provided by free chlorine and monochloramine. Ammonia addition time, temperature and pH had influences on this synergy. The possible mechanism of this synergy might involve three aspects: free chlorine causing sublethal injury to microorganisms and monochloramine further inactivating them; different ability of free chlorine and monochloramine to penetrate and inactivate microorganism congeries; and higher concentration of residual chlorine in sequential chlorination than in free chlorination.

  17. Survival of coliforms and bacterial pathogens within protozoa during chlorination.

    PubMed Central

    King, C H; Shotts, E B; Wooley, R E; Porter, K G

    1988-01-01

    The susceptibility of coliform bacteria and bacterial pathogens to free chlorine residuals was determined before and after incubation with amoebae and ciliate protozoa. Viability of bacteria was quantified to determine their resistance to free chlorine residuals when ingested by laboratory strains of Acanthamoeba castellanii and Tetrahymena pyriformis. Cocultures of bacteria and protozoa were incubated to facilitate ingestion of the bacteria and then were chlorinated, neutralized, and sonicated to release intracellular bacteria. Qualitative susceptibility of protozoan strains to free chlorine was also assessed. Protozoa were shown to survive and grow after exposure to levels of free chlorine residuals that killed free-living bacteria. Ingested coliforms Escherichia coli, Citrobacter freundii, Enterobacter agglomerans, Enterobacter cloacae, Klebsiella pneumoniae, and Klebsiella oxytoca and bacterial pathogens Salmonella typhimurium, Yersinia enterocolitica, Shigella sonnei, Legionella gormanii, and Campylobacter jejuni had increased resistance to free chlorine residuals. Bacteria could be cultured from within treated protozoans well after the time required for 99% inactivation of free-living cells. All bacterial pathogens were greater than 50-fold more resistant to free chlorine when ingested by T. pyriformis. Escherichia coli ingested by a Cyclidium sp., a ciliate isolated from a drinking water reservoir, were also shown to be more resistant to free chlorine. The mechanism that increased resistance appeared to be survival within protozoan cells. This study indicates that bacteria can survive ingestion by protozoa. This bacterium-protozoan association provides bacteria with increased resistance to free chlorine residuals which can lead to persistence of bacteria in chlorine-treated water. We propose that resistance to digestion by predatory protozoa was an evolutionary precursor of pathogenicity in bacteria and that today it is a mechanism for survival of fastidious

  18. Bromine-Chlorine Coupling in the Antarctic Ozone Hole

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.; Prather, Michael J.

    1996-01-01

    The contribution from the chlorine and bromine species in the formation of the Antarctic ozone hole is evaluated. Since chlorine and bromine compounds are of different industrial origin, it is desirable, from a policy point of view, to be able to attribute chlorine-catalyzed loss of ozone with those reactions directly involving chlorine species, and likewise for bromine-catalyzed loss. In the stratosphere, however, most of the chemical families are highly coupled, and, for example, changes in the chlorine abundance will alter the partitioninig in other families and thus the rate of ozone loss. This modeling study examines formation of the Antarctic ozone hole for a wide range of bromine concentrations (5 - 25 pptv) and for chlorine concentrations typical of the last two decades (1.5, 2.5 and 3.5 ppbv). We follow the photochemical evolution of a single parcel of air, typical of the inner Antarctic vortex (50 mbar, 70 deg. S, NO(sub y) = 2 ppbv, with Polar Stratospheric Clouds(PSC)) from August 1 to November 1. For all of these ranges of chlorine and bromine loading, we would predict a substantial ozone hole (local depletion greater than 90%) within the de-nitrified, PSC- perturbed vortex. The contributions of the different catalytic cycles responsible for ozone loss are tabulated. The deep minimum in ozone is driven primarily by the chlorine abundance. As bromine levels decrease, the magnitude of the chlorine-catalyzed ozone loss increases to take up the slack. This is because bromine suppresses ClO by accelerating the conversion of ClO an Cl2O2 back to HCI. For this range of conditions, the local relative efficiency of ozone destruction per bromine atom to that per chlorine atom (alpha-factor) ranges from 33 to 55, decreasing with increase of bromine.

  19. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine.

    PubMed

    Nie, Xiao-Bao; Li, Zhi-Hong; Long, Yuan-Nan; He, Pan-Pan; Xu, Chao

    2017-06-01

    The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × timereaction) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, Ea, induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (CODMn) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and CODMn concentrations contributed to the inactivation of T. tubifex.

  20. Effects of chlorine or chlorine dioxide during immersion chilling on recovery of bacteria from broiler carcasses and chiller water

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to determine the microbiological impact of immersion chilling broiler carcasses with chlorine or chlorine dioxide. Eviscerated, pre-chill commercial broiler carcasses were cut into left and right halves along the keel bone, and each half was rinsed (HCR) in 100 mL of 0.1% pept...

  1. 40 CFR 60.2125 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the concentration of each dioxin/furan tetra-through octa-chlorinated isomer emitted using EPA Method 23 at 40 CFR part 60, appendix A-7. (2) For each dioxin/furan (tetra-through octa-chlorinated) isomer measured in accordance with paragraph (g)(1) of this section, multiply the isomer concentration by...

  2. 40 CFR 60.2125 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the concentration of each dioxin/furan tetra-through octa-chlorinated isomer emitted using EPA Method 23 at 40 CFR part 60, appendix A-7. (2) For each dioxin/furan (tetra-through octa-chlorinated) isomer measured in accordance with paragraph (g)(1) of this section, multiply the isomer concentration by...

  3. 40 CFR 60.2125 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... octa-chlorinated isomer emitted using EPA Method 23 at 40 CFR part 60, appendix A-7. (2) For each dioxin/furan (tetra-through octa-chlorinated) isomer measured in accordance with paragraph (g)(1) of this section, multiply the isomer concentration by its corresponding toxic equivalency factor specified...

  4. Reduction of Escherichia coli 0157:H7 in shredded iceberg lettuce by chlorination and gamma irradiation

    NASA Astrophysics Data System (ADS)

    Foley, D. M.; Dufour, A.; Rodriguez, L.; Caporaso, F.; Prakash, A.

    2002-03-01

    Lettuce was inoculated with a six-strain cocktail of acid-adapted Escherichia coli 0157:H7 at a level of 1×10 7 CFU/g. Following chlorination at 200 μg/ml, the lettuce was irradiated at 0.15, 0.38, or 0.55 kGy using a 60Co source. Survival of E. coli 0157:H7, aerobic mesophiles and yeast and molds were measured over a period of 10 days. For quality analysis, chlorinated lettuce was subjected to irradiation at 0.33 and 0.53 kGy and stored at 1.0°C, 4.0°C or 7.0°C. Changes in texture and color were determined by instrumental means and changes in flavor, odor, and visual quality were determined by sensory testing. Chlorination plus irradiation at 0.55 kGy produced a 5.4-log reduction in E. coli 0157:H7 levels. Chlorination alone reduced the E. coli 0157:H7 counts by 1-2 logs. Irradiation at 0.55 kGy was also effective in reducing standard plate counts and yeast and mold counts. Irradiation at this level did not cause softening of lettuce and sensory attributes were not adversely affected. In general, appearance and flavor were affected more by the length of storage than by temperature conditions. The 5+log reduction in E. coli counts and lack of adverse effects on sensory attributes indicate that low-dose irradiation can improve the safety and shelf-life of fresh-cut iceberg lettuce for retail sale or food service.

  5. Integrative Assessment of Chlorine-Induced Acute Lung Injury in Mice

    PubMed Central

    Pope-Varsalona, Hannah; Concel, Vincent J.; Liu, Pengyuan; Bein, Kiflai; Berndt, Annerose; Martin, Timothy M.; Ganguly, Koustav; Jang, An Soo; Brant, Kelly A.; Dopico, Richard A.; Upadhyay, Swapna; Di, Y. P. Peter; Hu, Zhen; Vuga, Louis J.; Medvedovic, Mario; Kaminski, Naftali; You, Ming; Alexander, Danny C.; McDunn, Jonathan E.; Prows, Daniel R.; Knoell, Daren L.

    2012-01-01

    The genetic basis for the underlying individual susceptibility to chlorine-induced acute lung injury is unknown. To uncover the genetic basis and pathophysiological processes that could provide additional homeostatic capacities during lung injury, 40 inbred murine strains were exposed to chlorine, and haplotype association mapping was performed. The identified single-nucleotide polymorphism (SNP) associations were evaluated through transcriptomic and metabolomic profiling. Using ≥ 10% allelic frequency and ≥ 10% phenotype explained as threshold criteria, promoter SNPs that could eliminate putative transcriptional factor recognition sites in candidate genes were assessed by determining transcript levels through microarray and reverse real-time PCR during chlorine exposure. The mean survival time varied by approximately 5-fold among strains, and SNP associations were identified for 13 candidate genes on chromosomes 1, 4, 5, 9, and 15. Microarrays revealed several differentially enriched pathways, including protein transport (decreased more in the sensitive C57BLKS/J lung) and protein catabolic process (increased more in the resistant C57BL/10J lung). Lung metabolomic profiling revealed 95 of the 280 metabolites measured were altered by chlorine exposure, and included alanine, which decreased more in the C57BLKS/J than in the C57BL/10J strain, and glutamine, which increased more in the C57BL/10J than in the C57BLKS/J strain. Genetic associations from haplotype mapping were strengthened by an integrated assessment using transcriptomic and metabolomic profiling. The leading candidate genes associated with increased susceptibility to acute lung injury in mice included Klf4, Sema7a, Tns1, Aacs, and a gene that encodes an amino acid carrier, Slc38a4. PMID:22447970

  6. Short term respiratory effects of acute exposure to chlorine due to a swimming pool accident.

    PubMed

    Agabiti, N; Ancona, C; Forastiere, F; Di Napoli, A; Lo Presti, E; Corbo, G M; D'Orsi, F; Perucci, C A

    2001-06-01

    Acute exposure to chlorine causes lung damage, and recovery may proceed slowly for several weeks. The short term respiratory effects of acute chlorine inhalation during a swimming pool accident were examined. A total of 282 subjects (134 children, aged <14 years) inhaled hydrogen chloride and sodium hypochlorite during an accident caused by a malfunction of the water chlorinating system in a community pool in Rome in 1998. Most people received bronchodilators and cortisone at the emergency room; five children were admitted to hospital. A total of 260 subjects (92.2%) were interviewed about duration of exposure (<3, 3--5, >5 minutes), intensity of exposure (not at all or a little, a moderate amount, a lot), and respiratory symptoms. Lung function was measured in 184 people (82 children) after 15--30 days. The effects of exposure to chlorine were analysed through multiple linear regression, separately in adults and in children. Acute respiratory symptoms occurred among 66.7% of adults and 71.6% of children. The incidences were highest among those who had chronic respiratory disease and had a longer duration of exposure. In about 30% of the subjects, respiratory symptoms persisted for 15--30 days after the accident. Lung function levels were lower in those who reported a high intensity of exposure than in those who reported low exposure, both in children and in adults (mean (95% confidence interval (95% CI)) differences in forced expiratory volume in 1 second (FEV(1,)) were -109 (-310 to 93) ml, and -275 (-510 to -40) ml, respectively). Persistent symptoms and lung function impairment were found up to 1 month after the incident. Although community pool accidents happen rarely, the medical community needs to be alerted to the possible clinical and physiological sequelae, especially among susceptible people.

  7. Chlorine Isotopes: As a Possible Tracer of Fluid/Bio-Activities on Mars and a Progress Report on Chlorine Isotope Analysis by TIMs

    NASA Technical Reports Server (NTRS)

    Nakamura, N.; Nyquist, L.E.; Reese, Y.; Shih, C-Y.; Numata, M.; Fujitani, T.; Okano, O.

    2009-01-01

    Significantly large mass fractionations between chlorine isotopes (Cl-35, Cl-37) have been reported for terrestrial materials including both geological samples and laboratory materials. Also, the chlorine isotopic composition can be used as a tracer for early solar system processes. Moreover, chlorine is ubiquitous on the Martian surface. Typical chlorine abundances in Gusev soils are approx.0.5 %. The global surface average chlorine abundance also is approx.0.5 %. Striking variations among outcrop rocks at Meridiani were reported with some chlorine abundances as high as approx.2%. Characterizing conditions under which chlorine isotopic fractionation may occur is clearly of interest to planetary science. Thus, we have initiated development of a chlorine isotopic analysis technique using TIMS at NASA-JSC. We present here a progress report on the current status of development at JSC and discuss the possible application of chlorine isotopic analysis to Martian meteorites in a search for fluid- and possibly biological activity on Mars.

  8. Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate.

    PubMed

    Ramseier, Maaike K; Peter, Andreas; Traber, Jacqueline; von Gunten, Urs

    2011-02-01

    Five oxidants, ozone, chlorine dioxide, chlorine, permanganate, and ferrate were studied with regard to the formation of assimilable organic carbon (AOC) and oxalate in absence and presence of cyanobacteria in lake water matrices. Ozone and ferrate formed significant amounts of AOC, i.e. more than 100 μg/L AOC were formed with 4.6 mg/L ozone and ferrate in water with 3.8 mg/L dissolved organic carbon. In the same water samples chlorine dioxide, chlorine, and permanganate produced no or only limited AOC. When cyanobacterial cells (Aphanizomenon gracile) were added to the water, an AOC increase was detected with ozone, permanganate, and ferrate, probably due to cell lysis. This was confirmed by the increase of extracellular geosmin, a substance found in the selected cyanobacterial cells. AOC formation by chlorine and chlorine dioxide was not affected by the presence of the cells. The formation of oxalate upon oxidation was found to be a linear function of the oxidant consumption for all five oxidants. The following molar yields were measured in three different water matrices based on oxidant consumed: 2.4-4.4% for ozone, 1.0-2.8% for chlorine dioxide and chlorine, 1.1-1.2% for ferrate, and 11-16% for permanganate. Furthermore, oxalate was formed in similar concentrations as trihalomethanes during chlorination (yield ∼ 1% based on chlorine consumed). Oxalate formation kinetics and stoichiometry did not correspond to the AOC formation. Therefore, oxalate cannot be used as a surrogate for AOC formation during oxidative water treatment.

  9. Very Low Energy Electron Scattering from Ozone and Chlorine Dioxide

    NASA Astrophysics Data System (ADS)

    Gulley, R. J.; Field, T. A.; Steer, W. A.; Mason, N. J.; Ziesel, J. P.; Lunt, S. L.; Field, D.

    1998-10-01

    Total cross-sections are reported for the scattering of electrons from ozone (O_3) and chlorine dioxide (OClO) for energies in the range of 9 meV to 10 eV. The measurements were made in transmission experiments using a synchrotron photoionization apparatus with an energy resolution in the incident electron beam of ~ 3.5 meV (FWHM). The cross section for O3 shows strong rotational scattering at low energy, through the presence of the permanent dipole moment of O_3. Superposed on this strong scattering signal, there is evidence of a weak structure around 50 meV associated with dissociative attachment. A shape resonance, known from earlier work at ~ 4 meV, is also observed. Electron scattering from OClO is dominated by rotationally inelastic scattering decreasing from a peak at essentially zero eV to an energy of 40 meV, where p-wave attachment becomes more important, peaking at 50--60 meV and extending to several hundred meV.

  10. [Improvement of 2-mercaptoimidazoline analysis in rubber products containing chlorine].

    PubMed

    Kaneko, Reiko; Haneishi, Nahoko; Kawamura, Yoko

    2012-01-01

    An improved analysis method for 2-mercaptoimidazoline in rubber products containing chlorine was developed. 2-Mercaptoimidazoline (20 µg/mL) is detected by means of TLC with two developing solvents in the official method. But, this method is not quantitative. Instead, we employed HPLC using water-methanol (9 : 1) as the mobile phase. This procedure decreased interfering peaks, and the quantitation limit was 2 µg/mL of standard solution. 2-Mercaptoimidazoline was confirmed by GC-MS (5 µg/mL) and LC/MS (1 µg/mL) in the scan mode. For preparation of test solution, a soaking extraction method, in which 20 mL of methanol was added to the sample and allowed to stand overnight at about 40°C, was used. This gave similar values to the Soxhlet extraction method (official method) and was more convenient. The results indicate that our procedure is suitable for analysis of 2-mercaptoimidazoline. When 2-mercaptoimidazoline is detected, it is confirmed by either GC/MS or LC/MS.

  11. Chlorine dioxide-facilitated oxidation of the azo dye amaranth.

    PubMed

    Nadupalli, S; Koorbanally, N; Jonnalagadda, S B

    2011-10-27

    The oxidation reaction of amaranth (trisodium 2-hydroxy-1-(4-sulfonato-1-naphthylazo)naphthalene-3,6-disulfonate or AM(-)) by chlorine dioxide (ClO(2)) in aqueous conditions was investigated in detail. The major reaction products immediately after decolorization of AM(-) were 1,2-naphthoquinone disulfonate sodium salt and 1,4-napthalenedione. The reaction had first-order dependence on both AM(-) and ClO(2). The rate-limiting step involved the reaction between AM(-) and OH(-) ions. The role of hydroxide ion as a catalyst was established. The second-order rate constant increased with pH, from (19.8 ± 0.9) M(-1) s(-1) at pH 7.0, (97.1 ± 2.3) M(-1) s(-1) at pH 8.0 to (132.5 ± 2.8) M(-1) s(-1) at pH 9.0. In the pH range of 6.0-7.5, the catalytic constant for OH(-) ion was 4.0 × 10(9) M(-2) s(-1). The energy and entropy of activation values for the reaction were 50.0 kJ mol(-1) and -658.7 J K(-1) mol(-1), respectively. A probable reaction mechanism was elucidated and was validated by simulations.

  12. Critical Behavior of Chlorine on SILVER-100.

    NASA Astrophysics Data System (ADS)

    Taylor, David Earl

    The quantitative study of the critical behavior of chemisorbed overlayers on single-crystal surfaces is a recent and important development in the field of surface science. We have examined the Cl/Ag(100) system with low -energy electron diffraction (LEED), Auger spectroscopy and work function change measurements with an especial interest in the critical behavior of the chlorine overlayer. We find that this system is well described as a two-dimensional hard square lattice gas system, slightly modified by the presence of weak second-nearest-neighbor (2nn) repulsions. Cl/Ag(100) behaves like a hard-square lattice gas in four important respects. First, the chemisorbed chlorine is highly mobile. Second, there is only one ordered phase, a C(2 x 2), and no observable island formation down to 90K. Third, the ordering of the C(2 x 2) overlayer as a function of coverage is independent of temperature. And fourth, the chlorine overlayer saturates at (theta) = 1/2 monolayer. These observations, and all others we have made, are consistent with a picture of this system as being one in which the adatom-adatom interactions are dominated by extremely large (effectively infinite) nearest-neighbor (nn) repulsions, the 2nn and 3nn interactions being quite weak. This is essentially a description of the hard square model. We have measured the critical exponent (beta) for this system as a function of coverage, the first such determination reported for a chemisorption system. We found (beta) to be 0.115 (+OR-) 0.025, in good agreement with the theoretical value of 1/8. We found the critical coverage (theta)(,c) to be 0.394 (+OR-) 0.007 monolayer, which is about 7% higher than the theoretical value of 0.368 monolayer. We interpret this as meaning that the Cl/Ag(100) system is not a perfect hard-square system, but is modified by the presence of slight ((TURN) 20 meV) 2nn repulsions.

  13. Ultrafast measurements of chlorine dioxide photochemistry

    SciTech Connect

    Ludowise, P.D.

    1997-08-01

    Time-resolved mass spectrometry and time-resolved photoelectron spectroscopy are used to study the ultrafast photodissociation dynamics of chlorine dioxide, an important constituent in stratospheric ozone depletion. Chapter 1 introduces these pump/probe techniques, in which a femtosecond pump pulse excites a molecule to a dissociative state. At a later time, a second femtosecond probe pulse ionizes the molecule. The resulting mass and photoelectron spectra are acquired as a function of the delay between the pump and probe pulses, which follows the evolution of the molecule on the excited state. A comparison to other techniques used to study reaction dynamics is discussed. Chapter 2 includes a detailed description of the design and construction of the experimental apparatus, which consists of a femtosecond laser system, a molecular beam time-of-flight spectrometer, and a data acquisition system. The time-of-flight spectrometer is specifically designed to have a short flight distance to maximize the photoelectron collection efficiency without degrading the resolution, which is limited by the bandwidth of the femtosecond laser system. Typical performance of the apparatus is demonstrated in a study of the time-resolved photoelectron spectroscopy of nitric oxide. The results of the time-resolved mass spectrometry experiments of chlorine dioxide are presented in Chapter 3. Upon excitation to the A {sup 2}A{sub 2} state near 3.2 eV, the molecule dissociates through an indirect two-step mechanism. The direct dissociation channel has been predicted to be open, but is not observed. A quantum beat is observed in the OClO{sup +} species, which is described as a vibrational coherence of the optically prepared A {sup 2}A{sub 2} state. Chapter 4 presents the results of the time-resolved photoelectron experiments of chlorine dioxide. At short delay time, the quantum beat of the OClO{sup +} species is observed in the X {sup 1}A{sub 1} state of the ion. At infinite delay, the signal

  14. Leaching of zinc and zinc alloys with chlorine and chlorine hydrate

    NASA Astrophysics Data System (ADS)

    Thomas, B. K.; Fray, D. J.

    1981-09-01

    There are several metallic residues which can contain significant quantities of zinc, together with other metals, which are not possible to treat at present. In an attempt to overcome this problem, a number of zinc alloys were leached in chlorine water mixtures over a range of temperature and chlorine concentrations. The leaching rates with respect to zinc were either increased due to the galvanic affect of the alloying element, or decreased by formation of a surface film. Leaching rates from commercial die-cast alloys exceed those using sulfuric acid and hydrochloric acid. Under the experimental conditions, the leaching of pure zinc was found to be mass transport controlled with an activation energy for the reaction Zn(s) + Cl2(aq) → ZnCl2(aq) of 16.55 kj/mol. The rate, in addition, was independent of the microstructure of the zinc. The dissolution of other elements such as aluminum, iron, tin and magnesium was very small.

  15. Inactivation of Enteric Adenovirus and Feline Calicivirus by Chlorine Dioxide

    PubMed Central

    Thurston-Enriquez, Jeanette A.; Haas, Charles N.; Jacangelo, Joseph; Gerba, Charles P.

    2005-01-01

    Chlorine dioxide (ClO2) inactivation experiments were conducted with adenovirus type 40 (AD40) and feline calicivirus (FCV). Experiments were carried out in buffered, disinfectant demand-free water under high- and low-pH and -temperature conditions. Ct values (the concentration of ClO2 multiplied by contact time with the virus) were calculated directly from bench-scale experiments and from application of the efficiency factor Hom (EFH) model. AD40 Ct ranges for 4-log inactivation (Ct99.99%) at 5°C were >0.77 to <1.53 mg/liter × min and >0.80 to <1.59 mg/liter × min for pH 6 and 8, respectively. For 15°C AD40 experiments, >0.49 to <0.74 mg/liter × min and <0.12 mg/liter × min Ct99.99% ranges were observed for pH 6 and 8, respectively. FCV Ct99.99% ranges for 5°C experiments were >20.20 to <30.30 mg/liter × min and >0.68 mg/liter × min for pH 6 and 8, respectively. For 15°C FCV experiments, Ct99.99% ranges were >4.20 to <6.72 and <0.18 mg/liter × min for pH 6 and 8, respectively. Viral inactivation was higher at pH 8 than at pH 6 and at 15°C than at 5°C. Comparison of Ct values and inactivation curves demonstrated that the EFH model described bench-scale experiment data very well. Observed bench-scale Ct99.99% ranges and EFH model Ct99.99% values demonstrated that FCV is more resistant to ClO2 than AD40 for the conditions studied. U.S. Environmental Protection Agency guidance manual Ct99.99% values are higher than Ct99.99% values calculated from bench-scale experiments and from EFH model application. PMID:15933007

  16. Degradation of DEET and Caffeine under UV/Chlorine and Simulated Sunlight/Chlorine Conditions.

    PubMed

    Sun, Peizhe; Lee, Wan-Ning; Zhang, Ruochun; Huang, Ching-Hua

    2016-12-20

    Photoactivation of aqueous chlorine could promote degradation of chlorine-resistant and photochemically stable chemicals accumulated in swimming pools. This study investigated the degradation of two such chemicals, N,N-diethyl-3-methylbenzamide (DEET) and caffeine, by low pressure ultraviolet (UV) light and simulated sunlight (SS) activated free chlorine (FC) in different water matrices. Both DEET and caffeine were rapidly degraded by UV/FC and SS/FC but exhibited different kinetic behaviors. The degradation of DEET followed pseudo-first-order kinetics, whereas the degradation of caffeine accelerated with reaction. Mechanistic study revealed that, under UV/FC, ·OH and Cl· were responsible for degradation of DEET, whereas ClO· related reactive species (ClOrrs), generated by the reaction between FC and ·OH/Cl·, played a major role in addition to ·OH and Cl· in degrading caffeine. Reaction rate constants of DEET and caffeine with the respective radical species were estimated. The imidazole moiety of caffeine was critical for the special reactivity with ClOrrs. Water matrix such as pH had a stronger impact on the UV/FC process than the SS/FC process. In saltwater matrix under UV/FC and SS/FC, the degradation of DEET was significantly inhibited, but the degradation of caffeine was much faster than that in nonsalty solutions. The interaction between Br(-) and Cl(-) may play an important role in the degradation of caffeine by UV/FC in saltwater. Reaction product analysis showed similar product patterns by UV/FC and SS/FC and minimal formation of chlorinated intermediates and disinfection byproducts.

  17. A marine sink for chlorine in natural organic matter [Natural chlorination of marine organic matter

    SciTech Connect

    Leri, Alessandra C.; Northrup, Paul A.; Mayer, Lawrence M.; Thornton, Kathleen R.; Dunigan, Marisa R.; Ness, Katherine J.; Gellis, Austin B.

    2015-07-06

    Chloride, Cl, is the most abundant solute in seawater, amounting to 55% of ions by weight. Cl is more difficult to oxidize than bromide, and marine halogenating enzymes tend to be bromoperoxidases that are incapable of forming organochlorines. Consequently, most halogenated natural products identified in the marine environment are organobromines. Known exceptions include small quantities of volatile chlorocarbons emitted by marine algae and dissolved chlorinated benzoic acids.

  18. A marine sink for chlorine in natural organic matter [Natural chlorination of marine organic matter

    DOE PAGES

    Leri, Alessandra C.; Northrup, Paul A.; Mayer, Lawrence M.; ...

    2015-07-06

    Chloride, Cl–, is the most abundant solute in seawater, amounting to 55% of ions by weight. Cl– is more difficult to oxidize than bromide, and marine halogenating enzymes tend to be bromoperoxidases that are incapable of forming organochlorines. Consequently, most halogenated natural products identified in the marine environment are organobromines. Known exceptions include small quantities of volatile chlorocarbons emitted by marine algae and dissolved chlorinated benzoic acids.

  19. Condenser targeted chlorination demonstration at Brayton Point Station, Unit 2

    SciTech Connect

    Not Available

    1991-02-01

    EPRI sponsored the development of condenser targeted chlorination to control slime fouling on condenser tubes. Hydraulic model studies, chlorine schedules optimization, and corrosion studies were conducted between 1983 and 1986 to develop design parameters. A full-scale demonstration at the Brayton Point Station -- Unit 2 condenser was performed in 1987--1988. One half of the condenser bundle was fitted with a fixed nozzle targeted injection system. The other half was used as a control with conventional chlorination. The condenser was instrumented to allow daily trending of the cleanliness factors in the targeted and conventionally treated bundles. The chemical parameters, such as the chlorine schedules (dosage, duration, and frequency) and water quality, were documented. The Trihalomethane (THM) levels at the effluent were evaluated and, after the test, tube scrapings were analyzed. Targeted chlorination resulted in: up to 20 percent condenser performance improvement; up to 80 percent chlorine consumption reduction; less than 0.1 ppM total residual chlorine achieved at the effluent in the sealpit; no measurable condenser corrosion; and undetectable levels of THM at the effluent in the sealpit.

  20. [Chlorination of ethynyl estradiol: a kinetic and mechanistic study].

    PubMed

    Wang, Bin-Nan; Liu, Guo-Qiang; Kong, De-Yang; Lu, Jun-He

    2013-06-01

    The objective of this research is to explore the fundamentals of reactions between chlorine and ethynyl estradiol (EE2), which is expected to occur during the drinking water treatment. The first step of EE2 chlorination was shown to follow the second-order kinetics with the first order to concentrations of both target compound and chlorine, respectively. Apparent rate constants of EE2 chlorination exhibit the pH-dependent profile which indicates that the phenolic ring is the preferred site of attack by Cl. The transformation of EE2 is governed by 3 elementary reactions between different species of EE2 and HClO. The deprotonated EE2 anion is significantly more reactive than its neutral conjugate. HPLC/MS analysis revealed that several Cl atoms can be incorporated into this site via complex multi-step pathways, resulting in the formation of mono and di-chlorine substituted EE2. The incorporation of the third Cl is accompanied by immediate broken down of the ring via hydrolysis. The results of this study are helpful to fully understand the behavior of EE2 in chlorinated drinking water disinfection, provide the basis for evaluating the potential exposure of this contaminant to human. The data of this work also give insights to the formation of chlorinated drinking water disinfection by-products (DBPs).