Sorlini, Sabrina; Gialdini, Francesca; Biasibetti, Michela; Collivignarelli, Carlo
2014-05-01
Disinfection is the last treatment stage of a Drinking Water Treatment Plant (DWTP) and is carried out to maintain a residual concentration of disinfectant in the water distribution system. Chlorine dioxide (ClO2) is a widely used chemical employed for this purpose. The aim of this work was to evaluate the influence of several treatments on chlorine dioxide consumption and on chlorite and chlorate formation in the final oxidation/disinfection stage. A number of tests was performed at laboratory scale employing water samples collected from the DWTP of Cremona (Italy). The following processes were studied: oxidation with potassium permanganate, chlorine dioxide and sodium hypochlorite, coagulation/flocculation with ferric chloride and aluminum sulfate, filtration and adsorption onto activated carbon. The results showed that the chlorine dioxide demand is high if sodium hypochlorite or potassium permanganate are employed in pre-oxidation. On the other hand, chlorine dioxide leads to the highest production of chlorite and chlorate. The coagulation/flocculation process after pre-oxidation shows that chlorine dioxide demand decreases if potassium permanganate is employed as an oxidant, both with ferric chloride and aluminum sulfate. Therefore, the combination of these processes leads to a lower production of chlorite and chlorate. Aluminum sulfate is preferable in terms of the chlorine dioxide demand reduction and minimization of the chlorite and chlorate formation. Activated carbon is the most effective solution as it reduced the chlorine dioxide consumption by about 50% and the DBP formation by about 20-40%. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ramseier, Maaike K; Peter, Andreas; Traber, Jacqueline; von Gunten, Urs
2011-02-01
Five oxidants, ozone, chlorine dioxide, chlorine, permanganate, and ferrate were studied with regard to the formation of assimilable organic carbon (AOC) and oxalate in absence and presence of cyanobacteria in lake water matrices. Ozone and ferrate formed significant amounts of AOC, i.e. more than 100 μg/L AOC were formed with 4.6 mg/L ozone and ferrate in water with 3.8 mg/L dissolved organic carbon. In the same water samples chlorine dioxide, chlorine, and permanganate produced no or only limited AOC. When cyanobacterial cells (Aphanizomenon gracile) were added to the water, an AOC increase was detected with ozone, permanganate, and ferrate, probably due to cell lysis. This was confirmed by the increase of extracellular geosmin, a substance found in the selected cyanobacterial cells. AOC formation by chlorine and chlorine dioxide was not affected by the presence of the cells. The formation of oxalate upon oxidation was found to be a linear function of the oxidant consumption for all five oxidants. The following molar yields were measured in three different water matrices based on oxidant consumed: 2.4-4.4% for ozone, 1.0-2.8% for chlorine dioxide and chlorine, 1.1-1.2% for ferrate, and 11-16% for permanganate. Furthermore, oxalate was formed in similar concentrations as trihalomethanes during chlorination (yield ∼ 1% based on chlorine consumed). Oxalate formation kinetics and stoichiometry did not correspond to the AOC formation. Therefore, oxalate cannot be used as a surrogate for AOC formation during oxidative water treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.
40 CFR 141.130 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... this subpart establish criteria under which transient NCWSs that use chlorine dioxide as a disinfectant or oxidant must modify their practices to meet the MRDL for chlorine dioxide in § 141.65. (3) EPA has... systems serving 10,000 or more persons and using chlorine dioxide as a disinfectant or oxidant must comply...
40 CFR 141.65 - Maximum residual disinfectant levels.
Code of Federal Regulations, 2011 CFR
2011-07-01
... MRDL (mg/L) Chlorine 4.0 (as Cl2). Chloramines 4.0 (as Cl2). Chlorine dioxide 0.8 (as ClO2). (b... chlorine dioxide as a disinfectant or oxidant must comply with the chlorine dioxide MRDL beginning January 1, 2002. Subpart H systems serving fewer than 10,000 persons and using chlorine dioxide as a...
Rodríguez, Eva; Onstad, Gretchen D; Kull, Tomas P J; Metcalf, James S; Acero, Juan L; von Gunten, Urs
2007-08-01
As the World Health Organization (WHO) progresses with provisional Drinking Water Guidelines of 1 microg/L for microcystin-LR and a proposed Guideline of 1 microg/L for cylindrospermopsin, efficient treatment strategies are needed to prevent cyanotoxins such as these from reaching consumers. A kinetic database has been compiled for the oxidative treatment of three cyanotoxins: microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-a (ANTX) with ozone, chlorine, chlorine dioxide and permanganate. This kinetic database contains rate constants not previously reported and determined in the present work (e.g. for permanganate oxidation of ANTX and chlorine dioxide oxidation of CYN and ANTX), together with previously published rate constants for the remaining oxidation processes. Second-order rate constants measured in pure aqueous solutions of these toxins could be used in a kinetic model to predict the toxin oxidation efficiency of ozone, chlorine, chlorine dioxide and permanganate when applied to natural waters. Oxidants were applied to water from a eutrophic Swiss lake (Lake Greifensee) in static-dose testing and dynamic time-resolved experiments to confirm predictions from the kinetic database, and to investigate the effects of a natural matrix on toxin oxidation and by-product formation. Overall, permanganate can effectively oxidize ANTX and MC-LR, while chlorine will oxidize CYN and MC-LR and ozone is capable of oxidizing all three toxins with the highest rate. The formation of trihalomethanes (THMs) in the treated water may be a restriction to the application of sufficiently high-chlorine doses.
40 CFR 142.60 - Variances from the maximum contaminant level for total trihalomethanes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... disinfectant or oxidant. (2) Use of chlorine dioxide as an alternate or supplemental disinfectant or oxidant... to reduce TTHM formation and, where necessary, substituting for the use of chlorine as a pre-oxidant chloramines, chlorine dioxide or potassium permanganate. (5) Use of powdered activated carbon for THM...
USDA-ARS?s Scientific Manuscript database
Chlorine dioxide, a strong oxidizing and sanitizing agent, is used as a postharvest sanitizer for fruits and vegetables and generally applied on a packing line using a chlorine dioxide generator. The objective of this research was to study the physiological responses of strawberries to ClO2 when app...
LABORATORY STUDY ON THE OXIDATION OF ARSENIC III TO ARSENIC V
A one-year laboratory study was performed to determine the ability of seven oxidants to oxidize As(III) to As(V). These included chlorine, permanganate, ozone, chlorine dioxide, monochloramine, a solid-phase oxidizing media, and 254 nm ultraviolet light. Chlorine and permanganate...
Rice, R G; Gomez-Taylor, M
1986-01-01
This paper describes results of a detailed literature review of the organic and inorganic by-products that have been identified as being formed in aqueous solution with four of the strong oxidizing/disinfecting agents commonly employed in drinking water treatment. These agents are: chlorine, chlorine dioxide, chloramine, and ozone. Significant findings include the production of similar nonchlorinated organic oxidation products from chlorine, chlorine dioxide, and ozone. In addition, all three chlorinous oxidants/disinfectants can produce chlorinated by-products under certain conditions. The presence of chloronitrile compounds in drinking waters is indicated to arise from reactions of chlorine or chloramine to amine/amide functions in amino acids or proteinaceous materials, followed by dehydrohalogenation. These nitriles could hydrolyze to produce the corresponding chloroacetic acids. It is concluded that to minimize the presence of oxidation by-products in drinking waters, the concentrations of oxidizable organic/inorganic impurities should be lowered before any oxidizing agent is added. PMID:3545807
Willach, Sarah; Lutze, Holger V; Eckey, Kevin; Löppenberg, Katja; Lüling, Michelle; Terhalle, Jens; Wolbert, Jens-Benjamin; Jochmann, Maik A; Karst, Uwe; Schmidt, Torsten C
2017-10-01
The sulfonamide antibiotic sulfamethoxazole (SMX) is a widely detected micropollutant in surface and groundwaters. Oxidative treatment with e.g. ozone or chlorine dioxide is regularly applied for disinfection purposes at the same time exhibiting a high potential for removal of micropollutants. Especially for nitrogen containing compounds such as SMX, the related reaction mechanisms are largely unknown. In this study, we systematically investigated reaction stoichiometry, product formation and reaction mechanisms in reactions of SMX with ozone and chlorine dioxide. To this end, the neutral and anionic SMX species, which may occur at typical pH-values of water treatment were studied. Two moles of chlorine dioxide and approximately three moles of ozone were consumed per mole SMX degraded. Oxidation of SMX with ozone and chlorine dioxide leads in both cases to six major transformation products (TPs) as revealed by high-resolution mass spectrometry (HRMS). Tentatively formulated TP structures from other studies could partly be confirmed by compound-specific stable isotope analysis (CSIA). However, for one TP, a hydroxylated SMX, it was not possible by HRMS alone to identify whether hydroxylation occurred at the aromatic ring, as suggested in literature before, or at the anilinic nitrogen. By means of CSIA and an analytical standard it was possible to identify sulfamethoxazole hydroxylamine unequivocally as one of the TPs of the reaction of SMX with ozone as well as with chlorine dioxide. H-abstraction and electron transfer at the anilinic nitrogen are suggested as likely initial reactions of ozone and chlorine dioxide, respectively, leading to its formation. Oxidation of anionic SMX with ozone did not show any significant isotopic fractionation whereas the other reactions studied resulted in a significant carbon isotope fractionation. Copyright © 2017 Elsevier Ltd. All rights reserved.
The effect of pre-oxidation on NDMA formation and the influence of pH.
Selbes, Meric; Kim, Daekyun; Karanfil, Tanju
2014-12-01
N-nitrosodimethylamine (NDMA), a probable human carcinogen, is a disinfection by-product that has been detected in chloraminated drinking water systems. Pre-oxidation of the NDMA precursors prior to chloramination can be a viable approach for water utilities to control the NDMA levels. This study examined the effects of (i) commonly used oxidants (i.e., chlorine, chlorine dioxide and ozone) in water treatment, (ii) oxidant concentration and contact time (CT), and (iii) pre-oxidation pH on the formation of NDMA from subsequent chloramination. Fifteen model precursors with NDMA molar yields ranging from approximately 0.1%-90% were examined. Pre-chlorination reduced NDMA formation from most precursors by 10%-50% except quaternary amine polymers (i.e., PolyDADMAC, PolyACRYL, PolyAMINE). Pre-oxidation with chlorine dioxide and ozone achieved the same or higher deactivation of NDMA precursors (e.g., ranitidine) while increasing NDMA formation for some other precursors (e.g., daminozid). The increases with chlorine dioxide exposure were attributed to the release of oxidation products with dimethylamine (DMA) moiety, which may form more NDMA upon chloramination than the unoxidizied parent compound. On the other hand, chlorine dioxide was effective, if a precursors NDMA yield were higher than DMA. The ozone-triggered increases could be related to direct NDMA formation from DMA which are released by ozonation of amines with DMA moiety, amides or hydrazines. However, hydroxyl radicals formed from the decomposition of ozone would be also involved in decomposition of formed NDMA, reducing the overall NDMA levels at longer contact times. pH conditions influenced significantly the effectiveness of deactivation of precursors depending on the type of precursor and oxidant used. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chlorine dioxide as a post-disinfectant for Dutch drinking water.
Wondergem, E; van Dijk-Looijaard, A M
1991-02-01
Chlorine dioxide has some important advantages over chlorine with respect to water quality (no formation of trihalomethanes, no impairment of taste and no odor) and stability when used for oxidation/disinfection of drinking water. In this paper, results are presented of experiments into the consumption and reaction kinetics of chlorine dioxide in a number of (drinking) waters in The Netherlands. It was found that chlorine dioxide consumption is related to the dissolved oxygen content (DOC) of the water and the reaction time. Water samples from a plant that applied ozonation and activated carbon filtration had a very low chlorine dioxide consumption. Other water quality parameters, including pH and CO3(2-), did not have any influence on consumption. The temporary advised Dutch guidelines of 0.2 mg l-1 (dosage) is sufficient for activated carbon treated water. For other Dutch drinking waters, however, none of the 0.2 mg l-1 chlorine dioxide remained after a reaction time of 10 min, as was also found for the water of Dutch pumping stations where chlorine dioxide is at present used for disinfection.
BROMIDE-OXIDANT INTERACTIONS AND THM (TRIHALOMETHANE) FORMATION: A LITERATURE REVIEW
The review focuses on the interactions, not only of bromide and chlorine, but also of bromide and two common oxidation alternatives to chlorine--chlorine dioxide and monochloramine. The data evaluations include discussions of reaction products, potentials for trihalomethane (THM)...
Study on encapsulation of chlorine dioxide in gelatin microsphere for reducing release rate
Ci, Ying; Wang, Lin; Guo, Yanchuan; Sun, Ruixue; Wang, Xijie; Li, Jinyou
2015-01-01
Objective: This study aims to explore the effects of encapsulation of chlorine dioxide in a hydrophilic biodegradable polymer gelatin to reduce its release rate. Methods: An emulsification-coacervation method was adopted. The characterizations of chlorine dioxide-gelatin microspheres were described. Using UV-vis spectrophotometer the λmax of chlorine dioxide was observed at 358 nm. The particle size and distribution of chlorine oxide-gelatin microspheres was measured by a dynamic light scattering (DLS) method, the diameter was (1400~1900) nm. The entrapment of chlorine dioxide-gelatin microspheres was confirmed by IR. The surface morphology, size, and shape of chlorine dioxide-gelatin microspheres were analyzed using Scanning electron microscope (SEM). Results: It showed that the encapsulated microspheres size was around 2000 nm with uniform distribution. The percentage entrapment of chlorine dioxide in the encapsulated samples was about 80~85%. A slow release study of chlorine dioxide from the encapsulated biopolymer (gelatin) in air was also carried out, which showed continuous release up to ten days. Conclusions: It can be concluded that it is possible to make a slow release formulation of ClO2 by entrapped in a hydrophilic biodegradable polymer gelatin. ClO2-gelatin microspheres can stable release low concentration ClO2 gas over an extended period. PMID:26550151
Managing calcium oxalate scale in the bleach plant
Alan Rudie; Peter Hart
2005-01-01
To comply with the U.S. Environmental Protection Agency's "Cluster Rule," most U.S. mills have switched from the use of chlorine to chlorine dioxide as the oxidant in the first stage of bleaching. This process change has a downside. it increases the formation of mineral scale in bleach plants. Typically, calcium oxalate forms in the chlorine dioxide...
Ramseier, Maaike K; von Gunten, Urs; Freihofer, Pietro; Hammes, Frederik
2011-01-01
Drinking water was treated with ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate to investigate the kinetics of membrane damage of native drinking water bacterial cells. Membrane damage was measured by flow cytometry using a combination of SYBR Green I and propidium iodide (SGI+PI) staining as indicator for cells with permeabilized membranes and SGI alone to measure total cell concentration. SGI+PI staining revealed that the cells were permeabilized upon relatively low oxidant exposures of all tested oxidants without a detectable lag phase. However, only ozonation resulted in a decrease of the total cell concentrations for the investigated reaction times. Rate constants for the membrane damage reaction varied over seven orders of magnitude in the following order: ozone > chlorine > chlorine dioxide ≈ ferrate > permanganate > chloramine. The rate constants were compared to literature data and were in general smaller than previously measured rate constants. This confirmed that membrane integrity is a conservative and therefore safe parameter for disinfection control. Interestingly, the cell membranes of high nucleic acid (HNA) content bacteria were damaged much faster than those of low nucleic acid (LNA) content bacteria during treatment with chlorine dioxide and permanganate. However, only small differences were observed during treatment with chlorine and chloramine, and no difference was observed for ferrate treatment. Based on the different reactivity of these oxidants it was suggested that HNA and LNA bacterial cell membranes have a different chemical constitution. Copyright © 2010 Elsevier Ltd. All rights reserved.
Martin, D J H; Wesgate, R L; Denyer, S P; McDonnell, G; Maillard, J-Y
2015-12-01
Oxidizing agents such as chlorine dioxide are widely used microbicides, including for disinfection of medical equipment. We isolated a Bacillus subtilis isolate from a washer-disinfector whose vegetative form demonstrated unique resistance to chlorine dioxide (0·03%) and hydrogen peroxide (7·5%). The aim of this study was to understand the mechanisms of resistance expressed by this isolate. A range of resistance mechanisms were investigated in the B. subtilis isolate and a reference B. subtilis strain (ATCC 6051) to include bacterial cell aggregation, the presence of profuse exopolysaccharide (EPS), and the expression of detoxification enzymes. The basis of resistance of the isolate to high concentrations of oxidizing agents was not linked to the presence of endospores. Although, the presence of EPS, aggregation and expression of detoxification enzymes may play a role in bacterial survival to low concentrations of chlorine dioxide, it is unlikely that the mechanisms helped tested to survive the bactericidal effect of higher oxidizer concentrations. Overall, the mechanisms conferring resistance to chlorine dioxide and hydrogen peroxide remains elusive. Based on recent advances in the mode of action of oxidizing agents and notably hydrogen peroxide, we postulate that additional efficient intracellular mechanisms may be involved to explain significant resistance to in-use concentrations of commonly used high-level disinfectants. The isolation of a highly resistant vegetative Gram-positive bacterium to a highly reactive oxidizing agent is worrying. Understanding the mechanisms conferring such resistance is essential to effectively control such bacterial isolates. Here, we postulate that there are still mechanisms of bacterial resistance that have not been fully characterized. © 2015 The Authors published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.
This chapter reports on the efforts of the USEPA to study chloramines, chlorine dioxide and ozone as alternative oxidants/disinfectants to chlorine for the control of disinfection by-rpdocuts (DBPs) in drinking water. It examines the control of DBPs like trihalomethanes and haloa...
Rigobello, Eliane Sloboda; Dantas, Angela Di Bernardo; Di Bernardo, Luiz; Vieira, Eny Maria
2013-06-01
This study was carried out to evaluate the efficiency of conventional drinking water treatment processes with and without pre-oxidation with chlorine and chlorine dioxide and the use of granular activated carbon (GAC) filtration for the removal of diclofenac (DCF). Water treatment was performed using the Jar test with filters on a lab scale, employing nonchlorinated artesian well water prepared with aquatic humic substances to yield 20HU true color, kaolin turbidity of 70 NTU and 1mgL(-1) DCF. For the quantification of DCF in water samples, solid phase extraction and HPLC-DAD methods were developed and validated. There was no removal of DCF in coagulation with aluminum sulfate (3.47mgAlL(-1) and pH=6.5), flocculation, sedimentation and sand filtration. In the treatment with pre-oxidation and disinfection, DCF was partially removed, but the concentration of dissolved organic carbon (DOC) was unchanged and byproducts of DCF were observed. Chlorine dioxide was more effective than chorine in oxidizing DCF. In conclusion, the identification of DCF and DOC in finished water indicated the incomplete elimination of DCF through conventional treatments. Nevertheless, conventional drinking water treatment followed by GAC filtration was effective in removing DCF (⩾99.7%). In the oxidation with chlorine, three byproducts were tentatively identified, corresponding to a hydroxylation, aromatic substitution of one hydrogen by chlorine and a decarboxylation/hydroxylation. Oxidation with chlorine dioxide resulted in only one byproduct (hydroxylation). Copyright © 2013 Elsevier Ltd. All rights reserved.
Mass Transfer Study of Chlorine Dioxide Gas Through Polymeric Packaging Materials
USDA-ARS?s Scientific Manuscript database
A continuous system for measuring the mass transfer of gaseous chlorine dioxide (ClO2), a strong oxidizing agent and used in food and pharmaceutical packaging, through 10 different types of polymeric packaging material was developed utilizing electrochemical sensor as a detector. Permeability, diff...
A Bee Guide to Complying with the Safe Drinking Water Act
1991-08-01
disinfectants commonly used in water treatment. These disinfectants include chlorine, chloramine , chlorine dioxide, and ozone. Existing toxicological...to water systems that add a disinfectant (oxidant, such as chlorine, chlorine dioxide, chloramines or ozone) to any part of the treatment process. 6...AL-TR-1 991-0075 AD-A242 509 ^tLECTE II AR M A BEE GUIDE TO COMPLYING WITH THE S SAFE DRINKING WATER ACT T R Q John G. Garland III, Major, USAF, BSCN
Kinetics and mechanism of styrene epoxidation by chlorite: role of chlorine dioxide.
Leigh, Jessica K; Rajput, Jonathan; Richardson, David E
2014-07-07
An investigation of the kinetics and mechanism for epoxidation of styrene and para-substituted styrenes by chlorite at 25 °C in the pH range of 5-6 is described. The proposed mechanism in water and water/acetonitrile includes seven oxidation states of chlorine (-I, 0, I, II, III, IV, and V) to account for the observed kinetics and product distributions. The model provides an unusually detailed quantitative mechanism for the complex reactions that occur in mixtures of chlorine species and organic substrates, particularly when the strong oxidant chlorite is employed. Kinetic control of the reaction is achieved by the addition of chlorine dioxide to the reaction mixture, thereby eliminating a substantial induction period observed when chlorite is used alone. The epoxidation agent is identified as chlorine dioxide, which is continually formed by the reaction of chlorite with hypochlorous acid that results from ClO produced by the epoxidation reaction. The overall stoichiometry is the result of two competing chain reactions in which the reactive intermediate ClO reacts with either chlorine dioxide or chlorite ion to produce hypochlorous acid and chlorate or chloride, respectively. At high chlorite ion concentrations, HOCl is rapidly eliminated by reaction with chlorite, minimizing side reactions between HOCl and Cl2 with the starting material. Epoxide selectivity (>90% under optimal conditions) is accurately predicted by the kinetic model. The model rate constant for direct reaction of styrene with ClO2(aq) to produce epoxide is (1.16 ± 0.07) × 10(-2) M(-1) s(-1) for 60:40 water/acetonitrile with 0.20 M acetate buffer. Rate constants for para substituted styrenes (R = -SO3(-), -OMe, -Me, -Cl, -H, and -NO2) with ClO2 were determined. The results support the radical addition/elimination mechanism originally proposed by Kolar and Lindgren to account for the formation of styrene oxide in the reaction of styrene with chlorine dioxide.
Wert, Eric C; Dong, Mei Mei; Rosario-Ortiz, Fernando L
2013-07-01
Depending on drinking water treatment conditions, oxidation processes may result in the degradation of cyanobacteria cells causing the release of toxic metabolites (microcystin), odorous metabolites (MIB, geosmin), or disinfection byproduct precursors. In this study, a digital flow cytometer (FlowCAM(®)) in combination with chlorophyll-a analysis was used to evaluate the ability of ozone, chlorine, chlorine dioxide, and chloramine to damage or lyse cyanobacteria cells added to Colorado River water. Microcystis aeruginosa (MA), Oscillatoria sp. (OSC) and Lyngbya sp. (LYN) were selected for the study due to their occurrence in surface water supplies, metabolite production, and morphology. Results showed that cell damage was observed without complete lysis or fragmentation of the cell membrane under many of the conditions tested. During ozone and chlorine experiments, the unicellular MA was more susceptible to oxidation than the filamentous OSC and LYN. Rate constants were developed based on the loss of chlorophyll-a and oxidant exposure, which showed the oxidants degraded MA, OSC, and LYN according to the order of ozone > chlorine ~ chlorine dioxide > chloramine. Digital and binary images taken by the digital flow cytometer provided qualitative insight regarding cell damage. When applying this information, drinking water utilities can better understand the risk of cell damage or lysis during oxidation processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Deshwal, Bal Raj; Jin, Dong Seop; Lee, Si Hyun; Moon, Seung Hyun; Jung, Jong Hyeon; Lee, Hyung Keun
2008-02-11
The present study attempts to clean up nitric oxide from the simulated flue gas using aqueous chlorine-dioxide solution in the bubbling reactor. Chlorine-dioxide is generated by chloride-chlorate process. Experiments are carried out to examine the effect of various operating variables like input NO concentration, presence of SO(2), pH of the solution and NaCl feeding rate on the NO(x) removal efficiency at 45 degrees C. Complete oxidation of nitric oxide into nitrogen dioxide occurred on passing sufficient ClO(2) gas into the scrubbing solution. NO is finally converted into nitrate and ClO(2) is reduced into chloride ions. A plausible reaction mechanism concerning NO(x) removal by ClO(2) is suggested. DeNO(x) efficiency increased slightly with the increasing input NO concentration. The presence of SO(2) improved the NO(2) absorption but pH of solution showed marginal effect on NO(2) absorption. NO(x) removal mechanism changed when medium of solution changed from acidic to alkaline. A constant NO(x) removal efficiency of about 60% has been achieved in the wide pH range of 3-11 under optimized conditions.
Temperature Dependence of Gas Properties in Polynomial Form
1981-01-01
Carbonyl Sulfide Chlorine Chlorine (Monatomic) Chlorine Dioxide Chlorine Fluoride Chlorine Monoxide Chlorine Oxide Chlorine Trifluoride ...dis- cussed in Section 5 and the following eqn: 100-1500K~ Cp(T)= 515.3754 + 0.426933T -2.91036E-04T 2 -+ 6.836113E-08Ti CHLORINE TRIFLUORIDE C1F 3...3 Trimeric Boron Tribromide BBr3 250.538 33.186 A-3 Boron Trichloride BC1 3 117.170 70.959 A-4 Boron Trifluoride BF3 67.806 122.619 A-4 Bromine Br2
Examination of Treatment Methods for Cyanide Wastes.
1979-05-15
industry,is alkaline chlorination. This process oxidizes cyanide to cyanate followed by complete decomposition yielding carbon dioxide and nitrogen or...decomposition yielding carbon dioxide and nitrogen, or ammonium salts depending on final treatment methods. The major oxidizing agents that have been...2H20 (X represents a cation.) 29 NADC-78198-60 This liberates carbon dioxide and nitrogen gas as end products. Possible acid hydrolysis has been
Process for continuous production of metallic uranium and uranium alloys
Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.
1995-06-06
A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.
Process for continuous production of metallic uranium and uranium alloys
Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.
1995-01-01
A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.
Dissection of the mechanism of manganese porphyrin-catalyzed chlorine dioxide generation.
Umile, Thomas P; Wang, Dong; Groves, John T
2011-10-17
Chlorine dioxide, an industrially important biocide and bleach, is produced rapidly and efficiently from chlorite ion in the presence of water-soluble, manganese porphyrins and porphyrazines at neutral pH under mild conditions. The electron-deficient manganese(III) tetra-(N,N-dimethyl)imidazolium porphyrin (MnTDMImP), tetra-(N,N-dimethyl)benzimidazolium (MnTDMBImP) porphyrin, and manganese(III) tetra-N-methyl-2,3-pyridinoporphyrazine (MnTM23PyPz) were found to be the most efficient catalysts for this process. The more typical manganese tetra-4-N-methylpyridiumporphyrin (Mn-4-TMPyP) was much less effective. Rates for the best catalysts were in the range of 0.24-32 TO/s with MnTM23PyPz being the fastest. The kinetics of reactions of the various ClO(x) species (e.g., chlorite ion, hypochlorous acid, and chlorine dioxide) with authentic oxomanganese(IV) and dioxomanganese(V)MnTDMImP intermediates were studied by stopped-flow spectroscopy. Rate-limiting oxidation of the manganese(III) catalyst by chlorite ion via oxygen atom transfer is proposed to afford a trans-dioxomanganese(V) intermediate. Both trans-dioxomanganese(V)TDMImP and oxoaqua-manganese(IV)TDMImP oxidize chlorite ion by 1-electron, generating the product chlorine dioxide with bimolecular rate constants of 6.30 × 10(3) M(-1) s(-1) and 3.13 × 10(3) M(-1) s(-1), respectively, at pH 6.8. Chlorine dioxide was able to oxidize manganese(III)TDMImP to oxomanganese(IV) at a similar rate, establishing a redox steady-state equilibrium under turnover conditions. Hypochlorous acid (HOCl) produced during turnover was found to rapidly and reversibly react with manganese(III)TDMImP to give dioxoMn(V)TDMImP and chloride ion. The measured equilibrium constant for this reaction (K(eq) = 2.2 at pH 5.1) afforded a value for the oxoMn(V)/Mn(III) redox couple under catalytic conditions (E' = 1.35 V vs NHE). In subsequent processes, chlorine dioxide reacts with both oxomanganese(V) and oxomanganese(IV)TDMImP to afford chlorate ion. Kinetic simulations of the proposed mechanism using experimentally measured rate constants were in agreement with observed chlorine dioxide growth and decay curves, measured chlorate yields, and the oxoMn(IV)/Mn(III) redox potential (1.03 V vs NHE). This acid-free catalysis could form the basis for a new process to make ClO(2).
Groups at potentially high risk from chlorine dioxide treated water.
Moore, G S; Calabrese, E J; Ho, S C
1980-09-01
Chlorite, a by-product of chlorine dioxide disinfection of water, is a strong oxidant compound that produces markedly exaggerated effects in vitro on red cells of G6PD deficient humans when compared to normal human cells. Levels of methemoglobin are significantly greater and GSH levels significantly lower in the G6PD deficient cells than in normal cells after chlorite exposure. Persons with G6PD deficiency may be 3 to 4 times more likely to develop hemolytic anemia from chlorite exposure as persons with normal activity levels when GSH levels are used as a measure of susceptibility. The proposed use of chlorine dioxide as an alternate disinfectant for drinking water supplies should consider this potential high risk group.
The State of the Art. Bridge Protective Systems and Devices.
1978-10-01
Chlorine io more commonly found In the marine envirorment while carbon dioxide and sulfur oxide are common Industrial con- taninants. The rate of all of...sulfur, and carbon dioxide which form acid films; and the composition of the metal. Proper maintenance can do little as far as controlling the...installations. 50PP I 8 4 ol - - - -~ ~ a-.’ PON -- Chemical corrosion resul’ from the direct attack on stool by acids or diluted acids. Chlorine, carbon
The formation and control of emerging disinfection by-products of health concern.
Krasner, Stuart W
2009-10-13
When drinking water treatment plants disinfect water, a wide range of disinfection by-products (DBPs) of health and regulatory concern are formed. Recent studies have identified emerging DBPs (e.g. iodinated trihalomethanes (THMs) and acids, haloacetonitriles, halonitromethanes (HNMs), haloacetaldehydes, nitrosamines) that may be more toxic than some of the regulated ones (e.g. chlorine- and bromine-containing THMs and haloacetic acids). Some of these emerging DBPs are associated with impaired drinking water supplies (e.g. impacted by treated wastewater, algae, iodide). In some cases, alternative primary or secondary disinfectants to chlorine (e.g. chloramines, chlorine dioxide, ozone, ultraviolet) that minimize the formation of some of the regulated DBPs may increase the formation of some of the emerging by-products. However, optimization of the various treatment processes and disinfection scenarios can allow plants to control to varying degrees the formation of regulated and emerging DBPs. For example, pre-disinfection with chlorine, chlorine dioxide or ozone can destroy precursors for N-nitrosodimethylamine, which is a chloramine by-product, whereas pre-oxidation with chlorine or ozone can oxidize iodide to iodate and minimize iodinated DBP formation during post-chloramination. Although pre-ozonation may increase the formation of trihaloacetaldehydes or selected HNMs during post-chlorination or chloramination, biofiltration may reduce the formation potential of these by-products.
Chemical oxidants are commonly added during water treatment for disinfection purposes. These chemicals have not been tested previously for their ability to induce genetic damage in vivo. Chlorine (hypochlorite and hypochlorous acid), monochloramine, chlorine dioxide, sodium chlor...
Chemical Loss of Ozone in the Arctic Polar Vortex in the Winter of 1991-1992
NASA Technical Reports Server (NTRS)
Salawitch, R. J.; Wofsy, S. C.; Gottlieb, E. W.; Lait, L. R.; Newman, P. A.; Schoeberl, M. R.; Strahan, S. E.; Loewenstein, M.; Podolske, J. R.; Chan, K. R.;
1993-01-01
In situ measurements of chlorine monoxide, bromine monoxide, and ozone are extrapolated globally, with the use of meteorological tracers, to infer the loss rates for ozone in the Arctic lower stratosphere during the Airborne Arctic Stratospheric Expedition II (AASE II) in the winter of 1991-1992. The analysis indicates removal of 15 to 20 percent of ambient ozone because of elevated concentrations of chlorine monoxide and bromine monoxide. Observations during AASE II define rates of removal of chlorine monoxide attributable to reaction with nitrogen dioxide (produced by photolysis of nitric acid) and to production of hydrochloric acid. Ozone loss ceased in March as concentrations of chlorine monoxide declined. Ozone losses could approach 50 percent if regeneration of nitrogen dioxide were inhibited by irreversible removal of nitrogen oxides (denitrification), as presently observed in the Antarctic, or without denitrification if inorganic chlorine concentrations were to double.
40 CFR 142.60 - Variances from the maximum contaminant level for total trihalomethanes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... disinfectant or oxidant. (2) Use of chlorine dioxide as an alternate or supplemental disinfectant or oxidant... of raw water. Use of ozone as an alternate or supplemental disinfectant or oxidant. (d) If the... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS...
21 CFR 173.300 - Chlorine dioxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Chlorine dioxide. 173.300 Section 173.300 Food and... Additives § 173.300 Chlorine dioxide. Chlorine dioxide (CAS Reg. No. 10049-04-4) may be safely used in food... chlorine dioxide with respect to all chlorine species as determined by Method 4500-ClO2 E in the “Standard...
Lee, Yunho; von Gunten, Urs
2012-12-01
Various oxidants such as chlorine, chlorine dioxide, ferrate(VI), ozone, and hydroxyl radicals can be applied for eliminating organic micropollutant by oxidative transformation during water treatment in systems such as drinking water, wastewater, and water reuse. Over the last decades, many second-order rate constants (k) have been determined for the reaction of these oxidants with model compounds and micropollutants. Good correlations (quantitative structure-activity relationships or QSARs) are often found between the k-values for an oxidation reaction of closely related compounds (i.e. having a common organic functional group) and substituent descriptor variables such as Hammett or Taft sigma constants. In this study, we developed QSARs for the oxidation of organic and some inorganic compounds and organic micropollutants transformation during oxidative water treatment. A number of 18 QSARs were developed based on overall 412 k-values for the reaction of chlorine, chlorine dioxide, ferrate, and ozone with organic compounds containing electron-rich moieties such as phenols, anilines, olefins, and amines. On average, 303 out of 412 (74%) k-values were predicted by these QSARs within a factor of 1/3-3 compared to the measured values. For HO(·) reactions, some principles and estimation methods of k-values (e.g. the Group Contribution Method) are discussed. The developed QSARs and the Group Contribution Method could be used to predict the k-values for various emerging organic micropollutants. As a demonstration, 39 out of 45 (87%) predicted k-values were found within a factor 1/3-3 compared to the measured values for the selected emerging micropollutants. Finally, it is discussed how the uncertainty in the predicted k-values using the QSARs affects the accuracy of prediction for micropollutant elimination during oxidative water treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
....7: (i) Ammonia, anhydrous; (ii) Chlorine; (iii) Ethane; (iv) Ethylene oxide; (v) Methane (LNG); (vi) Methyl bromide; (vii) Sulfur dioxide; and (viii) Vinyl chloride. Charterer means the person or...
Water disinfection: A relationship between ozone and aldehyde production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilli, G.; Scursatone, E.; Palin, L.
In the water potabilization plant of Turin city (Italy), the oxidation process is carried out with ozone. Due to its well-known insufficient performance, it is necessary to add alternative oxidants (hypochlorite ion and chlorine dioxide). In this paper, the authors discuss the formation of linear carbonyl groups during surface water treatment in Turni. The results obtained in the field confirm the synthesis of some aliphatic carbonyl compounds of low molecular weight. This phenomenon happens preeminently during the ozone disinfection process and, secondarily, during the other disinfection processes. Experimental results show that, in this last event, chlorine reacts with organic substances,more » and in a second moment, after organics consumption, if chlorine is still in a sufficient concentration, oxidizing them.« less
Ufermann, Petra; Petersen, Hauke; Exner, Martin
2011-12-01
The world-wide deployment of cruise liners and naval units has caused an increased need for the disinfection of drinking water. The main cause for this is the unknown quality of drinking water in foreign harbours--besides the formation of bio-films due to the climatically disadvantageous conditions in the operational area. Water conduits on board are currently disinfected with calcium hypochlorite in case of microbiological contamination. Chemical and physical analyses after disinfection with calcium hypochlorite have shown that organic by-products consisting of trihalomethanes develop in considerable amounts during disinfection. Furthermore, the method is susceptible to handling errors and thus often leads to insufficient disinfection results. Hitherto, the use of other disinfection methods allowed by government regulations, especially chlorine dioxide, is not widely spread. Unlike disinfection with calcium hypochlorite, chlorine dioxide does not lead to the formation of trihalomethanes. Typical disinfection by-products (DBP) are the anions chlorite and chlorate, which are formed in oxidative processes. The formation conditions of these anions have not yet been elucidated. For this reason, the probability of the generation of inorganic by-products after disinfection with chlorine dioxide has been determined, and their occurrence in drinking water on board has been examined with respect to a possible correlation between water quality and the formation of chlorate and chlorite. Therefore, a chromatographic method was developed and validated in order to determine the periodical development of chlorate and chlorite from chorine dioxide in purified water at different pH-values as well as in actual drinking water samples from water conduits on board. The formation of the by-products chlorite and chlorate after disinfection with chlorine dioxide is influenced neither by pH-value nor by chemical properties of the disinfected water. Considering the examined conditions, chlorine dioxide is suitable for usage on board due to its simple handling and the low potential of producing by-products. Copyright © 2011 Elsevier GmbH. All rights reserved.
Sorlini, Sabrina; Gialdini, Francesca
2010-11-01
Arsenic is widespread in soils, water and air. In natural water the main forms are arsenite (As(III)) and arsenate (As(V)). The consumption of water containing high concentration of arsenic produces serious effects on human health, like skin and lung cancer. In Italy, Legislative Decree 2001/31 reduced the limit of arsenic from 50 to 10 μg/L, in agreement with the European Directive 98/83/EC. As consequence, many drinking water treatment plant companies needed to upgrade the existing plants where arsenic was previously removed or to build up new plants for arsenic removal when this contaminant was not previously a critical parameter. Arsenic removal from water may occur through the precipitation with iron or aluminum salts, adsorption on iron hydroxide or granular activated alumina (AA), reverse osmosis and ion exchange (IE). Some of the above techniques, especially precipitation, adsorption with AA and IE, can reach good arsenic removal yields only if arsenic is oxidized. The aim of the present work is to investigate the efficiency of the oxidation of As(III) by means of four conventional oxidants (chlorine dioxide, sodium hypochlorite, potassium permanganate and monochloramine) with different test conditions: different type of water (demineralised and real water), different pH values (5.7-6-7 and 8) and different doses of chemicals. The arsenic oxidation yields were excellent with potassium permanganate, very good with hypochlorite and low with monochloramine. These results were observed both on demineralised and real water for all the tested reagents with the exception of chlorine dioxide that showed a better arsenic oxidation on real groundwater than demineralised water. Copyright © 2010 Elsevier Ltd. All rights reserved.
Chlorination of UO 2, PuO 2 and rare earth oxides using ZrCl 4 in LiCl-KCl eutectic melt
NASA Astrophysics Data System (ADS)
Sakamura, Yoshiharu; Inoue, Tadashi; Iwai, Takashi; Moriyama, Hirotake
2005-04-01
A new chlorination method using ZrCl 4 in a molten salt bath has been investigated for the pyrometallurgical reprocessing of nuclear fuels. ZrCl 4 has a high reactivity with oxygen but is not corrosive to refractory metals such as steel. Rare earth oxides (La 2O 3, CeO 2, Nd 2O 3 and Y 2O 3) and actinide oxides (UO 2 and PuO 2) were allowed to react with ZrCl 4 in a LiCl-KCl eutectic salt at 773 K to give a metal chloride solution and a precipitate of ZrO 2. An addition of zirconium metal as a reductant was effective in chlorinating the dioxides. When the oxides were in powder form, the reaction was observed to progress rapidly. Cyclic voltammetry provided a convenient way of establishing when the reaction was completed. It was demonstrated that the ZrCl 4 chlorination method, free from corrosive gas, was very simple and useful.
Shah, Amisha D; Kim, Jae-Hong; Huang, Ching-Hua
2006-12-01
The potential release of carbadox (CDX), a commonly used antibacterial agent in swine husbandry, into water systems is of a concern due to its carcinogenic and genotoxic effects. Until this study, the reactivity of carbadox (possessing quinoxaline N,N'-dioxide and hydrazone moieties) toward aqueous chlorine has yetto be investigated in depth. Chemical reactivity, reaction kinetics, and transformation pathways of carbadox and structurally related compounds with free chlorine under typical water treatment conditions were determined. This study found that only CDX and desoxycarbadox (DCDX), a main metabolite of CDX with no ring N-oxide groups, react rapidly with free chlorine while other structurally related compounds including olaquindox, quindoxin, quinoxaline N-oxide, quinoxaline, and quinoline N-oxide do not. The reaction kinetics of CDX and DCDX with chlorine are highly pH dependent (e.g., the apparent second-order rate constant, kapp, for CDX ranges from 51.8 to 3.15 x 10(4) M(-1)s(-1) at pH 4-11). The high reactivity of CDX and DCDX to chlorine involves deprotonation of their hydrazone N-H moieties where initial chlorine attack results in a reactive intermediate that is further attacked by nucleophiles in the matrix to yield non-chlorinated, hydroxylated, and larger molecular weight byproducts. All of the CDX's byproducts retain their biologically active N-oxide groups, suggesting that they may remain as active antibacterial agents.
Purified Cryptosporiodium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were compareatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlor...
40 CFR Appendix I to Part 264 - Recordkeeping Instructions
Code of Federal Regulations, 2011 CFR
2011-07-01
... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...
40 CFR Appendix I to Part 264 - Recordkeeping Instructions
Code of Federal Regulations, 2012 CFR
2012-07-01
... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...
40 CFR Appendix I to Part 264 - Recordkeeping Instructions
Code of Federal Regulations, 2013 CFR
2013-07-01
... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...
40 CFR Appendix I to Part 264 - Recordkeeping Instructions
Code of Federal Regulations, 2014 CFR
2014-07-01
... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...
NASA Astrophysics Data System (ADS)
Góbi, Sándor; Bergantini, Alexandre; Kaiser, Ralf I.
2016-12-01
Magnesium perchlorate hexahydrate (Mg(ClO4)2 · 6H2O) samples were exposed to energetic electrons to investigate the products of the decomposition of perchlorates in the Martian soil and to infer their role in the degradation of organics on Mars. The samples were monitored online and in situ via infrared spectroscopy as well as electron impact (EI-QMS) and reflectron time-of-flight mass spectrometry coupled with single photon ionization (PI-ReTOF-MS). Our study reveals that besides chlorates ({{{ClO}}3}-) and molecular oxygen (O2), the chlorine dioxide radical (ClO2) was observed online and in situ for the first time as a radiolysis product of solid perchlorates. Chlorine dioxide, which is used on Earth as a strong oxidizing agent in water disinfection and bleaching, represents a proficient oxidizer—potentially more powerful than molecular oxygen—to explain the lack of abundant organics in the Martian soil.
Mutagenic activity of disinfection by-products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cognet, L.; Courtois, Y.; Mallevialle, J.
1986-11-01
Data on raw water quality, disinfection treatment practices, and the resulting mutagenic properties of the treated water were compiled from pilot- and full-scale treatment experiments to evaluate that parameter which might produce variability in the results of a mutagenic study. Analysis of the data and comparison of treatment practices indicated that the measured mutagenic activity is strongly related to the characteristics of the organic matter in the raw water, the methodology used to sample and detect mutagens, the scale of the study both in terms of treatment flow and period of study, and the point at which and the conditionsmore » under which oxidants are added during treatment. Conclusions regarding disinfection systems in full-scale water treatment plants include the following: When raw water is pretreated and high concentrations of organics are present in the raw water, both ozonation and chlorination increased mutagenic activity. However, no significant difference in mutagenicity was found between the two oxidants. Both in the case of a nitrified groundwater and a clarified surface water, the mutagenic activity of the water after ozonation was related to its mutagenic activity before ozonation. With ozonation, mutagenic activity decreased after granular activated carbon (GAC) filtration. Thus, when GAC filtration follows ozone disinfection, early addition of oxidants may not be deleterious to the finished water quality. When chlorine or chlorine dioxide is added after GAC filtration, chlorine dioxide was found to produce a less mutagenic water than chlorine. Although these conclusions suggest means of controlling mutagenic activity during treatment, it must be stressed that the measurement of mutagenicity is a presumptive index of contamination level.« less
Evaluation of gaseous chlorine dioxide for the inactivation of tulane virus on blueberries
USDA-ARS?s Scientific Manuscript database
To determine the effectiveness of gaseous chlorine dioxide against a human norovirus surrogate on produce, chlorine dioxide was generated and applied to Tulane virus coated blueberries in a 240 ml treatment chamber. Chlorine dioxide was produced by acidifying sodium chlorite solution. Initial asse...
Method for combined removal of mercury and nitrogen oxides from off-gas streams
Mendelsohn, Marshall H [Downers Grove, IL; Livengood, C David [Lockport, IL
2006-10-10
A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., ozone, or chlorine dioxide for primary disinfection? 141.535 Section 141.535 Protection of Environment... § 141.535 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone, or chlorine dioxide for primary disinfection, you must also...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., ozone, or chlorine dioxide for primary disinfection? 141.535 Section 141.535 Protection of Environment... § 141.535 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone, or chlorine dioxide for primary disinfection, you must also...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., ozone, or chlorine dioxide for primary disinfection? 141.535 Section 141.535 Protection of Environment... § 141.535 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone, or chlorine dioxide for primary disinfection, you must also...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., ozone, or chlorine dioxide for primary disinfection? 141.535 Section 141.535 Protection of Environment... § 141.535 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone, or chlorine dioxide for primary disinfection, you must also...
Chlorine dioxide reactions with indoor materials during building disinfection: surface uptake.
Hubbard, Heidi; Poppendieck, Dustin; Corsi, Richard L
2009-03-01
Chlorine dioxide received attention as a building disinfectant in the wake of Bacillus anthracis contamination of several large buildings in the fall of 2001. It is increasingly used for the disinfection of homes and other indoor environments afflicted by mold. However, little is known regarding the interaction of chlorine dioxide and indoor materials, particularly as related to the removal of chlorine dioxide from air. Such removal may be undesirable with respect to the subsequent formation of localized zones of depleted disinfectant concentrations and potential reductions in disinfection effectiveness in a building. The focus of this paper is on chlorine dioxide removal from air to each of 24 different indoor materials. Experiments were completed with materials housed in flow-through 48-L stainless steel chambers under standard conditions of 700 ppm chlorine dioxide inlet concentration, 75% relative humidity, 24 degrees C, and 0.5 h(-1) air changes. Chlorine dioxide concentration profiles, deposition velocities, and reaction probabilities are described in this paper. Deposition velocities and reaction probabilities varied over approximately 2 orders of magnitude across all materials. For most materials, deposition velocity decreased significantly over a 16-h disinfection period; that is, materials became smaller sinks for chlorine dioxide with time. Four materials (office partition, ceiling tile, medium density fiberboard, and gypsum wallboard) accounted for the most short- and long-term consumption of chlorine dioxide. Deposition velocity was observed to be a strong function of chlorine dioxide inlet concentration, suggesting the potential importance of chemical reactions on or within test materials.
Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna
2015-01-01
Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP.
40 CFR 141.132 - Monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... discretion. (2) Chlorite. Community and nontransient noncommunity water systems using chlorine dioxide, for... samples. (ii) Reduced monitoring. Monitoring may not be reduced. (2) Chlorine dioxide—(i) Routine... three chlorine dioxide distribution system samples. If chlorine dioxide or chloramines are used to...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., ozone, or chlorine dioxide for primary disinfection? 141.544 Section 141.544 Protection of Environment... Benchmark § 141.544 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone or chlorine dioxide for primary disinfection your system must...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., ozone, or chlorine dioxide for primary disinfection? 141.544 Section 141.544 Protection of Environment... Benchmark § 141.544 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone or chlorine dioxide for primary disinfection your system must...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., ozone, or chlorine dioxide for primary disinfection? 141.544 Section 141.544 Protection of Environment... Benchmark § 141.544 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone or chlorine dioxide for primary disinfection your system must...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., ozone, or chlorine dioxide for primary disinfection? 141.544 Section 141.544 Protection of Environment... Benchmark § 141.544 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone or chlorine dioxide for primary disinfection your system must...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korich, D.G.; Mead, J.R.; Madore, M.S.
1990-05-01
Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 timesmore » more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... Chlorine T Dimethylamine F+T Ethane F Ethyl chloride F+T Ethylene F Ethylene oxide F+T Methyl-acetylene and propadiene (mixtures) F Methyl bromide F+T Methyl chloride F+T Propane F Propylene F Sulphur dioxide T Vinyl...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Chlorine T Dimethylamine F+T Ethane F Ethyl chloride F+T Ethylene F Ethylene oxide F+T Methyl-acetylene and propadiene (mixtures) F Methyl bromide F+T Methyl chloride F+T Propane F Propylene F Sulphur dioxide T Vinyl...
Disinfecting capabilities of oxychlorine compounds.
Noss, C I; Olivieri, V P
1985-01-01
The bacterial virus f2 was inactivated by chlorine dioxide at acidic, neutral, and alkaline pH values. The rate of inactivation increased with increasing pH. Chlorine dioxide disproportionation products, chlorite and chlorate, were not active disinfectants. As chlorine dioxide solutions were degraded under alkaline conditions, they displayed reduced viricidal effectiveness, thereby confirming the chlorine dioxide free radical as the active disinfecting species. PMID:3911893
Exposure to chlorine dioxide gas for 4 hours renders Syphacia ova nonviable.
Czarra, Jane A; Adams, Joleen K; Carter, Christopher L; Hill, William A; Coan, Patricia N
2014-07-01
The purpose of our study was to evaluate the efficacy of chlorine dioxide gas for environmental decontamination of Syphacia spp. ova. We collected Syphacia ova by perianal cellophane tape impression of pinworm-infected mice. Tapes with attached ova were exposed to chlorine dioxide gas for 1, 2, 3, or 4 h. After gas exposure, ova were incubated in hatching medium for 6 h to promote hatching. For controls, tapes with attached ova were maintained at room temperature for 1, 2, 3, and 4 h without exposure to chlorine dioxide gas and similarly incubated in hatch medium for 6 h. Ova viability after incubation was assessed by microscopic examination. Exposure to chlorine dioxide gas for 4 h rendered 100% of Syphacia spp. ova nonviable. Conversely, only 17% of ova on the 4-h control slide were nonviable. Other times of exposure to chlorine dioxide gas resulted in variable effectiveness. These data suggest that exposure to chlorine dioxide gas for at least 4 h is effective for surface decontamination of Syphacia spp. ova.
Sylte, M J; Chandra, L C; Looft, T
2017-07-01
Bird eggs are in contact with intestinal microbiota at or after oviposition, but are protected from bacterial translocation by a glycoprotein cuticle layer, the shell, and internal membranes. In a preliminary study, turkey eggs were hatched in a germ-free environment. Firmicutes 16S rRNA gene was detected in the cecal microbiota of hatched poults, suggesting that poults may acquire spore-formers by exposure to shell contents during hatching. Generating gnotobiotic poults for research requires elimination of bacteria from the egg's surface without damaging the developing embryo. The ability of different disinfectants and antiseptics to eliminate eggshell bacteria without harming the developing embryo was tested. Different classes of disinfectants and antiseptics (halogens, biguanidines, and oxidants) were selected to target spores and vegetative bacteria likely present on the egg's surface. Eggs were treated by fully immersing in heated antiseptic (betadine or chlorhexidine) or disinfectant (alkaline bleach, acidified bleach, chlorine dioxide, Oxysept-333, or Virkon S) solutions for up to 15 minutes. Shells were aseptically harvested for aerobic and anaerobic culturing of bacteria. Toxicity to the developing embryo was assessed by gross evaluation of developmental changes in treated eggs incubated up to 27 d of embryonation. Halogen disinfectants acidified bleach and chlorine dioxide, and oxidants Oxysept-333 and Virkon-S eliminated viable bacteria from eggshells. However, addition of oxidants, alone or in combination with other treatments, produced significant (P < 0.05) embryotoxicity. The combination treatment of acidified bleach, chlorine dioxide, and betadine produced minimal embryotoxicity and eliminated viable bacteria from whole turkey eggs, and produced hatched poults in a gnotobiotic isolator. As a control, eggs were treated with PBS, incubated, and hatched under germ-replete conditions. After hatching, poults were euthanized and treated poults had no detectable bacterial growth or 16S rRNA gene qPCR amplification, demonstrating that acidified sodium hypochlorite, chlorine dioxide, and betadine safely hatched gnotobiotic poults. Generation of germ-free poults is an important tool and will be used to evaluate the host-pathogen interaction by foodborne pathogens such as Campylobacter spp. Published by Oxford University Press on behalf of Poultry Science Association 2017.
Benefits of carbon dioxide as pH reducer in chlorinated indoor swimming pools.
Gomà, Anton; Guisasola, Albert; Tayà, Carlota; Baeza, Juan A; Baeza, Mireia; Bartrolí, Albert; Lafuente, Javier; Bartrolí, Jordi
2010-06-01
Carbon dioxide is seldom used as pH reducer in swimming pools. Nevertheless it offers two interesting advantages. First, its use instead of the usual hydrochloric acid avoids the characteristic and serious accident of mixing the disinfectant with that strong acid, which forms a dangerous chlorine gas cloud and, second, it allows the facility to become slightly a depository of that greenhouse gas. This work introduces the experience of using CO(2) as pH reducer in real working swimming pools, showing three more advantages: lower chlorine consumption, lower presence of oxidants in the air above the swimming pool and a diminished formation of trihalomethanes in the swimming pool water. Experiments lasted 4years and they were run in three swimming pools in the Barcelona area, where the conventional system based upon HCl and a system based upon CO(2) were consecutively exchanged.
Development of a Portable Binary Chlorine Dioxide Generator for Decontamination
2010-03-01
chlorine dioxide forms slowly from chlorite solutions through either acid release or a radical chain reaction that we observed at neutral pH. Task 7... Chlorine dioxide and water in methanol - no agent control F. 5.25% Bleach G. Methanol only 3.0 PROCEDURES 3.1 METHOD VALIDATION The reaction...error range in gas chromatography measurements. For the chlorine dioxide containing samples, mass spectra were analyzed to determine potential
1985-08-01
have been practiced at Army and municipal water treatment plants. Oxidation/ Disinfection - T -HM Control Although THMs are the only halogenated organics...Table 9 USEPA-Identlf led Methods to Achieve Compliance With 0.1 mg/L, MCL for THMs * Using chloramines as an alternative or supplemental disinfectant ...chlorine Is applied for final disinfection . A residual disinfection coin be added to the distribution systems using chloramines or chlorine dioxide
Park, Sang Hyuck; Padhye, Lokesh P; Wang, Pei; Cho, Min; Kim, Jae-Hong; Huang, Ching-Hua
2015-01-23
Recent studies show that cationic amine-based water treatment polymers may be important precursors that contribute to formation of the probable human carcinogen N-nitrosodimethylamine (NDMA) during water treatment and disinfection. To better understand how water treatment parameters affect NDMA formation from the polymers, the effects of in situ chloramination, breakpoint chlorination, and pre-oxidation on the NDMA formation from the polymers were investigated. NDMA formation potential (NDMA-FP) as well as dimethylamine (DMA) residual concentration were measured from poly(epichlorohydrin dimethylamine) (polyamine) and poly(diallyldimethylammonium chloride) (polyDADMAC) solutions upon reactions with oxidants including free chlorine, chlorine dioxide, ozone, and monochloramine under different treatment conditions. The results supported that dichloramine (NHCl2) formation was the critical factor affecting NDMA formation from the polymers during in situ chloramination. The highest NDMA formation from the polymers occurred near the breakpoint of chlorination. Polymer chain breakdown and transformation of the released DMA and other intermediates were important factors affecting NDMA formation from the polymers in pre-oxidation followed by post-chloramination. Pre-oxidation generally reduced NDMA-FP of the polymers; however, the treatments involving pre-ozonation increased polyDADMAC's NDMA-FP and DMA release. The strategies for reducing NDMA formation from the polymers may include the avoidance of the conditions favorable to NHCl2 formation and the avoidance of polymer exposure to strong oxidants such as ozone. Copyright © 2014 Elsevier B.V. All rights reserved.
Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Ozone, chlorine dioxide, and chloramine are currently popular alternatives to ...
CHLORINE DIOXIDE CHEMISTRY, REACTIONS, AND DISINFECTION BY-PRODUCTS
This chapter contains two main sections-the first section describes the chemistry and reactions of chlorine dioxide, and the second describes the disinfection by-products (DBPs) of chlorine dioxide and their control. A short section on Research Needs completes this chapter. The...
2015-11-24
ammonia , chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400... ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint...sections of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (CCl2O), and sulfur dioxide (SO2) toxic gases in the fingerprint
2015-12-14
ammonia , chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400... ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint...sections of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (CCl2O), and sulfur dioxide (SO2) toxic gases in the fingerprint region
Korak, Julie A; Wert, Eric C; Rosario-Ortiz, Fernando L
2015-01-01
Intracellular organic matter (IOM) from cyanobacteria may be released into natural waters following cell death in aquatic ecosystems and during oxidation processes in drinking water treatment plants. Fluorescence spectroscopy was evaluated to identify the presence of IOM from three cyanobacteria species during simulated release into natural water and following oxidation processes (i.e. ozone, free chlorine, chloramine, chlorine dioxide). Peak picking and the fluorescence index (FI) were explored to determine which IOM components (e.g., pigments) provide unique and persistent fluorescence signatures with minimal interferences from the background dissolved organic matter (DOM) found in Colorado River water (CRW). When IOM was added to ultrapure water, the fluorescence signature of the three cyanobacteria species showed similarities to each other. Each IOM exhibited a strong protein-like fluorescence and fluorescence at Ex 370 nm and Em 460 nm (FDOM), where commercial fluorescence sensors monitor. All species also had strong phycobiliprotein fluorescence (i.e. phycocyanin or phycoerythrin) in the higher excitation range (500-650 nm). All three IOM isolates had FI values greater than 2. When IOM was added to CRW, phycobiliprotein fluorescence was quenched through interactions between IOM and CRW-DOM. Mixing IOM and CRW demonstrated that protein-like and FDOM intensity responses were not a simple superposition of the starting material intensities, indicating that interactions between IOM and CRW-DOM fluorescing moieties were important. Fluorescence intensity in all regions decreased with exposure to ozone, free chlorine, and chlorine dioxide, but the FI still indicated compositional differences compared to CRW-DOM. The phycobiliproteins in IOM are not promising as a surrogate for IOM release, because their fluorescence intensity is quenched by interactions with DOM and decreased during oxidation processes. Increases in both FDOM intensity and FI are viable qualitative indicators of IOM release in natural waters and following oxidation and may provide a more robust real-time indication of the presence of IOM than conventional dissolved organic carbon or UV absorbance measurements.
[Study on pipe material's influence on chlorine dioxide drinking water disinfection].
He, Tao; Yue, Yinling; Ling, Bo; Zhang, Lan
2010-09-01
To study the pipe material's influence on chlorine dioxide drinking water disinfection. 0.8 mg/L chlorine dioxide solution was injected into 5 kinds of pipes respectively, PPR, PVC-U, Steel with Zinc coating, copper and PE pipes. Dipped free from light for 48 hours and the concentrations of chlorine dioxide, chlorite and chlorate were tested from samples taken from each kind of pipe at 1, 2, 3, 4, 5, 6, 12, 24 and 48 hours respectively. Chlorine dioxides decay rates in the water dipping the pipes increase as the dipping time increases and the decay of chlorine dioxide mainly occurs within 6 hours after the dipping. But for different pipe, the influence of decay differs. The consumption of chlorine dioxide of the metal pipes is more than that of the plastic pipes. And with 2 hours after the dipping experiment begins, the concentrations of the chlorite of the copper pipe and of the steel with zinc coating pipe increase quickly and reach the maximum concentration. But then the chlorite concentration decreases greatly. After dipped 24 hours, the chlorite in the water in the pipe can not be detected. For other plastic piples, all the chlorite concentrations in the dipping water increase as the dipping time increase. Compared with the start of the dipping experiment, the chlorate concentration in the dipping water of each pipe has no obvious change. The material of the water transportation pipe does have influence on chlorine dioxide drinking water disinfection.
DRINKING WATER DISINFECTION BY-PRODUCTS: WHAT IS KNOWN
Chlorine, ozone, chlorine dioxide, and chloramine are currently the major disinfectants being used to disinfect drinking water. Although the alternative disinfectants (ozone, chlorine dioxide, and chloramine) are increasing in popularity in the United States, chlorine is still us...
Chlorine Dioxide Induced Multiple Chemical Sensitivity: MMPI Validity Problems.
ERIC Educational Resources Information Center
Tentoni, Stuart C.
This paper discusses Minnesota Multiphasic Personality Inventory (MMPI) data obtained from individuals exposed to chlorine dioxide in the workplace who developed Multiple Chemical Sensitivity Syndrome. The paper explores current research on chlorine dioxide exposed persons who were misdiagnosed on the basis of MMPI interpretations. Difficulties…
The Health Effects of Chlorine Dioxide as a Disinfectant in Potable Water: A Literature Survey
ERIC Educational Resources Information Center
Calabrese, Edward J.; And Others
1978-01-01
The use of chlorine dioxide as a disinfectant in water is being considered by the EPA. This article presents a summary of the known published reports concerning health effects of chlorine dioxide on animal and human populations. (Author/MA)
Establishment of a Vaporous Hydrogen Peroxide Bio-Decontamination Capability
2007-02-01
of Colorado at Denver and Health Sciences Center. There he utilised mass spectrometry to investigate the biochemical pathways involved in lipid... techniques (NMR, GC). Since then she has worked in a variety of areas including: (a) computer simulation of vapour dispersion for early warning to...to inactivate biological agents such as B. anthracis and these include beta-propiolactone, chlorine dioxide, ethylene oxide, propylene oxide, ozone
IDENTIFICATION OF CHLORINE DIOXIDE AND CHLORAMINE DRINKING WATER DISINFECTION BY-PRODUCTS
Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide and chloramine are two popular alternative disinfectants, with...
Application of Chlorine Dioxide to Lessen Bacterial Contamination during Broiler Defeathering
USDA-ARS?s Scientific Manuscript database
Due to escape of contaminated gut contents, the number of Campylobacter spp. recovered from broiler carcasses increases during feather removal. Chlorine dioxide (ClO2) is approved for use as an antimicrobial treatment during poultry processing. A chlorine dioxide generator was placed in a commerci...
Heterogenous photocatalysis with TiO2 has been extensively investigated as a method to oxidize organic pollutants in water and air, including phenols, chlorinated hydrocarbons, and other hydrocarbons. In addition, the use of titanium dioxide as a photocatalyst has also been demon...
1979-12-01
Nitrates Sulfur dioxide Xylene Nitrites Oxides of nitrogen Mercaptans "Red Water" Carbon monoxide Chlorine Acids: Ketones Fluorine Hydrochloric Esters...Trichloroethylene Varnishes Methylchloroform Undercoatings Mineral spirits Liquid styrene Naphtha Adhesives Halgenated hydrocarbons Nonmethane hydrocarbons
Cross-Resistance of UV- or Chlorine Dioxide-Resistant Echovirus 11 to Other Disinfectants
Zhong, Qingxia; Carratalà, Anna; Ossola, Rachele; Bachmann, Virginie; Kohn, Tamar
2017-01-01
The emergence of waterborne viruses with resistance to disinfection has been demonstrated in the laboratory and in the environment. Yet, the implications of such resistance for virus control remain obscure. In this study we investigate if viruses with resistance to a given disinfection method exhibit cross-resistance to other disinfectants. Chlorine dioxide (ClO2)- or UV-resistant populations of echovirus 11 were exposed to five inactivating treatments (free chlorine, ClO2, UV radiation, sunlight, and heat), and the extent of cross-resistance was determined. The ClO2-resistant population exhibited cross-resistance to free chlorine, but to none of the other inactivating treatments tested. We furthermore demonstrated that ClO2 and free chlorine act by a similar mechanism, in that they mainly inhibit the binding of echovirus 11 to its host cell. As such, viruses with host binding mechanisms that can withstand ClO2 treatment were also better able to withstand oxidation by free chlorine. Conversely, the UV-resistant population was not significantly cross-resistant to any other disinfection treatment. Overall, our results indicate that viruses with resistance to multiple disinfectants exist, but that they can be controlled by inactivating methods that operate by a distinctly different mechanism. We therefore suggest to utilize two disinfection barriers that act by different mechanisms in order to control disinfection-resistant viruses. PMID:29046672
Due to concern over the potential adverse health effects of trihalomethanes (THMs), haloacetic acids, and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide is a popular alternative, with over 500 dri...
49 CFR 173.3 - Packaging and exceptions.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-unit tank car tanks. (1) A DOT 3A480 or DOT 3AA480 cylinder containing chlorine or sulphur dioxide that... containing chlorine or sulphur dioxide that has developed a leak in the valve or fusible plug may be... equipment; and (iii) Knowledge of the properties of chlorine and sulphur dioxide. (4) Packagings repaired...
40 CFR 141.133 - Compliance requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... to lower the level of chlorine dioxide below the MRDL and must notify the public pursuant to the.... Failure to take samples in the distribution system the day following an exceedance of the chlorine dioxide... corrective action to lower the level of chlorine dioxide below the MRDL at the point of sampling and will...
Measurement of Chlorine Dioxide in Water by DPD Colorimetric Method
NASA Astrophysics Data System (ADS)
Song, Min; Yan, Panping; Yao, Jun
2018-01-01
In order to solve the problems of chlorine dioxide in water by DPD colorimetric method, this paper discusses the effects of the formulation, temperature, color development time and amount of color reagent on the measurement process, improving the on-line instrument for domestic and drinking water in chlorine dioxide measurement precision and accuracy.
Many drinking water treatment plants are currently using alternative disinfectants to treat drinking water, with ozone, chlorine dioxide, and chloramine being the most popular. However, compared to chlorine, which has been much more widely studied, there is little information abo...
Efficacy of chlorine dioxide mouthwash against halitosis
NASA Astrophysics Data System (ADS)
Bestari, M. D.; Sunarto, H.; Kemal, Y.
2017-08-01
To ascertain the effectiveness of using chlorine dioxide mouthwash in addressing halitosis. Forty people were divided equally into the test group (required to gargle with mouthwash containing chlorine dioxide) and the control group (required to gargle with aquadest). The volatile sulfur compound (VSC) and organoleptic scores were measured before gargling and 30 min, 2 h, 4 h, and 6 h after. The Wilcoxon test analysis showed a significant difference (p<0.05) in the mean value of VSC scores between the test group and the control group in four testing periods after gargling. Chlorine dioxide mouthwash is effective in addressing halitosis.
Bromine, chlorine and sulfur emission into the free troposphere from a Rift volcano
NASA Astrophysics Data System (ADS)
Bobrowski, N.; Giuffrida, G. B.; Tedeso, D.; Yalire, M. M.; Galle, B.
2007-12-01
In June 2007 spectroscopic measurements were carried out at the crater rim of the Niyragongo volcano located 15 km north of the city Goma, North Kivu region (DRC). Niyragongo volcano belongs to the Virunga volcanic chain and it is associated with the Western branch of the Great Rift Valley. The volcanism at Niyragongo is caused by the rifting of the Earth's crust where two parts of the African plates are breaking apart. Niyragongo is a 3470 m high stratovolcano, which a large summit crater usually containing a lava lake inside and it is considered one of the most active volcanoes in Africa. Satellite measurements show an extremely large sulphur dioxide plume since May 2002, and it is considered one of the biggest sulphur dioxide sources on Earth. The ground - based remote sensing technique - MAX-DOAS (Multi Axis Differential Optical Absorption Spectroscopy) using scattered sunlight has been applied during a one week field trip on top of the crater rim of Niyragongo volcano to measure nitrogen oxide, halogen oxides and sulphur dioxide. The used Mini-MAX-DOAS is a lightweight, compact, robust instrument and has very low power consumption which allows to be deployed over several days with some small lead batteries. The measurements provide valuable information of the chemical composition as well its variability within the volcanic plume of the lava lake and allowed also studying chemical transformation processes of the halogens inside the plume. Bromine-sulphur and chlorine-sulphur ratios were investigated and a minimal bromine and chlorine emission flux estimation will be presented.
49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Chloric acid solution or chlorine dioxide hydrate... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When the.... Fiberboard boxes must be reinforced and insulated and sufficient dry ice must be used to maintain the hydrate...
49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Chloric acid solution or chlorine dioxide hydrate... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When the.... Fiberboard boxes must be reinforced and insulated and sufficient dry ice must be used to maintain the hydrate...
49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Chloric acid solution or chlorine dioxide hydrate... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When the.... Fiberboard boxes must be reinforced and insulated and sufficient dry ice must be used to maintain the hydrate...
49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Chloric acid solution or chlorine dioxide hydrate... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When the.... Fiberboard boxes must be reinforced and insulated and sufficient dry ice must be used to maintain the hydrate...
49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Chloric acid solution or chlorine dioxide hydrate... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When the.... Fiberboard boxes must be reinforced and insulated and sufficient dry ice must be used to maintain the hydrate...
49 CFR 173.313 - UN Portable Tank Table for Liquefied Compressed Gases.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Normal 0.51 7.0 7.0 7.0 1012 Butylene 8.0 Allowed Normal 0.53 7.0 7.0 7.0 1017 Chlorine 19.0 Not § 178... tanks— Not Allowed § 178.276(e)(3) 0.78 1041 Ethylene oxide and carbon dioxide mixture with more than 9...(a) Allowed Normal See § 173.32(f) 1079 Sulphur dioxide 11.6 Not Allowed § 178.276(e)(3) 1.23 10.3 8...
49 CFR 173.313 - UN Portable Tank Table for Liquefied Compressed Gases.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Normal 0.51 7.0 7.0 7.0 1012 Butylene 8.0 Allowed Normal 0.53 7.0 7.0 7.0 1017 Chlorine 19.0 Not § 178... tanks— Not Allowed § 178.276(e)(3) 0.78 1041 Ethylene oxide and carbon dioxide mixture with more than 9...(a) Allowed Normal See § 173.32(f) 1079 Sulphur dioxide 11.6 Not Allowed § 178.276(e)(3) 1.23 10.3 8...
USDA-ARS?s Scientific Manuscript database
Chlorine dioxide gas actively eliminates a variety of food-borne pathogens and rot organisms, including Listeria monocytogenes on food and food preparation surfaces. However the disposition and fate of chlorine dioxide gas on ready-to-eat meat products has not been previously described. When ready-t...
Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis
Stratilo, Chad W.; Crichton, Melissa K. F.; Sawyer, Thomas W.
2015-01-01
Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin), compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in human skin keratinocyte primary cultures. The chlorine dioxide decontaminant was similarly effective to sodium hypochlorite in reducing spore numbers of Bacillus anthracis Ames in liquid suspension after a 10 minute exposure. After five minutes, the chlorine dioxide product was significantly more efficacious. Decontamination of isolated swine skin contaminated with Bacillus anthracis Sterne with the chlorine dioxide product resulted in no viable spores sampled. The toxicity of the chlorine dioxide decontaminant was up to two orders of magnitude less than that of sodium hypochlorite in human skin keratinocyte cultures. In summary, the chlorine dioxide based decontaminant efficiently killed Bacillus anthracis spores in liquid suspension, as well as on isolated swine skin, and was less toxic than sodium hypochlorite in cultures of human skin keratinocytes. PMID:26394165
Controlled clinical evaluations of chlorine dioxide, chlorite and chlorate in man.
Lubbers, J R; Chauan, S; Bianchine, J R
1982-01-01
To assess the relative safety of chronically administered chlorine water disinfectants in man, a controlled study was undertaken. The clinical evaluation was conducted in the three phases common to investigational drug studies. Phase I, a rising dose tolerance investigation, examined the acute effects of progressively increasing single doses of chlorine disinfectants to normal healthy adult male volunteers. Phase II considered the impact on normal subjects of daily ingestion of the disinfectants at a concentration of 5 mg/l. for twelve consecutive weeks. Persons with a low level of glucose-6-phosphate dehydrogenase may be expected to be especially susceptible to oxidative stress; therefore, in Phase III, chlorite at a concentration of 5 mg/l. was administered daily for twelve consecutive weeks to a small group of potentially at-risk glucose-6-phosphate dehydrogenase-deficient subjects. Physiological impact was assessed by evaluation of a battery of qualitative and quantitative tests. The three phases of this controlled double-blind clinical evaluation of chlorine dioxide and its potential metabolites in human male volunteer subjects were completed uneventfully. There were no obvious undesirable clinical sequellae noted by any of the participating subjects or by the observing medical team. In several cases, statistically significant trends in certain biochemical or physiological parameters were associated with treatment; however, none of these trends was judged to have physiological consequence. One cannot rule out the possibility that, over a longer treatment period, these trends might indeed achieve proportions of clinical importance. However, by the absence of detrimental physiological responses within the limits of the study, the relative safety of oral ingestion of chlorine dioxide and its metabolites, chlorite and chlorate, was demonstrated. PMID:6961033
2016-02-11
AIP ADVANCES 6, 025310 (2016) Raman spectra and cross sections of ammonia , chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in...Received 10 December 2015; accepted 3 February 2016; published online 11 February 2016) Raman spectra of ammonia (NH3), chlorine (Cl2), hydrogen...and cross sections of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (CCl2O), and sulfur dioxide (SO2) toxic gases in the fingerprint
Bercz, J P; Jones, L L; Harrington, R M; Bawa, R; Condie, L
1986-01-01
Toxicological studies dealing with recent findings of health effects of drinking water disinfectants are reviewed. Experiments with monkeys and rodents indicate that the biological activity of ingested disinfectants is expressed via their chemical interaction with the mucosal epithelia, secretory products, and nutritional contents of the alimentary tract. Evidence exists that a principal partner of this redox interaction is the iodide of nutritional origin that is ubiquitous in the gastrointestinal tract. Thus the observation that subchronic exposure to chlorine dioxide (ClO2) in drinking water decreases serum thyroxine levels in mammalian species can be best explained with changes produced in the chemical form of the bioavailable iodide. Ongoing and previously reported mechanistic studies indicate that oxidizing agents such as chlorine-based disinfectants oxidize the basal iodide content of the gastrointestinal tract. The resulting reactive iodine species readily attaches to organic matter by covalent bonding. Evidence suggests that the extent to which such iodinated organics are formed is proportional to the magnitude of the electromotive force and stoichiometry of the redox couple between iodide and the disinfectant. Because the extent of thyroid uptake of the bioavailable iodide does not decrease during ClO2 ingestion, it seems that ClO2 does not cause iodide deficiency of sufficient magnitude to account for the decrease in hormonogenesis. Absorption of one or more of iodinated molecules, e.g., nutrients, hormones, or cellular constituents of the alimentary tract having thyromimetic or thyroid inhibitory properties, is a better hypothesis for the effects seen. Images FIGURE 1. a FIGURE 1. b FIGURE 1. c PMID:3816729
Shi, Yanwei; Ling, Wencui; Qiang, Zhimin
2013-01-01
The effect of chlorine dioxide (ClO2) oxidation on the formation of disinfection by-products (DBPs) during sequential (ClO2 pre-oxidation for 30 min) and simultaneous disinfection processes with free chlorine (FC) or monochloramine (MCA) was investigated. The formation of DBPs from synthetic humic acid (HA) water and three natural surface waters containing low bromide levels (11-27 microg/L) was comparatively examined in the FC-based (single FC, sequential ClO2-FC, and simultaneous ClO2/FC) and MCA-based (single MCA, ClO2-MCA, and ClO2/MCA) disinfection processes. The results showed that much more DBPs were formed from the synthetic HA water than from the three natural surface waters with comparative levels of dissolved organic carbon. In the FC-based processes, ClO2 oxidation could reduce trihalomethanes (THMs) by 27-35% and haloacetic acids (HAAs) by 14-22% in the three natural surface waters, but increased THMs by 19% and HAAs by 31% in the synthetic HA water after an FC contact time of 48 h. In the MCA-based processes, similar trends were observed although DBPs were produced at a much lower level. There was an insignificant difference in DBPs formation between the sequential and simultaneous processes. The presence of a high level of bromide (320 microg/L) remarkably promoted the DBPs formation in the FC-based processes. Therefore, the simultaneous disinfection process of ClO2/MCA is recommended particularly for waters with a high bromide level.
42 CFR Appendix - Tables to Subpart L of Part 84
Code of Federal Regulations, 2010 CFR
2010-10-01
... respiratory protection against more than one gas of a type, as for use in chlorine and sulfur dioxide, the... Ammonia Equilibrated NH3 1000 32 4 50 50 Chlorine As received Cl2 500 64 3 5 35 Chlorine Equilibrated Cl2... Sulfur dioxide As received SO2 500 64 3 5 30 Sulfur dioxide Equilibrated SO2 500 32 4 5 30 1 Minimum life...
Friedrich, Loretta M; Goodrich-Schneider, Renee; Parish, Mickey E; Danyluk, Michelle D
2009-12-01
The prevalence of Alicyclobacillus spp. and other spore-forming spoilage organisms in food handling and processing environments presents a sanitation challenge to manufacturers of products such as juices and beverages. The objectives of this study were to determine the efficacy of chlorine dioxide and sodium hypochlorite in killing Alicyclobacillus spores in situ and to evaluate the efficacy of various chlorine dioxide and hypochlorite sanitizing regimes on Alicyclobacillus spp. spores on stainless steel, wood, and rubber conveyor material. Five or two log CFU/ml spore concentrations were left in aqueous solution or inoculated onto stainless steel, rubber, or wood coupons and challenged with sanitizer for varied time intervals. After treatment, the coupons were placed in sterile sample bags, massaged with neutralizing buffer, and enumerated on Ali agar. Surfaces were also examined before and after treatment by scanning electron microscopy to confirm destruction or removal of the spores. For both five and two log CFU/ml spore concentrations, treatments of 50 and 100 ppm of chlorine dioxide and 1000 and 2000 ppm of hypochlorite, respectively, were the most effective. Of the range of chlorine dioxide concentrations and contact time regimes evaluated for all surfaces, the most effective concentration/time regime applied was 100 ppm for 10 min. Reductions ranged from 0 to 4.5 log CFU/coupon. Chlorine dioxide was least effective when applied to wood. Hypochlorite was not efficient at eliminating Alicyclobacillus spores from any of the food contact surfaces at any time and concentration combinations tested. Chlorine dioxide is an alternative treatment to kill spores of Alicyclobacillus spp. in the processing environment.
Investigation Of Ballast Water Treatment’s Effect On Corrosion
2013-03-01
Lysogorski, et al | Public March 2013 N O T I C E This document is disseminated under the sponsorship of the Department of Homeland...Controlled laboratory tests were conducted using simulated chlorination, deoxygenation and chlorine dioxide disinfection . Materials were exposed to three...Great Lakes water simulated chlorination, deoxygenation, and chlorine dioxide disinfection . All testing was conducted at NRLKW. Natural, unfiltered
2008-12-01
Alexandria, VA ABSTRACT Bacterial spores , or endospores, such as those of Bacillus anthracis, are an asymmetrical threat. Decontamination... Bacillus subtilis spores by hypochlorite and chlorine dioxide, J. Appl Microbiol., 95(1), 54-67. ...have the ability to distinguish viable from non-viable endospores. In the laboratory, we have exploited the oxidative alteration of the spore coat
Electrochemical incineration of wastes
NASA Technical Reports Server (NTRS)
Kaba, L.; Hitchens, G. D.; Bockris, J. O'M.
1989-01-01
A low temperature electrolysis process has been developed for the treatment of solid waste material and urine. Experiments are described in which organic materials are oxidized directly at the surface of an electrode. Also, hypochlorite is generated electrochemically from chloride component of urine. Hypochlorite can act as a strong oxidizing agent in solution. The oxidation takes place at 30-60 C and the gaseous products from the anodic reaction are carbon dioxide, nitrogen, oxygen. Hydrogen is formed at the cathode. Carbon monoxide, and nitrogen oxides and methane were not detected in the off gases. Chlorine was evolved at the anode in relatively low amounts.
NIOSH Manual of Analytical Methods (third edition). Fourth supplement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-08-15
The NIOSH Manual of Analytical Methods, 3rd edition, was updated for the following chemicals: allyl-glycidyl-ether, 2-aminopyridine, aspartame, bromine, chlorine, n-butylamine, n-butyl-glycidyl-ether, carbon-dioxide, carbon-monoxide, chlorinated-camphene, chloroacetaldehyde, p-chlorophenol, crotonaldehyde, 1,1-dimethylhydrazine, dinitro-o-cresol, ethyl-acetate, ethyl-formate, ethylenimine, sodium-fluoride, hydrogen-fluoride, cryolite, sodium-hexafluoroaluminate, formic-acid, hexachlorobutadiene, hydrogen-cyanide, hydrogen-sulfide, isopropyl-acetate, isopropyl-ether, isopropyl-glycidyl-ether, lead, lead-oxide, maleic-anhydride, methyl-acetate, methyl-acrylate, methyl-tert-butyl ether, methyl-cellosolve-acetate, methylcyclohexanol, 4,4'-methylenedianiline, monomethylaniline, monomethylhydrazine, nitric-oxide, p-nitroaniline, phenyl-ether, phenyl-ether-biphenyl mixture, phenyl-glycidyl-ether, phenylhydrazine, phosphine, ronnel, sulfuryl-fluoride, talc, tributyl-phosphate, 1,1,2-trichloro-1,2,2-trifluoroethane, trimellitic-anhydride, triorthocresyl-phosphate, triphenyl-phosphate, and vinyl-acetate.
Postigo, Cristina; Richardson, Susan D
2014-08-30
Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Guo, Yingming; Huang, Tinglin; Wen, Gang; Cao, Xin
2015-08-01
To solve the problem of shortened backwashing intervals in groundwater plants, several disinfectants including ozone (O3), hydrogen peroxide (H2O2) and chlorine dioxide (ClO2) were examined to peel off the film from the quartz sand surface in four pilot-scale columns. An optimized oxidant dosage and oxidation time were determined by batch tests. Subsequently, the optimized conditions were tested in the four pilot-scale columns. The results demonstrated that the backwashing intervals increased from 35.17 to 54.33 (H2O2) and to 53.67 hr (ClO2) after the oxidation treatments, and the increase of backwashing interval after treatment by O3 was much less than for the other two treatments. Interestingly, the treatment efficiency of filters was not affected by O3 or H2O2 oxidation; but after oxidation by ClO2, the treatment efficiency was deteriorated, especially the ammonia removal (from 96.96% to 24.95%). The filter sands before and after the oxidation were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. Compared with the oxidation by O3 and H2O2, the structures on the surface of filter sands were seriously damaged after oxidation by ClO2. The chemical states of manganese on the surfaces of those treated sands were only changed by ClO2. The damage of the structures and the change of the chemical states of manganese might have a negative effect on the ammonia removal. In summary, H2O2 is a suitable agent for film peeling. Copyright © 2015. Published by Elsevier B.V.
Chlorine Dioxide Inactivation of Cryptosporidium parvum Oocysts and Bacterial Spore Indicators
Chauret, Christian P.; Radziminski, Chris Z.; Lepuil, Michael; Creason, Robin; Andrews, Robert C.
2001-01-01
Cryptosporidium parvum, which is resistant to chlorine concentrations typically used in water treatment, is recognized as a significant waterborne pathogen. Recent studies have demonstrated that chlorine dioxide is a more efficient disinfectant than free chlorine against Cryptosporidium oocysts. It is not known, however, if oocysts from different suppliers are equally sensitive to chlorine dioxide. This study used both a most-probable-number–cell culture infectivity assay and in vitro excystation to evaluate chlorine dioxide inactivation kinetics in laboratory water at pH 8 and 21°C. The two viability methods produced significantly different results (P < 0.05). Products of disinfectant concentration and contact time (Ct values) of 1,000 mg · min/liter were needed to inactivate approximately 0.5 log10 and 2.0 log10 units (99% inactivation) of C. parvum as measured by in vitro excystation and cell infectivity, respectively, suggesting that excystation is not an adequate viability assay. Purified oocysts originating from three different suppliers were evaluated and showed marked differences with respect to their resistance to inactivation when using chlorine dioxide. Ct values of 75, 550, and 1,000 mg · min/liter were required to achieve approximately 2.0 log10 units of inactivation with oocysts from different sources. Finally, the study compared the relationship between easily measured indicators, including Bacillus subtilis (aerobic) spores and Clostridium sporogenes (anaerobic) spores, and C. parvum oocysts. The bacterial spores were found to be more sensitive to chlorine dioxide than C. parvum oocysts and therefore could not be used as direct indicators of C. parvum inactivation for this disinfectant. In conclusion, it is suggested that future studies address issues such as oocyst purification protocols and the genetic diversity of C. parvum, since these factors might affect oocyst disinfection sensitivity. PMID:11425712
40 CFR 141.712 - Unfiltered system Cryptosporidium treatment requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... inactivation. (c) Inactivation treatment technology requirements. Unfiltered systems must use chlorine dioxide... section. (1) Systems that use chlorine dioxide or ozone and fail to achieve the Cryptosporidium...
40 CFR 141.712 - Unfiltered system Cryptosporidium treatment requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... inactivation. (c) Inactivation treatment technology requirements. Unfiltered systems must use chlorine dioxide... section. (1) Systems that use chlorine dioxide or ozone and fail to achieve the Cryptosporidium...
21 CFR 173.300 - Chlorine dioxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... hypochlorite and hydrochloric acid. (ii) Treating an aqueous solution of sodium chlorate with hydrogen peroxide... electrolysis. (2) The generator effluent contains at least 90 percent (by weight) of chlorine dioxide with...
A Rapid and Inexpensive Bioassay to Evaluate the Decontamination of Organophosphates
2012-01-01
weather natu- rally over time. Actual chemical degradation of the tox- in often relied on harsh chemicals such as calcium oxide and chlorine dioxide...New decontaminating compounds have been developed that are more effective or more en- vironmentally friendly, including organophosphorous acid ...quires sophisticated instrumental analytical techniques such as liquid or gas chromatography, which involves expensive equipment and trained personnel
Newsome, Anthony L; DuBois, John D; Tenney, Joel D
2009-01-01
Backround Community-associated methicillin-resistant Staphylococcus aureus outbreaks have occurred in individuals engaged in athletic activities such as wrestling and football. Potential disease reduction interventions include the reduction or elimination of bacteria on common use items such as equipment. Chlorine dioxide has a long history of use as a disinfectant. The purpose of this investigation was to evaluate the ability of novel portable chlorine dioxide generation devices to eliminate bacteria contamination of helmets and pads used by individuals engaged in football. Methods In field studies, the number of bacteria associated with heavily used football helmets and shoulder pads was determined before and after overnight treatment with chlorine dioxide gas. Bacteria were recovered using cotton swabs and plated onto trypticase soy agar plates. In laboratory studies, Staphylococcus aureus was applied directly to pads. The penetration of bacteria into the pads was determined by inoculating agar plates with portions of the pads taken from the different layers of padding. The ability to eliminate bacteria on the pad surface and underlying foam layers after treatment with chlorine dioxide was also determined. Results Rates of recovery of bacteria after treatment clearly demonstrated that chlorine dioxide significantly (p < 0.001) reduce and eliminated bacteria found on the surface of pads. For example, the soft surface of shoulder pads from a university averaged 2.7 × 103 recoverable bacteria colonies before chlorine dioxide treatment and 1.3 × 102 recoverable colonies after treatment. In addition, the gas was capable of penetrating the mesh surface layer and killing bacteria in the underlying foam pad layers. Here, 7 × 103 to 4.5 × 103 laboratory applied S. aureus colonies were recovered from underlying layers before treatment and 0 colonies were present after treatment. Both naturally occurring bacteria and S. aureus were susceptible to the treatment process. Conclusion Results of this study have shown that chlorine dioxide can easily and safely be used to eliminate bacteria contamination of protective pads used by football players. This could serve to reduce exposure to potential pathogens such as the methicillin-resistant Staphylococcus aureus among this group of individuals. PMID:19737415
Inactivation of human and simian rotaviruses by chlorine dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu-Shiaw; Vaughn, J.M.
1990-05-01
The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4{degree}C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10{sup 5}-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate a neutral pH, and the sensitivities to chlorine dioxide weremore » similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.« less
A comparison of the virucidal properties of chlorine, chlorine dioxide, bromine chloride and iodine.
Taylor, G. R.; Butler, M.
1982-01-01
Chlorine dioxide, bromine chloride and iodine were compared with chlorine as virucidal agents. Under optimal conditions all disinfectants were effective at low concentrations, but each disinfectant responded differently to acidity and alkalinity. Disinfection by chlorine was impaired by the presence of ammonia, but the other disinfectants retained much of their potency. Disinfection of poliovirus by iodine resulted in structural changes in the virions as seen by electron micrroscopy, but the other disinfectants were able to inactivate poliovirus without causing any apparent structural changes. Images Plate 1 PMID:6290566
Stability and effectiveness of chlorine disinfectants in water distribution systems.
Olivieri, V P; Snead, M C; Krusé, C W; Kawata, K
1986-11-01
A test system for water distribution was used to evaluate the stability and effectiveness of three residual disinfectants--free chlorine, combined chlorine, and chlorine dioxide--when challenged with a sewage contaminant. The test distribution system consisted of the street main and internal plumbing for two barracks at Fort George G. Meade, MD. To the existing pipe network, 152 m (500 ft) of 13-mm (0.5 in.) copper pipe were added for sampling, and 60 m (200 ft) of 2.54-cm (1.0 in.) plastic pipe were added for circulation. The levels of residual disinfectants tested were 0.2 mg/L and 1.0 mg/L as available chlorine. In the absence of a disinfectant residual, microorganisms in the sewage contaminant were consistently recovered at high levels. The presence of any disinfectant residual reduced the microorganism level and frequency of occurrence at the consumer's tap. Free chlorine was the most effective residual disinfectant and may serve as a marker or flag in the distribution network. Free chlorine and chlorine dioxide were the least stable in the pipe network. The loss of disinfectant in the pipe network followed first-order kinetics. The half-life determined in static tests for free chlorine, chlorine dioxide, and combined chlorine was 140, 93, and 1680 min.
Stability and effectiveness of chlorine disinfectants in water distribution systems.
Olivieri, V P; Snead, M C; Krusé, C W; Kawata, K
1986-01-01
A test system for water distribution was used to evaluate the stability and effectiveness of three residual disinfectants--free chlorine, combined chlorine, and chlorine dioxide--when challenged with a sewage contaminant. The test distribution system consisted of the street main and internal plumbing for two barracks at Fort George G. Meade, MD. To the existing pipe network, 152 m (500 ft) of 13-mm (0.5 in.) copper pipe were added for sampling, and 60 m (200 ft) of 2.54-cm (1.0 in.) plastic pipe were added for circulation. The levels of residual disinfectants tested were 0.2 mg/L and 1.0 mg/L as available chlorine. In the absence of a disinfectant residual, microorganisms in the sewage contaminant were consistently recovered at high levels. The presence of any disinfectant residual reduced the microorganism level and frequency of occurrence at the consumer's tap. Free chlorine was the most effective residual disinfectant and may serve as a marker or flag in the distribution network. Free chlorine and chlorine dioxide were the least stable in the pipe network. The loss of disinfectant in the pipe network followed first-order kinetics. The half-life determined in static tests for free chlorine, chlorine dioxide, and combined chlorine was 140, 93, and 1680 min. PMID:3028767
Chlorine, Chloramine, Chlorine Dioxide, and Ozone Susceptibility of Mycobacterium avium
Taylor, Robert H.; Falkinham, Joseph O.; Norton, Cheryl D.; LeChevallier, Mark W.
2000-01-01
Environmental and patient isolates of Mycobacterium avium were resistant to chlorine, monochloramine, chlorine dioxide, and ozone. For chlorine, the product of the disinfectant concentration (in parts per million) and the time (in minutes) to 99.9% inactivation for five M. avium strains ranged from 51 to 204. Chlorine susceptibility of cells was the same in washed cultures containing aggregates and in reduced aggregate fractions lacking aggregates. Cells of the more slowly growing strains were more resistant to chlorine than were cells of the more rapidly growing strains. Water-grown cells were 10-fold more resistant than medium-grown cells. Disinfectant resistance may be one factor promoting the persistence of M. avium in drinking water. PMID:10742264
Factors affecting the formation of iodo-trihalomethanes during oxidation with chlorine dioxide.
Guo, Wanhong; Shan, Yingchun; Yang, Xin
2014-01-15
Effects of water characteristics, reaction time, temperature, bromide and iodide ion concentrations, oxidant doses, and pH on formation of iodinated trihalomethanes (I-THM) during oxidation of iodide-containing water with chlorine dioxide (ClO2) were investigated. Among the water samples collected from ten water sources, iodoform (CHI3) was the predominant I-THM and trace amount of chlorodiiodomethane (CHClI2) was occasionally found. CHI3 yields correlated moderately with specific UV absorbance (SUVA) (R(2)=0.79), indicating that hydrophobic aromatic content were important precursors. Longer reaction time led to continued formation of CHI3. I-THM containing bromide was also found in waters containing both bromide and iodide, but CHI3 was dominant. The formation of CHI3 was higher at 25°C than 5°C and 35°C. CHI3 formation showed an increase followed by a decrease trend with increasing ClO2 doses and iodide concentrations and the highest yields occurred at iodide to ClO2 molar ratios of 1-2. pH 8 resulted in the highest CHI3 formation. It should be noted that a high iodide concentration was spiked to waters before adding ClO2 and the results may not reflect the formation yields of iodinated THMs in real conditions, but they provide information about formation trend of I-THM during oxidation of ClO2. Copyright © 2013 Elsevier B.V. All rights reserved.
Uzun, Habibullah; Kim, Daekyun; Karanfil, Tanju
2018-09-01
In this study, the effect of chlorine dioxide (ClO 2 ) oxidation on the deactivation of wastewater (WW)-derived N-nitrosodimethylamine (NDMA) precursors was investigated under various conditions (i.e., ClO 2 application pH, dose and contact time). At pH 6.0, decreases in NDMA formation potentials (FPs) or occurrences (under uniform formation conditions [UFC]) were relatively low (<25%) with ClO 2 oxidation regardless of WW-impact. A negative removal was also observed after ClO 2 oxidation in some of the non-impacted waters. However, NDMA FP removals were significant (up to ~85%) under the same oxidation conditions in WW-impacted waters at pH 7.8. This indicates that the majority of WW-derived NDMA precursors can be deactivated with ClO 2 oxidation above neutral pH. This was attributed to the better oxidative reaction of ClO 2 with amines that have lone pair electrons to be shared at higher oxidation pH conditions. In addition, relatively short oxidation periods with ClO 2 (i.e., ≤10 min) or low Ct (concentration × time, ~10 mg ∗ min/L) values were sufficient for the deactivation of WW-derived NDMA precursors. ClO 2 oxidation was effective in freshly WW-impacted waters. Natural attenuation processes (e.g., sorption, biodegradation, etc.) can change the reactivity of WW-derived NDMA precursors for oxidation with ClO 2 . The effect of ClO 2 on the removal of THM precursors was low (<25%) and independent of oxidation conditions. Given the low formation of regulated THMs and HAAs, ClO 2 oxidation presents a viable option for the simultaneous control of NDMA and regulated DBP formation during water treatment, especially for utilities treating WW-impacted water sources. Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, Yu-Qiao; Duan, Xiao-Di; Lu, Pin-Pin; Wang, Qian; Zhang, Xiao-Jian; Chen, Chao
2012-01-01
Inactivation experiments of seven strains of chlorine-resistant bacteria, isolated from a drinking water distribution system, were conducted with four kinds of disinfectants. All the bacteria showed high resistance to chlorine, especially for Mycobacterium mucogenicum. The CT value of 99.9% inactivation for M. mucogenicum, Sphingomonas sanguinis and Methylobacterium were 120 mg x (L x min)(-1), 7 mg x (L x min)(-1) and 4 mg x (L x min)(-1), respectively. The results of inactivation experiments showed that chlorine dioxide and potassium monopersulfate could inactive 5 lg of M. mucogenicum within 30 min, which showed significantly higher efficiency than free chlorine and monochloramine. Free chlorine was less effective because the disinfectant decayed very quickly. Chloramination needed higher concentration to meet the disinfection requirements. The verified dosage of disinfectants, which could effectively inactivate 99.9% of the highly chlorine-resistant M. mucogenicum within 1 h, were 3.0 mg/L monochloramine, 1.0 mg/L chlorine dioxide (as Cl2), and 1.0 mg/L potassium monopersulfate (as Cl2). It was suggested that the water treatment plants increase the concentration of monochloramine or apply chlorine dioxide intermittently to control the disinfectant-resistant bacteria.
NASA Astrophysics Data System (ADS)
Liu, Yang; Ren, Xingfeng; Pan, Changwei; Zheng, Ting; Yuan, Ling; Zheng, Juhua; Gao, Qingyu
2017-10-01
Hydrodynamic flows can exert multiple effects on an exothermal autocatalytic reaction, such as buoyancy and the Marangoni convection, which can change the structure and velocity of chemical waves. Here we report that in the chlorite-trithionate reaction, the production and consumption of chlorine dioxide can induce and inhibit Marangoni flow, respectively, leading to different chemo-hydrodynamic patterns. The horizontal propagation of a reaction-diffusion-convection front was investigated with the upper surface open to the air. The Marangoni convection, induced by gaseous chlorine dioxide on the surface, produced from chlorite disproportionation after the proton autocatalysis, has the same effect as the heat convection. When the Marangoni effect is removed by the reaction of chlorine dioxide with the Congo red (CR) indicator, an oscillatory propagation of the front tip is observed under suitable conditions. Replacing CR with bromophenol blue (BPB) distinctly enhanced the floating, resulting in multiple vortexes, owing to the coexistence between BPB and chlorine dioxide. Using the incompressible Navier-Stokes equations coupled with reaction-diffusion and heat conduction equations, we numerically obtain various experimental scenarios of front instability for the exothermic autocatalytic reaction coupled with buoyancy-driven convection and Marangoni convection.
Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide.
Salter-Blanc, Alexandra J; Bylaska, Eric J; Lyon, Molly A; Ness, Stuart C; Tratnyek, Paul G
2016-05-17
New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ(-)), pKas of the amines, and energies of the highest occupied molecular orbital (EHOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (Eox)]. The selection of calculated descriptors (pKa, EHOMO, and Eox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to EHOMO (calculated with a modest level of theory).
Electrochemical incineration of wastes
NASA Technical Reports Server (NTRS)
Bhardwaj, R. C.; Sharma, D. K.; Bockris, J. OM.
1990-01-01
The novel technology of waste removal in space vehicles by electrochemical methods is presented to convert wastes into chemicals that can be eventually recycled. The important consideration for waste oxidation is to select a right kind of electrode (anode) material that should be stable under anodic conditions and also a poor electrocatalyst for oxygen and chlorine evolution. On the basis of long term electrolysis experiments on seven different electrodes and on the basis of total organic carbon reduced, two best electrodes were identified. The effect of redox ions on the electrolyte was studied. Though most of the experiments were done in mixtures of urine and waste, the experiments with redox couples involved 2.5 M sulfuric acid in order to avoid the precipitation of redox ions by urea. Two methods for long term electrolysis of waste were investigated: (1) the oxidation on Pt and lead dioxide electrodes using the galvanostatic methods; and (2) potentiostatic method on other electrodes. The advantage of the first method is the faster rate of oxidation. The chlorine evolution in the second method is ten times less then in the first. The accomplished research has shown that urine/feces mixtures can be oxidized to carbon dioxide and water, but current densities are low and must be improved. The perovskite and Ti4O7 coated with RuO2 are the best electrode materials found. Recent experiment with the redox agent improves the current density, however, sulphuric acid is required to keep the redox agent in solution to enhance oxidation effectively. It is desirable to reduce the use of acid and/or find substitutes.
Removal of the cyanotoxin anatoxin-a by drinking water treatment processes: a review.
Vlad, Silvia; Anderson, William B; Peldszus, Sigrid; Huck, Peter M
2014-12-01
Anatoxin-a (ANTX-a) is a potent alkaloid neurotoxin, produced by several species of cyanobacteria and detected throughout the world. The presence of cyanotoxins, including ANTX-a, in drinking water sources is a potential risk to public health. This article presents a thorough examination of the cumulative body of research on the use of drinking water treatment technologies for extracellular ANTX-a removal, focusing on providing an analysis of the specific operating parameters required for effective treatment and on compiling a series of best-practice recommendations for owners and operators of systems impacted by this cyanotoxin. Of the oxidants used in drinking water treatment, chlorine-based processes (chlorine, chloramines and chlorine dioxide) have been shown to be ineffective for ANTX-a treatment, while ozone, advanced oxidation processes and permanganate can be successful. High-pressure membrane filtration (nanofiltration and reverse osmosis) is likely effective, while adsorption and biofiltration may be effective but further investigation into the implementation of these processes is necessary. Given the lack of full-scale verification, a multiple-barrier approach is recommended, employing a combination of chemical and non-chemical processes.
Integrated Risk Information System (IRIS)
Chlorine dioxide ; CASRN 10049 - 04 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni
Antifouling strategies and corrosion control in cooling circuits.
Cristiani, P; Perboni, G
2014-06-01
Biofouling and corrosion phenomena dramatically reduce the functionality of industrial cooling circuits, especially in marine environments. This study underlines the effectiveness of a low level chlorination treatment of seawater to prevent biological fouling and biocorrosion. Reported examples emphasize the reaction of chlorine with bromide, ammonia and organic compounds in seawater and the effectiveness of a treatment performed in such a way to guarantee a residual concentration lower than 3μM at the outlet of the condensers. In a brief review of antifouling strategies, alternatives to chlorination and the monitoring approach able to optimize the treatments are also reported. An integrated, on-line system based on electrochemical probes (Biox system and a linear polarization resistance probe) demonstrated to be sufficient to monitor in real time: corrosion, biofilm growth and chemical treatments based on chlorine or alternative oxidant products (chlorine dioxide, etc.). A careful electrochemical monitoring and the optimized treatments help the plant operators of industrial cooling circuits prevent the decay of the equipment performance, allowing at the same time the control of the halogenated by-products formation. Copyright © 2014 Elsevier B.V. All rights reserved.
MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BYPRODUCTS IN DRINKING WATER
This paper discusses the identification of organic disinfection byproducts (DBPs) at a pilot plant in Evansville, IN, which uses chlorine dioxide as a primary disinfectant. Unconventional multispectral identification techniques (gas chromatography combined with high- and low reso...
MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE BYPRODUCTS IN DRINKING WATER
This paper discusses the identification of organic disinfectant byproducts (DNPS) at a pilot plant in Evansville, IN, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high- and low-resolu...
PHOTOCHEMICAL REACTIONS AMONG FORMALDEHYDE, CHLORINE, AND NITROGEN DIOXIDE IN AIR
Photochemical reactions among chlorine, nitrogen dioxide, and formaldehyde were studied, using parts-per-million concentrations in 1 atm of air. The reactant mixtures were irradiated by ultraviolet fluorescent lamps and simultaneously analyzed by the Fourier transform infrared te...
MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BY-PRODUCTS IN DRINKING WATER
This paper discusses the identification of organic disinfection by-products (DBPs) at a pilot plant in Evansville, Indiana, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high and low r...
Chlorine dioxide water disinfection: a prospective epidemiology study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael, G.E.; Miday, R.K.; Bercz, J.P.
An epidemiologic study of 198 persons exposed for 3 months to drinking water disinfected with chlorine dioxide was conducted in a rural village. A control population of 118 nonexposed persons was also studied. Pre-exposure hematologic and serum chemical parameters were compared with test results after 115 days of exposure. Chlorite ion levels in the water averaged approximately 5 ppM during the study period. Statistical analysis (ANOVA) of the data failed to identify any significant exposure-related effects. This study suggests that future evaluations of chlorine dioxide disinfection should be directed toward populations with potentially increased sensitivity to hemolytic agents.
Concentration-dependence of the explosion characteristics of chlorine dioxide gas.
Jin, Ri-ya; Hu, Shuang-qi; Zhang, Yin-ghao; Bo, Tao
2009-07-30
The explosion characteristics of chlorine dioxide gas have been studied for the first time in a cylindrical exploder with a shell capacity of 20 L. The experimental results have indicated that the lower concentration limit for the explosive decomposition of chlorine dioxide gas is 9.5% ([ClO(2)]/[air]), whereas there is no corresponding upper concentration limit. Under the experimental conditions, and within the explosion limits, the pressure of explosion increases with increasing concentration of chlorine dioxide gas; the maximum pressure of explosion relative to the initial pressure was measured as 0.024 MPa at 10% ClO(2) and 0.641 MPa at 90% ClO(2). The induction time (the time from the moment of sparking to explosion) has also been found to depend on the concentration of chlorine dioxide gas; thus, at 10% ClO(2) the induction time was 2195 ms, but at 90% ClO(2) the induction time was just 8 ms. The explosion reaction mechanism of ClO(2) is of a degenerate chain-branching type involving the formation of a stable intermediate (Cl(2)O(3)), from which the chain-branching occurs. Chain initiation takes place at the point of ignition and termination takes place at the inner walls of the exploder.
NASA Astrophysics Data System (ADS)
Singh, Nepal; Singh, Rakesh K.; Bhunia, Arun K.; Stroshine, Richard L.; Simon, James E.
2001-03-01
There have been numerous studies on effectiveness of different sanitizers for microbial inactivation. However, results obtained from different studies indicate that microorganism cannot be easily removed from fresh cut vegetables because of puncture and cut surfaces with varying surface topographies. In this study, three step disinfection approach was evaluated for inactivation of E. coli O157:H7 on shredded lettuce leaves. Sequential application of thyme oil, ozonated water, and aqueous chlorine dioxide was evaluated in which thyme oil was applied first followed by ozonated water and aqueous chlorine dioxide. Shredded lettuce leaves inoculated with cocktail culture of E. coli O157:H7 (C7927, EDL 933 and 204 P), were washed with ozonated water (15 mg/l for 10min), aqueous chlorine dioxide (10 mg/l,for 10min) and thyme oil suspension (0.1%, v/v for 5min). Washing of lettuce leaves with ozonated water, chlorine dioxide and thyme oil suspension resulted in 0.44, 1.20, and 1.46 log reduction (log10 cfu/g), respectively. However, the sequential treatment achieved approximately 3.13 log reductions (log10 cfu/g). These results demonstrate the efficacy of sequential treatments in decontaminating shredded lettuce leaves containing E. coli O157:H7.
Eddy, Russell S; Joyce, Anthony P; Roberts, Steven; Buxton, Thomas B; Liewehr, Frederick
2005-09-01
This study investigated the ability of chlorine dioxide to eliminate Enterococcus faecalis from dentinal tubules of bovine incisors. Thirty-seven extracted bovine incisor roots were sectioned into seventy-four 5 mm disks. Standardized lumens were filled with either sterile Brain Heart Infusion Broth (contamination controls, n = 10) or BHI containing E. faecalis (1.0 x 10 cfu/ml). Disks were incubated in 5% CO2 at 37 degrees C for 72 h. To simulate endodontic instrumentation the lumens were again enlarged. Sixty disks were randomly divided into four experimental groups and filled with one of the following irrigants: 10% Clidox-S (chlorine dioxide), 13.8% BioClenz (chlorine dioxide), 5.25% Clorox, or saline. The disks were incubated for 30 min and were then frozen, pulverized, serially diluted in phosphate buffered saline, and plated on BHI plates in triplicate. Total colony forming units were counted macroscopically. Statistical analysis of the data was performed with a Kruskal-Wallis one-way ANOVA on ranks (p < 0.05, n = 60). Bacterial counts, expressed in log10 cfu/disk were as follows (">" denotes significant differences): Saline > Clidox-S = BioClenz > Clorox. All negative controls were sterile. Chlorine dioxide and NaOCL were both effective in eliminating E. faecalis from the dentinal disks within 30 min.
Ammar, T A; Abid, K Y; El-Bindary, A A; El-Sonbati, A Z
2015-12-01
Most drinking water industries are closely examining options to maintain a certain level of disinfectant residual through the entire distribution system. Chlorine dioxide is one of the promising disinfectants that is usually used as a secondary disinfectant, whereas the selection of the proper monitoring analytical technique to ensure disinfection and regulatory compliance has been debated within the industry. This research endeavored to objectively compare the performance of commercially available analytical techniques used for chlorine dioxide measurements (namely, chronoamperometry, DPD (N,N-diethyl-p-phenylenediamine), Lissamine Green B (LGB WET) and amperometric titration), to determine the superior technique. The commonly available commercial analytical techniques were evaluated over a wide range of chlorine dioxide concentrations. In reference to pre-defined criteria, the superior analytical technique was determined. To discern the effectiveness of such superior technique, various factors, such as sample temperature, high ionic strength, and other interferences that might influence the performance were examined. Among the four techniques, chronoamperometry technique indicates a significant level of accuracy and precision. Furthermore, the various influencing factors studied did not diminish the technique's performance where it was fairly adequate in all matrices. This study is a step towards proper disinfection monitoring and it confidently assists engineers with chlorine dioxide disinfection system planning and management.
2014-09-01
suspend manganese dioxide particles produced from oxidation of permanganate in aqueous phase (Crimi and Ko, 2009). Xanthan gum is a biopolymer that...shear-thinning fluids for improving treatment of low-k zones. This study established that combinations of xanthan gum and potassium permanganate ...flow cell experiments using xanthan gum solution to deliver permanganate , Chokejaroenrat et al. (2013, 2014) presented a set of data supporting that
Reactive formulations for a neutralization of toxic industrial chemicals
Tucker, Mark D [Albuqueruqe, NM; Betty, Rita G [Rio Rancho, NM
2006-10-24
Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.
Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide
Salter-Blanc, Alexandra J.; Bylaska, Eric J.; Lyon, Molly A.; ...
2016-04-13
New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO 2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. Here in this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammettmore » $$\\sigma$$ constants ($$\\sigma^-$$), pK as of the amines, and energies of the highest occupied molecular orbital (E HOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (E ox)]. The selection of calculated descriptors (pK a), E HOMO, and E ox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO 2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E HOMO (calculated with a modest level of theory).« less
Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salter-Blanc, Alexandra J.; Bylaska, Eric J.; Lyon, Molly A.
New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO 2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. Here in this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammettmore » $$\\sigma$$ constants ($$\\sigma^-$$), pK as of the amines, and energies of the highest occupied molecular orbital (E HOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (E ox)]. The selection of calculated descriptors (pK a), E HOMO, and E ox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO 2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E HOMO (calculated with a modest level of theory).« less
Zheng, Qi; Chen, Chao; Zhang, Xiao-Jian; Lu, Pin-Pin; Liu, Yuan-Yuan; Chen, Yu-Qiao
2013-02-01
In recent years, chlorine-resistant bacteria were detected in drinking water distribution systems which threatened the drinking water safety. Our group detected one strain named Mycobacteria mucogenicum from the drinking water distribution system of a city in south China. This paper studied chlorine resistance and mechanism of Mycobacteria mucogenicum. Inactivation experiments of one strain Mycobacteria mucogenicum were conducted with free chlorine, monochloramind and chlorine dioxide. The CT values of 99.9% inactivation by free chlorine, monochloramine and chlorine dioxide were detected as (76.25 +/- 47.55)mg.min.L-1, (1396 +/-382)mg.min.L-1, (13.5 +/- 4.9) mg.min L-1. Using transmission electronmicroscopy (TEM) observed the inactivation process of Mycobacteria mucogenicum. The bacteria surface hydrophobic of Mycobacteria mucogenicum was 37.2%. Mycobacteria mucogenicum has a higher hydrophobicity than other bacteria which prevented the diffusion of chlorine into cells. Mycobacteria mucogenicum is more resistant to chorine than other bacteria.
Field Experience with Chlorine Dioxide Fumigation of a Hospital: Timeline and Lessons Learned
Chlorine dioxide (Cl02) fumigation technology was developed and successfully used to remediate four large buildings contaminated with anthrax spores from 2001 through 2004. As a first application of the technology, those remediations were complex, costly and time consuming. There...
Chloroxyanion Residue on Seeds and Sprouts after Chlorine Dioxide Sanitation of Alfalfa Seed.
Smith, David J; Herges, Grant R
2018-02-28
The effects of a 6-h chlorine dioxide sanitation of alfalfa seed (0, 50, 100, and 200 mg/kg seed) on total coliform bacteria, seed germination, and the presence of chlorate and perchlorate residues in seed rinse, seed soak, and alfalfa sprouts was determined. Chlorate residues in 20,000 mg/L calcium hypochlorite, commonly used to disinfect seed, were quantified. Chlorine dioxide treatment reduced (P < 0.05) total coliforms on seeds with no effect (P > 0.05) on germination. Dose-dependent sodium chlorate residues were present in seed rinse (4.1 to 31.2 μg/g seed) and soak (0.7 to 8.3 μg/g seed) waters, whereas chlorate residues were absent (LOQ 5 ng/g) in sprouts, except for 2 of 5 replicates from the high chlorine dioxide treatment. Copious chlorate residues were present (168 to 1260 mg/L) in freshly prepared 20,000 mg/L calcium hypochlorite solution, and storage at room temperature increased chlorate residues significantly (P < 0.01).
42 CFR 84.207 - Bench tests; gas and vapor tests; minimum requirements; general.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 64 3 50 50 Ammonia Equilibrated NH3 1000 32 4 50 50 Chlorine As received Cl2 500 64 3 5 35 Chlorine... 4 5 50 Sulfur dioxide As received SO2 500 64 3 5 30 Sulfur dioxide Equilibrated SO2 500 32 4 5 30 1... respiratory protection against more than one type of gas or vapor, as for use in ammonia and in chlorine, the...
42 CFR 84.207 - Bench tests; gas and vapor tests; minimum requirements; general.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 64 3 50 50 Ammonia Equilibrated NH3 1000 32 4 50 50 Chlorine As received Cl2 500 64 3 5 35 Chlorine... 4 5 50 Sulfur dioxide As received SO2 500 64 3 5 30 Sulfur dioxide Equilibrated SO2 500 32 4 5 30 1... respiratory protection against more than one type of gas or vapor, as for use in ammonia and in chlorine, the...
Water disinfection agents and disinfection by-products
NASA Astrophysics Data System (ADS)
Ilavský, J.; Barloková, D.; Kapusta, O.; Kunštek, M.
2017-10-01
The aim of this work is to describe factors of water quality change in the distribution network and legislative requirements in Slovakia for disinfectants and disinfection byproducts (DBPs). In the experimental part, the time dependence of the application of the chlorine dioxide and sodium hypochlorite on the formation of some by-products of disinfection for drinking water from WTP Hriňová is studied. We monitored trihalomethanes, free chlorine, chlorine dioxide and chlorites.
Lee, Changha; Schmidt, Carsten; Yoon, Jeyong; von Gunten, Urs
2007-03-15
The oxidation of N-nitrosodimethylamine (NDMA) precursors chlorine dioxide (ClO2). Second-order rate constants for the reactions of model NDMA precursors (dimethylamine (DMA) and 7 tertiary amines) with ozone (kapp at pH 7 = 2.4 x 10(-1) to 2.3 x 10(9) M(-1) s(-1)), ClO2 (kapp at pH 7 = 6.7 x 10(-3) to 3.0 x 10(7) M(-1) s(-1)), and hydroxyl radical (*OH) (kapp at pH 7 = 6.2 x 10(7) to 1.4 x 10(10) M(-1) s(-1)) were determined, which showed that the selected NDMA precursors, with the exception of dimethylformamide (DMFA) can be completely transformed via their direct reaction with ozone. During ozonation, DMFA may be partially transformed through oxidation by the secondary oxidant *OH. ClO2 was also shown to effectively transform most of the precursors, with the exceptions of DMA and DMFA. In the second part of the study, the NDMA formation potentials (NDMA-FP) in synthetic and natural waters were measured with and without pre-oxidation with ozone and ClO2. A significant reduction in the NDMA-FPs was observed after complete transformation of the model NDMA precursors. Ozonation generally led to more effective reduction of the NDMA-FP than ClO2. For most of the precursors, the formation of DMA could account for the NDMA-FPs remaining after complete transformation of the model NDMA precursors. In contrast, dimethylethanolamine and dimethyldithiocarbamate yielded other NDMA precursors (not DMA) as their oxidation products. Pre-oxidation by ozone and ClO2 of several natural waters showed behavior similar to that of the oxidation of model NDMA precursors with a reduction of the NDMA-FP by 32-94% for various natural water sources.
European Science Notes. Volume 40, Number 9
1986-09-01
15 invited speakers pre- oxygen ases s asaon dioxide and senting talks on various topics in the oxygen as well as ammonia, chlorine, hy-ara fbisnsr...tantalum oxides (H+), work involves the contributions of elec- special lasses (H+, Na+, K+), valinomy- trical engineers as well as chemists. cin (K), tetra...copy only devise circuitry but work on concep- may be obtained from me]) he derived a tual design as well . Incidentally, the theorem that gives the
Development of chlorine dioxide releasing film and its application in decontaminating fresh produce
USDA-ARS?s Scientific Manuscript database
A feasibility study was conducted to develop chlorine dioxide releasing packaging films for decontaminating fresh produce. Sodium chlorite and citric acid powder were incorporated into polylactic acid (PLA) polymer. Films made with different amount of PLA (100 & 300 mg), percentage of reactant (5-60...
USDA-ARS?s Scientific Manuscript database
In the first part of our study we determined permeability, diffusion, and solubility coefficients of gaseous chlorine dioxide (ClO2) through the following packaging material: biaxial-oriented polypropylene (BOPP); polyethylene terephthalate (PET); poly lactic acid (PLA); multilayer structure of ethy...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., ozone, or chlorine dioxide for primary disinfection? 141.544 Section 141.544 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Disinfection...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., ozone, or chlorine dioxide for primary disinfection? 141.535 Section 141.535 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Disinfection Profile...
Application of chlorine dioxide to lessen bacterial contamination during broiler defeathering
USDA-ARS?s Scientific Manuscript database
Due to escape of contaminated gut contents, the number of Campylobacter spp. recovered from broiler carcasses increases during feather removal. Chlorine dioxide (ClO2) is approved for use as an antimicrobial treatment during poultry processing. A study was designed to test if application of 50 ppm...
Inactivation of human norovirus using chemical sanitizers.
Kingsley, David H; Vincent, Emily M; Meade, Gloria K; Watson, Clytrice L; Fan, Xuetong
2014-02-03
The porcine gastric mucin binding magnetic bead (PGM-MB) assay was used to evaluate the ability of chlorine, chlorine dioxide, peroxyacetic acid, hydrogen peroxide, and trisodium phosphate to inactivate human norovirus within 10% stool filtrate. One-minute free chlorine treatments at concentrations of 33 and 189 ppm reduced virus binding in the PGM-MB assay by 1.48 and 4.14 log₁₀, respectively, suggesting that chlorine is an efficient sanitizer for inactivation of human norovirus (HuNoV). Five minute treatments with 5% trisodium phosphate (pH~12) reduced HuNoV binding by 1.6 log₁₀, suggesting that TSP, or some other high pH buffer, could be used to treat food and food contact surfaces to reduce HuNoV. One minute treatments with 350 ppm chlorine dioxide dissolved in water did not reduce PGM-MB binding, suggesting that the sanitizer may not be suitable for HuNoV inactivation in liquid form. However a 60-min treatment with 350 ppm chlorine dioxide did reduce human norovirus by 2.8 log₁₀, indicating that chlorine dioxide had some, albeit limited, activity against HuNoV. Results also suggest that peroxyacetic acid has limited effectiveness against human norovirus, since 1-min treatments with up to 195 ppm reduced human norovirus binding by <1 log₁₀. Hydrogen peroxide (4%) treatment of up to 60 min resulted in minimal binding reduction (~0.1 log₁₀) suggesting that H₂O₂ is not a good liquid sanitizer for HuNoV. Overall this study suggests that HuNoV is remarkably resistant to several commonly used disinfectants and advocates for the use of chlorine (sodium hypochlorite) as a HuNoV disinfectant wherever possible. Copyright © 2013. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Colombo, G. V.; Putnam, D. F.
1977-01-01
The effluent gas stream from an electrolytic urine pretreatment process was analyzed by gas chromatography-mass spectroscopy and wet chemical methods to determine its composition. The major constituents were identified as: hydrogen, carbon dioxide, oxygen, nitrogen, water vapor, and chlorine. The trace impurities were chlorinated light hydrocarbons, and a number of other organic impurities in the low ppm range. Several methods of removing all of the undesirable gases to levels acceptable for return to a space cabin atmosphere were investigated experimentally. A subsystem concept comprised of the following sequential unit processes and operations was successfully demonstrated: (1) raw urine scrubbing, (2) silica gel sorption, (3) dilution with cabin air, and (4) catalytic oxidation.
Catalytic processes in the atmospheres of earth and Venus
NASA Technical Reports Server (NTRS)
Demore, W. B.; Yung, Y. L.
1982-01-01
Photochemical processes in planetary atmospheres are strongly influenced by catalytic effects of minor constituents. Catalytic cycles in the atmospheres of Earth and Venus are closely related. For example, chlorine oxides (ClOx) act as catalysts in the two atmospheres. On earth, they serve to convert odd oxygen (atomic oxygen and ozone) to molecular oxygen. On Venus they have a similar effect, but in addition they accelerate the reactions of atomic and molecular oxygen with carbon monoxide. The latter process occurs by a unique combination of ClOx catalysis and sulful dioxide photosensitization. The mechanism provides an explanation for the very low extent of carbon dioxide decomposition by sunlight in the Venus atmosphere.
21 CFR 137.200 - Whole wheat flour.
Code of Federal Regulations, 2011 CFR
2011-04-01
... not more than 45 parts per million) or chlorine dioxide, or chlorine, or a mixture of nitrosyl chloride and chlorine, may be added in a quantity not more than sufficient for bleaching and artificial...
ERIC Educational Resources Information Center
Josephson, Julian
1978-01-01
Current use of chlorination technology to disinfect water supplies can cause the production of undesirable products, among them chloroform and chlorobenzene. Alternatives to this methodology include the use of ozone, chlorine dioxide, and bromine chloride in place of chlorine. Presently, the methods are feasible in developed countries only. (MA)
Murphy, H M; Payne, S J; Gagnon, G A
2008-04-01
This study was designed to examine the potential downstream benefits of sequential disinfection to control the persistence of Escherichia coli under conditions relevant to drinking water distribution systems. Eight annular reactors (four polycarbonate and four cast iron) were setup in parallel to address various factors that could influence biofilm growth in distribution systems. Eight reactors were treated with chlorine, chlorine dioxide and monochloramine alone or in combination with UV to examine the effects on Escherichia coli growth and persistence in both the effluent and biofilm. In general, UV-treated systems in combination with chlorine or chlorine dioxide and monochloramine achieved greater log reductions in both effluent and biofilm than systems treated with chlorine-based disinfectants alone. However, during UV-low chlorine disinfection, E. coli was found to persist at low levels, suggesting that the UV treatment had instigated an adaptive mutation. During UV-chlorine-dioxide treatment, the E. coli that was initially below the detection limit reappeared during a low level of disinfection (0.2 mg/L) in the cast iron systems. Chloramine was shown to be effective in disinfecting suspended E. coli in the effluent but was unable to reduce biofilm counts to below the detection limit. Issues such as repair mechanism of E. coli and nitrification could help explain some of these aberrations. Improved understanding of the ability of chlorine-based disinfectant in combination with UV to provide sufficient disinfection will ultimately effect in improved management and safety of drinking water.
USDA-ARS?s Scientific Manuscript database
Blueberries are high-value fruit with strong antioxidant capacity and other health-promoting benefits. Controlled release chlorine dioxide (ClO2) or chitosan coating plus different essential oils were applied to fresh blueberries to preserve their quality and safety during postharvest storage. In vi...
Controlling Mold on Library Materials with Chlorine Dioxide: An Eight-Year Case Study.
ERIC Educational Resources Information Center
Weaver-Meyers, Pat L.; Kowaleski, Barbara; Stolt, Wilbur A.
1998-01-01
Discusses problems associated with mold growth at the University of Oklahoma libraries and describes the results of using chlorine dioxide in aqueous and gaseous forms. Highlights include toxicity compared to other preservation treatments; environmental controls; and explanations of a preference for the use of a self-activating gas packet.…
Introducing Students to a Synthetic and Spectroscopic Study of the Free Radical Chlorine Dioxide
ERIC Educational Resources Information Center
Sutton, Sarah C.; Cleland, Walter E.; Hammer, Nathan I.
2017-01-01
This advanced undergraduate chemistry laboratory exercise takes advantage of the unique spectroscopic properties of the free radical chlorine dioxide to allow for a direct comparison of its symmetric stretch in both the ground and excited states. It incorporates several subject areas covered in an undergraduate chemistry degree (synthesis,…
HIGH-RATE DISINFECTION OF COMBINED SEWER OVERFLOW USING CHLORINE DIOXIDE
This presentation is a state-of-the-art review of chlorine dioxide (ClO2) used for high-rate disinfection of combined sewer overflow (CSO). The review includes bench-, pilot-, and fullscale studies on the use of ClO2 as a disinfecting agent for a variety of wastewaters. Specific ...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to compare the effectiveness of gaseous chlorine dioxide (ClO2) and ozone (O3) treatment against Shiga toxin-producing Escherichia coli (STEC), Salmonella enterica serovars, and Listeria monocytogenes on baby-cut carrots, lowbush blueberries, and beefsteak tomatoes us...
Inactivation of Salmonella on Eggshells by Chlorine Dioxide Gas
Yum, Bora; Yoon, Sung-Sik; Song, Kyoung-Ju; Kim, Jong-Rak
2016-01-01
Microbiological contamination of eggs should be prevented in the poultry industry, as poultry is one of the major reservoirs of human Salmonella. ClO2 gas has been reported to be an effective disinfectant in various industry fields, particularly the food industry. The aims of this study were to evaluate the antimicrobial effect of chlorine dioxide gas on two strains of Salmonella inoculated onto eggshells under various experimental conditions including concentrations, contact time, humidity, and percentage organic matter. As a result, it was shown that chlorine dioxide gas under wet conditions was more effective in inactivating Salmonella Enteritidis and Salmonella Gallinarum compared to that under dry conditions independently of the presence of organic matter (yeast extract). Under wet conditions, a greater than 4 log reduction in bacterial populations was achieved after 30 min of exposure to ClO2 each at 20 ppm, 40 ppm, and 80 ppm against S. Enteritidis; 40 ppm and 80 ppm against S. Gallinarum. These results suggest that chlorine dioxide gas is an effective agent for controlling Salmonella, the most prevalent contaminant in the egg industry. PMID:27499670
Mogoa, Emerancienne; Bodet, Charles; Morel, Franck; Rodier, Marie-Hélène; Legube, Bernard; Héchard, Yann
2011-01-01
Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested on A. castellanii trophozoites. Doses of disinfectants leading to up to a 3-log reduction were compared by flow cytometry and electron microscopy. Chlorine treatment led to size reduction, permeabilization, and retraction of pseudopods. In addition, treatment with chlorine dioxide led to a vacuolization of the cytoplasm. Monochloramine had a dose-dependent effect. At the highest doses monochloramine treatment resulted in almost no changes in cell size and permeability, as shown by flow cytometry, but the cell surface became smooth and dense, as seen by electron microscopy. We show that these disinfectants globally induced size reduction, membrane permeabilization, and morphological modifications but that they have a different mode of action on A. castellanii. PMID:21602398
Buschini, Annamaria; Carboni, Pamela; Furlini, Mariangela; Poli, Paola; Rossi, Carlo
2004-03-01
Mutagenicity of drinking water is due not only to industrial, agricultural and urban pollution but also to chlorine disinfection by-products. Furthermore, residual disinfection is used to provide a partial safeguard against low level contamination and bacterial re-growth within the distribution system. The aims of this study were to further evaluate the genotoxic potential of the world wide used disinfectants sodium hypochlorite and chlorine dioxide in human leukocytes by the Comet assay and in Saccharomyces cerevisiae strain D7 (mitotic gene conversion, point mutation and mitochondrial DNA mutability, with and without endogenous metabolic activation) and to compare their effects with those of peracetic acid, proposed as an alternative disinfectant. All three disinfectants are weakly genotoxic in human leukocytes (lowest effective dose 0.2 p.p.m. for chlorine dioxide, 0.5 p.p.m. for sodium hypochlorite and peracetic acid). The results in S.cerevisiae show a genotoxic response on the end-points considered with an effect only at doses higher (5- to 10-fold) than the concentration normally used for water disinfection; sodium hypochlorite and peracetic acid are able to induce genotoxic effects without endogenous metabolic activation (in stationary phase cells) whereas chlorine dioxide is effective in growing cells. The Comet assay was more sensitive than the yeast tests, with effective doses in the range normally used for water disinfection processes. The biological effectiveness of the three disinfectants on S.cerevisiae proved to be strictly dependent on cell-specific physiological/biochemical conditions. All the compounds appear to act on the DNA and peracetic acid shows effectiveness similar to sodium hypochlorite and chlorine dioxide.
Role of Chlorine Dioxide in N-Nitrosodimethylamine Formation from Oxidation of Model Amines.
Gan, Wenhui; Bond, Tom; Yang, Xin; Westerhoff, Paul
2015-10-06
N-Nitrosodimethylamine (NDMA) is an emerging disinfection byproduct, and we show that use of chlorine dioxide (ClO2) has the potential to increase NDMA formation in waters containing precursors with hydrazine moieties. NDMA formation was measured after oxidation of 13 amines by monochloramine and ClO2 and pretreatment with ClO2 followed by postmonochloramination. Daminozide, a plant growth regulator, was found to yield 5.01 ± 0.96% NDMA upon reaction with ClO2, although no NDMA was recorded during chloramination. The reaction rate was estimated to be ∼0.0085 s(-1), and on the basis of our identification by mass spectrometry of the intermediates, the reaction likely proceeds via the hydrolytic release of unsymmetrical dimethylhydrazine (UDMH), with the hydrazine structure a key intermediate in NDMA formation. The presence of UDMH was confirmed by gas chromatography-mass spectrometry analysis. For 10 of the 13 compounds, ClO2 preoxidation reduced NDMA yields compared with monochloramination alone, which is explained by our measured release of dimethylamine. This work shows potential preoxidation strategies to control NDMA formation may not impact all organic precursors uniformly, so differences might be source specific depending upon the occurrence of different precursors in source waters. For example, daminozide is a plant regulator, so drinking water that is heavily influenced by upstream agricultural runoff could be at risk.
USDA-ARS?s Scientific Manuscript database
Chlorine (sodium hypochlorite) is commonly used by the fresh produce industry to sanitize wash water, fresh and fresh-cut fruits and vegetables. However, possible formation of harmful chlorine by-products is a concern. The objectives of this study were to compare chlorine and chlorine dioxide in t...
Effect of hot acid hydrolysis and hot chlorine dioxide stage on bleaching effluent biodegradability.
Gomes, C M; Colodette, J L; Delantonio, N R N; Mounteer, A H; Silva, C M
2007-01-01
The hot acid hydrolysis followed by chlorine dioxide (A/D*) and hot chlorine dioxide (D*) technologies have proven very useful for bleaching of eucalyptus kraft pulp. Although the characteristics and biodegradability of effluents from conventional chlorine dioxide bleaching are well known, such information is not yet available for effluents derived from hot acid hydrolysis and hot chorine dioxide bleaching. This study discusses the characteristics and biodegradability of such effluents. Combined whole effluents from the complete sequences DEpD, D*EpD, A/D*EpD and ADEpD, and from the pre-bleaching sequences DEp, D*Ep, A/D*Ep and ADEp were characterized by quantifying their colour, AOX and organic load (BOD, COD, TOC). These effluents were also evaluated for their treatability by simulation of an activated sludge system. It was concluded that treatment in the laboratory sequencing batch reactor was efficient for removal of COD, BOD and TOC of all effluents. However, colour increased after biological treatment, with the greatest increase found for the effluent produced using the AD technology. Biological treatment was less efficient at removing AOX of effluents from the sequences with D*, A/D* and AD as the first stages, when compared to the reference D stage; there was evidence of the lower treatability of these organochlorine compounds from these sequences.
40 CFR 63.445 - Standards for the bleaching system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... process using secondary or non-wood fibers, that use chlorine dioxide. (b) The equipment at each bleaching... system. (a) Each bleaching system that does not use any chlorine or chlorinated compounds for bleaching... systems shall meet all the provisions of this section: (1) Bleaching systems that use chlorine; (2...
40 CFR 63.445 - Standards for the bleaching system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... process using secondary or non-wood fibers, that use chlorine dioxide. (b) The equipment at each bleaching... system. (a) Each bleaching system that does not use any chlorine or chlorinated compounds for bleaching... systems shall meet all the provisions of this section: (1) Bleaching systems that use chlorine; (2...
USDA-ARS?s Scientific Manuscript database
Control of Salmonella Typhimurium on sprouts and minimally processed produce is crucial for food and consumer safety. The aim of this research was to assess natural microflora populations on soybean and evaluate the effects of gaseous chlorine dioxide (ClO2) and biocontrol Pseudomonas on the surviva...
USDA-ARS?s Scientific Manuscript database
Control of Salmonella enterica on sprouts and minimally processed, ready-to-eat fruits and vegetables is important for food and consumer safety. The aim of this research was to assess the effects of gaseous chlorine dioxide(ClO2)and biocontrol microorganisms (Pseudomonas chlororaphis and P. fluoresc...
A quantitative study on the absorption of gaseous chlorine dioxide onto lettuce leaf
USDA-ARS?s Scientific Manuscript database
Chlorine dioxide (ClO2) is an effective surface disinfectant and it is gaining interest in the food and pharmaceutical industries, due to its bacteriocide effects. One of the most promising applications of gaseous ClO2 is to be included in the headspace of food packaging systems for vapor-phase deco...
The main objective of this paper is to use Bayesian methods to estimate the kinetic parameters for the inactivation kinetics of Cryptosporidium parvum oocysts with chlorine dioxide or ozone which are characterized by the delayed Chick-Watson model, i.e., a lag phase or shoulder f...
USDA-ARS?s Scientific Manuscript database
Floor drains in poultry processing and further processing plants are a harborage site for bacteria both free swimming and in biofilms. This population can include Listeria monocytogenes which has been shown to have potential for airborne spreading from mishandled open drains. Chlorine dioxide (ClO...
Chloroxyanion residue on seeds and sprouts after chlorine dioxide sanitation of alfalfa seed
USDA-ARS?s Scientific Manuscript database
The effects of a 6-h chlorine dioxide sanitation of alfalfa seed (0, 50, 100, and 200 mg/kg seed) on total coliform bacteria, seed germination, and on the presence of chlorate and perchlorate residues in seed rinse, seed soak, and in alfalfa sprouts was determined. Chlorate residues in 20000 ppm cal...
ERIC Educational Resources Information Center
Yapijakis, Costas
1978-01-01
Drinking water disinfectants are discussed. Disinfectants are chlorine, chlorine dioxide, ozone, potassium permanganate, iodine, bromine, hydrogen peroxide; silver, acids and bases, ultraviolet radiation. (MR)
IDENTIFICATION OF NEW DISINFECTION BY-PRODUCTS IN DRINKING WATER
Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfectants are being explored. Ozone, chlorine dioxide, and chloramine are popular alternatives, as they produce low...
A redox-hydrothermal route to β-MnO 2 hollow octahedra
NASA Astrophysics Data System (ADS)
Zhang, Yange; Chen, Liyong; Zheng, Zhi; Yang, Fengling
2009-07-01
Beta-Manganese dioxides' (β-MnO 2) hollow octahedra have been prepared by a synergetic redox reaction using cuprous chloride (CuCl) and hydrochloric acid (HCl) as reductants and potassium permanganate (KMnO 4) as oxidant through a hydrothermal route. During the process, the self-generated chlorine (Cl 2) gas bubbles and HCl's etching appear to be necessary for the formation of MnO 2 hollow structure. The catalytic efficiency of the prepared β-MnO 2 hollow octahedra was high which has been demonstrated by the catalytic oxidation of methylene blue (MB) dye in the presence of hydrogen peroxide (H 2O 2) under natural light.
Chlorine dioxide against bacteria and yeasts from the alcoholic fermentation
Meneghin, Silvana Perissatto; Reis, Fabricia Cristina; de Almeida, Paulo Garcia; Ceccato-Antonini, Sandra Regina
2008-01-01
The ethanol production in Brazil is carried out by fed-batch or continuous process with cell recycle, in such way that bacterial contaminants are also recycled and may be troublesome due to the substrate competition. Addition of sulphuric acid when inoculum cells are washed can control the bacterial growth or alternatively biocides are used. This work aimed to verify the effect of chlorine dioxide, a well-known biocide for bacterial decontamination of water and equipments, against contaminant bacteria (Bacillus subtilis, Lactobacillus plantarum, Lactobacillus fermentum and Leuconostoc mesenteroides) from alcoholic fermentation, through the method of minimum inhibitory concentration (MIC), as well as its effect on the industrial yeast inoculum. Lower MIC was found for B. subtilis (10 ppm) and Leuconostoc mesenteroides (50 ppm) than for Lactobacillus fermentum (75 ppm) and Lactobacillus plantarum (125 ppm). Additionally, these concentrations of chlorine dioxide had similar effects on bacteria as 3 ppm of Kamoran® (recommended dosage for fermentation tanks), exception for B. subtilis, which could not be controlled at this Kamoran® dosage. The growth of industrial yeasts was affected when the concentration of chlorine dioxide was higher than 50 ppm, but the effect was slightly dependent on the type of yeast strain. Smooth yeast colonies (dispersed cells) seemed to be more sensitive than wrinkled yeast colonies (clustered cells/pseudohyphal growth), both isolated from an alcohol-producing unit during the 2006/2007 sugar cane harvest. The main advantage in the usage of chlorine dioxide that it can replace antibiotics, avoiding the selection of resistant populations of microorganisms. PMID:24031227
Low-Temperature Decontamination with Hydrogen Peroxide or Chlorine Dioxide for Space Applications
Macken, S.; Giri, K.; Walker, J. T.; Bennett, A. M.
2012-01-01
The currently used microbial decontamination method for spacecraft and components uses dry-heat microbial reduction at temperatures of >110°C for extended periods to prevent the contamination of extraplanetary destinations. This process is effective and reproducible, but it is also long and costly and precludes the use of heat-labile materials. The need for an alternative to dry-heat microbial reduction has been identified by space agencies. Investigations assessing the biological efficacy of two gaseous decontamination technologies, vapor hydrogen peroxide (Steris) and chlorine dioxide (ClorDiSys), were undertaken in a 20-m3 exposure chamber. Five spore-forming Bacillus spp. were exposed on stainless steel coupons to vaporized hydrogen peroxide and chlorine dioxide gas. Exposure for 20 min to vapor hydrogen peroxide resulted in 6- and 5-log reductions in the recovery of Bacillus atrophaeus and Geobacillus stearothermophilus, respectively. However, in comparison, chlorine dioxide required an exposure period of 60 min to reduce both B. atrophaeus and G. stearothermophilus by 5 logs. Of the three other Bacillus spp. tested, Bacillus thuringiensis proved the most resistant to hydrogen peroxide and chlorine dioxide with D values of 175.4 s and 6.6 h, respectively. Both low-temperature decontamination technologies proved effective at reducing the Bacillus spp. tested within the exposure ranges by over 5 logs, with the exception of B. thuringiensis, which was more resistant to both technologies. These results indicate that a review of the indicator organism choice and loading could provide a more appropriate and realistic challenge for the sterilization procedures used in the space industry. PMID:22492450
Chloroxyanion residue quantification in cantaloupes treated with chlorine dioxide gas
USDA-ARS?s Scientific Manuscript database
Previous studies show that treatment of cantaloupes with chlorine dioxide (ClO2) gas at 5 mg/L for 10 minutes, results in a significant reduction (p<0.05) in initial microflora, an increase in shelf life without any alteration in color, and a 4.6 and 4.3 log reduction of E. coli O157:H7 and L. monoc...
Chlorine Dioxide for Reduction of Postharvest Pathogen Inoculum during Handling of Tree Fruits
Roberts, Rodney G.; Reymond, Stephen T.
1994-01-01
Alternatives to hypochlorous acid and fungicides are needed for treatment of fruit and fruit-handling facilities. Chlorine dioxide was evaluated and found effective against common postharvest decay fungi and against filamentous fungi occurring on fruit packinghouse surfaces. In vitro tests with conidial or sporangiospore suspensions of Botrytis cinerea, Penicillium expansum, Mucor piriformis, and Cryptosporiopsis perennans demonstrated >99% spore mortality within 1 min when the fungi were exposed to aqueous chlorine dioxide at 3 or 5 μg · ml-1. Longer exposure times were necessary to achieve similar spore mortalities with 1 μg · ml-1. Of the fungi tested, B. cinerea and P. expansum were the least sensitive to ClO2. In comparison with the number recovered from untreated control areas, the number of filamentous fungi recovered was significantly lower in swipe tests from hard surfaces such as belts and pads in a commercial apple and pear packinghouse after treatment of surfaces with a 14.0- to 18.0-μg · ml-1 ClO2 foam formulation. Chlorine dioxide has desirable properties as a sanitizing agent for postharvest decay management when residues of postharvest fungicides are not desired or allowed. PMID:16349354
Material Compatibility for Historic Items Decontaminated with ...
Report This project continued research of the effects of decontamination methods for biological agents on materials identified as representative of types of irreplaceable objects or works of art found in museums and/or archive settings. In the previous research, surrogate materials were checked for compatibility with four decontamination methods: chlorine dioxide, hydrogen peroxide vapor, methyl bromide, and ethylene oxide gas. This project investigated the effects of gamma irradiation, which has also been shown to be an effective decontamination method for biological agents, on the surrogate test materials.
Ultrafast measurements of chlorine dioxide photochemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludowise, P.D.
Time-resolved mass spectrometry and time-resolved photoelectron spectroscopy are used to study the ultrafast photodissociation dynamics of chlorine dioxide, an important constituent in stratospheric ozone depletion. Chapter 1 introduces these pump/probe techniques, in which a femtosecond pump pulse excites a molecule to a dissociative state. At a later time, a second femtosecond probe pulse ionizes the molecule. The resulting mass and photoelectron spectra are acquired as a function of the delay between the pump and probe pulses, which follows the evolution of the molecule on the excited state. A comparison to other techniques used to study reaction dynamics is discussed. Chaptermore » 2 includes a detailed description of the design and construction of the experimental apparatus, which consists of a femtosecond laser system, a molecular beam time-of-flight spectrometer, and a data acquisition system. The time-of-flight spectrometer is specifically designed to have a short flight distance to maximize the photoelectron collection efficiency without degrading the resolution, which is limited by the bandwidth of the femtosecond laser system. Typical performance of the apparatus is demonstrated in a study of the time-resolved photoelectron spectroscopy of nitric oxide. The results of the time-resolved mass spectrometry experiments of chlorine dioxide are presented in Chapter 3. Upon excitation to the A {sup 2}A{sub 2} state near 3.2 eV, the molecule dissociates through an indirect two-step mechanism. The direct dissociation channel has been predicted to be open, but is not observed. A quantum beat is observed in the OClO{sup +} species, which is described as a vibrational coherence of the optically prepared A {sup 2}A{sub 2} state. Chapter 4 presents the results of the time-resolved photoelectron experiments of chlorine dioxide. At short delay time, the quantum beat of the OClO{sup +} species is observed in the X {sup 1}A{sub 1} state of the ion. At infinite delay, the signal is dominated by the ClO{sup +} ion, observed in a variety of electronic states. The photoelectron data is shown to support the indirect two-step dissociation mechanism derived from the mass results. Conclusions of the mass and photoelectron results are discussed in context of the stratospheric ozone depletion problem.« less
Liu, Chao; von Gunten, Urs; Croué, Jean-Philippe
2013-08-06
Chlorine dioxide (ClO2) decay in the presence of typical metal oxides occurring in distribution systems was investigated. Metal oxides generally enhanced ClO2 decay in a second-order process via three pathways: (1) catalytic disproportionation with equimolar formation of chlorite and chlorate, (2) reaction to chlorite and oxygen, and (3) oxidation of a metal in a reduced form (e.g., cuprous oxide) to a higher oxidation state. Cupric oxide (CuO) and nickel oxide (NiO) showed significantly stronger abilities than goethite (α-FeOOH) to catalyze the ClO2 disproportionation (pathway 1), which predominated at higher initial ClO2 concentrations (56-81 μM). At lower initial ClO2 concentrations (13-31 μM), pathway 2 also contributed. The CuO-enhanced ClO2 decay is a base-assisted reaction with a third-order rate constant of 1.5 × 10(6) M(-2) s(-1) in the presence of 0.1 g L(-1) CuO at 21 ± 1 °C, which is 4-5 orders of magnitude higher than in the absence of CuO. The presence of natural organic matter (NOM) significantly enhanced the formation of chlorite and decreased the ClO2 disproportionation in the CuO-ClO2 system, probably because of a higher reactivity of CuO-activated ClO2 with NOM. Furthermore, a kinetic model was developed to simulate CuO-enhanced ClO2 decay at various pH values. Model simulations that agree well with the experimental data include a pre-equilibrium step with the rapid formation of a complex, namely, CuO-activated Cl2O4. The reaction of this complex with OH(-) is the rate-limiting and pH-dependent step for the overall reaction, producing chlorite and an intermediate that further forms chlorate and oxygen in parallel. These novel findings suggest that the possible ClO2 loss and the formation of chlorite/chlorate should be carefully considered in drinking water distribution systems containing copper pipes.
INACTIVATION OF BACILLUS GLOBIGII BY CHLORINATION: A HIERARCHICAL BAYESIAN MODEL
Recent events where spores of Bacillus anthracis have been used as a bioterrorist weapon have prompted interest in determining the resistance of this organism to commonly used disinfectants, such as chlorine, chlorine dioxide and ozone. This work was undertaken to study ...
Studies on Sporulation Optimization and Chracterization of Bacillus subtilis Spore Quality
2011-12-01
in the other two media. Finally, heat and bleach resistance were recommended in place of acid res istance as indicators of spore hardiness. 1S...sporicidal chemicals (e .g., hypochlorite, hydrogen peroxide/per-acetic, and chlorine dioxide gas ), are strongly recommended as spore quality...effected by exposure to one or more sporicidal chemicals (e.g., hypochlorite, hydrogen peroxide/pre-acetic, chlorine dioxide gas ), are strongly recommended
Wang, Wen-Long; Zhang, Xue; Wu, Qian-Yuan; Du, Ye; Hu, Hong-Ying
2017-11-01
The degradation of natural organic matters (NOMs) by the combination of UV and chlorine (UV/chlorine) was investigated in this study. UV/chlorine oxidation can effectively degrade NOMs, with the degradation of chromophores (∼80%) and fluorophores (76.4-80.8%) being more efficient than that of DOC (15.1-18.6%). This effect was attributed to the chromophores and fluorophores (double bonds, aromatic groups and phenolic groups) being preferentially degraded by UV/chlorine oxidation, particularly reactive groups with high electron donating capacity. Radical species •OH and •Cl were generated during UV/chlorine oxidation, with the contribution of •OH 1.4 times as high as that of •Cl. The degradation kinetics of different molecular weight (MW) fractions suggests that UV/chlorine oxidation degrades high MW fractions into low MW fractions, with the degradation rates of high MW fractions (>3000 Da) 4.5 times of those of medium MW fractions (1000-3000 Da). In comparison with chlorination alone, UV/chlorine oxidation did not increase the formation (30 min) and formation potential (24 h) of trihalomethanes, but instead promoted the formation and formation potential of haloacetic acids and chloral hydrate. Adsorbable organic halogen (AOX) formed from UV/chlorine oxidation of NOM were 0.8 times higher than those formed from chlorination. Cytotoxicity studies indicated that the cytotoxicity of NOM increased after both chlorination and UV/chlorine oxidation, which may be due to the formation of AOX. Copyright © 2017 Elsevier Ltd. All rights reserved.
49 CFR 178.337-8 - Openings, inlets, and outlets.
Code of Federal Regulations, 2011 CFR
2011-10-01
... used to transport chlorine. The requirements for inlets and outlets on chlorine cargo tanks are in... dioxide, helium, krypton, neon, nitrogen, and xenon, or mixtures thereof. (6) In addition to the internal... equalization of pressure. (b) Inlets and discharge outlets on chlorine tanks. The inlet and discharge outlets...
49 CFR 178.337-8 - Openings, inlets, and outlets.
Code of Federal Regulations, 2010 CFR
2010-10-01
... used to transport chlorine. The requirements for inlets and outlets on chlorine cargo tanks are in... dioxide, helium, krypton, neon, nitrogen, and xenon, or mixtures thereof. (6) In addition to the internal... equalization of pressure. (b) Inlets and discharge outlets on chlorine tanks. The inlet and discharge outlets...
Using gas chromatography/mass spectrometry (GC/MS), we investigated the formation of disinfection byproducts (DBPs) from high bromide waters (2 mg/L) treated with chlorine or chlorine dioxide used in combination with chlorine and chloramines. This study represents the first comp...
Curiosity at Gale crater, Mars: characterization and analysis of the Rocknest sand shadow.
Blake, D F; Morris, R V; Kocurek, G; Morrison, S M; Downs, R T; Bish, D; Ming, D W; Edgett, K S; Rubin, D; Goetz, W; Madsen, M B; Sullivan, R; Gellert, R; Campbell, I; Treiman, A H; McLennan, S M; Yen, A S; Grotzinger, J; Vaniman, D T; Chipera, S J; Achilles, C N; Rampe, E B; Sumner, D; Meslin, P-Y; Maurice, S; Forni, O; Gasnault, O; Fisk, M; Schmidt, M; Mahaffy, P; Leshin, L A; Glavin, D; Steele, A; Freissinet, C; Navarro-González, R; Yingst, R A; Kah, L C; Bridges, N; Lewis, K W; Bristow, T F; Farmer, J D; Crisp, J A; Stolper, E M; Des Marais, D J; Sarrazin, P
2013-09-27
The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.
Brewer spectrophotometer measurements in the Canadian Arctic
NASA Technical Reports Server (NTRS)
Kerr, J. B.; Evans, W. F. J.
1988-01-01
In the winters of 1987 and 1988 measurements were conducted with the Brewer Spectrophotometer at Alert (82.5 N) and Resolute (74.5 N). The measurements were conducted as part of our Canadian Program to search for an Arctic Ozone Hole (CANOZE). Ozone measurements were conducted in the months of December, January and February using the moon as a light source. The total ozone measurements will be compared with ozonesonde profiles, from ECC sondes, flown once per week from Alert and Resolute. A modified Brewer Spectrophotometer was used in a special study to search for chlorine dioxide at Alert in March 1987. Ground based observations at Saskatoon in February and at Alert in March 1987 failed to detect any measureable chlorine dioxide. Interference from another absorbing gas, which we speculate may be nitrous acid, prevented the measurements at the low levels of chlorine dioxide detected in the Southern Hemisphere by Solomon et al.
Wastewater Disinfectants: Many Called--Few Chosen
ERIC Educational Resources Information Center
Smith, James W.
1978-01-01
Gives a comparative study of disinfectants used to rid wastewater of pathogens. Concentrates on the effects of chlorine and ozone, with some mention of ultra-violet irradiation, bromine chloride, and chlorine dioxide. (MA)
General Theories of Chemical Disinfection and Sterilization of Sludge--Part 3.
ERIC Educational Resources Information Center
Wang, Mu Hao; And Others
1978-01-01
A general discussion of sewage sterilization methods, including techniques using pH, Chlorine, Chlorine Dioxide, Ozone, Iodine and Bromine, metal ions, and cationic surface active agents is presented. (MDR)
Use of 0.1% chlorine dioxide to inhibit the formation of morning volatile sulphur compounds (VSC).
Peruzzo, Daiane Cristina; Jandiroba, Priscila Fontoura Castelo Branco; Nogueira Filho, Getulio da Rocha
2007-01-01
The aim of this study was to evaluate the VSC-inhibiting effect of a commercially available mouthrinse (0.1% chlorine dioxide) when compared to its placebo. A 2-step double blind, crossover, randomised study was conducted with 14 dental students with healthy periodontium, who refrained from any mechanical plaque and tongue coating control during two 4-day experimental periods. The subjects were instructed to rinse 3 times daily with the assigned product during each period. A 7-day washout interval was established. VSCs levels were measured by a sulphide monitor at the beginning (baseline) and at the end of each experimental period. Statistical analyses were performed using Wilcoxon's and Mann-Whitney's non-parametric tests. At baseline, intragroup analysis revealed that VSCs levels did not differ between groups (p > 0.05); at day 5, the use of the chlorine dioxide mouthrinse did not change the baseline VSCs scores in the control group (p > 0.05), while a 2-fold increase was observed with the use of the placebo mouthrinse (p < 0.05). Intergroup analysis showed a significant difference between the VSCs levels of the test and control groups (40.2 +/- 30.72 and 82.3 +/- 75.63 ppb, p < 0.001) at day 5. Within the limits of this study, the findings suggest that a mouthrinse containing chlorine dioxide can maintain VSCs at lower levels in the morning breath.
Ensign, S A; Hyman, M R; Arp, D J
1992-01-01
Propylene-grown Xanthobacter cells (strain Py2) degraded several chlorinated alkenes of environmental concern, including trichloroethylene, 1-chloroethylene (vinyl chloride), cis- and trans-1,2-dichloroethylene, 1,3-dichloropropylene, and 2,3-dichloropropylene. 1,1-Dichloroethylene was not degraded efficiently, while tetrachloroethylene was not degraded. The role of alkene monooxygenase in catalyzing chlorinated alkene degradations was established by demonstrating that glucose-grown cells which lack alkene monooxygenase and propylene-grown cells in which alkene monooxygenase was selectively inactivated by propyne were unable to degrade the compounds. C2 and C3 chlorinated alkanes were not oxidized by alkene monooxygenase, but a number of these compounds were inhibitors of propylene and ethylene oxidation, suggesting that they compete for binding to the enzyme. A number of metabolites enhanced the rate of degradation of chlorinated alkenes, including propylene oxide, propionaldehyde, and glucose. Propylene stimulated chlorinated alkene oxidation slightly when present at a low concentration but became inhibitory at higher concentrations. Toxic effects associated with chlorinated alkene oxidations were determined by measuring the propylene oxidation and propylene oxide-dependent O2 uptake rates of cells previously incubated with chlorinated alkenes. Compounds which were substrates for alkene monooxygenase exhibited various levels of toxicity, with 1,1-dichloroethylene and trichloroethylene being the most potent inactivators of propylene oxidation and 1,3- and 2,3-dichloropropylene being the most potent inactivators of propylene oxide-dependent O2 uptake. No toxic effects were seen when cells were incubated with chlorinated alkenes anaerobically, indicating that the product(s) of chlorinated alkene oxidation mediates toxicity. PMID:1444418
40 CFR 141.134 - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring for chlorine dioxide under the requirements of § 141.132(c). (i) The dates, result, and locations... * * * (1) System monitoring for chlorine or chloramines under the requirements of § 141.132(c) (i) The...
In search of stratospheric bromine oxide
NASA Technical Reports Server (NTRS)
Lestrade, John Patrick
1986-01-01
The Imaging Spectrometric Observatory (ISO) is capable of recording spectra in the wavelength range of 200 to 12000 Angstroms. Data from a recent Spacelab 1 ATLAS mission has imaged the terrestrial airglow at tangent ray heights of 90 and 150 km. These data contain information about trace atmospheric constituents such as bromine oxide (BrO), hydroxyl (OH), and chlorine dioxide (OClO). The abundances of these species are critical to stratospheric models of catalytic ozone destruction. Heretofore, very few observations were made especially for BrO. Software was developed to purge unwanted solar features from the airglow spectra. The next step is a measure of the strength of the emission features for BrO. The final analysis will yield the scale height of this important compound.
Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; van Velthoven, Peter; Oram, David E.; Zahn, Andreas; Brenninkmeijer, Carl A. M.; Williams, Jonathan
2016-01-01
The chlorine radical is a potent atmospheric oxidant, capable of perturbing tropospheric oxidative cycles normally controlled by the hydroxyl radical. Significantly faster reaction rates allow chlorine radicals to expedite oxidation of hydrocarbons, including methane, and in polluted environments, to enhance ozone production. Here we present evidence, from the CARIBIC airborne dataset, for extensive chlorine radical chemistry associated with Asian pollution outflow, from airborne observations made over the Malaysian Peninsula in winter. This region is known for persistent convection that regularly delivers surface air to higher altitudes and serves as a major transport pathway into the stratosphere. Oxidant ratios inferred from hydrocarbon relationships show that chlorine radicals were regionally more important than hydroxyl radicals for alkane oxidation and were also important for methane and alkene oxidation (>10%). Our observations reveal pollution-related chlorine chemistry that is both widespread and recurrent, and has implications for tropospheric oxidizing capacity, stratospheric composition and ozone chemistry. PMID:27845366
ALTERNATIVE DISINFECTANTS FOR DRINKING WATER TREATMENT
During a one-year study at Jefferson Parish, Louisiana the chemical, microbiological, and mutagenic effects of using the major drinking water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. ests were performed on samples collected from various treatm...
ALTERNATIVE DISINFECTION FOR DRINKING WATER TREATMENT
During a one-yr study at Jefferson Parish, La., the chemical, microbiological, and mutagenic effects os using the major drinkgin water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. Tests were performed on samples collected from various treatment s...
Formation and Occurrence of Disinfection By-Products
Disinfection by-products (DBPs) are formed when disinfectants such as chlorine, ozone, chlorine dioxide, or chloramines react with naturally occurring organic matter, anthropogenic contaminants, bromide, and iodide during the production of drinking water. There is concern about D...
Szabo, Jeffrey G; Meiners, Greg; Heckman, Lee; Rice, Eugene W; Hall, John
2017-02-01
Decontamination of Bacillus spores adhered to common drinking water infrastructure surfaces was evaluated using a variety of disinfectants. Corroded iron and cement-mortar lined iron represented the infrastructure surfaces, and were conditioned in a 23 m long, 15 cm diameter (75 ft long, 6 in diameter) pilot-scale drinking water distribution pipe system. Decontamination was evaluated using increased water velocity (flushing) alone at 0.5 m s -1 (1.7 ft s -1 ), as well as free chlorine (5 and 25 mg L -1 ), monochloramine (25 mg L -1 ), chlorine dioxide (5 and 25 mg L -1 ), ozone (2.0 mg L -1 ), peracetic acid 25 mg L -1 ) and acidified nitrite (0.1 mol L -1 at pH 2 and 3), all followed by flushing at 0.3 m s -1 (1 ft s -1 ). Flushing alone reduced the adhered spores by 0.5 and 2.0 log 10 from iron and cement-mortar, respectively. Log 10 reduction on corroded iron pipe wall coupons ranged from 1.0 to 2.9 at respective chlorine dioxide concentrations of 5 and 25 mg L -1 , although spores were undetectable on the iron surface during disinfection at 25 mg L -1 . Acidified nitrite (pH 2, 0.1 mol L -1 ) yielded no detectable spores on the iron surface during the flushing phase after disinfection. Chlorine dioxide was the best performing disinfectant with >3.0 log 10 removal from cement-mortar at 5 and 25 mg L -1 . The data show that free chlorine, monochloramine, ozone and chlorine dioxide followed by flushing can reduce adhered spores by > 3.0 log 10 on cement-mortar. Published by Elsevier Ltd.
The application of UV LEDs for differential optical absorption spectroscopy
NASA Astrophysics Data System (ADS)
Geiko, Pavel P.; Smirnov, Sergey S.; Samokhvalov, Ignatii V.
2018-04-01
Modern UV LEDs represent a potentially very advantageous alternative to thermal light sources, in particular xenon arc lamps, which are the most common light sources in trace gas-analyzers. So, the light-emitting diodes are very attractive for use of as light sources for Long Path Differential Optical Absorption Spectroscopy (DOAS) measurements of trace gases in the open atmosphere. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes have now allowed us to construct a portable, long path DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. First of all, we are talking about the measurement of sulphur dioxide, carbon disulphide and, oxides of chlorine and bromine. The parallel measurements of sulfur dioxide using a certified gas analyzer, were conducted and showed good correlation.
HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW
This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...
Peeters, J E; Mazás, E A; Masschelein, W J; Villacorta Martiez de Maturana, I; Debacker, E
1989-01-01
Demineralized water was seeded with controlled numbers of oocysts of Cryptosporidium parvum purified from fresh calf feces and subjected to different treatments with ozone or chlorine dioxide. The disinfectants were neutralized by sodium thiosulfate, and neonatal mice were inoculated intragastrically and sacrificed 7 days later for enumeration of oocyst production. Preliminary trials indicated that a minimum infection level of 1,000 oocysts (0.1-ml inoculum) per mouse was necessary to induce 100% infection. Treatment of water containing 10(4) oocysts per ml with 1.11 mg of ozone per liter (concentration at time zero [C0]) for 6 min totally eliminated the infectivity of the oocysts for neonatal mice. A level of 2.27 mg of ozone per liter (C0) was necessary to inactivate water containing 5 x 10(5) oocysts per ml within 8 min. Also, 0.4 mg of chlorine dioxide per liter (C0) significantly reduced infectivity within 15 min of contact, although some oocysts remained viable. PMID:2764564
Improvement of the air quality in student health centers with chlorine dioxide.
Hsu, Ching-Shan; Huang, Da-Ji; Lu, Ming-Chun
2010-04-01
This study aims to monitor bioaerosol levels of a local campus of a student health center in Taiwan and then to perform disinfection by applying chlorine dioxide. First, air samples were taken and evaluated in the six areas of the center. The average background bioaerosol levels were 714 +/- 1706 CFU/m(3) for bacterium and 802 +/- 633 CFU/m(3) for fungi. Then, chlorine dioxide was applied through three different procedures: single, multiple and regular disinfections. The results indicated that both multiple and regular disinfections can achieve efficiency levels higher than 59.0%. The regression analysis on bioaerosol levels showed that the number of people present correlating to the number of persons entering the room per door-opening, had a correlation of p < 0.05. Utilizing this analysis result, an empirical model was developed to predict indoor bioaerosol concentrations. It can be inferred that for indoor human activity of health centers, regular disinfection is a very effective process.
Kumar, Sunil; Park, Jiyeong; Kim, Eunseong; Na, Jahyun; Chun, Yong Shik; Kwon, Hyeok; Kim, Wook; Kim, Yonggyun
2015-10-01
A novel fumigant, chlorine dioxide (ClO2) is a commercial bleaching and disinfection agent. Recent study indicates its insecticidal activity. However, its mode of action to kill insects is yet to be understood. This study set up a hypothesis that an oxidative stress induced by ClO2 is a main factor to kill insects. The Indian meal moth, Plodia interpunctella, is a lepidopteran insect pest infesting various stored grains. Larvae of P. interpunctella were highly susceptible to ClO2 gas, which exhibited an acute toxicity. Physiological damages by ClO2 were observed in hemocytes. At high doses, the larvae of P. interpunctella suffered significant reduction of total hemocytes. At low doses, ClO2 impaired hemocyte behaviors. The cytotoxicity of ClO2 was further analyzed using two insect cell lines, where Sf9 cells were more susceptible to ClO2 than High Five cells. The cells treated with ClO2 produced reactive oxygen species (ROS). The produced ROS amounts increased with an increase of the treated ClO2 amount. However, the addition of an antioxidant, vitamin E, significantly attenuated the cytotoxicity of ClO2 in a dose-dependent manner. To support the oxidative stress induced by ClO2, two antioxidant genes (superoxide dismutase (SOD) and thioredoxin-peroxidase (Tpx)) were identified from P. interpunctella EST library using ortholog sequences of Bombyx mori. Both SOD and Tpx were expressed in larvae of P. interpunctella especially under oxidative stress induced by bacterial challenge. Exposure to ClO2 gas significantly induced the gene expression of both SOD and Tpx. RNA interference of SOD or Tpx using specific double stranded RNAs significantly enhanced the lethality of P. interpunctella to ClO2 gas treatment as well as to the bacterial challenge. These results suggest that ClO2 induces the production of insecticidal ROS, which results in a fatal oxidative stress in P. interpunctella. Copyright © 2015 Elsevier Inc. All rights reserved.
Huang, Xin; Wang, Long-Yong; Gao, Nai-Yun; Li, Wei-Guo
2012-10-01
The UV-Visible absorption spectrum of industrial wastewater was explored to introduce a substituting method determining the color of water, and to compare the decolorization efficacy of different disinfectants. The results show that the visible absorption spectrum(350-600 nm), instead of ultraviolet absorption spectrum, should be applied to characterize the color of wastewater. There is a good correlation between the features of visible absorption spectrum and the true color of wastewater. Both ozone and chlorine dioxide has a better decolorization performance than chlorine. However, the color of chlorine dioxide itself has a negative effect on decolorization. The changes in the features of visible absorption spectrum effectively reflect the variations in the color of wastewater after disinfection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedict, H.M.; Breen, W.H.
1955-01-01
This album of photographs shows representative types of leaf marking produced on ten different plant species by controlled fumigations with six common air pollutants. The document is intended for field use in identifying the pollutants causing air pollution damage to valuable field crops. The pollutants considered include ammonia, chlorine, hydrogen fluoride, hydrogen sulfide, oxides of nitrogen, and sulfur dioxide. The plant species considered include mustard, sunflower, lambsquarters, cheeseweed, annual bluegrass, Kentucky bluegrass, chickweed, dandelion, Nettle-leaf goosefoot, and pigweed.
PROCESSES FOR SEPARATING AND RECOVERING CONSTITUENTS OF NEUTRON IRRADIATED URANIUM
Connick, R.E.; Gofman, J.W.; Pimentel, G.C.
1959-11-10
Processes are described for preparing plutonium, particularly processes of separating plutonium from uranium and fission products in neutron-irradiated uraniumcontaining matter. Specifically, plutonium solutions containing uranium, fission products and other impurities are contacted with reducing agents such as sulfur dioxide, uranous ion, hydroxyl ammonium chloride, hydrogen peroxide, and ferrous ion whereby the plutoninm is reduced to its fluoride-insoluble state. The reduced plutonium is then carried out of solution by precipitating niobic oxide therein. Uranium and certain fission products remain behind in the solution. Certain other fission products precipitate along with the plutonium. Subsequently, the plutonium and fission product precipitates are redissolved, and the solution is oxidized with oxidizing agents such as chlorine, peroxydisulfate ion in the presence of silver ion, permanganate ion, dichromate ion, ceric ion, and a bromate ion, whereby plutonium is oxidized to the fluoride-soluble state. The oxidized solution is once again treated with niobic oxide, thus precipitating the contamirant fission products along with the niobic oxide while the oxidized plutonium remains in solution. Plutonium is then recovered from the decontaminated solution.
40 CFR 141.54 - Maximum residual disinfectant level goals for disinfectants.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for disinfectants. MRDLGs for disinfectants are as follows: Disinfectant residual MRDLG(mg/L) Chlorine 4 (as Cl 2). Chloramines 4 (as Cl 2). Chlorine dioxide 0.8 (as ClO2) [63 FR 69465, Dec. 16, 1998] ...
40 CFR 141.54 - Maximum residual disinfectant level goals for disinfectants.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for disinfectants. MRDLGs for disinfectants are as follows: Disinfectant residual MRDLG(mg/L) Chlorine 4 (as Cl 2). Chloramines 4 (as Cl 2). Chlorine dioxide 0.8 (as ClO2) [63 FR 69465, Dec. 16, 1998] ...
Decontamination of Bacillus spores adhered to iron and ...
Journal Article This study examines the effectiveness of decontaminating Bacillus globigii spores attached to corroded iron and cement-mortar coupons with free chlorine at two pH levels, monochloramine, chlorine dioxide, ozone, peracetic acid (PAA) and acidified nitrite, followed by flushing.
HALOACETONITRILES VS. REGULATED HALOACETIC ACIDS: ARE NITROGEN CONTAINING DBPS MORE TOXIC?
Haloacetonitriles (HANs) are toxic nitrogenous drinking water disinfection by-products (N-DBPs) and are observed with chlorine, chloramine, or chlorine dioxide disinfection. Using microplate-based Chinese hamster ovary (CHO) cell assays for chronic cytotoxicity and acute genotoxi...
Software User’s Manual for the RAILCAR4.1 Toxic Industrial Chemical Source Characterization Program
2015-04-01
average cloud area during formation as half of the final cloud area of Dc2/4. Since the equations for these parameters can be quite complex , the...hydrogen chloride propane (LPG) chlorine hydrogen cyanide sulfur dioxide chlorine dioxide hydrogen fluoride sulfuric acid cyanogen chloride
2013-11-01
flushing filter, disinfection with injected chlorine dioxide (chlorine dioxide is generated onboard from two component chemicals, sulfuric acid...Management System 400 80 250-8000 (10000) Sulfuric Acid and Purate for ClO2 generation Yes 0.005-0.028 8-18 Decreased sediment, potential corrosion...feed chemicals, Purate and sulfuric acid. 5. Operational and Maintenance Cost: Estimated operating and maintenance cost is $80/1000 m3 of ballast
High-Rate Disinfection Techniques for Combined Sewer Overflow (Proceedings Paper)
This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH ), a...
NASA Astrophysics Data System (ADS)
Martinez, P.; Navarro-gonzalez, R.
2013-05-01
The Viking Landers that arrived on Mars in 1976 carried out three biological experiments designed to investigate if there was microbial life. These were the Gas-Exchange, Pyrolitic Release and Labeled Release experiments. The three experiments yielded positive responses but the Labeled Release experiment had a kinetic response indicative of microbial activity. The experiment consisted of adding a broth of nutrients (formic acid, glycolic acid, glycine, D- and L-alanine and D- and L-lactic acid uniformly marked with 14C) to martian soil samples. The results were surprising; the nutrients were consumed releasing radioactive gases in a manner that is compatible by terrestrial microorganisms. The existence of Martian life was contradicted by soil chemical analysis that indicated the absence of organic compounds above the detection limits of parts per billion (ppb). Instead the positive response of the Labeled Release Experiment was attributed to the existence of peroxides and/or superoxides in the Martian soils that destroyed the nutrients upon contact. Recently, the Phoenix mission that landed in the Martian Arctic in 2008 revealed the presence of a highly oxidized form of the element chlorine in the soil: perchlorate. Perchlorate is thought to have formed in the Martian atmosphere by the oxidation of chloride from volcanic sources with ozone. Therefore perchlorate is formed by the stepwise oxidation of hypochlorite, chlorite and chlorate. These oxyanions of chlorine are powerful oxidizers that may exist in the Martian soil and may have reacted with the nutrients of the Labeled Release Experiment. This paper aims to better understand these results by designing experiments to determine the kinetics of decomposition of formic acid to carbon dioxide with different oxidized forms of chlorine by headspace technique in gas chromatography coupled to mass spectrometry (GC / MS). Previous studies done in the laboratory showed that only hypochlorite quantitatively reacted with the formate, this is why we conducted experiments at 20 ° C, 30 ° C and 40 ° C at times 0, 0.1, 0.5, 1, 3 , 5, 10, 20, 30, 40 and 60 min. The resulting kinetics were similar to those obtained by the LR experiment, however the speeds at which reacted in the laboratory were very rapid, almost instantaneous, a comparison of the acquired by the Viking was kinetics days. This may be because in the laboratory we do not used soil samples, Viking used Mars regolith Martian, like a complex matrix that may affect the reaction rate. We conclude that the response obtained by the LR experiment is possibly due to the presence of oxyanions of chlorine, hypochlorite specific which is increased by the dismutations chlorine species in solution, all in combination with other components very likely soil nutrients reacted with isotopically labeled. This project is still ongoing, open a new hypothesis of whether there is microbial life on Mars, since, if the Labeled Release experiment found no biological activity, may have been a chemical oxidation of organic nutrients for sodium hypochlorite .
Engineering design and test plan for demonstrating DETOX treatment of mixed wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldblatt, S.; Dhooge, P.
1995-03-01
DETOX is a cocatalyzed wet oxidation process in which the catalysts are a relatively great concentration of iron ions (typically as iron(III) chloride) in the presence of small amounts of platinum and ruthenium ions. Organic compounds are oxidized completely to carbon dioxide, water, and (if chlorinated) hydrogen chloride. The process has shown promise as a non-thermal alternative to incineration for treatment and/or volume reduction of hazardous, radioactive, and mixed wastes. Design and fabrication of a demonstration unit capable of destroying 25. Kg/hr of organic material is now in progress. This paper describes the Title 2 design of the demonstration unit,more » and the planned demonstration effort at Savannah River Site (SRS) and Weldon Spring Site Remedial Action Project (WSSRAP).« less
Lyon, W.L.
1962-04-17
A method of separating uranium oxides from PuO/sub 2/, ThO/sub 2/, and other actinide oxides is described. The oxide mixture is suspended in a fused salt melt and a chlorinating agent such as chlorine gas or phosgene is sparged through the suspension. Uranium oxides are selectively chlorinated and dissolve in the melt, which may then be filtered to remove the unchlorinated oxides of the other actinides. (AEC)
A METHOD OF PREPARING URANIUM DIOXIDE
Scott, F.A.; Mudge, L.K.
1963-12-17
A process of purifying raw, in particular plutonium- and fission- products-containing, uranium dioxide is described. The uranium dioxide is dissolved in a molten chloride mixture containing potassium chloride plus sodium, lithium, magnesium, or lead chloride under anhydrous conditions; an electric current and a chlorinating gas are passed through the mixture whereby pure uranium dioxide is deposited on and at the same time partially redissolved from the cathode. (AEC)
Perez, Justo; Springthorpe, V Susan; Sattar, Syed A
2005-08-01
Clostridium difficile is an increasingly common nosocomial pathogen, and its spores are resistant to common environmental surface disinfectants. Many high-level disinfectants (eg, aldehydes) are unsuitable for environmental decontamination because they need several hours of contact to be sporicidal. This study tested the potential of selected oxidative microbicides to inactivate C. difficile spores on hard surfaces in relatively short contact times at room temperature. The spores of a clinical isolate of C. difficile were tested using disks (1 cm diameter) of brushed stainless steel in a quantitative carrier test. The spores of C. sporogenes and Bacillus subtilis, common surrogates for evaluating sporicides, were included for comparison. The clostridia were grown separately in Columbia broth (CB), and B. subtilis was grown in a 1:10 dilution of CB. Each disk received 10 microL test spores with an added soil load, and the inoculum was dried. One disk each was placed in a glass vial and overlaid with 50 microL test formulation; controls received an equivalent volume of normal saline with 0.1% Tween 80. At the end of the contact time the microbicide was neutralized, the inoculum recovered from the disks by vortexing, the eluates were membrane filtered, and the filters placed on plates of recovery medium. The colony-forming units (CFU) on the plates were recorded after 5 days of incubation. The performance criterion was > or = 6 log(10) (> or = 99.9999%) reduction in the viability titer of the spores. The microbicides tested were domestic bleach with free-chlorine (FC) levels of 1000, 3000, and 5000 mg/L; an accelerated hydrogen peroxide (AHP)-based product with 70,000 mg/L H2O2 (Virox STF); chlorine dioxide (600 mg/L FC); and acidified domestic bleach (5000 mg/L FC). Acidified bleach and the highest concentration of regular bleach tested could inactivate all the spores in < or = 10 minutes; Virox STF could do the same in < or = 13 minutes. Regular bleach with 3000 mg/L FC required up to 20 minutes to reduce the viability of the all the spores tested to undetectable levels; chlorine dioxide and the lowest concentration of regular bleach tested needed approximately 30 minutes for the same level of activity. Acidified bleach, Virox STF, and regular bleach (3000-5000 mg/L FC) could inactivate C. difficile spores on hard environmental surfaces in approximately 10 to 15 minutes under ambient conditions. All of these products are strong oxidizers and should be handled with care for protection of staff, but acidified and regular bleach with high levels of FC also release chlorine gas, which can be hazardous if inhaled by staff or patients.
Coates, D
2001-05-01
Microbiological tests were carried out to evaluate a new chlorine dioxide sterilant: Tristel OneShot. Preliminary in vitro suspension tests showed that solutions containing around 140 ppm chlorine dioxide achieved a reduction factor exceeding 10(6) of Staphylococcus aureus in 1min and of Bacillus subtilis spores in 2.5 min in the presence of 3g/L bovine albumin. Subsequent tests evaluated the effectiveness of Tristel One-Shot in a Medivator washer/disinfector fitted with a Tristel Generator for processing flexible endoscopes. Each test run involved three stages. In the first, the instrument and air-water channels of a gastroscope were inoculated with a suspension of Pseudomonas aeruginosa (10(8)cfu/ml) in 10% sodium glutamate and serum (0, 5 or 10%) and then drained, partially dried, and saline flushed through for total viable counts (TVCs). In the second stage, the channels were re-inoculated with test organisms; detergent was flushed through the channels which were then brushed; and saline was flushed through for TVCs. In the third stage, the channels were re-inoculated; detergent was flushed through the channels which were then brushed; the endoscope was processed in the Medivator; and saline was flushed through for TVCs. Carrying out all three stages enabled determination of (1) the contribution played by manual cleaning of channels prior to processing in the Medivator, and (2) the combined effect of manual cleaning followed by processing. Two series of test runs were done. In the first, the Tristel Generator was set to generate 230ppm chlorine dioxide, and in the second 150ppm. In the first, cleaning followed by processing in the Medivator consistently achieved a >/= 10(6)-fold reduction of test organisms, and in the second a >/= 10(5)-fold reduction. Pre-cleaning of channels was very important-when done the initial concentration of serum in the inoculum (0-10%) had no affect on the results obtained after processing. Copyright 2001 The Hospital infection Society.
SAGE III L2 Lunar Event Species Profiles (Binary)
Atmospheric Science Data Center
2017-10-27
... Search and Order: Earthdata Search FTP Access: Data Pool Parameters: Chlorine Dioxide Nitrogen Dioxide ... Data Additional Info: Data Format: Big Endian/IEEE Binary; Avg Size in MB: 0.017 SCAR-B Block: ...
Wenhai, Chu; Tengfei, Chu; Erdeng, Du; Deng, Yang; Yingqing, Guo; Naiyun, Gao
2016-02-01
Ultraviolet/persulfate (UV/PS) has been widely used to generate sulfate radicals for degradation of water organic pollutants in previous studies. However, its impacts on disinfection byproduct formation during post-chlorination of degraded compounds is unclear. The objective of this study was to evaluate the impacts of UV irradiation, PS oxidation, and the combined UV/PS advanced oxidation process (AOP) pre-treatments on halomethane formation during the following chlorination of chloramphenicol (CAP), a model antibiotic commonly found in wastewater-impacted water. Results showed that CAP could be transformed to more trichloromethane (TCM) than monochloromethane (MCM) and dichloromethane (DCM) in the presence of excess chlorine. UV photolysis, PS oxidation and UV/PS AOP all directly decomposed CAP to produce halomethanes (HMs) before post-chlorination. Moreover, UV and UV/PS pre-treatments both enhanced the formation of all the HMs in the subsequent chlorination. PS pre-oxidation decreased the TCM formation during post-chlorination, but increased the yields of MCM, DCM and total HMs. UV pre-irradiation significantly increased the bromide utilization of HMs, whereas UV/PS pre-oxidation decreased the bromine incorporation and utilization of HMs from the chlorination of CAP in a low-bromide water. UV irradiation, PS oxidation, and UV/PS AOP can inactivate pathogens and degrade organic pollutants, but this benefit should be weighed against a potential risk of the increased halomethane formation from degraded organic pollutants with and without post-chlorination. Copyright © 2015 Elsevier Inc. All rights reserved.
MEMBRANE EXTRACTION GC/MS FOR THE ANALYSIS OF DISINFECTION BY-PRODUCTS
For many years, public water supplies in the U.S.have been treated with a variety of chemicals aimed at reducing or eliminating infectious diseases. Chlorine is the most common disinfectant used to combat waterborne microbial diseases; however, the use of ozone, chlorine dioxid...
TURBULENT FLAME REACTOR STUDIES OF CHLORINATED HYDROCARBON DESTRUCTION EFFICIENCY
Four mixtures of C1 and C2 chlorinated hydrocarbons, diluted in heptane, were burned in a Turbulent Flame Reactor (TFR) under high and low oxygen conditions. Emissions of undestroyed feed, stable organic by-products, carbon monoxide, carbon dioxide and oxyg...
1992-06-01
Parathion degradation product Chloramines Bromacil (4>-Nitrophenol) Chlorate Cyanazine Prometon Chlorine Cryomazine 2,4,5- T Chlorine Dioxide DCPA (and...value is the residual disinfectant concentration. T is the disinfectant contact time. Explanations of how C and T are calculated are included in Appendix...each chlorine residual disinfectant concentration sampling point. c) Disinfectant Contact Time. The disinfectant contact time ( T ) must be determined
Code of Federal Regulations, 2011 CFR
2011-04-01
...-dimethylhydantoin (where the dihalo (halogen) may be bromine and/or chlorine) that may contain no more than 20... chlorine). At a maximum level of 1.0 kilogram (kg) per 1,000 kg of dry weight fiber. 4...-Tetraazatricyclo[6.2.1.13,6] dodecane 3,3,4,4-Tetrachlorotetrahydrothiophene-1,1-dioxide Tetrakis(hydroxymethyl...
THE ROLE OF GC/MS AND LC/MS IN THE DISCOVERY OF DRINKING WATER DISINFECTION BY-PRODUCTS
Gas chromatography/mass spectrometry (GC/MS) has played a pivotal role in the discovery of disinfection by-products (DBPs) in drinking water. DBPs are formed when disinfectants, such as chlorine, ozone, chlorine dioxide, or chloramine, react with natural organic matter in the ...
Disinfection by-products (DBPs) are formed when disinfectants (chlorine, ozone, chlorine dioxide, or chloramines) react with naturally occurring organic matter, anthropogenic contaminants, bromide, and iodide during the production of drinking water. Here we review 30 years of re...
The Influence of Nitrogen Oxides on Chlorine Chemistry in Barrow, Alaska
NASA Astrophysics Data System (ADS)
McNamara, S. M.; Raso, A. R. W.; Wang, S.; Thanekar, S.; Fuentes, J. D.; Shepson, P. B.; Pratt, K.
2016-12-01
Active chlorine chemistry in the springtime Arctic boundary layer impacts the fate of atmospheric pollutants and greenhouse gases. Recent field studies have reported high amounts of molecular chlorine (Cl2), up to 400 parts per trillion (ppt), as well as the presence of chlorinated hydrocarbon oxidation products. However, our knowledge of Arctic chlorine chemistry is limited by a paucity of observations. The presence of nitrogen oxides (NOx) may influence the chlorine chemistry in this region. Here, we report chemical ionization mass spectrometry measurements of Cl2, chlorine monoxide (ClO), nitryl chloride (ClNO2), and dinitrogen pentoxide (N2O5), and NOx measurements at Barrow, AK during March-May 2016. To our knowledge, these data represent the first observations of ClNO2 in the Arctic. While the main source of NOx in a pristine Arctic environment is irradiated snow surfaces, anthropogenic sources can significantly enhance local NOx concentrations. The role of NOx in the activation and temporal trends of the reactive chlorine species are examined using a 0-D photochemical model. The prevalence of chlorine chemistry under elevated nitrogen oxide conditions may have significant impacts on the atmospheric composition in an increasingly polluted Arctic.
Synthesizing alkali ferrates using a waste as a raw material
NASA Astrophysics Data System (ADS)
Kanari, N.; Ostrosi, E.; Ninane, L.; Neveux, N.; Evrard, O.
2005-08-01
This study focused on the potential to transform a waste, hydrated iron sulfate, into a useful product. The waste was generated from titanium dioxide production and from the surface treatment of steel. Its disposal is restricted by environmental regulations, and consequently, it has to be recycled and/or treated. The described recycling was achieved through synthesis of potassium ferrate, which contains iron in a hexavalent state (FeVI). The synthesis process was achieved in a rotary reactor at room temperature using chlorine as an oxidant. The efficiency of potassium ferrate synthesis was about 60%. This paper presents details of the kinetics of the potassium ferrate synthesis.
Chlorine oxide in the stratospheric ozone layer Ground-based detection and measurement
NASA Technical Reports Server (NTRS)
Parrish, A.; De Zafra, R. L.; Solomon, P. M.; Barrett, J. W.; Carlson, E. R.
1981-01-01
Stratospheric chlorine oxide, a significant intermediate product in the catalytic destruction of ozone by atomic chlorine, has been detected and measured by a ground-based 204 GHz, millimeter-wave receiver. Data taken at latitude 42 deg N on 17 days between January 10 and February 18, 1980 yield an average chlorine oxide column density of approximately 1.05 x 10 to the 14th/sq cm or approximately 2/3 that of the average of eight in situ balloon flight measurements (excluding the anomalously high data of July 14, 1977) made over the past four years at 32 deg N. Less chlorine oxide below 35 km and a larger vertical gradient than predicted by theoretical models of the stratospheric ozone layer are found.
Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate--a comparative study.
Gao, Shanshan; Zhao, Zhiwei; Xu, Yongpeng; Tian, Jiayu; Qi, Hong; Lin, Wei; Cui, Fuyi
2014-06-15
Sulfamethoxazole (SMX), a typical sulfonamide antibiotic, has been widely detected in secondary wastewater effluents and surface waters. In this work we investigated the oxidative degradation of SMX by commonly used oxidants of chlorine, ozone and permanganate. Chlorine and ozone were shown to be more effective for the removal of SMX (0.05-5.0mg/L), as compared with permanganate. Higher pH enhanced the oxidation of SMX by ozone and permanganate, but decreased the removal by chlorine. Moreover, the ozonation of SMX was significantly influenced by the presence of humic acid (HA), which exhibited negligible influence on the oxidation by chlorine and permanganate. Fairly lower mineralization of SMX occurred during the oxidation reactions, with the highest dissolved organic carbon (DOC) removal of 13% (for ozone). By using LC-MS/MS, 7, 5 and 5 oxidation products were identified for chlorine, ozone and permanganate and possible transformation pathways were proposed. It was shown that different oxidants shared some common pathways, such as the cleavage of SN bond, the hydroxylation of the benzene ring, etc. On the other hand, each of the oxidants also exhibited exclusive degradation mechanisms, leading to the formation of different transformation products (TPs). This work may provide useful information for the selection of oxidants in water treatment processes. Copyright © 2014 Elsevier B.V. All rights reserved.
Products identified at an alternative disinfection pilot plant.
Lykins, B W; Koffskey, W
1986-01-01
Many drinking water utilities have recently changed or are seriously considering changing their disinfection practice from chlorine to some alternative treatment process. However, most of these utilities are changing their disinfectants without evaluating chemical impacts. Therefore, a research cooperative agreement was developed with Jefferson Parish, LA, to evaluate four parallel streams treated with four different disinfectants (chlorine, monochloramine, chlorine dioxide, and ozone.) These streams, along with a fifth parallel stream, which was not treated with a disinfectant (control), were passed through both sand and granular activated carbon (GAC). Ozonation reduced the total organic carbon (TOC) and total organic halide (TOX) concentration by 0.3 mg/L and 10 micrograms/L, respectively. The average concentration of TOC for the other disinfectants was comparable to that associated with the nondisinfected stream (3.3 mg/L). The average instantaneous TOX concentration for chlorine dioxide, chloramine, and chlorine disinfection after 30 min contact time increased by 60, 92, and 238 micrograms/L, respectively, from a nondisinfected concentration of 25 micrograms/L. The volatile organics most affected by disinfection (chlorination) were the trihalomethanes. No significant change in concentration was noted after disinfection for the other volatile organics evaluated, such as 1,2-dichlorethane, dichloromethane, trichloroethylene, 1,1,2-trichloroethane, and carbon tetrachloride. Ozonation produced an average concentration reduction of 11 to 84% for most of the nonvolatiles evaluated. Conversely, a concentration increase of 43 to 100% was noted, after chlorination, for some of the nonvolatile organics. PMID:3816717
Products identified at an alternative disinfection pilot plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lykins, B.W. Jr.; Koffskey, W.
1986-11-01
Many drinking water utilities have recently changed or are seriously considering changing their disinfection practice from chlorine to some alternative treatment process. However, most of these utilities are changing their disinfectants without evaluating chemical impacts. Therefore, a research cooperative agreement was developed with Jefferson Parish, LA, to evaluate four parallel streams treated with four different disinfectants (chlorine, monochloramine, chlorine dioxide, and ozone.) These streams, along with a fifth parallel stream, which was not treated with a disinfectant (control), were passed through both sand and granular activated carbon (GAC). Ozonation reduced the total organic carbon (TOC) and total organic halide (TOX)more » concentration by 0.3 mg/L and 10 micrograms/L, respectively. The average concentration of TOC for the other disinfectants was comparable to that associated with the nondisinfected stream (3.3 mg/L). The average instantaneous TOX concentration for chlorine dioxide, chloramine, and chlorine disinfection after 30 min contact time increased by 60, 92, and 238 micrograms/L, respectively, from a nondisinfected concentration of 25 micrograms/L. The volatile organics most affected by disinfection (chlorination) were the trihalomethanes. No significant change in concentration was noted after disinfection for the other volatile organics evaluated, such as 1,2-dichlorethane, dichloromethane, trichloroethylene, 1,1,2-trichloroethane, and carbon tetrachloride. Ozonation produced an average concentration reduction of 11 to 84% for most of the nonvolatiles evaluated. Conversely, a concentration increase of 43 to 100% was noted, after chlorination, for some of the nonvolatile organics.« less
Madsen, Henrik Tækker; Søgaard, Erik Gydesen; Muff, Jens
2015-02-01
For electrochemical oxidation to become applicable in water treatment outside of laboratories, a number of challenges must be elucidated. One is the formation and fate of degradation intermediates of targeted organics. In this study the degradation of the pesticide residue 2,6-dichlorobenzamide, an important groundwater pollutant, was investigated in a chloride rich solution with the purpose of studying the effect of active chlorine on the degradation pathway. To study the relative importance of the anodic oxidation and active chlorine oxidation in the bulk solution, a non-active BDD and an active Pt anode were compared. Also, the effect of the active chlorine oxidation on the total amount of degradation intermediates was investigated. We found that for 2,6-dichlorobenzamide, active chlorine oxidation was determining for the initial step of the degradation, and therefore yielded a completely different set of degradation intermediates compared to an inert electrolyte. For the Pt anode, the further degradation of the intermediates was also largely dependent on active chlorine oxidation, while for the BDD anode anodic oxidation was most important. It was also found that the presence of active chlorine led to fewer degradation intermediates compared to treatment in an inert electrolyte. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zoeteman, B C; Hrubec, J; de Greef, E; Kool, H J
1982-01-01
A retrospective epidemiological study in The Netherlands showed a statistical association between chlorination by-products in drinking water and cancer of the esophagus and stomach for males. A pilot-plant study with alternative disinfectants was carried out with stored water of the Rivers Rhine and Meuse. It was demonstrated that the increase of direct acting mutagens after treatment with chlorine dioxide is similar to the effect of chlorination. Ozonation of Rhine water reduced the mutagenic activity for Salmonella typhimurium TA 98 both with and without metabolic activation. UV alone hardly affects the mutagenicity of the stored river water for S. typh. TA 98. In all studies, practically no mutagenic activity for S. typh. TA 100 was found. Although remarkable changes in the concentration of individual organic compounds are reported, the identity of the mutagens detected is yet unclear. Compounds of possible interest due to their removal by ozonation are 1,3,3-trimethyloxindole, dicyclopentadiene and several alkylquinolines. Compounds which might be responsible for the increased mutagenicity after chlorination are two brominated acetonitriles and tri(2-chlorethyl) phosphate. Furthermore, the concentration procedure with adsorption on XAD resin and the subsequent elution step may have affected the results. It is proposed to focus further research more on the less volatile by-products of disinfection than on the trihalomethanes. PMID:7151762
Mehrez, O Abou; Dossier-Berne, F; Legube, B
2015-01-01
Chlorination and monochloramination of aminophenols (AP) were carried out in aqueous solution at 25°C and at pH 8.5. Oxidant demand and disinfection by-product formation were determined in excess of oxidant. Experiments have shown that chlorine consumption of AP was 40-60% higher than monochloramine consumption. Compared with monochloramination, chlorination of AP formed more chloroform and haloacetic acids (HAA). Dichloroacetic acid was the major species of HAA. Chloroform and HAA represented, respectively, only 1-8% and 14-15% of adsorbable organic halides (AOX) by monochloramination but up to 29% and 39% of AOX by chlorination.
THE ROLE OF GC-MS AND LC-MS IN THE DISCOVERY OF DRINKING WATER DISINFECTION BY-PRODUCTS
Gas chromatography-mass spectrometry (GC-MS) has played a pivotal role in the discovery of disinfection by-products (DBPs) in drinking water. DBPs are formed when disinfectants, such as chlorine, ozone, chlorine dioxide or chloramine, react with natural organic matter in the wate...
NASA Astrophysics Data System (ADS)
Kim, U. S.
1990-01-01
To date, chlorine has been used as useful additives in silicon oxidation. However, rapid scaling of device dimensions motivates the development of a new dielectric layer or modification of the silicon dioxide itself. More recently, chemically enhanced thermal oxidation by the use of fluorine containing species has been introduced to verify the potential of fluorine in the silicon oxidation process. In this study, gaseous nitrogen trifluoride (NF _3) was selected as the fluorine oxidizing source based on ease of use and was compared with the dichlorofluoroethane (C_2H _3Cl_2F) source. Two different kinds of boron marker samples were prepared and oxidized in O_2/NF_3 ambient for the comparison of surface vs bulk oxidation enhanced/retarded diffusion (OED/ORD). The phosphorus, arsenic and antimony diffusion in silicon during fluorine oxidation has been studied using the various covering layers such as SiO_2, Si_3 N_4, and SiO_2 + Si_3N_4 layers. The oxidation related phenomena, i.e. enhanced silicon and silicon nitride oxidation in fluorine ambient were studied and correlated with the point defect balance at the oxidizing interface. The results of this investigation were discussed with special emphasis on the effect of fluorine on enhanced oxidation and dopant diffusion.
Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.
Berenstein, Igal; Muñuzuri, Alberto P; Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M; Epstein, Irving R
2008-08-01
Breathing spiral waves are observed in the oscillatory chlorine dioxide-iodine-malonic acid reaction-diffusion system. The breathing develops within established patterns of multiple spiral waves after the concentration of polyvinyl alcohol in the feeding chamber of a continuously fed, unstirred reactor is increased. The breathing period is determined by the period of bulk oscillations in the feeding chamber. Similar behavior is obtained in the Lengyel-Epstein model of this system, where small amplitude parametric forcing of spiral waves near the spiral wave frequency leads to the formation of breathing spiral waves in which the period of breathing is equal to the period of forcing.
Thermodynamic analysis of the selective chlorination of electric arc furnace dust.
Pickles, C A
2009-07-30
The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.
A Simple Alternative Method for Preservation of 2-Methylisoborneol in Water Samples
Lin, Tsair-Fuh
2018-01-01
2-Methylisoborneol (2-MIB) is one of the most commonly observed taste and odor (T&O) compounds present in drinking water sources. As it is biodegradable, a preservation agent, typically mercury chloride, is needed if the water is not analyzed right after sampling. Since mercury is a toxic metal, an alternative chemical that is cheaper and less toxic is desirable. In this study, two chemicals commonly used in water treatment processes, chlorine (as sodium hypochlorite) and KMnO4 (potassium permanganate), are studied to determine their feasibility as preservation agents for 2-MIB in water. Preservation experiments were first conducted in deionized water spiked with 2-MIB and with chlorine or permanganate at 4 and 25 °C. The results indicate that 2-MIB concentrations in the water samples spiked with both chemicals remained almost constant within 14 days for all the tested conditions, suggesting that oxidation and volatilization did not cause the loss of 2-MIB in the system. The experiments were further conducted for three different reservoir water samples with 30–60 ng/L of indulgent 2-MIB. The experimental results demonstrated that preservation with permanganate may have underestimated the 2-MIB concentration in the samples as a result of the formation of manganese dioxide particles in natural water and adsorption of 2-MIB onto the particles. Chlorine was demonstrated to be a good preservation agent for all three tested natural waters since oxidation of 2-MIB was negligible and biodegradation was inhibited. When the residual chlorine concentrations were controlled to be higher than 0.5 mg/L on the final day (day 14) of the experiments, the concentration reduction of 2-MIB became lower than 13% at both of the tested temperatures. The results demonstrated that sodium hypochlorite can be used as an alternative preservation agent for 2-MIB in water before analysis. PMID:29783625
Two Catalysts for Selective Oxidation of Contaminant Gases
NASA Technical Reports Server (NTRS)
Wright, John D.
2011-01-01
Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to nitrogen at temperatures up to 400 C, without producing nitrogen oxides. This catalyst converts ammonia completely to nitrogen, even when the concentration of ammonia is very low. No other catalyst is known to oxidize ammonia selectively at such a high temperature and low concentration. Both the metal oxide and the support contribute to the activity and selectivity of this catalyst.
Bioaugmentation for Groundwater Remediation
2010-02-01
in biofouling control. Citric acid is optimal as it serves as an acid and a metal chelating agent • Daily application of chlorine dioxide or other...26 6.6.4.1 Chlorinated Ethenes and Ethene ............................................. 26 6.6.4.2 Volatile Fatty Acids ...47 8.3.2 Passive Bioaugmentation and Passive Biostimulation Comparison ......... 48 8.3.2.1 Site Description
DEMONSTRATION OF A LIQUID CARBON DIOXIDE PROCESS FOR CLEANING METAL PARTS
The report gives results of a demonstration of liquid carbon dioxide (LCO2) as an alternative to chlorinated solvents for cleaning metal parts. It describes the LCO2 process, the parts tested, the contaminants removed, and results from preliminary laboratory testing and on-site d...
NASA Astrophysics Data System (ADS)
Beggs, Katherine M. H.; Summers, R. Scott; McKnight, Diane M.
2009-12-01
Relationships between chlorine demand and disinfection by-product (DBP) formation during chlorination and fluorescence of dissolved organic matter (DOM) were developed. Fluorescence excitation and emission (EEM) spectroscopy was employed, and parameters including fluorescence index, redox index, and overall fluorescence intensity (OFI) were correlated to chlorine demand and DBP formation. The EEMs were also analyzed using a well established global parallel factor analysis (PARAFAC) model which resolves the fluorescence signal into 13 components, including quinone-like and protein-like components. Over an 8-day chlorination period the OFI and sum of the 13 PARAFAC loadings decreased by more than 70%. The remaining identified quinone-like compounds within the DOM were shifted to a more oxidized state. Quinone fluorescence was strongly correlated to both reduced fluorescence intensity and to chlorine demand which indicates that fluorescence may be used to track the chlorine oxidation of DOM. Quinone fluorescence was also correlated strongly with both classes of regulated DBPs: total trihalomethanes and haloacetic acids. Quinone-like components were found to be strongly correlated to overall, short-term, and long-term specific DBP formation. The results of this study show that fluorescence is a useful tool in tracking both DOM oxidation and DBP formation during chlorination.
Bang, Jihyun; Hong, Ayoung; Kim, Hoikyung; Beuchat, Larry R; Rhee, Min Suk; Kim, Younghoon; Ryu, Jee-Hoon
2014-11-17
We investigated the efficacy of sequential treatments of aqueous chlorine and chlorine dioxide and drying in killing Escherichia coli O157:H7 in biofilms formed on stainless steel, glass, plastic, and wooden surfaces. Cells attached to and formed a biofilm on wooden surfaces at significantly (P ≤ 0.05) higher levels compared with other surface types. The lethal activities of sodium hypochlorite (NaOCl) and aqueous chlorine dioxide (ClO₂) against E. coli O157:H7 in a biofilm on various food-contact surfaces were compared. Chlorine dioxide generally showed greater lethal activity than NaOCl against E. coli O157:H7 in a biofilm on the same type of surface. The resistance of E. coli O157:H7 to both sanitizers increased in the order of wood>plastic>glass>stainless steel. The synergistic lethal effects of sequential ClO₂ and drying treatments on E. coli O157:H7 in a biofilm on wooden surfaces were evaluated. When wooden surfaces harboring E. coli O157:H7 biofilm were treated with ClO₂ (200 μg/ml, 10 min), rinsed with water, and subsequently dried at 43% relative humidity and 22 °C, the number of E. coli O157:H7 on the surface decreased by an additional 6.4 CFU/coupon within 6 h of drying. However, when the wooden surface was treated with water or NaOCl and dried under the same conditions, the pathogen decreased by only 0.4 or 1.0 log CFU/coupon, respectively, after 12 h of drying. This indicates that ClO₂ treatment of food-contact surfaces results in residual lethality to E. coli O157:H7 during the drying process. These observations will be useful when selecting an appropriate type of food-contact surfaces, determining a proper sanitizer for decontamination, and designing an effective sanitization program to eliminate E. coli O157:H7 on food-contact surfaces in food processing, distribution, and preparation environments. Copyright © 2014 Elsevier B.V. All rights reserved.
Ye, Bei; Li, Yue; Chen, Zhuo; Wu, Qian-Yuan; Wang, Wen-Long; Wang, Ting; Hu, Hong-Ying
2017-11-01
Polyvinyl alcohol (PVA) is widely used in industry but is difficult to degrade. In this study, the synergistic effect of UV irradiation and chlorination on degradation of PVA was investigated. UV irradiation or chlorination alone did not degrade PVA. By contrast, UV/chlorine oxidation showed good efficiency for PVA degradation via generation of active free radicals, such as OH and Cl. The relative importance of these two free radicals in the oxidation process was evaluated, and it was shown that OH contributed more to PVA degradation than Cl did. The degradation of PVA followed pseudo first order kinetics. The rate constant k increased linearly from 0 min -1 to 0.3 min -1 with increasing chlorine dosage in range of 0 mg/L to 20 mg/L. However, when the chlorine dosage was increased above 20 mg/L, scavenging effect of free radicals occurred, and the degradation efficiency of PVA did not increase much more. Acidic media increased the degradation efficiency of PVA by UV/chlorine oxidation more than basic or neutral media because of the higher ratio of [HOCl]/[OCl - ], higher free radical quantum yields, and the lower free radical quenching effect under acidic conditions. Results of Fourier Transform Infrared Spectroscopy showed that carbonyl groups in degradation products were formed during UV/chlorine oxidation, and a possible degradation pathway via alcohol to carbonyl was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rodríguez, Eva; Sordo, Ana; Metcalf, James S; Acero, Juan L
2007-05-01
Cyanobacteria produce toxins that may contaminate drinking water sources. Among others, the presence of the alkaloid toxins cylindrospermopsin (CYN) and anatoxin-a (ANTX) constitutes a considerable threat to human health due to the acute and chronic toxicity of these compounds. In the present study, not previously reported second-order rate constants for the reactions of CYN and ANTX with chlorine and monochloramine and of CYN with potassium permanganate were determined and the influence of pH and temperature was established for the most reactive cases. It was found that the reactivity of CYN with chlorine presents a maximum at pH 7 (rate constant of 1265 M(-1)s(-1)). However, the oxidation of CYN with chloramine and permanganate are rather slow processes, with rate constants <1 M(-1)s(-1). The first chlorination product of CYN was found to be 5-chloro-CYN (5-Cl-CYN), which reacts with chlorine 10-20 times slower than the parent compound. The reactivity of ANTX with chlorine and chloramines is also very low (k<1M(-1)s(-1)). The elimination of CYN and ANTX in surface water was also investigated. A chlorine dose of 1.5 mg l(-1) was enough to oxidize CYN almost completely. However, 3 mg l(-1) of chlorine was able to remove only 8% of ANTX, leading to a total formation of trihalomethanes (TTHM) at a concentration of 150 microg l(-1). Therefore, chlorination is a feasible option for CYN degradation during oxidation and disinfection processes but not for ANTX removal. The permanganate dose required for CYN oxidation is very high and not applicable in waterworks.
Toxicity evaluation of surface water treated with different disinfectants in HepG2 cells.
Marabini, Laura; Frigerio, Silvia; Chiesara, Enzo; Radice, Sonia
2006-01-01
It is well known that water disinfection through chlorination causes the formation of a mixture of disinfection by-products (DBPs), many of which are genotoxic and carcinogenic. To demonstrate the formation of such compounds, a pilot water plant supplied with water from Lake Trasimeno was set up at the waterworks of Castiglione del Lago (PG, Italy). The disinfectants, continuously added to pre-filtered lake water flowing into three different basins, were sodium hypochlorite, chlorine dioxide and peracetic acid, an alternative disinfectant used until now for disinfecting waste waters, but not yet studied for a possible use in drinking water treatment. The aim of this study was to evaluate the formation during the disinfection processes of some toxic compounds that could explain the genotoxic effects of drinking waters. Differently treated waters were concentrated by solid-phase adsorption on silica C(18) columns and toxicity was assessed in a line of human hepatoma cells (HepG2), a metabolically competent cellular line very useful for human risk evaluation. The seasonal variability of the physical-chemical water characteristics (AOX, UV 254 nm, potential formation of THM, pH and temperature) made indispensable experimentation with water samples taken during the various seasons. Autumn waters cause greater toxicity compared to those of other seasons, in particular dilution of the concentrate at 0.5l equivalent of disinfected waters with chlorine dioxide and peracetic acid causes a 55% reduction in cellular vitality while the cellular vitality is over 80% with the all other water concentrates. Moreover it is very interesting underline that non-cytotoxic quantities of the autumnal water concentrates cause, after 2h treatment, a decrease in GSH and a statistically significant increase in oxygen radicals, while after prolonged treatment (24h) cause a GSH increase, without variations in the oxygen radical content. This phenomenon could be interpreted as the cellular adaptation response to an initial oxidative stress.
Ozawa, T; Miura, Y; Ueda, J
1996-01-01
The reactivities of the chlorine dioxide (ClO2), which is a stable free radical towards some water-soluble spin-traps were investigated in aqueous solutions by an electron spin resonance (ESR) spectroscopy. The ClO2 radical was generated from the redox reaction of Ti3+ with potassium chlorate (KClO3) in aqueous solutions. When one of the spin-traps, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), was included in the Ti3+-KClO3 reaction system, ESR spectrum due to the ClO2 radical completely disappeared and a new ESR spectrum [aN(1) = 0.72 mT, aH(2) = 0.41 mT], which is different from that of DMPO-ClO2 adduct, was observed. The ESR parameters of this new ESR signal was identical to those of 5,5-dimethylpyrrolidone-(2)-oxyl-(1) (DMPOX), suggesting the radical species giving the new ESR spectrum is assignable to DMPOX. The similar ESR spectrum consisting of a triplet [aN(1) = 0.69 mT] was observed when the derivative of DMPO, 3,3,5,5-tetramethyl-1-pyrroline N-oxide (M4PO) was included in the Ti3+-KClO3 reaction system. This radical species is attributed to the oxidation product of M4PO, 3,3,5,5-tetramethylpyrrolidone-(2)-oxyl-(1) (M4POX). When another nitrone spin-trap, alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN) was used as a spin-trap, the ESR signal intensity due to the ClO2 radical decreased and a new ESR signal consisting of a triplet [aN(1) = 0.76 mT] was observed. The similar ESR spectrum was observed when N-t-butyl-alpha- nitrone (PBN) was used as a spin-trap. This ESR parameter [a(N)(1) = 0.85 mT] was identical to the oxidation product of PBN, PBNX. Thus, the new ESR signal observed from POBN may be assigned to the oxidation product of POBN, POBNX. These results suggest that the ClO2, radical does not form the stable spin adducts with nitrone spin-traps, but oxidizes these spin-traps to give the corresponding nitroxyl radicals. On the other hand, nitroso spin-traps, 5,5-dibromo-4-nitrosobenzenesulfonate (DBNBS), and 2-methyl-2-nitrosopropane (MNP) did not trap the ClO2 radical. This result indicates that an unpaired electron of the ClO2 radical is localized on oxygen atom, because nitroso spin-traps cannot form the stable spin adduct with oxygen-centered radical.
Conditions affecting the formation of chlorinated carbon compounds during carbochlorination
NASA Astrophysics Data System (ADS)
Landsberg, A.; Wilson, R. D.; Burns, W.
1988-06-01
The Bureau of Mines, United States Department of the Interior, has conducted an extensive study of the relationship between various metal oxide carbochlorination reactions and carbon compound byproducts. Experiments in which oxides of titanium, zirconium, and aluminum with graphite, charcoal, metallurgical coke, and pctroleum coke were chlorinated at 600° to 1000 °C produced 136 identified and quantified carbon byproduct compounds. The 20 most abundant of these compounds were correlated with reactants and reaction conditions. Experimental results support a proposed carbochlorination reaction with an initial chlorine-carbon step followed by a reaction between the resulting chlorine-carbon products and the metal oxide.
Keskinen, Lindsey A; Burke, Angela; Annous, Bassam A
2009-06-30
This study compared the efficacy of chlorine (20-200 ppm), acidic electrolyzed water (50 ppm chlorine, pH 2.6), acidified sodium chlorite (20-200 ppm chlorite ion concentration, Sanova), and aqueous chlorine dioxide (20-200 ppm chlorite ion concentration, TriNova) washes in reducing populations of Escherichia coli O157:H7 on artificially inoculated lettuce. Fresh-cut leaves of Romaine or Iceberg lettuce were inoculated by immersion in water containing E. coli O157:H7 (8 log CFU/ml) for 5 min and dried in a salad spinner. Leaves (25 g) were then washed for 2 min, immediately or following 24 h of storage at 4 degrees C. The washing treatments containing chlorite ion concentrations of 100 and 200 ppm were the most effective against E. coli O157:H7 populations on Iceberg lettuce, with log reductions as high as 1.25 log CFU/g and 1.05 log CFU/g for TriNova and Sanova wash treatments, respectively. All other wash treatments resulted in population reductions of less than 1 log CFU/g. Chlorine (200 ppm), TriNova, Sanova, and acidic electrolyzed water were all equally effective against E. coli O157:H7 on Romaine, with log reductions of approximately 1 log CFU/g. The 20 ppm chlorine wash was as effective as the deionized water wash in reducing populations of E. coli O157:H7 on Romaine and Iceberg lettuce. Scanning electron microscopy indicated that E. coli O157:H7 that was incorporated into biofilms or located in damage lettuce tissue remained on the lettuce leaf, while individual cells on undamaged leaf surfaces were more likely to be washed away.
Ofori, Isaac; Maddila, Suresh; Lin, Johnson; Jonnalagadda, Sreekantha B
2017-06-07
This study investigated the kinetics and mechanism of chlorine dioxide (ClO 2 ) inactivation of a Gram-negative bacteria Escherichia coli (ATCC 35218) in oxidant demand free (ODF) water in detail as a function of disinfectant concentration (0.5-5.0 mg/L), water pH (6.5-8.5), temperature variations (4-37°C) and bacterial density (10 5 -10 7 cfu/mL). The effects of ClO 2 on bacterial cell morphology, outer membrane permeability, cytoplasmic membrane disruption and intracellular enzymatic activity were also studied to elucidate the mechanism of action on the cells. Increasing temperature and disinfectant concentration were proportional to the rate of cell killing, but efficacy was found to be significantly subdued at 0.5 mg/L and less dependent on the bacterial density. The bactericidal efficiency was higher at alkaline pH of 8 or above as compared to neutral and slightly acidic pH of 7 and 6.5 respectively. The disinfection kinetic curves followed a biphasic pattern of rapid inactivation within the initial 2 min which were followed by a tailing even in the presence of residual biocide. The curves were adequately described by the C avg Hom model. Transmission Electron Microscopy images of the bacteria cells exposed to lethal concentrations of ClO 2 indicated very little observable morphological damage to the outer membranes of the cells. ClO 2 however was found to increase the permeability of the outer and cytoplasmic membranes leading to the leakage of membrane components such as 260 nm absorbing materials and inhibiting the activity of the intracellular enzyme β-D-galactosidase. It is suggested that the disruption of the cytoplasmic membrane and subsequent efflux of intracellular components result in the inactivation of the Gram-negative bacteria.
Stehouwer, Peter Paul; Buma, Anita; Peperzak, Louis
2015-01-01
The spread of aquatic invasive species through ballast water is a major ecological and economical threat. Because of this, the International Maritime Organization (IMO) set limits to the concentrations of organisms allowed in ballast water. To meet these limits, ballast water treatment systems (BWTSs) were developed. The main techniques used for ballast water treatment are ultraviolet (UV) radiation and electrochlorination (EC). In this study, phytoplankton regrowth after treatment was followed for six BWTSs. Natural plankton communities were treated and incubated for 20 days. Growth, photosystem II efficiency and species composition were followed. The three UV systems all showed similar patterns of decrease in phytoplankton concentrations followed by regrowth. The two EC and the chlorine dioxide systems showed comparable results. However, UV- and chlorine-based treatment systems showed significantly different responses. Overall, all BWTSs reduced phytoplankton concentrations to below the IMO limits, which represents a reduced risk of aquatic invasions through ballast water.
Use of cyanopigment determination as an indicator of cyanotoxins in drinking water.
Schmidt, Wido; Petzoldt, Heike; Bornmann, Katrin; Imhof, Lutz; Moldaenke, Christian
2009-01-01
The indicator function of the fluorescence signals of the cyanopigments phycocyanin and phycoerythrin as early warning parameters against the microcystins in drinking water was investigated by lab- and pilot-scale studies. The early warning function of the fluorescence signals was examined with regard to the signals' real-time character, their sensitivity and the behaviour of the cyanopigments in different treatment stages in comparison to microcystins. Fluorescence measurements confirmed the real-time character, since they can be carried out on-site without the pre-concentration of pigments. The limit of detection of phycoerythrin is determined at 0.7 microg/L and of phycocyanin at 5.3 microg/L respectively. If the pigment/microcystin ratio is known and calculated to be higher than 1, very low microcystin concentrations can be estimated by the fluorescence signals. The compared behaviour of both pigments and selected microcystins (MC-LR and MC-RR) during water treatment shows that pigments have an early warning function against microcystins in conventional treatment stages using pre-oxidation with permanganate, powdered-activated carbon and chlorination. In contrast, cyanopigments do not have an early warning function if chlorine dioxide is used as a pre-oxidant or final disinfection agent. In order to use pigment control measurements in drinking water treatment the initial pigment/toxin ratio of the raw water must be known.
Devarasanahalli, Swapna V; Aswathanarayana, Ranjini M; Rashmi, K; Gowda, Yashwanth; Nadig, Roopa R
2017-01-01
Introduction Chlorine dioxide (ClO2) has been recently investigated as a possible root canal irrigant due to its broad spectrum of antimicrobial action, tissue dissolution and smear layer removal properties. Literature is scarce on the effect of chlorine dioxide irrigation on the resin sealer dentin bond strength. Aim To compare 5% chlorine dioxide (ClO2) with or without Ethylene Diamine Tetra Acetic acid (EDTA) with 3% Sodium hypochlorite (NaOCl) and EDTA combination as endodontic irrigants on the adhesion of AH Plus sealer to radicular dentin using micro- Push out Bond Strength (µPBS) test. Materials and Methods Forty freshly extracted central incisors were decoronated and randomly divided into four groups based on the different irrigation regimes followed during irrigation: Group I - 3% NaOCl + 17% EDTA, Group II - 5% ClO2 + 17% EDTA, Group III - 5% ClO2 and Group IV – Saline, and canal enlarged till Protaper F3. All the samples were obturated with F3 gutta-percha cones using AH Plus sealer and sectioned perpendicular to long axis to obtain 1mm thick slices from the middle and coronal portions for µPBS measurement in universal testing machine followed by assessment of failure pattern under stereomicroscope. Data was analysed using One-way analysis of variance (ANOVA), Bonferroni and t-test. Results Bond strength values were in the following order: Group I>Group II>Group III>Group IV, with no statistically significant difference amongst experimental groups on intergroup comparison, except with saline. The µPBS values were more in coronal third than middle third in all specimens, with no statistical significant difference. Mode of failure showed mixed patterns in all experimental groups except saline. Conclusion In the present study, the bond strength values of ClO2 were comparable with conventional NaOCl and EDTA combination and hence, ClO2 can be considered as an effective alternative endodontic irrigant. PMID:28658907
Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products.
Waldemer, Rachel H; Tratnyek, Paul G; Johnson, Richard L; Nurmi, James T
2007-02-01
In situ chemical oxidation (ISCO) and in situ thermal remediation (ISTR) are applicable to treatment of groundwater contaminated with chlorinated ethenes. ISCO with persulfate (S2O8(2-)) requires activation, and this can be achieved with the heat from ISTR, so there may be advantages to combining these technologies. To explore this possibility, we determined the kinetics and products of chlorinated ethene oxidation with heat-activated persulfate and compared them to the temperature dependence of other degradation pathways. The kinetics of chlorinated ethene disappearance were pseudo-first-order for 1-2 half-lives, and the resulting rate constants-measured from 30 to 70 degrees C--fit the Arrhenius equation, yielding apparent activation energies of 101 +/- 4 kJ mol(-1) for tetrachloroethene (PCE), 108 +/- 3 kJ mol(-1) for trichloroethene (TCE), 144 +/- 5 kJ mol(-1) for cis-1,2-dichloroethene (cis-DCE), and 141 +/- 2 kJ mol(-1) for trans-1,2-dichloroethene (trans-DCE). Chlorinated byproducts were observed, but most of the parent material was completely dechlorinated. Arrhenius parameters for hydrolysis and oxidation by persulfate or permanganate were used to calculate rates of chlorinated ethene degradation by these processes over the range of temperatures relevant to ISTR and the range of oxidant concentrations and pH relevant to ISCO.
Measurement of ClO and CO2 for ACCENT
NASA Technical Reports Server (NTRS)
Toohey, Darin
2000-01-01
Observations have shown that ozone in largely removed in rocket plumes within an hour of launch [M.N. Ross, et al., Nature 390, 62-64, 1997]. Large abundances of chlorine oxide (ClO) were first detected in the fresh plume of a Delta rocket in May of 1998 from the NASA WB-57 during the Air Force RISO campaign by the CORE instrument developed at UC Irvine. Similar abundances were detected a month later in the plume of an ATLAS II rocket. Although the maximum ClO observed in these plumes was twenty-five times larger than the highest values ever observed in the perturbed polar vortices, in a new study, [M.N. Ross, et al., Geophys. Res. Lett., 2000, in press] could not account for observed ozone losses based on known chlorine photochemistry. New measurements were obtained in plumes of Delta, Atlas, and Athena rockets in 1999 during ACCENT with the CORE instrument augmented with a modified LiCor non-dispersed infrared detector for fast-response measurements of carbon-dioxide (CO2). The absolute abundance of this specie constrains the rocket emission stoichiometry, and its relative abundance serves as a tracer of dilution. The combination of ClO and CO2 will provide important new insights into the temporal and spatial evolution of reactive chlorine partitioning and its dependence on rocket motor type.
Mixing of gaseous reactants in chemical generation of atomic iodine for COIL: two-dimensional study
NASA Astrophysics Data System (ADS)
Jirasek, Vit; Spalek, Otomar; Kodymova, Jarmila; Censky, Miroslav
2003-11-01
Two-dimensional CFD model was applied for the study of mixing and reaction between gaseous chlorine dioxide and nitrogen monoxide diluted with nitrogen during atomic iodine generation. The influence of molecular diffusion on the production of atomic chlorine as a precursor of atomic iodine was predominantly studied. The results were compared with one-dimensional modeling of the system.
Mustapha, Pascale; Epalle, Thibaut; Allegra, Séverine; Girardot, Françoise; Garraud, Olivier; Riffard, Serge
2015-04-01
The viability of three Legionella pneumophila strains was monitored after chlorine dioxide (ClO2) treatment using a flow cytometric assay. Suspensions of L. pneumophila cells were submitted to increasing concentrations of ClO2. Culturable cells were still detected when using 4 mg/L, but could no longer be detected after exposure to 6 mg/L of ClO2, although viable but not culturable (VBNC) cells were found after exposure to 4-5 mg/L of ClO2. When testing whether these VBNC were infective, two of the strains were resuscitated after co-culture with Acanthamoeba polyphaga, but neither of them could infect macrophage-like cells. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
DEVELOPMENT OF TRANSITION METAL OXIDE-ZEOLITE CATALYSTS TO CONTROL CHLORINATED VOC AIR EMISSIONS
The paper discusses the development of transition metal oxide (TMO)-zeolite oxidation catalysts to control chlorinated volatile organic compound (CVOC) air emissions. esearch has been initiated to enhance the utility of these catalysts by the development of a sorption-catalyst sy...
Oxidation-chlorination of binary Ni-Cr alloys in flowing Ar-O2-Cl2 gas mixtures at 1200 K
NASA Technical Reports Server (NTRS)
Mcnallan, M. J.; Lee, Y. Y.; Chang, Y. W.; Jacobson, N. S.; Doychak, J.
1991-01-01
Nickel-chromium alloys are resistant to oxidation because of the selective oxidation of chromium to form a protective Cr2O3 scale. In chlorine-containing environments, volatile corrosion products can also be formed. The mixed oxidation-chlorination of Ni-4.5Cr, Ni-13.8Cr, and Ni-26.5Cr (by weight) alloys in Ar-O2-Cl2 gas mixtures is investigated using thermogravimetric analysis and atmospheric-pressure-sampling mass spectrometry, followed by examination of the corrosion products using scanning electron microscopy and X-ray diffraction analysis. The overall kinetics of the corrosion are affected by the relative amounts of oxides and chlorides formed and the composition of the oxide corrosion products.
Nitrous Oxide: A Greenhouse Gas That is Also an Ozone Layer Depleting Gas
NASA Astrophysics Data System (ADS)
Reed, S.; Uriarte, M.; Wood, T. E.; Cavaleri, M. A.; Lugo, A. E.
2014-12-01
Nitrous oxide, N2O, is the major source of nitrogen oxides in the stratosphere, where these oxides playa critical roles in ozone layer depletion by itself and moderating ozone layer depletion by chlorinated chemicals. Thus N2O plays a complex role in the stratosphere. Nitrous oxide is also a greenhouse gas and it contributes to the radiative forcing of climate. Indeed, it is considered the third most important greenhouse gas next to carbon dioxide and methane. This dual role of nitrous oxide makes it an interesting gas for the atmosphere- it bridges the issue of ozone layer depletion and climate change. Nitrous oxide has both natural and anthropogenic sources. Therefore, one needs to consider this important distinction between natural and anthropogenic sources as well as its role in two related but separate environmental issues. Further, the sources of nitrous oxide are varied and diffuse, which makes it difficult to quantify different sources. However, it is clear that a majority of anthropogenic nitrous oxide comes from food production (including agricultural and animal growth practices), an activity that is at the heart of human existence. Thus, limiting N2O emissions is not a simple task! I will briefly summarize our understanding of these roles of nitrous oxide in the earth's atmosphere and touch on the possible ways to limit N2O emissions.
Nitrous Oxide: A Greenhouse Gas That is Also an Ozone Layer Depleting Gas
NASA Astrophysics Data System (ADS)
Ravishankara, A. R.
2015-12-01
Nitrous oxide, N2O, is the major source of nitrogen oxides in the stratosphere, where these oxides playa critical roles in ozone layer depletion by itself and moderating ozone layer depletion by chlorinated chemicals. Thus N2O plays a complex role in the stratosphere. Nitrous oxide is also a greenhouse gas and it contributes to the radiative forcing of climate. Indeed, it is considered the third most important greenhouse gas next to carbon dioxide and methane. This dual role of nitrous oxide makes it an interesting gas for the atmosphere- it bridges the issue of ozone layer depletion and climate change. Nitrous oxide has both natural and anthropogenic sources. Therefore, one needs to consider this important distinction between natural and anthropogenic sources as well as its role in two related but separate environmental issues. Further, the sources of nitrous oxide are varied and diffuse, which makes it difficult to quantify different sources. However, it is clear that a majority of anthropogenic nitrous oxide comes from food production (including agricultural and animal growth practices), an activity that is at the heart of human existence. Thus, limiting N2O emissions is not a simple task! I will briefly summarize our understanding of these roles of nitrous oxide in the earth's atmosphere and touch on the possible ways to limit N2O emissions.
Liu, Chao; von Gunten, Urs; Croué, Jean-Philippe
2013-09-15
Bromate formation from the reaction between chlorine and bromide in homogeneous solution is a slow process. The present study investigated metal oxides enhanced bromate formation during chlorination of bromide-containing waters. Selected metal oxides enhanced the decay of hypobromous acid (HOBr), a requisite intermediate during the oxidation of bromide to bromate, via (i) disproportionation to bromate in the presence of nickel oxide (NiO) and cupric oxide (CuO), (ii) oxidation of a metal to a higher valence state in the presence of cuprous oxide (Cu2O) and (iii) oxygen formation by NiO and CuO. Goethite (α-FeOOH) did not enhance either of these pathways. Non-charged species of metal oxides seem to be responsible for the catalytic disproportionation which shows its highest rate in the pH range near the pKa of HOBr. Due to the ability to catalyze HOBr disproportionation, bromate was formed during chlorination of bromide-containing waters in the presence of CuO and NiO, whereas no bromate was detected in the presence of Cu2O and α-FeOOH for analogous conditions. The inhibition ability of coexisting anions on bromate formation at pH 8.6 follows the sequence of phosphate > sulfate > bicarbonate/carbonate. A black deposit in a water pipe harvested from a drinking water distribution system exerted significant residual oxidant decay and bromate formation during chlorination of bromide-containing waters. Energy dispersive spectroscopy (EDS) analyses showed that the black deposit contained copper (14%, atomic percentage) and nickel (1.8%, atomic percentage). Cupric oxide was further confirmed by X-ray diffraction (XRD). These results indicate that bromate formation may be of concern during chlorination of bromide-containing waters in distribution systems containing CuO and/or NiO. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Eun, H. C.; Kim, T. J.; Jang, J. H.; Kim, G. Y.; Park, S. B.; Yoon, D. S.; Kim, S. H.; Paek, S. W.; Lee, S. J.
2018-04-01
In this study, the chlorination of uranium oxide (UO2) using ammonium chloride and zirconium as chemical agents was conducted to recover the uranium in the anode basket residues from the pyrochemical process of used nuclear fuel. The chlorination of UO2 was predicted using thermodynamic equilibrium calculations. The experimental conditions for the chlorination were determined using a chlorination test with cerium oxide (CeO2). In the chlorination test, it was confirmed that UO2 was chlorinated into UCl3 at 320 °C, some UO2 remained without changes in the chemical form, and ZrO2, Zr2O, and ZrCl2 were generated as byproducts.
Perform Tests and Document Results and Analysis of Oxide Layer Effects and Comparisons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, E. D.; DelCul, G. D.; Spencer, B. B.
2014-08-30
During the initial feasibility test using actual used nuclear fuel (UNF) cladding in FY 2012, an incubation period of 30–45 minutes was observed in the initial dry chlorination. The cladding hull used in the test had been previously oxidized in a dry air oxidation pretreatment prior to removal of the fuel. The cause of this incubation period was attributed to the resistance to chlorination of an oxide layer imparted by the dry oxidation pretreatment on the cladding. Subsequently in 2013, researchers at the Korea Atomic Energy Institute (KAERI) reported on their chlorination study [R1] on ~9-gram samples of unirradiated ZirloTMmore » cladding tubes that had been previously oxidized in air at 500oC for various time periods to impart oxide layers of varying thickness. In early 2014, discussions with Indefinite Delivery, Indefinite Quantity (IDIQ) contracted technical consultants from Westinghouse described their previous development (and patents) [R2] on methods of chemical washing to remove some or all of the hydrous oxide layer imparted on UNF cladding during irradiation in light water reactors (LWRs) . Thus, the Oak Ridge National Laboratory (ORNL) study, described herein, was planned to extend the KAERI study on the effects of anhydrous oxide layers, but on larger ~100-gram samples of unirradiated zirconium alloy cladding tubes, and to investigate the effects of various methods of chemical pretreatment prior to chlorination with 100% chlorine on the average reaction rates and Cl2 usage efficiencies.« less
Hu, Chengzhi; Liu, Huijuan; Chen, Guixia; Jefferson, William A; Qu, Jiuhui
2012-06-19
An electrochemically prepared water treatment reagent containing a high concentration of Al(13) polymer and active chlorine (PACC) showed promising potential for the removal of As(III) due to the combined function of oxidation and coagulation. The results indicated that PACC was effective for As(III) removal through oxidation by the active chlorine and subsequent removal of As(V) by coagulation with the Al(13) polymer. The As(III) was oxidized to As(V) by active chlorine in PACC, with a stoichiometric rate of 0.99 mg Cl(2)/mg As(III). The Al(13) polymer was the most active Al species responsible for As(V) removal in PACC. To meet As drinking water standards the stoichiometric weight ratio of Cl(2)/Al within PACC was 0.09 for the treatment of As(III). Considering the process of As(III) oxidation and As(V) coagulation together, the optimal pH conditions for the removal of As by PACC was within the neutral range, which facilitated the reaction of As(III) with active chlorine and favored the formation of Al hydroxide flocs. The presence of humic acid reduced the As(III) removal efficiency of PACC due to its negative influence on subsequent As(V) coagulation, and disinfection byproduct yields were very low in the presence of insufficient or stoichiometric active chlorine.
Rau, Gregory Hudson [Castro Valley, CA
2012-05-15
A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.
Zöllig, Hanspeter; Fritzsche, Cristina; Morgenroth, Eberhard; Udert, Kai M
2015-02-01
Electrolysis can be a viable technology for ammonia removal from source-separated urine. Compared to biological nitrogen removal, electrolysis is more robust and is highly amenable to automation, which makes it especially attractive for on-site reactors. In electrolytic wastewater treatment, ammonia is usually removed by indirect oxidation through active chlorine which is produced in-situ at elevated anode potentials. However, the evolution of chlorine can lead to the formation of chlorate, perchlorate, chlorinated organic by-products and chloramines that are toxic. This study focuses on using direct ammonia oxidation on graphite at low anode potentials in order to overcome the formation of toxic by-products. With the aid of cyclic voltammetry, we demonstrated that graphite is active for direct ammonia oxidation without concomitant chlorine formation if the anode potential is between 1.1 and 1.6 V vs. SHE (standard hydrogen electrode). A comparison of potentiostatic bulk electrolysis experiments in synthetic stored urine with and without chloride confirmed that ammonia was removed exclusively by continuous direct oxidation. Direct oxidation required high pH values (pH > 9) because free ammonia was the actual reactant. In real stored urine (pH = 9.0), an ammonia removal rate of 2.9 ± 0.3 gN·m(-2)·d(-1) was achieved and the specific energy demand was 42 Wh·gN(-1) at an anode potential of 1.31 V vs. SHE. The measurements of chlorate and perchlorate as well as selected chlorinated organic by-products confirmed that no chlorinated by-products were formed in real urine. Electrode corrosion through graphite exfoliation was prevented and the surface was not poisoned by intermediate oxidation products. We conclude that direct ammonia oxidation on graphite electrodes is a treatment option for source-separated urine with three major advantages: The formation of chlorinated by-products is prevented, less energy is consumed than in indirect ammonia oxidation and readily available and cheap graphite can be used as the electrode material. Copyright © 2014 Elsevier Ltd. All rights reserved.
De Luca, Giovanna; Sacchetti, Rossella; Zanetti, Franca; Leoni, Erica
2008-01-01
A comparison was made between the efficiency of low doses of peracetic acid (PAA: 1.5 mg/l) and chlorine dioxide (ClO(2): 1.5 and 2.0 mg/l) in the disinfection of secondary effluents of a wastewater treatment plant. Peracetic acid was seen to be more active than chlorine dioxide and less influenced by the organic content of the waste. Both PAA and ClO(2) (2.0 mg/l) lead to a higher reduction in total and faecal coliforms and E. coli than in phages (somatic coliphages and F-specific RNA bacteriophages) and enterococci. Detection of faecal coliforms and E. coli should therefore be accompanied by a search for these more resistant microorganisms when assessing the conformity of wastewater for irrigation use, or for discharge into surface waters. Coliphages are also considered suitable indicators of the presence of enteric viruses. Although the application of low doses of both disinfectants offers advantages in terms of costs and produces not significant quantities of byproducts, it is not sufficient to obtain wastewater suitable for irrigation according to the Italian norms (E. coli < 10/100 ml in 80 % of samples and <100/100 ml in the remaining samples). Around 65 % of the samples, however, presented concentrations of E. coli lower than the limit of 5,000/100 ml established by Italian norms for discharge into surface waters.
Sensitivity of free-living amoeba trophozoites and cysts to water disinfectants.
Dupuy, Mathieu; Berne, Florence; Herbelin, Pascaline; Binet, Marie; Berthelot, Nelsie; Rodier, Marie-Hélène; Soreau, Sylvie; Héchard, Yann
2014-03-01
Free-living amoebae are naturally present in water. These protozoa could be pathogenic and could also shelter pathogenic bacteria. Thus, they are described as a potential hazard for health. Also, free-living amoebae have been described to be resistant to biocides, especially under their cyst resistant form. There are several studies on amoeba treatments but none of them compare sensitivity of trophozoites and cysts from different genus to various water disinfectants. In our study, we tested chlorine, monochloramine and chlorine dioxide on both cysts and trophozoites from three strains, belonging to the three main genera of free-living amoebae. The results show that, comparing cysts to trophozoites inactivation, only the Acanthamoeba cysts were highly more resistant to treatment than trophozoites. Comparison of the disinfectant efficiency led to conclude that chlorine dioxide was the most efficient treatment in our conditions and was particularly efficient against cysts. In conclusion, our results would help to adapt water treatments in order to target free-living amoebae in water networks. Copyright © 2013 Elsevier GmbH. All rights reserved.
Huang, Nan; Wang, Ting; Wang, Wen-Long; Wu, Qian-Yuan; Li, Ang; Hu, Hong-Ying
2017-05-01
Benzalkonium chlorides (BACs), as typical cationic surfactants and biocides widely applied in household and industrial products, have been frequently detected as micropollutants in many aquatic environments. In this study, the combination of UV irradiation and chlorine (UV/chlorine), a newly interested advanced oxidation process, was used to degrade dodecylbenzyldimethylammonium chloride (DDBAC). UV/chlorine showed synergistic effects on DDBAC degradation comparing to UV irradiation or chlorination alone. Radical quenching experiments indicated that degradation of DDBAC by UV/chlorine involved both UV photolysis and radical species oxidation, which accounted for 48.4% and 51.6%, respectively. Chlorine dosage and pH are essential parameters affecting the treatment efficiency of UV/chlorine. The pseudo first order rate constant (k obs, DDBAC ) increased from 0.046 min -1 to 0.123 min -1 in response to chlorine dosage at 0-150 mg/L, and the degradation percentage of DDBAC within 12 min decreased from 81.4% to 56.6% at pH 3.6-9.5. Five main intermediates were identified and semi-quantified using HPLC-MS/MS and a possible degradation pathway was proposed. The degradation mechanisms of DDBAC by UV/chlorine included cleavage of the benzyl-nitrogen bond and hydrogen abstraction of the alkyl chain. Trichloromethane (TCM), chloral hydrate (CH), trichloropropanone (TCP), dichloropropanone (DCP) and dichloroacetonitrile (DCAN) were detected using GC-ECD. The formation of chlorinated products increased rapidly initially, then decreased (TCM, TCP, DCP and DCAN) or remained stable (CH) with extended treatment. The actual formation of TCM peaked at 30 min (50.3 μg/L), while other chlorinated products did not exceed 10 μg/L throughout the process. Based on the luminescent bacterial assay, DDBAC solution underwent almost complete detoxification subjected to UV/chlorine treatment for 120 min, which is more effective than UV irradiation or chlorination alone. Copyright © 2017 Elsevier Ltd. All rights reserved.
Upper-atmosphere Aerosols: Properties and Natural Cycles
NASA Technical Reports Server (NTRS)
Turco, Richard P.
1992-01-01
The middle atmosphere is rich in its variety of particulate matter, which ranges from meteorite debris, to sulfate aerosols, to polar stratospheric ice clouds. Volcanic eruptions strongly perturb the stratospheric sulfate (Junge) layer. High-altitude 'noctilucent' ice clouds condense at the summer mesopause. The properties of these particles, including their composition, sizes, and geographical distribution, are discussed, and their global effects, including chemical, radiative, and climatic roles, are reviewed. Polar stratospheric clouds (PSCs) are composed of water and nitric acid in the form of micron-sized ice crystals. These particles catalyze reactions of chlorine compounds that 'activate' otherwise inert chlorine reservoirs, leading to severe ozone depletions in the southern polar stratosphere during austral spring. PSCs also modify the composition of the polar stratosphere through complex physiocochemical processes, including dehydration and denitrification, and the conversion of reactive nitrogen oxides into nitric acid. If water vapor and nitric acid concentrations are enhanced by high-altitude aircraft activity, the frequency, geographical range, and duration of PSCs might increase accordingly, thus enhancing the destruction of the ozone layer (which would be naturally limited in geographical extent by the same factors that confine the ozone hole to high latitudes in winter). The stratospheric sulfate aerosol layer reflects solar radiation and increases the planetary albedo, thereby cooling the surface and possibly altering the climate. Major volcanic eruptions, which increase the sulfate aerosol burden by a factor of 100 or more, may cause significant global climate anomalies. Sulfate aerosols might also be capable of activating stratospheric chlorine reservoirs on a global scale (unlike PCSs, which represent a localized polar winter phenomenon), although existing evidence suggests relatively minor perturbations in chlorine chemistry. Nevertheless, if atmospheric concentrations of chlorine (associated with anthropogenic use of chlorofluorocarbons) continue to increase by a factor of two or more in future decades, aircraft emissions of sulfur dioxide and water vapor may take on greater significance.
Improvement of indoor air quality in pet shop using gaseous chlorine dioxide.
Lu, Ming-Chun; Huang, Da-Ji; Hsu, Ching-Shan; Liang, Chih-Kuo; Chen, Geng-Min
2018-06-01
Many studies have shown that pet shops have a high concentration of bioaerosols. Thus, effective disinfection protocols are essential to protect the pet shop staff and visitors to the store. The present study examines the effectiveness of gaseous chlorine dioxide (ClO 2 ) fogging in minimizing the residual bacteria and fungi levels in a typical pet shop in Taiwan consisting of a commodity area, a lodging area, and a grooming area. This investigation uses three disinfection modes (DMs) according to different disinfection periods, namely once every hour (1DM), once every 2 h (2DM), and once every 3 h (3DM). The bacteria and fungi concentrations are measured before and after disinfection treatment, and the effectiveness of each disinfection mode is evaluated using standard statistical techniques. To assess the effect of the environmental factors on the disinfection efficiency, measurements are taken of temperature, relative humidity, airflow velocity, the carbon dioxide concentration, the PM 1 , PM 2.5 , PM 7 , PM 10 , and TSP level at each sampling locations. The results reveal that the effectiveness of the three disinfection modes depends on both the environmental parameters and the use of the three areas (e.g., commodity, lodging, or grooming). Hence, the choice of disinfection method should be adjusted accordingly. For all three disinfection modes, a faster air velocity is beneficial in spreading the disinfectant throughout the indoor space and improving the disinfection performance. Overall, the results presented in this study confirm that gaseous chlorine dioxide disinfection improves the air quality in the pet shop interior, and thus beneficial in safeguarding the health of the pet shop staff and visitors.
Anaerobic oxidation of [1,2-14C]Dichloroethene under Mn(IV)-reducing conditions
Bradley, Paul M.; Landmeyer, James E.; Dinicola, Richard S.
1998-01-01
Anaerobic oxidation of [1,2-14C]dichloroethene to14CO2 under Mn(IV)-reducing conditions was demonstrated. The results indicate that oxidative degradation of partially chlorinated solvents like dichloroethene can be significant even under anoxic conditions and demonstrate the potential importance of Mn(IV) reduction for remediation of chlorinated groundwater contaminants.
Pharmaceuticals as emerging contaminants and their removal from water. A review.
Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ferro-García, María Ángeles; Prados-Joya, Gonzalo; Ocampo-Pérez, Raúl
2013-10-01
The main objective of this study was to conduct an exhaustive review of the literature on the presence of pharmaceutical-derived compounds in water and on their removal. The most representative pharmaceutical families found in water were described and related water pollution issues were analyzed. The performances of different water treatment systems in the removal of pharmaceuticals were also summarized. The water treatment technologies were those based on conventional systems (chlorine, chlorine dioxide, wastewater treatment plants), adsorption/bioadsorption on activated carbon (from lotus stalks, olive-waste cake, coal, wood, plastic waste, cork powder waste, peach stones, coconut shell, rice husk), and advanced oxidation processes by means of ozonation (O₃, O₃/H₂O₂, O₃/activated carbon, O₃/biological treatment), photooxidation (UV, UV/H₂O₂, UV/K₂S₂O₈, UV/TiO₂, UV/H₂O₂/TiO₂, UV/TiO₂/activated carbon, photo-Fenton), radiolysis (e-Beam, ⁶⁰Co, ¹³⁷Cs. Additives used: H₂O₂, SO₃²⁻, HCO₃⁻, CH₃₋OH, CO₃²⁻, or NO₃⁻), and electrochemical processes (Electrooxidation without and with active chlorine generation). The effect of these treatments on pharmaceutical compounds and the advantages and disadvantages of different methodologies used were described. The most important parameters of the above water treatment systems (experimental conditions, removal yield, pharmaceutical compound mineralization, TOC removal, toxicity evolution) were indicated. The key publications on pharmaceutical removal from water were summarized. Copyright © 2013 Elsevier Ltd. All rights reserved.
21 CFR 173.300 - Chlorine dioxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... chlorate with hydrogen peroxide in the presence of sulfuric acid. (iii) Treating an aqueous solution of sodium chlorite by electrolysis. (2) The generator effluent contains at least 90 percent (by weight) of...
21 CFR 173.300 - Chlorine dioxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... chlorate with hydrogen peroxide in the presence of sulfuric acid. (iii) Treating an aqueous solution of sodium chlorite by electrolysis. (2) The generator effluent contains at least 90 percent (by weight) of...
Atala, E; Velásquez, G; Vergara, C; Mardones, C; Reyes, J; Tapia, R A; Quina, F; Mendes, M A; Speisky, H; Lissi, E; Ureta-Zañartu, M S; Aspée, A; López-Alarcón, C
2013-05-02
Pyrogallol red (PGR) presents high reactivity toward reactive (radical and nonradical) species (RS). This property of PGR, together with its characteristic spectroscopic absorption in the visible region, has allowed developing methodologies aimed at evaluating the antioxidant capacity of foods, beverages, and human fluids. These methods are based on the evaluation of the consumption of PGR induced by RS and its inhibition by antioxidants. However, at present, there are no reports regarding the degradation mechanism of PGR, limiting the extrapolation to how antioxidants behave in different systems comprising different RS. In the present study, we evaluate the kinetics of PGR consumption promoted by different RS (peroxyl radicals, peroxynitrite, nitrogen dioxide, and hypochlorite) using spectroscopic techniques and detection of product by HPLC mass spectrometry. The same pattern of oxidation and spectroscopic properties of the products is observed, independently of the RS employed. Mass analysis indicates the formation of only one product identified as a quinone derivative, excluding the formation of peroxides or hydroperoxides and/or chlorinated compounds, in agreement with FOX's assays and oxygen consumption experiments. Cyclic voltammetry, carried out at different pH's, shows an irreversible oxidation of PGR, indicating the initial formation of a phenoxy radical and a second charge transfer reaction generating an ortho-quinone derivative. Spectroelectrochemical oxidation of PGR shows oxidation products with identical UV-visible absorption properties to those observed in RS-induced oxidation.
Measurements of reactive halogen species as oxidants of mercury over the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Volkamer, R.; Coburn, S.; Dix, B. K.; Sinreich, R.; Terschure, A. F.; Edgerton, E. S.; Wu, Y.; Nair, U. S.
2011-12-01
The gas-phase reaction of bromine and chlorine radicals with gaseous elemental mercury (GEM) is a source for gaseous oxidized mercury (GOM). It has been established that oxidation by bromine is relevant at high latitudes, and can also occur in mid-latitude regions (Peleg et al. 2007), or in the free troposphere. A subject of ongoing debate concerns the role of free tropospheric bromine vs boundary layer bromine in oxidizing mercury. Here we present measurements of reactive halogen species bromine oxide (BrO) and iodine oxide (IO) along with gaseous oxidized mercury (GOM), gaseous elemental mercury (GEM), and particulate mercury (Hgp) at a coastal location in Gulf Breeze, Fl. The University of Colorado has deployed a research grade Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument to measure BrO, IO, as well as formaldehyde (HCHO), glyoxal (CHOCHO), nitrogen dioxide (NO2) and oxygen dimers (O4). Here we present the compilation of the data collected by this instrument over the time period from May 2009 to January 2011, which include the first measurements of BrO, IO, and CHOCHO over the Gulf of Mexico. We also present several case studies for days where significant amounts of reactive halogens were measured, explore the sources and back trajectories of the air masses carrying these compounds, and relate our observations to mercury data collected at a nearby SEARCH network site.
Wang, Hui-Long; Dong, Jing; Jiang, Wen-Feng
2010-11-15
The chlorine dioxide (ClO(2)) oxidative degradation of 2-sec-butyl-4,6-dinitrophenol (DNBP) in aqueous solution was studied in detail using Al(2)O(3) as a heterogeneous catalyst. The operating parameters such as the ClO(2) concentration, catalyst dosage, initial DNBP concentration, reaction time and pH were evaluated. Compared with the conventional ClO(2) oxidation process without the catalyst, the ClO(2) catalytic oxidation system could significantly enhance the degradation efficiency. Under the optimal condition (DNBP concentration 39 mg L(-1), ClO(2) concentration 0.355 g L(-1), reaction time 60 min, catalyst dosage 10.7 g L(-1) and pH 4.66), degradation efficiency approached 99.1%. The catalyst was used at least 8 cycles without any appreciable loss of activity. The kinetic studies revealed that the ClO(2) catalytic oxidation degradation of DNBP followed pseudo-first-order kinetics with respect to DNBP concentration. The ClO(2) catalytic oxidation process was found to be very effective in the decolorization and COD(Cr) reduction of real wastewater from DNBP manufacturing. Thus, this study showed potential application of ClO(2) catalytic oxidation process in degradation of organic contaminants and industrial effluents. Copyright © 2010 Elsevier B.V. All rights reserved.
Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices.
Acero, Juan L; Benitez, F Javier; Real, Francisco J; Roldan, Gloria
2010-07-01
Apparent rate constants for the reactions of four selected pharmaceutical compounds (metoprolol, naproxen, amoxicillin, and phenacetin) with chlorine in ultra-pure (UP) water were determined as a function of the pH. It was found that amoxicillin (in the whole pH range 3-12), and naproxen (in the low pH range 2-4) presented high reaction rates, while naproxen (in the pH range 5-9), and phenacetin and metoprolol (in the pH range 2.5-12 for phenacetin, and 3-10 for metoprolol) followed intermediate and slow reaction rates. A mechanism is proposed for the chlorination reaction, which allowed the evaluation of the intrinsic rate constants for the elementary reactions of the ionized and un-ionized species of each selected pharmaceutical with chlorine. An excellent agreement is obtained between experimental and calculated rate constants by this mechanism.The elimination of these substances in several waters (a groundwater, a surface water from a public reservoir, and two effluents from municipal wastewater treatment plants) was also investigated at neutral pH. The efficiency of the chlorination process with respect to the pharmaceuticals elimination and the formation THMs was also established. It is generally observed that the increasing presence of organic and inorganic matter in the water matrices demand more oxidant agent (chlorine), and therefore, less chlorine is available for the oxidation of these compounds. Finally, half-life times and oxidant exposures (CT) required for the removal of 99% of the four pharmaceuticals are also evaluated. These parameters are useful for the establishment of safety chlorine doses in oxidation or disinfection stages of pharmaceuticals in treatment plants.
Kong, Xiujuan; Wu, Zihao; Ren, Ziran; Guo, Kaiheng; Hou, Shaodong; Hua, Zhechao; Li, Xuchun; Fang, Jingyun
2018-06-15
Degradation of three lipid regulators, i.e., gemfibrozil, bezafibrate and clofibric acid, by a UV/chlorine treatment was systematically investigated. The chlorine oxide radical (ClO • ) played an important role in the degradation of gemfibrozil and bezafibrate with second-order rate constants of 4.2 (±0.3) × 10 8 M -1 s -1 and 3.6 (±0.1) × 10 7 M -1 s -1 , respectively, whereas UV photolysis and the hydroxyl radical (HO • ) mainly contributed to the degradation of clofibric acid. The first-order rate constants (k') for the degradation of gemfibrozil and bezafibrate increased linearly with increasing chlorine dosage, primarily due to the linear increase in the ClO • concentration. The k' values for gemfibrozil, bezafibrate, and clofibric acid degradation decreased with increasing pH from 5.0 to 8.4; however, the contribution of the reactive chlorine species (RCS) increased. Degradation of gemfibrozil and bezafibrate was enhanced in the presence of Br - , whereas it was inhibited in the presence of natural organic matter (NOM). The presence of ammonia at a chlorine: ammonia molar ratio of 1:1 resulted in decreases in the k' values for gemfibrozil and bezafibrate of 69.7% and 7%, respectively, but led to an increase in that for clofibric acid of 61.8%. Degradation of gemfibrozil by ClO • was initiated by hydroxylation and chlorine substitution on the benzene ring. Then, subsequent hydroxylation, bond cleavage and chlorination reactions led to the formation of more stable products. Three chlorinated intermediates were identified during ClO • oxidation process. Formation of the chlorinated disinfection by-products chloral hydrate and 1,1,1-trichloropropanone was enhanced relative to that of other by-products. The acute toxicity of gemfibrozil to Vibrio fischeri increased significantly when subjected to direct UV photolysis, whereas it decreased when oxidized by ClO • . This study is the first to report the transformation pathway of a micropollutant by ClO • . Copyright © 2018 Elsevier Ltd. All rights reserved.
Chlorine Dioxide Disinfection in the Use of Individual Water Purification Devices
2006-03-01
CTs ranging from 1.7-17.6 mg-min/L necessary for 2-log Giardia muris cyst inactivation (reference 23). The SWTR provides the following CT values...reference 3). A comparison of CTs required for a 2-log inactivation for E. Coli bacteria, Poliovirus 1, and Giardia cysts showed Giardia cysts were 2-5...Cryptosporidium oocysts are the most resistant, being 8-16 times more resistant than Giardia cysts (reference 5). Chlorine dioxide’s general disinfection
Mixed Oxidant Process for Control of Biological Growth in Cooling Towers
2010-02-01
Concentration is < 1% (vs. 12.5% for bulk bleach ) • Will not form chlorine gas • No transport or storage of hazardous chemicals • Uses only salt as...Eliminates purchase, transport, and storage of hazardous biocide compounds such as hypochlorite or chlorine gas • Provides a constant dosage level of...patented MIOX equipment design • Chemical and biocidal properties are more effective than conventional chlorine Bulk Bleach On-Site Hypo Mixed Oxidants E
Effect of chlorine purification on oxidation resistance of some mechanical carbons
NASA Technical Reports Server (NTRS)
Wisander, D. W.; Allen, G. P.
1974-01-01
Oxidation experiments were conducted with some experimental and commercial mechanical carbons at 650 C in dry air flowing at 28 cc/sec (STP). In general, purification of these carbon-graphites with chlorine at 2800 C improved oxidation resistance. Additional improvements in oxidation resistance were obtained from purification followed by an antioxidant (zinc phosphate) treatment. For the commercial materials, purification alone gave greater oxidation resistance than the antioxidant treatment alone. The reverse, however, was the case for the experimental materials.
21 CFR 173.300 - Chlorine dioxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... sodium chlorite by electrolysis. (2) The generator effluent contains at least 90 percent (by weight) of... Health Association, 800 I St. NW., Washington, DC 20001-3750. You may inspect a copy at the Center for...
Inactivation of Bacillus anthracis Spores in Soil Matrices with ...
Report This report documents the results of a laboratory study designed to better understand the effectiveness of chlorine dioxide (ClO2) gas to decontaminate soil materials contaminated with Bacillus anthracis spores.
Potential biodefense model applications for portable chlorine dioxide gas production.
Stubblefield, Jeannie M; Newsome, Anthony L
2015-01-01
Development of decontamination methods and strategies to address potential infectious disease outbreaks and bioterrorism events are pertinent to this nation's biodefense strategies and general biosecurity. Chlorine dioxide (ClO2) gas has a history of use as a decontamination agent in response to an act of bioterrorism. However, the more widespread use of ClO2 gas to meet current and unforeseen decontamination needs has been hampered because the gas is too unstable for shipment and must be prepared at the application site. Newer technology allows for easy, onsite gas generation without the need for dedicated equipment, electricity, water, or personnel with advanced training. In a laboratory model system, 2 unique applications (personal protective equipment [PPE] and animal skin) were investigated in the context of potential development of decontamination protocols. Such protocols could serve to reduce human exposure to bacteria in a decontamination response effort. Chlorine dioxide gas was capable of reducing (2-7 logs of vegetative and spore-forming bacteria), and in some instances eliminating, culturable bacteria from difficult to clean areas on PPE facepieces. The gas was effective in eliminating naturally occurring bacteria on animal skin and also on skin inoculated with Bacillus spores. The culturable bacteria, including Bacillus spores, were eliminated in a time- and dose-dependent manner. Results of these studies suggested portable, easily used ClO2 gas generation systems have excellent potential for protocol development to contribute to biodefense strategies and decontamination responses to infectious disease outbreaks or other biothreat events.
Shao, Baohai; Bergt, Constanze; Fu, Xiaoyun; Green, Pattie; Voss, John C; Oda, Michael N; Oram, John F; Heinecke, Jay W
2005-02-18
High density lipoprotein (HDL) isolated from human atherosclerotic lesions and the blood of patients with established coronary artery disease contains elevated levels of 3-nitrotyrosine and 3-chlorotyrosine. Myeloperoxidase (MPO) is the only known source of 3-chlorotyrosine in humans, indicating that MPO oxidizes HDL in vivo. In the current studies, we used tandem mass spectrometry to identify the major sites of tyrosine oxidation when lipid-free apolipoprotein A-I (apoA-I), the major protein of HDL, was exposed to MPO or peroxynitrite (ONOO(-)). Tyrosine 192 was the predominant site of both nitration and chlorination by MPO and was also the major site of nitration by ONOO(-). Electron paramagnetic spin resonance studies of spin-labeled apoA-I revealed that residue 192 was located in an unusually hydrophilic environment. Moreover, the environment of residue 192 became much more hydrophobic when apoA-I was incorporated into discoidal HDL, and Tyr(192) of HDL-associated apoA-I was a poor substrate for nitration by both myeloperoxidase and ONOO(-), suggesting that solvent accessibility accounted in part for the reactivity of Tyr(192). The ability of lipid-free apoA-I to facilitate ATP-binding cassette transporter A1 cholesterol transport was greatly reduced after chlorination by MPO. Loss of activity occurred in concert with chlorination of Tyr(192). Both ONOO(-) and MPO nitrated Tyr(192) in high yield, but unlike chlorination, nitration minimally affected the ability of apoA-I to promote cholesterol efflux from cells. Our results indicate that Tyr(192) is the predominant site of nitration and chlorination when MPO or ONOO(-) oxidizes lipid-free apoA-I but that only chlorination markedly reduces the cholesterol efflux activity of apoA-I. This impaired biological activity of chlorinated apoA-I suggests that MPO-mediated oxidation of HDL might contribute to the link between inflammation and cardiovascular disease.
Degradation of acrylamide by the UV/chlorine advanced oxidation process.
Gao, Ze-Chen; Lin, Yi-Li; Xu, Bin; Pan, Yang; Xia, Sheng-Ji; Gao, Nai-Yun; Zhang, Tian-Yang; Chen, Ming
2017-11-01
The degradation of acrylamide (AA) during UV/chlorine advanced oxidation process (AOP) was investigated in this study. The degradation of AA was negligible during UV irradiation alone. However, AA could be effectively degraded and mineralized during UV/chlorination due to the generation of hydroxyl radicals (OH). The degradation kinetics of AA during UV/chlorination fitted the pseudo-first order kinetics with the rate constant between AA and OH radicals being determined as 2.11 × 10 9 M -1 s -1 . The degradation rate and mineralization of AA during UV/chlorination were significantly promoted at acidic conditions as well as increasing chlorine dosage. The volatile degradation products of AA during UV/chlorination were identified using gas chromatography-mass spectrometry and the degradation pathways were then proposed accordingly. The formation of disinfection by-products (DBPs) in Milli-Q water and tap water during UV/chlorination of AA was also investigated. The DBPs included chloroform, dichloroacetonitrile, trichloroacetonitrile, 2,2-dichloroacetamide and 2,2,2-trichloroacetamide. Furthermore, the variations of AA degradation during UV/chlorination in different real water samples were evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.
A carbon nanotube based resettable sensor for measuring free chlorine in drinking water
NASA Astrophysics Data System (ADS)
Hsu, Leo H. H.; Hoque, Enamul; Kruse, Peter; Ravi Selvaganapathy, P.
2015-02-01
Free chlorine from dissolved chlorine gas is widely used as a disinfectant for drinking water. The residual chlorine concentration has to be continuously monitored and accurately controlled in a certain range around 0.5-2 mg/l to ensure drinking water safety and quality. However, simple, reliable, and reagent free monitoring devices are currently not available. Here, we present a free chlorine sensor that uses oxidation of a phenyl-capped aniline tetramer (PCAT) to dope single wall carbon nanotubes (SWCNTs) and to change their resistance. The oxidation of PCAT by chlorine switches the PCAT-SWCNT system into a low resistance (p-doped) state which can be detected by probing it with a small voltage. The change in resistance is found to be proportional to the log-scale concentration of the free chlorine in the sample. The p-doping of the PCAT-SWCNT film then can be electrochemically reversed by polarizing it cathodically. This sensor not only shows good sensing response in the whole concentration range of free chlorine in drinking water but is also able to be electrochemically reset back many times without the use of any reagents. This simple sensor is ideally suited for measuring free chlorine in drinking water continuously.
Analysis of Halogen-Mercury Reactions in Flue Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paula Buitrago; Geoffrey Silcox; Constance Senior
2010-01-01
Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using amore » wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.« less
ω-Oxidation of α-Chlorinated Fatty Acids
Brahmbhatt, Viral V.; Albert, Carolyn J.; Anbukumar, Dhanalakshmi S.; Cunningham, Bryce A.; Neumann, William L.; Ford, David A.
2010-01-01
Myeloperoxidase-derived HOCl targets tissue- and lipoprotein-associated plasmalogens to generate α-chlorinated fatty aldehydes, including 2-chlorohexadecanal. Under physiological conditions, 2-chlorohexadecanal is oxidized to 2-chlorohexadecanoic acid (2-ClHA). This study demonstrates the catabolism of 2-ClHA by ω-oxidation and subsequent β-oxidation from the ω-end. Mass spectrometric analyses revealed that 2-ClHA is ω-oxidized in the presence of liver microsomes with initial ω-hydroxylation of 2-ClHA. Subsequent oxidation steps were examined in a human hepatocellular cell line (HepG2). Three different α-chlorinated dicarboxylic acids, 2-chlorohexadecane-(1,16)-dioic acid, 2-chlorotetradecane-(1,14)-dioic acid, and 2-chloroadipic acid (2-ClAdA), were identified. Levels of 2-chlorohexadecane-(1,16)-dioic acid, 2-chlorotetradecane-(1,14)-dioic acid, and 2-ClAdA produced by HepG2 cells were dependent on the concentration of 2-ClHA and the incubation time. Synthetic stable isotope-labeled 2-ClHA was used to demonstrate a precursor-product relationship between 2-ClHA and the α-chlorinated dicarboxylic acids. We also report the identification of endogenous 2-ClAdA in human and rat urine and elevations in stable isotope-labeled urinary 2-ClAdA in rats subjected to intraperitoneal administration of stable isotope-labeled 2-ClHA. Furthermore, urinary 2-ClAdA and plasma 2-ClHA levels are increased in LPS-treated rats. Taken together, these data show that 2-ClHA is ω-oxidized to generate α-chlorinated dicarboxylic acids, which include α-chloroadipic acid that is excreted in the urine. PMID:20956542
Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars
NASA Astrophysics Data System (ADS)
Navarro-González, Rafael; Vargas, Edgar; de la Rosa, José; Raga, Alejandro C.; McKay, Christopher P.
2010-12-01
The most comprehensive search for organics in the Martian soil was performed by the Viking Landers. Martian soil was subjected to a thermal volatilization process to vaporize and break organic molecules, and the resultant gases and volatiles were analyzed by gas chromatography-mass spectrometry. Only water at 0.1-1.0 wt% was detected, with traces of chloromethane at 15 ppb, at Viking landing site 1, and water at 0.05-1.0 wt% and carbon dioxide at 50-700 ppm, with traces of dichloromethane at 0.04-40 ppb, at Viking landing site 2. These chlorohydrocarbons were considered to be terrestrial contaminants, although they had not been detected at those levels in the blank runs. Recently, perchlorate was discovered in the Martian Arctic soil by the Phoenix Lander. Here we show that when Mars-like soils from the Atacama Desert containing 32 ± 6 ppm of organic carbon are mixed with 1 wt% magnesium perchlorate and heated, nearly all the organics present are decomposed to water and carbon dioxide, but a small amount is chlorinated, forming 1.6 ppm of chloromethane and 0.02 ppm of dichloromethane at 500°C. A chemical kinetics model was developed to predict the degree of oxidation and chlorination of organics in the Viking oven. Reinterpretation of the Viking results therefore suggests ≤0.1% perchlorate and 1.5-6.5 ppm organic carbon at landing site 1 and ≤0.1% perchlorate and 0.7-2.6 ppm organic carbon at landing site 2. The detection of organics on Mars is important to assess locations for future experiments to detect life itself.
Chlorine Dioxide Gas Sterilization under Square-Wave Conditions
Jeng, David K.; Woodworth, Archie G.
1990-01-01
Experiments were designed to study chlorine dioxide (CD) gas sterilization under square-wave conditions. By using controlled humidity, gas concentration, and temperature at atmospheric pressure, standard biological indicators (BIs) and spore disks of environmental isolates were exposed to CD gas. The sporicidal activity of CD gas was found to be concentration dependent. Prehumidification enhanced the CD activity. The D values (time required for 90% inactivation) of Bacillus subtilis subsp. niger ATCC 9372 BIs were estimated to be 1.5, 2.5, and 4.2 min when exposed to CD concentrations of 30, 15, and 7 mg/liter, respectively, at 23°C and ambient (20 to 40%) relative humidity (RH). Survivor tailings were observed. Prehumidification of BIs to 70 to 75% RH in an environmental chamber for 30 min resulted in a D value of 1.6 min after exposure to a concentration of 6 to 7 mg of CD per liter at 23°C and eliminated survivor tailing. Prolonging prehumidification at 70 to 75% RH for up to 16 h did not further improve the inactivation rate. Prehumidification by ultrasonic nebulization was found to be more effective than prehumidification in the environmental chamber, improving the D value to 0.55 min at a CD concentration of 6 to 7 mg/liter. Based on the current observations, CD gas is estimated, on a molar concentration basis, to be 1,075 times more potent than ethylene oxide as a sterilant at 30°C. A comparative study showed B. subtilis var. niger BIs were more resistant than other types of BIs and most of the tested bacterial spores of environmental isolates. PMID:16348127
Wang, Pei; He, Yi-Liang; Huang, Ching-Hua
2010-12-01
Fluoroquinolones (FQs) are a group of widely prescribed antibiotics and have been frequently detected in the aquatic environment. The reaction kinetics and transformation of seven FQs (ciprofloxacin (CIP), enrofloxacin (ENR), norfloxacin (NOR), ofloxacin (OFL), lomefloxacin (LOM), pipemidic acid (PIP) and flumequine (FLU)) and three structurally related amines (1-phenylpiperazine (PP), N-phenylmorpholine (PM) and 4-phenylpiperidine (PD)) toward chlorine dioxide (ClO(2)) were investigated to elucidate the behavior of FQs during ClO(2) disinfection processes. The reaction kinetics are highly pH-dependent, can be well described by a second-order kinetic model incorporating speciation of FQs, and follow the trend of OFL > ENR > CIP ∼ NOR ∼ LOM > > PIP in reactivity. Comparison among FQs and related amines and product characterization indicate that FQs' piperazine ring is the primary reactive center toward ClO(2). ClO(2) likely attacks FQ's piperazinyl N4 atom followed by concerted fragmentation involving piperazinyl N1 atom, leading to dealkylation, hydroxylation and intramolecular ring closure at the piperazine moiety. While FQs with tertiary N4 react faster with ClO(2) than FQs with secondary N4, the overall reactivity of the piperazine moiety also depends strongly on the quinolone ring through electronic effects. The reaction rate constants obtained in clean water matrix can be used to model the decay of CIP by ClO(2) in surface water samples, but overestimate the decay in wastewater samples. Overall, transformation of FQs, particularly for those with tertiary N4 amines, could be expected under typical ClO(2) disinfection conditions. However, the transformation may not eliminate antibacterial activity because of little destruction at the quinolone ring. Copyright © 2010 Elsevier Ltd. All rights reserved.
Yeap, Jia Wei; Kaur, Simran; Lou, Fangfei; DiCaprio, Erin; Morgan, Mark; Linton, Richard
2015-01-01
Acute gastroenteritis caused by human norovirus is a significant public health issue. Fresh produce and seafood are examples of high-risk foods associated with norovirus outbreaks. Food contact surfaces also have the potential to harbor noroviruses if exposed to fecal contamination, aerosolized vomitus, or infected food handlers. Currently, there is no effective measure to decontaminate norovirus on food contact surfaces. Chlorine dioxide (ClO2) gas is a strong oxidizer and is used as a decontaminating agent in food processing plants. The objective of this study was to determine the kinetics and mechanism of ClO2 gas inactivation of a norovirus surrogate, murine norovirus 1 (MNV-1), on stainless steel (SS) coupons. MNV-1 was inoculated on SS coupons at the concentration of 107 PFU/coupon. The samples were treated with ClO2 gas at 1, 1.5, 2, 2.5, and 4 mg/liter for up to 5 min at 25°C and a relative humidity of 85%, and virus survival was determined by plaque assay. Treatment of the SS coupons with ClO2 gas at 2 mg/liter for 5 min and 2.5 mg/liter for 2 min resulted in at least a 3-log reduction in MNV-1, while no infectious virus was recovered at a concentration of 4 mg/liter even within 1 min of treatment. Furthermore, it was found that the mechanism of ClO2 gas inactivation included degradation of viral protein, disruption of viral structure, and degradation of viral genomic RNA. In conclusion, treatment with ClO2 gas can serve as an effective method to inactivate a human norovirus surrogate on SS contact surfaces. PMID:26475110
Plants as air-pollution indicators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meeuse, B.J.D.
This paper deals with the use of plants as biological indicators of air pollution. The author acquaints the reader with some sensitive methods of air pollution monitoring which are based on the use of plants. Some of the pollutants considered are sulfur dioxide, ozone, fluorides, chlorine, ethylene, and carbon dioxide. Some of the indicator plants discussed are alfalfa, buckwheat, clovers, gladiolus, june grass, petunia, nettle, rye grass, spinach, tobacco, and tulips.
Chavan, Pooja; Kumar, Rajesh; Kirubagaran, Ramalingam; Venugopalan, Vayalam P
2017-10-01
Antifouling biocides are commonly used in coastal electric power stations to prevent biofouling in their condenser cooling systems. However, the environmental impact of the chemical biocides is less understood than the thermal stress effects caused by the condenser effluents. In this study, Chaetoceros lorenzianus, a representative marine diatom, was used to analyse the toxicity of two antifouling biocides, chlorine and chlorine dioxide. The diatom cells were subjected to a range of concentrations of the biocides (from 0.05 to 2mg/L, as total residual oxidants, TRO) for contact time of 30min. They were analysed for viability, genotoxicity, chlorophyll a and cell density endpoints. The cells were affected at all concentrations of the biocides (0.05-2mg/L), showing dose-dependent decrease in viability and increase in DNA damage. The treated cells were later incubated in filtered seawater devoid of biocide to check for recovery. The cells were able to recover in terms of overall viability and DNA damage, when they had been initially treated with low concentrations of the biocides (0.5mg/L of Cl 2 or 0.2mg/L of ClO 2 ). Chlorophyll a analysis showed irreparable damage at all concentrations, while cell density showed increasing trend of reduction, if treated above 0.5mg/L of Cl 2 and 0.2mg/L of ClO 2 . The data indicated that in C. lorenzianus, cumulative toxic effects and recovery potential of ClO 2 up to 0.2mg/L were comparable with those of Cl 2 , up to 0.5mg/L concentration in terms of the studied endpoints. The results indicate that at the biocide levels currently being used at power stations, recovery of the organism is feasible upon return to ambient environment. Similar studies should be carried out on other planktonic and benthic organisms, which will be helpful in the formulation of future guidelines for discharge of upcoming antifouling biocides such as chlorine dioxide. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Tao; Wu, Jinhui; Qi, Jiancheng; Hao, Limei; Yi, Ying; Zhang, Zongxing
2016-05-15
Bacillus subtilis subsp. niger spore and Staphylococcus albus are typical biological indicators for the inactivation of airborne pathogens. The present study characterized and compared the behaviors of B. subtilis subsp. niger spores and S. albus in regard to inactivation by chlorine dioxide (ClO2) gas under different gas concentrations and relative humidity (RH) conditions. The inactivation kinetics under different ClO2 gas concentrations (1 to 5 mg/liter) were determined by first-order and Weibull models. A new model (the Weibull-H model) was established to reveal the inactivation tendency and kinetics for ClO2 gas under different RH conditions (30 to 90%). The results showed that both the gas concentration and RH were significantly (P < 0.05) and positively correlated with the inactivation of the two chosen indicators. There was a rapid improvement in the inactivation efficiency under high RH (>70%). Compared with the first-order model, the Weibull and Weibull-H models demonstrated a better fit for the experimental data, indicating nonlinear inactivation behaviors of the vegetative bacteria and spores following exposure to ClO2 gas. The times to achieve a six-log reduction of B. subtilis subsp. niger spore and S. albus were calculated based on the established models. Clarifying the kinetics of inactivation of B. subtilis subsp. niger spores and S. albus by ClO2 gas will allow the development of ClO2 gas treatments that provide an effective disinfection method. Chlorine dioxide (ClO2) gas is a novel and effective fumigation agent with strong oxidization ability and a broad biocidal spectrum. The antimicrobial efficacy of ClO2 gas has been evaluated in many previous studies. However, there are presently no published models that can be used to describe the kinetics of inactivation of airborne pathogens by ClO2 gas under different gas concentrations and RH conditions. The first-order and Weibull (Weibull-H) models established in this study can characterize and compare the behaviors of Bacillus subtilis subsp. niger spores and Staphylococcus albus in regard to inactivation by ClO2 gas, determine the kinetics of inactivation of two chosen strains under different conditions of gas concentration and RH, and provide the calculated time to achieve a six-log reduction. These results will be useful to determine effective conditions for ClO2 gas to inactivate airborne pathogens in contaminated air and other environments and thus prevent outbreaks of airborne illness. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Wang, Tao; Wu, Jinhui; Hao, Limei; Yi, Ying; Zhang, Zongxing
2016-01-01
ABSTRACT Bacillus subtilis subsp. niger spore and Staphylococcus albus are typical biological indicators for the inactivation of airborne pathogens. The present study characterized and compared the behaviors of B. subtilis subsp. niger spores and S. albus in regard to inactivation by chlorine dioxide (ClO2) gas under different gas concentrations and relative humidity (RH) conditions. The inactivation kinetics under different ClO2 gas concentrations (1 to 5 mg/liter) were determined by first-order and Weibull models. A new model (the Weibull-H model) was established to reveal the inactivation tendency and kinetics for ClO2 gas under different RH conditions (30 to 90%). The results showed that both the gas concentration and RH were significantly (P < 0.05) and positively correlated with the inactivation of the two chosen indicators. There was a rapid improvement in the inactivation efficiency under high RH (>70%). Compared with the first-order model, the Weibull and Weibull-H models demonstrated a better fit for the experimental data, indicating nonlinear inactivation behaviors of the vegetative bacteria and spores following exposure to ClO2 gas. The times to achieve a six-log reduction of B. subtilis subsp. niger spore and S. albus were calculated based on the established models. Clarifying the kinetics of inactivation of B. subtilis subsp. niger spores and S. albus by ClO2 gas will allow the development of ClO2 gas treatments that provide an effective disinfection method. IMPORTANCE Chlorine dioxide (ClO2) gas is a novel and effective fumigation agent with strong oxidization ability and a broad biocidal spectrum. The antimicrobial efficacy of ClO2 gas has been evaluated in many previous studies. However, there are presently no published models that can be used to describe the kinetics of inactivation of airborne pathogens by ClO2 gas under different gas concentrations and RH conditions. The first-order and Weibull (Weibull-H) models established in this study can characterize and compare the behaviors of Bacillus subtilis subsp. niger spores and Staphylococcus albus in regard to inactivation by ClO2 gas, determine the kinetics of inactivation of two chosen strains under different conditions of gas concentration and RH, and provide the calculated time to achieve a six-log reduction. These results will be useful to determine effective conditions for ClO2 gas to inactivate airborne pathogens in contaminated air and other environments and thus prevent outbreaks of airborne illness. PMID:26969707
Yadav, Seema Roodmal; Kini, Vineet Vaman; Padhye, Ashvini
2015-09-01
Chlorine dioxide (ClO2) is an oxidizing agent with known bactericidal, viricidal and fungicidal properties. Its efficacy in reducing the halitosis has been established by previous literature. However, data evaluating its antiplaque property is scarce. Chlorhexidine (CHX) is considered as the gold standard and an effective adjunctive to mechanical plaque removal. However, it is associated with few reversible side effects. Therefore a study was conducted to assess the antiplaque property of ClO2 containing mouthrinse against CHX mouthrinse. To evaluate the efficacy of stabilized chlorine dioxide containing mouthrinse and CHX containing mouthrinse in inhibition of tongue coat accumulation and dental plaque formation using a four day plaque regrowth model clinically and microbiologically in a healthy dental cohort. A Single Center, Randomized, Triple blinded, Microbiological clinical trial was conducted involving 25 healthy dental students volunteers (11 males, 14 females). Two commercially available mouthrinse: Mouthrinse A - Aqueous based ClO2 mouthrinse Freshchlor(®) and Mouthrinse B - Aqueous based 0.2% CHX mouthrinse Hexidine(®) were selected as the test products. Subjects were asked to rinse and gargle for 1 minute with the allocated mouthrinse under supervision after supragingival scaling, polishing and tongue coat removal. After four hours, smears were taken from the buccal mucosa and tooth surface. On the fifth day from baseline of four day non brushing plaque regrowth model the samples were again taken from buccal mucosa and tooth surface followed by recording of plaque scores by Rastogi Modification of Navy Plaque index, extent of tongue coat by Winkel's tongue coating index and measuring tongue coat wet weight in grams. The samples collected were subjected to microbial analysis and the results were expressed as colony forming units (CFUs) per sample. The Data was analysed using SPSS 16.00 and presented using descriptive statistics. Independent t-test was used for the comparison between mouthrinse A groups & mouthrinse B group. The plaque scores and Winkels tongue coat scores, wet tongue coat weight recorded on the fifth day after the use of the two mouthrinse didn't show a statistically significant difference. The CFU per sample from tooth and mucosa after four hours revealed low bacteria count with respect to mouthrinse B however the CFU obtained on the fifth day did not show a statistically significant difference between the two mouthrinse. The clinical antiplaque efficacy of CHX and ClO2 mouthwash is comparable and so is the efficacy in reducing the oral bacterial load.
Comparative investigation of X-ray contrast medium degradation by UV/chlorine and UV/H2O2.
Kong, Xiujuan; Jiang, Jin; Ma, Jun; Yang, Yi; Pang, Suyan
2018-02-01
The degradation of iopamidol and diatrizoate sodium (DTZ) by UV/chlorine was carried out according to efficiency, mechanism, and oxidation products, and compared to that by UV/H 2 O 2 . The pseudo-first order rate (k') of iopamidol and DTZ was accelerated by UV/chlorine compared to that by UV and chlorine alone. k' of iopamidol and DTZ by UV/chlorine increased with increasing chlorine dosage. Both of iopamidol and DTZ could not be effectively removed by UV/H 2 O 2 compared to that by UV/chlorine. Secondary radicals (Cl 2 - and ClO) rather than primary radicals (HO and Cl) were demonstrated to be mainly responsible for the enhanced removal of iopamidol and DTZ by UV/chlorine. The oxidation products of iopamidol and DTZ resulting from UV/chlorine and UV/H 2 O 2 process were identified, and differences existed in the two systems. IO 3 - (the desired sink of I - ) was the major inorganic product in the UV/chlorine process whereas I - was the predominant inorganic product in the UV/H 2 O 2 process. The formation of chlorine-containing products during the degradation of iopamidol and DTZ by UV/chlorine was also observed. H-abstraction, additions, de-iodination were shared during the degradation of iopamidol by UV/chlorine and UV/H 2 O 2 . Neutral pH condition was preferred for the removal of iopamidol and DTZ by UV/chlorine. UV/chlorine could also be applied in real waters for the removal of iopamidol and DTZ. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sapone, Andrea; Gustavino, Bianca; Monfrinotti, Monica; Canistro, Donatella; Broccoli, Massimiliano; Pozzetti, Laura; Affatato, Alessandra; Valgimigli, Luca; Forti, Giorgio Cantelli; Pedulli, Gian Franco; Biagi, Gian Luigi; Abdel-Rahman, Sherif Z; Paolini, Moreno
2007-01-10
Epidemiological evidence suggests a link between consumption of chlorinated drinking water and various cancers. Chlorination of water rich in organic chemicals produces carcinogenic organochlorine by-products (OBPs) such as trihalomethanes and haloacetic acids. Since the discovery of the first OBP in the 1970s, there have been several investigations designed to determine the biological effects of single chemicals or small artificial OBP combinations. However, there is still insufficient information regarding the general biological response to these compounds, and further studies are still needed to evaluate their potential genotoxic effects. In the current study, we evaluated the effect of three drinking water disinfectants on the activity of cytochrome P450 (CYP)-linked metabolizing enzymes and on the generation of oxidative stress in the livers of male and female Cyprinus carpio fish (carp). The fish were exposed in situ for up 20 days to surface water obtained from the Trasmene lake in Italy. The water was treated with 1-2 mg/L of either sodium hypochlorite (NaClO) or chlorine dioxide (ClO2) as traditional disinfectants or with a relatively new disinfectant product, peracetic acid (PAA). Micronucleus (MN) frequencies in circulating erythrocytes from the fish were also analysed as a biomarker of genotoxic effect. In the CYP-linked enzyme assays, a significant induction (up to a 57-fold increase in the deethylation of ethoxyresorufin with PAA treatment) and a notable inactivation (up to almost a 90% loss in hydroxylation of p-nitrophenol with all disinfectants, and of testosterone 2beta-hydroxylation with NaClO) was observed in subcellular liver preparations from exposed fish. Using the electron paramagnetic resonance (EPR) spectroscopy radical-probe technique, we also observed that CYP-modulation was associated with the production of reactive oxygen species (ROS). In addition, we found a significant increase in MN frequency in circulating erythrocytes after 10 days of exposure of fish to water treated with ClO2, while a non-significant six-fold increase in MN frequency was observed with NaClO, but not with PAA. Our data suggest that the use of ClO2 and NaClO to disinfect drinking water could generate harmful OBP mixtures that are able to perturb CYP-mediated reactions, generate oxidative stress and induce genetic damage. These data may provide a mechanistic explanation for epidemiological studies linking consumption of chlorinated drinking water to increased risk of urinary, gastrointestinal and bladder cancers.
Wastewater Treatment Evaluation, Mather AFB, CA
1974-06-01
conveyed to the treatment facility is provided with secondary (biological) treatment and chlorination followed by polish- ing lagoons prior to bang...comminutor. b. Primary sedimentation (clarifier). c. Biological oxidation by trickling filter. d. Secondary sedimentation (clarifier). e. Chlorination . f...the entrance to the chlorine contact chamber. Following chlorination , the wastewater flows to the wet well of the effluent lift station from
Holzer, Michael; Zangger, Klaus; El-Gamal, Dalia; Binder, Veronika; Curcic, Sanja; Konya, Viktoria; Schuligoi, Rufina; Heinemann, Akos; Marsche, Gunther
2013-01-01
Aim Protein carbamylation through cyanate is thought to have a causal role in promoting cardiovascular disease. We recently observed that the phagocyte protein myeloperoxidase (MPO) specifically induces high-density lipoprotein carbamylation, rather than chlorination, in human atherosclerotic lesions, raising the possibility that MPO-derived chlorinating species are involved in cyanate formation. Results Here we show that MPO-derived chlorinating species rapidly decompose the plasma components thiocyanate and urea thereby promoting (lipo)protein carbamylation. Strikingly, the presence of physiologic concentrations of thiocyanate completely prevented MPO-induced 3-chlorotyrosine formation in HDL. Moreover, thiocyanate scavenged a 2.5-fold molar excess of hypochlorous acid, promoting HDL carbamylation, but not chlorination. Carbamylation of HDL resulted in a loss of anti-inflammatory and anti-oxidative properties. Cyanate significantly impaired (i) HDL’s ability to activate lecithin-cholesterol acyltransferase, (ii) the activity of paraoxonase, a major HDL-associated anti-inflammatory enzyme and (iii) the anti-oxidative activity of HDL. Innovation Here we report that MPO-derived chlorinating species preferentially induce protein carbamylation - rather than chlorination - in the presence of physiologically relevant thiocyanate concentrations. Carbamylation of HDL results in the loss of its anti-inflammatory and anti-oxidative activities. Conclusion MPO-mediated decomposition of thiocyanate and/or urea might be a relevant mechanism for generating dysfunctional HDL in human disease. PMID:22462773
NASA Technical Reports Server (NTRS)
Molina, Mario J.; Tso, Tai-Ly; Molina, Luisa T.; Wang, Frank C.-Y.
1987-01-01
The reaction rate between atmospheric hydrogen chloride (HCl) and chlorine nitrate (ClONO2) is greatly enhanced in the presence of ice particles; HCl dissolves readily into ice, and the collisional reaction probability for ClONO2 on the surface of ice with HCl in the mole fraction range from about 0.003 to 0.010 is in the range from about 0.05 to 0.1 for temperatures near 200 K. Chlorine is released into the gas phase on a time scale of at most a few milliseconds, whereas nitric acid (HNO3), the other product, remains in the condensed phase. This reaction could play an important role in explaining the observed depletion of ozone over Antarctica; it releases photolytically active chlorine from its most abundant reservoir species, and it promotes the formation of HNO3 and thus removes nitrogen dioxide from the gas phase. Hence it establishes the necessary conditions for the efficient catalytic destruction of ozone by halogenated free radicals.
Behavior of toxic metals and radionuclides during molten salt oxidation of chlorinated plastics.
Yang, Hee-Chul; Cho, Yong-Jun; Eun, Hee-Chul; Yoo, Jae-Hyung; Kim, Joon-Hyung
2004-01-01
Molten salt oxidation is one of the promising alternatives to incineration for chlorinated organics without the emission of chlorinated organic pollutants. This study investigated the behavior of three hazardous metals (Cd, Pb, and Cr) and four radioactive metal surrogates (Cs, Ce, Gd, and Sm) in the molten Na2CO3 oxidation reactor during the destruction of PVC plastics. In the tested temperature ranges (1143 1223K) and NaCl content (0-10%), the impact of temperature on the retention of cadmium and lead in the molten salt reactor was very small, but that of the NaCl content for their retention was relatively higher. The influence of NaCl accumulation was, however, proven to be practically negligible due to the low-temperature operating characteristics of the molten salt oxidation system. Neither temperature increase nor chlorine accumulation in the MSO reactor reduced the retention of Cr, Ce, Gd, and Sm. Over 99.98% of these metals remained in the reactor. The influence of the temperature on the cesium behavior is relatively large for a chlorine addition, however, over 99.7% of cesium remained in the reactor throughout the entire test. The experimental metal entrainment rate and the entrained metal particle size distribution agree well with the theoretical equilibrium metal distributions.
In Situ Bioremediation of Energetic Compounds In Groundwater
2012-03-01
Figure 1.2; Fournier et al., 2002; Bhushan et al., 2003). The Cytochrome P450 isozyme CYP177A1, XplA (XplA) has been identified as the key enzyme system...e.g., chlorine dioxide, sodium hypochlorite, and hydrogen peroxide), acid treatment, enzyme addition, liquid carbon dioxide, intermittent pumping...P450 system XplA/B. Proceedings of the National Academy of Science 104:16822-16827. Kaplan, D. L., and A. M. Kaplan. 1992. Thermophilic
Gao, Yuan; Pang, Su-Yan; Jiang, Jin; Ma, Jun; Zhou, Yang; Li, Juan; Wang, Li-Hong; Lu, Xue-Ting; Yuan, Li-Peng
2016-09-06
In this work, it was found that the most widely used brominated flame retardant tetrabromobisphenol A (TBrBPA) could be transformed by free chlorine over a wide pH range from 5 to 10 with apparent second-order rate constants from 138 to 3210 M(-1)·s(-1). A total of eight products, including one quinone-like compound (i.e., 2,6-dibromoquinone), two dimers, and several simple halogenated phenols (e.g., 4-(2-hydroxyisopropyl)-2,6-dibromophenol, 2,6-dibromohydroquinone, and 2,4,6-tribromophenol), were detected by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) using a novel precursor ion scan (PIS) approach. A tentative reaction pathway was proposed: chlorine initially oxidized TBrBPA leading to the formation of a phenoxy radical, and then this primary radical and its secondary intermediates (e.g., 2,6-dibromo-4-isopropylphenol carbocation) formed via beta-scission subsequently underwent substitution, dimerization, and oxidation reactions. Humic acid (HA) considerably inhibited the degradation rates of TBrBPA by chlorine even accounting for oxidant consumption. A similar inhibitory effect of HA was also observed in permanganate and ferrate oxidation. This inhibitory effect was possibly attributed to the fact that HA competitively reacted with the phenoxy radical of TBrBPA and reversed it back to parent TBrBPA. This study confirms that chlorine can transform phenolic compounds (e.g., TBrBPA) via electron transfer rather than the well-documented electrophilic substitution, which also have implications on the formation pathway of halo-benzoquinones during chlorine disinfection. These findings can improve the understanding of chlorine chemistry in water and wastewater treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Leo H. H.; Hoque, Enamul; Kruse, Peter
Free chlorine from dissolved chlorine gas is widely used as a disinfectant for drinking water. The residual chlorine concentration has to be continuously monitored and accurately controlled in a certain range around 0.5–2 mg/l to ensure drinking water safety and quality. However, simple, reliable, and reagent free monitoring devices are currently not available. Here, we present a free chlorine sensor that uses oxidation of a phenyl-capped aniline tetramer (PCAT) to dope single wall carbon nanotubes (SWCNTs) and to change their resistance. The oxidation of PCAT by chlorine switches the PCAT-SWCNT system into a low resistance (p-doped) state which can be detectedmore » by probing it with a small voltage. The change in resistance is found to be proportional to the log-scale concentration of the free chlorine in the sample. The p-doping of the PCAT-SWCNT film then can be electrochemically reversed by polarizing it cathodically. This sensor not only shows good sensing response in the whole concentration range of free chlorine in drinking water but is also able to be electrochemically reset back many times without the use of any reagents. This simple sensor is ideally suited for measuring free chlorine in drinking water continuously.« less
40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2011 CFR
2011-07-01
... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference method...
40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2012 CFR
2012-07-01
... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference method...
40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2013 CFR
2013-07-01
... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference method...
40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2014 CFR
2014-07-01
... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference method...
Additional information for wastewater treatment plants (WWTPs), including publicly owned treatment works (POTWs) and other industrial treatment systems; about compliance for chlorine, ammonia (anhydrous and aqueous), sulfur dioxide, and digester gas.
Application of Highly Purified Electrolyzed Chlorine Dioxide for Tilapia Fillet Disinfection
Yu, Chen-Hsing; Huang, Tzou-Chi; Chung, Chao-Chin; Huang, Hao-Hsun
2014-01-01
This research aimed to develop an electrolysis method to generate high-concentration chlorine dioxide (ClO2) for tilapia fillet disinfection. The designed generator produced up to 3500 ppm of ClO2 at up to 99% purity. Tilapia fillets were soaked in a 400 ppm ClO2 solution for 5, 10, and 25 min. Results show that total plate counts of tilapia, respectively, decreased by 5.72 to 3.23, 2.10, and 1.09 log CFU/g. In addition, a 200 ppm ClO2 solution eliminated coliform bacteria and Escherichia coli in 5 min with shaking treatment. Furthermore, ClO2 and trihalomethanes (THMs) residuals on tilapia fillets were analyzed by GC/MS and were nondetectable (GC-MS detection limit was 0.12 ppb). The results conform to Taiwan's environmental protection regulations and act governing food sanitation. PMID:24696651
Prevalence of Chronic Respiratory Disease in a Pulp Mill and a Paper Mill in the United States1
Ferris, B. G.; Burgess, W. A.; Worcester, J.
1967-01-01
A sample of 147 men drawn from the workers in a pulp mill was compared with one of 124 men from a paper mill. The former included those exposed to chlorine and to sulphur dioxide. No significant differences were found in respiratory symptoms or in simple tests of ventilatory function in the two samples, but men working in chlorine had a somewhat poorer respiratory function and more shortness of breath than those working in sulphur dioxide. The working population of both mills together had a lower prevalence of respiratory disease than that of the male population of Berlin, N.H., previously studied, suggesting that working populations may not be representative of the general population. Further, a low prevalence of disease in a working population exposed to pollutants may not indicate their `safety' in general populations. PMID:6017136
Soares, Leo Guimaraes; Guaitolini, Roberto Luiz; Weyne, Sergio de Carvalho; Falabella, Marcio Eduardo Vieira; Tinoco, Eduardo Muniz Barretto; da Silva, Denise Gomes
2013-07-01
This study sought to evaluate the clinical effect of a mouthrinse containing 0.3% chlorine dioxide (ClO2) in reducing oral volatile sulfur compounds (VSC). Halitosis was induced by L-cysteine in 11 volunteers, and 4 solutions were compared: a test solution containing 0.3% ClO2, 0.07% cetylpyridinium chloride (CPC), and 0.05% sodium fluoride; a placebo; a solution containing 0.05% CPC; and a control solution of 0.2% chlorhexidine gluconate (CHX). VSC levels were assessed using a Halimeter, and 6 measurements were made from baseline to 3 hours postrinse. The VSC reduction rate of the test mouthrinse was superior to the placebo and the CPC solution. There was no difference between the test solution and the CHX solution in VSC reduction rates immediately postrinse, or at 2 and 3 hours postrinse; both solutions were statistically superior to the placebo and the CPC solution.
40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected... under paragraph (a)(1) of this section for any increase in excess emissions of sulfur dioxide determined...
40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected... under paragraph (a)(1) of this section for any increase in excess emissions of sulfur dioxide determined...
40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.
Code of Federal Regulations, 2014 CFR
2014-07-01
... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected... under paragraph (a)(1) of this section for any increase in excess emissions of sulfur dioxide determined...
40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.
Code of Federal Regulations, 2012 CFR
2012-07-01
... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected... under paragraph (a)(1) of this section for any increase in excess emissions of sulfur dioxide determined...
A study was performed investigating the feasibility of applying the DUOX chemical oxidation technology to chlorinated solvent contaminated media at the Roosevelt Mills site in Vernon, Connecticut. The Roosevelt Mills site is a former woolen mill that included dry cleaning operat...
An entrained flow reactor is used to study the effect of addition of chlorine-containing species on the oxidation of elemental mercury (Hgo)by a selective catalytic reduction (SCR) catalyst in simulated subbituminous coal combustion flue gas. The combustion flue gas was doped wit...
Wang, Hong; Proctor, Caitlin R; Edwards, Marc A; Pryor, Marsha; Santo Domingo, Jorge W; Ryu, Hodon; Camper, Anne K; Olson, Andrew; Pruden, Amy
2014-09-16
Temporary conversion to chlorine (i.e., "chlorine burn") is a common approach to controlling nitrification in chloraminated drinking water distribution systems, yet its effectiveness and mode(s) of action are not fully understood. This study characterized occurrence of nitrifying populations before, during and after a chlorine burn at 46 sites in a chloraminated distribution system with varying pipe materials and levels of observed nitrification. Quantitative polymerase chain reaction analysis of gene markers present in nitrifying populations indicated higher frequency of detection of ammonia oxidizing bacteria (AOB) (72% of samples) relative to ammonia oxidizing archaea (AOA) (28% of samples). Nitrospira nitrite oxidizing bacteria (NOB) were detected at 45% of samples, while presence of Nitrobacter NOB could not be confirmed at any of the samples. During the chlorine burn, the numbers of AOA, AOB, and Nitrospira greatly reduced (i.e., 0.8-2.4 log). However, rapid and continued regrowth of AOB and Nitrospira were observed along with nitrite production in the bulk water within four months after the chlorine burn, and nitrification outbreaks appeared to worsen 6-12 months later, even after adopting a twice annual burn program. Although high throughput sequencing of 16S rRNA genes revealed a distinct community shift and higher diversity index during the chlorine burn, it steadily returned towards a condition more similar to pre-burn than burn stage. Significant factors associated with nitrifier and microbial community composition included water age and sampling location type, but not pipe material. Overall, these results indicate that there is limited long-term effect of chlorine burns on nitrifying populations and the broader microbial community.
Oxidation of selected organophosphate pesticides during chlorination of simulated drinking water.
Kamel, Alaa; Byrne, Christian; Vigo, Craig; Ferrario, Joseph; Stafford, Charles; Verdin, Gregory; Siegelman, Frederic; Knizner, Steven; Hetrick, James
2009-02-01
Ten organophosphate (OP) pesticides: phorate, disulfoton, terbufos, methidathion, bensulide, chlorethoxyfos, phosmet, methyl parathion, phostebupirim, and temephos were evaluated for their potential to undergo oxidation to their respective oxons and/or other oxidation analogues in laboratory water. Samples were collected at time intervals up to 72h of chlorination and analyzed by both gas chromatography-mass selective detection (GC-MSD) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results show that methidathion and methyl parathion were stable in unchlorinated water, while all other OP pesticides were not stable over the 72h exposure period. In chlorinated water, phorate and disulfoton formed stable sulfone oxons. Temephos formed stable dioxon sulfoxide and dioxon sulfone. Methidathion, bensulide, chlorethyoxyfos, methyl parathion, and phostebupirim formed stable oxons over the 72h exposure period. Terbufos, phorate, disulfoton and temephos oxon sulfoxides; temephos sulfoxide; and phosmet oxon were initially formed but were not detected after 24h. The data illustrate that organothiophosphate pesticides may form oxons and/or other oxidation analogues during chlorination in water treatment plants, which are persistent for at least 72h.
Petri, Eva; Rodríguez, Mariola; García, Silvia
2015-01-01
Most current disinfection strategies for fresh-cut industry are focused on the use of different chemical agents; however, very little has been reported on the effectiveness of the hurdle technology. The effect of combined decontamination methods based on the use of different sanitizers (peroxyacetic acid and chlorine dioxide) and the application of pressure (vacuum/positive pressure) on the inactivation of the foodborne pathogen E. coli O157:H7 on fresh-cut lettuce (Lactuca sativa) and carrots (Daucus carota) was studied. Fresh produce, inoculated with E. coli O157:H7, was immersed (4 °C, 2 min) in tap water (W), chlorine water (CW), chlorine dioxide (ClO2: 2 mg/L) and peroxyacetic acid (PAA: 100 mg/L) in combination with: (a) vacuum (V: 10 mbar) or (b) positive pressure application (P: 3 bar). The product quality and antimicrobial effects of the treatment on bacterial counts were determined both in process washing water and on fresh-cut produce. Evidence obtained in this study, suggests that the use of combined methods (P/V + sanitizers) results in a reduction on the microorganism population on produce similar to that found at atmospheric pressure. Moreover, the application of physical methods led to a significant detrimental effect on the visual quality of lettuce regardless of the solution used. Concerning the process water, PAA proved to be an effective alternative to chlorine for the avoidance of cross-contamination. PMID:26213954
Petri, Eva; Rodríguez, Mariola; García, Silvia
2015-07-23
Most current disinfection strategies for fresh-cut industry are focused on the use of different chemical agents; however, very little has been reported on the effectiveness of the hurdle technology. The effect of combined decontamination methods based on the use of different sanitizers (peroxyacetic acid and chlorine dioxide) and the application of pressure (vacuum/positive pressure) on the inactivation of the foodborne pathogen E. coli O157:H7 on fresh-cut lettuce (Lactuca sativa) and carrots (Daucus carota) was studied. Fresh produce, inoculated with E. coli O157:H7, was immersed (4 °C, 2 min) in tap water (W), chlorine water (CW), chlorine dioxide (ClO2: 2 mg/L) and peroxyacetic acid (PAA: 100 mg/L) in combination with: (a) vacuum (V: 10 mbar) or (b) positive pressure application (P: 3 bar). The product quality and antimicrobial effects of the treatment on bacterial counts were determined both in process washing water and on fresh-cut produce. Evidence obtained in this study, suggests that the use of combined methods (P/V + sanitizers) results in a reduction on the microorganism population on produce similar to that found at atmospheric pressure. Moreover, the application of physical methods led to a significant detrimental effect on the visual quality of lettuce regardless of the solution used. Concerning the process water, PAA proved to be an effective alternative to chlorine for the avoidance of cross-contamination.
Metal-organic frameworks with high capacity and selectivity for harmful gases
Britt, David; Tranchemontagne, David; Yaghi, Omar M.
2008-01-01
Benchmarks have been established for the performance of six metal-organic frameworks (MOFs) and isoreticular MOFs (IRMOFs, which have the same underlying topology as MOF-5), MOF-5, IRMOF-3, MOF-74, MOF-177, MOF-199, and IRMOF-62, as selective adsorbents for eight harmful gases: sulfur dioxide, ammonia, chlorine, tetrahydrothiophene, benzene, dichloromethane, ethylene oxide, and carbon monoxide. Kinetic breakthrough measurements are used to determine the calculated dynamic adsorption capacity of each “benchmark” MOF for each gas. The capacity of each MOF is compared to that of a sample of Calgon BPL activated carbon. We find that pore functionality plays a dominant role in determining the dynamic adsorption performance of MOFs. MOFs featuring reactive functionality outperform BPL carbon in all but one case and exhibit high dynamic adsorption capacities up to 35% by weight. PMID:18711128
Use of xylanase in the TCF bleaching of eucalyptus kraft pulp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roncero, B.; Vidal, T.; Torres, A.L.
1996-10-01
Environmental pressures are forcing the pulp and paper industry to develop new technologies that reduce or eliminate the presence of various contaminants in bleaching plant effluents. Oxygen delignification techniques, replacement of elemental chlorine with chlorine dioxide, ozone, hydrogen peroxide and new agents as well as the use of xylanase enzymes for biobleaching, reduce o eliminate the production of chlorinated organic substances. This paper compares the sequence XOZP with OZP in the bleaching of Eucalyptus globulus kraft pulps. It has been studied the influence of enzymatic treatment on the consumption of bleaching agents: ozone and hydrogen peroxide. Chemical, physical, optical andmore » refining properties of pulps, as well as COD and colour of effluent are also studied. The xylanase treatment is positive and it is possible to manufacture fully bleached pulps at high brightness and viscosity without using chlorine compounds at a low ozone and hydrogen peroxide consumption.« less
Doona, Christopher J; Feeherry, Florence E; Setlow, Peter; Malkin, Alexander J; Leighton, Terrence J
2014-06-29
There is a stated Army need for a field-portable, non-steam sterilizer technology that can be used by Forward Surgical Teams, Dental Companies, Veterinary Service Support Detachments, Combat Support Hospitals, and Area Medical Laboratories to sterilize surgical instruments and to sterilize pathological specimens prior to disposal in operating rooms, emergency treatment areas, and intensive care units. The following ensemble of novel, 'clean and green' chlorine dioxide technologies are versatile and flexible to adapt to meet a number of critical military needs for decontamination(6,15). Specifically, the Portable Chemical Sterilizer (PCS) was invented to meet urgent battlefield needs and close critical capability gaps for energy-independence, lightweight portability, rapid mobility, and rugged durability in high intensity forward deployments(3). As a revolutionary technological breakthrough in surgical sterilization technology, the PCS is a Modern Field Autoclave that relies on on-site, point-of-use, at-will generation of chlorine dioxide instead of steam. Two (2) PCS units sterilize 4 surgical trays in 1 hr, which is the equivalent throughput of one large steam autoclave (nicknamed "Bertha" in deployments because of its cumbersome size, bulky dimensions, and weight). However, the PCS operates using 100% less electricity (0 vs. 9 kW) and 98% less water (10 vs. 640 oz.), significantly reduces weight by 95% (20 vs. 450 lbs, a 4-man lift) and cube by 96% (2.1 vs. 60.2 ft(3)), and virtually eliminates the difficult challenges in forward deployments of repairs and maintaining reliable operation, lifting and transporting, and electrical power required for steam autoclaves.
Chhetri, Ravi Kumar; Baun, Anders; Andersen, Henrik Rasmus
2017-05-01
Environmental effect evaluation of disinfection of combined sewer overflow events with alternative chemical disinfectants requires that the environmental toxicity of the disinfectants and the main by-products of their use are known. Many disinfectants degrade quickly in water which should be included in the evaluation of both their toxicity as determined in standardized tests and their possible negative effect in the water environment. Here we evaluated according to the standardized ISO 8692 test the toxicity towards the green microalgae, Pseudokirchneriella subcapitata, of three disinfectants: performic acid (PFA), peracetic acid (PAA) and chlorine dioxide (ClO 2 ) as well as two by-products of their use: hydrogen peroxide (H 2 O 2 ) and chlorite. All of the five chemicals investigated showed clear toxicity to the algae with well-defined dose response curves. The EC 50 values ranged from 0.16 to 2.9mg/L based on nominal concentrations leading to the labeling of the chemicals as either toxic or very toxic. The five investigated chemicals decreased in toxicity in the order chlorine dioxide, performic acid, peracetic acid, chlorite and hydrogen peroxide. The stability of the chemicals increased in the same order as the toxicity decrease. This indicates that even though ClO 2 has the highest environmental hazard potential, it may still be suitable as an alternative disinfectant due to its rapid degradation in water. Copyright © 2016 Elsevier GmbH. All rights reserved.
A review of the contrasting behavior of two magmatic volatiles: Chlorine and carbon dioxide
Lowenstern, J. B.
2000-01-01
Chlorine (Cl) and carbon dioxide (CO2) are common magmatic volatiles with contrasting behaviors. CO2 solubility increases with pressure whereas Cl solubility shows relatively little pressure or temperature effect. CO2 speciation changes with silicate melt composition, dissolving as carbonate in basaltic magmas and molecular CO2 in more silicic compositions. In H2O-bearing systems, the strongly non-ideal behavior of alkali chlorides causes unmixing of the volatile phase to form a H2O-rich vapor and a hydrosaline phase with important implications for the maximum concentration of Cl in magmas. Addition of CO2 to magma hastens immiscibility at crustal pressures (<500 MPa), inducing the formation of CO2-rich vapors and Cl-rich hydrosaline melts. (C) 2000 Elsevier Science B.V. All rights reserved.Chlorine (Cl) and carbon dioxide (CO2) are common magmatic volatiles with contrasting behaviors. CO2 solubility increases with pressure whereas Cl solubility shows relatively little pressure or temperature effect. CO2 speciation changes with silicate melt composition, dissolving as carbonate in basaltic magmas and molecular CO2 in more silicic compositions. In H2O-bearing systems, the strongly non-ideal behavior of alkali chlorides causes unmixing of the volatile phase to form a H2O-rich vapor and a hydrosaline phase with important implications for the maximum concentration of Cl in magmas. Addition of CO2 to magma hastens immiscibility at crustal pressures (<500 MPa), inducing the formation of CO2-rich vapors and Cl-rich hydrosaline melts.
OZONE PRODUCTION FROM IRRADIATION OF ACETYLENE/CHLORINE MIXTURES IN AIR
The reaction of chlorine radicals with acetylene in air in the absence of oxides of nitrogen result In the formation of ozone. o ozone is observed when chlorine radicals react with methylacetylene or ethylacetylene under similar conditions. ormyl chloride is observed in all syste...
Tabassum, Rana; Gupta, Banshi D
2015-03-21
A highly sensitive chlorine sensor for an aqueous medium is fabricated using an optical fiber surface plasmon resonance (OFSPR) system. An OFSPR-based chlorine sensor is designed with a multilayer-type platform by zinc oxide (ZnO) and polyvinylpyrollidone (PVP) film morphology manipulations. Among all the methodologies of transduction reported in the field of solid state chemical and biochemical sensing, our attention is focused on the Kretschmann configuration optical fiber sensing technique using the mechanism of surface plasmon resonance. The optical fiber surface plasmon resonance (SPR) chlorine sensor is developed using a multimode optical fiber with the PVP-supported ZnO film deposited over a silver-coated unclad core of the fiber. A spectral interrogation mode of operation is used to characterize the sensor. In an Ag/ZnO/PVP multilayer system, the absorption of chlorine in the vicinity of the sensing region is performed by the PVP layer and the zinc oxide layer enhances the shift in resonance wavelength. It is, experimentally, demonstrated that the SPR wavelength shifts nonlinearly towards the red side of the visible region with an increase in the chlorine concentration in an aqueous medium while the sensitivity of the sensor decreases linearly with an increase in the chlorine concentration. As the proposed sensor utilizes an optical fiber, it possesses the additional advantages of fiber such as less signal degradation, less susceptibility to electromagnetic interference, possibility of remote sensing, probe miniaturization, probe re-usability, online monitoring, small size, light weight and low cost.
Wang, Ding; Bolton, James R; Hofmann, Ron
2012-10-01
The effectiveness of ultraviolet (UV) combined with chlorine as a novel advanced oxidation process (AOP) for drinking water treatment was evaluated in a bench scale study by comparing the rate of trichloroethylene (TCE) decay when using UV/chlorine to the rates of decay by UV alone and UV/hydrogen peroxide (H₂O₂) at various pH values. A medium pressure mercury UV lamp was used. The UV/chlorine process was more efficient than the UV/H₂O₂ process at pH 5, but in the neutral and alkaline pH range, the UV/H₂O₂ process became more efficient. The pH effect was probably controlled by the increasing concentration of OCl⁻ at higher pH values. A mechanistic kinetic model of the UV/chlorine treatment of TCE showed good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.
40 CFR 141.711 - Filtered system additional Cryptosporidium treatment requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... either one or a combination of the following: bag filters, bank filtration, cartridge filters, chlorine dioxide, membranes, ozone, or UV, as described in §§ 141.716 through 141.720. (c) Failure by a system in...
40 CFR 141.711 - Filtered system additional Cryptosporidium treatment requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... either one or a combination of the following: bag filters, bank filtration, cartridge filters, chlorine dioxide, membranes, ozone, or UV, as described in §§ 141.716 through 141.720. (c) Failure by a system in...
CRYPTOSPORIDIUM INACTIVATION AND REMOVAL RESEARCH
Bench- and pilot-scale tests were performed to assess the ability of conventional treatment, ozonation and chlorine dioxide to remove and inactivate Cryptosporidium oocysts. The impacts of coagulant type, coagulant dose, raw water quality, filter loading rates and filter media w...
Appendix F: Supplemental Risk Management Program Guidance for Wastewater Treatment Plants
Detail for wastewater treatment plants (WWTPs), including publicly owned treatment works (POTWs) and other industrial treatment systems, on complying with part 68 with respect to chlorine, ammonia (anhydrous and aqueous), sulfur dioxide, and digester gas.
Calculating Toxic Corridors. Revision
1989-04-01
16 Table 9 Chlorine Pentafluoride 1CL ........... ................... .. 17 Table 10 Chlorine Trifluoride TCL...60-min EEL: 3.0 ppm 31 Chlorine Pentafluoride 130.445 0.3 4.64 1.5 1(T) 2.03 Mone - (T) - Tentative Chlorine Trifluoride 92.448 0.63 3.88 3.01 1.70...CIF 5 770.4 Chlorine Trifluoride 26.6 1,B33.410 54.141 80 92.448 CIF.3 247.2 Diborane 16.859 B2 H Ethylene- Oxide 27.0 f 1,860.98 54.96 80 44.054 C
Contaminated environments in the subsurface and bioremediation: organic contaminants.
Holliger, C; Gaspard, S; Glod, G; Heijman, C; Schumacher, W; Schwarzenbach, R P; Vazquez, F
1997-07-01
Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low biomass production and good electron acceptor availability, and they are sometimes the only possible solution. This review will focus on three important groups of environmental organic contaminants: hydrocarbons, chlorinated and nitroaromatic compounds. Whereas hydrocarbons are oxidized and completely mineralized under anaerobic conditions in the presence of electron acceptors such as nitrate, iron, sulfate and carbon dioxide, chlorinated and nitroaromatic compounds are reductively transformed. For the aerobic often persistent polychlorinated compounds, reductive dechlorination leads to harmless products or to compounds that are aerobically degradable. The nitroaromatic compounds are first reductively transformed to the corresponding amines and can subsequently be bound to the humic fraction in an aerobic process. Such new findings and developments give hope that in the near future contaminated aquifers can efficiently be remediated, a prerequisite for a sustainable use of the precious-subsurface drinking water resources.
Combined Excitatory and Inhibitory Coupling in a 1-D Array of Belousov-Zhabotinsky Droplets
2014-01-01
with numerical chemical models of the BZ reaction in which components that participate in the excitatory (bromine dioxide and bromous acid) and...verify the transport through the fluorinated oil of chlorine dioxide and several weak acids, including malonic acid. 1. Introduction Recent studies1...finite element model (COMSOLs) of the reaction - diffusion equation in 1-D, 2-D and 3-D, where each drop is modeled as a point, disk or sphere
FATE OF CHROMIUM (III) IN CHLORINATED WATER
The oxidation of trivalent chromium, Cr(III), to the more toxic Cr(VI) in chlorinated water is thermodynamically feasible and was the subject of the study. The study found that free available chlorine (FAC) readily converts Cr(III) to Cr(VI) at a rate that is highly dependent upo...
In studies on the formation of disinfection byproducts (DBPs), it is necessary to scavenge residual active (oxidizing) chlorine in order to fix the chlorination byproducts (such as haloethanoates) at a point in time. Thus, methods designed for compliance monitoring are not alway...
REACTIONS OF CHLORINE IN DRINKING WATER, WITH HUMIC ACIDS AND 'IN VIVO'
The use of chlorine as a drinking water disinfectant is known to produce a variety of chlorinated and oxidized derivatives of organic matter present in the source water. Humic substances, which represent the major fraction of the organic matter in natural waters, have been shown ...
Chlorinated phenols and anilines are transformed and detoxified in soil
through oxidative coupling reactions mediated by enzymes or metal oxides. The
reactions may be influenced by humic constituents, such as syringaldehyde or
catechol, that originate from lignin d...
Biofilm Surface Density Determines Biocide Effectiveness
Bas, Sara; Kramer, Mateja; Stopar, David
2017-01-01
High resistance of biofilms for chemical challenges is a serious industrial and medical problem. In this work a gradient of surface covered with biofilm has been produced and correlated to the effectiveness of different commercially available oxidative biocides. The results for thin Escherichia coli biofilms grown in rich media supplemented with glucose or lactose on glass or poly methyl methacrylate surfaces indicate that the effectiveness of hydrogen peroxide or chlorine dioxide and quaternary ammonium compounds is inversely proportional to the fraction of the surface covered with the biofilm. In areas where biofilm covered more than 90% of the available surface the biocide treatment was inefficient after 60 min of incubation. The combined effect of oxidant and surfactant increased the effectiveness of the biocide. On the other hand, the increased biofilm viscoelasticity reduced biocide effectiveness. The results emphasize differential biocide effectiveness depending on the fraction of the attached bacterial cells. The results suggest that biofilm biocide resistance is an acquired property that increases with biofilm maturation. The more dense sessile structures present lower log reductions compared to less dense ones. PMID:29276508
Borowicz, P.; Taube, A.; Rzodkiewicz, W.; Latek, M.; Gierałtowska, S.
2013-01-01
Three samples with dielectric layers from high-κ dielectrics, hafnium oxide, gadolinium-silicon oxide, and lanthanum-lutetium oxide on silicon substrate were studied by Raman spectroscopy. The results obtained for high-κ dielectrics were compared with spectra recorded for silicon dioxide. Raman spectra suggest the similarity of gadolinium-silicon oxide and lanthanum-lutetium oxide to the bulk nondensified silicon dioxide. The temperature treatment of hafnium oxide shows the evolution of the structure of this material. Raman spectra recorded for as-deposited hafnium oxide are similar to the results obtained for silicon dioxide layer. After thermal treatment especially at higher temperatures (600°C and above), the structure of hafnium oxide becomes similar to the bulk non-densified silicon dioxide. PMID:24072982
Formation kinetics of gemfibrozil chlorination reaction products: analysis and application.
Krkosek, Wendy H; Peldszus, Sigrid; Huck, Peter M; Gagnon, Graham A
2014-07-01
Aqueous chlorination kinetics of the lipid regulator gemfibrozil and the formation of reaction products were investigated in deionized water over the pH range 3 to 9, and in two wastewater matrices. Chlorine oxidation of gemfibrozil was found to be highly dependent on pH. No statistically significant degradation of gemfibrozil was observed at pH values greater than 7. Gemfibrozil oxidation between pH 4 and 7 was best represented by first order kinetics. At pH 3, formation of three reaction products was observed. 4'-C1Gem was the only reaction product formed from pH 4-7 and was modeled with zero order kinetics. Chlorine oxidation of gemfibrozil in two wastewater matrices followed second order kinetics. 4'-C1Gem was only formed in wastewater with pH below 7. Deionized water rate kinetic models were applied to two wastewater effluents with gemfibrozil concentrations reported in literature in order to calculate potential mass loading rates of 4'C1Gem to the receiving water.
PROCESS OF DISSOLVING FUEL ELEMENTS OF NUCLEAR REACTORS
Wall, E.M.V.; Bauer, D.T.; Hahn, H.T.
1963-09-01
A process is described for dissolving stainless-steelor zirconium-clad uranium dioxide fuel elements by immersing the elements in molten lead chloride, adding copper, cuprous chloride, or cupric chloride as a catalyst and passing chlorine through the salt mixture. (AEC)
Fang, Jingyun; Zhao, Quan; Fan, Chihhao; Shang, Chii; Fu, Yun; Zhang, Xiangru
2017-09-01
When a bromide-containing water is treated by the ultraviolet (UV)/chlorine process, hydroxyl radicals (HO) and halogen radicals such as Cl or Br are formed due to the UV photolysis of free halogens. These reactive species may induce the formation of bromate, which is a probable human carcinogen. Bromate formation in the UV/chlorine process using low pressure (LP) and medium pressure (MP) lamps in the presence of bromide was investigated in the present study. The UV/chlorine process significantly enhanced bromate formation as compared to dark chlorination. The bromate formation was elevated with increasing UV fluence, bromide concentration, and pH values under both LP and MP UV irradiations. It was significantly enhanced at pH 9 compared to those at pH 6 and 7 with MP UV irradiation, while it was slightly enhanced at pH 9 with LP UV. The formation by UV/chlorine process started with the formation of free bromine (HOBr/OBr - ) through the reaction of chlorine and bromide, followed by a subsequent oxidation of free bromine and formation of BrO and bromate by reacting with radicals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ryu, Jee-Hoon; Beuchat, Larry R
2005-12-01
Biofilm formation by Bacillus cereus 038-2 on stainless steel coupons, sporulation in the biofilm as affected by nutrient availability, temperature, and relative humidity, and the resistance of vegetative cells and spores in biofilm to sanitizers were investigated. Total counts in biofilm formed on coupons immersed in tryptic soy broth (TSB) at 12 and 22 degrees C consisted of 99.94% of vegetative cells and 0.06% of spores. Coupons on which biofilm had formed were immersed in TSB or exposed to air with 100, 97, 93, or 85% relative humidity. Biofilm on coupons immersed in TSB at 12 degrees C for an additional 6 days or 22 degrees C for an additional 4 days contained 0.30 and 0.02% of spores, respectively, whereas biofilm exposed to air with 100 or 97% relative humidity at 22 degrees C for 4 days contained 10 and 2.5% of spores, respectively. Sporulation did not occur in biofilm exposed to 93 or 85% relative humidity at 22 degrees C. Treatment of biofilm on coupons that had been immersed in TSB at 22 degrees C with chlorine (50 microg/ml), chlorine dioxide (50 microg/ml), and a peroxyacetic acid-based sanitizer (Tsunami 200, 40 microg/ml) for 5 min reduced total cell counts (vegetative cells plus spores) by 4.7, 3.0, and 3.8 log CFU per coupon, respectively; total cell counts in biofilm exposed to air with 100% relative humidity were reduced by 1.5, 2.4, and 1.1 log CFU per coupon, respectively, reflecting the presence of lower numbers of vegetative cells. Spores that survived treatment with chlorine dioxide had reduced resistance to heat. It is concluded that exposure of biofilm formed by B. cereus exposed to air at high relative humidity (> or =97%) promotes the production of spores. Spores and, to a lesser extent, vegetative cells embedded in biofilm are protected against inactivation by sanitizers. Results provide new insights to developing strategies to achieve more effective sanitation programs to minimize risks associated with B. cereus in biofilm formed on food contact surfaces and on foods.
Trace Gas Trends in the Stratosphere: 1991-2005
NASA Astrophysics Data System (ADS)
Elkins, J. W.; Moore, F. L.; Dutton, G. S.; Hurst, D. F.; Ray, E. A.; Montzka, S. A.; Butler, J. H.; Fahey, D. W.; Hall, B. H.; Atlas, E.; Wofsy, S. C.; Romashkin, P. A.
2005-05-01
The first NOAA airborne gas chromatograph measured chlorofluorocarbon-11 (CFC-11) and CFC-113 during the Arctic Airborne Stratospheric Experiment in 1991-1992. In 1994, we added nitrous oxide (N2O), sulfur hexafluoride (SF6), CFC-12, halon-1211, methyl chloroform, carbon tetrachloride, methane, and hydrogen. NOAA scientists have since operated five airborne gas chromatographs on NASA airborne platforms, including the NASA Jet Propulsion Laboratory (JPL) balloon gondola and ER-2, WB-57F, DC-8, and NASA Altair Unmanned Air Vehicle (UAV) aircraft. Using these in situ measurements and tracer-tracer correlations from flask observations for the unmeasured halogen species (HCFCs and methyl halides including methyl chloride and bromide), we have estimated trends of total chlorine and bromine in the stratosphere. The determination of inorganic equivalent chlorine (Cl + 45*Br) requires the trend of tropospheric equivalent chlorine and the mean age of the parcel of stratospheric air. In general, there is good agreement between the mean age of the air mass calculations using carbon dioxide and SF6, except for regions of extreme down welling of mesospheric air where SF6 is consumed. Tropospheric trends of the methyl halides have been compiled against stable standards. We operated a airborne gas chromatograph on the Sage 3 Ozone Loss Validation Experiment (SOLVE-II) mission from Kiruna, Sweden during 2002. It measured the major HCFCs and methyl halides, so that these compounds do not have to be estimated from tracer-tracer correlations in the future. In 2005, we have added a new lightweight airborne instrument (<25 kg) that can measure CFC-11, CFC-12, halon-1211, SF6, N2O, and ozone. This instrument can operate on small or UAV aircraft and will be used for Aura satellite validation. This presentation will show trends for selected trace gases and our estimates of total equivalent chlorine stratospheric trends since 1991.
VOLATILE CHLORIDE PROCESS FOR THE RECOVERY OF METAL VALUES
Hanley, W.R.
1959-01-01
A process is presented for recovering uranium, iron, and aluminum from centain shale type ores which contain uranium in minute quantities. The ore is heated wiih a chlorinating agent. such as chlorine, to form a volatilized stream of metal chlorides. The chloride stream is then passed through granular alumina which preferentially absorbs the volatile uranium chloride and from which the uranium may later be recovered. The remaining volatilized chlorides, chiefly those of iron and aluminum, are further treated to recover chlorine gas for recycle, and to recover ferric oxide and aluminum oxide as valuable by-products.
Naimi-Jamal, M Reza; Hamzeali, Hamideh; Mokhtari, Javad; Boy, Jürgen; Kaupp, Gerd
2009-01-01
Benzylic alcohols are quantitatively oxidized by gaseous nitrogen dioxide to give pure aromatic aldehydes. The reaction gas mixtures are transformed to nitric acid, which renders the processes free of waste. The exothermic gas-liquid or gas-solid reactions profit from the solubility of nitrogen dioxide in the neat benzylic alcohols. The acid formed impedes further oxidation of the benzaldehydes. The neat isolated benzaldehydes and nitrogen dioxide quantitatively give the benzoic acids. Solid long-chain primary alcohols are directly and quantitatively oxidized with nitrogen dioxide gas to give the fatty acids in the solid state. The oxidations with ubiquitous nitrogen dioxide are extended to solid heterocyclic thioamides, which gives disulfides, and to diphenylamine, which gives tetraphenylhydrazine. These sustainable (green) specific oxidation procedures produce no dangerous residues from the oxidizing agent or from auxiliaries.
Dyke, Patrick H; Sutton, Mike; Wood, David; Marshall, Jonathan
2007-04-01
This paper reports on an intensive study into releases of polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated furans (PCDF) and polychlorinated biphenyls (PCB) from a diesel engine and the analysis of PCDD/F and PCB in crankcase lubricating oil. Experimental conditions were set and carefully controlled in order to maximize the possible impact of, and our ability to measure the effect of, changes in the levels of chlorine in the lubricant. Emissions to air were measured using modified EPA methods following the principles of the European EN 1948 standards. A series of 40 experimental runs were completed using three reference lubricants formulated to have three levels of chlorine present as a residual component (at levels of 12, 131 and 259 mg kg(-1) or ppm). The engine was run with and without the diesel oxidation catalyst. All lubricants were realistic oils and the use of unrealistic additives or doping of components - particularly chlorine - in the fuel and lubricant was carefully avoided. Analysis of fuel and lubricant (before and after testing) samples required strenuous attention to achieve acceptable recoveries and showed non-detectable levels of PCB and PCDD/F at a detection limit of around 1.5 ng I-TEQ kg(-1) (ppt), indistinguishable from the laboratory blank. The testing demonstrated the need for extreme care to be taken in developing measurement methods that are sufficiently sensitive for measuring chlorine content of fluids and PCDD/F in oils, the latter being particularly challenging. Mean emissions of PCDD/F with the diesel oxidation catalyst in place were 23 pg I-TEQ l(-1) of fuel and with the diesel oxidation catalyst removed 97 pg I-TEQ l(-1) of fuel. The results of this testing showed that the emissions of PCDD/F were greatly reduced by the presence of a diesel oxidation catalyst in the exhaust, a finding that has not been explicitly tested in previous work. They also show that emissions from the engine were not controlled by the level of chlorine in the lubricant and that emissions did not change in response to a much greater step change in the total chlorine entering the combustion chamber due to a change in the level of chlorine in the fuel. Emissions when the engine was configured with a diesel oxidation catalyst showed a consistent pattern that appears to be unique in the experience of the authors.
Many potable water disinfection byproducts (DBPs) that result from the reaction of natural organic matter (NOM) with oxidizing chlorine are known or suspected to be carcinogenic and mutagenic. The Ames assay is routinely used to assess an overall level of mutagenicity for all com...
USDA-ARS?s Scientific Manuscript database
Solvent retention capacity (SRC) and Bostwick flow were used to explore the effects of milling yield, extent of chlorination, and flour particle size on cake flour functionality and batter viscosity. The effects of the extent of chlorination were dramatic, but milling yield and additional milling t...
A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry.
Thornton, Joel A; Kercher, James P; Riedel, Theran P; Wagner, Nicholas L; Cozic, Julie; Holloway, John S; Dubé, William P; Wolfe, Glenn M; Quinn, Patricia K; Middlebrook, Ann M; Alexander, Becky; Brown, Steven S
2010-03-11
Halogen atoms and oxides are highly reactive and can profoundly affect atmospheric composition. Chlorine atoms can decrease the lifetimes of gaseous elemental mercury and hydrocarbons such as the greenhouse gas methane. Chlorine atoms also influence cycles that catalytically destroy or produce tropospheric ozone, a greenhouse gas potentially toxic to plant and animal life. Conversion of inorganic chloride into gaseous chlorine atom precursors within the troposphere is generally considered a coastal or marine air phenomenon. Here we report mid-continental observations of the chlorine atom precursor nitryl chloride at a distance of 1,400 km from the nearest coastline. We observe persistent and significant nitryl chloride production relative to the consumption of its nitrogen oxide precursors. Comparison of these findings to model predictions based on aerosol and precipitation composition data from long-term monitoring networks suggests nitryl chloride production in the contiguous USA alone is at a level similar to previous global estimates for coastal and marine regions. We also suggest that a significant fraction of tropospheric chlorine atoms may arise directly from anthropogenic pollutants.
The goal of this study was to assess the oxidation of NAPL in soil, 30% of which were composed of chlorinated ethanes and ethenes, using catalyzed hydrogen peroxide (CHP), activated persulfate (AP), and H2O2–persulfate (HP) co-amendment systems. Citrate, a buffer and iron ligand,...
Effects of Chlorine Promoted Oxidation on Arsenic Release from Sulfide Minerals
NASA Astrophysics Data System (ADS)
West, N.; Schreiber, M.; Gotkowitz, M.
2007-12-01
High arsenic concentrations (>100 ppb) have been measured in wells completed in the Ordovician St. Peter sandstone aquifer of eastern Wisconsin. The primary source of arsenic is As-bearing sulfide minerals within the aquifer. Periodic disinfection of wells by chlorination may facilitate arsenic release to groundwater by increasing the rate of sulfide mineral oxidation. During typical well disinfection procedures, aquifer solids exposed along uncased portions of wells remain in direct contact with chlorine disinfection solutions for up to twenty-four hours. Due to the redox sensitivity of arsenic mobility in groundwater, it is important to evaluate the effect of repeatedly adding oxidizers to an arsenic impacted aquifer system. This study focuses on abiotic processes that mobilize arsenic from the solid phase during controlled exposure to chlorinated solutions. Two St. Peter samples with As concentrations of 21 and 674 ppm were selected for the experiments. Before reaction, the aquifer mineralogy is characterized using scanning electron microscopy (SEM) and electron microprobe analysis (EMPA). The samples are then reacted with solutions of 60 mg/L free chlorine, 1200 mg/L free chlorine, or nanopure water (control) at pH 7.0 and pH 8.5. These parameters represent typical solution chemistries present within the wells after disinfection. Solutions are sampled periodically during the experiments and analyzed for As, Fe, other trace metals such as Co, Mo, Cr, and Ni, and sulfate. Analysis of the post-reaction solids using SEM, EMPA, laser ablation ICP-MS and Raman techniques are used to document the changes in mineralogy due to chlorination and to document which solid phases contain As.
Chang, H L; Alvarez-Cohen, L
1996-01-01
The microbial degradation of chlorinated and nonchlorinated methanes, ethanes, and ethanes by a mixed methane-oxidizing culture grown under chemostat and batch conditions is evaluated and compared with that by two pure methanotrophic strains: CAC1 (isolated from the mixed culture) and Methylosinus trichosporium OB3b. With the exception of 1,1-dichloroethylene, the transformation capacity (Tc) for each chlorinated aliphatic hydrocarbon was generally found to be in inverse proportion to its chlorine content within each aliphatic group (i.e., methanes, ethanes, and ethenes), whereas similar trends were not observed for degradation rate constants. Tc trends were similar for all methane-oxidizing cultures tested. None of the cultures were able to degrade the fully chlorinated aliphatics such as perchloroethylene and carbon tetrachloride. Of the four cultures tested, the chemostat-grown mixed culture exhibited the highest Tc for trichloroethylene, cis-1,2-dichloroethylene, tetrachloroethane, 1,1,1-trichloroethane, and 1,2-dichloroethane, whereas the pure batch-grown OB3b culture exhibited the highest Tc for all other compounds tested. The product toxicity of chlorinated aliphatic hydrocarbons in a mixture containing multiple compounds was cumulative and predictable when using parameters measured from the degradation of individual compounds. The Tc for each chlorinated aliphatic hydrocarbon in a mixture (Tcmix) and the total Tc for the mixture (sigma Tcmix) are functions of the individual Tc, the initial substrate concentration (S0), and the first-order rate constant (k/Ks) of each compound in the mixture, indicating the importance of identifying the properties and compositions of all potentially degradable compounds in a contaminant mixture. PMID:8795228
Microscale Chemistry in a Plastic Petri Dish: Preparation and Chemical Properties of Chlorine Gas
NASA Astrophysics Data System (ADS)
Choi, Martin M. F.
2002-08-01
This experiment demonstrates some of the chemistry of chlorine on a microscale, about the size of a water droplet. Chlorine gas was prepared from an acidified bleach solution in a plastic petri dish. The chlorine gas generated in situ reacted with other chemical reagents in the dish by diffusion. Some of the oxidizing properties and bleaching power of chlorine gas were shown visually and could be observed within 10 minutes. These experiments provide suitable hands-on experience for students at secondary-school level.
Oxidation of artificial sweetener sucralose by advanced oxidation processes: a review.
Sharma, Virender K; Oturan, Mehmet; Kim, Hyunook
2014-01-01
Sucralose, a chlorinated carbohydrate, has shown its increased use as an artificial sweetener and persistently exists in wastewater treatment plant effluents and aquatic environment. This paper aims to review possible degradation of sucralose and related carbohydrates by biological, electrochemical, chemical, and advanced oxidation processes. Biodegradation of sucralose in waterworks did not occur significantly. Electrochemical oxidation of carbohydrates may be applied to seek degradation of sucralose. The kinetics of the oxidation of sucralose and the related carbohydrates by different oxidative species is compared. Free chlorine, ozone, and ferrate did not show any potential to degrade sucralose in water. Advanced oxidation processes, generating highly strong oxidizing agent hydroxyl radicals ((•)OH), have demonstrated effectiveness in transforming sucralose in water. The mechanism of oxidation of sucralose by (•)OH is briefly discussed.
77 FR 33290 - National Organic Program (NOP); Sunset Review (2012)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-06
... the SUPPLEMENTARY INFORMATION. FOR FURTHER INFORMATION CONTACT: Melissa R. Bailey, Ph.D., Director, Standards Division, Telephone: (202) 720-3252; Fax: (202) 205-7808. SUPPLEMENTARY INFORMATION: I. Background... sprout production according to EPA label directions. (i) Calcium hypochlorite. (ii) Chlorine dioxide...
Bachelli, Mara Lígia Biazotto; Amaral, Rívia Darla Álvares; Benedetti, Benedito Carlos
2013-01-01
Lettuce is a leafy vegetable widely used in industry for minimally processed products, in which the step of sanitization is the crucial moment for ensuring a safe food for consumption. Chlorinated compounds, mainly sodium hypochlorite, are the most used in Brazil, but the formation of trihalomethanes from this sanitizer is a drawback. Then, the search for alternative methods to sodium hypochlorite has been emerging as a matter of great interest. The suitability of chlorine dioxide (60 mg L−1/10 min), peracetic acid (100 mg L−1/15 min) and ozonated water (1.2 mg L−1 /1 min) as alternative sanitizers to sodium hypochlorite (150 mg L−1 free chlorine/15 min) were evaluated. Minimally processed lettuce washed with tap water for 1 min was used as a control. Microbiological analyses were performed in triplicate, before and after sanitization, and at 3, 6, 9 and 12 days of storage at 2 ± 1 °C with the product packaged on LDPE bags of 60 μm. It was evaluated total coliforms, Escherichia coli, Salmonella spp., psicrotrophic and mesophilic bacteria, yeasts and molds. All samples of minimally processed lettuce showed absence of E. coli and Salmonella spp. The treatments of chlorine dioxide, peracetic acid and ozonated water promoted reduction of 2.5, 1.1 and 0.7 log cycle, respectively, on count of microbial load of minimally processed product and can be used as substitutes for sodium hypochlorite. These alternative compounds promoted a shelf-life of six days to minimally processed lettuce, while the shelf-life with sodium hypochlorite was 12 days. PMID:24516433
Bachelli, Mara Lígia Biazotto; Amaral, Rívia Darla Álvares; Benedetti, Benedito Carlos
2013-01-01
Lettuce is a leafy vegetable widely used in industry for minimally processed products, in which the step of sanitization is the crucial moment for ensuring a safe food for consumption. Chlorinated compounds, mainly sodium hypochlorite, are the most used in Brazil, but the formation of trihalomethanes from this sanitizer is a drawback. Then, the search for alternative methods to sodium hypochlorite has been emerging as a matter of great interest. The suitability of chlorine dioxide (60 mg L(-1)/10 min), peracetic acid (100 mg L(-1)/15 min) and ozonated water (1.2 mg L(-1)/1 min) as alternative sanitizers to sodium hypochlorite (150 mg L(-1) free chlorine/15 min) were evaluated. Minimally processed lettuce washed with tap water for 1 min was used as a control. Microbiological analyses were performed in triplicate, before and after sanitization, and at 3, 6, 9 and 12 days of storage at 2 ± 1 °C with the product packaged on LDPE bags of 60 μm. It was evaluated total coliforms, Escherichia coli, Salmonella spp., psicrotrophic and mesophilic bacteria, yeasts and molds. All samples of minimally processed lettuce showed absence of E. coli and Salmonella spp. The treatments of chlorine dioxide, peracetic acid and ozonated water promoted reduction of 2.5, 1.1 and 0.7 log cycle, respectively, on count of microbial load of minimally processed product and can be used as substitutes for sodium hypochlorite. These alternative compounds promoted a shelf-life of six days to minimally processed lettuce, while the shelf-life with sodium hypochlorite was 12 days.
Ferranti, Greta; Mansi, Antonella; Marcelloni, Anna M.; Proietto, Anna R.; Saini, Navneet; Borella, Paola; Bargellini, Annalisa
2016-01-01
Physical and chemical disinfection methods have been proposed with the aim of controlling Legionella water contamination. To date, the most effective procedures for reducing bacterial contamination have not yet been defined. The aim of this study was to assess the long-term effectiveness of various disinfection procedures in order to reduce both culturable and nonculturable (NC) legionellae in different hospital water networks treated with heat, chlorine dioxide, monochloramine, and hydrogen peroxide. The temperature levels and biocide concentrations that proved to give reliable results were analyzed. In order to study the possible effects on the water pipes, we verified the extent of corrosion on experimental coupons after applying each method for 6 months. The percentage of positive points was at its lowest after treatment with monochloramine, followed by chlorine dioxide, hydrogen peroxide, and hyperthermia. Different selections of Legionella spp. were observed, as networks treated with chlorine-based disinfectants were contaminated mainly by Legionella pneumophila serogroup 1, hyperthermia was associated with serogroups 2 to 14, and hydrogen peroxide treatment was associated mainly with non-pneumophila species. NC cells were detected only in heat-treated waters, and also when the temperature was approximately 60°C. The corrosion rates of the coupons were within a satisfactory limit for water networks, but the morphologies differed. We confirm here that chemical disinfection controls Legionella colonization more effectively than hyperthermia does. Monochloramine was the most effective treatment, while hydrogen peroxide may be a promising alternative to chlorine-based disinfectants due to its ability to select for other, less virulent or nonpathogenic species. PMID:26969696
Chebeir, Michelle; Liu, Haizhou
2018-05-17
The occurrence of chromium (Cr) as an inorganic contaminant in drinking water is widely reported. One source of Cr is its accumulation in iron-containing corrosion scales of drinking water distribution systems as Cr(III)-Fe(III) hydroxide, i.e., FexCr(1-x)(OH)3(s), where x represents the Fe(III) molar content and typically varies between 0.25 and 0.75. This study investigated the kinetics of inadvertent hexavalent chromium Cr(VI) formation via the oxidation of FexCr(1-x)(OH)3(s) by chlorine as a residual disinfectant in drinking water, and examined the impacts of Fe(III) content and drinking water chemical parameters including pH, bromide and bicarbonate on the rate of Cr(VI) formation. Data showed that an increase in Fe(III) molar content resulted in a significant decrease in the stoichiometric Cr(VI) yield and the rate of Cr(VI) formation, mainly due to chlorine decay induced by Fe(III) surface sites. An increase in bicarbonate enhanced the rate of Cr(VI) formation, likely due to the formation of Fe(III)-carbonato surface complexes that slowed down the scavenging reaction with chlorine. The presence of bromide significantly accelerated the oxidation of FexCr(1-x)(OH)3(s) by chlorine, resulting from the catalytic effect of bromide acting as an electron shuttle. A higher solution pH between 6 and 8.5 slowed down the oxidation of Cr(III) by chlorine. These findings suggested that the oxidative conversion of chromium-containing iron corrosion products in drinking water distribution systems can lead to the occurrence of Cr(VI) at the tap, and the abundance of iron, and a careful control of pH, bicarbonate and bromide levels can assist the control of Cr(VI) formation.
Kini, Vineet Vaman; Padhye, Ashvini
2015-01-01
Background Chlorine dioxide (ClO2) is an oxidizing agent with known bactericidal, viricidal and fungicidal properties. Its efficacy in reducing the halitosis has been established by previous literature. However, data evaluating its antiplaque property is scarce. Chlorhexidine (CHX) is considered as the gold standard and an effective adjunctive to mechanical plaque removal. However, it is associated with few reversible side effects. Therefore a study was conducted to assess the antiplaque property of ClO2 containing mouthrinse against CHX mouthrinse. Aims and Objectives To evaluate the efficacy of stabilized chlorine dioxide containing mouthrinse and CHX containing mouthrinse in inhibition of tongue coat accumulation and dental plaque formation using a four day plaque regrowth model clinically and microbiologically in a healthy dental cohort. Materials and Methods A Single Center, Randomized, Triple blinded, Microbiological clinical trial was conducted involving 25 healthy dental students volunteers (11 males, 14 females). Two commercially available mouthrinse: Mouthrinse A – Aqueous based ClO2 mouthrinse Freshchlor® and Mouthrinse B - Aqueous based 0.2% CHX mouthrinse Hexidine® were selected as the test products. Subjects were asked to rinse and gargle for 1 minute with the allocated mouthrinse under supervision after supragingival scaling, polishing and tongue coat removal. After four hours, smears were taken from the buccal mucosa and tooth surface. On the fifth day from baseline of four day non brushing plaque regrowth model the samples were again taken from buccal mucosa and tooth surface followed by recording of plaque scores by Rastogi Modification of Navy Plaque index, extent of tongue coat by Winkel’s tongue coating index and measuring tongue coat wet weight in grams. The samples collected were subjected to microbial analysis and the results were expressed as colony forming units (CFUs) per sample. Statistical Analysis The Data was analysed using SPSS 16.00 and presented using descriptive statistics. Independent t-test was used for the comparison between mouthrinse A groups & mouthrinse B group. Results The plaque scores and Winkels tongue coat scores, wet tongue coat weight recorded on the fifth day after the use of the two mouthrinse didn’t show a statistically significant difference. The CFU per sample from tooth and mucosa after four hours revealed low bacteria count with respect to mouthrinse B however the CFU obtained on the fifth day did not show a statistically significant difference between the two mouthrinse. Conclusion The clinical antiplaque efficacy of CHX and ClO2 mouthwash is comparable and so is the efficacy in reducing the oral bacterial load. PMID:26501017
Genotoxicity and cytotoxicity assessment in lake drinking water produced in a treatment plant.
Buschini, Annamaria; Carboni, Pamela; Frigerio, Silvia; Furlini, Mariangela; Marabini, Laura; Monarca, Silvano; Poli, Paola; Radice, Sonia; Rossi, Carlo
2004-09-01
Chemical analyses and short-term mutagenicity bioassays have revealed the presence of genotoxic disinfection by-products in drinking water. In this study, the influence of the different steps of surface water treatment on drinking water mutagen content was evaluated. Four different samples were collected at a full-scale treatment plant: raw lake water (A), water after pre-disinfection with chlorine dioxide and coagulation (B), water after pre-disinfection, coagulation and granular activated carbon filtration (C) and tap water after post-disinfection with chlorine dioxide just before its distribution (D). Water samples, concentrated by solid phase adsorption on silica C18 columns, were tested in human leukocytes and HepG2 hepatoma cells using the comet assay and in HepG2 cells in the micronuclei test. A significant increase in DNA migration was observed in both cell types after 1 h treatment with filtered and tap water, and, to a lesser extent, chlorine dioxide pre-disinfected water. Similar findings were observed for the induction of "ghost" cells. Overloading of the carbon filter, with a consequent peak release, might explain the high genotoxicity found in water samples C and D. Cell toxicity and DNA damage increases were also detected in metabolically competent HepG2 cells treated with a lower concentration of tap water extract for a longer exposure time (24 h). None of the water extracts significantly increased micronuclei frequencies. Our monitoring approach appears to be able to detect contamination related to the different treatment stages before drinking water consumption and the results suggest the importance of improving the technologies for drinking water treatment to prevent human exposure to potential genotoxic compounds.
Taneja, Sonali; Mishra, Neha; Malik, Shubhra
2014-01-01
Introduction: Irrigation plays an indispensable role in removal of tissue remnants and debris from the complicated root canal system. This study compared the human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite. Materials and Methods: Pulp tissue was standardized to a weight of 9 mg for each sample. In all,60 samples obtained were divided into 6 groups according to the irrigating solution used- 2.5% sodium hypochlorite (NaOCl), 5.25% NaOCl, 5% calcium hypochlorite (Ca(OCl)2), 10% Ca(OCl)2, 5%chlorine dioxide (ClO2) and 13% ClO2. Pulp tissue was placed in each test tube carrying irrigants of measured volume (5ml) according to their specified subgroup time interval: 30 minutes (Subgroup A) and 60 minutes (Subgroup B). The solution from each sample test tube was filtered and was left for drying overnight. The residual weight was calculated by filtration method. Results: Mean tissue dissolution increases with increase in time period. Results showed 5.25% NaOCl to be most effective at both time intervals followed by 2.5% NaOCl at 60 minutes, 10%Ca(OCl)2 and 13% ClO2 at 60 minutes. Least amount of tissue dissolving ability was demonstrated by 5% Ca(OCl)2 and 5% ClO2 at 30 minutes. Distilled water showed no pulp tissue dissolution. Conclusion: Withinthe limitations of the study, NaOCl most efficiently dissolved the pulp tissue at both concentrations and at both time intervals. Mean tissue dissolution by Ca(OCl)2 and ClO2 gradually increased with time and with their increase in concentration. PMID:25506141
Doona, Christopher J.; Feeherry, Florence E.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrence J.
2014-01-01
There is a stated Army need for a field-portable, non-steam sterilizer technology that can be used by Forward Surgical Teams, Dental Companies, Veterinary Service Support Detachments, Combat Support Hospitals, and Area Medical Laboratories to sterilize surgical instruments and to sterilize pathological specimens prior to disposal in operating rooms, emergency treatment areas, and intensive care units. The following ensemble of novel, ‘clean and green’ chlorine dioxide technologies are versatile and flexible to adapt to meet a number of critical military needs for decontamination6,15. Specifically, the Portable Chemical Sterilizer (PCS) was invented to meet urgent battlefield needs and close critical capability gaps for energy-independence, lightweight portability, rapid mobility, and rugged durability in high intensity forward deployments3. As a revolutionary technological breakthrough in surgical sterilization technology, the PCS is a Modern Field Autoclave that relies on on-site, point-of-use, at-will generation of chlorine dioxide instead of steam. Two (2) PCS units sterilize 4 surgical trays in 1 hr, which is the equivalent throughput of one large steam autoclave (nicknamed “Bertha” in deployments because of its cumbersome size, bulky dimensions, and weight). However, the PCS operates using 100% less electricity (0 vs. 9 kW) and 98% less water (10 vs. 640 oz.), significantly reduces weight by 95% (20 vs. 450 lbs, a 4-man lift) and cube by 96% (2.1 vs. 60.2 ft3), and virtually eliminates the difficult challenges in forward deployments of repairs and maintaining reliable operation, lifting and transporting, and electrical power required for steam autoclaves. PMID:24998679
Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process.
Xiang, Yingying; Fang, Jingyun; Shang, Chii
2016-03-01
The UV/chlorine advanced oxidation process (AOP), which forms reactive species such as hydroxyl radicals (HO) and reactive chlorine species (RCS) such as chlorine atoms (Cl) and Cl2(-), is being considered as an alternative to the UV/H2O2 AOP for the degradation of emerging contaminants. This study investigated the kinetics and pathways of the degradation of a recalcitrant pharmaceutical and personal care product (PPCP)-ibuprofen (IBP)-by the UV/chlorine AOP. The degradation of IBP followed the pseudo first-order kinetics. The first-order rate constant was 3.3 times higher in the UV/chlorine AOP than in the UV/H2O2 AOP for a given chemical molar dosage at pH 6. The first-order rate constant decreased from 3.1 × 10(-3) s(-1) to 5.5 × 10(-4) s(-1) with increasing pH from 6 to 9. Both HO and RCS contributed to the degradation, and the contribution of RCS increased from 22% to 30% with increasing pH from 6 to 9. The degradation was initiated by HO-induced hydroxylation and Cl-induced chlorine substitution, and sustained through decarboxylation, demethylation, chlorination and ring cleavage to form more stable products. Significant amounts of chlorinated intermediates/byproducts were formed from the UV/chlorine AOP, and four chlorinated products were newly identified. The yield of total organic chlorine (TOCl) was 31.6 μM after 90% degradation of 50 μM IBP under the experimental conditions. The known disinfection by-products (DBPs) comprised 17.4% of the TOCl. The effects of water matrix in filtered drinking water on the degradation were not significant, demonstrating the practicality of the UV/chlorine AOP for the control of some refractory PPCPs. However, the toxicity of the chlorinated products should be further assessed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Motorization of China implies changes in Pacific air chemistry and primary production
NASA Astrophysics Data System (ADS)
Elliott, Scott; Blake, Donald R.; Duce, Robert A.; Lai, C. Aaron; McCreary, Iain; McNair, Laurie A.; Rowland, F. Sherwood; Russell, Armistead G.; Streit, Gerald E.; Turco, Richard P.
1997-11-01
The People's Republic of China, the world's most populous nation, is considering extensive development of its automotive transportation infrastructure. Upper limits to the associated pollution increases can be defined through scenarios with Western style vehicles and vehicle-to-person ratios. Here we construct estimates of fundamental changes to chemistry of the Pacific ocean/atmosphere system through simple budgeting procedures. Regional increases in tropospheric ozone could reach tens of parts per billion. Observations/experiments suggest that enhanced nitrogen oxides will react with sea salt aerosols to yield chlorine atoms in the marine boundary layer. Nitrate deposition onto the open sea surface would support several percent of exported North Pacific carbon production. Transport of biologically active iron to surface waters may follow from increases in mineral dust and acid sulfate aerosols. Altered plankton ecodynamics will feed back into climate processes through sea to air flux of reduced sulfur gases and through carbon dioxide drawdown.
Perchlorate radiolysis on Mars and the origin of martian soil reactivity.
Quinn, Richard C; Martucci, Hana F H; Miller, Stephanie R; Bryson, Charles E; Grunthaner, Frank J; Grunthaner, Paula J
2013-06-01
Results from the Viking biology experiments indicate the presence of reactive oxidants in martian soils that have previously been attributed to peroxide and superoxide. Instruments on the Mars Phoenix Lander and the Mars Science Laboratory detected perchlorate in martian soil, which is nonreactive under the conditions of the Viking biology experiments. We show that calcium perchlorate exposed to gamma rays decomposes in a CO2 atmosphere to form hypochlorite (ClO(-)), trapped oxygen (O2), and chlorine dioxide (ClO2). Our results show that the release of trapped O2 (g) from radiation-damaged perchlorate salts and the reaction of ClO(-) with amino acids that were added to the martian soils can explain the results of the Viking biology experiments. We conclude that neither hydrogen peroxide nor superoxide is required to explain the results of the Viking biology experiments.
Formation and fate of alkyl nitrates from chlorine-initiated oxidation of alkanes
NASA Astrophysics Data System (ADS)
Wang, D. S.; Hildebrandt Ruiz, L.
2017-12-01
Alkanes are a main source of anthropogenic volatile organic compounds (VOCs). Studies suggest that large alkanes, despite having high carbon mass, often do not significantly contribute to secondary organic aerosol (SOA) formation due to their low reactivity towards hydroxyl radicals. Chlorine radicals react much more quickly with alkanes; for example, the reaction of Cl with n-decane is about 50 times faster than the reaction of OH with n-decane. High reactive chlorine concentrations have been reported within continental regions as well as near coastal regions. The rapid oxidation of alkanes by chlorine radicals can therefore be a potentially significant, and overlooked source of alkylperoxy radicals and SOA formation. We present results from environmental chamber experiments on chlorine-initiated oxidation of C8, C10, and C12 linear and branched alkanes. Experiments were conducted under high NOx conditions to simulate highly polluted industrial environments. Formation of multigenerational gas-phase oxidation products were monitored using a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (CIMS). High SOA formation was observed using an Aerosol Chemical Speciation Monitor (ACSM). Aerosol volatility was determined using a thermodenuder and a kinetic aerosol evaporation model. Particle-phase composition was investigated using a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to the CIMS, where dimer and oligomer formation were observed. Results from this study can be used to more accurately represent the fate of anthropogenic alkanes and SOA loadings in the atmosphere.
Chlorination of lignin by ubiquitous fungi has a likely role in global organochlorine production
Patricia Ortiz-Bermudez; Kolby C. Hirth; Ewald Srebotnik; Kenneth E. Hammel
2007-01-01
Soils and decayed plant litter contain significant quantities of chlorinated aromatic polymers that have a natural but largely unknown origin. We used cupric oxide ligninolysis coupled with gas chromatography/mass spectrometry to show that Curvularia inaequalis, a widely distributed litter ascomycete, chlorinated the aromatic rings of lignin in wood that it was...
Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helene Hilger; James Oliver; Jean Bogner
2009-03-31
Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collectionmore » from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.« less
Impact of water quality on chlorine demand of corroding copper.
Lytle, Darren A; Liggett, Jennifer
2016-04-01
Copper is widely used in drinking water premise plumbing system materials. In buildings such as hospitals, large and complicated plumbing networks make it difficult to maintain good water quality. Sustaining safe disinfectant residuals throughout a building to protect against waterborne pathogens such as Legionella is particularly challenging since copper and other reactive distribution system materials can exert considerable demands. The objective of this work was to evaluate the impact of pH and orthophosphate on the consumption of free chlorine associated with corroding copper pipes over time. A copper test-loop pilot system was used to control test conditions and systematically meet the study objectives. Chlorine consumption trends attributed to abiotic reactions with copper over time were different for each pH condition tested, and the total amount of chlorine consumed over the test runs increased with increasing pH. Orthophosphate eliminated chlorine consumption trends with elapsed time (i.e., chlorine demand was consistent across entire test runs). Orthophosphate also greatly reduced the total amount of chlorine consumed over the test runs. Interestingly, the total amount of chlorine consumed and the consumption rate were not pH dependent when orthophosphate was present. The findings reflect the complex and competing reactions at the copper pipe wall including corrosion, oxidation of Cu(I) minerals and ions, and possible oxidation of Cu(II) minerals, and the change in chlorine species all as a function of pH. The work has practical applications for maintaining chlorine residuals in premise plumbing drinking water systems including large buildings such as hospitals. Published by Elsevier Ltd.
Advanced Valve Technology. Volume 2. Materials Compatibility and Liquid Propellant Study
1967-11-01
hydrogen fluoride and hydrogen chloride, which are formed by the reaction of chlorine trifluoride with water. Aluminum alloys, 18-8 stainless steels... CHLORINE TRIFLUORIDE (CTF) (ClF3) 1-68 CHLORINE PENTAFLUORIDE 1-72 OXYGEN DIFLUORIDE (OF2) 1-74 PERCHLORYL FLUORIDE (PF) (FC103 or C103F) 1-79...enclosures refer to the Propellant Rating Chart, Page 1-11. 1-67 SPACE STORABLE PROPELLANTS (Continued) OXIDIZERS CHLORINE TRIFLUORIDE (CTF) (CIF 3
Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water.
Liu, Xiaolu; Wang, Jingqi; Liu, Tingting; Kong, Weiwen; He, Xiaoqing; Jin, Yi; Zhang, Bolin
2015-01-01
Assimilable organic carbon (AOC) is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM). The initial AOC concentration was 168 μg.L(-1) in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1 × 10(5) cells.mL(-1) to 2.6 × 10(4) cells.mL(-1) at an initial free chlorine dose of 0.6 mg.L(-1) to 4.8 × 10(4) cells.mL(-1) at an initial free chlorine dose of 0.3 mg.L(-1) due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network.
Effects of Assimilable Organic Carbon and Free Chlorine on Bacterial Growth in Drinking Water
Liu, Tingting; Kong, Weiwen; He, Xiaoqing; Jin, Yi; Zhang, Bolin
2015-01-01
Assimilable organic carbon (AOC) is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM). The initial AOC concentration was 168 μg.L-1 in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1×105 cells.mL-1 to 2.6×104 cells.mL-1 at an initial free chlorine dose of 0.6 mg.L-1 to 4.8×104 cells.mL-1 at an initial free chlorine dose of 0.3 mg.L-1 due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network. PMID:26034988
Liu, Wei; Wei, Dongbin; Liu, Qi; Du, Yuguo
2016-07-01
Benzophenones compounds (BPs) are widely used as UV filters, and have been frequently found in multiple environmental matrices. The residual of BPs in water would cause potential threats on ecological safety and human health. Chlorination disinfection is necessary in water treatment process, in which many chemicals remained in water would react with disinfectant chlorine and form toxic by-products. By using ultra performance liquid phase chromatography quadrupole time of flight mass spectrometer (UPLC-QTOF-MS), nuclear magnetic resonance (NMR), the transformation of 4-hydroxyl benezophenone (4HB) with free available chlorine (FAC) was characterized. Eight major products were detected and seven of them were identified. Transformation pathways of 4HB under acid, neutral, and alkaline conditions were proposed respectively. The transformation mechanisms involved electrophilic chlorine substitution of 4HB, Baeyer-Villiger oxidation of ketones, hydrolysis of esters and oxidative breakage of benzene ring. The orthogonal experiments of pH and dosages of disinfectant chlorine were conducted. The results suggested that pH conditions determined the occurrence of reaction types, and the dosages of disinfectant chlorine affected the extent of reactions. Photobacterium assay demonstrated that acute toxicity had significant increase after chlorination disinfection of 4HB. It was proved that 3,5-dichloro-4HB, one of the major transformation products, was responsible for the increasing acute toxicity after chlorination. It is notable that, 4HB at low level in real ambient water matrices could be transformed during simulated chlorination disinfection practice. Especially, two major products 3-chloro-4HB and 3,5-dichloro-4HB were detected out, implying the potential ecological risk after chlorination disinfection of 4HB. Copyright © 2016 Elsevier Ltd. All rights reserved.
40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2011 CFR
2011-07-01
... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75 parts...
40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2012 CFR
2012-07-01
... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75 parts...
40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2010 CFR
2010-07-01
... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75 parts...
40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2013 CFR
2013-07-01
... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75 parts...
40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2014 CFR
2014-07-01
... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75 parts...
In-situ generation of chlorine dioxide for surface decontamination of produce
USDA-ARS?s Scientific Manuscript database
Fruits and vegetables, particularly fresh-cut products, are frequently contaminated with bacterial pathogens and implicated in foodborne illnesses. The objective of this study was to develop a unique in-situ sequential surface decontamination method for produce using sodium chlorite and acid. The ...
Jimenez-Villarreal, J R; Pohlman, F W; Johnson, Z B; Brown, A H
2003-11-01
The impact of multiple antimicrobial interventions on ground beef processing, lipid, textural, instrumental color and sensory characteristics were evaluated. Beef trimmings were treated with 0.5% cetylpyridinium chloride followed by 10% trisodium phosphate (CT), 200-ppm chlorine dioxide followed by 0.5% cetylpyridinium chloride (CLC), 200-ppm chlorine dioxide followed by 10% trisodium phosphate (CLT), or 2% lactic acid followed by 0.5% cetylpyridinium chloride (LC) and compared to an untreated control (C). Sensory panelists found LC and CT treatments similar (P>0.05) in grinding ability to C. By day 2 of display, CT, CLT and LC patties were redder (a(∗); P<0.05) than C. Sensory panelists found CT patties redder (P<0.05) than C by day 2 of display. Sensory panelists found CT and CLT juicier than C. Therefore, the use of these multiple antimicrobial intervention agents on beef trimmings may improve sensory characteristics and shelf-life of ground beef patties.
Thiessen, G P; Usborne, W R; Orr, H L
1984-04-01
A large spin-type chiller in an Ontario poultry processing plant was adapted so that the chill water could be treated with various levels of chlorine dioxide ( ClO2 ), increasing the concentration of ClO2 from 0 to 1.39 mg/liter resulting in reducing the bacteria count to the point where salmonellae could not be isolated from the chill water or the chilled broiler carcasses. In addition, coliform, psychrotroph , and aerobic plate counts were all greatly reduced (less than 1 log cycle) in chill water but were only slightly reduced (less than .5 log cycle) in macerated chicken broiler breast skin. Shelf-life was lengthened for broiler carcasses treated with 1.33 and 1.39 mg/liter ClO2 as compared to control carcasses. Sensory panelists reported no off flavors for any ClO2 concentration but rated broiler skin as being slightly lighter in color compared to control carcasses at all concentrations of ClO2 treatment.
Impact of water quality on chlorine demand of corroding copper
Copper is widely used in drinking water premise plumbing system materials. In buildings such ashospitals, large and complicated plumbing networks make it difficult to maintain good water quality.Sustaining safe disinfectant residuals throughout a building to protect against waterborne pathogenssuch as Legionella is particularly challenging since copper and other reactive distribution system materialscan exert considerable demands. The objective of this work was to evaluate the impact of pH andorthophosphate on the consumption of free chlorine associated with corroding copper pipes over time. Acopper test-loop pilot system was used to control test conditions and systematically meet the studyobjectives. Chlorine consumption trends attributed to abiotic reactions with copper over time weredifferent for each pH condition tested, and the total amount of chlorine consumed over the test runsincreased with increasing pH. Orthophosphate eliminated chlorine consumption trends with elapsedtime (i.e., chlorine demand was consistent across entire test runs). Orthophosphate also greatly reducedthe total amount of chlorine consumed over the test runs. Interestingly, the total amount of chlorineconsumed and the consumption rate were not pH dependent when orthophosphate was present. Thefindings reflect the complex and competing reactions at the copper pipe wall including corrosion,oxidation of Cu(I) minerals and ions, and possible oxidation of Cu(II) minerals, and the change in
Flores, Nelly; Sharif, Farbod; Yasri, Nael; Brillas, Enric; Sirés, Ignasi; Roberts, Edward P L
2018-06-01
This work compares the ability of physical and chemical treatments, namely adsorption and electrochemical advanced oxidation processes, to remove tyrosol from aqueous medium. Adsorption on graphene nanoplatelets (GNPs) performed much better than that with a graphite intercalation compound. Adsorption isotherms were found to follow the Freundlich model (R 2 = 0.96), which is characteristic of a chemisorption process. Successful electrochemical regeneration enables 5 successive adsorption/regeneration cycles before corrosion of GNPs occurs. Other typical aromatic contaminants that may coexist with tyrosol can be also adsorbed on GNPs. Percentage of regeneration efficiency of GNPs showed a higher affinity towards Lewis acids group compounds and a lower one towards Lewis base. The treatment of 100 mL of 0.723 mM tyrosol solutions in non-chlorinated and chlorinated matrices at pH 3.0 was carried out by electrochemical oxidation with electrogenerated H 2 O 2 (EO-H 2 O 2 ), electro-Fenton (EF) and UVA photoelectro-Fenton (PEF). Trials were made with a BDD anode and an air-diffusion cathode at 10-30 mA cm -2 . Hydroxyl radicals formed at the anode from water oxidation and/or in the bulk from Fenton's reaction between added Fe 2+ and generated H 2 O 2 , along with active chlorine produced in chlorinated medium, were the main oxidants. Tyrosol concentration always decayed following a pseudo-first-order kinetics and its mineralization rose as EO-H 2 O 2 < EF < PEF, more rapidly in the chlorinated matrix. The potent photolysis of intermediates under UVA radiation explained the almost total mineralization achieved by PEF in the latter medium. The effect of current density and tyrosol content on the performance of all processes was examined. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sichel, C; Garcia, C; Andre, K
2011-12-01
UV/chlorine (UV/HOCl and UV/ClO(2)) Advanced Oxidation Processes (AOPs) were assessed with varying process layout and compared to the state of the art UV/H(2)O(2) AOP. The process comparison focused on the economical and energy saving potential of the UV/chlorine AOP. Therefore the experiments were performed at technical scale (250 L/h continuous flow reactor) and at process energies, oxidant and model contaminant concentrations expected in full scale reference plants. As model compounds the emerging contaminants (ECs): desethylatrazine, sulfamethoxazole, carbamazepine, diclofenac, benzotriazole, tolyltriazole, iopamidole and 17α-ethinylestradiol (EE2) were degraded at initial compound concentrations of 1 μg/L in tap water and matrixes with increased organic load (46 mg/L DOC). UV/chlorine AOP organic by-product forming potential was assessed for trihalomethanes (THMs) and N-Nitrosodimethylamine (NDMA). A process design was evaluated which can considerably reduce process costs, energy consumption and by-product generation from UV/HOCl AOPs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Photo-oxidation method using MoS2 nanocluster materials
Wilcoxon, Jess P.
2001-01-01
A method of photo-oxidizing a hydrocarbon compound is provided by dispersing MoS.sub.2 nanoclusters in a solvent containing a hydrocarbon compound contaminant to form a stable solution mixture and irradiating the mixture to photo-oxide the hydrocarbon compound. Hydrocarbon compounds of interest include aromatic hydrocarbon and chlorinated hydrocarbons. MoS.sub.2 nanoclusters with an average diameter less than approximately 10 nanometers are shown to be effective in decomposing potentially toxic aromatic and chlorinated hydrocarbons, such as phenol, pentachlorophenol, chlorinated biphenols, and chloroform, into relatively non-toxic compounds. The irradiation can occur by exposing the MoS.sub.2 nanoclusters and hydrocarbon compound mixture with visible light. The MoS.sub.2 nanoclusters can be introduced to the toxic hydrocarbons as either a MoS.sub.2 solution or deposited on a support material.
NASA Technical Reports Server (NTRS)
Maahs, H. G.
1975-01-01
The interference of small concentrations (less than 4 percent by volume) of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence was measured. The sample gas consisted primarily of nitrogen, with less than 100 parts per million concentration of nitric oxide, and with small concentrations of oxygen, carbon dioxide, and water vapor added. Results obtained under these conditions indicate that although oxygen does not measurably affect the analysis for nitric oxide, the presence of carbon dioxide and water vapor causes the indicated nitric oxide concentration to be too low. An interference factor - defined as the percentage change in indicated nitric oxide concentration (relative to the true nitric oxide concentration) divided by the percent interfering gas present - was determined for carbon dioxide to be -0.60 + or - 0.04 and for water vapor to be -2.1 + or - 0.3.
40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2014 CFR
2014-07-01
... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as sulfur...
40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2013 CFR
2013-07-01
... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as sulfur...
40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2010 CFR
2010-07-01
... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). Link to an... to or greater than 0.005 ppm shall be rounded up). (c) Sulfur oxides shall be measured in the ambient...
40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2012 CFR
2012-07-01
... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as sulfur...
Podgorsek, Ajda; Iskra, Jernej
2010-04-20
Oxidative chlorination with HCl/H2O2 in 1,1,1-trifluoroethanol was used to transform aryl iodides into aryliodine(III) dihalides. In this instance 1,1,1-trifluoroethanol is not only the reaction medium, but is also an activator of hydrogen peroxide for the oxidation of hydrochloric acid to molecular chlorine. Aryliodine(III) dichlorides were formed in 72-91% isolated yields in the reaction of aryl iodides with 30% aqueous hydrogen peroxide and hydrochloric acid at ambient temperature. A study of the effect that substituents on the aromatic ring have on the formation and stability of aryliodine(III) dichlorides shows that the transformation is easier to achieve in the presence of the electron-donating groups (i.e. methoxy), but in this case the products rapidly decompose under the reported reaction conditions to form chlorinated arenes. The results suggest that oxidation of hydrogen chloride with hydrogen peroxide is the initial reaction step, while direct oxidation of aryl iodide with hydrogen peroxide is less likely to occur.
Edible Oil Barriers for Treatment of Chlorinated Solvent Contaminated Groundwater
2009-07-01
CF Chloroform Cl# Chlorine Number CO Carbon Monoxide CT Carbon Tetrachloride CVOC Chlorinated Volatile Organic Compound 1,2-DCA 1,2...As Safe HCl Hydrochloric Acid HRC® Hydrogen Release Compound IDW Investigation-Derived Waste ISCO In Situ Chemical Oxidation LEL Lower...Total Organic Carbon VC Vinyl Chloride VFA Volatile Fatty Acid VOC Volatile Organic Compound ZVI Zero Valent Iron viii ACKNOWLEDGEMENTS
ERIC Educational Resources Information Center
Shaw, C. Frank, III; Webb, James W.; Rothenberger, Otis
2016-01-01
The nature of acidic and basic (alkaline) oxides can be easily illustrated via a series of three straightforward classroom demonstrations for high school and general chemistry courses. Properties of carbon dioxide, sulfur dioxide, and magnesium oxide are revealed inexpensively and safely. Additionally, the very different kinetics of hydration of…
WIRELESS ELECTROCHEMICAL CLO2 MONITOR FOR DECONTAMINATION OPERATIONS - PHASE I
The U.S. Environmental Protection Agency has identified the need for an accurate and field-rugged instrument to monitor chlorine dioxide (ClO2) for use in monitoring building decontamination operations.
The proposed Phase I study will evaluate the feasibil...
WIRELESS ELECTROCHEMICAL CLO2 MONITOR FOR DECONTAMINATION OPERATIONS - PHASE II
Recognizing the importance of ClO2 in disinfection and decontamination operations, the U.S. Environmental Protection Agency (EPA) had identified the need for portable, accurate and field-rugged chlorine dioxide (ClO2) monitors for use in monitoring buildi...
The purpose of this project was to determine the efficacy ofCl02 fumigation to inactivate viable mold, mycotoxins, and allergens on building materials. Alternaria alternata, Aspergillus versicolor, Aspergillus Jumigatus, Chaetomium globosum, and Stachybotrys chartarum were indivi...
Reanalysis of the Viking results suggests perchlorate and organics at mid-latitudes on Mars
NASA Astrophysics Data System (ADS)
Navarro-Gonzalez, R.; Vargas, E.; de La Rosa, J.; Raga, A. C.; McKay, C.
2010-12-01
The most comprehensive search for organics in the Martian soil was performed by the Viking Landers. Martian soil was subjected to a thermal volatilization process in order to vaporize and break organic molecules, and the resultant gases and volatiles were analyzed by gas chromatography-mass spectrometry. Only water at 0.1-1.0 wt% was detected with traces of chloromethane at 15 ppb in the Viking Landing site 1, and water at 0.05-1.0 wt% and carbon dioxide at 50-700 ppm with traces of dichloromethane at 0.04-40 ppb in the Viking Landing site 2. The abundance ratio of the 35Cl and 37Cl isotopes in these chlorohydrocarbons was 3:1, corresponding to the terrestrial isotopic abundance. Therefore, these chlorohydrocarbons were considered to be terrestrial contaminants although they had not been detected at those levels in the blank runs. Recently, perchlorate was discovered in the Martian Arctic soil by the Phoenix Lander. Here we show that when Mars-like soils from the Atacama Desert with 32±6 ppm of organic carbon are mixed with 1 wt% magnesium perchlorate and heated nearly all the organics present are decomposed to water and carbon dioxide, but a small amount are chlorinated forming 1.6 ppm of chloromethane and 0.02 ppm of dichloromethane at 500○C. A chemical kinetics model was developed to predict the degree of oxidation and chlorination of organics in the Viking oven. The isotopic distribution of 35Cl and 37Cl for Mars is not known. Studies on Earth indicate that there is no isotopic fractionation of chlorine in the mantle or crust, despite the fact that it is significantly depleted on the planet as compare to solar abundances. The 37Cl/35Cl isotopic ratio in carbonaceous chondrites is similar to the Earth’s value, which suggests that the terrestrial planets, including Mars, were all formed from a similar reservoir of chlorine species in the presolar nebulae and that there was no further isotopic fractionation during the Earth’s differentiation or late accretion of volatiles. Consequently, 37Cl/35Cl ratio should be the same on Mars as well as on the Earth. Re-interpretation of the Viking results therefore suggests ≤0.1% perchlorate and 1.5-6.5 ppm organic carbon at the landing site 1, and ≤0.1% perchlorate and 0.7-2.6 ppm organic carbon at the landing site 2. The detection of organics on Mars is important to assess locations for future experiments to detect life itself. We suggest that future missions to Mars should include life detection experiments.
Zhang, Zhe; Stout, Janet E; Yu, Victor L; Vidic, Radisav
2008-01-01
Previous studies showed that temperature and total organic carbon in drinking water would cause chlorine dioxide (ClO(2)) loss in a water distribution system and affect the efficiency of ClO(2) for Legionella control. However, among the various causes of ClO(2) loss in a drinking water distribution system, the loss of disinfectant due to the reaction with corrosion scales has not been studied in detail. In this study, the corrosion scales from a galvanized iron pipe and a copper pipe that have been in service for more than 10 years were characterized by energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The impact of these corrosion scale materials on ClO(2) decay was investigated in de-ionized water at 25 and 45 degrees C in a batch reactor with floating glass cover. ClO(2) decay was also investigated in a specially designed reactor made from the iron and copper pipes to obtain more realistic reaction rate data. Goethite (alpha-FeOOH) and magnetite (Fe(3)O(4)) were identified as the main components of iron corrosion scale. Cuprite (Cu(2)O) was identified as the major component of copper corrosion scale. The reaction rate of ClO(2) with both iron and copper oxides followed a first-order kinetics. First-order decay rate constants for ClO(2) reactions with iron corrosion scales obtained from the used service pipe and in the iron pipe reactor itself ranged from 0.025 to 0.083 min(-1). The decay rate constant for ClO(2) with Cu(2)O powder and in the copper pipe reactor was much smaller and it ranged from 0.0052 to 0.0062 min(-1). Based on these results, it can be concluded that the corrosion scale will cause much more significant ClO(2) loss in corroded iron pipes of the distribution system than the total organic carbon that may be present in finished water.
Tomás-Callejas, Alejandro; López-Velasco, Gabriela; Valadez, Angela M; Sbodio, Adrian; Artés-Hernández, Francisco; Danyluk, Michelle D; Suslow, Trevor V
2012-02-01
Standard postharvest unit operations that rely on copious water contact, such as fruit unloading and washing, approach the criteria for a true critical control point in fresh tomato production. Performance data for approved sanitizers that reflect commercial systems are needed to set standards for audit compliance. This study was conducted to evaluate the efficacy of chlorine dioxide (ClO(2)) for water disinfection as an objective assessment of recent industry-adopted standards for dump tank and flume management in fresh tomato packing operations. On-site assessments were conducted during eight temporally distinct shifts in two Florida packinghouses and one California packinghouse. Microbiological analyses of incoming and washed fruit and dump and flume system water were evaluated. Water temperature, pH, turbidity, conductivity, and oxidation-reduction potential (ORP) were monitored. Reduction in populations of mesophilic and coliform bacteria on fruit was not significant, and populations were significantly higher (P < 0.05) after washing. Escherichia coli was near the limit of detection in dump tanks but consistently below the detection limit in flumes. Turbidity and conductivity increased with loads of incoming tomatoes. Water temperature varied during daily operations, but pH and ORP mostly remained constant. The industry standard positive temperature differential of 5.5°C between water and fruit pulp was not maintained in tanks during the full daily operation. ORP values were significantly higher in the flume than in the dump tank. A positive correlation was found between ORP and temperature, and negative correlations were found between ORP and turbidity, total mesophilic bacteria, and coliforms. This study provides in-plant data indicating that ClO(2) can be an effective sanitizer in flume and spray-wash systems, but current operational limitations restrict its performance in dump tanks. Under current conditions, ClO(2) alone is unlikely to allow the fresh tomato industry to meet its microbiological quality goals under typical commercial conditions.
NASA Technical Reports Server (NTRS)
Hodgeson, J. A.; Bell, J. P.; Rehme, K. A.; Krost, K. J.; Stevens, R. K.
1971-01-01
By means of the thermal conversion of nitrogen dioxide to the nitric oxide, the chemiluminescent nitric oxide monitor, based on the nitric oxide plus ozone reaction, may be used for monitoring nitrogen dioxide plus nitric oxide (NO(x)). Under conditions previously described, ammonia is also converted to nitric oxide and therefore interferes. A metal surface, gold wool or stainless steel, operated at two different temperatures has been used to convert only nitrogen dioxide or nitrogen dioxide plus ammonia. Quantitative conversion of nitrogen dioxide to nitric oxide has been obtained at temperatures as low as 200 C. Conversion of ammonia is effected at temperatures of 300 C or higher. By the addition of a converter the basic nitric oxide monitor may be used for measuring NO(x) or NO(x) plus ammonia. As an alternate mode, for a fixed high temperature, a specific scrubber is described for removing NH3 without affecting NO2 concentrations.
NASA Astrophysics Data System (ADS)
Surov, A. V.; Subbotin, D. I.; Obraztsov, N. V.; Popov, S. D.; Popov, V. E.; Litvyakova, A. I.; Pavlov, A. V.; Serba, E. O.; Spodobin, V. A.; Nakonechny, Gh V.
2018-01-01
This paper presents the three-phase ac plasma torch with a vortex stabilization of the arc, and two inputs of plasma environments: the electrode zone and the arc zone. Shielding gas (carbon dioxide) is supplied in the electrode zone and steam, methane and vapor of chlorobenzene are fed in the arc zone. By means of it the life time of electrodes is increased significantly. Chlorobenzene is selected, as it is the simplest aromatic chlorine-containing substance. The chemical process flows in two pathways: the formation of synthesis gas and the formation of soot. The gaseous chlorine-containing compound was only hydrogen chloride, yield of soot was 0.98% by weight of the raw materials, and the chlorine content was 2.08 wt% by the soot.
Lorah, Michelle M.; Walker, Charles W.; Baker, Anna C.; Teunis, Jessica A.; Emily Majcher,; Brayton, Michael J.; Raffensperger, Jeff P.; Cozzarelli, Isabelle M.
2015-01-01
Wetlands at the Standard Chlorine of Delaware, Inc. Superfund Site (SCD) in New Castle County, Delaware, are affected by contamination with chlorobenzenes and benzene from past waste storage and disposal, spills, leaks, and contaminated groundwater discharge. In cooperation with the U.S. Environmental Protection Agency, the U.S. Geological Survey began an investigation in June 2009 to characterize the hydrogeology and geochemistry in the wetlands and assess the feasibility of monitored natural attenuation and enhanced bioremediation as remedial strategies. Groundwater flow in the wetland study area is predominantly vertically upward in the wetland sediments and the underlying aquifer, and groundwater discharge accounts for a minimum of 47 percent of the total discharge for the subwatershed of tidal Red Lion Creek. Thus, groundwater transport of contaminants to surface water could be significant. The major contaminants detected in groundwater in the wetland study area included benzene, monochlorobenzene, and tri- and di-chlorobenzenes. Shallow wetland groundwater in the northwest part of the wetland study area was characterized by high concentrations of total chlorinated benzenes and benzene (maximum about 75,000 micrograms per liter [μg/L]), low pH, and high chloride. In the northeast part of the wetland study area, wetland groundwater had low to moderate concentrations of total chlorinated benzenes and benzene (generally not greater than 10,000 μg/L), moderate pH, and high sulfate concentrations. Concentrations in the groundwater in excess of 1 percent of the solubility of the individual chlorinated benzenes indicate that a contaminant source is present in the wetland sediments as dense nonaqueous phase liquids (DNAPLs). Consistently higher contaminant concentrations in the shallow wetland groundwater than deeper in the wetland sediments or the aquifer also indicate a continued source in the wetland sediments, which could include dissolution of DNAPLs and desorption from the sediments.When highly reducing, methanogenic, or sulfate-reducing conditions existed in the wetland groundwater, molar composition of the volatile organic compounds (VOCs) showed that chlorobenzene and benzene were predominant, indicating biodegradation of the chlorinated benzenes through reductive dechlorination pathways. Temporal changes in redox conditions between 2009 and 2011–12 have shifted the locations in the wetland study area where reductive dechlorination is evident. Microbial community analyses of sediment showed relatively high cell numbers and diversity of populations (Dehalococcoides, Dehalobacter, Desulfitobacterium, and Geobacter) that are known to contain species capable of reductive dechlorination, confirming groundwater geochemistry evidence of the occurrence of reductive dechlorination. Natural attenuation was not sufficient, however, to reduce total VOC concentrations along upward groundwater flowpaths in the wetland sediments, most likely due to the additional source of contaminants in the upper sediments. In situ microcosms that were unamended except for the addition of 13C-labeled contaminants in some treatments, confirmed that the native microbial community was able to biodegrade the higher chlorinated benzenes through reductive dechlorination and that 1,2-dichlorobenzene, chlorobenzene, and benzene could be degraded to carbon dioxide through oxidation pathways. Microcosms that were bioaugmented with the anaerobic dechlorinating consortium WBC-2 and deployed in the wetland sediments showed reductive dechlorination of tri-, di-, and monochlorobenzene, and 13C-chlorobenzene treatments showed complete degradation of chlorobenzene to carbon dioxide under anaerobic conditions.Experiments with a continuous flow, fixed-film bioreactor seeded with native microorganisms in groundwater from the wetland area showed both aerobic and anaerobic biodegradation of dichlorobenzenes, monochlorobenzene, and benzene, although monochlorobenzene and benzene degradation rates decreased under anaerobic conditions compared to aerobic conditions. In two bioreactors with established biofilms of WBC-2, percent removals of all chlorinated benzene compounds (medians of 86 to 94 percent) under anaerobic conditions were as high as those observed for the bioreactors seeded only with native microorganisms from the site groundwater, and benzene removal was greater in the WBC-2 bioaugmented bioreactors. The high percent removals in the WBC-2 bioreactors without the need for an acclimation period indicates that the same dechlorinators are involved in the chlorinated benzene degradation as those for the chlorinated ethanes and ethenes that the culture was developed to degrade. The ability of the WBC-2 culture to completely reduce the chlorinated benzenes and benzene, even in the presence of high sulfate and sulfide concentrations, is unique for known dechlorinating cultures. The availability of the established culture WBC-2, as well as the ability of the native wetland microbial community to degrade the site contaminants under anaerobic and aerobic conditions, provides flexibility in considering bioremediation options for the wetland areas at SCD.
Bis(perfluoroethyl) dislenide reacts, with chlorine monofluoride in 1:6 ratio to give perfluoroethylselenium trifluoride in almost 100% yield...Perfluoroethylselenium trifluoride is oxidized by chlorine monofluoride at ambient temperature to give trans perfluoroethylselenium monochloride tetrafluoride.
Testing large volume water treatment and crude oil ...
Report EPA’s Homeland Security Research Program (HSRP) partnered with the Idaho National Laboratory (INL) to build the Water Security Test Bed (WSTB) at the INL test site outside of Idaho Falls, Idaho. The WSTB was built using an 8-inch (20 cm) diameter cement-mortar lined drinking water pipe that was previously taken out of service. The pipe was exhumed from the INL grounds and oriented in the shape of a small drinking water distribution system. Effluent from the pipe is captured in a lagoon. The WSTB can support drinking water distribution system research on a variety of drinking water treatment topics including biofilms, water quality, sensors, and homeland security related contaminants. Because the WSTB is constructed of real drinking water distribution system pipes, research can be conducted under conditions similar to those in a real drinking water system. In 2014, WSTB pipe was experimentally contaminated with Bacillus globigii spores, a non-pathogenic surrogate for the pathogenic B. anthracis, and then decontaminated using chlorine dioxide. In 2015, the WSTB was used to perform the following experiments: • Four mobile disinfection technologies were tested for their ability to disinfect large volumes of biologically contaminated “dirty” water from the WSTB. B. globigii spores acted as the biological contaminant. The four technologies evaluated included: (1) Hayward Saline C™ 6.0 Chlorination System, (2) Advanced Oxidation Process (A
SOLID ROCKET OXIDIZERS, *LIQUID ROCKET OXIDIZERS, CHLORATES, FLUORIDES, ACETONES, CHLORINE COMPOUNDS, NITROSO COMPOUNDS, *HALOGEN COMPOUNDS, ADDITION REACTIONS, CESIUM COMPOUNDS, CHLORIDES, COMPLEX COMPOUNDS
Kinetics of chlorination of zirconia in mixture with petroleum coke by chlorine gas
NASA Astrophysics Data System (ADS)
Jena, P. K.; Brocchi, E. A.; Reis, M. L. Dos
1999-06-01
Studies on the kinetics of carbothermic chlorination of zirconium dioxide in gaseous chlorine were carried out with petroleum coke fines in powder form. The amounts of ZrO2 chlorinated were found to be directly proportional to the time of chlorination in the temperature range studied (973 to 1273 K). The activation energy values for chlorination of ZrO2, in mixture with petroleum coke, was found to be 18.3 kJ/mole. The influence of particle size of petroleum coke on the chlorination of ZrO2 (-38 + 25 µm) was studied, and it was found that the rate of chlorination increased up to the size range of -75 to +53 µm, and the size finer than this produced negligible increase. The amount of petroleum coke in the mixture above 17.41 pct in excess of the stoichiometry resulted in very little increase in the rate. The effect of the partial pressure of chlorine ( pCl2) on the rate of chlorination was found to obey the following relationship, derived from the Langmuir adsorption isotherm: v = {k \\cdot K \\cdot pCl_2 }/{l + K \\cdot pCl_2 } where v is the amount of ZrO2 (g/min) reacted, k is the rate constant, and K is the equilibrium constant for adsorption of two chlorine atoms (obtained from the dissociation of a molecule of Cl2 at the carbon surface) on the surface of ZrO2. By plotting 1/ v vs 1/ pCl2, a straight-line relationship with an intercept in x-axis is obtained, further supporting the preceding equation. The dissociation of the adsorbed complex, Cl … ZrO2 … Cl to ZrCl2 and O2 is suggested to be the rate-controlling step. Subsequently, the less stable ZrCl2 combines with Cl2 to form ZrCl4 and the oxygen combines with C to form CO and CO2.
Kim, Jaeeun; Hahn, Ji-Sook; Franklin, Michael J; Stewart, Philip S; Yoon, Jeyong
2009-01-01
The aim of the study was to determine the susceptibility of active and dormant cell populations from Pseudomonas aeruginosa biofilms to non-antibiotic antimicrobial agents such as chlorine, hydrogen peroxide and silver ions in comparison with antibiotics. Active cells in colony biofilm were differentially labelled by induction of a green fluorescent protein (GFP). Active and dormant cells were sorted in phosphate buffered solution by flow cytometry. Reductions in viability were determined with plate counts. The spatial pattern of metabolic activity in colony biofilm was verified, and the active and dormant cells were successfully sorted according to the GFP intensity. Active cells had bigger cell size and higher intracellular density than dormant cells. While dormant cells were more tolerant to tobramycin and silver ions, active cells were more tolerant to chlorine. Metabolically active cells contain denser intracellular components that can react with highly reactive oxidants such as chlorine, thereby reducing the available concentrations of chlorine. In contrast, the concentrations of silver ions and hydrogen peroxide were constant during treatment. Aerobically grown stationary cells were significantly more tolerant to chlorine unlike other antimicrobial agents. Chlorine was more effective in inactivation of metabolically inactive dormant cells and also more effective under anaerobic conditions. The high oxidative reactivity and rapid decay of chlorine might influence the different antimicrobial actions of chlorine compared with antibiotics. This study contributes to understanding the effects of dormancy and the presence of oxygen on the susceptibility of P. aeruginosa biofilm to a wide range of antimicrobial agents.
The inhibition of Pb(IV) oxide formation in chlorinated water by orthophosphate.
Lytle, Darren A; Schock, Michael R; Scheckel, Kirk
2009-09-01
Historically, understanding lead solubility and its control in drinking water has been based on Pb(II) chemistry. Unfortunately, there is very little information available regarding the nature of Pb(IV) oxides in finished drinking water and water distribution systems, and the conditions under which they persist. The objective of this research was to explore the impact of orthophosphate on the realistic pathways that lead to the formation of Pb(IV) oxides in chlorinated water. The results of XRD and XANES analysis showed that, in the absence of orthophosphate (DIC = 10 mg C/L, 24 degrees C, pH 7.75-8.1, 3 mg Cl2/L goal), Pb(IV) oxides formed with time following a transformation from the Pb(II) mineral hydrocerussite. Under the same experimental conditions, orthophosphate dosing inhibited the formation of Pb(IV) oxides. The Pb(II) mineral hydroxypyromorphite, Pb5(PO4)3OH, was the only mineral phase identified during the entire study of over 600 days, although the presence of some chloropyromorphite, Pb5(PO4)3Cl, could not be ruled out The conclusions were further supported by SEM, TEM, and XANES analysis of lead colloids, and lead precipitation experiments conducted in the absence of free chlorine. The findings provide an important explanation for the absence of Pb(IV) oxides in some water systems that have used, or currently use, orthophosphate for corrosion control when otherwise, based on disinfection practices and water quality, its presence would be anticipated, as well as why the conversion from free chlorine to chloramines was not observed to increase lead release.
Torres-Cuevas, Isabel; Kuligowski, Julia; Cárcel, María; Cháfer-Pericás, Consuelo; Asensi, Miguel; Solberg, Rønnaug; Cubells, Elena; Nuñez, Antonio; Saugstad, Ola Didrik; Vento, Máximo; Escobar, Javier
2016-03-24
Free radicals cause alterations in cellular protein structure and function. Oxidized, nitrated, and chlorinated modifications of aromatic amino acids including phenylalanine and tyrosine are reliable biomarkers of oxidative stress and inflammation in clinical conditions. To develop, validate and apply a rapid method for the quantification of known hallmarks of tyrosine oxidation, nitration and chlorination in plasma and tissue proteins providing a snapshot of the oxidative stress and inflammatory status of the organism and of target organs respectively. The extraction and clean up procedure entailed protein precipitation, followed by protein re-suspension and enzymatic digestion with pronase. An Ultra Performance Liquid Chromatography-tandem Mass Spectrometry (UPLC-MS/MS) method was developed to quantify protein released ortho-tyrosine (o-Tyr), meta-tyrosine (m-Tyr), 3-nitrotyrosine (3NO2-Tyr) and 3-chlorotyrosine (3Cl-Tyr) as well as native phenylalanine (Phe) and tyrosine (p-Tyr) in plasma and tissue from a validated hypoxic newborn piglet experimental model. In plasma there was a significant increase in the 3NO2-Tyr/p-Tyr ratio. On the other hand m-Tyr/Phe and 3Cl-Tyr/p-Tyr ratios were significantly increased in liver of hypoxic compared with normoxic animals. Although no significant differences were found in brain tissue, a clear tendency to increased ratios was observed under hypoxic conditions. UPLC-MS/MS has proven suitable for the analysis of plasma and tissue samples from newborn piglets. The analysis of biomarkers of protein oxidation, nitration and chlorination will be applied in future studies aiming to provide a deeper insight into the mechanisms of oxidation-derived protein modification caused during neonatal asphyxia and resuscitation. Copyright © 2016 Elsevier B.V. All rights reserved.
Marchesi, Isabella; Ferranti, Greta; Mansi, Antonella; Marcelloni, Anna M; Proietto, Anna R; Saini, Navneet; Borella, Paola; Bargellini, Annalisa
2016-05-15
Physical and chemical disinfection methods have been proposed with the aim of controlling Legionella water contamination. To date, the most effective procedures for reducing bacterial contamination have not yet been defined. The aim of this study was to assess the long-term effectiveness of various disinfection procedures in order to reduce both culturable and nonculturable (NC) legionellae in different hospital water networks treated with heat, chlorine dioxide, monochloramine, and hydrogen peroxide. The temperature levels and biocide concentrations that proved to give reliable results were analyzed. In order to study the possible effects on the water pipes, we verified the extent of corrosion on experimental coupons after applying each method for 6 months. The percentage of positive points was at its lowest after treatment with monochloramine, followed by chlorine dioxide, hydrogen peroxide, and hyperthermia. Different selections of Legionella spp. were observed, as networks treated with chlorine-based disinfectants were contaminated mainly by Legionella pneumophila serogroup 1, hyperthermia was associated with serogroups 2 to 14, and hydrogen peroxide treatment was associated mainly with non-pneumophila species. NC cells were detected only in heat-treated waters, and also when the temperature was approximately 60°C. The corrosion rates of the coupons were within a satisfactory limit for water networks, but the morphologies differed. We confirm here that chemical disinfection controls Legionella colonization more effectively than hyperthermia does. Monochloramine was the most effective treatment, while hydrogen peroxide may be a promising alternative to chlorine-based disinfectants due to its ability to select for other, less virulent or nonpathogenic species. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Structure, morphology and functionality of acetylated and oxidised barley starches.
El Halal, Shanise Lisie Mello; Colussi, Rosana; Pinto, Vânia Zanella; Bartz, Josiane; Radunz, Marjana; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa
2015-02-01
Acetylation and oxidation are chemical modifications which alter the properties of starch. The degree of modification of acetylated and oxidized starches is dependent on the catalyst and active chlorine concentrations, respectively. The objective of this study was to evaluate the effect of acetylation and oxidation on the structural, morphological, physical-chemical, thermal and pasting properties of barley starch. Barley starches were acetylated at different catalyst levels (11%, 17%, and 23% of NaOH solution) and oxidized at different sodium hypochlorite concentrations (1.0%, 1.5%, and 2.0% of active chlorine). Fourier-transformed infrared spectroscopy (FTIR), X-ray diffractograms, thermal, morphological, and pasting properties, swelling power and solubility of starches were evaluated. The degree of substitution (DS) of the acetylated starches increased with the rise in catalyst concentration. The percentage of carbonyl (CO) and carboxyl (COOH) groups in oxidized starches also increased with the rise of active chlorine level. The presence of hydrophobic acetyl groups, carbonyl and carboxyl groups caused a partial disorganization and depolymerization of starch granules. The structural, morphological and functional changes in acetylated and oxidized starches varied according to reaction conditions. Acetylation makes barley starch more hydrophobic by the insertion of acetyl groups. Also the oxidation promotes low retrogradation and viscosity. All these characteristics are important for biodegradable film production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) (with 52% Chlorine) III 2-Chloro-4-ethylamino-6-isopropylamino-5-triazine solution # Choline chloride... Ethylenediaminetetraacetic acid, tetrasodium salt solution Titanium dioxide slurry III 1,1,1-Trichloroethane C 1,1,2...
USDA-ARS?s Scientific Manuscript database
Produce contamination incited by Salmonella enterica serovars on tomatoes and various outbreaks of Salmonellisis have been reported periodically. Post-harvest intervention measures applied to limit produce contamination will improve food and consumer safety. The aim of this reserach was to evaluat...
7 CFR 205.603 - Synthetic substances allowed for use in organic livestock production.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Water Act. (i) Calcium hypochlorite. (ii) Chlorine dioxide. (iii) Sodium hypochlorite. (8) Electrolytes... additives. (1) DL-Methionine, DL-Methionine—hydroxy analog, and DL-Methionine—hydroxy analog calcium (CAS... following maximum levels of synthetic methionine per ton of feed: laying chickens—4 pounds; broiler chickens...
7 CFR 205.603 - Synthetic substances allowed for use in organic livestock production.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Water Act. (i) Calcium hypochlorite. (ii) Chlorine dioxide. (iii) Sodium hypochlorite. (8) Electrolytes... additives. (1) DL-Methionine, DL-Methionine—hydroxy analog, and DL-Methionine—hydroxy analog calcium (CAS... following maximum levels of synthetic methionine per ton of feed: laying chickens—4 pounds; broiler chickens...
7 CFR 205.603 - Synthetic substances allowed for use in organic livestock production.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Water Act. (i) Calcium hypochlorite. (ii) Chlorine dioxide. (iii) Sodium hypochlorite. (8) Electrolytes.... (1) DL-Methionine, DL-Methionine-hydroxy analog, and DL-Methionine-hydroxy analog calcium (CAS #'s 59... maximum levels of synthetic methionine per ton of feed: Laying and broiler chickens—2 pounds; turkeys and...
7 CFR 205.603 - Synthetic substances allowed for use in organic livestock production.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Water Act. (i) Calcium hypochlorite. (ii) Chlorine dioxide. (iii) Sodium hypochlorite. (8) Electrolytes.... (1) DL-Methionine, DL-Methionine-hydroxy analog, and DL-Methionine-hydroxy analog calcium (CAS #'s 59... maximum levels of synthetic methionine per ton of feed: Laying and broiler chickens—2 pounds; turkeys and...
The speciation of aqueous free chlorine above pH 5 is a well-understood equilibrium of H2O + HOCl (equilibrium) OCl- + H3O+ with a pKa of 7.5. However, the identity of another very potent oxidant present at low pH (below 5) has been attributed by some researchers to Cl2 (aq), a...
Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite
Chang, Betty Yea Sze; Huang, Nay Ming; An’amt, Mohd Nor; Marlinda, Abdul Rahman; Norazriena, Yusoff; Muhamad, Muhamad Rasat; Harrison, Ian; Lim, Hong Ngee; Chia, Chin Hua
2012-01-01
A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte. PMID:22848166
Electrochemical oxidation of wine polyphenols in the presence of sulfur dioxide.
Makhotkina, Olga; Kilmartin, Paul A
2013-06-12
Electrochemical oxidation of three representative wine polyphenols (catechin, caffeic acid, and quercetin) in the presence of sulfur dioxide in a model wine solution (pH = 3.3) was investigated. The oxidation was undertaken using chronoamperometry at a rotating glassy carbon rod electrode, and the reaction products were characterized by HPLC-MS. The mechanism of electrochemical oxidation of polyphenols in the presence of sulfur dioxide was proposed to be an ECEC mechanism. The polyphenols first underwent a one-electron oxidation to a semiquinone radical, which can be reduced back to the original polyphenol by sulfur dioxide, or further oxidized to the quinone form. In the cases of caffeic acid and catechin, the quinone combined with sulfur dioxide and produced new derivatives. The quercetin quinone underwent further chemical transformations, producing several new compounds. The proposed mechanisms were confirmed by digital simulation of cyclic voltammograms.
Kuch, Bertram; Lange, Claudia; Richter, Philipp; Kugele, Amélie; Minke, Ralf
2018-01-01
Effluent of a municipal wastewater treatment plant (WWTP) was treated on-site with the UV/chlorine (UV/HOCl) advanced oxidation process (AOP) using a pilot plant equipped with a medium pressure UV lamp with an adjustable performance of up to 1 kW. Results obtained from parallel experiments with the same pilot plant, where the state of the art UV/H2O2 AOP was applied, were compared regarding the removal of emerging contaminants (EC) and the formation of adsorbable organohalogens (AOX). Furthermore, the total estrogenic activity was measured in samples treated with the UV/chlorine AOP. At an energy consumption of 0.4 kWh/m3 (0.4 kW, 1 m3/h) and in a range of oxidant concentrations from 1 to 6 mg/L, the UV/chlorine AOP had a significantly higher EC removal yield than the UV/H2O2 AOP. With free available chlorine concentrations (FAC) in the UV chamber influent of at least 5 mg/L (11 mg/L of dosed Cl2), the total estrogenic activity could be reduced by at least 97%. To achieve a certain concentration of FAC in the UV chamber influent, double to triple the amount of dosed Cl2 was needed, resulting in AOX concentrations of up to 520 µg/L. PMID:29735959
Rott, Eduard; Kuch, Bertram; Lange, Claudia; Richter, Philipp; Kugele, Amélie; Minke, Ralf
2018-05-07
Effluent of a municipal wastewater treatment plant (WWTP) was treated on-site with the UV/chlorine (UV/HOCl) advanced oxidation process (AOP) using a pilot plant equipped with a medium pressure UV lamp with an adjustable performance of up to 1 kW. Results obtained from parallel experiments with the same pilot plant, where the state of the art UV/H₂O₂ AOP was applied, were compared regarding the removal of emerging contaminants (EC) and the formation of adsorbable organohalogens (AOX). Furthermore, the total estrogenic activity was measured in samples treated with the UV/chlorine AOP. At an energy consumption of 0.4 kWh/m³ (0.4 kW, 1 m³/h) and in a range of oxidant concentrations from 1 to 6 mg/L, the UV/chlorine AOP had a significantly higher EC removal yield than the UV/H₂O₂ AOP. With free available chlorine concentrations (FAC) in the UV chamber influent of at least 5 mg/L (11 mg/L of dosed Cl₂), the total estrogenic activity could be reduced by at least 97%. To achieve a certain concentration of FAC in the UV chamber influent, double to triple the amount of dosed Cl₂ was needed, resulting in AOX concentrations of up to 520 µg/L.
Chen, Xin; Zhao, Qidong; Li, Xinyong; Wang, Dong
2016-10-01
Short chain chlorinated paraffins have recently attracted great attention because of their environmental persistence and biological toxicity as an important organic pollutant. In this work, reduced graphene oxide/CoFe2O4/Ag (RGO/CoFe2O4/Ag) nanocomposite was prepared and employed for photocatalytic degradation of short chain chlorinated paraffins. The process of photocatalytic degradation of short chain chlorinated paraffins over RGO/CoFe2O4/Ag under visible light (λ>400nm) was investigated by in situ Fourier transform infrared spectroscopy and the related mechanisms were proposed. An apparent degradation ratio of 91.9% over RGO/CoFe2O4/Ag could be obtained under visible light illumination of 12h, while only about 21.7% was obtained with commercial P25 TiO2 under the same experimental conditions, which demonstrates that the RGO/CoFe2O4/Ag nanocomposite is a potential candidate for effective photocatalytic removal of short chain chlorinated paraffins. Copyright © 2016 Elsevier Inc. All rights reserved.
Arnett, Clint M.; Parales, Juan V.; Haddock, John D.
2000-01-01
Biphenyl dioxygenase from Burkholderia (Pseudomonas) sp. strain LB400 catalyzes the first reaction of a pathway for the degradation of biphenyl and a broad range of chlorinated biphenyls (CBs). The effect of chlorine substituents on catalysis was determined by measuring the specific activity of the enzyme with biphenyl and 18 congeners. The catalytic oxygenase component was purified and incubated with individual CBs in the presence of electron transport proteins and cofactors that were required for enzyme activity. The rate of depletion of biphenyl from the assay mixture and the rate of formation of cis-biphenyl 2,3-dihydrodiol, the oxidation product, were almost equal, indicating that the assay accurately measured enzyme-specific activity. Four classes of CBs were defined based on their oxidation rates. Class I contained 3-CB and 2,5-CB, which gave rates that were approximately twice that of biphenyl. Class II contained 2,5,3′,4′-CB, 2,3,2′,5′-CB, 2,3,4,5-CB, 2,3,2′,3′-CB, 2,4,5,2′,5′-CB, 2,5,3′-CB, 2,5,4′-CB, 2-CB, and 3,4,5-CB, which gave rates that ranged from 97 to 35% of the biphenyl rate. Class III contained only 2,3,4,2′,5′-CB, which gave a rate that was 4% of the biphenyl rate. Class IV contained 2,4,4′-CB, 2,4,2′,4′-CB, 3,4,5,2′-CB, 3,4,5,3′-CB, 3,5,3′,5′-CB, and 3,4,5,2′,5′-CB, which showed no detectable depletion. Rates were not significantly correlated with the aqueous solubilities of the CBs or the number of chlorine substituents on the rings. Oxidation products were detected for all class I, II, and III congeners and were identified as chlorinated cis-dihydrodiols for classes I and II. The specificity of biphenyl dioxygenase for the CBs examined in this study was determined by the relative positions of the chlorine substituents on the aromatic rings rather than the number of chlorine substituents on the rings. PMID:10877788
Oriented conductive oxide electrodes on SiO2/Si and glass
Jia, Quanxi; Arendt, Paul N.
2001-01-01
A thin film structure is provided including a silicon substrate with a layer of silicon dioxide on a surface thereof, and a layer of cubic oxide material deposited upon the layer of silicon dioxide by ion-beam-assisted-deposition, said layer of cubic oxide material characterized as biaxially oriented. Preferably, the cubic oxide material is yttria-stabilized zirconia. Additional thin layers of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide are deposited upon the layer of yttria-stabilized zirconia. An intermediate layer of cerium oxide is employed between the yttria-stabilized zirconia layer and the lanthanum strontium cobalt oxide layer. Also, a layer of barium strontium titanium oxide can be upon the layer of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide. Also, a method of forming such thin film structures, including a low temperature deposition of a layer of a biaxially oriented cubic oxide material upon the silicon dioxide surface of a silicon dioxide/silicon substrate is provided.
Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.
2000-01-01
In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.
Preparation of the porous cerium dioxide film by two-step anodization and heat treating method
NASA Astrophysics Data System (ADS)
Liu, Xiaozhen; Zhu, Bolun; Liu, Yuze; Wang, Shanshan; Chen, Jie; Wang, Xiaoyu
2017-12-01
The porous cerium dioxide films were prepared with cerium foils as raw materials by two-step anodization and heat treating method. The anodic cerium oxide films were heat treated in 25∼400°C respectively. The cerium dioxide films were characterized with X-ray diffraction (XRD), Fourier transform infrared (FTIR) techniques, energy-dispersive analyses of X-ray (EDAX) and scanning electron microcopy (SEM), respectively. The anodic cerium oxide film is composed of Ce(OH)3, CeO2 and Ce2O3. When the anodic cerium oxide films were heat treated in 300°C∼400°C for 2h, Ce(OH)3 and Ce2O3 in the anodic cerium oxide films may be converted to CeO2, and the heat treated anodic cerium oxide films are the cerium dioxide films. Water, ethylene glycol and CO2 are adsorbed in the anodic cerium oxide film. The adsorbing water, ethylene glycol and CO2 in the anodic cerium oxide film are removed at 300°C. The cerium dioxide film has strong absorption in the range of 1600∼4000cm-1. The structure of the cerium dioxide film is the porous.
State of the art on cyanotoxins in water and their behaviour towards chlorine.
Merel, Sylvain; Clément, Michel; Thomas, Olivier
2010-04-01
The occurrence of cyanobacterial blooms is drastically increasing in temperate countries and drinking water resources are threatened. As a result, cyanotoxins should be considered in water treatment to protect human health. This study presents a state of the art on cyanotoxins in water and their behaviour towards chlorination, a common drinking water disinfection process. Chlorination efficiency on cyanotoxins alteration depends on pH, chlorine dose and oxidant nature. Microcystins and cylindrospermopsin are efficiently transformed by chlorine, with respectively 6 and 2 by-products identified. In addition, chlorination of microcystins and cylindrospermopsin is associated with a loss of acute toxicity. Even though they have been less investigated, saxitoxins and nodularins are also altered by chlorine. For these toxins, no by-products have been identified, but the chlorinated mixture does not show acute toxicity. On the contrary, the fact that anatoxin-a has a very slow reaction kinetics suggests that this toxin resists chlorination. Copyright 2009 Elsevier Ltd. All rights reserved.
Fate of High Priority Pesticides During Drinking Water Treatment
The fate of organophosphorus (OP) pesticides in the presence of chlorinated oxidants was investigated under drinking water treatment conditions. In the presence of aqueous chlorine, intrinsic rate coefficients were found for the reaction of hypochlorous acid and hypochlorite ion ...
[Efficiency of oxidant gas generator cells powered by electric or solar energy].
Brust Carmona, H; Benitez, A; Zarco, J; Sánchez, E; Mascher, I
1998-02-01
Diseases caused by microbial contaminants in drinking water continue to be a serious problem in countries like Mexico. Chlorination, using chlorine gas or chlorine compounds, is one of the best ways to treat drinking water. However, difficulties in handling chlorine gas and the inefficiency of hypochlorite solution dosing systems--due to sociopolitical, economic, and cultural factors--have reduced the utility of these chlorination procedures, especially in far-flung and inaccessible rural communities. These problems led to the development of appropriate technologies for the disinfection of water by means of the on-site generation of mixed oxidant gases (chlorine and ozone). This system, called MOGGOD, operates through the electrolysis of a common salt solution. Simulated system evaluation using a hydraulic model allowed partial and total costs to be calculated. When powered by electrical energy from the community power grid, the system had an efficiency of 90%, and in 10 hours it was able to generate enough gases to disinfect about 200 m3 of water at a cost of approximately N$8 (US $1.30). When the electrolytic cell was run on energy supplied through a photoelectric cell, the investment costs were higher. A system fed by photovoltaic cells could be justified in isolated communities that lack electricity but have a gravity-fed water distribution system.
Bond, Tom; Huang, Jin; Graham, Nigel J D; Templeton, Michael R
2014-02-01
During drinking water treatment aqueous chlorine and bromine compete to react with natural organic matter (NOM). Among the products of these reactions are potentially harmful halogenated disinfection by-products, notably four trihalomethanes (THM4) and nine haloacetic acids (HAAs). Previous research has concentrated on the role of bromide in chlorination reactions under conditions of a given NOM type and/or concentration. In this study different concentrations of dissolved organic carbon (DOC) from U.K. lowland water were reacted with varying amounts of bromide and chlorine in order to examine the interrelationship between the three reactants in the formation of THM4, dihaloacetic acids (DHAAs) and trihaloacetic acids (THAAs). Results showed that, in general, molar yields of THM4 increased with DOC, bromide and chlorine concentrations, although yields did fluctuate versus chlorine dose. In contrast both DHAA and THAA yields were mainly independent of changes in bromide and chlorine dose at low DOC (1 mg·L(-1)), but increased with chlorine dose at higher DOC concentrations (4 mg·L(-1)). Bromine substitution factors reached maxima of 0.80, 0.67 and 0.65 for the THM4, DHAAs and THAAs, respectively, at the highest bromide/chlorine ratio studied. These results suggest that THM4 formation kinetics depend on both oxidation and halogenation steps, whereas for DHAAs and THAAs oxidation steps are more important. Furthermore, they indicate that high bromide waters may prove more problematic for water utilities with respect to THM4 formation than for THAAs or DHAAs. While mass concentrations of all three groups increased in response to increased bromide incorporation, only the THMs also showed an increase in molar yield. Overall, the formation behaviour of DHAA and THAA was more similar than that of THM4 and THAA. © 2013.
Nordschild, Simon; Auner, Norbert
2008-01-01
A series of technically and economically important element chlorides-such as SiCl4, BCl3, AlCl3, FeCl2, PCl3 and TiCl4-was synthesized through reactions between hydrogen chloride and the corresponding element oxides in the presence of different carbon sources with microwave assistance. This process route was optimized for demonstration purposes for tetrachlorosilane formation and successfully demonstrates the broad applicability of various silicon oxide-containing minerals and materials for carbohydrochlorination. The chlorination reaction occurs at lower temperatures than with conventional heating in a tubular oven, with substantially shorter reaction times and in better yields: quantitatively in the case of tetrachlorosilane, based on the silicon content of the starting material. The experimental procedure is very simple and provides basic information about the suitability of element compounds, especially element oxides, for carbohydrochlorination. According to the general reaction sequence element oxide-->element-->element chloride used in today's technology, this one-step carbohydrochlorination with hydrogen chloride is considerably more efficient, particularly in terms of energy input and reaction times, avoiding the isolation of the pure elements required for chlorination to give the element chlorides with use of the more corrosive and toxic chlorine gas.
Microsomal oxidation of tribromoethylene and reactions of tribromoethylene oxide.
Yoshioka, Tadao; Krauser, Joel A; Guengerich, F Peter
2002-11-01
Halogenated olefins are of interest because of their widespread use in industry and their potential toxicity to humans. Epoxides are among the enzymatic oxidation products and have been studied in regard to their toxicity. Most of the attention has been given to chlorinated epoxides, and we have previously studied the reactions of the mono-, di-, tri-, and tetrachloroethylene oxides. To further test some hypotheses concerning the reactivity of these compounds, we prepared tribromoethylene (TBE) oxide and compared it to trichloroethylene (TCE) oxide and other chlorinated epoxides. TBE oxide reacted with H(2)O about 3 times faster than did TCE oxide. Several hydrolysis products of TBE oxide were the same as formed from TCE oxide, i.e., glyoxylic acid, CO, and HCO(2)H. Br(2)CHCO(2)H was formed from TBE oxide; the yield was higher than for Cl(2)CHCO(2)H formed in the hydrolysis of TCE oxide. The yield of tribromoacetaldehyde was < 0.4% in aqueous buffer (pH 7.4). In rat liver microsomal incubations containing TBE and NADPH, Br(2)CHCO(2)H was a major product, and tribromoacetaldehyde was a minor product. These results are consistent with schemes previously developed for halogenated epoxides, with migration of bromine being more favorable than for chlorine. Reaction of TBE oxide with lysine yielded relatively more N-dihaloacetyllysine and less N-formyllysine than in the case of TCE oxide. This same pattern was observed in the products of the reaction of TBE oxide with the lysine residues in bovine serum albumin. We conclude that the proposed scheme of hydrolysis of halogenated epoxides follows the expected halide order and that this can be used to rationalize patterns of hydrolysis and reactivity of other halogenated epoxides.
Plummer, M A; Phillips, F M; Fabryka-Martin, J; Turin, H J; Wigand, P E; Sharma, P
1997-07-25
Knowledge of the production history of cosmogenic nuclides, which is needed for geological and archaeological dating, has been uncertain. Measurements of chlorine-36/chlorine (36Cl/Cl) ratios in fossil packrat middens from Nevada that are radiocarbon-dated between about 38 thousand years ago (ka) and the present showed that 36Cl/Cl ratios were higher by a factor of about 2 before approximately 11 ka. This raises the possibility that cosmogenic production rates just before the close of the Pleistocene were up to 50% higher than is suggested by carbon-14 calibration data. The discrepancy could be explained by addition of low-carbon-14 carbon dioxide to the atmosphere during that period, which would have depressed atmospheric radiocarbon activity. Alternatively, climatic effects on 36Cl deposition may have enhanced the 36Cl/Cl ratios.
Sequential anaerobic/aerobic biodegradation of chloroethenes--aspects of field application.
Tiehm, Andreas; Schmidt, Kathrin R
2011-06-01
Because of a range of different industrial activities, sites contaminated with chloroethenes are a world-wide problem. Chloroethenes can be biodegraded by reductive dechlorination under anaerobic conditions as well as by oxidation under aerobic conditions. The tendency of chloroethenes to undergo reductive dechlorination decreases with a decreasing number of chlorine substituents, whereas with less chlorine substituents chloroethenes more easily undergo oxidative degradation. There is currently a growing interest in aerobic metabolic degradation of chloroethenes, which demonstrates advantages compared to cometabolic degradation pathways. Sequential anaerobic/aerobic biodegradation can overcome the disadvantages of reductive dechlorination and leads to complete mineralization of the chlorinated pollutants. This approach shows promise for site remediation in natural settings and in engineered systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kraft pulp bleaching and delignification by dikaryons and monokaryons of trametes versicolor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addleman, K.; Archibald, F.
1993-01-01
To reduce the levels of chlorinated lignin residues in effluents from the pulp and paper industry, interest has focused on the white rot basidiomycete fungi. The kraft process, the most common commercial delignification method, produces a dark pulp which is bleached by use of chlorine, chlorine dioxide, and caustic extraction. A dikaryon of Trametes (Coriolus) versicolor has been shown to bleach and delignify kraft pulp, offering a possible alternative to chlorine. A monokaryon strain, if comparable to the effect of the dikaryon, would be a much simpler system for study of mechanisms and genetic munipulation. The researchers compared strains ofmore » both and conclude that the following characteristics justify replacing the parent dikaryon with monokaryon 52J in future work on biobleaching and biological delignification: (1) reduced biomass and slower growth rate; (2)no dark pigment production; (3) superior biological bleaching ability; (4) a simpler system for genetic manipulation and biochemical analysis. The involvement of MnP, but not LP, in pulp bleaching, delignification is strongly suggested. 40 refs., 3 figs., 4 tabs.« less
Kinetics and Near-Infrared Spectroscopy of Organic Peroxy Radicals
NASA Astrophysics Data System (ADS)
Smarte, M. D.; Okumura, M.
2016-12-01
Organic peroxy radicals are important intermediates in atmospheric chemistry with fates that control the rate of radical propagation in an oxidation mechanism. Laboratory methods for detecting peroxy radicals are essential to measuring precise rate constants that constrain these fates. In this work, we discuss the use of near-infrared cavity ringdown spectroscopy to detect organic peroxy radicals for the purpose of laboratory kinetics measurements. We focus on chlorine-substituted peroxy radicals generated in the oxidation of alkenes by chlorine, a minor tropospheric oxidant found in marine and coastal regions. Previous kinetics experiments on peroxy radicals have largely used UV absorption spectroscopy via the dissociative B-X transition. However, the spectra produced are featureless and exhibit substantial overlap; determining the concentration profile of an individual peroxy radical can be an arduous task. In our work, we probe the forbidden peroxy radical A-X transition in the near-infrared. While this approach requires overcoming small cross sections ( 10-21 cm2), the A state is bound and leads to structured absorption spectra that may be useful in constraining the kinetics of mixtures of organic peroxy radicals formed in the oxidation of complex hydrocarbons. Only a few kinetics studies utilizing the A-X transition exist in the literature and they are focused on small, unsubstituted species. This presentation explores the ability of the A-X transition to unravel the kinetics of more complex peroxy radicals in laboratory experiments using several example systems: (1) Determining rate constants for the self and cross reactions of β-chloroethylperoxy and HO2. (2) Detecting the second generation of peroxy radicals formed from alkoxy radical decomposition in the chlorine-initiated oxidation of 2-butene. (3) Observing different rates of reactivity with NO across the pool of peroxy radical isomers formed in the chlorine-initiated oxidation of isoprene.
The Inhibition of Pb(IV) Oxide Formation in Chlorinated Water by Orthophosphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lytle, Darren A.; Schock, Michael R.; Scheckel, Kirk
2009-10-05
Historically, understanding lead solubility and its control in drinking water has been based on Pb(II) chemistry. Unfortunately, there is very little information available regarding the nature of Pb(IV) oxides in finished drinking water and water distribution systems, and the conditions under which they persist. The objective of this research was to explore the impact of orthophosphate on the realistic pathways that lead to the formation of Pb(IV) oxides in chlorinated water. The results of XRD and XANES analysis showed that, in the absence of orthophosphate (DIC = 10 mg C/L, 24 C, pH 7.75-8.1, 3 mg Cl{sub 2}/L goal), Pb(IV)more » oxides formed with time following a transformation from the Pb(II) mineral hydrocerussite. Under the same experimental conditions, orthophosphate dosing inhibited the formation of Pb(IV) oxides. The Pb(II) mineral hydroxypyromorphite, Pb{sub 5}(PO{sub 4}){sub 3}OH, was the only mineral phase identified during the entire study of over 600 days, although the presence of some chloropyromorphite, Pb{sub 5}(PO{sub 4}){sub 3}Cl, could not be ruled out. The conclusions were further supported by SEM, TEM, and XANES analysis of lead colloids, and lead precipitation experiments conducted in the absence of free chlorine. The findings provide an important explanation for the absence of Pb(IV) oxides in some water systems that have used, or currently use, orthophosphate for corrosion control when otherwise, based on disinfection practices and water quality, its presence would be anticipated, as well as why the conversion from free chlorine to chloramines was not observed to increase lead release.« less
Lazareva, Svetlana; Ismagilov, Zinfer; Kuznetsov, Vadim; Shikina, Nadezhda; Kerzhentsev, Mikhail
2018-02-05
Huge amounts of nuclear waste, including depleted uranium, significantly contribute to the adverse environmental situation throughout the world. An approach to the effective use of uranium oxides in catalysts for the deep oxidation of chlorine-containing hydrocarbons is suggested. Investigation of the catalytic activity of the synthesized supported uranium oxide catalysts doped with Cr, Mn and Co transition metals in the chlorobenzene oxidation showed that these catalysts are comparable with conventional commercial ones. Physicochemical properties of the catalysts were studied by X-ray diffraction, temperature-programmed reduction with hydrogen (H 2 -TPR), and Fourier transform infrared spectroscopy. The higher activity of Mn- and Co-containing uranium oxide catalysts in the H 2 -TPR and oxidation of chlorobenzene in comparison with non-uranium catalysts may be related to the formation of a new disperse phase represented by uranates. The study of chlorobenzene adsorption revealed that the surface oxygen is involved in the catalytic process.
USDA-ARS?s Scientific Manuscript database
Introduction: Unpasteurized juices are increasingly popular as consumers aim to find convenient, healthy options. Contamination of produce with pathogens such as Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes poses a risk. In-store treatment of small batches of mixed types of fresh...
USDA-ARS?s Scientific Manuscript database
Listeria monocytogenes is a foodborne pathogen that has been associated with poultry products. This organism is ubiquitous in nature and has been found to enter poultry further processing plants on incoming raw product. Once in the plant, L. monocytogenes can become a long term persistent colonize...
49 CFR 180.405 - Qualification of cargo tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., refrigerated liquid; or hydrogen chloride, refrigerated liquid shall remove the exemption number stenciled on... after July 1, 2001, or July 1, 2003, whichever is earlier. (n) Thermal activation. No later than the... compressed gas, other than carbon dioxide and chlorine, that has a water capacity of 13,247.5 L (3,500...
49 CFR 180.405 - Qualification of cargo tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., refrigerated liquid; or hydrogen chloride, refrigerated liquid shall remove the exemption number stenciled on... after July 1, 2001, or July 1, 2003, whichever is earlier. (n) Thermal activation. No later than the... compressed gas, other than carbon dioxide and chlorine, that has a water capacity of 13,247.5 L (3,500...
49 CFR 180.405 - Qualification of cargo tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., refrigerated liquid; or hydrogen chloride, refrigerated liquid shall remove the exemption number stenciled on... after July 1, 2001, or July 1, 2003, whichever is earlier. (n) Thermal activation. No later than the... compressed gas, other than carbon dioxide and chlorine, that has a water capacity of 13,247.5 L (3,500...
49 CFR 180.405 - Qualification of cargo tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., refrigerated liquid; or hydrogen chloride, refrigerated liquid shall remove the exemption number stenciled on... after July 1, 2001, or July 1, 2003, whichever is earlier. (n) Thermal activation. No later than the... compressed gas, other than carbon dioxide and chlorine, that has a water capacity of 13,247.5 L (3,500...
49 CFR 180.405 - Qualification of cargo tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., refrigerated liquid; or hydrogen chloride, refrigerated liquid shall remove the exemption number stenciled on... after July 1, 2001, or July 1, 2003, whichever is earlier. (n) Thermal activation. No later than the... compressed gas, other than carbon dioxide and chlorine, that has a water capacity of 13,247.5 L (3,500...
Effect of sanitizer washing on quality and shelf-life of fresh coriander during refrigerated storage
USDA-ARS?s Scientific Manuscript database
Fresh coriander leaves are highly perishable in nature and their sensory quality and nutritional value decreases without proper processing or preservation. In the present study, three aqueous solutions of sodium hypochlorite (SH, 100mg/L), chlorine dioxide (CD, 10 mg/L), and sodium butyl p-hydroxyb...
2012-04-01
chlorine dioxide (CD) or vapor hydrogen peroxide ( VHP ). A wide-area release and contamination of building exteriors and the outdoors would likely...from the panels. Depending on the surface composition and the decontamination technology tested, viable spore recovery from the panels varied after
USDA-ARS?s Scientific Manuscript database
The efficiency of the packaging system in inactivating food borne pathogens and prolonging the shelf life of fresh-cut produce is influenced by the design of the package apart from material and atmospheric conditions. Three different designs were considered to determine a specific package design ens...
21 CFR 186.1750 - Sodium chlorite.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium chlorite. 186.1750 Section 186.1750 Food... of Specific Substances Affirmed as GRAS § 186.1750 Sodium chlorite. (a) Sodium chlorite (NaCLO2, CAS... passing chlorine dioxide into a solution of sodium hydroxide and hydrogen peroxide. (b) the ingredient is...
21 CFR 186.1750 - Sodium chlorite.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium chlorite. 186.1750 Section 186.1750 Food... of Specific Substances Affirmed as GRAS § 186.1750 Sodium chlorite. (a) Sodium chlorite (NaCLO2, CAS... passing chlorine dioxide into a solution of sodium hydroxide and hydrogen peroxide. (b) the ingredient is...
21 CFR 186.1750 - Sodium chlorite.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium chlorite. 186.1750 Section 186.1750 Food... of Specific Substances Affirmed as GRAS § 186.1750 Sodium chlorite. (a) Sodium chlorite (NaCLO2, CAS... passing chlorine dioxide into a solution of sodium hydroxide and hydrogen peroxide. (b) the ingredient is...
Evaluation of chlorine dioxide as a supplementary pretreatment reagent for lignocellulosic biomass.
Acharjee, Tapas C; Jiang, Zhihua; Haynes, Robert Daniel; Lee, Yoon Y
2017-11-01
Chlorine dioxide (ClO 2 ) is a bleaching reagent used in paper industry. Two different types of pretreatment methods were investigated incorporating ClO 2 as a secondary reagent: (a) alkaline followed by ClO 2 treatment; (b) dilute-sulfuric acid followed ClO 2 treatment. In these methods, ClO 2 treatment has shown little effect on delignification. Scheme-a has shown a significant improvement in enzymatic digestibility of glucan far above that treated by ammonia alone. On the contrary, dilute-acid followed by ClO 2 treatment has shown negative effect on the enzymatic hydrolysis. The main factors affecting the enzymatic hydrolysis are the changes of the chemical structure of lignin and its distribution on the biomass surface. ClO 2 treatment significantly increases the carboxylic acid content and reduces phenolic groups of lignin, affecting hydrophobicity of lignin and the H-bond induced association between the enzyme and lignin. This collectively led to reduction of unproductive binding of enzyme with lignin, consequently increasing the digestibility. Copyright © 2017 Elsevier Ltd. All rights reserved.
Etching Rate of Silicon Dioxide Using Chlorine Trifluoride Gas
NASA Astrophysics Data System (ADS)
Miura, Yutaka; Kasahara, Yu; Habuka, Hitoshi; Takechi, Naoto; Fukae, Katsuya
2009-02-01
The etching rate behavior of silicon dioxide (SiO2, fused silica) using chlorine trifluoride (ClF3) gas is studied at substrate temperatures between 573 and 1273 K at atmospheric pressure in a horizontal cold-wall reactor. The etching rate increases with the ClF3 gas concentration, and the overall reaction is recognized to be of the first order. The change of the etching rate with increasing substrate temperature is nonlinear, and the etching rate tends to approach a constant value at temperatures exceeding 1173 K. The overall rate constant is estimated by numerical calculation, taking into account the transport phenomena in the reactor, including the chemical reaction at the substrate surface. The activation energy obtained in this study is 45.8 kJ mol-1, and the rate constant is consistent with the measured etching rate behavior. A reactor system in which there is minimum etching of the fused silica chamber by ClF3 gas can be achieved using an IR lamp heating unit and a chamber cooling unit to maintain a sufficiently low temperature of the chamber wall.
Fang, Jingyun; Liu, Jiajian; Shang, Chii; Fan, Chihhao
2018-01-01
Taste- and odor-causing (T&O) compounds are a major concern in drinking water treatment plants due to their negative impacts on the safety and palatability of water supply. This study explored the degradation kinetics and radical chemistry of four often-detected T&O compounds, geosmin (GSM), 2-methylisoborneol (MIB), benzothiazole (BT), and 2-isobutyl-3-methoxypyrazine (IBMP), in the ultraviolet/chlorine (UV/chlorine) advanced oxidation process. All experiments were carried out in a 700 mL photoreactor and the process effectively degraded the investigated T&O compounds in a slightly acidic environment. The degradation of T&O decreased with increasing pH but slightly with decreasing chlorine dosage. When the pH increased from 6 to 8, the pseudo-first-order rate constants of GSM, MIB, BT, and IBMP dropped from 2.84 × 10−3, 2.29 × 10−3, 3.64 × 10−3, and 2.76 × 10−3 s−1 to 3.77 × 10−4, 2.64 × 10−4, 6.48 × 10−4, and 6.40 × 10−4 s−1, respectively. Increasing the chlorine dosage slightly accelerated the degradation of the investigated T&O compounds, but excessive hypochlorous acid and hypochlorite scavenged the HO• radicals and reactive chlorine species (RCS). Generally, HO• primarily contributed to the degradation of all of the investigated T&O compounds as compared to RCS. The degradation by RCS was found to be structurally selective. RCS could not degrade GSM, but contributed to the degradation of MIB, BT, and IBMP. The results confirmed that the proposed oxidation process effectively degraded typical T&O compounds in aqueous phase. PMID:29414884
Li, Cong; Luo, Feng; Dong, Feilong; Zhao, Jingguo; Zhang, Tuqiao; He, Guilin; Cizmas, Leslie; Sharma, Virender K
2017-11-01
This paper presents the effect of preoxidation with ferrate(VI) (Fe VI O 4 2- , Fe(VI)) prior to chlorination on chlorine decay and formation of disinfection by-products in filtered raw water from a full-scale drinking water treatment plant. The rate of chlorine decay became significantly faster as the concentration of ferrate(VI) increased. Chlorine degradation followed two first-order decay reactions with rate constants k 1 and k 2 for fast and slow decay, respectively. Kinetic modeling established the relationships between k 1 and k 2 and varying dosages of chlorine and ferrate(VI). When ferrate(VI) was used as a pre-oxidant, the levels of trihalomethanes (trichloromethane (TCM), dichlorobromomethane (DCBM), dibromochloromethane (DBCM), and tribromomethane (TBM)) in water samples decreased as the ferrate(VI) concentration increased. The concentrations of these trihalomethanes followed the order TCM > DCBM ≈ DBCM > TBM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Raff, Jonathan D.; Njegic, Bosiljka; Chang, Wayne L.; Gordon, Mark S.; Dabdub, Donald; Gerber, R. Benny; Finlayson-Pitts, Barbara J.
2009-01-01
Gaseous HCl generated from a variety of sources is ubiquitous in both outdoor and indoor air. Oxides of nitrogen (NOy) are also globally distributed, because NO formed in combustion processes is oxidized to NO2, HNO3, N2O5 and a variety of other nitrogen oxides during transport. Deposition of HCl and NOy onto surfaces is commonly regarded as providing permanent removal mechanisms. However, we show here a new surface-mediated coupling of nitrogen oxide and halogen activation cycles in which uptake of gaseous NO2 or N2O5 on solid substrates generates adsorbed intermediates that react with HCl to generate gaseous nitrosyl chloride (ClNO) and nitryl chloride (ClNO2), respectively. These are potentially harmful gases that photolyze to form highly reactive chlorine atoms. The reactions are shown both experimentally and theoretically to be enhanced by water, a surprising result given the availability of competing hydrolysis reaction pathways. Airshed modeling incorporating HCl generated from sea salt shows that in coastal urban regions, this heterogeneous chemistry increases surface-level ozone, a criteria air pollutant, greenhouse gas and source of atmospheric oxidants. In addition, it may contribute to recently measured high levels of ClNO2 in the polluted coastal marine boundary layer. This work also suggests the potential for chlorine atom chemistry to occur indoors where significant concentrations of oxides of nitrogen and HCl coexist. PMID:19620710
Hur, H G; Sadowsky, M J; Wackett, L P
1994-01-01
The recombinant bacterium Pseudomonas putida G786(pHG-2) metabolizes pentachloroethane to glyoxylate and carbon dioxide, using cytochrome P-450CAM and toluene dioxygenase to catalyze consecutive reductive and oxidative dehalogenation reactions (L.P. Wackett, M.J. Sadowsky, L.N. Newman, H.-G. Hur, and S. Li, Nature [London] 368:627-629, 1994). The present study investigated metabolism of brominated and chlorofluorocarbon compounds by the recombinant strain. Under anaerobic conditions, P. putida G786(pHG-2) reduced 1,1,2,2-tetrabromoethane, 1,2-dibromo-1,2-dichloroethane, and 1,1,1,2-tetrachloro-2,2-difluoroethane to products bearing fewer halogen substituents. Under aerobic conditions, P. putida G786(pHG-2) oxidized cis- and trans-1,2-dibromoethenes, 1,1-dichloro-2,2-difluoroethene, and 1,2-dichloro-1-fluoroethene. Several compounds were metabolized by sequential reductive and oxidative reactions via the constructed metabolic pathway. For example, 1,1,2,2-tetrabromoethane was reduced by cytochrome P-450CAM to 1,2-dibromoethenes, which were subsequently oxidized by toluene dioxygenase. The same pathway metabolized 1,1,1,2-tetrachloro-2,2-difluoroethane to oxalic acid as one of the final products. The results obtained in this study indicate that P. putida G786(pHG-2) metabolizes polyfluorinated, chlorinated, and brominated compounds and further demonstrates the value of using a knowledge of catabolic enzymes and recombinant DNA technology to construct useful metabolic pathways. PMID:7993096
Hur, H G; Sadowsky, M J; Wackett, L P
1994-11-01
The recombinant bacterium Pseudomonas putida G786(pHG-2) metabolizes pentachloroethane to glyoxylate and carbon dioxide, using cytochrome P-450CAM and toluene dioxygenase to catalyze consecutive reductive and oxidative dehalogenation reactions (L.P. Wackett, M.J. Sadowsky, L.N. Newman, H.-G. Hur, and S. Li, Nature [London] 368:627-629, 1994). The present study investigated metabolism of brominated and chlorofluorocarbon compounds by the recombinant strain. Under anaerobic conditions, P. putida G786(pHG-2) reduced 1,1,2,2-tetrabromoethane, 1,2-dibromo-1,2-dichloroethane, and 1,1,1,2-tetrachloro-2,2-difluoroethane to products bearing fewer halogen substituents. Under aerobic conditions, P. putida G786(pHG-2) oxidized cis- and trans-1,2-dibromoethenes, 1,1-dichloro-2,2-difluoroethene, and 1,2-dichloro-1-fluoroethene. Several compounds were metabolized by sequential reductive and oxidative reactions via the constructed metabolic pathway. For example, 1,1,2,2-tetrabromoethane was reduced by cytochrome P-450CAM to 1,2-dibromoethenes, which were subsequently oxidized by toluene dioxygenase. The same pathway metabolized 1,1,1,2-tetrachloro-2,2-difluoroethane to oxalic acid as one of the final products. The results obtained in this study indicate that P. putida G786(pHG-2) metabolizes polyfluorinated, chlorinated, and brominated compounds and further demonstrates the value of using a knowledge of catabolic enzymes and recombinant DNA technology to construct useful metabolic pathways.
Chong, Andrea D; Mayer, K Ulrich
2017-09-01
Historical heavy use of chlorinated solvents in conjunction with improper disposal practices and accidental releases has resulted in widespread contamination of soils and groundwater in North America and worldwide. As a result, remediation of chlorinated solvents is required at many sites. For source zone treatment, common remediation strategies include in-situ chemical oxidation (ISCO) using potassium or sodium permanganate, and the enhancement of biodegradation by primary substrate addition. It is well known that these remediation methods tend to generate gas (carbon dioxide (CO 2 ) in the case of ISCO using permanganate, CO 2 and methane (CH 4 ) in the case of bioremediation). Vigorous gas generation in the presence of chlorinated solvents, which are categorized as volatile organic contaminants (VOCs), may cause gas exsolution, ebullition and stripping of the contaminants from the treatment zone. This process may lead to unintentional 'compartment transfer', whereby VOCs are transported away from the contaminated zone into overlying clean sediments and into the vadose zone. To this extent, benchtop column experiments were conducted to quantify the effect of gas generation during remediation of the common chlorinated solvent trichloroethylene (TCE/C 2 Cl 3 H). Both ISCO and enhanced bioremediation were considered as treatment methods. Results show that gas exsolution and ebullition occurs for both remediation technologies. Facilitated by ebullition, TCE was transported from the source zone into overlying clean groundwater and was subsequently released into the column headspace. For the case of enhanced bioremediation, the intermediate degradation product vinyl chloride (VC) was also stripped from the treatment zone. The concentrations measured in the headspace of the columns (TCE ∼300ppm in the ISCO column, TCE ∼500ppm and VC ∼1380ppm in the bioremediation column) indicate that substantial transfer of VOCs to the vadose zone is possible. These findings provide direct evidence for the unintended spreading of contaminants as a result of remediation efforts, which can, under some circumstances, result in enhanced risks for soil vapour intrusion. Copyright © 2017 Elsevier B.V. All rights reserved.
The behavior of SiC and Si3N4 ceramics in mixed oxidation/chlorination environments
NASA Technical Reports Server (NTRS)
Marra, John E.; Kreidler, Eric R.; Jacobson, Nathan S.; Fox, Dennis S.
1989-01-01
The behavior of silicon-based ceramics in mixed oxidation/chlorination environments was studied. High pressure mass spectrometry was used to quantitatively identify the reaction products. The quantitative identification of the corrosion products was coupled with thermogravimetric analysis and thermodynamic equilibrium calculations run under similar conditions in order to deduce the mechanism of corrosion. Variations in the behavior of the different silicon-based materials are discussed. Direct evidence of the existence of silicon oxychloride compounds is presented.
METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION
Brown, H.S.; Seaborg, G.T.
1959-02-24
The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.
Wu, Bei-Zen; Chen, GuanYu; Yak, HwaKwang; Liao, Weisheng; Chiu, KongHwa; Peng, Shie-Ming
2016-06-01
Palladium nanoparticles stabilized in microcellular high-density polyethylene prepared through supercritical foaming, supercritical impregnation, and H2 reduction are used for the hydrodechlorination of lindane and hexachlorobenzene in supercritical carbon dioxide below 100 °C. Both lindane and hexachlorobenzene can be almost 100% transformed to cyclohexane in 1 h. Reaction intermediates, such as lower chlorinated products or benzene, are not observed or exist in trace amount indicating that most of them may undergo reactions without leaving the metal surface. Copyright © 2016 Elsevier Ltd. All rights reserved.
Methods and systems for producing syngas
Hawkes, Grant L; O& #x27; Brien, James E; Stoots, Carl M; Herring, J. Stephen; McKellar, Michael G; Wood, Richard A; Carrington, Robert A; Boardman, Richard D
2013-02-05
Methods and systems are provided for producing syngas utilizing heat from thermochemical conversion of a carbonaceous fuel to support decomposition of at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells. Simultaneous decomposition of carbon dioxide and water or steam by one or more solid-oxide electrolysis cells may be employed to produce hydrogen and carbon monoxide. A portion of oxygen produced from at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells is fed at a controlled flow rate in a gasifier or combustor to oxidize the carbonaceous fuel to control the carbon dioxide to carbon monoxide ratio produced.
Low Energy, Low Emissions: Sulfur Dioxide; Nitrogen Oxides, and Carbon Dioxide in Western Europe.
ERIC Educational Resources Information Center
Alcamo, Joseph; De Vries, Bert
1992-01-01
Links proposed low-energy scenarios for different Western European countries with the amount of pollutants that may result from these scenarios. Sulfur dioxide, nitrogen oxide, and carbon dioxide emissions are calculated for the 10 countries for which low-energy scenarios are available, resulting in reductions of 54%, 37%, and 40%, respectively.…
Lee, Sun-Young; Baek, Seung-Youb
2008-06-01
Escherichia coli O157:H7 contaminated spinach has recently caused several outbreaks of human illness in the USA and Canada. However, to date, there has been no study demonstrating an effective way to eliminate E. coli O157:H7 in spinach. Therefore, this study was conducted to investigate the effect of chemical sanitizers alone or in combination with packaging methods such as vacuum and modified atmosphere packaging (MAP) on inactivating E. coli O157:H7 in spinach during storage time. Spinach inoculated with E. coli O157:H7 was packaged in four different methods (air, vacuum, N(2) gas, and CO(2) gas packaging) following treatment with water, 100 ppm chlorine dioxide, or 100 ppm sodium hypochlorite for 5 min at room temperature and stored at 7+/-2 degrees C. Treatment with water did not significantly reduce levels of E. coli O157:H7 in spinach. However, treatment with chlorine dioxide and sodium hypochlorite significantly decreased levels of E. coli O157:H7 by 2.6 and 1.1 log(10)CFU/g, respectively. Levels of E. coli O157:H7 in samples packaged in air following treatments grew during storage time, whereas levels were maintained in samples packaged in other packaging methods (vacuum, N(2) gas, and CO(2) gas packaging). Therefore there were significant differences (about 3-4 log) of E. coli O157:H7 populations between samples packed in air and other packaging methods following treatment with chemical sanitizers after 7 days storage. These results suggest that the combination of treatment with chlorine dioxide and packaging methods such as vacuum and MAP may be useful for improving the microbial safety of spinach against E. coli O157:H7 during storage.
Chlorine partitioning in the lowermost Arctic vortex during the cold winter 2015/2016
NASA Astrophysics Data System (ADS)
Marsing, Andreas; Jurkat, Tina; Voigt, Christiane; Kaufmann, Stefan; Schlage, Romy; Engel, Andreas; Hoor, Peter; Krause, Jens
2017-04-01
Reactive chlorine compounds in the polar winter stratosphere are central to the formation of the Arctic ozone hole. To study the distribution and partitioning of active chlorine and reservoir species in the lower stratosphere, we performed in-situ measurements of HCl and ClONO2 with the mass spectrometer AIMS during the POLSTRACC aircraft campaign in the Arctic winter 2015/2016 between 320 K and 410 K. In addition to chlorine reservoir gases, in-situ measurements of chemically stable tracers provide means to identify vortex air masses and to infer total inorganic chlorine (Cly). The distribution of chlorine and the degree of activation during the winter, as well as the reformation of the reservoir species at the end of the polar winter vary with altitude and potential temperature. Using trajectory calculations, we demonstrate transport pathways that distribute high amounts of previously activated chlorine into the lowermost stratosphere. Here, active chlorine may have a large oxidation capacity with respect to climate relevant trace gases.