Sample records for chlorine dioxide treatment

  1. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation.

    PubMed

    Sorlini, Sabrina; Gialdini, Francesca; Biasibetti, Michela; Collivignarelli, Carlo

    2014-05-01

    Disinfection is the last treatment stage of a Drinking Water Treatment Plant (DWTP) and is carried out to maintain a residual concentration of disinfectant in the water distribution system. Chlorine dioxide (ClO2) is a widely used chemical employed for this purpose. The aim of this work was to evaluate the influence of several treatments on chlorine dioxide consumption and on chlorite and chlorate formation in the final oxidation/disinfection stage. A number of tests was performed at laboratory scale employing water samples collected from the DWTP of Cremona (Italy). The following processes were studied: oxidation with potassium permanganate, chlorine dioxide and sodium hypochlorite, coagulation/flocculation with ferric chloride and aluminum sulfate, filtration and adsorption onto activated carbon. The results showed that the chlorine dioxide demand is high if sodium hypochlorite or potassium permanganate are employed in pre-oxidation. On the other hand, chlorine dioxide leads to the highest production of chlorite and chlorate. The coagulation/flocculation process after pre-oxidation shows that chlorine dioxide demand decreases if potassium permanganate is employed as an oxidant, both with ferric chloride and aluminum sulfate. Therefore, the combination of these processes leads to a lower production of chlorite and chlorate. Aluminum sulfate is preferable in terms of the chlorine dioxide demand reduction and minimization of the chlorite and chlorate formation. Activated carbon is the most effective solution as it reduced the chlorine dioxide consumption by about 50% and the DBP formation by about 20-40%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Cellular Response of the Amoeba Acanthamoeba castellanii to Chlorine, Chlorine Dioxide, and Monochloramine Treatments

    PubMed Central

    Mogoa, Emerancienne; Bodet, Charles; Morel, Franck; Rodier, Marie-Hélène; Legube, Bernard; Héchard, Yann

    2011-01-01

    Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested on A. castellanii trophozoites. Doses of disinfectants leading to up to a 3-log reduction were compared by flow cytometry and electron microscopy. Chlorine treatment led to size reduction, permeabilization, and retraction of pseudopods. In addition, treatment with chlorine dioxide led to a vacuolization of the cytoplasm. Monochloramine had a dose-dependent effect. At the highest doses monochloramine treatment resulted in almost no changes in cell size and permeability, as shown by flow cytometry, but the cell surface became smooth and dense, as seen by electron microscopy. We show that these disinfectants globally induced size reduction, membrane permeabilization, and morphological modifications but that they have a different mode of action on A. castellanii. PMID:21602398

  3. 21 CFR 173.300 - Chlorine dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Chlorine dioxide. 173.300 Section 173.300 Food and... Additives § 173.300 Chlorine dioxide. Chlorine dioxide (CAS Reg. No. 10049-04-4) may be safely used in food... chlorine dioxide with respect to all chlorine species as determined by Method 4500-ClO2 E in the “Standard...

  4. Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate.

    PubMed

    Rodríguez, Eva; Onstad, Gretchen D; Kull, Tomas P J; Metcalf, James S; Acero, Juan L; von Gunten, Urs

    2007-08-01

    As the World Health Organization (WHO) progresses with provisional Drinking Water Guidelines of 1 microg/L for microcystin-LR and a proposed Guideline of 1 microg/L for cylindrospermopsin, efficient treatment strategies are needed to prevent cyanotoxins such as these from reaching consumers. A kinetic database has been compiled for the oxidative treatment of three cyanotoxins: microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-a (ANTX) with ozone, chlorine, chlorine dioxide and permanganate. This kinetic database contains rate constants not previously reported and determined in the present work (e.g. for permanganate oxidation of ANTX and chlorine dioxide oxidation of CYN and ANTX), together with previously published rate constants for the remaining oxidation processes. Second-order rate constants measured in pure aqueous solutions of these toxins could be used in a kinetic model to predict the toxin oxidation efficiency of ozone, chlorine, chlorine dioxide and permanganate when applied to natural waters. Oxidants were applied to water from a eutrophic Swiss lake (Lake Greifensee) in static-dose testing and dynamic time-resolved experiments to confirm predictions from the kinetic database, and to investigate the effects of a natural matrix on toxin oxidation and by-product formation. Overall, permanganate can effectively oxidize ANTX and MC-LR, while chlorine will oxidize CYN and MC-LR and ozone is capable of oxidizing all three toxins with the highest rate. The formation of trihalomethanes (THMs) in the treated water may be a restriction to the application of sufficiently high-chlorine doses.

  5. Evaluation of gaseous chlorine dioxide for the inactivation of tulane virus on blueberries

    USDA-ARS?s Scientific Manuscript database

    To determine the effectiveness of gaseous chlorine dioxide against a human norovirus surrogate on produce, chlorine dioxide was generated and applied to Tulane virus coated blueberries in a 240 ml treatment chamber. Chlorine dioxide was produced by acidifying sodium chlorite solution. Initial asse...

  6. IDENTIFICATION OF DRINKING WATER DISINFECTION BY-PRODUCTS FROM OZONE, CHLORINE DIOXIDE, CHLORAMINE, AND CHLORINE

    EPA Science Inventory

    Many drinking water treatment plants are currently using alternative disinfectants to treat drinking water, with ozone, chlorine dioxide, and chloramine being the most popular. However, compared to chlorine, which has been much more widely studied, there is little information abo...

  7. Application of Chlorine Dioxide to Lessen Bacterial Contamination during Broiler Defeathering

    USDA-ARS?s Scientific Manuscript database

    Due to escape of contaminated gut contents, the number of Campylobacter spp. recovered from broiler carcasses increases during feather removal. Chlorine dioxide (ClO2) is approved for use as an antimicrobial treatment during poultry processing. A chlorine dioxide generator was placed in a commerci...

  8. EFFECTS OF OZONE, CHLORINE DIOXIDE, CHLORINE, AND MONOCHLORAMINE ON CRYTOSPORIDIUM PARVUM OOCYST VIABILITY

    EPA Science Inventory

    Purified Cryptosporiodium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were compareatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlor...

  9. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korich, D.G.; Mead, J.R.; Madore, M.S.

    1990-05-01

    Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 timesmore » more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water.« less

  10. Chlorine dioxide

    Integrated Risk Information System (IRIS)

    Chlorine dioxide ; CASRN 10049 - 04 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  11. Plant physiological response of strawberry fruit to chlorine dioxide gas treatment during postharvest storage

    USDA-ARS?s Scientific Manuscript database

    Chlorine dioxide, a strong oxidizing and sanitizing agent, is used as a postharvest sanitizer for fruits and vegetables and generally applied on a packing line using a chlorine dioxide generator. The objective of this research was to study the physiological responses of strawberries to ClO2 when app...

  12. Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate.

    PubMed

    Ramseier, Maaike K; Peter, Andreas; Traber, Jacqueline; von Gunten, Urs

    2011-02-01

    Five oxidants, ozone, chlorine dioxide, chlorine, permanganate, and ferrate were studied with regard to the formation of assimilable organic carbon (AOC) and oxalate in absence and presence of cyanobacteria in lake water matrices. Ozone and ferrate formed significant amounts of AOC, i.e. more than 100 μg/L AOC were formed with 4.6 mg/L ozone and ferrate in water with 3.8 mg/L dissolved organic carbon. In the same water samples chlorine dioxide, chlorine, and permanganate produced no or only limited AOC. When cyanobacterial cells (Aphanizomenon gracile) were added to the water, an AOC increase was detected with ozone, permanganate, and ferrate, probably due to cell lysis. This was confirmed by the increase of extracellular geosmin, a substance found in the selected cyanobacterial cells. AOC formation by chlorine and chlorine dioxide was not affected by the presence of the cells. The formation of oxalate upon oxidation was found to be a linear function of the oxidant consumption for all five oxidants. The following molar yields were measured in three different water matrices based on oxidant consumed: 2.4-4.4% for ozone, 1.0-2.8% for chlorine dioxide and chlorine, 1.1-1.2% for ferrate, and 11-16% for permanganate. Furthermore, oxalate was formed in similar concentrations as trihalomethanes during chlorination (yield ∼ 1% based on chlorine consumed). Oxalate formation kinetics and stoichiometry did not correspond to the AOC formation. Therefore, oxalate cannot be used as a surrogate for AOC formation during oxidative water treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Efficacy of chlorine dioxide mouthwash against halitosis

    NASA Astrophysics Data System (ADS)

    Bestari, M. D.; Sunarto, H.; Kemal, Y.

    2017-08-01

    To ascertain the effectiveness of using chlorine dioxide mouthwash in addressing halitosis. Forty people were divided equally into the test group (required to gargle with mouthwash containing chlorine dioxide) and the control group (required to gargle with aquadest). The volatile sulfur compound (VSC) and organoleptic scores were measured before gargling and 30 min, 2 h, 4 h, and 6 h after. The Wilcoxon test analysis showed a significant difference (p<0.05) in the mean value of VSC scores between the test group and the control group in four testing periods after gargling. Chlorine dioxide mouthwash is effective in addressing halitosis.

  14. Mitigation of Alicyclobacillus spp. spores on food contact surfaces with aqueous chlorine dioxide and hypochlorite.

    PubMed

    Friedrich, Loretta M; Goodrich-Schneider, Renee; Parish, Mickey E; Danyluk, Michelle D

    2009-12-01

    The prevalence of Alicyclobacillus spp. and other spore-forming spoilage organisms in food handling and processing environments presents a sanitation challenge to manufacturers of products such as juices and beverages. The objectives of this study were to determine the efficacy of chlorine dioxide and sodium hypochlorite in killing Alicyclobacillus spores in situ and to evaluate the efficacy of various chlorine dioxide and hypochlorite sanitizing regimes on Alicyclobacillus spp. spores on stainless steel, wood, and rubber conveyor material. Five or two log CFU/ml spore concentrations were left in aqueous solution or inoculated onto stainless steel, rubber, or wood coupons and challenged with sanitizer for varied time intervals. After treatment, the coupons were placed in sterile sample bags, massaged with neutralizing buffer, and enumerated on Ali agar. Surfaces were also examined before and after treatment by scanning electron microscopy to confirm destruction or removal of the spores. For both five and two log CFU/ml spore concentrations, treatments of 50 and 100 ppm of chlorine dioxide and 1000 and 2000 ppm of hypochlorite, respectively, were the most effective. Of the range of chlorine dioxide concentrations and contact time regimes evaluated for all surfaces, the most effective concentration/time regime applied was 100 ppm for 10 min. Reductions ranged from 0 to 4.5 log CFU/coupon. Chlorine dioxide was least effective when applied to wood. Hypochlorite was not efficient at eliminating Alicyclobacillus spores from any of the food contact surfaces at any time and concentration combinations tested. Chlorine dioxide is an alternative treatment to kill spores of Alicyclobacillus spp. in the processing environment.

  15. Disinfection of football protective equipment using chlorine dioxide produced by the ICA TriNova system

    PubMed Central

    Newsome, Anthony L; DuBois, John D; Tenney, Joel D

    2009-01-01

    Backround Community-associated methicillin-resistant Staphylococcus aureus outbreaks have occurred in individuals engaged in athletic activities such as wrestling and football. Potential disease reduction interventions include the reduction or elimination of bacteria on common use items such as equipment. Chlorine dioxide has a long history of use as a disinfectant. The purpose of this investigation was to evaluate the ability of novel portable chlorine dioxide generation devices to eliminate bacteria contamination of helmets and pads used by individuals engaged in football. Methods In field studies, the number of bacteria associated with heavily used football helmets and shoulder pads was determined before and after overnight treatment with chlorine dioxide gas. Bacteria were recovered using cotton swabs and plated onto trypticase soy agar plates. In laboratory studies, Staphylococcus aureus was applied directly to pads. The penetration of bacteria into the pads was determined by inoculating agar plates with portions of the pads taken from the different layers of padding. The ability to eliminate bacteria on the pad surface and underlying foam layers after treatment with chlorine dioxide was also determined. Results Rates of recovery of bacteria after treatment clearly demonstrated that chlorine dioxide significantly (p < 0.001) reduce and eliminated bacteria found on the surface of pads. For example, the soft surface of shoulder pads from a university averaged 2.7 × 103 recoverable bacteria colonies before chlorine dioxide treatment and 1.3 × 102 recoverable colonies after treatment. In addition, the gas was capable of penetrating the mesh surface layer and killing bacteria in the underlying foam pad layers. Here, 7 × 103 to 4.5 × 103 laboratory applied S. aureus colonies were recovered from underlying layers before treatment and 0 colonies were present after treatment. Both naturally occurring bacteria and S. aureus were susceptible to the treatment process

  16. Chlorine dioxide as a post-disinfectant for Dutch drinking water.

    PubMed

    Wondergem, E; van Dijk-Looijaard, A M

    1991-02-01

    Chlorine dioxide has some important advantages over chlorine with respect to water quality (no formation of trihalomethanes, no impairment of taste and no odor) and stability when used for oxidation/disinfection of drinking water. In this paper, results are presented of experiments into the consumption and reaction kinetics of chlorine dioxide in a number of (drinking) waters in The Netherlands. It was found that chlorine dioxide consumption is related to the dissolved oxygen content (DOC) of the water and the reaction time. Water samples from a plant that applied ozonation and activated carbon filtration had a very low chlorine dioxide consumption. Other water quality parameters, including pH and CO3(2-), did not have any influence on consumption. The temporary advised Dutch guidelines of 0.2 mg l-1 (dosage) is sufficient for activated carbon treated water. For other Dutch drinking waters, however, none of the 0.2 mg l-1 chlorine dioxide remained after a reaction time of 10 min, as was also found for the water of Dutch pumping stations where chlorine dioxide is at present used for disinfection.

  17. CHLORINE DIOXIDE CHEMISTRY, REACTIONS, AND DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    This chapter contains two main sections-the first section describes the chemistry and reactions of chlorine dioxide, and the second describes the disinfection by-products (DBPs) of chlorine dioxide and their control. A short section on Research Needs completes this chapter. The...

  18. Chlorine Dioxide Inactivation of Cryptosporidium parvum Oocysts and Bacterial Spore Indicators

    PubMed Central

    Chauret, Christian P.; Radziminski, Chris Z.; Lepuil, Michael; Creason, Robin; Andrews, Robert C.

    2001-01-01

    Cryptosporidium parvum, which is resistant to chlorine concentrations typically used in water treatment, is recognized as a significant waterborne pathogen. Recent studies have demonstrated that chlorine dioxide is a more efficient disinfectant than free chlorine against Cryptosporidium oocysts. It is not known, however, if oocysts from different suppliers are equally sensitive to chlorine dioxide. This study used both a most-probable-number–cell culture infectivity assay and in vitro excystation to evaluate chlorine dioxide inactivation kinetics in laboratory water at pH 8 and 21°C. The two viability methods produced significantly different results (P < 0.05). Products of disinfectant concentration and contact time (Ct values) of 1,000 mg · min/liter were needed to inactivate approximately 0.5 log10 and 2.0 log10 units (99% inactivation) of C. parvum as measured by in vitro excystation and cell infectivity, respectively, suggesting that excystation is not an adequate viability assay. Purified oocysts originating from three different suppliers were evaluated and showed marked differences with respect to their resistance to inactivation when using chlorine dioxide. Ct values of 75, 550, and 1,000 mg · min/liter were required to achieve approximately 2.0 log10 units of inactivation with oocysts from different sources. Finally, the study compared the relationship between easily measured indicators, including Bacillus subtilis (aerobic) spores and Clostridium sporogenes (anaerobic) spores, and C. parvum oocysts. The bacterial spores were found to be more sensitive to chlorine dioxide than C. parvum oocysts and therefore could not be used as direct indicators of C. parvum inactivation for this disinfectant. In conclusion, it is suggested that future studies address issues such as oocyst purification protocols and the genetic diversity of C. parvum, since these factors might affect oocyst disinfection sensitivity. PMID:11425712

  19. Chlorine dioxide reactions with indoor materials during building disinfection: surface uptake.

    PubMed

    Hubbard, Heidi; Poppendieck, Dustin; Corsi, Richard L

    2009-03-01

    Chlorine dioxide received attention as a building disinfectant in the wake of Bacillus anthracis contamination of several large buildings in the fall of 2001. It is increasingly used for the disinfection of homes and other indoor environments afflicted by mold. However, little is known regarding the interaction of chlorine dioxide and indoor materials, particularly as related to the removal of chlorine dioxide from air. Such removal may be undesirable with respect to the subsequent formation of localized zones of depleted disinfectant concentrations and potential reductions in disinfection effectiveness in a building. The focus of this paper is on chlorine dioxide removal from air to each of 24 different indoor materials. Experiments were completed with materials housed in flow-through 48-L stainless steel chambers under standard conditions of 700 ppm chlorine dioxide inlet concentration, 75% relative humidity, 24 degrees C, and 0.5 h(-1) air changes. Chlorine dioxide concentration profiles, deposition velocities, and reaction probabilities are described in this paper. Deposition velocities and reaction probabilities varied over approximately 2 orders of magnitude across all materials. For most materials, deposition velocity decreased significantly over a 16-h disinfection period; that is, materials became smaller sinks for chlorine dioxide with time. Four materials (office partition, ceiling tile, medium density fiberboard, and gypsum wallboard) accounted for the most short- and long-term consumption of chlorine dioxide. Deposition velocity was observed to be a strong function of chlorine dioxide inlet concentration, suggesting the potential importance of chemical reactions on or within test materials.

  20. Development of a Portable Binary Chlorine Dioxide Generator for Decontamination

    DTIC Science & Technology

    2010-03-01

    chlorine dioxide forms slowly from chlorite solutions through either acid release or a radical chain reaction that we observed at neutral pH. Task 7... Chlorine dioxide and water in methanol - no agent control F. 5.25% Bleach G. Methanol only 3.0 PROCEDURES 3.1 METHOD VALIDATION The reaction...error range in gas chromatography measurements. For the chlorine dioxide containing samples, mass spectra were analyzed to determine potential

  1. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    PubMed

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP.

  2. Chloroxyanion Residue on Seeds and Sprouts after Chlorine Dioxide Sanitation of Alfalfa Seed.

    PubMed

    Smith, David J; Herges, Grant R

    2018-02-28

    The effects of a 6-h chlorine dioxide sanitation of alfalfa seed (0, 50, 100, and 200 mg/kg seed) on total coliform bacteria, seed germination, and the presence of chlorate and perchlorate residues in seed rinse, seed soak, and alfalfa sprouts was determined. Chlorate residues in 20,000 mg/L calcium hypochlorite, commonly used to disinfect seed, were quantified. Chlorine dioxide treatment reduced (P < 0.05) total coliforms on seeds with no effect (P > 0.05) on germination. Dose-dependent sodium chlorate residues were present in seed rinse (4.1 to 31.2 μg/g seed) and soak (0.7 to 8.3 μg/g seed) waters, whereas chlorate residues were absent (LOQ 5 ng/g) in sprouts, except for 2 of 5 replicates from the high chlorine dioxide treatment. Copious chlorate residues were present (168 to 1260 mg/L) in freshly prepared 20,000 mg/L calcium hypochlorite solution, and storage at room temperature increased chlorate residues significantly (P < 0.01).

  3. Chlorine, Chloramine, Chlorine Dioxide, and Ozone Susceptibility of Mycobacterium avium

    PubMed Central

    Taylor, Robert H.; Falkinham, Joseph O.; Norton, Cheryl D.; LeChevallier, Mark W.

    2000-01-01

    Environmental and patient isolates of Mycobacterium avium were resistant to chlorine, monochloramine, chlorine dioxide, and ozone. For chlorine, the product of the disinfectant concentration (in parts per million) and the time (in minutes) to 99.9% inactivation for five M. avium strains ranged from 51 to 204. Chlorine susceptibility of cells was the same in washed cultures containing aggregates and in reduced aggregate fractions lacking aggregates. Cells of the more slowly growing strains were more resistant to chlorine than were cells of the more rapidly growing strains. Water-grown cells were 10-fold more resistant than medium-grown cells. Disinfectant resistance may be one factor promoting the persistence of M. avium in drinking water. PMID:10742264

  4. Chlorine Dioxide Induced Multiple Chemical Sensitivity: MMPI Validity Problems.

    ERIC Educational Resources Information Center

    Tentoni, Stuart C.

    This paper discusses Minnesota Multiphasic Personality Inventory (MMPI) data obtained from individuals exposed to chlorine dioxide in the workplace who developed Multiple Chemical Sensitivity Syndrome. The paper explores current research on chlorine dioxide exposed persons who were misdiagnosed on the basis of MMPI interpretations. Difficulties…

  5. The effectiveness of closed-circulation gaseous chlorine dioxide or ozone treatment against bacterial pathogens on produce food control

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to compare the effectiveness of gaseous chlorine dioxide (ClO2) and ozone (O3) treatment against Shiga toxin-producing Escherichia coli (STEC), Salmonella enterica serovars, and Listeria monocytogenes on baby-cut carrots, lowbush blueberries, and beefsteak tomatoes us...

  6. [Study on pipe material's influence on chlorine dioxide drinking water disinfection].

    PubMed

    He, Tao; Yue, Yinling; Ling, Bo; Zhang, Lan

    2010-09-01

    To study the pipe material's influence on chlorine dioxide drinking water disinfection. 0.8 mg/L chlorine dioxide solution was injected into 5 kinds of pipes respectively, PPR, PVC-U, Steel with Zinc coating, copper and PE pipes. Dipped free from light for 48 hours and the concentrations of chlorine dioxide, chlorite and chlorate were tested from samples taken from each kind of pipe at 1, 2, 3, 4, 5, 6, 12, 24 and 48 hours respectively. Chlorine dioxides decay rates in the water dipping the pipes increase as the dipping time increases and the decay of chlorine dioxide mainly occurs within 6 hours after the dipping. But for different pipe, the influence of decay differs. The consumption of chlorine dioxide of the metal pipes is more than that of the plastic pipes. And with 2 hours after the dipping experiment begins, the concentrations of the chlorite of the copper pipe and of the steel with zinc coating pipe increase quickly and reach the maximum concentration. But then the chlorite concentration decreases greatly. After dipped 24 hours, the chlorite in the water in the pipe can not be detected. For other plastic piples, all the chlorite concentrations in the dipping water increase as the dipping time increase. Compared with the start of the dipping experiment, the chlorate concentration in the dipping water of each pipe has no obvious change. The material of the water transportation pipe does have influence on chlorine dioxide drinking water disinfection.

  7. Exposure to chlorine dioxide gas for 4 hours renders Syphacia ova nonviable.

    PubMed

    Czarra, Jane A; Adams, Joleen K; Carter, Christopher L; Hill, William A; Coan, Patricia N

    2014-07-01

    The purpose of our study was to evaluate the efficacy of chlorine dioxide gas for environmental decontamination of Syphacia spp. ova. We collected Syphacia ova by perianal cellophane tape impression of pinworm-infected mice. Tapes with attached ova were exposed to chlorine dioxide gas for 1, 2, 3, or 4 h. After gas exposure, ova were incubated in hatching medium for 6 h to promote hatching. For controls, tapes with attached ova were maintained at room temperature for 1, 2, 3, and 4 h without exposure to chlorine dioxide gas and similarly incubated in hatch medium for 6 h. Ova viability after incubation was assessed by microscopic examination. Exposure to chlorine dioxide gas for 4 h rendered 100% of Syphacia spp. ova nonviable. Conversely, only 17% of ova on the 4-h control slide were nonviable. Other times of exposure to chlorine dioxide gas resulted in variable effectiveness. These data suggest that exposure to chlorine dioxide gas for at least 4 h is effective for surface decontamination of Syphacia spp. ova.

  8. IDENTIFICATION OF NEW DRINKING WATER DISINFECTION BY-PRODUCTS FROM OZONE, CHLORINE DIOXIDE, CHLORAMINE, AND CHLORINE

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Ozone, chlorine dioxide, and chloramine are currently popular alternatives to ...

  9. Study on encapsulation of chlorine dioxide in gelatin microsphere for reducing release rate

    PubMed Central

    Ci, Ying; Wang, Lin; Guo, Yanchuan; Sun, Ruixue; Wang, Xijie; Li, Jinyou

    2015-01-01

    Objective: This study aims to explore the effects of encapsulation of chlorine dioxide in a hydrophilic biodegradable polymer gelatin to reduce its release rate. Methods: An emulsification-coacervation method was adopted. The characterizations of chlorine dioxide-gelatin microspheres were described. Using UV-vis spectrophotometer the λmax of chlorine dioxide was observed at 358 nm. The particle size and distribution of chlorine oxide-gelatin microspheres was measured by a dynamic light scattering (DLS) method, the diameter was (1400~1900) nm. The entrapment of chlorine dioxide-gelatin microspheres was confirmed by IR. The surface morphology, size, and shape of chlorine dioxide-gelatin microspheres were analyzed using Scanning electron microscope (SEM). Results: It showed that the encapsulated microspheres size was around 2000 nm with uniform distribution. The percentage entrapment of chlorine dioxide in the encapsulated samples was about 80~85%. A slow release study of chlorine dioxide from the encapsulated biopolymer (gelatin) in air was also carried out, which showed continuous release up to ten days. Conclusions: It can be concluded that it is possible to make a slow release formulation of ClO2 by entrapped in a hydrophilic biodegradable polymer gelatin. ClO2-gelatin microspheres can stable release low concentration ClO2 gas over an extended period. PMID:26550151

  10. Chlorine Dioxide for Reduction of Postharvest Pathogen Inoculum during Handling of Tree Fruits

    PubMed Central

    Roberts, Rodney G.; Reymond, Stephen T.

    1994-01-01

    Alternatives to hypochlorous acid and fungicides are needed for treatment of fruit and fruit-handling facilities. Chlorine dioxide was evaluated and found effective against common postharvest decay fungi and against filamentous fungi occurring on fruit packinghouse surfaces. In vitro tests with conidial or sporangiospore suspensions of Botrytis cinerea, Penicillium expansum, Mucor piriformis, and Cryptosporiopsis perennans demonstrated >99% spore mortality within 1 min when the fungi were exposed to aqueous chlorine dioxide at 3 or 5 μg · ml-1. Longer exposure times were necessary to achieve similar spore mortalities with 1 μg · ml-1. Of the fungi tested, B. cinerea and P. expansum were the least sensitive to ClO2. In comparison with the number recovered from untreated control areas, the number of filamentous fungi recovered was significantly lower in swipe tests from hard surfaces such as belts and pads in a commercial apple and pear packinghouse after treatment of surfaces with a 14.0- to 18.0-μg · ml-1 ClO2 foam formulation. Chlorine dioxide has desirable properties as a sanitizing agent for postharvest decay management when residues of postharvest fungicides are not desired or allowed. PMID:16349354

  11. 21 CFR 173.300 - Chlorine dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... hypochlorite and hydrochloric acid. (ii) Treating an aqueous solution of sodium chlorate with hydrogen peroxide... electrolysis. (2) The generator effluent contains at least 90 percent (by weight) of chlorine dioxide with...

  12. Measurement of Chlorine Dioxide in Water by DPD Colorimetric Method

    NASA Astrophysics Data System (ADS)

    Song, Min; Yan, Panping; Yao, Jun

    2018-01-01

    In order to solve the problems of chlorine dioxide in water by DPD colorimetric method, this paper discusses the effects of the formulation, temperature, color development time and amount of color reagent on the measurement process, improving the on-line instrument for domestic and drinking water in chlorine dioxide measurement precision and accuracy.

  13. Effect of hot acid hydrolysis and hot chlorine dioxide stage on bleaching effluent biodegradability.

    PubMed

    Gomes, C M; Colodette, J L; Delantonio, N R N; Mounteer, A H; Silva, C M

    2007-01-01

    The hot acid hydrolysis followed by chlorine dioxide (A/D*) and hot chlorine dioxide (D*) technologies have proven very useful for bleaching of eucalyptus kraft pulp. Although the characteristics and biodegradability of effluents from conventional chlorine dioxide bleaching are well known, such information is not yet available for effluents derived from hot acid hydrolysis and hot chorine dioxide bleaching. This study discusses the characteristics and biodegradability of such effluents. Combined whole effluents from the complete sequences DEpD, D*EpD, A/D*EpD and ADEpD, and from the pre-bleaching sequences DEp, D*Ep, A/D*Ep and ADEp were characterized by quantifying their colour, AOX and organic load (BOD, COD, TOC). These effluents were also evaluated for their treatability by simulation of an activated sludge system. It was concluded that treatment in the laboratory sequencing batch reactor was efficient for removal of COD, BOD and TOC of all effluents. However, colour increased after biological treatment, with the greatest increase found for the effluent produced using the AD technology. Biological treatment was less efficient at removing AOX of effluents from the sequences with D*, A/D* and AD as the first stages, when compared to the reference D stage; there was evidence of the lower treatability of these organochlorine compounds from these sequences.

  14. Inactivation of human and simian rotaviruses by chlorine dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yu-Shiaw; Vaughn, J.M.

    1990-05-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4{degree}C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10{sup 5}-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate a neutral pH, and the sensitivities to chlorine dioxide weremore » similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.« less

  15. A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide.

    PubMed

    Stehouwer, Peter Paul; Buma, Anita; Peperzak, Louis

    2015-01-01

    The spread of aquatic invasive species through ballast water is a major ecological and economical threat. Because of this, the International Maritime Organization (IMO) set limits to the concentrations of organisms allowed in ballast water. To meet these limits, ballast water treatment systems (BWTSs) were developed. The main techniques used for ballast water treatment are ultraviolet (UV) radiation and electrochlorination (EC). In this study, phytoplankton regrowth after treatment was followed for six BWTSs. Natural plankton communities were treated and incubated for 20 days. Growth, photosystem II efficiency and species composition were followed. The three UV systems all showed similar patterns of decrease in phytoplankton concentrations followed by regrowth. The two EC and the chlorine dioxide systems showed comparable results. However, UV- and chlorine-based treatment systems showed significantly different responses. Overall, all BWTSs reduced phytoplankton concentrations to below the IMO limits, which represents a reduced risk of aquatic invasions through ballast water.

  16. Application of chlorine dioxide to lessen bacterial contamination during broiler defeathering

    USDA-ARS?s Scientific Manuscript database

    Due to escape of contaminated gut contents, the number of Campylobacter spp. recovered from broiler carcasses increases during feather removal. Chlorine dioxide (ClO2) is approved for use as an antimicrobial treatment during poultry processing. A study was designed to test if application of 50 ppm...

  17. Monitoring of Legionella pneumophila viability after chlorine dioxide treatment using flow cytometry.

    PubMed

    Mustapha, Pascale; Epalle, Thibaut; Allegra, Séverine; Girardot, Françoise; Garraud, Olivier; Riffard, Serge

    2015-04-01

    The viability of three Legionella pneumophila strains was monitored after chlorine dioxide (ClO2) treatment using a flow cytometric assay. Suspensions of L. pneumophila cells were submitted to increasing concentrations of ClO2. Culturable cells were still detected when using 4 mg/L, but could no longer be detected after exposure to 6 mg/L of ClO2, although viable but not culturable (VBNC) cells were found after exposure to 4-5 mg/L of ClO2. When testing whether these VBNC were infective, two of the strains were resuscitated after co-culture with Acanthamoeba polyphaga, but neither of them could infect macrophage-like cells. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate.

    PubMed

    Ramseier, Maaike K; von Gunten, Urs; Freihofer, Pietro; Hammes, Frederik

    2011-01-01

    Drinking water was treated with ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate to investigate the kinetics of membrane damage of native drinking water bacterial cells. Membrane damage was measured by flow cytometry using a combination of SYBR Green I and propidium iodide (SGI+PI) staining as indicator for cells with permeabilized membranes and SGI alone to measure total cell concentration. SGI+PI staining revealed that the cells were permeabilized upon relatively low oxidant exposures of all tested oxidants without a detectable lag phase. However, only ozonation resulted in a decrease of the total cell concentrations for the investigated reaction times. Rate constants for the membrane damage reaction varied over seven orders of magnitude in the following order: ozone > chlorine > chlorine dioxide ≈ ferrate > permanganate > chloramine. The rate constants were compared to literature data and were in general smaller than previously measured rate constants. This confirmed that membrane integrity is a conservative and therefore safe parameter for disinfection control. Interestingly, the cell membranes of high nucleic acid (HNA) content bacteria were damaged much faster than those of low nucleic acid (LNA) content bacteria during treatment with chlorine dioxide and permanganate. However, only small differences were observed during treatment with chlorine and chloramine, and no difference was observed for ferrate treatment. Based on the different reactivity of these oxidants it was suggested that HNA and LNA bacterial cell membranes have a different chemical constitution. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Chlorine dioxide water disinfection: a prospective epidemiology study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael, G.E.; Miday, R.K.; Bercz, J.P.

    An epidemiologic study of 198 persons exposed for 3 months to drinking water disinfected with chlorine dioxide was conducted in a rural village. A control population of 118 nonexposed persons was also studied. Pre-exposure hematologic and serum chemical parameters were compared with test results after 115 days of exposure. Chlorite ion levels in the water averaged approximately 5 ppM during the study period. Statistical analysis (ANOVA) of the data failed to identify any significant exposure-related effects. This study suggests that future evaluations of chlorine dioxide disinfection should be directed toward populations with potentially increased sensitivity to hemolytic agents.

  20. IDENTIFICATION OF CHLORINE DIOXIDE AND CHLORAMINE DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide and chloramine are two popular alternative disinfectants, with...

  1. Chloroxyanion residue quantification in cantaloupes treated with chlorine dioxide gas

    USDA-ARS?s Scientific Manuscript database

    Previous studies show that treatment of cantaloupes with chlorine dioxide (ClO2) gas at 5 mg/L for 10 minutes, results in a significant reduction (p<0.05) in initial microflora, an increase in shelf life without any alteration in color, and a 4.6 and 4.3 log reduction of E. coli O157:H7 and L. monoc...

  2. Concentration-dependence of the explosion characteristics of chlorine dioxide gas.

    PubMed

    Jin, Ri-ya; Hu, Shuang-qi; Zhang, Yin-ghao; Bo, Tao

    2009-07-30

    The explosion characteristics of chlorine dioxide gas have been studied for the first time in a cylindrical exploder with a shell capacity of 20 L. The experimental results have indicated that the lower concentration limit for the explosive decomposition of chlorine dioxide gas is 9.5% ([ClO(2)]/[air]), whereas there is no corresponding upper concentration limit. Under the experimental conditions, and within the explosion limits, the pressure of explosion increases with increasing concentration of chlorine dioxide gas; the maximum pressure of explosion relative to the initial pressure was measured as 0.024 MPa at 10% ClO(2) and 0.641 MPa at 90% ClO(2). The induction time (the time from the moment of sparking to explosion) has also been found to depend on the concentration of chlorine dioxide gas; thus, at 10% ClO(2) the induction time was 2195 ms, but at 90% ClO(2) the induction time was just 8 ms. The explosion reaction mechanism of ClO(2) is of a degenerate chain-branching type involving the formation of a stable intermediate (Cl(2)O(3)), from which the chain-branching occurs. Chain initiation takes place at the point of ignition and termination takes place at the inner walls of the exploder.

  3. Degradation of sulfamethoxazole using ozone and chlorine dioxide - Compound-specific stable isotope analysis, transformation product analysis and mechanistic aspects.

    PubMed

    Willach, Sarah; Lutze, Holger V; Eckey, Kevin; Löppenberg, Katja; Lüling, Michelle; Terhalle, Jens; Wolbert, Jens-Benjamin; Jochmann, Maik A; Karst, Uwe; Schmidt, Torsten C

    2017-10-01

    The sulfonamide antibiotic sulfamethoxazole (SMX) is a widely detected micropollutant in surface and groundwaters. Oxidative treatment with e.g. ozone or chlorine dioxide is regularly applied for disinfection purposes at the same time exhibiting a high potential for removal of micropollutants. Especially for nitrogen containing compounds such as SMX, the related reaction mechanisms are largely unknown. In this study, we systematically investigated reaction stoichiometry, product formation and reaction mechanisms in reactions of SMX with ozone and chlorine dioxide. To this end, the neutral and anionic SMX species, which may occur at typical pH-values of water treatment were studied. Two moles of chlorine dioxide and approximately three moles of ozone were consumed per mole SMX degraded. Oxidation of SMX with ozone and chlorine dioxide leads in both cases to six major transformation products (TPs) as revealed by high-resolution mass spectrometry (HRMS). Tentatively formulated TP structures from other studies could partly be confirmed by compound-specific stable isotope analysis (CSIA). However, for one TP, a hydroxylated SMX, it was not possible by HRMS alone to identify whether hydroxylation occurred at the aromatic ring, as suggested in literature before, or at the anilinic nitrogen. By means of CSIA and an analytical standard it was possible to identify sulfamethoxazole hydroxylamine unequivocally as one of the TPs of the reaction of SMX with ozone as well as with chlorine dioxide. H-abstraction and electron transfer at the anilinic nitrogen are suggested as likely initial reactions of ozone and chlorine dioxide, respectively, leading to its formation. Oxidation of anionic SMX with ozone did not show any significant isotopic fractionation whereas the other reactions studied resulted in a significant carbon isotope fractionation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Inactivation of Salmonella on Eggshells by Chlorine Dioxide Gas

    PubMed Central

    Yum, Bora; Yoon, Sung-Sik; Song, Kyoung-Ju; Kim, Jong-Rak

    2016-01-01

    Microbiological contamination of eggs should be prevented in the poultry industry, as poultry is one of the major reservoirs of human Salmonella. ClO2 gas has been reported to be an effective disinfectant in various industry fields, particularly the food industry. The aims of this study were to evaluate the antimicrobial effect of chlorine dioxide gas on two strains of Salmonella inoculated onto eggshells under various experimental conditions including concentrations, contact time, humidity, and percentage organic matter. As a result, it was shown that chlorine dioxide gas under wet conditions was more effective in inactivating Salmonella Enteritidis and Salmonella Gallinarum compared to that under dry conditions independently of the presence of organic matter (yeast extract). Under wet conditions, a greater than 4 log reduction in bacterial populations was achieved after 30 min of exposure to ClO2 each at 20 ppm, 40 ppm, and 80 ppm against S. Enteritidis; 40 ppm and 80 ppm against S. Gallinarum. These results suggest that chlorine dioxide gas is an effective agent for controlling Salmonella, the most prevalent contaminant in the egg industry. PMID:27499670

  5. Distribution, identification, and quantification of residues after treatment of ready-to-eat salami with 36Cl-labeled or nonlabeled chlorine dioxide gas

    USDA-ARS?s Scientific Manuscript database

    Chlorine dioxide gas actively eliminates a variety of food-borne pathogens and rot organisms, including Listeria monocytogenes on food and food preparation surfaces. However the disposition and fate of chlorine dioxide gas on ready-to-eat meat products has not been previously described. When ready-t...

  6. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Chloric acid solution or chlorine dioxide hydrate... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When the.... Fiberboard boxes must be reinforced and insulated and sufficient dry ice must be used to maintain the hydrate...

  7. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Chloric acid solution or chlorine dioxide hydrate... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When the.... Fiberboard boxes must be reinforced and insulated and sufficient dry ice must be used to maintain the hydrate...

  8. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Chloric acid solution or chlorine dioxide hydrate... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When the.... Fiberboard boxes must be reinforced and insulated and sufficient dry ice must be used to maintain the hydrate...

  9. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Chloric acid solution or chlorine dioxide hydrate... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When the.... Fiberboard boxes must be reinforced and insulated and sufficient dry ice must be used to maintain the hydrate...

  10. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Chloric acid solution or chlorine dioxide hydrate... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When the.... Fiberboard boxes must be reinforced and insulated and sufficient dry ice must be used to maintain the hydrate...

  11. A comparison of the virucidal properties of chlorine, chlorine dioxide, bromine chloride and iodine.

    PubMed Central

    Taylor, G. R.; Butler, M.

    1982-01-01

    Chlorine dioxide, bromine chloride and iodine were compared with chlorine as virucidal agents. Under optimal conditions all disinfectants were effective at low concentrations, but each disinfectant responded differently to acidity and alkalinity. Disinfection by chlorine was impaired by the presence of ammonia, but the other disinfectants retained much of their potency. Disinfection of poliovirus by iodine resulted in structural changes in the virions as seen by electron micrroscopy, but the other disinfectants were able to inactivate poliovirus without causing any apparent structural changes. Images Plate 1 PMID:6290566

  12. Controlled clinical evaluations of chlorine dioxide, chlorite and chlorate in man.

    PubMed Central

    Lubbers, J R; Chauan, S; Bianchine, J R

    1982-01-01

    To assess the relative safety of chronically administered chlorine water disinfectants in man, a controlled study was undertaken. The clinical evaluation was conducted in the three phases common to investigational drug studies. Phase I, a rising dose tolerance investigation, examined the acute effects of progressively increasing single doses of chlorine disinfectants to normal healthy adult male volunteers. Phase II considered the impact on normal subjects of daily ingestion of the disinfectants at a concentration of 5 mg/l. for twelve consecutive weeks. Persons with a low level of glucose-6-phosphate dehydrogenase may be expected to be especially susceptible to oxidative stress; therefore, in Phase III, chlorite at a concentration of 5 mg/l. was administered daily for twelve consecutive weeks to a small group of potentially at-risk glucose-6-phosphate dehydrogenase-deficient subjects. Physiological impact was assessed by evaluation of a battery of qualitative and quantitative tests. The three phases of this controlled double-blind clinical evaluation of chlorine dioxide and its potential metabolites in human male volunteer subjects were completed uneventfully. There were no obvious undesirable clinical sequellae noted by any of the participating subjects or by the observing medical team. In several cases, statistically significant trends in certain biochemical or physiological parameters were associated with treatment; however, none of these trends was judged to have physiological consequence. One cannot rule out the possibility that, over a longer treatment period, these trends might indeed achieve proportions of clinical importance. However, by the absence of detrimental physiological responses within the limits of the study, the relative safety of oral ingestion of chlorine dioxide and its metabolites, chlorite and chlorate, was demonstrated. PMID:6961033

  13. 40 CFR 141.544 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.544 Section 141.544 Protection of Environment... Benchmark § 141.544 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone or chlorine dioxide for primary disinfection your system must...

  14. 40 CFR 141.535 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.535 Section 141.535 Protection of Environment... § 141.535 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone, or chlorine dioxide for primary disinfection, you must also...

  15. 40 CFR 141.544 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.544 Section 141.544 Protection of Environment... Benchmark § 141.544 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone or chlorine dioxide for primary disinfection your system must...

  16. 40 CFR 141.535 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.535 Section 141.535 Protection of Environment... § 141.535 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone, or chlorine dioxide for primary disinfection, you must also...

  17. 40 CFR 141.544 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.544 Section 141.544 Protection of Environment... Benchmark § 141.544 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone or chlorine dioxide for primary disinfection your system must...

  18. 40 CFR 141.535 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.535 Section 141.535 Protection of Environment... § 141.535 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone, or chlorine dioxide for primary disinfection, you must also...

  19. 40 CFR 141.544 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.544 Section 141.544 Protection of Environment... Benchmark § 141.544 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone or chlorine dioxide for primary disinfection your system must...

  20. 40 CFR 141.535 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.535 Section 141.535 Protection of Environment... § 141.535 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone, or chlorine dioxide for primary disinfection, you must also...

  1. Controlling Mold on Library Materials with Chlorine Dioxide: An Eight-Year Case Study.

    ERIC Educational Resources Information Center

    Weaver-Meyers, Pat L.; Kowaleski, Barbara; Stolt, Wilbur A.

    1998-01-01

    Discusses problems associated with mold growth at the University of Oklahoma libraries and describes the results of using chlorine dioxide in aqueous and gaseous forms. Highlights include toxicity compared to other preservation treatments; environmental controls; and explanations of a preference for the use of a self-activating gas packet.…

  2. Chlorine dioxide against bacteria and yeasts from the alcoholic fermentation

    PubMed Central

    Meneghin, Silvana Perissatto; Reis, Fabricia Cristina; de Almeida, Paulo Garcia; Ceccato-Antonini, Sandra Regina

    2008-01-01

    The ethanol production in Brazil is carried out by fed-batch or continuous process with cell recycle, in such way that bacterial contaminants are also recycled and may be troublesome due to the substrate competition. Addition of sulphuric acid when inoculum cells are washed can control the bacterial growth or alternatively biocides are used. This work aimed to verify the effect of chlorine dioxide, a well-known biocide for bacterial decontamination of water and equipments, against contaminant bacteria (Bacillus subtilis, Lactobacillus plantarum, Lactobacillus fermentum and Leuconostoc mesenteroides) from alcoholic fermentation, through the method of minimum inhibitory concentration (MIC), as well as its effect on the industrial yeast inoculum. Lower MIC was found for B. subtilis (10 ppm) and Leuconostoc mesenteroides (50 ppm) than for Lactobacillus fermentum (75 ppm) and Lactobacillus plantarum (125 ppm). Additionally, these concentrations of chlorine dioxide had similar effects on bacteria as 3 ppm of Kamoran® (recommended dosage for fermentation tanks), exception for B. subtilis, which could not be controlled at this Kamoran® dosage. The growth of industrial yeasts was affected when the concentration of chlorine dioxide was higher than 50 ppm, but the effect was slightly dependent on the type of yeast strain. Smooth yeast colonies (dispersed cells) seemed to be more sensitive than wrinkled yeast colonies (clustered cells/pseudohyphal growth), both isolated from an alcohol-producing unit during the 2006/2007 sugar cane harvest. The main advantage in the usage of chlorine dioxide that it can replace antibiotics, avoiding the selection of resistant populations of microorganisms. PMID:24031227

  3. Inactivation of Escherichia coli O157:H7 in biofilm on food-contact surfaces by sequential treatments of aqueous chlorine dioxide and drying.

    PubMed

    Bang, Jihyun; Hong, Ayoung; Kim, Hoikyung; Beuchat, Larry R; Rhee, Min Suk; Kim, Younghoon; Ryu, Jee-Hoon

    2014-11-17

    We investigated the efficacy of sequential treatments of aqueous chlorine and chlorine dioxide and drying in killing Escherichia coli O157:H7 in biofilms formed on stainless steel, glass, plastic, and wooden surfaces. Cells attached to and formed a biofilm on wooden surfaces at significantly (P ≤ 0.05) higher levels compared with other surface types. The lethal activities of sodium hypochlorite (NaOCl) and aqueous chlorine dioxide (ClO₂) against E. coli O157:H7 in a biofilm on various food-contact surfaces were compared. Chlorine dioxide generally showed greater lethal activity than NaOCl against E. coli O157:H7 in a biofilm on the same type of surface. The resistance of E. coli O157:H7 to both sanitizers increased in the order of wood>plastic>glass>stainless steel. The synergistic lethal effects of sequential ClO₂ and drying treatments on E. coli O157:H7 in a biofilm on wooden surfaces were evaluated. When wooden surfaces harboring E. coli O157:H7 biofilm were treated with ClO₂ (200 μg/ml, 10 min), rinsed with water, and subsequently dried at 43% relative humidity and 22 °C, the number of E. coli O157:H7 on the surface decreased by an additional 6.4 CFU/coupon within 6 h of drying. However, when the wooden surface was treated with water or NaOCl and dried under the same conditions, the pathogen decreased by only 0.4 or 1.0 log CFU/coupon, respectively, after 12 h of drying. This indicates that ClO₂ treatment of food-contact surfaces results in residual lethality to E. coli O157:H7 during the drying process. These observations will be useful when selecting an appropriate type of food-contact surfaces, determining a proper sanitizer for decontamination, and designing an effective sanitization program to eliminate E. coli O157:H7 on food-contact surfaces in food processing, distribution, and preparation environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Cross-Resistance of UV- or Chlorine Dioxide-Resistant Echovirus 11 to Other Disinfectants

    PubMed Central

    Zhong, Qingxia; Carratalà, Anna; Ossola, Rachele; Bachmann, Virginie; Kohn, Tamar

    2017-01-01

    The emergence of waterborne viruses with resistance to disinfection has been demonstrated in the laboratory and in the environment. Yet, the implications of such resistance for virus control remain obscure. In this study we investigate if viruses with resistance to a given disinfection method exhibit cross-resistance to other disinfectants. Chlorine dioxide (ClO2)- or UV-resistant populations of echovirus 11 were exposed to five inactivating treatments (free chlorine, ClO2, UV radiation, sunlight, and heat), and the extent of cross-resistance was determined. The ClO2-resistant population exhibited cross-resistance to free chlorine, but to none of the other inactivating treatments tested. We furthermore demonstrated that ClO2 and free chlorine act by a similar mechanism, in that they mainly inhibit the binding of echovirus 11 to its host cell. As such, viruses with host binding mechanisms that can withstand ClO2 treatment were also better able to withstand oxidation by free chlorine. Conversely, the UV-resistant population was not significantly cross-resistant to any other disinfection treatment. Overall, our results indicate that viruses with resistance to multiple disinfectants exist, but that they can be controlled by inactivating methods that operate by a distinctly different mechanism. We therefore suggest to utilize two disinfection barriers that act by different mechanisms in order to control disinfection-resistant viruses. PMID:29046672

  5. The Health Effects of Chlorine Dioxide as a Disinfectant in Potable Water: A Literature Survey

    ERIC Educational Resources Information Center

    Calabrese, Edward J.; And Others

    1978-01-01

    The use of chlorine dioxide as a disinfectant in water is being considered by the EPA. This article presents a summary of the known published reports concerning health effects of chlorine dioxide on animal and human populations. (Author/MA)

  6. Dissection of the mechanism of manganese porphyrin-catalyzed chlorine dioxide generation.

    PubMed

    Umile, Thomas P; Wang, Dong; Groves, John T

    2011-10-17

    Chlorine dioxide, an industrially important biocide and bleach, is produced rapidly and efficiently from chlorite ion in the presence of water-soluble, manganese porphyrins and porphyrazines at neutral pH under mild conditions. The electron-deficient manganese(III) tetra-(N,N-dimethyl)imidazolium porphyrin (MnTDMImP), tetra-(N,N-dimethyl)benzimidazolium (MnTDMBImP) porphyrin, and manganese(III) tetra-N-methyl-2,3-pyridinoporphyrazine (MnTM23PyPz) were found to be the most efficient catalysts for this process. The more typical manganese tetra-4-N-methylpyridiumporphyrin (Mn-4-TMPyP) was much less effective. Rates for the best catalysts were in the range of 0.24-32 TO/s with MnTM23PyPz being the fastest. The kinetics of reactions of the various ClO(x) species (e.g., chlorite ion, hypochlorous acid, and chlorine dioxide) with authentic oxomanganese(IV) and dioxomanganese(V)MnTDMImP intermediates were studied by stopped-flow spectroscopy. Rate-limiting oxidation of the manganese(III) catalyst by chlorite ion via oxygen atom transfer is proposed to afford a trans-dioxomanganese(V) intermediate. Both trans-dioxomanganese(V)TDMImP and oxoaqua-manganese(IV)TDMImP oxidize chlorite ion by 1-electron, generating the product chlorine dioxide with bimolecular rate constants of 6.30 × 10(3) M(-1) s(-1) and 3.13 × 10(3) M(-1) s(-1), respectively, at pH 6.8. Chlorine dioxide was able to oxidize manganese(III)TDMImP to oxomanganese(IV) at a similar rate, establishing a redox steady-state equilibrium under turnover conditions. Hypochlorous acid (HOCl) produced during turnover was found to rapidly and reversibly react with manganese(III)TDMImP to give dioxoMn(V)TDMImP and chloride ion. The measured equilibrium constant for this reaction (K(eq) = 2.2 at pH 5.1) afforded a value for the oxoMn(V)/Mn(III) redox couple under catalytic conditions (E' = 1.35 V vs NHE). In subsequent processes, chlorine dioxide reacts with both oxomanganese(V) and oxomanganese(IV)TDMImP to afford chlorate

  7. IDENTIFICATION OF CHLORINE DIOXIDE DRINKING WATER DISINFECTION BY-PRODUCTS FORMED AT HIGH BROMIDE LEVELS

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs), haloacetic acids, and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide is a popular alternative, with over 500 dri...

  8. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE BYPRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This paper discusses the identification of organic disinfectant byproducts (DNPS) at a pilot plant in Evansville, IN, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high- and low-resolu...

  9. Sequential disinfection of E. coli O157:H7 on shredded lettuce leaves by aqueous chlorine dioxide, ozonated water, and thyme essential oil

    NASA Astrophysics Data System (ADS)

    Singh, Nepal; Singh, Rakesh K.; Bhunia, Arun K.; Stroshine, Richard L.; Simon, James E.

    2001-03-01

    There have been numerous studies on effectiveness of different sanitizers for microbial inactivation. However, results obtained from different studies indicate that microorganism cannot be easily removed from fresh cut vegetables because of puncture and cut surfaces with varying surface topographies. In this study, three step disinfection approach was evaluated for inactivation of E. coli O157:H7 on shredded lettuce leaves. Sequential application of thyme oil, ozonated water, and aqueous chlorine dioxide was evaluated in which thyme oil was applied first followed by ozonated water and aqueous chlorine dioxide. Shredded lettuce leaves inoculated with cocktail culture of E. coli O157:H7 (C7927, EDL 933 and 204 P), were washed with ozonated water (15 mg/l for 10min), aqueous chlorine dioxide (10 mg/l,for 10min) and thyme oil suspension (0.1%, v/v for 5min). Washing of lettuce leaves with ozonated water, chlorine dioxide and thyme oil suspension resulted in 0.44, 1.20, and 1.46 log reduction (log10 cfu/g), respectively. However, the sequential treatment achieved approximately 3.13 log reductions (log10 cfu/g). These results demonstrate the efficacy of sequential treatments in decontaminating shredded lettuce leaves containing E. coli O157:H7.

  10. Groups at potentially high risk from chlorine dioxide treated water.

    PubMed

    Moore, G S; Calabrese, E J; Ho, S C

    1980-09-01

    Chlorite, a by-product of chlorine dioxide disinfection of water, is a strong oxidant compound that produces markedly exaggerated effects in vitro on red cells of G6PD deficient humans when compared to normal human cells. Levels of methemoglobin are significantly greater and GSH levels significantly lower in the G6PD deficient cells than in normal cells after chlorite exposure. Persons with G6PD deficiency may be 3 to 4 times more likely to develop hemolytic anemia from chlorite exposure as persons with normal activity levels when GSH levels are used as a measure of susceptibility. The proposed use of chlorine dioxide as an alternate disinfectant for drinking water supplies should consider this potential high risk group.

  11. Kinetics and mechanism of styrene epoxidation by chlorite: role of chlorine dioxide.

    PubMed

    Leigh, Jessica K; Rajput, Jonathan; Richardson, David E

    2014-07-07

    An investigation of the kinetics and mechanism for epoxidation of styrene and para-substituted styrenes by chlorite at 25 °C in the pH range of 5-6 is described. The proposed mechanism in water and water/acetonitrile includes seven oxidation states of chlorine (-I, 0, I, II, III, IV, and V) to account for the observed kinetics and product distributions. The model provides an unusually detailed quantitative mechanism for the complex reactions that occur in mixtures of chlorine species and organic substrates, particularly when the strong oxidant chlorite is employed. Kinetic control of the reaction is achieved by the addition of chlorine dioxide to the reaction mixture, thereby eliminating a substantial induction period observed when chlorite is used alone. The epoxidation agent is identified as chlorine dioxide, which is continually formed by the reaction of chlorite with hypochlorous acid that results from ClO produced by the epoxidation reaction. The overall stoichiometry is the result of two competing chain reactions in which the reactive intermediate ClO reacts with either chlorine dioxide or chlorite ion to produce hypochlorous acid and chlorate or chloride, respectively. At high chlorite ion concentrations, HOCl is rapidly eliminated by reaction with chlorite, minimizing side reactions between HOCl and Cl2 with the starting material. Epoxide selectivity (>90% under optimal conditions) is accurately predicted by the kinetic model. The model rate constant for direct reaction of styrene with ClO2(aq) to produce epoxide is (1.16 ± 0.07) × 10(-2) M(-1) s(-1) for 60:40 water/acetonitrile with 0.20 M acetate buffer. Rate constants for para substituted styrenes (R = -SO3(-), -OMe, -Me, -Cl, -H, and -NO2) with ClO2 were determined. The results support the radical addition/elimination mechanism originally proposed by Kolar and Lindgren to account for the formation of styrene oxide in the reaction of styrene with chlorine dioxide.

  12. Survival of Salmonella Typhimurium on soybean sprouts after treatment with gaseous chlorine dioxide and biocontrol Pseudomonas bacteria

    USDA-ARS?s Scientific Manuscript database

    Control of Salmonella Typhimurium on sprouts and minimally processed produce is crucial for food and consumer safety. The aim of this research was to assess natural microflora populations on soybean and evaluate the effects of gaseous chlorine dioxide (ClO2) and biocontrol Pseudomonas on the surviva...

  13. Survival of Salmonella enterica on soybean sprouts following treatments with gaseous chlorine dioxide and biocontrol Pseudomonas bacteria

    USDA-ARS?s Scientific Manuscript database

    Control of Salmonella enterica on sprouts and minimally processed, ready-to-eat fruits and vegetables is important for food and consumer safety. The aim of this research was to assess the effects of gaseous chlorine dioxide(ClO2)and biocontrol microorganisms (Pseudomonas chlororaphis and P. fluoresc...

  14. Low-Temperature Decontamination with Hydrogen Peroxide or Chlorine Dioxide for Space Applications

    PubMed Central

    Macken, S.; Giri, K.; Walker, J. T.; Bennett, A. M.

    2012-01-01

    The currently used microbial decontamination method for spacecraft and components uses dry-heat microbial reduction at temperatures of >110°C for extended periods to prevent the contamination of extraplanetary destinations. This process is effective and reproducible, but it is also long and costly and precludes the use of heat-labile materials. The need for an alternative to dry-heat microbial reduction has been identified by space agencies. Investigations assessing the biological efficacy of two gaseous decontamination technologies, vapor hydrogen peroxide (Steris) and chlorine dioxide (ClorDiSys), were undertaken in a 20-m3 exposure chamber. Five spore-forming Bacillus spp. were exposed on stainless steel coupons to vaporized hydrogen peroxide and chlorine dioxide gas. Exposure for 20 min to vapor hydrogen peroxide resulted in 6- and 5-log reductions in the recovery of Bacillus atrophaeus and Geobacillus stearothermophilus, respectively. However, in comparison, chlorine dioxide required an exposure period of 60 min to reduce both B. atrophaeus and G. stearothermophilus by 5 logs. Of the three other Bacillus spp. tested, Bacillus thuringiensis proved the most resistant to hydrogen peroxide and chlorine dioxide with D values of 175.4 s and 6.6 h, respectively. Both low-temperature decontamination technologies proved effective at reducing the Bacillus spp. tested within the exposure ranges by over 5 logs, with the exception of B. thuringiensis, which was more resistant to both technologies. These results indicate that a review of the indicator organism choice and loading could provide a more appropriate and realistic challenge for the sterilization procedures used in the space industry. PMID:22492450

  15. Comparison of commercial analytical techniques for measuring chlorine dioxide in urban desalinated drinking water.

    PubMed

    Ammar, T A; Abid, K Y; El-Bindary, A A; El-Sonbati, A Z

    2015-12-01

    Most drinking water industries are closely examining options to maintain a certain level of disinfectant residual through the entire distribution system. Chlorine dioxide is one of the promising disinfectants that is usually used as a secondary disinfectant, whereas the selection of the proper monitoring analytical technique to ensure disinfection and regulatory compliance has been debated within the industry. This research endeavored to objectively compare the performance of commercially available analytical techniques used for chlorine dioxide measurements (namely, chronoamperometry, DPD (N,N-diethyl-p-phenylenediamine), Lissamine Green B (LGB WET) and amperometric titration), to determine the superior technique. The commonly available commercial analytical techniques were evaluated over a wide range of chlorine dioxide concentrations. In reference to pre-defined criteria, the superior analytical technique was determined. To discern the effectiveness of such superior technique, various factors, such as sample temperature, high ionic strength, and other interferences that might influence the performance were examined. Among the four techniques, chronoamperometry technique indicates a significant level of accuracy and precision. Furthermore, the various influencing factors studied did not diminish the technique's performance where it was fairly adequate in all matrices. This study is a step towards proper disinfection monitoring and it confidently assists engineers with chlorine dioxide disinfection system planning and management.

  16. Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine.

    PubMed

    Sorlini, Sabrina; Gialdini, Francesca

    2010-11-01

    Arsenic is widespread in soils, water and air. In natural water the main forms are arsenite (As(III)) and arsenate (As(V)). The consumption of water containing high concentration of arsenic produces serious effects on human health, like skin and lung cancer. In Italy, Legislative Decree 2001/31 reduced the limit of arsenic from 50 to 10 μg/L, in agreement with the European Directive 98/83/EC. As consequence, many drinking water treatment plant companies needed to upgrade the existing plants where arsenic was previously removed or to build up new plants for arsenic removal when this contaminant was not previously a critical parameter. Arsenic removal from water may occur through the precipitation with iron or aluminum salts, adsorption on iron hydroxide or granular activated alumina (AA), reverse osmosis and ion exchange (IE). Some of the above techniques, especially precipitation, adsorption with AA and IE, can reach good arsenic removal yields only if arsenic is oxidized. The aim of the present work is to investigate the efficiency of the oxidation of As(III) by means of four conventional oxidants (chlorine dioxide, sodium hypochlorite, potassium permanganate and monochloramine) with different test conditions: different type of water (demineralised and real water), different pH values (5.7-6-7 and 8) and different doses of chemicals. The arsenic oxidation yields were excellent with potassium permanganate, very good with hypochlorite and low with monochloramine. These results were observed both on demineralised and real water for all the tested reagents with the exception of chlorine dioxide that showed a better arsenic oxidation on real groundwater than demineralised water. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Chlorine dioxide-induced and Congo red-inhibited Marangoni effect on the chlorite-trithionate reaction front

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ren, Xingfeng; Pan, Changwei; Zheng, Ting; Yuan, Ling; Zheng, Juhua; Gao, Qingyu

    2017-10-01

    Hydrodynamic flows can exert multiple effects on an exothermal autocatalytic reaction, such as buoyancy and the Marangoni convection, which can change the structure and velocity of chemical waves. Here we report that in the chlorite-trithionate reaction, the production and consumption of chlorine dioxide can induce and inhibit Marangoni flow, respectively, leading to different chemo-hydrodynamic patterns. The horizontal propagation of a reaction-diffusion-convection front was investigated with the upper surface open to the air. The Marangoni convection, induced by gaseous chlorine dioxide on the surface, produced from chlorite disproportionation after the proton autocatalysis, has the same effect as the heat convection. When the Marangoni effect is removed by the reaction of chlorine dioxide with the Congo red (CR) indicator, an oscillatory propagation of the front tip is observed under suitable conditions. Replacing CR with bromophenol blue (BPB) distinctly enhanced the floating, resulting in multiple vortexes, owing to the coexistence between BPB and chlorine dioxide. Using the incompressible Navier-Stokes equations coupled with reaction-diffusion and heat conduction equations, we numerically obtain various experimental scenarios of front instability for the exothermic autocatalytic reaction coupled with buoyancy-driven convection and Marangoni convection.

  18. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BYPRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This paper discusses the identification of organic disinfection byproducts (DBPs) at a pilot plant in Evansville, IN, which uses chlorine dioxide as a primary disinfectant. Unconventional multispectral identification techniques (gas chromatography combined with high- and low reso...

  19. Ultrafast measurements of chlorine dioxide photochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludowise, P.D.

    Time-resolved mass spectrometry and time-resolved photoelectron spectroscopy are used to study the ultrafast photodissociation dynamics of chlorine dioxide, an important constituent in stratospheric ozone depletion. Chapter 1 introduces these pump/probe techniques, in which a femtosecond pump pulse excites a molecule to a dissociative state. At a later time, a second femtosecond probe pulse ionizes the molecule. The resulting mass and photoelectron spectra are acquired as a function of the delay between the pump and probe pulses, which follows the evolution of the molecule on the excited state. A comparison to other techniques used to study reaction dynamics is discussed. Chaptermore » 2 includes a detailed description of the design and construction of the experimental apparatus, which consists of a femtosecond laser system, a molecular beam time-of-flight spectrometer, and a data acquisition system. The time-of-flight spectrometer is specifically designed to have a short flight distance to maximize the photoelectron collection efficiency without degrading the resolution, which is limited by the bandwidth of the femtosecond laser system. Typical performance of the apparatus is demonstrated in a study of the time-resolved photoelectron spectroscopy of nitric oxide. The results of the time-resolved mass spectrometry experiments of chlorine dioxide are presented in Chapter 3. Upon excitation to the A {sup 2}A{sub 2} state near 3.2 eV, the molecule dissociates through an indirect two-step mechanism. The direct dissociation channel has been predicted to be open, but is not observed. A quantum beat is observed in the OClO{sup +} species, which is described as a vibrational coherence of the optically prepared A {sup 2}A{sub 2} state. Chapter 4 presents the results of the time-resolved photoelectron experiments of chlorine dioxide. At short delay time, the quantum beat of the OClO{sup +} species is observed in the X {sup 1}A{sub 1} state of the ion. At infinite delay

  20. PHOTOCHEMICAL REACTIONS AMONG FORMALDEHYDE, CHLORINE, AND NITROGEN DIOXIDE IN AIR

    EPA Science Inventory

    Photochemical reactions among chlorine, nitrogen dioxide, and formaldehyde were studied, using parts-per-million concentrations in 1 atm of air. The reactant mixtures were irradiated by ultraviolet fluorescent lamps and simultaneously analyzed by the Fourier transform infrared te...

  1. Effect of disinfection of drinking water with ozone or chlorine dioxide on survival of Cryptosporidium parvum oocysts.

    PubMed Central

    Peeters, J E; Mazás, E A; Masschelein, W J; Villacorta Martiez de Maturana, I; Debacker, E

    1989-01-01

    Demineralized water was seeded with controlled numbers of oocysts of Cryptosporidium parvum purified from fresh calf feces and subjected to different treatments with ozone or chlorine dioxide. The disinfectants were neutralized by sodium thiosulfate, and neonatal mice were inoculated intragastrically and sacrificed 7 days later for enumeration of oocyst production. Preliminary trials indicated that a minimum infection level of 1,000 oocysts (0.1-ml inoculum) per mouse was necessary to induce 100% infection. Treatment of water containing 10(4) oocysts per ml with 1.11 mg of ozone per liter (concentration at time zero [C0]) for 6 min totally eliminated the infectivity of the oocysts for neonatal mice. A level of 2.27 mg of ozone per liter (C0) was necessary to inactivate water containing 5 x 10(5) oocysts per ml within 8 min. Also, 0.4 mg of chlorine dioxide per liter (C0) significantly reduced infectivity within 15 min of contact, although some oocysts remained viable. PMID:2764564

  2. Mutagenic activity associated with by-products of drinking water disinfection by chlorine, chlorine dioxide, ozone and UV-irradiation.

    PubMed Central

    Zoeteman, B C; Hrubec, J; de Greef, E; Kool, H J

    1982-01-01

    A retrospective epidemiological study in The Netherlands showed a statistical association between chlorination by-products in drinking water and cancer of the esophagus and stomach for males. A pilot-plant study with alternative disinfectants was carried out with stored water of the Rivers Rhine and Meuse. It was demonstrated that the increase of direct acting mutagens after treatment with chlorine dioxide is similar to the effect of chlorination. Ozonation of Rhine water reduced the mutagenic activity for Salmonella typhimurium TA 98 both with and without metabolic activation. UV alone hardly affects the mutagenicity of the stored river water for S. typh. TA 98. In all studies, practically no mutagenic activity for S. typh. TA 100 was found. Although remarkable changes in the concentration of individual organic compounds are reported, the identity of the mutagens detected is yet unclear. Compounds of possible interest due to their removal by ozonation are 1,3,3-trimethyloxindole, dicyclopentadiene and several alkylquinolines. Compounds which might be responsible for the increased mutagenicity after chlorination are two brominated acetonitriles and tri(2-chlorethyl) phosphate. Furthermore, the concentration procedure with adsorption on XAD resin and the subsequent elution step may have affected the results. It is proposed to focus further research more on the less volatile by-products of disinfection than on the trihalomethanes. PMID:7151762

  3. Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves.

    PubMed

    Keskinen, Lindsey A; Burke, Angela; Annous, Bassam A

    2009-06-30

    This study compared the efficacy of chlorine (20-200 ppm), acidic electrolyzed water (50 ppm chlorine, pH 2.6), acidified sodium chlorite (20-200 ppm chlorite ion concentration, Sanova), and aqueous chlorine dioxide (20-200 ppm chlorite ion concentration, TriNova) washes in reducing populations of Escherichia coli O157:H7 on artificially inoculated lettuce. Fresh-cut leaves of Romaine or Iceberg lettuce were inoculated by immersion in water containing E. coli O157:H7 (8 log CFU/ml) for 5 min and dried in a salad spinner. Leaves (25 g) were then washed for 2 min, immediately or following 24 h of storage at 4 degrees C. The washing treatments containing chlorite ion concentrations of 100 and 200 ppm were the most effective against E. coli O157:H7 populations on Iceberg lettuce, with log reductions as high as 1.25 log CFU/g and 1.05 log CFU/g for TriNova and Sanova wash treatments, respectively. All other wash treatments resulted in population reductions of less than 1 log CFU/g. Chlorine (200 ppm), TriNova, Sanova, and acidic electrolyzed water were all equally effective against E. coli O157:H7 on Romaine, with log reductions of approximately 1 log CFU/g. The 20 ppm chlorine wash was as effective as the deionized water wash in reducing populations of E. coli O157:H7 on Romaine and Iceberg lettuce. Scanning electron microscopy indicated that E. coli O157:H7 that was incorporated into biofilms or located in damage lettuce tissue remained on the lettuce leaf, while individual cells on undamaged leaf surfaces were more likely to be washed away.

  4. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This paper discusses the identification of organic disinfection by-products (DBPs) at a pilot plant in Evansville, Indiana, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high and low r...

  5. HIGH-RATE DISINFECTION OF COMBINED SEWER OVERFLOW USING CHLORINE DIOXIDE

    EPA Science Inventory

    This presentation is a state-of-the-art review of chlorine dioxide (ClO2) used for high-rate disinfection of combined sewer overflow (CSO). The review includes bench-, pilot-, and fullscale studies on the use of ClO2 as a disinfecting agent for a variety of wastewaters. Specific ...

  6. Bacillus subtilis vegetative isolate surviving chlorine dioxide exposure: an elusive mechanism of resistance.

    PubMed

    Martin, D J H; Wesgate, R L; Denyer, S P; McDonnell, G; Maillard, J-Y

    2015-12-01

    Oxidizing agents such as chlorine dioxide are widely used microbicides, including for disinfection of medical equipment. We isolated a Bacillus subtilis isolate from a washer-disinfector whose vegetative form demonstrated unique resistance to chlorine dioxide (0·03%) and hydrogen peroxide (7·5%). The aim of this study was to understand the mechanisms of resistance expressed by this isolate. A range of resistance mechanisms were investigated in the B. subtilis isolate and a reference B. subtilis strain (ATCC 6051) to include bacterial cell aggregation, the presence of profuse exopolysaccharide (EPS), and the expression of detoxification enzymes. The basis of resistance of the isolate to high concentrations of oxidizing agents was not linked to the presence of endospores. Although, the presence of EPS, aggregation and expression of detoxification enzymes may play a role in bacterial survival to low concentrations of chlorine dioxide, it is unlikely that the mechanisms helped tested to survive the bactericidal effect of higher oxidizer concentrations. Overall, the mechanisms conferring resistance to chlorine dioxide and hydrogen peroxide remains elusive. Based on recent advances in the mode of action of oxidizing agents and notably hydrogen peroxide, we postulate that additional efficient intracellular mechanisms may be involved to explain significant resistance to in-use concentrations of commonly used high-level disinfectants. The isolation of a highly resistant vegetative Gram-positive bacterium to a highly reactive oxidizing agent is worrying. Understanding the mechanisms conferring such resistance is essential to effectively control such bacterial isolates. Here, we postulate that there are still mechanisms of bacterial resistance that have not been fully characterized. © 2015 The Authors published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  7. Mass Transfer Study of Chlorine Dioxide Gas Through Polymeric Packaging Materials

    USDA-ARS?s Scientific Manuscript database

    A continuous system for measuring the mass transfer of gaseous chlorine dioxide (ClO2), a strong oxidizing agent and used in food and pharmaceutical packaging, through 10 different types of polymeric packaging material was developed utilizing electrochemical sensor as a detector. Permeability, diff...

  8. An in vitro evaluation of the antibacterial efficacy of chlorine dioxide on E. faecalis in bovine incisors.

    PubMed

    Eddy, Russell S; Joyce, Anthony P; Roberts, Steven; Buxton, Thomas B; Liewehr, Frederick

    2005-09-01

    This study investigated the ability of chlorine dioxide to eliminate Enterococcus faecalis from dentinal tubules of bovine incisors. Thirty-seven extracted bovine incisor roots were sectioned into seventy-four 5 mm disks. Standardized lumens were filled with either sterile Brain Heart Infusion Broth (contamination controls, n = 10) or BHI containing E. faecalis (1.0 x 10 cfu/ml). Disks were incubated in 5% CO2 at 37 degrees C for 72 h. To simulate endodontic instrumentation the lumens were again enlarged. Sixty disks were randomly divided into four experimental groups and filled with one of the following irrigants: 10% Clidox-S (chlorine dioxide), 13.8% BioClenz (chlorine dioxide), 5.25% Clorox, or saline. The disks were incubated for 30 min and were then frozen, pulverized, serially diluted in phosphate buffered saline, and plated on BHI plates in triplicate. Total colony forming units were counted macroscopically. Statistical analysis of the data was performed with a Kruskal-Wallis one-way ANOVA on ranks (p < 0.05, n = 60). Bacterial counts, expressed in log10 cfu/disk were as follows (">" denotes significant differences): Saline > Clidox-S = BioClenz > Clorox. All negative controls were sterile. Chlorine dioxide and NaOCL were both effective in eliminating E. faecalis from the dentinal disks within 30 min.

  9. Improvement of indoor air quality in pet shop using gaseous chlorine dioxide.

    PubMed

    Lu, Ming-Chun; Huang, Da-Ji; Hsu, Ching-Shan; Liang, Chih-Kuo; Chen, Geng-Min

    2018-06-01

    Many studies have shown that pet shops have a high concentration of bioaerosols. Thus, effective disinfection protocols are essential to protect the pet shop staff and visitors to the store. The present study examines the effectiveness of gaseous chlorine dioxide (ClO 2 ) fogging in minimizing the residual bacteria and fungi levels in a typical pet shop in Taiwan consisting of a commodity area, a lodging area, and a grooming area. This investigation uses three disinfection modes (DMs) according to different disinfection periods, namely once every hour (1DM), once every 2 h (2DM), and once every 3 h (3DM). The bacteria and fungi concentrations are measured before and after disinfection treatment, and the effectiveness of each disinfection mode is evaluated using standard statistical techniques. To assess the effect of the environmental factors on the disinfection efficiency, measurements are taken of temperature, relative humidity, airflow velocity, the carbon dioxide concentration, the PM 1 , PM 2.5 , PM 7 , PM 10 , and TSP level at each sampling locations. The results reveal that the effectiveness of the three disinfection modes depends on both the environmental parameters and the use of the three areas (e.g., commodity, lodging, or grooming). Hence, the choice of disinfection method should be adjusted accordingly. For all three disinfection modes, a faster air velocity is beneficial in spreading the disinfectant throughout the indoor space and improving the disinfection performance. Overall, the results presented in this study confirm that gaseous chlorine dioxide disinfection improves the air quality in the pet shop interior, and thus beneficial in safeguarding the health of the pet shop staff and visitors.

  10. Effects of aqueous chlorine dioxide treatment on nutritional components and shelf-life of mulberry fruit (Morus alba L.).

    PubMed

    Chen, Zhao; Zhu, Chuanhe; Han, Ziqiang

    2011-06-01

    Effects of aqueous chlorine dioxide (ClO(2)) treatment on nutritional components and shelf-life of mulberry fruit (Morus alba L.) were investigated. Mulberry fruit were immersed into 20, 60, and 80 mg/l ClO(2) solutions for 5, 10, and 15 min, respectively. Mulberries were then rinsed with potable tap water for 1 min and stored at -1°C for 14 d. ClO(2) treatment was effective in retention of flavonoid, ascorbic acid, reducing sugar, and titratable acid. ClO(2) concentration and treatment time were significant factors affecting ClO(2) treatment. The shelf-life of the samples treated by 60 mg/l ClO(2) for 15 min was extended to 14 d compared to 8 d for the control. No ClO(2), ClO(2)(-), or ClO(3)(-) residues were detected in samples treated by 60 mg/l ClO(2) for 15 min. These results indicated that ClO(2) treatment was a promising approach to preserve mulberry fruit with no significant risks of chemical residues. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400 1400 cm 1

    DTIC Science & Technology

    2015-11-24

    ammonia , chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400... ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint...sections of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (CCl2O), and sulfur dioxide (SO2) toxic gases in the fingerprint

  12. Raman Spectra and Cross Sections of Ammonia, Chlorine, Hydrogen Sulfide, Phosgene, and Sulfur Dioxide Toxic Gases in the Fingerprint Region 400-1400 cm-1

    DTIC Science & Technology

    2015-12-14

    ammonia , chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400... ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint...sections of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (CCl2O), and sulfur dioxide (SO2) toxic gases in the fingerprint region

  13. Improvement of the air quality in student health centers with chlorine dioxide.

    PubMed

    Hsu, Ching-Shan; Huang, Da-Ji; Lu, Ming-Chun

    2010-04-01

    This study aims to monitor bioaerosol levels of a local campus of a student health center in Taiwan and then to perform disinfection by applying chlorine dioxide. First, air samples were taken and evaluated in the six areas of the center. The average background bioaerosol levels were 714 +/- 1706 CFU/m(3) for bacterium and 802 +/- 633 CFU/m(3) for fungi. Then, chlorine dioxide was applied through three different procedures: single, multiple and regular disinfections. The results indicated that both multiple and regular disinfections can achieve efficiency levels higher than 59.0%. The regression analysis on bioaerosol levels showed that the number of people present correlating to the number of persons entering the room per door-opening, had a correlation of p < 0.05. Utilizing this analysis result, an empirical model was developed to predict indoor bioaerosol concentrations. It can be inferred that for indoor human activity of health centers, regular disinfection is a very effective process.

  14. The use of chlorine dioxide for the inactivation of copepod zooplankton in drinking water treatment.

    PubMed

    Lin, Tao; Chen, Wei; Cai, Bo

    2014-01-01

    The presence of zooplankton in drinking water treatment system may cause a negative effect on the aesthetic value of drinking water and may also increase the threat to human health due to they being the carriers of bacteria. Very little research has been done on the effects of copepod inactivation and the mechanisms involved in this process. In a series of bench-scale experiments we used a response surface method to assess the sensitivity of copepod to inactivation when chlorine dioxide (ClO₂) was used as a disinfectant. We also assessed the effects of the ClO₂dosage, exposure time, organic matter concentration and temperature. Results indicated that the inactivation rate improved with increasing dosage, exposure time and temperature, whereas it decreased with increasing organic matter concentration. Copepod inactivation was more sensitive to the ClO₂dose than that to the exposure time, while being maintained at the same Ct-value conditions. The activation energy at different temperatures revealed that the inactivation of copepods with ClO₂was temperature-dependent. The presence of organic matter resulted in a lower available dose as well as a shorter available exposure time, which resulted in a decrease in inactivation efficiency.

  15. Field Experience with Chlorine Dioxide Fumigation of a Hospital: Timeline and Lessons Learned

    EPA Science Inventory

    Chlorine dioxide (Cl02) fumigation technology was developed and successfully used to remediate four large buildings contaminated with anthrax spores from 2001 through 2004. As a first application of the technology, those remediations were complex, costly and time consuming. There...

  16. Development of chlorine dioxide releasing film and its application in decontaminating fresh produce

    USDA-ARS?s Scientific Manuscript database

    A feasibility study was conducted to develop chlorine dioxide releasing packaging films for decontaminating fresh produce. Sodium chlorite and citric acid powder were incorporated into polylactic acid (PLA) polymer. Films made with different amount of PLA (100 & 300 mg), percentage of reactant (5-60...

  17. Evaluation of chlorine dioxide as a supplementary pretreatment reagent for lignocellulosic biomass.

    PubMed

    Acharjee, Tapas C; Jiang, Zhihua; Haynes, Robert Daniel; Lee, Yoon Y

    2017-11-01

    Chlorine dioxide (ClO 2 ) is a bleaching reagent used in paper industry. Two different types of pretreatment methods were investigated incorporating ClO 2 as a secondary reagent: (a) alkaline followed by ClO 2 treatment; (b) dilute-sulfuric acid followed ClO 2 treatment. In these methods, ClO 2 treatment has shown little effect on delignification. Scheme-a has shown a significant improvement in enzymatic digestibility of glucan far above that treated by ammonia alone. On the contrary, dilute-acid followed by ClO 2 treatment has shown negative effect on the enzymatic hydrolysis. The main factors affecting the enzymatic hydrolysis are the changes of the chemical structure of lignin and its distribution on the biomass surface. ClO 2 treatment significantly increases the carboxylic acid content and reduces phenolic groups of lignin, affecting hydrophobicity of lignin and the H-bond induced association between the enzyme and lignin. This collectively led to reduction of unproductive binding of enzyme with lignin, consequently increasing the digestibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Disinfection of herbal spa pool using combined chlorine dioxide and sodium hypochlorite treatment.

    PubMed

    Hsu, Ching-Shan; Huang, Da-Ji

    2015-02-01

    The presence of pathogenic microorganisms in public spa pools poses a serious threat to human health. The problem is particularly acute in herbal spas, in which the herbs and microorganisms may interact and produce undesirable consequences. Accordingly, the present study investigated the effectiveness of a combined disinfectant containing chlorine dioxide and sodium hypochlorite in improving the water quality of a public herbal spa in Taiwan. Water samples were collected from the spa pool and laboratory tests were then performed to measure the variation over time of the microorganism content (total CFU and total coliforms) and residual disinfectant content given a single disinfection mode (SDM) with disinfectant concentrations of 5.2 × 10, 6.29 × 10, 7.4 × 10, and 11.4 × 10(-5) N, respectively. Utilizing the experience gained from the laboratory tests, a further series of on-site investigations was performed using three different disinfection modes, namely SDM, 3DM (once every 3 h disinfection mode), and 2DM (once every 2 h disinfection mode). The laboratory results showed that for all four disinfectant concentrations, the CFU concentration reduced for the first 6 h following SDM treatment, but then increased. Moreover, the ANOVA results showed that the sample treated with the highest disinfectant concentration (11.4 × 10(-5) N) exhibited the lowest rate of increase in the CFU concentration. In addition, the on-site test results showed that 3DM and 2DM treatments with disinfectant concentrations in excess of 9.3 × 10 and 5.5 × 10(-5) N, respectively, provided an effective reduction in the total CFU concentration. In conclusion, the experimental results presented in this study provide a useful source of reference for spa businesses seeking to improve the water quality of their spa pools.

  19. Raman Spectra and Cross Sections of Ammonia, Chlorine, Hydrogen Sulfide, Phosgene, and Sulfur Dioxide Toxic Gases in the Fingerprint Region 400-1400 cm-1

    DTIC Science & Technology

    2016-02-11

    AIP ADVANCES 6, 025310 (2016) Raman spectra and cross sections of ammonia , chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in...Received 10 December 2015; accepted 3 February 2016; published online 11 February 2016) Raman spectra of ammonia (NH3), chlorine (Cl2), hydrogen...and cross sections of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (CCl2O), and sulfur dioxide (SO2) toxic gases in the fingerprint

  20. Water Treatment Technology - Chlorination.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chlorination provides instructional materials for nine competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of chlorination, chlorine…

  1. Reduction of Salmonella enterica on the surface of eggshells by sequential treatment with aqueous chlorine dioxide and drying.

    PubMed

    Choi, Seonyeong; Park, Sunhyung; Kim, Yoonsook; Kim, Byeong-sam; Beuchat, Larry R; Hoikyung, Kim; Ryu, Jee-Hoon

    2015-10-01

    The synergistic effects of sequential treatments with chlorine dioxide (ClO2) and drying in killing Salmonella enterica on the surface of chicken eggshells were investigated. Initial experiments were focused on comparing lethalities of sodium hypochlorite (NaOCl) and ClO2. Eggs surface-inoculated with S. enterica in chicken feces as a carrier were immersed in water, NaOCl (50 or 200 μg/mL), or ClO2 (50 or 200 μg/mL) for 1 or 5 min. For 1-min treatments, lethal activities of sanitizers were not significantly different (P>0.05). However, after treatment with ClO2 for 5 min, reductions of S. enterica were significantly greater (P≤0.05) than reductions after treatment with water or NaOCl. The effect of treatment of eggs with ClO2 or NaOCl, followed by drying at 43% relative humidity and 25 °C for 24 and 48 h, were determined. Populations of S. enterica decreased during drying, regardless of the type of sanitizer treatment. ClO2 treatment, compared to water or NaOCl treatments, resulted in additional reductions of ca. >1.3 log CFU/egg during drying. This indicates that sequential treatments with ClO2 and drying induced synergistic lethal effects against S. enterica on the surface of eggshells. These observations will be useful when selecting a sanitizer to control S. enterica on the surface of eggshells and designing an effective egg sanitization system exploiting the synergistic lethal effects of sanitizer and drying. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A quantitative study on the absorption of gaseous chlorine dioxide onto lettuce leaf

    USDA-ARS?s Scientific Manuscript database

    Chlorine dioxide (ClO2) is an effective surface disinfectant and it is gaining interest in the food and pharmaceutical industries, due to its bacteriocide effects. One of the most promising applications of gaseous ClO2 is to be included in the headspace of food packaging systems for vapor-phase deco...

  3. Chloroxyanion residue on seeds and sprouts after chlorine dioxide sanitation of alfalfa seed

    USDA-ARS?s Scientific Manuscript database

    The effects of a 6-h chlorine dioxide sanitation of alfalfa seed (0, 50, 100, and 200 mg/kg seed) on total coliform bacteria, seed germination, and on the presence of chlorate and perchlorate residues in seed rinse, seed soak, and in alfalfa sprouts was determined. Chlorate residues in 20000 ppm cal...

  4. An evaluation of the use of chlorine dioxide (Tristel One-Shot) in an automated washer/disinfector (Medivator) fitted with a chlorine dioxide generator for decontamination of flexible endoscopes.

    PubMed

    Coates, D

    2001-05-01

    Microbiological tests were carried out to evaluate a new chlorine dioxide sterilant: Tristel OneShot. Preliminary in vitro suspension tests showed that solutions containing around 140 ppm chlorine dioxide achieved a reduction factor exceeding 10(6) of Staphylococcus aureus in 1min and of Bacillus subtilis spores in 2.5 min in the presence of 3g/L bovine albumin. Subsequent tests evaluated the effectiveness of Tristel One-Shot in a Medivator washer/disinfector fitted with a Tristel Generator for processing flexible endoscopes. Each test run involved three stages. In the first, the instrument and air-water channels of a gastroscope were inoculated with a suspension of Pseudomonas aeruginosa (10(8)cfu/ml) in 10% sodium glutamate and serum (0, 5 or 10%) and then drained, partially dried, and saline flushed through for total viable counts (TVCs). In the second stage, the channels were re-inoculated with test organisms; detergent was flushed through the channels which were then brushed; and saline was flushed through for TVCs. In the third stage, the channels were re-inoculated; detergent was flushed through the channels which were then brushed; the endoscope was processed in the Medivator; and saline was flushed through for TVCs. Carrying out all three stages enabled determination of (1) the contribution played by manual cleaning of channels prior to processing in the Medivator, and (2) the combined effect of manual cleaning followed by processing. Two series of test runs were done. In the first, the Tristel Generator was set to generate 230ppm chlorine dioxide, and in the second 150ppm. In the first, cleaning followed by processing in the Medivator consistently achieved a >/= 10(6)-fold reduction of test organisms, and in the second a >/= 10(5)-fold reduction. Pre-cleaning of channels was very important-when done the initial concentration of serum in the inoculum (0-10%) had no affect on the results obtained after processing. Copyright 2001 The Hospital infection

  5. Use of 0.1% chlorine dioxide to inhibit the formation of morning volatile sulphur compounds (VSC).

    PubMed

    Peruzzo, Daiane Cristina; Jandiroba, Priscila Fontoura Castelo Branco; Nogueira Filho, Getulio da Rocha

    2007-01-01

    The aim of this study was to evaluate the VSC-inhibiting effect of a commercially available mouthrinse (0.1% chlorine dioxide) when compared to its placebo. A 2-step double blind, crossover, randomised study was conducted with 14 dental students with healthy periodontium, who refrained from any mechanical plaque and tongue coating control during two 4-day experimental periods. The subjects were instructed to rinse 3 times daily with the assigned product during each period. A 7-day washout interval was established. VSCs levels were measured by a sulphide monitor at the beginning (baseline) and at the end of each experimental period. Statistical analyses were performed using Wilcoxon's and Mann-Whitney's non-parametric tests. At baseline, intragroup analysis revealed that VSCs levels did not differ between groups (p > 0.05); at day 5, the use of the chlorine dioxide mouthrinse did not change the baseline VSCs scores in the control group (p > 0.05), while a 2-fold increase was observed with the use of the placebo mouthrinse (p < 0.05). Intergroup analysis showed a significant difference between the VSCs levels of the test and control groups (40.2 +/- 30.72 and 82.3 +/- 75.63 ppb, p < 0.001) at day 5. Within the limits of this study, the findings suggest that a mouthrinse containing chlorine dioxide can maintain VSCs at lower levels in the morning breath.

  6. Sodium hypochlorite-, chlorine dioxide- and peracetic acid-induced genotoxicity detected by the Comet assay and Saccharomyces cerevisiae D7 tests.

    PubMed

    Buschini, Annamaria; Carboni, Pamela; Furlini, Mariangela; Poli, Paola; Rossi, Carlo

    2004-03-01

    Mutagenicity of drinking water is due not only to industrial, agricultural and urban pollution but also to chlorine disinfection by-products. Furthermore, residual disinfection is used to provide a partial safeguard against low level contamination and bacterial re-growth within the distribution system. The aims of this study were to further evaluate the genotoxic potential of the world wide used disinfectants sodium hypochlorite and chlorine dioxide in human leukocytes by the Comet assay and in Saccharomyces cerevisiae strain D7 (mitotic gene conversion, point mutation and mitochondrial DNA mutability, with and without endogenous metabolic activation) and to compare their effects with those of peracetic acid, proposed as an alternative disinfectant. All three disinfectants are weakly genotoxic in human leukocytes (lowest effective dose 0.2 p.p.m. for chlorine dioxide, 0.5 p.p.m. for sodium hypochlorite and peracetic acid). The results in S.cerevisiae show a genotoxic response on the end-points considered with an effect only at doses higher (5- to 10-fold) than the concentration normally used for water disinfection; sodium hypochlorite and peracetic acid are able to induce genotoxic effects without endogenous metabolic activation (in stationary phase cells) whereas chlorine dioxide is effective in growing cells. The Comet assay was more sensitive than the yeast tests, with effective doses in the range normally used for water disinfection processes. The biological effectiveness of the three disinfectants on S.cerevisiae proved to be strictly dependent on cell-specific physiological/biochemical conditions. All the compounds appear to act on the DNA and peracetic acid shows effectiveness similar to sodium hypochlorite and chlorine dioxide.

  7. Application of Highly Purified Electrolyzed Chlorine Dioxide for Tilapia Fillet Disinfection

    PubMed Central

    Yu, Chen-Hsing; Huang, Tzou-Chi; Chung, Chao-Chin; Huang, Hao-Hsun

    2014-01-01

    This research aimed to develop an electrolysis method to generate high-concentration chlorine dioxide (ClO2) for tilapia fillet disinfection. The designed generator produced up to 3500 ppm of ClO2 at up to 99% purity. Tilapia fillets were soaked in a 400 ppm ClO2 solution for 5, 10, and 25 min. Results show that total plate counts of tilapia, respectively, decreased by 5.72 to 3.23, 2.10, and 1.09 log CFU/g. In addition, a 200 ppm ClO2 solution eliminated coliform bacteria and Escherichia coli in 5 min with shaking treatment. Furthermore, ClO2 and trihalomethanes (THMs) residuals on tilapia fillets were analyzed by GC/MS and were nondetectable (GC-MS detection limit was 0.12 ppb). The results conform to Taiwan's environmental protection regulations and act governing food sanitation. PMID:24696651

  8. Potential biodefense model applications for portable chlorine dioxide gas production.

    PubMed

    Stubblefield, Jeannie M; Newsome, Anthony L

    2015-01-01

    Development of decontamination methods and strategies to address potential infectious disease outbreaks and bioterrorism events are pertinent to this nation's biodefense strategies and general biosecurity. Chlorine dioxide (ClO2) gas has a history of use as a decontamination agent in response to an act of bioterrorism. However, the more widespread use of ClO2 gas to meet current and unforeseen decontamination needs has been hampered because the gas is too unstable for shipment and must be prepared at the application site. Newer technology allows for easy, onsite gas generation without the need for dedicated equipment, electricity, water, or personnel with advanced training. In a laboratory model system, 2 unique applications (personal protective equipment [PPE] and animal skin) were investigated in the context of potential development of decontamination protocols. Such protocols could serve to reduce human exposure to bacteria in a decontamination response effort. Chlorine dioxide gas was capable of reducing (2-7 logs of vegetative and spore-forming bacteria), and in some instances eliminating, culturable bacteria from difficult to clean areas on PPE facepieces. The gas was effective in eliminating naturally occurring bacteria on animal skin and also on skin inoculated with Bacillus spores. The culturable bacteria, including Bacillus spores, were eliminated in a time- and dose-dependent manner. Results of these studies suggested portable, easily used ClO2 gas generation systems have excellent potential for protocol development to contribute to biodefense strategies and decontamination responses to infectious disease outbreaks or other biothreat events.

  9. Disinfection aboard cruise liners and naval units: formation of disinfection by-products using chlorine dioxide in different qualities of drinking water.

    PubMed

    Ufermann, Petra; Petersen, Hauke; Exner, Martin

    2011-12-01

    The world-wide deployment of cruise liners and naval units has caused an increased need for the disinfection of drinking water. The main cause for this is the unknown quality of drinking water in foreign harbours--besides the formation of bio-films due to the climatically disadvantageous conditions in the operational area. Water conduits on board are currently disinfected with calcium hypochlorite in case of microbiological contamination. Chemical and physical analyses after disinfection with calcium hypochlorite have shown that organic by-products consisting of trihalomethanes develop in considerable amounts during disinfection. Furthermore, the method is susceptible to handling errors and thus often leads to insufficient disinfection results. Hitherto, the use of other disinfection methods allowed by government regulations, especially chlorine dioxide, is not widely spread. Unlike disinfection with calcium hypochlorite, chlorine dioxide does not lead to the formation of trihalomethanes. Typical disinfection by-products (DBP) are the anions chlorite and chlorate, which are formed in oxidative processes. The formation conditions of these anions have not yet been elucidated. For this reason, the probability of the generation of inorganic by-products after disinfection with chlorine dioxide has been determined, and their occurrence in drinking water on board has been examined with respect to a possible correlation between water quality and the formation of chlorate and chlorite. Therefore, a chromatographic method was developed and validated in order to determine the periodical development of chlorate and chlorite from chorine dioxide in purified water at different pH-values as well as in actual drinking water samples from water conduits on board. The formation of the by-products chlorite and chlorate after disinfection with chlorine dioxide is influenced neither by pH-value nor by chemical properties of the disinfected water. Considering the examined conditions

  10. Introducing Students to a Synthetic and Spectroscopic Study of the Free Radical Chlorine Dioxide

    ERIC Educational Resources Information Center

    Sutton, Sarah C.; Cleland, Walter E.; Hammer, Nathan I.

    2017-01-01

    This advanced undergraduate chemistry laboratory exercise takes advantage of the unique spectroscopic properties of the free radical chlorine dioxide to allow for a direct comparison of its symmetric stretch in both the ground and excited states. It incorporates several subject areas covered in an undergraduate chemistry degree (synthesis,…

  11. [Inactivation of the chlorine-resistant bacteria isolated from the drinking water distribution system].

    PubMed

    Chen, Yu-Qiao; Duan, Xiao-Di; Lu, Pin-Pin; Wang, Qian; Zhang, Xiao-Jian; Chen, Chao

    2012-01-01

    Inactivation experiments of seven strains of chlorine-resistant bacteria, isolated from a drinking water distribution system, were conducted with four kinds of disinfectants. All the bacteria showed high resistance to chlorine, especially for Mycobacterium mucogenicum. The CT value of 99.9% inactivation for M. mucogenicum, Sphingomonas sanguinis and Methylobacterium were 120 mg x (L x min)(-1), 7 mg x (L x min)(-1) and 4 mg x (L x min)(-1), respectively. The results of inactivation experiments showed that chlorine dioxide and potassium monopersulfate could inactive 5 lg of M. mucogenicum within 30 min, which showed significantly higher efficiency than free chlorine and monochloramine. Free chlorine was less effective because the disinfectant decayed very quickly. Chloramination needed higher concentration to meet the disinfection requirements. The verified dosage of disinfectants, which could effectively inactivate 99.9% of the highly chlorine-resistant M. mucogenicum within 1 h, were 3.0 mg/L monochloramine, 1.0 mg/L chlorine dioxide (as Cl2), and 1.0 mg/L potassium monopersulfate (as Cl2). It was suggested that the water treatment plants increase the concentration of monochloramine or apply chlorine dioxide intermittently to control the disinfectant-resistant bacteria.

  12. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection.

    PubMed

    Zyara, Alyaa M; Torvinen, Eila; Veijalainen, Anna-Maria; Heinonen-Tanski, Helvi

    2016-08-01

    Chlorine disinfection is a globally used method to ensure the safety of drinking water. However, it has not always been successful against viruses and, therefore, it is important to find new methods to disinfect water. Seventeen different coliphages were isolated from the treated municipal wastewater. These coliphages and MS2 were treated with different dosages of chlorine in drinking water, and a combined chlorine/ultraviolet irradiation treatment for the chlorine-resistant coliphages. Chlorine disinfection with 0.3-0.5 mg/L total chlorine (free Cl-dosage 0.12-0.21 mg/L) for 10 min achieved 2.5-5.7 Log10-reductions for 11 sensitive coliphages. The six most resistant coliphages showed no reduction with these chlorine concentrations. MS2 was intermediate in chlorine resistance, and thus it is not a good indicator for viruses in chlorine disinfection. In the combined treatment total chlorine of 0.05-0.25 mg/L (free Cl-dosage 0.02-0.08 mg/L) and ultraviolet irradiation (14-22 mWs/cm(2)) were more effective than chlorine alone, and 3-5 Log10-reductions were achieved for the chlorine-resistant strains. The chlorination efficiency could be increased by higher dosages and longer contact times, but this could increase the formation of disinfection by-products. Therefore, the combination treatment is a recommended disinfection method.

  13. The Chlorination Quandary

    ERIC Educational Resources Information Center

    Josephson, Julian

    1978-01-01

    Current use of chlorination technology to disinfect water supplies can cause the production of undesirable products, among them chloroform and chlorobenzene. Alternatives to this methodology include the use of ozone, chlorine dioxide, and bromine chloride in place of chlorine. Presently, the methods are feasible in developed countries only. (MA)

  14. Sequential UV- and chlorine-based disinfection to mitigate Escherichia coli in drinking water biofilms.

    PubMed

    Murphy, H M; Payne, S J; Gagnon, G A

    2008-04-01

    This study was designed to examine the potential downstream benefits of sequential disinfection to control the persistence of Escherichia coli under conditions relevant to drinking water distribution systems. Eight annular reactors (four polycarbonate and four cast iron) were setup in parallel to address various factors that could influence biofilm growth in distribution systems. Eight reactors were treated with chlorine, chlorine dioxide and monochloramine alone or in combination with UV to examine the effects on Escherichia coli growth and persistence in both the effluent and biofilm. In general, UV-treated systems in combination with chlorine or chlorine dioxide and monochloramine achieved greater log reductions in both effluent and biofilm than systems treated with chlorine-based disinfectants alone. However, during UV-low chlorine disinfection, E. coli was found to persist at low levels, suggesting that the UV treatment had instigated an adaptive mutation. During UV-chlorine-dioxide treatment, the E. coli that was initially below the detection limit reappeared during a low level of disinfection (0.2 mg/L) in the cast iron systems. Chloramine was shown to be effective in disinfecting suspended E. coli in the effluent but was unable to reduce biofilm counts to below the detection limit. Issues such as repair mechanism of E. coli and nitrification could help explain some of these aberrations. Improved understanding of the ability of chlorine-based disinfectant in combination with UV to provide sufficient disinfection will ultimately effect in improved management and safety of drinking water.

  15. 40 CFR 141.544 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.544 Section 141.544 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Disinfection...

  16. Effect of chlorine dioxide gas on physical, thermal, mechanical, and barrier properties of p[olymeric packaging materials

    USDA-ARS?s Scientific Manuscript database

    In the first part of our study we determined permeability, diffusion, and solubility coefficients of gaseous chlorine dioxide (ClO2) through the following packaging material: biaxial-oriented polypropylene (BOPP); polyethylene terephthalate (PET); poly lactic acid (PLA); multilayer structure of ethy...

  17. 40 CFR 141.535 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.535 Section 141.535 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Disinfection Profile...

  18. Benefits of carbon dioxide as pH reducer in chlorinated indoor swimming pools.

    PubMed

    Gomà, Anton; Guisasola, Albert; Tayà, Carlota; Baeza, Juan A; Baeza, Mireia; Bartrolí, Albert; Lafuente, Javier; Bartrolí, Jordi

    2010-06-01

    Carbon dioxide is seldom used as pH reducer in swimming pools. Nevertheless it offers two interesting advantages. First, its use instead of the usual hydrochloric acid avoids the characteristic and serious accident of mixing the disinfectant with that strong acid, which forms a dangerous chlorine gas cloud and, second, it allows the facility to become slightly a depository of that greenhouse gas. This work introduces the experience of using CO(2) as pH reducer in real working swimming pools, showing three more advantages: lower chlorine consumption, lower presence of oxidants in the air above the swimming pool and a diminished formation of trihalomethanes in the swimming pool water. Experiments lasted 4years and they were run in three swimming pools in the Barcelona area, where the conventional system based upon HCl and a system based upon CO(2) were consecutively exchanged.

  19. Removal of NO from flue gas by aqueous chlorine-dioxide scrubbing solution in a lab-scale bubbling reactor.

    PubMed

    Deshwal, Bal Raj; Jin, Dong Seop; Lee, Si Hyun; Moon, Seung Hyun; Jung, Jong Hyeon; Lee, Hyung Keun

    2008-02-11

    The present study attempts to clean up nitric oxide from the simulated flue gas using aqueous chlorine-dioxide solution in the bubbling reactor. Chlorine-dioxide is generated by chloride-chlorate process. Experiments are carried out to examine the effect of various operating variables like input NO concentration, presence of SO(2), pH of the solution and NaCl feeding rate on the NO(x) removal efficiency at 45 degrees C. Complete oxidation of nitric oxide into nitrogen dioxide occurred on passing sufficient ClO(2) gas into the scrubbing solution. NO is finally converted into nitrate and ClO(2) is reduced into chloride ions. A plausible reaction mechanism concerning NO(x) removal by ClO(2) is suggested. DeNO(x) efficiency increased slightly with the increasing input NO concentration. The presence of SO(2) improved the NO(2) absorption but pH of solution showed marginal effect on NO(2) absorption. NO(x) removal mechanism changed when medium of solution changed from acidic to alkaline. A constant NO(x) removal efficiency of about 60% has been achieved in the wide pH range of 3-11 under optimized conditions.

  20. The effect of chlorine dioxide and chitosan/essential oil coatings on the safety and quality of fresh blueberries

    USDA-ARS?s Scientific Manuscript database

    Blueberries are high-value fruit with strong antioxidant capacity and other health-promoting benefits. Controlled release chlorine dioxide (ClO2) or chitosan coating plus different essential oils were applied to fresh blueberries to preserve their quality and safety during postharvest storage. In vi...

  1. 40 CFR 141.712 - Unfiltered system Cryptosporidium treatment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... inactivation. (c) Inactivation treatment technology requirements. Unfiltered systems must use chlorine dioxide... section. (1) Systems that use chlorine dioxide or ozone and fail to achieve the Cryptosporidium...

  2. 40 CFR 141.712 - Unfiltered system Cryptosporidium treatment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... inactivation. (c) Inactivation treatment technology requirements. Unfiltered systems must use chlorine dioxide... section. (1) Systems that use chlorine dioxide or ozone and fail to achieve the Cryptosporidium...

  3. Comparative study on the efficiency of peracetic acid and chlorine dioxide at low doses in the disinfection of urban wastewaters.

    PubMed

    De Luca, Giovanna; Sacchetti, Rossella; Zanetti, Franca; Leoni, Erica

    2008-01-01

    A comparison was made between the efficiency of low doses of peracetic acid (PAA: 1.5 mg/l) and chlorine dioxide (ClO(2): 1.5 and 2.0 mg/l) in the disinfection of secondary effluents of a wastewater treatment plant. Peracetic acid was seen to be more active than chlorine dioxide and less influenced by the organic content of the waste. Both PAA and ClO(2) (2.0 mg/l) lead to a higher reduction in total and faecal coliforms and E. coli than in phages (somatic coliphages and F-specific RNA bacteriophages) and enterococci. Detection of faecal coliforms and E. coli should therefore be accompanied by a search for these more resistant microorganisms when assessing the conformity of wastewater for irrigation use, or for discharge into surface waters. Coliphages are also considered suitable indicators of the presence of enteric viruses. Although the application of low doses of both disinfectants offers advantages in terms of costs and produces not significant quantities of byproducts, it is not sufficient to obtain wastewater suitable for irrigation according to the Italian norms (E. coli < 10/100 ml in 80 % of samples and <100/100 ml in the remaining samples). Around 65 % of the samples, however, presented concentrations of E. coli lower than the limit of 5,000/100 ml established by Italian norms for discharge into surface waters.

  4. Adsorption of chlorine dioxide gas on activated carbons.

    PubMed

    Wood, Joseph P; Ryan, Shawn P; Snyder, Emily Gibb; Serre, Shannon D; Touati, Abderrahmane; Clayton, Matthew J

    2010-08-01

    Research and field experience with chlorine dioxide (ClO2) gas to decontaminate structures contaminated with Bacillus anthracis spores and other microorganisms have demonstrated the effectiveness of this sterilant technology. However, because of its hazardous properties, the unreacted ClO2, gas must be contained and captured during fumigation events. Although activated carbon has been used during some decontamination events to capture the ClO2 gas, no data are available to quantify the performance of the activated carbon in terms of adsorption capacity and other sorbent property operational features. Laboratory experiments were conducted to determine and compare the ClO2 adsorption capacities of five different types of activated carbon as a function of the challenge ClO2 concentration. Tests were also conducted to investigate other sorbent properties, including screening tests to determine gaseous species desorbed from the saturated sorbent upon warming (to provide an indication of how immobile the ClO2 gas and related compounds are once captured on the sorbent). In the adsorption tests, ClO2 gas was measured continuously using a photometric-based instrument, and these measurements were verified with a noncontinuous method utilizing wet chemistry analysis. The results show that the simple activated carbons (not impregnated or containing other activated sorbent materials) were the most effective, with maximum adsorption capacities of approximately 110 mg/g. In the desorption tests, there was minimal release of ClO(2) from all sorbents tested, but desorption levels of chlorine (Cl2) gas (detected as chloride) varied, with a maximum release of nearly 15% of the mass of ClO2 adsorbed.

  5. Evaluation of gaseous chlorine dioxide for the inactivation of Tulane virus on blueberries.

    PubMed

    Kingsley, David H; Pérez-Pérez, Rafael E; Niemira, Brendan A; Fan, Xuetong

    2018-05-20

    To determine the effectiveness of gaseous chlorine dioxide (gClO 2 ) against a human norovirus surrogate on produce, gClO 2 was generated and applied to Tulane virus-coated blueberries in a 240 ml-treatment chamber. gClO 2 was produced by an acidifying sodium chlorite solution. Initial assessments indicated that blueberries treated with gClO 2 generated from ≤1 mg acidified sodium chlorite in the small chamber appeared unaffected while gClO 2 generated from ≥10 mg of acidified sodium chlorite solution altered the appearance and quality of the blueberries. Treatments of inoculated blueberries with gClO 2 generated from 0.1 mg sodium chlorite reduced the virus populations by >1 log after exposure for 30 to 330 min. For the 1 mg sodium chlorite treatments, the virus populations were reduced by >2.2 log after 15 min exposure and to non-detectable levels (>3.3 logs reductions) after 180 min exposure. Measured concentrations of gClO 2 peaked in the treatment chamber at 0.9 μg/l after 10 min for 0.1 mg treatments and 600 μg/l after around 20 min for 1 mg treatment. Overall results indicate that gClO 2 could be a feasible waterless intervention for blueberries and other produce. Published by Elsevier B.V.

  6. Combination treatment of chlorine dioxide gas and aerosolized sanitizer for inactivating foodborne pathogens on spinach leaves and tomatoes.

    PubMed

    Park, Sang-Hyun; Kang, Dong-Hyun

    2015-08-17

    The objective of this study was to evaluate the antimicrobial effect of chlorine dioxide (ClO2) gas and aerosolized sanitizer, when applied alone or in combination, on the survival of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes inoculated onto spinach leaves and tomato surfaces. Spinach leaves and tomatoes were inoculated with a cocktail of three strains each of the three foodborne pathogens. ClO2 gas (5 or 10 ppmv) and aerosolized peracetic acid (PAA) (80 ppm) were applied alone or in combination for 20 min. Exposure to 10 ppmv of ClO2 gas for 20 min resulted in 3.4, 3.3, and 3.4 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes on spinach leaves, respectively. Treatment with 80 ppm of aerosolized PAA for 20 min caused 2.3, 1.9, and 0.8 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) for 20 min caused 5.4, 5.1, and 4.1 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. E. coli O157:H7, S. Typhimurium, and L. monocytogenes on tomatoes experienced similar reduction patterns to those on spinach leaves. As treatment time increased, most combinations of ClO2 gas and aerosolized PAA showed additive effects in the inactivation of the three pathogens. Combined treatment of ClO2 gas and aerosolized PAA produced injured cells of three pathogens on spinach leaves while generally did not produce injured cells of these pathogens on tomatoes. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) did not significantly (p>0.05) affect the color and texture of samples during 7 days of storage. Copyright © 2015. Published by Elsevier B.V.

  7. Novel pod for chlorine dioxide generation and delivery to control aerobic bacteria on the inner surface of floor drains

    USDA-ARS?s Scientific Manuscript database

    Floor drains in poultry processing and further processing plants are a harborage site for bacteria both free swimming and in biofilms. This population can include Listeria monocytogenes which has been shown to have potential for airborne spreading from mishandled open drains. Chlorine dioxide (ClO...

  8. Evaluation of Chlorine Treatment Levels for Inactivation of Human Norovirus and MS2 Bacteriophage during Sewage Treatment.

    PubMed

    Kingsley, David H; Fay, Johnna P; Calci, Kevin; Pouillot, Régis; Woods, Jacquelina; Chen, Haiqiang; Niemira, Brendan A; Van Doren, Jane M

    2017-12-01

    This study examined the inactivation of human norovirus (HuNoV) GI.1 and GII.4 by chlorine under conditions mimicking sewage treatment. Using a porcine gastric mucin-magnetic bead (PGM-MB) assay, no statistically significant loss in HuNoV binding (inactivation) was observed for secondary effluent treatments of ≤25 ppm total chlorine; for both strains, 50 and 100 ppm treatments resulted in ≤0.8-log 10 unit and ≥3.9-log 10 unit reductions, respectively. Treatments of 10, 25, 50, and 100 ppm chlorine inactivated 0.31, 1.35, >5, and >5 log 10 units, respectively, of the norovirus indicator MS2 bacteriophage. Evaluation of treatment time indicated that the vast majority of MS2 and HuNoV inactivation occurred in the first 5 min for 0.2-μm-filtered, prechlorinated secondary effluent. Free chlorine measurements of secondary effluent seeded with MS2 and HuNoV demonstrated substantial oxidative burdens. With 25, 50, and 100 ppm treatments, free chlorine levels after 5 min of exposure ranged from 0.21 to 0.58 ppm, from 0.28 to 16.7 ppm, and from 11.6 to 53 ppm, respectively. At chlorine treatment levels of >50 ppm, statistically significant differences were observed between reductions for PGM-MB-bound HuNoV (potentially infectious) particles and those for unbound (noninfectious) HuNoV particles or total norovirus particles. While results suggested that MS2 and HuNoV (measured as PGM-MB binding) behave similarly, although not identically, both have limited susceptibility to chlorine treatments of ≤25 ppm total chlorine. Since sewage treatment is performed at ≤25 ppm total chlorine, targeting free chlorine levels of 0.5 to 1.0 ppm, these results suggest that traditional chlorine-based sewage treatment does not inactivate HuNoV efficiently. IMPORTANCE HuNoV is ubiquitous in sewage. A receptor binding assay was used to assess inactivation of HuNoV by chlorine-based sewage treatment, given that the virus cannot be routinely propagated in vitro Results reported here

  9. Evaluation of Chlorine Treatment Levels for Inactivation of Human Norovirus and MS2 Bacteriophage during Sewage Treatment

    PubMed Central

    Fay, Johnna P.; Calci, Kevin; Pouillot, Régis; Woods, Jacquelina; Chen, Haiqiang; Niemira, Brendan A.; Van Doren, Jane M.

    2017-01-01

    ABSTRACT This study examined the inactivation of human norovirus (HuNoV) GI.1 and GII.4 by chlorine under conditions mimicking sewage treatment. Using a porcine gastric mucin-magnetic bead (PGM-MB) assay, no statistically significant loss in HuNoV binding (inactivation) was observed for secondary effluent treatments of ≤25 ppm total chlorine; for both strains, 50 and 100 ppm treatments resulted in ≤0.8-log10 unit and ≥3.9-log10 unit reductions, respectively. Treatments of 10, 25, 50, and 100 ppm chlorine inactivated 0.31, 1.35, >5, and >5 log10 units, respectively, of the norovirus indicator MS2 bacteriophage. Evaluation of treatment time indicated that the vast majority of MS2 and HuNoV inactivation occurred in the first 5 min for 0.2-μm-filtered, prechlorinated secondary effluent. Free chlorine measurements of secondary effluent seeded with MS2 and HuNoV demonstrated substantial oxidative burdens. With 25, 50, and 100 ppm treatments, free chlorine levels after 5 min of exposure ranged from 0.21 to 0.58 ppm, from 0.28 to 16.7 ppm, and from 11.6 to 53 ppm, respectively. At chlorine treatment levels of >50 ppm, statistically significant differences were observed between reductions for PGM-MB-bound HuNoV (potentially infectious) particles and those for unbound (noninfectious) HuNoV particles or total norovirus particles. While results suggested that MS2 and HuNoV (measured as PGM-MB binding) behave similarly, although not identically, both have limited susceptibility to chlorine treatments of ≤25 ppm total chlorine. Since sewage treatment is performed at ≤25 ppm total chlorine, targeting free chlorine levels of 0.5 to 1.0 ppm, these results suggest that traditional chlorine-based sewage treatment does not inactivate HuNoV efficiently. IMPORTANCE HuNoV is ubiquitous in sewage. A receptor binding assay was used to assess inactivation of HuNoV by chlorine-based sewage treatment, given that the virus cannot be routinely propagated in vitro. Results reported

  10. Biofilm formation and sporulation by Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer.

    PubMed

    Ryu, Jee-Hoon; Beuchat, Larry R

    2005-12-01

    Biofilm formation by Bacillus cereus 038-2 on stainless steel coupons, sporulation in the biofilm as affected by nutrient availability, temperature, and relative humidity, and the resistance of vegetative cells and spores in biofilm to sanitizers were investigated. Total counts in biofilm formed on coupons immersed in tryptic soy broth (TSB) at 12 and 22 degrees C consisted of 99.94% of vegetative cells and 0.06% of spores. Coupons on which biofilm had formed were immersed in TSB or exposed to air with 100, 97, 93, or 85% relative humidity. Biofilm on coupons immersed in TSB at 12 degrees C for an additional 6 days or 22 degrees C for an additional 4 days contained 0.30 and 0.02% of spores, respectively, whereas biofilm exposed to air with 100 or 97% relative humidity at 22 degrees C for 4 days contained 10 and 2.5% of spores, respectively. Sporulation did not occur in biofilm exposed to 93 or 85% relative humidity at 22 degrees C. Treatment of biofilm on coupons that had been immersed in TSB at 22 degrees C with chlorine (50 microg/ml), chlorine dioxide (50 microg/ml), and a peroxyacetic acid-based sanitizer (Tsunami 200, 40 microg/ml) for 5 min reduced total cell counts (vegetative cells plus spores) by 4.7, 3.0, and 3.8 log CFU per coupon, respectively; total cell counts in biofilm exposed to air with 100% relative humidity were reduced by 1.5, 2.4, and 1.1 log CFU per coupon, respectively, reflecting the presence of lower numbers of vegetative cells. Spores that survived treatment with chlorine dioxide had reduced resistance to heat. It is concluded that exposure of biofilm formed by B. cereus exposed to air at high relative humidity (> or =97%) promotes the production of spores. Spores and, to a lesser extent, vegetative cells embedded in biofilm are protected against inactivation by sanitizers. Results provide new insights to developing strategies to achieve more effective sanitation programs to minimize risks associated with B. cereus in biofilm formed on

  11. A BAYESIAN METHOD OF ESTIMATING KINETIC PARAMETERS FOR THE INACTIVATION OF CRYPTOSPORIDIUM PARVUM OOCYSTS WITH CHLORINE DIOXIDE AND OZONE

    EPA Science Inventory

    The main objective of this paper is to use Bayesian methods to estimate the kinetic parameters for the inactivation kinetics of Cryptosporidium parvum oocysts with chlorine dioxide or ozone which are characterized by the delayed Chick-Watson model, i.e., a lag phase or shoulder f...

  12. Stability and effectiveness of chlorine disinfectants in water distribution systems.

    PubMed

    Olivieri, V P; Snead, M C; Krusé, C W; Kawata, K

    1986-11-01

    A test system for water distribution was used to evaluate the stability and effectiveness of three residual disinfectants--free chlorine, combined chlorine, and chlorine dioxide--when challenged with a sewage contaminant. The test distribution system consisted of the street main and internal plumbing for two barracks at Fort George G. Meade, MD. To the existing pipe network, 152 m (500 ft) of 13-mm (0.5 in.) copper pipe were added for sampling, and 60 m (200 ft) of 2.54-cm (1.0 in.) plastic pipe were added for circulation. The levels of residual disinfectants tested were 0.2 mg/L and 1.0 mg/L as available chlorine. In the absence of a disinfectant residual, microorganisms in the sewage contaminant were consistently recovered at high levels. The presence of any disinfectant residual reduced the microorganism level and frequency of occurrence at the consumer's tap. Free chlorine was the most effective residual disinfectant and may serve as a marker or flag in the distribution network. Free chlorine and chlorine dioxide were the least stable in the pipe network. The loss of disinfectant in the pipe network followed first-order kinetics. The half-life determined in static tests for free chlorine, chlorine dioxide, and combined chlorine was 140, 93, and 1680 min.

  13. Stability and effectiveness of chlorine disinfectants in water distribution systems.

    PubMed Central

    Olivieri, V P; Snead, M C; Krusé, C W; Kawata, K

    1986-01-01

    A test system for water distribution was used to evaluate the stability and effectiveness of three residual disinfectants--free chlorine, combined chlorine, and chlorine dioxide--when challenged with a sewage contaminant. The test distribution system consisted of the street main and internal plumbing for two barracks at Fort George G. Meade, MD. To the existing pipe network, 152 m (500 ft) of 13-mm (0.5 in.) copper pipe were added for sampling, and 60 m (200 ft) of 2.54-cm (1.0 in.) plastic pipe were added for circulation. The levels of residual disinfectants tested were 0.2 mg/L and 1.0 mg/L as available chlorine. In the absence of a disinfectant residual, microorganisms in the sewage contaminant were consistently recovered at high levels. The presence of any disinfectant residual reduced the microorganism level and frequency of occurrence at the consumer's tap. Free chlorine was the most effective residual disinfectant and may serve as a marker or flag in the distribution network. Free chlorine and chlorine dioxide were the least stable in the pipe network. The loss of disinfectant in the pipe network followed first-order kinetics. The half-life determined in static tests for free chlorine, chlorine dioxide, and combined chlorine was 140, 93, and 1680 min. PMID:3028767

  14. The Portable Chemical Sterilizer (PCS), D-FENS, and D-FEND ALL: novel chlorine dioxide decontamination technologies for the military.

    PubMed

    Doona, Christopher J; Feeherry, Florence E; Setlow, Peter; Malkin, Alexander J; Leighton, Terrence J

    2014-06-29

    There is a stated Army need for a field-portable, non-steam sterilizer technology that can be used by Forward Surgical Teams, Dental Companies, Veterinary Service Support Detachments, Combat Support Hospitals, and Area Medical Laboratories to sterilize surgical instruments and to sterilize pathological specimens prior to disposal in operating rooms, emergency treatment areas, and intensive care units. The following ensemble of novel, 'clean and green' chlorine dioxide technologies are versatile and flexible to adapt to meet a number of critical military needs for decontamination(6,15). Specifically, the Portable Chemical Sterilizer (PCS) was invented to meet urgent battlefield needs and close critical capability gaps for energy-independence, lightweight portability, rapid mobility, and rugged durability in high intensity forward deployments(3). As a revolutionary technological breakthrough in surgical sterilization technology, the PCS is a Modern Field Autoclave that relies on on-site, point-of-use, at-will generation of chlorine dioxide instead of steam. Two (2) PCS units sterilize 4 surgical trays in 1 hr, which is the equivalent throughput of one large steam autoclave (nicknamed "Bertha" in deployments because of its cumbersome size, bulky dimensions, and weight). However, the PCS operates using 100% less electricity (0 vs. 9 kW) and 98% less water (10 vs. 640 oz.), significantly reduces weight by 95% (20 vs. 450 lbs, a 4-man lift) and cube by 96% (2.1 vs. 60.2 ft(3)), and virtually eliminates the difficult challenges in forward deployments of repairs and maintaining reliable operation, lifting and transporting, and electrical power required for steam autoclaves.

  15. The Portable Chemical Sterilizer (PCS), D-FENS, and D-FEND ALL: Novel Chlorine Dioxide Decontamination Technologies for the Military

    PubMed Central

    Doona, Christopher J.; Feeherry, Florence E.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrence J.

    2014-01-01

    There is a stated Army need for a field-portable, non-steam sterilizer technology that can be used by Forward Surgical Teams, Dental Companies, Veterinary Service Support Detachments, Combat Support Hospitals, and Area Medical Laboratories to sterilize surgical instruments and to sterilize pathological specimens prior to disposal in operating rooms, emergency treatment areas, and intensive care units. The following ensemble of novel, ‘clean and green’ chlorine dioxide technologies are versatile and flexible to adapt to meet a number of critical military needs for decontamination6,15. Specifically, the Portable Chemical Sterilizer (PCS) was invented to meet urgent battlefield needs and close critical capability gaps for energy-independence, lightweight portability, rapid mobility, and rugged durability in high intensity forward deployments3. As a revolutionary technological breakthrough in surgical sterilization technology, the PCS is a Modern Field Autoclave that relies on on-site, point-of-use, at-will generation of chlorine dioxide instead of steam. Two (2) PCS units sterilize 4 surgical trays in 1 hr, which is the equivalent throughput of one large steam autoclave (nicknamed “Bertha” in deployments because of its cumbersome size, bulky dimensions, and weight). However, the PCS operates using 100% less electricity (0 vs. 9 kW) and 98% less water (10 vs. 640 oz.), significantly reduces weight by 95% (20 vs. 450 lbs, a 4-man lift) and cube by 96% (2.1 vs. 60.2 ft3), and virtually eliminates the difficult challenges in forward deployments of repairs and maintaining reliable operation, lifting and transporting, and electrical power required for steam autoclaves. PMID:24998679

  16. N-nitrosodimethylamine (NDMA) formation potential of amine-based water treatment polymers: Effects of in situ chloramination, breakpoint chlorination, and pre-oxidation.

    PubMed

    Park, Sang Hyuck; Padhye, Lokesh P; Wang, Pei; Cho, Min; Kim, Jae-Hong; Huang, Ching-Hua

    2015-01-23

    Recent studies show that cationic amine-based water treatment polymers may be important precursors that contribute to formation of the probable human carcinogen N-nitrosodimethylamine (NDMA) during water treatment and disinfection. To better understand how water treatment parameters affect NDMA formation from the polymers, the effects of in situ chloramination, breakpoint chlorination, and pre-oxidation on the NDMA formation from the polymers were investigated. NDMA formation potential (NDMA-FP) as well as dimethylamine (DMA) residual concentration were measured from poly(epichlorohydrin dimethylamine) (polyamine) and poly(diallyldimethylammonium chloride) (polyDADMAC) solutions upon reactions with oxidants including free chlorine, chlorine dioxide, ozone, and monochloramine under different treatment conditions. The results supported that dichloramine (NHCl2) formation was the critical factor affecting NDMA formation from the polymers during in situ chloramination. The highest NDMA formation from the polymers occurred near the breakpoint of chlorination. Polymer chain breakdown and transformation of the released DMA and other intermediates were important factors affecting NDMA formation from the polymers in pre-oxidation followed by post-chloramination. Pre-oxidation generally reduced NDMA-FP of the polymers; however, the treatments involving pre-ozonation increased polyDADMAC's NDMA-FP and DMA release. The strategies for reducing NDMA formation from the polymers may include the avoidance of the conditions favorable to NHCl2 formation and the avoidance of polymer exposure to strong oxidants such as ozone. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.

    PubMed

    Berenstein, Igal; Muñuzuri, Alberto P; Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M; Epstein, Irving R

    2008-08-01

    Breathing spiral waves are observed in the oscillatory chlorine dioxide-iodine-malonic acid reaction-diffusion system. The breathing develops within established patterns of multiple spiral waves after the concentration of polyvinyl alcohol in the feeding chamber of a continuously fed, unstirred reactor is increased. The breathing period is determined by the period of bulk oscillations in the feeding chamber. Similar behavior is obtained in the Lengyel-Epstein model of this system, where small amplitude parametric forcing of spiral waves near the spiral wave frequency leads to the formation of breathing spiral waves in which the period of breathing is equal to the period of forcing.

  18. A review of the contrasting behavior of two magmatic volatiles: Chlorine and carbon dioxide

    USGS Publications Warehouse

    Lowenstern, J. B.

    2000-01-01

    Chlorine (Cl) and carbon dioxide (CO2) are common magmatic volatiles with contrasting behaviors. CO2 solubility increases with pressure whereas Cl solubility shows relatively little pressure or temperature effect. CO2 speciation changes with silicate melt composition, dissolving as carbonate in basaltic magmas and molecular CO2 in more silicic compositions. In H2O-bearing systems, the strongly non-ideal behavior of alkali chlorides causes unmixing of the volatile phase to form a H2O-rich vapor and a hydrosaline phase with important implications for the maximum concentration of Cl in magmas. Addition of CO2 to magma hastens immiscibility at crustal pressures (<500 MPa), inducing the formation of CO2-rich vapors and Cl-rich hydrosaline melts. (C) 2000 Elsevier Science B.V. All rights reserved.Chlorine (Cl) and carbon dioxide (CO2) are common magmatic volatiles with contrasting behaviors. CO2 solubility increases with pressure whereas Cl solubility shows relatively little pressure or temperature effect. CO2 speciation changes with silicate melt composition, dissolving as carbonate in basaltic magmas and molecular CO2 in more silicic compositions. In H2O-bearing systems, the strongly non-ideal behavior of alkali chlorides causes unmixing of the volatile phase to form a H2O-rich vapor and a hydrosaline phase with important implications for the maximum concentration of Cl in magmas. Addition of CO2 to magma hastens immiscibility at crustal pressures (<500 MPa), inducing the formation of CO2-rich vapors and Cl-rich hydrosaline melts.

  19. Etching Rate of Silicon Dioxide Using Chlorine Trifluoride Gas

    NASA Astrophysics Data System (ADS)

    Miura, Yutaka; Kasahara, Yu; Habuka, Hitoshi; Takechi, Naoto; Fukae, Katsuya

    2009-02-01

    The etching rate behavior of silicon dioxide (SiO2, fused silica) using chlorine trifluoride (ClF3) gas is studied at substrate temperatures between 573 and 1273 K at atmospheric pressure in a horizontal cold-wall reactor. The etching rate increases with the ClF3 gas concentration, and the overall reaction is recognized to be of the first order. The change of the etching rate with increasing substrate temperature is nonlinear, and the etching rate tends to approach a constant value at temperatures exceeding 1173 K. The overall rate constant is estimated by numerical calculation, taking into account the transport phenomena in the reactor, including the chemical reaction at the substrate surface. The activation energy obtained in this study is 45.8 kJ mol-1, and the rate constant is consistent with the measured etching rate behavior. A reactor system in which there is minimum etching of the fused silica chamber by ClF3 gas can be achieved using an IR lamp heating unit and a chamber cooling unit to maintain a sufficiently low temperature of the chamber wall.

  20. Sanitizing radish seeds by simultaneous treatments with gaseous chlorine dioxide, high relative humidity, and mild heat.

    PubMed

    Bang, Jihyun; Choi, Moonhak; Son, Hyeri; Beuchat, Larry R; Kim, Yoonsook; Kim, Hoikyung; Ryu, Jee-Hoon

    2016-11-21

    Sanitizing radish seeds intended for edible sprout production was achieved by applying simultaneous treatments with gaseous chlorine dioxide (ClO 2 ), high relative humidity (RH, 100%), and mild heat (55°C). Gaseous ClO 2 was produced from aqueous ClO 2 (0.66ml) by mixing sulfuric acid (5% w/v) with sodium chlorite (10 mg/mL) in a sealed container (1.8L). Greater amounts of gaseous ClO 2 were measured at 23% RH (144ppm after 6h) than at 100% RH (66ppm after 6h); however, the lethal activity of gaseous ClO 2 against naturally occurring mesophilic aerobic bacteria (MAB) on radish seeds was significantly enhanced at 100% RH. For example, when exposed to gaseous ClO 2 at 23% RH, the number of MAB on radish seeds decreased from 3.7logCFU/g to 2.6logCFU/g after 6h. However, when exposed to gaseous ClO 2 at 100% RH for 6h, the MAB population decreased to 0.7logCFU/g after 6h. Gaseous ClO 2 was produced in higher amounts at 55°C than at 25°C, but decreased more rapidly over time at 55°C than at 25°C. The lethal activity of gaseous ClO 2 against MAB on radish seeds was greater at 55°C than at 25°C. When radish seeds were treated with gaseous ClO 2 (peak concentration: 195ppm) at 100% RH and 55°C, MAB were reduced to populations below the detectable level (<-0.7logCFU/g) within 2h without decreasing the seed germination rate (97.7%). The lethality of combined treatments against artificially inoculated Escherichia coli O157:H7 was also evaluated. When exposed to gaseous ClO 2 at 100% RH and 55°C for 6h, the initial number of E. coli O157:H7 (3.5logCFU/g) on radish seeds decreased to below the detection limit (0.7logCFU/g) by direct plating but it was not eliminated from seeds. The germination rate of radish seeds was not significantly (P>0.05) decreased after treatment for 6h. The information reported here will be useful when developing decontamination strategies for producing microbiologically safe radish seed sprouts. Copyright © 2016. Published by Elsevier B.V.

  1. Integrated chemical and toxicological investigation of UV-chlorine/chloramine drinking water treatment.

    PubMed

    Lyon, Bonnie A; Milsk, Rebecca Y; DeAngelo, Anthony B; Simmons, Jane Ellen; Moyer, Mary P; Weinberg, Howard S

    2014-06-17

    As the use of alternative drinking water treatment increases, it is important to understand potential public health implications associated with these processes. The objective of this study was to evaluate the formation of disinfection byproducts (DBPs) and cytotoxicity of natural organic matter (NOM) concentrates treated with chlorine, chloramine, and medium pressure ultraviolet (UV) irradiation followed by chlorine or chloramine, with and without nitrate or iodide spiking. The use of concentrated NOM conserved volatile DBPs and allowed for direct analysis of the treated water. Treatment with UV prior to chlorine in ambient (unspiked) samples did not affect cytotoxicity as measured using an in vitro normal human colon cell (NCM460) assay, compared to chlorination alone when toxicity is expressed on the basis of dissolved organic carbon (DOC). Nitrate-spiked UV+chlorine treatment produced greater cytotoxicity than nitrate-spiked chlorine alone or ambient UV+chlorine samples, on both a DOC and total organic halogen basis. Samples treated with UV+chloramine were more cytotoxic than those treated with only chloramine using either dose metric. This study demonstrated the combination of cytotoxicity and DBP measurements for process evaluation in drinking water treatment. The results highlight the importance of dose metric when considering the relative toxicity of complex DBP mixtures formed under different disinfection scenarios.

  2. Degradation of chloramphenicol by UV/chlorine treatment: Kinetics, mechanism and enhanced formation of halonitromethanes.

    PubMed

    Dong, Huiyu; Qiang, Zhimin; Hu, Jun; Qu, Jiuhui

    2017-09-15

    Ultraviolet (UV)/chlorine process is considered as an emerging advanced oxidation process for the degradation of micropollutants. This study investigated the degradation of chloramphenicol (CAP) and formation of disinfection by-products (DBPs) during the UV/chlorine treatment. It was found that CAP degradation was enhanced by combined UV/chlorine treatment compared to that of UV and chlorination treatment alone. The pseudo-first-order rate constant of the UV/chlorine process at pH 7.0 reached 0.016 s -1 , which was 10.0 and 2.0 folds that observed from UV and chlorination alone, respectively. The enhancement can be attributed to the formation of diverse radicals (HO and reactive chlorine species (RCSs)), and the contribution of RCSs maintained more stable than that of HO at pH 5.5-8.5. Meanwhile, enhanced DBPs formation during the UV/chlorine treatment was observed. Both the simultaneous formation and 24-h halonitromethanes formation potential (HNMsFP) were positively correlated with the UV/chlorine treatment time. Although the simultaneous trichloronitromethane (TCNM) formation decreased with the prolonged UV irradiation, TCNM dominated the formation of HNMs after 24 h (>97.0%). According to structural analysis of transformation by-products, both the accelerated CAP degradation and enhanced HNMs formation steps were proposed. Overall, the formation of diverse radicals during the UV/chlorine treatment accelerated the degradation of CAP, while also enhanced the formation of DBPs simultaneously, indicating the need for DBPs evaluation before the application of combined UV/chlorine process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant.

    PubMed

    Liu, Shan-Shan; Qu, Hong-Mei; Yang, Dong; Hu, Hui; Liu, Wei-Li; Qiu, Zhi-Gang; Hou, Ai-Ming; Guo, Jianhua; Li, Jun-Wen; Shen, Zhi-Qiang; Jin, Min

    2018-06-01

    The emergence and spread of antibiotic resistance has posed a major threat to both human health and environmental ecosystem. Although the disinfection has been proved to be efficient to control the occurrence of pathogens, little effort is dedicated to revealing potential impacts of disinfection on transmission of antibiotic resistance genes (ARGs), particularly for free-living ARGs in final disinfected effluent of urban wastewater treatment plants (UWWTP). Here, we investigated the effects of chlorine disinfection on the occurrence and concentration of both extracellular ARGs (eARGs) and intracellular ARGs (iARGs) in a full-scale UWWTP over a year. We reported that the concentrations of both eARGs and iARGs would be increased by the disinfection with chlorine dioxide (ClO 2 ). Specifically, chlorination preferentially increased the abundances of eARGs against macrolide (ermB), tetracycline (tetA, tetB and tetC), sulfonamide (sul1, sul2 and sul3), β-lactam (ampC), aminoglycosides (aph(2')-Id), rifampicin (katG) and vancomycin (vanA) up to 3.8 folds. Similarly, the abundances of iARGs were also increased up to 7.8 folds after chlorination. In terms of correlation analyses, the abundance of Escherichia coli before chlorination showed a strong positive correlation with the total eARG concentration, while lower temperature and higher ammonium concentration were assumed to be associated with the concentration of iARGs. This study suggests the chlorine disinfection could increase the abundances of both iARGs and eARGs, thereby posing risk of the dissemination of antibiotic resistance in environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Chlorine Diffusion in Uranium Dioxide: Thermal Effects versus Radiation Enhanced Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipon, Yves; Moncoffre, Nathalie; Bererd, Nicolas

    2007-07-01

    Chlorine is present as an impurity in the UO{sub 2} nuclear fuel. {sup 35}Cl is activated into {sup 36}Cl by thermal neutron capture. In case of interim storage or deep geological disposal of the spent fuel, this isotope is known to be able to contribute significantly to the instant release fraction because of its mobile behavior and its long half life (around 300000 years). It is therefore important to understand its migration behavior within the fuel rod. During reactor operation, chlorine diffusion can be due to thermally activated processes or can be favoured by irradiation defects induced by fission fragmentsmore » or alpha decay. In order to decouple both phenomena, we performed two distinct experiments to study the effects of thermal annealing on the behaviour of chlorine on one hand and the effects of the irradiation with fission products on the other hand. During in reactor processes, part of the {sup 36}Cl may be displaced from its original position, due to recoil or to collisions with fission products. In order to study the behavior of the displaced chlorine, {sup 37}Cl has been implanted into sintered depleted UO{sub 2} pellets (mean grain size around 18 {mu}m). The spatial distribution of the implanted and pristine chlorine has been analyzed by SIMS before and after treatment. Thermal annealing of {sup 37}Cl implanted UO{sub 2} pellets (implantation fluence of 10{sup 13} ions.cm{sup -2}) show that it is mobile from temperatures as low as 1273 K (E{sub a}=4.3 eV). The irradiation with fission products (Iodine, E=63.5 MeV) performed at 300 and 510 K, shows that the diffusion of chlorine is enhanced and that a thermally activated contribution is preserved (E{sub a}=0.1 eV). The diffusion coefficients measured at 1473 K and under fission product irradiation at 510 K are similar (D = 3.10{sup -14} cm{sup 2}.s{sup -1}). Considering in first approximation that the diffusion length L can be expressed as a function of the diffusion coefficient D and time t by

  5. ALTERNATIVE DISINFECTION FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    During a one-yr study at Jefferson Parish, La., the chemical, microbiological, and mutagenic effects os using the major drinkgin water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. Tests were performed on samples collected from various treatment s...

  6. [Inactivation of Mycobacteria mucogenicum in drinking water: chlorine resistance and mechanism analysis].

    PubMed

    Zheng, Qi; Chen, Chao; Zhang, Xiao-Jian; Lu, Pin-Pin; Liu, Yuan-Yuan; Chen, Yu-Qiao

    2013-02-01

    In recent years, chlorine-resistant bacteria were detected in drinking water distribution systems which threatened the drinking water safety. Our group detected one strain named Mycobacteria mucogenicum from the drinking water distribution system of a city in south China. This paper studied chlorine resistance and mechanism of Mycobacteria mucogenicum. Inactivation experiments of one strain Mycobacteria mucogenicum were conducted with free chlorine, monochloramind and chlorine dioxide. The CT values of 99.9% inactivation by free chlorine, monochloramine and chlorine dioxide were detected as (76.25 +/- 47.55)mg.min.L-1, (1396 +/-382)mg.min.L-1, (13.5 +/- 4.9) mg.min L-1. Using transmission electronmicroscopy (TEM) observed the inactivation process of Mycobacteria mucogenicum. The bacteria surface hydrophobic of Mycobacteria mucogenicum was 37.2%. Mycobacteria mucogenicum has a higher hydrophobicity than other bacteria which prevented the diffusion of chlorine into cells. Mycobacteria mucogenicum is more resistant to chorine than other bacteria.

  7. In Situ Detection of Chlorine Dioxide (C1O2) in the Radiolysis of Perchlorates and Implications for the Stability of Organics on Mars

    NASA Astrophysics Data System (ADS)

    Góbi, Sándor; Bergantini, Alexandre; Kaiser, Ralf I.

    2016-12-01

    Magnesium perchlorate hexahydrate (Mg(ClO4)2 · 6H2O) samples were exposed to energetic electrons to investigate the products of the decomposition of perchlorates in the Martian soil and to infer their role in the degradation of organics on Mars. The samples were monitored online and in situ via infrared spectroscopy as well as electron impact (EI-QMS) and reflectron time-of-flight mass spectrometry coupled with single photon ionization (PI-ReTOF-MS). Our study reveals that besides chlorates ({{{ClO}}3}-) and molecular oxygen (O2), the chlorine dioxide radical (ClO2) was observed online and in situ for the first time as a radiolysis product of solid perchlorates. Chlorine dioxide, which is used on Earth as a strong oxidizing agent in water disinfection and bleaching, represents a proficient oxidizer—potentially more powerful than molecular oxygen—to explain the lack of abundant organics in the Martian soil.

  8. The fate of chlorinated aliphatics in anaerobic treatment under transient loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Y.C.

    1993-01-01

    A CSTR with dispersed-growth anaerobic bacteria that simultaneously remove COD and chlorinated aliphatics was used. Seven chlorinated aliphatics (methylene chloride, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, 1,1-dichloroethylene, trichloroethylene, and tetrachloroethylene) were biotransformed into lower-chlorinated compounds by anaerobic treatment, utilizing propionic acid (HPr) or acetic acid (HAc). The microorganisms supplied with HAc grew and were sustained at higher BSS concentrations (4,500 to 11,000 mg/L) than those with HPr (2,000 to 5,000 mg/L). The anaerobic treatment process has a considerable potential for acclimation to and biotransformation of toxic chlorinated aliphatics. For providing a safe operation range, the maximum loading rates of the chlorinated aliphaticsmore » are defined as the observed daily injection of those compounds which resulted in 50% activity of the biomass. Based on the reactor volume, the maximum chlorinated compound loading rates to the microorganisms metabolizing HPr were from 0.4 to 90 mg/L-day, while the rates ranged from 0.6 to 190 mg/L-day for the microorganisms metabolizing HAc. When based on biomass, the maximum loading rates of the microorganisms metabolizing HPr were from 0.2 to 26 mg/g cell-day, while rates for the microorganisms metabolizing HAc ranged from 0.1 to 19 mg/g cell-day. Anaerobic microorganisms have higher resistance to chlorinated aliphatic alkenes than alkanes, and can biotransform about 0.04 to 68 pound chlorinated aliphatics while simultaneously metabolizing 1,000 pounds COD. Therefore, within the safe operation range, the anaerobic process can stabilize organic pollution at a high rate while still biotransforming chlorinated aliphatics.« less

  9. Inactivation of Salmonella enterica in chicken feces on the surface of eggshells by simultaneous treatments with gaseous chlorine dioxide and mild wet heat.

    PubMed

    Park, Sunhyung; Beuchat, Larry R; Kim, Hoikyung; Ryu, Jee-Hoon

    2017-04-01

    The aim of this study was to investigate the lethal effects of simultaneous treatments with gaseous chlorine dioxide (ClO 2 ) and mild wet heat (55 °C at 100% relative humidity [RH]) on Salmonella enterica in chicken feces on the surface of eggshells. Gaseous ClO 2 production decreased significantly (P ≤ 0.05) as the RH (23, 43, 68, 85, and 100%) at 25 °C was increased. The lethality of gaseous ClO 2 against S. enterica in feces on eggshells increased significantly (P ≤ 0.05) as RH increased. For example, when treated with gaseous ClO 2 at 85 and 100% RH at 25 °C, S. enterica (5.9 log CFU/egg) was inactivated within 4 h. In contrast, at 23, 43, and 68% RH, the pathogen remained at 5.1, 5.0, and 2.8 log CFU/egg, respectively, after 6 h. Finally, when eggshells surface-contaminated with S. enterica (5.8 log CFU/egg) were treated with gaseous ClO 2 (peak concentration of ClO 2 : 185.6 ppm) at 100% RH and 55 °C, inactivation occurred within 1 h. These results indicate that treatment of surface-contaminated shell eggs with gaseous ClO 2 at elevated RH and temperature is effective in inactivating S. enterica. These observations will be useful when developing an effective sanitation program to enhance the microbiological safety of shell eggs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Determination of PCDF/PCDD in sludges from a drinking water treatment plant influence of chlorination treatment.

    PubMed

    Rivera, J; Eljarrat, E; Espadaler, I; Martrat, M G; Caixach, J

    1997-01-01

    A preliminary study to assess the origin and evolution of polichlorodibenzofurans (PCDFs) and polichlorodibenzo-p-dioxins (PCDDs) in a drinking water treatment plant (DWTP) was undertaken. Samples of coagulation sludges and exhausted granular activated carbon (GAC) were collected from a DWTP. Owing to the similar congener profiles obtained from sludges and GAC, a subsequent study of chlorination influence was carried out. Sludge samples from a treatment with and without the chlorination step were analysed. A complementary study of the PCB content was made. The results obtained did not reveal a marked influence of chlorination in the formation of PCDFs/PCDDs.

  11. Disinfection of indoor air microorganisms in stack room of university library using gaseous chlorine dioxide.

    PubMed

    Hsu, Ching-Shan; Lu, Ming-Chun; Huang, Da-Ji

    2015-02-01

    As with all indoor public spaces in Taiwan, the stack rooms in public libraries should meet the air quality guidelines laid down by the Taiwan Environmental Protection Administration. Accordingly, utilizing a university library in Taiwan for experimental purposes, this study investigates the efficiency of gaseous chlorine dioxide (ClO2) as a disinfection agent when applied using three different treatment modes, namely a single-daily disinfection mode (SIM), a twice-daily disinfection mode (TWM), and a triple-daily disinfection mode (TRM). For each treatment mode, the ClO2 is applied using an ultrasonic aerosol device and is performed both under natural lighting conditions and under artificial lighting conditions. The indoor air quality is evaluated before and after each treatment session by measuring the bioaerosol levels of bacteria and fungi. The results show that for all three disinfection modes, the application of ClO2 reduces the indoor bacteria and fungi concentrations to levels lower than those specified by the Taiwan EPA (i.e., bacteria <1500 CFU/m(3), fungi <1000 CFU/m(3)), irrespective of the lighting conditions under which the disinfection process is performed. For each disinfection mode, a better disinfection efficiency is obtained under natural lighting conditions since ClO2 readily decomposes under strong luminance levels. Among the three treatment modes, the disinfection efficiencies of the TWM and TRM modes are very similar under natural lighting conditions and are significantly better than that of the SIM mode. Thus, overall, the results suggest that the TWM treatment protocol represents the most cost-effective and efficient method for meeting the indoor air quality requirements of the Taiwan EPA.

  12. INACTIVATION OF BACILLUS GLOBIGII BY CHLORINATION: A HIERARCHICAL BAYESIAN MODEL

    EPA Science Inventory

    Recent events where spores of Bacillus anthracis have been used as a bioterrorist weapon have prompted interest in determining the resistance of this organism to commonly used disinfectants, such as chlorine, chlorine dioxide and ozone. This work was undertaken to study ...

  13. Demonstration tests of irrigation water disinfection with chlorine dioxide in open field cultivation of baby spinach.

    PubMed

    López-Gálvez, Francisco; Gil, Maria I; Meireles, Ana; Truchado, Pilar; Allende, Ana

    2018-06-01

    Treatments for the disinfection of irrigation water have to be evaluated by demonstration tests carried out under commercial settings taking into account not only their antimicrobial activity but also the potential phytotoxic effects on the crop. The consequences of the treatment of irrigation water with chlorine dioxide (ClO 2 ) used for sprinkler irrigation of baby spinach in two commercial agricultural fields was assessed. Residual ClO 2 levels at the sprinklers in the treated field were always below 1 mg L -1 . ClO 2 treatment provoked limited but statistically significant reductions in culturable Escherichia coli counts (0.2-0.3 log reductions), but not in the viable E. coli counts in water, suggesting the presence of viable but non-culturable cells (VBNC). Although disinfected irrigation water did not have an impact on the microbial loads of Enterobacteriaceae nor on the quality characteristics of baby spinach, it caused the accumulation of chlorates (up to 0.99 mg kg -1 in plants) and the reduction of the photosynthetic efficiency of baby spinach. Low concentrations of ClO 2 are effective in reducing the culturable E. coli present in irrigation water but it might induce the VBNC state. Presence of disinfection by-products and their accumulation in the crop must be considered to adjust doses in order to avoid crop damage and chemical safety risks. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. The efficacy of chlorine dioxide in controlling Salmonella contamination and its effect on product quality of chicken broiler carcasses.

    PubMed

    Thiessen, G P; Usborne, W R; Orr, H L

    1984-04-01

    A large spin-type chiller in an Ontario poultry processing plant was adapted so that the chill water could be treated with various levels of chlorine dioxide ( ClO2 ), increasing the concentration of ClO2 from 0 to 1.39 mg/liter resulting in reducing the bacteria count to the point where salmonellae could not be isolated from the chill water or the chilled broiler carcasses. In addition, coliform, psychrotroph , and aerobic plate counts were all greatly reduced (less than 1 log cycle) in chill water but were only slightly reduced (less than .5 log cycle) in macerated chicken broiler breast skin. Shelf-life was lengthened for broiler carcasses treated with 1.33 and 1.39 mg/liter ClO2 as compared to control carcasses. Sensory panelists reported no off flavors for any ClO2 concentration but rated broiler skin as being slightly lighter in color compared to control carcasses at all concentrations of ClO2 treatment.

  15. Effect of 5% Chlorine Dioxide Irrigant on Micro Push Out Bond Strength of Resin Sealer to Radicular Dentin: An In Vitro Study

    PubMed Central

    Devarasanahalli, Swapna V; Aswathanarayana, Ranjini M; Rashmi, K; Gowda, Yashwanth; Nadig, Roopa R

    2017-01-01

    Introduction Chlorine dioxide (ClO2) has been recently investigated as a possible root canal irrigant due to its broad spectrum of antimicrobial action, tissue dissolution and smear layer removal properties. Literature is scarce on the effect of chlorine dioxide irrigation on the resin sealer dentin bond strength. Aim To compare 5% chlorine dioxide (ClO2) with or without Ethylene Diamine Tetra Acetic acid (EDTA) with 3% Sodium hypochlorite (NaOCl) and EDTA combination as endodontic irrigants on the adhesion of AH Plus sealer to radicular dentin using micro- Push out Bond Strength (µPBS) test. Materials and Methods Forty freshly extracted central incisors were decoronated and randomly divided into four groups based on the different irrigation regimes followed during irrigation: Group I - 3% NaOCl + 17% EDTA, Group II - 5% ClO2 + 17% EDTA, Group III - 5% ClO2 and Group IV – Saline, and canal enlarged till Protaper F3. All the samples were obturated with F3 gutta-percha cones using AH Plus sealer and sectioned perpendicular to long axis to obtain 1mm thick slices from the middle and coronal portions for µPBS measurement in universal testing machine followed by assessment of failure pattern under stereomicroscope. Data was analysed using One-way analysis of variance (ANOVA), Bonferroni and t-test. Results Bond strength values were in the following order: Group I>Group II>Group III>Group IV, with no statistically significant difference amongst experimental groups on intergroup comparison, except with saline. The µPBS values were more in coronal third than middle third in all specimens, with no statistical significant difference. Mode of failure showed mixed patterns in all experimental groups except saline. Conclusion In the present study, the bond strength values of ClO2 were comparable with conventional NaOCl and EDTA combination and hence, ClO2 can be considered as an effective alternative endodontic irrigant. PMID:28658907

  16. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration.

    PubMed

    Rigobello, Eliane Sloboda; Dantas, Angela Di Bernardo; Di Bernardo, Luiz; Vieira, Eny Maria

    2013-06-01

    This study was carried out to evaluate the efficiency of conventional drinking water treatment processes with and without pre-oxidation with chlorine and chlorine dioxide and the use of granular activated carbon (GAC) filtration for the removal of diclofenac (DCF). Water treatment was performed using the Jar test with filters on a lab scale, employing nonchlorinated artesian well water prepared with aquatic humic substances to yield 20HU true color, kaolin turbidity of 70 NTU and 1mgL(-1) DCF. For the quantification of DCF in water samples, solid phase extraction and HPLC-DAD methods were developed and validated. There was no removal of DCF in coagulation with aluminum sulfate (3.47mgAlL(-1) and pH=6.5), flocculation, sedimentation and sand filtration. In the treatment with pre-oxidation and disinfection, DCF was partially removed, but the concentration of dissolved organic carbon (DOC) was unchanged and byproducts of DCF were observed. Chlorine dioxide was more effective than chorine in oxidizing DCF. In conclusion, the identification of DCF and DOC in finished water indicated the incomplete elimination of DCF through conventional treatments. Nevertheless, conventional drinking water treatment followed by GAC filtration was effective in removing DCF (⩾99.7%). In the oxidation with chlorine, three byproducts were tentatively identified, corresponding to a hydroxylation, aromatic substitution of one hydrogen by chlorine and a decarboxylation/hydroxylation. Oxidation with chlorine dioxide resulted in only one byproduct (hydroxylation). Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Chlorine Dioxide Gas Sterilization under Square-Wave Conditions

    PubMed Central

    Jeng, David K.; Woodworth, Archie G.

    1990-01-01

    Experiments were designed to study chlorine dioxide (CD) gas sterilization under square-wave conditions. By using controlled humidity, gas concentration, and temperature at atmospheric pressure, standard biological indicators (BIs) and spore disks of environmental isolates were exposed to CD gas. The sporicidal activity of CD gas was found to be concentration dependent. Prehumidification enhanced the CD activity. The D values (time required for 90% inactivation) of Bacillus subtilis subsp. niger ATCC 9372 BIs were estimated to be 1.5, 2.5, and 4.2 min when exposed to CD concentrations of 30, 15, and 7 mg/liter, respectively, at 23°C and ambient (20 to 40%) relative humidity (RH). Survivor tailings were observed. Prehumidification of BIs to 70 to 75% RH in an environmental chamber for 30 min resulted in a D value of 1.6 min after exposure to a concentration of 6 to 7 mg of CD per liter at 23°C and eliminated survivor tailing. Prolonging prehumidification at 70 to 75% RH for up to 16 h did not further improve the inactivation rate. Prehumidification by ultrasonic nebulization was found to be more effective than prehumidification in the environmental chamber, improving the D value to 0.55 min at a CD concentration of 6 to 7 mg/liter. Based on the current observations, CD gas is estimated, on a molar concentration basis, to be 1,075 times more potent than ethylene oxide as a sterilant at 30°C. A comparative study showed B. subtilis var. niger BIs were more resistant than other types of BIs and most of the tested bacterial spores of environmental isolates. PMID:16348127

  18. Effect of medium-pressure UV-lamp treatment on disinfection by-products in chlorinated seawater swimming pool waters.

    PubMed

    Cheema, Waqas A; Manasfi, Tarek; Kaarsholm, Kamilla M S; Andersen, Henrik R; Boudenne, Jean-Luc

    2017-12-01

    Several brominated disinfection by-products (DBPs) are formed in chlorinated seawater pools, due to the high concentration of bromide in seawater. UV irradiation is increasingly employed in freshwater pools, because UV treatment photodegrades harmful chloramines. However, in freshwater pools it has been reported that post-UV chlorination promotes the formation of other DBPs. To date, UV-based processes have not been investigated for DBPs in seawater pools. In this study, the effects of UV, followed by chlorination, on the concentration of three groups of DBPs were investigated in laboratory batch experiments using a medium-pressure UV lamp. Chlorine consumption increased following post-UV chlorination, most likely because UV irradiation degraded organic matter in the pool samples to more chlorine-reactive organic matter. Haloacetic acid (HAA) concentrations decreased significantly, due to photo-degradation, but the concentrations of trihalomethanes (THMs) and haloacetonitriles (HANs) increased with post-UV chlorination. Bromine incorporation in HAAs was significantly higher in the control samples chlorinated without UV irradiation but decreased significantly with UV treatment. Bromine incorporation was promoted in THM and HAN after UV and chlorine treatment. Overall, the accumulated bromine incorporation level in DBPs remained essentially unchanged in comparison with the control samples. Toxicity estimates increased with single-dose UV and chlorination, mainly due to increased HAN concentrations. However, brominated HANs are known in the literature to degrade following further UV treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A pilot study on using chlorine dioxide gas for disinfection of gastrointestinal endoscopes* #

    PubMed Central

    Yi, Ying; Hao, Li-mei; Ma, Shu-ren; Wu, Jin-hui; Wang, Tao; Lin, Song; Zhang, Zong-xing; Qi, Jian-cheng

    2016-01-01

    Objectives: This pilot study of employing chlorine dioxide (CD) gas to disinfect gastrointestinal endoscopes was conducted to meet the expectations of many endoscopy units in China for a high-efficiency and low-cost disinfectant. Methods: An experimental prototype with an active circulation mode was designed to use CD gas to disinfect gastrointestinal endoscopes. One type of testing device composed of polytetrafluoroethylene (PTFE) tubes (2 m long, inner diameter 1 mm) and bacterial carrier containers was used to simulate the channel of the endoscope. PTFE bacterial carriers inoculated with Bacillus atrophaeus with or without organic burden were used to evaluate the sporicidal activity of CD gas. Factors including exposure dosage, relative humidity (RH), and flow rate (FR) influencing the disinfection effect of CD gas were investigated. Moreover, an autoptic disinfecting test on eight real gastrointestinal endoscopes after clinical use was performed using the experimental prototype. Results: RH, exposure dosage, organic burden, and the FR through the channel significantly (P<0.05) affected the disinfection efficacy of CD gas for a long and narrow lumen. The log reduction increased as FR decreased. Treatment with 4 mg/L CD gas for 30 min at 0.8 L/min FR and 75% RH, resulted in complete inactivation of spores. Furthermore, all eight endoscopes with a maximum colony-forming unit of 915 were completely disinfected. The cost was only 3 CNY (0.46 USD) for each endoscope. Conclusions: The methods and results reported in this study could provide a basis for further studies on using CD gas for the disinfection of endoscopes. PMID:27381729

  20. Examination of Treatment Methods for Cyanide Wastes.

    DTIC Science & Technology

    1979-05-15

    industry,is alkaline chlorination. This process oxidizes cyanide to cyanate followed by complete decomposition yielding carbon dioxide and nitrogen or...decomposition yielding carbon dioxide and nitrogen, or ammonium salts depending on final treatment methods. The major oxidizing agents that have been...2H20 (X represents a cation.) 29 NADC-78198-60 This liberates carbon dioxide and nitrogen gas as end products. Possible acid hydrolysis has been

  1. Shelf-life extension of minimally processed carrots by gaseous chlorine dioxide.

    PubMed

    Gómez-López, V M; Devlieghere, F; Ragaert, P; Debevere, J

    2007-05-10

    Chlorine dioxide (ClO(2)) gas is a strong oxidizing and sanitizing agent that has a broad and high biocidal effectiveness and big penetration ability; its efficacy to prolong the shelf-life of a minimally processed (MP) vegetable, grated carrots (Daucus carota L.), was tested in this study. Carrots were sorted, their ends removed, hand peeled, cut, washed, spin dried and separated in 2 portions, one to be treated with ClO(2) gas and the other to remain untreated for comparisons. MP carrots were decontaminated in a cabinet at 91% relative humidity and 28 degrees C for up to 6 min, including 30 s of ClO(2) injection to the cabinet, then stored under equilibrium modified atmosphere (4.5% O(2), 8.9% CO(2), 86.6% N(2)) at 7 degrees C for shelf-life studies. ClO(2) concentration in the cabinet rose to 1.33 mg/l after 30 s of treatment, and then fell to nil before 6 min. The shelf-life study included: O(2) and CO(2) headspace concentrations, microbiological quality (mesophilic aerobic bacteria, psychrotrophs, lactic acid bacteria, and yeasts), sensory quality (odour, flavour, texture, overall visual quality, and white blushing), and pH. ClO(2) did not affect respiration rate of MP carrots significantly (alpha< or =0.05), and lowered the pH significantly (alpha< or =0.05). The applied packaging configuration kept O(2) headspace concentrations in treated samples in equilibrium and prevented CO(2) accumulation. After ClO(2) treatment, the decontamination levels (log CFU/g) achieved were 1.88, 1.71, 2.60, and 0.66 for mesophilic aerobic bacteria, psychrotrophs, and yeasts respectively. The initial sensory quality of MP carrots was not impaired significantly (alpha< or =0.05). A lag phase of at least 2 days was observed for mesophilic aerobic bacteria, psychrotrophs, and lactic acid bacteria in treated samples, while mesophilic aerobic bacteria and psychrotrophs increased parallelly. Odour was the only important attribute in sensory deterioration, but it reached an

  2. A METHOD OF PREPARING URANIUM DIOXIDE

    DOEpatents

    Scott, F.A.; Mudge, L.K.

    1963-12-17

    A process of purifying raw, in particular plutonium- and fission- products-containing, uranium dioxide is described. The uranium dioxide is dissolved in a molten chloride mixture containing potassium chloride plus sodium, lithium, magnesium, or lead chloride under anhydrous conditions; an electric current and a chlorinating gas are passed through the mixture whereby pure uranium dioxide is deposited on and at the same time partially redissolved from the cathode. (AEC)

  3. Reaction kinetics and transformation of carbadox and structurally related compounds with aqueous chlorine.

    PubMed

    Shah, Amisha D; Kim, Jae-Hong; Huang, Ching-Hua

    2006-12-01

    The potential release of carbadox (CDX), a commonly used antibacterial agent in swine husbandry, into water systems is of a concern due to its carcinogenic and genotoxic effects. Until this study, the reactivity of carbadox (possessing quinoxaline N,N'-dioxide and hydrazone moieties) toward aqueous chlorine has yetto be investigated in depth. Chemical reactivity, reaction kinetics, and transformation pathways of carbadox and structurally related compounds with free chlorine under typical water treatment conditions were determined. This study found that only CDX and desoxycarbadox (DCDX), a main metabolite of CDX with no ring N-oxide groups, react rapidly with free chlorine while other structurally related compounds including olaquindox, quindoxin, quinoxaline N-oxide, quinoxaline, and quinoline N-oxide do not. The reaction kinetics of CDX and DCDX with chlorine are highly pH dependent (e.g., the apparent second-order rate constant, kapp, for CDX ranges from 51.8 to 3.15 x 10(4) M(-1)s(-1) at pH 4-11). The high reactivity of CDX and DCDX to chlorine involves deprotonation of their hydrazone N-H moieties where initial chlorine attack results in a reactive intermediate that is further attacked by nucleophiles in the matrix to yield non-chlorinated, hydroxylated, and larger molecular weight byproducts. All of the CDX's byproducts retain their biologically active N-oxide groups, suggesting that they may remain as active antibacterial agents.

  4. Treatment of chlorinated solvents by TiO2 photocatalysis and photo-Fenton: influence of operating conditions in a solar pilot plant.

    PubMed

    Rodríguez, S Malato; Gálvez, J Blanco; Rubio, Manuel I Maldonado; Ibáñez, P Fernández; Gernjak, W; Alberola, I Oller

    2005-01-01

    Titanium dioxide photocatalysis (using 20 0mg l(-1) of TiO2), under aerobic and anaerobic conditions, and photo-Fenton (2 and 56 mg l(-1) iron) were applied to the treatment of different NBCS (non-biodegradable chlorinated solvents), such as dichloroethane, dichloromethane and trichloromethane dissolved in water at 50 mg l(-1). All the tests were performed in a 35-l solar pilot plant with compound parabolic collectors (CPCs) under natural illumination. The two solar treatments were compared with attention to chloride release and TOC mineralisation, as the main parameters. Photo-Fenton was found to be the more appropriate treatment for these compounds, assuming volatilisation as a drawback of photocatalytic degradation of NBCS dissolved in water. In this context, several operating parameters related to NBCS degradation, e.g., treatment time, temperature, hydrogen peroxide consumption and volatility of parent compounds are discussed. The correct choice of operating conditions can very often diminish the problem of volatilisation during treatment.

  5. Formation of trichloromethane in chlorinated water and fresh-cut produce and as a result of reacting with citric acid

    USDA-ARS?s Scientific Manuscript database

    Chlorine (sodium hypochlorite) is commonly used by the fresh produce industry to sanitize wash water, fresh and fresh-cut fruits and vegetables. However, possible formation of harmful chlorine by-products is a concern. The objectives of this study were to compare chlorine and chlorine dioxide in t...

  6. Kinetics of chlorination of zirconia in mixture with petroleum coke by chlorine gas

    NASA Astrophysics Data System (ADS)

    Jena, P. K.; Brocchi, E. A.; Reis, M. L. Dos

    1999-06-01

    Studies on the kinetics of carbothermic chlorination of zirconium dioxide in gaseous chlorine were carried out with petroleum coke fines in powder form. The amounts of ZrO2 chlorinated were found to be directly proportional to the time of chlorination in the temperature range studied (973 to 1273 K). The activation energy values for chlorination of ZrO2, in mixture with petroleum coke, was found to be 18.3 kJ/mole. The influence of particle size of petroleum coke on the chlorination of ZrO2 (-38 + 25 µm) was studied, and it was found that the rate of chlorination increased up to the size range of -75 to +53 µm, and the size finer than this produced negligible increase. The amount of petroleum coke in the mixture above 17.41 pct in excess of the stoichiometry resulted in very little increase in the rate. The effect of the partial pressure of chlorine ( pCl2) on the rate of chlorination was found to obey the following relationship, derived from the Langmuir adsorption isotherm: v = {k \\cdot K \\cdot pCl_2 }/{l + K \\cdot pCl_2 } where v is the amount of ZrO2 (g/min) reacted, k is the rate constant, and K is the equilibrium constant for adsorption of two chlorine atoms (obtained from the dissociation of a molecule of Cl2 at the carbon surface) on the surface of ZrO2. By plotting 1/ v vs 1/ pCl2, a straight-line relationship with an intercept in x-axis is obtained, further supporting the preceding equation. The dissociation of the adsorbed complex, Cl … ZrO2 … Cl to ZrCl2 and O2 is suggested to be the rate-controlling step. Subsequently, the less stable ZrCl2 combines with Cl2 to form ZrCl4 and the oxygen combines with C to form CO and CO2.

  7. Appendix F: Supplemental Risk Management Program Guidance for Wastewater Treatment Plants

    EPA Pesticide Factsheets

    Detail for wastewater treatment plants (WWTPs), including publicly owned treatment works (POTWs) and other industrial treatment systems, on complying with part 68 with respect to chlorine, ammonia (anhydrous and aqueous), sulfur dioxide, and digester gas.

  8. Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice - Release of active chlorine

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.; Tso, Tai-Ly; Molina, Luisa T.; Wang, Frank C.-Y.

    1987-01-01

    The reaction rate between atmospheric hydrogen chloride (HCl) and chlorine nitrate (ClONO2) is greatly enhanced in the presence of ice particles; HCl dissolves readily into ice, and the collisional reaction probability for ClONO2 on the surface of ice with HCl in the mole fraction range from about 0.003 to 0.010 is in the range from about 0.05 to 0.1 for temperatures near 200 K. Chlorine is released into the gas phase on a time scale of at most a few milliseconds, whereas nitric acid (HNO3), the other product, remains in the condensed phase. This reaction could play an important role in explaining the observed depletion of ozone over Antarctica; it releases photolytically active chlorine from its most abundant reservoir species, and it promotes the formation of HNO3 and thus removes nitrogen dioxide from the gas phase. Hence it establishes the necessary conditions for the efficient catalytic destruction of ozone by halogenated free radicals.

  9. Ships' Ballast Water Treatment by Chlorination Can Generate Toxic Trihalomethanes.

    PubMed

    Hernandez, Marco R; Ismail, Nargis; Drouillard, Ken G; MacIsaac, Hugh J

    2017-08-01

    The International Maritime Organization (IMO) will enforce a new abundance-based performance standard for ballast water in September, 2017. Strong oxidants, like chlorine, have been proposed as a method for achieving this standard. However chlorine treatment of ballast water can produce hazardous trihalomethanes. We assessed maximum trihalomethane production from one chlorine dose for three types of ballast water (fresh, brackish and marine) and three levels of total organic carbon (TOC) concentration (natural, filtered, enhanced). While the current standard test considers a 5 day voyage, there is a high possibility of shorter trips and sudden change of plans that will release treated waters in the environment. Water source and TOC significantly affected trihalomethane production, with the highest amounts generated in brackish waters and enhanced TOC concentration. The concentration of brominated trihalomethanes increased from background levels and was highest in brackish water, followed by marine and fresh water.

  10. Controlled-release of Chlorine Dioxide in a Perforated Packaging System to Extend the Storage Life and Improve the Safety of Grape Tomatoes.

    PubMed

    Sun, Xiuxiu; Baldwin, Elizabeth; Plotto, Anne; Narciso, Jan; Ference, Christopher; Ritenour, Mark; Harrison, Ken; Gangemi, Joseph; Bai, Jinhe

    2017-04-07

    A controlled-release chlorine dioxide (ClO2) pouch was developed by sealing a slurry form of ClO2 into semipermeable polymer film; the release properties of the pouch were monitored in containers with or without fruit. The pouch was affixed to the inside of a perforated clamshell containing grape tomatoes, and the effect on microbial population, firmness, and weight loss was evaluated during a 14 day storage period at 20 °C. Within 3 days, the ClO2 concentration in the clamshells reached 3.5 ppm and remained constant until day 10. Thereafter, it decreased to 2 ppm by day 14. The ClO2 pouch exhibited strong antimicrobial activity, reducing Escherichia coli populations by 3.08 log CFU/g and Alternaria alternata populations by 2.85 log CFU/g after 14 days of storage. The ClO2 treatment also reduced softening and weight loss and extended the overall shelf life of the tomatoes. Our results suggest that ClO2 treatment is useful for extending the shelf life and improving the microbial safety of tomatoes during storage without impairing their quality.

  11. General RMP Guidance - Appendix F: Supplemental Risk Management Program Guidance for Wastewater Treatment Plants

    EPA Pesticide Factsheets

    Additional information for wastewater treatment plants (WWTPs), including publicly owned treatment works (POTWs) and other industrial treatment systems; about compliance for chlorine, ammonia (anhydrous and aqueous), sulfur dioxide, and digester gas.

  12. Inactivation Kinetics and Mechanism of a Human Norovirus Surrogate on Stainless Steel Coupons via Chlorine Dioxide Gas

    PubMed Central

    Yeap, Jia Wei; Kaur, Simran; Lou, Fangfei; DiCaprio, Erin; Morgan, Mark; Linton, Richard

    2015-01-01

    Acute gastroenteritis caused by human norovirus is a significant public health issue. Fresh produce and seafood are examples of high-risk foods associated with norovirus outbreaks. Food contact surfaces also have the potential to harbor noroviruses if exposed to fecal contamination, aerosolized vomitus, or infected food handlers. Currently, there is no effective measure to decontaminate norovirus on food contact surfaces. Chlorine dioxide (ClO2) gas is a strong oxidizer and is used as a decontaminating agent in food processing plants. The objective of this study was to determine the kinetics and mechanism of ClO2 gas inactivation of a norovirus surrogate, murine norovirus 1 (MNV-1), on stainless steel (SS) coupons. MNV-1 was inoculated on SS coupons at the concentration of 107 PFU/coupon. The samples were treated with ClO2 gas at 1, 1.5, 2, 2.5, and 4 mg/liter for up to 5 min at 25°C and a relative humidity of 85%, and virus survival was determined by plaque assay. Treatment of the SS coupons with ClO2 gas at 2 mg/liter for 5 min and 2.5 mg/liter for 2 min resulted in at least a 3-log reduction in MNV-1, while no infectious virus was recovered at a concentration of 4 mg/liter even within 1 min of treatment. Furthermore, it was found that the mechanism of ClO2 gas inactivation included degradation of viral protein, disruption of viral structure, and degradation of viral genomic RNA. In conclusion, treatment with ClO2 gas can serve as an effective method to inactivate a human norovirus surrogate on SS contact surfaces. PMID:26475110

  13. In Situ Thermal Treatment of Chlorinated Solvents: Fundamentals and Field Applications

    EPA Pesticide Factsheets

    This report contains information about the use of in situ thermal treatment technologies to treat chlorinated solvents in source zones containing free-phase contamination or high concentrations of contaminants.

  14. Mechanistic aspects of ingested chlorine dioxide on thyroid function: impact of oxidants on iodide metabolism.

    PubMed Central

    Bercz, J P; Jones, L L; Harrington, R M; Bawa, R; Condie, L

    1986-01-01

    Toxicological studies dealing with recent findings of health effects of drinking water disinfectants are reviewed. Experiments with monkeys and rodents indicate that the biological activity of ingested disinfectants is expressed via their chemical interaction with the mucosal epithelia, secretory products, and nutritional contents of the alimentary tract. Evidence exists that a principal partner of this redox interaction is the iodide of nutritional origin that is ubiquitous in the gastrointestinal tract. Thus the observation that subchronic exposure to chlorine dioxide (ClO2) in drinking water decreases serum thyroxine levels in mammalian species can be best explained with changes produced in the chemical form of the bioavailable iodide. Ongoing and previously reported mechanistic studies indicate that oxidizing agents such as chlorine-based disinfectants oxidize the basal iodide content of the gastrointestinal tract. The resulting reactive iodine species readily attaches to organic matter by covalent bonding. Evidence suggests that the extent to which such iodinated organics are formed is proportional to the magnitude of the electromotive force and stoichiometry of the redox couple between iodide and the disinfectant. Because the extent of thyroid uptake of the bioavailable iodide does not decrease during ClO2 ingestion, it seems that ClO2 does not cause iodide deficiency of sufficient magnitude to account for the decrease in hormonogenesis. Absorption of one or more of iodinated molecules, e.g., nutrients, hormones, or cellular constituents of the alimentary tract having thyromimetic or thyroid inhibitory properties, is a better hypothesis for the effects seen. Images FIGURE 1. a FIGURE 1. b FIGURE 1. c PMID:3816729

  15. Disinfection of bore well water with chlorine dioxide/sodium hypochlorite and hydrodynamic cavitation.

    PubMed

    Wang, Yifei; Jia, Aiyin; Wu, Yue; Wu, Chunde; Chen, Lijun

    2015-01-01

    The effect of hydrodynamic cavitation (HC) on potable water disinfection of chemicals was investigated. The bore well water was introduced into HC set-up to examine the effect of HC alone and combination of HC and chemicals such as chlorine dioxide and sodium hypochlorite. The effect of inlet pressure and geometrical parameters on disinfection was studied using HC alone and the results showed that increasing inlet pressure and using more and bigger holes of orifice plates can result in a higher disinfection rates. When HC was combined with chemicals, HC can reduce the doses of the chemicals and shorten the time of disinfection. It was also found that the decrease in bacteria concentration followed a first-order kinetic model. As for the experiment of combination of HC and sodium hypochlorite for disinfection, HC not only improves the disinfection rate but also degrades natural organic matter and chloroform. Compared with only sodium hypochlorite disinfection, combined processes get higher disinfection rate and lower production of chloroform, particularly the pretreatment with HC enhances the disinfection rate by 32% and there is a simultaneous reduction in production of chloroform by 39%.

  16. Plasma membrane damage to Candida albicans caused by chlorine dioxide (ClO2).

    PubMed

    Wei, M-K; Wu, Q-P; Huang, Q; Wu, J-L; Zhang, J-M

    2008-08-01

    To investigate the plasma membrane damage of chlorine dioxide (ClO(2)) to Candida albicans ATCC10231 at or below the minimal fungicidal concentration (MFC). ClO(2) at MFC or below was adopted to treat the cell suspensions of C. albicans ATCC10231. Using transmission electron microscopy, no visible physiological alteration of cell shape and plasma membrane occurred. Potassium (K(+)) leakages were significant; likewise, it showed time- and dose-dependent increases. However, adenosine triphosphate (ATP) leakages were very slight. Research shows that when 99% of the cells were inactivated, the leakage was measured at 0.04% of total ATP. Compared with the mortality-specific fluorescent dye of DiBAC(4)(3), majority of the inactivated cells were poorly stained by propidium iodide, another mortality-specific fluorescent dye which can be traced by flow cytometry. At or below MFC, ClO(2) damages the plasma membranes of C. albicans mainly by permeabilization, rather than by the disruption of their integrity. K(+) leakage and the concomitant depolarization of the cell membrane are some of the critical events. These insights into membrane damages are helpful in understanding the action mode of ClO(2).

  17. EFFECT OF CHLORINE TREATMENT ON INFECTIVITY OF HEPATITIS A VIRUS

    EPA Science Inventory

    This study examined the effect of chlorine treatment on the infectivity of hepatitis A virus (HAV). Prodromal chimpanzee feces, shown to induce hepatitis in marmosets (Saguinus sp.), was clarified, and the virus was precipitated with 7% polyethylene glycol 6000, harvested and res...

  18. The effect of a mouthrinse containing chlorine dioxide in the clinical reduction of volatile sulfur compounds.

    PubMed

    Soares, Leo Guimaraes; Guaitolini, Roberto Luiz; Weyne, Sergio de Carvalho; Falabella, Marcio Eduardo Vieira; Tinoco, Eduardo Muniz Barretto; da Silva, Denise Gomes

    2013-07-01

    This study sought to evaluate the clinical effect of a mouthrinse containing 0.3% chlorine dioxide (ClO2) in reducing oral volatile sulfur compounds (VSC). Halitosis was induced by L-cysteine in 11 volunteers, and 4 solutions were compared: a test solution containing 0.3% ClO2, 0.07% cetylpyridinium chloride (CPC), and 0.05% sodium fluoride; a placebo; a solution containing 0.05% CPC; and a control solution of 0.2% chlorhexidine gluconate (CHX). VSC levels were assessed using a Halimeter, and 6 measurements were made from baseline to 3 hours postrinse. The VSC reduction rate of the test mouthrinse was superior to the placebo and the CPC solution. There was no difference between the test solution and the CHX solution in VSC reduction rates immediately postrinse, or at 2 and 3 hours postrinse; both solutions were statistically superior to the placebo and the CPC solution.

  19. Post-Exposure Antioxidant Treatment in Rats Decreases Airway Hyperplasia and Hyperreactivity Due to Chlorine Inhalation

    PubMed Central

    Bracher, Andreas; Doran, Stephen F.; Squadrito, Giuseppe L.; Fernandez, Solana; Postlethwait, Edward M.; Bowen, Larry; Matalon, Sadis

    2012-01-01

    We assessed the safety and efficacy of combined intravenous and aerosolized antioxidant administration to attenuate chlorine gas–induced airway alterations when administered after exposure. Adult male Sprague-Dawley rats were exposed to air or 400 parts per million (ppm) chlorine (a concentration likely to be encountered in the vicinity of industrial accidents) in environmental chambers for 30 minutes, and returned to room air, and they then received a single intravenous injection of ascorbic acid and deferoxamine or saline. At 1 hour and 15 hours after chlorine exposure, the rats were treated with aerosolized ascorbate and deferoxamine or vehicle. Lung antioxidant profiles, plasma ascorbate concentrations, airway morphology, and airway reactivity were evaluated at 24 hours and 7 days after chlorine exposure. At 24 hours after exposure, chlorine-exposed rats had significantly lower pulmonary ascorbate and reduced glutathione concentrations. Treatment with antioxidants restored depleted ascorbate in lungs and plasma. At 7 days after exposure, in chlorine-exposed, vehicle-treated rats, the thickness of the proximal airways was 60% greater than in control rats, with twice the amount of mucosubstances. Airway resistance in response to methacholine challenge was also significantly elevated. Combined treatment with intravenous and aerosolized antioxidants restored airway morphology, the amount of airway mucosubstances, and airway reactivity to control levels by 7 days after chlorine exposure. Our results demonstrate for the first time, to the best of our knowledge, that severe injury to major airways in rats exposed to chlorine, as characterized by epithelial hyperplasia, mucus accumulation, and airway hyperreactivity, can be reversed in a safe and efficacious manner by the post-exposure administration of ascorbate and deferoxamine. PMID:22162906

  20. Comparison of byproduct formation in waters treated with chlorine and iodine: relevance to point-of-use treatment.

    PubMed

    Smith, Emma Marie; Plewa, Michael J; Lindell, Crystal L; Richardson, Susan D; Mitch, William A

    2010-11-15

    Due to their efficacy in deactivating a range of microbial pathogens, particularly amoebic cysts, iodine-based disinfectants have been a popular option for point-of-use (POU) drinking water disinfection by campers, the military, and rural consumers in developing countries. Recently, concerns regarding the formation of cytotoxic and genotoxic iodinated disinfection byproducts (I-DBPs) have arisen during chloramine disinfection of iodide-containing waters in the developed world; similar concerns should pertain to iodine-based POU disinfection. Because there are alternative POU disinfection techniques, including chlorine-based disinfectants, this paper compared disinfection byproduct formation from a range of iodine-based disinfectants at their recommended dosages to chlorination and chloramination under overdosing conditions. Just as chloroform was the predominant trihalomethane (THM) forme during chlorination or chloramination, iodoform was the predominant THM formed during iodination. Conditions fostering THM formation were similar between these treatments, except that THM formation during chlorination increased with pH, while it was slightly elevated at circumneutral pH during iodination. Iodoform formation during treatment with iodine tincture was higher than during treatment with iodine tablets. On a molar basis, iodoform formation during treatment with iodine tincture was 20-60% of the formation of chloroform during chlorination, and total organic iodine (TOI) formation was twice that of total organic chlorine (TOCl), despite the 6-fold higher oxidant dose during chlorination. Based upon previous measurements of chronic mammalian cell cytotoxicity for the individual THMs, consumers of two waters treated with iodine tincture would receive the same THM-associated cytotoxic exposure in 4-19 days as a consumer of the same waters treated with a 6-fold higher dose of chlorine over 1 year. Iodoacetic acid, diiodoacetic acid, and other iodo-acids were also formed with

  1. Inactivation of Aspergillus flavus in drinking water after treatment with UV irradiation followed by chlorination.

    PubMed

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2013-10-01

    The disinfection process for inactivating microorganisms at drinking water treatment plants is aimed for safety of drinking water for humans from a microorganism, such as bacteria, viruses, algae, fungi by using chlorination, ozonation, UV irradiation, etc. In the present study, a combination of two disinfectants, UV irradiation followed by chlorination, was evaluated for inactivating Aspergillus flavus under low contact time and low dosage of UV irradiation. The results indicated an inverse correlation between the inactivation of A. flavus by using UV irradiation only or chlorination alone. By using UV radiation, the 2 log10 control of A. flavus was achieved after 30 s of irradiation, while chlorination was observed to be more effective than UV, where the 2 log was achieved at chlorine concentration of 0.5, 1, 2 and 3 mg/l, in contact time of 60, 5, 1 and 1 min, respectively. However, combined use (UV irradiation followed by chlorination) was more effective than using either UV or chlorination alone; 5 s UV irradiation followed by chlorination produced 4 log10 reduction of A. flavus at chlorine concentrations of 2 and 3 mg/l under a contact time of 15 min. The results indicated that efficiency of UV irradiation improves when followed by chlorination at low concentrations. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Comparisons of the film peeling from the composite oxides of quartz sand filters using ozone, hydrogen peroxide and chlorine dioxide.

    PubMed

    Guo, Yingming; Huang, Tinglin; Wen, Gang; Cao, Xin

    2015-08-01

    To solve the problem of shortened backwashing intervals in groundwater plants, several disinfectants including ozone (O3), hydrogen peroxide (H2O2) and chlorine dioxide (ClO2) were examined to peel off the film from the quartz sand surface in four pilot-scale columns. An optimized oxidant dosage and oxidation time were determined by batch tests. Subsequently, the optimized conditions were tested in the four pilot-scale columns. The results demonstrated that the backwashing intervals increased from 35.17 to 54.33 (H2O2) and to 53.67 hr (ClO2) after the oxidation treatments, and the increase of backwashing interval after treatment by O3 was much less than for the other two treatments. Interestingly, the treatment efficiency of filters was not affected by O3 or H2O2 oxidation; but after oxidation by ClO2, the treatment efficiency was deteriorated, especially the ammonia removal (from 96.96% to 24.95%). The filter sands before and after the oxidation were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. Compared with the oxidation by O3 and H2O2, the structures on the surface of filter sands were seriously damaged after oxidation by ClO2. The chemical states of manganese on the surfaces of those treated sands were only changed by ClO2. The damage of the structures and the change of the chemical states of manganese might have a negative effect on the ammonia removal. In summary, H2O2 is a suitable agent for film peeling. Copyright © 2015. Published by Elsevier B.V.

  3. Inactivation of feline calicivirus, a norovirus surrogate, by chlorine dioxide gas.

    PubMed

    Morino, Hirofumi; Fukuda, Toshiaki; Miura, Takanori; Lee, Cheolsung; Shibata, Takashi; Sanekata, Takeshi

    2009-12-01

    The efficacy of gaseous chlorine dioxide (ClO2) against feline calicivirus (FCV), a norovirus surrogate, in the dry and the wet states on a hard surface was evaluated. We demonstrated that low-concentration ClO2 gas (mean 0.08 ppm, 0.22 microg/I) could inactivate FCV in the wet state with 0.5% fetal bovine serum (FBS) within 6 h in 45 to 55% relative humidity (RH) (> 3 log10 reductions) and FCV in the dry state with 2% FBS (percentage of FBS in the viral suspension) within 10 h in 75 to 85% RH (> 3 log10 reductions) at 20 degrees C, respectively. Furthermore, a < 0.3 ppm concentration of ClO2 gas (mean 0.26 ppm, 0.73 microg/l) could inactivate (below the detection limit) FCV in the dry state with 5% FBS within 24 h in 75 to 85% RH at 20 degrees C. In contrast, in 45 to 55% RH at 20 degrees C, ClO2 gas had little effect even when the FCV in the dry state was exposed to high-concentration ClO2 (mean 8 ppm, 22.4 microg/l) for 24 h. These results suggest that humidity plays an important role in the inactivation by ClO2 gas of FCV in the dry state. According to the International Chemical Safety Card, threshold limit values for ClO2 gas are 0.1 ppm as an 8-h time-weighted average and 0.3 ppm as a 15 min short-term exposure limit. From these data, we propose that the treatment of wet areas of human activity such as kitchens, toilets, etc., with low-concentration ClO2 gas would be useful for reducing the risk of infection by noroviruses (NV) without adverse effects. In addition, we believe that the application of a combination of a < 0.3 ppm concentration of ClO2 gas and a humidifier in places without human activity may make it possible to inactivate NV in the dry state on any surface within a contaminated room without serious adverse effects.

  4. In Situ Treatment of Chlorinated Ethene-Contaminated Groundwater Using horizontal Flow Treatment Wells.

    DTIC Science & Technology

    2000-03-01

    groundwater, Environmental Science and Technology, 30 (12): 536A-539A, 1996. Arnold, W. A. and A. L. Roberts, Pathways of chlorinated ethylene and...chlorinated acetylene reaction with Zn(0), Environmental Science and Technology, 32 (19): 3017-3025, 1998. Arnold, W. A. and A. L. Roberts, Pathways and...kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles, Environmental Science and Technology, in press, 2000

  5. TURBULENT FLAME REACTOR STUDIES OF CHLORINATED HYDROCARBON DESTRUCTION EFFICIENCY

    EPA Science Inventory

    Four mixtures of C1 and C2 chlorinated hydrocarbons, diluted in heptane, were burned in a Turbulent Flame Reactor (TFR) under high and low oxygen conditions. Emissions of undestroyed feed, stable organic by-products, carbon monoxide, carbon dioxide and oxyg...

  6. Investigation Of Ballast Water Treatment’s Effect On Corrosion

    DTIC Science & Technology

    2013-03-01

    Lysogorski, et al | Public March 2013 N O T I C E This document is disseminated under the sponsorship of the Department of Homeland...Controlled laboratory tests were conducted using simulated chlorination, deoxygenation and chlorine dioxide disinfection . Materials were exposed to three...Great Lakes water simulated chlorination, deoxygenation, and chlorine dioxide disinfection . All testing was conducted at NRLKW. Natural, unfiltered

  7. Efficacy of chlorine and calcinated calcium treatment of alfalfa seeds and sprouts to eliminate Salmonella.

    PubMed

    Gandhi, Megha; Matthews, Karl R

    2003-11-01

    The efficacy of a 20,000 ppm calcium hypochlorite treatment of alfalfa seeds artificially contaminated with Salmonella was studied. Salmonella populations reached >7.0 log on sprouts grown from seeds artificially contaminated with Salmonella and then treated with 20,000 ppm Ca(OCl)(2). The efficacy of spray application of chlorine (100 ppm) to eliminate Salmonella during germination and growth of alfalfa was assessed. Alfalfa seed artificially contaminated with Salmonella was treated at germination, on day 2 or day 4, or for the duration of the growth period. Spray application of 100 ppm chlorine at germination, day 2, or day 4 of growth was minimally effective resulting in approximately a 0.5-log decrease in population of Salmonella. Treatment on each of the 4 days of growth reduced populations of Salmonella by only 1.5 log. Combined treatment of seeds with 20,000 ppm Ca(OCl)(2) and followed by 100 ppm chlorine or calcinated calcium during germination and sprout growth did not eliminate Salmonella.

  8. New chlorinated amphetamine-type-stimulants disinfection-by-products formed during drinking water treatment.

    PubMed

    Huerta-Fontela, Maria; Pineda, Oriol; Ventura, Francesc; Galceran, Maria Teresa

    2012-06-15

    Previous studies have demonstrated high removal rates of amphetamine-type-stimulants (ATSs) through conventional drinking water treatments; however the behaviour of these compounds through disinfection steps and their transformation into disinfection-by-products (DBPs) is still unknown. In this work, for the first time, the reactivity of some ATSs such as amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyethylamphetamine (MDEA) with chlorine has been investigated under simulated and real drinking water treatment conditions in order to evaluate their ability to give rise to transformation products. Two new DBPs from these illicit drugs have been found. A common chlorinated-by-product (3-chlorobenzo)-1,3-dioxole, was identified for both MDA and MDEA while for MDMA, 3-chlorocatechol was found. The presence of these DBPs in water samples collected through drinking water treatment was studied in order to evaluate their formation under real conditions. Both compounds were generated through treatment from raw river water samples containing ATSs at concentration levels ranging from 1 to 15 ng/L for MDA and from 2.3 to 78 ng/L for MDMA. One of them, (3-chlorobenzo)-1,3-dioxole, found after the first chlorination step, was eliminated after ozone and GAC treatment while the MDMA DBP mainly generated after the postchlorination step, showed to be recalcitrant and it was found in final treated waters at concentrations ranging from 0.5 to 5.8 ng/L. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Comparative evaluation of human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite: An in vitro study

    PubMed Central

    Taneja, Sonali; Mishra, Neha; Malik, Shubhra

    2014-01-01

    Introduction: Irrigation plays an indispensable role in removal of tissue remnants and debris from the complicated root canal system. This study compared the human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite. Materials and Methods: Pulp tissue was standardized to a weight of 9 mg for each sample. In all,60 samples obtained were divided into 6 groups according to the irrigating solution used- 2.5% sodium hypochlorite (NaOCl), 5.25% NaOCl, 5% calcium hypochlorite (Ca(OCl)2), 10% Ca(OCl)2, 5%chlorine dioxide (ClO2) and 13% ClO2. Pulp tissue was placed in each test tube carrying irrigants of measured volume (5ml) according to their specified subgroup time interval: 30 minutes (Subgroup A) and 60 minutes (Subgroup B). The solution from each sample test tube was filtered and was left for drying overnight. The residual weight was calculated by filtration method. Results: Mean tissue dissolution increases with increase in time period. Results showed 5.25% NaOCl to be most effective at both time intervals followed by 2.5% NaOCl at 60 minutes, 10%Ca(OCl)2 and 13% ClO2 at 60 minutes. Least amount of tissue dissolving ability was demonstrated by 5% Ca(OCl)2 and 5% ClO2 at 30 minutes. Distilled water showed no pulp tissue dissolution. Conclusion: Withinthe limitations of the study, NaOCl most efficiently dissolved the pulp tissue at both concentrations and at both time intervals. Mean tissue dissolution by Ca(OCl)2 and ClO2 gradually increased with time and with their increase in concentration. PMID:25506141

  10. Chlorination Revisited: Does Cl- Serve as a Catalyst in the Chlorination of Phenols?

    PubMed

    Lau, Stephanie S; Abraham, Sonali M; Roberts, A Lynn

    2016-12-20

    The aqueous chlorination of (chloro)phenols is one of the best-studied reactions in the environmental literature. Previous researchers have attributed these reactions to two chlorine species: HOCl (at circum-neutral and high pH) and H 2 OCl + (at low pH). In this study, we seek to examine the roles that two largely overlooked chlorine species, Cl 2 and Cl 2 O, may play in the chlorination of (chloro)phenols. Solution pH, chloride concentration, and chlorine dose were systematically varied in order to assess the importance of different chlorine species as chlorinating agents. Our findings indicate that chlorination rates at pH < 6 increase substantially when chloride is present, attributed to the formation of Cl 2 . At pH 6.0 and a chlorine dose representative of drinking water treatment, Cl 2 O is predicted to have at best a minor impact on chlorination reactions, whereas Cl 2 may contribute more than 80% to the overall chlorination rate depending on the (chloro)phenol identity and chloride concentration. While it is not possible to preclude H 2 OCl + as a chlorinating agent, we were able to model our low-pH data by considering Cl 2 only. Even traces of chloride can generate sufficient Cl 2 to influence chlorination kinetics, highlighting the role of chloride as a catalyst in chlorination reactions.

  11. The effect of advanced treatment on chlorine decay in metallic pipes

    EPA Science Inventory

    Experiments were run to measure what effect advanced treatment might have on the kinetics of chlorine decay in water distribution systems. A recirculating loop of 6-inch diameter unlined ductile iron pipe was used to simulate turbulent flow conditions in a pipe with significant c...

  12. Turbidity and chlorine demand reduction using alum and moringa flocculation before household chlorination in developing countries.

    PubMed

    Preston, Kelsey; Lantagne, Daniele; Kotlarz, Nadine; Jellison, Kristen

    2010-03-01

    Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.87 million deaths per year. The Safe Water System (SWS) is a household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l(-1) sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of two locally available chemical water treatments-alum and Moringa oleifera flocculation-to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. Both treatments effectively reduced turbidity (alum flocculation 23.0-91.4%; moringa flocculation 14.2-96.2%). Alum flocculation effectively reduced chlorine demand compared with controls at 30, 70, 100 and 300 NTU (p=0.01-0.06). Moringa flocculation increased chlorine demand to the point where adequate free chlorine residual was not maintained for 24 hours after treatment. Alum pretreatment is recommended in waters>or=30 NTU for optimum water disinfection. Moringa flocculation is not recommended before chlorination.

  13. Factors affecting the formation of iodo-trihalomethanes during oxidation with chlorine dioxide.

    PubMed

    Guo, Wanhong; Shan, Yingchun; Yang, Xin

    2014-01-15

    Effects of water characteristics, reaction time, temperature, bromide and iodide ion concentrations, oxidant doses, and pH on formation of iodinated trihalomethanes (I-THM) during oxidation of iodide-containing water with chlorine dioxide (ClO2) were investigated. Among the water samples collected from ten water sources, iodoform (CHI3) was the predominant I-THM and trace amount of chlorodiiodomethane (CHClI2) was occasionally found. CHI3 yields correlated moderately with specific UV absorbance (SUVA) (R(2)=0.79), indicating that hydrophobic aromatic content were important precursors. Longer reaction time led to continued formation of CHI3. I-THM containing bromide was also found in waters containing both bromide and iodide, but CHI3 was dominant. The formation of CHI3 was higher at 25°C than 5°C and 35°C. CHI3 formation showed an increase followed by a decrease trend with increasing ClO2 doses and iodide concentrations and the highest yields occurred at iodide to ClO2 molar ratios of 1-2. pH 8 resulted in the highest CHI3 formation. It should be noted that a high iodide concentration was spiked to waters before adding ClO2 and the results may not reflect the formation yields of iodinated THMs in real conditions, but they provide information about formation trend of I-THM during oxidation of ClO2. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Role of Chlorine Dioxide in N-Nitrosodimethylamine Formation from Oxidation of Model Amines.

    PubMed

    Gan, Wenhui; Bond, Tom; Yang, Xin; Westerhoff, Paul

    2015-10-06

    N-Nitrosodimethylamine (NDMA) is an emerging disinfection byproduct, and we show that use of chlorine dioxide (ClO2) has the potential to increase NDMA formation in waters containing precursors with hydrazine moieties. NDMA formation was measured after oxidation of 13 amines by monochloramine and ClO2 and pretreatment with ClO2 followed by postmonochloramination. Daminozide, a plant growth regulator, was found to yield 5.01 ± 0.96% NDMA upon reaction with ClO2, although no NDMA was recorded during chloramination. The reaction rate was estimated to be ∼0.0085 s(-1), and on the basis of our identification by mass spectrometry of the intermediates, the reaction likely proceeds via the hydrolytic release of unsymmetrical dimethylhydrazine (UDMH), with the hydrazine structure a key intermediate in NDMA formation. The presence of UDMH was confirmed by gas chromatography-mass spectrometry analysis. For 10 of the 13 compounds, ClO2 preoxidation reduced NDMA yields compared with monochloramination alone, which is explained by our measured release of dimethylamine. This work shows potential preoxidation strategies to control NDMA formation may not impact all organic precursors uniformly, so differences might be source specific depending upon the occurrence of different precursors in source waters. For example, daminozide is a plant regulator, so drinking water that is heavily influenced by upstream agricultural runoff could be at risk.

  15. Chlorination. Training Module 2.300.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with chlorine, the reasons for chlorination and safe operation and maintenance of gas chlorine, dry calcium hypochlorite and liquid sodium hypochlorite chlorination systems for water supply and wastewater treatment facilities. Included are…

  16. Disinfection efficiency of chlorine dioxide gas in student cafeterias in Taiwan.

    PubMed

    Hsu, Ching-Shan; Huang, Da-Ji

    2013-07-01

    In Taiwan, the food and drink requirements of students and faculty members are met by student cafeterias. The air quality within these cafeterias should satisfy the guidelines laid down by the Taiwan Environmental Protection Agency (Taiwan EPA). Accordingly, this study performed an experimental investigation into the efficiency of two different gaseous chlorine dioxide (ClO2) treatments in disinfecting a local student cafeteria, namely a single, one-off application and a twice-daily application. In both cases, the ClO2 was applied using strategically placed aerosol devices. The air quality before and after disinfection was evaluated by measuring the bioaerosol levels of bacteria and fungi. Moreover, a stepwise discriminant analysis method was applied for predicting the residual concentrations of bacteria and fungi, as a function of the environmental parameters and the ClO2 concentration. The experimental results showed that the average background levels of bacteria and fungi prior to ClO2 disinfection were 972.5 +/- 623.6 and 1534.1 +/- 631.8 colony-forming units (CFU)/m3, respectively. A single ClO2 application was found to reduce the bacterial and fungal concentration levels by as much as 65% and 30%, respectively. By contrast, a twice-daily ClO2 application was found to reduce the bacterial and fungal concentration levels by as much as 74% and 38%, respectively. The statistical analysis results showed that the residual bacterial concentration level was determined primarily by the number of individuals present in the cafeteria, the temperature, and the ClO2 concentration, whereas the residual fungal concentration level was determined mainly by the temperature, the total number of suspended particles, and the ClO2 concentration. Thus, the integrated results suggest that the air quality guidelines prescribed by the Taiwan EPA for student cafeteria can best be achieved by applying ClO2 twice daily using an appropriate deployment of aerosol devices. ClO2 gas can

  17. Efficacy of gaseous chlorine dioxide as a sanitizer for killing Salmonella, yeasts, and molds on blueberries, strawberries, and raspberries.

    PubMed

    Sy, Kaye V; McWatters, Kay H; Beuchat, Larry R

    2005-06-01

    Gaseous chlorine dioxide (ClO2) was tested for its effectiveness in killing Salmonella, yeasts, and molds on blueberries, strawberries, and red raspberries. An inoculum (100 microl, 6.0 to 6.8 log CFU/g of fruit) that contained five serotypes of Salmonella enterica was deposited on the skin, calyx tissue, or stem scar tissue of blueberries, skin or stem scar tissue of strawberries, and skin of red raspberries, dried for 2 h at 22 degrees C, then held for 20 h at 4 degrees C and 2 h at 22 degrees C before treatment. Sachets that contained reactant chemicals were formulated to release gaseous ClO2 at concentrations of 4.1, 6.2, and 8.0 mg/ liter of air within treatment times of 30, 60, and 120 min, respectively, at 23 +/- 1 degrees C. Lethality of ClO2 to Salmonella, yeasts, and molds was measured when fruits were in an atmosphere that contained 75 to 90% relative humidity. Treatment with 8.0 mg/liter of ClO2 significantly (alpha = 0.05) reduced the population of Salmonella on blueberries by 2.4 to 3.7 log CFU/g. Lethality was higher to cells in inoculum placed on the skin compared with the stem scar tissue. Populations of Salmonella on strawberries treated with 8.0 mg/liter of ClO2 were reduced by 3.8 to 4.4 log CFU/g; a significant reduction of 1.5 log CFU/g of raspberries was achieved. Treatment with 4.1 to 8.0 mg/liter of ClO2 caused reductions in populations of yeast and molds on blueberries, strawberries, and raspberries of 1.4 to 2.5, 1.4 to 4.2, and 2.6 to 3.0 log CFU/g, respectively. Treatment with 4.1 mg/liter of ClO2 did not markedly affect the sensory quality of fruits stored for up to 10 days at 8 degrees C. Results indicate that gaseous ClO2 has promise as a sanitizer for small fruits.

  18. Shifts of live bacterial community in secondary effluent by chlorine disinfection revealed by Miseq high-throughput sequencing combined with propidium monoazide treatment.

    PubMed

    Pang, Yu-Chen; Xi, Jin-Ying; Xu, Yang; Huo, Zheng-Yang; Hu, Hong-Ying

    2016-07-01

    Chlorine disinfection is a commonly used disinfection process in wastewater treatment, but its effects on the indigenous bacterial community in treated wastewater have not been fully elucidated. In this study, secondary effluent samples collected in four wastewater treatment plants (WWTPs) were selected for chlorine disinfection. Shifts in the bacterial community compositions in secondary effluent samples upon chlorine disinfection, both immediately and after 24 h of storage, were investigated using Illumina MiSeq sequencing combined with propidium monoazide (PMA) treatment. The results showed that the phylum Proteobacteria was sensitive to chlorine, with the relative proportions of Proteobacteria decreased from 39.2 to 75.9 % in secondary effluent samples to 7.5 to 62.2 % immediately after chlorine disinfection. The phylogenetic analysis indicated that the most dominant genera belonging to Proteobacteria were sensitive to chlorine. In contrast, the phyla Firmicutes and Planctomycetes showed a certain resistance to chlorine, with their relative proportions increasing from 5.1 to 23.1 % and 0.8 to 9.3 % to 11.3 to 44.6 % and 1.5 to 13.3 %, respectively. Most dominant genera belonging to Firmicutes showed resistance to chlorine. A significant reduction in the richness and diversity of the bacterial community was observed after 24 h of storage of chlorinated secondary effluent. During the 24-h storage process, the relative proportions of most dominant phyla shifted in reverse from the changes induced by chlorine disinfection. Overall, chlorine disinfection not only changes the bacterial community compositions immediately after the disinfection process but also exerts further impacts over a longer period (24 h).

  19. Development and Assessment of Countermeasure Formulations for Treatment of Lung Injury Induced by Chlorine Inhalation

    PubMed Central

    Hoyle, Gary W.; Chen, Jing; Schlueter, Connie F.; Mo, Yiqun; Humphrey, David M.; Rawson, Greg; Niño, Joe A.; Carson, Kenneth H.

    2016-01-01

    Chlorine is a commonly used, reactive compound to which humans can be exposed via accidental or intentional release resulting in acute lung injury. Formulations of rolipram (a phosphodiesterase inhibitor), triptolide (a natural plant product with anti-inflammatory properties), and budesonide (a corticosteroid), either neat or in conjunction with poly(lactic:glycolic acid) (PLGA), were developed for treatment of chlorine-induced acute lung injury by intramuscular injection. Formulations were produced by spray-drying, which generated generally spherical microparticles that were suitable for intramuscular injection. Multiple parameters were varied to produce formulations with a wide range of in vitro release kinetics. Testing of selected formulations in chlorine-exposed mice demonstrated efficacy against key aspects of acute lung injury. The results show the feasibility of developing microencapsulated formulations that could be used to treat chlorine-induced acute lung injury by intramuscular injection, which represents a preferred route of administration in a mass casualty situation. PMID:26952014

  20. Efficacy of chlorine dioxide against Listeria monocytogenes in brine chilling solutions.

    PubMed

    Valderrama, W B; Mills, E W; Cutter, C N

    2009-11-01

    Chilled brine solutions are used by the food industry to rapidly cool ready-to-eat meat products after cooking and before packaging. Chlorine dioxide (ClO(2)) was investigated as an antimicrobial additive to eliminate Listeria monocytogenes. Several experiments were performed using brine solutions made of sodium chloride (NaCl) and calcium chloride (CaCl(2)) inoculated with L. monocytogenes and/or treated with 3 ppm of ClO(2). First, 10 and 20% CaCl(2) and NaCl solutions (pH 7.0) were inoculated with a five-strain cocktail of L. monocytogenes to obtain approximately 7 log CFU/ml and incubated 8 h at 0 degrees C. The results demonstrated that L. monocytogenes survived in 10% CaCl(2), 10 and 20% NaCl, and pure water. L. monocytogenes levels were reduced approximately 1.2 log CFU/ml in 20% CaCl(2). Second, inoculated ( approximately 7 log CFU/ml) brine solutions (10 and 20% NaCl and 10% CaCl(2)) treated with 3 ppm of ClO(2) resulted in a approximately 4-log reduction of the pathogen within 90 s. The same was not observed in a solution of 20% CaCl(2); further investigation demonstrated that high levels of divalent cations interfere with the disinfectant. Spent brine solutions from hot dog and ham chilling were treated with ClO(2) at concentrations of 3 or 30 ppm. At these concentrations, ClO(2) did not reduce L. monocytogenes. Removal of divalent cations and organic material in brine solutions prior to disinfection with ClO(2) should be investigated to improve the efficacy of the compound against L. monocytogenes. The information from this study may be useful to processing establishments and researchers who are investigating antimicrobials in chilling brine solutions.

  1. Occurrence of Sustained Treatment Following Enhanced Anaerobic Bioremediation at Chlorinated Solvent Sites

    NASA Astrophysics Data System (ADS)

    Burcham, M.; Bedient, P.; McGuire, T.; Adamson, D.; Newell, C. J.

    2012-12-01

    Chlorinated solvents are among the most prevalent groundwater contaminants found in the United States, located at nearly 80% of all Superfund sites, and at more than 3,000 Department of Defense sites. Responsible parties in the U.S. spend several billion dollars per year on environmental restoration with much of these funds targeting remediation of chlorinated solvents in groundwater. To make this large investment in groundwater remediation technologies more effective, end-users need quantitative, accurate, and reliable performance data for commonly used remediation technologies. One such technology that has been used increasingly for remediation of chlorinated solvent sites is enhanced anaerobic bioremediation (EAB). A previous study of remediation performance of various technologies indicated that EAB has the potential for sustained treatment several years after injection of an EAB substrate. This benefit is attributed to the recycling of decaying biomass (endogenous decay) and/or the formation of reactive mineral species, and it serves to mitigate the incidence of concentration rebound during the post-treatment period that is commonly-observed with other technologies. The current study expands on the previous study by focusing on the occurrence of sustained treatment at EAB sites through analysis of groundwater concentration data for longer post-treatment periods than were available for the previous study (up to 9 years), along with site characteristics such as hydrogeology, geochemistry, and microbiology. The objective is to determine whether relationships exist that can aid in determining when sustained treatment following EAB might occur for a given site. To date, data from over 17 distinct sites applying EAB have been collected. The dataset includes over 50 monitoring wells within EAB treatment zones, with concentration data extending from before treatment began to more than 3 to 9 years following treatment. Efforts are underway to continue this data mining

  2. Chlorination of Wastewater, Manual of Practice No. 4.

    ERIC Educational Resources Information Center

    Water Pollution Control Federation, Washington, DC.

    This manual reviews chlorination practices in the treatment and disposal of wastes from the earliest known applications. The application of chlorination for various purposes is described but no attempt has been made to compare chlorination with other methods. Included are chapters on the development and practice of wastewater chlorination,…

  3. Evaluation of chlorine treatment levels on inactivation of human norovirus and MS2 bacteriophage during sewage treatment

    USDA-ARS?s Scientific Manuscript database

    This study examined the inactivation of human norovirus (HuNoV) GI.1 and GII.4 by chlorine under conditions that mimic sewage treatment. Using a porcine gastric mucin-magnetic bead (PGM-MB) assay, no statistically significant loss in HuNoV binding (inactivation) was observed for secondary effluent ...

  4. Effectiveness of chlorine, organic acids and UV treatments in reducing Escherichia coli O157:H7 and Yersinia enterocolitica on apples.

    PubMed

    Escudero, M E; Velázquez, L; Favier, G; de Guzmán, A M

    2003-06-01

    This study assessed the effectiveness of 200 and 500 ppm of chlorine and organic acids (0.5% lactic acid and 0.5% citric acid) in wash solutions, and UV radiation for reducing Escherichia coli O157:H7 and Yersinia enterocolitica on apples contaminated by two different methods. Residual levels of these pathogens after different treatments were compared. On dip inoculated apples, Y. enterocolitica reductions of 2.66 and 2.77 logs were obtained with 200 and 500 ppm chlorine combined with 0.5% lactic acid, respectively. The E. coli O157:H7 population decreased 3.35 log with 0.5% lactic acid wash solution, and 2.72 and 2.62 logs after 500 ppm chlorine and 500 ppm chlorine plus 0.5% lactic acid treatments, respectively. Similar reductions were obtained with UV radiation. On spot inoculated apples, significant (p < 0.05) decreases of 4.67 and 4.58 logs were observed in E. coli O157:H7 and Y. enterocolitica levels, respectively, after 500 ppm chlorine plus 0.5% lactic acid treatment as compared with the control. In sectioned apples, microorganisms infiltrated in inner core region and pulp were not significantly (p < 0.05) affected by disinfection treatments. No pathogens were detected in the natural microflora on apples. Reductions such as those obtained with 500 ppm chlorine plus 0.5% lactic acid solution were very proximal to the 5-log score required by FDA for apple disinfection.

  5. Kinetics of Inactivation of Bacillus subtilis subsp. niger Spores and Staphylococcus albus on Paper by Chlorine Dioxide Gas in an Enclosed Space

    PubMed Central

    Wang, Tao; Wu, Jinhui; Hao, Limei; Yi, Ying; Zhang, Zongxing

    2016-01-01

    ABSTRACT Bacillus subtilis subsp. niger spore and Staphylococcus albus are typical biological indicators for the inactivation of airborne pathogens. The present study characterized and compared the behaviors of B. subtilis subsp. niger spores and S. albus in regard to inactivation by chlorine dioxide (ClO2) gas under different gas concentrations and relative humidity (RH) conditions. The inactivation kinetics under different ClO2 gas concentrations (1 to 5 mg/liter) were determined by first-order and Weibull models. A new model (the Weibull-H model) was established to reveal the inactivation tendency and kinetics for ClO2 gas under different RH conditions (30 to 90%). The results showed that both the gas concentration and RH were significantly (P < 0.05) and positively correlated with the inactivation of the two chosen indicators. There was a rapid improvement in the inactivation efficiency under high RH (>70%). Compared with the first-order model, the Weibull and Weibull-H models demonstrated a better fit for the experimental data, indicating nonlinear inactivation behaviors of the vegetative bacteria and spores following exposure to ClO2 gas. The times to achieve a six-log reduction of B. subtilis subsp. niger spore and S. albus were calculated based on the established models. Clarifying the kinetics of inactivation of B. subtilis subsp. niger spores and S. albus by ClO2 gas will allow the development of ClO2 gas treatments that provide an effective disinfection method. IMPORTANCE Chlorine dioxide (ClO2) gas is a novel and effective fumigation agent with strong oxidization ability and a broad biocidal spectrum. The antimicrobial efficacy of ClO2 gas has been evaluated in many previous studies. However, there are presently no published models that can be used to describe the kinetics of inactivation of airborne pathogens by ClO2 gas under different gas concentrations and RH conditions. The first-order and Weibull (Weibull-H) models established in this study can

  6. Kinetics of Inactivation of Bacillus subtilis subsp. niger Spores and Staphylococcus albus on Paper by Chlorine Dioxide Gas in an Enclosed Space.

    PubMed

    Wang, Tao; Wu, Jinhui; Qi, Jiancheng; Hao, Limei; Yi, Ying; Zhang, Zongxing

    2016-05-15

    Bacillus subtilis subsp. niger spore and Staphylococcus albus are typical biological indicators for the inactivation of airborne pathogens. The present study characterized and compared the behaviors of B. subtilis subsp. niger spores and S. albus in regard to inactivation by chlorine dioxide (ClO2) gas under different gas concentrations and relative humidity (RH) conditions. The inactivation kinetics under different ClO2 gas concentrations (1 to 5 mg/liter) were determined by first-order and Weibull models. A new model (the Weibull-H model) was established to reveal the inactivation tendency and kinetics for ClO2 gas under different RH conditions (30 to 90%). The results showed that both the gas concentration and RH were significantly (P < 0.05) and positively correlated with the inactivation of the two chosen indicators. There was a rapid improvement in the inactivation efficiency under high RH (>70%). Compared with the first-order model, the Weibull and Weibull-H models demonstrated a better fit for the experimental data, indicating nonlinear inactivation behaviors of the vegetative bacteria and spores following exposure to ClO2 gas. The times to achieve a six-log reduction of B. subtilis subsp. niger spore and S. albus were calculated based on the established models. Clarifying the kinetics of inactivation of B. subtilis subsp. niger spores and S. albus by ClO2 gas will allow the development of ClO2 gas treatments that provide an effective disinfection method. Chlorine dioxide (ClO2) gas is a novel and effective fumigation agent with strong oxidization ability and a broad biocidal spectrum. The antimicrobial efficacy of ClO2 gas has been evaluated in many previous studies. However, there are presently no published models that can be used to describe the kinetics of inactivation of airborne pathogens by ClO2 gas under different gas concentrations and RH conditions. The first-order and Weibull (Weibull-H) models established in this study can characterize and

  7. Household Effectiveness vs. Laboratory Efficacy of Point-of-use Chlorination

    PubMed Central

    Levy, Karen; Anderson, Larissa; Robb, Katharine A.; Cevallos, William; Trueba, Gabriel; Eisenberg, Joseph N.S.

    2014-01-01

    Treatment of water at the household level offers a promising approach to combat the global burden of diarrheal diseases. In particular, chlorination of drinking water has been a widely promoted strategy due to persistence of residual chlorine after initial treatment. However, the degree to which chlorination can reduce microbial levels in a controlled setting (efficacy) or in a household setting (effectiveness) can vary as a function of chlorine characteristics, source water characteristics, and household conditions. To gain more understanding of these factors, we carried out an observational study within households in rural communities of northern coastal Ecuador. We found that the efficacy of chlorine treatment under controlled conditions was significantly better than its effectiveness when evaluated both by ability to meet microbiological safety standards and by log reductions. Water treated with chlorine achieved levels of microbial contamination considered safe for human consumption after 24 hours of storage in the household only 39 – 51% of the time, depending on chlorine treatment regimen. Chlorine treatment would not be considered protective against diarrheal disease according to WHO log reduction standards. Factors that explain the observed compromised effectiveness include: source water turbidity, source water baseline contamination levels, and in-home contamination. Water in 38% of the households that had low turbidity source water (< 10 NTU) met the safe water standard as compared with only 17% of the households that had high turbidity source water (> 10 NTU). A 10 MPN/100mL increase in baseline E. coli levels was associated with a 2.2% increase in failure to meet the E. colistandard. Higher mean microbial contamination levels in 54% of household samples in comparison to their matched controls, which is likely the result of in-home contamination during storage. Container characteristics (size of the container mouth) did not influence chlorine

  8. Genotoxicity and cytotoxicity assessment in lake drinking water produced in a treatment plant.

    PubMed

    Buschini, Annamaria; Carboni, Pamela; Frigerio, Silvia; Furlini, Mariangela; Marabini, Laura; Monarca, Silvano; Poli, Paola; Radice, Sonia; Rossi, Carlo

    2004-09-01

    Chemical analyses and short-term mutagenicity bioassays have revealed the presence of genotoxic disinfection by-products in drinking water. In this study, the influence of the different steps of surface water treatment on drinking water mutagen content was evaluated. Four different samples were collected at a full-scale treatment plant: raw lake water (A), water after pre-disinfection with chlorine dioxide and coagulation (B), water after pre-disinfection, coagulation and granular activated carbon filtration (C) and tap water after post-disinfection with chlorine dioxide just before its distribution (D). Water samples, concentrated by solid phase adsorption on silica C18 columns, were tested in human leukocytes and HepG2 hepatoma cells using the comet assay and in HepG2 cells in the micronuclei test. A significant increase in DNA migration was observed in both cell types after 1 h treatment with filtered and tap water, and, to a lesser extent, chlorine dioxide pre-disinfected water. Similar findings were observed for the induction of "ghost" cells. Overloading of the carbon filter, with a consequent peak release, might explain the high genotoxicity found in water samples C and D. Cell toxicity and DNA damage increases were also detected in metabolically competent HepG2 cells treated with a lower concentration of tap water extract for a longer exposure time (24 h). None of the water extracts significantly increased micronuclei frequencies. Our monitoring approach appears to be able to detect contamination related to the different treatment stages before drinking water consumption and the results suggest the importance of improving the technologies for drinking water treatment to prevent human exposure to potential genotoxic compounds.

  9. Chemical Reductive Treatment of Groundwater Chromate and Chlorinated Ethenes: Tests at Two Field Sites

    EPA Science Inventory

    Both hexavalent chromium (Cr(VI)) and chlorinated ethenes such as tetrachloroethene (PCE) are common groundwater contaminants. A pump-and-treat approach to remedy them usually is not satisfactory with respect to effectiveness and cost. Effective treatment technologies generally...

  10. Lethality of chlorine, chlorine dioxide, and a commercial fruit and vegetable sanitizer to vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis.

    PubMed

    Beuchat, Larry R; Pettigrew, Charles A; Tremblay, Mario E; Roselle, Brian J; Scouten, Alan J

    2004-08-01

    Chlorine, ClO2, and a commercial raw fruit and vegetable sanitizer were evaluated for their effectiveness in killing vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis. The ultimate goal was to use one or both species as a potential surrogate(s) for Bacillus anthracis in studies that focus on determining the efficacy of sanitizers in killing the pathogen on food contact surfaces and foods. Treatment with alkaline (pH 10.5 to 11.0) ClO2 (200 microg/ml) produced by electrochemical technologies reduced populations of a five-strain mixture of vegetative cells and a five-strain mixture of spores of B. cereus by more than 5.4 and more than 6.4 log CFU/ml respectively, within 5 min. This finding compares with respective reductions of 4.5 and 1.8 log CFU/ml resulting from treatment with 200 microg/ml of chlorine. Treatment with a 1.5% acidified (pH 3.0) solution of Fit powder product was less effective, causing 2.5- and 0.4-log CFU/ml reductions in the number of B. cereus cells and spores, respectively. Treatment with alkaline ClO2 (85 microg/ml), acidified (pH 3.4) ClO2 (85 microg/ml), and a mixture of ClO2 (85 microg/ml) and Fit powder product (0.5%) (pH 3.5) caused reductions in vegetative cell/spore populations of more than 5.3/5.6, 5.3/5.7, and 5.3/6.0 log CFU/ml, respectively. Treatment of B. cereus and B. thuringiensis spores in a medium (3.4 mg/ml of organic and inorganic solids) in which cells had grown and produced spores with an equal volume of alkaline (pH 12.1) ClO2 (400 microg/ml) for 30 min reduced populations by 4.6 and 5.2 log CFU/ml, respectively, indicating high lethality in the presence of materials other than spores that would potentially react with and neutralize the sporicidal activity of ClO2.

  11. Toxicity of chlorine to zebrafish embryos

    PubMed Central

    Kent, Michael L.; Buchner, Cari; Barton, Carrie; Tanguay, Robert L.

    2014-01-01

    Surface disinfection of fertilized fish eggs is widely used in aquaculture to reduce extraovum pathogens that may be released from brood fish during spawning, and this is routinely used in zebrafish (Danio rerio) research laboratories. Most laboratories use approximately 25 – 50 ppm unbuffered chlorine solution for 5 – 10 min. Treatment of embryos with chlorine has significant germicidal effects for many Gram-negative bacteria, viruses, and trophozoite stages of protozoa, it has reduced efficacy against cyst or spore stages of protozoa and certain Mycobacterium spp. Therefore, we evaluated the toxicity of unbufferred and buffered chlorine solution to embryos exposed at 6 or 24 hours post-fertilization (hpf) to determine if higher concentrations can be used for treating zebrafish embryos. Most of our experiments entailed using an outbred line (5D), with both mortality and malformations as endpoints. We found that 6 hpf embryos consistently were more resistant than 24 hpf embryos to the toxic effects of chlorine. Chlorine is more toxic and germicidal at lower pHs, and chlorine causes elevated pH. Consistent with this, we found that unbufferred chlorine solutions (pH ca 8–9) were less toxic at corresponding concentrations than solutions buffered to pH 7. Based on our findings here, we recommend treating 6 hpf embryos for 10 min and 24 hpf for 5 min with unbuffered chlorine solution at 100 ppm. One trial indicated that AB fish, a popular outbred line, are more susceptible to toxicity than 5Ds. This suggests that variability between zebrafish lines occurs, and researchers should evaluate each line or strain under their particular laboratory conditions for selection of the optimum chlorine treatment procedure. PMID:24429474

  12. Transformation mechanism of benzophenone-4 in free chlorine promoted chlorination disinfection.

    PubMed

    Xiao, Ming; Wei, Dongbin; Yin, Junxia; Wei, Guohua; Du, Yuguo

    2013-10-15

    The UV-filter BP-4 (2-hydroxy-4-methoxybenzophenone-5-sulfonic acid) has been frequently observed in the environment, showing high potentials to invade drinking water, swimming water, or wastewater reclamation treatment systems. With the help of high performance liquid chromatography-high resolution mass spectrometry and nuclear magnetic resonance spectroscopy, 10 new products from free chlorine-promoted BP-4 disinfection have been disclosed and their possible transformation routes have been investigated. The first route is chlorine substitution of BP-4 and its transformation products, forming mono-, di-, and tri-chlorinated BP-4 analogs. The second is Baeyer-Villiger-Type oxidation, converting diphenyl ketone to phenyl ester derivatives. The third is ester hydrolysis, generating corresponding phenolic and benzoic products. The fourth is decarboxylation, replacing the carboxyl group by chloride in the benzoic-type intermediate. The fifth is desulfonation, degrading the sulfonic group through an alternative chlorine substitution on the benzene ring. Orthogonal experiments have been established to investigate the species transformed from BP-4 at different pH values and free available chlorine (FAC) dosages. The reaction pathways are strongly dependent on pH conditions, while an excessive amount of FAC eliminates BP-4 to the smaller molecules. The initial transformation of BP-4 in chlorination system follows pseudo-first-order kinetics, and its half-lives ranged from 7.48 s to 1.26 × 10(2) s. More importantly, we have observed that the FAC-treated BP-4 aqueous solution might increase the genotoxic potentials due to the generation of chlorinated disinfection by-products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Household effectiveness vs. laboratory efficacy of point-of-use chlorination.

    PubMed

    Levy, Karen; Anderson, Larissa; Robb, Katharine A; Cevallos, William; Trueba, Gabriel; Eisenberg, Joseph N S

    2014-05-01

    Treatment of water at the household level offers a promising approach to combat the global burden of diarrheal diseases. In particular, chlorination of drinking water has been a widely promoted strategy due to persistence of residual chlorine after initial treatment. However, the degree to which chlorination can reduce microbial levels in a controlled setting (efficacy) or in a household setting (effectiveness) can vary as a function of chlorine characteristics, source water characteristics, and household conditions. To gain more understanding of these factors, we carried out an observational study within households in rural communities of northern coastal Ecuador. We found that the efficacy of chlorine treatment under controlled conditions was significantly better than its household effectiveness when evaluated both by ability to meet microbiological safety standards and by log reductions. Water treated with chlorine achieved levels of microbial contamination considered safe for human consumption after 24 h of storage in the household only 39-51% of the time, depending on chlorine treatment regimen. Chlorine treatment would not be considered protective against diarrheal disease according to WHO log reduction standards. Factors that explain the observed compromised effectiveness include: source water turbidity, source water baseline contamination levels, and in-home contamination. Water in 38% of the households that had low turbidity source water (<10 NTU) met the safe water standard as compared with only 17% of the households that had high turbidity source water (>10 NTU). A 10 MPN/100 mL increase in baseline Escherichia coli levels was associated with a 2.2% increase in failure to meet the E. coli standard. Higher mean microbial contamination levels were seen in 54% of household samples in comparison to their matched controls, which is likely the result of in-home contamination during storage. Container characteristics (size of the container mouth) did not

  14. Comparing the efficacy of hyper-pure chlorine-dioxide with other oral antiseptics on oral pathogen microorganisms and biofilm in vitro.

    PubMed

    Herczegh, Anna; Gyurkovics, Milán; Agababyan, Hayk; Ghidán, Agoston; Lohinai, Zsolt

    2013-09-01

    This study examines the antibacterial properties of sodium hypochlorite (NaOCl), chlorhexidine gluconate (CHX), Listerine®, and high purity chlorine dioxide (Solumium, ClO2) on selected common oral pathogen microorganisms and on dental biofilm in vitro. Antimicrobial activity of oral antiseptics was compared to the gold standard phenol. We investigated Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis, Veillonella alcalescens, Eikenella corrodens, Actinobacillus actinomycetemcomitans and Candida albicans as some important representatives of the oral pathogens. Furthermore, we collected dental plaque from the upper first molars of healthy young students. Massive biofilm was formed in vitro and its reduction was measured after treating it with mouthrinses: CHX, Listerine® or hyper pure ClO2. Their biofilm disrupting effect was measured after dissolving the crystal violet stain from biofilm by photometer. The results have showed that hyper pure ClO2 solution is more effective than other currently used disinfectants in case of aerobic bacteria and Candida yeast. In case of anaerobes its efficiency is similar to CHX solution. The biofilm dissolving effect of hyper pure ClO2 is significantly stronger compared to CHX and Listerine® after 5 min treatment. In conclusion, hyper pure ClO2 has a potent disinfectant efficacy on oral pathogenic microorganisms and a powerful biofilm dissolving effect compared to the current antiseptics, therefore high purity ClO2 may be a new promising preventive and therapeutic adjuvant in home oral care and in dental or oral surgery practice.

  15. Quantification of bisphenol A, 353-nonylphenol and their chlorinated derivatives in drinking water treatment plants.

    PubMed

    Dupuis, Antoine; Migeot, Virginie; Cariot, Axelle; Albouy-Llaty, Marion; Legube, Bernard; Rabouan, Sylvie

    2012-11-01

    Bisphenol A (BPA) and nonylphenols (NP) are of major concern to public health due to their high potential for human exposure and to their demonstrated toxicity (endocrine disruptor effect). A limited number of studies have shown that BPA and NP are present in drinking water. The chlorinated derivatives that may be formed during the chlorination step in drinking water treatment plants (DWTP) exhibit a higher level of estrogenic activity than their parent compounds. The aim of this study was to investigate BPA, 353NP, and their chlorinated derivative concentrations using an accurate and reproducible method of quantification. This method was applied to both surface and treated water samples from eight French DWTPs producing from surface water. Solid-phase extraction followed by liquid chromatography-tandem mass spectrometry was developed in order to quantify target compounds from water samples. The limits of detection ranged from 0.3 to 2.3 ng/L for BPA and chlorinated BPA and from 1.4 to 63.0 ng/L for 353NP and chlorinated 353NP. BPA and 353NP were found in most analyzed water samples, at a level ranging from 2.0 to 29.7 ng/L and from 0 to 124.9 ng/L, respectively. In most of DWTPs a decrease of BPA and 353NP was observed between surface water and treated water (36.6 to 78.9 % and 2.2 to 100.0 % for BPA and 353NP, respectively). Neither chlorinated BPA nor chlorinated 353NP was detected. Even though BPA and 353NP have been largely removed in the DWTPs studied, they have not been completely eliminated, and drinking water may consequently remain a source of human exposure.

  16. Basic Gas Chlorination Workshop Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to introduce treatment plant operators to the safe operation and maintenance of gas chlorination systems employing the variable vacuum gas chlorinator. Each of the lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing…

  17. Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems.

    PubMed

    Tan, J; Allard, S; Gruchlik, Y; McDonald, S; Joll, C A; Heitz, A

    2016-01-15

    The impact of elevated bromide concentrations (399 to 750 μg/L) on the formation of halogenated disinfection by-products (DBPs), namely trihalomethanes, haloacetic acids, haloacetonitriles, and adsorbable organic halogen (AOX), in two drinking water systems was investigated. Bromine was the main halogen incorporated into all of the DBP classes and into organic carbon, even though chlorine was present in large excess to maintain a disinfectant residual. Due to the higher reactivity of bromine compared to chlorine, brominated DBPs were rapidly formed, followed by a slower increase in chlorinated DBPs. Higher bromine substitution and incorporation factors for individual DBP classes were observed for the chlorinated water from the groundwater source (lower concentration of dissolved organic carbon (DOC)), which contained a higher concentration of bromide, than for the surface water source (higher DOC). The molar distribution of adsorbable organic bromine to chlorine (AOBr/AOCl) for AOX in the groundwater distribution system was 1.5:1 and almost 1:1 for the surface water system. The measured (regulated) DBPs only accounted for 16 to 33% of the total organic halogen, demonstrating that AOX measurements are essential to provide a full understanding of the formation of halogenated DBPs in drinking waters. In addition, the study demonstrated that a significant proportion (up to 94%) of the bromide in source waters can be converted AOBr. An evaluation of AOBr and AOCl through a second groundwater treatment plant that uses conventional treatment processes for DOC removal produced 70% of AOX as AOBr, with 69% of the initial source water bromide converted to AOBr. Exposure to organobromine compounds is suspected to result in greater adverse health consequences than their chlorinated analogues. Therefore, this study highlights the need for improved methods to selectively reduce the bromide content in source waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Chlorine decay and trihalomethane formation following ferrate(VI) preoxidation and chlorination of drinking water.

    PubMed

    Li, Cong; Luo, Feng; Dong, Feilong; Zhao, Jingguo; Zhang, Tuqiao; He, Guilin; Cizmas, Leslie; Sharma, Virender K

    2017-11-01

    This paper presents the effect of preoxidation with ferrate(VI) (Fe VI O 4 2- , Fe(VI)) prior to chlorination on chlorine decay and formation of disinfection by-products in filtered raw water from a full-scale drinking water treatment plant. The rate of chlorine decay became significantly faster as the concentration of ferrate(VI) increased. Chlorine degradation followed two first-order decay reactions with rate constants k 1 and k 2 for fast and slow decay, respectively. Kinetic modeling established the relationships between k 1 and k 2 and varying dosages of chlorine and ferrate(VI). When ferrate(VI) was used as a pre-oxidant, the levels of trihalomethanes (trichloromethane (TCM), dichlorobromomethane (DCBM), dibromochloromethane (DBCM), and tribromomethane (TBM)) in water samples decreased as the ferrate(VI) concentration increased. The concentrations of these trihalomethanes followed the order TCM > DCBM ≈ DBCM > TBM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A Bee Guide to Complying with the Safe Drinking Water Act

    DTIC Science & Technology

    1991-08-01

    disinfectants commonly used in water treatment. These disinfectants include chlorine, chloramine , chlorine dioxide, and ozone. Existing toxicological...to water systems that add a disinfectant (oxidant, such as chlorine, chlorine dioxide, chloramines or ozone) to any part of the treatment process. 6...AL-TR-1 991-0075 AD-A242 509 ^tLECTE II AR M A BEE GUIDE TO COMPLYING WITH THE S SAFE DRINKING WATER ACT T R Q John G. Garland III, Major, USAF, BSCN

  20. Deactivation of wastewater-derived N-nitrosodimethylamine precursors with chlorine dioxide oxidation and the effect of pH.

    PubMed

    Uzun, Habibullah; Kim, Daekyun; Karanfil, Tanju

    2018-09-01

    In this study, the effect of chlorine dioxide (ClO 2 ) oxidation on the deactivation of wastewater (WW)-derived N-nitrosodimethylamine (NDMA) precursors was investigated under various conditions (i.e., ClO 2 application pH, dose and contact time). At pH 6.0, decreases in NDMA formation potentials (FPs) or occurrences (under uniform formation conditions [UFC]) were relatively low (<25%) with ClO 2 oxidation regardless of WW-impact. A negative removal was also observed after ClO 2 oxidation in some of the non-impacted waters. However, NDMA FP removals were significant (up to ~85%) under the same oxidation conditions in WW-impacted waters at pH 7.8. This indicates that the majority of WW-derived NDMA precursors can be deactivated with ClO 2 oxidation above neutral pH. This was attributed to the better oxidative reaction of ClO 2 with amines that have lone pair electrons to be shared at higher oxidation pH conditions. In addition, relatively short oxidation periods with ClO 2 (i.e., ≤10 min) or low Ct (concentration × time, ~10 mg ∗ min/L) values were sufficient for the deactivation of WW-derived NDMA precursors. ClO 2 oxidation was effective in freshly WW-impacted waters. Natural attenuation processes (e.g., sorption, biodegradation, etc.) can change the reactivity of WW-derived NDMA precursors for oxidation with ClO 2 . The effect of ClO 2 on the removal of THM precursors was low (<25%) and independent of oxidation conditions. Given the low formation of regulated THMs and HAAs, ClO 2 oxidation presents a viable option for the simultaneous control of NDMA and regulated DBP formation during water treatment, especially for utilities treating WW-impacted water sources. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Chlorination and oxidation of sulfonamides by free chlorine: Identification and behaviour of reaction products by UPLC-MS/MS.

    PubMed

    Gaffney, Vanessa de Jesus; Cardoso, Vitor Vale; Benoliel, Maria João; Almeida, Cristina M M

    2016-01-15

    Sulfonamides (SAs) are one class of the most widely used antibiotics around the world and have been frequently detected in municipal wastewater and surface water in recent years. Their transformation in waste water treatment plants (WWTP) and in water treatment plants (WTP), as well as, their fate and transport in the aquatic environment are of concern. The reaction of six sulfonamides (sulfamethoxazole, sulfapyridine, sulfamethazine, sulfamerazine, sulfathiazole and sulfadiazine) with free chlorine was investigated at a laboratory scale in order to identify the main chlorination by-products. A previously validated method, liquid chromatography/mass spectrometry, was used to analyse SAs and their chlorination by-products. At room temperature, pH 6-7, reaction times of up to 2 h and an initial concentration of 2 mg/L of free chlorine, the majority of SAs suffered degradation of around 65%, with the exception of sulfamethoxazole and sulfathiazole (20%). The main reaction of SAs with free chlorine occurred in the first minute. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Performance of an anaerobic, static bed, fixed film bioreactor for chlorinated solvent treatment

    USGS Publications Warehouse

    Lorah, Michelle M.; Walker, Charles; Graves, Duane

    2015-01-01

    Anaerobic, fixed film, bioreactors bioaugmented with a dechlorinating microbial consortium were evaluated as a potential technology for cost effective, sustainable, and reliable treatment of mixed chlorinated ethanes and ethenes in groundwater from a large groundwater recovery system. Bench- and pilot-scale testing at about 3 and 13,500 L, respectively, demonstrated that total chlorinated solvent removal to less than the permitted discharge limit of 100 μg/L. Various planned and unexpected upsets, interruptions, and changes demonstrated the robustness and reliability of the bioreactor system, which handled the operational variations with no observable change in performance. Key operating parameters included an adequately long hydraulic retention time for the surface area, a constant supply of electron donor, pH control with a buffer to minimize pH variance, an oxidation reduction potential of approximately −200 millivolts or lower, and a well-adapted biomass capable of degrading the full suite of chlorinated solvents in the groundwater. Results indicated that the current discharge criteria can be met using a bioreactor technology that is less complex and has less downtime than the sorption based technology currently being used to treat the groundwater.

  3. Increased formation of halomethanes during chlorination of chloramphenicol in drinking water by UV irradiation, persulfate oxidation, and combined UV/persulfate pre-treatments.

    PubMed

    Wenhai, Chu; Tengfei, Chu; Erdeng, Du; Deng, Yang; Yingqing, Guo; Naiyun, Gao

    2016-02-01

    Ultraviolet/persulfate (UV/PS) has been widely used to generate sulfate radicals for degradation of water organic pollutants in previous studies. However, its impacts on disinfection byproduct formation during post-chlorination of degraded compounds is unclear. The objective of this study was to evaluate the impacts of UV irradiation, PS oxidation, and the combined UV/PS advanced oxidation process (AOP) pre-treatments on halomethane formation during the following chlorination of chloramphenicol (CAP), a model antibiotic commonly found in wastewater-impacted water. Results showed that CAP could be transformed to more trichloromethane (TCM) than monochloromethane (MCM) and dichloromethane (DCM) in the presence of excess chlorine. UV photolysis, PS oxidation and UV/PS AOP all directly decomposed CAP to produce halomethanes (HMs) before post-chlorination. Moreover, UV and UV/PS pre-treatments both enhanced the formation of all the HMs in the subsequent chlorination. PS pre-oxidation decreased the TCM formation during post-chlorination, but increased the yields of MCM, DCM and total HMs. UV pre-irradiation significantly increased the bromide utilization of HMs, whereas UV/PS pre-oxidation decreased the bromine incorporation and utilization of HMs from the chlorination of CAP in a low-bromide water. UV irradiation, PS oxidation, and UV/PS AOP can inactivate pathogens and degrade organic pollutants, but this benefit should be weighed against a potential risk of the increased halomethane formation from degraded organic pollutants with and without post-chlorination. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Differential global profiling as a new analytical strategy for revealing micropollutant treatment by-products: application to ethinylestradiol and chlorination water treatment.

    PubMed

    Gervais, Gaël; Bichon, Emmanuelle; Antignac, Jean-Philippe; Monteau, Fabrice; Leroy, Gaëla; Barritaud, Lauriane; Chachignon, Mathilde; Ingrand, Valérie; Roche, Pascal; Le Bizec, Bruno

    2011-06-01

    The detection and structural elucidation of micropollutants treatment by-products are major issues to estimate efficiencies of the processes employed for drinking water production versus endocrine disruptive compounds contamination. This issue was mainly investigated at the laboratory scale and in high concentration conditions. However, potential by-products generated after chlorination can be influenced by the dilution factor employed in real conditions. The present study proposes a new methodology borrowed to the metabolomic science, using liquid chromatography coupled to high-resolution mass spectrometry, in order to reveal potential chlorination by-products of ethinylestradiol in spiked real water samples at the part-per-billion level (5 μg L(-1)). Conventional targeted measurements first demonstrated that chlorination with sodium hypochlorite (0.8 mg L(-1)) led to removals of ethinylestradiol over 97%. Then, the developed differential global profiling approach permitted to reveal eight chlorination by-products of EE2, six of them being described for the first time. Among these eight halogenated compounds, five have been structurally identified, demonstrating the potential capabilities of this new methodology applied to environmental samples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. ALTERNATIVE DISINFECTANTS FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    During a one-year study at Jefferson Parish, Louisiana the chemical, microbiological, and mutagenic effects of using the major drinking water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. ests were performed on samples collected from various treatm...

  6. Carbon dioxide inhalation treatments of neurotic anxiety. An overview.

    PubMed

    Wolpe, J

    1987-03-01

    A lucky chance more than 30 years ago revealed the remarkable efficacy of single inhalations of high concentrations of carbon dioxide in eliminating or markedly reducing free-floating anxiety. The reduction of anxiety lasts for days, weeks, or longer--well beyond the persistence of carbon dioxide in the body. The effects are explicable on the hypothesis that free-floating anxiety is anxiety conditioned to continuously present sources of stimulation, such as background noise or the awareness of space or time, and that the anxiety response habit is weakened when the anxiety is inhibited by the competition of responses that carbon dioxide induces. More recently, it has become apparent that inhalations of carbon dioxide, applied in a different manner, are effective in overcoming maladaptive anxiety responses to specific stimuli, e.g., social stimuli. The substance is also proving to be a valuable resource in the treatment of the common variety of panic attacks.

  7. Inhibition of Tongue Coat and Dental Plaque Formation by Stabilized Chlorine Dioxide Vs Chlorhexidine Mouthrinse: A Randomized, Triple Blinded Study.

    PubMed

    Yadav, Seema Roodmal; Kini, Vineet Vaman; Padhye, Ashvini

    2015-09-01

    Chlorine dioxide (ClO2) is an oxidizing agent with known bactericidal, viricidal and fungicidal properties. Its efficacy in reducing the halitosis has been established by previous literature. However, data evaluating its antiplaque property is scarce. Chlorhexidine (CHX) is considered as the gold standard and an effective adjunctive to mechanical plaque removal. However, it is associated with few reversible side effects. Therefore a study was conducted to assess the antiplaque property of ClO2 containing mouthrinse against CHX mouthrinse. To evaluate the efficacy of stabilized chlorine dioxide containing mouthrinse and CHX containing mouthrinse in inhibition of tongue coat accumulation and dental plaque formation using a four day plaque regrowth model clinically and microbiologically in a healthy dental cohort. A Single Center, Randomized, Triple blinded, Microbiological clinical trial was conducted involving 25 healthy dental students volunteers (11 males, 14 females). Two commercially available mouthrinse: Mouthrinse A - Aqueous based ClO2 mouthrinse Freshchlor(®) and Mouthrinse B - Aqueous based 0.2% CHX mouthrinse Hexidine(®) were selected as the test products. Subjects were asked to rinse and gargle for 1 minute with the allocated mouthrinse under supervision after supragingival scaling, polishing and tongue coat removal. After four hours, smears were taken from the buccal mucosa and tooth surface. On the fifth day from baseline of four day non brushing plaque regrowth model the samples were again taken from buccal mucosa and tooth surface followed by recording of plaque scores by Rastogi Modification of Navy Plaque index, extent of tongue coat by Winkel's tongue coating index and measuring tongue coat wet weight in grams. The samples collected were subjected to microbial analysis and the results were expressed as colony forming units (CFUs) per sample. The Data was analysed using SPSS 16.00 and presented using descriptive statistics. Independent t-test was

  8. Development and field testing of a mobile chlorine dioxide generation system for the decontamination of buildings contaminated with Bacillus anthracis.

    PubMed

    Wood, Joseph P; Blair Martin, G

    2009-05-30

    The numerous buildings that became contaminated with Bacillus anthracis (the bacterium causing the disease anthrax) in 2001, and more recent B. anthracis - related events, point to the need to have effective decontamination technologies for buildings contaminated with biological threat agents. The U.S. Government developed a portable chlorine dioxide (ClO(2)) generation system to decontaminate buildings contaminated with B. anthracis spores, and this so-called mobile decontamination trailer (MDT) prototype was tested through a series of three field trials. The first test of the MDT was conducted at Fort McClellan in Anniston, AL. during October 2004. Four test attempts occurred over two weekends; however, a number of system problems resulted in termination of the activity prior to any ClO(2) introduction into the test building. After making several design enhancements and equipment changes, the MDT was subjected to a second test. During this test, extensive leak checks were made using argon and nitrogen in lieu of chlorine gas; each subsystem was checked for functionality, and the MDT was operated for 24h. This second test demonstrated the MDT flow and control systems functioned satisfactorily, and thus it was decided to proceed to a third, more challenging field trial. In the last field test, ClO(2) was generated and routed directly to the scrubber in a 12-h continuous run. Measurement of ClO(2) levels at the generator outlet showed that the desired production rate was not achieved. Additionally, only one of the two scrubbers performed adequately with regard to maintaining ClO(2) emissions below the limit. Numerous lessons were learned in the field trials of this ClO(2) decontamination technology.

  9. The Successful Treatment of Elephantiasis Nostras Verrucosa With Ablative Carbon Dioxide Laser.

    PubMed

    Robinson, Caitlin G; Lee, Kory R; Thomas, Valencia D

    2018-03-01

    Elephantiasis nostras verrucosa (ENV) is a disfiguring skin condition that is difficult to treat. Existing treatment modalities serve to improve cosmesis or treat symptoms. Herein, we report a case of ENV with lymphocutaneous fistula successfully treated with ablative carbon dioxide laser. A 57-year-old woman with biopsy-proven ENV with lymphocutaneous fistula was treated with ablative carbon dioxide laser to the symptomatic area of her right thigh in 3 treatment sessions over 6 months. The patient had resolution of lymphocutaneous drainage as well as 90% improvement in the appearance of ENV lesions at the 1-month follow-up visit. Ablative carbon dioxide laser may provide cosmetic, symptomatic, and medical benefit for patients with localized ENV.

  10. Chlorine treatment effectiveness and physico-chemical and bacteriological characteristics of treated water supplies in distribution networks of Accra-Tema Metropolis, Ghana

    NASA Astrophysics Data System (ADS)

    Karikari, A. Y.; Ampofo, J. A.

    2013-06-01

    Drinking water quality from two major treatment plants in Ghana; Kpong and Weija Plants, and distribution networks in the Accra-Tema Metropolis were monitored monthly for a year at fifteen different locations. The study determined the relationship between chlorine residual, other physico-chemical qualities of the treated water, and, bacteria regrowth. Results indicated that the treated water at the Kpong and Weija Treatment Plants conformed to WHO guidelines for potable water. However, the water quality deteriorated bacteriologically, from the plants to the delivery points with high numbers of indicator and opportunistic pathogens. This could be due to inadequate disinfection residual, biofilms or accidental point source contamination by broken pipes, installation and repair works. The mean turbidity ranged from 1.6 to 2.4 NTU; pH varied from 6.8 to 7.4; conductivity fluctuated from 71.1 to 293 μS/cm. Chlorine residual ranged from 0.13 to 1.35 mg/l. High residual chlorine was observed at the treatment plants, which decreased further from the plants. Results showed that additional chlorination does not take place at the booster stations. Chlorine showed inverse relationship with microbial counts. Total coliform bacteria ranged from 0 to 248 cfu/100 ml, and faecal coliform values varied from 0 to 128 cfu/100 ml. Other microorganisms observed in the treated water included Aeromonas spp., Clostridium spp. and Pseudomonas spp. Boiling water in the household before consumption will reduce water-related health risks.

  11. Direct effect of chlorine dioxide, zinc chloride and chlorhexidine solution on the gaseous volatile sulfur compounds.

    PubMed

    Kim, Ju-Sik; Park, Ji-Woon; Kim, Dae-Jung; Kim, Young-Ku; Lee, Jeong-Yun

    2014-11-01

    This study focused on the ability of aqueous anti-volatile-sulfur-compound (VSC) solutions to eliminate gaseous VSCs by direct contact in a sealed space to describe possible mode of action of anti-VSC agents. Twenty milliliters of each experimental solution, 0.16% sodium chlorite, 0.25% zinc chloride, 0.1% chlorhexidine and distilled water, was injected into a Teflon bag containing mixed VSCs, hydrogen sulfide, methyl mercaptan and dimethyl sulfide and mixed vigorously for 30 s. The VSC concentration was measured by gas chromatography before, immediately after, 30 min and 60 min after mixing. The sodium chlorite solution reduced the VSC concentration remarkably. After mixing, nearly all VSCs were eliminated immediately and no VSCs were detected at 30 and 60 min post-mixing. However, in the other solutions, the VSC concentration decreased by ∼30% immediately after mixing and there was no further decrease. The results suggest that sodium chlorite solution has the effect of eliminating gaseous VSCs directly. This must be because it can release chlorine dioxide gas which can react directly with gaseous VSCs. In the case of other solutions that have been proved to be effective to reduce halitosis clinically, it can be proposed that their anti-VSC effect is less likely due to the direct chemical elimination of gaseous VSCs in the mouth.

  12. REACTION PRODUCTS FROM THE CHLORINATION OF SEAWATER

    EPA Science Inventory

    Chemical treatment of natural waters, in particular the use of chlorine as a biocide, modifies the chemistry of these waters in ways that are not fully understood. The research described in this report examined both inorganic and organic reaction products from the chlorination of...

  13. Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst.

    PubMed

    Abdullah, Ahmad Zuhairi; Bakar, Mohamad Zailani Abu; Bhatia, Subhash

    2006-02-28

    The paper reports on the performance of chromium or/and copper supported on H-ZSM-5(Si/Al = 240) modified with silicon tetrachloride (Cr1.5/SiCl4-Z, Cu1.5/SiCl4-Z and Cr1.0Cu0.5/SiCl4-Z) as catalysts in the combustion of chlorinated VOCs (Cl-VOCs). A reactor operated at a gas hourly space velocity (GHSV) of 32,000 h(-1), a temperature between 100 and 500 degrees C with 2500 ppm of dichloromethane (DCM), trichloromethane (TCM) and trichloroethylene (TCE) is used for activity studies. The deactivation study is conducted at a GHSV of 3800 h(-1), at 400 degrees C for up to 12 h with a feed concentration of 35,000 ppm. Treatment with silicon tetrachloride improves the chemical resistance of H-ZSM-5 against hydrogen chloride. TCM is more reactive compared to DCM but it produces more by-products due to its high chlorine content. The stabilization of TCE is attributed to resonance effects. Water vapor increases the carbon dioxide yield through its role as hydrolysis agent forming reactive carbocations and acting as hydrogen-supplying agent to suppress chlorine-transfer reactions. The deactivation of Cr1.0Cu0.5/SiCl4-Z is mainly due to the chlorination of its metal species, especially with higher Cl/H feed. Coking is limited, particularly with DCM and TCM. In accordance with the Mars-van Krevelen model, the weakening of overall metal reducibility due to chlorination leads to a loss of catalytic activity.

  14. Algal toxicity of the alternative disinfectants performic acid (PFA), peracetic acid (PAA), chlorine dioxide (ClO2) and their by-products hydrogen peroxide (H2O2) and chlorite (ClO2-).

    PubMed

    Chhetri, Ravi Kumar; Baun, Anders; Andersen, Henrik Rasmus

    2017-05-01

    Environmental effect evaluation of disinfection of combined sewer overflow events with alternative chemical disinfectants requires that the environmental toxicity of the disinfectants and the main by-products of their use are known. Many disinfectants degrade quickly in water which should be included in the evaluation of both their toxicity as determined in standardized tests and their possible negative effect in the water environment. Here we evaluated according to the standardized ISO 8692 test the toxicity towards the green microalgae, Pseudokirchneriella subcapitata, of three disinfectants: performic acid (PFA), peracetic acid (PAA) and chlorine dioxide (ClO 2 ) as well as two by-products of their use: hydrogen peroxide (H 2 O 2 ) and chlorite. All of the five chemicals investigated showed clear toxicity to the algae with well-defined dose response curves. The EC 50 values ranged from 0.16 to 2.9mg/L based on nominal concentrations leading to the labeling of the chemicals as either toxic or very toxic. The five investigated chemicals decreased in toxicity in the order chlorine dioxide, performic acid, peracetic acid, chlorite and hydrogen peroxide. The stability of the chemicals increased in the same order as the toxicity decrease. This indicates that even though ClO 2 has the highest environmental hazard potential, it may still be suitable as an alternative disinfectant due to its rapid degradation in water. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Behavior of a chlorinated ethene plume following source-area treatment with Fenton's reagent

    USGS Publications Warehouse

    Chapelle, F.H.; Bradley, P.M.; Casey, C.C.

    2005-01-01

    Monitoring data collected over a 6-year period show that a plume of chlorinated ethene-contaminated ground water has contracted significantly following treatment of the contaminant source area using in situ oxidation. Prior to treatment (1998), concentrations of perchloroethene (PCE) exceeded 4500 ??g/L in a contaminant source area associated with a municipal landfill in Kings Bay, Georgia. The plume emanating from this source area was characterized by vinyl chloride (VC) concentrations exceeding 800 ??g/L. In situ oxidation using Fenton's reagent lowered PCE concentrations in the source area below 100 ??g/L, and PCE concentrations have not rebounded above this level since treatment. In the 6 years following treatment, VC concentrations in the plume have decreased significantly. These concentration declines can be attributed to the movement of Fenton's reagent-treated water downgradient through the system, the cessation of a previously installed pump-and-treat system, and the significant natural attenuation capacity of this anoxic aquifer. While in situ oxidation briefly decreased the abundance and activity of microorganisms in the source area, this activity rebounded in <6 months. Nevertheless, the shift from sulfate-reducing to Fe(III)-reducing conditions induced by Fenton's treatment may have decreased the efficiency of reductive dechlorination in the injection zone. The results of this study indicate that source-area removal actions, particularly when applied to ground water systems that have significant natural attenuation capacity, can be effective in decreasing the areal extent and contaminant concentrations of chlorinated ethene plumes. Copyright ?? 2005 National Ground Water Association.

  16. Edible Oil Barriers for Treatment of Chlorinated Solvent Contaminated Groundwater

    DTIC Science & Technology

    2009-07-01

    CF Chloroform Cl# Chlorine Number CO Carbon Monoxide CT Carbon Tetrachloride CVOC Chlorinated Volatile Organic Compound 1,2-DCA 1,2...As Safe HCl Hydrochloric Acid HRC® Hydrogen Release Compound IDW Investigation-Derived Waste ISCO In Situ Chemical Oxidation LEL Lower...Total Organic Carbon VC Vinyl Chloride VFA Volatile Fatty Acid VOC Volatile Organic Compound ZVI Zero Valent Iron viii ACKNOWLEDGEMENTS

  17. CHLORINATED SOLVENT PLUME CONTROL

    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  18. DEMONSTRATION OF A LIQUID CARBON DIOXIDE PROCESS FOR CLEANING METAL PARTS

    EPA Science Inventory

    The report gives results of a demonstration of liquid carbon dioxide (LCO2) as an alternative to chlorinated solvents for cleaning metal parts. It describes the LCO2 process, the parts tested, the contaminants removed, and results from preliminary laboratory testing and on-site d...

  19. UV/chlorine treatment of carbamazepine: Transformation products and their formation kinetics.

    PubMed

    Pan, Yanheng; Cheng, ShuangShuang; Yang, Xin; Ren, Jingyue; Fang, Jingyun; Shang, Chii; Song, Weihua; Lian, Lushi; Zhang, Xinran

    2017-06-01

    Carbamazepine (CBZ) is one of the pharmaceuticals most frequently detected in the aqueous environment. This study investigated the transformation products when CBZ is degraded by chlorine under ultraviolet (UV) irradiation (the UV/chlorine process). Detailed pathways for the degradation of CBZ were elucidated using ultra-high performance liquid chromatography (UHPLC)-quadrupole time-of-flight mass spectrometry (QTOF-MS). CBZ is readily degraded by hydroxyl radicals (HO) and chlorine radicals (Cl) in the UV/chlorine process, and 24 transformation products were identified. The products indicate that the 10,11-double bond and aromatic ring in CBZ are the sites most susceptible to attack by HO and Cl. Subsequent reaction produces hydroxylated and chlorinated aromatic ring products. Four specific products were quantified and their evolution was related with the chlorine dose, pH, and natural organic matter concentration. Their yields showed an increase followed by a decreasing trend with prolonged reaction time. CBZ-10,11-epoxide (I), the main quantified transformation product from HO oxidation, was observed with a peak transformation yield of 3-32% depending on the conditions. The more toxic acridine (IV) was formed involving both HO and Cl with peak transformation yields of 0.4-1%. All four quantified products together amounted to a peak transformation yield of 34.5%. The potential toxicity of the transformation products was assayed by evaluating their inhibition of the bioluminescence of the bacterium Vibrio Fischeri. The inhibition increased at first and the decreased at longer reaction times, which was in parallel with the evolution of transformation products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. CATALYTIC HYDRODEHALOGENATION OF CHLORINATED ETHYLENES USING PALLADIUM AND HYDROGEN FOR THE TREATMENT OF CONTAMINATED WATER. (R825689C054,R825689C060)

    EPA Science Inventory

    Abstract

    A kinetic model is presented for the catalytic hydrodehalogenation of chlorinated ethylenes using Pd and H2 under water treatment conditions. All five chlorinated ethylenes, including tetrachloroethylene (PCE) and vinyl chloride, were completely rem...

  1. Hydrogeologic characterization and assessment of bioremediation of chlorinated benzenes and benzene in wetland areas, Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2009-12

    USGS Publications Warehouse

    Lorah, Michelle M.; Walker, Charles W.; Baker, Anna C.; Teunis, Jessica A.; Emily Majcher,; Brayton, Michael J.; Raffensperger, Jeff P.; Cozzarelli, Isabelle M.

    2015-01-01

    desorption from the sediments.When highly reducing, methanogenic, or sulfate-reducing conditions existed in the wetland groundwater, molar composition of the volatile organic compounds (VOCs) showed that chlorobenzene and benzene were predominant, indicating biodegradation of the chlorinated benzenes through reductive dechlorination pathways. Temporal changes in redox conditions between 2009 and 2011–12 have shifted the locations in the wetland study area where reductive dechlorination is evident. Microbial community analyses of sediment showed relatively high cell numbers and diversity of populations (Dehalococcoides, Dehalobacter, Desulfitobacterium, and Geobacter) that are known to contain species capable of reductive dechlorination, confirming groundwater geochemistry evidence of the occurrence of reductive dechlorination. Natural attenuation was not sufficient, however, to reduce total VOC concentrations along upward groundwater flowpaths in the wetland sediments, most likely due to the additional source of contaminants in the upper sediments. In situ microcosms that were unamended except for the addition of 13C-labeled contaminants in some treatments, confirmed that the native microbial community was able to biodegrade the higher chlorinated benzenes through reductive dechlorination and that 1,2-dichlorobenzene, chlorobenzene, and benzene could be degraded to carbon dioxide through oxidation pathways. Microcosms that were bioaugmented with the anaerobic dechlorinating consortium WBC-2 and deployed in the wetland sediments showed reductive dechlorination of tri-, di-, and monochlorobenzene, and 13C-chlorobenzene treatments showed complete degradation of chlorobenzene to carbon dioxide under anaerobic conditions.Experiments with a continuous flow, fixed-film bioreactor seeded with native microorganisms in groundwater from the wetland area showed both aerobic and anaerobic biodegradation of dichlorobenzenes, monochlorobenzene, and benzene, although

  2. A comparison of disinfection by-products formation during sequential or simultaneous disinfection of surface waters with chlorine dioxide and chlor(am)ine.

    PubMed

    Shi, Yanwei; Ling, Wencui; Qiang, Zhimin

    2013-01-01

    The effect of chlorine dioxide (ClO2) oxidation on the formation of disinfection by-products (DBPs) during sequential (ClO2 pre-oxidation for 30 min) and simultaneous disinfection processes with free chlorine (FC) or monochloramine (MCA) was investigated. The formation of DBPs from synthetic humic acid (HA) water and three natural surface waters containing low bromide levels (11-27 microg/L) was comparatively examined in the FC-based (single FC, sequential ClO2-FC, and simultaneous ClO2/FC) and MCA-based (single MCA, ClO2-MCA, and ClO2/MCA) disinfection processes. The results showed that much more DBPs were formed from the synthetic HA water than from the three natural surface waters with comparative levels of dissolved organic carbon. In the FC-based processes, ClO2 oxidation could reduce trihalomethanes (THMs) by 27-35% and haloacetic acids (HAAs) by 14-22% in the three natural surface waters, but increased THMs by 19% and HAAs by 31% in the synthetic HA water after an FC contact time of 48 h. In the MCA-based processes, similar trends were observed although DBPs were produced at a much lower level. There was an insignificant difference in DBPs formation between the sequential and simultaneous processes. The presence of a high level of bromide (320 microg/L) remarkably promoted the DBPs formation in the FC-based processes. Therefore, the simultaneous disinfection process of ClO2/MCA is recommended particularly for waters with a high bromide level.

  3. Chlorine inactivation of human norovirus, murine norovirus and poliovirus in drinking water.

    PubMed

    Kitajima, M; Tohya, Y; Matsubara, K; Haramoto, E; Utagawa, E; Katayama, H

    2010-07-01

    To evaluate the reduction of human norovirus (HuNoV) by chlorine disinfection under typical drinking water treatment conditions. HuNoV, murine norovirus (MNV) and poliovirus type 1 (PV1) were inoculated into treated water before chlorination, collected from a drinking water treatment plant, and bench-scale free chlorine disinfection experiments were performed for two initial free chlorine concentrations, 0.1 and 0.5 mg l(-1). Inactivation of MNV reached more than 4 log(10) after 120 and 0.5 min contact time to chlorine at the initial free chlorine concentrations of 0.1 and 0.5 mg l(-1), respectively. MNV was inactivated faster than PV1, and there was no significant difference in the viral RNA reduction rate between HuNoV and MNV. The results suggest that appropriate water treatment process with chlorination can manage the risk of HuNoV infection via drinking water supply systems. The data obtained in this study would be useful for assessing or managing the risk of HuNoV infections from drinking water exposure.

  4. Transgenic plants and associated bacteria for phytoremediation of chlorinated compounds.

    PubMed

    Van Aken, Benoit; Doty, Sharon Lafferty

    2010-01-01

    Phytoremediation is the use of plants for the treatment of environmental pollution, including chlorinated organics. Although conceptually very attractive, removal and biodegradation of chlorinated pollutants by plants is a rather slow and inefficient process resulting in incomplete treatment and potential release of toxic metabolites into the environment. In order to overcome inherent limitations of plant metabolic capabilities, plants have been genetically modified, following a strategy similar to the development of transgenic crops: genes from bacteria, fungi, and mammals involved in the metabolism of organic contaminants, such as cytochrome P-450 and glutathione S-transferase, have been introduced into higher plants, resulting in significant improvement of tolerance, removal, and degradation of pollutants. Recently, plant-associated bacteria have been recognized playing a significant role in phytoremediation, leading to the development of genetically modified rhizospheric and endophytic bacteria with improved biodegradation capabilities. Transgenic plants and associated bacteria constitute a new generation of genetically modified organisms for efficient and environmental-friendly treatment of polluted soil and water. This review focuses on recent advances in the development of transgenic plants and bacteria for the treatment of chlorinated pollutants, including chlorinated solvents, polychlorinated phenols, and chlorinated herbicides.

  5. Removal of the cyanotoxin anatoxin-a by drinking water treatment processes: a review.

    PubMed

    Vlad, Silvia; Anderson, William B; Peldszus, Sigrid; Huck, Peter M

    2014-12-01

    Anatoxin-a (ANTX-a) is a potent alkaloid neurotoxin, produced by several species of cyanobacteria and detected throughout the world. The presence of cyanotoxins, including ANTX-a, in drinking water sources is a potential risk to public health. This article presents a thorough examination of the cumulative body of research on the use of drinking water treatment technologies for extracellular ANTX-a removal, focusing on providing an analysis of the specific operating parameters required for effective treatment and on compiling a series of best-practice recommendations for owners and operators of systems impacted by this cyanotoxin. Of the oxidants used in drinking water treatment, chlorine-based processes (chlorine, chloramines and chlorine dioxide) have been shown to be ineffective for ANTX-a treatment, while ozone, advanced oxidation processes and permanganate can be successful. High-pressure membrane filtration (nanofiltration and reverse osmosis) is likely effective, while adsorption and biofiltration may be effective but further investigation into the implementation of these processes is necessary. Given the lack of full-scale verification, a multiple-barrier approach is recommended, employing a combination of chemical and non-chemical processes.

  6. Chlorine Dioxide Disinfection in the Use of Individual Water Purification Devices

    DTIC Science & Technology

    2006-03-01

    CTs ranging from 1.7-17.6 mg-min/L necessary for 2-log Giardia muris cyst inactivation (reference 23). The SWTR provides the following CT values...reference 3). A comparison of CTs required for a 2-log inactivation for E. Coli bacteria, Poliovirus 1, and Giardia cysts showed Giardia cysts were 2-5...Cryptosporidium oocysts are the most resistant, being 8-16 times more resistant than Giardia cysts (reference 5). Chlorine dioxide’s general disinfection

  7. Effect of dentin powder on the antimicrobial properties of hyperpure chlorine-dioxide and its comparison to conventional endodontic disinfecting agents.

    PubMed

    Herczegh, Anna; Gyurkovics, Milán; Ghidan, Ágoston; Megyesi, Marianna; Lohinai, Zsolt

    2014-06-01

    Previously we found that the high purity chlorine-dioxide(ClO2) has a very potent disinfectant efficacy on oral pathogenic microorganisms and as a root canal irrigant it is able to eliminate the experimental Enterococcus faecalis(E. faecalis) infection from the root canal system. This study examines whether the presence of dentin powder influences the antibacterial efficacy of ClO 2. In an in vitro dentin powder model the following irrigants were tested against planktonic E. faecalis: 2% chlorhexidine (CHX), 2.5% sodium hypochlorite (NaOCl), 0.12%ClO2 (Solumium) and one local root canal medicament: saturated Ca(OH)2. Survival of bacteria exposed to agents without and with human dentin powder or preincubated with dentin powder was investigated. The effect of the dentin powder on ClO2 concentration was investigated by titrations. Without dentin powder ClO 2 killed all E. faecalis and delivered the best result already after 1 minute; however, after longer contact time with dentin the difference between the disinfectants disappeared. The presence of dentin powder decreased the concentration of ClO 2 and attenuated the antibacterial efficiency of ClO2 and Ca(OH)2, but did not decrease of CHX and NaOCl.Preincubation with dentin powder caused significant loss of antibacterial activity of all investigated agents, ClO2 and Ca(OH)2 having the highest reduction. As the presence of dentin powder had a negative effect on the efficacy of disinfectants, the importance of elimination of dentin scrapings and smear layer from the root canal system during endodontic treatments is highly recommended. ClO 2 can be effective for a final rinse.

  8. Inhibition of Tongue Coat and Dental Plaque Formation by Stabilized Chlorine Dioxide Vs Chlorhexidine Mouthrinse: A Randomized, Triple Blinded Study

    PubMed Central

    Kini, Vineet Vaman; Padhye, Ashvini

    2015-01-01

    Background Chlorine dioxide (ClO2) is an oxidizing agent with known bactericidal, viricidal and fungicidal properties. Its efficacy in reducing the halitosis has been established by previous literature. However, data evaluating its antiplaque property is scarce. Chlorhexidine (CHX) is considered as the gold standard and an effective adjunctive to mechanical plaque removal. However, it is associated with few reversible side effects. Therefore a study was conducted to assess the antiplaque property of ClO2 containing mouthrinse against CHX mouthrinse. Aims and Objectives To evaluate the efficacy of stabilized chlorine dioxide containing mouthrinse and CHX containing mouthrinse in inhibition of tongue coat accumulation and dental plaque formation using a four day plaque regrowth model clinically and microbiologically in a healthy dental cohort. Materials and Methods A Single Center, Randomized, Triple blinded, Microbiological clinical trial was conducted involving 25 healthy dental students volunteers (11 males, 14 females). Two commercially available mouthrinse: Mouthrinse A – Aqueous based ClO2 mouthrinse Freshchlor® and Mouthrinse B - Aqueous based 0.2% CHX mouthrinse Hexidine® were selected as the test products. Subjects were asked to rinse and gargle for 1 minute with the allocated mouthrinse under supervision after supragingival scaling, polishing and tongue coat removal. After four hours, smears were taken from the buccal mucosa and tooth surface. On the fifth day from baseline of four day non brushing plaque regrowth model the samples were again taken from buccal mucosa and tooth surface followed by recording of plaque scores by Rastogi Modification of Navy Plaque index, extent of tongue coat by Winkel’s tongue coating index and measuring tongue coat wet weight in grams. The samples collected were subjected to microbial analysis and the results were expressed as colony forming units (CFUs) per sample. Statistical Analysis The Data was analysed using SPSS

  9. Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal moth, Plodia interpunctella.

    PubMed

    Kumar, Sunil; Park, Jiyeong; Kim, Eunseong; Na, Jahyun; Chun, Yong Shik; Kwon, Hyeok; Kim, Wook; Kim, Yonggyun

    2015-10-01

    A novel fumigant, chlorine dioxide (ClO2) is a commercial bleaching and disinfection agent. Recent study indicates its insecticidal activity. However, its mode of action to kill insects is yet to be understood. This study set up a hypothesis that an oxidative stress induced by ClO2 is a main factor to kill insects. The Indian meal moth, Plodia interpunctella, is a lepidopteran insect pest infesting various stored grains. Larvae of P. interpunctella were highly susceptible to ClO2 gas, which exhibited an acute toxicity. Physiological damages by ClO2 were observed in hemocytes. At high doses, the larvae of P. interpunctella suffered significant reduction of total hemocytes. At low doses, ClO2 impaired hemocyte behaviors. The cytotoxicity of ClO2 was further analyzed using two insect cell lines, where Sf9 cells were more susceptible to ClO2 than High Five cells. The cells treated with ClO2 produced reactive oxygen species (ROS). The produced ROS amounts increased with an increase of the treated ClO2 amount. However, the addition of an antioxidant, vitamin E, significantly attenuated the cytotoxicity of ClO2 in a dose-dependent manner. To support the oxidative stress induced by ClO2, two antioxidant genes (superoxide dismutase (SOD) and thioredoxin-peroxidase (Tpx)) were identified from P. interpunctella EST library using ortholog sequences of Bombyx mori. Both SOD and Tpx were expressed in larvae of P. interpunctella especially under oxidative stress induced by bacterial challenge. Exposure to ClO2 gas significantly induced the gene expression of both SOD and Tpx. RNA interference of SOD or Tpx using specific double stranded RNAs significantly enhanced the lethality of P. interpunctella to ClO2 gas treatment as well as to the bacterial challenge. These results suggest that ClO2 induces the production of insecticidal ROS, which results in a fatal oxidative stress in P. interpunctella. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. CHARACTERIZATION OF CHLORINATION TRANSFORMATION PRODUCTS OF SELECTED PESTICIDES

    EPA Science Inventory

    Chlorination is a commonly-used disinfectant step in drinking water treatment. Should free chlorine be added to water used as a drinking water source, it is widely understood that many biological species in the water along with dissolved organic and inorganic chemicals will react...

  11. Evaluation of Membrane Ultrafiltration and Residual Chlorination as a Decentralized Water Treatment Strategy for Ten Rural Healthcare Facilities in Rwanda

    PubMed Central

    Huttinger, Alexandra; Dreibelbis, Robert; Roha, Kristin; Ngabo, Fidel; Kayigamba, Felix; Mfura, Leodomir; Moe, Christine

    2015-01-01

    There is a critical need for safe water in healthcare facilities (HCF) in low-income countries. HCF rely on water supplies that may require additional on-site treatment, and need sustainable technologies that can deliver sufficient quantities of water. Water treatment systems (WTS) that utilize ultrafiltration membranes for water treatment can be a useful technology in low-income countries, but studies have not systematically examined the feasibility of this technology in low-income settings. We monitored 22 months of operation of 10 WTS, including pre-filtration, membrane ultrafiltration, and chlorine residual disinfection that were donated to and operated by rural HCF in Rwanda. The systems were fully operational for 74% of the observation period. The most frequent reasons for interruption were water shortage (8%) and failure of the chlorination mechanism (7%). When systems were operational, 98% of water samples collected from the HCF taps met World Health Organization (WHO) guidelines for microbiological water quality. Water quality deteriorated during treatment interruptions and when water was stored in containers. Sustained performance of the systems depended primarily on organizational factors: the ability of the HCF technician to perform routine servicing and repairs, and environmental factors: water and power availability and procurement of materials, including chlorine and replacement parts in Rwanda. PMID:26516883

  12. Evaluation of Membrane Ultrafiltration and Residual Chlorination as a Decentralized Water Treatment Strategy for Ten Rural Healthcare Facilities in Rwanda.

    PubMed

    Huttinger, Alexandra; Dreibelbis, Robert; Roha, Kristin; Ngabo, Fidel; Kayigamba, Felix; Mfura, Leodomir; Moe, Christine

    2015-10-27

    There is a critical need for safe water in healthcare facilities (HCF) in low-income countries. HCF rely on water supplies that may require additional on-site treatment, and need sustainable technologies that can deliver sufficient quantities of water. Water treatment systems (WTS) that utilize ultrafiltration membranes for water treatment can be a useful technology in low-income countries, but studies have not systematically examined the feasibility of this technology in low-income settings. We monitored 22 months of operation of 10 WTS, including pre-filtration, membrane ultrafiltration, and chlorine residual disinfection that were donated to and operated by rural HCF in Rwanda. The systems were fully operational for 74% of the observation period. The most frequent reasons for interruption were water shortage (8%) and failure of the chlorination mechanism (7%). When systems were operational, 98% of water samples collected from the HCF taps met World Health Organization (WHO) guidelines for microbiological water quality. Water quality deteriorated during treatment interruptions and when water was stored in containers. Sustained performance of the systems depended primarily on organizational factors: the ability of the HCF technician to perform routine servicing and repairs, and environmental factors: water and power availability and procurement of materials, including chlorine and replacement parts in Rwanda.

  13. Persistent effects of chlorine inhalation on respiratory health

    PubMed Central

    Hoyle, Gary W.; Svendsen, Erik R.

    2016-01-01

    Chlorine gas is a toxic respiratory irritant that is considered a chemical threat agent because of the potential for release in industrial accidents or terrorist attacks. Chlorine inhalation damages the respiratory tract, including the airways and distal lung, and can result in acute lung injury. Some individuals exposed to chlorine experience a full recovery from acute injury, whereas others develop persistent adverse effects, such as respiratory symptoms, inflammation, and lung-function decrements. In animal models, chlorine can produce persistent inflammation, remodeling, and obstruction in large or small airways, depending on species. Airways with pseudostratified epithelium are repaired efficiently, with surviving basal epithelial cells serving as progenitor cells that repopulate the complement of differentiated cell types. Distal airways lacking basal cells are repaired less efficiently, leading to chronic inflammation and fibrosis at these sites. Persistent chlorine-induced airway disease in humans is treated with asthma medication to relieve symptoms. However, such treatment does not ameliorate the underlying disease pathogenesis, so treatments that are more effective at preventing initial development of airway disease after irritant gas exposure and at reversing established disease are needed. PMID:27385061

  14. Inactivation of human norovirus using chemical sanitizers.

    PubMed

    Kingsley, David H; Vincent, Emily M; Meade, Gloria K; Watson, Clytrice L; Fan, Xuetong

    2014-02-03

    The porcine gastric mucin binding magnetic bead (PGM-MB) assay was used to evaluate the ability of chlorine, chlorine dioxide, peroxyacetic acid, hydrogen peroxide, and trisodium phosphate to inactivate human norovirus within 10% stool filtrate. One-minute free chlorine treatments at concentrations of 33 and 189 ppm reduced virus binding in the PGM-MB assay by 1.48 and 4.14 log₁₀, respectively, suggesting that chlorine is an efficient sanitizer for inactivation of human norovirus (HuNoV). Five minute treatments with 5% trisodium phosphate (pH~12) reduced HuNoV binding by 1.6 log₁₀, suggesting that TSP, or some other high pH buffer, could be used to treat food and food contact surfaces to reduce HuNoV. One minute treatments with 350 ppm chlorine dioxide dissolved in water did not reduce PGM-MB binding, suggesting that the sanitizer may not be suitable for HuNoV inactivation in liquid form. However a 60-min treatment with 350 ppm chlorine dioxide did reduce human norovirus by 2.8 log₁₀, indicating that chlorine dioxide had some, albeit limited, activity against HuNoV. Results also suggest that peroxyacetic acid has limited effectiveness against human norovirus, since 1-min treatments with up to 195 ppm reduced human norovirus binding by <1 log₁₀. Hydrogen peroxide (4%) treatment of up to 60 min resulted in minimal binding reduction (~0.1 log₁₀) suggesting that H₂O₂ is not a good liquid sanitizer for HuNoV. Overall this study suggests that HuNoV is remarkably resistant to several commonly used disinfectants and advocates for the use of chlorine (sodium hypochlorite) as a HuNoV disinfectant wherever possible. Copyright © 2013. Published by Elsevier B.V.

  15. Chlorine residuals and haloacetic acid reduction in rapid sand filtration.

    PubMed

    Chuang, Yi-Hsueh; Wang, Gen-Shuch; Tung, Hsin-hsin

    2011-11-01

    It is quite rare to find biodegradation in rapid sand filtration for drinking water treatment. This might be due to frequent backwashes and low substrate levels. High chlorine concentrations may inhibit biofilm development, especially for plants with pre-chlorination. However, in tropical or subtropical regions, bioactivity on the sand surface may be quite significant due to high biofilm development--a result of year-round high temperature. The objective of this study is to explore the correlation between biodegradation and chlorine concentration in rapid sand filters, especially for the water treatment plants that practise pre-chlorination. In this study, haloacetic acid (HAA) biodegradation was found in conventional rapid sand filters practising pre-chlorination. Laboratory column studies and field investigations were conducted to explore the association between the biodegradation of HAAs and chlorine concentrations. The results showed that chlorine residual was an important factor that alters bioactivity development. A model based on filter influent and effluent chlorine was developed for determining threshold chlorine for biodegradation. From the model, a temperature independent chlorine concentration threshold (Cl(threshold)) for biodegradation was estimated at 0.46-0.5mgL(-1). The results imply that conventional filters with adequate control could be conducive to bioactivity, resulting in lower HAA concentrations. Optimizing biodegradable disinfection by-product removal in conventional rapid sand filter could be achieved with minor variation and a lower-than-Cl(threshold) influent chlorine concentration. Bacteria isolation was also carried out, successfully identifying several HAA degraders. These degraders are very commonly seen in drinking water systems and can be speculated as the main contributor of HAA loss. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Ballast Water Treatment, U.S. Great Lakes Bulk Carrier Engineering and Cost Study. Volume 2: Analysis of On-Board Treatment Methods, Alternative Ballast Water Management Practices, and Implementation Costs

    DTIC Science & Technology

    2013-11-01

    flushing filter, disinfection with injected chlorine dioxide (chlorine dioxide is generated onboard from two component chemicals, sulfuric acid...Management System 400 80 250-8000 (10000) Sulfuric Acid and Purate for ClO2 generation Yes 0.005-0.028 8-18 Decreased sediment, potential corrosion...feed chemicals, Purate and sulfuric acid. 5. Operational and Maintenance Cost: Estimated operating and maintenance cost is $80/1000 m3 of ballast

  17. Chlorine-resistant composite membranes with high organic rejection

    DOEpatents

    McCray, Scott B.; Friesen, Dwayne T.; Barss, Robert P.; Nelson, Leslie D.

    1996-01-01

    A method for making a chlorine-resistant composite polyamide membrane having high organic rejection, the essential step of which comprises treating a conventional composite membrane with an acyl halide. The novel membrane is especially suitable for the treatment of water containing chlorine or lower molecular weight organic compounds.

  18. Accidental Chlorine Gas Intoxication: Evaluation of 39 Patients

    PubMed Central

    Sever, Mustafa; Mordeniz, Cengiz; Sever, Fidan; Dokur, Mehmet

    2009-01-01

    Background Chlorine is a known pulmonary irritant gas that may cause acute damage in the respiratory system. In this paper, the socio-demographic and clinical characteristics of 39 accidentally exposed patients to chlorine gas are reported and different emergency treatment modalities are also discussed. Methods Two emergency departments applications were retrospectively analyzed for evaluation of accidental chlorine gas exposure for year 2007. Patients were classified into 3 groups according to severity of clinical and laboratory findings based on the literature and duration of land of stay in the emergency department. The first group was slightly exposed (discharged within 6 hours), second group moderately exposed (treated and observed for 24 hours), and third group was severely exposed (hospitalized). Most of the patients were initially treated with a combination of humidified oxygen, corticosteroids, and bronchodilators. Results The average age was 17.03 ± 16.01 years (95% CI). Seven (17.9%) of them were female and 29 (74.4%) were children. Twenty-four patients (61.5%) were included in the first, nine (23.1%) were in second and six (15.4%) were in the third group. The presenting symptoms were cough, nausea, and vomiting and conjunctiva hyperemia for the first group, first groups symptoms plus dyspnea for the second group. Second groups symptoms plus palpitation, weakness and chest tightness were for the third group. Cough and dyspnea were seen in 64.1% and 30.8% of the patients respectively. No patients died. Conclusions The authors recommend that non symptomatic or slightly exposed patients do not need any specific treatment or symptomatic treatment is sufficient. Keywords Accidental; Chlorine exposure; Chlorine gas; Chlorine intoxication; Emergency department PMID:22481989

  19. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  20. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F.

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole bodymore » exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. -- Highlights: ► Chlorine causes lung injury when inhaled and is considered a chemical threat agent. ► Rolipram inhibited chlorine-induced pulmonary edema and airway hyperreactivity. ► Post-exposure rolipram treatments by both systemic and local delivery were effective. ► Rolipram shows promise as a rescue treatment for chlorine-induced lung injury.« less

  1. Kinetic models and pathways of ronidazole degradation by chlorination, UV irradiation and UV/chlorine processes.

    PubMed

    Qin, Lang; Lin, Yi-Li; Xu, Bin; Hu, Chen-Yan; Tian, Fu-Xiang; Zhang, Tian-Yang; Zhu, Wen-Qian; Huang, He; Gao, Nai-Yun

    2014-11-15

    Degradation kinetics and pathways of ronidazole (RNZ) by chlorination (Cl2), UV irradiation and combined UV/chlorine processes were investigated in this paper. The degradation kinetics of RNZ chlorination followed a second-order behavior with the rate constants calculated as (2.13 ± 0.15) × 10(2) M(-2) s(-1), (0.82 ± 0.52) × 10(-2) M(-1) s(-1) and (2.06 ± 0.09) × 10(-1) M(-1) s(-1) for the acid-catalyzed reaction, as well as the reactions of RNZ with HOCl and OCl(-), respectively. Although UV irradiation degraded RNZ more effectively than chlorination did, very low quantum yield of RNZ at 254 nm was obtained as 1.02 × 10(-3) mol E(-1). RNZ could be efficiently degraded and mineralized in the UV/chlorine process due to the generation of hydroxyl radicals. The second-order rate constant between RNZ and hydroxyl radical was determined as (2.92 ± 0.05) × 10(9) M(-1) s(-1). The degradation intermediates of RNZ during the three processes were identified with Ultra Performance Liquid Chromatography - Electrospray Ionization - mass spectrometry and the degradation pathways were then proposed. Moreover, the variation of chloropicrin (TCNM) and chloroform (CF) formation after the three processes were further evaluated. Enhanced formation of CF and TCNM precursors during UV/chlorine process deserves extensive attention in drinking water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The effect of inorganic precursors on disinfection byproduct formation during UV-chlorine/chloramine drinking water treatment.

    PubMed

    Lyon, Bonnie A; Dotson, Aaron D; Linden, Karl G; Weinberg, Howard S

    2012-10-01

    Ultraviolet (UV) disinfection is being increasingly used in drinking water treatment. It is important to understand how its application to different types of water may influence finished water quality, particularly as anthropogenic activity continues to impact the quality of source waters. The objective of this study was to evaluate the effect of inorganic precursors on the formation of regulated and unregulated disinfection byproducts (DBPs) during UV irradiation of surface waters when combined with chlorination or chloramination. Samples were collected from three drinking water utilities supplied by source waters with varying organic and inorganic precursor content. The filtered samples were treated in the laboratory with a range of UV doses delivered from low pressure (LP, UV output at 253.7 nm) and medium pressure (MP, polychromatic UV output 200-400 nm) mercury lamps followed by chlorination or chloramination, in the presence and absence of additional bromide and nitrate. The regulated trihalomethanes and haloacetic acids were not affected by UV pretreatment at disinfection doses (40-186 mJ/cm²). With higher doses (1000 mJ/cm²), trihalomethane formation was increased 30-40%. While most effects on DBPs were only observed with doses much higher than typically used for UV disinfection, there were some effects on unregulated DBPs at lower doses. In nitrate-spiked samples (1-10 mg N/L), chloropicrin formation doubled and increased three- to six-fold with 40 mJ/cm² MP UV followed by chloramination and chlorination, respectively. Bromopicrin formation was increased in samples containing bromide (0.5-1 mg/L) and nitrate (1-10 mg N/L) when pretreated with LP or MP UV (30-60% with 40 mJ/cm² LP UV and four- to ten-fold increase with 40 mJ/cm² MP UV, after subsequent chlorination). The formation of cyanogen chloride doubled and increased three-fold with MP UV doses of 186 and 1000 mJ/cm², respectively, when followed by chloramination in nitrate-spiked samples but

  3. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment.

    PubMed

    Postigo, Cristina; Richardson, Susan D

    2014-08-30

    Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Heavy metal removal from MSS fly ash by thermal and chlorination treatments

    PubMed Central

    Liu, Jingyong; Chen, Jiacong; Huang, Limao

    2015-01-01

    The thermal behavior of heavy metals in the co-incineration of municipal solid waste-sludge incinerator fly ash (MSS fly ash) was studied using a laboratory-scale tube furnace. The results indicate that without the addition of chlorinating agents, temperature was an important parameter and had significantly influenced on heavy metal removal, whereas the residence time had a weak effect. Between 900 and 1000 °C for 60 to 300 min, heavy metals reacted with chloride-inherent in the fly ash, and approximately 80 to 89% of Pb, 48% to 56% of Cd, 27% to 36% of Zn and 6% to 24% of Cu were removed. After the adding chlorinating agents, the evaporation rate of the heavy metals improved dramatically, where the evaporation rates of Cu and Zn were larger than that of Pb and Cd. As the amount of added chlorinating agents increased, the removal rate of heavy metals increased. However, the effect of the type of chlorinating agent on the chlorination of heavy metals differed considerably, where NaCl had the weakest effect on the removal rate of Cu, Cd and Zn. In terms of resource recovery and decontamination, MgCl2 and CaCl2 are the best choices due to their efficient removal of Zn. PMID:26602592

  5. Sequential Combination of Electro-Fenton and Electrochemical Chlorination Processes for the Treatment of Anaerobically-Digested Food Wastewater.

    PubMed

    Shin, Yong-Uk; Yoo, Ha-Young; Kim, Seonghun; Chung, Kyung-Mi; Park, Yong-Gyun; Hwang, Kwang-Hyun; Hong, Seok Won; Park, Hyunwoong; Cho, Kangwoo; Lee, Jaesang

    2017-09-19

    A two-stage sequential electro-Fenton (E-Fenton) oxidation followed by electrochemical chlorination (EC) was demonstrated to concomitantly treat high concentrations of organic carbon and ammonium nitrogen (NH 4 + -N) in real anaerobically digested food wastewater (ADFW). The anodic Fenton process caused the rapid mineralization of phenol as a model substrate through the production of hydroxyl radical as the main oxidant. The electrochemical oxidation of NH 4 + by a dimensionally stable anode (DSA) resulted in temporal concentration profiles of combined and free chlorine species that were analogous to those during the conventional breakpoint chlorination of NH 4 + . Together with the minimal production of nitrate, this confirmed that the conversion of NH 4 + to nitrogen gas was electrochemically achievable. The monitoring of treatment performance with varying key parameters (e.g., current density, H 2 O 2 feeding rate, pH, NaCl loading, and DSA type) led to the optimization of two component systems. The comparative evaluation of two sequentially combined systems (i.e., the E-Fenton-EC system versus the EC-E-Fenton system) using the mixture of phenol and NH 4 + under the predetermined optimal conditions suggested the superiority of the E-Fenton-EC system in terms of treatment efficiency and energy consumption. Finally, the sequential E-Fenton-EC process effectively mineralized organic carbon and decomposed NH 4 + -N in the real ADFW without external supply of NaCl.

  6. Chlorination kinetics of glyphosate and its by-products: modeling approach.

    PubMed

    Brosillon, Stephan; Wolbert, Dominique; Lemasle, Marguerite; Roche, Pascal; Mehrsheikh, Akbar

    2006-06-01

    Chlorination reactions of glyphosate, glycine, and sodium cyanate were conducted in well-agitated reactors to generate experimental kinetic measurements for the simulation of chlorination kinetics under the conditions of industrial water purification plants. The contribution of different by-products to the overall degradation of glyphosate during chlorination has been identified. The kinetic rate constants for the chlorination of glyphosate and its main degradation products were either obtained by calculation according to experimental data or taken from published literature. The fit of the kinetic constants with experimental data allowed us to predict consistently the concentration of the majority of the transitory and terminal chlorination products identified in the course of the glyphosate chlorination process. The simulation results conducted at varying aqueous chlorine/glyphosate molar ratios have shown that glyphosate is expected to degrade in fraction of a second under industrial aqueous chlorination conditions. Glyphosate chlorination products are not stable under the conditions of drinking water chlorination and are degraded to small molecules common to the degradation of amino acids and other naturally occurring substances in raw water. The kinetic studies of the chlorination reaction of glyphosate, together with calculations based on kinetic modeling in conditions close to those at real water treatment plants, confirm the reaction mechanism that we have previously suggested for glyphosate chlorination.

  7. Photodynamic tissue adhesion with chlorin(e6) protein conjugates.

    PubMed

    Khadem, J; Veloso, A A; Tolentino, F; Hasan, T; Hamblin, M R

    1999-12-01

    To test the hypothesis that a photodynamic laser-activated tissue solder would perform better in sealing scleral incisions when the photosensitizer was covalently linked to the protein than when it was noncovalently mixed. Conjugates and mixtures were prepared between the photosensitizer chlorin(e6) and various proteins (albumin, fibrinogen, and gelatin) in different ratios and used to weld penetrating scleral incisions made in human cadaveric eyes. A blue-green (488-514 nm) argon laser activated the adhesive, and the strength of the closure was measured by increasing the intraocular pressure until the wound showed leakage. Both covalent conjugates and noncovalent mixtures showed a light dose-dependent increase in leaking pressure. A preparation of albumin chlorin(e6) conjugate with additional albumin added (2.5 protein to chlorin(e6) molar ratio) showed significantly higher weld strength than other protein conjugates and mixtures. This is the first report of dye-protein conjugates as tissue solders. These conjugates may have applications in ophthalmology.

  8. Effect of chlorine, blanching, freezing, and microwave heating on Cryptosporidium parvum viability inoculated on green peppers.

    PubMed

    Duhain, G L M C; Minnaar, A; Buys, E M

    2012-05-01

    Cryptosporidium parvum oocysts have been found on the surface of vegetables in both developed and developing countries. C. parvum can contaminate vegetables via various routes, including irrigation water. This study investigated the effect of individual treatments of chlorine, blanching, blast freezing, and microwave heating, as well as combined treatments of chlorine and freezing, and chlorine and microwave heating on the viability of C. parvum oocysts inoculated on green peppers. The viability of the oocysts after the treatments was assessed using propidium iodide and a flow cytometer. Based on the propidium iodide staining, the chlorine treatments did not affect the viability of the oocysts. Blast freezing significantly inactivated 20% of the oocysts. Microwave heating and blanching significantly inactivated 93% of oocysts. Treatment with chlorine followed by blast freezing did not affect the viability of the oocysts significantly. Treatment with chlorine and microwave heating was significantly more effective than microwave heating alone and inactivated 98% of the oocysts. The study indicates that C. parvum oocysts are sensitive to heat and, to some extent, to blast freezing, but are resistant to chlorine. Therefore, the use of chlorine during vegetable processing is not a critical control point for C. parvum oocysts, and the consumption of raw or minimally processed vegetables may constitute a health risk as C. parvum oocysts can still be found viable on ready-to-eat, minimally processed vegetables.

  9. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment.

    PubMed

    Lee, Yunho; von Gunten, Urs

    2012-12-01

    Various oxidants such as chlorine, chlorine dioxide, ferrate(VI), ozone, and hydroxyl radicals can be applied for eliminating organic micropollutant by oxidative transformation during water treatment in systems such as drinking water, wastewater, and water reuse. Over the last decades, many second-order rate constants (k) have been determined for the reaction of these oxidants with model compounds and micropollutants. Good correlations (quantitative structure-activity relationships or QSARs) are often found between the k-values for an oxidation reaction of closely related compounds (i.e. having a common organic functional group) and substituent descriptor variables such as Hammett or Taft sigma constants. In this study, we developed QSARs for the oxidation of organic and some inorganic compounds and organic micropollutants transformation during oxidative water treatment. A number of 18 QSARs were developed based on overall 412 k-values for the reaction of chlorine, chlorine dioxide, ferrate, and ozone with organic compounds containing electron-rich moieties such as phenols, anilines, olefins, and amines. On average, 303 out of 412 (74%) k-values were predicted by these QSARs within a factor of 1/3-3 compared to the measured values. For HO(·) reactions, some principles and estimation methods of k-values (e.g. the Group Contribution Method) are discussed. The developed QSARs and the Group Contribution Method could be used to predict the k-values for various emerging organic micropollutants. As a demonstration, 39 out of 45 (87%) predicted k-values were found within a factor 1/3-3 compared to the measured values for the selected emerging micropollutants. Finally, it is discussed how the uncertainty in the predicted k-values using the QSARs affects the accuracy of prediction for micropollutant elimination during oxidative water treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Bromine, chlorine and sulfur emission into the free troposphere from a Rift volcano

    NASA Astrophysics Data System (ADS)

    Bobrowski, N.; Giuffrida, G. B.; Tedeso, D.; Yalire, M. M.; Galle, B.

    2007-12-01

    In June 2007 spectroscopic measurements were carried out at the crater rim of the Niyragongo volcano located 15 km north of the city Goma, North Kivu region (DRC). Niyragongo volcano belongs to the Virunga volcanic chain and it is associated with the Western branch of the Great Rift Valley. The volcanism at Niyragongo is caused by the rifting of the Earth's crust where two parts of the African plates are breaking apart. Niyragongo is a 3470 m high stratovolcano, which a large summit crater usually containing a lava lake inside and it is considered one of the most active volcanoes in Africa. Satellite measurements show an extremely large sulphur dioxide plume since May 2002, and it is considered one of the biggest sulphur dioxide sources on Earth. The ground - based remote sensing technique - MAX-DOAS (Multi Axis Differential Optical Absorption Spectroscopy) using scattered sunlight has been applied during a one week field trip on top of the crater rim of Niyragongo volcano to measure nitrogen oxide, halogen oxides and sulphur dioxide. The used Mini-MAX-DOAS is a lightweight, compact, robust instrument and has very low power consumption which allows to be deployed over several days with some small lead batteries. The measurements provide valuable information of the chemical composition as well its variability within the volcanic plume of the lava lake and allowed also studying chemical transformation processes of the halogens inside the plume. Bromine-sulphur and chlorine-sulphur ratios were investigated and a minimal bromine and chlorine emission flux estimation will be presented.

  11. [Combined use of active chlorine and coagulants for drinking water purification and disinfection].

    PubMed

    Rakhmanin, Iu A; Zholdakova, Z I; Poliakova, E E; Kir'ianova, L F; Miasnikov, I N; Tul'skaia, E A; Artemova, T Z; Ivanova, L V; Dmitrieva, R A; Doskina, T V

    2004-01-01

    The authors made an experimental study of the efficiency of water purification procedures based on the combined use of active chlorine and coagulants and hygienically evaluated the procedures. The study included the evaluation of water disinfection with various coagulants and active chlorine; the investigation of the processes of production of deleterious organic chlorine compounds; the assessment of the quality of water after its treatment. The coagulants representing aluminum polyoxychloride: RAX-10 (AQUA-AURATE 10) and RAX-18 (AQUA-AURATE 18), and aluminum sulfate, technically pure grade were tested. The treatment of river water with the coagulants RAX-10 and RAX-18, followed by precipitation, filtration, and chlorination under laboratory conditions, was shown to result in water disinfection to the levels complying with the requirements described in SanPiN 2.1.4.1074-01. RAX-18 showed the best disinfecting activity against total and heat-tolerant coliform bacteria, but also to the highly chlorine-resistant microrganisms--the spores of sulfite-reducing Clostridia, phages, and viruses. Since the coagulants have an increased sorptive capacity relative to humus and other organic substances, substitution of primary chlorination for coagulant treatment may induce a reduction in the risk of formation of oncogenically and mutagenically hazardous chlorinated hydrocarbons.

  12. Microbial Community Dynamics of an Urban Drinking Water Distribution System Subjected to Phases of Chloramination and Chlorination Treatments

    PubMed Central

    Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L.; LeChevallier, Mark W.

    2012-01-01

    Water utilities in parts of the U.S. control microbial regrowth in drinking water distribution systems (DWDS) by alternating postdisinfection methods between chlorination and chloramination. To examine how this strategy influences drinking water microbial communities, an urban DWDS (population ≅ 40,000) with groundwater as the source water was studied for approximately 2 years. Water samples were collected at five locations in the network at different seasons and analyzed for their chemical and physical characteristics and for their microbial community composition and structure by examining the 16S rRNA gene via terminal restriction fragment length polymorphism and DNA pyrosequencing technology. Nonmetric multidimension scaling and canonical correspondence analysis of microbial community profiles could explain >57% of the variation. Clustering of samples based on disinfection types (free chlorine versus combined chlorine) and sampling time was observed to correlate to the shifts in microbial communities. Sampling location and water age (<21.2 h) had no apparent effects on the microbial compositions of samples from most time points. Microbial community analysis revealed that among major core populations, Cyanobacteria, Methylobacteriaceae, Sphingomonadaceae, and Xanthomonadaceae were more abundant in chlorinated water, and Methylophilaceae, Methylococcaceae, and Pseudomonadaceae were more abundant in chloraminated water. No correlation was observed with minor populations that were detected frequently (<0.1% of total pyrosequences), which were likely present in source water and survived through the treatment process. Transient microbial populations including Flavobacteriaceae and Clostridiaceae were also observed. Overall, reversible shifts in microbial communities were especially pronounced with chloramination, suggesting stronger selection of microbial populations from chloramines than chlorine. PMID:22941076

  13. Microbial community dynamics of an urban drinking water distribution system subjected to phases of chloramination and chlorination treatments.

    PubMed

    Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L; LeChevallier, Mark W; Liu, Wen-Tso

    2012-11-01

    Water utilities in parts of the U.S. control microbial regrowth in drinking water distribution systems (DWDS) by alternating postdisinfection methods between chlorination and chloramination. To examine how this strategy influences drinking water microbial communities, an urban DWDS (population ≅ 40,000) with groundwater as the source water was studied for approximately 2 years. Water samples were collected at five locations in the network at different seasons and analyzed for their chemical and physical characteristics and for their microbial community composition and structure by examining the 16S rRNA gene via terminal restriction fragment length polymorphism and DNA pyrosequencing technology. Nonmetric multidimension scaling and canonical correspondence analysis of microbial community profiles could explain >57% of the variation. Clustering of samples based on disinfection types (free chlorine versus combined chlorine) and sampling time was observed to correlate to the shifts in microbial communities. Sampling location and water age (<21.2 h) had no apparent effects on the microbial compositions of samples from most time points. Microbial community analysis revealed that among major core populations, Cyanobacteria, Methylobacteriaceae, Sphingomonadaceae, and Xanthomonadaceae were more abundant in chlorinated water, and Methylophilaceae, Methylococcaceae, and Pseudomonadaceae were more abundant in chloraminated water. No correlation was observed with minor populations that were detected frequently (<0.1% of total pyrosequences), which were likely present in source water and survived through the treatment process. Transient microbial populations including Flavobacteriaceae and Clostridiaceae were also observed. Overall, reversible shifts in microbial communities were especially pronounced with chloramination, suggesting stronger selection of microbial populations from chloramines than chlorine.

  14. Effect of helium ion beam treatment on wet etching of silicon dioxide

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Grigoryev, E. A.; Sharov, T. V.; Baraban, A. P.

    2018-03-01

    We investigated the effect of helium ion beam treatment on the etching rate of silicon dioxide in a water based solution of hydrofluoric acid. A 460-nm-thick silicon dioxide film on silicon was irradiated with helium ions having energies of 20 keV and 30 keV with ion fluences ranging from 1014 cm-2 to 1017 cm-2. The dependence of the etching rate on depth was obtained and compared with the depth distribution of ion-induced defects, which was obtained from numerical simulation. Irradiation with helium ions results in an increase of the etching rate of silicon dioxide. The dependence of the etching rate on the calculated concentration of ion-induced defects is described.

  15. GENOTOXIC AND CARCINOGENIC PROPERTIES OF CHLORINATED FURANONES - IMPORTANT BY-PRODUCTS OF WATER CHLORINATION

    EPA Science Inventory

    The widespread presence of genotoxins in drinking water can be directly linked to the chlorination stage of water treatment. ecent studies in Finland, the United States and Great Britain have shown that a single compound, 3-chloro-4-(dichlo-romethyl)-5-hydroxy-2(5H)-furanone (MX)...

  16. Removal of Emerging Contaminants and Estrogenic Activity from Wastewater Treatment Plant Effluent with UV/Chlorine and UV/H₂O₂ Advanced Oxidation Treatment at Pilot Scale.

    PubMed

    Rott, Eduard; Kuch, Bertram; Lange, Claudia; Richter, Philipp; Kugele, Amélie; Minke, Ralf

    2018-05-07

    Effluent of a municipal wastewater treatment plant (WWTP) was treated on-site with the UV/chlorine (UV/HOCl) advanced oxidation process (AOP) using a pilot plant equipped with a medium pressure UV lamp with an adjustable performance of up to 1 kW. Results obtained from parallel experiments with the same pilot plant, where the state of the art UV/H₂O₂ AOP was applied, were compared regarding the removal of emerging contaminants (EC) and the formation of adsorbable organohalogens (AOX). Furthermore, the total estrogenic activity was measured in samples treated with the UV/chlorine AOP. At an energy consumption of 0.4 kWh/m³ (0.4 kW, 1 m³/h) and in a range of oxidant concentrations from 1 to 6 mg/L, the UV/chlorine AOP had a significantly higher EC removal yield than the UV/H₂O₂ AOP. With free available chlorine concentrations (FAC) in the UV chamber influent of at least 5 mg/L (11 mg/L of dosed Cl₂), the total estrogenic activity could be reduced by at least 97%. To achieve a certain concentration of FAC in the UV chamber influent, double to triple the amount of dosed Cl₂ was needed, resulting in AOX concentrations of up to 520 µg/L.

  17. ATRAZOME CHLORINATION TRANSFORMATION PRODUCTS UNDER DRINKING WATER DISTRIBUTION SYSTEM CONDITIONS

    EPA Science Inventory

    Chlorination is a commonly-used disinfectant step in drinking water treatment. Should free chlorine be added to water used as a drinking water source, it is widely understood that many biological species in the water, along with dissolved organic and inorganic chemicals, will rea...

  18. The role and function of chlorine in the preparation of high-ratio cake flour.

    PubMed

    Gough, B M; Whitehouse, M E; Greenwood, C T

    1978-01-01

    The literature on the role of chlorine treatment of flour for use in high-ratio cake production is discussed in relation to current knowledge of cereal chemistry and cake technology. A brief perspective of the present use of chlorine in high-ratio cake flours is included. Investigations of the uptake of gaseous chlorine by flour and its distribution among and chemical action upon the major flour components (water, protein, lipid, and carbohydrate) are assessed. The physical effects of chlorination as demonstrated by experiments with batters and cakes and by physicochemical observations of flour and its fractions are also considered. The characteristics of the starch in flour appear to be critical in high-ratio cakes. Chlorine treatment modifies the gelatinization behavior of the starch granules yet does not change their gelatinization temperature not is there evidence of chemical attack upon the starch molecules. Therefore, it is suggested that chlorine effects the necessary changes in starch behavior by reacting with the noncarbohydrate surface contaminants on the granules. Alternative methods of improving high-ratio cake flours are mentioned, particularly heat-treatment processes.

  19. Disinfection by-products of chlorine dioxide (chlorite, chlorate, and trihalomethanes): Occurrence in drinking water in Qatar.

    PubMed

    Al-Otoum, Fatima; Al-Ghouti, Mohammad A; Ahmed, Talaat A; Abu-Dieyeh, Mohammed; Ali, Mohammed

    2016-12-01

    The occurrence of chlorine dioxide (ClO 2 ) disinfection by-products (DBPs) in drinking water, namely, chlorite, chlorate, and trihalomethanes (THMs), was investigated. Two-hundred-ninety-four drinking water samples were collected from seven desalination plants (DPs), four reservoirs (R), and eight mosques (M) distributed within various locations in southern and northern Qatar. The ClO 2 concentration levels ranged from 0.38 to <0.02 mg L -1 , with mean values of 0.17, 0.12, and 0.04 mg L -1 for the DPs, Rs, and Ms, respectively. The chlorite levels varied from 13 μg L -1 to 440 μg L -1 , with median values varying from 13 to 230 μg L -1 , 77-320 μg L -1 , and 85-440 μg L -1 for the DPs, Rs, and Ms, respectively. The chlorate levels varied from 11 μg L -1 to 280 μg L -1 , with mean values varying from 36 to 280 μg L -1 , 11-200 μg L -1 , and 11-150 μg L -1 in the DPs, Rs, and Ms, respectively. The average concentration of THMs was 5 μg L -1 , and the maximum value reached 77 μg L -1 However, all of the DBP concentrations fell within the range of the regulatory limits set by GSO 149/2009, the World Health Organization (WHO), and Kahramaa (KM). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Differences in Field Effectiveness and Adoption between a Novel Automated Chlorination System and Household Manual Chlorination of Drinking Water in Dhaka, Bangladesh: A Randomized Controlled Trial

    PubMed Central

    Pickering, Amy J.; Crider, Yoshika; Amin, Nuhu; Bauza, Valerie; Unicomb, Leanne; Davis, Jennifer; Luby, Stephen P.

    2015-01-01

    The number of people served by networked systems that supply intermittent and contaminated drinking water is increasing. In these settings, centralized water treatment is ineffective, while household-level water treatment technologies have not been brought to scale. This study compares a novel low-cost technology designed to passively (automatically) dispense chlorine at shared handpumps with a household-level intervention providing water disinfection tablets (Aquatab), safe water storage containers, and behavior promotion. Twenty compounds were enrolled in Dhaka, Bangladesh, and randomly assigned to one of three groups: passive chlorinator, Aquatabs, or control. Over a 10-month intervention period, the mean percentage of households whose stored drinking water had detectable total chlorine was 75% in compounds with access to the passive chlorinator, 72% in compounds receiving Aquatabs, and 6% in control compounds. Both interventions also significantly improved microbial water quality. Aquatabs usage fell by 50% after behavioral promotion visits concluded, suggesting intensive promotion is necessary for sustained uptake. The study findings suggest high potential for an automated decentralized water treatment system to increase consistent access to clean water in low-income urban communities. PMID:25734448

  1. Differences in field effectiveness and adoption between a novel automated chlorination system and household manual chlorination of drinking water in Dhaka, Bangladesh: a randomized controlled trial.

    PubMed

    Pickering, Amy J; Crider, Yoshika; Amin, Nuhu; Bauza, Valerie; Unicomb, Leanne; Davis, Jennifer; Luby, Stephen P

    2015-01-01

    The number of people served by networked systems that supply intermittent and contaminated drinking water is increasing. In these settings, centralized water treatment is ineffective, while household-level water treatment technologies have not been brought to scale. This study compares a novel low-cost technology designed to passively (automatically) dispense chlorine at shared handpumps with a household-level intervention providing water disinfection tablets (Aquatab), safe water storage containers, and behavior promotion. Twenty compounds were enrolled in Dhaka, Bangladesh, and randomly assigned to one of three groups: passive chlorinator, Aquatabs, or control. Over a 10-month intervention period, the mean percentage of households whose stored drinking water had detectable total chlorine was 75% in compounds with access to the passive chlorinator, 72% in compounds receiving Aquatabs, and 6% in control compounds. Both interventions also significantly improved microbial water quality. Aquatabs usage fell by 50% after behavioral promotion visits concluded, suggesting intensive promotion is necessary for sustained uptake. The study findings suggest high potential for an automated decentralized water treatment system to increase consistent access to clean water in low-income urban communities.

  2. Chlorine

    MedlinePlus

    ... in the form of a poisonous gas. Chlorine gas can be pressurized and cooled to change it into a liquid so that it can be shipped and stored. ... and blisters on the skin if exposed to gas. Skin injuries similar to frostbite ... exposed to liquid chlorine Burning sensation in the nose, throat, and ...

  3. Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems.

    PubMed

    Zhang, Zhe; Stout, Janet E; Yu, Victor L; Vidic, Radisav

    2008-01-01

    Previous studies showed that temperature and total organic carbon in drinking water would cause chlorine dioxide (ClO(2)) loss in a water distribution system and affect the efficiency of ClO(2) for Legionella control. However, among the various causes of ClO(2) loss in a drinking water distribution system, the loss of disinfectant due to the reaction with corrosion scales has not been studied in detail. In this study, the corrosion scales from a galvanized iron pipe and a copper pipe that have been in service for more than 10 years were characterized by energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The impact of these corrosion scale materials on ClO(2) decay was investigated in de-ionized water at 25 and 45 degrees C in a batch reactor with floating glass cover. ClO(2) decay was also investigated in a specially designed reactor made from the iron and copper pipes to obtain more realistic reaction rate data. Goethite (alpha-FeOOH) and magnetite (Fe(3)O(4)) were identified as the main components of iron corrosion scale. Cuprite (Cu(2)O) was identified as the major component of copper corrosion scale. The reaction rate of ClO(2) with both iron and copper oxides followed a first-order kinetics. First-order decay rate constants for ClO(2) reactions with iron corrosion scales obtained from the used service pipe and in the iron pipe reactor itself ranged from 0.025 to 0.083 min(-1). The decay rate constant for ClO(2) with Cu(2)O powder and in the copper pipe reactor was much smaller and it ranged from 0.0052 to 0.0062 min(-1). Based on these results, it can be concluded that the corrosion scale will cause much more significant ClO(2) loss in corroded iron pipes of the distribution system than the total organic carbon that may be present in finished water.

  4. Transport and transformations of chlorinated-solvent contamination in a saprolite and fractured rock aquifer near a former wastewater-treatment plant, Greenville, South Carolina

    USGS Publications Warehouse

    Vroblesky, D.A.; Bradley, P.M.; Lane, J.W.; Robertson, J.F.

    1997-01-01

    The transport and fate of chlorinated-ethene contamination was investigated in a fractured-rock aquifer downgradient from a wastewater-treatment plant at a gas-turbine manufacturing facility in Greenville, South Carolina. A vapor-diffusion-sampler technique, developed for this investigation, located fracture zones that discharged contaminated ground water to surface water. The distribution of chlorinated compounds and sulfate, comparison of borehole geophysical data, driller's logs, and the aquifer response to pumpage allowed subsurface contaminant-transport pathways to be delineated.The probable contaminant-transport pathway from the former aeration lagoon was southward. The probable pathway of contaminant transport from the former sludge lagoon was southward to and beneath Little Rocky Creek. South of the creek, the major pathway of contaminant transport appeared to be at a depth of approximately 80 to 107 feet below land surface. The contaminant-transport pathway from the former industrial lagoon was not readily discernible from existing data. A laboratory investigation, as well as examination of ground- water-chemistry data collected during this investigation and concentrations of chlorinated compounds collected during previous investigations,indicates that higher chlorinated compounds are being degraded to lower-chlorinated compounds in the contaminated aquifer. The approaches used in this investigation, as well as the findings, have potential application to other fractured-rock aquifers contaminated by chlorinated ethenes.

  5. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalosh, R.G.; Bajpai, S.N.; Short, T.P.

    1980-04-01

    An evaluation of the hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries is presented. Since commercial batteries are not yet available, this hazard assessment is based both on theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate. Six spill tests involving chlorine hydrate indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm road surface. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion modelmore » and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model has been combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fatality rates are several times higher in a city with a warm and calm climate than in a colder and windier city. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatility rates due to fires and asphyxiations.« less

  6. GENE EXPRESSION ALTERATIONS OBSERVED IN PRIMARY CULTURED RAT HEPATOCYTES AFTER TREATMENT WITH CHLORINATED OR CHLORINATED AND OZONATED DRINKING WATER FROM EAST FORK LAKE, OHIO

    EPA Science Inventory

    Drinking water from East Fork Lake was spiked with iodide and bromide, disinfected with chlorine or ozone + chlorine, concentrated ~100-fold using reverse osmosis, and volatile disinfection by-products (DBPs) added back. Primary rat hepatocytes were exposed to full-strength, 1:10...

  7. Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination.

    PubMed

    Jia, Shuyu; Shi, Peng; Hu, Qing; Li, Bing; Zhang, Tong; Zhang, Xu-Xiang

    2015-10-20

    For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p < 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance.

  8. UV-induced effects on chlorination of creatinine.

    PubMed

    Weng, Shih Chi; Li, Jing; Wood, Karl V; Kenttämaa, Hilkka I; Williams, Peggy E; Amundson, Lucas M; Blatchley, Ernest R

    2013-09-15

    Ultraviolet (UV) irradiation is commonly employed for water treatment in swimming pools to complement conventional chlorination, and to reduce the concentration of inorganic chloramine compounds. The approach of combining UV irradiation and chlorination has the potential to improve water quality, as defined by microbial composition. However, relatively little is known about the effects of this process on water chemistry. To address this issue, experiments were conducted to examine the effects of sequential UV254 irradiation/chlorination, as will occur in recirculating system of swimming pools, on disinfection byproduct (DBP) formation. Creatinine, which is present in human sweat and urine, was selected as the target precursor for these experiments. Enhanced formation of dichloromethylamine (CH3NCl2) and inorganic chloramines was observed to result from post-chlorination of UV-irradiated samples. Chlorocreatinine was found to be more sensitive to UV254 irradiation than creatinine; UV254 irradiation of chlorocreatinine resulted in opening of the ring structure, thereby yielding a series of intermediates that were more susceptible to free chlorine attack than their parent compound. The quantum yields for photodegradation of creatinine and chlorocreatinine at 254 nm were estimated at 0.011 ± 0.002 mol/E and 0.144 ± 0.011 mol/E, respectively. The N-Cl bond was found to be common to UV-sensitive chlorinated compounds (e.g., inorganic chloramines, CH3NCl2, and chlorocreatinine); compounds that were less susceptible to UV-based attack generally lacked the N-Cl bond. This suggested that the N-Cl bond is susceptible to UV254 irradiation, and cleavage of the N-Cl bond appears to open or promote reaction pathways that involve free chlorine, thereby enhancing formation of some DBPs and promoting loss of free chlorine. Proposed reaction mechanisms to describe this behavior based on creatinine as a precursor are presented. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Ablative Fractional Carbon Dioxide Laser in the Treatment of Chronic, Posttraumatic, Lower-Extremity Ulcers in Elderly Patients.

    PubMed

    Phillips, Tania J; Morton, Laurel M; Uebelhoer, Nathan S; Dover, Jeffrey S

    2015-08-01

    Treating posttraumatic lower extremity wounds can be challenging, especially in elderly patients. Recently, the use of fractional carbon dioxide laser has been shown to improve wound healing in scar-related wounds. We used this treatment modality in posttraumatic wounds that were slow to heal in 3 elderly patients. Each wound underwent one fractional carbon dioxide laser treatment. The wound base was treated at 30 mJ and 5% density. The entire wound edge and 1 to 2 cm into the normal surrounding skin were treated at 50 mJ and 5% density. One pass was completed at 150 Hz per treatment. Treatments were well tolerated with only mild discomfort. Each wound healed by 60% or greater within 3 weeks. No adverse events were reported aside from mild and transient erythema at site of treatment. Fractional carbon dioxide laser treatment appeared to accelerate healing in each of these posttraumatic wounds. It may be a helpful adjunct in nonhealing posttraumatic wounds.

  10. Fate of free chlorine in drinking water during distribution in premise plumbing.

    PubMed

    Zheng, Muzi; He, Chunguang; He, Qiang

    2015-12-01

    Free chlorine is a potent oxidizing agent and has been used extensively as a disinfectant in processes including water treatment. The presence of free chlorine residual is essential for the prevention of microbial regrowth in water distribution systems. However, excessive levels of free chlorine can cause adverse health effects. It is a major challenge to maintain appropriate levels of free chlorine residual in premise plumbing. As the first effort to assessing the fate of chlorine in premise plumbing using actual premise plumbing pipe sections, three piping materials frequently used in premise plumbing, i.e. copper, galvanized iron, and polyvinyl chloride (PVC), were investigated for their performance in maintaining free chlorine residual. Free chlorine decay was shown to follow first-order kinetics for all three pipe materials tested. The most rapid chlorine decay was observed in copper pipes, suggesting the need for higher chlorine dosage to maintain appropriate levels of free chlorine residual if copper piping is used. PVC pipes exhibited the least reactivity with free chlorine, indicative of the advantage of PVC as a premise plumbing material for maintaining free chlorine residual. The reactivity of copper piping with free chlorine was significantly hindered by the accumulation of pipe deposits. In contrast, the impact on chlorine decay by pipe deposits was not significant in galvanized iron and PVC pipes. Findings in this study are of great importance for the development of effective strategies for the control of free chlorine residual and prevention of microbiological contamination in premise plumbing.

  11. Emulsified Zero-Valent Nano-Scale Iron Treatment of Chlorinated Solvent DNAPL Source Areas

    DTIC Science & Technology

    2010-09-01

    Significant laboratory and field research has demonstrated that zero-valent metals will reductively dehalogenate dissolved chlorinated solvents such as...Eekert, Servé W. M. Kengen, Gosse Schraa, and Alfons J. M. Stams. 1999. Anaerobic Microbial Reductive Dehalogenation of Chlorinated Ethenes...and T. Holdsworth. 2005. Field Demonstration of DNAPL Dehalogenation Using Emulsified Zero-Valent Iron. Environmental Science Technology, vol 39

  12. Inactivation efficiency of plasmid-encoded antibiotic resistance genes during water treatment with chlorine, UV, and UV/H2O2.

    PubMed

    Yoon, Younggun; Chung, Hay Jung; Wen Di, Doris Yoong; Dodd, Michael C; Hur, Hor-Gil; Lee, Yunho

    2017-10-15

    This study assessed the inactivation efficiency of plasmid-encoded antibiotic resistance genes (ARGs) both in extracellular form (e-ARG) and present within Escherichia coli (intracellular form, i-ARG) during water treatment with chlorine, UV (254 nm), and UV/H 2 O 2 . A quantitative real-time PCR (qPCR) method was used to quantify the ARG damage to amp R (850 bp) and kan R (806 bp) amplicons, both of which are located in the pUC4K plasmid. The plate count and flow cytometry methods were also used to determine the bacterial inactivation parameters, such as culturability and membrane damage, respectively. In the first part of the study, the kinetics of E. coli inactivation and ARG damage were determined in phosphate buffered solutions. The ARG damage occurred much more slowly than E. coli inactivation in all cases. To achieve 4-log reduction of ARG concentration at pH 7, the required chlorine exposure and UV fluence were 33-72 (mg × min)/L for chlorine and 50-130 mJ/cm 2 for UV and UV/H 2 O 2 . After increasing pH from 7 to 8, the rates of ARG damage decreased for chlorine, while they did not vary for UV and UV/H 2 O 2 . The i-ARGs mostly showed lower rates of damage compared to the e-ARGs due to the protective roles of cellular components against oxidants and UV. The contribution of OH radicals to i-ARG damage was negligible in UV/H 2 O 2 due to significant OH radical scavenging by cellular components. In all cases, the ARG damage rates were similar for amp R versus kan R , except for the chlorination of e-ARGs, in which the damage to amp R occurred faster than that to kan R . Chlorine and UV dose-dependent ARG inactivation levels determined in a wastewater effluent matrix could be reasonably explained by the kinetic data obtained from the phosphate buffered solutions and the expected oxidant (chlorine and OH radicals) demands by water matrix components. These results can be useful in optimizing chlorine and UV-based disinfection systems to achieve ARG

  13. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar; Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Chacabuco y Pedernera, San Luis; Barbosa, Lucía

    2014-11-15

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl{sub 2}–N{sub 2} flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al{sub 2}O{sub 3} (alumina) in chlorine atmosphere was developed and the results were compared with thosemore » obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl{sub 2} atmosphere of the MgO–Al{sub 2}O{sub 3} mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C.« less

  14. Integrated carbon and chlorine isotope modeling: applications to chlorinated aliphatic hydrocarbons dechlorination.

    PubMed

    Jin, Biao; Haderlein, Stefan B; Rolle, Massimo

    2013-02-05

    We propose a self-consistent method to predict the evolution of carbon and chlorine isotope ratios during degradation of chlorinated hydrocarbons. The method treats explicitly the cleavage of isotopically different C-Cl bonds and thus considers, simultaneously, combined carbon-chlorine isotopologues. To illustrate the proposed modeling approach we focus on the reductive dehalogenation of chlorinated ethenes. We compare our method with the currently available approach, in which carbon and chlorine isotopologues are treated separately. The new approach provides an accurate description of dual-isotope effects regardless of the extent of the isotope fractionation and physical characteristics of the experimental system. We successfully applied the new approach to published experimental results on dehalogenation of chlorinated ethenes both in well-mixed systems and in situations where mass-transfer limitations control the overall rate of biodegradation. The advantages of our self-consistent dual isotope modeling approach proved to be most evident when isotope fractionation factors of carbon and chlorine differed significantly and for systems with mass-transfer limitations, where both physical and (bio)chemical transformation processes affect the observed isotopic values.

  15. Alternative synthesis of 3-acetyl, 3-epoxy, and 3-formyl chlorins from a 3-vinyl chlorin, methyl pyropheophorbide-a, via iodination.

    PubMed

    Oba, Toru; Masuya, Takuto; Yasuda, Satoru; Ito, Satoshi

    2015-08-01

    We developed novel methods to convert the C3-vinyl group of a chlorophyll derivative, methyl pyropheophorbide-a, into an acetyl group, an epoxy group, and a formyl group via iodination with I2 and phenyliodine(III) bis(trifluoroacetate). Reaction of the iodinated intermediate with ethylene glycol and subsequent treatment with base led to formation of the C3-acetyl chlorin. Reaction of the iodinated intermediate with ethylenediamine afforded the C3-oxiranyl chlorin. The C3-formyl chlorin was readily derived from the epoxide without hazardous reagents such as OsO4. These reactions were facile and useful alternatives to the previous methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Resistance and inactivation kinetics of bacterial strains isolated from the non-chlorinated and chlorinated effluents of a WWTP.

    PubMed

    Martínez-Hernández, Sylvia; Vázquez-Rodríguez, Gabriela A; Beltrán-Hernández, Rosa I; Prieto-García, Francisco; Miranda-López, José M; Franco-Abuín, Carlos M; Álvarez-Hernández, Alejandro; Iturbe, Ulises; Coronel-Olivares, Claudia

    2013-08-06

    The microbiological quality of water from a wastewater treatment plant that uses sodium hypochlorite as a disinfectant was assessed. Mesophilic aerobic bacteria were not removed efficiently. This fact allowed for the isolation of several bacterial strains from the effluents. Molecular identification indicated that the strains were related to Aeromonas hydrophila, Escherichia coli (three strains), Enterobacter cloacae, Kluyvera cryocrescens (three strains), Kluyvera intermedia, Citrobacter freundii (two strains), Bacillus sp. and Enterobacter sp. The first five strains, which were isolated from the non-chlorinated effluent, were used to test resistance to chlorine disinfection using three sets of variables: disinfectant concentration (8, 20 and 30 mg·L(-1)), contact time (0, 15 and 30 min) and water temperature (20, 25 and 30 °C). The results demonstrated that the strains have independent responses to experimental conditions and that the most efficient treatment was an 8 mg·L(-1) dose of disinfectant at a temperature of 20 °C for 30 min. The other eight strains, which were isolated from the chlorinated effluent, were used to analyze inactivation kinetics using the disinfectant at a dose of 15 mg·L(-1) with various retention times (0, 10, 20, 30, 60 and 90 min). The results indicated that during the inactivation process, there was no relationship between removal percentage and retention time and that the strains have no common response to the treatments.

  17. Synthesis, structural investigations on organotin(IV) chlorin-e6 complexes, their effect on sea urchin embryonic development and induced apoptosis.

    PubMed

    Pellerito, Claudia; D'Agati, Paolo; Fiore, Tiziana; Mansueto, Caterina; Mansueto, Valentina; Stocco, Giancarlo; Nagy, László; Pellerito, Lorenzo

    2005-06-01

    Four new organotin(IV) chlorin derivatives, [chlorin=chlorin-e(6)=21H,23H-porphine-2-propanoic acid, 18-carboxy-20-(carboxymethyl)-8-ethenyl-13-ethyl-2,3-di-hydro-3,7,12,17-tetramethyl-(2S-trans)-], with formula (R(2)Sn)(3)(chlorin)(2).2H(2)O (R=Me, n-Bu) and (R(3)Sn)(3)chlorin.2H(2)O (R=Me, Ph) have been synthesized. The solid state and solution phase structures have been investigated by FT-IR, (119)Sn Mössbauer, (1)H and (13)C NMR spectroscopy. In the solid state, (R(2)Sn)(3)(chlorin)(2).2H(2)O complexes contain six coordinated Sn(IV), in a skew trapezoidal environment by forming trans-R(2)SnO(4) polymeric units. As far as (R(3)Sn)(3)chlorin.2H(2)O complexes are concerned, Sn(IV) is five coordinated in a polymeric (oligomeric) trigonal bipyramidal environment and eq-R(3)SnO(2) units, in the solid state. In saturated solutions, a polymeric structure comparable to the solid phase, with carboxylate groups of the ligand behaving in monoanionic bidentate fashion bridging Sn(IV) atoms, was detected for the (Me(3)Sn)(3)chlorin.2H(2)O complex, while in more diluted ones a tetrahedral configuration for the trimethyltin(IV) moieties was observed. Cytotoxic activity of the novel organotin(IV) chlorin was investigated in order to assay the effect on sea urchin embryonic development. The results obtained demonstrated that (n-Bu(2)Sn)(3)(chlorin)(2).2H(2)O and (Ph(3)Sn)(3)chlorin.2H(2)O exerted the antimitotic effect on the early stages of sea urchin development. In addition, the cytotoxic effect exerted by (n-Bu(2)Sn)(3)(chlorin)(2).2H(2)O appeared with necrosis of the blastomeres, which were clearly destroyed. After treatment with (Ph(3)Sn)(3)chlorin.2H(2)O, a programmed cell death was triggered, as shown by light microscope observations through morphological assays. The apoptotic events in 2-cell stage embryos revealed: (i) DNA fragmentation, with the TUNEL reaction (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling); (ii) phosphatidylserine

  18. Chlorine dioxide oxidation of Escherichia coli in water - A study of the disinfection kinetics and mechanism.

    PubMed

    Ofori, Isaac; Maddila, Suresh; Lin, Johnson; Jonnalagadda, Sreekantha B

    2017-06-07

    This study investigated the kinetics and mechanism of chlorine dioxide (ClO 2 ) inactivation of a Gram-negative bacteria Escherichia coli (ATCC 35218) in oxidant demand free (ODF) water in detail as a function of disinfectant concentration (0.5-5.0 mg/L), water pH (6.5-8.5), temperature variations (4-37°C) and bacterial density (10 5 -10 7 cfu/mL). The effects of ClO 2 on bacterial cell morphology, outer membrane permeability, cytoplasmic membrane disruption and intracellular enzymatic activity were also studied to elucidate the mechanism of action on the cells. Increasing temperature and disinfectant concentration were proportional to the rate of cell killing, but efficacy was found to be significantly subdued at 0.5 mg/L and less dependent on the bacterial density. The bactericidal efficiency was higher at alkaline pH of 8 or above as compared to neutral and slightly acidic pH of 7 and 6.5 respectively. The disinfection kinetic curves followed a biphasic pattern of rapid inactivation within the initial 2 min which were followed by a tailing even in the presence of residual biocide. The curves were adequately described by the C avg Hom model. Transmission Electron Microscopy images of the bacteria cells exposed to lethal concentrations of ClO 2 indicated very little observable morphological damage to the outer membranes of the cells. ClO 2 however was found to increase the permeability of the outer and cytoplasmic membranes leading to the leakage of membrane components such as 260 nm absorbing materials and inhibiting the activity of the intracellular enzyme β-D-galactosidase. It is suggested that the disruption of the cytoplasmic membrane and subsequent efflux of intracellular components result in the inactivation of the Gram-negative bacteria.

  19. Supercritical carbon dioxide treatment as a method for polymorph preparation of deoxycholic acid.

    PubMed

    Tozuka, Yuichi; Kawada, Dai; Oguchi, Toshio; Yamamoto, Keiji

    2003-09-16

    A new polymorph of deoxycholic acid (DCA) was formed by using a supercritical carbon dioxide treatment. Deoxycholic acid crystals were stored in a pressure vessel purged with carbon dioxide at 12MPa, 60 degrees C for definite intervals. After storage for 1h in supercritical carbon dioxide (SC-CO2), new X-ray diffraction (XRD) peaks, not found in the bulk DCA crystal, were observed at 2theta = 7.4 degrees, 9.7 degrees and 14.0 degrees. The intensities of the new diffraction peaks increased with an increase in storage time, whereas the intensities of the diffraction peaks due to bulk DCA crystal decreased. On the DSC curves, the crystals obtained showed an exothermic peak at around 155 degrees C followed by the melting peak of bulk DCA crystal at 175 degrees C. By the temperature-controlled powder XRD measurement, the crystals obtained were found to be a metastable form of DCA. The polymorphs of DCA have not been reported; therefore, the SC-CO2 treatment would be a peculiar method to obtain a DCA polymorph.

  20. Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and chlorine and UV disinfection to remove microorganisms from municipal wastewaters.

    PubMed

    Francy, Donna S; Stelzer, Erin A; Bushon, Rebecca N; Brady, Amie M G; Williston, Ashley G; Riddell, Kimberly R; Borchardt, Mark A; Spencer, Susan K; Gellner, Terry M

    2012-09-01

    Log removals of bacterial indicators, coliphage, and enteric viruses were studied in three membrane bioreactor (MBR) activated-sludge and two conventional secondary activated-sludge municipal wastewater treatment plants during three recreational seasons (May-Oct.) when disinfection of effluents is required. In total, 73 regular samples were collected from key locations throughout treatment processes: post-preliminary, post-MBR, post-secondary, post-tertiary, and post-disinfection (UV or chlorine). Out of 19 post-preliminary samples, adenovirus by quantitative polymerase chain reaction (qPCR) was detected in all 19, enterovirus by quantitative reverse transcription polymerase chain reaction (qRT-PCR) was detected in 15, and norovirus GI by qRT-PCR was detected in 11. Norovirus GII and Hepatitis A virus were not detected in any samples, and rotavirus was detected in one sample but could not be quantified. Although culturable viruses were found in 12 out of 19 post-preliminary samples, they were not detected in any post-secondary, post-MBR, post-ultraviolet, or post-chlorine samples. Median log removals for all organisms were higher for MBR secondary treatment (3.02 to >6.73) than for conventional secondary (1.53-4.19) treatment. Ultraviolet disinfection after MBR treatment provided little additional log removal of any organism except for somatic coliphage (>2.18), whereas ultraviolet or chlorine disinfection after conventional secondary treatment provided significant log removals (above the analytical variability) of all bacterial indicators (1.18-3.89) and somatic and F-specific coliphage (0.71 and >2.98). Median log removals of adenovirus across disinfection were low in both MBR and conventional secondary plants (no removal detected and 0.24), and few removals of individual samples were near or above the analytical variability of 1.2 log genomic copies per liter. Based on qualitative examinations of plots showing reductions of organisms throughout treatment

  1. Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and chlorine and UV disinfection to remove microorganisms from municipal wastewaters

    USGS Publications Warehouse

    Francy, Donna S.; Erin, A. Stelzer; Bushon, Rebecca N.; Brady, Amie M.G.; Williston, Ashley G.; Riddell, Kimberly R.; Borchardt, Mark A.; Spencer, Susan K.; Gellner, Terry M.

    2012-01-01

    Log removals of bacterial indicators, coliphage, and enteric viruses were studied in three membrane bioreactor (MBR) activated-sludge and two conventional secondary activated-sludge municipal wastewater treatment plants during three recreational seasons (May-Oct.) when disinfection of effluents is required. In total, 73 regular samples were collected from key locations throughout treatment processes: post-preliminary, post-MBR, post-secondary, post-tertiary, and post-disinfection (UV or chlorine). Out of 19 post-preliminary samples, adenovirus by quantitative polymerase chain reaction (qPCR) was detected in all 19, enterovirus by quantitative reverse transcription polymerase chain reaction (qRT-PCR) was detected in 15, and norovirus GI by qRT-PCR was detected in 11. Norovirus GII and Hepatitis A virus were not detected in any samples, and rotavirus was detected in one sample but could not be quantified. Although culturable viruses were found in 12 out of 19 post-preliminary samples, they were not detected in any post-secondary, post-MBR, post-ultraviolet, or post-chlorine samples. Median log removals for all organisms were higher for MBR secondary treatment (3.02 to >6.73) than for conventional secondary (1.53-4.19) treatment. Ultraviolet disinfection after MBR treatment provided little additional log removal of any organism except for somatic coliphage (>2.18), whereas ultraviolet or chlorine disinfection after conventional secondary treatment provided significant log removals (above the analytical variability) of all bacterial indicators (1.18-3.89) and somatic and F-specific coliphage (0.71 and >2.98). Median log removals of adenovirus across disinfection were low in both MBR and conventional secondary plants (no removal detected and 0.24), and few removals of individual samples were near or above the analytical variability of 1.2 log genomic copies per liter. Based on qualitative examinations of plots showing reductions of organisms throughout treatment

  2. Effect of chlorine treatment on inhibition of E. coli serogroup O2 incorporation into 7-day-old biofilm on polyvinylchloride surface.

    PubMed

    Maharjan, P; Dey, S; Huff, G; Zhang, W; Phillips, G K; Watkins, S

    2017-08-01

    Poultry waterlines are constructed using polyvinylchloride (PVC) material on which bacterial biofilm can easily form. Biofilm can harbor pathogens including avian pathogenic E. coli (APEC) strains. An in vitro evaluation was performed to determine if E. coli sero group O2 (avian pathogenic) could attach on a PVC surface that had pre-formed biofilm and if this phenomenon could be affected when water was treated with chlorine. Initially, biofilm growth was induced in PVC test coupons (15.16 cm2) for a 7-day period mimicking the waterline scenario in the first wk of poultry brooding; and then this biofilm was challenged with E. coli O2 seeded water in presence/absence of chlorine treatment. After rinsing, test coupons were sampled for bacterial (APC) and E. coli O2 enumeration at various occasions post seeding the pathogen and chlorine treatment. Day 7 APC recovered from coupons was 4.35 log10 cfu/cm2 in trial 1 and 3.66 log10 cfu/cm2 in trial 2. E. coli O2 was not recovered from chlorine treated test coupons (P < 0.05), whereas it was retrieved from untreated coupons (untreated contained > 3 log10 cfu/cm2 in trial 1 and > 2 log10 cfu/cm2 in trial 2). This study suggests that E. coli O2 can incorporate into pre-formed biofilm on a PVC surface within 24 h if water sanitation is not present, and the attachment time of the pathogen can prolong in the absence of already formed biofilm. © 2017 Poultry Science Association Inc.

  3. Management of chlorine gas-related injuries from the Graniteville, South Carolina, train derailment.

    PubMed

    Mackie, Emily; Svendsen, Erik; Grant, Stephen; Michels, Jill E; Richardson, William H

    2014-10-01

    A widely produced chemical, chlorine is used in various industries including automotive, electronics, disinfectants, metal production, and many others. Chlorine is usually produced and transported as a pressurized liquid; however, as a gas it is a significant pulmonary irritant. Thousands of people are exposed to chlorine gas every year, and while large-scale exposures are uncommon, they are not rare. Symptoms are usually related to the concentration and length of exposure, and although treatment is largely supportive, certain specific therapies have yet to be validated with randomized controlled trials. The majority of those exposed completely recover with supportive care; however, studies have shown the potential for persistent inflammation and chronic hyperreactivity. This case report describes an incident that occurred in Graniteville, South Carolina, when a train derailment exposed hundreds of people to chlorine gas. This report reviews the events of January 6, 2005, and the current treatment options for chlorine gas exposure.(Disaster Med Public Health Preparedness. 2014;0:1-6).

  4. Inhibition of Chlorine-Induced Lung Injury by the Type 4 Phosphodiesterase Inhibitor Rolipram

    PubMed Central

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F.; Rando, Roy J.; Pathak, Yashwant V.; Hoyle, Gary W.

    2012-01-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. PMID:22763362

  5. State of the art on cyanotoxins in water and their behaviour towards chlorine.

    PubMed

    Merel, Sylvain; Clément, Michel; Thomas, Olivier

    2010-04-01

    The occurrence of cyanobacterial blooms is drastically increasing in temperate countries and drinking water resources are threatened. As a result, cyanotoxins should be considered in water treatment to protect human health. This study presents a state of the art on cyanotoxins in water and their behaviour towards chlorination, a common drinking water disinfection process. Chlorination efficiency on cyanotoxins alteration depends on pH, chlorine dose and oxidant nature. Microcystins and cylindrospermopsin are efficiently transformed by chlorine, with respectively 6 and 2 by-products identified. In addition, chlorination of microcystins and cylindrospermopsin is associated with a loss of acute toxicity. Even though they have been less investigated, saxitoxins and nodularins are also altered by chlorine. For these toxins, no by-products have been identified, but the chlorinated mixture does not show acute toxicity. On the contrary, the fact that anatoxin-a has a very slow reaction kinetics suggests that this toxin resists chlorination. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Online analysis of chlorine stable isotopes in chlorinated ethylenes: an inter-laboratory study

    NASA Astrophysics Data System (ADS)

    Bernstein, Anat; Shouakar-Stash, Orfan; Hunkeler, Daniel; Sakaguchi-Söder, Kaori; Laskov, Christine; Aravena, Ramon; Elsner, Martin

    2010-05-01

    In the last decade, compound-specific stable isotopes analysis of groundwater pollutants became an important tool to identify different sources of the same pollutant and for tracking natural attenuating processes in the sub-surface. It has been shown that trends in the isotopic composition of the target compounds can shed light on in-situ processes that are otherwise difficult to track. Analytical methods of carbon, nitrogen and hydrogen were established and are by now frequently used for a variety of organic pollutants. Yet, the motivation of introducing analytical methods for new isotopes is emerging. This motivation is further enhanced, as advantages of using two or more stable isotopes for gaining better insight on degradation pathways are well accepted. One important element which demands the development of appropriate analytical methods is chlorine, which is found in various groups of organic pollutants, among them the chlorinated ethylenes. Chlorinated ethylenes are considered as high priority environmental pollutants, and the development of suitable chlorine isotope methods for this group of pollutants is highly desired. Ideally, stable isotope techniques should have the capability to determine the isotopic composition of and individual target compound in a non-pure mixture, without the requirement of a laborious off-line treatment. Indeed, in the last years two different concepts for on-line chlorine isotope analysis methods were introduced, by using either a standard quadrapole GC/MS (Sakaguchi-Söder et al., 2007) or by using a GC/IRMS (Shouakar-Stash et al., 2006). We present a comparison of the performances of two concepts, carried out in five different laboratories: Waterloo (GC/IRMS), Neuchâtel (GC/MS), Darmstadt (GC/MS), Tübingen (GC/MS) and Munich (GC/IRMS). This comparison was performed on pure trichloroethylene and dichloroethylene products of different manufactures, as well as trichloroethylene and dichloroethylene samples that were exposed to

  7. Inactivation, reactivation and regrowth of indigenous bacteria in reclaimed water after chlorine disinfection of a municipal wastewater treatment plant.

    PubMed

    Li, Dan; Zeng, Siyu; Gu, April Z; He, Miao; Shi, Hanchang

    2013-07-01

    Disinfection of reclaimed water prior to reuse is important to prevent the transmission of pathogens. Chlorine is a widely utilized disinfectant and as such is a leading contender for disinfection of reclaimed water. To understand the risks of chlorination resulting from the potential selection of pathogenic bacteria, the inactivation, reactivation and regrowth rates of indigenous bacteria were investigated in reclaimed water after chlorine disinfection. Inactivation of total coliforms, Enterococcus and Salmonella showed linear correlations, with constants of 0.1384, 0.1624 and 0.057 L/(mg.min) and R2 of 0.7617, 0.8316 and 0.845, respectively. However, inactivation of total viable cells by measurement of metabolic activity typically showed a linear correlation at lower chlorine dose (0-22 (mg-min)/L), and a trailing region with chlorine dose increasing from 22 to 69 (mg.min)/L. Reactivation and regrowth of bacteria were most likely to occur after exposure to lower chlorine doses, and extents of reactivation decreased gradually with increasing chlorine dose. In contrast to total coliforms and Enterococcus, Salmonella had a high level of regrowth and reactivation, and still had 2% regrowth even after chlorination of 69 (mg.min)/L and 24 hr storage. The bacterial compositions were also significantly altered by chlorination and storage of reclaimed water, and the ratio of Salmonella was significantly increased from 0.001% to 0.045% after chlorination of 69 (mg.min)/L and 24 hr storage. These trends indicated that chlorination contributes to the selection of chlorine-resistant pathogenic bacteria, and regrowth of pathogenic bacteria after chlorination in reclaimed water with a long retention time could threaten public health security during wastewater reuse.

  8. Two-step chlorination: A new approach to disinfection of a primary sewage effluent.

    PubMed

    Li, Yu; Yang, Mengting; Zhang, Xiangru; Jiang, Jingyi; Liu, Jiaqi; Yau, Cie Fu; Graham, Nigel J D; Li, Xiaoyan

    2017-01-01

    Sewage disinfection aims at inactivating pathogenic microorganisms and preventing the transmission of waterborne diseases. Chlorination is extensively applied for disinfecting sewage effluents. The objective of achieving a disinfection goal and reducing disinfectant consumption and operational costs remains a challenge in sewage treatment. In this study, we have demonstrated that, for the same chlorine dosage, a two-step addition of chlorine (two-step chlorination) was significantly more efficient in disinfecting a primary sewage effluent than a one-step addition of chlorine (one-step chlorination), and shown how the two-step chlorination was optimized with respect to time interval and dosage ratio. Two-step chlorination of the sewage effluent attained its highest disinfection efficiency at a time interval of 19 s and a dosage ratio of 5:1. Compared to one-step chlorination, two-step chlorination enhanced the disinfection efficiency by up to 0.81- or even 1.02-log for two different chlorine doses and contact times. An empirical relationship involving disinfection efficiency, time interval and dosage ratio was obtained by best fitting. Mechanisms (including a higher overall Ct value, an intensive synergistic effect, and a shorter recovery time) were proposed for the higher disinfection efficiency of two-step chlorination in the sewage effluent disinfection. Annual chlorine consumption costs in one-step and two-step chlorination of the primary sewage effluent were estimated. Compared to one-step chlorination, two-step chlorination reduced the cost by up to 16.7%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of the Safe Drinking Water Act Amendments of 1986 on Army Fixed Installation Water Treatment Plants

    DTIC Science & Technology

    1992-06-01

    Parathion degradation product Chloramines Bromacil (4>-Nitrophenol) Chlorate Cyanazine Prometon Chlorine Cryomazine 2,4,5- T Chlorine Dioxide DCPA (and...value is the residual disinfectant concentration. T is the disinfectant contact time. Explanations of how C and T are calculated are included in Appendix...each chlorine residual disinfectant concentration sampling point. c) Disinfectant Contact Time. The disinfectant contact time ( T ) must be determined

  10. Removal of Emerging Contaminants and Estrogenic Activity from Wastewater Treatment Plant Effluent with UV/Chlorine and UV/H2O2 Advanced Oxidation Treatment at Pilot Scale

    PubMed Central

    Kuch, Bertram; Lange, Claudia; Richter, Philipp; Kugele, Amélie; Minke, Ralf

    2018-01-01

    Effluent of a municipal wastewater treatment plant (WWTP) was treated on-site with the UV/chlorine (UV/HOCl) advanced oxidation process (AOP) using a pilot plant equipped with a medium pressure UV lamp with an adjustable performance of up to 1 kW. Results obtained from parallel experiments with the same pilot plant, where the state of the art UV/H2O2 AOP was applied, were compared regarding the removal of emerging contaminants (EC) and the formation of adsorbable organohalogens (AOX). Furthermore, the total estrogenic activity was measured in samples treated with the UV/chlorine AOP. At an energy consumption of 0.4 kWh/m3 (0.4 kW, 1 m3/h) and in a range of oxidant concentrations from 1 to 6 mg/L, the UV/chlorine AOP had a significantly higher EC removal yield than the UV/H2O2 AOP. With free available chlorine concentrations (FAC) in the UV chamber influent of at least 5 mg/L (11 mg/L of dosed Cl2), the total estrogenic activity could be reduced by at least 97%. To achieve a certain concentration of FAC in the UV chamber influent, double to triple the amount of dosed Cl2 was needed, resulting in AOX concentrations of up to 520 µg/L. PMID:29735959

  11. Resistance and Inactivation Kinetics of Bacterial Strains Isolated from the Non-Chlorinated and Chlorinated Effluents of a WWTP

    PubMed Central

    Martínez-Hernández, Sylvia; Vázquez-Rodríguez, Gabriela A.; Beltrán-Hernández, Rosa I.; Prieto-García, Francisco; Miranda-López, José M.; Franco-Abuín, Carlos M.; Álvarez-Hernández, Alejandro; Iturbe, Ulises; Coronel-Olivares, Claudia

    2013-01-01

    The microbiological quality of water from a wastewater treatment plant that uses sodium hypochlorite as a disinfectant was assessed. Mesophilic aerobic bacteria were not removed efficiently. This fact allowed for the isolation of several bacterial strains from the effluents. Molecular identification indicated that the strains were related to Aeromonas hydrophila, Escherichia coli (three strains), Enterobacter cloacae, Kluyvera cryocrescens (three strains), Kluyvera intermedia, Citrobacter freundii (two strains), Bacillus sp. and Enterobacter sp. The first five strains, which were isolated from the non-chlorinated effluent, were used to test resistance to chlorine disinfection using three sets of variables: disinfectant concentration (8, 20 and 30 mg·L−1), contact time (0, 15 and 30 min) and water temperature (20, 25 and 30 °C). The results demonstrated that the strains have independent responses to experimental conditions and that the most efficient treatment was an 8 mg·L−1 dose of disinfectant at a temperature of 20 °C for 30 min. The other eight strains, which were isolated from the chlorinated effluent, were used to analyze inactivation kinetics using the disinfectant at a dose of 15 mg·L−1 with various retention times (0, 10, 20, 30, 60 and 90 min). The results indicated that during the inactivation process, there was no relationship between removal percentage and retention time and that the strains have no common response to the treatments. PMID:23924881

  12. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram.

    PubMed

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F; Rando, Roy J; Pathak, Yashwant V; Hoyle, Gary W

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228-270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Mechanistic Aspects of Adenovirus Serotype 2 Inactivation with Free Chlorine ▿ †

    PubMed Central

    Page, Martin A.; Shisler, Joanna L.; Mariñas, Benito J.

    2010-01-01

    Free chlorine is an effective disinfectant for controlling adenoviruses in drinking water, but little is known about the underlying inactivation mechanisms. The objective of this study was to elucidate the molecular components of adenovirus type 2 (Ad2) targeted by free chlorine during the inactivation process. The effects of free chlorine treatment on several Ad2 molecular components and associated life cycle events were compared to its effect on the ability of adenovirus to complete its life cycle, i.e., viability. Free chlorine treatment of Ad2 virions did not impair their ability to interact with monoclonal antibodies specific for hexon and fiber proteins of the Ad2 capsid, as measured by enzyme-linked immunosorbent assays, nor did it impair their interaction with recombinant, purified Coxsackie-adenovirus receptor (CAR) proteins in vitro. Free chlorine-treated Ad2 virions also retained their ability to bind to CAR receptors on A549 cell monolayers, despite being unable to form plaques, suggesting that free chlorine inactivates Ad2 by inhibiting a postbinding event of the Ad2 life cycle. DNA isolated from Ad2 virions that had been inactivated by free chlorine was able to be amplified by PCR, indicating that genome damage was not the cause of inactivation. However, inactivated Ad2 virions were unable to express E1A viral proteins during infection of A549 host cells, as measured by using immunoblotting. Collectively, these results indicate that free chlorine inactivates adenovirus by damaging proteins that govern life cycle processes occurring after host cell attachment, such as endocytosis, endosomal lysis, or nuclear delivery. PMID:20305026

  14. Evaluating potential chlorinated methanes degradation mechanisms and treatments in interception trenches filled with concrete-based construction wastes

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernandez, Diana; Torrentó, Clara; Rosell, Mònica; Audí-Miró, Carme; Soler, Albert

    2014-05-01

    conditions in the trenches with in situ chemical oxidation (ISCO), which would be able to remove the rest of the accompanying pollutants, is proposed and merits evaluation. Preliminary batch experiments were performed to evaluate the feasibility of different chemical oxidation reactions (permanganate, persulphate, hydrogen peroxide and Fenton) on the complex contaminated recharge water which were, in general, more effective for degrading the chlorinated ethenes than for the chlorinated methanes (Torrentó et al. EGU 2012). Therefore, this study seeks to improve the understanding of CF and CT degradation mechanisms/processes that are going on in the interception trenches as well as to select between the two most effective chemical oxidation remediation treatments (persulphate and permanganate) taking into account their efficiency respect the chlorinated methanes removal, the generated acute toxicity and the applicability of the carbon isotopic fractionation as an indicator of the effectiveness of the future in situ remediation. Additionally, ongoing batch experiments are expected to elucidate if CT is undergoing abiotic reductive dechlorination by Fe-bearing minerals such as hydrophobic green rust (Ayala-Luis et al., 2012) which transform CT into non-chlorinated substances such as formic acid and carbon monoxide. This unstable iron compound might be formed in the interception trenches during chloride induced corrosion of iron mineral phases present in the concrete-based construction wastes (Sagoe-Crentsil and Glasser, 1993). The role of other minerals like iron oxy-hydroxides, carbonates or sulphides cannot be discarded at all. The potential of δ13C values to assess the efficiency of this abiotic CT degradation reaction will be also evaluated. References Ayala-Luis, K.; Cooper, N.; Bender C. and Hansen. H. (2012) Efficient dechlorination of carbon tetrachloride by hydrophobic green rust intercaled with dodecanoate anions. Environmental Science & Technology 46, 3390

  15. EVALUATION OF ON-SITE CHLORINE GENERATORS FOR THE DISINFECTION OF DRINKING WATER

    EPA Science Inventory

    Public Water Systems (PWSs) routinely use various forms of chlorine as the disinfectant of choice for the treatment of drinking water. Chlorine is a popular choice because it is a very effective disinfectant, it is inexpensive, and it is widely available in various forms to suit...

  16. 40 CFR 141.65 - Maximum residual disinfectant levels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MRDL (mg/L) Chlorine 4.0 (as Cl2). Chloramines 4.0 (as Cl2). Chlorine dioxide 0.8 (as ClO2). (b... chlorine dioxide as a disinfectant or oxidant must comply with the chlorine dioxide MRDL beginning January 1, 2002. Subpart H systems serving fewer than 10,000 persons and using chlorine dioxide as a...

  17. Temperature dependence and P/Ti ratio in phosphoric acid treatment of titanium dioxide and powder properties.

    PubMed

    Onoda, H; Matsukura, A

    2015-02-01

    Titanium dioxide has photocatalytic activity and is used as a white pigment for cosmetics. A certain degree of sebum on the skin is decomposed by the ultraviolet radiation in sunlight. In this work, titanium dioxide was shaken with phosphoric acid to synthesize a white pigment for cosmetics. Titanium dioxide was treated with 0.1 mol/L of phosphoric acid at various P/Ti molar ratios, and then shaken in hot water for 1 h. The chemical composition, powder properties, photocatalytic activity, colour phase, and smoothness of the obtained powder were studied. The obtained materials indicated XRD peaks of titanium dioxide, however the peaks diminished subsequent to phosphoric acid treatment. The samples included small particles with sub-micrometer size. The photocatalytic activity of the obtained powders decreased, decomposing less sebum on the skin. Samples prepared at high P/Ti ratio with high shaking temperature indicated low whiteness in in L*a*b* colour space. The shaking and heating temperature and P/Ti ratio had influence on the smoothness of the obtained materials. Phosphoric acid treatment of titanium dioxide is an effective method to inhibit photocatalytic activity for a white pigment. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. EVALUATION OF CHEMICALS USED FOR DRINKING WATER DISINFECTION FOR PRODUCTION OF CHROMOSOMAL DAMAGE AND SPERM-HEAD ABNORMALITIES IN MICE

    EPA Science Inventory

    Chemical oxidants are commonly added during water treatment for disinfection purposes. These chemicals have not been tested previously for their ability to induce genetic damage in vivo. Chlorine (hypochlorite and hypochlorous acid), monochloramine, chlorine dioxide, sodium chlor...

  19. 40 CFR 704.45 - Chlorinated terphenyl.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Chlorinated terphenyl. 704.45 Section....45 Chlorinated terphenyl. (a) Definitions. (1) Chlorinated terphenyl means a chemical substance, CAS No. 61788-33-6, comprised of chlorinated ortho-, meta-, and paraterphenyl. (2) Extent of chlorination...

  20. Three-step effluent chlorination increases disinfection efficiency and reduces DBP formation and toxicity.

    PubMed

    Li, Yu; Zhang, Xiangru; Yang, Mengting; Liu, Jiaqi; Li, Wanxin; Graham, Nigel J D; Li, Xiaoyan; Yang, Bo

    2017-02-01

    Chlorination is extensively applied for disinfecting sewage effluents, but it unintentionally generates disinfection byproducts (DBPs). Using seawater for toilet flushing introduces a high level of bromide into domestic sewage. Chlorination of sewage effluent rich in bromide causes the formation of brominated DBPs. The objectives of achieving a disinfection goal, reducing disinfectant consumption and operational costs, as well as diminishing adverse effects to aquatic organisms in receiving water body remain a challenge in sewage treatment. In this study, we have demonstrated that, with the same total chlorine dosage, a three-step chlorination (dosing chlorine by splitting it into three equal portions with a 5-min time interval for each portion) was significantly more efficient in disinfecting a primary saline sewage effluent than a one-step chlorination (dosing chlorine at one time). Compared to one-step chlorination, three-step chlorination enhanced the disinfection efficiency by up to 0.73-log reduction of Escherichia coli. The overall DBP formation resulting from one-step and three-step chlorination was quantified by total organic halogen measurement. Compared to one-step chlorination, the DBP formation in three-step chlorination was decreased by up to 23.4%. The comparative toxicity of one-step and three-step chlorination was evaluated in terms of the development of embryo-larva of a marine polychaete Platynereis dumerilii. The results revealed that the primary sewage effluent with three-step chlorination was less toxic than that with one-step chlorination, indicating that three-step chlorination could reduce the potential adverse effects of disinfected sewage effluents to aquatic organisms in the receiving marine water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Chlorine disinfection of grey water for reuse: effect of organics and particles.

    PubMed

    Winward, Gideon P; Avery, Lisa M; Stephenson, Tom; Jefferson, Bruce

    2008-01-01

    Adequate disinfection of grey water prior to reuse is important to prevent the potential transmission of disease-causing microorganisms. Chlorine is a widely utilised disinfectant and as such is a leading contender for disinfection of grey water intended for reuse. This study examined the impact of organics and particles on chlorine disinfection of grey water, measured by total coliform inactivation. The efficacy of disinfection was most closely linked with particle size. Larger particles shielded total coliforms from inactivation and disinfection efficacy decreased with increasing particle size. Blending to extract particle-associated coliforms (PACs) following chlorine disinfection revealed that up to 91% of total coliforms in chlorinated grey water were particle associated. The organic concentration of grey water affected chlorine demand but did not influence the disinfection resistance of total coliforms when a free chlorine residual was maintained. Implications for urban water reuse are discussed and it is recommended that grey water treatment systems target suspended solids removal to ensure removal of PACs prior to disinfection.

  2. Oxidation of fluoroquinolone antibiotics and structurally related amines by chlorine dioxide: Reaction kinetics, product and pathway evaluation.

    PubMed

    Wang, Pei; He, Yi-Liang; Huang, Ching-Hua

    2010-12-01

    Fluoroquinolones (FQs) are a group of widely prescribed antibiotics and have been frequently detected in the aquatic environment. The reaction kinetics and transformation of seven FQs (ciprofloxacin (CIP), enrofloxacin (ENR), norfloxacin (NOR), ofloxacin (OFL), lomefloxacin (LOM), pipemidic acid (PIP) and flumequine (FLU)) and three structurally related amines (1-phenylpiperazine (PP), N-phenylmorpholine (PM) and 4-phenylpiperidine (PD)) toward chlorine dioxide (ClO(2)) were investigated to elucidate the behavior of FQs during ClO(2) disinfection processes. The reaction kinetics are highly pH-dependent, can be well described by a second-order kinetic model incorporating speciation of FQs, and follow the trend of OFL > ENR > CIP ∼ NOR ∼ LOM > > PIP in reactivity. Comparison among FQs and related amines and product characterization indicate that FQs' piperazine ring is the primary reactive center toward ClO(2). ClO(2) likely attacks FQ's piperazinyl N4 atom followed by concerted fragmentation involving piperazinyl N1 atom, leading to dealkylation, hydroxylation and intramolecular ring closure at the piperazine moiety. While FQs with tertiary N4 react faster with ClO(2) than FQs with secondary N4, the overall reactivity of the piperazine moiety also depends strongly on the quinolone ring through electronic effects. The reaction rate constants obtained in clean water matrix can be used to model the decay of CIP by ClO(2) in surface water samples, but overestimate the decay in wastewater samples. Overall, transformation of FQs, particularly for those with tertiary N4 amines, could be expected under typical ClO(2) disinfection conditions. However, the transformation may not eliminate antibacterial activity because of little destruction at the quinolone ring. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. DBP formation from degradation of DEET and ibuprofen by UV/chlorine process and subsequent post-chlorination.

    PubMed

    Aghdam, Ehsan; Xiang, Yingying; Sun, Jianliang; Shang, Chii; Yang, Xin; Fang, Jingyun

    2017-08-01

    The formation of disinfection by-products (DBPs) from the degradation of N,N-diethyl-3-methyl benzoyl amide (DEET) and ibuprofen (IBP) by the ultraviolet irradiation (UV)/chlorine process and subsequent post-chlorination was investigated and compared with the UV/H 2 O 2 process. The pseudo first-order rate constants of the degradation of DEET and IBP by the UV/chlorine process were 2 and 3.1 times higher than those by the UV/H 2 O 2 process, respectively, under the tested conditions. This was due to the significant contributions of both reactive chlorine species (RCS) and hydroxyl radicals (HO) in the UV/chlorine process. Trichloromethane, 1,1,1-trichloro-2-propanone and dichloroacetic acid were the major known DBPs formed after 90% of both DEET and IBP that were degraded by the UV/chlorine process. Their yields increased by over 50% after subsequent 1-day post-chlorination. The detected DBPs after the degradation of DEET and IBP comprised 13.5% and 19.8% of total organic chlorine (TOCl), respectively, and the proportions increased to 19.8% and 33.9% after subsequent chlorination, respectively. In comparison to the UV/H 2 O 2 process accompanied with post-chlorination, the formation of DBPs and TOCl in the UV/chlorine process together with post-chlorination was 5%-63% higher, likely due to the generation of more DBP precursors from the attack of RCS, in addition to HO. Copyright © 2017. Published by Elsevier B.V.

  4. Short-term toxicity study in rats of chlorinated cake flour.

    PubMed

    Fisher, N; Berry, R; Hardy, J

    1983-08-01

    Male and female Wistar rats were fed for 28 days on a diet containing either chlorinated (1257 or 2506 ppm chlorine) or unchlorinated flour. No significant differences between groups in body weight were observed in the males. A significant inverse correlation between body weight and treatment level, attributable to a corresponding trend in food intakes, was found for the females only. No significant differences between absolute organ weights were found, but when the weights were adjusted for covariance with body weight, dose-related increases in kidney weight (males) and liver weight (both sexes) were found. Histopathological examination revealed no pathological tissue changes attributable to the chlorination of the flour.

  5. Chlorine isn't Just for Swimming Pools Anymore... Chlorination of Organic Compounds in the Arctic

    NASA Astrophysics Data System (ADS)

    Han, A.; Raab, T. K.

    2013-12-01

    The cycling of chlorine between its organic and inorganic forms is known to occur in forest soils, but little is known about the generality of this mechanism, which soil components chlorine attaches to, and at what rate chlorination occurs. The study uses peat-rich tundra soils from Barrow, Alaska varying in age since formation of 50 yrs - 5500 yrs BP, and seeks to measure the rate at which organic molecules are chlorinated and to understand what changes those molecules undergo once chlorinated. Soil abundance of chlorine and bromine was estimated in soils of varying age using X-ray fluorescence, and org-Cl levels were measured using pyro-hydrolysis [Table 1]. We considered activity of the enzyme Chloroperoxidase, and data was gathered using absorbance scans of the organic molecule monochlorodimedone to determine whether it had been chlorinated and if so, at what rate. Additional information was gathered from the chlorination of small organic components of the macromolecule lignin, whose constituent molecules make up a large portion of humic materials critical to soil health, through emission scans and fluorescence scans. The results showed that the enzyme chloroperoxidase, which is found in nature and is associated with fungi or bacteria, attaches a chlorine atom to monochlorodimedone and that similar enzymes found in Arctic soils act on it, as well as the lignin model subunits cinnamaldehyde ((2E)-3-phenylprop-2-enal) and naringenin-7-rhamnoglucoside. The results may provide more information on chlorination rates in the Arctic and may contribute to an understanding of how and at what rate chlorine changes form in nature, and answer questions about ozone deterioration or anthropogenic chlorine impact(s) on the environment.Average Halogen Abundance in Arctic Soils xrf=Energy Dispersive X-Ray Fluorescencepyro= TOX Pyro-Hydrolysis

  6. Sarcoendoplasmic reticulum Ca(2+) ATPase. A critical target in chlorine inhalation-induced cardiotoxicity.

    PubMed

    Ahmad, Shama; Ahmad, Aftab; Hendry-Hofer, Tara B; Loader, Joan E; Claycomb, William C; Mozziconacci, Olivier; Schöneich, Christian; Reisdorph, Nichole; Powell, Roger L; Chandler, Joshua D; Day, Brian J; Veress, Livia A; White, Carl W

    2015-04-01

    Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation-induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration-approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia-reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure.

  7. Functional genomics of chlorine-induced acute lung injury in mice.

    PubMed

    Leikauf, George D; Pope-Varsalona, Hannah; Concel, Vincent J; Liu, Pengyuan; Bein, Kiflai; Brant, Kelly A; Dopico, Richard A; Di, Y Peter; Jang, An-Soo; Dietsch, Maggie; Medvedovic, Mario; Li, Qian; Vuga, Louis J; Kaminski, Naftali; You, Ming; Prows, Daniel R

    2010-07-01

    Acute lung injury can be induced indirectly (e.g., sepsis) or directly (e.g., chlorine inhalation). Because treatment is still limited to supportive measures, mortality remains high ( approximately 74,500 deaths/yr). In the past, accidental (railroad derailments) and intentional (Iraq terrorism) chlorine exposures have led to deaths and hospitalizations from acute lung injury. To better understand the molecular events controlling chlorine-induced acute lung injury, we have developed a functional genomics approach using inbred mice strains. Various mouse strains were exposed to chlorine (45 ppm x 24 h) and survival was monitored. The most divergent strains varied by more than threefold in mean survival time, supporting the likelihood of an underlying genetic basis of susceptibility. These divergent strains are excellent models for additional genetic analysis to identify critical candidate genes controlling chlorine-induced acute lung injury. Gene-targeted mice then could be used to test the functional significance of susceptibility candidate genes, which could be valuable in revealing novel insights into the biology of acute lung injury.

  8. Characterization of halogenated DBPs and identification of new DBPs trihalomethanols in chlorine dioxide treated drinking water with multiple extractions.

    PubMed

    Han, Jiarui; Zhang, Xiangru; Liu, Jiaqi; Zhu, Xiaohu; Gong, Tingting

    2017-08-01

    Chlorine dioxide (ClO 2 ) is a widely used alternative disinfectant due to its high biocidal efficiency and low-level formation of trihalomethanes and haloacetic acids. A major portion of total organic halogen (TOX), a collective parameter for all halogenated DBPs, formed in ClO 2 -treated drinking water is still unknown. A commonly used pretreatment method for analyzing halogenated DBPs in drinking water is one-time liquid-liquid extraction (LLE), which may lead to a substantial loss of DBPs prior to analysis. In this study, characterization and identification of polar halogenated DBPs in a ClO 2 -treated drinking water sample were conducted by pretreating the sample with multiple extractions. Compared to one-time LLE, the combined four-time LLEs improved the recovery of TOX by 2.3 times. The developmental toxicity of the drinking water sample pretreated with the combined four-time LLEs was 1.67 times higher than that pretreated with one-time LLE. With the aid of ultra-performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, a new group of polar halogenated DBPs, trihalomethanols, were detected in the drinking water sample pretreated with multiple extractions; two of them, trichloromethanol and bromodichloromethanol, were identified with synthesized standard compounds. Moreover, these trihalomethanols were found to be the transformation products of trihalomethanes formed during ClO 2 disinfection. The results indicate that multiple LLEs can significantly improve extraction efficiencies of polar halogenated DBPs and is a better pretreatment method for characterizing and identifying new polar halogenated DBPs in drinking water. Copyright © 2017. Published by Elsevier B.V.

  9. Degradation of lipid regulators by the UV/chlorine process: Radical mechanisms, chlorine oxide radical (ClO•)-mediated transformation pathways and toxicity changes.

    PubMed

    Kong, Xiujuan; Wu, Zihao; Ren, Ziran; Guo, Kaiheng; Hou, Shaodong; Hua, Zhechao; Li, Xuchun; Fang, Jingyun

    2018-06-15

    Degradation of three lipid regulators, i.e., gemfibrozil, bezafibrate and clofibric acid, by a UV/chlorine treatment was systematically investigated. The chlorine oxide radical (ClO • ) played an important role in the degradation of gemfibrozil and bezafibrate with second-order rate constants of 4.2 (±0.3) × 10 8  M -1  s -1 and 3.6 (±0.1) × 10 7  M -1  s -1 , respectively, whereas UV photolysis and the hydroxyl radical (HO • ) mainly contributed to the degradation of clofibric acid. The first-order rate constants (k') for the degradation of gemfibrozil and bezafibrate increased linearly with increasing chlorine dosage, primarily due to the linear increase in the ClO • concentration. The k' values for gemfibrozil, bezafibrate, and clofibric acid degradation decreased with increasing pH from 5.0 to 8.4; however, the contribution of the reactive chlorine species (RCS) increased. Degradation of gemfibrozil and bezafibrate was enhanced in the presence of Br - , whereas it was inhibited in the presence of natural organic matter (NOM). The presence of ammonia at a chlorine: ammonia molar ratio of 1:1 resulted in decreases in the k' values for gemfibrozil and bezafibrate of 69.7% and 7%, respectively, but led to an increase in that for clofibric acid of 61.8%. Degradation of gemfibrozil by ClO • was initiated by hydroxylation and chlorine substitution on the benzene ring. Then, subsequent hydroxylation, bond cleavage and chlorination reactions led to the formation of more stable products. Three chlorinated intermediates were identified during ClO • oxidation process. Formation of the chlorinated disinfection by-products chloral hydrate and 1,1,1-trichloropropanone was enhanced relative to that of other by-products. The acute toxicity of gemfibrozil to Vibrio fischeri increased significantly when subjected to direct UV photolysis, whereas it decreased when oxidized by ClO • . This study is the first to report the transformation pathway of a

  10. Influence of Ammonium Ions, Organic Load and Flow Rate on the UV/Chlorine AOP Applied to Effluent of a Wastewater Treatment Plant at Pilot Scale.

    PubMed

    Rott, Eduard; Kuch, Bertram; Lange, Claudia; Richter, Philipp; Minke, Ralf

    2018-06-16

    This work investigates the influence of ammonium ions and the organic load (chemical oxygen demand (COD)) on the UV/chlorine AOP regarding the maintenance of free available chlorine (FAC) and elimination of 16 emerging contaminants (ECs) from wastewater treatment plant effluent (WWTE) at pilot scale (UV chamber at 0.4 kW). COD inhibited the FAC maintenance in the UV chamber influent at a ratio of 0.16 mg FAC per mg COD ( k HOCl⁻COD = 182 M −1 s −1 ). An increase in ammonium ion concentration led to a stoichiometric decrease of the FAC concentration in the UV chamber influent. Especially in cold seasons due to insufficient nitrification, the ammonium ion concentration in WWTE can become so high that it becomes impossible to achieve sufficiently high FAC concentrations in the UV chamber influent. For all ECs, the elimination effect by the UV/combined Cl₂ AOP (UV/CC) was not significantly higher than that by sole UV treatment. Accordingly, the UV/chlorine AOP is very sensitive and loses its effectiveness drastically as soon as there is no FAC but only CC in the UV chamber influent. Therefore, within the electrical energy consumption range tested (0.13⁻1 kWh/m³), a stable EC elimination performance of the UV/chlorine AOP cannot be maintained throughout the year.

  11. Biodegration of chlorinated ethenes

    USGS Publications Warehouse

    Bradley, Paul M.; Chapelle, Francis H.

    2010-01-01

    Biodegradation of chlorinated ethenes by naturally occurring or artificially enhanced processes is an important component of current site remediation strategies. At this writing, several microbial mechanisms for chlorinated ethene transformation and degradation have been identified. The purpose of this chapter is to briefly summarize the current understanding of those processes that lead to the biodegradation of chlorinated ethenes.

  12. Sequential and Simultaneous Applications of UV and Chlorine for Adenovirus Inactivation.

    PubMed

    Rattanakul, Surapong; Oguma, Kumiko; Takizawa, Satoshi

    2015-09-01

    Adenoviruses are water-borne human pathogens with high resistance to UV disinfection. Combination of UV treatment and chlorination could be an effective approach to deal with adenoviruses. In this study, human adenovirus 5 (HAdV-5) was challenged in a bench-scale experiment by separate applications of UV or chlorine and by combined applications of UV and chlorine in either a sequential or simultaneous manner. The treated samples were then propagated in human lung carcinoma epithelial cells to quantify the log inactivation of HAdV-5. When the processes were separate, a fluence of 100 mJ/cm(2) and a CT value of 0.02 mg min/L were required to achieve 2 log inactivation of HAdV-5 by UV disinfection and chlorination, respectively. Interestingly, synergistic effects on the HAdV-5 inactivation rates were found in the sequential process of chlorine followed by UV (Cl2-UV) (p < 0.05, ANCOVA) in comparison to the separate processes or the simultaneous application of UV/Cl2. This implies that a pretreatment with chlorine may increase the sensitivity of the virus to the subsequent UV disinfection. In conclusion, this study suggests that the combined application of UV and chlorine could be an effective measure against adenoviruses as a multi-barrier approach in water disinfection.

  13. Enhanced chlorine dioxide decay in the presence of metal oxides: relevance to drinking water distribution systems.

    PubMed

    Liu, Chao; von Gunten, Urs; Croué, Jean-Philippe

    2013-08-06

    Chlorine dioxide (ClO2) decay in the presence of typical metal oxides occurring in distribution systems was investigated. Metal oxides generally enhanced ClO2 decay in a second-order process via three pathways: (1) catalytic disproportionation with equimolar formation of chlorite and chlorate, (2) reaction to chlorite and oxygen, and (3) oxidation of a metal in a reduced form (e.g., cuprous oxide) to a higher oxidation state. Cupric oxide (CuO) and nickel oxide (NiO) showed significantly stronger abilities than goethite (α-FeOOH) to catalyze the ClO2 disproportionation (pathway 1), which predominated at higher initial ClO2 concentrations (56-81 μM). At lower initial ClO2 concentrations (13-31 μM), pathway 2 also contributed. The CuO-enhanced ClO2 decay is a base-assisted reaction with a third-order rate constant of 1.5 × 10(6) M(-2) s(-1) in the presence of 0.1 g L(-1) CuO at 21 ± 1 °C, which is 4-5 orders of magnitude higher than in the absence of CuO. The presence of natural organic matter (NOM) significantly enhanced the formation of chlorite and decreased the ClO2 disproportionation in the CuO-ClO2 system, probably because of a higher reactivity of CuO-activated ClO2 with NOM. Furthermore, a kinetic model was developed to simulate CuO-enhanced ClO2 decay at various pH values. Model simulations that agree well with the experimental data include a pre-equilibrium step with the rapid formation of a complex, namely, CuO-activated Cl2O4. The reaction of this complex with OH(-) is the rate-limiting and pH-dependent step for the overall reaction, producing chlorite and an intermediate that further forms chlorate and oxygen in parallel. These novel findings suggest that the possible ClO2 loss and the formation of chlorite/chlorate should be carefully considered in drinking water distribution systems containing copper pipes.

  14. Behavior, fate, and mass loading of short chain chlorinated paraffins in an advanced municipal sewage treatment plant.

    PubMed

    Zeng, Lixi; Li, Huijuan; Wang, Thanh; Gao, Yan; Xiao, Ke; Du, Yuguo; Wang, Yawei; Jiang, Guibin

    2013-01-15

    Sewage treatment plants (STP) are an important source of short chain chlorinated paraffins (SCCPs) to the ambient environment through discharge of effluent and application of sludge. In this work, a field study was conducted to determine the behavior and possible removal of SCCPs during the sewage treatment process in an advanced municipal STP in Beijing, China. SCCPs were detected in all sewage water and sludge samples, and 97% of the initial mass loading in raw sewage was found to be associated with suspended matter. The total concentrations in raw influent, tertiary effluent, and dewatered sludge were 184 ± 19 ng/L, 27 ± 6 ng/L, and 15.6 ± 1.4 μg/g dry weight (d.w.), respectively. The dissolved concentrations of total SCCPs (∑SCCPs) significantly decreased during mechanical, biological, and chemical treatments. SCCP homologue profiles in aqueous phase were distinctly different from those in solid phase. Along the treatment process, the relative abundance of shorter chain and lower chlorinated congeners gradually increased in sewage water, but no obvious variations of homologue profiles were found in sludge. Mass flow analysis indicated, the removal efficiency in aqueous phase for ∑SCCPs was 82.2%, and the congener-specific removal efficiencies were positively related to their solid-water partition coefficients (K(d)). Mass balance results indicated that 0.8% and 72.6% of the initial SCCP mass loading were ultimately found in the effluents and dewatered sludge, respectively, while the remaining 26.6% was lost mainly due to biodegradation/biotransformation. It was suggested that the activated sludge system including basic anaerobic-anoxic-aerobic processes played an effective role in removing SCCPs from the wastewater, while the sorption to sludge by hydrophobic interactions was an important fate of SCCPs during the sewage treatment.

  15. Sarcoendoplasmic Reticulum Ca2+ ATPase. A Critical Target in Chlorine Inhalation–Induced Cardiotoxicity

    PubMed Central

    Ahmad, Aftab; Hendry-Hofer, Tara B.; Loader, Joan E.; Claycomb, William C.; Mozziconacci, Olivier; Schöneich, Christian; Reisdorph, Nichole; Powell, Roger L.; Chandler, Joshua D.; Day, Brian J.; Veress, Livia A.; White, Carl W.

    2015-01-01

    Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation–induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration–approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia–reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure. PMID:25188881

  16. 40 CFR 141.132 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... discretion. (2) Chlorite. Community and nontransient noncommunity water systems using chlorine dioxide, for... samples. (ii) Reduced monitoring. Monitoring may not be reduced. (2) Chlorine dioxide—(i) Routine... three chlorine dioxide distribution system samples. If chlorine dioxide or chloramines are used to...

  17. Point-of-use chlorination of turbid water: results from a field study in Tanzania.

    PubMed

    Mohamed, Hussein; Brown, Joe; Njee, Robert M; Clasen, Thomas; Malebo, Hamisi M; Mbuligwe, Steven

    2015-06-01

    Household-based chlorine disinfection is widely effective against waterborne bacteria and viruses, and may be among the most inexpensive and accessible options for household water treatment. The microbiological effectiveness of chlorine is limited, however, by turbidity. In Tanzania, there are no guidelines on water chlorination at household level, and limited data on whether dosing guidelines for higher turbidity waters are sufficient to produce potable water. This study was designed to assess the effectiveness of chlorination across a range of turbidities found in rural water sources, following local dosing guidelines that recommend a 'double dose' for water that is visibly turbid. We chlorinated water from 43 sources representing a range of turbidities using two locally available chlorine-based disinfectants: WaterGuard and Aquatabs. We determined free available chlorine at 30 min and 24 h contact time. Our data suggest that water chlorination with WaterGuard or Aquatabs can be effective using both single and double doses up to 20 nephelometric turbidity units (NTU), or using a double dose of Aquatabs up to 100 NTU, but neither was effective at turbidities greater than 100 NTU.

  18. Effectiveness of disinfectant treatments for inactivating Piscirickettsia salmonis.

    PubMed

    Muniesa, A; Escobar-Dodero, J; Silva, N; Henríquez, P; Bustos, P; Perez, A M; Mardones, F O

    2018-03-08

    This short communication investigated in vitro differences between commercial disinfectants types (n = 36), doses of application, and time of action in the elimination of Piscirickettsia salmonis, the most important bacterium affecting farmed salmon in Chile. Seven different treatments were examined, including active and inactive chlorine dioxides, glutaraldehyde, hypochlorite disinfectants and detergents, peracetic acid, peroxides and other miscellaneous methods A 3 replicate set of each of the sample groups was stored at 20 °C and 95% relative humidity and retested after 1, 5 and 30 min with varying doses (low, recommended and high doses). Multiple comparison tests were performed for the mean log CFU/ml among different disinfectant types, dose (ppm) and time of exposure (minutes) on the reduction of P. salmonis. Overall, disinfection using peracetic acid, peroxides, and both active and inactive chlorine dioxides caused significantly higher reduction of >7.5 log CFU/ml in samples, compared to other tested sanitizers. The lowest reduction was obtained after disinfection with hypochlorite detergents. As expected, as doses and time of action increase, there was a significant reduction of the overall counts of P. salmonis. However, at lowest doses, only use of paracetic acids resulted in zero counts. Implementation of effective protocols, making use of adequate disinfectants, may enhance biosecurity, and ultimately, mitigate the impact of P. salmonis in farmed salmon. Copyright © 2018. Published by Elsevier B.V.

  19. 40 CFR 704.43 - Chlorinated naphthalenes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chlorinated naphthalenes. 704.43... § 704.43 Chlorinated naphthalenes. (a) Definitions. (1) Extent of chlorination means the percent by... means the relative amounts of each isomeric chlorinated naphthalene that composes the chemical substance...

  20. 40 CFR 704.43 - Chlorinated naphthalenes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Chlorinated naphthalenes. 704.43... § 704.43 Chlorinated naphthalenes. (a) Definitions. (1) Extent of chlorination means the percent by... means the relative amounts of each isomeric chlorinated naphthalene that composes the chemical substance...

  1. Chlorine-36 in fossil rat urine: an archive of cosmogenic nuclide deposition during the past 40,000 years.

    PubMed

    Plummer, M A; Phillips, F M; Fabryka-Martin, J; Turin, H J; Wigand, P E; Sharma, P

    1997-07-25

    Knowledge of the production history of cosmogenic nuclides, which is needed for geological and archaeological dating, has been uncertain. Measurements of chlorine-36/chlorine (36Cl/Cl) ratios in fossil packrat middens from Nevada that are radiocarbon-dated between about 38 thousand years ago (ka) and the present showed that 36Cl/Cl ratios were higher by a factor of about 2 before approximately 11 ka. This raises the possibility that cosmogenic production rates just before the close of the Pleistocene were up to 50% higher than is suggested by carbon-14 calibration data. The discrepancy could be explained by addition of low-carbon-14 carbon dioxide to the atmosphere during that period, which would have depressed atmospheric radiocarbon activity. Alternatively, climatic effects on 36Cl deposition may have enhanced the 36Cl/Cl ratios.

  2. Levels and distribution patterns of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China.

    PubMed

    Zeng, Lixi; Wang, Thanh; Ruan, Ting; Liu, Qian; Wang, Yawei; Jiang, Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are listed as persistent organic pollutant candidates in the Stockholm Convention and are receiving more and more attentions worldwide. In general, concentrations of contaminants in sewage sludge can give an important indication on their pollution levels at a local/regional basis. In this study, SCCPs were investigated in sewage sludge samples collected from 52 wastewater treatment plants in China. Concentrations of total SCCPs (ΣSCCPs) in sludge were in the range of 0.80-52.7 μg/g dry weight (dw), with a mean value of 10.7 μg/g dw. Most of SCCPs in the sludge samples showed a similar congener distribution patterns, and C(11) and Cl(7,8) were identified as the dominant carbon and chlorine congener groups. Significant linear relationships were found among different SCCP congener groups (r(2) ≥ 0.9). High concentrations of SCCPs in sewage sludge imply that SCCPs are widely present in China. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Chlorination of UO 2, PuO 2 and rare earth oxides using ZrCl 4 in LiCl-KCl eutectic melt

    NASA Astrophysics Data System (ADS)

    Sakamura, Yoshiharu; Inoue, Tadashi; Iwai, Takashi; Moriyama, Hirotake

    2005-04-01

    A new chlorination method using ZrCl 4 in a molten salt bath has been investigated for the pyrometallurgical reprocessing of nuclear fuels. ZrCl 4 has a high reactivity with oxygen but is not corrosive to refractory metals such as steel. Rare earth oxides (La 2O 3, CeO 2, Nd 2O 3 and Y 2O 3) and actinide oxides (UO 2 and PuO 2) were allowed to react with ZrCl 4 in a LiCl-KCl eutectic salt at 773 K to give a metal chloride solution and a precipitate of ZrO 2. An addition of zirconium metal as a reductant was effective in chlorinating the dioxides. When the oxides were in powder form, the reaction was observed to progress rapidly. Cyclic voltammetry provided a convenient way of establishing when the reaction was completed. It was demonstrated that the ZrCl 4 chlorination method, free from corrosive gas, was very simple and useful.

  4. Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants.

    PubMed

    Sichel, C; Garcia, C; Andre, K

    2011-12-01

    UV/chlorine (UV/HOCl and UV/ClO(2)) Advanced Oxidation Processes (AOPs) were assessed with varying process layout and compared to the state of the art UV/H(2)O(2) AOP. The process comparison focused on the economical and energy saving potential of the UV/chlorine AOP. Therefore the experiments were performed at technical scale (250 L/h continuous flow reactor) and at process energies, oxidant and model contaminant concentrations expected in full scale reference plants. As model compounds the emerging contaminants (ECs): desethylatrazine, sulfamethoxazole, carbamazepine, diclofenac, benzotriazole, tolyltriazole, iopamidole and 17α-ethinylestradiol (EE2) were degraded at initial compound concentrations of 1 μg/L in tap water and matrixes with increased organic load (46 mg/L DOC). UV/chlorine AOP organic by-product forming potential was assessed for trihalomethanes (THMs) and N-Nitrosodimethylamine (NDMA). A process design was evaluated which can considerably reduce process costs, energy consumption and by-product generation from UV/HOCl AOPs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Chlorine Disinfection of Atypical Mycobacteria Isolated from a Water Distribution System

    PubMed Central

    Le Dantec, Corinne; Duguet, Jean-Pierre; Montiel, Antoine; Dumoutier, Nadine; Dubrou, Sylvie; Vincent, Véronique

    2002-01-01

    We studied the resistance of various mycobacteria isolated from a water distribution system to chlorine. Chlorine disinfection efficiency is expressed as the coefficient of lethality (liters per minute per milligram) as follows: Mycobacterium fortuitum (0.02) > M. chelonae (0.03) > M. gordonae (0.09) > M. aurum (0.19). For a C · t value (product of the disinfectant concentration and contact time) of 60 mg · min · liter−1, frequently used in water treatment lines, chlorine disinfection inactivates over 4 log units of M. gordonae and 1.5 log units of M. fortuitum or M. chelonae. C · t values determined under similar conditions show that even the most susceptible species, M. aurum and M. gordonae, are 100 and 330 times more resistant to chlorine than Escherichia coli. We also investigated the effects of different parameters (medium, pH, and temperature) on chlorine disinfection in a chlorine-resistant M. gordonae model. Our experimental results follow the Arrhenius equation, allowing the inactivation rate to be predicted at different temperatures. Our results show that M. gordonae is more resistant to chlorine in low-nutrient media, such as those encountered in water, and that an increase in temperature (from 4°C to 25°C) and a decrease in pH result in better inactivation. PMID:11872446

  6. Characterization of Natural Organic Matter in Conventional Water Treatment Processes and Evaluation of THM Formation with Chlorine

    PubMed Central

    Özdemır, Kadir

    2014-01-01

    This study investigates the fractions of natural organic matter (NOM) and trihalomethane (THM) formation after chlorination in samples of raw water and the outputs from ozonation, coagulation-flocculation, and conventional filtration treatment units. All the water samples are passed through various ultrafiltration (UF) membranes. UF membranes with different molecular size ranges based on apparent molecular weight (AMW), such as 1000, 3000, 10,000, and 30,000 Daltons (Da), are commonly used. The NOM fraction with AMW < 1000 Da (1 K) is the dominant fraction within all the fractionated water samples. Its maximum percentage is 85.86% after the filtration process and the minimum percentage is 65.01% in raw water samples. The total THM (TTHM) yield coefficients range from 22.5 to 42 μg-TTHM/mg-DOC in all fractionated samples, which is related to their specific ultraviolet Absorbance (SUVA) levels. As the molecular weight of the fractions decreased, the TTHM yield coefficients increased. The NOM fractions with AMW values less than 1 K had lower SUVA values (<3 L/mg·m) for all treatment stages and also they had higher yield of TTHM per unit of DOC. The NOM fraction with AMW < 1 K for chlorinated raw water samples has the highest yield coefficient (42 μg-TTHM/mg-DOC). PMID:24558323

  7. Occurrence of by-products of strong oxidants reacting with drinking water contaminants--scope of the problem.

    PubMed Central

    Rice, R G; Gomez-Taylor, M

    1986-01-01

    This paper describes results of a detailed literature review of the organic and inorganic by-products that have been identified as being formed in aqueous solution with four of the strong oxidizing/disinfecting agents commonly employed in drinking water treatment. These agents are: chlorine, chlorine dioxide, chloramine, and ozone. Significant findings include the production of similar nonchlorinated organic oxidation products from chlorine, chlorine dioxide, and ozone. In addition, all three chlorinous oxidants/disinfectants can produce chlorinated by-products under certain conditions. The presence of chloronitrile compounds in drinking waters is indicated to arise from reactions of chlorine or chloramine to amine/amide functions in amino acids or proteinaceous materials, followed by dehydrohalogenation. These nitriles could hydrolyze to produce the corresponding chloroacetic acids. It is concluded that to minimize the presence of oxidation by-products in drinking waters, the concentrations of oxidizable organic/inorganic impurities should be lowered before any oxidizing agent is added. PMID:3545807

  8. Analysis of nitrosamines in water by automated SPE and isotope dilution GC/HRMS Occurrence in the different steps of a drinking water treatment plant, and in chlorinated samples from a reservoir and a sewage treatment plant effluent.

    PubMed

    Planas, Carles; Palacios, Oscar; Ventura, Francesc; Rivera, Josep; Caixach, Josep

    2008-08-15

    A method based on automated solid-phase extraction (SPE) and isotope dilution gas chromatography/high resolution mass spectrometry (GC/HRMS) has been developed for the analysis of nine nitrosamines in water samples. The combination of automated SPE and GC/HRMS for the analysis of nitrosamines has not been reported previously. The method shows as advantages the selectivity and sensitivity of GC/HRMS analysis and the high efficiency of automated SPE with coconut charcoal EPA 521 cartridges. Low method detection limits (MDLs) were achieved, along with a greater facility of the procedure and less dependence on the operator with regard to the methods based on manual SPE. Quality requirements for isotope dilution-based methods were accomplished for most analysed nitrosamines, regarding to trueness (80-120%), method precision (<15%) and MDLs (0.08-1.7 ng/L). Nineteen water samples (16 samples from a drinking water treatment plant {DWTP}, 2 chlorinated samples from a sewage treatment plant {STP} effluent, and 1 chlorinated sample from a reservoir) were analysed. Concentrations of nitrosamines in the STP effluent were 309.4 and 730.2 ng/L, being higher when higher doses of chlorine were applied. N-Nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) were the main compounds identified in the STP effluent, and NDEA was detected above 200 ng/L, regulatory level for NDMA in effluents stated in Ontario (Canada). Lower concentrations of nitrosamines were found in the reservoir (20.3 ng/L) and in the DWTP samples (n.d. -28.6 ng/L). NDMA and NDEA were respectively found in the reservoir and in treated and highly chlorinated DWTP samples at concentrations above 10 ng/L (guide value established in different countries). The highest concentrations of nitrosamines were found after chlorination and ozonation processes (ozonated, treated and highly chlorinated water) in DWTP samples.

  9. Chemical additive to enhance antimicrobial efficacy of chlorine and control cross-contamination during immersion chill of broiler carcasses.

    PubMed

    Schambach, B T; Berrang, M E; Harrison, M A; Meinersmann, R J

    2014-09-01

    Immersion chilling of broiler carcasses can be a site for cross-contamination between the occasional highly contaminated carcass and those that are co-chilled. Chlorine is often used as an antimicrobial but can be overcome by organic material. A proprietary chlorine stabilizer (T-128) based on phosphoric acid-propylene glycol was tested as a chill tank additive in experiments simulating commercial broiler chilling. In bench-scale experiments, 0.5% T-128 was compared with plain water (control), 50 ppm of chlorine, and the combination of 0.5% T-128 with 50 ppm of chlorine to control transfer of Salmonella and Campylobacter from inoculated wing drummettes to co-chilled uninoculated drummettes. Both chlorine and T-128 lessened cross-contamination with Salmonella (P < 0.05); T-128 and T-128 with chlorine were significantly more effective (P < 0.05) than the control or plain chlorine for control of Campylobacter. T-128 treatments were noted to have a pH of less than 4.0; an additional experiment demonstrated that the antimicrobial effect of T-128 was not due merely to a lower pH. In commercial broiler chilling, a pH close to 6.0 is preferred to maximize chlorine effectiveness, while maintaining water-holding capacity of the meat. In a set of pilot-scale experiments with T-128, a near-ideal pH of 6.3 was achieved by using tap water instead of the distilled water used in bench-scale experiments. Pilot-scale chill tanks were used to compare the combination of 0.5% T-128 and 50 ppm of chlorine with 50 ppm of plain chlorine for control of cross-contamination between whole carcasses inoculated with Salmonella and Campylobacter and co-chilled uninoculated carcasses. The T-128 treatment resulted in significantly less crosscontamination by either direct contact or water transfer with both organisms compared with plain chlorine treatment. T-128 may have use in commercial broiler processing to enhance the effectiveness of chlorine in processing water.

  10. Medium pressure UV combined with chlorine advanced oxidation for trichloroethylene destruction in a model water.

    PubMed

    Wang, Ding; Bolton, James R; Hofmann, Ron

    2012-10-01

    The effectiveness of ultraviolet (UV) combined with chlorine as a novel advanced oxidation process (AOP) for drinking water treatment was evaluated in a bench scale study by comparing the rate of trichloroethylene (TCE) decay when using UV/chlorine to the rates of decay by UV alone and UV/hydrogen peroxide (H₂O₂) at various pH values. A medium pressure mercury UV lamp was used. The UV/chlorine process was more efficient than the UV/H₂O₂ process at pH 5, but in the neutral and alkaline pH range, the UV/H₂O₂ process became more efficient. The pH effect was probably controlled by the increasing concentration of OCl⁻ at higher pH values. A mechanistic kinetic model of the UV/chlorine treatment of TCE showed good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Systematic Evaluation of the Efficacy of Chlorine Dioxide in Decontamination of Building Interior Surfaces Contaminated with Anthrax Spores▿

    PubMed Central

    Rastogi, Vipin K.; Ryan, Shawn P.; Wallace, Lalena; Smith, Lisa S.; Shah, Saumil S.; Martin, G. Blair

    2010-01-01

    Efficacy of chlorine dioxide (CD) gas generated by two distinct generation systems, Sabre (wet system with gas generated in water) and ClorDiSys (dry system with gas generated in air), was evaluated for inactivation of Bacillus anthracis spores on six building interior surfaces. The six building materials included carpet, acoustic ceiling tile, unpainted cinder block, painted I-beam steel, painted wallboard, and unpainted pinewood. There was no statistically significant difference in the data due to the CD generation technology at a 95% confidence level. Note that a common method of CD gas measurement was used for both wet and dry CD generation types. Doses generated by combinations of different concentrations of CD gas (500, 1,000, 1,500, or 3,000 parts per million of volume [ppmv]) and exposure times (ranging between 0.5 and 12 h) were used to evaluate the relative role of fumigant exposure period and total dose in the decontamination of building surfaces. The results showed that the time required to achieve at least a 6-log reduction in viable spores is clearly a function of the material type on which the spores are inoculated. The wood and cinder block coupons required a longer exposure time to achieve a 6-log reduction. The only material showing a clear statistical difference in rate of decay of viable spores as a function of concentration was cinder block. For all other materials, the profile of spore kill (i.e., change in number of viable spores with exposure time) was not dependent upon fumigant concentration (500 to 3,000 ppmv). The CD dose required for complete spore kill on biological indicators (typically, 1E6 spores of Bacillus atrophaeus on stainless steel) was significantly less than that required for decontamination of most of the building materials tested. PMID:20305025

  12. Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: kinetics and effect on NDMA formation potential.

    PubMed

    Lee, Changha; Schmidt, Carsten; Yoon, Jeyong; von Gunten, Urs

    2007-03-15

    The oxidation of N-nitrosodimethylamine (NDMA) precursors chlorine dioxide (ClO2). Second-order rate constants for the reactions of model NDMA precursors (dimethylamine (DMA) and 7 tertiary amines) with ozone (kapp at pH 7 = 2.4 x 10(-1) to 2.3 x 10(9) M(-1) s(-1)), ClO2 (kapp at pH 7 = 6.7 x 10(-3) to 3.0 x 10(7) M(-1) s(-1)), and hydroxyl radical (*OH) (kapp at pH 7 = 6.2 x 10(7) to 1.4 x 10(10) M(-1) s(-1)) were determined, which showed that the selected NDMA precursors, with the exception of dimethylformamide (DMFA) can be completely transformed via their direct reaction with ozone. During ozonation, DMFA may be partially transformed through oxidation by the secondary oxidant *OH. ClO2 was also shown to effectively transform most of the precursors, with the exceptions of DMA and DMFA. In the second part of the study, the NDMA formation potentials (NDMA-FP) in synthetic and natural waters were measured with and without pre-oxidation with ozone and ClO2. A significant reduction in the NDMA-FPs was observed after complete transformation of the model NDMA precursors. Ozonation generally led to more effective reduction of the NDMA-FP than ClO2. For most of the precursors, the formation of DMA could account for the NDMA-FPs remaining after complete transformation of the model NDMA precursors. In contrast, dimethylethanolamine and dimethyldithiocarbamate yielded other NDMA precursors (not DMA) as their oxidation products. Pre-oxidation by ozone and ClO2 of several natural waters showed behavior similar to that of the oxidation of model NDMA precursors with a reduction of the NDMA-FP by 32-94% for various natural water sources.

  13. Systematic evaluation of the efficacy of chlorine dioxide in decontamination of building interior surfaces contaminated with anthrax spores.

    PubMed

    Rastogi, Vipin K; Ryan, Shawn P; Wallace, Lalena; Smith, Lisa S; Shah, Saumil S; Martin, G Blair

    2010-05-01

    Efficacy of chlorine dioxide (CD) gas generated by two distinct generation systems, Sabre (wet system with gas generated in water) and ClorDiSys (dry system with gas generated in air), was evaluated for inactivation of Bacillus anthracis spores on six building interior surfaces. The six building materials included carpet, acoustic ceiling tile, unpainted cinder block, painted I-beam steel, painted wallboard, and unpainted pinewood. There was no statistically significant difference in the data due to the CD generation technology at a 95% confidence level. Note that a common method of CD gas measurement was used for both wet and dry CD generation types. Doses generated by combinations of different concentrations of CD gas (500, 1,000, 1,500, or 3,000 parts per million of volume [ppmv]) and exposure times (ranging between 0.5 and 12 h) were used to evaluate the relative role of fumigant exposure period and total dose in the decontamination of building surfaces. The results showed that the time required to achieve at least a 6-log reduction in viable spores is clearly a function of the material type on which the spores are inoculated. The wood and cinder block coupons required a longer exposure time to achieve a 6-log reduction. The only material showing a clear statistical difference in rate of decay of viable spores as a function of concentration was cinder block. For all other materials, the profile of spore kill (i.e., change in number of viable spores with exposure time) was not dependent upon fumigant concentration (500 to 3,000 ppmv). The CD dose required for complete spore kill on biological indicators (typically, 1E6 spores of Bacillus atrophaeus on stainless steel) was significantly less than that required for decontamination of most of the building materials tested.

  14. Separation of chlorinated diastereomers of decarboxy-betacyanins in myeloperoxidase catalyzed chlorinated Beta vulgaris L. extract.

    PubMed

    Wybraniec, Sławomir; Starzak, Karolina; Szneler, Edward; Pietrzkowski, Zbigniew

    2016-11-15

    A comparative chromatographic evaluation of chlorinated decarboxylated betanins and betanidins generated under activity of hypochlorous acid exerted upon these highly antioxidative potent decarboxylated pigments derived from natural sources was performed by LC-DAD-ESI-MS/MS. Comparison of the chromatographic profiles of the chlorinated pigments revealed two different directions of retention changes in relation to the corresponding substrates. Chlorination of all betacyanins that are decarboxylated at carbon C-17 results in an increase of their retention times. In contrast, all other pigments (the non-decarboxylated betacyanins as well as 2-decarboxy- and 15-decarboxy-derivatives) exhibit lower retention after chlorination. During further chromatographic experiments based upon chemical transformation of the related pigments (decarboxylation and deglucosylation), the compounds' structures were confirmed. The elaborated method for determination of chlorinated pigments enabled analysis of a chlorinated red beet root extract that was submitted to the MPO/H 2 O 2 /Cl - system acting under inflammation-like conditions (pH 5). This indicates a promising possibility for measurement of these chlorinated pigments as indicators of specific inflammatory states wherein betacyanins and decarboxylated betacyanins act as hypochlorite scavengers. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices.

    PubMed

    Acero, Juan L; Benitez, F Javier; Real, Francisco J; Roldan, Gloria

    2010-07-01

    Apparent rate constants for the reactions of four selected pharmaceutical compounds (metoprolol, naproxen, amoxicillin, and phenacetin) with chlorine in ultra-pure (UP) water were determined as a function of the pH. It was found that amoxicillin (in the whole pH range 3-12), and naproxen (in the low pH range 2-4) presented high reaction rates, while naproxen (in the pH range 5-9), and phenacetin and metoprolol (in the pH range 2.5-12 for phenacetin, and 3-10 for metoprolol) followed intermediate and slow reaction rates. A mechanism is proposed for the chlorination reaction, which allowed the evaluation of the intrinsic rate constants for the elementary reactions of the ionized and un-ionized species of each selected pharmaceutical with chlorine. An excellent agreement is obtained between experimental and calculated rate constants by this mechanism.The elimination of these substances in several waters (a groundwater, a surface water from a public reservoir, and two effluents from municipal wastewater treatment plants) was also investigated at neutral pH. The efficiency of the chlorination process with respect to the pharmaceuticals elimination and the formation THMs was also established. It is generally observed that the increasing presence of organic and inorganic matter in the water matrices demand more oxidant agent (chlorine), and therefore, less chlorine is available for the oxidation of these compounds. Finally, half-life times and oxidant exposures (CT) required for the removal of 99% of the four pharmaceuticals are also evaluated. These parameters are useful for the establishment of safety chlorine doses in oxidation or disinfection stages of pharmaceuticals in treatment plants.

  16. Photocatalytic destruction of chlorinated solvents with solar energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacheco, J.; Prairie, M.; Yellowhorse, L.

    1990-01-01

    Sandia National Laboratories and the Solar Energy Research Institute are developing a photocatalytic process to destroy organic contaminants in water. Tests with common water pollutants are being conducted at Sandia's Solar Thermal Test Facility using a near commercial-scale single-axis tracking parabolic trough system with glass pipe mounted at its focus. Experiments at this scale provide verification of laboratory studies and allow examination of design and operation issues at a real-life scale. The catalyst, titanium dioxide (TiO{sub 2}), is a harmless material found in paint, cosmetics and toothpaste. Experiments were conducted to determine the effect of key process parameters on destructionmore » rates of two chlorinated organic compounds which are common water pollutants: trichloroethylene and trichloroethane. In this paper, we summarize the engineering-scale results of these experiments and analyses. 21 refs., 8 figs.« less

  17. Disinfecting capabilities of oxychlorine compounds.

    PubMed Central

    Noss, C I; Olivieri, V P

    1985-01-01

    The bacterial virus f2 was inactivated by chlorine dioxide at acidic, neutral, and alkaline pH values. The rate of inactivation increased with increasing pH. Chlorine dioxide disproportionation products, chlorite and chlorate, were not active disinfectants. As chlorine dioxide solutions were degraded under alkaline conditions, they displayed reduced viricidal effectiveness, thereby confirming the chlorine dioxide free radical as the active disinfecting species. PMID:3911893

  18. Thermal electron attachment to chlorinated alkenes in the gas phase

    NASA Astrophysics Data System (ADS)

    Wnorowski, K.; Wnorowska, J.; Michalczuk, B.; Jówko, A.; Barszczewska, W.

    2017-01-01

    This paper reports the measurements of the rate coefficients and the activation energies of the electron capture processes with various chlorinated alkenes. The electron attachment processes in the mixtures of chlorinated alkenes with carbon dioxide have been investigated using a Pulsed Townsend technique. This study has been performed in the temperature range (298-378) K. The obtained rate coefficients more or less depended on temperature in accordance to Arrhenius equation. The activation energies (Ea's) were determined from the fit to the experimental data points with function ln(k) = ln(A) - Ea/kBT. The rate coefficients at 298 K were equal to 1.0 × 10-10 cm3 s-1, 2.2 × 10-11 cm3 s-1, 1.6 × 10-9 cm3 s-1, 4.4 × 10-8 cm3 s-1, 2.9 × 10-12 cm3 s-1 and 7.3 × 10-12 cm3 s-1 and activation energies were: 0.27 eV, 0.26 eV, 0.25 eV, 0.21 eV, 0.55 eV and 0.42 eV, for trans-1,2-dichloroethylene, cis-1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, 2-chloropropene, 3-chloropropene respectively.

  19. Multi-element compound specific stable isotope analysis of chlorinated aliphatic contaminants derived from chlorinated pitches.

    PubMed

    Filippini, Maria; Nijenhuis, Ivonne; Kümmel, Steffen; Chiarini, Veronica; Crosta, Giovanni; Richnow, Hans H; Gargini, Alessandro

    2018-05-30

    Tetrachloroethene and trichloroethene are typical by-products of the industrial production of chloromethanes. These by-products are known as "chlorinated pitches" and were often dumped in un-contained waste disposal sites causing groundwater contaminations. Previous research showed that a strongly depleted stable carbon isotope signature characterizes chlorinated compounds associated with chlorinated pitches whereas manufactured commercial compounds have more enriched carbon isotope ratios. The findings were restricted to a single case study and one element (i.e. carbon). This paper presents a multi-element Compound-Specific Stable Isotope Analysis (CSIA, including carbon, chlorine and hydrogen) of chlorinated aliphatic contaminants originated from chlorinated pitches at two sites with different hydrogeology and different producers of chloromethanes. The results show strongly depleted carbon signatures at both sites whereas the chlorine and the hydrogen signatures are comparable to those presented in the literature for manufactured commercial compounds. Multi-element CSIA allowed the identification of sources and site-specific processes affecting chloroethene transformation in groundwater as a result of emergency remediation measures. CSIA turned out to be an effective forensic tool to address the liability for the contamination, leading to a conviction for the crimes of unintentional aggravated public water supply poisoning and environmental disaster. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The study of interrelationship between raw water quality parameters, chlorine demand and the formation of disinfection by-products

    NASA Astrophysics Data System (ADS)

    Abdullah, Md. Pauzi; Yee, Lim Fang; Ata, Sadia; Abdullah, Abass; Ishak, Basar; Abidin, Khairul Nidzham Zainal

    Disinfection is the most crucial process in the treatment of drinking water supply and is the final barrier against bacteriological impurities in drinking water. Chlorine is the primary disinfectant used in the drinking water treatment process throughout Malaysia. However, the occurrence of various disinfection by-products such as trihalomethanes (THM) and haloacetic acids created a major issue on the potential health hazards which may pose adverse health effects in both human and animals. To simulate real water treatment conditions and to represent the conditions inherent in a tropical country, this study was performed at an urbanized water treatment plant with a daily production of about 549,000 m 3 of treated water. The purpose of this work is to examine the relationship between the water quality parameters in the raw water with chlorine demand and the formation of disinfection by-products. This study also investigated the possibility of the statistical model applications for the prediction of chlorine demand and the THM formation. Two models were developed to estimate the chlorine demand and the THM formation. For the statistical evaluation, correlation and simple linear regression analysis were conducted using SPSS. The results of Kolmogorov-Smirnov test for the estimation of goodness-of-fit of the dependent variables of the models to the normal distribution showed that all the dependent variables followed the normal distribution at significance level of 0.05. Good linear correlations were observed between the independent parameters and formation of THM and the chlorine demand. This study also revealed that ammonia and the specific ultraviolet absorbent (SUVA) were the function of chlorine consumption in the treatment process. Chlorine dosage and SUVA increase the yield of THM. Chlorine demand and THM formation was moderately sensitive, but significant to the pH. The level of significance ( α) for the statistical tests and the inclusion of a variable in the

  1. Recovery and diversity of heterotrophic bacteria from chlorinated drinking waters.

    PubMed Central

    Maki, J S; LaCroix, S J; Hopkins, B S; Staley, J T

    1986-01-01

    Heterotrophic bacteria were enumerated from the Seattle drinking water catchment basins and distribution system. The highest bacterial recoveries were obtained by using a very dilute medium containing 0.01% peptone as the primary carbon source. Other factors favoring high recovery were the use of incubation temperatures close to that of the habitat and an extended incubation (28 days or longer provided the highest counts). Total bacterial counts were determined by using acridine orange staining. With one exception, all acridine orange counts in chlorinated samples were lower than those in prechlorinated reservoir water, indicating that chlorination often reduces the number of acridine orange-detectable bacteria. Source waters had higher diversity index values than did samples examined following chlorination and storage in reservoirs. Shannon index values based upon colony morphology were in excess of 4.0 for prechlorinated source waters, whereas the values for final chlorinated tap waters were lower than 2.9. It is not known whether the reduction in diversity was due solely to chlorination or in part to other factors in the water treatment and distribution system. Based upon the results of this investigation, we provide a list of recommendations for changes in the procedures used for the enumeration of heterotrophic bacteria from drinking waters. Images PMID:3524453

  2. Removals of pesticides and pesticide transformation products during drinking water treatment processes and their impact on mutagen formation potential after chlorination.

    PubMed

    Matsushita, Taku; Morimoto, Ayako; Kuriyama, Taisuke; Matsumoto, Eisuke; Matsui, Yoshihiko; Shirasaki, Nobutaka; Kondo, Takashi; Takanashi, Hirokazu; Kameya, Takashi

    2018-07-01

    Removal efficiencies of 28 pesticide transformation products (TPs) and 15 parent pesticides during steps in drinking water treatment (coagulation-sedimentation, activated carbon adsorption, and ozonation) were estimated via laboratory-scale batch experiments, and the mechanisms underlying the removal at each step were elucidated via regression analyses. The removal via powdered activated carbon (PAC) treatment was correlated positively with the log K ow at pH 7. The adjusted coefficient of determination (r 2 ) increased when the energy level of the highest occupied molecular orbital (HOMO) was added as an explanatory variable, the suggestion being that adsorption onto PAC particles was largely governed by hydrophobic interactions. The residual error could be partly explained by π-π electron donor-acceptor interactions between the graphene surface of the PAC particles and the adsorbates. The removal via ozonation correlated positively with the energy level of the HOMO, probably because compounds with relatively high energy level HOMOs could more easily transfer an electron to the lowest unoccupied molecular orbital of ozone. Overall, the TPs tended to be more difficult to remove via PAC adsorption and ozonation than their parent pesticides. However, the TPs that were difficult to remove via PAC adsorption did not induce strong mutagenicity after chlorination, and the TPs that were associated with strong mutagenicity after chlorination could be removed via PAC adsorption. Therefore, PAC adsorption is hypothesized to be an effective method of treating drinking water to reduce the possibility of post-chlorination mutagenicity associated with both TPs and their parent pesticides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. UV/chlorine as an advanced oxidation process for the degradation of benzalkonium chloride: Synergistic effect, transformation products and toxicity evaluation.

    PubMed

    Huang, Nan; Wang, Ting; Wang, Wen-Long; Wu, Qian-Yuan; Li, Ang; Hu, Hong-Ying

    2017-05-01

    Benzalkonium chlorides (BACs), as typical cationic surfactants and biocides widely applied in household and industrial products, have been frequently detected as micropollutants in many aquatic environments. In this study, the combination of UV irradiation and chlorine (UV/chlorine), a newly interested advanced oxidation process, was used to degrade dodecylbenzyldimethylammonium chloride (DDBAC). UV/chlorine showed synergistic effects on DDBAC degradation comparing to UV irradiation or chlorination alone. Radical quenching experiments indicated that degradation of DDBAC by UV/chlorine involved both UV photolysis and radical species oxidation, which accounted for 48.4% and 51.6%, respectively. Chlorine dosage and pH are essential parameters affecting the treatment efficiency of UV/chlorine. The pseudo first order rate constant (k obs, DDBAC ) increased from 0.046 min -1 to 0.123 min -1 in response to chlorine dosage at 0-150 mg/L, and the degradation percentage of DDBAC within 12 min decreased from 81.4% to 56.6% at pH 3.6-9.5. Five main intermediates were identified and semi-quantified using HPLC-MS/MS and a possible degradation pathway was proposed. The degradation mechanisms of DDBAC by UV/chlorine included cleavage of the benzyl-nitrogen bond and hydrogen abstraction of the alkyl chain. Trichloromethane (TCM), chloral hydrate (CH), trichloropropanone (TCP), dichloropropanone (DCP) and dichloroacetonitrile (DCAN) were detected using GC-ECD. The formation of chlorinated products increased rapidly initially, then decreased (TCM, TCP, DCP and DCAN) or remained stable (CH) with extended treatment. The actual formation of TCM peaked at 30 min (50.3 μg/L), while other chlorinated products did not exceed 10 μg/L throughout the process. Based on the luminescent bacterial assay, DDBAC solution underwent almost complete detoxification subjected to UV/chlorine treatment for 120 min, which is more effective than UV irradiation or chlorination alone. Copyright

  4. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide

    PubMed Central

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F.; Hoyle, Gary W.

    2013-01-01

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. PMID:23800689

  5. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide.

    PubMed

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F; Hoyle, Gary W

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. © 2013.

  6. The formation and control of emerging disinfection by-products of health concern.

    PubMed

    Krasner, Stuart W

    2009-10-13

    When drinking water treatment plants disinfect water, a wide range of disinfection by-products (DBPs) of health and regulatory concern are formed. Recent studies have identified emerging DBPs (e.g. iodinated trihalomethanes (THMs) and acids, haloacetonitriles, halonitromethanes (HNMs), haloacetaldehydes, nitrosamines) that may be more toxic than some of the regulated ones (e.g. chlorine- and bromine-containing THMs and haloacetic acids). Some of these emerging DBPs are associated with impaired drinking water supplies (e.g. impacted by treated wastewater, algae, iodide). In some cases, alternative primary or secondary disinfectants to chlorine (e.g. chloramines, chlorine dioxide, ozone, ultraviolet) that minimize the formation of some of the regulated DBPs may increase the formation of some of the emerging by-products. However, optimization of the various treatment processes and disinfection scenarios can allow plants to control to varying degrees the formation of regulated and emerging DBPs. For example, pre-disinfection with chlorine, chlorine dioxide or ozone can destroy precursors for N-nitrosodimethylamine, which is a chloramine by-product, whereas pre-oxidation with chlorine or ozone can oxidize iodide to iodate and minimize iodinated DBP formation during post-chloramination. Although pre-ozonation may increase the formation of trihaloacetaldehydes or selected HNMs during post-chlorination or chloramination, biofiltration may reduce the formation potential of these by-products.

  7. 40 CFR 141.711 - Filtered system additional Cryptosporidium treatment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... either one or a combination of the following: bag filters, bank filtration, cartridge filters, chlorine dioxide, membranes, ozone, or UV, as described in §§ 141.716 through 141.720. (c) Failure by a system in...

  8. 40 CFR 141.711 - Filtered system additional Cryptosporidium treatment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... either one or a combination of the following: bag filters, bank filtration, cartridge filters, chlorine dioxide, membranes, ozone, or UV, as described in §§ 141.716 through 141.720. (c) Failure by a system in...

  9. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems.

    PubMed

    Appleman, Timothy D; Higgins, Christopher P; Quiñones, Oscar; Vanderford, Brett J; Kolstad, Chad; Zeigler-Holady, Janie C; Dickenson, Eric R V

    2014-03-15

    The near ubiquitous presence of poly- and perfluoroalkyl substances (PFASs) in humans has raised concerns about potential human health effects from these chemicals, some of which are both extremely persistent and bioaccumulative. Because some of these chemicals are highly water soluble, one major pathway for human exposure is the consumption of contaminated drinking water. This study measured concentrations of PFASs in 18 raw drinking water sources and 2 treated wastewater effluents and evaluated 15 full-scale treatment systems for the attenuation of PFASs in water treatment utilities throughout the U.S. A liquid-chromatography tandem mass-spectrometry method was used to enable measurement of a suite of 23 PFASs, including perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs). Despite the differences in reporting levels, the PFASs that were detected in >70% of the source water samples (n = 39) included PFSAs, perfluorobutane sulfonic acid (74%), perfluorohexane sulfonic acid (79%), and perfluorooctane sulfonic acid (84%), and PFCAs, perfluoropentanoic acid (74%), perfluorohexanoic acid (79%), perfluoroheptanoic acid (74%), and perfluorooctanoic acid (74%). More importantly, water treatment techniques such as ferric or alum coagulation, granular/micro-/ultra- filtration, aeration, oxidation (i.e., permanganate, ultraviolet/hydrogen peroxide), and disinfection (i.e., ozonation, chlorine dioxide, chlorination, and chloramination) were mostly ineffective in removing PFASs. However, anion exchange and granular activated carbon treatment preferably removed longer-chain PFASs and the PFSAs compared to the PFCAs, and reverse osmosis demonstrated significant removal for all the PFASs, including the smallest PFAS, perfluorobutanoic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Do 'chlorine covers' exert a sustained bactericidal effect on the bacterial hand flora?

    PubMed

    Koller, W; Rotter, M L; Gottardi, W

    1995-11-01

    Treatment of skin with chlorine generates 'chlorine covers' which, in a previous study, exerted significant sustained bactericidal effects against transient skin flora on the upper arm and forearm. In this investigation, this effect was studied on both the transient and resident flora of the hands using test models for the evaluation of hand disinfectants as agreed upon in Austria and Germany. Chlorine covers were generated by bathing hands in a solution of 2% sodium tosylchloramide for 1 min. Subsequently, this cover was destroyed on one, randomly selected, hand by bathing it in a solution of 0.5% sodium thiosulphate for 15 s. The amount of chlorine on the fingertips of chlorinated hands was 2.2 +/- 0.4 micrograms/cm2; that on subsequently dechlorinated hands was 0.2 +/- 0.1 microgram/cm2. In experiments with artificially contaminated hands (Escherichia coli), the kinetics of bacterial die-off were the same on both hands. Also, in experiments with resident flora, the kinetics of bacterial die-off did not suggest bacterial reductions that increase with the duration of contact with the chlorine cover. It was concluded that with the test models used, a significant sustained antimicrobial effect of the chlorine cover could not be demonstrated on hands.

  11. Impact Of Landfill Closure Designs On Long-Term Natural Attenuation Of Chlorinated Hydrocarbons

    DTIC Science & Technology

    2002-03-01

    chlorinated aliphatic hydrocarbons (CAHs) (i.e., chlorinated solvents) in landfills and landfill- leachate -contaminated groundwater. The project was divided...attenuation rather than expensive leachate collection and treatment systems. At some landfills, surface infiltration may accelerate the leaching of...the “source” and reduce the time required for biological stabilization of the landfilled waste. Recirculation of landfill leachate could also be

  12. Influence of trophic conditions on exopolysaccharide production: bacterial biofilm susceptibility to chlorine and monochloramine.

    PubMed

    Samrakandi, M M; Roques, C; Michel, G

    1997-08-01

    This study examines the controversial efficacy of chlorine and monochloramine against biofilms that differ in their extracellular polysaccharide (EPS) content. The results point out a net variability of bacterial biofilm susceptibility according to the nutrients present. Chlorine and monochloramine showed an equal biocidal activity on lactose medium-grown E. coli ATCC 10536 and glycerol-ammonium nitrate medium-grown nonmucoid Pseudomonas aeruginosa biofilms. In contrast, the effect of monochloramine is greater compared with that of chlorine on E. coli and mucoid P. aeruginosa biofilms grown in sucrose and glycerol-ammonium nitrate media, respectively. In these culture conditions, treatment with 25 mg monochloramine/L for 2 h reduced culturable cells by 4.5 logs (99.997%) for E. coli and about 3 logs (99.87%) for mucoid P. aeruginosa while the similar treatment with chlorine reduced culturable cells in these biofilms by 2.2 logs (99.4%) and 1 log (10%), respectively. The decrease of chlorine disinfection efficacy on sucrose and glycerol-ammonium nitrate medium-grown biofilms is postulated to be linked to the higher polysaccharide production observed in these media. It seems likely that monochloramine produces a high leakage of material absorbing at 260 nm from sucrose medium-grown E. coli biofilm, which could indicate its better penetration into biofilms.

  13. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen (Final)

    EPA Science Inventory

    EPA announced the availability of the final report, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. This report is a starting point to determine what is known and what needs to be known about selected nanomaterials as par...

  14. BOOSTER CHLORINATION FOR MANAGING DISINFECTANT RESIDUALS

    EPA Science Inventory

    Booster chlorination is an approach to residual maintenance in which chlorine is applied at strategic locations within the distribution system. Situations in which booster chlorination may be most effective for maintaining a residual are explained informally in the context of a ...

  15. 21 CFR 177.2430 - Polyether resins, chlorinated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyether resins, chlorinated. 177.2430 Section 177... Components of Articles Intended for Repeated Use § 177.2430 Polyether resins, chlorinated. Chlorinated..., in accordance with the following prescribed conditions: (a) The chlorinated polyether resins are...

  16. Development of a Chlorine Dosing Strategy for Fresh Produce Washing Process to Maintain Microbial Food Safety and Minimize Residual Chlorine.

    PubMed

    Chen, Xi; Hung, Yen-Con

    2018-06-01

    The residual free chlorine level in fresh produce wash solution is closely correlated to the chemical and microbial safety of produce. Excess amount of free chlorine can quickly react with organic matters to form hazardous disinfection by-products (DBPs) above EPA-permitted levels, whereas deficiency of residual chlorine in produce wash solution may result in incompletely removing pathogens on produce. The purpose of this study was to develop a chlorine dosing strategy to optimize the chlorine dosage during produce washing process without impacting the microbial safety of fresh produce. Prediction equations were developed to estimate free chlorine needed to reach targeted residual chlorine at various sanitizer pH and organic loads, and then validated using fresh-cut iceberg lettuce and whole strawberries in an automated produce washer. Validation results showed that equations successfully predicted the initial chlorine concentration needed to achieve residual chlorine at 10, 30, 60, and 90 mg/L for both lettuce and strawberry washing processes, with the root mean squared error at 4.45 mg/L. The Escherichia coli O157:H7 reductions only slightly increased on iceberg lettuce and strawberries with residual chlorine increasing from 10 to 90 mg/L, indicating that lowering residual chlorine to 10 mg/L would not compromise the antimicrobial efficacy of chlorine-based sanitizer. Based on the prediction equations and E. coli O157:H7 reduction results, a chlorine dosing strategy was developed to help the produce industry to maintain microbial inactivation efficacy without adding excess amount of free chlorine. The chlorine dosing strategy can be used for fresh produce washing process to enhance the microbial food safety and minimize the DBPs formation potential. © 2018 Institute of Food Technologists®.

  17. Differential susceptibility of inbred mouse strains to chlorine-induced airway fibrosis

    PubMed Central

    Mo, Yiqun; Chen, Jing; Schlueter, Connie F.

    2013-01-01

    Chlorine is a reactive gas that is considered a chemical threat agent. Humans who develop acute lung injury from chlorine inhalation typically recover normal lung function; however, a subset can experience chronic airway disease. To examine pathological changes following chlorine-induced lung injury, mice were exposed to a single high dose of chlorine, and repair of the lung was analyzed at multiple times after exposure. In FVB/NJ mice, chlorine inhalation caused pronounced fibrosis of larger airways that developed by day 7 after exposure and was associated with airway hyperreactivity. In contrast, A/J mice had little or no airway fibrosis and had normal lung function at day 7. Unexposed FVB/NJ mice had less keratin 5 staining (basal cell marker) than A/J mice in large intrapulmonary airways where epithelial repair was poor and fibrosis developed after chlorine exposure. FVB/NJ mice had large areas devoid of epithelium on day 1 after exposure leading to fibroproliferative lesions on days 4 and 7. A/J mice had airways covered by squamous keratin 5-stained cells on day 1 that transitioned to a highly proliferative reparative epithelium by day 4 followed by the reappearance of ciliated and Clara cells by day 7. The data suggest that lack of basal cells in the large intrapulmonary airways and failure to effect epithelial repair at these sites are factors contributing to the development of airway fibrosis in FVB/NJ mice. The observed differences in susceptibility to chlorine-induced airway disease provide a model in which mechanisms and treatment of airway fibrosis can be investigated. PMID:23171502

  18. Resistance of Legionella pneumophila serotype 1 biofilms to chlorine-based disinfection.

    PubMed

    Cooper, I R; Hanlon, G W

    2010-02-01

    The presence of Legionella spp. in potable water systems is a major concern to municipal water providers and consumers alike. Despite the inclusion of chlorine in potable supplies and frequent chlorination cycles, the bacterium is a recalcitrant human pathogen capable of causing incidents of Legionnaires' disease, Pontiac fever and community-acquired pneumonia in humans. Using two materials routinely employed for the delivery of potable water as a substratum, copper and stainless steel, the development of Legionella pneumophila biofilms and their response to chlorination was monitored over a three-day and a three-month period, respectively. Preliminary in vitro studies using broth and sterile tap water as culture media indicated that the bacterium was capable of surviving in low numbers for 28 days in the presence of chlorine. Subsequently, biofilms were grown for three days, one month and two months, respectively, on stainless steel and copper sections, which are widely used for the conveyance of potable water. Immediately after exposure to 50mg/L chlorine for 1h, the biofilms yielded no recoverable colonies, but colonies did reappear in low numbers over the following days. Despite chlorination at 50mg/L for 1h, both one- and two-month-old L. pneumophila biofilms were able to survive this treatment and to continue to grow, ultimately exceeding 1x10(6)cfu per disc. This research provides an insight into the resistance afforded to L. pneumophila against high levels of chlorine by the formation of biofilms and has implications for the delivery of potable water.

  19. Differential susceptibility of inbred mouse strains to chlorine-induced airway fibrosis.

    PubMed

    Mo, Yiqun; Chen, Jing; Schlueter, Connie F; Hoyle, Gary W

    2013-01-15

    Chlorine is a reactive gas that is considered a chemical threat agent. Humans who develop acute lung injury from chlorine inhalation typically recover normal lung function; however, a subset can experience chronic airway disease. To examine pathological changes following chlorine-induced lung injury, mice were exposed to a single high dose of chlorine, and repair of the lung was analyzed at multiple times after exposure. In FVB/NJ mice, chlorine inhalation caused pronounced fibrosis of larger airways that developed by day 7 after exposure and was associated with airway hyperreactivity. In contrast, A/J mice had little or no airway fibrosis and had normal lung function at day 7. Unexposed FVB/NJ mice had less keratin 5 staining (basal cell marker) than A/J mice in large intrapulmonary airways where epithelial repair was poor and fibrosis developed after chlorine exposure. FVB/NJ mice had large areas devoid of epithelium on day 1 after exposure leading to fibroproliferative lesions on days 4 and 7. A/J mice had airways covered by squamous keratin 5-stained cells on day 1 that transitioned to a highly proliferative reparative epithelium by day 4 followed by the reappearance of ciliated and Clara cells by day 7. The data suggest that lack of basal cells in the large intrapulmonary airways and failure to effect epithelial repair at these sites are factors contributing to the development of airway fibrosis in FVB/NJ mice. The observed differences in susceptibility to chlorine-induced airway disease provide a model in which mechanisms and treatment of airway fibrosis can be investigated.

  20. A short-term carbon dioxide treatment inhibits the browning of fresh-cut burdock

    USDA-ARS?s Scientific Manuscript database

    Fresh-cut burdock is susceptible to browning. The effect of short term carbon dioxide (CO2) treatment on inhibiting browning of fresh-cut burdock during storage at 2~4' was investigated. The results showed that the burdock slices treated with CO2 for 4 h, 6 h and 8 h exhibited better visual quality ...

  1. Free Chlorine and Cyanuric Acid Simulator Application ...

    EPA Pesticide Factsheets

    A web-based application designed to simulate the free chlorine in systems adding free chlorine and cyanuric acid, including the application of Dichlor and Trichlor. A web-based application designed to simulate the free chlorine in systems adding free chlorine and cyanuric acid, including the application of Dichlor and Trichlor.

  2. DFT application for chlorin derivatives photosensitizer drugs modeling

    NASA Astrophysics Data System (ADS)

    Machado, Neila; Carvalho, B. G.; Téllez Soto, C. A.; Martin, A. A.; Favero, P. P.

    2018-04-01

    Photodynamic therapy is an alternative form of cancer treatment that meets the desire for a less aggressive approach to the body. It is based on the interaction between a photosensitizer, activating light, and molecular oxygen. This interaction results in a cascade of reactions that leads to localized cell death. Many studies have been conducted to discover an ideal photosensitizer, which aggregates all the desirable characteristics of a potent cell killer and generates minimal side effects. Using Density Functional Theory (DFT) implemented in the program Vienna Ab-initio Simulation Package, new chlorin derivatives with different functional groups were simulated to evaluate the different absorption wavelengths to permit resonant absorption with the incident laser. Gaussian 09 program was used to determine vibrational wave numbers and Natural Bond Orbitals. The chosen drug with the best characteristics for the photosensitizer was a modified model of the original chlorin, which was called as Thiol chlorin. According to our calculations it is stable and is 19.6% more efficient at optical absorption in 708 nm in comparison to the conventional chlorin e6. Vibrational modes, optical and electronic properties were predicted. In conclusion, this study is an attempt to improve the development of new photosensitizer drugs through computational methods that save time and contribute to decrease the numbers of animals for model application.

  3. Detection, identification and formation of new iodinated disinfection byproducts in chlorinated saline wastewater effluents.

    PubMed

    Gong, Tingting; Zhang, Xiangru

    2015-01-01

    The use of seawater for toilet flushing introduces high levels of inorganic ions, including iodide ions, into a city's wastewater treatment systems, resulting in saline wastewater effluents. Chlorination is widely used in disinfecting wastewater effluents owing to its low cost and high efficiency. During chlorination of saline wastewater effluents, iodide may be oxidized to hypoiodous acid, which may further react with effluent organic matter to form iodinated disinfection byproducts (DBPs). Iodinated DBPs show significantly higher toxicity than their brominated and chlorinated analogues and thus have been drawing increasing concerns. In this study, polar iodinated DBPs were detected in chlorinated saline wastewater effluents using a novel precursor ion scan method. The major polar iodinated DBPs were identified and quantified, and their organic precursors and formation pathways were investigated. The formation of iodinated DBPs under different chlorine doses and contact times was also studied. The results indicated that a few polar iodinated DBPs were generated in the chlorinated saline primary effluent, but few were generated in the chlorinated saline secondary effluent. Several major polar iodinated DBPs in the chlorinated saline primary effluent were proposed with structures, among which a new group of polar iodinated DBPs, iodo-trihydroxybenzenesulfonic acids, were identified and quantified. The organic precursors of this new group of DBPs were found to be 4-hydroxybenzenesulfonic acid and 1,2,3-trihydroxybenzene, and the formation pathways of these new DBPs were tentatively proposed. Both chlorine dose and contact time affected the formation of iodinated DBPs in the chlorinated saline wastewater effluents.

  4. Application of a solar UV/chlorine advanced oxidation process to oil sands process-affected water remediation.

    PubMed

    Shu, Zengquan; Li, Chao; Belosevic, Miodrag; Bolton, James R; El-Din, Mohamed Gamal

    2014-08-19

    The solar UV/chlorine process has emerged as a novel advanced oxidation process for industrial and municipal wastewaters. Currently, its practical application to oil sands process-affected water (OSPW) remediation has been studied to treat fresh OSPW retained in large tailings ponds, which can cause significant adverse environmental impacts on ground and surface waters in Northern Alberta, Canada. Degradation of naphthenic acids (NAs) and fluorophore organic compounds in OSPW was investigated. In a laboratory-scale UV/chlorine treatment, the NAs degradation was clearly structure-dependent and hydroxyl radical-based. In terms of the NAs degradation rate, the raw OSPW (pH ∼ 8.3) rates were higher than those at an alkaline condition (pH = 10). Under actual sunlight, direct solar photolysis partially degraded fluorophore organic compounds, as indicated by the qualitative synchronous fluorescence spectra (SFS) of the OSPW, but did not impact NAs degradation. The solar/chlorine process effectively removed NAs (75-84% removal) and fluorophore organic compounds in OSPW in the presence of 200 or 300 mg L(-1) OCl(-). The acute toxicity of OSPW toward Vibrio fischeri was reduced after the solar/chlorine treatment. However, the OSPW toxicity toward goldfish primary kidney macrophages after solar/chlorine treatment showed no obvious toxicity reduction versus that of untreated OSPW, which warrants further study for process optimization.

  5. Biological instability in a chlorinated drinking water distribution network.

    PubMed

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×10(3) cells mL(-1) to 4.66×10(5) cells mL(-1) in the network. While this parameter did not exceed 2.1×10(4) cells mL(-1) in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×10(5) cells mL(-1). This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability.

  6. Biological Instability in a Chlorinated Drinking Water Distribution Network

    PubMed Central

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×103 cells mL−1 to 4.66×105 cells mL−1 in the network. While this parameter did not exceed 2.1×104 cells mL−1 in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×105 cells mL−1. This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability. PMID:24796923

  7. Photocatalytic destruction of chlorinated solvents in water with solar energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacheco, J.E.; Prairie, M.R.; Yellowhorse, L.

    1993-08-01

    Sandia National Laboratories and the National Renewable Energy Laboratory are developing a photocatalytic process to destroy organic contaminants in water. Tests with common water pollutants have been conducted at Sandia's Solar Thermal Facility using a near commercial scale, single-axis tracking parabolic trough system with a glass pipe reactor mounted at its focus. Experiments at this scale provide verification of laboratory studies and allow examination of design and operation issues at a real-lifescale. The catalyst, titanium dioxide (TiO[sub 2]), is a harmless material found in paint, cosmetics, and toothpaste. Experiments were conducted to determine the effects of key process parameters onmore » destruction rates of chlorinated organic compounds that are common water pollutants. This paper summarizes the engineering-scale results of these experiments and analyses.« less

  8. Comparison of ozone and chlorine in low concentrations as sanitizing agents of chicken carcasses in the water immersion chiller.

    PubMed

    Trindade, Marco Antonio; Kushida, Marta Mitsui; Montes Villanueva, Nilda D; dos Santos Pereira, David Uenaka; De Oliveira, Andcelso Eduardo Lins

    2012-06-01

    The aim of this study was to investigate the effects of the use of chlorine or ozone as sanitizing agents in the water of chicken immersion chilling, using the residual levels usually applied in Brazil (1.5 ppm), comparing the effects of these treatments on the microbiological, physicochemical, and sensory characteristics of carcasses. Chicken carcasses were chilled in water (4°C) with similar residual levels of ozone and chlorine until reaching temperatures below 7°C (around 45 min). The stability of carcasses was assessed during 15 days of storage at 2 ± 1°C. Microbiological, surface color (L*, a*, b* parameters), pH value, lipid oxidation (thiobarbituric acid reactive substances index), and sensory evaluation (on a 9-point hedonic scale for odor and appearance) analyses were carried out. The presence of Salmonella was not detected, coagulase-positive staphylococci counts were below 10(2) CFU/ml of rinse fluid, and Escherichia coli and total coliform counts were below 10(5) CFU/ml of rinse fluid until the end of the storage period for both treatments. Psychrotrophic microorganism counts did not differ (P > 0.05) between chlorine and ozone treatments, and both values were near 10(9) CFU/ml of rinse fluid after 15 days at 4 ± 1°C. pH values did not differ between treatments (P > 0.05) or during the storage period (P > 0.05). In addition, neither chlorine nor ozone treatment showed differences (P > 0.05) in the lipid oxidation of carcasses; however, the thiobarbituric acid reactive substances index of both treatments increased (P ≤ 0.05) during the storage period, reaching values of approximately 0.68 mg of malonaldehyde per kg. Samples from both treatments did not differ (P > 0.05) in their acceptance scores for odor and overall appearance, but in the evaluation of color, ozone showed an acceptance score significantly higher (P ≤ 0.05) than that for the chlorine treatment. In general, under the conditions tested, ozone showed results similar to the

  9. Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products.

    PubMed

    Waldemer, Rachel H; Tratnyek, Paul G; Johnson, Richard L; Nurmi, James T

    2007-02-01

    In situ chemical oxidation (ISCO) and in situ thermal remediation (ISTR) are applicable to treatment of groundwater contaminated with chlorinated ethenes. ISCO with persulfate (S2O8(2-)) requires activation, and this can be achieved with the heat from ISTR, so there may be advantages to combining these technologies. To explore this possibility, we determined the kinetics and products of chlorinated ethene oxidation with heat-activated persulfate and compared them to the temperature dependence of other degradation pathways. The kinetics of chlorinated ethene disappearance were pseudo-first-order for 1-2 half-lives, and the resulting rate constants-measured from 30 to 70 degrees C--fit the Arrhenius equation, yielding apparent activation energies of 101 +/- 4 kJ mol(-1) for tetrachloroethene (PCE), 108 +/- 3 kJ mol(-1) for trichloroethene (TCE), 144 +/- 5 kJ mol(-1) for cis-1,2-dichloroethene (cis-DCE), and 141 +/- 2 kJ mol(-1) for trans-1,2-dichloroethene (trans-DCE). Chlorinated byproducts were observed, but most of the parent material was completely dechlorinated. Arrhenius parameters for hydrolysis and oxidation by persulfate or permanganate were used to calculate rates of chlorinated ethene degradation by these processes over the range of temperatures relevant to ISTR and the range of oxidant concentrations and pH relevant to ISCO.

  10. 40 CFR 704.45 - Chlorinated terphenyl.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chlorinated terphenyl must notify EPA within 15 days after making the management decision described in § 704.3....45 Chlorinated terphenyl. (a) Definitions. (1) Chlorinated terphenyl means a chemical substance, CAS... terphenyl. The notice must include, to the extent that it is known to the person making the report or is...

  11. Chlorination of oxybenzone: Kinetics, transformation, disinfection byproducts formation, and genotoxicity changes.

    PubMed

    Zhang, Shujuan; Wang, Xiaomao; Yang, Hongwei; Xie, Yuefeng F

    2016-07-01

    UV filters are a kind of emerging contaminant, and their transformation behavior in water treatment processes has aroused great concern. In particular, toxic products might be produced during reaction with disinfectants during the disinfection process. As one of the most widely used UV filters, oxybenzone has received significant attention, because its transformation and toxicity changes during chlorine oxidation are a concern. In our study, the reaction between oxybenzone and chlorine followed pseudo-first-order and second-order kinetics. Three transformation products were detected by LC-MS/MS, and the stability of products followed the order of tri-chloro-methoxyphenoyl > di-chlorinated oxybenzone > mono-chlorinated oxybenzone. Disinfection byproducts (DBPs) including chloroform, trichloroacetic acid, dichloroacetic acid and chloral hydrate were quickly formed, and increased at a slower rate until their concentrations remained constant. The maximum DBP/oxybenzone molar yields for the four compounds were 12.02%, 6.28%, 0.90% and 0.23%, respectively. SOS/umu genotoxicity test indicated that genotoxicity was highly elevated after chlorination, and genotoxicity showed a significantly positive correlation with the response of tri-chloro-methoxyphenoyl. Our results indicated that more genotoxic transformation products were produced in spite of the elimination of oxybenzone, posing potential threats to drinking water safety. This study shed light on the formation of DBPs and toxicity changes during the chlorination process of oxybenzone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. DRINKING WATER DISINFECTION BY-PRODUCTS: WHAT IS KNOWN

    EPA Science Inventory

    Chlorine, ozone, chlorine dioxide, and chloramine are currently the major disinfectants being used to disinfect drinking water. Although the alternative disinfectants (ozone, chlorine dioxide, and chloramine) are increasing in popularity in the United States, chlorine is still us...

  13. Role of drinking water biofilms on residual chlorine decay and trihalomethane formation: An experimental and modeling study.

    PubMed

    Xu, Jianeng; Huang, Conghui; Shi, Xiaoyang; Dong, Shengkun; Yuan, Baoling; Nguyen, Thanh H

    2018-06-13

    PVC pipe loops were constructed to simulate household premise plumbing. These pipe loops were exposed to water treated by physical processes at three water treatment plants in Xiamen, China from August 2016 to June 2017. After the biofilms were allowed to develop inside the pipes, these pipes were deconstructed and exposed to organic-free chlorine solution buffered at pH 6.8 ± 0.2 for 48 h. The decay of chlorine by these biofilms was higher than by the effluent waters that were used to grow the biofilms. A chlorine consumption mass balance model elucidated the role of both the diffusion of chlorine into the biofilm and the reaction of chlorine with the biofilm matrix. Comparable concentrations of trihalomethanes were quantified from the reaction between chlorine and source water organic matters, and chlorine and the biofilm, further emphasizing the role of biofilms in the safety of disinfected drinking water. These findings imply that when chlorine is used in the drinking water distribution system, the ubiquitous presence of biofilms may cause the depletion of chlorine and the formation of non-negligible levels of toxic disinfection byproducts. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water.

    PubMed

    Shi, Peng; Jia, Shuyu; Zhang, Xu-Xiang; Zhang, Tong; Cheng, Shupei; Li, Aimin

    2013-01-01

    This study aimed to investigate the chlorination effects on microbial antibiotic resistance in a drinking water treatment plant. Biochemical identification, 16S rRNA gene cloning and metagenomic analysis consistently indicated that Proteobacteria were the main antibiotic resistant bacteria (ARB) dominating in the drinking water and chlorine disinfection greatly affected microbial community structure. After chlorination, higher proportion of the surviving bacteria was resistant to chloramphenicol, trimethoprim and cephalothin. Quantitative real-time PCRs revealed that sulI had the highest abundance among the antibiotic resistance genes (ARGs) detected in the drinking water, followed by tetA and tetG. Chlorination caused enrichment of ampC, aphA2, bla(TEM-1), tetA, tetG, ermA and ermB, but sulI was considerably removed (p < 0.05). Metagenomic analysis confirmed that drinking water chlorination could concentrate various ARGs, as well as of plasmids, insertion sequences and integrons involved in horizontal transfer of the ARGs. Water pipeline transportation tended to reduce the abundance of most ARGs, but various ARB and ARGs were still present in the tap water, which deserves more public health concerns. The results highlighted prevalence of ARB and ARGs in chlorinated drinking water and this study might be technologically useful for detecting the ARGs in water environments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Evaluation of current operating standards for chlorine dioxide in disinfection of dump tank and flume for fresh tomatoes.

    PubMed

    Tomás-Callejas, Alejandro; López-Velasco, Gabriela; Valadez, Angela M; Sbodio, Adrian; Artés-Hernández, Francisco; Danyluk, Michelle D; Suslow, Trevor V

    2012-02-01

    Standard postharvest unit operations that rely on copious water contact, such as fruit unloading and washing, approach the criteria for a true critical control point in fresh tomato production. Performance data for approved sanitizers that reflect commercial systems are needed to set standards for audit compliance. This study was conducted to evaluate the efficacy of chlorine dioxide (ClO(2)) for water disinfection as an objective assessment of recent industry-adopted standards for dump tank and flume management in fresh tomato packing operations. On-site assessments were conducted during eight temporally distinct shifts in two Florida packinghouses and one California packinghouse. Microbiological analyses of incoming and washed fruit and dump and flume system water were evaluated. Water temperature, pH, turbidity, conductivity, and oxidation-reduction potential (ORP) were monitored. Reduction in populations of mesophilic and coliform bacteria on fruit was not significant, and populations were significantly higher (P < 0.05) after washing. Escherichia coli was near the limit of detection in dump tanks but consistently below the detection limit in flumes. Turbidity and conductivity increased with loads of incoming tomatoes. Water temperature varied during daily operations, but pH and ORP mostly remained constant. The industry standard positive temperature differential of 5.5°C between water and fruit pulp was not maintained in tanks during the full daily operation. ORP values were significantly higher in the flume than in the dump tank. A positive correlation was found between ORP and temperature, and negative correlations were found between ORP and turbidity, total mesophilic bacteria, and coliforms. This study provides in-plant data indicating that ClO(2) can be an effective sanitizer in flume and spray-wash systems, but current operational limitations restrict its performance in dump tanks. Under current conditions, ClO(2) alone is unlikely to allow the fresh

  16. Transformation pathways and acute toxicity variation of 4-hydroxyl benzophenone in chlorination disinfection process.

    PubMed

    Liu, Wei; Wei, Dongbin; Liu, Qi; Du, Yuguo

    2016-07-01

    Benzophenones compounds (BPs) are widely used as UV filters, and have been frequently found in multiple environmental matrices. The residual of BPs in water would cause potential threats on ecological safety and human health. Chlorination disinfection is necessary in water treatment process, in which many chemicals remained in water would react with disinfectant chlorine and form toxic by-products. By using ultra performance liquid phase chromatography quadrupole time of flight mass spectrometer (UPLC-QTOF-MS), nuclear magnetic resonance (NMR), the transformation of 4-hydroxyl benezophenone (4HB) with free available chlorine (FAC) was characterized. Eight major products were detected and seven of them were identified. Transformation pathways of 4HB under acid, neutral, and alkaline conditions were proposed respectively. The transformation mechanisms involved electrophilic chlorine substitution of 4HB, Baeyer-Villiger oxidation of ketones, hydrolysis of esters and oxidative breakage of benzene ring. The orthogonal experiments of pH and dosages of disinfectant chlorine were conducted. The results suggested that pH conditions determined the occurrence of reaction types, and the dosages of disinfectant chlorine affected the extent of reactions. Photobacterium assay demonstrated that acute toxicity had significant increase after chlorination disinfection of 4HB. It was proved that 3,5-dichloro-4HB, one of the major transformation products, was responsible for the increasing acute toxicity after chlorination. It is notable that, 4HB at low level in real ambient water matrices could be transformed during simulated chlorination disinfection practice. Especially, two major products 3-chloro-4HB and 3,5-dichloro-4HB were detected out, implying the potential ecological risk after chlorination disinfection of 4HB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effects of UV 254 irradiation on residual chlorine and DBPs in chlorination of model organic-N precursors in swimming pools.

    PubMed

    Weng, ShihChi; Li, Jing; Blatchley, Ernest R

    2012-05-15

    Ultraviolet (UV) irradiation is commonly applied as a secondary disinfection process in chlorinated pools. UV-based systems have been reported to yield improvements in swimming pool water and air chemistry, but to date these observations have been largely anecdotal. The objectives of this investigation were to evaluate the effects of UV irradiation on chlorination of important organic-N precursors in swimming pools. Creatinine, L-arginine, L-histidine, glycine, and urea, which comprise the majority of the organic-N in human sweat and urine, were selected as precursors for use in conducting batch experiments to examine the time-course behavior of several DBPs and residual chlorine, with and without UV(254) irradiation. In addition, water samples from two natatoria were subjected to monochromatic UV irradiation at wavelengths of 222 nm and 254 nm to evaluate changes of liquid-phase chemistry. UV(254) irradiation promoted formation and/or decay of several chlorinated N-DBPs and also increased the rate of free chlorine consumption. UV exposure resulted in loss of inorganic chloramines (e.g., NCl(3)) from solution. Dichloromethylamine (CH(3)NCl(2)) formation from creatinine was promoted by UV exposure, when free chlorine was present in solution; however, when free chlorine was depleted, CH(3)NCl(2) photodecay was observed. Dichloroacetonitrile (CNCHCl(2)) formation (from L-histidine and L-arginine) was promoted by UV(254) irradiation, as long as free chlorine was present in solution. Likewise, UV exposure was observed to amplify cyanogen chloride (CNCl) formation from chlorination of L-histidine, L-arginine, and glycine, up to the point of free chlorine depletion. The results from experiments involving UV irradiation of chlorinated swimming pool water were qualitatively consistent with the results of model experiments involving UV/chlorination of precursors in terms of the behavior of residual chlorine and DBPs measured in this study. The results indicate that UV(254

  18. Application of water-assisted ultraviolet light in combination of chlorine and hydrogen peroxide to inactivate Salmonella on fresh produce.

    PubMed

    Guo, Shuanghuan; Huang, Runze; Chen, Haiqiang

    2017-09-18

    With the demand for fresh produce increases in recent decades, concerns for microbiological safety of fresh produce are also raised. To identify effective ultraviolet (UV) light treatment for fresh produce decontamination, we first determined the effect of three forms of UV treatment, dry UV (samples were treated by UV directly), wet UV (samples were dipped in water briefly and then exposed to UV), and water-assisted UV (samples were treated by UV while being immersed in agitated water) on inactivation of Salmonella inoculated on tomatoes and fresh-cut lettuce. In general, the water-assisted UV treatment was found to be the most effective for both produce items. Chlorine and hydrogen peroxide were then tested to determine whether they could be used to enhance the decontamination efficacy of water-assisted UV treatment and prevent transfer of Salmonella via wash water by completely eliminating it. Neither of them significantly enhanced water-assisted UV inactivation of Salmonella on tomatoes. Chlorine significantly improved the decontamination effectiveness of the water-assisted UV treatment for baby-cut carrots and lettuce, but not for spinach. In general, the single water-assisted UV treatment and the combined treatment of water-assisted UV and chlorine were similar or more effective than the chlorine washing treatment. In most of the cases, no Salmonella was detected in the wash water when the single water-assisted UV treatment was used to decontaminate tomatoes. In a few cases when Salmonella was detected in the wash water, the populations were very low,≤2CFU/mL, and the wash water contained an extremely high level of organic load and soil level. Therefore, the single water-assisted UV treatment could potentially be used as an environmentally friendly and non-chemical alternative to chlorine washing for tomatoes after validation in industrial scale. For lettuce, spinach and baby-cut carrots, the combined treatment of water-assisted UV treatment and chlorine

  19. PPCP degradation by chlorine-UV processes in ammoniacal water: new reaction insights, kinetic modeling and DBP formation.

    PubMed

    Zhang, Ruochun; Meng, Tan; Huang, Ching-Hua; Ben, Weiwei; Yao, Hong; Liu, Ruini; Sun, Peizhe

    2018-06-15

    The combination of chlorine and UV (i.e. chlorine-UV process) has been attracting more attentions in recent years due to its ready incorporation into existing water treatment facilities to remove PPCPs. However, limited information is available on the impact of total ammonia nitrogen (TAN). This study investigated two model PPCPs, N,N-diethyl-3-toluamide (DEET) and caffeine (CAF), in the two stages of chlorine-UV process (i.e. chlorination and UV/chlor(am)ine) to elucidate the impact of TAN. During chlorination, the degradation of DEET and CAF was positively correlated with the overall consumption of total chlorine by TAN. Reactive nitrogen intermediates, including HNO/NO- and ONOOH/ONOO-, along with OH were identified as major contributors to the removal of DEET and CAF. During UV irradiation, DEET and CAF were degraded under UV/chlorine or UV/NH2Cl conditions. OH and Cl were the major reactive species to degrade DEET and CAF under UV/NH2Cl conditions, whereas OCl played a major role for degrading CAF under UV/chlorine conditions. Numerical models were developed to predict the removal of DEET and CAF under chlorination-UV process. Chlorinated disinfection byproducts were detected. Overall, this study presented kinetic features and mechanistic insights on the degradation of PPCPs under chlorine-UV process in ammoniacal water.

  20. Organic chloramines in chlorine-based disinfected water systems: A critical review.

    PubMed

    How, Zuo Tong; Kristiana, Ina; Busetti, Francesco; Linge, Kathryn L; Joll, Cynthia A

    2017-08-01

    This paper is a critical review of current knowledge of organic chloramines in water systems, including their formation, stability, toxicity, analytical methods for detection, and their impact on drinking water treatment and quality. The term organic chloramines may refer to any halogenated organic compounds measured as part of combined chlorine (the difference between the measured free and total chlorine concentrations), and may include N-chloramines, N-chloramino acids, N-chloraldimines and N-chloramides. Organic chloramines can form when dissolved organic nitrogen or dissolved organic carbon react with either free chlorine or inorganic chloramines. They are potentially harmful to humans and may exist as an intermediate for other disinfection by-products. However, little information is available on the formation or occurrence of organic chloramines in water due to a number of challenges. One of the biggest challenges for the identification and quantification of organic chloramines in water systems is the lack of appropriate analytical methods. In addition, many of the organic chloramines that form during disinfection are unstable, which results in difficulties in sampling and detection. To date research has focussed on the study of organic monochloramines. However, given that breakpoint chlorination is commonly undertaken in water treatment systems, the formation of organic dichloramines should also be considered. Organic chloramines can be formed from many different precursors and pathways. Therefore, studying the occurrence of their precursors in water systems would enable better prediction and management of their formation. Copyright © 2017. Published by Elsevier B.V.

  1. Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musah, Sadiatu; Schlueter, Connie F.; Humphrey, Da

    developed. • Acute effects of chlorine were pulmonary edema, hypoxemia and impaired lung function. • Persistent small airway disease developed following recovery from acute injury. • Small airway disease included inflammation and bronchiolitis obliterans lesions. • The model should be useful for studying chlorine lung injury and testing treatments.« less

  2. Carbon Dioxide Embolism during Laparoscopic Surgery

    PubMed Central

    Park, Eun Young; Kwon, Ja-Young

    2012-01-01

    Clinically significant carbon dioxide embolism is a rare but potentially fatal complication of anesthesia administered during laparoscopic surgery. Its most common cause is inadvertent injection of carbon dioxide into a large vein, artery or solid organ. This error usually occurs during or shortly after insufflation of carbon dioxide into the body cavity, but may result from direct intravascular insufflation of carbon dioxide during surgery. Clinical presentation of carbon dioxide embolism ranges from asymptomatic to neurologic injury, cardiovascular collapse or even death, which is dependent on the rate and volume of carbon dioxide entrapment and the patient's condition. We reviewed extensive literature regarding carbon dioxide embolism in detail and set out to describe the complication from background to treatment. We hope that the present work will improve our understanding of carbon dioxide embolism during laparoscopic surgery. PMID:22476987

  3. Wastewater Treatment Evaluation, Mather AFB, CA

    DTIC Science & Technology

    1974-06-01

    conveyed to the treatment facility is provided with secondary (biological) treatment and chlorination followed by polish- ing lagoons prior to bang...comminutor. b. Primary sedimentation (clarifier). c. Biological oxidation by trickling filter. d. Secondary sedimentation (clarifier). e. Chlorination . f...the entrance to the chlorine contact chamber. Following chlorination , the wastewater flows to the wet well of the effluent lift station from

  4. Effect of turbidity on chlorination efficiency and bacterial persistence in drinking water.

    PubMed Central

    LeChevallier, M W; Evans, T M; Seidler, R J

    1981-01-01

    To define interrelationships between elevated turbidities and the efficiency of chlorination in drinking water, experiments were performed to measure bacterial survival, chlorine demand, and interference with microbiological determinations. Experiments were conducted on the surface water supplies for communities which practice chlorination as the only treatment. Therefore, the conclusions of this study apply only to such systems. Results indicated that disinfection efficiency (log10 of the decrease in coliform numbers) was negatively correlated with turbidity and was influenced by season, chlorine demand of the samples, and the initial coliform level. Total organic carbon was found to be associated with turbidity and was shown to interfere with maintenance of a free chlorine residual by creating a chlorine demand. Interference with coliform detection in turbid waters could be demonstrated by the recovery of typical coliforms from apparently negative filters. The incidence of coliform masking in the membrane filter technique was found to increase as the turbidity of the chlorinated samples increased. the magnitude of coliform masking in the membrane filter technique increased from less than 1 coliform per 100 ml in water samples of less than 5 nephelometric turbidity units to greater than 1 coliform per 100 ml in water samples of greater than 5 nephelometric turbidity units. Statistical models were developed to predict the impact of turbidity on drinking water quality. The results justify maximum contaminant levels for turbidity in water entering a distribution system as stated in the National Primary Drinking Water Regulations of the Safe Drinking Water Act. Images PMID:7259162

  5. Chlorine transfer hose failure.

    PubMed

    Joseph, Giby

    2004-11-11

    On the morning of 14 August 2002, a 1 in. transfer hose used in a rail tank car unloading operation at DPC Enterprises, near Festus, Missouri, catastrophically ruptured and initiated a sequence of events that led to the release of 48,000 pounds of chlorine--a toxic gas--into neighboring areas. The facility repackages bulk dry liquid chlorine into 1 ton containers and 150 pound cylinders for commercial, industrial, and municipal use in the St. Louis metropolitan area. Fortunately, the wind direction on the day of the release limited the effects of the chlorine plume on the surrounding community. However, 63 people sought hospital treatment due to exposure, and hundreds of others were affected by the release (the community was advised to shelter-in-place for 4 h, and traffic was halted on Interstate 55 for 1.5 h). The US Chemical Safety and Hazard Investigation Board (CSB) investigated this incident for the following reasons: This paper presents the lesson-learned from this incident to help prevent similar occurrences. This paper is based on US Chemical Safety and Hazard Investigation Board Report Number 2002-04-I-MO, which was approved by the Board on 1 May 2003. This paper has not been independently approved by the Board and is published for general informational purposes only. Every effort has been made to accurately present the contents of the Board-approved report in this paper. Any material in the paper that did not originate in the Board-approved report is solely the responsibility of the author and does not represent an official finding, conclusion, or position of the Board. A complete copy of the Board investigation report upon which this paper is based is available on the CSB website at "Completed Investigations."

  6. Evaluating the Sustained Health Impact of Household Chlorination of Drinking Water in Rural Haiti

    PubMed Central

    Harshfield, Eric; Lantagne, Daniele; Turbes, Anna; Null, Clair

    2012-01-01

    The Jolivert Safe Water for Families program has sold sodium hypochlorite solution (chlorine) and conducted household visits in rural Haiti since 2002. To assess the impact of the program on diarrheal disease, in 2010 we conducted a survey and water quality testing in 201 program participants and 425 control households selected at random. Fifty-six percent of participants (versus 10% of controls) had free chlorine residuals between 0.2 and 2.0 mg/L, indicating correct water treatment. Using intention-to-treat analysis, we found that significantly fewer children < 5 in participant households had an episode of diarrhea in the previous 48 hours (32% versus 52%; P < 0.001) with 59% reduced odds (odds ratio = 0.41, 95% confidence interval = 0.21–0.79). Treatment-on-treated estimates of the odds of diarrhea indicated larger program effects for participants who met more stringent verifications of participation. Diarrheal disease reduction in this long-term program was comparable with that seen in short-term randomized, controlled interventions, suggesting that household chlorination can be an effective long-term water treatment strategy. PMID:22987657

  7. Evaluating the sustained health impact of household chlorination of drinking water in rural Haiti.

    PubMed

    Harshfield, Eric; Lantagne, Daniele; Turbes, Anna; Null, Clair

    2012-11-01

    The Jolivert Safe Water for Families program has sold sodium hypochlorite solution (chlorine) and conducted household visits in rural Haiti since 2002. To assess the impact of the program on diarrheal disease, in 2010 we conducted a survey and water quality testing in 201 program participants and 425 control households selected at random. Fifty-six percent of participants (versus 10% of controls) had free chlorine residuals between 0.2 and 2.0 mg/L, indicating correct water treatment. Using intention-to-treat analysis, we found that significantly fewer children < 5 in participant households had an episode of diarrhea in the previous 48 hours (32% versus 52%; P < 0.001) with 59% reduced odds (odds ratio = 0.41, 95% confidence interval = 0.21-0.79). Treatment-on-treated estimates of the odds of diarrhea indicated larger program effects for participants who met more stringent verifications of participation. Diarrheal disease reduction in this long-term program was comparable with that seen in short-term randomized, controlled interventions, suggesting that household chlorination can be an effective long-term water treatment strategy.

  8. Sensitivity of free-living amoeba trophozoites and cysts to water disinfectants.

    PubMed

    Dupuy, Mathieu; Berne, Florence; Herbelin, Pascaline; Binet, Marie; Berthelot, Nelsie; Rodier, Marie-Hélène; Soreau, Sylvie; Héchard, Yann

    2014-03-01

    Free-living amoebae are naturally present in water. These protozoa could be pathogenic and could also shelter pathogenic bacteria. Thus, they are described as a potential hazard for health. Also, free-living amoebae have been described to be resistant to biocides, especially under their cyst resistant form. There are several studies on amoeba treatments but none of them compare sensitivity of trophozoites and cysts from different genus to various water disinfectants. In our study, we tested chlorine, monochloramine and chlorine dioxide on both cysts and trophozoites from three strains, belonging to the three main genera of free-living amoebae. The results show that, comparing cysts to trophozoites inactivation, only the Acanthamoeba cysts were highly more resistant to treatment than trophozoites. Comparison of the disinfectant efficiency led to conclude that chlorine dioxide was the most efficient treatment in our conditions and was particularly efficient against cysts. In conclusion, our results would help to adapt water treatments in order to target free-living amoebae in water networks. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. COHO - Utilizing Waste Heat and Carbon Dioxide at Power Plants for Water Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Sumanjeet; Wilson, Aaron; Wendt, Daniel

    The COHO is a breakthrough water purification system that can concentrate challenging feed waters using carbon dioxide and low-grade heat. For this project, we studied feeds in a lab-scale system to simulate COHO’s potential to operate at coal- powered power plants. COHO proved successful at concentrating the highly scaling and challenging wastewaters derived from a power plant’s cooling towers and flue gas desulfurization units. We also found that COHO was successful at scrubbing carbon dioxide from flue gas mixtures. Thermal regeneration of the switchable polarity solvent forward osmosis draw solution ended up requiring higher temperatures than initially anticipated, but wemore » also found that the draw solution could be polished via reverse osmosis. A techno-economic analysis indicates that installation of a COHO at a power plant for wastewater treatment would result in significant savings.« less

  10. Effect of Common Drinking Water Disinfectants, Chlorine and Heat, on Free Legionella and Amoebae-Associated Legionella.

    PubMed

    Cervero-Aragó, Sílvia; Rodríguez-Martínez, Sarah; Puertas-Bennasar, Antoni; Araujo, Rosa M

    2015-01-01

    Chlorine and thermal treatments are the most commonly used procedures to control and prevent Legionella proliferation in drinking water systems of large buildings. However, cases of legionellosis still occur in facilities with treated water. The purpose of this work was to model the effect of temperature and free chlorine applied in similar exposure conditions as in drinking water systems on five Legionella spp. strains and two amoebal strains of the genera Acanthamoeba. Inactivation models obtained were used to determine the effectiveness of the treatments applied which resulted more effective against Legionella than Acanthamoeba, especially those in cystic stages. Furthermore, to determine the influence of the relationship between L. pneumophila and Acanthamoeba spp. on the treatment effectiveness, inactivation models of the bacteria-associated amoeba were also constructed and compared to the models obtained for the free living bacteria state. The Legionella-amoeba association did not change the inactivation models, but it reduced the effectiveness of the treatments applied. Remarkably, at the lowest free chlorine concentration, 0.5 mg L-1, as well as at the lowest temperatures, 50°C and 55°C, the influence of the Legionella-amoeba associate state was the strongest in reducing the effectiveness of the treatments compared to the free Legionella state. Therefore, the association established between L. pneumophila and amoebae in the water systems indicate an increased health risk in proximal areas of the system (close to the tap) where lower free chlorine concentrations and lower temperatures are commonly observed.

  11. Toxic effects of chlorinated cake flour in rats.

    PubMed

    Cunningham, H M; Lawrence, G A; Tryphonas, L

    1977-05-01

    Four experiments were conducted using weanling Wistar rats to determine whether chlorinated cake flour or its constituents were toxic. Levels of 0.2 and 1.0% chlorine added to unbleached cake flour significantly (p less than 0.01) reduced growth rate by 20.7 and 85.2% and increased liver weight relative to body weight by 16.7 and 25.3%, respectively. Lipids extracted from flour chlorinated at the same levels had similar effects. Rat chow diets containing 0.2 and 0.6% chlorine in the form of chlorinated wheat gluten reduced growth rate and increased liver weight as a percentage of body weight. A rat chow diet containing 0.2% chlorine as chlorinated flour lipids increased absolute liver weight by 40%, kidney by 20%, and heart by 10% compared to pair-fed controls.

  12. Toxicosis associated with ingestion of quick-dissolve granulated chlorine in a dog.

    PubMed

    Hofmeister, Aaron S; Heseltine, Johanna C; Sharp, Claire R

    2006-10-15

    A dog was referred for treatment after ingestion of quick-dissolve chlorine granules intended for use in a swimming pool. At evaluation 18 hours after ingestion of the granules, the dog had tachypnea, signs of depression, approximately 5% dehydration, oral mucositis, and a productive cough. Increased respiratory tract sounds and wheezes were ausculted in all lung fields. Complete blood count revealed erythrocytosis and lymphopenia. Serum biochemical analyses revealed mildly high activities of hepatic enzymes and creatine kinase. Arterial blood gas concentrations were consistent with hypoxemia and hyperventilation. Thoracic radiography revealed widespread pulmonary alveolar infiltrates predominantly affecting the ventral portions of both lungs, consistent with noncardiogenic pulmonary edema secondary to aspiration of the granulated chlorine. Initial treatment included IV administration of an electrolyte solution with supplemental KCl, ranitidine, furosemide, cefotaxime, buprenorphine, and supplemental oxygen. Subsequent treatment included administration of meloxicam and an endoscopically placed percutaneous gastrostomy tube. Endoscopic examination revealed esophagitis and mild gastritis; therefore, metoclopramide and sucralfate were also administered. Fifteen days later, the gastrostomy tube was removed prior to discharge; endoscopic examination revealed grossly normal esophageal and gastric mucosa, and thoracic radiography revealed complete resolution of the lung lesions. Although ingestion of granulated chlorine is rare in veterinary patients, the resulting disease processes are common and can be treated successfully.

  13. Influence of ultrasound enhancement on chlorine dioxide consumption and disinfection by-products formation for secondary effluents disinfection.

    PubMed

    Zhou, Xiaoqin; Zhao, Junyuan; Li, Zifu; Lan, Juanru; Li, Yajie; Yang, Xin; Wang, Dongling

    2016-01-01

    Chlorine dioxide (ClO2) has been promoted as an alternative disinfectant because of its high disinfection efficiency and less formation of organic disinfection by-products (DBPs). However, particle-associated microorganisms could be protected during the disinfection process, which decreases the disinfection efficiency or increases the required dosage. Besides, the formation of inorganic disinfection by-products is a significant concern in environment health. Ultrasound (US)-combined disinfection methods are becoming increasingly attractive because they are efficient and environmentally friendly. In this study, US was introduced as an enhancement method to identify its influence on ClO2 demand reduction and to minimize the production of potential DBPs for secondary effluents disinfection. Fecal coliform was used as an indicator, and DBPs, including trichloromethane (TCM), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), chlorite (ClO2(-)), and chlorate (ClO3(-)), were analyzed to observe the potential DBPs formation. Results show that US pretreatment could reduce half of ClO2 dosage compared with ClO2 disinfection alone for the same disinfection efficiency, and that an input power density of 2.64 kJ/L pretreatment with the 1.5mg/L ClO2 was enough to meet the discharge requirement in China (i.e., fecal coliform below 1000 CFU/L for Class 1A) for secondary effluent disinfection, and the ClO2(-) concentration in the disinfection effluent was only 1.37 mg/L at the same time. Furthermore, the different effects of US on the two processes (US as pretreatment and simultaneous US/ClO2 disinfection) were also analyzed, including deagglomerating, cell damage, and synergistic disinfection as well as degasing/sonolysis. It was proved that the production of TCM, DCAA, and TCAA was insignificantly influenced with the introduction of US, but US pretreatment did reduce the production of ClO2(-) and ClO3(-) effectually. In general, US pretreatment could be a better option for

  14. Breakpoint chlorination and free-chlorine contact time: implications for drinking water N-nitrosodimethylamine concentrations.

    PubMed

    Charrois, Jeffrey W A; Hrudey, Steve E

    2007-02-01

    North American drinking water utilities are increasingly incorporating alternative disinfectants, such as chloramines, in order to comply with disinfection by-product (DBP) regulations. N-Nitrosodimethylamine (NDMA) is a non-halogenated DBP, associated with chloramination, having a drinking water unit risk two to three orders of magnitude greater than currently regulated halogenated DBPs. We quantified NDMA from two full-scale chloraminating water treatment plants in Alberta between 2003 and 2005 as well as conducted bench-scale chloramination/breakpoint experiments to assess NDMA formation. Distribution system NDMA concentrations varied and tended to increase with increasing distribution residence time. Bench-scale disinfection experiments resulted in peak NDMA production near the theoretical monochloramine maximum in the sub-breakpoint region of the disinfection curve. Breakpoints for the raw and partially treated waters tested ranged from 1.9:1 to 2.4:1 (Cl(2):total NH(3)-N, M:M). Bench-scale experiments with free-chlorine contact (2h) before chloramination resulted in significant reductions in NDMA formation (up to 93%) compared to no free-chlorine contact time. Risk-tradeoff issues involving alternative disinfection methods and unregulated DBPs, such as NDMA, are emerging as a major water quality and public health information gap.

  15. Chlorine Isotopes: As a Possible Tracer of Fluid/Bio-Activities on Mars and a Progress Report on Chlorine Isotope Analysis by TIMs

    NASA Technical Reports Server (NTRS)

    Nakamura, N.; Nyquist, L.E.; Reese, Y.; Shih, C-Y.; Numata, M.; Fujitani, T.; Okano, O.

    2009-01-01

    Significantly large mass fractionations between chlorine isotopes (Cl-35, Cl-37) have been reported for terrestrial materials including both geological samples and laboratory materials. Also, the chlorine isotopic composition can be used as a tracer for early solar system processes. Moreover, chlorine is ubiquitous on the Martian surface. Typical chlorine abundances in Gusev soils are approx.0.5 %. The global surface average chlorine abundance also is approx.0.5 %. Striking variations among outcrop rocks at Meridiani were reported with some chlorine abundances as high as approx.2%. Characterizing conditions under which chlorine isotopic fractionation may occur is clearly of interest to planetary science. Thus, we have initiated development of a chlorine isotopic analysis technique using TIMS at NASA-JSC. We present here a progress report on the current status of development at JSC and discuss the possible application of chlorine isotopic analysis to Martian meteorites in a search for fluid- and possibly biological activity on Mars.

  16. Identification of reaction products from reactions of free chlorine with the lipid-regulator gemfibrozil.

    PubMed

    Krkošek, Wendy H; Koziar, Stephen A; White, Robert L; Gagnon, Graham A

    2011-01-01

    High global consumption rates have led to the occurrence of pharmaceutically active compounds (PhACs) in wastewater. The use of chlorine to disinfect wastewater prior to release into the environment may convert PhACs into uncharacterized chlorinated by-products. In this investigation, chlorination of a common pharmaceutical, the antihyperlipidemic agent gemfibrozil, was documented. Gemfibrozil (2,2-dimethyl-5-(2,5-dimethylphenoxy)pentanoic acid) was reacted with sodium hypochlorite and product formation was monitored by gas chromatography-mass spectrometry (GC-MS). The incorporation of one, two or three chlorine atoms into the aromatic region of gemfibrozil was demonstrated using negative-ion electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS). Further analysis using (1)H nuclear magnetic resonance (NMR) spectroscopy identified the reaction products as 4'-ClGem (5-(4-chloro-2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid) 4',6'-diClGem (5-(4,6-dichloro-2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid), and 3',4',6'-triClGem (5-(3,4,6-trichloro-2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid), products consistent with electrophilic aromatic substitution reactions. The rapid reaction of gemfibrozil with free chlorine at pH conditions relevant to water treatment indicates that a mixture of chlorinated gemfibrozils is likely to be found in wastewater disinfected with chlorine. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. 40 CFR 141.130 - General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... this subpart establish criteria under which transient NCWSs that use chlorine dioxide as a disinfectant or oxidant must modify their practices to meet the MRDL for chlorine dioxide in § 141.65. (3) EPA has... systems serving 10,000 or more persons and using chlorine dioxide as a disinfectant or oxidant must comply...

  18. Factors Affecting Atrazine Concentration and Quantitative Determination in Chlorinated Water

    EPA Science Inventory

    Although the herbicide atrazine has been reported to not react measurably with free chlorine during drinking water treatment, this work demonstrates that at contact times consistent with drinking water distribution system residence times, a transformation of atrazine can be obser...

  19. Chlorine

    Integrated Risk Information System (IRIS)

    Chlorine ; CASRN 7782 - 50 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  20. Chlorine-36 and chlorine concentrations within several compartments of a deciduous forest ecosystem in Meuse/Haute-Marne (France)

    NASA Astrophysics Data System (ADS)

    Pupier, Julie; Benedetti, Lucilla; Bourles, Didier; Leclerc, Elisabeth; Thiry, Yves

    2013-04-01

    Chlorine-36 is a cosmogenic nuclide mainly produced in the atmosphere by interactions between energetic particles originating from the cosmic radiations and 40Ar. Because of its long half-life (T1-2 = 3.01 105 yr) and its high mobility, chlorine-36 is a critical radionuclide concerning radioactive waste repository sites. Moreover, it has been shown that inorganic chlorine could be enriched along the trophic chain due to its high solubility and bioavailability (Ashworth and Shaw, 2006). Additionally, many studies during the last decades have established that due to chlorination process, organic chlorine may account for a large proportion of the total soil chlorine pool (more than 80 % in surface soils of temperate ecosystems. Redon et al., 2012). The aim of this study is thus to measure chlorine-36 in all the compartments of the biogeochemical cycle, to better understand its recycling in the biosphere. The study site is the experimental beech forest site of the Andra long-term monitoring and testing system (OPE*). It is located at Montiers-sur-Saulx, North-East of France and is associated to the future radioactive waste repository site of Bure. Since March 2012, rainwater above (rainfall collected from a 45 m high tower built on purpose) and below (throughfall and stemflow) the canopy, has been collected monthly, as well as soil solutions (gravitational and bound waters) at four depths (0, 10, 30, 60 cm deep). Chlorine-36 and chlorine have been measured in the rainfall samples between March and July 2012 and in water solutions collected from all compartments of the biosphere using isotope dilution mass spectrometry at the french AMS national facility ASTER located at CEREGE. The results yielded from the rainfall samples allow to study the temporal fluctuations of chlorine-36 in the atmosphere, which represents the main inflow of chlorine-36 in its biogeochemical cycle. The first results indicate a flow increase during the late spring-early summer. Santos et al

  1. Recovery of actinides from actinide-aluminium alloys by chlorination: Part III - Chlorination with HCl(g)

    NASA Astrophysics Data System (ADS)

    Meier, Roland; Souček, Pavel; Walter, Olaf; Malmbeck, Rikard; Rodrigues, Alcide; Glatz, Jean-Paul; Fanghänel, Thomas

    2018-01-01

    Two steps of a pyrochemical route for the recovery of actinides from spent metallic nuclear fuel are being investigated at JRC-Karlsruhe. The first step consists in electrorefining the fuel in molten salt medium implying aluminium cathodes. The second step is a chlorination process for the separation of actinides (An) from An-Al alloys formed on the cathodes. The chlorination process, in turn, consists of three steps; the distillation of adhered salt (1), the chlorination of An-Al by HCl/Cl2 under formation of AlCl3 and An chlorides (2), and the subsequent sublimation of AlCl3 (3). In the present work UAl2, UAl3, NpAl2, and PuAl2 were chlorinated with HCl(g) in a temperature range between 300 and 400 °C forming UCl4, NpCl4 or PuCl3 as the major An containing phases, respectively. Thermodynamic calculations were carried out to support the experimental work. The results showed a high chlorination efficiency for all used starting materials and indicated that the sublimation step may not be necessary when using HCl(g).

  2. Inactivation of Renibacterium salmoninarum by free chlorine

    USGS Publications Warehouse

    Pascho, Ronald J.; Landolt, Marsha L.; Ongerth, Jerry E.

    1995-01-01

    Salmonid fishes contract bacterial kidney disease by vertical or horizontal transmission of the pathogenic bacterium, Renibacterium salmoninarum. Procedures to reduce vertical transmission are under evaluation, but methods are still needed to eliminate sources of waterborne R. salmoninarum. We examined the efficacy of chlorine to inactivate R. salmoninarum. The bacterium was exposed to various levels of chlorine at pH 6, 7, or 8, and at 7.5 °C or 15 °C. At pH 7 and 15 °C, 99% inactivation occurred within 18 s, even at free chlorine concentrations as low as 0.05 mg/l. Chlorine was most effective at neutral or acidic pH, and 15 °C. The inactivation curves for 7.5 °C and pH 7, or 15 °C and pH 8, deviated from first-order kinetics by exhibiting shoulders or a tailing-off effect, suggesting that chlorine and the bacterial cells were not the sole reactants. A plot of the concentration-time (Ct) products for free chlorine at pH 7 and 15 °C produced a line with a slope less than 1, indicating that the duration of exposure was more important than the concentration of free chlorine. These data indicate that R. salmoninarum is very sensitive to chlorine, and that this disinfectant may be appropriate for use in fish hatcheries rearing salmonids affected by bacterial kidney disease.

  3. 49 CFR 173.3 - Packaging and exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-unit tank car tanks. (1) A DOT 3A480 or DOT 3AA480 cylinder containing chlorine or sulphur dioxide that... containing chlorine or sulphur dioxide that has developed a leak in the valve or fusible plug may be... equipment; and (iii) Knowledge of the properties of chlorine and sulphur dioxide. (4) Packagings repaired...

  4. 40 CFR 141.133 - Compliance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to lower the level of chlorine dioxide below the MRDL and must notify the public pursuant to the.... Failure to take samples in the distribution system the day following an exceedance of the chlorine dioxide... corrective action to lower the level of chlorine dioxide below the MRDL at the point of sampling and will...

  5. Behavior of chlorine during coal pyrolysis

    USGS Publications Warehouse

    Shao, D.; Hutchinson, E.J.; Cao, H.; Pan, W.-P.; Chou, C.-L.

    1994-01-01

    The behavior of chlorine in Illinois coals during pyrolysis was evaluated by combined thermo-gravimetry-Fourier transform infrared spectroscopy-ion chromatography (TG-FTIR-IC) techniques. It was found that more than 90% of chlorine in Illinois coals (IBC-103, 105, 106, and 109) was liberated as HCl gas during pyrolysis from 300 to 600??C, with the rate reaching a maximum at 440 ??C. Similarity of the HCl and NH3 release profiles during pyrolysis of IBC-109 supports the hypothesis that the chlorine in coal may be associated with nitrogen and the chlorine is probably bonded to the basic nitrogen sites on the inner walls of coal micropores. ?? 1994 American Chemical Society.

  6. 21 CFR 177.2430 - Polyether resins, chlorinated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyether resins, chlorinated. 177.2430 Section... as Components of Articles Intended for Repeated Use § 177.2430 Polyether resins, chlorinated. Chlorinated polyether resins may be safely used as articles or components of articles intended for repeated...

  7. Chemically activated manganese dioxide for dry batteries

    NASA Astrophysics Data System (ADS)

    Askar, M.; Abbas, H.

    1994-10-01

    The present investigation has enabled us to convert inactive beta-manganese dioxide to high electrochemically active types by chemical processes. Natural and chemically prepared beta-manganese dioxides were roasted at 1050 C to form Mn3O4. This compound was subjected to activation treatment using hydrochloric and sulfuric acid under various reaction conditions. The manganese dioxide so obtained was examined by x-ray diffraction, thermogravimetric, differential thermal, and chemical analyses. The structure of the dioxide obtained was found to be greatly dependent on the origin of MnO2 and type of acid used. Treatment with hydrochloric acid yielded the so-called gamma-variety while sulfuric acid tended to produce gamma- or alpha-MnO2. In addition, waste manganese sulfate obtained as by-product from sulfuric acid digestion treatment was recycled and electrolytically oxidized to gamma-MnO2. The discharge performance of the above-mentioned MnO2 samples as battery cathodic active material was evaluated and compared with the ordinary battery grade.

  8. Bulk chlorine uptake by polyamide active layers of thin-film composite membranes upon exposure to free chlorine-kinetics, mechanisms, and modeling.

    PubMed

    Powell, Joshua; Luh, Jeanne; Coronell, Orlando

    2014-01-01

    We studied the volume-averaged chlorine (Cl) uptake into the bulk region of the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine. Volume-averaged measurements were obtained using Rutherford backscattering spectrometry with samples prepared at a range of free chlorine concentrations, exposure times, and mixing, rinsing, and pH conditions. Our volume-averaged measurements complement previous studies that have quantified Cl uptake at the active layer surface (top ≈ 7 nm) and advance the mechanistic understanding of Cl uptake by aromatic polyamide active layers. Our results show that surface Cl uptake is representative of and underestimates volume-averaged Cl uptake under acidic conditions and alkaline conditions, respectively. Our results also support that (i) under acidic conditions, N-chlorination followed by Orton rearrangement is the dominant Cl uptake mechanism with N-chlorination as the rate-limiting step; (ii) under alkaline conditions, N-chlorination and dechlorination of N-chlorinated amide links by hydroxyl ion are the two dominant processes; and (iii) under neutral pH conditions, the rates of N-chlorination and Orton rearrangement are comparable. We propose a kinetic model that satisfactorily describes Cl uptake under acidic and alkaline conditions, with the largest discrepancies between model and experiment occurring under alkaline conditions at relatively high chlorine exposures.

  9. Viral Pollution of Surface Waters Due to Chlorinated Primary Effluents

    PubMed Central

    Sattar, Syed A.; Westwood, J. C. N.

    1978-01-01

    The role of chlorinated primary effluents in viral pollution of the Ottawa River (Ontario) was assessed by examining 282 field samples of wastewaters from two different sewage treatment plants over a 2-year period. The talc-Celite technique was used for sample concentration, and BS-C-1 cells were employed for virus detection. Viruses were detected in 80% (75/94) of raw sewage, 72% (68/94) of primary effluent, and 56% (53/94) of chlorinated effluent samples. Both raw sewage and primary effluent samples contained about 100 viral infective units (VIU) per 100 ml. Chlorination produced a 10- to 50-fold reduction in VIU and gave nearly 2.7 VIU/100 ml of chlorinated primary effluent. With a combined daily chlorinated primary effluent output of approximately 3.7 × 108 liters, these two plants were discharging 1.0 × 1010 VIU per day. Because the river has a mean annual flow of 8.0 × 1010 liters per day, these two sources alone produced a virus loading of 1.0 VIU/8 liters of the river water. This river also receives at least 9.0 × 107 liters of raw sewage per day and undetermined but substantial amounts of storm waters and agricultural wastes. It is used for recreation and acts as a source of potable water for some 6.0 × 105 people. In view of the potential of water for disease transmission, discharge of such wastes into the water environment needs to be minimized. PMID:215085

  10. Comprehensive Model for Enhanced Biodegradation of Chlorinated Solvents in Groundwater

    NASA Astrophysics Data System (ADS)

    Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Robinson, C.; Barry, A. D.; Harkness, M.; Mack, E. E.; Dworatzek, S.

    2007-12-01

    SABRE (Source Area BioREmediation) is a public/private consortium whose charter is to de-termine if enhanced anaerobic bioremediation can result in effective treatment of chlorinated solvent DNAPL source areas. The focus of this 4-year, $5.7 million research and development project is a field site in the United Kingdom containing TCE DNAPL. A comprehensive numerical model for simulating dehalogenation of chlorinated ethenes has been developed. The model considers the kinetic dissolution of DNAPL and nonaqueous organic amendments, bacterial growth and decay, and the interaction of biological and geochemical reactions that might influence biological activity. The model accounts for inhibitory effects of high chlorin-ated solvent concentrations as well as the link between fermentation and dehalogenation due to dynamic hydrogen concentration (the direct electron donor). In addition to the standard biodegradation pathways, sulphate reduction, mineral dissolution and precipitation kinetics are incorporated. These latter processes influence the soil buffering capacity and thus the net acidity generated. One-dimensional simulations were carried out to reproduce the data from columns packed with site soil and groundwater exhibiting both intermediate (250 mg/L) and near solubility (1100 mg/L) TCE concentrations. The modelling aims were to evaluate the key processes underpinning bioremediation success and provide a tool for investigating field sys-tem sensitivity to site data and design variables. This paper will present the model basis and validation and examine sensitivity to key processes including chlorinated ethene partitioning into soybean oil, sulphate reduction, and geochemical influences such as pH and the role of buffering in highly dechlorinating systems.

  11. Analysis of Organohalogen Products From Chlorination of Natural Waters Under Simulated Biofouling Control Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bean, R. M.; Mann, D. C.; Riley, R. G.

    1980-06-01

    The products of low-level chlorination of natural waters from ten locations across the continental United States have been studied, with emphasis on volatile and lipophilic organohalogen components. A specially designed apparatus permitted continuous sampling and chlorination of water in a manner analogous to some types of cooling water treatments. Volatile components were analyzed using headspace, purge-and-trap, and resin adsorption methods. The less-volatile components were collected by passing large volumes of the chlorinated water over XAD-2 columns. Total organic halogen collected on XAD resins was compared with the halogen contribution of haloform compounds. The XAD samples were further separated into fractionsmore » according to molecular weight and polarity using liquid chrOmatography. These studies indicate that haloforms are the most abundant lipophilic halogenated products formed from low-level chlorination of natural waters, but that other halogenated lipophilic material is also formed.« less

  12. Imidazole catalyzes chlorination by unreactive primary chloramines

    PubMed Central

    Roemeling, Margo D.; Williams, Jared; Beckman, Joseph S.; Hurst, James K.

    2015-01-01

    Hypochlorous acid and simple chloramines (RNHCl) are stable biologically-derived chlorinating agents. In general, the chlorination potential of HOCl is much greater than that of RNHCl, allowing it to oxidize or chlorinate a much wider variety of reaction partners. However, in this study we demonstrate by kinetic analysis that the reactivity of RNHCl can be dramatically promoted by imidazole and histidyl model compounds via intermediary formation of the corresponding imidazole chloramines. Two biologically relevant reactions were investigated—loss of imidazole-catalyzed chlorinating capacity and phenolic ring chlorination using fluorescein and the tyrosine analog, 4-hydroxyphenylacetic acid (HPA). HOCl reacted stoichiometrically with imidazole, N-acetylhistidine (NAH), or imidazoleacetic acid to generate the corresponding imidazole chloramines which subsequently decomposed. Chloramine (NH2Cl) also underwent a markedly accelerated loss in chlorinating capacity when NAH was present, although in this case NAHCl did not accumulate, indicating that the catalytic intermediate must be highly reactive. Mixing HOCl with 1-methylimidazole (MeIm) led to very rapid loss in chlorinating capacity via formation of a highly reactive chlorinium ion (MeImCl+) intermediate; this behavior suggests that the reactive forms of the analogous imidazole chloramines are their conjugate acids, e.g., the imidazolechlorinium ion (HImCl+). HOCl-generated imidazole chloramine (ImCl) reacted rapidly with fluorescein in a specific acid-catalyzed second order reaction to give 3′-monochloro and 3′,5′-dichloro products. Equilibrium constants for the transchlorination reactions: HOCl + HIm = H2O + ImCl and NH2Cl + HIm = NH3 + ImCl were estimated from the dependence of the rate constants upon [HIm]/[HOCl] and literature data. Acid catalysis again suggests that the actual chlorinating agent is HImCl+; consistent with this interpretation, MeIm markedly catalyzed fluorescein chlorination by HOCl

  13. Effect of Common Drinking Water Disinfectants, Chlorine and Heat, on Free Legionella and Amoebae-Associated Legionella

    PubMed Central

    Cervero-Aragó, Sílvia; Rodríguez-Martínez, Sarah; Puertas-Bennasar, Antoni; Araujo, Rosa M.

    2015-01-01

    Chlorine and thermal treatments are the most commonly used procedures to control and prevent Legionella proliferation in drinking water systems of large buildings. However, cases of legionellosis still occur in facilities with treated water. The purpose of this work was to model the effect of temperature and free chlorine applied in similar exposure conditions as in drinking water systems on five Legionella spp. strains and two amoebal strains of the genera Acanthamoeba. Inactivation models obtained were used to determine the effectiveness of the treatments applied which resulted more effective against Legionella than Acanthamoeba, especially those in cystic stages. Furthermore, to determine the influence of the relationship between L. pneumophila and Acanthamoeba spp. on the treatment effectiveness, inactivation models of the bacteria-associated amoeba were also constructed and compared to the models obtained for the free living bacteria state. The Legionella-amoeba association did not change the inactivation models, but it reduced the effectiveness of the treatments applied. Remarkably, at the lowest free chlorine concentration, 0.5 mg L-1, as well as at the lowest temperatures, 50°C and 55°C, the influence of the Legionella-amoeba associate state was the strongest in reducing the effectiveness of the treatments compared to the free Legionella state. Therefore, the association established between L. pneumophila and amoebae in the water systems indicate an increased health risk in proximal areas of the system (close to the tap) where lower free chlorine concentrations and lower temperatures are commonly observed. PMID:26241039

  14. The recovery of gold from refractory ores by the use of carbon-in-chlorine leaching

    NASA Astrophysics Data System (ADS)

    Greaves, John N.; Palmer, Glenn R.; White, William W.

    1990-09-01

    Recently, the U.S. Bureau of Mines examined the recovery of gold by chlorination of refractory carbonaceous and sulfidic ores, comparing various treatment methods in which a ground ore pulp is contacted with chlorine gas and activated carbon is added to the pulp for a carbon-in-chlorine leach (CICL). The objective of this research was to demonstrate the basic feasibility of CICL technology. Results showed that the organic carbon deactivating environment of CICL lowers, but does not eliminate, the adsorption of gold on activated carbon. In this environment, the refractory ore is altered, and gold is extracted and then recovered on activated carbon. With highly carbonaceous ores, CICL achieved a higher recovery than with primarily sulfidic refractory ores. Basic cyanide amenability testing of two carbonaceous ores achieved recoveries of only 5.5% and 46%. With CICL treatment, recoveries on carbon were 90% and 92%.

  15. The occurrence of chlorine in serpentine minerals

    USGS Publications Warehouse

    Miura, Y.; Rucklidge, J.; Nord, G.L.

    1981-01-01

    Partially serpentinized dunites containing small amounts of Chlorine (< 0.5%) from Dumont, Quebec, and Horoman, Hokkaido, Japan, and one containing less than 0.05% Chlorine from Higashi-Akaishi-Yama, Ehime, Japan have been examined using the electron probe microanalyzer and scanning transmission electron microscope with X-ray analytical capabilities. Chlorine was found together with Si, Mg, Ca and Fe in the serpentine minerals of the Dumont and Hokkaido dunites but not in the Ehime dunite. Chlorine is found associated only with the most finely crystalline facies of the serpentine (grain size less than 10 nm). The Ehime dunite contained no such fine grained serpentine, and was thus effectively chlorine-free, as are the coarser grained serpentines of the other samples. The finegrained chlorine-bearing serpentine also has a much higher concentration of Fe, and can contain smaller amounts of Ca, Ni and Mn than the coarse-grained variety as well as minute awaruite (FeNi3) grains. This fine-grained serpentine probably represents an early stage in the transformation of olivine to serpentine, with chlorine from hydrothermal solutions assisting the necessary chemical changes. The Cl increases the reaction rate by lowering the activation barrier to reaction by the introduction of reaction steps. ?? 1981 Springer-Verlag.

  16. Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time

    USGS Publications Warehouse

    Gibs, J.; Stackelberg, P.E.; Furlong, E.T.; Meyer, M.; Zaugg, S.D.; Lippincott, R.L.

    2007-01-01

    Ninety eight pharmaceuticals and other organic compounds (POOCs) that were amended to samples of chlorinated drinking-water were extracted and analyzed 1, 3, 6, 8, and 10 days after amendment to determine whether the total chlorine residual reacted with the amended POOCs in drinking water in a time frame similar to the residence time of drinking water in a water distribution system. Results indicated that if all 98 were present in the finished drinking water from a drinking-water treatment plant using free chlorine at 1.2??mg/L as the distribution system disinfectant residual, 52 POOCs would be present in the drinking water after 10??days at approximately the same concentration as in the newly finished drinking water. Concentrations of 16 POOCs would be reduced by 32% to 92%, and 22 POOCs would react completely with residual chlorine within 24??h. Thus, the presence of free chlorine residual is an effective means for transforming some POOCs during distribution. ?? 2006 Elsevier B.V. All rights reserved.

  17. Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time.

    PubMed

    Gibs, Jacob; Stackelberg, Paul E; Furlong, Edward T; Meyer, Michael; Zaugg, Steven D; Lippincott, Robert Lee

    2007-02-01

    Ninety eight pharmaceuticals and other organic compounds (POOCs) that were amended to samples of chlorinated drinking-water were extracted and analyzed 1, 3, 6, 8, and 10 days after amendment to determine whether the total chlorine residual reacted with the amended POOCs in drinking water in a time frame similar to the residence time of drinking water in a water distribution system. Results indicated that if all 98 were present in the finished drinking water from a drinking-water treatment plant using free chlorine at 1.2 mg/L as the distribution system disinfectant residual, 52 POOCs would be present in the drinking water after 10 days at approximately the same concentration as in the newly finished drinking water. Concentrations of 16 POOCs would be reduced by 32% to 92%, and 22 POOCs would react completely with residual chlorine within 24 h. Thus, the presence of free chlorine residual is an effective means for transforming some POOCs during distribution.

  18. Chlorine in Lunar Basalts

    NASA Technical Reports Server (NTRS)

    Barnes, J. J.; Anand, M.; Franchi, I. A.

    2017-01-01

    In the context of the lunar magma ocean (LMO) model, it is anticipated that chlorine (and other volatiles) should have been concentrated in the late-stage LMO residual melts (i.e., the dregs enriched in incompatible elements such as K, REEs, and P, collectively called KREEP, and in its primitive form - urKREEP, [1]), given its incompatibility in mafic minerals like olivine and pyroxene, which were the dominant phases that crystallized early in the cumulate pile of the LMO (e.g., [2]). When compared to chondritic meteorites and terrestrial rocks (e.g., [3-4]), lunar samples often display heavy chlorine isotope compositions [5-9]. Boyce et al. [8] found a correlation between delta Cl-37 (sub Ap) and bulk-rock incompatible trace elements (ITEs) in lunar basalts, and used this to propose that early degassing of Cl (likely as metal chlorides) from the LMO led to progressive enrichment in remaining LMO melt in Cl-37over Cl-35- the early degassing model. Barnes et al. [9] suggested that relatively late degassing of chlorine from urKREEP (to yield delta Cl-37 (sub urKREEP greater than +25 per mille) followed by variable mixing between KREEPy melts and mantle cumulates (characterized by delta Cl-370 per mille) could explain the majority of Cl isotope data from igneous lunar samples. In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed an in situ study of chlorine isotopes and abundances of volatiles in lunar apatite from a diverse suite of lunar basalts spanning a range of geochemical types.

  19. Chlorination of lanthanum oxide.

    PubMed

    Gaviría, Juan P; Navarro, Lucas G; Bohé, Ana E

    2012-03-08

    The reactive system La(2)O(3)(s)-Cl(2)(g) was studied in the temperature range 260-950 °C. The reaction course was followed by thermogravimetry, and the solids involved were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results showed that the reaction leads to the formation of solid LaOCl, and for temperatures above 850 °C, the lanthanum oxychloride is chlorinated, producing LaCl(3)(l). The formation of the oxychloride progresses through a nucleation and growth mechanism, and the kinetic analysis showed that at temperatures below 325 °C the system is under chemical control. The influence of diffusive processes on the kinetics of production of LaOCl was evaluated by studying the effect of the reactive gas flow rate, the mass of the sample, and the chlorine diffusion through the boundary layer surrounding the solid sample. The conversion curves were analyzed and fitted according to the Johnson-Mehl-Avrami description, and the reaction order with respect to the chlorine partial pressure was obtained by varying this partial pressure between 10 and 70 kPa. The rate equation was obtained, which includes the influence of the temperature, chlorine partial pressure, and reaction degree.

  20. Diurnal variation of stratospheric chlorine monoxide - A critical test of chlorine chemistry in the ozone layer

    NASA Technical Reports Server (NTRS)

    Solomon, P. M.; De Zafra, R.; Parrish, A.; Barrett, J. W.

    1984-01-01

    Ground-based observations of a mm-wave spectral line at 278 GHz have yielded stratospheric chlorine monoxide column density diurnal variation records which indicate that the mixing ratio and column density of this compound above 30 km are about 20 percent lower than model predictions based on 2.1 parts/billion of total stratospheric chlorine. The observed day-to-night variation is, however, in good agreement with recent model predictions, both confirming the existence of a nighttime reservoir for chlorine and verifying the predicted general rate of its storage and retrieval.

  1. Angiotensin-converting Enzyme Inhibition Improves the Effectiveness of Transcutaneous Carbon Dioxide Treatment

    PubMed Central

    NEMETH, BALAZS; KISS, ISTVAN; JENCSIK, TIMEA; PETER, IVAN; KRESKA, ZITA; KOSZEGI, TAMAS; MISETA, ATTILA; KUSTAN, PETER; BONCZ, IMRE; LACZO, ANDREA; AJTAY, ZENO

    2017-01-01

    Aim: To study the effect of carbon dioxide (CO2) therapy on the nitric oxide (NO) pathway by monitoring plasma asymmetric dimethylarginine (ADMA) concentrations. Patients and Methods: Forty-seven hypertensive patients who underwent transcutaneous CO2 therapy were enrolled. Thirty healthy individuals were recruited for the control group. Blood samples were taken one hour before, as well as one hour, 24 hours and 3 weeks after the first CO2 treatment. Controls did not undergo CO2 treatment. Plasma ADMA levels were measured by ELISA. Results: ADMA levels decreased significantly one hour after the first CO2 treatment compared to the baseline concentrations (p=0.003). Significantly greater reduction was found among patients in whom angiotensin converting enzyme inhibitors (ACEIs) were administered (p=0.019). Conclusion: The short- and long-term decrease of ADMA levels suggests that CO2 is not only a vasodilator, but also has a beneficial effect on the NO pathway. ACE inhibition seems to enhance the effect of CO2 treatment. PMID:28438873

  2. Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate--a comparative study.

    PubMed

    Gao, Shanshan; Zhao, Zhiwei; Xu, Yongpeng; Tian, Jiayu; Qi, Hong; Lin, Wei; Cui, Fuyi

    2014-06-15

    Sulfamethoxazole (SMX), a typical sulfonamide antibiotic, has been widely detected in secondary wastewater effluents and surface waters. In this work we investigated the oxidative degradation of SMX by commonly used oxidants of chlorine, ozone and permanganate. Chlorine and ozone were shown to be more effective for the removal of SMX (0.05-5.0mg/L), as compared with permanganate. Higher pH enhanced the oxidation of SMX by ozone and permanganate, but decreased the removal by chlorine. Moreover, the ozonation of SMX was significantly influenced by the presence of humic acid (HA), which exhibited negligible influence on the oxidation by chlorine and permanganate. Fairly lower mineralization of SMX occurred during the oxidation reactions, with the highest dissolved organic carbon (DOC) removal of 13% (for ozone). By using LC-MS/MS, 7, 5 and 5 oxidation products were identified for chlorine, ozone and permanganate and possible transformation pathways were proposed. It was shown that different oxidants shared some common pathways, such as the cleavage of SN bond, the hydroxylation of the benzene ring, etc. On the other hand, each of the oxidants also exhibited exclusive degradation mechanisms, leading to the formation of different transformation products (TPs). This work may provide useful information for the selection of oxidants in water treatment processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine.

    PubMed

    Nie, Xiao-Bao; Li, Zhi-Hong; Long, Yuan-Nan; He, Pan-Pan; Xu, Chao

    2017-06-01

    The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × time reaction ) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, E a , induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (COD Mn ) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and COD Mn concentrations contributed to the inactivation of T. tubifex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ozone depletion and chlorine loading potentials

    NASA Technical Reports Server (NTRS)

    Pyle, John A.; Wuebbles, Donald J.; Solomon, Susan; Zvenigorodsky, Sergei; Connell, Peter; Ko, Malcolm K. W.; Fisher, Donald A.; Stordal, Frode; Weisenstein, Debra

    1991-01-01

    The recognition of the roles of chlorine and bromine compounds in ozone depletion has led to the regulation or their source gases. Some source gases are expected to be more damaging to the ozone layer than others, so that scientific guidance regarding their relative impacts is needed for regulatory purposes. Parameters used for this purpose include the steady-state and time-dependent chlorine loading potential (CLP) and the ozone depletion potential (ODP). Chlorine loading potentials depend upon the estimated value and accuracy of atmospheric lifetimes and are subject to significant (approximately 20-50 percent) uncertainties for many gases. Ozone depletion potentials depend on the same factors, as well as the evaluation of the release of reactive chlorine and bromine from each source gas and corresponding ozone destruction within the stratosphere.

  5. Inactivation mechanism of Vibrio parahaemolyticus via supercritical carbon dioxide treatment.

    PubMed

    Xu, Feiyue; Feng, Xiaomei; Sui, Xiao; Lin, Hong; Han, Yuqian

    2017-10-01

    The effects of supercritical carbon dioxide (SC-CO 2 ) treatments on Vibrio parahaemolyticus cells were determined using viable plate count method at different treatment times (10 and 40min), pressures (10-25MPa), and temperature (40°C). Using the changes in the physical (absorbance, transmission electron microscope and contents of fatty acids) and chemical indexes (pH value, activity of Na + K + -ATPase, SDS-PAGE) were for further understand the mechanisms of bacterial inactivation under SC-CO 2 . The result showed that 25MPa treatment for 40min in 40°C could significantly (P<0.05) enhance inactivation of V. parahaemolyticus. The pH value and activity of Na + K + -ATPase of SC-CO 2 treated groups significantly (P<0.05) decreased compared with blank group. Damage to the cell membrane and cytoplasmic components can be observed on transmission electron microscope images. Results of SDS-PAGE and UV-absorbing substances also showed that the leakage of proteins and cytoplasmic materials increased with the SC-CO 2 treatment time and pressure. Therefore, our results indicate that SC-CO 2 can be applied to inactivate V. parahaemolyticus by causing a low pH, as well as severe damage to key substances and structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. PREDICTING CHLORINE RESIDUAL DECAY IN DRINKING WATER: A SECOND ORDER MODEL

    EPA Science Inventory

    A major objective of drinking water treatment is to provide water that is both microbiologically and chemically safe for human consumption. Drinking water chlorination, therefore, poses a dilemma. Chemical disinfection reduces the risk of infectious disease but the interaction be...

  7. AQUEOUS CHLORINATION OF CHLORPYRIFOS IN THE PRESENCE OF BROMIDE AND NOM

    EPA Science Inventory

    The rates and pathways for pesticide transformation under drinking water treatment conditions are known for only a few pesticides and only under limited conditions. For example, it is known that chlorine reacting with organophosphate (OP) pesticides that contain the thiophosphate...

  8. Mutagenic activity of disinfection by-products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cognet, L.; Courtois, Y.; Mallevialle, J.

    1986-11-01

    Data on raw water quality, disinfection treatment practices, and the resulting mutagenic properties of the treated water were compiled from pilot- and full-scale treatment experiments to evaluate that parameter which might produce variability in the results of a mutagenic study. Analysis of the data and comparison of treatment practices indicated that the measured mutagenic activity is strongly related to the characteristics of the organic matter in the raw water, the methodology used to sample and detect mutagens, the scale of the study both in terms of treatment flow and period of study, and the point at which and the conditionsmore » under which oxidants are added during treatment. Conclusions regarding disinfection systems in full-scale water treatment plants include the following: When raw water is pretreated and high concentrations of organics are present in the raw water, both ozonation and chlorination increased mutagenic activity. However, no significant difference in mutagenicity was found between the two oxidants. Both in the case of a nitrified groundwater and a clarified surface water, the mutagenic activity of the water after ozonation was related to its mutagenic activity before ozonation. With ozonation, mutagenic activity decreased after granular activated carbon (GAC) filtration. Thus, when GAC filtration follows ozone disinfection, early addition of oxidants may not be deleterious to the finished water quality. When chlorine or chlorine dioxide is added after GAC filtration, chlorine dioxide was found to produce a less mutagenic water than chlorine. Although these conclusions suggest means of controlling mutagenic activity during treatment, it must be stressed that the measurement of mutagenicity is a presumptive index of contamination level.« less

  9. STABLE CHLORINE ISOTOPE ANALYSIS OF CHLORINATED ORGANIC CONTAMINANTS

    EPA Science Inventory

    The biogeochemical cycling of chlorinated organic contaminants in the environment is often difficult to understand because of the complex distributions of these compounds and variability of sources. To address these issues from an isotopic perspective, we have measured the, 37Cl...

  10. Chlorine poisoning

    MedlinePlus

    ... the body to form hydrochloric acid and hypochlorous acid. Both are extremely poisonous. ... has been closed all winter) Mild cleaners Some bleach products ... This list may not include all uses and sources of chlorine.

  11. The tumor affinity of chlorin e6 and its sonodynamic effects on non-small cell lung cancer.

    PubMed

    Chen, Bei; Zheng, Ruinian; Liu, Duan; Li, Baofeng; Lin, Jinrong; Zhang, Weimin

    2013-03-01

    Sonodynamic therapy (SDT) is a promising new approach for cancer therapy. The aim of this study was to investigate the tumor affinity of chlorin e6, a photosensitizer, and its sonodynamic effects on NSCLC. Human lung adenocarcinoma cells SPCA-1 and mice bearing SPCA-1 tumor xenograft were exposed to ultrasound in the presence or absence of chlorin e6. Chlorin e6 distribution was detected by laser scan confocal microscope. Cell apoptosis and necrosis were studied by flow cytometry analysis. Tumor size and weight were measured after different treatments. The concentration of chlorin e6 in tumor tissue was remarkably higher than that in normal muscle near tumor, and the difference was greatest at 18h (the fluorescence intensity was 5.38-fold higher in tumor than in muscle, P<0.05). In vivo, ultrasound (0.4-1.6W/cm(2)) or chlorin e6 (10-40mg/kg) alone had no remarkable anti-tumor effects, but the combination of ultrasound (1.6W/cm(2)) with chlorin e6 (SDT) hampered tumor growth significantly (P<0.05). Intraperitoneal injection of 40mg/kg chlorin e6 exerted no notable side effect on blood, liver and kidney function. Flow cytometry analysis showed that chlorin e6-mediated sonodynamic effect was mainly through the induction of cell necrosis. Chlorin e6 is a promising sonosensitizer and chlorin e6-mediated SDT may provide a new approach for NSCLC therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Chlorinated river and lake water extract caused oxidative damage, DNA migration and cytotoxicity in human cells.

    PubMed

    Yuan, Jing; Wu, Xin-Jiang; Lu, Wen-Qing; Cheng, Xiao-Li; Chen, Dan; Li, Xiao-Yan; Liu, Ai-Lin; Wu, Jian-Jun; Xie, Hong; Stahl, Thorsten; Mersch-Sundermann, Volker

    2005-01-01

    Consumption of chlorinated drinking water is suspected to be associated with adverse health effects, including mutations and cancer. In the present study, the genotoxic potential of water from Donghu lake, Yangtze river and Hanjiang river in Wuhan, an 8-million metropolis in China, was investigated using HepG2 cells and the alkaline version of the comet assay. It could be shown that all water extracts caused dose-dependent DNA migration in concentrations corresponding to dried extracts of 0.167-167 ml chlorinated drinking water per ml medium. To explore whether the intracellular redox status is regulated by chlorinated drinking water, we determined lipid peroxidation (LPO) and depletion of reduced glutathione (GSH). The malondialdehyde (thiobarbituric acid (TBA)-reactive aldehydes) concentration increased after chlorinated drinking water treatment of HepG2 cells in a dose-dependent manner, the GSH content decreased. The activity of lactate dehydrogenase (LDH) increased in chlorinated drinking water treated HepG2 cells indicating cytotoxicity. In accordance with former studies which dealt with in vivo and in vitro micronucleus induction the present study shows that chlorinated drinking water from polluted raw water may entail genetic risks.

  13. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis

    PubMed Central

    Stratilo, Chad W.; Crichton, Melissa K. F.; Sawyer, Thomas W.

    2015-01-01

    Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin), compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in human skin keratinocyte primary cultures. The chlorine dioxide decontaminant was similarly effective to sodium hypochlorite in reducing spore numbers of Bacillus anthracis Ames in liquid suspension after a 10 minute exposure. After five minutes, the chlorine dioxide product was significantly more efficacious. Decontamination of isolated swine skin contaminated with Bacillus anthracis Sterne with the chlorine dioxide product resulted in no viable spores sampled. The toxicity of the chlorine dioxide decontaminant was up to two orders of magnitude less than that of sodium hypochlorite in human skin keratinocyte cultures. In summary, the chlorine dioxide based decontaminant efficiently killed Bacillus anthracis spores in liquid suspension, as well as on isolated swine skin, and was less toxic than sodium hypochlorite in cultures of human skin keratinocytes. PMID:26394165

  14. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarty, P. L.; Spormann, Alfred M.; Criddle, Craig, S.

    factors of three to five times, leading to a more rapid clean-up of the DNAPL zone. The most favored electron donor to add is one which partitions well with the chlorinated solvent or can be concentrated near it. Unfortunately, an ideal electron donor, such as vegetable oil, is difficult to introduce and mix with DNAPL in the ground, doing this properly remains an engineering challenge. Numerical model studies have indicated that several factors may significantly influence the rate and extent of enhancement, including the inhibitory effects of PCE and cDCE, the level of ED concentration, DNAPL configuration, and competition for ED. Such factors need to be considered when contemplating engineered DNAPL bioremediation. Pseudomonas stuzeri KC is an organism that transforms CT to carbon dioxide and chloride without the formation of the hazardous intermediate, chloroform. This is accomplished by production and secretion of a molecule called PDTC. This study was direct ed towards determining how PDTC works. Cu (II) at a ratio of 1:1 Cu to PDTC was found to result in the most rapid CT transformation, confirming that the PDTC-Cu complex is both a reactant and a catalyst in CT transformation. CT degradation requires that the PDTC be in a reduced form, which is generated by contact with cell components. Fe(II) inhibits CT transformation by PDTC. Studies indicated that this inhibition is enhanced by some compound or factor in the supernatant with molecular weight greater than 10,000 Da. We have made progress in determining what this factor might be, but have not yet been able to identify it. In related studies, we found that CT transformation by another organism, Shewanella oneidensis MR1, also involves an excreted factor, but this factor is different from PDTC and results in chloroform transformation as an intermediate. Our studies have indicated that this factor is similar to vitamin K2, and we have also confirmed that vitamin K2 does transform C T into chloroform.« less

  15. Chlorine: Undergraduate Research on an Element of Controversy

    NASA Astrophysics Data System (ADS)

    Chang, Hasok

    2009-04-01

    If chemical elements were people, chlorine would be a celebrity. Although intrinsically no more or less important than any other element, chlorine has had a knack of making headlines. The genre of "object biography" has been quite successful in popular science recently. We took this opportunity to write a "biographical" study of chlorine. Chlorine's wide range of interesting controversies is well suited for attracting and maintaining the enthusiasm of the diverse range of students we teach in our department.

  16. Chlorine adsorption on the InAs (001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakulin, A. V.; Eremeev, S. V.; Tereshchenko, O. E.

    2011-01-15

    Chlorine adsorption on the In-stabilized InAs(001) surface with {zeta}-(4 Multiplication-Sign 2) and {beta}3 Prime -(4 Multiplication-Sign 2) reconstructions and on the Ga-stabilized GaAs (001)-{zeta}-(4 Multiplication-Sign 2) surface has been studied within the electron density functional theory. The equilibrium structural parameters of these reconstructions, surface atom positions, bond lengths in dimers, and their changes upon chlorine adsorption are determined. The electronic characteristics of the clean surface and the surface with adsorbed chlorine are calculated. It is shown that the most energetically favorable positions for chlorine adsorption are top positions over dimerized indium or gallium atoms. The mechanism of chlorine binding withmore » In(Ga)-stabilized surface is explained. The interaction of chlorine atoms with dimerized surface atoms weakens surface atom bonds and controls the initial stage of surface etching.« less

  17. Variations in Stratospheric Inorganic Chlorine Between 1991 and 2006

    NASA Technical Reports Server (NTRS)

    Lary, D. J.; Waugh, D. W.; Douglass, A. R.; Stolarski, R. S.; Newman, P. A.; Mussa, H.

    2007-01-01

    So how quickly will the ozone hole recover? This depends on how quickly the chlorine content (Cl2) of the atmosphere will decline. The ozone hole forms over the Antarctic each southern spring (September and October). The extremely small ozone amounts in the ozone hole are there because of chemical reactions of ozone with chlorine. This chlorine originates largely from industrially produced chlorofluorocarbon (CFC) compounds. An international agreement, the Montreal Protocol, is drastically reducing the amount of chlorine-containing compounds that we are releasing into the atmosphere. To be able to attribute changes in stratospheric ozone to changes in chlorine we need to know the distribution of atmospheric chlorine. However, due to a lack of continuous observations of all the key chlorine gases, producing a continuous time series of stratospheric chlorine has not been achieved to date. We have for the first time devised a technique to make a 17-year time series for stratospheric chlorine that uses the long time series of HCl observations made from several space borne instruments and a neural network. The neural networks allow us to both inter-calibrate the various HCl instruments and to infer the total amount of atmospheric chlorine from HCl. These new estimates of Cl, provide a much needed critical test for current global models that currently predict significant differences in both Cl(sub y) and ozone recovery. These models exhibit differences in their projection of the recovery time and our chlorine content time series will help separate the good from the bad in these projections.

  18. Bromine-Chlorine Coupling in the Antarctic Ozone Hole

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.; Prather, Michael J.

    1996-01-01

    The contribution from the chlorine and bromine species in the formation of the Antarctic ozone hole is evaluated. Since chlorine and bromine compounds are of different industrial origin, it is desirable, from a policy point of view, to be able to attribute chlorine-catalyzed loss of ozone with those reactions directly involving chlorine species, and likewise for bromine-catalyzed loss. In the stratosphere, however, most of the chemical families are highly coupled, and, for example, changes in the chlorine abundance will alter the partitioninig in other families and thus the rate of ozone loss. This modeling study examines formation of the Antarctic ozone hole for a wide range of bromine concentrations (5 - 25 pptv) and for chlorine concentrations typical of the last two decades (1.5, 2.5 and 3.5 ppbv). We follow the photochemical evolution of a single parcel of air, typical of the inner Antarctic vortex (50 mbar, 70 deg. S, NO(sub y) = 2 ppbv, with Polar Stratospheric Clouds(PSC)) from August 1 to November 1. For all of these ranges of chlorine and bromine loading, we would predict a substantial ozone hole (local depletion greater than 90%) within the de-nitrified, PSC- perturbed vortex. The contributions of the different catalytic cycles responsible for ozone loss are tabulated. The deep minimum in ozone is driven primarily by the chlorine abundance. As bromine levels decrease, the magnitude of the chlorine-catalyzed ozone loss increases to take up the slack. This is because bromine suppresses ClO by accelerating the conversion of ClO an Cl2O2 back to HCI. For this range of conditions, the local relative efficiency of ozone destruction per bromine atom to that per chlorine atom (alpha-factor) ranges from 33 to 55, decreasing with increase of bromine.

  19. A Two and Half-Year-Performance Evaluation of a Field Test on Treatment of Source Zone Tetrachloroethene and Its Chlorinated Daughter Products Using Emulsified Zaro Valent Iron Nanoparticles

    EPA Science Inventory

    A field test of emulsified zero valent iron (EZVI) nanoparticles was conducted at Parris Island, SC, USA and was monitored for two and half years to assess the treatment of subsurface-source zone chlorinated volatile organic compounds (CVOCs) dominated by tetrachloroethene (PCE) ...

  20. 42 CFR Appendix - Tables to Subpart L of Part 84

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respiratory protection against more than one gas of a type, as for use in chlorine and sulfur dioxide, the... Ammonia Equilibrated NH3 1000 32 4 50 50 Chlorine As received Cl2 500 64 3 5 35 Chlorine Equilibrated Cl2... Sulfur dioxide As received SO2 500 64 3 5 30 Sulfur dioxide Equilibrated SO2 500 32 4 5 30 1 Minimum life...

  1. Limnoithona sinensis as refuge for bacteria: protection from UV radiation and chlorine disinfection in drinking water treatment.

    PubMed

    Lin, Tao; Cai, Bo; Chen, Wei

    2014-11-01

    In this study, we tested the potential of Limnoithona sinensis to provide its attached bacteria refuge against disinfection. The experimental results indicated that in water devoid of zooplankton, both UV radiation and chlorine disinfection significantly decreased the viability of free-living bacteria. In the presence of L. sinensis, however, the attached bacteria could survive and rapidly recover from disinfection. This demonstrated that L. sinensis provided protection from external damage to various aquatic bacteria that were attached to its body. The surviving bacteria remained on L. sinensis after disinfection exposure, which enabled a rapid increase in the bacterial population followed by their subsequent release into the surrounding water. Compared with UV radiation, chlorine disinfection was more effective in terms of inactivating attached bacteria. Both UV radiation and chlorine disinfection had little effect in terms of preventing the spread of undesirable bacteria, due to the incomplete inactivation of the bacteria associated with L. sinensis.

  2. Altered UV absorbance and cytotoxicity of chlorinated sunscreen agents.

    PubMed

    Sherwood, Vaughn F; Kennedy, Steven; Zhang, Hualin; Purser, Gordon H; Sheaff, Robert J

    2012-12-01

    Sunscreens are widely utilized due to the adverse effects of ultraviolet (UV) radiation on human health. The safety of their active ingredients as well as that of any modified versions generated during use is thus of concern. Chlorine is used as a chemical disinfectant in swimming pools. Its reactivity suggests sunscreen components might be chlorinated, altering their absorptive and/or cytotoxic properties. To test this hypothesis, the UV-filters oxybenzone, dioxybenzone, and sulisobenzone were reacted with chlorinating agents and their UV spectra analyzed. In all cases, a decrease in UV absorbance was observed. Given that chlorinated compounds can be cytotoxic, the effect of modified UV-filters on cell viability was examined. Chlorinated oxybenzone and dioxybenzone caused significantly more cell death than unchlorinated controls. In contrast, chlorination of sulisobenzone actually reduced cytotoxicity of the parent compound. Exposing a commercially available sunscreen product to chlorine also resulted in decreased UV absorbance, loss of UV protection, and enhanced cytotoxicity. These observations show chlorination of sunscreen active ingredients can dramatically decrease UV absorption and generate derivatives with altered biological properties.

  3. Chlorine gas toxicity from mixture of bleach with other cleaning products--California.

    PubMed

    1991-09-13

    From October 1987 through November 1989, five episodes of chlorine gas exposure with toxicity to at least 14 persons occurred at two state hospitals in California. Each hospital provides inpatient treatment to approximately 1000 forensic psychiatric patients. As part of their rehabilitation programs, selected patients perform cleaning duties under the supervision of janitors or nursing staff. Each incident occurred during the performance of these duties and involved the mixture of bleach (sodium hypochlorite) and a phosphoric acid cleaner by inpatients. This mixture produced chlorine gas and other chemical byproducts (Figure 1a and 1b) and resulted in temporary illness in exposed persons.

  4. Investigation of titanium dioxide/ tungstic acid -based photocatalyst for human excrement wastewater treatment

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Wang, Can; Xiao, Kemeng; Gao, Yufeng; Zhou, Tong; Xu, Heng

    2018-05-01

    An activated carbon (AC) coated with tungstic acid (WO3)/titanium dioxide (TiO2) nanocomposites photocatalytic material (ACWT) combined with Three-phase Fluidized Bed (TFB) was investigated for human excrement wastewater treatment. Under the ultraviolet (UV) and fluorescent lamp illumination, the ACWT had shown a good performance on chemical oxygen demand (COD) and total nitrogen (TN) removal but inefficient on ammonia nitrogen (NH3-N) removal. Optimized by Taguchi method, COD and TN removal efficiency was up to 88.39% and 55.07%, respectively. Among all the parameters, the dosage of ACWT had the largest contribution on the process. Bacterial community changes after treatment demonstrated that this photocatalytic system had a great sterilization effect on wastewater. These results confirmed that ACWT could be applied for the human excrement wastewater treatment.

  5. Relative reactivity of amino acids with chlorine in mixtures.

    PubMed

    Na, Chongzheng; Olson, Terese M

    2007-05-01

    The relative reactivity of chlorine with amino acids is an important determinant of the resulting chlorination products in systems where chlorine is the limiting reagent, for example, in the human gastrointestinal tract after consumption of chlorine-containing water, or during food preparation with chlorinated water. Since few direct determinations of the initial reactivity of chlorine with amino acids have been made, 17 amino acids were compared in this study using competitive kinetic principles. The experimental results showed that (1) most amino acids have similar initial reactivities at neutral pH; (2) amino acids with thiol groups such as methionine and cysteine are exceptionally reactive and produce sulfoxides; (3) amino acids without thiol groups primarily undergo monochlorination of the amino nitrogen; and (4) glycine and proline are the least reactive. Dichlorination was estimated to occur with approximately 26% of the amino acid groups when the total amino acid: chlorine concentrations were equal.

  6. Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination.

    PubMed

    Mao, Yuqin; Guo, Di; Yao, Weikun; Wang, Xiaomao; Yang, Hongwei; Xie, Yuefeng F; Komarneni, Sridhar; Yu, Gang; Wang, Yujue

    2018-03-01

    The electro-peroxone (E-peroxone) process is an emerging ozone-based electrochemical advanced oxidation process that combines conventional ozonation with in-situ cathodic hydrogen peroxide (H 2 O 2 ) production for oxidative water treatment. In this study, the effects of the E-peroxone pretreatment on disinfection by-product (DBP) formation from chlorination of a synthetic surface water were investigated and compared to conventional ozonation. Results show that due to the enhanced transformation of ozone (O 3 ) to hydroxyl radicals (OH) by electro-generated H 2 O 2 , the E-peroxone process considerably enhanced dissolved organic carbon (DOC) abatement and significantly reduced bromate (BrO 3 - ) formation compared to conventional ozonation. However, natural organic matter (NOM) with high UV 254 absorbance, which is the major precursors of chlorination DBPs, was less efficiently abated during the E-peroxone process than conventional ozonation. Consequently, while both conventional ozonation and the E-peroxone process substantially reduced the formation of DBPs (trihalomethanes and haloacetic acids) during post-chlorination, higher DBP concentrations were generally observed during chlorination of the E-peroxone pretreated waters than conventional ozonation treated. In addition, because of conventional ozonation or the E-peroxone treatment, DBPs formed during post-chlorination shifted to more brominated species. The overall yields of brominated DBPs exhibited strong correlations with the bromide concentrations in water. Therefore, while the E-peroxone process can effectively suppress bromide transformation to bromate, it may lead to higher formation of brominated DBPs during post-chlorination compared to conventional ozonation. These results suggest that the E-peroxone process can lead to different DBP formation and speciation during water treatment trains compared to conventional ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Highly chlorinated unintentionally produced persistent organic pollutants generated during the methanol-based production of chlorinated methanes: A case study in China.

    PubMed

    Zhang, Lifei; Yang, Wenlong; Zhang, Linli; Li, Xiaoxiu

    2015-08-01

    The formation of unintentionally produced persistent organic pollutants (POPs) may occur during various chlorination processes. In this study, emissions of unintentionally produced POPs during the methanol-based production of chlorinated methanes were investigated. High concentrations of highly chlorinated compounds such as decachlorobiphenyl, octachloronaphthalene, octachlorostyrene, hexachlorobutadiene, hexachlorocyclopentadiene, hexachlorobenzene, and pentachlorobenzene were found in the carbon tetrachloride byproduct of the methanol-based production of chlorinated methanes. The total emission amounts of hexachlorocyclopentadiene, hexachlorobutadiene, polychlorinated benzenes, polychlorinated naphthalenes, octachlorostyrene, and polychlorinated biphenyls released during the production of chlorinated methanes in China in 2010 were estimated to be 10080, 7350, 5210, 427, 212, and 167 kg, respectively. Moreover, polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) were formed unintentionally during chlorinated methanes production, the emission factor for PCDDs/DFs was 364 μg toxic equivalency quotient (TEQ) t(-1) product for residues, which should be added into the UNEP toolkit for updating. It was worth noting that a high overall toxic equivalency quotient from polychlorinated naphthalenes and PCDDs/DFs was generated from the chlorinated methanes production in China in 2010. The values reached 563 and 32.8 g TEQ, respectively. The results of the study indicate that more research and improved management systems are needed to ensure that the methanol-based production of chlorinated methanes can be achieved safely. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Formation of nitrosodimethylamine (NDMA) during chlorine disinfection of wastewater effluents prior to use in irrigation systems.

    PubMed

    Pehlivanoglu-Mantas, Elif; Hawley, Elisabeth L; Deeb, Rula A; Sedlak, David L

    2006-01-01

    The probable human carcinogen nitrosodimethylamine (NDMA) is produced when wastewater effluent is disinfected with chlorine. In systems where wastewater effluent is used for landscape or crop irrigation, relatively high chlorine doses (i.e., up to 2,000,mg-min/L) are often used to ensure adequate disinfection and to minimize biofouling in the irrigation system. To assess the formation of NDMA in such systems, samples were collected from several locations in full-scale wastewater treatment systems and their associated irrigation systems. Up to 460 ng/L of NDMA was produced in full-scale systems in which chloramines were formed when wastewater effluent was disinfected with chlorine in the presence of ammonia. Less than 20 ng/L of NDMA was produced in systems that used free chlorine (i.e., HOCl/OCl(-)) for disinfection in the absence of ammonia. The production of NDMA in ammonia-containing systems was correlated with the concentration of NDMA precursors in the wastewater effluent and the overall dose of chlorine applied. Much of the NDMA formation occurred in chlorine contact basins or in storage basins where water that contained chloramines was held after disinfection. When landscape or crop irrigation is practiced with ammonia-containing wastewater effluent, NDMA production can be controlled by use of lower chlorine doses or by application of alternative disinfectants.

  9. Evaluation of Carbon Dioxide Laser in the Treatment of Epidermal Nevi.

    PubMed

    Bhat, Yasmeen Jabeen; Hassan, Iffat; Sajad, Peerzada; Yaseen, Atiya; Mubashir, Syed; Akhter, Saniya; Wani, Roohi

    2016-01-01

    Epidermal naevi are benign hamartomatous growths of the skin which are generally asymptomatic with a benign course but are cosmetically disagreeable. Topical treatments such as steroids, calcipotriol, 5 fluorouracil, podophyllin, retinoids and cryotherapy are ineffective and surgical excision results in scar formation. Therapy is often challenging. To study the response of carbon dioxide (CO 2 ) laser in the management of epidermal naevi. We conducted a study of CO 2 laser treatment on 15 patients of epidermal naevi, eight with verrucous epidermal naevi and seven with sebaceous naevi. A thorough history and examination was done to rule out any epidermal naevus syndrome. The diagnosis was confirmed by histopathology. The number of treatment sessions varied from 1 to 8. Response was excellent (>90% reduction in lesion size) in three patients, very good (>75% reduction) in five, good (>50% reduction in lesion size) in five and poor (<50% reduction in lesion size) in two patients. The side effects were hyperpigmentation and scarring. Long-term follow-up over a period of 10 months showed a recurrence rate of 20%. We conclude that CO 2 laser treatment might be an effective option with long-term safety, minimal discomfort and rapid recovery.

  10. Simultaneous control of microorganisms and disinfection by-products by sequential chlorination.

    PubMed

    Chen, Chao; Zhang, Xiao-Jian; He, Wen-Jie; Han, Hong-Da

    2007-04-01

    To introduce a new sequential chlorination disinfection process in which short-term free chlorine and chloramine are sequentially added. Pilot tests of this sequential chlorination were carried out in a drinking water plant. The sequential chlorination disinfection process had the same or better efficiency on microbe (including virus) inactivation compared with the free chlorine disinfection process. There seemed to be some synergetic disinfection effect between free chlorine and monochloramine because they attacked different targets. The sequential chlorination disinfection process resulted in 35.7%-77.0% TTHM formation and 36.6%-54.8% THAA5 formation less than the free chlorination process. The poorer the water quality was, the more advantage the sequential chlorination disinfection had over the free chlorination. This process takes advantages of free chlorine's quick inactivation of microorganisms and chloramine's low disinfection by-product (DBP) yield and long-term residual effect, allowing simultaneous control of microbes and DBPs in an effective and economic way.

  11. Atmospheric Release of Organic Chlorinated Compounds from the Activated-Sludge Wastewater Treatment Process.

    DTIC Science & Technology

    1980-05-01

    industrial wastes are from several types of industries but the waste 25 from one manufacturer included several chlorinated precusors of pesticides and flame...Saturator of Watls C Fine Noodle Control Volvo D Mogesgt:c Stirrer with Rod in (2 liter) 3 Nock Round bottomn Flook I. Islt Stream Port 2 IWOt fItirogon

  12. Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine.

    PubMed

    Hong, Huachang; Xiong, Yujing; Ruan, Mengyong; Liao, Fanglei; Lin, Hongjun; Liang, Yan

    2013-02-01

    The formations of THMs, HAAs, and HNMs from chlorination and chloramination of water from Jinlan Reservoir were investigated in this study. Results showed that monochloramine rather than chlorine generally resulted in lower concentration of DBPs, and the DBPs formation varied greatly as the treatment conditions changed. Specifically, the yields of THMs, HAAs and HNMs all increased with the high bromide level and high disinfectant dose both during chlorination and chloramination. The longer reaction time had a positive effect on the formation of THMs, HAAs and HNMs during chlorination and HNMs during chloramination. However, no time effect was observed on the formation of THMs and HAAs during chloramination. An increase in pH enhanced the levels of THMs and HNMs upon chlorination but reduced levels of HNMs upon chloramination. As for the THMs in chloramination and HAAs in chlorination and chloramination, no obvious pH effect was observed. The elevated temperature significantly increased the yields of THMs during chlorination and HNMs during chloramination, but has no effect on THMs and HAAs yields during chloramination. In the same temperature range, the formation of HAAs and HNMs in chlorination showed a first increasing and then a decreasing trend. In chloramination study, addition of nitrite markedly increased the formation of HNMs but had little impact on the formation of THMs and HAAs. While in chlorination study, the presence of high nitrite levels significantly reduced the yields of THMs, HAAs and HNMs. Range analysis revealed that the bromide and disinfectant levels were the major factors affecting THMs, HAAs and HNMs formation, in both chlorination and chloramination. Finally, comparisons of the speciation of mono-halogenated, di-halogenated, tri-halogenated HAAs and HNMs between chlorination and monochloramination were also conducted, and factors influencing the speciation pattern were identified. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Bioremediation and phytoremediation: Chlorinated and recalcitrant compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    Bioremediation and phytoremediation have progressed, especially with regard to the treatment of hydrocarbon-contaminated sites. Sites contaminated with chlorinated and recalcitrant compounds have proven more resistant to these approaches, but exciting progress is being made both in the laboratory and in the field. This book brings together the latest breakthrough thinking and results in bioremediation, with chapters on cometabolic processes, aerobic and anaerobic mechanisms, biological reductive dechlorination processes, bioaugmentation, biomonitoring, and phytoremediation of recalcitrant organic compounds.

  14. MODELING CHLORINE DECAY AND THE FORMATION OF DISINFECTION BY-PRODUCTS (DBPS) IN DRINKING WATER

    EPA Science Inventory

    A major objective of drinking water treatment is to provide microbiologically safe drinking water. The combination of conventional drinking water treatment and disinfection has proved to be one of the major public health advances in modern times. In the US, chlorine is most often...

  15. Comparison of chlorine and chloramine in the release of mercury from dental amalgam.

    PubMed

    Stone, Mark E; Scott, John W; Schultz, Stephen T; Berry, Denise L; Wilcoxon, Monte; Piwoni, Marv; Panno, Brent; Bordson, Gary

    2009-01-01

    The purpose of this project was to compare the ability of chlorine (HOCl/OCl(-)) and monochloramine (NH(2)Cl) to mobilize mercury from dental amalgam. Two types of amalgam were used in this investigation: laboratory-prepared amalgam and samples obtained from dental-unit wastewater. For disinfectant exposure simulations, 0.5 g of either the laboratory-generated or clinically obtained amalgam waste was added to 250 mL amber bottles. The amalgam samples were agitated by end-over-end rotation at 30 rpm in the presence of 1 mg/L chlorine, 10 mg/L chlorine, 1 mg/L monochloramine, 10 mg/L monochloramine, or deionized water for intervals of 0 h, 2 h, 4 h, 8 h, and 24 h for the clinically obtained amalgam waste samples and 4 h and 24 h for the laboratory-prepared samples. Chlorine and monochloramine concentrations were measured with a spectrophotometer. Samples were filtered through a 0.45 microm membrane filter and analyzed for mercury with USEPA standard method 245.7. When the two sample types were combined, the mean mercury level in the 1 mg/L chlorine group was 0.020 mg/L (n=25, SD=0.008). The 10 mg/L chlorine group had a mean mercury concentration of 0.59 mg/L (n=25, SD=1.06). The 1 mg/L chloramine group had a mean mercury level of 0.023 mg/L (n=25, SD=0.010). The 10 mg/L chloramine group had a mean mercury level of 0.024 mg/L (n=25, SD=0.011). Independent samples t-tests showed that there was a significant difference between the natural log mercury measurements of 10 mg/L chlorine compared to those of 1 mg/L and 10 mg/L chloramine. Changing from chlorine to chloramine disinfection at water treatment plants would not be expected to produce substantial increases in dissolved mercury levels in dental-unit wastewater.

  16. Inactivation of Campylobacter jejuni by chlorine and monochloramine.

    PubMed Central

    Blaser, M J; Smith, P F; Wang, W L; Hoff, J C

    1986-01-01

    Campylobacter jejuni and closely related organisms are important bacterial causes of acute diarrheal illness in the United States. Both endemic and epidemic infections have been associated with consuming untreated or improperly treated surface water. We compared susceptibility of three C. jejuni strains and Escherichia coli ATCC 11229 with standard procedures used to disinfect water. Inactivation of bacterial preparations with 0.1 mg of chlorine and 1.0 mg of monochloramine per liter was determined at pH 6 and 8 and at 4 and 25 degrees C. Under virtually every condition tested, each of the three C. jejuni strains was more susceptible than the E. coli control strain, with greater than 99% inactivation after 15 min of contact with 1.0 mg of monochloramine per liter or 5 min of contact with 0.1 mg of free chlorine per liter. Results of experiments in which an antibiotic-containing medium was used suggest that a high proportion of the remaining cells were injured. An animal-passaged C. jejuni strain was as susceptible to chlorine disinfection as were laboratory-passaged strains. These results suggest that disinfection procedures commonly used for treatment of drinking water to remove coliform bacteria are adequate to eliminate C. jejuni and further correlate with the absence of outbreaks associated with properly treated water. PMID:3954344

  17. Chlorine Abundances in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Bogard, D.D.; Garrison, D.H.; Park, J.

    2009-01-01

    Chlorine measurements made in martian surface rocks by robotic spacecraft typically give Chlorine (Cl) abundances of approximately 0.1-0.8%. In contrast, Cl abundances in martian meteorites appear lower, although data is limited, and martian nakhlites were also subjected to Cl contamination by Mars surface brines. Chlorine abundances reported by one lab for whole rock (WR) samples of Shergotty, ALH77005, and EET79001 range 108-14 ppm, whereas Cl in nakhlites range 73-1900 ppm. Measurements of Cl in various martian weathering phases of nakhlites varied 0.04-4.7% and reveal significant concentration of Cl by martian brines Martian meteorites contain much lower Chlorine than those measured in martian surface rocks and give further confirmation that Cl in these surface rocks was introduced by brines and weathering. It has been argued that Cl is twice as effective as water in lowering the melting point and promoting melting at shallower martian depths, and that significant Cl in the shergottite source region would negate any need for significant water. However, this conclusion was based on experiments that utilized Cl concentrations more analogous to martian surface rocks than to shergottite meteorites, and may not be applicable to shergottites.

  18. Assessing the Fate and Transformation By-Product Potential of Trenbolone during Chlorination

    EPA Science Inventory

    Chlorine disinfection is an effective means for managing microbiological activity during drinking water treatment and can eliminate a number of known organic contaminants. Trenbolone is an androgenic steroidal hormone used primarily as a growth stimulant in the animal feedstock ...

  19. Chlorine truck attack consequences and mitigation.

    PubMed

    Barrett, Anthony Michael; Adams, Peter J

    2011-08-01

    We develop and apply an integrated modeling system to estimate fatalities from intentional release of 17 tons of chlorine from a tank truck in a generic urban area. A public response model specifies locations and actions of the populace. A chemical source term model predicts initial characteristics of the chlorine vapor and aerosol cloud. An atmospheric dispersion model predicts cloud spreading and movement. A building air exchange model simulates movement of chlorine from outdoors into buildings at each location. A dose-response model translates chlorine exposures into predicted fatalities. Important parameters outside defender control include wind speed, atmospheric stability class, amount of chlorine released, and dose-response model parameters. Without fast and effective defense response, with 2.5 m/sec wind and stability class F, we estimate approximately 4,000 (half within ∼10 minutes) to 30,000 fatalities (half within ∼20 minutes), depending on dose-response model. Although we assume 7% of the population was outdoors, they represent 60-90% of fatalities. Changing weather conditions result in approximately 50-90% lower total fatalities. Measures such as sheltering in place, evacuation, and use of security barriers and cryogenic storage can reduce fatalities, sometimes by 50% or more, depending on response speed and other factors. © 2011 Society for Risk Analysis.

  20. 40 CFR 142.60 - Variances from the maximum contaminant level for total trihalomethanes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... disinfectant or oxidant. (2) Use of chlorine dioxide as an alternate or supplemental disinfectant or oxidant... to reduce TTHM formation and, where necessary, substituting for the use of chlorine as a pre-oxidant chloramines, chlorine dioxide or potassium permanganate. (5) Use of powdered activated carbon for THM...

  1. Influence of Chlorine Emissions on Ozone Levels in the Troposphere

    EPA Science Inventory

    Chlorine emissions from cooling towers are emitted mainly as hypochlous acid, not as molecular chlorine. Chlorine emissions from cooling towers in electric utilities in the U.S. are estimated to be 4,400 tons per year. Molecular chlorine increases more tropospheric ozone than hyp...

  2. Angiotensin-converting Enzyme Inhibition Improves the Effectiveness of Transcutaneous Carbon Dioxide Treatment.

    PubMed

    Nemeth, Balazs; Kiss, Istvan; Jencsik, Timea; Peter, Ivan; Kreska, Zita; Koszegi, Tamas; Miseta, Attila; Kustan, Peter; Boncz, Imre; Laczo, Andrea; Ajtay, Zeno

    2017-01-01

    To study the effect of carbon dioxide (CO 2 ) therapy on the nitric oxide (NO) pathway by monitoring plasma asymmetric dimethylarginine (ADMA) concentrations. Forty-seven hypertensive patients who underwent transcutaneous CO 2 therapy were enrolled. Thirty healthy individuals were recruited for the control group. Blood samples were taken one hour before, as well as one hour, 24 hours and 3 weeks after the first CO 2 treatment. Controls did not undergo CO 2 treatment. Plasma ADMA levels were measured by ELISA. ADMA levels decreased significantly one hour after the first CO2 treatment compared to the baseline concentrations (p=0.003). Significantly greater reduction was found among patients in whom angiotensin converting enzyme inhibitors (ACEIs) were administered (p=0.019). The short- and long-term decrease of ADMA levels suggests that CO 2 is not only a vasodilator, but also has a beneficial effect on the NO pathway. ACE inhibition seems to enhance the effect of CO 2 treatment. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Survival and Heat Resistance of Listeria monocytogenes after Exposure to Alkali and Chlorine

    PubMed Central

    Taormina, P. J.; Beuchat, L. R.

    2001-01-01

    A strain of Listeria monocytogenes isolated from a drain in a food-processing plant was demonstrated, by determination of D values, to be more resistant to the lethal effect of heat at 56 or 59°C following incubation for 45 min in tryptose phosphate broth (TPB) at pH 12.0 than to that of incubation for the same time in TPB at pH 7.3. Cells survived for at least 6 days when they were suspended in TPB at pHs 9.0, 10.0, and 11.0 and stored at 4 or 21°C. Cells of L. monocytogenes incubated at 37°C for 45 min and then stored for 48 or 144 h in TPB at pH 10.0 were more resistant to heat treatment at 56°C than were cells stored in TPB at pH 7.3. The alkaline-stress response in L. monocytogenes may induce resistance to otherwise lethal thermal-processing conditions. Treatment of cells in 0.05 M potassium phosphate buffer (pH 7.00 ± 0.05) containing 2.0 or 2.4 mg of free chlorine per liter reduced populations by as much as 1.3 log10 CFU/ml, while treatment with 6.0 mg of free chlorine per liter reduced populations by as much as 4.02 log10 CFU/ml. Remaining subpopulations of chlorine-treated cells exhibited some injury, and cells treated with chlorine for 10 min were more sensitive to heating at 56°C than cells treated for 5 min. Contamination of foods by L. monocytogenes cells that have survived exposure to processing environments ineffectively cleaned or sanitized with alkaline detergents or disinfectants may have more severe implications than previously recognized. Alkaline-pH-induced cross-protection of L. monocytogenes against heat has the potential to enhance survival in minimally processed as well as in heat-and-serve foods and in foods on holding tables, in food service facilities, and in the home. Cells surviving exposure to chlorine, in contrast, are more sensitive to heat; thus, the effectiveness of thermal processing in achieving desired log10-unit reductions is not compromised in these cells. PMID:11375163

  4. Chlorine cyanide

    Integrated Risk Information System (IRIS)

    Chlorine cyanide ; CASRN 506 - 77 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  5. Early treatment of chlorine-induced airway hyperresponsiveness and inflammation with corticosteroids.

    PubMed

    Jonasson, Sofia; Wigenstam, Elisabeth; Koch, Bo; Bucht, Anders

    2013-09-01

    Chlorine (Cl2) is an industrial gas that is highly toxic and irritating when inhaled causing tissue damage and an acute inflammatory response in the airways followed by a long-term airway dysfunction. The aim of this study was to evaluate whether early anti-inflammatory treatment can protect against the delayed symptoms in Cl2-exposed mice. BALB/c mice were exposed by nose-only inhalation using 200ppm Cl2 during 15min. Assessment of airway hyperresponsiveness (AHR), inflammatory cell counts in bronchoalveolar lavage, occurrence of lung edema and lung fibrosis were analyzed 24h or 14days post-exposure. A single dose of the corticosteroid dexamethasone (10 or 100mg/kg) was administered intraperitoneally 1, 3, 6, or 12h following Cl2 exposure. High-dose of dexamethasone reduced the acute inflammation if administered within 6h after exposure but treated animals still displayed a significant lung injury. The effect of dexamethasone administered within 1h was dose-dependent; high-dose significantly reduced acute airway inflammation (100mg/kg) but not treatment with the relatively low-dose (10mg/kg). Both doses reduced AHR 14days later, while lung fibrosis measured as collagen deposition was not significantly reduced. The results point out that the acute inflammation in the lungs due to Cl2 exposure only partly is associated with the long-term AHR. We hypothesize that additional pathogenic mechanisms apart from the inflammatory reactions contribute to the development of long-term airway dysfunction. By using this mouse model, we have validated early administration of corticosteroids in terms of efficacy to prevent acute lung injury and delayed symptoms induced by Cl2 exposure. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Oxidation of selected organophosphate pesticides during chlorination of simulated drinking water.

    PubMed

    Kamel, Alaa; Byrne, Christian; Vigo, Craig; Ferrario, Joseph; Stafford, Charles; Verdin, Gregory; Siegelman, Frederic; Knizner, Steven; Hetrick, James

    2009-02-01

    Ten organophosphate (OP) pesticides: phorate, disulfoton, terbufos, methidathion, bensulide, chlorethoxyfos, phosmet, methyl parathion, phostebupirim, and temephos were evaluated for their potential to undergo oxidation to their respective oxons and/or other oxidation analogues in laboratory water. Samples were collected at time intervals up to 72h of chlorination and analyzed by both gas chromatography-mass selective detection (GC-MSD) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results show that methidathion and methyl parathion were stable in unchlorinated water, while all other OP pesticides were not stable over the 72h exposure period. In chlorinated water, phorate and disulfoton formed stable sulfone oxons. Temephos formed stable dioxon sulfoxide and dioxon sulfone. Methidathion, bensulide, chlorethyoxyfos, methyl parathion, and phostebupirim formed stable oxons over the 72h exposure period. Terbufos, phorate, disulfoton and temephos oxon sulfoxides; temephos sulfoxide; and phosmet oxon were initially formed but were not detected after 24h. The data illustrate that organothiophosphate pesticides may form oxons and/or other oxidation analogues during chlorination in water treatment plants, which are persistent for at least 72h.

  7. Effects of Chlorine on Enterovirus RNA Degradation

    EPA Science Inventory

    The primary mechanism of disinfection of waterborne pathogens by chlorine has always been believed to be due to the alteration of proteins by free chlorine and subsequent disruption of their biological structure.

  8. Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination.

    PubMed

    Mitch, William A; Sedlak, David L

    2002-02-15

    Chlorine disinfection of secondary wastewater effluent and drinking water can result in the production of the potent carcinogen N-nitrosodimethylamine (NDMA) at concentrations of approximately 100 and 10 parts per trillion (ng/L), respectively. Laboratory experiments with potential NDMA precursors indicate that NDMA formation can form during the chlorination of dimethylamine and other secondary amines. The formation of NDMA during chlorination may involve the slow formation of 1,1-dimethylhydrazine by the reaction of monochloramine and dimethylamine followed by its rapid oxidation to NDMA and other products including dimethylcyanamide and dimethylformamide. Other pathways also lead to NDMA formation during chlorination such as the reaction of sodium hypochlorite with dimethylamine. However, the rate of NDMA formation is approximately an order of magnitude slower than that observed when monochloramine reacts with dimethylamine. The reaction exhibits a strong pH dependence due to competing reactions. It may be possible to reduce NDMA formation during chlorination by removing ammonia prior to chlorination, by breakpoint chlorination, or by avoidance of the use of monochloramine for drinking water disinfection.

  9. The effect of pre-oxidation on NDMA formation and the influence of pH.

    PubMed

    Selbes, Meric; Kim, Daekyun; Karanfil, Tanju

    2014-12-01

    N-nitrosodimethylamine (NDMA), a probable human carcinogen, is a disinfection by-product that has been detected in chloraminated drinking water systems. Pre-oxidation of the NDMA precursors prior to chloramination can be a viable approach for water utilities to control the NDMA levels. This study examined the effects of (i) commonly used oxidants (i.e., chlorine, chlorine dioxide and ozone) in water treatment, (ii) oxidant concentration and contact time (CT), and (iii) pre-oxidation pH on the formation of NDMA from subsequent chloramination. Fifteen model precursors with NDMA molar yields ranging from approximately 0.1%-90% were examined. Pre-chlorination reduced NDMA formation from most precursors by 10%-50% except quaternary amine polymers (i.e., PolyDADMAC, PolyACRYL, PolyAMINE). Pre-oxidation with chlorine dioxide and ozone achieved the same or higher deactivation of NDMA precursors (e.g., ranitidine) while increasing NDMA formation for some other precursors (e.g., daminozid). The increases with chlorine dioxide exposure were attributed to the release of oxidation products with dimethylamine (DMA) moiety, which may form more NDMA upon chloramination than the unoxidizied parent compound. On the other hand, chlorine dioxide was effective, if a precursors NDMA yield were higher than DMA. The ozone-triggered increases could be related to direct NDMA formation from DMA which are released by ozonation of amines with DMA moiety, amides or hydrazines. However, hydroxyl radicals formed from the decomposition of ozone would be also involved in decomposition of formed NDMA, reducing the overall NDMA levels at longer contact times. pH conditions influenced significantly the effectiveness of deactivation of precursors depending on the type of precursor and oxidant used. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Kinetic modelling of chlorination of nitrided ilmenite using MATLAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Sivakumar, E-mail: srsivakumar@usm.my; Kwok, Teong Chen, E-mail: ctck@live.com; Hamid, Sheikh Abdul Rezan Sheikh Abdul, E-mail: rezanshk@gmail.com

    In the present study, chlorination of nitride ilmenite using 2{sup k} factorial design was investigated. The reduction experiments were carried out in a temperature range of 400°C to 500°C, chlorination duration from 1 hour to 3 hours and using different type of carbon reactant. Phases of raw materials and reduced samples were analyzed by X-ray diffraction (XRD). Ilmenite was reduced to TiO{sub x}C{sub y}N{sub z} through carbothermal and nitridation for further chlorination into titanium tetrachloride. The Design of Experiment analysis suggested that the types of carbon reactant contribute most influence to the extent of chlorination of nitride ilmenite. The extentmore » of chlorination was highest at 500°C with 3 hours chlorination time and carbon nanotube as carbon reactant.« less

  11. Ingestion Exposure to Nitrosamines in Chlorinated Drinking Water

    PubMed Central

    Han, Kichan

    2011-01-01

    Objectives N-Nitrosodimethylamine (NDMA) is classified as a probable human carcinogen by the United States Environmental Protection Agency (US EPA) and is formed during the chlorination of municipal drinking water. In this study, selected nitrosamines were measured in chlorinated drinking water collected from Chuncheon, Kangwon-do, Republic of Korea, and a risk assessment for NDMA was conducted. Methods Twelve water samples were collected from 2 treatment plants and 10 household taps. Samples were analyzed for 6 nitrosamines via solid-phase extraction cleanup followed by conversion to dansyl derivatives and high-performance liquid chromatography-fluorescence detection (HPLC-FLD). Considering the dietary patterns of Korean people and the concentration change of NDMA by boiling, a carcinogenic risk assessment from ingestion exposure was conducted following the US EPA guidelines. Results NDMA concentrations ranged between 26.1 and 112.0 ng/L. NDMA in water was found to be thermally stable, and thus its concentration at the end of boiling was greater than before thermal treatment owing to the decrease in water volume. The estimated excess lifetime carcinogenic risk exceeded the regulatory baseline risk of 10-5. Conclusions This result suggests that more extensive studies need to be conducted on nitrosamine concentration distributions over the country and the source of relatively high nitrosamine concentrations. PMID:22125764

  12. Chlorin E6 phototoxicity in L. major and L. braziliensis promastigotes-In vitro study.

    PubMed

    Pinto, Juliana Guerra; Pereira, André Henrique Correia; de Oliveira, Marco Antonio; Kurachi, Cristina; Raniero, Leandro José; Ferreira-Strixino, Juliana

    2016-09-01

    Cutaneous leishmaniasis is a zoonosis caused by protozoa of the genus Leishmania. Conventional treatments are long and aggressive, and they trigger a diversity of side effects. Photodynamic Therapy was originally proposed as a treatment for cancer, and it now appears to be a promising therapy for local treatment with fewer side effects of infectious diseases. This study aimed to evaluate Chlorin e6 internalization by Leishmania major and Leishmania braziliensis promastigotes and its viability and effects on mitochondrial activity. Control groups were kept in the dark, while PDT groups received fluence of 10J/cm(2) (660nm). Chlorin internalization was evaluated using confocal microscopy after one hour of incubation for both species. The mitochondrial activity was evaluated by MTT assay, and viability was measured by the Trypan blue exclusion test. Giemsa staining was used to observe morphological changes. PS was internalized in both species and mitochondrial activity changed in all groups. However, the obtained MTT and Trypan results indicated that despite the change in mitochondrial activity in the dark groups, their viability was not affected, whereas the PDT treated groups had significantly reduced viability. Morphology was drastically altered in PDT treated groups, while groups kept in the dark exhibited the standard morphology. This study demonstrates that Chlorin has great potential for being used in PDT as a treatment for cutaneous leishmaniasis, although more studies are needed to determine in vivo application protocols. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Chlorinated lime poisoning

    MedlinePlus

    ... AND AIRWAYS Breathing difficulty (from breathing in the chlorinated lime) Throat swelling (which may also cause breathing difficulty) SKIN Burns Holes (necrosis) in the skin or tissues underneath Irritation

  14. Temporal Decrease in Upper Atmospheric Chlorine

    NASA Technical Reports Server (NTRS)

    Froidevaux, L.; Livesey, N. J.; Read, W. G.; Salawitch, R. J.; Waters, J. W.; Drouin, B.; MacKenzie, I. A.; Pumphrey, H. C.; Bernath, P.; Boone, C.; hide

    2006-01-01

    We report a steady decrease in the upper stratospheric and lower mesospheric abundances of hydrogen chloride (HCl) from August 2004 through January 2006, as measured by the Microwave Limb Sounder (MLS) aboard the Aura satellite. For 60(deg)S to 60(deg)N zonal means, the average yearly change in the 0.7 to 0.1 hPa (approx.50 to 65 km) region is -27 +/- 3 pptv/year, or -0.78 +/- 0.08 percent/year. This is consistent with surface abundance decrease rates (about 6 to 7 years earlier) in chlorine source gases. The MLS data confirm that international agreements to reduce global emissions of ozone-depleting industrial gases are leading to global decreases in the total gaseous chlorine burden. Tracking stratospheric HCl variations on a seasonal basis is now possible with MLS data. Inferred stratospheric total chlorine (CITOT) has a value of 3.60 ppbv at the beginning of 2006, with a (2-sigma) accuracy estimate of 7%; the stratospheric chlorine loading has decreased by about 43 pptv in the 18-month period studied here. We discuss the MLS HCl measurements in the context of other satellite-based HCl data, as well as expectations from surface chlorine data. A mean age of air of approx. 5.5 years and an age spectrum width of 2 years or less provide a fairly good fit to the ensemble of measurements.

  15. Reactive Minerals and Dechlorinating Communities: Mechanisms Governing the Degradation of Chlorinated Ethenes during Back Diffusion from Low Permeability Zones in Aerobic and Anaerobic Environments

    NASA Astrophysics Data System (ADS)

    Berns, E. C.; Zeng, R.; Singh, H.; Valocchi, A. J.; Sanford, R. A.; Strathmann, T. J.; Schaefer, C. E.; Werth, C. J.

    2017-12-01

    Low permeability zones (LPZs) comprised of silts and clays, and contaminated with chlorinated ethenes, can act as a long term source of contaminated groundwater by diffusion into adjacent high permeability zones (HPZs). Following initial remediation efforts, chlorinated ethenes that have diffused into LPZs will back diffuse and recontaminate HPZs. Because chlorinated ethenes are known to cause cancer and damage the liver, kidneys, and central nervous system, it is important to understand how they degrade in natural systems and how to model their fate and transport. Previous work has shown that anaerobic hydrogenolysis reactions are facilitated by both dechlorinating microorganisms and reactive minerals. Abiotic dichloro-elimination reactions with reactive minerals can also degrade chlorinated ethenes to acetylene, albeit at slower rates than biotic processes. More recently, studies have explored aerobic abiotic degradation of chlorinated ethenes to formate, glycolate, and carbon dioxide. This study focuses on these biotic and abiotic reactions and their contributions to chlorinated ethene degradation under aerobic and anaerobic conditions at the LPZ/HPZ interface. A two-dimensional flow cell was constructed to model this interface using clay and sand from Pease Air Force Base. The clay was inoculated with a dechlorinating enrichment culture. Tenax adsorbent beads equilibrated with trichloroethylene (TCE) were used as a chlorinated ethene source zone at the base of the clay. TCE and its degradation products diffused from the clay into the sand, where they were removed from the flow cell by groundwater at a rate of 50 mL/day. Volatile compounds were trapped in a sample loop and removed every 48 hours for analysis by GC-FID. Organic and inorganic ions in the effluent were analyzed on the HPLC and IC. The experiment was terminated by freezing the flow cell, and chemical profiles through the flow cell material were created to show the spatial distribution of degradation

  16. Strategies for Controlling and Removing Trace Organic Compounds Found in Potable Water Supplies at Fixed Army Installations

    DTIC Science & Technology

    1985-08-01

    have been practiced at Army and municipal water treatment plants. Oxidation/ Disinfection - T -HM Control Although THMs are the only halogenated organics...Table 9 USEPA-Identlf led Methods to Achieve Compliance With 0.1 mg/L, MCL for THMs * Using chloramines as an alternative or supplemental disinfectant ...chlorine Is applied for final disinfection . A residual disinfection coin be added to the distribution systems using chloramines or chlorine dioxide

  17. Evaluation of Carbon Dioxide Laser in the Treatment of Epidermal Nevi

    PubMed Central

    Bhat, Yasmeen Jabeen; Hassan, Iffat; Sajad, Peerzada; Yaseen, Atiya; Mubashir, Syed; Akhter, Saniya; Wani, Roohi

    2016-01-01

    Background: Epidermal naevi are benign hamartomatous growths of the skin which are generally asymptomatic with a benign course but are cosmetically disagreeable. Topical treatments such as steroids, calcipotriol, 5 fluorouracil, podophyllin, retinoids and cryotherapy are ineffective and surgical excision results in scar formation. Therapy is often challenging. Aim of the Study: To study the response of carbon dioxide (CO2) laser in the management of epidermal naevi. Subjects and Methods: We conducted a study of CO2 laser treatment on 15 patients of epidermal naevi, eight with verrucous epidermal naevi and seven with sebaceous naevi. A thorough history and examination was done to rule out any epidermal naevus syndrome. The diagnosis was confirmed by histopathology. The number of treatment sessions varied from 1 to 8. Results: Response was excellent (>90% reduction in lesion size) in three patients, very good (>75% reduction) in five, good (>50% reduction in lesion size) in five and poor (<50% reduction in lesion size) in two patients. The side effects were hyperpigmentation and scarring. Long-term follow-up over a period of 10 months showed a recurrence rate of 20%. Conclusion: We conclude that CO2 laser treatment might be an effective option with long-term safety, minimal discomfort and rapid recovery. PMID:27761089

  18. 46 CFR 151.50-31 - Chlorine.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... accessary equipment shall be of a type suitable for use with chlorine and shall be made of metal, corrosion-resistant to chlorine in either the gas or liquid phase. Cast or malleable iron shall not be used. Valves... joints. (2) Corrosion-resistant metallic pipe (equivalent to Schedule 80) not subject to deterioration by...

  19. Why does Kevlar decompose, while Nomex does not, when treated with aqueous chlorine solutions?

    PubMed

    Akdag, Akin; Kocer, Hasan B; Worley, S D; Broughton, R M; Webb, T R; Bray, Travis H

    2007-05-24

    Kevlar and Nomex are high-performance polymers which have wide varieties of applications in daily life. Recently, they have been proposed to be biocidal materials when reacted with household bleach (sodium hypochlorite solution) because they contain amide moieties which can be chlorinated to generate biocidal N-halamine functional groups. Although Nomex can be chlorinated without any significant decomposition, Kevlar decomposes under the same chlorination conditions. In this study, two mimics for each of the polymers were synthesized to simulate the carboxylate and diaminophenylene components of the materials. It was found that the p-diaminophenylene component of the Kevlar mimic is oxidized to a quinone-type structure upon treatment with hypochlorous acid, which then decomposes. However, such a mechanism for the Nomex mimic is not possible. In this paper, based upon these observations, a plausible answer will be provided to the title question.

  20. THE ROLE OF CHLORINE IN DIOXIN FORMATION

    EPA Science Inventory

    There is poor correlation between total chlorine in waste streams and formation of polychlorinated dibenzodioxin and polychlorinated dibenzofuran (PCDD/F) during waste combustion. This is because the active chlorine (Cl) species are strongly dependent upon combustion conditions. ...