Science.gov

Sample records for chlorite matrix wf10

  1. WF 10: Macrokine, TCDO, tetrachlorodecaoxide.

    PubMed

    2004-01-01

    WF 10 [TCDO, Oxoferin, Immunokine, Macrokine] is a 1:10 dilution of tetrachlorodecaoxide formulated for IV delivery. It was developed by Oxo Chemie in Switzerland as an adjunctive therapy to combination antiretroviral and opportunistic infection prophylaxis regimens in AIDS patients. WF 10 specifically targets macrophages. Oxo Chemie has worldwide patent rights to WF 10 and Dimethaid Research has an exclusive licence for marketing and distribution in Canada. In May 2002, Oxo Chemie was acquired by Dimethaid Research. Oxo completed a trial in 72 cervical cancer patients undergoing radiation therapy in 1989. Results from this trial demonstrated complete remission in 75% of patients receiving WF 10. A follow-up placebo controlled trial in 1996 produced similar results. WF 10 has received regulatory approval in Thailand for postradiation cystitis following a trial completed in 1998 in 20 patients following radiation treatment for cervical carcinoma. This authorisation also allows limited availability of WF 10 at the physician's request in Germany. WF 10 is also available under Health Canada's Special Access Program. Oxo Chemie has completed a controlled randomised, crossover study in France in 1991 that examined the effects of 103 patients with acute radiation dermatitis and radiation- or chemotherapy-induced mucositis. Results demonstrated that WF 10 significantly improved lesions and accelerated recovery without side effects. Topical tetrachlorodecaoxide in a less concentrated formulation (1:55) is marketed in many countries as Oxoferin for wound healing. WF 10 is approved for use in Thailand under the name IMMUNOKINE in patients with postradiation chronic inflammatory disease including cystitis, proctitis and mucositis. In July 2003, the European examiners informed Oxo Chemie that they intend to grant the company additional patents to the technology platform that supports WF 10, extending the European protection granted in 1992 to cover a much broader range of

  2. Differential effects on innate versus adaptive immune responses by WF10.

    PubMed

    Giese, Thomas; McGrath, Michael S; Stumm, Susanne; Schempp, Harald; Elstner, Erich; Meuer, Stefan C

    2004-06-01

    Oxidative compounds that are physiologically generated in vivo can induce natural defense mechanisms to enhance the elimination of pathogens and to limit inflammatory tissue damage in the course of inflammation. Here, we have investigated WF10, a chlorite-based non-toxic compound for its functional activities on human PBMC in vitro. WF10 exerts potent immune-modulatory effects through generating endogenous oxidative compounds such as taurine chloramine. Proliferation and IL-2 production of anti-CD3 stimulated PBMC were inhibited by WF10, as was the nuclear translocation of the transcription factor NFATc. In PBMC and monocytes, however, WF10 induced pro-inflammatory cytokines like IL-1beta, IL-8, and TNF-alpha. In the monocytic cell line THP-1, the activation of the transcription factors AP-1 and NFkappaB by WF10 was demonstrated. Inhibition of NFAT regulated genes in activated lymphocytes in concert with the induction of several myeloid cell associated pro-inflammatory genes in monocytes represents a novel mechanism of immune modulation.

  3. The pro-oxidative drug WF-10 inhibits serial killing by primary human cytotoxic T-cells.

    PubMed

    Wabnitz, G H; Balta, E; Schindler, S; Kirchgessner, H; Jahraus, B; Meuer, S; Samstag, Y

    2016-01-01

    Cytotoxic T-cells (CTLs) play an important role in many immune-mediated inflammatory diseases. Targeting cytotoxicity of CTLs would allow to interfere with immune-mediated tissue destruction. Here we demonstrate that WF-10, a pro-oxidative compound, inhibits CTL-mediated cytotoxicity. WF-10 did not influence early steps of target-cell killing, but impaired the ability of CTLs to detach from the initial target cell and to move to a second target cell. This reduced serial killing was accompanied by stronger enrichment of the adhesion molecule LFA-1 in the cytolytic immune synapse. LFA-1 clustering requires activation of the actin-bundling protein L-plastin and was accordingly diminished in L-plastin knockdown cells. Interestingly, WF-10 likely acts through regulating L-plastin: (I) It induced L-plastin activation through phosphorylation leading to enhanced LFA-1-mediated cell adhesion, and, importantly, (II) WF-10 lost its influence on target-cell killing in L-plastin knockdown cells. Finally, we demonstrate that WF-10 can improve immunosuppression by conventional drugs. Thus, while cyclosporine A alone had no significant effect on cytotoxicity of CTLs, a combination of cyclosporine A and WF-10 blocked target-cell killing synergistically. Together, our findings suggest that WF-10 - either alone or in combination with conventional immunosuppressive drugs - may be efficient to control progression of diseases, in which CTLs are crucially involved.

  4. Chlorite (sodium salt)

    Integrated Risk Information System (IRIS)

    Chlorite ( sodium salt ) ; CASRN 7758 - 19 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  5. 21 CFR 186.1750 - Sodium chlorite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium chlorite. 186.1750 Section 186.1750 Food... GRAS § 186.1750 Sodium chlorite. (a) Sodium chlorite (NaCLO2, CAS Reg. No. 7758-19-2) exists as... solution of sodium hydroxide and hydrogen peroxide. (b) the ingredient is used at levels from 125 to...

  6. 21 CFR 186.1750 - Sodium chlorite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium chlorite. 186.1750 Section 186.1750 Food... of Specific Substances Affirmed as GRAS § 186.1750 Sodium chlorite. (a) Sodium chlorite (NaCLO2, CAS... passing chlorine dioxide into a solution of sodium hydroxide and hydrogen peroxide. (b) the ingredient...

  7. 21 CFR 186.1750 - Sodium chlorite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium chlorite. 186.1750 Section 186.1750 Food... of Specific Substances Affirmed as GRAS § 186.1750 Sodium chlorite. (a) Sodium chlorite (NaCLO2, CAS... passing chlorine dioxide into a solution of sodium hydroxide and hydrogen peroxide. (b) the ingredient...

  8. 21 CFR 186.1750 - Sodium chlorite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium chlorite. 186.1750 Section 186.1750 Food... of Specific Substances Affirmed as GRAS § 186.1750 Sodium chlorite. (a) Sodium chlorite (NaCLO2, CAS... passing chlorine dioxide into a solution of sodium hydroxide and hydrogen peroxide. (b) the ingredient...

  9. 21 CFR 186.1750 - Sodium chlorite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium chlorite. 186.1750 Section 186.1750 Food and... Substances Affirmed as GRAS § 186.1750 Sodium chlorite. (a) Sodium chlorite (NaCLO2, CAS Reg. No. 7758-19-2... into a solution of sodium hydroxide and hydrogen peroxide. (b) the ingredient is used at levels...

  10. Correlation of Chlorite Frictional Strength with Composition

    NASA Astrophysics Data System (ADS)

    Moore, D. E.; Lockner, D. A.

    2015-12-01

    Chlorite is a common phyllosilicate mineral in crustal fault zones, and it is generally considered to contribute to fault-zone weakening. However, very little is known about its frictional properties, in part because of the difficulty in obtaining suitable material for study. Synthetic gouges (<90 μm grain size) have been prepared from four chlorite-rich separates whose compositions range between 18.3 and 33.6 wt% MgO, 1.3-21.6 wt% FeO (total Fe content), and 25.0-33.0 wt% SiO2 (electron microprobe analysis). Magnesium contents vary directly with Si and inversely with Fe. Frictional strengths were measured in the temperature range 25-300°C and shearing rates between 0.00115 and 1.15 μm/s, with fluid pressure and effective normal stress held constant at 60 and 100 MPa, respectively. The chlorites are velocity strengthening at all tested conditions, promoting stable slip. No obvious trends in strength relative to either temperature or velocity were discernible for a given chlorite. In contrast, the frictional strength at any given set of physical conditions is a function of chlorite composition, the most Fe-rich chlorite being the strongest (coefficient of friction, μ in the range 0.26-0.36) and the most Mg- and Si-rich sample the weakest (μ = 0.16-0.22). This is one of the first reports of a compositional influence on the frictional properties of a mineral. The results confirm that chlorite will contribute to strength reduction in fault gouge, but the Mg-rich chlorites associated with ultramafic rocks will be more effective weakening agents than the relatively high-Fe chlorites more typical of quartzofeldspathic crustal rocks.

  11. 21 CFR 173.325 - Acidified sodium chlorite solutions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acidified sodium chlorite solutions. 173.325... § 173.325 Acidified sodium chlorite solutions. Acidified sodium chlorite solutions may be safely used in... solution of sodium chlorite (CAS Reg. No. 7758-19-2) with any generally recognized as safe (GRAS) acid....

  12. 21 CFR 173.325 - Acidified sodium chlorite solutions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acidified sodium chlorite solutions. 173.325... HUMAN CONSUMPTION Specific Usage Additives § 173.325 Acidified sodium chlorite solutions. Acidified sodium chlorite solutions may be safely used in accordance with the following prescribed conditions:...

  13. 21 CFR 173.325 - Acidified sodium chlorite solutions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acidified sodium chlorite solutions. 173.325... HUMAN CONSUMPTION Specific Usage Additives § 173.325 Acidified sodium chlorite solutions. Acidified sodium chlorite solutions may be safely used in accordance with the following prescribed conditions:...

  14. Methane oxidation linked to chlorite dismutation

    PubMed Central

    Miller, Laurence G.; Baesman, Shaun M.; Carlström, Charlotte I.; Coates, John D.; Oremland, Ronald S.

    2014-01-01

    We examined the potential for CH4 oxidation to be coupled with oxygen derived from the dissimilatory reduction of perchlorate, chlorate, or via chlorite (ClO−2) dismutation. Although dissimilatory reduction of ClO−4 and ClO−3 could be inferred from the accumulation of chloride ions either in spent media or in soil slurries prepared from exposed freshwater lake sediment, neither of these oxyanions evoked methane oxidation when added to either anaerobic mixed cultures or soil enriched in methanotrophs. In contrast, ClO−2 amendment elicited such activity. Methane (0.2 kPa) was completely removed within several days from the headspace of cell suspensions of Dechloromonas agitata CKB incubated with either Methylococcus capsulatus Bath or Methylomicrobium album BG8 in the presence of 5 mM ClO−2. We also observed complete removal of 0.2 kPa CH4 in bottles containing soil enriched in methanotrophs when co-incubated with D. agitata CKB and 10 mM ClO−2. However, to be effective these experiments required physical separation of soil from D. agitata CKB to allow for the partitioning of O2 liberated from chlorite dismutation into the shared headspace. Although a link between ClO−2 and CH4 consumption was established in soils and cultures, no upstream connection with either ClO−4 or ClO−3 was discerned. This result suggests that the release of O2 during enzymatic perchlorate reduction was negligible, and that the oxygen produced was unavailable to the aerobic methanotrophs. PMID:24987389

  15. Methane oxidation linked to chlorite dismutation

    USGS Publications Warehouse

    Miller, Laurence G.; Baesman, Shaun M.; Carlström, Charlotte I.; Coates, John D.; Oremland, Ronald S.

    2014-01-01

    We examined the potential for CH4 oxidation to be coupled with oxygen derived from the dissimilatory reduction of perchlorate, chlorate, or via chlorite (ClO−2) dismutation. Although dissimilatory reduction of ClO−4 and ClO−3 could be inferred from the accumulation of chloride ions either in spent media or in soil slurries prepared from exposed freshwater lake sediment, neither of these oxyanions evoked methane oxidation when added to either anaerobic mixed cultures or soil enriched in methanotrophs. In contrast, ClO−2 amendment elicited such activity. Methane (0.2 kPa) was completely removed within several days from the headspace of cell suspensions of Dechloromonas agitata CKB incubated with either Methylococcus capsulatus Bath or Methylomicrobium album BG8 in the presence of 5 mM ClO−2. We also observed complete removal of 0.2 kPa CH4 in bottles containing soil enriched in methanotrophs when co-incubated with D. agitata CKB and 10 mM ClO−2. However, to be effective these experiments required physical separation of soil from D. agitata CKB to allow for the partitioning of O2 liberated from chlorite dismutation into the shared headspace. Although a link between ClO−2 and CH4 consumption was established in soils and cultures, no upstream connection with either ClO−4 or ClO−3 was discerned. This result suggests that the release of O2 during enzymatic perchlorate reduction was negligible, and that the oxygen produced was unavailable to the aerobic methanotrophs.

  16. Sensitivity of antioxidant-deficient yeast to hypochlorite and chlorite.

    PubMed

    Kwolek-Mirek, Magdalena; Bartosz, Grzegorz; Spickett, Corinne M

    2011-08-01

    Sodium hypochlorite and sodium chlorite are commonly used as disinfectants, and understanding the mechanisms of microbial resistance to these compounds is of considerable importance. In this study, the role of oxidative stress and antioxidant enzymes in the sensitivity of the yeast Saccharomyces cerevisiae to hypochlorite and chlorite was studied. Yeast mutants lacking Cu-Zn superoxide dismutase, but not mutants deficient in cytoplasmic and peroxisomal catalase, were hypersensitive to the action of both hypochlorite and chlorite. Both compounds depleted cellular glutathione, induced the production of reactive oxygen species and decreased the viability of the cells. The toxicity of hypochlorite and chlorite was abolished by hypoxic and anoxic conditions and ameliorated by thiol antioxidants and ascorbate. The results demonstrated that the action of hypochlorite and chlorite involves the formation of superoxide and peroxide and that SOD1 is protective, probably by limiting the formation of hydroxyl radicals and damage to proteins.

  17. Chlorite reactivity and contribution to flow path modifications under conditions relevant for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Beckingham, L. E.; Yang, L.; Ajo Franklin, J. B.; Voltolini, M.; Banuelos, J. L.; Anovitz, L. M.; Bourg, I. C.; Steefel, C. I.

    2013-12-01

    Iron-bearing clay minerals, such as chlorite, have been identified as key reactants with CO2 in caprock and reservoir formations and have been frequently shown to coat pores and even govern connected microporosity in these formations. Some studies have linked the total amount of CO2 trapped as carbonate minerals to the abundance of chlorite, glauconite, and smectite. However, the reactivity of these minerals under the conditions and timescales relevant for geologic sequestration of CO2 is largely unknown. When these minerals occur along a fracture leakage pathway, dissolution and precipitation reactions may create self-sealing or self-enhancing leakage pathways. In this presentation, we describe experiments that probe the reactivity of chlorite and its potential to alter connected porosity and either enhance or seal fracture leakage pathways. Our experiments use a network of capillary tubes packed with chlorite to mimic the case where a CO2-acidified brine flows through a fracture and reacts with iron-bearing clays in the caprock matrix. Before and after reaction, the chlorite-filled capillaries are imaged using 3D X-ray synchrotron microtomography at three points along the column to track changes in the pore structure. During the experiment, effluent ion concentrations are tracked using ICP-MS to infer mineralogical changes. The packed capillaries are imaged periodically during the experiment using Raman Spectroscopy to interpret the evolution of minerals along the tube length. Alteration of nanoporosity is assessed through TEM imaging or SAXS. Our experiments reveal how the couplings between mass transport, weathering reactions, and pore structure alteration affect the geochemical evolution of fracture permeability.

  18. Redox kinetics and colloid formation during water-chlorite interactions

    NASA Astrophysics Data System (ADS)

    Kim, E. G.; Ahn, H.; Ryu, J. H.; Jo, H. Y.

    2014-12-01

    For the isolation of high-level radioactive wastes from biosphere, the deep geological repository should be maintained reducing conditions. Surface groundwater can flow along fractures into the deep geological repository, which may cause oxic conditions. In the oxic conditions, uranium can be oxidized from U(Ⅳ) to U(Ⅵ) and U(Ⅵ) can easily migrate in groundwater due to its high mobility. Chlorite with Fe(Ⅱ), which is a phyllosilicate minerals generally occurred in fractures, can help maintenance of the reducing condition because chlorite can consume oxidizing agents by redox reactions. In this study, redox kinetics of chlorite were investigated by conducting redox batch kinetic tests at various conditions (i.e., concentration of oxidizing agent, pH, and presence of NaCl). Colloidal particle formation during redox reactions of chlorite was also investigated. Two types of chlorite samples: low iron content (CCa-2) and high iron content (Chlorite from Daejeon, South Korea) were used. Redox batch kinetic tests were conducted for 60 days. The solutions, reactants, and colloidal particles collected from the redox batch kinetic tests every 10 days were characterized. Results show that the concentration of oxidizing agent decreased more in the chlorite sample having higher Fe(Ⅱ) content than that having lower Fe(Ⅱ) content. After 10 days, both the chlorite samples tend to be reached steady-state conditions and then no changes in the concentration of oxidizing agent were observed. SEM analysis shows that surface and edge of the chlorite samples tend to be crispy and smoothy with increasing reaction time. SEM-EDS analysis on colloidal particles shows that colloidal particles consisted of Fe and O, which were identified as ferrihydrite.

  19. 21 CFR 173.325 - Acidified sodium chlorite solutions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN CONSUMPTION Specific Usage Additives § 173.325 Acidified sodium chlorite solutions. Acidified...., College Park, MD 20740, or may be examined at the Center for Food Safety and Applied Nutrition's...

  20. Mechanism of reaction of chlorite with mammalian heme peroxidases.

    PubMed

    Jakopitsch, Christa; Pirker, Katharina F; Flemmig, Jörg; Hofbauer, Stefan; Schlorke, Denise; Furtmüller, Paul G; Arnhold, Jürgen; Obinger, Christian

    2014-06-01

    This study demonstrates that heme peroxidases from different superfamilies react differently with chlorite. In contrast to plant peroxidases, like horseradish peroxidase (HRP), the mammalian counterparts myeloperoxidase (MPO) and lactoperoxidase (LPO) are rapidly and irreversibly inactivated by chlorite in the micromolar concentration range. Chlorite acts as efficient one-electron donor for Compound I and Compound II of MPO and LPO and reacts with the corresponding ferric resting states in a biphasic manner. The first (rapid) phase is shown to correspond to the formation of a MPO-chlorite high-spin complex, whereas during the second (slower) phase degradation of the prosthetic group was observed. Cyanide, chloride and hydrogen peroxide can block or delay heme bleaching. In contrast to HRP, the MPO/chlorite system does not mediate chlorination of target molecules. Irreversible inactivation is shown to include heme degradation, iron release and decrease in thermal stability. Differences between mammalian peroxidases and HRP are discussed with respect to differences in active site architecture and heme modification.

  1. Mechanism of reaction of chlorite with mammalian heme peroxidases

    PubMed Central

    Jakopitsch, Christa; Pirker, Katharina F.; Flemmig, Jörg; Hofbauer, Stefan; Schlorke, Denise; Furtmüller, Paul G.; Arnhold, Jürgen; Obinger, Christian

    2014-01-01

    This study demonstrates that heme peroxidases from different superfamilies react differently with chlorite. In contrast to plant peroxidases, like horseradish peroxidase (HRP), the mammalian counterparts myeloperoxidase (MPO) and lactoperoxidase (LPO) are rapidly and irreversibly inactivated by chlorite in the micromolar concentration range. Chlorite acts as efficient one-electron donor for Compound I and Compound II of MPO and LPO and reacts with the corresponding ferric resting states in a biphasic manner. The first (rapid) phase is shown to correspond to the formation of a MPO-chlorite high-spin complex, whereas during the second (slower) phase degradation of the prosthetic group was observed. Cyanide, chloride and hydrogen peroxide can block or delay heme bleaching. In contrast to HRP, the MPO/chlorite system does not mediate chlorination of target molecules. Irreversible inactivation is shown to include heme degradation, iron release and decrease in thermal stability. Differences between mammalian peroxidases and HRP are discussed with respect to differences in active site architecture and heme modification. PMID:24632343

  2. Mössbauer study of some Argentinian chlorites

    NASA Astrophysics Data System (ADS)

    Gregori, Daniel A.; Mercader, R. C.

    1994-12-01

    Three chlorite samples obtained from mining areas in Mendoza, Argentina, have been studied by wet chemical analysis, X-ray diffraction and57Fe Mössbauer spectroscopy. The total Fe contents and the Fe2+/Fe3+ atomic ratio are used to characterize the samples and are discussed in connection to the likely genesis of the minerals.

  3. 21 CFR 173.325 - Acidified sodium chlorite solutions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) with any generally recognized as safe (GRAS) acid. (b)(1) The additive is used as an antimicrobial... chlorite concentrations between 500 and 1,200 parts per million (ppm), in combination with any GRAS acid at... ppm, in combination with any GRAS acid at levels sufficient to achieve a solution pH of 2.8 to 3.2....

  4. A Dimeric Chlorite Dismutase Exhibits O2-Generating Activity and Acts as a Chlorite Antioxidant in Klebsiella pneumoniae MGH 78578

    PubMed Central

    2015-01-01

    Chlorite dismutases (Clds) convert chlorite to O2 and Cl–, stabilizing heme in the presence of strong oxidants and forming the O=O bond with high efficiency. The enzyme from the pathogen Klebsiella pneumoniae (KpCld) represents a subfamily of Clds that share most of their active site structure with efficient O2-producing Clds, even though they have a truncated monomeric structure, exist as a dimer rather than a pentamer, and come from Gram-negative bacteria without a known need to degrade chlorite. We hypothesized that KpCld, like others in its subfamily, should be able to make O2 and may serve an in vivo antioxidant function. Here, it is demonstrated that it degrades chlorite with limited turnovers relative to the respiratory Clds, in part because of the loss of hypochlorous acid from the active site and destruction of the heme. The observation of hypochlorous acid, the expected leaving group accompanying transfer of an oxygen atom to the ferric heme, is consistent with the more open, solvent-exposed heme environment predicted by spectroscopic measurements and inferred from the crystal structures of related proteins. KpCld is more susceptible to oxidative degradation under turnover conditions than the well-characterized Clds associated with perchlorate respiration. However, wild-type K. pneumoniae has a significant growth advantage in the presence of chlorate relative to a Δcld knockout strain, specifically under nitrate-respiring conditions. This suggests that a physiological function of KpCld may be detoxification of endogenously produced chlorite. PMID:25437493

  5. On topotaxy and compaction during antigorite and chlorite dehydration: an experimental and natural study

    NASA Astrophysics Data System (ADS)

    Padrón-Navarta, José Alberto; Tommasi, Andréa; Garrido, Carlos J.; Mainprice, David

    2015-04-01

    Dehydration reactions result in minerals' replacement and a transient fluid-filled porosity. These reactions involve interface-coupled dissolution-precipitation and might therefore lead to fixed crystallographic orientation relations between reactant (protolith) and product phases (i.e. topotaxy). We investigate these two phenomena in the dehydration of a foliated antigorite (atg) serpentinite by comparing the crystallographic preferred orientation (CPO) developed by olivine (ol), orthopyroxene (opx) and chlorite (chl) during high-pressure antigorite and chlorite dehydration in piston-cylinder experiments and in natural samples recording the dehydration of antigorite (Cerro del Almirez, Betic Cordillera, Spain). Experiments were performed under undrained conditions resulting in fluid-filled porosity and in strong CPO of the prograde minerals, controlled by the pre-existing antigorite CPO in the reactant foliated serpentinite. The orientation of a ol,opx and is parallel to from the protolith. The Cerro del Almirez samples show similar, locally well-developed topotactic relations between orthopyroxene, chlorite and antigorite, but the product CPOs are weaker and more complex at the thin section scale. In contrast to the experiments, olivine from natural samples shows a weak correlation between b ol and the former . We relate the strengthening of local topotactic relations and the weakening of the inherited CPO at a larger scale in natural samples to compaction and associated fluid migration. Microstructural features that might be related to compaction in the natural samples include: (1) smooth bending of the former foliation, (2) gradual crystallographic misorientation (up to 16°) of prismatic orthopyroxene due to buckling by dislocation creep, (3) inversion of enstatite to low clinoenstatite (P21/c) along lamellae and (4) brittle fracturing of prismatic orthopyroxene enclosed by plastically deformed chlorite. The coexistence of orthopyroxene buckling and

  6. Reactions of aquacobalamin and cob(II)alamin with chlorite and chlorine dioxide.

    PubMed

    Dereven'kov, Ilia A; Shpagilev, Nikita I; Valkai, László; Salnikov, Denis S; Horváth, Attila K; Makarov, Sergei V

    2016-11-19

    Reactions of aquacobalamin (H2O-Cbl(III)) and its one-electron reduced form (cob(II)alamin, Cbl(II)) with chlorite (ClO2(-)) and chlorine dioxide (ClO 2(•) ) were studied by conventional and stopped-flow UV-Vis spectroscopies and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). ClO2(-) does not react with H2O-Cbl(III), but oxidizes Cbl(II) to H2O-Cbl(III) as a major product and corrin-modified species as minor products. The proposed mechanism of chlorite reduction involves formation of OCl(-) that modifies the corrin ring during the course of reaction with Cbl(II). H2O-Cbl(III) undergoes relatively slow destruction by ClO 2(•) via transient formation of oxygenated species, whereas reaction between Cbl(II) and ClO 2(•) proceeds extremely rapidly and leads to the oxidation of the Co(II)-center.

  7. Neoarchean high-pressure margarite-phengitic muscovite-chlorite corona mantled corundum in quartz-free high-Mg, Al phlogopite-chlorite schists from the Bundelkhand craton, north central India

    NASA Astrophysics Data System (ADS)

    Saha, L.; Pant, N. C.; Pati, J. K.; Upadhyay, D.; Berndt, J.; Bhattacharya, A.; Satynarayanan, M.

    2011-04-01

    In quartz-free Fe, Na-poor and high-Mg, Al schists from the Bundelkhand craton in north central India, corundum porphyroblasts in finely interleaved phlogopite-chlorite aggregates with rare clinozoisite are mantled by fine-grained (<3 μm) intergrowths of outer collars (>200 μm wide) of phengitic-muscovite and chlorite (phlogopite + corundum + H2O → phengitic-muscovite + chlorite), and <100 μm wide inner collars of margarite-muscovite (corundum + clinozoisite + phengitic muscovite → margarite + muscovite + H2O). Wide-beam electron probe microanalyses indicate Mg in the bi-layered corona increases from corundum outwards, with a complementary decrease in Al and K. Si and Ca increase and then decrease to matrix values. The sharp chemical gradients across the highly structured bi-layered corona are inferred to suggest that the corona-forming reactions were promoted by local grain-boundary-controlled thermodynamic instability as opposed to element transport by advective diffusion. The P-T convergence of KMASH reactions and NCKMASH pseudosection phase relations computed using micro-domain compositions indicate the chlorite-phengitic muscovite outer collar formed at 18-20 kbar and ca. 630°C. The NCKMASH margarite-muscovite inner collar yielded lower metamorphic P-T conditions of 11 ± 3 kbar, ca. 630°C. U-Th-Pb chemical dating of metamorphic monazite and LA-ICPMS U-Pb isotope dating of re-equilibrated zircon yield ca. 2.78 Ga ages, which are interpreted to date corona formation and Neoarchean high-P metamorphism in the Bundelkhand craton, hitherto unknown in the Indian Precambrian. (220)

  8. Stochastic dynamics of the chlorite-iodide reaction

    NASA Astrophysics Data System (ADS)

    Sagués, F.; Ramírez-Piscina, L.; Sancho, J. M.

    1990-04-01

    A recently proposed theoretical framework appropriate to the study of the stochastic behavior of several chemical systems is used to analyze the irreproducibility of the observed reaction times in the chlorite-iodide clock reaction. Noise terms are incorporated through the kinetic constants and their intensity is further correlated with the inverse of the stirring rate. Analytical and simulation results are obtained for the first moments of the reaction time distribution. These results are compared with recent experimental data obtained by Nagypál and Epstein.

  9. Structural features promoting dioxygen production by Dechloromonas aromatica chlorite dismutase

    SciTech Connect

    Goblirsch, Brandon R.; Streit, Bennett R.; DuBois, Jennifer L.; Wilmot, Carrie M.

    2010-08-12

    Chlorite dismutase (Cld) is a heme enzyme capable of rapidly and selectively decomposing chlorite (ClO{sub 2}{sup -}) to Cl{sup -} and O{sub 2}. The ability of Cld to promote O{sub 2} formation from ClO{sub 2}{sup -} is unusual. Heme enzymes generally utilize ClO{sub 2}{sup -} as an oxidant for reactions such as oxygen atom transfer to, or halogenation of, a second substrate. The X-ray crystal structure of Dechloromonas aromatica Cld co-crystallized with the substrate analogue nitrite (NO{sub 2}{sup -}) was determined to investigate features responsible for this novel reactivity. The enzyme active site contains a single b-type heme coordinated by a proximal histidine residue. Structural analysis identified a glutamate residue hydrogen-bonded to the heme proximal histidine that may stabilize reactive heme species. A solvent-exposed arginine residue likely gates substrate entry to a tightly confined distal pocket. On the basis of the proposed mechanism of Cld, initial reaction of ClO{sub 2}{sup -} within the distal pocket generates hypochlorite (ClO{sup -}) and a compound I intermediate. The sterically restrictive distal pocket probably facilitates the rapid rebound of ClO{sup -} with compound I forming the Cl{sup -} and O{sub 2} products. Common to other heme enzymes, Cld is inactivated after a finite number of turnovers, potentially via the observed formation of an off-pathway tryptophanyl radical species through electron migration to compound I. Three tryptophan residues of Cld have been identified as candidates for this off-pathway radical. Finally, a juxtaposition of hydrophobic residues between the distal pocket and the enzyme surface suggests O{sub 2} may have a preferential direction for exiting the active site.

  10. Interstratification and other reaction microstructures in the chlorite-berthierine series

    NASA Astrophysics Data System (ADS)

    Xu, H.; Veblen, David R.

    1996-08-01

    Transmission electron microscopy (TEM) results show there is a series of periodically and nonperiodically interstratified structures composed of berthierine and chlorite layers in low-temperature “chlorite” that is one of the alteration products of granulite-facies Archean ironstone from the eastern border of the Beartooth Mountains, Montana. An antiphase domain structure suggests that the interstratified structures are intermediate transformation products formed by reaction from berthierine (serpentine structure) to chlorite. Periodically interstratified structures consisting of chlorite (C) and serpentine-like (S) (or berthierine) layers include (CS), (CCS), (CCCS), (CCCCS), and (CCCCCCS). The layer sequences in interstratified chlorite-berthierine are indicative of the reaction mechanisms that produce the interstratified structures (e.g., crystallization from solution or solid-state transformation). The reaction from berthierine to chlorite is crystallographically much like a cell-preserved phase transformation, even though it is highly reconstructive. Berthierine can be considered a polymorph of the Fe-rich chlorite mineral chamosite, with berthierine as the los-temperature phase. Interstratification and integrowths in the chlorite-berthierine series may be common phenomena in low-temperature layer silicates resembling chlorite. Although such relations are difficult to recognize from chemical analyses or powder X-ray diffraction patterns, they can be observed readily with TEM method.

  11. Geochemistry of sericite and chlorite in well 14-2 Roosevelt Hot Springs geothermal system and in mineralized hydrothermal systems

    SciTech Connect

    Ballantyne, J.M.

    1980-06-01

    Chemical compositions of chlorite and sericite from one production well in the Roosevelt geothermal system have been determined by electron probe methods and compared with compositions of chlorite and sericite from porphyry copper deposits. Modern system sericite and chlorite occur over a depth interval of 2 km and a temperature interval of 250/sup 0/C.

  12. Investigation of U(VI) adsorption in quartz-chlorite mineral mixtures.

    PubMed

    Wang, Zheming; Zachara, John M; Shang, Jianying; Jeon, Choong; Liu, Juan; Liu, Chongxuan

    2014-07-15

    A batch and cryogenic laser-induced time-resolved luminescence spectroscopy investigation of U(VI) adsorbed on quartz-chlorite mixtures with variable mass ratios have been performed under field-relevant uranium concentrations (5×10(-7) M and 5×10(-6) M) in pH 8.1 synthetic groundwater. The U(VI) adsorption Kd values steadily increased as the mass fraction of chlorite increased, indicating preferential sorption to chlorite. For all mineral mixtures, U(VI) adsorption Kd values were lower than that calculated from the assumption of component additivity possibly caused by surface modifications stemming from chlorite dissolution; The largest deviation occurred when the mass fractions of the two minerals were equal. U(VI) adsorbed on quartz and chlorite displayed characteristic individual luminescence spectra that were not affected by mineral mixing. The spectra of U(VI) adsorbed within the mixtures could be simulated by one surface U(VI) species on quartz and two on chlorite. The luminescence intensity decreased in a nonlinear manner as the adsorbed U(VI) concentration increased with increasing chlorite mass fraction-likely due to ill-defined luminescence quenching by both structural Fe/Cr in chlorite, and trace amounts of solubilized and reprecipitated Fe/Cr in the aqueous phase. However, the fractional spectral intensities of U(VI) adsorbed on quartz and chlorite followed the same trend of fractional adsorbed U(VI) concentration in each mineral phase with approximate linear correlations, offering a method to estimate of U(VI) concentration distribution between the mineral components with luminescence spectroscopy.

  13. Investigation of U(VI) Adsorption in Quartz-Chlorite Mineral Mixtures

    SciTech Connect

    Wang, Zheming; Zachara, John M.; Shang, Jianying; Jeon, Choong; Liu, Juan; Liu, Chongxuan

    2014-08-25

    A batch and cryogenic laser-induced time-resolved fluorescence spectroscopy investigation of U(VI) adsorbed on quartz-chlorite mixtures with variable mass ratios have been performed under field-relevant uranium concentrations (5x10-7 M and 5x10-6 M) in pH 8.1 synthetic groundwater. The U(VI) adsorption Kd values steadily increased as the mass fraction of chlorite increased, indicating preferential sorption to chlorite. For all mineral mixtures, U(VI) adsorption Kd values were lower than that calculated from the assumption of component additivity; The largest deviation occurred when the mass fractions of the two minerals were equal. U(VI) adsorbed on quartz and chlorite displayed characteristic individual fluorescence spectra that were not affected by mineral mixing. The spectra of U(VI) adsorbed within the mixtures could be simulated by one surface U(VI) species on quartz and two on chlorite. The fluorescence intensity decreased in a nonlinear manner as the adsorbed U(VI) concentration increased with increasing chlorite mass fraction – likely due to ill-defined fluorescence quenching by both structural Fe/Cr in chlorite, and trace amounts of solubilized and re-precipitated Fe/Cr in the aqueous phase. However, the fractional spectral intensities of U(VI) adsorbed on quartz and chlorite followed the same trend of fractional adsorbed U(VI) concentration in each mineral phase; approximate linear correlations in the quartz:chlorite mass ratio ranges of 0.0 - 0.2 and 0.2 - 1.0, offering a method to estimate of U(VI) concentration distribution between the mineral components.

  14. Determination of Chlorine Dioxide and Chlorite in Water Supply Systems by Verified Methods

    NASA Astrophysics Data System (ADS)

    Tkáčová, Jana; Božíková, Jarmila

    2014-07-01

    This work is dedicated to the development and optimization of appropriate analytical methods for the determination of chlorine dioxide and chlorite in drinking water in order to obtain accurate and correct results in the quality control of drinking water. The work deals with the development and optimization of a method for the determination of chlorine dioxide using chlorophenol red. Furthermore, a new spectrophotometric method for the determination of chlorite via bromometry using methyl orange was developed, optimized and validated. An electrochemical method for the determination of chlorite by flow coulometry was also developed, optimized and validated.

  15. The effect of sodium chlorite solutions on zebra mussel mortality

    SciTech Connect

    Dion, J.; Richer, Y.; Messer, R.

    1995-06-01

    The effect of four dilutions, 8 ppm, 40 ppm, 120 ppm and 473 ppm of the stock solution of a first product, Z-8, on zebra mussel mortality was investigated in static continuous exposure systems and compared to controls. The entire size class spectrum of the mussel population present at the sampling site was tested by leaving mussels attached to their original rock substrata. Two size class grouping of mussels, 13 mm and less and more than 13 mm in length, were exposed in the same test chambers but were analyzed separately. No mortality occurred in the controls. Concentration 8 ppm had no effect after 166 hours on both size class groupings. Concentrations 40, 120 and 473 ppm had observable killing effect within the 331 hours of experiment for both size groupings. The smaller mussels died faster than the larger ones. Another product, Z-11, was similarly tested during fall 1994 with dilutions 8, 40, 80 and 120 ppm. At 8 ppm dilution, Z-11 had induced only little mortality on both size class groupings after 739 hours. At 40, 80 and 120 ppm dilutions, Z-11 had interesting killing effect for both mussel size groupings within the 739 hours of experiment considering the somehow intermittent treatment used. The results already appear to show that sodium chlorite solutions have the potential for eventually becoming a surrogate to the use of chlorine for the control of zebra mussels. That is because they already show a good killing efficiency without being involved in the formation of undesired by-products such as the use of chlorine is. On this purpose, the product is engaged in the process of homologation by Agriculture Canada for it use as treatment against zebra mussels.

  16. Determination of chlorite in drinking water by differential pulse voltammetry on graphite.

    PubMed

    Pezzatini, Giovanni; Midili, Ilaria; Toti, Gabriele; Loglio, Francesca; Innocenti, Massimo

    2004-10-01

    The chlorite ion is an unavoidable by-product of the disinfection of drinking water by means of chlorine dioxide. The maximum concentration values of chlorite accepted in many countries' regulations range from 0.2 to 1.0 mg L(-1). A simple, inexpensive and quickly set up voltammetric procedure for the on-site determination of chlorite in drinking water networks is described. This procedure is suitable for the whole range of applications in drinking water plants. A useful cell for on-field analysis has been developed. Surface morphology and behaviour of carbon-based working electrodes have been investigated by voltammetry and atomic force microscopy (AFM). Actual samples of different types of water networks have been analysed for chlorite concentration.

  17. Kinetics and mechanism of styrene epoxidation by chlorite: role of chlorine dioxide.

    PubMed

    Leigh, Jessica K; Rajput, Jonathan; Richardson, David E

    2014-07-07

    An investigation of the kinetics and mechanism for epoxidation of styrene and para-substituted styrenes by chlorite at 25 °C in the pH range of 5-6 is described. The proposed mechanism in water and water/acetonitrile includes seven oxidation states of chlorine (-I, 0, I, II, III, IV, and V) to account for the observed kinetics and product distributions. The model provides an unusually detailed quantitative mechanism for the complex reactions that occur in mixtures of chlorine species and organic substrates, particularly when the strong oxidant chlorite is employed. Kinetic control of the reaction is achieved by the addition of chlorine dioxide to the reaction mixture, thereby eliminating a substantial induction period observed when chlorite is used alone. The epoxidation agent is identified as chlorine dioxide, which is continually formed by the reaction of chlorite with hypochlorous acid that results from ClO produced by the epoxidation reaction. The overall stoichiometry is the result of two competing chain reactions in which the reactive intermediate ClO reacts with either chlorine dioxide or chlorite ion to produce hypochlorous acid and chlorate or chloride, respectively. At high chlorite ion concentrations, HOCl is rapidly eliminated by reaction with chlorite, minimizing side reactions between HOCl and Cl2 with the starting material. Epoxide selectivity (>90% under optimal conditions) is accurately predicted by the kinetic model. The model rate constant for direct reaction of styrene with ClO2(aq) to produce epoxide is (1.16 ± 0.07) × 10(-2) M(-1) s(-1) for 60:40 water/acetonitrile with 0.20 M acetate buffer. Rate constants for para substituted styrenes (R = -SO3(-), -OMe, -Me, -Cl, -H, and -NO2) with ClO2 were determined. The results support the radical addition/elimination mechanism originally proposed by Kolar and Lindgren to account for the formation of styrene oxide in the reaction of styrene with chlorine dioxide.

  18. Chloritization and associated alteration at the Jabiluka unconformity-type uranium deposit, Northern Territory, Australia

    USGS Publications Warehouse

    Nutt, Constance J.

    1989-01-01

    Jabiluka is the largest of four known uncomformity-type uranium deposits that are hosted by brecciated and altered metasedimentary rocks in the Pine Creek geosyncline, Northern Territory, Australia. The alteration zone at Jabiluka is dominated by chlorite, but also contains white mica, tourmaline and apatite; hematite is present, but only in minor amounts. Added quartz is mainly restricted to fractures and breccias. Chlorite, which formed during episodic fluid movement, partly to totally replaced all pre-existing minerals. Chloritized rocks are enriched in Mg, and depleted in K, Ca, Na and Si. Five types of chlorite are optically and chemically distinguishable in the rocks at Jabiluka. Chloritization is proposed as a mechanism that lowered the pH of the circulating fluid, and also caused significant loss of silica from the altered rocks. The proposed constraints on alteration, and presumably on at least part of the uranium mineralization, neither require nor preclude the existence of the unconformity as necessary for the formation of ore.

  19. Vanadium chlorite from a sandstone-hosted vanadium-uranium deposit, Henry basin, Utah.

    USGS Publications Warehouse

    Whitney, G.; Northrop, H.R.

    1986-01-01

    This ore deposit formed by reduction and precipitation of U and V in the presence of organic matter at the interface between a stagnant brine and overlying circulating meteoric water. Some samples of the vanadium chlorite (heated before analysis) contain = or >10% V2O5; in fresh samples most of the V is in the V3+ state. XRD data suggest that Fe and V are concentrated preferentially in the interlayer hydroxide sheets of the chlorite. A d060 value of 1.52 A indicates that the chlorite probably has a dioctahedral structure distended by the presence of octahedral Fe and V; it is a IIb polytype. The V ore zone is flanked by peripheral zones with perfectly ordered chlorite/smectite containing much less V than the pure chlorite. Chemical analysis of a sample heated to 900oC before analysis gave SiO2 44.89, Al2O3 25.14, TiO2 0.35, Fe2O3 8.29, MgO 8.47, CaO 0.84, Na2O 0.27, K2O 2.18, Li2O 0.16, UO3 0.92, V2O5 9.14, = 100.65, together with Cr 10, Mn 200, Co 150, Ni 5.8, Cu 10, Zn 140 ppm; XRD, DTG, TG and IR curves are presented. -R.A.H.

  20. Effect of acid-chlorite delignification on cellulose degree of polymerization.

    PubMed

    Hubbell, Christopher A; Ragauskas, Arthur J

    2010-10-01

    Two types of pure cellulose, Avicel PH-101 and Whatman filter paper, were treated with an acid-chlorite delignification procedure in the presence of varying amounts of incorporated lignin, and the molecular weight distributions and degrees of polymerization (DP) of derivatized cellulose were determined by gel permeation chromatography (GPC). Avicel samples with 0% added lignin showed a DP reduction of nearly 5% during acid-chlorite delignification, compared to a 1% drop in DP with 30% added lignin. Lignin-free filter paper samples showed a DP reduction of nearly 35% after hollocellulose delignification. This drop in DP was reduced to less than 12% for samples which contained 30% lignin. Thus, the presence of lignin in biomass samples minimized the DP reduction of cellulose due to acid catalyzed cleavage during acid-chlorite delignification.

  1. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges

    PubMed Central

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-01-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10−3 S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10−1 S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front. PMID:27386526

  2. Elucidation of the mechanism of enzymatic browning inhibition by sodium chlorite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sodium chlorite (SC) is a well known anti-microbial agent and its strong inhibitory effect on enzymatic browning of fresh-cut produce has recently been identified. We investigated the mechanisms of browning inhibition by SC using chlorogenic acid (CA) and PPO extracted from mushroom to emulate the b...

  3. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation.

    PubMed

    Sorlini, Sabrina; Gialdini, Francesca; Biasibetti, Michela; Collivignarelli, Carlo

    2014-05-01

    Disinfection is the last treatment stage of a Drinking Water Treatment Plant (DWTP) and is carried out to maintain a residual concentration of disinfectant in the water distribution system. Chlorine dioxide (ClO2) is a widely used chemical employed for this purpose. The aim of this work was to evaluate the influence of several treatments on chlorine dioxide consumption and on chlorite and chlorate formation in the final oxidation/disinfection stage. A number of tests was performed at laboratory scale employing water samples collected from the DWTP of Cremona (Italy). The following processes were studied: oxidation with potassium permanganate, chlorine dioxide and sodium hypochlorite, coagulation/flocculation with ferric chloride and aluminum sulfate, filtration and adsorption onto activated carbon. The results showed that the chlorine dioxide demand is high if sodium hypochlorite or potassium permanganate are employed in pre-oxidation. On the other hand, chlorine dioxide leads to the highest production of chlorite and chlorate. The coagulation/flocculation process after pre-oxidation shows that chlorine dioxide demand decreases if potassium permanganate is employed as an oxidant, both with ferric chloride and aluminum sulfate. Therefore, the combination of these processes leads to a lower production of chlorite and chlorate. Aluminum sulfate is preferable in terms of the chlorine dioxide demand reduction and minimization of the chlorite and chlorate formation. Activated carbon is the most effective solution as it reduced the chlorine dioxide consumption by about 50% and the DBP formation by about 20-40%.

  4. Interference of chlorate and chlorite with nitrate reduction in resting cells of Paracoccus denitrificans.

    PubMed

    Kucera, Igor

    2006-12-01

    When grown anaerobically on a succinate+nitrate (SN) medium, Paracoccus denitrificans forms the membrane-bound, cytoplasmically oriented, chlorate-reducing nitrate reductase Nar, while the periplasmic enzyme Nap is expressed during aerobic growth on butyrate+oxygen (BO) medium. Preincubation of SN cells with chlorate produced a concentration-dependent decrease in nitrate utilization, which could be ascribed to Nar inactivation. Toluenization rendered Nar less sensitive to chlorate, but more sensitive to chlorite, suggesting that the latter compound may be the true inactivator. The Nap enzyme of BO cells was inactivated by both chlorate and chlorite at concentrations that were at least two orders of magnitude lower than those shown to affect Nar. Partial purification of Nap resulted in insensitivity to chlorate and diminished sensitivity to chlorite. Azide was specific for SN cells in protecting nitrate reductase against chlorate attack, the protective effect of nitrate being more pronounced in BO cells. The results are discussed in terms of different metabolic activation of chlorine oxoanions in both types of cells, and limited permeation of chlorite across the cell membrane.

  5. 40 CFR 180.1070 - Sodium chlorite; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... chlorite is exempted from the requirement of a tolerance for residues when used in accordance with good agricultural practice as a seed-soak treatment in the growing of the raw agricultural commodities...

  6. Spectral characteristics of chlorites and Mg-serpentines using high- resolution reflectance spectroscopy

    USGS Publications Warehouse

    King, T.V.V.; Clark, R.N.

    1989-01-01

    The present laboratory study using high-resolution reflectance spectroscopy (0.25-2.7 ??m) focuses on two primary phyllosilicate groups, serpentines and chlorites. The results show that it is possible to spectrally distinguish between isochemical end-members of the Mg-rich serpentine group (chrysotile, antigorite, and lizardite) and to recognize spectral variations in chlorites as a function of Fe/Mg ratio (~8-38 wt% Fe). The position and relative strength of the 1.4-??m absorption feature in the trioctahedral chlorites appear to be correlated to the total iron content and/or the Mg/Si ratio and the loss on ignition values of the sample. Spectral differences in the 2.3-??m wavelength region can be attributed to differences in lattice environments and are characteristic for specific trioctahedral chlorites. The 1.4-??m feature in the isochemical Mg-rich serpentines (total iron content ~1.5-7.0 wt%) show marked spectral differences, apparently due to structural differences. -Authors

  7. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of chlorite dismutase: a detoxifying enzyme producing molecular oxygen

    SciTech Connect

    Geus, Daniël C. de Thomassen, Ellen A. J.; Feltz, Clarisse L. van der; Abrahams, Jan Pieter

    2008-08-01

    Preliminary X-ray data collection and analysis for crystals of chlorite dismutase, a haem-based enzyme that very effectively reduces chlorite to chloride while producing molecular oxygen, is reported to 2.1 Å resolution. Chlorite dismutase, a homotetrameric haem-based protein, is one of the key enzymes of (per)chlorate-reducing bacteria. It is highly active (< 2 kU mg{sup −1}) in reducing the toxic compound chlorite to the innocuous chloride anion and molecular oxygen. Chlorite itself is produced as the intermediate product of (per)chlorate reduction. The chlorite dismutase gene in Azospira oryzae strain GR-1 employing degenerate primers has been identified and the active enzyme was subsequently overexpressed in Escherichia coli. Chlorite dismutase was purified, proven to be active and crystallized using sitting drops with PEG 2000 MME, KSCN and ammonium sulfate as precipitants. The crystals belonged to space group P2{sub 1}2{sub 1}2 and were most likely to contain six subunits in the asymmetric unit. The refined unit-cell parameters were a = 164.46, b = 169.34, c = 60.79 Å. The crystals diffracted X-rays to 2.1 Å resolution on a synchrotron-radiation source and a three-wavelength MAD data set has been collected. Determination of the chlorite dismutase structure will provide insights into the active site of the enzyme, for which no structures are currently available.

  8. Pedogenic chlorites in podzolic soils with different intensities of hydromorphism: Origin, properties, and conditions of their formation

    NASA Astrophysics Data System (ADS)

    Tolpeshta, I. I.; Sokolova, T. A.; Bonifacio, E.; Falcone, G.

    2010-07-01

    Minerals of the pedogenic chlorite group were studied in the clay fractions isolated from the mineral horizons of podzolic and gleyic peat-podzolic soils. In the AE and E horizons of the podzolic soil, pedogenic chlorites are thought to develop from vermiculite, whereas in the E horizon of the gleyic peat-podzolic soil, they can be formed from smectite minerals. For estimating the degree of chloritization (the degree of filling of the interlayer space of 2: 1 minerals with Al hydroxides), a numerical criterion was is proposed. The difference between the values of this criterion before and after the treatment of the preparations with NH4F indicated that the degree of chloritization in the pedogenic chlorites decreases in the following sequence: the E horizon of the podzolic soil > the AE horizon of the podzolic soil > the E horizon of the gleyic peat-podzolic soil. Another numerical criterion was proposed to estimate the degree of polymerization of Al-hydroxy complexes in pedogenic chlorites. This criterion was based on the thermal stability of soil chlorites and represented the temperature at which an increase in the intensity of the 1.0-nm peak after heating the K-saturated preparations exceeds 50% of its initial value. According to this criterion, the degree of polymerization of the Al-hydroxy interlayers in pedogenic chlorites decreases in the following sequence: the E horizon of the podzolic soil > the E horizon of the gleyic peat-podzolic soil ≥ the AE horizon of the podzolic soil. The distinct interrelation between the soil properties and the degrees of chloritization and polymerization of the Al-hydroxy interlayers attests to the modern origin of the pedogenic chlorites.

  9. The importance of the location of sodium chlorite application in a multipollutant flue gas cleaning system.

    PubMed

    Krzyzynska, Renata; Hutson, Nick D

    2012-06-01

    In this study, removing sulfur dioxide (SO2), nitrogen oxides (NO(x)), and mercury (Hg) from simulated flue gas was investigated in two laboratory-sized bubbling reactors that simulated an oxidizing reactor (where the NO and Hg(0) oxidation reactions are expected to occur) and a wet limestone scrubber, respectively. A sodium chlorite solution was used as the oxidizing agent. The sodium chlorite solution was an effective additive that enhanced the NO(x), Hg, and SO2 capture from the flue gas. Furthermore, it was discovered that the location of the sodium chlorite application (before, in, or after the wet scrubber) greatly influences which pollutants are removed and the amount removed. This effect is related to the chemical conditions (pH, absence/presence of particular gases) that are present at different positions throughout the flue gas cleaning system profile. The research results indicated that there is a potential to achieve nearly zero SO2, NO(x), and Hg emissions (complete SO2, NO, and Hg removals and -90% of NO(x) absorption from initial values of 1500 ppmv of SO2, 200 ppmv of NO(x), and 206 microg/m3 of Hg(0)) from the flue gas when sodium chlorite was applied before the wet limestone scrubber. However applying the oxidizer after the wet limestone scrubber was the most effective configuration for Hg and NO(x) control for extremely low chlorite concentrations (below 0.002 M) and therefore appears to be the best configuration for Hg control or as an additional step in NO(x) recleaning (after other NO(x) control facilities). The multipollutant scrubber, into which the chlorite was injected simultaneously with the calcium carbonate slurry, appeared to be the least expensive solution (when consider only capital cost), but exhibited the lowest NO(x) absorption at -50%. The bench-scale test results presented can be used to develop performance predictions for a full- or pilot-scale multipollutant flue gas cleaning system equipped with wet flue gas desulfurization

  10. Contribution of long-term hydrothermal experiments for understanding the smectite-to-chlorite conversion in geological environments

    NASA Astrophysics Data System (ADS)

    Mosser-Ruck, Régine; Pignatelli, Isabella; Bourdelle, Franck; Abdelmoula, Mustapha; Barres, Odile; Guillaume, Damien; Charpentier, Delphine; Rousset, Davy; Cathelineau, Michel; Michau, Nicolas

    2016-11-01

    The smectite-to-chlorite conversion is investigated through long-duration experiments (up to 9 years) conducted at 300 °C. The starting products were the Wyoming bentonite MX80 (79 % smectite), metallic iron and magnetite in contact with a Na-Ca chloride solution. The predominant minerals in the run products were an iron-rich chlorite (chamosite like) and interstratified clays interpreted to be chlorite/smectite and/or corrensite/smectite, accompanied by euhedral crystals of quartz, albite and zeolite. The formation of pure corrensite was not observed in the long-duration experiments. The conversion of smectite into chlorite over time appears to take place in several steps and through several successive mechanisms: a solid-state transformation, significant dissolution of the smectite and direct precipitation from the solution, which is over-saturated with respect to chlorite, allowing the formation of a chamosite-like mineral. The reaction mechanisms are confirmed by X-ray patterns and data obtained on the experimental solutions (pH, contents of Si, Mg, Na and Ca). Because of the availability of some nutrients in the solution, total dissolution of the starting smectite does not lead to 100 % crystallization of chlorite but to a mixture of two dominant clays: chamosite and interstratified chlorite/smectite and/or corrensite/smectite poor in smectite. The role of Fe/(Fe + Mg) in the experimental medium is highlighted by chemical data obtained on newly formed clay particles alongside previously published data. The newly formed iron-rich chlorite has the same composition as that predicted by the geothermometer for diagenetic to low-grade metamorphic conditions, and the quartz + Fe-chlorite + albite experimental assemblage in the 9-year experiment is close to that fixed by water-rock equilibrium.

  11. Serpentines, talc, chlorites, and their high-pressure phase transitions: a Raman spectroscopic study

    NASA Astrophysics Data System (ADS)

    Reynard, Bruno; Bezacier, Lucile; Caracas, Razvan

    2015-09-01

    Raman spectra of magnesian phyllosilicates belonging to the serpentine, talc, and chlorite groups have been obtained at ambient conditions, and at high pressures and up to 200 °C in order to study high-pressure transformations in the 10 GPa range. The complex and distinct Raman spectra of these minerals allow straightforward identification, which may otherwise be difficult from optical microscopy. High-pressure measurements are in good agreement with DFT calculations for talc and lizardite. Pressure-induced displacive modifications are identified in lizardite and antigorite serpentines, and in chlorite at ~4, 7 and 8 GPa, respectively, while talc shows no transition up to ~11 GPa. At high temperature, the high-pressure distortions of serpentines shift to higher pressures. Given the stability limits of these minerals, and the natural range of P-T conditions, none of the high-pressure distortions observed at high pressure are likely to occur at depth in the Earth.

  12. Microscopic distribution of trace elements in minerals (chlorites, sulfides, sulfates) in submarine hydrothermal systems

    SciTech Connect

    Janecky, D.R.; Benjamin, T.M.; Rogers, P.S.Z.; Bayhurst, G.K.; Haymon, R.M.

    1989-01-01

    We have analyzed trace elements in two types of hydrothermal precipitates using the Los Alamos Nuclear Microprobe. Chlorites and epidotes in basalt were analyzed from the Samail Ophiolite of Oman. Sulfide and sulfate minerals were analyzed from samples of active chimney walls from 21/degree/N. East Pacific Rise. These samples are ideal for our study because of the extensive background information available on processes and component characteristics. Initial results indicate significant differences in mobile trace elements between chlorites associated with and those distinctly separate from major stockwork flow zones, consistent with greater water-rock reaction within stockworks. Trace element concentrations across chimney walls also exhibit distinctive patterns which can be correlated with mineral/chemical zonation and possible also with variations in elemental source. 9 refs., 2 figs., 1 tab.

  13. An AFM study of the chlorite-fluid interface. [Atomic Force Microscopy

    SciTech Connect

    Vrdoljak, G.A.; Henderson, G.S.; Fawcett, J.J. . Dept. of Geology)

    1992-01-01

    Chlorite is a ubiquitous mineral in many geologic environments and plays an important role in elemental adsorption and retention in soils. Chlorite has a 2:1 layer structure consisting of two tetrahedral sheets with an octahedral sheet between them (talc-like layer). The 2:1 layer is charge balanced and hydrogen-bonded by an interlayer of MgOH[sub 6] octahedra (brucite-like layer). The nature of chlorite's structure, its ease of imaging, and perfect 001 cleavage, make this mineral an ideal substrate for use in elemental adsorption studies in solution, with the AFM. The 001 cleavage plane of a 2b polytype with composition (Mg[sub 4.4]Fe[sub 0.6]Al[sub 1.0])[(Si[sub 2.9]Al[sub 1.1])]O[sub 10](OH)[sub g] has been imaged in air, water, and oil by atomic force microscopy. Dissolution features are observed in water, showing sub-micron features dissolving in real-time. Atomic resolution of both the talc-like and brucite-like layers has been obtained in air. However, only the tetrahedral sheet of the talc-like layer has been imaged at atomic resolution in oil and water, which may indicate a structural instability of the brucite-like surface in solution. Measurements of the unit-cell dimensions (a and b) for the talc-like layer in the three different media indicate a structural expansion of the mineral surface in solution. The a unit cell dimension expands by 7.4 [+-] 0.1% when in water; conversely, the b dimension varies greatly when in oil ([minus]10% to +20%), relative to air. The effects of these solution media on the structure of chlorite are revealed by characterization with the AFM. This information should prove useful in future studies of adsorption onto layer silicates.

  14. Occurrence of bromate, chlorite and chlorate in drinking waters disinfected with hypochlorite reagents. Tracing their origins.

    PubMed

    Garcia-Villanova, Rafael J; Oliveira Dantas Leite, M Vilani; Hernández Hierro, J Miguel; de Castro Alfageme, Santiago; García Hernández, Cristina

    2010-05-15

    Bromate was first reported as a disinfection by-product from ozonated waters, but more recently it has been reported also as a result of treatment using hypochlorite solutions worldwide. The aim of this study was to study the scope of this phenomenon in the drinking waters (n=509) of Castilla y León, Spain, and in the hypochlorite disinfectant reagents. Two thirds of the treated waters monitored were found to have bromate concentrations higher than 1 microg/l, and of them a median value of 8 microg/l and a maximum of 49 microg/l. These concentrations are higher than those reported so far, however, a great variability can be found. Median values for chlorite were of 5 microg/l, and of 119 microg/l for chlorate. Only 7 out of 40 hypochlorite feedstock solutions were negative for bromate, the rest showing a median of 1022 mg/l; and 4 out of 14 calcium hypochlorite pellets were also negative, the rest with a median of 240 mg/kg. Although bromate is cited as potentially added to water from calcium hypochlorite pellets, no reference is found in scientific literature regarding its real content. Chlorite (median 2646 mg/l) and chlorate (median 20,462 mg/l) and chlorite (median 695 mg/kg) and chlorate (median 9516 mg/kg) were also monitored, respectively, in sodium hypochlorite solutions and calcium hypochlorite pellets. The levels of chlorite and chlorate in water are considered satisfactory, but not those of bromate, undoubtedly owing to the high content of bromide in the raw brines employed by the chlor-alkali manufacturers. Depending on the manufacturer, the bromate concentrations in the treated waters may be very heterogeneous owing to the lack of specification for this contaminant in the disinfectant reagents -the European Norms EN 900 and 901 do not mention it.

  15. “Development of an Automated On-line Electrochemical Chlorite Ion Sensor”

    PubMed Central

    Myers, John N.; Steinecker, William H.; Sandlin, Zechariah D.; Cox, James A.; Gordon, Gilbert; Pacey, Gilbert E.

    2012-01-01

    A sensor system for the automatic, in-line, determination of chlorite ion is reported. Electroanalytical measurements were performed in electrolyte-free liquids by using an electrochemical probe (EC), which enables in-line detection in high-resistance media such as disinfected water. Cyclic voltammetry scan rate studies suggest that the current arising from the oxidation of chlorite ion at an EC probe is mass-transfer limited. By coupling FIA with an EC probe amperometric cell, automated analysis was achieved. This sensor is intended to fulfill the daily monitoring requirements of the EPA DBP regulations for chlorite ion. Detection limits of 0.02-0.13 mg/L were attained, which is about one order of magnitude below the MRDL. The sensor showed no faradaic signal for perchlorate, chlorate, or nitrate. The lifetime and stability of the sensor were investigated by measuring calibration curves over time under constant-flow conditions. Detection limits of <0.1 mg/L were repeatedly achieved over a period of three weeks. PMID:22608440

  16. Development of an automated on-line electrochemical chlorite ion sensor.

    PubMed

    Myers, John N; Steinecker, William H; Sandlin, Zechariah D; Cox, James A; Gordon, Gilbert; Pacey, Gilbert E

    2012-05-30

    A sensor system for the automatic, in-line, determination of chlorite ion is reported. Electroanalytical measurements were performed in electrolyte-free liquids by using an electrochemical probe (EC), which enables in-line detection in high-resistance media such as disinfected water. Cyclic voltammetry scan rate studies suggest that the current arising from the oxidation of chlorite ion at an EC probe is mass-transfer limited. By coupling FIA with an EC probe amperometric cell, automated analysis was achieved. This sensor is intended to fulfill the daily monitoring requirements of the EPA DBP regulations for chlorite ion. Detection limits of 0.02-0.13 mg/L were attained, which is about one order of magnitude below the MRDL. The sensor showed no faradaic signal for perchlorate, chlorate, or nitrate. The lifetime and stability of the sensor were investigated by measuring calibration curves over time under constant-flow conditions. Detection limits of <0.1 mg/L were repeatedly achieved over a period of three weeks.

  17. Evaluation of chlorite and chlorate genotoxicity using plant bioassays and in vitro DNA damage tests.

    PubMed

    Feretti, D; Zerbini, I; Ceretti, E; Villarini, M; Zani, C; Moretti, M; Fatigoni, C; Orizio, G; Donato, F; Monarca, S

    2008-09-01

    In the last few years chlorine dioxide has been increasingly used for disinfecting drinking water in many countries. Although it does not react with humic substances, chlorine dioxide added to water is reduced primarily to chlorite and chlorate ions, compounds that are under investigation for their potential adverse effects on human health. The aim of this research was to study the genotoxicity of chlorite and chlorate and their mixtures. The end-points included two plant tests (chromosomal aberration test in Allium cepa and micronucleus assay in Tradescantia, carried out at different times of exposure) and two genotoxicity tests in human HepG2 cells (comet assay and cytokinesis-blocked micronucleus test). Preliminary toxicity tests were carried out for both plant and HepG2 assays. The results showed that chlorite and chlorate are able to induce chromosomal damage to plant systems, particularly chromosomal aberrations in A. cepa root tip cells, even at concentrations lower than the limit established by Italian normative law and WHO guidelines. In HepG2 cells increased DNA damage was only observed for chlorate at the lowest concentration. No increase in micronuclei frequency was detected in any of the samples tested in human HepG2 cells.

  18. Nanoscale channels on ectomycorrhizal-colonized chlorite: Evidence for plant-driven fungal dissolution

    NASA Astrophysics Data System (ADS)

    Gazzè, Salvatore A.; Saccone, Loredana; Vala Ragnarsdottir, K.; Smits, Mark M.; Duran, Adele L.; Leake, Jonathan R.; Banwart, Steven A.; McMaster, Terence J.

    2012-09-01

    The roots of many trees in temperate and boreal forests are sheathed with ectomycorrhizal fungi (EMF) that extend into the soil, forming intimate contact with soil minerals, from which they absorb nutrient elements required by the plants and, in return, are supported by the organic carbon photosynthesized by the trees. While EMF are strongly implicated in mineral weathering, their effects on mineral surfaces at the nanoscale are less documented. In the present study, we investigated the effects of symbiotic EMF on the topography of a chlorite mineral using atomic force microscopy. A cleaning protocol was successfully applied to remove fungal hyphae without altering the underlying mineral structure and topography. Examination of the exposed chlorite surface showed the presence of primary channels, of the order of a micron in width and up to 50 nm in depth, the morphology of which strongly indicates a fungal-induced origin. Smaller secondary channels were observed extending from the primary channels and would appear to be involved in their enlargement. The presence of channels is the first nanoscale demonstration of the effects of fungal interaction, fuelled by plant photosynthate, on the topography of a chlorite mineral, and it provides clear evidence of the ability of EMF to enhance mineral dissolution.

  19. [Exposure to organic halogen compounds in drinking water of 9 Italian regions: exposure to chlorites, chlorates, thrihalomethanes, trichloroethylene and tetrachloroethylene].

    PubMed

    Fantuzzi, G; Aggazzotti, G; Righi, E; Predieri, G; Giacobazzi, P; Kanitz, S; Barbone, F; Sansebastiano, G; Ricci, C; Leoni, V; Fabiani, L; Triassi, M

    2007-01-01

    This study investigated the exposure to organohalogens compounds in drinking water from 9 Italian towns (Udine, Genova, Parma, Modena, Siena, Roma, L'Aquila, Napoli and Catania). Overall, 1199 samples collected from 72 waterworks were analyzed. THMs, trichloroethylene and tetrachloroethylene were evaluated using the head-space gas chromatographic technique (detection limit of 0.01 microg/l; chlorite and chlorate analysis was performed by ion chromatography (detection limit of 20 microg/l). THMs were evidenced in 925 samples (77%) (median value: 1.12 micro/l; range: 0.01-54 mciro/l) and 7 were higher than the THMs Italian limit of 30 microg/l. Chlorite and chlorate levels were higher than the detection limit in 45% for chlorite and in 34% for chlorate samples; median values were 221 microg/l and 76 microg/l, respectively. Chlorite values were higher than the chlorite Italian limit (700 microg/l) in 35 samples (8.7%). Trichloroethylene and tetrachloroethylene were measured in 29% and 44% of the investigated samples and showed values lower than the Italian limit (highest levels of 6 microg/l and 9 microg/l, respectively). The low levels detected of THMs, trichloroethylene and tetrachloroethylene have no potentials effects on human health, whereas, the levels of chlorite and chlorates should be further evaluated and their potential effects for the populations using these drinking waters, better understood.

  20. Mineralogy and geochemistry of laterites developed on chlorite schists in Tchollire region, North Cameroon

    NASA Astrophysics Data System (ADS)

    Banakeng, L. A.; Zame, P. Zo'o.; Tchameni, R.; Mamdem, L.; Bitom, D.

    2016-07-01

    Laterites developed from the weathering of chlorite schists have been studied in Tchollire region, North Cameroon. They include two profiles: a 5.5 m depth profile in Doudja site and a 12.3 m profile in Fimbe site. The chlorite schists have a lepidoblastic to lepidogranoblastic texture and are mainly composed of chlorite, muscovite, biotite, feldspars and quartz but that of Fimbe is marked by the presence of amphibole. It is felsic with a high SiO2 content (67%) and low Fe2O3 (5.8%) and MgO (2.4%) contents in Doudja site but has a lower content of SiO2 (46%) in the Fimbe site where it is mafic with higher contents in Fe2O3 (12.4%) and MgO (6.3%). The chlorite schists of Doudja show high contents in Zr, Sr, Ta, with moderate contents in Cr, V, U and Zn. That of Fimbe is particularly rich in Cr, V, Ni, Sr and Zn with a moderate Zr content. All chlorite schists have high barium contents (270-393 ppm) with LREE-enrichment. The soils are yellowish and, from bottom to top, are composed of a coarse saprolite, fine saprolite, loose clayey horizon and an organo mineral horizon. The main minerals are chlorite, muscovite, biotite, feldspars, quartz, smectites, vermiculite, kaolinite, hematite and goethite. In Doudja, SiO2 mainly decreases from the bottom to the top of the profile while, Al2O3 and Fe2O3 generally increase; in Fimbe, SiO2 and Al2O3 increase up the profile but Fe2O3 decreases; the general high Fe and corresponding decrease in Mg contents in the soils show that the smectite formed is nontronite. Chromium, V, Cu, Ba and Sr show high contents in the two studied profiles but Zr, U and Ta is higher in Doudja than in Fimbe. Copper generally has high contents in the loose clayey and organo mineral horizons. Nickel is higher in the Fimbe profile and probably issued from the Ni-rich mafic protolith. SiO2 has positive correlations with K2O, Zr, Li and Rb. Correlations of SiO2 with CaO, TiO2 and Cr are negative. Al2O3 and Fe2O3 have a positive correlation with Pb. Doudja

  1. Stochastic behavior and stirring rate effects in the chlorite-iodide reaction

    NASA Astrophysics Data System (ADS)

    Nagypál, István; Epstein, Irving R.

    1988-12-01

    The autocatalytic reaction between chlorite and iodide ions in a closed system is a clock reaction, showing a sudden appearance of brown I2 followed by a rapid disappearance of the color. Under certain conditions, the reaction time displays a striking irreproducibility. This stochastic behavior is studied potentiometrically and spectrophotometrically as a function of initial [I- ], stirring rate and solution volume. The results imply that the irreproducibility is an inherent feature of the reaction generated by fluctuations in the solution after it is ``well mixed.'' The key contributors to the stochasticity are local concentration inhomogeneities resulting from imperfect stirring and the ``supercatalytic'' reaction kinetics. A qualitative explanation is given that incorporates these aspects.

  2. Determination of chlorate and chlorite and mutagenicity of seafood treated with aqueous chlorine dioxide.

    PubMed

    Kim, J; Marshall, M R; Du, W X; Otwell, W S; Wei, C I

    1999-09-01

    The use of chlorine dioxide (ClO(2)) as a potential substitute for aqueous chlorine to improve the quality of seafood products has not been approved by regulatory agencies due to health concerns related to the production of chlorite (ClO(2)(-)) and chlorate (ClO(3)(-)) as well as possible mutagenic/carcinogenic reaction products. Cubes of Atlantic salmon (Salmo salar) and red grouper (Epinephelus morio) were treated with 20 or 200 ppm aqueous chlorine or ClO(2) solutions for 5 min, and extracts of the treated fish cubes and test solutions were checked for mutagenicity using the Ames Salmonella/microsome assay. No mutagenic activity was detected in the treated fish samples or test solutions with ClO(2). Only the sample treated with 200 ppm chlorine showed weak mutagenic activity toward S. typhimurium TA 100. No chlorite residue was detected in sea scallops, mahi-mahi, or shrimp treated with ClO(2) at 3.9-34.9 ppm. However, low levels of chlorate residues were detected in some of the treated samples. In most cases, the increase in chlorate in treated seafood was time- and dose-related.

  3. Chlorite topography and dissolution of the interlayer studied with Atomic Force Microscopy

    SciTech Connect

    Gazze, Salvatore; Stack, Andrew G; Ragnarsdottir, K. Vala; McMaster, Terence

    2014-01-01

    Chlorite has a structure composed of a combination of two distinct layers, the tetrahedral15 octahedral-tetrahedral (TOT) and the interlayer (i.e. the octahedral layer between TOT layers). In this study, the morphology and dissolution of chlorite in pure water has been visualized using Atomic Force Microscopy. Upon cleavage, the TOT layer shows atomically flat terraces and steps, while the interlayer presents strips and voids. In pure water, dissolution channels and equilateral, mono-oriented triangular etch pits form in the interlayer and lead to progressively increased solubilisation. Dissolution channels are proposed to originate from structural defects, while a conceptual model is discussed to explain the presence of triangular etch pits. In this model, their formation is driven by the different reactivity of the two octahedral configurations along the etch pits. It is not currently known which of these is the most stable configuration, however we propose arguments that point towards a specific orientation. The conceptual model is supported by experimental data and is potentially applicable to all mineral structures constituted by continuous octahedral layers.

  4. Uranyl-chlorite sorption/desorption: Evaluation of different U(VI) sequestration processes

    NASA Astrophysics Data System (ADS)

    Singer, David M.; Maher, Kate; Brown, Gordon E., Jr.

    2009-10-01

    Sequestration of soluble uranium(VI) in the form of uranyl UO22+ by clay minerals such as chlorite is potentially a major sink for U in U-contaminated environments. We have used batch sorption/desorption experiments combined with U L III-edge X-ray absorption near-edge structure (XANES) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, scanning and transmission electron microscopy, synchrotron-based microdiffraction, and surface complexation modeling to investigate the dominant sorption process(es) governing uranyl uptake by chlorite. Uranium(VI) sorption is independent of ionic strength, suggesting dominantly inner-sphere sorption, which was supported by selective chemical extraction results. The maximum sorption loadings were 0.28 μmol U g -1 chlorite (at pH 4) and 6.3 μmol U g -1 chlorite (at pH 6.5 and 10). Uranium(VI) uptake as a function of solution composition followed the trends (at pH 6.5): CO 3-Ca-free system >CO 3-Ca-bearing system >CO 3-bearing system; (at pH 10): CO 3-Ca-bearing system >CO 3-Ca-free system ≈CO 3-bearing system. Desorption experiments based on selective chemical extractions indicated that (1) there is little or no weakly bound U(VI) or U(VI)-bearing precipitates, (2) 60-80% of U(VI) inner-sphere sorption complexes are desorbed following a 0.1 M HCl step over 1 week, and (3) 100% desorption of adsorbed U(VI) is accomplished by a 1.0 M HCl step over 1 week. Fits of the EXAFS spectra of the short-term sorption samples indicate that UO22+ forms inner-sphere sorption complexes with carbonate (when present) at [Fe(O,OH) 6] octahedral sites in a bidentate, edge-sharing manner. EXAFS-derived structural parameters were used to constrain the type(s) of U(VI)-bearing surface species and were combined with observed batch sorption trends as input for a diffuse double-layer surface complexation model (SCM). This model successfully predicts U(VI) sorption over a range of U(VI) concentrations, pH values, and solution

  5. Dissimilatory perchlorate reduction linked to aerobic methane oxidation via chlorite dismutase

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.

    2013-12-01

    The presence of methane (CH4) in the atmosphere of Mars is controversial yet the evidence has aroused scientific interest, as CH4 could be a harbinger of extant or extinct microbial life. There are various oxidized compounds present on the surface of Mars that could serve as electron acceptors for the anaerobic oxidation of CH4, including perchlorate (ClO4-). We examined the role of perchlorate, chlorate (ClO3-) and chlorite (ClO2-) as oxidants linked to CH4 oxidation. Dissimilatory perchlorate reduction begins with reduction of ClO4- to ClO2- and ends with dismutation of chlorite to yield chloride (Cl-) and molecular oxygen (O2). We explored the potential for aerobic CH4 oxidizing bacteria to couple with oxygen derived from chlorite dismutation during dissimilatory perchlorate reduction. Methane (0.2 kPa) was completely removed within several days from the N2-flushed headspace above cell suspensions of methanotrophs (Methylobacter albus strain BG8) and perchlorate reducing bacteria (Dechloromonas agitata strain CKB) in the presence of 5 mM ClO2-. Similar rates of CH4 consumption were observed for these mixed cultures whether they were co-mingled or segregated under a common headspace, indicating that direct contact of cells was not required for methane consumption to occur. We also observed complete removal of 0.2 kPa CH4 in bottles containing dried soil (enriched in methanotrophs by CH4 additions over several weeks) and D. agitata CKB and in the presence of 10 mM ClO2-. This soil (seasonally exposed sediment) collected from the shoreline of a freshwater lake (Searsville Lake, CA) demonstrated endogenous CH4 uptake as well as perchlorate, chlorate and chlorite reduction/dismutation. However, these experiments required physical separation of soil from the aqueous bacterial culture to allow for the partitioning of O2 liberated from chlorite dismutation into the shared headspace. Although dissimilatory reduction of ClO4- and ClO3- could be inferred from the

  6. Evaluation of the immunomodulatory effects of the disinfection by-product, sodium chlorite, in female B6C3F1 mice: a drinking water study.

    PubMed

    Karrow, N A; Guo, T L; McCay, J A; Johnson, G W; Brown, R D; Musgrove, D L; Germolec, D R; Luebke, R W; White, K L

    2001-08-01

    Sodium chlorite is an inorganic by-product of chlorine dioxide formed during the chlorination of drinking water. Relatively little is known about the adverse health effects of exposure to sodium chlorite in drinking water. In this study, we evaluated sodium chlorite's immunomodulatory properties using female B6C3F1 mice and a panel of immune assays that were designed to evaluate potential changes in innate and acquired cellular and humoral immune responses. Female B6C3F1 mice were exposed to sodium chlorite in their drinking water (0, 0.1, 1, 5, 15, and 30 mg/L) for 28 days, and then evaluated for immunomodulation. Overall, minimal toxicological and immunological changes were observed after exposure to sodium chlorite. Increases in the percentages of blood reticulocytes, and the relative spleen weights were both observed at different sodium chlorite treatment levels; however, these increases were not dose-dependent. An increasing trend in the number of spleen antibody-forming cells was observed over the range of sodium chlorite concentrations. This increase was not, however, significant at any individual treatment level, and was not reflected by changes in serum IgM levels. A significant increase (26%) in the total number of splenic CD8+ cells was observed in mice treated with 30 mg/L of sodium chlorite, but not at the other concentrations. Splenic mixed leukocyte response and peritoneal macrophage activity were unaffected by sodium chlorite. Lastly, exposure to sodium chlorite did not affect natural killer cell activity, although a decrease in augmented natural killer cell activity (42%) was observed at the lowest sodium chlorite treatment level. These results suggest that sodium chlorite, within the range 0.1-30 mg/L, produces minimal immunotoxicity in mice.

  7. Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite: Examples from the Norwegian Continental Shelf

    SciTech Connect

    Ehrenberg, S.N. )

    1993-07-01

    Five Lower to Middle Jurassic sandstone reservoirs from the Norwegian sector provide examples of deep porosity preservation caused by grain-coating, authigenic chlorite. Wide porosity variations in clean sandstones correlate with an abundance of grain-coating chlorite and consequent inhibition of quarts cementation. Maximum porosities tend to decrease with increasing depth but generally are 10-15% higher than would be predicted from regional trends of mean porosity vs. depth. It is proposed in this paper that the high chlorite content of the porous zones reflects syndepositional concentration of Fe-rich marine clays analogous to minerals of the modern verdine facies. Fe-clay mineralization would have been localized where Fe-rich river water was discharged into the sea. The syndepositional clays were transformed during burial diagenesis into grain coatings of radially oriented chlorite crystals. Petrographic relationships indicate that these coatings grew mainly before the beginning of quartz cementation and feldspar grain dissolution (probably within the first 2 km of burial) but after grain contacts had become adjusted by mechanical compaction. The Norwegian examples demonstrate that a wide range of nearshore marine sand-body types is susceptible to chlorite mineralization. The distribution of anomalous porosity and the proportion of the net sand affected depend upon sedimentary facies architecture and the pattern of discharge of Fe-rich river water during sand deposition. This phenomenon can be critically important for hydrocarbon exploration because it can provide good reservoir quality at depths far below the [open quotes]economic basement[close quotes] originally defined on the basis of sandstones lacking chlorite coatings. 58 refs., 25 figs., 1 tab.

  8. Dimeric chlorite dismutase from the nitrogen‐fixing cyanobacterium C yanothece sp. PCC7425

    PubMed Central

    Schaffner, Irene; Hofbauer, Stefan; Krutzler, Michael; Pirker, Katharina F.; Bellei, Marzia; Stadlmayr, Gerhard; Mlynek, Georg; Djinovic‐Carugo, Kristina; Battistuzzi, Gianantonio; Furtmüller, Paul G.; Daims, Holger

    2015-01-01

    Summary It is demonstrated that cyanobacteria (both azotrophic and non‐azotrophic) contain heme b oxidoreductases that can convert chlorite to chloride and molecular oxygen (incorrectly denominated chlorite ‘dismutase’, Cld). Beside the water‐splitting manganese complex of photosystem II, this metalloenzyme is the second known enzyme that catalyses the formation of a covalent oxygen–oxygen bond. All cyanobacterial Clds have a truncated N‐terminus and are dimeric (i.e. clade 2) proteins. As model protein, Cld from C yanothece sp. PCC7425 (CCld) was recombinantly produced in E scherichia coli and shown to efficiently degrade chlorite with an activity optimum at pH 5.0 [k cat 1144 ± 23.8 s−1, KM 162 ± 10.0 μM, catalytic efficiency (7.1 ± 0.6) × 106 M−1 s−1]. The resting ferric high‐spin axially symmetric heme enzyme has a standard reduction potential of the Fe(III)/Fe(II) couple of −126 ± 1.9 mV at pH 7.0. Cyanide mediates the formation of a low‐spin complex with k on = (1.6 ± 0.1) × 105 M−1 s−1 and k off = 1.4 ± 2.9 s−1 (KD ∼ 8.6 μM). Both, thermal and chemical unfolding follows a non‐two‐state unfolding pathway with the first transition being related to the release of the prosthetic group. The obtained data are discussed with respect to known structure–function relationships of Clds. We ask for the physiological substrate and putative function of these O2‐producing proteins in (nitrogen‐fixing) cyanobacteria. PMID:25732258

  9. Chlorite dissolution kinetics at pH 3–10 and temperature to 275°C

    DOE PAGES

    Smith, Megan M.; Carroll, Susan A.

    2015-12-02

    Sheet silicates and clays are ubiquitous in geothermal environments. Their dissolution is of interest because this process contributes to scaling reactions along fluid pathways and alteration of fracture surfaces which could affect reservoir permeability. Here, in order to better predict the geochemical impacts on long-term performance of engineered geothermal systems, we have measured chlorite dissolution and developed a generalized kinetic rate law applicable over an expanded range of solution pH and temperature. Chlorite, (Mg,Al,Fe)12(Si,Al)8O20(OH)16, commonly occurs in many geothermal host rocks as either a primary mineral or alteration product.

  10. Chlorite Dissolution Rates From 25 to 275 degrees and pH 3 to 10

    DOE Data Explorer

    Carroll, Susan

    2013-09-27

    We have calculated a chlorite dissolution rate equation at far from equilibrium conditions by combining new data (20 experiments at high temperature) with previously published data Smith et al. 2013 and Lowson et al. 2007. All rate data (from the 127 experiments) are tabulated in this data submission. More information on the calculation of the rate data can be found in our FY13 Annual support (Carroll LLNL, 2013) which has been submitted to the GDR. The rate equation fills a data gap in geothemal kinetic data base and can be used directly to estimate the impact of chemical alteration on all geothermal processes. It is especially important for understanding the role of chemical alteration in the weakening for shear zones in EGS systems.

  11. Fe-SAPONITE and Chlorite Growth on Stainless Steel in Hydrothermal Engineered Barrier Experiments

    NASA Astrophysics Data System (ADS)

    Cheshire, M. C.; Caporuscio, F. A.; McCarney, M.

    2012-12-01

    The United States recently has initiated the Used Fuel Disposition campaign to evaluate various generic geological repositories for the disposal of high-level, spent nuclear fuel within environments ranging from hard-rock, salt/clay, to deep borehole settings. Previous work describing Engineered Barrier Systems (EBS) for repositories focused on low temperature and pressure conditions. The focus of this experimental work is to characterize the stability and alteration of a bentonite-based EBS with different waste container materials in brine at higher heat loads and pressures. All experiments were run at ~150 bar and 125 to 300 C for ~1 month. Unprocessed bentonite from Colony, Wyoming was used in the experiments as the clay buffer material. The redox conditions for each system were buffered along the magnetite-iron oxygen fugacity univariant curve using Fe3O4 and Feo filings. A K-Na-Ca-Cl-based salt solution was chosen to replicate deep groundwater compositions. The experimental mixtures were 1) salt solution-clay; 2) salt solution -clay-304 stainless steel; and 3) salt solution -clay-316 stainless steel with a water/bentonite ratio of ~9. Mineralogy and aqueous geochemistry of each experiment was evaluated to monitor the reactions that took place. No smectite illitization was observed in these reactions. However, it appears that K-smectite was produced, possibly providing a precursor to illitization. It is unclear whether reaction times were sufficient for bentonite illitization at 212 and 300 C or whether conditions conducive to illite formation were obtained. The more notable clay mineral reactions occurred at the stainless steel surfaces. Authigenic chlorite and Fe-saponite grew with their basal planes near perpendicular to the steel plate, forming a 10 - 40 μm thick 'corrosion' layer. Partial dissolution of the steel plates was the likely iron source for chlorite/saponite formation; however, dissolution of the Feo/Fe3O4 may also have acted as an iron source

  12. Identification of spectrally similar materials using the USGS Tetracorder algorithm: The calcite-epidote-chlorite problem

    USGS Publications Warehouse

    Dalton, J.B.; Bove, D.J.; Mladinich, C.S.; Rockwell, B.W.

    2004-01-01

    A scheme to discriminate and identify materials having overlapping spectral absorption features has been developed and tested based on the U.S. Geological Survey (USGS) Tetracorder system. The scheme has been applied to remotely sensed imaging spectroscopy data acquired by the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument. This approach was used to identify the minerals calcite, epidote, and chlorite in the upper Animas River watershed, Colorado. The study was motivated by the need to characterize the distribution of calcite in the watershed and assess its acid-neutralizing potential with regard to acidic mine drainage. Identification of these three minerals is difficult because their diagnostic spectral features are all centered at 2.3 ??m, and have similar shapes and widths. Previous studies overestimated calcite abundance as a result of these spectral overlaps. The use of a reference library containing synthetic mixtures of the three minerals in varying proportions was found to simplify the task of identifying these minerals when used in conjunction with a rule-based expert system. Some inaccuracies in the mineral distribution maps remain, however, due to the influence of a fourth spectral component, sericite, which exhibits spectral absorption features at 2.2 and 2.4 ??m that overlap the 2.3-??m absorption features of the other three minerals. Whereas the endmember minerals calcite, epidote, chlorite, and sericite can be identified by the method presented here, discrepancies occur in areas where all four occur together as intimate mixtures. It is expected that future work will be able to reduce these discrepancies by including reference mixtures containing sericite. ?? 2004 Elsevier Inc. All rights reserved.

  13. Controlled clinical evaluations of chlorine dioxide, chlorite and chlorate in man.

    PubMed Central

    Lubbers, J R; Chauan, S; Bianchine, J R

    1982-01-01

    To assess the relative safety of chronically administered chlorine water disinfectants in man, a controlled study was undertaken. The clinical evaluation was conducted in the three phases common to investigational drug studies. Phase I, a rising dose tolerance investigation, examined the acute effects of progressively increasing single doses of chlorine disinfectants to normal healthy adult male volunteers. Phase II considered the impact on normal subjects of daily ingestion of the disinfectants at a concentration of 5 mg/l. for twelve consecutive weeks. Persons with a low level of glucose-6-phosphate dehydrogenase may be expected to be especially susceptible to oxidative stress; therefore, in Phase III, chlorite at a concentration of 5 mg/l. was administered daily for twelve consecutive weeks to a small group of potentially at-risk glucose-6-phosphate dehydrogenase-deficient subjects. Physiological impact was assessed by evaluation of a battery of qualitative and quantitative tests. The three phases of this controlled double-blind clinical evaluation of chlorine dioxide and its potential metabolites in human male volunteer subjects were completed uneventfully. There were no obvious undesirable clinical sequellae noted by any of the participating subjects or by the observing medical team. In several cases, statistically significant trends in certain biochemical or physiological parameters were associated with treatment; however, none of these trends was judged to have physiological consequence. One cannot rule out the possibility that, over a longer treatment period, these trends might indeed achieve proportions of clinical importance. However, by the absence of detrimental physiological responses within the limits of the study, the relative safety of oral ingestion of chlorine dioxide and its metabolites, chlorite and chlorate, was demonstrated. PMID:6961033

  14. Scales of equilibrium and disequilibrium during cleavage formation in chlorite and biotite-grade phyllites, SE Vermont

    USGS Publications Warehouse

    McWilliams, C.K.; Wintsch, R.P.; Kunk, M.J.

    2007-01-01

    Detailed electron microprobe analyses of phyllosilicates in crenulated phyllites from south-eastern Vermont show that grain-scale zoning is common, and sympathetic zoning in adjacent minerals is nearly universal. We interpret this to reflect a pressure-solution mechanism for cleavage development, where precipitation from a very small fluid reservoir fractionated that fluid. Multiple analyses along single muscovite, biotite and chlorite grains (30-200 ??m in length) show zoning patterns indicating Tschermakitic substitutions in muscovite and both Tschermakitic and di/trioctahedral substitutions in biotite and chlorite. Using cross-cutting relationships and mineral chemistry it is shown that these patterns persist in cleavages produced at metamorphic conditions of chlorite-grade, chlorite-grade overprinted by biotite-grade and biotite-grade. Zoning patterns are comparable in all three settings, requiring a similar cleavage-forming mechanism independent of metamorphic grade. Moreover, the use of 40Ar/ 39Ar geochronology demonstrates this is true regardless of age. Furthermore, samples with chlorite-grade cleavages overprinted by biotite porphyroblasts suggest the closure temperatures for the diffusion of Al, Si, Mg and Fe ions are greater than the temperature of the biotite isograd (>???400 ??C). Parallel and smoothly fanning tie lines produced by coexisting muscovite-chlorite, and muscovite-biotite pairs on compositional diagrams demonstrate effectively instantaneous chemical equilibrium and probably indicate simultaneous crystallization. These results do not support theories suggesting cleavages form in fluid-dominated systems. If crenulation cleavages formed in systems in which the chemical potentials of all major components are fixed by an external reservoir, then the compositions of individual grains defining these cleavages would be uniform. On the contrary, the fine-scale chemical zoning observed probably reflects a grain-scale process consistent with a

  15. A saponite and chlorite-rich clay assemblage in permian evaporite and red-bed strata, Palo Duro Basin, Texas Panhandle

    SciTech Connect

    Palmer, D.P.

    1987-01-01

    In this Department of Energy-funded project, the author describes lithology of core samples from two Department of Energy wells in Randall and Swisher Counties and determines clay mineralogy and X-ray diffraction response using 73 samples from the Randall County well and 40 samples from the Swisher County well. On the basis of his analyses, the author identifies the clay assemblage in the Palo Duro Basin evaporites as consisting of saponite, a magnesium-rich smectite; mixed-layer chlorite/smectite; chlorite/vermiculite; chlorite/swelling chlorite; vermiculite/swelling chlorite; chlorite, and illite. Chemical analyses reveal that the chemical composition of the mixed-layer clays is intermediate between normal aluminum-rich detrital clays and normal vermiculite and chlorite, magnesium clays of hydrothermal or metamorphic origin. The author postulates that rates and amounts of clay alteration are probably controlled by magnesium ion activity, brine salinity, brine pH, and sediment and clay residence time in the marine evaporite environment.

  16. Temperature micro-mapping and redox conditions of a chlorite zoning pattern in green-schist facies fault zone

    NASA Astrophysics Data System (ADS)

    Trincal, Vincent; Lanari, Pierre; Lacroix, Brice; Buatier, Martine D.; Charpentier, Delphine; Labaume, Pierre; Muñoz, Manuel

    2014-05-01

    Faults are major discontinuities driving fluid flows and playing a major role in precipitation of ore deposits. Mineral paragenesis and crystal chemistry depend on Temperature (T) condition, fluid composition but also on the redox environment of precipitation. The studied samples come from the Pic de Port Vieux thrust sheet, a minor thrust sheet associated to Gavarnie thrust fault zone (Central Pyrenees). The Pic de Port Vieux Thrust sheet comprises a 1-20 meter thick layer of Triassic red beds and mylonitized Cretaceous limestone. The thrust sheet is affected by faults and cleavage; the other important deformation product is a set of veins filled by quartz and chlorite. Microstructural and mineralogical investigations were performed based on the previous work of Grant (1992). The crystallization of chlorite is syn-tectonic and strongly controlled by the fluid circulation during the Gavarnie thrust sheet emplacement. Chlorite precipitated in extension veins, crack-seal shear veins or in open cavities. The chlorite filling the open cavities occurs as pseudo-uniaxial plates arranged in rosette-shaped aggregates. These aggregates appear to have developed as a result of radial growth of the chlorite platelets. According to point and microprobe X-ray images, these chlorites display oscillatory chemical zoning patterns with alternating iron rich and magnesium rich bands. The chlorite composition ranges from Fe rich pole (Si2.62Al1.38O10(Al1.47Fe1.87Mg2.61)6(OH)8) to Mg rich pole (Si2.68Al1.31O10(Al1.45Fe1.41Mg3.06)6(OH)8). In metamorphic rocks, zoning pattern or rimmed minerals results for varying P or T conditions and can be used to unravel the P-T history of the sample. In the present study, temperature maps are derived from standardized microprobe X-ray images using the program XMapTools (Lanari et al 2014). The (Fe3+/Fetot) value in chlorite was directly measured using μXANES spot analyses collected at the Fe-K edge. The results indicate a homogeneous temperature of

  17. Chlorite dissolution kinetics at pH 3–10 and temperature to 275°C

    SciTech Connect

    Smith, Megan M.; Carroll, Susan A.

    2015-12-02

    Sheet silicates and clays are ubiquitous in geothermal environments. Their dissolution is of interest because this process contributes to scaling reactions along fluid pathways and alteration of fracture surfaces which could affect reservoir permeability. Here, in order to better predict the geochemical impacts on long-term performance of engineered geothermal systems, we have measured chlorite dissolution and developed a generalized kinetic rate law applicable over an expanded range of solution pH and temperature. Chlorite, (Mg,Al,Fe)12(Si,Al)8O20(OH)16, commonly occurs in many geothermal host rocks as either a primary mineral or alteration product.

  18. Redox Interactions of Tc(VII), U(VI), and Np(V) with Microbially Reduced Biotite and Chlorite.

    PubMed

    Brookshaw, Diana R; Pattrick, Richard A D; Bots, Pieter; Law, Gareth T W; Lloyd, Jonathan R; Mosselmans, J Fredrick W; Vaughan, David J; Dardenne, Kathy; Morris, Katherine

    2015-11-17

    Technetium, uranium, and neptunium are contaminants that cause concern at nuclear facilities due to their long half-life, environmental mobility, and radiotoxicity. Here we investigate the impact of microbial reduction of Fe(III) in biotite and chlorite and the role that this has in enhancing mineral reactivity toward soluble TcO4(-), UO2(2+), and NpO2(+). When reacted with unaltered biotite and chlorite, significant sorption of U(VI) occurred in low carbonate (0.2 mM) buffer, while U(VI), Tc(VII), and Np(V) showed low reactivity in high carbonate (30 mM) buffer. On reaction with the microbially reduced minerals, all radionuclides were removed from solution with U(VI) reactivity influenced by carbonate. Analysis by X-ray absorption spectroscopy (XAS) confirmed reductive precipitation to poorly soluble U(IV) in low carbonate conditions and both Tc(VII) and Np(V) in high carbonate buffer were also fully reduced to poorly soluble Tc(IV) and Np(IV) phases. U(VI) reduction was inhibited under high carbonate conditions. Furthermore, EXAFS analysis suggested that in the reaction products, Tc(IV) was associated with Fe, Np(IV) formed nanoparticulate NpO2, and U(IV) formed nanoparticulate UO2 in chlorite and was associated with silica in biotite. Overall, microbial reduction of the Fe(III) associated with biotite and chlorite primed the minerals for reductive scavenging of radionuclides: this has clear implications for the fate of radionuclides in the environment.

  19. [G6PD phenotype and red blood cell sensitivity to the oxidising action of chlorites in drinking water].

    PubMed

    Contu, A; Bajorek, M; Carlini, M; Meloni, P; Cocco, P; Schintu, M

    2005-01-01

    Chlorine dioxide is widely used to replace sodium hypochlorite in the disinfection of surface waters for human consumption, in order to avoid or reduce the formation of organohalogenated compounds with mutagenic and carcinogenic activity. However, chlorine dioxide may lead to the formation of by-products, such as chlorites and chlorates, that have an oxidative effect on the blood corpuscled fraction. In this investigation, blood crasis was assessed in relation to the G6PD phenotype and the consumption of tap water, disinfected with chlorine dioxide, or bottled mineral water from non-disinfected underground sources. The results show that the effect of oxidative stress resulting from the uptake of chlorites with drinking water is not additive to the effect due to G6PD deficiency. The observed change in haematological parameters, including those related to the G6PD polymorphism, is always within the normal range. However, it is still possible that more relevant changes would follow exposure to chlorites concentrations greater than that observed in the present study.

  20. Chlorite dissolution rates under CO2 saturated conditions from 50 to 120 °C and 120 to 200 bar CO2

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; Haese, Ralf R.

    2014-01-01

    Chlorite dissolution rates were measured in a series of batch reactor experiments testing the effect of pCO2, pH, chloride and bicarbonate concentrations and temperature. Chlorite is an important diagenetic mineral in sedimentary basins, often found cementing mineral grains and filling pore space in formations that may serve as reservoirs for storing carbon dioxide. Conflicting reports of whether chlorite acts as a barrier to reservoir rock reactivity or leads to enhanced porosity due to dissolution, after the injection of supercritical CO2 into a reservoir, makes studying the reactivity of chlorite in contact with CO2 saturated waters pertinent. Measured dissolution rates were initially rapid and decreased over time as the saturation state of solution relative to chlorite increased. Temperature had the strongest effect on dissolution rate, with an apparent activation energy of 16 ± 0.5 kJ mol-1 and rate constant of log k0 = -9.56 ± 0.07 mol m-2 s-1 assuming a rate law of the form: rate = k0exp(-EA/RT). The apparent activation energy is lower than previously accepted values, but is consistent with a study of chlorite dissolution using flow through techniques (Smith et al., 2013). Mineral dissolution rates are typically proton enhanced, but the lack of a significant pH effect or pCO2 effect on chlorite dissolution rate in this study suggests that the use of NaHCO3 to buffer the pH of CO2 saturated solutions led to an inhibition of mineral dissolution in competition with the expected pH effect. This is supported by the observed dissolution rate increasing dramatically (half a log unit) with the use of an organic acid buffer (KHpthalate) under CO2 free conditions. The effect of chloride (NaCl ∼5 to 50 g/L) was found not to affect the dissolution rate of chlorite. Various empirical rate laws are proposed and fit to the data and lead to the development of a surface complex model describing proton promoted dissolution and bicarbonate inhibition of chlorite

  1. Understanding How the Distal Environment Directs Reactivity in Chlorite Dismutase: Spectroscopy and Reactivity of Arg183 Mutants

    PubMed Central

    Blanc, Béatrice; Mayfield, Jeffery A.; McDonald, Claudia A.; Lukat-Rodgers, Gudrun S.; Rodgers, Kenton R.; DuBois, Jennifer L.

    2012-01-01

    The chlorite dismutase from Dechloromonas aromatica (DaCld) catalyzes the highly efficient decomposition of chlorite to O2 and chloride. Spectroscopic, equilibrium thermodynamic, and kinetic measurements have indicated that Cld has two pH sensitive moieties; one is the heme, and Arg183 in the distal heme pocket has been hypothesized to be the second. This active site residue has been examined by site-directed mutagenesis to understand the roles of positive charge and hydrogen bonding in O–O bond formation. Three Cld mutants, Arg183 to Lys (R183K), Arg183 to Gln (R183Q), and Arg183 to Ala (R183A), were investigated to determine their respective contributions to the decomposition of chlorite ion, the spin state and coordination states of their ferric and ferrous forms, their cyanide and imidazole binding affinities, and their reduction potentials. UV–visible and resonance Raman spectroscopies showed that DaCld(R183A) contains five-coordinate high-spin (5cHS) heme, the DaCld(R183Q) heme is a mixture of five-coordinate and six-coordinate high spin (5c/6cHS) heme, and DaCld(R183K) contains six-coordinate low-spin (6cLS) heme. In contrast to wild-type (WT) Cld, which exhibits pKa values of 6.5 and 8.7, all three ferric mutants exhibited pH-independent spectroscopic signatures and kinetic behaviors. Steady state kinetic parameters of the chlorite decomposition reaction catalyzed by the mutants suggest that in WT DaCld the pKa of 6.5 corresponds to a change in the availability of positive charge from the guanidinium group of Arg183 to the heme site. This could be due to either direct acid–base chemistry at the Arg183 side chain or a flexible Arg183 side chain that can access various orientations. Current evidence is most consistent with a conformational adjustment of Arg183. A properly oriented Arg183 is critical for the stabilization of anions in the distal pocket and for efficient catalysis. PMID:22313119

  2. Chlorite, Biotite, Illite, Muscovite, and Feldspar Dissolution Kinetics at Variable pH and Temperatures up to 280 C

    SciTech Connect

    Carroll, S.; Smith, M.; Lammers, K.

    2016-10-05

    Summary Sheet silicates and clays are ubiquitous in geothermal environments. Their dissolution is of interest because this process contributes to scaling reactions along fluid pathways and alteration of fracture surfaces, which could affect reservoir permeability. In order to better predict the geochemical impacts on long-term performance of engineered geothermal systems, we have measured chlorite, biotite, illite, and muscovite dissolution and developed generalized kinetic rate laws that are applicable over an expanded range of solution pH and temperature for each mineral. This report summarizes the rate equations for layered silicates where data were lacking for geothermal systems.

  3. Succession of Permian and Mesozoic metasomatic events in the eastern Pyrenees with emphasis on the Trimouns talc-chlorite deposit

    NASA Astrophysics Data System (ADS)

    Boutin, Alexandre; de Saint Blanquat, Michel; Poujol, Marc; Boulvais, Philippe; de Parseval, Philippe; Rouleau, Caroline; Robert, Jean-François

    2016-04-01

    Recent studies proposing pre-orogenic mantle exhumation models have helped renew the interest of the geosciences community in the Pyrenees, which should be now interpreted as a hyper-extended passive margin before the convergence between Iberia and Eurasia occurred. Unresolved questions of the Pyrenean geology, as well as the understanding of the formation of hyper-extended passive margins, are how the crust was thinned, and when, where and how the crustal breakoff occurred. The study of the Variscan and pre-Variscan Pyrenean basement is thus critical to document and understand this Cretaceous crustal thinning. In order to specify the timing of Mesozoic metasomatism and the associated deformation in the pre-Mesozoic basement of the Pyrenees, we carried out a U-Th-Pb laser ablation ICP-MS study on a large panel of REE and titanium-rich minerals (titanite and rutile) from talc-chlorite ores from the eastern Pyrenees, with a special emphasis on the Trimouns deposit, the world's largest talc quarry. Our results suggest that the Trimouns talc formation was restricted to the upper Aptian-Cenomanian time, while the talc and chlorite formation in the eastern Pyrenees occurred during several distinct Permian, Jurassic and Cretaceous episodes. These results give strong constraints on the tectonic setting of the Pyrenean domain during the transition between the Variscan and Alpine orogenic cycles, and particularly on when and how the upper crust was thinned before the crustal breakoff and the final mantle exhumation.

  4. Effectiveness of acidified sodium chlorite and other sanitizers to control Escherichia coli O157:H7 on tomato surfaces.

    PubMed

    Inatsu, Yasuhiro; Kitagawa, Tomoko; Bari, Md Latiful; Nei, Daisuke; Juneja, Vijay; Kawamoto, Shinichi

    2010-06-01

    The use of a suitable sanitizer can reduce the risk of produce-related foodborne illnesses. We evaluated the effectiveness of several sanitizers to reduce inoculated Escherichia coli O157:H7 on the surface of cherry tomatoes (Solanum lycopersicum var. cerasiform). Depending on the method of inoculation (dipping/spotting), each of 80 g (eight tomatoes) of inoculated cherry tomatoes was washed in 400 mL of sanitizer solutions or 400 mL distilled water for 5 minutes. The effectiveness of sanitizers on spot-inoculated E. coli O157:H7 on tomato surfaces was found higher than on dip-inoculated tomatoes. Washing with water or chlorine water (0.1 g/L as free chlorine) could reduce 1.3 log CFU/g of E. coli O157:H7 in dip-inoculated (6.8 log CFU/g) tomatoes. Washing with lactic acid (LA) solution (1.0 g/L), phytic acid solution (1.0 g/L), calcinated seashells (oyster/sakhalin surf clam), and 1.0 g/L chitosan in 0.5 g/L LA (Chito) did not exhibit a significant higher effectiveness than that of water wash alone (1.0 log CFU/g). Acidified sodium chlorite (ASC) solution prepared from 0.5 g/L of sodium chlorite and 1.0 g/L LA or phytic acid reduced 3.5 log CFU/g of E. coli O157:H7 in dip-inoculated tomato surfaces. ASC (0.5 g/L of sodium chlorite and 1.0 g/L of LA) wash followed by a second wash with LA exhibited an additional sanitary effectiveness compared to a single wash with ASC. However, washing with ASC followed by a second wash with Chito exhibited an additional 1.0 log CFU/g reduction compared to a secondary wash with water. No significant difference of color, taste, and texture was observed among the washed cherry tomatoes.

  5. Reverse osmosis membrane composition, structure and performance modification by bisulphite, iron(III), bromide and chlorite exposure.

    PubMed

    Ferrer, O; Gibert, O; Cortina, J L

    2016-10-15

    Reverse osmosis (RO) membrane exposure to bisulphite, chlorite, bromide and iron(III) was assessed in terms of membrane composition, structure and performance. Membrane composition was determined by Rutherford backscattering spectrometry (RBS) and membrane performance was assessed by water and chloride permeation, using a modified version of the solution-diffusion model. Iron(III) dosage in presence of bisulphite led to an autooxidation of the latter, probably generating free radicals which damaged the membrane. It comprised a significant raise in chloride passage (chloride permeation coefficient increased 5.3-5.1 fold compared to the virgin membrane under the conditions studied) rapidly. No major differences in terms of water permeability and membrane composition were observed. Nevertheless, an increase in the size of the network pores, and a raise in the fraction of aggregate pores of the polyamide (PA) layer were identified, but no amide bond cleavage was observed. These structural changes were therefore, in accordance with the transport properties observed.

  6. Multiple hydrothermal and metamorphic events in the Kidd Creek volcanogenic massive sulphide deposit, Timmins, Ontario: evidence from tourmalines and chlorites

    USGS Publications Warehouse

    Slack, J.F.; Coad, P.R.

    1989-01-01

    The tourmalines and chlorites record a series of multiple hydrothermal and metamorphic events. Paragenetic studies suggest that tourmaline was deposited during several discrete stages of mineralization, as evidence by brecciation and cross-cutting relationships. Most of the tourmalines have two concentric growth zones defined by different colours (green, brown, blue, yellow). Some tourmalines also display pale discordant rims that cross-cut and embay the inner growth zones and polycrystalline, multiple-extinction domains. Late sulphide veinlets (chalcopyrite, pyrrhotite) transect the inner growth zones and pale discordant rims of many crystals. The concentric growth zones are interpreted as primary features developed by the main ore-forming hydrothermal system, whereas the discordant rims, polycrystalline domains, and cross-cutting sulphide veinlets reflect post-ore metamorphic processes. Variations in mineral proportions and mineral chemistry within the deposit mainly depend on fluctuations in temperature, pH, water/rock ratios, and amounts of entrained seawater. -from Authors

  7. Phyllosilicate weathering pathways in chlorite-talc bearing soil parent materials, D.R. Congo: early findings.

    NASA Astrophysics Data System (ADS)

    Dumon, Mathijs; Oostermeyer, Fran; Timmermans, Els; De Meulemeester, Aschwin; Mees, Florias; Van Driessche, Isabel; Erens, Hans; Bazirake Mujinya, Basile; Van Ranst, Eric

    2015-04-01

    The study of the formation and transformation of clay minerals is of the upmost importance to understand soil formation and to adjust land-use management to the land surface conditions. These clay minerals determine to a large extent the soil physical and chemical properties. It is commonly observed that over time the mineralogy of any parent material is transformed to a simple assemblage composed mostly of Al and Fe oxides and low-activity clays, e.g. kaolinite. This is especially obvious in the humid tropics, which have been protected from glacial erosion, allowing deep, highly weathered soils to form. Despite the abundant presence of kaolinite in these soils, its formation pathways are still under debate: either neoformation by dissolution-crystallisation reactions or solid-state transformation of 2:1 phyllosilicates. To elucidate this, weathering sequences in a unique 40 m core taken below a termite mound, reaching a talc-chlorite bearing substrate in the Lubumbashi area, Katanga, DR Congo are being investigated in detail using a.o. quantitative X-ray diffraction analysis, chemical characterization, micromorphology and µXRF-scanning with the main objective to improve the understanding of the formation pathways of kaolinite subgroup minerals in humid tropical environments. Based on an initial characterization of the core, two zones of interest were selected for more detailed analysis, for which the early findings will be presented. The first zone extends from ca. 9 m to 11 m below the surface is dominated by kaolinite but shows early traces of primary talc and micas. The second zone extends from 34 to 36 m below the surface and contains large amounts of chlorite, with smaller amounts of talc, micas and kaolinite.

  8. Influence of Ligand Architecture in Tuning Reaction Bifurcation Pathways for Chlorite Oxidation by Non-Heme Iron Complexes.

    PubMed

    Barman, Prasenjit; Faponle, Abayomi S; Vardhaman, Anil Kumar; Angelone, Davide; Löhr, Anna-Maria; Browne, Wesley R; Comba, Peter; Sastri, Chivukula V; de Visser, Sam P

    2016-10-05

    Reaction bifurcation processes are often encountered in the oxidation of substrates by enzymes and generally lead to a mixture of products. One particular bifurcation process that is common in biology relates to electron transfer versus oxygen atom transfer by high-valent iron(IV)-oxo complexes, which nature uses for the oxidation of metabolites and drugs. In biomimicry and bioremediation, an important reaction relates to the detoxification of ClOx(-) in water, which can lead to a mixture of products through bifurcated reactions. Herein we report the first three water-soluble non-heme iron(II) complexes that can generate chlorine dioxide from chlorite at ambient temperature and physiological pH. These complexes are highly active oxygenation oxidants and convert ClO2(-) into either ClO2 or ClO3¯ via high-valent iron(IV)-oxo intermediates. We characterize the short-lived iron(IV)-oxo species and establish rate constants for the bifurcation mechanism leading to ClO2 and ClO3(-) products. We show that the ligand architecture of the metal center plays a dominant role by lowering the reduction potential of the metal center. Our experiments are supported by computational modeling, and a predictive valence bond model highlights the various factors relating to the substrate and oxidant that determine the bifurcation pathway and explains the origins of the product distributions. Our combined kinetic, spectroscopic, and computational studies reveal the key components necessary for the future development of efficient chlorite oxidation catalysts.

  9. From chlorite dismutase towards HemQ–the role of the proximal H-bonding network in haeme binding

    PubMed Central

    Hofbauer, Stefan; Howes, Barry D.; Flego, Nicola; Pirker, Katharina F.; Schaffner, Irene; Mlynek, Georg; Djinović-Carugo, Kristina; Furtmüller, Paul G.; Smulevich, Giulietta; Obinger, Christian

    2016-01-01

    Chlorite dismutase (Cld) and HemQ are structurally and phylogenetically closely related haeme enzymes differing fundamentally in their enzymatic properties. Clds are able to convert chlorite into chloride and dioxygen, whereas HemQ is proposed to be involved in the haeme b synthesis of Gram-positive bacteria. A striking difference between these protein families concerns the proximal haeme cavity architecture. The pronounced H-bonding network in Cld, which includes the proximal ligand histidine and fully conserved glutamate and lysine residues, is missing in HemQ. In order to understand the functional consequences of this clearly evident difference, specific hydrogen bonds in Cld from ‘Candidatus Nitrospira defluvii’ (NdCld) were disrupted by mutagenesis. The resulting variants (E210A and K141E) were analysed by a broad set of spectroscopic (UV–vis, EPR and resonance Raman), calorimetric and kinetic methods. It is demonstrated that the haeme cavity architecture in these protein families is very susceptible to modification at the proximal site. The observed consequences of such structural variations include a significant decrease in thermal stability and also affinity between haeme b and the protein, a partial collapse of the distal cavity accompanied by an increased percentage of low-spin state for the E210A variant, lowered enzymatic activity concomitant with higher susceptibility to self-inactivation. The high-spin (HS) ligand fluoride is shown to exhibit a stabilizing effect and partially restore wild-type Cld structure and function. The data are discussed with respect to known structure–function relationships of Clds and the proposed function of HemQ as a coprohaeme decarboxylase in the last step of haeme biosynthesis in Firmicutes and Actinobacteria. PMID:26858461

  10. Disinfection by-products of chlorine dioxide (chlorite, chlorate, and trihalomethanes): Occurrence in drinking water in Qatar.

    PubMed

    Al-Otoum, Fatima; Al-Ghouti, Mohammad A; Ahmed, Talaat A; Abu-Dieyeh, Mohammed; Ali, Mohammed

    2016-12-01

    The occurrence of chlorine dioxide (ClO2) disinfection by-products (DBPs) in drinking water, namely, chlorite, chlorate, and trihalomethanes (THMs), was investigated. Two-hundred-ninety-four drinking water samples were collected from seven desalination plants (DPs), four reservoirs (R), and eight mosques (M) distributed within various locations in southern and northern Qatar. The ClO2 concentration levels ranged from 0.38 to <0.02 mg L(-1), with mean values of 0.17, 0.12, and 0.04 mg L(-1) for the DPs, Rs, and Ms, respectively. The chlorite levels varied from 13 μg L(-1) to 440 μg L(-1), with median values varying from 13 to 230 μg L(-1), 77-320 μg L(-1), and 85-440 μg L(-1) for the DPs, Rs, and Ms, respectively. The chlorate levels varied from 11 μg L(-1) to 280 μg L(-1), with mean values varying from 36 to 280 μg L(-1), 11-200 μg L(-1), and 11-150 μg L(-1) in the DPs, Rs, and Ms, respectively. The average concentration of THMs was 5 μg L(-1), and the maximum value reached 77 μg L(-1) However, all of the DBP concentrations fell within the range of the regulatory limits set by GSO 149/2009, the World Health Organization (WHO), and Kahramaa (KM).

  11. Combination of sodium chlorite and calcium propionate reduces enzymatic browning and microbial population of fresh-cut ‘Granny Smith’ apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tissue browning and microbial growth are the main concerns associated with fresh-cut apples. In this study, effects of sodium chlorite (SC) and calcium propionate (CP), individually and combined, on quality and microbial population of apple slices were investigated. ‘Granny Smith’ apple slices, dipp...

  12. Chemistry of micas and chlorite in Proterozoic acid metavolcanics and associated rocks from the Hästefält area, Norberg ore district, central Sweden

    NASA Astrophysics Data System (ADS)

    Aldahan, A. A.; Ounchanum, P.; Morad, S.

    1988-09-01

    Microprobe analyses are performed on micas (biotite, muscovite and phlogopite) and chlorite from 1.9 1.8 Ga acid K- or Na-rich metavolcanics, cordierit-emica schists and manganiferous rocks from the Hästefält area in central Sweden. The results indicate that Fe-rich biotites and muscovites containing ≥10 to ≤25% celadonite and/or pyrophyllite are common in the K- and Na-rich metavolcanics. In the cordierite-mica schists the biotites are Mg-rich and the muscovites contain less than 10% celadonite and/or pyrophyllite. The predominant mica in the manganiferous rocks are phlogopite and less frequent rather pure muscovite. The chlorites show a wide range in composition, but principally those occurring in the K- and Na-rich metavolcanics are brunsvigite and diabantite and those in the cordierite-mica schists and the manganiferous rocks are mainly sheridanite and clinochlore. The chlorites of the manganiferous rocks show enrichment in Mn compared to those in other rock types. In general the compositional variations in the micas and less commonly chlorites are strongly controlled by rock type and fluid chemistry, particularly with respect to the ratio of FeO/(FeO+MgO). Estimates of maximum prograde metamorphic temperature, based on phyllosilicates and co-existing cordierite and garnets, indicate a value of up to 500° C.

  13. Combined effects of sodium chlorite dip treatment and chitosan coatings on the quality of fresh-cut d’Anjou pears

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the effects of sodium chlorite (SC) alone and its sequential treatment with edible coatings on browning inhibition and quality maintenance of fresh-cut d’Anjou pears. Edible coatings were prepared from chitosan (CH) and its water soluble derivative: carboxymethyl chitosan (CMCH...

  14. EVALUATION OF THE IMMUNOMODULATORY EFFECTS OF THE DISINFECTION BYPRODUCT, SODIUM CHLORITE, IN FEMALE B6C3F1 MICE: A DRINKING WATER STUDY

    EPA Science Inventory

    Evaluation of the Immunomodulatory Effects of the Disinfection By-product, Sodium chlorite, in Female B6C3f1 mice: A Drinking Water Study.

    Niel A. Karrow, Tal, L. Guo, J. Ann McCay, Greg W. Johnson, Ronnetta D. Brown, Debrorah L. Musgrove, Dori R. Germolec, Robert W. Lueb...

  15. A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO-FeO-Al2O3-SiO2-H2O: applications to P- T sections and geothermometry

    NASA Astrophysics Data System (ADS)

    Lanari, Pierre; Wagner, Thomas; Vidal, Olivier

    2014-02-01

    We present a new thermodynamic activity-composition model for di-trioctahedral chlorite in the system FeO-MgO-Al2O3-SiO2-H2O that is based on the Holland-Powell internally consistent thermodynamic data set. The model is formulated in terms of four linearly independent end-members, which are amesite, clinochlore, daphnite and sudoite. These account for the most important crystal-chemical substitutions in chlorite, the Fe-Mg, Tschermak and di-trioctahedral substitution. The ideal part of end-member activities is modeled with a mixing-on-site formalism, and non-ideality is described by a macroscopic symmetric (regular) formalism. The symmetric interaction parameters were calibrated using a set of 271 published chlorite analyses for which robust independent temperature estimates are available. In addition, adjustment of the standard state thermodynamic properties of sudoite was required to accurately reproduce experimental brackets involving sudoite. This new model was tested by calculating representative P- T sections for metasediments at low temperatures (<400 °C), in particular sudoite and chlorite bearing metapelites from Crete. Comparison between the calculated mineral assemblages and field data shows that the new model is able to predict the coexistence of chlorite and sudoite at low metamorphic temperatures. The predicted lower limit of the chloritoid stability field is also in better agreement with petrological observations. For practical applications to metamorphic and hydrothermal environments, two new semi-empirical chlorite geothermometers named Chl(1) and Chl(2) were calibrated based on the chlorite + quartz + water equilibrium (2 clinochlore + 3 sudoite = 4 amesite + 4 H2O + 7 quartz). The Chl(1) thermometer requires knowledge of the (Fe3+/ΣFe) ratio in chlorite and predicts correct temperatures for a range of redox conditions. The Chl(2) geothermometer which assumes that all iron in chlorite is ferrous has been applied to partially recrystallized

  16. Rare Earth Element Compositions of Chlorite-rich Hydrothermal Sediments in the middle Okinawa Trough, East China Sea

    NASA Astrophysics Data System (ADS)

    Shao, H.; Yang, S.; Humphris, S. E.; Cai, D.; Wang, Q.

    2015-12-01

    Rare earth elements (REEs) have been used as powerful tracers in the study of hot fluid-rock reaction in hydrothermal system. However, the behavior of the REEs during interaction of hydrothermal solution with rocks remains to be clarified more quantitatively. The Okinawa Trough (OT), located in the East Asian continental margin, is characterized by thick terrigenous sediment and ubiquitous volcanic-hydrothermal activities. In this study, the sediments collected during IODP Expedition 331 to the mid-OT were determined for mineralogical and REEs as well as Nd isotopic compositions, aiming to investigate the geochemical behavior of REEs during hydrothermal processes. All samples were separated into bulk and clay-size (˂ 2 μm) fractions and pretreated by 1N HCl to remove carbonate and other unstable components. The hydrothermal sediments in the mid-OT is dominated by Mg-rich chlorite based on the XRD analysis, especially the clay-size fraction comprising pure chlorite. The clay-size samples bear different mineralogical and geochemical compositions between the upper and lower parts in this hydrothermal area. All hydrothermal samples are relatively enriched in HREEs in the residues. The upper clays have higher values of δEu and (La/Yb)N as well as LREEs concentration than the lower part, while the bulk samples have weak REE differentiation. In the 1N HCl leachates, the concentrations of REEs in the bulk samples are higher than in the clays in the lower part but LREEs are obviously enriched in the upper clays. We infer that the grain size may be an important factor controlling the behavior of REEs in the mid-OT hydrothermal system. Both bulk and clay samples show negative Eu anomalies relative to chondrite, similar as the detrital sediments and volcanic rocks. This study confirms the hypothesis that HREEs patterns are constant throughout the system compatible with higher LREEs mobility as chlorine ion complexes in acidic solutions (Mills and Elderfield 1995; Douville

  17. Diversity of the chlorite dismutase gene in low and high organic carbon rhizosphere soil colonized by perchlorate-reducing bacteria.

    PubMed

    Struckhoff, Garrett C; Livermore, Joshua A; Parkin, Gene F

    2013-01-01

    Chlorite dismutase (cld) is an essential enzyme in the biodegradation of perchlorate. The objective of this study was to determine the change in sequence diversity of the cld gene, and universal bacterial 16S rRNA genes, in soil samples under varying conditions of organic carbon, bioaugmentation, and plant influence. The cld gene diversity was not different between high organic carbon (HOC) and low organic carbon (LOC) soil. Combining results from HOC and LOC soil, diversity of the cld gene was decreased in soil that had been bioaugmented or planted. However, with both bioaugmentation and planting the cld diversity was not decreased. These observations were repeated when focusing on LOC soil. However, in HOC soil the cld diversity was not affected by reactor treatment. General bacterial diversity as measured with 16S rRNA was significantly greater in HOC soil than in LOC soil, but no significant difference was observed between reference soil and planted or bioaugmented soil. Different sequences of the cld gene occur in different species of microorganisms. In LOC soil, combining bioaugmentation and planting results in a highly diverse population of perchlorate degraders. This diverse population will be more resilient and is desirable where perchlorate reduction is a critical remediation process. Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.

  18. Crack-seal microstructure evolution in bi-mineralic quartz-chlorite veins in shales and siltstones from the RWTH-1 well, Aachen, Germany

    NASA Astrophysics Data System (ADS)

    Becker, Stephan; Hilgers, Christoph; Kukla, Peter A.; Urai, Janos L.

    2011-04-01

    In core samples from the deep geothermal well RWTH-1 we studied Variscan quartz-chlorite veins formed by crack-seal processes in siliciclastics at the brittle to ductile transition. These sheared veins are common in sections of the well, which are interpreted as Variscan thrust zones based on image logs and seismic data. Microstructures interpreted to reflect different stages in the evolution of such crack-seal veins suggest the veins started in microcracks sealed by quartz and chlorite, to veinlets crossing multiple grains, and bundles of veinlets evolving by progressive localization into low-angle extensional shear veins and high-angle dilational jog veins. In the sheared veins, chlorite and quartz ribbons show evidence for crack-seal and simultaneous ductile shearing during vein evolution, forming peculiar fin-shaped microstructures in quartz ribbons. In high-angle dilational jogs fibrous crystals of quartz and chlorite point to multiple crack-seal events with simultaneous growth of two different mineral phases. This is interpreted to be the basic microstructural process in the veins. We extend earlier models of polycrystal growth in fractures and present a series of 2D simulations of the kinematics of crystal growth in these bi-mineralic veins for both localized and non-localized cracking. Results are compared with the observed microstructures. We show that when the relative growth rates of the two mineral phases are different, serrated grain boundaries evolve. The similarities between observation and model suggest that the assumption of our model is valid, although many second order processes require a more detailed study. We propose that the principles observed here can be applied to other bi-mineralic crack-seal veins.

  19. A case of severe chlorite poisoning successfully treated with early administration of methylene blue, renal replacement therapy, and red blood cell transfusion: case report.

    PubMed

    Gebhardtova, Andrea; Vavrinec, Peter; Vavrincova-Yaghi, Diana; Seelen, Mark; Dobisova, Anna; Flassikova, Zora; Cikova, Andrea; Henning, Robert H; Yaghi, Aktham

    2014-08-01

    The case of a 55-year-old man who attempted suicide by ingesting <100 mL of 28% sodium chlorite solution is presented. On arrival in the intensive care unit, the patient appeared cyanotic with lowered consciousness and displayed anuria and chocolate brown serum.Initial laboratory tests revealed 40% of methemoglobin. The formation of methemoglobin was effectively treated with methylene blue (10% after 29 hours).To remove the toxin, and because of the anuric acute renal failure, the patient received renal replacement therapy. Despite these therapeutic measures, the patient developed hemolytic anemia and disseminated intravascular coagulation, which were treated with red blood cell transfusion and intermittent hemodialysis. These interventions led to the improvement of his condition and the patient eventually fully recovered. Patient gave written informed consent.This is the third known case of chlorite poisoning that has been reported. Based upon this case, we suggest the management of sodium chlorite poisoning to comprise the early administration of methylene blue, in addition to renal replacement therapy and transfusion of red blood cells.

  20. Expression of chlorite dismutase and chlorate reductase in the presence of oxygen and/or chlorate as the terminal electron acceptor in Ideonella dechloratans.

    PubMed

    Lindqvist, Miriam Hellberg; Johansson, Nicklas; Nilsson, Thomas; Rova, Maria

    2012-06-01

    The ability of microorganisms to perform dissimilatory (per)chlorate reduction is, for most species, known to be oxygen sensitive. Consequently, bioremediation processes for the removal of oxochlorates will be disturbed if oxygen is present. We measured the expression of chlorite dismutase and chlorate reductase in the presence of different terminal electron acceptors in the chlorate reducer Ideonella dechloratans. Enzyme activity assays and mRNA analyses by real-time quantitative reverse transcription (qRT)-PCR were performed on cell extracts from cells grown aerobically with and without chlorate and on cells grown anaerobically in the presence of chlorate. Our results showed that both chlorite dismutase and chlorate reductase are expressed during aerobic growth. However, transfer to anaerobic conditions with chlorate resulted in significantly enhanced enzyme activities and mRNA levels for both enzymes. Absence of oxygen was necessary for the induction to occur, since chlorate addition under aerobic conditions produced neither increased enzyme activities nor higher relative levels of mRNA. For chlorite dismutase, the observed increase in activity was on the same order of magnitude as the increase in the relative mRNA level, indicating gene regulation at the transcriptional level. However, chlorate reductase showed about 200 times higher enzyme activity in anaerobically induced cells, whereas the increase in mRNA was only about 10-fold, suggesting additional mechanisms influence the enzyme activity.

  1. Decreased dosage of acidified sodium chlorite reduces microbial contamination and maintains organoleptic qualities of ground beef products.

    PubMed

    Bosilevac, Joseph M; Shackelford, Steven D; Fahle, Rick; Biela, Timothy; Koohmaraie, Mohammad

    2004-10-01

    Acidified sodium chlorite (ASC) spray was evaluated at decreased dosages and application rates to determine its efficacy for reducing bacterial contamination on boneless beef trimmings used for production of raw ground beef products while maintaining desirable consumer qualities in the finished ground beef products. Two different applications of ASC (600 ppm applied at a rate of 1.3 oz/lb and 300 ppm applied at a rate of 1 oz/lb) were used to treat boneless beef trimmings before grinding. The effect of ASC treatment on 50/50 lean beef trimmings was greater than on 90/10 trimmings. ASC at 600 ppm reduced both the aerobic plate counts (APC) and Enterobacteriaceae counts (EBC) by 2.3 log CFU/g on 50/50 trimmings, whereas treatment with 300 ppm ASC reduced APC and EBC of 50/50 trimmings by 1.1 and 0.7 log CFU/g, respectively. Ground beef formulations of 90/10 and 73/27 were produced from the treated boneless beef trim and packaged in chubs and in modified atmosphere packaging. The efficacy of ASC spray treatment to inhibit APC and EBC over the shelf life of each ground beef product was monitored. The APC and EBC in ground beef chubs were reduced by 1.0 to 1.5 log CFU/g until day 20. The APC and EBC for products in modified atmosphere packaging were reduced 1.5 to 3.0 log CFU/g throughout their shelf life. Both decreased dosages of ASC were equally effective on 90/10 lean ground beef, but the 300 ppm ASC treatment was slightly better at reducing the EBC of 73/27 ground beef. The organoleptic qualities (color, odor, and taste) of the ground beef products treated with 300 ppm ASC were found to be superior to those treated with 600 ppm ASC. Our results indicated that decreased dosages of ASC reduce contamination and lengthen the shelf life of ground beef. Furthermore, the 300 ppm ASC treatment reduced bacterial counts while maintaining desirable organoleptic ground beef qualities.

  2. Effectiveness of trisodium phosphate, acidified sodium chlorite, citric acid, and peroxyacids against pathogenic bacteria on poultry during refrigerated storage.

    PubMed

    del Río, Elena; Muriente, Rebeca; Prieto, Miguel; Alonso-Calleja, Carlos; Capita, Rosa

    2007-09-01

    The effects of dipping treatments (15 min) in potable water or in solutions (wt/vol) of 12% trisodium phosphate (TSP), 1,200 ppm acidified sodium chlorite (ASC), 2% citric acid (CA), and 220 ppm peroxyacids (PA) on inoculated pathogenic bacteria (Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, Salmonella Enteritidis, Escherichia coli, and Yersinia enterocolitica) and skin pH were investigated throughout storage of chicken legs (days 0, 1, 3, and 5) at 3 +/- 1 degrees C. All chemical solutions reduced microbial populations (P < 0.001) as compared with the control (untreated) samples. Similar bacterial loads (P > 0.05) were observed on water-dipped and control legs. Type of treatment, microbial group, and sampling day influenced microbial counts (P < 0.001). Average reductions with regard to control samples were 0.28 to 2.41 log CFU/g with TSP, 0.33 to 3.15 log CFU/g with ASC, 0.82 to 1.97 log CFU/g with CA, and 0.07 to 0.96 log CFU/g with PA. Average reductions were lower (P < 0.001) for gram-positive (0.96 log CFU/g) than for gram-negative (1.33 log CFU/g) bacteria. CA and ASC were the most effective antimicrobial compounds against gram-positive and gram-negative bacteria, respectively. TSP was the second most effective compound for both bacterial groups. Average microbial reductions per gram of skin were 0.87 log CFU/g with TSP, 0.86 log CFU/g with ASC, 1.39 log CFU/g with CA, and 0.74 log CFU/g with PA for gram-positive bacteria, and 1.28 log CFU/g with TSP, 2.03 log CFU/g with ASC, 1.23 log CFU/g with CA, and 0.78 log CFU/g with PA for gram-negative bacteria. With only a few exceptions, microbial reductions in TSP- and ASC-treated samples decreased and those in samples treated with CA increased throughout storage. Samples treated with TSP and samples dipped in CA and ASC had the highest and lowest pH values, respectively, after treatment. The pH of the treated legs tended to return to normal (6.3 to 6.6) during storage. However, at the end of

  3. Slaughterfloor decontamination of pork carcases with hot water or acidified sodium chlorite - a comparison in two Australian abattoirs.

    PubMed

    Hamilton, D; Holds, G; Lorimer, M; Kiermeier, A; Kidd, C; Slade, J; Pointon, A

    2010-11-01

    A decontamination trial on the effectiveness of hot water or acidified sodium chlorite (SANOVA) treatment on Salmonella spp., Escherichia coli and Total Viable Count (TVC) was undertaken on pork carcases prior to primary chilling in two large pork abattoirs in Australia using belly-strip excision sampling. A total of 123 samples from Abattoir A and 400 samples from Abattoir B were cultured and analysed. Test pigs were selected from herds with a known high level of on-farm Salmonella infection. At Abattoir A, Salmonella spp. were not isolated from carcases. The prevalence of E. coli on control carcases was 92.9% compared with 9.8% for hot water and 12.5% for SANOVA treated carcases. The mean log(10) E. coli concentration for control carcases was 0.89 cfu/gram, compared with -0.83 cfu/gram from hot water and -0.75 cfu/gram from SANOVA treated carcases. The mean log(10) TVC for control carcases was 4.06 compared with 1.81 cfu/gram for hot water and 2.76 cfu/gram for SANOVA treated carcases. At Abattoir B, the prevalence of Salmonella on control carcases was 16% compared with 2.7% for hot water and 7.0% for SANOVA treated carcases. The prevalence of E. coli on control carcases was 69.3% compared with 22% for hot water and 30% for SANOVA treated carcases. The mean log(10) E. coli concentration for control carcases was 0.45 cfu/gram, compared with -0.65 cfu/gram from hot water and -0.60 cfu/gram from SANOVA treated carcases. The mean log(10) TVC for control carcases was 3.00 cfu/gram compared with 2.10 cfu/gram for hot water and 2.53 cfu/gram for SANOVA treated carcases. The reductions in prevalence and mean log(10) concentrations in the present trial were all found to be statistically significant and indicate that carcases decontamination with either hot water or SANOVA are effective risk management options immediately available to the pork industry.

  4. Precipitation of uraninite in chlorite-bearing veins of the hydrothermal alteration zone (argile de pile) of the natural nuclear reactor at Bangombe, Republic of Gabon

    SciTech Connect

    Eberly, P.; Ewing, R.; Janeczek, J.

    1995-12-31

    This paper describes the mineralogy of a phyllosilicate/uraninite/galena-bearing vein located within the hydrothermal alteration halo associated with the Bangombe reactor. Phyllosilicates within the vein include a trioctahedral Al-Mg-Fe chlorite (ripidolite), Al-rich clay (kaolinite and/or donbassite) and illite. Textural relations obtained by backscattered-electron imaging suggest that ripidolite crystallized first among the sheet silicates. Uraninite is spatially associated with ripidolite and probably precipitated at a later time. While energy-dispersive X-ray analyses suggest that the uranium phase is predominantly uraninite, coffinite or other phases may also be present.

  5. Ultramafic-hosted Hydrothermal Systems at Mid-Ocean Ridges: Serpentinization, Chloritization and Geochemical Controls on Mass-Transfer Processes

    NASA Astrophysics Data System (ADS)

    Seyfried, W. E.; Pester, N. J.; Ding, K.

    2012-12-01

    concentrations and calculated subseafloor pH and temperature. The Rainbow hydrothermal system is also associated with a dome-like massif and morphology typical of Ocean Core Complexes. In sharp contrast with the LCHF, however, the Rainbow hydrothermal system is characterized by vent fluid temperatures in excess of 365°C, high dissolved Fe, Cu and Zn, and low pH (pH25°C=3.25). In-situ pH for Rainbow vent fluid (369°C) was determined to be 5.0±0.03. Trace alkali element concentrations indicate relatively low fluid/rock ratios, while dissolved B concentrations are depleted relative to seawater, but to a lesser degree than measured for Lost City vent fluid. Moderate concentrations of dissolved silica suggest fluid chemistry buffered by chlorite-fluid equilibria. Fluid flow in close proximity to gabbroic intrusions likely drives hydrothermal convection and mass transfer, although it is still unclear whether gabbroic intrusions alone can account for the enormous heat flux and the long duration of continuous hydrothermal activity observed for the Rainbow hydrothermal system.

  6. Garnet peridotites and chlorite harzburgites from Cima di Gagnone (Central Alps, Switzerland). Examples of subduction-zone serpentinite dehydration

    NASA Astrophysics Data System (ADS)

    Scambelluri, Marco; Rampone, Elisabetta; Pettke, Thomas; Reusser, Eric

    2010-05-01

    Dehydration of oceanic serpentinites is rarely documented in nature because few rocks are exhumed from beyond the antigorite breakdown. Chlorite (chl) harzburgites from Almirez (Betic Cordillera, Spain) presently are the only known case (1-3). The garnet (grt) lherzolites from Cima di Gagnone have long been long considered to be serpentinized oceanic mantle subducted to 2.5 GPa and 800°C (4). Hence, they are unique in the Alps and relevant. Here we present the trace element survey of Gagnone grt lherzolites and associated chl harzburgites to test an origin from serpentinites and to characterize the fluids they released at breakdown of major hydrous phases. The grt peridotites are foliated and contain olivine (ol), ortho- and clinopyroxene (opx, cpx), Ca-amphibole (amph). Poikiloblastic grt overgrows former foliation(s) and is partially equilibrated with the above minerals. Olivine + ilmenite replace former Ti-clinohumite. Grt hosts solid polyphase inclusions deriving from co-genetic fluids: inclusions are both primary and along trails which never cut the grain boundaries. Chl harzburgites are texturally similar to the Betic ones (1) and can display foliated and massive textures. Massive rocks have randomly oriented ol and opx, minor chl, Ti-clinohumite and locally carbonate. Foliated harzburgites have dominant ol; opx and chl parallel the foliation and display equilibrium textures. Ol and opx of chl harzburgites also contain solid polyphase inclusions (from coexisting fluid) very similar to those of the Betic harzburgites (2). Chl harzburgites may also derive from retrogressed grt peridotites; in this case post-kinematic chl overgrows grt. In the field, chl harzburgites are associated with eclogites and HP metarodingites, which form stretched dikes of previous MORB materials discirdant to compositonal layering in peridotites. This indicates a common eclogite-facies equilibration of mafic and ultramafic material, most likely of former oceanic origin. Cpx from grt

  7. Matrix thermalization

    NASA Astrophysics Data System (ADS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  8. Sync Matrix

    SciTech Connect

    Metz, William C.; Metz, W. Chris; Mitrani, Jacques E.; Hewett, Jr., Paul L.; Jones, Christopher A.

    2004-12-31

    Sync Matrix provides a graphic display of the relationships among all of the response activities of each jurisdiction. This is accomplished through software that organizes and displays the activities by jurisdiction, function, and time for easy review and analysis. The software can also integrate the displays of multiple jurisdictions to allow examination of the total response.

  9. Examination of chloritization of biotite as a tool for reconstructing the physicochemical parameters of mineralization and associated alteration in the Zafarghand porphyry copper system, Ardestan, Central Iran: mineral-chemistry and stable isotope analyses

    NASA Astrophysics Data System (ADS)

    Aminroayaei Yamini, Maryam; Tutti, Faramarz; Aminoroayaei Yamini, Mohammad Reza; Ahmadian, Jamshid; Wan, Bo

    2016-12-01

    The chloritization of biotite and stable isotopes of silicate have been studied for the Zafarghand porphyry copper deposit, Ardestan, Iran. The studied area, in the central part of the Urumieh-Dokhtar magmatic belt, contains porphyry-style Cu mineralization and associated hydrothermal alteration within the Miocene (19-26 Ma, Zircon U-Pb age) granodioritc stock and adjacent andesitic to rhyodacitic volcanic rocks (ca. 56 Ma, zircon U-Pb age). The primary and secondary biotite that formed during potassic alteration in this porphyry and these volcanic host rocks are variably chloritized. Chloritization of biotite pseudomorphically is characterized by an increase in MgO, FeOt, and MnO, with decreasing in SiO2, K2O, and TiO2. Based on the Ti-in-biotite geothermometer of Henry et al. (Am Mineral 90:316-328, 2005) and Al-in-chlorite geothermometer of Cathelineau (Clay Miner 23:417-485, 1988), crystallization temperatures of primary biotite representative of magmatic conditions and later chloritization temperature range from 617° to 675 °C ± 24 °C and 177° to 346 °C, respectively. Calculated isotopic compositions of fluids that chloritized primary and secondary biotite display isotopic compositions of 1.1 to 1.7 per mil for δ18O and -19.9 to -20.5 per mil for δD consistent with meteoric water. Sericite, barren, and A-type-quartz veins from phyllic alteration were produced by mixed magmatic and meteoric water with δ18O values from -2.8 to 2.5 and δD values of ˜ -23 per mil; the narrow range of δD values of the propylitic epidote may be due to a meteoric water with δ18O values from 0.8 to 1.6 and δD values from -14.6 to -16.9 per mil.

  10. Kinetics and mechanism of formation of chlorate ion from the hypochlorous acid/chlorite ion reaction at pH 6-10

    SciTech Connect

    Gordon, G.; Tachiyashiki, Satoshi )

    1991-03-01

    The reaction between free chlorine (HOCl/OCl{sup {minus}}) and chlorite ion (ClO{sub 2}{sup {minus}}) has been studied in the pH 6.4-10.0 region. The reaction proceeds through the Cl{sub 2}O{sub 2} intermediate followed by a direct reaction of the intermediate with hypochlorous acid to form chlorate ion. Time-concentration profiles were measured for each chlorine species, resulting in both total chlorine and redox balance. Negligibly small amounts of chlorine dioxide are formed above pH 7. Indirect evidence suggests that, in this pH region, the formation of any chlorine dioxide is primarily due to the presence of concentration gradients or because of the adventitious presence of catalytic metal ion impurities. Details of the overall reaction mechanism for the formation of chlorate ion are presented.

  11. Synergistic Effect of Sodium Chlorite and Edible Coating on Quality Maintenance of Minimally Processed Citrus grandis under Passive and Active MAP.

    PubMed

    Ban, Zhaojun; Feng, Jianhua; Wei, Wenwen; Yang, Xiangzheng; Li, Jilan; Guan, Junfeng; Li, Jiang

    2015-08-01

    Edible coating has been an innovation within the bioactive packaging concept. The comparative analysis upon the effect of edible coating, sodium chlorite (SC) and their combined application on quality maintenance of minimally processed pomelo (Citrus grandis) fruits during storage at 4 °C was conducted. Results showed that the combination of edible coating and SC dipping delayed the microbial development whereas the sole coating or dipping treatment was less efficient. The synergetic application of edible coating and SC treatment under modified atmosphere packaging (MAP, 10% O2 , 10% CO2 ) was able to maintain the total soluble solids level and ascorbic acid content, while reduce the weight loss as well as development of mesophiles and psychrotrophs. Nonetheless, the N, O-carboxymethyl chitosan solely coated samples showed significantly higher level of weight loss during storage with comparison to the untreated sample. Furthermore, the combined application of edible coating and SC dipping under active MAP best maintained the sensory quality of minimally processed pomelo fruit during storage.

  12. Major, trace and REE geochemistry in contrasted chlorite schist weathering profiles from southern Cameroon: Influence of the Nyong and Dja Rivers water table fluctuations in geochemical evolution processes

    NASA Astrophysics Data System (ADS)

    Onana, Vincent Laurent; Ntouala, Roger Firmin Donald; Tang, Sylvie Noa; Effoudou, Estelle Ndome; Kamgang, Veronique Kabeyene; Ekodeck, Georges Emmanuel

    2016-12-01

    Three weathering profiles developed on chlorite schists, formations on which little studies have been conducted, were chosen to understand the weathering processes prevailing downslope in Southern Cameroon. The materials nearest to Nyong River at Ayos weather under the influence of the fluctuations of groundwater table and acid rain, while those from Bengbis and Mbalmayo weather under the influence of acid rain. The result is the thickening of materials and weathering profiles, without formation of a nodular ferruginous horizon at Ayos. The Ayos weathered materials (CIA ∼ 92) are the most altered and the least lateritised (IOL ∼ 32). The most stable systems are Hf - U - Nb - Ti - Zr - Mo - W (Bengbis), Yb - U - Nb - Ti - Zr - Hf - Mo - W - Th (Mbalmayo) and Th - Nb - Zr - Hf - Mo - Ta (Ayos). Molybdenum accumulations are important in the studied materials. Uranium accumulations are found only in Mbalmayo. Coarse saprolitic materials at Ayos are the most depleted and fractionated in REE ((La/Yb)N = 0.07, Ce/Ce* = 2.24), while superficial clayey materials are less fractionated. This process is reversed at Bengbis and Mbalmayo. By contrast, weathered materials at Ayos do not show any Eu anomalies (as in Bengbis and Mbalmayo). Weathered materials from Bengbis, nearest to the Dja River, have (La/Yb)N < 1 ratios, indicating the relative immobility of HREE relative to LREE due to xenotime abnormally rich in HREE (HREE-PO4). Weak Ce anomalies (1.05-2.24) are ubiquitous in all the studied materials.

  13. Effects of water, sodium hypochlorite, peroxyacetic acid, and acidified sodium chlorite on in-shell hazelnuts inoculated with Salmonella enterica serovar Panama.

    PubMed

    Weller, Lisa D; Daeschel, Mark A; Durham, Catherine A; Morrissey, Michael T

    2013-12-01

    Recent foodborne disease outbreaks involving minimally processed tree nuts have generated a need for improved sanitation procedures. Chemical sprays and dips have shown promise for reducing pathogens on fresh produce, but little research has been conducted for in-shell hazelnuts. This study analyzed the effectiveness of 3 chemical sanitizers for reducing Salmonella on in-shell hazelnuts. Treatments of water, sodium hypochlorite (NaOCl; 25 and 50 ppm), peroxyacetic acid (PAA; 80 and 120 ppm), and acidified sodium chlorite (ASC; 450, 830, and 1013 ppm) were sprayed onto hazelnut samples inoculated with Salmonella enterica serovar Panama. Hazelnut samples were immersed in liquid cultures of S. Panama for 24 h, air-dried, and then sprayed with water and chemical treatments. Inoculation achieved S. Panama populations of approximately 8.04 log CFU/hazelnut. Surviving S. panama populations were evaluated using a nonselective medium (tryptic soy agar), incubated 3 h, and then overlaid with selective media (xylose lysine deoxycholate agar). All of the chemical treatments significantly reduced S. Panama populations (P ≤ 0.0001). The most effective concentrations of ASC, PAA, and NaOCl treatments reduced populations by 2.65, 1.46, and 0.66 log units, respectively. ASC showed the greatest potential for use as a postharvest sanitation treatment.

  14. Effects of potassium lactate, sodium metasilicate, peroxyacetic acid, and acidified sodium chlorite on physical, chemical, and sensory properties of ground beef patties.

    PubMed

    Quilo, S A; Pohlman, F W; Brown, A H; Crandall, P G; Dias-Morse, P N; Baublits, R T; Aparicio, J L

    2009-05-01

    Beef trimmings were treated with 3% potassium lactate (KL), 4% sodium metasilicate (NMS), 0.02% peroxyacetic acid (PAA) or 0.1% acidified sodium chlorite (ASC) or left untreated (CON). Beef trimmings were ground, pattied, and sampled for 7 days. Under simulated retail display, instrumental color, sensory characteristics, TBARS, pH, and Lee-Kramer shear force were measured to evaluate the impact of the treatments on the quality attributes. The NMS and PAA patties were redder (a(∗), P<0.05) than CON on days 0-3. Panelists found KL, NMS, PAA, and ASC patties to have less (P<0.05) or similar (P>0.05) off odor to CON on days 0-3. The NMS and PAA treated patties had lower (P<0.05) lipid oxidation than the CON at days 0, 3, and 7. Therefore, KL, NMS, PAA, and ASC treatments on beef trimmings can potentially improve or maintain quality attributes of beef patties.

  15. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  16. Carbonate fuel cell matrix

    DOEpatents

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  17. Matrix with Prescribed Eigenvectors

    ERIC Educational Resources Information Center

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  18. The intraclass covariance matrix.

    PubMed

    Carey, Gregory

    2005-09-01

    Introduced by C.R. Rao in 1945, the intraclass covariance matrix has seen little use in behavioral genetic research, despite the fact that it was developed to deal with family data. Here, I reintroduce this matrix, and outline its estimation and basic properties for data sets on pairs of relatives. The intraclass covariance matrix is appropriate whenever the research design or mathematical model treats the ordering of the members of a pair as random. Because the matrix has only one estimate of a population variance and covariance, both the observed matrix and the residual matrix from a fitted model are easy to inspect visually; there is no need to mentally average homologous statistics. Fitting a model to the intraclass matrix also gives the same log likelihood, likelihood-ratio (LR) chi2, and parameter estimates as fitting that model to the raw data. A major advantage of the intraclass matrix is that only two factors influence the LR chi2--the sampling error in estimating population parameters and the discrepancy between the model and the observed statistics. The more frequently used interclass covariance matrix adds a third factor to the chi2--sampling error of homologous statistics. Because of this, the degrees of freedom for fitting models to an intraclass matrix differ from fitting that model to an interclass matrix. Future research is needed to establish differences in power-if any--between the interclass and the intraclass matrix.

  19. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  20. Algal toxicity of the alternative disinfectants performic acid (PFA), peracetic acid (PAA), chlorine dioxide (ClO2) and their by-products hydrogen peroxide (H2O2) and chlorite (ClO2(-)).

    PubMed

    Chhetri, Ravi Kumar; Baun, Anders; Andersen, Henrik Rasmus

    2016-12-01

    Environmental effect evaluation of disinfection of combined sewer overflow events with alternative chemical disinfectants requires that the environmental toxicity of the disinfectants and the main by-products of their use are known. Many disinfectants degrade quickly in water which should be included in the evaluation of both their toxicity as determined in standardized tests and their possible negative effect in the water environment. Here we evaluated according to the standardized ISO 8692 test the toxicity towards the green microalgae, Pseudokirchneriella subcapitata, of three disinfectants: performic acid (PFA), peracetic acid (PAA) and chlorine dioxide (ClO2) as well as two by-products of their use: hydrogen peroxide (H2O2) and chlorite. All of the five chemicals investigated showed clear toxicity to the algae with well-defined dose response curves. The EC50 values ranged from 0.16 to 2.9mg/L based on nominal concentrations leading to the labeling of the chemicals as either toxic or very toxic. The five investigated chemicals decreased in toxicity in the order chlorine dioxide, performic acid, peracetic acid, chlorite and hydrogen peroxide. The stability of the chemicals increased in the same order as the toxicity decrease. This indicates that even though ClO2 has the highest environmental hazard potential, it may still be suitable as an alternative disinfectant due to its rapid degradation in water.

  1. Biofilm Matrix Proteins

    PubMed Central

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this chapter, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation. PMID:26104709

  2. Automatic switching matrix

    DOEpatents

    Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil

    1982-01-01

    An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.

  3. Hacking the Matrix.

    PubMed

    Czerwinski, Michael; Spence, Jason R

    2017-01-05

    Recently in Nature, Gjorevski et al. (2016) describe a fully defined synthetic hydrogel that mimics the extracellular matrix to support in vitro growth of intestinal stem cells and organoids. The hydrogel allows exquisite control over the chemical and physical in vitro niche and enables identification of regulatory properties of the matrix.

  4. Grassmann matrix quantum mechanics

    DOE PAGES

    Anninos, Dionysios; Denef, Frederik; Monten, Ruben

    2016-04-21

    We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit.more » In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.« less

  5. Grassmann matrix quantum mechanics

    SciTech Connect

    Anninos, Dionysios; Denef, Frederik; Monten, Ruben

    2016-04-21

    We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit. In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.

  6. Fuzzy risk matrix.

    PubMed

    Markowski, Adam S; Mannan, M Sam

    2008-11-15

    A risk matrix is a mechanism to characterize and rank process risks that are typically identified through one or more multifunctional reviews (e.g., process hazard analysis, audits, or incident investigation). This paper describes a procedure for developing a fuzzy risk matrix that may be used for emerging fuzzy logic applications in different safety analyses (e.g., LOPA). The fuzzification of frequency and severity of the consequences of the incident scenario are described which are basic inputs for fuzzy risk matrix. Subsequently using different design of risk matrix, fuzzy rules are established enabling the development of fuzzy risk matrices. Three types of fuzzy risk matrix have been developed (low-cost, standard, and high-cost), and using a distillation column case study, the effect of the design on final defuzzified risk index is demonstrated.

  7. Hybrid matrix amplifier

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Plut, T.A.

    1995-01-03

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.

  8. Hybrid matrix amplifier

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.

    1995-01-01

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.

  9. Faces of matrix models

    NASA Astrophysics Data System (ADS)

    Morozov, A.

    2012-08-01

    Partition functions of eigenvalue matrix models possess a number of very different descriptions: as matrix integrals, as solutions to linear and nonlinear equations, as τ-functions of integrable hierarchies and as special-geometry prepotentials, as result of the action of W-operators and of various recursions on elementary input data, as gluing of certain elementary building blocks. All this explains the central role of such matrix models in modern mathematical physics: they provide the basic "special functions" to express the answers and relations between them, and they serve as a dream model of what one should try to achieve in any other field.

  10. Pesticide-Exposure Matrix

    Cancer.gov

    The "Pesticide-exposure Matrix" was developed to help epidemiologists and other researchers identify the active ingredients to which people were likely exposed when their homes and gardens were treated for pests in past years.

  11. Functional Polymer Matrix Fibers

    DTIC Science & Technology

    2007-11-02

    the carbon nanofibers led to the deterioration of the polymeric cellulose structure. Extensive research on the surface treatment of carbon nanofibers...1 November 2003 - 14-Mar-05 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA8655-03-1-3042 Functional Polymer Matrix Fibres 5b. GRANT NUMBER 5c. PROGRAM...MARYLABONE RD LONDON NWl 5TH PERFORMANCE REPORT Project title: Functional polymer matrix fibers Period of performance: 1 November 2003 - 31 October 2004

  12. Optical coherency matrix tomography

    PubMed Central

    Kagalwala, Kumel H.; Kondakci, H. Esat; Abouraddy, Ayman F.; Saleh, Bahaa E. A.

    2015-01-01

    The coherence of an optical beam having multiple degrees of freedom (DoFs) is described by a coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date—even in the simplest case of two binary DoFs where G is a 4 × 4 matrix. We establish a methodical yet versatile approach—optical coherency matrix tomography—for reconstructing G that exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Here G is reconstructed from a minimal set of linearly independent measurements, each a cascade of projective measurements for each DoF. We report the first experimental measurements of the 4 × 4 coherency matrix G associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young’s double slit to spatial parity and orbital angular momentum modes. PMID:26478452

  13. Generalized matrix inversion is not harder than matrix multiplication

    NASA Astrophysics Data System (ADS)

    Petkovic, Marko D.; Stanimirovic, Predrag S.

    2009-08-01

    Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a completely block recursive algorithm for generalized Cholesky factorization of a given symmetric, positive semi-definite matrix . We used the Strassen method for matrix inversion together with the recursive generalized Cholesky factorization method, and established an algorithm for computing generalized {2,3} and {2,4} inverses. Introduced algorithms are not harder than the matrix-matrix multiplication.

  14. Extracellular matrix structure.

    PubMed

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.

  15. Matrix interdiction problem

    SciTech Connect

    Pan, Feng; Kasiviswanathan, Shiva

    2010-01-01

    In the matrix interdiction problem, a real-valued matrix and an integer k is given. The objective is to remove k columns such that the sum over all rows of the maximum entry in each row is minimized. This combinatorial problem is closely related to bipartite network interdiction problem which can be applied to prioritize the border checkpoints in order to minimize the probability that an adversary can successfully cross the border. After introducing the matrix interdiction problem, we will prove the problem is NP-hard, and even NP-hard to approximate with an additive n{gamma} factor for a fixed constant {gamma}. We also present an algorithm for this problem that achieves a factor of (n-k) mUltiplicative approximation ratio.

  16. Matrixed business support comparison study.

    SciTech Connect

    Parsons, Josh D.

    2004-11-01

    The Matrixed Business Support Comparison Study reviewed the current matrixed Chief Financial Officer (CFO) division staff models at Sandia National Laboratories. There were two primary drivers of this analysis: (1) the increasing number of financial staff matrixed to mission customers and (2) the desire to further understand the matrix process and the opportunities and challenges it creates.

  17. Rheocasting Al Matrix Composites

    NASA Astrophysics Data System (ADS)

    Girot, F. A.; Albingre, L.; Quenisset, J. M.; Naslain, R.

    1987-11-01

    Aluminum alloy matrix composites reinforced by SiC short fibers (or whiskers) can be prepared by rheocasting, a process which consists of the incorporation and homogeneous distribution of the reinforcement by stirring within a semi-solid alloy. Using this technique, composites containing fiber volume fractions in the range of 8-15%, have been obtained for various fibers lengths (i.e., 1 mm, 3 mm and 6 mm for SiC fibers). This paper attempts to delineate the best compocasting conditions for aluminum matrix composites reinforced by short SiC (e.g Nicalon) or SiC whiskers (e.g., Tokamax) and characterize the resulting microstructures.

  18. Density matrix perturbation theory.

    PubMed

    Niklasson, Anders M N; Challacombe, Matt

    2004-05-14

    An orbital-free quantum perturbation theory is proposed. It gives the response of the density matrix upon variation of the Hamiltonian by quadratically convergent recursions based on perturbed projections. The technique allows treatment of embedded quantum subsystems with a computational cost scaling linearly with the size of the perturbed region, O(N(pert.)), and as O(1) with the total system size. The method allows efficient high order perturbation expansions, as demonstrated with an example involving a 10th order expansion. Density matrix analogs of Wigner's 2n+1 rule are also presented.

  19. Hot water postprocess pasteurization of cook-in-bag turkey breast treated with and without potassium lactate and sodium diacetate and acidified sodium chlorite for control of Listeria monocytogenes.

    PubMed

    Luchansky, John B; Cocoma, George; Call, Jeffrey E

    2006-01-01

    Surface pasteurization and food-grade chemicals were evaluated for the ability to control listeriae postprocess on cook-in-bag turkey breasts (CIBTB). Individual CIBTB were obtained directly from a commercial manufacturer and surface inoculated (20 ml) with a five-strain cocktail (ca. 7.0 log) of Listeria innocua. In each of two trials, the product was showered or submerged for up to 9 min with water heated to 190, 197, or 205 degrees F (ca. 87.8, 91.7, or 96.1 degrees C) in a commercial pasteurization tunnel. Surviving listeriae were recovered from CIBTB by rinsing and were then enumerated on modified Oxford agar plates following incubation at 37 degrees C for 48 h. As expected, higher water temperatures and longer residence times resulted in a greater reduction of L. innocua. A ca. 2.0-log reduction was achieved within 3 min at 205 and 197 degrees F and within 7 min at 190 degrees E In related experiments, the following treatments were evaluated for control of Listeria monocytogenes on CIBTB: (i) a potassium lactate-sodium diacetate solution (1.54% potassium lactate and 0.11% sodium diacetate) added to the formulation in the mixer and 150 ppm of acidified sodium chlorite applied to the surface with a pipette, or (ii) a potassium lactate-sodium diacetate solution only, or (iii) no potassium lactate-sodium diacetate solution and no acidified sodium chlorite. Each CIBTB was inoculated (20 ml) with ca. 5 log CFU of a five-strain mixture of L. monocytogenes and then vacuum sealed. In each of two trials, half of the CIBTB were exposed to 203 degrees F water for 3 min in a pasteurization tunnel, and the other half of the CIBTB were not; then, all CIBTB were stored at 4 degrees C for up to 60 days, and L. monocytogenes was enumerated by direct plating onto modified Oxford agar. Heating resulted in an initial reduction of ca. 2 log CFU of L. monocytogenes per CIBTB. For heated CIBTB, L. monocytogenes increased by ca. 2 log CFU per CIBTB in 28 (treatment 1), 28 (treatment

  20. Matrix Embedded Organic Synthesis

    NASA Astrophysics Data System (ADS)

    Kamakolanu, U. G.; Freund, F. T.

    2016-05-01

    In the matrix of minerals such as olivine, a redox reaction of the low-z elements occurs. Oxygen is oxidized to the peroxy state while the low-Z-elements become chemically reduced. We assign them a formula [CxHyOzNiSj]n- and call them proto-organics.

  1. Constructing the matrix

    NASA Astrophysics Data System (ADS)

    Elliott, John

    2012-09-01

    As part of our 'toolkit' for analysing an extraterrestrial signal, the facility for calculating structural affinity to known phenomena must be part of our core capabilities. Without such a resource, we risk compromising our potential for detection and decipherment or at least causing significant delay in the process. To create such a repository for assessing structural affinity, all known systems (language parameters) need to be structurally analysed to 'place' their 'system' within a relational communication matrix. This will need to include all known variants of language structure, whether 'living' (in current use) or ancient; this must also include endeavours to incorporate yet undeciphered scripts and non-human communication, to provide as complete a picture as possible. In creating such a relational matrix, post-detection decipherment will be assisted by a structural 'map' that will have the potential for 'placing' an alien communication with its nearest known 'neighbour', to assist subsequent categorisation of basic parameters as a precursor to decipherment. 'Universal' attributes and behavioural characteristics of known communication structure will form a range of templates (Elliott, 2001 [1] and Elliott et al., 2002 [2]), to support and optimise our attempt at categorising and deciphering the content of an extraterrestrial signal. Detection of the hierarchical layers, which comprise intelligent, complex communication, will then form a matrix of calculations that will ultimately score affinity through a relational matrix of structural comparison. In this paper we develop the rationales and demonstrate functionality with initial test results.

  2. Matrix product state renormalization

    NASA Astrophysics Data System (ADS)

    Bal, M.; Rams, M. M.; Zauner, V.; Haegeman, J.; Verstraete, F.

    2016-11-01

    The truncation or compression of the spectrum of Schmidt values is inherent to the matrix product state (MPS) approximation of one-dimensional quantum ground states. We provide a renormalization group picture by interpreting this compression as an application of Wilson's numerical renormalization group along the imaginary time direction appearing in the path integral representation of the state. The location of the physical index is considered as an impurity in the transfer matrix and static MPS correlation functions are reinterpreted as dynamical impurity correlations. Coarse-graining the transfer matrix is performed using a hybrid variational ansatz based on matrix product operators, combining ideas of MPS and the multiscale entanglement renormalization ansatz. Through numerical comparison with conventional MPS algorithms, we explicitly verify the impurity interpretation of MPS compression, as put forward by V. Zauner et al. [New J. Phys. 17, 053002 (2015), 10.1088/1367-2630/17/5/053002] for the transverse-field Ising model. Additionally, we motivate the conceptual usefulness of endowing MPS with an internal layered structure by studying restricted variational subspaces to describe elementary excitations on top of the ground state, which serves to elucidate a transparent renormalization group structure ingrained in MPS descriptions of ground states.

  3. Direct injection ion chromatography for the control of chlorinated drinking water: simultaneous estimation of nine haloacetic acids and quantitation of bromate, chlorite and chlorate along with the major inorganic anions.

    PubMed

    Garcia-Villanova, Rafael J; Raposo Funcia, César; Oliveira Dantas Leite, M Vilani; Toruño Fonseca, Ivania M; Espinosa Nieto, Miguel; Espuelas India, Javier

    2014-09-01

    Most methods for the analysis of haloacetic acids published in recent years are based on ion chromatography with direct injection, employing a gradient elution with potassium hydroxide (KOH). This work reports the exploration of an alternative eluent, a buffer of sodium carbonate/sodium hydrogen carbonate, aimed at the simultaneous analysis of nine haloacetic acids along with bromate, chlorite and chlorate. The alternative of both a less alkaline eluent and a lower temperature of operation may prevent the partial decomposition of some of the haloacetic acids during the analytical process, especially the more vulnerable brominated ones. Gradient elution at temperature of 7 °C yielded the best results, with an acceptable separation of 17 analytes (which includes the major natural inorganic anions) and a good linearity. Precision ranges from 0.3 to 23.4 (% V.C.), and detection limits are within units of μg L⁻¹, except for tribromoacetic acid - somewhat high in comparison with those of the official methods. Nonetheless, with the basic instrumentation setup herein described, this method may be suitable for monitoring when the drinking water treatments are to be optimized. This is especially interesting for small communities or for developing/developed countries in which regulations on disinfection by-products others than trihalomethanes are being addressed.

  4. Random matrix theory

    NASA Astrophysics Data System (ADS)

    Edelman, Alan; Rao, N. Raj

    Random matrix theory is now a big subject with applications in many disciplines of science, engineering and finance. This article is a survey specifically oriented towards the needs and interests of a numerical analyst. This survey includes some original material not found anywhere else. We include the important mathematics which is a very modern development, as well as the computational software that is transforming the theory into useful practice.

  5. Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Mortensen, Andreas; Llorca, Javier

    2010-08-01

    In metal matrix composites, a metal is combined with another, often nonmetallic, phase to produce a novel material having attractive engineering attributes of its own. A subject of much research in the 1980s and 1990s, this class of materials has, in the past decade, increased significantly in variety. Copper matrix composites, layered composites, high-conductivity composites, nanoscale composites, microcellular metals, and bio-derived composites have been added to a palette that, ten years ago, mostly comprised ceramic fiber- or particle-reinforced light metals together with some well-established engineering materials, such as WC-Co cermets. At the same time, research on composites such as particle-reinforced aluminum, aided by novel techniques such as large-cell 3-D finite element simulation or computed X-ray microtomography, has served as a potent vehicle for the elucidation of the mechanics of high-contrast two-phase elastoplastic materials, with implications that range well beyond metal matrix composites.

  6. On the Matrix Exponential Function

    ERIC Educational Resources Information Center

    Hou, Shui-Hung; Hou, Edwin; Pang, Wan-Kai

    2006-01-01

    A novel and simple formula for computing the matrix exponential function is presented. Specifically, it can be used to derive explicit formulas for the matrix exponential of a general matrix A satisfying p(A) = 0 for a polynomial p(s). It is ready for use in a classroom and suitable for both hand as well as symbolic computation.

  7. The cellulose resource matrix.

    PubMed

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  8. Supported Molecular Matrix Electrophoresis.

    PubMed

    Matsuno, Yu-Ki; Kameyama, Akihiko

    2015-01-01

    Mucins are difficult to separate using conventional gel electrophoresis methods such as SDS-PAGE and agarose gel electrophoresis, owing to their large size and heterogeneity. On the other hand, cellulose acetate membrane electrophoresis can separate these molecules, but is not compatible with glycan analysis. Here, we describe a novel membrane electrophoresis technique, termed "supported molecular matrix electrophoresis" (SMME), in which a porous polyvinylidene difluoride (PVDF) membrane filter is used to achieve separation. This description includes the separation, visualization, and glycan analysis of mucins with the SMME technique.

  9. Ceramic matrix and resin matrix composites: A comparison

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  10. Mixed Mode Matrix Multiplication

    SciTech Connect

    Meng-Shiou Wu; Srinivas Aluru; Ricky A. Kendall

    2004-09-30

    In modern clustering environments where the memory hierarchy has many layers (distributed memory, shared memory layer, cache,...), an important question is how to fully utilize all available resources and identify the most dominant layer in certain computations. When combining algorithms on all layers together, what would be the best method to get the best performance out of all the resources we have? Mixed mode programming model that uses thread programming on the shared memory layer and message passing programming on the distributed memory layer is a method that many researchers are using to utilize the memory resources. In this paper, they take an algorithmic approach that uses matrix multiplication as a tool to show how cache algorithms affect the performance of both shared memory and distributed memory algorithms. They show that with good underlying cache algorithm, overall performance is stable. When underlying cache algorithm is bad, superlinear speedup may occur, and an increasing number of threads may also improve performance.

  11. Matrix membranes and integrability

    SciTech Connect

    Zachos, C.; Fairlie, D.; Curtright, T.

    1997-06-01

    This is a pedagogical digest of results reported in Curtright, Fairlie, {ampersand} Zachos 1997, and an explicit implementation of Euler`s construction for the solution of the Poisson Bracket dual Nahm equation. But it does not cover 9 and 10-dimensional systems, and subsequent progress on them Fairlie 1997. Cubic interactions are considered in 3 and 7 space dimensions, respectively, for bosonic membranes in Poisson Bracket form. Their symmetries and vacuum configurations are explored. Their associated first order equations are transformed to Nahm`s equations, and are hence seen to be integrable, for the 3-dimensional case, by virtue of the explicit Lax pair provided. Most constructions introduced also apply to matrix commutator or Moyal Bracket analogs.

  12. Hyaluronan: A Matrix Component

    NASA Astrophysics Data System (ADS)

    Rügheimer, Louise

    2008-09-01

    The glucosaminoglycan hyaluronan is a key component of the extracellular matrix. It is a large, negatively charged molecule that can act as an ion exchange reservoir for positive ions. Hyaluronan is involved in renomedullary water handling through its water-binding capacity. In the renal medulla, the main source for hyaluronan production is the renomedullary interstitial cells. Hyaluronan synthases are found in the inner part of the plasma membrane and polymerize hyaluronan chains which are extruded into the extracellular space. Hyaluronidases are a family of enzymes involved in the degradation of hyaluronan. They have a wide range of properties, including differences in size, inhibitor sensitivities, catalytic mechanisms, substrate specificities and pH optima.

  13. Light cone matrix product

    SciTech Connect

    Hastings, Matthew B

    2009-01-01

    We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {Delta} = 0.5, we simulate to a time of {approx} 22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, the behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.

  14. Lectures on Matrix Field Theory

    NASA Astrophysics Data System (ADS)

    Ydri, Badis

    The subject of matrix field theory involves matrix models, noncommutative geometry, fuzzy physics and noncommutative field theory and their interplay. In these lectures, a lot of emphasis is placed on the matrix formulation of noncommutative and fuzzy spaces, and on the non-perturbative treatment of the corresponding field theories. In particular, the phase structure of noncommutative $\\phi^4$ theory is treated in great detail, and an introduction to noncommutative gauge theory is given.

  15. Matrix market: a web resource for test matrix collection

    SciTech Connect

    Boisvert, R.F.; Pozo, R.; Remington, K.; Barrett, R.F.; Dongarra, J.J. /

    1996-05-30

    We describe a repository of data for the testing of numerical algorithms and mathematical software for matrix computations. The repository is designed to accommodate both dense and sparse matrices, as well as software to generate matrices. It has been seeded with the well known Harwell-Boeing sparse matrix collection. The raw data files have been augmented with an integrated World Wide Web interface which describes the matrices in the collection quantitatively and visually, For example, each matrix has a Web page which details its attributes, graphically depicts its sparsity pattern, and provides access to the matrix itself in several formats. In addition, a search mechanism is included which allows retrieval of matrices based on a variety of attributes, such as type and size, as well as through free-text search in abstracts. The URL is http://math.nist.gov/MatrixMarket.

  16. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    SciTech Connect

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  17. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    House, E. E.; Hoggatt, J. T.; Symonds, W. A.

    1980-01-01

    The extent to which graphite fibers are released from resin matrix composites that are exposed to fire and impact conditions was determined. Laboratory simulations of those conditions that could exist in the event of an aircraft crash and burn situation were evaluated. The effectiveness of various hybridizing concepts in preventing this release of graphite fibers were also evaluated. The baseline (i.e., unhybridized) laminates examined were prepared from commercially available graphite/epoxy, graphite/polyimide, and graphite/phenolic materials. Hybridizing concepts investigated included resin fillers, laminate coatings, resin blending, and mechanical interlocking of the graphite reinforcement. The baseline and hybridized laminates' mechanical properties, before and after isothermal and humidity aging, were also compared. It was found that a small amount of graphite fiber was released from the graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that several hybrid concepts eliminated this fiber release. Isothermal and humidity aging did not appear to alter the fiber release tendencies.

  18. Glass matrix armor

    DOEpatents

    Calkins, Noel C.

    1991-01-01

    An armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material. The glass may be in monolithic form or particles of ceramic may be dispersed in a glass matrix. The ceramic material may be in monolithic form or may be in the form of particles dispersed in glass or dispersed in said polymer.

  19. How to Study a Matrix

    ERIC Educational Resources Information Center

    Jairam, Dharmananda; Kiewra, Kenneth A.; Kauffman, Douglas F.; Zhao, Ruomeng

    2012-01-01

    This study investigated how best to study a matrix. Fifty-three participants studied a matrix topically (1 column at a time), categorically (1 row at a time), or in a unified way (all at once). Results revealed that categorical and unified study produced higher: (a) performance on relationship and fact tests, (b) study material satisfaction, and…

  20. Matrix Methods to Analytic Geometry.

    ERIC Educational Resources Information Center

    Bandy, C.

    1982-01-01

    The use of basis matrix methods to rotate axes is detailed. It is felt that persons who have need to rotate axes often will find that the matrix method saves considerable work. One drawback is that most students first learning to rotate axes will not yet have studied linear algebra. (MP)

  1. Micromechanics for ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1991-01-01

    The fiber substructuring concepts and the micromechanics equations that are embedded in the Ceramic Matrix Composite Analyzer (CEMCAN) computer code are described as well as the code itself, its current features and capabilities, and some examples to demonstrate the code's versatility. The methodology is equally applicable to metal matrix and polymer matrix composites. The prediction of ply mechanical and thermal properties agree very well with the existing models in the Integrated Composite Analyzer and the Ceramic Matrix Composite Analyzer, lending credence to the fiber substructuring approach. Fiber substructuring can capture greater local detail than conventional unit-cell-based micromechanical theories. It offers promise in simulating complex aspects of micromechanics in ceramic matrix composites.

  2. Making recombinant extracellular matrix proteins.

    PubMed

    Ruggiero, Florence; Koch, Manuel

    2008-05-01

    A variety of approaches to understand extracellular matrix protein structure and function require production of recombinant proteins. Moreover, the expression of heterologous extracellular matrix proteins, in particular collagens, using the recombinant technology is of major interest to the biomedical industry. Although extracellular matrix proteins are large, modular and often multimeric, most of them have been successfully produced in various expression systems. This review provides important factors, including the design of the construct, the cloning strategies, the expression vectors, the transfection method and the host cell systems, to consider in choosing a reliable and cost-effective way to make recombinant extracellular matrix proteins. Advantages and drawbacks of each system have been appraised. Protocols that may ease efficient recombinant production of extracellular matrix are described. Emphasis is placed on the recombinant collagen production. Members of the collagen superfamily exhibit specific structural features and generally require complex post-translational modifications to retain full biological activity that make more arduous their recombinant production.

  3. New Chorus Diffusion Matrix

    NASA Astrophysics Data System (ADS)

    Horne, Richard B.; Kersten, Tobias; Glauert, Sarah A.; Meredith, Nigel P.; Boscher, Daniel; Sicard, Angelica; Maget, Vincent

    2013-04-01

    Whistler mode chorus waves play a major role in the loss and acceleration of electrons in the Earth's radiation belts. While high time resolution satellite data show that these waves are highly structured in frequency and time, at present their effects on the electron distribution can only be assessed on a global scale by using quasi-linear diffusion theory. Here we present new quasi-linear diffusion coefficients for upper and lower band chorus waves for use in global radiation belt models. Using data from DE 1 CRRES, Cluster 1, Double Star TC1 and THEMIS, we have constructed a database of wave properties and used this to construct new diffusion coefficients for L* = 1.5 to 10 in steps of 0.5, 10 latitude bins between 0o and 60o ,8 bins in MLT and 5 levels of geomagnetic activity as measured by Kp. We find that the peak frequency of lower band chorus is close to 0.2 fce, which is lower than that used in previous models. The combined upper and lower band chorus diffusion shows structure that should result in an energy dependent pitch angle anisotropy, particularly between 1 keV and 100 keV. The diffusion rates suggest that wave-particle interactions should still be very important outside geostationary orbit, out to at least L* = 8. We find significant energy diffusion near 1 keV near the loss cone, consistent with wave growth. By including the new chorus diffusion matrix into the BAS radiation belt (BRB) model we compare the effects on the evolution of the radiation belts against previous models.

  4. The matrix of inspiration

    NASA Astrophysics Data System (ADS)

    Oehlmann, Dietmar; Ohlmann, Odile M.; Danzebrink, Hans U.

    2005-04-01

    perform this exchange, as a matrix, understood as source, of new ideas.

  5. Matrix cracking in brittle-matrix composites with tailored interfaces

    SciTech Connect

    Danchaivijit, S.; Chao, L.Y.; Shetty, D.K.

    1995-10-01

    Matrix cracking from controlled through cracks with bridging filaments was studied in a model unidirectional composite of SiC filaments in an epoxy-bonded alumina matrix. An unbonded, frictional interface was produced by moderating the curing shrinkage of the epoxy with the alumina filler and coating the filaments with a releasing agent. Uniaxial tension test specimens (2.5 x 25 x 125 mm) with filament-bridged through cracks were fabricated by a novel two-step casting technique involving casting, precracking and joining of cracked and uncracked sections. Distinct matrix-cracking stresses, corresponding to the extension of the filament-bridged cracks, were measured in uniaxial tension tests using a high-sensitivity extensometer. The crack-length dependence of the matrix-cracking stress was found to be in good agreement with the prediction of a fracture-mechanics analysis that employed a new crack-closure force-crack-opening displacement relation in the calculation of the stress intensity for fiber-bridged cracks. The prediction was based on independent experimental measurements of the matrix fracture toughness (K{sub cm}), the interfacial sliding friction stress ({tau}) and the residual stress in the matrix ({sigma}{sub m}{sup I}). The matrix-cracking stress for crack lengths (2a) greater than 3 mm was independent of the crack length and agreed with the prediction of the steady-state theory of Budiansky, Hutchinson and Evans. Tests on specimens without the deliberately introduced cracks indicated a matrix-cracking stress significantly higher than the steady-state stress.

  6. New pole placement algorithm - Polynomial matrix approach

    NASA Technical Reports Server (NTRS)

    Shafai, B.; Keel, L. H.

    1990-01-01

    A simple and direct pole-placement algorithm is introduced for dynamical systems having a block companion matrix A. The algorithm utilizes well-established properties of matrix polynomials. Pole placement is achieved by appropriately assigning coefficient matrices of the corresponding matrix polynomial. This involves only matrix additions and multiplications without requiring matrix inversion. A numerical example is given for the purpose of illustration.

  7. Matrix Fourth-Complex Variables

    NASA Astrophysics Data System (ADS)

    Dimiev, Stancho; Marinov, Marin S.; Stoev, Peter

    2009-11-01

    In the paper we consider quasi-cyclic hyper-complex variables which are naturally related to the partial differential equations with complex variables. In fact, we develop a matrix 4×4 generalization of the classical bicomplex numbers [1], [2]. We recall that a matrix 2×2 isomorphic type treatment of the classical bicomplex numbers was developed in [3]. Here we develop a matrix 4×4 generalization of the bicomplex numbers including some improvement of the papers [3] and [4]. Let us remark that a deep generalization of the considered ideas was sketch in [5] before us.

  8. Mechanotransduction and extracellular matrix homeostasis

    PubMed Central

    Humphrey, Jay D.; Dufresne, Eric R.; Schwartz, Martin A.

    2015-01-01

    Preface Soft connective tissues at steady state are yet dynamic; resident cells continually read environmental cues and respond to promote homeostasis, including maintenance of the mechanical properties of the extracellular matrix that are fundamental to cellular and tissue health. The mechanosensing process involves assessment of the mechanics of the matrix by the cells through integrins and the actomyosin cytoskeleton, and is followed by a mechano-regulation process that includes the deposition, rearrangement, or removal of matrix to maintain overall form and function. Progress toward understanding the molecular, cellular, and tissue scale effects that promote mechanical homeostasis has helped identify key questions for future research. PMID:25355505

  9. Genotype imputation via matrix completion

    PubMed Central

    Chi, Eric C.; Zhou, Hua; Chen, Gary K.; Del Vecchyo, Diego Ortega; Lange, Kenneth

    2013-01-01

    Most current genotype imputation methods are model-based and computationally intensive, taking days to impute one chromosome pair on 1000 people. We describe an efficient genotype imputation method based on matrix completion. Our matrix completion method is implemented in MATLAB and tested on real data from HapMap 3, simulated pedigree data, and simulated low-coverage sequencing data derived from the 1000 Genomes Project. Compared with leading imputation programs, the matrix completion algorithm embodied in our program MENDEL-IMPUTE achieves comparable imputation accuracy while reducing run times significantly. Implementation in a lower-level language such as Fortran or C is apt to further improve computational efficiency. PMID:23233546

  10. High temperature polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Serafini, Tito T. (Editor)

    1987-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) Characterization; (4) environmental effects; and (5) applications.

  11. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  12. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    PubMed

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-07

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  13. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    NASA Astrophysics Data System (ADS)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  14. Extracellular matrix and wound healing.

    PubMed

    Maquart, F X; Monboisse, J C

    2014-04-01

    Extracellular matrix has been known for a long time as an architectural support for the tissues. Many recent data, however, have shown that extracellular matrix macromolecules (collagens, elastin, glycosaminoglycans, proteoglycans and connective tissue glycoproteins) are able to regulate many important cell functions, such as proliferation, migration, protein synthesis or degradation, apoptosis, etc., making them able to play an important role in the wound repair process. Not only the intact macromolecules but some of their specific domains, that we called "Matrikines", are also able to regulate many cell activities. In this article, we will summarize main findings showing the effects of extracellular matrix macromolecules and matrikines on connective tissue and epithelial cells, particularly in skin, and their potential implication in the wound healing process. These examples show that extracellular matrix macromolecules or some of their specific domains may play a major role in wound healing. Better knowledge of these interactions may suggest new therapeutic targets in wound healing defects.

  15. Matrix quantum mechanics from qubits

    NASA Astrophysics Data System (ADS)

    Hartnoll, Sean A.; Huijse, Liza; Mazenc, Edward A.

    2017-01-01

    We introduce a transverse field Ising model with order N 2 spins interacting via a nonlocal quartic interaction. The model has an O( N, ℤ), hyperoctahedral, symmetry. We show that the large N partition function admits a saddle point in which the symmetry is enhanced to O( N). We further demonstrate that this `matrix saddle' correctly computes large N observables at weak and strong coupling. The matrix saddle undergoes a continuous quantum phase transition at intermediate couplings. At the transition the matrix eigenvalue distribution becomes disconnected. The critical excitations are described by large N matrix quantum mechanics. At the critical point, the low energy excitations are waves propagating in an emergent 1 + 1 dimensional spacetime.

  16. Performance Appraisal for Matrix Management.

    ERIC Educational Resources Information Center

    Edwards, M. R.; Sproull, J. Ruth

    1985-01-01

    A matrix management system designed for use by a highly technical nuclear weapons research and development facility to improve productivity and flexibility by the use of multiple authority, responsibility, and accountability relationships is described. (MSE)

  17. Stochastic determination of matrix determinants.

    PubMed

    Dorn, Sebastian; Ensslin, Torsten A

    2015-07-01

    Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations-matrices-acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.

  18. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott

    1990-01-01

    Compositions of matter consisting of matrix matrials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.

  19. Staggered chiral random matrix theory

    SciTech Connect

    Osborn, James C.

    2011-02-01

    We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  20. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott

    1991-01-01

    Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.

  1. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, J.J.; Honnell, R.E.; Gibbs, W.S.

    1991-12-03

    Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions are disclosed. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms. 3 figures.

  2. Algorithmic deformation of matrix factorisations

    NASA Astrophysics Data System (ADS)

    Carqueville, Nils; Dowdy, Laura; Recknagel, Andreas

    2012-04-01

    Branes and defects in topological Landau-Ginzburg models are described by matrix factorisations. We revisit the problem of deforming them and discuss various deformation methods as well as their relations. We have implemented these algorithms and apply them to several examples. Apart from explicit results in concrete cases, this leads to a novel way to generate new matrix factorisations via nilpotent substitutions, and to criteria whether boundary obstructions can be lifted by bulk deformations.

  3. Universal Keplerian state transition matrix

    NASA Technical Reports Server (NTRS)

    Shepperd, S. W.

    1985-01-01

    A completely general method for computing the Keplerian state transition matrix in terms of Goodyear's universal variables is presented. This includes a new scheme for solving Kepler's problem which is a necessary first step to computing the transition matrix. The Kepler problem is solved in terms of a new independent variable requiring the evaluation of only one transcendental function. Furthermore, this transcendental function may be conveniently evaluated by means of a Gaussian continued fraction.

  4. Recycling of aluminum matrix composites

    SciTech Connect

    Nishida, Yoshinori; Izawa, Norihisa; Kuramasu, Yukio

    1999-03-01

    Separation of matrix metals in composites was tried on alumina short fiber-reinforced aluminum and 6061 alloy composites and SiC whisker-reinforced 6061 alloy composite for recycling. It is possible to separate molten matrix metals from fibers in the composites using fluxes that are used for melt treatment to remove inclusions. About 50 vol pct of the matrix metals was separated from the alumina short fiber-reinforced composites. The separation ratio of the matrix from the SiC whisker-reinforced 6061 alloy composite was low and about 20 vol pct. The separation mechanism was discussed thermodynamically using interface free energies. Since the flux/fiber interface energy is smaller than the aluminum/fiber interface energy, the replacement of aluminum with fluxes in composites takes place easily. Gases released by the decomposition of fluxes act an important role in pushing out the molten matrix metal from the composite. The role was confirmed by the great amount cavity formed in the composite after the matrix metal flowed out.

  5. Carbonate fuel cell matrix strengthening

    SciTech Connect

    Yuh, C.Y.; Haung, C.M.; Johnsen, R.

    1995-12-31

    The present baseline electrolyte matrix is a porous ceramic powder bed impregnated with alkali carbonate electrolyte. The matrix provides both ionic conduction and gas sealing. During fuel cell stack operation, the matrix experiences both mechanical and thermal stresses. Different mechanical characteristics of active and wet seal areas generate stress. Thermal stress is generated by nonuniform temperature distribution and thermal cycling. A carbonate fuel cell generally may experience planned and unplanned thermal cycles between 650 C and room temperature during its 40,000h life. During the cycling, the electrolyte matrix expands and contracts at a different rate from other cell components. Furthermore, the change in electrolyte volume associated with freezing/melting may generate additional thermal stress. Strengthening of the matrix may be beneficial for longer-term stability of the carbonate fuel cell with respect to repeated thermal cycling. Several promising strengtheners with improved chemical and mechanical stabilities were identified. Fibers provide the highest strengthening effect, followed by particulates. Matrix fabrication technique was successfully modified for uniformly incorporating the advanced strengtheners, maintaining the desired aspect ratio. Enhanced gas sealing demonstrated using the advanced matrices.

  6. Matrix-assisted diffusion-ordered spectroscopy: choosing a matrix.

    PubMed

    Gramosa, Nilce V; Ricardo, Nágila M S P; Adams, Ralph W; Morris, Gareth A; Nilsson, Mathias

    2016-06-07

    Diffusion-ordered spectroscopy (DOSY) is an important technique for separating the NMR signals of the components in a mixture, and relies on differences in diffusion coefficient. Standard DOSY experiments therefore struggle when the components of a mixture are of similar size, and hence diffuse at similar rates. Fortunately, the diffusion coefficients of solutes can be manipulated by changing the matrix in which they diffuse, using matrix components that interact differentially with them, a technique known as matrix-assisted DOSY. In the present investigation, we evaluate the performance of a number of new, previously used, and mixed matrices with an informative test mixture: the three positional isomers of dihydroxybenzene. The aim of this work is to present the matrix-assisted DOSY user with information about the potential utility of a set of matrices (and combinations of matrices), including ionic and non-ionic surfactants, complexing agents, polymers, and mixed solvents. A variety of matrices improved the diffusion resolution of the signals of the test system, with the best separation achieved by mixed micelles of sodium dodecyl sulfate and cetyl trimethylammonium bromide. The use of mixed matrices offers great potential for the analyst to tailor the matrix to a particular sample under study. © 2016 The Authors Magnetic Resonance in Chemistry Published by John Wiley & Sons, Ltd.

  7. The Astrobiology Matrix and the "Drake Matrix" in Education

    NASA Technical Reports Server (NTRS)

    Mizser, A.; Kereszturi, A.

    2003-01-01

    We organized astrobiology lectures in the Eotvos Lorand University of Sciences and the Polaris Observatory in 2002. We present here the "Drake matrix" for the comparison of the astrobiological potential of different bodies [1], and astrobiology matrix for the visualization of the interdisciplinary connections between different fields of astrobiology. Conclusion: In Hungary it is difficult to integrate astrobiology in the education system but the great advantage is that it can connect different scientific fields and improve the view of students. We would like to get in contact with persons and organizations who already have experience in the education of astrobiology.

  8. Relativistic Dipole Matrix Element Zeros

    NASA Astrophysics Data System (ADS)

    Lajohn, L. A.; Pratt, R. H.

    2002-05-01

    There is a special class of relativistic high energy dipole matrix element zeros (RZ), whose positions with respect to photon energy ω , only depend on the bound state l quantum number according to ω^0=mc^2/(l_b+1) (independent of primary quantum number n, nuclear charge Z, central potential V and dipole retardation). These RZ only occur in (n,l_b,j_b)arrow (ɛ , l_b+1,j_b) transitions such as ns_1/2arrow ɛ p_1/2; np_3/2arrow ɛ d_3/2: nd_5/2arrow ɛ f_5/2 etc. The nonrelativistic limit of these matrix elements can be established explicitly in the Coulomb case. Within the general matrix element formalism (such as that in [1]); when |κ | is substituted for γ in analytic expressions for matrix elements, the zeros remain, but ω^0 now becomes dependent on n and Z. When the reduction to nonrelativistic form is completed by application of the low energy approximation ω mc^2 mc^2, the zeros disappear. This nonzero behavior was noted in nonrelativistic dipole Coulomb matrix elements by Fano and Cooper [2] and later proven by Oh and Pratt[3]. (J. H. Scofield, Phys. Rev. A 40), 3054 (1989 (U. Fano and J. W. Cooper, Rev. Mod. Phys. 40), 441 (1968). (D. Oh and R. H. Pratt, Phys. Rev. A 34), 2486 (1986); 37, 1524 (1988); 45, 1583 (1992).

  9. Matrix factorizations and elliptic fibrations

    NASA Astrophysics Data System (ADS)

    Omer, Harun

    2016-09-01

    I use matrix factorizations to describe branes at simple singularities of elliptic fibrations. Each node of the corresponding Dynkin diagrams of the ADE-type singularities is associated with one indecomposable matrix factorization which can be deformed into one or more factorizations of lower rank. Branes with internal fluxes arise naturally as bound states of the indecomposable factorizations. Describing branes in such a way avoids the need to resolve singularities. This paper looks at gauge group breaking from E8 fibers down to SU (5) fibers due to the relevance of such fibrations for local F-theory GUT models. A purpose of this paper is to understand how the deformations of the singularity are understood in terms of its matrix factorizations. By systematically factorizing the elliptic fiber equation, this paper discusses geometries which are relevant for building semi-realistic local models. In the process it becomes evident that breaking patterns which are identical at the level of the Kodaira type of the fibers can be inequivalent at the level of matrix factorizations. Therefore the matrix factorization picture supplements information which the conventional less detailed descriptions lack.

  10. Noncommutative spaces from matrix models

    NASA Astrophysics Data System (ADS)

    Lu, Lei

    Noncommutative (NC) spaces commonly arise as solutions to matrix model equations of motion. They are natural generalizations of the ordinary commutative spacetime. Such spaces may provide insights into physics close to the Planck scale, where quantum gravity becomes relevant. Although there has been much research in the literature, aspects of these NC spaces need further investigation. In this dissertation, we focus on properties of NC spaces in several different contexts. In particular, we study exact NC spaces which result from solutions to matrix model equations of motion. These spaces are associated with finite-dimensional Lie-algebras. More specifically, they are two-dimensional fuzzy spaces that arise from a three-dimensional Yang-Mills type matrix model, four-dimensional tensor-product fuzzy spaces from a tensorial matrix model, and Snyder algebra from a five-dimensional tensorial matrix model. In the first part of this dissertation, we study two-dimensional NC solutions to matrix equations of motion of extended IKKT-type matrix models in three-space-time dimensions. Perturbations around the NC solutions lead to NC field theories living on a two-dimensional space-time. The commutative limit of the solutions are smooth manifolds which can be associated with closed, open and static two-dimensional cosmologies. One particular solution is a Lorentzian fuzzy sphere, which leads to essentially a fuzzy sphere in the Minkowski space-time. In the commutative limit, this solution leads to an induced metric that does not have a fixed signature, and have a non-constant negative scalar curvature, along with singularities at two fixed latitudes. The singularities are absent in the matrix solution which provides a toy model for resolving the singularities of General relativity. We also discussed the two-dimensional fuzzy de Sitter space-time, which has irreducible representations of su(1,1) Lie-algebra in terms of principal, complementary and discrete series. Field

  11. Matrix model approach to cosmology

    NASA Astrophysics Data System (ADS)

    Chaney, A.; Lu, Lei; Stern, A.

    2016-03-01

    We perform a systematic search for rotationally invariant cosmological solutions to toy matrix models. These models correspond to the bosonic sector of Lorentzian Ishibashi, Kawai, Kitazawa and Tsuchiya (IKKT)-type matrix models in dimensions d less than ten, specifically d =3 and d =5 . After taking a continuum (or commutative) limit they yield d -1 dimensional Poisson manifolds. The manifolds have a Lorentzian induced metric which can be associated with closed, open, or static space-times. For d =3 , we obtain recursion relations from which it is possible to generate rotationally invariant matrix solutions which yield open universes in the continuum limit. Specific examples of matrix solutions have also been found which are associated with closed and static two-dimensional space-times in the continuum limit. The solutions provide for a resolution of cosmological singularities, at least within the context of the toy matrix models. The commutative limit reveals other desirable features, such as a solution describing a smooth transition from an initial inflation to a noninflationary era. Many of the d =3 solutions have analogues in higher dimensions. The case of d =5 , in particular, has the potential for yielding realistic four-dimensional cosmologies in the continuum limit. We find four-dimensional de Sitter d S4 or anti-de Sitter AdS4 solutions when a totally antisymmetric term is included in the matrix action. A nontrivial Poisson structure is attached to these manifolds which represents the lowest order effect of noncommutativity. For the case of AdS4 , we find one particular limit where the lowest order noncommutativity vanishes at the boundary, but not in the interior.

  12. Shrinkage estimation of the realized relationship matrix

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The additive relationship matrix plays an important role in mixed model prediction of breeding values. For genotype matrix X (loci in columns), the product XX' is widely used as a realized relationship matrix, but the scaling of this matrix is ambiguous. Our first objective was to derive a proper ...

  13. [Matrix Support: a bibliographical study].

    PubMed

    Iglesias, Alexandra; Avellar, Luziane Zacché

    2014-09-01

    This article presents a bibliographical review of matrix support in mental health. A search was conducted in the Virtual Health Library and the LILACS, SciELO and Google Scholar databases using the key words: "matrix support in mental health." Fourteen articles were located with the desired characteristics, which indicates that only a restricted number of publications are in circulation. The articles were analyzed with respect to their structural and methodological aspects, which revealed the absolute predominance of the use of qualitative methods and health professionals as the target research population. The same articles were then analyzed for their theoretical discussions. Among other issues, the importance of matrix support to enhance the primary health care teams provided to people suffering from psychic distress is highlighted. However, there is still considerable confusion regarding the proposal of the matrix support and shared responsibilities between teams of reference and mental health professionals, which emphasizes the need for training of these professionals, as well as better coordination and organization of the mental health care network.

  14. Integrability and generalized monodromy matrix

    SciTech Connect

    Lhallabi, T.; Moujib, A.

    2007-09-15

    We construct the generalized monodromy matrix M-circumflex({omega}) of two-dimensional string effective action by introducing the T-duality group properties. The integrability conditions with general solutions depending on spectral parameter are given. This construction is investigated for the exactly solvable Wess, Zumino, Novikov, and Witten model in pp-wave limit when B=0.

  15. The Enrollment Analysis Matrix Concept.

    ERIC Educational Resources Information Center

    Chisholm, Mark

    The underlying assumptions and the structure of the enrollment analysis matrix (EAM) concept are discussed. EAM is a component of the Strategic Planning Project of the National Center for Higher Education Management Systems. EAM relates changes in the population of potential students external to the institution to the impacts that might result…

  16. The Lucas p-matrix

    NASA Astrophysics Data System (ADS)

    Kuhapatanakul, Kantaphon

    2015-11-01

    In this note, we study the Fibonacci and Lucas p-numbers. We introduce the Lucas p-matrix and companion matrices for the sums of the Fibonacci and Lucas p-numbers to derive some interesting identities of the Fibonacci and Lucas p-numbers.

  17. Matrix Algorithms in Signal Processing

    DTIC Science & Technology

    1990-08-01

    low rank perturbations with applications, SIAM J. MATRIX ANAL. APPL. 9, 40-58 (1988). [2] (with P . Arbenz and W. Gander), Restricted rank...key idea is to approximate the secular equation by an integral and then bound the integral using the ideas of Gauss- Radau integration. The Lanczos

  18. q-Virasoro constraints in matrix models

    NASA Astrophysics Data System (ADS)

    Nedelin, Anton; Zabzine, Maxim

    2017-03-01

    The Virasoro constraints play the important role in the study of matrix models and in understanding of the relation between matrix models and CFTs. Recently the localization calculations in supersymmetric gauge theories produced new families of matrix models and we have very limited knowledge about these matrix models. We concentrate on elliptic generalization of hermitian matrix model which corresponds to calculation of partition function on S 3 × S 1 for vector multiplet. We derive the q-Virasoro constraints for this matrix model. We also observe some interesting algebraic properties of the q-Virasoro algebra.

  19. Scrambling with matrix black holes

    NASA Astrophysics Data System (ADS)

    Brady, Lucas; Sahakian, Vatche

    2013-08-01

    If black holes are not to be dreaded sinks of information but rather fully described by unitary evolution, they must scramble in-falling data and eventually leak it through Hawking radiation. Sekino and Susskind have conjectured that black holes are fast scramblers; they generate entanglement at a remarkably efficient rate, with the characteristic time scaling logarithmically with the entropy. In this work, we focus on Matrix theory—M-theory in the light-cone frame—and directly probe the conjecture. We develop a concrete test bed for quantum gravity using the fermionic variables of Matrix theory and show that the problem becomes that of chains of qubits with an intricate network of interactions. We demonstrate that the black hole system evolves much like a Brownian quantum circuit, with strong indications that it is indeed a fast scrambler. We also analyze the Berenstein-Maldacena-Nastase model and reach the same tentative conclusion.

  20. Sapphire reinforced alumina matrix composites

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Setlock, John A.

    1994-01-01

    Unidirectionally reinforced A1203 matrix composites have been fabricated by hot pressing. Approximately 30 volume % of either coated or uncoated sapphire fiber was used as reinforcement. Unstabilized ZrO2 was applied as the fiber coating. Composite mechanical behavior was analyzed both after fabrication and after additional heat treatment. The results of composite tensile tests were correlated with fiber-matrix interfacial shear strengths determined from fiber push-out tests. Substantially higher strength and greater fiber pull-out were observed for the coated fiber composites for all processing conditions studied. The coated fiber composites retained up to 95% and 87% of their as-fabricated strength when heat treated at 14000C for 8 or 24 hours, respectively. Electron microscopy analysis of the fracture surfaces revealed extensive fiber pull-out both before and after heat treatment.

  1. Corrosion of Titanium Matrix Composites

    SciTech Connect

    Covino, B.S., Jr.; Alman, D.E.

    2002-09-22

    The corrosion behavior of unalloyed Ti and titanium matrix composites containing up to 20 vol% of TiC or TiB{sub 2} was determined in deaerated 2 wt% HCl at 50, 70, and 90 degrees C. Corrosion rates were calculated from corrosion currents determined by extrapolation of the tafel slopes. All curves exhibited active-passive behavior but no transpassive region. Corrosion rates for Ti + TiC composites were similar to those for unalloyed Ti except at 90 degrees C where the composites were slightly higher. Corrosion rates for Ti + TiB{sub 2} composites were generally higher than those for unalloyed Ti and increased with higher concentrations of TiB{sub 2}. XRD and SEM-EDS analyses showed that the TiC reinforcement did not react with the Ti matrix during fabrication while the TiB{sub 2} reacted to form a TiB phase.

  2. High temperature polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1987-01-01

    With the increased emphasis on high performance aircraft the need for lightweight, thermal/oxidatively stable materials is growing. Because of their ease of fabrication, high specific strength, and ability to be tailored chemically to produce a variety of mechanical and physical properties, polymers and polymer matrix composites present themselves as attractive materials for a number of aeropropulsion applications. In the early 1970s researchers at the NASA Lewis Research Center developed a highly processable, thermally stable (600 F) polyimide, PMR-15. Since that time, PMR-15 has become commercially available and has found use in military aircraft, in particular, the F-404 engine for the Navy's F/A-18 strike fighter. The NASA Lewis'contributions to high temperature polymer matrix composite research will be discussed as well as current and future directions.

  3. Myocardial structure and matrix metalloproteinases.

    PubMed

    Aggeli, C; Pietri, P; Felekos, I; Rautopoulos, L; Toutouzas, K; Tsiamis, E; Stefanadis, C

    2012-01-01

    Metalloproteinases (MMPs) are enzymes which enhance proteolysis of extracellular matrix proteins. The pathophysiologic and prognostic role of MMPs has been demonstrated in numerous studies. The present review covers a wide a range of topics with regards to MMPs structural and functional properties, as well as their role in myocardial remodeling in several cardiovascular diseases. Moreover, the clinical and therapeutic implications from their assessment are highlighted.

  4. Matrix computations on mesh arrays

    SciTech Connect

    Moreno, J.H.

    1989-01-01

    This dissertation addresses the systematic derivation of mesh arrays for matrix computations, in particular realizing the algorithm-specific arrays and mapping algorithms onto class-specific arrays. A data-dependency graph-based transformational method is proposed in a design frame work consisting of two stages, namely algorithm regularization and derivation of arrays. The first stage derives the fully-parallel data-dependency graph (FPG) of an algorithm and transforms this graph into a three-dimensional one with unidirectional nearest-neighbor dependencies (a multi-mesh graph MMG). The second stage transforms the MMG into a two-dimensional G-graph, which is realized as an algorithm-specific array or mapped onto a class-specific array. This stage allows the incorporation of implementation restrictions and the evaluation of tradeoffs in properties of cells, as well as the derivation of arrays for fixed-size data and partitioned problems, while performing optimization of specific performance/cost measures. The proposed method is formalized by presenting a sufficient set of transformations and demonstrating the equivalence of graphs obtained from those transformations. Moreover, it is demonstrated that the MMG representation is always possible, due to the characteristics of the operators. The method has been applied to a collection of matrix algorithms, including matrix multiplication, convolution, matrix decompositions, transitive closure, the Faddeev algorithm, and BBA{sup {minus}1}. The examples show that, in addition to the features listed earlier, this method is easy to apply. Moreover, the method is compared with other techniques, concluding that it is advantageous because it meets evaluation criteria and produces more efficient arrays.

  5. Tough high performance composite matrix

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Johnston, Norman J. (Inventor)

    1994-01-01

    This invention is a semi-interpentrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. Provided is an improved high temperature matrix resin which is capable of performing in the 200 to 300 C range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance, and moisture and solvent resistances.

  6. Integrable matrix theory: Level statistics.

    PubMed

    Scaramazza, Jasen A; Shastry, B Sriram; Yuzbashyan, Emil A

    2016-09-01

    We study level statistics in ensembles of integrable N×N matrices linear in a real parameter x. The matrix H(x) is considered integrable if it has a prescribed number n>1 of linearly independent commuting partners H^{i}(x) (integrals of motion) [H(x),H^{i}(x)]=0, [H^{i}(x),H^{j}(x)]=0, for all x. In a recent work [Phys. Rev. E 93, 052114 (2016)2470-004510.1103/PhysRevE.93.052114], we developed a basis-independent construction of H(x) for any n from which we derived the probability density function, thereby determining how to choose a typical integrable matrix from the ensemble. Here, we find that typical integrable matrices have Poisson statistics in the N→∞ limit provided n scales at least as logN; otherwise, they exhibit level repulsion. Exceptions to the Poisson case occur at isolated coupling values x=x_{0} or when correlations are introduced between typically independent matrix parameters. However, level statistics cross over to Poisson at O(N^{-0.5}) deviations from these exceptions, indicating that non-Poissonian statistics characterize only subsets of measure zero in the parameter space. Furthermore, we present strong numerical evidence that ensembles of integrable matrices are stationary and ergodic with respect to nearest-neighbor level statistics.

  7. MALDI Matrix Research for Biopolymers

    PubMed Central

    Fukuyama, Yuko

    2015-01-01

    Matrices are necessary materials for ionizing analytes in matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). The choice of a matrix appropriate for each analyte controls the analyses. Thus, in some cases, development or improvement of matrices can become a tool for solving problems. This paper reviews MALDI matrix research that the author has conducted in the recent decade. It describes glycopeptide, carbohydrate, or phosphopeptide analyses using 2,5-dihydroxybenzoic acid (2,5-DHB), 1,1,3,3-tetramethylguanidinium (TMG) salts of p-coumaric acid (CA) (G3CA), 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) (3-AQ/CHCA) or 3-AQ/CA and gengeral peptide, peptide containing disulfide bonds or hydrophobic peptide analyses using butylamine salt of CHCA (CHCAB), 1,5-diaminonaphthalene (1,5-DAN), octyl 2,5-dihydroxybenzoate (alkylated dihydroxybenzoate, ADHB), or 1-(2,4,6-trihydroxyphenyl)octan-1-one (alkylated trihydroxyacetophenone, ATHAP). PMID:26819908

  8. Fast polar decomposition of an arbitrary matrix

    NASA Technical Reports Server (NTRS)

    Higham, Nicholas J.; Schreiber, Robert S.

    1988-01-01

    The polar decomposition of an m x n matrix A of full rank, where m is greater than or equal to n, can be computed using a quadratically convergent algorithm. The algorithm is based on a Newton iteration involving a matrix inverse. With the use of a preliminary complete orthogonal decomposition the algorithm can be extended to arbitrary A. How to use the algorithm to compute the positive semi-definite square root of a Hermitian positive semi-definite matrix is described. A hybrid algorithm which adaptively switches from the matrix inversion based iteration to a matrix multiplication based iteration due to Kovarik, and to Bjorck and Bowie is formulated. The decision when to switch is made using a condition estimator. This matrix multiplication rich algorithm is shown to be more efficient on machines for which matrix multiplication can be executed 1.5 times faster than matrix inversion.

  9. Petrology and structure of greenstone blocks encased in mud-matrix melange of the Franciscan complex near San Simeon, California

    SciTech Connect

    Davidsen, R.K.; Cloos, M.

    1985-01-01

    Greenstones comprise about 20% of all mappable (>1 m) blocks encased in blueschist-block-bearing mud-matrix melange exposed in a 10 km-length of sea cliffs near San Simeon. Field and petrographic analysis of 25 blocks show they vary from finely crystalline (<1 mm) locally porphyritic or amygdaloidal, volcanics to coarsely crystalline (1 to 5 mm) diabase. Some are in contact with bedded chert and two have relict pillows. However, most blocks are intensely deformed. Pinch-and-swell and boundinage are recognized on scales from cm to about 10 m. Distortion was accommodated by cataclasis to an aggregate of pieces from mm to m across. Generally, m-sized blocks are pervasively cataclastic whereas larger blocks are crosscut by cataclastic zones that emanate from pervasively cataclastic margins or necked regions of boudins. Discontinuous, cm-thick veins and cavities that are lined by quartz and clacite and rarely, laumontite, prehnite and aragonite locally crosscut all other structures. Relict igneous textures show the primary minerals are plagioclase and clinopyroxene. Abundant secondary minerals, particularly in cataclastic zones, are albite, chlorite, pumpellyite (some have high Al), and calcite. The metamorphic parageneses indicate relatively minor greenschist-facies, sea-floor-type alterations under static conditions followed by lower-temperature alterations synchronous with cataclasis and the development of boudinage. If the blocks are fragments of disrupted ophiolites, only the uppermost section of the suite are present within the mud-matrix melange near San Simeon. The simplest explanation for their crystallization, metamorphism and incorporation into the melange is that they are fragments of seamounts dismembered during subduction.

  10. Metal-matrix composites: Status and prospects

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Applications of metal matrix composites for air frames and jet engine components are discussed. The current state of the art in primary and secondary fabrication is presented. The present and projected costs were analyzed to determine the cost effectiveness of metal matrix composites. The various types of metal matrix composites and their characteristics are described.

  11. Teaching Tip: When a Matrix and Its Inverse Are Stochastic

    ERIC Educational Resources Information Center

    Ding, J.; Rhee, N. H.

    2013-01-01

    A stochastic matrix is a square matrix with nonnegative entries and row sums 1. The simplest example is a permutation matrix, whose rows permute the rows of an identity matrix. A permutation matrix and its inverse are both stochastic. We prove the converse, that is, if a matrix and its inverse are both stochastic, then it is a permutation matrix.

  12. Fiber-matrix interface failures

    NASA Technical Reports Server (NTRS)

    Rabenberg, Lew; Marcus, Harris L.; Park, Hun Sub; Zong, Gui Sheng; Brown, Lloyd D.

    1989-01-01

    Interface fractures of aluminum-graphite composites under transverse loading are expected to occur within the graphite fibers, but very near the interface. Residual stresses in aluminum, reinforced with the new high modulus pitch-based fibers, are much lower than would be expected based on simple elasticity calculations. The excess stress may be relaxed by shearing internal to the fibers or at the interface rather than by plastic flow of the matrix. The internal shearing also occurs during repeated thermal cycling of these composites; the fibers are repeatedly intruded, then extruded, during repeated temperature excursions.

  13. Matrix management for aerospace 2000

    NASA Technical Reports Server (NTRS)

    Mccarthy, J. F., Jr.

    1980-01-01

    The martix management approach to program management is an organized effort for attaining program objectives by defining and structuring all elements so as to form a single system whose parts are united by interaction. The objective of the systems approach is uncompromisingly complete coverage of the program management endeavor. Starting with an analysis of the functions necessary to carry out a given program, a model must be defined; a matrix of responsibility assignment must be prepared; and each operational process must be examined to establish how it is to be carried out and how it relates to all other processes.

  14. Diffusive dynamics on paper matrix

    NASA Astrophysics Data System (ADS)

    Chaudhury, Kaustav; Kar, Shantimoy; Chakraborty, Suman

    2016-11-01

    Writing with ink on a paper and the rapid diagnostics of diseases using paper cartridge, despite their remarkable diversities from application perspective, both involve the motion of a liquid from a source on a porous hydrophilic substrate. Here we bring out a generalization in the pertinent dynamics by appealing to the concerned ensemble-averaged transport with reference to the underlying molecular picture. Our results reveal that notwithstanding the associated complexities and diversities, the resultant liquid transport characteristics on a paper matrix, in a wide variety of applications, resemble universal diffusive dynamics. Agreement with experimental results from diversified applications is generic and validates our unified theory.

  15. Random matrix theory within superstatistics.

    PubMed

    Abul-Magd, A Y

    2005-12-01

    We propose a generalization of the random matrix theory following the basic prescription of the recently suggested concept of superstatistics. Spectral characteristics of systems with mixed regular-chaotic dynamics are expressed as weighted averages of the corresponding quantities in the standard theory assuming that the mean level spacing itself is a stochastic variable. We illustrate the method by calculating the level density, the nearest-neighbor-spacing distributions, and the two-level correlation functions for systems in transition from order to chaos. The calculated spacing distribution fits the resonance statistics of random binary networks obtained in a recent numerical experiment.

  16. Neonatal disorders of germinal matrix.

    PubMed

    Raets, M M A; Dudink, J; Govaert, P

    2015-11-01

    The germinal matrix (GM) is a richly vascularized, transient layer near the ventricles. It produces neurons and glial cells, and is present in the foetal brain between 8 and 36 weeks of gestation. At 25 weeks, it reaches its maximum volume and subsequently withers. The GM is vulnerable to haemorrhage in preterm infants. This selective vulnerability is explained by limited astrocyte end-feet coverage of microvessels, reduced expression of fibronectin and immature tight junctions. Focal lesions in the neonatal period include haemorrhage, germinolysis and stroke. Such lesions in transient layers interrupt normal brain maturation and induce neurodevelopmental sequelae.

  17. The q-Laguerre matrix polynomials.

    PubMed

    Salem, Ahmed

    2016-01-01

    The Laguerre polynomials have been extended to Laguerre matrix polynomials by means of studying certain second-order matrix differential equation. In this paper, certain second-order matrix q-difference equation is investigated and solved. Its solution gives a generalized of the q-Laguerre polynomials in matrix variable. Four generating functions of this matrix polynomials are investigated. Two slightly different explicit forms are introduced. Three-term recurrence relation, Rodrigues-type formula and the q-orthogonality property are given.

  18. On matrix Painlevé hierarchies

    NASA Astrophysics Data System (ADS)

    Gordoa, P. R.; Pickering, A.; Zhu, Z. N.

    2016-07-01

    We define a matrix first Painlevé hierarchy and a matrix second Painlevé (PII) hierarchy. For our matrix PII hierarchy we also give auto-Bäcklund transformations and consider the iteration of solutions. This is the first paper to define matrix Painlevé hierarchies and to give auto-Bäcklund transformations for a matrix Painlevé hierarchy. We also consider, amongst other results, the derivation of sequences of special integrals and autonomous limits. Until now it has been unknown how to connect the known matrix PII equation to the obvious candidates for related completely integrable matrix partial differential equations. Our matrix PII hierarchy is placed firmly within the context of a matrix modified Korteweg-de Vries (mKdV) hierarchy. In deriving our matrix PII hierarchy we make use of the Hamiltonian structure of this matrix mKdV hierarchy. We thus see once again the importance for Painlevé hierarchies of the integrability structures of related completely integrable equations.

  19. Matrix stiffening promotes a tumor vasculature phenotype

    PubMed Central

    Bordeleau, Francois; Mason, Brooke N.; Lollis, Emmanuel Macklin; Mazzola, Michael; Zanotelli, Matthew R.; Somasegar, Sahana; Califano, Joseph P.; Montague, Christine; LaValley, Danielle J.; Huynh, John; Mencia-Trinchant, Nuria; Negrón Abril, Yashira L.; Hassane, Duane C.; Bonassar, Lawrence J.; Butcher, Jonathan T.; Weiss, Robert S.; Reinhart-King, Cynthia A.

    2017-01-01

    Tumor microvasculature tends to be malformed, more permeable, and more tortuous than vessels in healthy tissue, effects that have been largely attributed to up-regulated VEGF expression. However, tumor tissue tends to stiffen during solid tumor progression, and tissue stiffness is known to alter cell behaviors including proliferation, migration, and cell–cell adhesion, which are all requisite for angiogenesis. Using in vitro, in vivo, and ex ovo models, we investigated the effects of matrix stiffness on vessel growth and integrity during angiogenesis. Our data indicate that angiogenic outgrowth, invasion, and neovessel branching increase with matrix cross-linking. These effects are caused by increased matrix stiffness independent of matrix density, because increased matrix density results in decreased angiogenesis. Notably, matrix stiffness up-regulates matrix metalloproteinase (MMP) activity, and inhibiting MMPs significantly reduces angiogenic outgrowth in stiffer cross-linked gels. To investigate the functional significance of altered endothelial cell behavior in response to matrix stiffness, we measured endothelial cell barrier function on substrates mimicking the stiffness of healthy and tumor tissue. Our data indicate that barrier function is impaired and the localization of vascular endothelial cadherin is altered as function of matrix stiffness. These results demonstrate that matrix stiffness, separately from matrix density, can alter vascular growth and integrity, mimicking the changes that exist in tumor vasculature. These data suggest that therapeutically targeting tumor stiffness or the endothelial cell response to tumor stiffening may help restore vessel structure, minimize metastasis, and aid in drug delivery. PMID:28034921

  20. Uniform-burning matrix burner

    SciTech Connect

    Bohn, Mark S.; Anselmo, Mark

    2001-01-01

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  1. Link prediction via matrix completion

    NASA Astrophysics Data System (ADS)

    Pech, Ratha; Hao, Dong; Pan, Liming; Cheng, Hong; Zhou, Tao

    2017-02-01

    Inspired by the practical importance of social networks, economic networks, biological networks and so on, studies on large and complex networks have attracted a surge of attention in the recent years. Link prediction is a fundamental issue to understand the mechanisms by which new links are added to the networks. We introduce the method of robust principal component analysis (robust PCA) into link prediction, and estimate the missing entries of the adjacency matrix. On the one hand, our algorithm is based on the sparse and low-rank property of the matrix, while, on the other hand, it also performs very well when the network is dense. This is because a relatively dense real network is also sparse in comparison to the complete graph. According to extensive experiments on real networks from disparate fields, when the target network is connected and sufficiently dense, whether it is weighted or unweighted, our method is demonstrated to be very effective and with prediction accuracy being considerably improved compared to many state-of-the-art algorithms.

  2. Extracellular Matrix and Liver Disease

    PubMed Central

    Arriazu, Elena; Ruiz de Galarreta, Marina; Cubero, Francisco Javier; Varela-Rey, Marta; Pérez de Obanos, María Pilar; Leung, Tung Ming; Lopategi, Aritz; Benedicto, Aitor; Abraham-Enachescu, Ioana

    2014-01-01

    Abstract Significance: The extracellular matrix (ECM) is a dynamic microenvironment that undergoes continuous remodeling, particularly during injury and wound healing. Chronic liver injury of many different etiologies such as viral hepatitis, alcohol abuse, drug-induced liver injury, obesity and insulin resistance, metabolic disorders, and autoimmune disease is characterized by excessive deposition of ECM proteins in response to persistent liver damage. Critical Issues: This review describes the main collagenous and noncollagenous components from the ECM that play a significant role in pathological matrix deposition during liver disease. We define how increased myofibroblasts (MF) from different origins are at the forefront of liver fibrosis and how liver cell-specific regulation of the complex scarring process occurs. Recent Advances: Particular attention is paid to the role of cytokines, growth factors, reactive oxygen species, and newly identified matricellular proteins in the regulation of fibrillar type I collagen, a field to which our laboratory has significantly contributed over the years. We compile data from recent literature on the potential mechanisms driving fibrosis resolution such as MF’ apoptosis, senescence, and reversal to quiescence. Future Directions: We conclude with a brief description of how epigenetics, an evolving field, can regulate the behavior of MF and of how new “omics” tools may advance our understanding of the mechanisms by which the fibrogenic response to liver injury occurs. Antioxid. Redox Signal. 21, 1078–1097. PMID:24219114

  3. Characterization of Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Chun, H. J.; Karalekas, D.

    1994-01-01

    Experimental methods were developed, adapted, and applied to the characterization of a metal matrix composite system, namely, silicon carbide/aluminim (SCS-2/6061 Al), and its constituents. The silicon carbide fiber was characterized by determining its modulus, strength, and coefficient of thermal expansion. The aluminum matrix was characterized thermomechanically up to 399 C (750 F) at two strain rates. The unidirectional SiC/Al composite was characterized mechanically under longitudinal, transverse, and in-plane shear loading up to 399 C (750 F). Isothermal and non-isothermal creep behavior was also measured. The applicability of a proposed set of multifactor thermoviscoplastic nonlinear constitutive relations and a computer code was investigated. Agreement between predictions and experimental results was shown in a few cases. The elastoplastic thermomechanical behavior of the composite was also described by a number of new analytical models developed or adapted for the material system studied. These models include the rule of mixtures, composite cylinder model with various thermoelastoplastic analyses and a model based on average field theory. In most cases satisfactory agreement was demonstrated between analytical predictions and experimental results for the cases of stress-strain behavior and thermal deformation behavior at different temperatures. In addition, some models yielded detailed three-dimensional stress distributions in the constituents within the composite.

  4. Matrix metalloproteinases in metabolic syndrome.

    PubMed

    Hopps, E; Caimi, G

    2012-03-01

    Metabolic syndrome is commonly accompanied by an elevated cardiovascular risk with high morbidity and mortality. The alterations of the arterial vasculature begin with endothelial dysfunction and lead to micro- and macrovascular complications. The remodeling of the endothelial basal membrane, that promotes erosion and thrombosis, has a multifactorial pathogenesis that includes leukocyte activation, increased oxidative stress and also an altered matrix metalloproteinases (MMPs) expression. MMPs are endopeptidases which degrade extracellular matrix proteins, such as collagen, gelatins, fibronectin and laminin. They can be secreted by several cells within the vascular wall, but macrophages are determinant in the atherosclerotic plaques. Their activity is regulated by tissue inhibitors of MMP (TIMPs) and also by other molecules, such as plasmin. MMPs could be implicated in plaque instability predisposing to vascular complications. It has been demonstrated that an impaired MMP or TIMP expression is associated with higher risk of all-cause mortality. A large number of studies evaluated MMPs pattern in obesity, diabetes mellitus, arterial hypertension and dyslipidemia, all of which define metabolic syndrome according to several Consensus Statement (i.e. IDF, ATP III, AHA). However, few research have been carried out on subjects with metabolic syndrome. The evidences of an improvement in MMP/TIMP ratio with diet, exercise and medical therapy should encourage further investigations with the intent to contrast the atherosclerotic process and to reduce morbidity and mortality of this kind of patients.

  5. Automatic Generation of Partitioned Matrix Expressions for Matrix Operations

    NASA Astrophysics Data System (ADS)

    Fabregat-Traver, Diego; Bientinesi, Paolo

    2010-09-01

    We target the automatic generation of formally correct algorithms and routines for linear algebra operations. Given the broad variety of architectures and configurations with which scientists deal, there does not exist one algorithmic variant that is suitable for all scenarios. Therefore, we aim to generate a family of algorithmic variants to attain high-performance for a broad set of scenarios. One of the authors has previously demonstrated that automatic derivation of a family of algorithms is possible when the Partitioned Matrix Expression (PME) of the target operation is available. The PME is a recursive definition that states the relations between submatrices in the input and the output operands. In this paper we describe all the steps involved in the automatic derivation of PMEs, thus making progress towards a fully automated system.

  6. Superfund chemical data matrix, 1996

    SciTech Connect

    1996-06-01

    The Superfund Chemical Data Matrix (SCDM) is a source for factor values and benchmark values applied when evaluating potential National Priorities List (NPL) sites using the Hazard Ranking System. The HRS assigns factor values for toxicity, gas migration potential, gas and ground water mobility, surface water persistence, and bioaccumulation potential based on the physical, chemical, and radiological properties of hazardous substances present at a site. Hazardous substances, as defined for HRS purposes, are CERCLA hazardous substances plus CERCLA pollutants and contaminants. The HRS also assigns extra weight to targets with exposure levels to hazardous substances that are at or above benchmarks. These benchmarks include both risk-based screening concentrations and concentrations specified in regulatory limits for the hazardous substances present at a site for a particular migration pathway.

  7. Continuous analogues of matrix factorizations

    PubMed Central

    Townsend, Alex; Trefethen, Lloyd N.

    2015-01-01

    Analogues of singular value decomposition (SVD), QR, LU and Cholesky factorizations are presented for problems in which the usual discrete matrix is replaced by a ‘quasimatrix’, continuous in one dimension, or a ‘cmatrix’, continuous in both dimensions. Two challenges arise: the generalization of the notions of triangular structure and row and column pivoting to continuous variables (required in all cases except the SVD, and far from obvious), and the convergence of the infinite series that define the cmatrix factorizations. Our generalizations of triangularity and pivoting are based on a new notion of a ‘triangular quasimatrix’. Concerning convergence of the series, we prove theorems asserting convergence provided the functions involved are sufficiently smooth. PMID:25568618

  8. Evaluation of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Okelly, K. P.

    1971-01-01

    The results of an evaluation of candidate metal-matrix composite materials for shuttle space radiators mounted to external structure are presented. The evaluation was specifically applicable to considerations of the manufacturing and properties of a potential space radiator. Two candidates, boron/aluminum and graphite/aluminum were obtained or made in various forms and tested in sufficient depth to allow selection of one of the two for future scale-up programs. The effort accomplished on this program verified that aluminum reinforced with boron was within the state-of-the-art in industry and possessed properties usable in the external skin areas available for shuttle radiators where re-entry temperatures will not exceed 800 F. It further demonstrated that graphite/aluminum has an apparently attractive future for space applications but requires extension development prior to scale-up.

  9. Thermoplastic matrix composite processing model

    NASA Technical Reports Server (NTRS)

    Dara, P. H.; Loos, A. C.

    1985-01-01

    The effects the processing parameters pressure, temperature, and time have on the quality of continuous graphite fiber reinforced thermoplastic matrix composites were quantitatively accessed by defining the extent to which intimate contact and bond formation has occurred at successive ply interfaces. Two models are presented predicting the extents to which the ply interfaces have achieved intimate contact and cohesive strength. The models are based on experimental observation of compression molded laminates and neat resin conditions, respectively. Identified as the mechanism explaining the phenomenon by which the plies bond to themselves is the theory of autohesion (or self diffusion). Theoretical predictions from the Reptation Theory between autohesive strength and contact time are used to explain the effects of the processing parameters on the observed experimental strengths. The application of a time-temperature relationship for autohesive strength predictions is evaluated. A viscoelastic compression molding model of a tow was developed to explain the phenomenon by which the prepreg ply interfaces develop intimate contact.

  10. Thermophysical and Electrical Properties of Metal Matrix Composites

    DTIC Science & Technology

    1979-12-01

    de if necessary and identify by block number) Aluminum matrix composiles, aluminum alloy matrix composites, copper matrix composites, electrical...the various com- posites of aluminum and aluminum alloy mar-tices, copper matrix, lead matrix, magnesium matrix, nickel and nickel alloy matrices...titanium and titanium alloy matrices, tungsten matrix, and zinc matrix. Most of the data are for aluminum DD j JAN 73 1473 EDITION OF I NOV6 S IS

  11. Fission Matrix Capability for MCNP Monte Carlo

    NASA Astrophysics Data System (ADS)

    Brown, Forrest; Carney, Sean; Kiedrowski, Brian; Martin, William

    2014-06-01

    We describe recent experience and results from implementing a fission matrix capability into the MCNP Monte Carlo code. The fission matrix can be used to provide estimates of the fundamental mode fission distribution, the dominance ratio, the eigenvalue spectrum, and higher mode forward and adjoint eigenfunctions of the fission neutron source distribution. It can also be used to accelerate the convergence of the power method iterations and to provide basis functions for higher-order perturbation theory. The higher-mode fission sources can be used in MCNP to determine higher-mode forward fluxes and tallies, and work is underway to provide higher-mode adjoint-weighted fluxes and tallies. Past difficulties and limitations of the fission matrix approach are overcome with a new sparse representation of the matrix, permitting much larger and more accurate fission matrix representations. The new fission matrix capabilities provide a significant advance in the state-of-the-art for Monte Carlo criticality calculations.

  12. Eigenvalues properties of terms correspondences matrix

    NASA Astrophysics Data System (ADS)

    Bondarchuk, Dmitry; Timofeeva, Galina

    2016-12-01

    Vector model representations of text documents are widely used in the intelligent search. In this approach a collection of documents is represented in the form of the term-document matrix, reflecting the frequency of terms. In the latent semantic analysis the dimension of the vector space is reduced by the singular value decomposition of the term-document matrix. Authors use a matrix of terms correspondences, reflecting the relationship between the terms, to allocate a semantic core and to obtain more simple presentation of the documents. With this approach, reducing the number of terms is based on the orthogonal decomposition of the matrix of terms correspondences. Properties of singular values of the term-document matrix and eigenvalues of the matrix of terms correspondences are studied in the case when documents differ substantially in length.

  13. Micromechanical Evaluation of Ceramic Matrix Composites

    DTIC Science & Technology

    1991-02-01

    Materials Sciences Corporation AD-A236 756 M.hM. 9 1 0513 IEIN HIfINU IIl- DTIC JUN 06 1991 MICROMECHANICAL EVALUATION OF S 0 CERAMIC MATRIX COMPOSITES C...Classification) \\() Micromechanical Evaluation of Ceramic Matrix Composites ) 12. PERSONAL AUTHOR(S) C-F. Yen, Z. Hashin, C. Laird, B.W. Rosen, Z. Wang 13a. TYPE...and strengthen the ceramic composites. In this task, various possibilities of crack propagation in unidirectional ceramic matrix composites under

  14. Reconstituted asbestos matrix for fuel cells

    NASA Technical Reports Server (NTRS)

    Mcbryar, H.

    1975-01-01

    Method is described for reprocessing commercially available asbestos matrix stock to yield greater porosity and bubble pressure (due to increased surface tension), improved homogeneity, and greater uniformity.

  15. Matrix metalloproteinases in destructive lung disease.

    PubMed

    Houghton, A McGarry

    2015-01-01

    Matrix metalloproteinases (MMPs) play essential physiologic roles in numerous processes ranging from development to wound repair. Unfortunately, given the broad substrate specificity of the MMP family as a whole, aberrant degradation of extracellular matrix proteins can result in destructive disease. Emphysema, the result of destroyed lung elastin and collagen matrix, is the prototypical example of such a destructive process. More recent data has highlighted that MMPs play much more elaborate physiologic and pathophysiologic roles than simple matrix protein cleavage. Key pathophysiological roles for MMPs in emphysema will be discussed herein.

  16. Multiscale Modeling of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  17. SYMAT, COVAR: Test Procedures for Matrix Calculations

    NASA Technical Reports Server (NTRS)

    Morris, W. L.; Wiginton, C. L.; Lowell, D. K.

    1972-01-01

    The FORTRAN subroutine SYMAT and related subroutines are described. In essence SYMAT is an iterative algorithm in which the problem of finding eigenvalues and eigenvectors of a real symmetric matrix is transformed into an equivalent problem of finding eigenvalues and eigenvectors of an infinite sequence of matrices of order two. A DEMO PROGRAM contains a subroutine COVAR which is used to compute the covariance matrix (denoted by A) of a data matrix (denoted by X). Since a covariance matrix is symmetric it can be analyzed by using subroutine SYMAT.

  18. Stokes scattering matrix for human skin.

    PubMed

    Bhandari, Anak; Stamnes, Snorre; Hamre, Børge; Frette, Oyvind; Stamnes, Knut; Stamnes, Jakob J

    2012-11-01

    We use a layered model of normal human skin based on size distributions of polydisperse spherical particles and their complex refractive indices to compute the Stokes scattering matrix at wavelengths in the visible spectral band. The elements of the Stokes scattering matrix are required in a polarized radiative transfer code for a coupled air-tissue system to compute the polarized reflectance and examine how it is dependent on the vertical structure of the inherent optical properties of skin, including the phase matrix. Thus, the elements of the Stokes scattering matrix can be useful for investigating polarization-dependent light propagation in turbid optical media, such as human skin tissue.

  19. Finding Nonoverlapping Substructures of a Sparse Matrix

    SciTech Connect

    Pinar, Ali; Vassilevska, Virginia

    2005-08-11

    Many applications of scientific computing rely on computations on sparse matrices. The design of efficient implementations of sparse matrix kernels is crucial for the overall efficiency of these applications. Due to the high compute-to-memory ratio and irregular memory access patterns, the performance of sparse matrix kernels is often far away from the peak performance on a modern processor. Alternative data structures have been proposed, which split the original matrix A into A{sub d} and A{sub s}, so that A{sub d} contains all dense blocks of a specified size in the matrix, and A{sub s} contains the remaining entries. This enables the use of dense matrix kernels on the entries of A{sub d} producing better memory performance. In this work, we study the problem of finding a maximum number of nonoverlapping dense blocks in a sparse matrix, which is previously not studied in the sparse matrix community. We show that the maximum nonoverlapping dense blocks problem is NP-complete by using a reduction from the maximum independent set problem on cubic planar graphs. We also propose a 2/3-approximation algorithm that runs in linear time in the number of nonzeros in the matrix. This extended abstract focuses on our results for 2x2 dense blocks. However we show that our results can be generalized to arbitrary sized dense blocks, and many other oriented substructures, which can be exploited to improve the memory performance of sparse matrix operations.

  20. Extracellular matrix proteins of dentine.

    PubMed

    Butler, W T; Ritchie, H H; Bronckers, A L

    1997-01-01

    Bone and dentine extracellular matrix proteins are similar, consisting primarily of type I collagen, acidic proteins and proteoglycans. Although collagen forms the lattice for deposition of calcium and phosphate for formation of carbonate apatite, the non-collagenous proteins are believed to control initiation and growth of the crystals. Despite this similarity, dentine contains three unique proteins apparently absent from bone and other tissue: dentine phosphophoryn (DPP), dentine matrix protein 1 (DMP1) and dentine sialoprotein (DSP). DPP and DMP1 are acidic phosphoproteins probably involved in the control of mineralization processes. DPP may localize in gap regions of collagen and initiate apatite crystal formation by binding large quantities of calcium in a conformation that promotes this process. Extensive studies have been conducted in our laboratory on the nature, biosynthesis, localization and gene structure of DSP. Immunolocalization studies showed that rat DSP, a 53 kDa sialic acid-rich glycoprotein, was synthesized by young and mature odontoblasts, and by dental pulp cells and pre-ameloblasts, but not by ameloblasts, osteoblasts, chondrocytes or other cell types. The cDNA sequence indicated that DSP was a 366-residue protein with several potential N-glycosylation sites, as well as phosphorylation sites, but that the amino acid sequence was dissimilar to that of other known proteins. Northern blot analysis detected several mRNA species near 4.6 and 1.5 kb, indicative of alternative splicing events. Evidence for two DSP genes was obtained, further complicating this picture. Recent in situ hybridization studies utilizing rat and mouse molars and incisors indicated that DSP mRNA was expressed by young odontoblasts and odontoblasts in animals of all ages. Transcripts were also observed in pre-ameloblasts. The expression of DSP mRNA ceased when these cells matured to become secretory ameloblasts. DSP transcripts were not detected in osteoblasts or other cell

  1. Advanced Integration Matrix Education Outreach

    NASA Technical Reports Server (NTRS)

    Paul Heather L.

    2004-01-01

    The Advanced Integration Matrix (AIM) will design a ground-based test facility for developing revolutionary integrated systems for joint human-robotic missions in order to study and solve systems-level integration issues for exploration missions beyond Low Earth Orbit (LEO). This paper describes development plans for educational outreach activities related to technological and operational integration scenarios similar to the challenges that will be encountered through this project. The education outreach activities will provide hands-on, interactive exercises to allow students of all levels to experience design and operational challenges similar to what NASA deals with everyday in performing the integration of complex missions. These experiences will relate to and impact students everyday lives by demonstrating how their interests in science and engineering can develop into future careers, and reinforcing the concepts of teamwork and conflict resolution. Allowing students to experience and contribute to real-world development, research, and scientific studies of ground-based simulations for complex exploration missions will stimulate interest in the space program, and bring NASA's challenges to the student level. By enhancing existing educational programs and developing innovative activities and presentations, AIM will support NASA s endeavor to "inspire the next generation of explorers.. .as only NASA can."

  2. Clinical implications of matrix metalloproteinases.

    PubMed

    Mandal, Malay; Mandal, Amritlal; Das, Sudip; Chakraborti, Tapati; Sajal, Chakraborti

    2003-10-01

    Matrix metalloproteinases (MMPs) are a family of neutral proteinases that are important for normal development, wound healing, and a wide variety of pathological processes, including the spread of metastatic cancer cells, arthritic destruction of joints, atherosclerosis, pulmonary fibrosis, emphysema and neuroinflammation. In the central nervous system (CNS), MMPs have been shown to degrade components of the basal lamina, leading to disruption of the blood brain barrier and to contribute to the neuroinflammatory responses in many neurological diseases. Inhibition of MMPs have been shown to prevent progression of these diseases. Currently, certain MMP inhibitors have entered into clinical trials. A goal to the future should be to design selective synthetic inhibitors of MMPs that have minimum side effects. MMP inhibitors are designed in such a way that these can not only bind at the active site of the proteinases but also to have the characteristics to bind to other sites of MMPs which might be a promising route for therapy. To name a few: catechins, a component isolated from green tea; and Novastal, derived from extracts of shark cartilage are currently in clinical trials for the treatment of MMP-mediated diseases.

  3. The evolution of extracellular matrix.

    PubMed

    Ozbek, Suat; Balasubramanian, Prakash G; Chiquet-Ehrismann, Ruth; Tucker, Richard P; Adams, Josephine C

    2010-12-01

    We present a perspective on the molecular evolution of the extracellular matrix (ECM) in metazoa that draws on research publications and data from sequenced genomes and expressed sequence tag libraries. ECM components do not function in isolation, and the biological ECM system or "adhesome" also depends on posttranslational processing enzymes, cell surface receptors, and extracellular proteases. We focus principally on the adhesome of internal tissues and discuss its origins at the dawn of the metazoa and the expansion of complexity that occurred in the chordate lineage. The analyses demonstrate very high conservation of a core adhesome that apparently evolved in a major wave of innovation in conjunction with the origin of metazoa. Integrin, CD36, and certain domains predate the metazoa, and some ECM-related proteins are identified in choanoflagellates as predicted sequences. Modern deuterostomes and vertebrates have many novelties and elaborations of ECM as a result of domain shuffling, domain innovations and gene family expansions. Knowledge of the evolution of metazoan ECM is important for understanding how it is built as a system, its roles in normal tissues and disease processes, and has relevance for tissue engineering, the development of artificial organs, and the goals of synthetic biology.

  4. Channeled partial Mueller matrix polarimetry

    NASA Astrophysics Data System (ADS)

    Alenin, Andrey S.; Tyo, J. S.

    2015-09-01

    In prior work,1,2 we introduced methods to treat channeled systems in a way that is similar to Data Reduction Method (DRM), by focusing attention on the Fourier content of the measurement conditions. Introduction of Q enabled us to more readily extract the performance of the system and thereby optimize it to obtain reconstruction with the least noise. The analysis tools developed for that exercise can be expanded to be applicable to partial Mueller Matrix Polarimeters (pMMPs), which were a topic of prior discussion as well. In this treatment, we combine the principles involved in both of those research trajectories and identify a set of channeled pMMP families. As a result, the measurement structure of such systems is completely known and the design of a channeled pMMP intended for any given task becomes a search over a finite set of possibilities, with the additional channel rotation allowing for a more desirable Mueller element mixing.

  5. Matrix model description of baryonic deformations

    SciTech Connect

    Bena, Iosif; Murayama, Hitoshi; Roiban, Radu; Tatar, Radu

    2003-03-13

    We investigate supersymmetric QCD with N{sub c} + 1 flavors using an extension of the recently proposed relation between gauge theories and matrix models.The impressive agreement between the two sides provides a beautiful confirmation of the extension of the gauge theory-matrix model relation to this case.

  6. Improvements in sparse matrix operations of NASTRAN

    NASA Technical Reports Server (NTRS)

    Harano, S.

    1980-01-01

    A "nontransmit" packing routine was added to NASTRAN to allow matrix data to be refered to directly from the input/output buffer. Use of the packing routine permits various routines for matrix handling to perform a direct reference to the input/output buffer if data addresses have once been received. The packing routine offers a buffer by buffer backspace feature for efficient backspacing in sequential access. Unlike a conventional backspacing that needs twice back record for a single read of one record (one column), this feature omits overlapping of READ operation and back record. It eliminates the necessity of writing, in decomposition of a symmetric matrix, of a portion of the matrix to its upper triangular matrix from the last to the first columns of the symmetric matrix, thus saving time for generating the upper triangular matrix. Only a lower triangular matrix must be written onto the secondary storage device, bringing 10 to 30% reduction in use of the disk space of the storage device.

  7. Finding nonoverlapping substructures of a sparse matrix

    SciTech Connect

    Pinar, Ali; Vassilevska, Virginia

    2004-08-09

    Many applications of scientific computing rely on computations on sparse matrices, thus the design of efficient implementations of sparse matrix kernels is crucial for the overall efficiency of these applications. Due to the high compute-to-memory ratio and irregular memory access patterns, the performance of sparse matrix kernels is often far away from the peak performance on a modern processor. Alternative data structures have been proposed, which split the original matrix A into A{sub d} and A{sub s}, so that A{sub d} contains all dense blocks of a specified size in the matrix, and A{sub s} contains the remaining entries. This enables the use of dense matrix kernels on the entries of A{sub d} producing better memory performance. In this work, we study the problem of finding a maximum number of non overlapping rectangular dense blocks in a sparse matrix, which has not been studied in the sparse matrix community. We show that the maximum non overlapping dense blocks problem is NP-complete by using a reduction from the maximum independent set problem on cubic planar graphs. We also propose a 2/3-approximation algorithm for 2 times 2 blocks that runs in linear time in the number of nonzeros in the matrix. We discuss alternatives to rectangular blocks such as diagonal blocks and cross blocks and present complexity analysis and approximation algorithms.

  8. The Molecules of the Cell Matrix.

    ERIC Educational Resources Information Center

    Weber, Klaus; Osborn, Mary

    1985-01-01

    Cytoplasmic proteins form a highly structured yet changeable matrix that affects cell shape, division, motion, and transport of vesicles and organelles. Types of microfilaments, research techniques, actin and myosin, tumor cells, and other topics are addressed. Evidence indicates that the cell matrix might have a bearing on metabolism. (DH)

  9. Multimedia Matrix: A Cognitive Strategy for Designers.

    ERIC Educational Resources Information Center

    Sherry, Annette C.

    This instructional development project evaluates the effect of a matrix-based strategy to assist multimedia authors in acquiring and applying principles for effective multimedia design. The Multimedia Matrix, based on the Park and Hannafin "Twenty Principles and Implications for Interactive Multimedia" design, displays a condensed…

  10. Risk Management using Dependency Stucture Matrix

    NASA Astrophysics Data System (ADS)

    Petković, Ivan

    2011-09-01

    An efficient method based on dependency structure matrix (DSM) analysis is given for ranking risks in a complex system or process whose entities are mutually dependent. This rank is determined according to the element's values of the unique positive eigenvector which corresponds to the matrix spectral radius modeling the considered engineering system. For demonstration, the risk problem of NASA's robotic spacecraft is analyzed.

  11. Block Hadamard measurement matrix with arbitrary dimension in compressed sensing

    NASA Astrophysics Data System (ADS)

    Liu, Shaoqiang; Yan, Xiaoyan; Fan, Xiaoping; Li, Fei; Xu, Wen

    2017-01-01

    As Hadamard measurement matrix cannot be used for compressing signals with dimension of a non-integral power-of-2, this paper proposes a construction method of block Hadamard measurement matrix with arbitrary dimension. According to the dimension N of signals to be measured, firstly, construct a set of Hadamard sub matrixes with different dimensions and make the sum of these dimensions equals to N. Then, arrange the Hadamard sub matrixes in a certain order to form a block diagonal matrix. Finally, take the former M rows of the block diagonal matrix as the measurement matrix. The proposed measurement matrix which retains the orthogonality of Hadamard matrix and sparsity of block diagonal matrix has highly sparse structure, simple hardware implements and general applicability. Simulation results show that the performance of our measurement matrix is better than Gaussian matrix, Logistic chaotic matrix, and Toeplitz matrix.

  12. The matrix exponential in transient structural analysis

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon

    1987-01-01

    The primary usefulness of the presented theory is in the ability to represent the effects of high frequency linear response with accuracy, without requiring very small time steps in the analysis of dynamic response. The matrix exponential contains a series approximation to the dynamic model. However, unlike the usual analysis procedure which truncates the high frequency response, the approximation in the exponential matrix solution is in the time domain. By truncating the series solution to the matrix exponential short, the solution is made inaccurate after a certain time. Yet, up to that time the solution is extremely accurate, including all high frequency effects. By taking finite time increments, the exponential matrix solution can compute the response very accurately. Use of the exponential matrix in structural dynamics is demonstrated by simulating the free vibration response of multi degree of freedom models of cantilever beams.

  13. Biocompatible 3D Matrix with Antimicrobial Properties.

    PubMed

    Ion, Alberto; Andronescu, Ecaterina; Rădulescu, Dragoș; Rădulescu, Marius; Iordache, Florin; Vasile, Bogdan Ștefan; Surdu, Adrian Vasile; Albu, Madalina Georgiana; Maniu, Horia; Chifiriuc, Mariana Carmen; Grumezescu, Alexandru Mihai; Holban, Alina Maria

    2016-01-20

    The aim of this study was to develop, characterize and assess the biological activity of a new regenerative 3D matrix with antimicrobial properties, based on collagen (COLL), hydroxyapatite (HAp), β-cyclodextrin (β-CD) and usnic acid (UA). The prepared 3D matrix was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Microscopy (FT-IRM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). In vitro qualitative and quantitative analyses performed on cultured diploid cells demonstrated that the 3D matrix is biocompatible, allowing the normal development and growth of MG-63 osteoblast-like cells and exhibited an antimicrobial effect, especially on the Staphylococcus aureus strain, explained by the particular higher inhibitory activity of usnic acid (UA) against Gram positive bacterial strains. Our data strongly recommend the obtained 3D matrix to be used as a successful alternative for the fabrication of three dimensional (3D) anti-infective regeneration matrix for bone tissue engineering.

  14. Fiber-matrix interfaces in ceramic composites

    SciTech Connect

    Besmann, T.M.; Stinton, D.P.; Kupp, E.R.; Shanmugham, S.; Liaw, P.K.

    1996-12-31

    The mechanical properties of ceramic matrix composites (CMCs) are governed by the relationships between the matrix, the interface material, and the fibers. In non-oxide matrix systems compliant pyrolytic carbon and BN have been demonstrated to be effective interface materials, allowing for absorption of mismatch stresses between fiber and matrix and offering a poorly bonded interface for crack deflection. The resulting materials have demonstrated remarkable strain/damage tolerance together with high strength. Carbon or BN, however, suffer from oxidative loss in many service environments, and thus there is a major search for oxidation resistant alternatives. This paper reviews the issues related to developing a stable and effective interface material for non-oxide matrix CMCs.

  15. Nuclear Matrix Proteins in Human Colon Cancer

    NASA Astrophysics Data System (ADS)

    Keesee, Susan K.; Meneghini, Marc D.; Szaro, Robert P.; Wu, Ying-Jye

    1994-03-01

    The nuclear matrix is the nonchromatin scaffolding of the nucleus. This structure confers nuclear shape, organizes chromatin, and appears to contain important regulatory proteins. Tissue specific nuclear matrix proteins have been found in the rat, mouse, and human. In this study we compared high-resolution two-dimensional gel electropherograms of nuclear matrix protein patterns found in human colon tumors with those from normal colon epithelia. Tumors were obtained from 18 patients undergoing partial colectomy for adenocarcinoma of the colon and compared with tissue from 10 normal colons. We have identified at least six proteins which were present in 18 of 18 colon tumors and 0 of 10 normal tissues, as well as four proteins present in 0 of 18 tumors and in 10 of 10 normal tissues. These data, which corroborate similar findings of cancer-specific nuclear matrix proteins in prostate and breast, suggest that nuclear matrix proteins may serve as important markers for at least some types of cancer.

  16. A matrix analysis of conjugate gradient algorithms

    SciTech Connect

    Ashby, S.F.; Gutknecht, M.H.

    1993-04-01

    This paper explores the relationships between the conjugate gradient algorithms Orthodir, Orthomin, and Orthores. To facilitate this exploration, a matrix formulation for each algorithm is given. It is shown that Orthodir directly computes a Hessenberg matrix H{sub k} at step k. Orthores also computes a Hessenberg matrix, G{sub k}, which is similar to a Hessenberg matrix obtained from H{sub k} by perturbing its last column. (This perturbation vanishes at convergence.) Orthomin, on the other hand, computes a UL and LU factorization of the perturbed H{sub k} and G{sub k}, respectively. The breakdown of Orthomin and Orthores are interpreted in terms of these underlying matrix factorizations. A connection with Lanczos algorithms is also examined, as is the special case of B-normal(1) matrices (for which efficient three-term CG algorithms exist).

  17. MATRIX City: A Multi-Risk Platform

    NASA Astrophysics Data System (ADS)

    Euchner, F.; Mignan, A.

    2012-04-01

    MATRIX City (the MATRIX Common IT sYstem) is the computational platform that is being developed in the course of the New Multi-Hazard and Multi-Risk Assessment Methods for Europe (MATRIX) project. MATRIX aims to develop multi-type hazard and risk assessment and mitigation tools suited to the European context. The core of MATRIX City is a risk engine of a novel type that is based on a sequential simulation approach, which allows to quantify interactions and other time-dependent processes at the hazard, exposure, vulnerability and risk levels. For risk estimation in realistic scenarios, data availability is crucial. To overcome this limitation, MATRIX City provides a component called Virtual City. It is a collection of heuristic databases, which provides a generic approach to quantifying multi-type hazard and risk when data coverage is poor, and for sensitivity analysis. MATRIX City results are intended to provide a "big picture" of the expected impact of multi-type hazard and risk modelling (as opposed to static modelling), thus being a valuable tool for decision support. MATRIX City development uses a modern software engineering approach (test-driven development, continuous integration). The architecture is flexible, so that new perils, new models and large datasets can be accommodated easily. However, it should be noted that hazard computation is not part of MATRIX City. Hazard footprints have to be provided as input data, as well as exposure and vulnerability. The data model used in MATRIX City is an enhancement of the Natural hazards' Risk Markup Language (NRML). An XML serialization of this data model, which is a GML (Geographic Markup Language) application schema, is used for data interchange.

  18. Fabrication method, structure, mechanical, and biological properties of decellularized extracellular matrix for replacement of wide bone tissue defects.

    PubMed

    Anisimova, N Y; Kiselevsky, M V; Sukhorukova, I V; Shvindina, N V; Shtansky, D V

    2015-09-01

    The present paper was focused on the development of a new method of decellularized extracellular matrix (DECM) fabrication via a chemical treatment of a native bone tissue. Particular attention was paid to the influence of chemical treatment on the mechanical properties of native bones, sterility, and biological performance in vivo using the syngeneic heterotopic and orthotopic implantation models. The obtained data indicated that after a chemical decellularization treatment in 4% aqueous sodium chlorite, no noticeable signs of the erosion of compact cortical bone surface or destruction of trabeculae of spongy bone in spinal channel were observed. The histological studies showed that the chemical treatment resulted in the decellularization of both bone and cartilage tissues. The DECM samples demonstrated no signs of chemical and biological degradation in vivo. Thorough structural characterization revealed that after decellularization, the mineral frame retained its integrity with the organic phase; however clotting and destruction of organic molecules and fibers were observed. FTIR studies revealed several structural changes associated with the destruction of organic molecules, although all organic components typical of intact bone were preserved. The decellularization-induced structural changes in the collagen constituent resulted changed the deformation under compression mechanism: from the major fracture by crack propagation throughout the sample to the predominantly brittle fracture. Although the mechanical properties of radius bones subjected to decellularization were observed to degrade, the mechanical properties of ulna bones in compression and humerus bones in bending remained unchanged. The compressive strength of both the intact and decellularized ulna bones was 125-130 MPa and the flexural strength of humerus bones was 156 and 145 MPa for the intact and decellularized samples, respectively. These results open new avenues for the use of DECM samples as

  19. Hierarchical cluster analysis of matrix effects on 110 pesticide residues in 28 tea matrixes.

    PubMed

    Li, Yan; Pang, Guo-Fang; Fan, Chun-Lin; Chen, Xi

    2013-01-01

    Matrix effects on 110 pesticides in 28 tea matrixes of different varieties and origins by LC/MS/MS were studied, and most of the pesticides exhibited soft and medium signal suppression. To better understand the influence of the tea varieties and the physicochemical characteristics of pesticides on the matrix effects, the multivariate analysis tool called hierarchical cluster analysis was applied. Tea matrixes were grouped into three clusters: unfermented, fermented, and post-fermented teas. Any type of tea can be chosen from each cluster as a corresponding representative matrix within that cluster to make matrix-matched solutions, which could simplify analysis while guaranteeing its accuracy. Matrix effects on most pesticides were similar despite the physicochemical diversities of the pesticides.

  20. Decellularized bone matrix grafts for calvaria regeneration

    PubMed Central

    Lee, Dong Joon; Diachina, Shannon; Lee, Yan Ting; Zhao, Lixing; Zou, Rui; Tang, Na; Han, Han; Chen, Xin; Ko, Ching-Chang

    2016-01-01

    Decellularization is a promising new method to prepare natural matrices for tissue regeneration. Successful decellularization has been reported using various tissues including skin, tendon, and cartilage, though studies using hard tissue such as bone are lacking. In this study, we aimed to define the optimal experimental parameters to decellularize natural bone matrix using 0.5% sodium dodecyl sulfate and 0.1% NH4OH. Then, the effects of decellularized bone matrix on rat mesenchymal stem cell proliferation, osteogenic gene expression, and osteogenic differentiations in a two-dimensional culture system were investigated. Decellularized bone was also evaluated with regard to cytotoxicity, biochemical, and mechanical characteristics in vitro. Evidence of complete decellularization was shown through hematoxylin and eosin staining and DNA measurements. Decellularized bone matrix displayed a cytocompatible property, conserved structure, mechanical strength, and mineral content comparable to natural bone. To study new bone formation, implantation of decellularized bone matrix particles seeded with rat mesenchymal stem cells was conducted using an orthotopic in vivo model. After 3 months post-implantation into a critical-sized defect in rat calvaria, new bone was formed around decellularized bone matrix particles and also merged with new bone between decellularized bone matrix particles. New bone formation was analyzed with micro computed tomography, mineral apposition rate, and histomorphometry. Decellularized bone matrix stimulated mesenchymal stem cell proliferation and osteogenic differentiation in vitro and in vivo, achieving effective bone regeneration and thereby serving as a promising biological bone graft. PMID:28228929

  1. [Modern polymers in matrix tablets technology].

    PubMed

    Zimmer, Łukasz; Kasperek, Regina; Poleszak, Ewa

    2014-01-01

    Matrix tablets are the most popular method of oral drug administration, and polymeric materials have been used broadly in matrix formulations to modify and modulate drug release rate. The main goal of the system is to extend drug release profiles to maintain a constant in vivo plasma drug concentration and a consistent pharmacological effect. Polymeric matrix tablets offer a great potential as oral controlled drug delivery systems. Cellulose derivatives, like hydroxypropyl methylcellulose (HPMC) are often used as matrix formers. However, also other types of polymers can be used for this purpose including: Kollidon SR, acrylic acid polymers such as Eudragits and Carbopols. Nevertheless, polymers of natural origin like: carragens, chitosan and alginates widely used in the food and cosmetics industry are now coming to the fore of pharmaceutical research and are used in matrix tablets technology. Modern polymers allow to obtain matrix tablets by 3D printing, which enables to develop new formulation types. In this paper, the polymers used in matrix tablets technology and examples of their applications were described.

  2. Fabric analysis of Allende matrix using EBSD

    NASA Astrophysics Data System (ADS)

    Watt, Lauren E.; Bland, Phil A.; Prior, Dave J.; Russell, Sara S.

    Fabric analysis of the interstitial matrix material in primitive meteorites offers a novel window on asteroid formation and evolution. Electron backscatter diffraction (EBSD) has allowed fabrics in these fine-grained materials to be visualized in detail for the first time. Our data reveal that Allende, a CV3 chondrite, possesses a uniform, planar, short-axis alignment fabric that is pervasive on a broad scale and is probably the result of deformational shortening related to impact or gravitational compaction. Interference between this matrix fabric and the larger, more rigid components, such as dark inclusions (DIs) and calcium-aluminium-rich inclusions (CAIs), has lead to the development of locally oriented and intensified matrix fabrics. In addition, DIs possess fabrics that are conformable with the broader matrix fabric. These results suggest that DIs were in situ prior to the deformational shortening event responsible for these fabrics, thus providing an argument against dark inclusions being fragments from another lithified part of the asteroid (Kojima and Tomeoka 1996; Fruland et al. 1978). Moreover, both DIs and Allende matrix are highly porous (˜25%) (Corrigan et al. 1997). Mobilizing a highly porous DI during impact-induced brecciation without imposing a fabric and incorporating it into a highly porous matrix without significantly compacting these materials is improbable. We favor a model that involves Allende DIs, CAIs, and matrix accreting together and experiencing the same deformation events.

  3. 2-Adic clustering of the PAM matrix.

    PubMed

    Khrennikov, A Yu; Kozyrev, S V

    2009-12-07

    In this paper we demonstrate that the use of the system of 2-adic numbers provides a new insight to some problems of genetics, in particular, degeneracy of the genetic code and the structure of the PAM matrix in bioinformatics. The 2-adic distance is an ultrametric and applications of ultrametric in bioinformatics are not surprising. However, by using the 2-adic numbers we match ultrametric with a number theoretic structure. In this way we find new applications of an ultrametric which differ from known up to now in bioinformatics. We obtain the following results. We show that the PAM matrix A allows the expansion into the sum of the two matrices A=A((2))+A((infinity)), where the matrix A((2)) is 2-adically regular (i.e. matrix elements of this matrix are close to locally constant with respect to the discussed earlier by the authors 2-adic parametrization of the genetic code), and the matrix A((infinity)) is sparse. We discuss the structure of the matrix A((infinity)) in relation to the side chain properties of the corresponding amino acids. We introduce the family of substitution matrices A(alpha,beta)=alpha A((2))+beta A((infinity)), alpha,beta>or=0 which should allow to vary the alignment procedure in order to take into account the different chemical and geometric properties of the amino acids.

  4. An ESS maximum principle for matrix games.

    PubMed

    Vincent, T L; Cressman, R

    2000-11-01

    Previous work has demonstrated that for games defined by differential or difference equations with a continuum of strategies, there exists a G-function, related to individual fitness, that must take on a maximum with respect to a virtual variable v whenever v is one of the vectors in the coalition of vectors which make up the evolutionarily stable strategy (ESS). This result, called the ESS maximum principle, is quite useful in determining candidates for an ESS. This principle is reformulated here, so that it may be conveniently applied to matrix games. In particular, we define a matrix game to be one in which fitness is expressed in terms of strategy frequencies and a matrix of expected payoffs. It is shown that the G-function in the matrix game setting must again take on a maximum value at all the strategies which make up the ESS coalition vector. The reformulated maximum principle is applicable to both bilinear and nonlinear matrix games. One advantage in employing this principle to solve the traditional bilinear matrix game is that the same G-function is used to find both pure and mixed strategy solutions by simply specifying an appropriate strategy space. Furthermore we show how the theory may be used to solve matrix games which are not in the usual bilinear form. We examine in detail two nonlinear matrix games: the game between relatives and the sex ratio game. In both of these games an ESS solution is determined. These examples not only illustrate the usefulness of this approach to finding solutions to an expanded class of matrix games, but aids in understanding the nature of the ESS as well.

  5. Active Matrix OLED Test Report

    NASA Technical Reports Server (NTRS)

    Salazar, George

    2013-01-01

    This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits

  6. Curvature and gravity actions for matrix models

    NASA Astrophysics Data System (ADS)

    Blaschke, Daniel N.; Steinacker, Harold

    2010-08-01

    We show how gravitational actions, in particular the Einstein-Hilbert action, can be obtained from additional terms in Yang-Mills matrix models. This is consistent with recent results on induced gravitational actions in these matrix models, realizing spacetime as four-dimensional brane solutions. It opens up the possibility for a controlled non-perturbative description of gravity through simple matrix models, with interesting perspectives for the problem of vacuum energy. The relation with UV/IR mixing and non-commutative gauge theory is discussed.

  7. Extracellular matrix signaling in morphogenesis and repair.

    PubMed

    Clause, Kelly C; Barker, Thomas H

    2013-10-01

    The extracellular matrix (ECM) is critically important for many cellular processes including growth, differentiation, survival, and morphogenesis. Cells remodel and reshape the ECM by degrading and reassembling it, playing an active role in sculpting their surrounding environment and directing their own phenotypes. Both mechanical and biochemical molecules influence ECM dynamics in multiple ways; by releasing small bioactive signaling molecules, releasing growth factors stored within the ECM, eliciting structural changes to matrix proteins which expose cryptic sites and by degrading matrix proteins directly. The dynamic reciprocal communication between cells and the ECM plays a fundamental roll in tissue development, homeostasis, and wound healing.

  8. Visual Matrix Clustering of Social Networks

    SciTech Connect

    Wong, Pak C.; Mackey, Patrick S.; Foote, Harlan P.; May, Richard A.

    2013-07-01

    The prevailing choices to graphically represent a social network in today’s literature are a node-link graph layout and an adjacency matrix. Both visualization techniques have unique strengths and weaknesses when applied to different domain applications. In this article, we focus our discussion on adjacency matrix and how to turn the matrix-based visualization technique from merely showing pairwise associations among network actors (or graph nodes) to depicting clusters of a social network. We also use node-link layouts to supplement the discussion.

  9. Scattering matrix theory for stochastic scalar fields.

    PubMed

    Korotkova, Olga; Wolf, Emil

    2007-05-01

    We consider scattering of stochastic scalar fields on deterministic as well as on random media, occupying a finite domain. The scattering is characterized by a generalized scattering matrix which transforms the angular correlation function of the incident field into the angular correlation function of the scattered field. Within the accuracy of the first Born approximation this matrix can be expressed in a simple manner in terms of the scattering potential of the scatterer. Apart from determining the angular distribution of the spectral intensity of the scattered field, the scattering matrix makes it possible also to determine the changes in the state of coherence of the field produced on scattering.

  10. A matrix model from string field theory

    NASA Astrophysics Data System (ADS)

    Zeze, Syoji

    2016-09-01

    We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N) vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large N matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.

  11. Reducibility of Matrix Equations Containing Several Parameters.

    DTIC Science & Technology

    1981-12-01

    AD-AI15 568 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO;-ETC EF G 12 1ADA1551 REDUCIBILITY OF MATRIX EQUATIONS CONTAINING SEVERAL...PARAMETERS.E U)CA E UNCLASSIFIED AFIT/GE/RA/81D-1 N P11111111II soonhh Eu;o I. ’Trm * a, ~t- NMI 4 i’- 00Nt. met r~ REDUCIBILITY OF MATRIX EQUATIONS CONTAINING...1 REDUCIBILITY OF MATRIX EQUATIONS CONTAINING SEVERAL PARAMETERS THESIS Presented to the Faculty of the School of Engineering of the Air Force

  12. Generic construction of efficient matrix product operators

    NASA Astrophysics Data System (ADS)

    Hubig, C.; McCulloch, I. P.; Schollwöck, U.

    2017-01-01

    Matrix product operators (MPOs) are at the heart of the second-generation density matrix renormalization group (DMRG) algorithm formulated in matrix product state language. We first summarize the widely known facts on MPO arithmetic and representations of single-site operators. Second, we introduce three compression methods (rescaled SVD, deparallelization, and delinearization) for MPOs and show that it is possible to construct efficient representations of arbitrary operators using MPO arithmetic and compression. As examples, we construct powers of a short-ranged spin-chain Hamiltonian, a complicated Hamiltonian of a two-dimensional system and, as proof of principle, the long-range four-body Hamiltonian from quantum chemistry.

  13. Embedded systems for controlling LED matrix displays

    NASA Astrophysics Data System (ADS)

    Marghescu, Cristina; Drumea, Andrei

    2016-12-01

    LED matrix displays are a common presence in everyday life - they can be found in trains, buses, tramways, office information tables or outdoor media. The structure of the display unit is similar for all these devices, a matrix of light emitting diodes coupled between row and column lines, but there are many options for the display controller that switches these lines. Present paper analyzes different types of embedded systems that can control the LED matrix, based on single board computers, on microcontrollers with different peripheral devices or with programmable logic devices like field programmable gate arrays with implemented soft processor cores. Scalability, easiness of implementation and costs are analyzed for all proposed solutions.

  14. Learned fusion operators based on matrix completion

    NASA Astrophysics Data System (ADS)

    Risko, Kelly K. D.; Hester, Charles F.

    2011-05-01

    The efficient and timely management of imagery captured in the battlefield requires methods capable of searching the voluminous databases and extracting highly symbolic concepts. When processing images, a semantic and definition gap exists between machine representations and the user's language. Based on matrix completion techniques, we present a fusion operator that fuses imagery and expert knowledge provided by user inputs during post analysis. Specifically, an information matrix is formed from imagery and a class map as labeled by an expert. From this matrix an image operator is derived for the extraction/prediction of information from future imagery. We will present results using this technique on single mode data.

  15. High-temperature polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1990-01-01

    Polymers research at the NASA Lewis Research Center has produced high-temperature, easily processable resin systems, such as PMR-15. In addition, the Polymers Branch has investigated ways to improve the mechanical properties of polymers and the microcracking resistance of polymer matrix composites in response to industry need for new and improved aeropropulsion materials. Current and future research in the Polymers Branch is aimed at advancing the upper use temperature of polymer matrix composites to 700 F and beyond by developing new resins, by examining the use of fiber reinforcements other than graphite, and by developing coatings for polymer matrix composites to increase their oxidation resistance.

  16. Bilateral kidney matrix stones: a rare case

    PubMed Central

    Lahyani, Mounir; Rhannam, Yassine; Slaoui, Amine; Touzani, Alae; Karmouni, Tarik; Elkhader, Khalid; Koutani, Abdellatif; Andaloussi, Ahmed Ibn attya

    2016-01-01

    Kedney matrix stones are a rare form of calculi. Flank pain and urinary tract infections (UTI) are the most common presentations of matrix calculi. The diagnosis is usually made at surgery, but some preoperative radiographic findings might be suggestive. Open surgery was the method of choice for treatment. However, combination of ureterorenoscopy and percutaneous nephrolithotomy (PCNL) was found to be safe and effective. We report a rare case of renal and ureteral matrix stones that were diagnosed and treated by open surgery. We also describe its clinical, radiological and therapeutic features through a review of the literature. PMID:28292065

  17. A transilient matrix for moist convection

    SciTech Connect

    Romps, D.; Kuang, Z.

    2011-08-15

    A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.

  18. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  19. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  20. Amyloid Structures as Biofilm Matrix Scaffolds

    PubMed Central

    Taglialegna, Agustina; Lasa, Iñigo

    2016-01-01

    Recent insights into bacterial biofilm matrix structures have induced a paradigm shift toward the recognition of amyloid fibers as common building block structures that confer stability to the exopolysaccharide matrix. Here we describe the functional amyloid systems related to biofilm matrix formation in both Gram-negative and Gram-positive bacteria and recent knowledge regarding the interaction of amyloids with other biofilm matrix components such as extracellular DNA (eDNA) and the host immune system. In addition, we summarize the efforts to identify compounds that target amyloid fibers for therapeutic purposes and recent developments that take advantage of the amyloid structure to engineer amyloid fibers of bacterial biofilm matrices for biotechnological applications. PMID:27185827

  1. Superfund Chemical Data Matrix (SCDM) Query

    EPA Pesticide Factsheets

    This site allows you to to easily query the Superfund Chemical Data Matrix (SCDM) and generate a list of the corresponding Hazard Ranking System (HRS) factor values, benchmarks, and data elements that you need.

  2. Axial grading of inert matrix fuels

    SciTech Connect

    Recktenwald, G. D.; Deinert, M. R.

    2012-07-01

    Burning actinides in an inert matrix fuel to 750 MWd/kg IHM results in a significant reduction in transuranic isotopes. However, achieving this level of burnup in a standard light water reactor would require residence times that are twice that of uranium dioxide fuels. The reactivity of an inert matrix assembly at the end of life is less than 1/3 of its beginning of life reactivity leading to undesirable radial and axial power peaking in the reactor core. Here we show that axial grading of the inert matrix fuel rods can reduce peaking significantly. Monte Carlo simulations are used to model the assembly level power distributions in both ungraded and graded fuel rods. The results show that an axial grading of uranium dioxide and inert matrix fuels with erbium can reduces power peaking by more than 50% in the axial direction. The reduction in power peaking enables the core to operate at significantly higher power. (authors)

  3. Celsian Glass-Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Dicarlo, James A.

    1996-01-01

    Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.

  4. Optimal matrix approximants in structural identification

    NASA Technical Reports Server (NTRS)

    Beattie, C. A.; Smith, S. W.

    1992-01-01

    Problems of model correlation and system identification are central in the design, analysis, and control of large space structures. Of the numerous methods that have been proposed, many are based on finding minimal adjustments to a model matrix sufficient to introduce some desirable quality into that matrix. In this work, several of these methods are reviewed, placed in a modern framework, and linked to other previously known ideas in computational linear algebra and optimization. This new framework provides a point of departure for a number of new methods which are introduced here. Significant among these is a method for stiffness matrix adjustment which preserves the sparsity pattern of an original matrix, requires comparatively modest computational resources, and allows robust handling of noisy modal data. Numerical examples are included to illustrate the methods presented herein.

  5. Chondrule-matrix relationships in chondritic meteorites

    NASA Technical Reports Server (NTRS)

    Brearley, A. J.

    1994-01-01

    The relationship between chondrules and matrix (fine grained material with a grain size less than 5 micrometers) in chondritic meteorites has been the subject of considerable controversy and no consensus currently exists. The coexistence of these two components in meteorites with bulk compositions that deviate only slightly from CI abundances suggests that cosmochemically their origins are closely linked. Any consideration of the relationship between chondrules and matrix hinges to a large degree on the origin of matrix. The entire spectrum of models exists from matrix as a nebular product to derivation entirely from chondrules. Early models of solar nebular evolution viewed chondrites as a two-component mixture of high- and low-temperature condensates. However, this model has been challenged by the recognition that the nebula was probably not uniformly vaporized.

  6. Matrix Gla protein in tumoral pathology.

    PubMed

    Gheorghe, Simona Roxana; Crăciun, Alexandra Mărioara

    2016-01-01

    Matrix Gla protein is a vitamin K-dependent protein secreted by chondrocytes and vascular smooth muscle cells. The presence of matrix Gla protein was reported in arterial and venous walls, lungs, kidney, uterus, heart, tooth cementum and eyes. Several studies identified matrix Gla protein in tumoral pathology. Until recently, it was thought to only have an inhibitory role of physiological and ectopic calcification. New studies demonstrated that it also has a role in physiological and pathological angiogenesis, as well as in tumorigenesis. The aim of this review is to report the latest findings related to the expression and clinical implications of matrix Gla protein in different types of cancer with an emphasis on cerebral tumors.

  7. Comix, a New Matrix Element Generator

    SciTech Connect

    Gleisberg, Tanju; Hoche, Stefan; /Durham U., IPPP

    2008-09-03

    We present a new tree-level matrix element generator, based on the color dressed Berends-Giele recursive relations. We discuss two new algorithms for phase space integration, dedicated to be used with large multiplicities and color sampling.

  8. Microstructure of Matrix in UHTC Composites

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael I.; Chavez-Garia Jose; Doxtad, Evan

    2011-01-01

    Approaches to controlling the microstructure of Ultra High Temperature Ceramics (UHTCs) are described.. One matrix material has been infiltrated into carbon weaves to make composite materials. The microstructure of these composites is described.

  9. Nuclear waste storage container with metal matrix

    DOEpatents

    Sump, Kenneth R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.

  10. Superfund Chemical Data Matrix (SCDM) Query - Popup

    EPA Pesticide Factsheets

    This site allows you to to easily query the Superfund Chemical Data Matrix (SCDM) and generate a list of the corresponding Hazardous Ranking System (HRS) factor values, benchmarks, and data elements that you need.

  11. Shrinkage approach for EEG covariance matrix estimation.

    PubMed

    Beltrachini, Leandro; von Ellenrieder, Nicolas; Muravchik, Carlos H

    2010-01-01

    We present a shrinkage estimator for the EEG spatial covariance matrix of the background activity. We show that such an estimator has some advantages over the maximum likelihood and sample covariance estimators when the number of available data to carry out the estimation is low. We find sufficient conditions for the consistency of the shrinkage estimators and results concerning their numerical stability. We compare several shrinkage schemes and show how to improve the estimator by incorporating known structure of the covariance matrix.

  12. Semiclassical matrix elements from periodic orbits

    NASA Technical Reports Server (NTRS)

    Eckhardt, B.; Fishman, S.; Mueller, K.; Wintgen, D.

    1992-01-01

    An extension of Gutzwiller's (1967, 1969, 1970, 1971, 1990) semiclassical theory for chaotic systems that allows a determination of matrix elements in terms of classical periodic orbits. Associated zeta functions are derived. The semiclassical predictions are found to be in good agreement with Fourier transforms of quantum spectra of hydrogen in a magnetic field. Expressions for off-diagonal matrix elements are derived that are extensions of the Bohr correspondence relations for integrable systems.

  13. Semisupervised kernel matrix learning by kernel propagation.

    PubMed

    Hu, Enliang; Chen, Songcan; Zhang, Daoqiang; Yin, Xuesong

    2010-11-01

    The goal of semisupervised kernel matrix learning (SS-KML) is to learn a kernel matrix on all the given samples on which just a little supervised information, such as class label or pairwise constraint, is provided. Despite extensive research, the performance of SS-KML still leaves some space for improvement in terms of effectiveness and efficiency. For example, a recent pairwise constraints propagation (PCP) algorithm has formulated SS-KML into a semidefinite programming (SDP) problem, but its computation is very expensive, which undoubtedly restricts PCPs scalability in practice. In this paper, a novel algorithm, called kernel propagation (KP), is proposed to improve the comprehensive performance in SS-KML. The main idea of KP is first to learn a small-sized sub-kernel matrix (named seed-kernel matrix) and then propagate it into a larger-sized full-kernel matrix. Specifically, the implementation of KP consists of three stages: 1) separate the supervised sample (sub)set X(l) from the full sample set X; 2) learn a seed-kernel matrix on X(l) through solving a small-scale SDP problem; and 3) propagate the learnt seed-kernel matrix into a full-kernel matrix on X . Furthermore, following the idea in KP, we naturally develop two conveniently realizable out-of-sample extensions for KML: one is batch-style extension, and the other is online-style extension. The experiments demonstrate that KP is encouraging in both effectiveness and efficiency compared with three state-of-the-art algorithms and its related out-of-sample extensions are promising too.

  14. Polymer Matrix Composite Material Oxygen Compatibility

    NASA Technical Reports Server (NTRS)

    Owens, Tom

    2001-01-01

    Carbon fiber/polymer matrix composite materials look promising as a material to construct liquid oxygen (LOX) tanks. Based on mechanical impact tests the risk will be greater than aluminum, however, the risk can probably be managed to an acceptable level. Proper tank design and operation can minimize risk. A risk assessment (hazard analysis) will be used to determine the overall acceptability for using polymer matrix composite materials.

  15. Mechanisms balancing skeletal matrix synthesis and degradation.

    PubMed Central

    Blair, Harry C; Zaidi, Mone; Schlesinger, Paul H

    2002-01-01

    Bone is regulated by evolutionarily conserved signals that balance continuous differentiation of bone matrix-producing cells against apoptosis and matrix removal. This is continued from embryogenesis, where the skeleton differentiates as a solid mass and is shaped into separate bones by cell death and proteolysis. The two major tissues of the skeleton are avascular cartilage, with an extracellular matrix based on type II collagen and hydrophilic proteoglycans, and bone, a stronger and lighter material based on oriented type I collagen and hydroxyapatite. Both differentiate from the same mesenchymal stem cells. This differentiation is regulated by a family of related signals centred on bone morphogenic proteins. Fibroblast growth factors, Indian hedgehog and parathyroid hormone-related protein are important in determining the type of matrix and the relation of skeletal and non-skeletal structures. Removal of mineralized matrix involves apoptosis of matrix cells and differentiation of acid-secreting cells (osteoclasts) from macrophage precursors. Key regulators of matrix removal are signals in the tumour-necrosis-factor family. Osteoclasts dissolve bone by isolating a region of the matrix and secreting HCl and proteinases at that site. Successive cycles of removal and replacement allow growth, repair and remodelling. The signals for bone turnover are predominantly cell-membrane-associated, allowing very specific spatial regulation. In addition to its support function, bone is a reservoir of Ca2+, PO3-(4) and OH-. Secondary modulation of mineral secretion and bone degradation are mediated by humoral signals, including parathyroid hormone and vitamin D, as well as the cytokines that also regulate the underlying cell differentiation. PMID:12023876

  16. Micromechanical Modeling of Woven Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Pindera, Marek-Jerzy

    1997-01-01

    This report presents the results of an extensive micromechanical modeling effort for woven metal matrix composites. The model is employed to predict the mechanical response of 8-harness (8H) satin weave carbon/copper (C/Cu) composites. Experimental mechanical results for this novel high thermal conductivity material were recently reported by Bednarcyk et al. along with preliminary model results. The micromechanics model developed herein is based on an embedded approach. A micromechanics model for the local (micro-scale) behavior of the woven composite, the original method of cells (Aboudi), is embedded in a global (macro-scale) micromechanics model (the three-dimensional generalized method of cells (GMC-3D) (Aboudi). This approach allows representation of true repeating unit cells for woven metal matrix composites via GMC-3D, and representation of local effects, such as matrix plasticity, yarn porosity, and imperfect fiber-matrix bonding. In addition, the equations of GMC-3D were reformulated to significantly reduce the number of unknown quantities that characterize the deformation fields at the microlevel in order to make possible the analysis of actual microstructures of woven composites. The resulting micromechanical model (WCGMC) provides an intermediate level of geometric representation, versatility, and computational efficiency with respect to previous analytical and numerical models for woven composites, but surpasses all previous modeling work by allowing the mechanical response of a woven metal matrix composite, with an elastoplastic matrix, to be examined for the first time. WCGMC is employed to examine the effects of composite microstructure, porosity, residual stresses, and imperfect fiber-matrix bonding on the predicted mechanical response of 8H satin C/Cu. The previously reported experimental results are summarized, and the model predictions are compared to monotonic and cyclic tensile and shear test data. By considering appropriate levels of porosity

  17. Application of Fuzzy Logic to Matrix FMECA

    NASA Astrophysics Data System (ADS)

    Shankar, N. Ravi; Prabhu, B. S.

    2001-04-01

    A methodology combining the benefits of Fuzzy Logic and Matrix FMEA is presented in this paper. The presented methodology extends the risk prioritization beyond the conventional Risk Priority Number (RPN) method. Fuzzy logic is used to calculate the criticality rank. Also the matrix approach is improved further to develop a pictorial representation retaining all relevant qualitative and quantitative information of several FMEA elements relationships. The methodology presented is demonstrated by application to an illustrative example.

  18. Random Matrix Analysis of Human EEG Data

    NASA Astrophysics Data System (ADS)

    Šeba, P.

    2003-11-01

    We use random matrix theory to demonstrate the existence of generic and subject-independent features of the ensemble of correlation matrices extracted from human EEG data. In particular, the spectral density as well as the level spacings was analyzed and shown to be generic and subject independent. We also investigate number variance distributions. In this case we show that when the measured subject is visually stimulated the number variance displays deviations from the random matrix prediction.

  19. Fibre-Matrix Interaction in Soft Tissue

    SciTech Connect

    Guo, Zaoyang

    2010-05-21

    Although the mechanical behaviour of soft tissue has been extensively studied, the interaction between the collagen fibres and the ground matrix has not been well understood and is therefore ignored by most constitutive models of soft tissue. In this paper, the human annulus fibrosus is used as an example and the potential fibre-matrix interaction is identified by careful investigation of the experimental results of biaxial and uniaxial testing of the human annulus fibrosus. First, the uniaxial testing result of the HAF along the axial direction is analysed and it is shown that the mechanical behaviour of the ground matrix can be well simulated by the incompressible neo-Hookean model when the collagen fibres are all under contraction. If the collagen fibres are stretched, the response of the ground matrix can still be described by the incompressible neo-Hookean model, but the effective stiffness of the matrix depends on the fibre stretch ratio. This stiffness can be more than 10 times larger than the one obtained with collagen fibres under contraction. This phenomenon can only be explained by the fibre-matrix interaction. Furthermore, we find that the physical interpretation of this interaction includes the inhomogeneity of the soft tissue and the fibre orientation dispersion. The dependence of the tangent stiffness of the matrix on the first invariant of the deformation tensor can also be explained by the fibre orientation dispersion. The significant effect of the fibre-matrix interaction strain energy on mechanical behaviour of the soft tissue is also illustrated by comparing some simulation results.

  20. Nanophosphor composite scintillator with a liquid matrix

    DOEpatents

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  1. Fuel cell with electrolyte matrix assembly

    DOEpatents

    Kaufman, Arthur; Pudick, Sheldon; Wang, Chiu L.

    1988-01-01

    This invention is directed to a fuel cell employing a substantially immobilized electrolyte imbedded therein and having a laminated matrix assembly disposed between the electrodes of the cell for holding and distributing the electrolyte. The matrix assembly comprises a non-conducting fibrous material such as silicon carbide whiskers having a relatively large void-fraction and a layer of material having a relatively small void-fraction.

  2. Molten carbonate fuel cell matrix tape

    SciTech Connect

    Vine, R.W.; Schroll, C.R.; Reiser, C.A.

    1986-04-08

    A matrix material for a molten carbonate fuel cell is described comprising particles inert to molten carbonate electrolyte having a particle size less than about 1 micron, ceramic particles having a particle size greater than about 25 microns, and an organic polymeric binder material, the binder material being present in an amount at least about 35% by volume, the matrix material being flexible, pliable, and compliant at room temperature.

  3. Cryogenic regenerator including sarancarbon heat conduction matrix

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Britcliffe, Michael J. (Inventor)

    1989-01-01

    A saran carbon matrix is employed to conduct heat through the heat storing volume of a cryogenic regenerator. When helium is adsorbed into the saran carbon matrix, the combination exhibits a volumetric specific heat much higher than previously used lead balls. A helium adsorbed saran regenerator should allow much lower refrigerator temperatures than those practically obtainable with lead based regenerators for regenerator type refrigeration systems.

  4. Pseudomonas biofilm matrix composition and niche biology

    PubMed Central

    Mann, Ethan E.; Wozniak, Daniel J.

    2014-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072

  5. Sparse estimation of a covariance matrix.

    PubMed

    Bien, Jacob; Tibshirani, Robert J

    2011-12-01

    We suggest a method for estimating a covariance matrix on the basis of a sample of vectors drawn from a multivariate normal distribution. In particular, we penalize the likelihood with a lasso penalty on the entries of the covariance matrix. This penalty plays two important roles: it reduces the effective number of parameters, which is important even when the dimension of the vectors is smaller than the sample size since the number of parameters grows quadratically in the number of variables, and it produces an estimate which is sparse. In contrast to sparse inverse covariance estimation, our method's close relative, the sparsity attained here is in the covariance matrix itself rather than in the inverse matrix. Zeros in the covariance matrix correspond to marginal independencies; thus, our method performs model selection while providing a positive definite estimate of the covariance. The proposed penalized maximum likelihood problem is not convex, so we use a majorize-minimize approach in which we iteratively solve convex approximations to the original nonconvex problem. We discuss tuning parameter selection and demonstrate on a flow-cytometry dataset how our method produces an interpretable graphical display of the relationship between variables. We perform simulations that suggest that simple elementwise thresholding of the empirical covariance matrix is competitive with our method for identifying the sparsity structure. Additionally, we show how our method can be used to solve a previously studied special case in which a desired sparsity pattern is prespecified.

  6. On the Instanton R-matrix

    NASA Astrophysics Data System (ADS)

    Smirnov, Andrey

    2016-08-01

    A torus action on a symplectic variety allows one to construct solutions to the quantum Yang-Baxter equations ( R-matrices). For a torus action on cotangent bundles over flag varieties the resulting R-matrices are the standard rational solutions of the Yang-Baxter equation, well known in the theory of quantum integrable systems. The torus action on the instanton moduli space leads to more complicated R-matrices, depending additionally on two equivariant parameters t 1 and t 2. In this paper we derive an explicit expression for the R-matrix associated with the instanton moduli space. We study its matrix elements and its Taylor expansion in the powers of the spectral parameter. Certain matrix elements of this R-matrix give a generating function for the characteristic classes of tautological bundles over the Hilbert schemes in terms of the bosonic cut-and-join operators. In particular we rederive from the R-matrix the well known Lehn's formula for the first Chern class. We explicitly compute the first several coefficients for the power series expansion of the R-matrix in the spectral parameter. These coefficients are represented by simple contour integrals of some symmetrized bosonic fields.

  7. Temperature dependent nonlinear metal matrix laminae behavior

    NASA Technical Reports Server (NTRS)

    Barrett, D. J.; Buesking, K. W.

    1986-01-01

    An analytical method is described for computing the nonlinear thermal and mechanical response of laminated plates. The material model focuses upon the behavior of metal matrix materials by relating the nonlinear composite response to plasticity effects in the matrix. The foundation of the analysis is the unidirectional material model which is used to compute the instantaneous properties of the lamina based upon the properties of the fibers and matrix. The unidirectional model assumes that the fibers properties are constant with temperature and assumes that the matrix can be modelled as a temperature dependent, bilinear, kinematically hardening material. An incremental approach is used to compute average stresses in the fibers and matrix caused by arbitrary mechanical and thermal loads. The layer model is incorporated in an incremental laminated plate theory to compute the nonlinear response of laminated metal matrix composites of general orientation and stacking sequence. The report includes comparisons of the method with other analytical approaches and compares theoretical calculations with measured experimental material behavior. A section is included which describes the limitations of the material model.

  8. Genetic Relationships Between Chondrules, Rims and Matrix

    NASA Technical Reports Server (NTRS)

    Huss, G. R.; Alexander, C. M. OD.; Palme, H.; Bland, P. A.; Wasson, J. T.

    2004-01-01

    The most primitive chondrites are composed of chondrules and chondrule fragments, various types of inclusions, discrete mineral grains, metal, sulfides, and fine-grained materials that occur as interchondrule matrix and as chondrule/inclusion rims. Understanding how these components are related is essential for understanding how chondrites and their constituents formed and were processed in the solar nebula. For example, were the first generations of chondrules formed by melting of matrix or matrix precursors? Did chondrule formation result in appreciable transfer of chondrule material into the matrix? Here, we consider three types of data: 1) compositional data for bulk chondrites and matrix, 2) mineralogical and textural information, and 3) the abundances and characteristics of presolar materials that reside in the matrix and rims. We use these data to evaluate the roles of evaporation and condensation, chondrule formation, mixing of different nebular components, and secondary processing both in the nebula and on the parent bodies. Our goal is to identify the things that are reasonably well established and to point out the areas that need additional work.

  9. Modeling the formation of cell-matrix adhesions on a single 3D matrix fiber.

    PubMed

    Escribano, J; Sánchez, M T; García-Aznar, J M

    2015-11-07

    Cell-matrix adhesions are crucial in different biological processes like tissue morphogenesis, cell motility, and extracellular matrix remodeling. These interactions that link cell cytoskeleton and matrix fibers are built through protein clutches, generally known as adhesion complexes. The adhesion formation process has been deeply studied in two-dimensional (2D) cases; however, the knowledge is limited for three-dimensional (3D) cases. In this work, we simulate different local extracellular matrix properties in order to unravel the fundamental mechanisms that regulate the formation of cell-matrix adhesions in 3D. We aim to study the mechanical interaction of these biological structures through a three dimensional discrete approach, reproducing the transmission pattern force between the cytoskeleton and a single extracellular matrix fiber. This numerical model provides a discrete analysis of the proteins involved including spatial distribution, interaction between them, and study of the different phenomena, such as protein clutches unbinding or protein unfolding.

  10. Optical matrix-matrix multiplication method demonstrated by the use of a multifocus hololens.

    PubMed

    Liang, Y Z; Liu, H K

    1984-08-01

    A method of optical matrix-matrix multiplication is presented. The feasibility of the method is also experimentally demonstrated by the use of a dichromated-gelatin multifocus holographic lens (hololens). With the specific values of matrices chosen, the average percentage error between the theoretical and experimental data of the elements of the output matrix of the multiplication of some specific pairs of 3 x 3 matrices is 0.4%, which corresponds to an 8-bit accuracy.

  11. Optical matrix-matrix multiplication method demonstrated by the use of a multifocus hololens

    NASA Technical Reports Server (NTRS)

    Liu, H. K.; Liang, Y.-Z.

    1984-01-01

    A method of optical matrix-matrix multiplication is presented. The feasibility of the method is also experimentally demonstrated by the use of a dichromated-gelatin multifocus holographic lens (hololens). With the specific values of matrices chosen, the average percentage error between the theoretical and experimental data of the elements of the output matrix of the multiplication of some specific pairs of 3 x 3 matrices is 0.4 percent, which corresponds to an 8-bit accuracy.

  12. Method of producing a hybrid matrix fiber composite

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2006-03-28

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites comprised of two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  13. Modeling for Matrix Multicracking Evolution of Cross-ply Ceramic-Matrix Composites Using Energy Balance Approach

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    The matrix multicracking evolution of cross-ply ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The multicracking of cross-ply CMCs was classified into five modes, i.e., (1) mode 1: transverse multicracking; (2) mode 2: transverse multicracking and matrix multicracking with perfect fiber/matrix interface bonding; (3) mode 3: transverse multicracking and matrix multicracking with fiber/matrix interface debonding; (4) mode 4: matrix multicracking with perfect fiber/matrix interface bonding; and (5) mode 5: matrix multicracking with fiber/matrix interface debonding. The stress distributions of four cracking modes, i.e., mode 1, mode 2, mode 3 and mode 5, are analysed using shear-lag model. The matrix multicracking evolution of mode 1, mode 2, mode 3 and mode 5, has been determined using energy balance approach. The effects of ply thickness and fiber volume fraction on matrix multicracking evolution of cross-ply CMCs have been investigated.

  14. INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 1

    NASA Technical Reports Server (NTRS)

    2003-01-01

    INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 16 (FOAM CORE) / CARBON REINFORCED CYANOESTER (CERAMIC MATRIX COMPOSITE - CMC) HOT STRUCTURE, PANEL 884-1: SAMPLE 1

  15. INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 1

    NASA Technical Reports Server (NTRS)

    2003-01-01

    INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 16 (FOAM CORE) / CARBON REINFORCED CYANOESTER (CERAMIC MATRIX COMPOSITE - CMC) HOT STRUCTURE, PANEL 884-1: SAMPLE 3

  16. Toxicological effects of chlorine dioxide, chlorite and chlorate.

    PubMed Central

    Couri, D; Abdel-Rahman, M S; Bull, R J

    1982-01-01

    Review of the available literature obtained from both acute and chronic experiments utilizing rats, mice and chickens treated with ClO2, ClO2- and ClO3-in drinking water has demonstrated alterations in hematologic parameters in all species tested. The effects were usually dose related and marked changes occurred only at the higher dosages (up to 1000 mg/l.). In chronic studies, rats have been given ClO2 at doses of up to 1000 mg/l., and NaClO2 or NaClO3 at up to 100 mg/l., in their drinking water for one year. Treatment groups receiving ClO2, ClO2- or ClO3- showed alterations in erythrocyte morphology and osmotic fragility; at higher dosages mild hemolytic anemia occurred. An examination of blood glutathione content and RBC enzymes involving glutathione formation showed a dose-related diminution of glutathione in chlorine compound treated groups. The higher oxidative capacity of the chlorine compounds resulting in the decreased erythrocytic glutathione might well be the principal biochemical event leading to the other hematological alterations. More recent data show that ClO2, ClO2- and ClO3- alter the incorporation of 3H-thymidine into the nuclei of various organs of the rat. These data suggest the possibility of increased turnover cells of the gastrointestinal mucosa and inhibited DNA synthesis in several organs. In the latter category, most concern revolves around whether or not the apparent depression of DNA synthesis in the testes is associated with depressed spermatogenesis and reproductive toxicity in the male rat. PMID:6759107

  17. METCAN-PC - METAL MATRIX COMPOSITE ANALYZER

    NASA Technical Reports Server (NTRS)

    Murthy, P. L.

    1994-01-01

    High temperature metal matrix composites offer great potential for use in advanced aerospace structural applications. The realization of this potential however, requires concurrent developments in (1) a technology base for fabricating high temperature metal matrix composite structural components, (2) experimental techniques for measuring their thermal and mechanical characteristics, and (3) computational methods to predict their behavior. METCAN (METal matrix Composite ANalyzer) is a computer program developed to predict this behavior. METCAN can be used to computationally simulate the non-linear behavior of high temperature metal matrix composites (HT-MMC), thus allowing the potential payoff for the specific application to be assessed. It provides a comprehensive analysis of composite thermal and mechanical performance. METCAN treats material nonlinearity at the constituent (fiber, matrix, and interphase) level, where the behavior of each constituent is modeled accounting for time-temperature-stress dependence. The composite properties are synthesized from the constituent instantaneous properties by making use of composite micromechanics and macromechanics. Factors which affect the behavior of the composite properties include the fabrication process variables, the fiber and matrix properties, the bonding between the fiber and matrix and/or the properties of the interphase between the fiber and matrix. The METCAN simulation is performed as point-wise analysis and produces composite properties which are readily incorporated into a finite element code to perform a global structural analysis. After the global structural analysis is performed, METCAN decomposes the composite properties back into the localized response at the various levels of the simulation. At this point the constituent properties are updated and the next iteration in the analysis is initiated. This cyclic procedure is referred to as the integrated approach to metal matrix composite analysis. METCAN

  18. Inelastic deformation of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Lissenden, C. J.; Herakovich, C. T.; Pindera, M-J.

    1993-01-01

    A theoretical model capable of predicting the thermomechanical response of continuously reinforced metal matrix composite laminates subjected to multiaxial loading was developed. A micromechanical model is used in conjunction with nonlinear lamination theory to determine inelastic laminae response. Matrix viscoplasticity, residual stresses, and damage to the fiber/matrix interfacial zone are explicitly included in the model. The representative cell of the micromechanical model is considered to be in a state of generalized plane strain, enabling a quasi two-dimensional analysis to be performed. Constant strain finite elements are formulated with elastic-viscoplastic constitutive equations. Interfacial debonding is incorporated into the model through interface elements based on the interfacial debonding theory originally presented by Needleman, and modified by Tvergaard. Nonlinear interfacial constitutive equations relate interfacial tractions to displacement discontinuities at the interface. Theoretical predictions are compared with the results of an experimental program conducted on silicon carbide/titanium (SiC/Ti) unidirectional, (O4), and angle-ply, (+34)(sub s), tubular specimens. Multiaxial loading included increments of axial tension, compression, torque, and internal pressure. Loadings were chosen in an effort to distinguish inelastic deformation due to damage from matrix plasticity and separate time-dependent effects from time-independent effects. Results show that fiber/matrix debonding is nonuniform throughout the composite and is a major factor in the effective response. Also, significant creep behavior occurs at relatively low applied stress levels at room temperature.

  19. Max-min distance nonnegative matrix factorization.

    PubMed

    Wang, Jim Jing-Yan; Gao, Xin

    2015-01-01

    Nonnegative Matrix Factorization (NMF) has been a popular representation method for pattern classification problems. It tries to decompose a nonnegative matrix of data samples as the product of a nonnegative basis matrix and a nonnegative coefficient matrix. The columns of the coefficient matrix can be used as new representations of these data samples. However, traditional NMF methods ignore class labels of the data samples. In this paper, we propose a novel supervised NMF algorithm to improve the discriminative ability of the new representation by using the class labels. Using the class labels, we separate all the data sample pairs into within-class pairs and between-class pairs. To improve the discriminative ability of the new NMF representations, we propose to minimize the maximum distance of the within-class pairs in the new NMF space, and meanwhile to maximize the minimum distance of the between-class pairs. With this criterion, we construct an objective function and optimize it with regard to basis and coefficient matrices, and slack variables alternatively, resulting in an iterative algorithm. The proposed algorithm is evaluated on three pattern classification problems and experiment results show that it outperforms the state-of-the-art supervised NMF methods.

  20. Convex Banding of the Covariance Matrix.

    PubMed

    Bien, Jacob; Bunea, Florentina; Xiao, Luo

    2016-01-01

    We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings.

  1. Algebraic construction of the Darboux matrix revisited

    NASA Astrophysics Data System (ADS)

    Cieśliński, Jan L.

    2009-10-01

    We present algebraic construction of Darboux matrices for 1+1-dimensional integrable systems of nonlinear partial differential equations with a special stress on the nonisospectral case. We discuss different approaches to the Darboux-Bäcklund transformation, based on different λ-dependences of the Darboux matrix: polynomial, sum of partial fractions or the transfer matrix form. We derive symmetric N-soliton formulae in the general case. The matrix spectral parameter and dressing actions in loop groups are also discussed. We describe reductions to twisted loop groups, unitary reductions, the matrix Lax pair for the KdV equation and reductions of chiral models (harmonic maps) to SU(n) and to Grassmann spaces. We show that in the KdV case the nilpotent Darboux matrix generates the binary Darboux transformation. The paper is intended as a review of known results (usually presented in a novel context) but some new results are included as well, e.g., general compact formulae for N-soliton surfaces and linear and bilinear constraints on the nonisospectral Lax pair matrices which are preserved by Darboux transformations.

  2. Phylogenetic Stochastic Mapping Without Matrix Exponentiation

    PubMed Central

    Irvahn, Jan; Minin, Vladimir N.

    2014-01-01

    Abstract Phylogenetic stochastic mapping is a method for reconstructing the history of trait changes on a phylogenetic tree relating species/organism carrying the trait. State-of-the-art methods assume that the trait evolves according to a continuous-time Markov chain (CTMC) and works well for small state spaces. The computations slow down considerably for larger state spaces (e.g., space of codons), because current methodology relies on exponentiating CTMC infinitesimal rate matrices—an operation whose computational complexity grows as the size of the CTMC state space cubed. In this work, we introduce a new approach, based on a CTMC technique called uniformization, which does not use matrix exponentiation for phylogenetic stochastic mapping. Our method is based on a new Markov chain Monte Carlo (MCMC) algorithm that targets the distribution of trait histories conditional on the trait data observed at the tips of the tree. The computational complexity of our MCMC method grows as the size of the CTMC state space squared. Moreover, in contrast to competing matrix exponentiation methods, if the rate matrix is sparse, we can leverage this sparsity and increase the computational efficiency of our algorithm further. Using simulated data, we illustrate advantages of our MCMC algorithm and investigate how large the state space needs to be for our method to outperform matrix exponentiation approaches. We show that even on the moderately large state space of codons our MCMC method can be significantly faster than currently used matrix exponentiation methods. PMID:24918812

  3. Phase diagram of matrix compressed sensing

    NASA Astrophysics Data System (ADS)

    Schülke, Christophe; Schniter, Philip; Zdeborová, Lenka

    2016-12-01

    In the problem of matrix compressed sensing, we aim to recover a low-rank matrix from a few noisy linear measurements. In this contribution, we analyze the asymptotic performance of a Bayes-optimal inference procedure for a model where the matrix to be recovered is a product of random matrices. The results that we obtain using the replica method describe the state evolution of the Parametric Bilinear Generalized Approximate Message Passing (P-BiG-AMP) algorithm, recently introduced in J. T. Parker and P. Schniter [IEEE J. Select. Top. Signal Process. 10, 795 (2016), 10.1109/JSTSP.2016.2539123]. We show the existence of two different types of phase transition and their implications for the solvability of the problem, and we compare the results of our theoretical analysis to the numerical performance reached by P-BiG-AMP. Remarkably, the asymptotic replica equations for matrix compressed sensing are the same as those for a related but formally different problem of matrix factorization.

  4. Transfer matrix representation for periodic planar media

    NASA Astrophysics Data System (ADS)

    Parrinello, A.; Ghiringhelli, G. L.

    2016-06-01

    Sound transmission through infinite planar media characterized by in-plane periodicity is faced by exploiting the free wave propagation on the related unit cells. An appropriate through-thickness transfer matrix, relating a proper set of variables describing the acoustic field at the two external surfaces of the medium, is derived by manipulating the dynamic stiffness matrix related to a finite element model of the unit cell. The adoption of finite element models avoids analytical modeling or the simplification on geometry or materials. The obtained matrix is then used in a transfer matrix method context, making it possible to combine the periodic medium with layers of different nature and to treat both hard-wall and semi-infinite fluid termination conditions. A finite sequence of identical sub-layers through the thickness of the medium can be handled within the transfer matrix method, significantly decreasing the computational burden. Transfer matrices obtained by means of the proposed method are compared with analytical or equivalent models, in terms of sound transmission through barriers of different nature.

  5. Nuclear matrix proteins in human colon cancer.

    PubMed Central

    Keesee, S K; Meneghini, M D; Szaro, R P; Wu, Y J

    1994-01-01

    The nuclear matrix is the nonchromatin scaffolding of the nucleus. This structure confers nuclear shape, organizes chromatin, and appears to contain important regulatory proteins. Tissue specific nuclear matrix proteins have been found in the rat, mouse, and human. In this study we compared high-resolution two-dimensional gel electropherograms of nuclear matrix protein patterns found in human colon tumors with those from normal colon epithelia. Tumors were obtained from 18 patients undergoing partial colectomy for adenocarcinoma of the colon and compared with tissue from 10 normal colons. We have identified at least six proteins which were present in 18 of 18 colon tumors and 0 of 10 normal tissues, as well as four proteins present in 0 of 18 tumors and in 10 of 10 normal tissues. These data, which corroborate similar findings of cancer-specific nuclear matrix proteins in prostate and breast, suggest that nuclear matrix proteins may serve as important markers for at least some types of cancer. Images PMID:8127905

  6. Thermal stress effects in intermetallic matrix composites

    NASA Technical Reports Server (NTRS)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  7. Anyons and matrix product operator algebras

    NASA Astrophysics Data System (ADS)

    Bultinck, N.; Mariën, M.; Williamson, D. J.; Şahinoğlu, M. B.; Haegeman, J.; Verstraete, F.

    2017-03-01

    Quantum tensor network states and more particularly projected entangled-pair states provide a natural framework for representing ground states of gapped, topologically ordered systems. The defining feature of these representations is that topological order is a consequence of the symmetry of the underlying tensors in terms of matrix product operators. In this paper, we present a systematic study of those matrix product operators, and show how this relates entanglement properties of projected entangled-pair states to the formalism of fusion tensor categories. From the matrix product operators we construct a C∗-algebra and find that topological sectors can be identified with the central idempotents of this algebra. This allows us to construct projected entangled-pair states containing an arbitrary number of anyons. Properties such as topological spin, the S matrix, fusion and braiding relations can readily be extracted from the idempotents. As the matrix product operator symmetries are acting purely on the virtual level of the tensor network, the ensuing Wilson loops are not fattened when perturbing the system, and this opens up the possibility of simulating topological theories away from renormalization group fixed points. We illustrate the general formalism for the special cases of discrete gauge theories and string-net models.

  8. Cache oblivious storage and access heuristics for blocked matrix-matrix multiplication

    SciTech Connect

    Bock, Nicolas; Rubensson, Emanuel H; Niklasson, Anders M N; Challacombe, Matt; Salek, Pawel

    2008-01-01

    The authors investigate effects of ordering in blocked matrix-matrix multiplication. They find that submatrices do not have to be stored contiguously in memory in order to achieve near optimal performance. They also find a good choice of execution order of submatrix operations can lead to a speedup of up to four times for small block sizes.

  9. Spectral density of the correlation matrix of factor models: a random matrix theory approach.

    PubMed

    Lillo, F; Mantegna, R N

    2005-07-01

    We studied the eigenvalue spectral density of the correlation matrix of factor models of multivariate time series. By making use of the random matrix theory, we analytically quantified the effect of statistical uncertainty on the spectral density due to the finiteness of the sample. We considered a broad range of models, ranging from one-factor models to hierarchical multifactor models.

  10. Matrix elements from moments of correlation functions

    SciTech Connect

    Chang, Chia Cheng; Bouchard, Chris; Orginos, Konstantinos; Richards, David G.

    2016-10-01

    Momentum-space derivatives of matrix elements can be related to their coordinate-space moments through the Fourier transform. We derive these expressions as a function of momentum transfer Q2 for asymptotic in/out states consisting of a single hadron. We calculate corrections to the finite volume moments by studying the spatial dependence of the lattice correlation functions. This method permits the computation of not only the values of matrix elements at momenta accessible on the lattice, but also the momentum-space derivatives, providing {\\it a priori} information about the Q2 dependence of form factors. As a specific application we use the method, at a single lattice spacing and with unphysically heavy quarks, to directly obtain the slope of the isovector form factor at various Q2, whence the isovector charge radius. The method has potential application in the calculation of any hadronic matrix element with momentum transfer, including those relevant to hadronic weak decays.

  11. Decorin modulates matrix mineralization in vitro

    NASA Technical Reports Server (NTRS)

    Mochida, Yoshiyuki; Duarte, Wagner R.; Tanzawa, Hideki; Paschalis, Eleftherios P.; Yamauchi, Mitsuo

    2003-01-01

    Decorin (DCN), a member of small leucine-rich proteoglycans, is known to modulate collagen fibrillogenesis. In order to investigate the potential roles of DCN in collagen matrix mineralization, several stable osteoblastic cell clones expressing higher (sense-DCN, S-DCN) and lower (antisense-DCN, As-DCN) levels of DCN were generated and the mineralized nodules formed by these clones were characterized. In comparison with control cells, the onset of mineralization by S-DCN clones was significantly delayed; whereas it was markedly accelerated and the number of mineralized nodules was significantly increased in As-DCN clones. The timing of mineralization was inversely correlated with the level of DCN synthesis. In these clones, the patterns of cell proliferation and differentiation appeared unaffected. These results suggest that DCN may act as an inhibitor of collagen matrix mineralization, thus modulating the timing of matrix mineralization.

  12. Google matrix analysis of directed networks

    NASA Astrophysics Data System (ADS)

    Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-10-01

    In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.

  13. t matrix of metallic wire structures

    SciTech Connect

    Zhan, T. R. Chui, S. T.

    2014-04-14

    To study the electromagnetic resonance and scattering properties of complex structures of which metallic wire structures are constituents within multiple scattering theory, the t matrix of individual structures is needed. We have recently developed a rigorous and numerically efficient equivalent circuit theory in which retardation effects are taken into account for metallic wire structures. Here, we show how the t matrix can be calculated analytically within this theory. We illustrate our method with the example of split ring resonators. The density of states and cross sections for scattering and absorption are calculated, which are shown to be remarkably enhanced at resonant frequencies. The t matrix serves as the basic building block to evaluate the interaction of wire structures within the framework of multiple scattering theory. This will open the door to efficient design and optimization of assembly of wire structures.

  14. Snapshot retinal imaging Mueller matrix polarimeter

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; Kudenov, Michael; Kashani, Amir; Schwiegerling, Jim; Escuti, Michael

    2015-09-01

    Early diagnosis of glaucoma, which is a leading cause for visual impairment, is critical for successful treatment. It has been shown that Imaging polarimetry has advantages in early detection of structural changes in the retina. Here, we theoretically and experimentally present a snapshot Mueller Matrix Polarimeter fundus camera, which has the potential to record the polarization-altering characteristics of retina with a single snapshot. It is made by incorporating polarization gratings into a fundus camera design. Complete Mueller Matrix data sets can be obtained by analyzing the polarization fringes projected onto the image plane. In this paper, we describe the experimental implementation of the snapshot retinal imaging Mueller matrix polarimeter (SRIMMP), highlight issues related to calibration, and provide preliminary images acquired from the camera.

  15. t matrix of metallic wire structures

    NASA Astrophysics Data System (ADS)

    Zhan, T. R.; Chui, S. T.

    2014-04-01

    To study the electromagnetic resonance and scattering properties of complex structures of which metallic wire structures are constituents within multiple scattering theory, the t matrix of individual structures is needed. We have recently developed a rigorous and numerically efficient equivalent circuit theory in which retardation effects are taken into account for metallic wire structures. Here, we show how the t matrix can be calculated analytically within this theory. We illustrate our method with the example of split ring resonators. The density of states and cross sections for scattering and absorption are calculated, which are shown to be remarkably enhanced at resonant frequencies. The t matrix serves as the basic building block to evaluate the interaction of wire structures within the framework of multiple scattering theory. This will open the door to efficient design and optimization of assembly of wire structures.

  16. Electrolyte matrix for molten carbonate fuel cells

    DOEpatents

    Huang, Chao M.; Yuh, Chao-Yi

    1999-01-01

    A matrix for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 .mu.m to 20 .mu.m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling.

  17. Electrolyte matrix for molten carbonate fuel cells

    DOEpatents

    Huang, C.M.; Yuh, C.Y.

    1999-02-09

    A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.

  18. Dentin Matrix Proteins in Bone Tissue Engineering.

    PubMed

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dentin and bone are mineralized tissue matrices comprised of collagen fibrils and reinforced with oriented crystalline hydroxyapatite. Although both tissues perform different functionalities, they are assembled and orchestrated by mesenchymal cells that synthesize both collagenous and noncollagenous proteins albeit in different proportions. The dentin matrix proteins (DMPs) have been studied in great detail in recent years due to its inherent calcium binding properties in the extracellular matrix resulting in tissue calcification. Recent studies have shown that these proteins can serve both as intracellular signaling proteins leading to induction of stem cell differentiation and also function as nucleating proteins in the extracellular matrix. These properties make the DMPs attractive candidates for bone and dentin tissue regeneration. This chapter will provide an overview of the DMPs, their functionality and their proven and possible applications with respect to bone tissue engineering.

  19. Matrix theory compactifications on twisted tori

    NASA Astrophysics Data System (ADS)

    Chatzistavrakidis, Athanasios; Jonke, Larisa

    2012-05-01

    We study compactifications of Matrix theory on twisted tori and noncommutative versions of them. As a first step, we review the construction of multidimensional twisted tori realized as nilmanifolds based on certain nilpotent Lie algebras. Subsequently, matrix compactifications on tori are revisited, and the previously known results are supplemented with a background of a noncommutative torus with nonconstant noncommutativity and an underlying nonassociative structure on its phase space. Next, we turn our attention to three- and six-dimensional twisted tori, and we describe consistent backgrounds of Matrix theory on them by stating and solving the conditions which describe the corresponding compactification. Both commutative and noncommutative solutions are found in all cases. Finally, we comment on the correspondence among the obtained solutions and flux compactifications of 11-dimensional supergravity, as well as on relations among themselves, such as Seiberg-Witten maps and T-duality.

  20. Pneumococcal MSCRAMM targeting of the extracellular matrix

    PubMed Central

    Paterson, Gavin K.; Orihuela, Carlos J.

    2010-01-01

    The attachment of bacteria to host cells and tissues and their subsequent invasion and dissemination are key processes during disease pathogenesis. In this issue of Molecular Microbiology, Jensch and co-workers provide further molecular insight into these events during infection with the Gram-positive bacterium Streptococcus pneumoniae. Their characterization of PavB, a bacterial surface protein with orthologues in other streptococci, shows it to bind the extracellar matrix components fibronection and plasminogen by virtue of repetitive sequences designated Streptococcal Surface Repeats (SSURE). In mice, a pavB mutant showed reduced nasopharyngeal colonisation and was attenuated in a lung infection model. As discussed here in the context of the pneumococcus, the study of PavB highlights the central role during microbal pathogenesis of targetting the extracellular matrix by so-called MSCRAMMs (microbial surface components recognizing adhesive matrix molecules). PMID:20444102

  1. Ethynylated aromatics as high temperature matrix resins

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1986-01-01

    Difunctional and trifunctional arylacetylenes were used as monomers to form thermoset matrix resin composites. Composites can be hot pressed at 180 C to react 80 percent of the acetylene groups. Crosslinking is completed by postcuring at 350 C. The postcured resins are thermally stable to nominally 460 C in air. As a result of their high crosslink density, the matrix exhibits brittle failure when unaxial composites are tested in tension. Failure of both uniaxial tensile and flexural specimens occurs in shear at the fiber matrix interface. Tensile fracture stresses for 0 deg composites fabricated with 60 v/o Celion 6K graphite fiber were 827 MPa. The strain to failure was 0.5 percent. Composites fabricated with 8 harness satin Celion cloth (Fiberite 1133) and tested in tension also failed in shear at tensile stresses of 413 MPa.

  2. Improved high temperature resistant matrix resins

    NASA Technical Reports Server (NTRS)

    Chang, G. E.; Powell, S. H.; Jones, R. J.

    1983-01-01

    The objective was to develop organic matrix resins suitable for service at temperatures up to 644 K (700 F) and at air pressures up to 0.4 MPa (60 psia) for time durations of a minimum of 100 hours. Matrix resins capable of withstanding these extreme oxidative environmental conditions would lead to increased use of polymer matrix composites in aircraft engines and provide significant weight and cost savings. Six linear condensation, aromatic/heterocyclic polymers containing fluorinated and/or diphenyl linkages were synthesized. The thermo-oxidative stability of the resins was determined at 644 K and compressed air pressures up to 0.4 MPa. Two formulations, both containing perfluoroisopropylidene linkages in the polymer backbone structure, exhibited potential for 644 K service to meet the program objectives. Two other formulations could not be fabricated into compression molded zero defect specimens.

  3. Achondrogenesis type II, abnormalities of extracellular matrix.

    PubMed

    Horton, W A; Machado, M A; Chou, J W; Campbell, D

    1987-09-01

    Immune and lectin histochemical and microchemical methods were employed to study growth cartilage from seven cases of achondrogenesis type II (Langer-Saldino). The normal architecture of the epiphyseal and growth plate cartilage was replaced by a morphologically heterogeneous tissue. Some areas were comprised of vascular canals surrounded by extensive fibrous tissue and enlarged cells that had the appearance and histochemical characteristics of hypertrophic chondrocytes. Other areas contained a mixture of cells ranging from small to the enlarged chondrocytes. The extracellular matrix in the latter areas was more abundant and had characteristics of both precartilage mesenchymal matrix and typical cartilage matrix; it contained types I and II collagen, cartilage proteoglycan, fibronectin, and peanut agglutinin binding glycoconjugate(s). Peptide mapping of cyanogen bromide cartilage collagen peptides revealed the presence of types I and II collagen. These observations could be explained by a defect in the biosynthesis of type II collagen or in chondrocyte differentiation.

  4. Renormalon ambiguities in NRQCD operator matrix elements

    NASA Astrophysics Data System (ADS)

    Bodwin, Geoffrey T.; Chen, Yu-Qi

    1999-09-01

    We analyze the renormalon ambiguities that appear in factorization formulas in QCD. Our analysis contains a simple argument that the ambiguities in the short-distance coefficients and operator matrix elements are artifacts of dimensional-regularization factorization schemes and are absent in cutoff schemes. We also present a method for computing the renormalon ambiguities in operator matrix elements and apply it to a computation of the ambiguities in the matrix elements that appear in the NRQCD factorization formulas for the annihilation decays of S-wave quarkonia. Our results, combined with those of Braaten and Chen for the short-distance coefficients, provide an explicit demonstration that the ambiguities cancel in the physical decay rates. In addition, we analyze the renormalon ambiguities in the Gremm-Kapustin relation and in various definitions of the heavy-quark mass.

  5. Propulsive matrix of a helical flagellum

    NASA Astrophysics Data System (ADS)

    Zhang, He-Peng; Liu, Bin; Bruce, Rodenborn; Harry, L. Swinney

    2014-11-01

    We study the propulsion matrix of bacterial flagella numerically using slender body theory and the regularized Stokeslet method in a biologically relevant parameter regime. All three independent elements of the matrix are measured by computing propulsive force and torque generated by a rotating flagellum, and the drag force on a translating flagellum. Numerical results are compared with the predictions of resistive force theory, which is often used to interpret micro-organism propulsion. Neglecting hydrodynamic interactions between different parts of a flagellum in resistive force theory leads to both qualitative and quantitative discrepancies between the theoretical prediction of resistive force theory and the numerical results. We improve the original theory by empirically incorporating the effects of hydrodynamic interactions and propose new expressions for propulsive matrix elements that are accurate over the parameter regime explored.

  6. Nanomechanics of the Cartilage Extracellular Matrix

    NASA Astrophysics Data System (ADS)

    Han, Lin; Grodzinsky, Alan J.; Ortiz, Christine

    2011-08-01

    Cartilage is a hydrated biomacromolecular fiber composite located at the ends of long bones that enables proper joint lubrication, articulation, loading, and energy dissipation. Degradation of extracellular matrix molecular components and changes in their nanoscale structure greatly influence the macroscale behavior of the tissue and result in dysfunction with age, injury, and diseases such as osteoarthritis. Here, the application of the field of nanomechanics to cartilage is reviewed. Nanomechanics involves the measurement and prediction of nanoscale forces and displacements, intra- and intermolecular interactions, spatially varying mechanical properties, and other mechanical phenomena existing at small length scales. Experimental nanomechanics and theoretical nanomechanics have been applied to cartilage at varying levels of material complexity, e.g., nanoscale properties of intact tissue, the matrix associated with single cells, biomimetic molecular assemblies, and individual extracellular matrix biomolecules (such as aggrecan, collagen, and hyaluronan). These studies have contributed to establishing a fundamental mechanism-based understanding of native and engineered cartilage tissue function, quality, and pathology.

  7. Brief announcement: Hypergraph parititioning for parallel sparse matrix-matrix multiplication

    SciTech Connect

    Ballard, Grey; Druinsky, Alex; Knight, Nicholas; Schwartz, Oded

    2015-01-01

    The performance of parallel algorithms for sparse matrix-matrix multiplication is typically determined by the amount of interprocessor communication performed, which in turn depends on the nonzero structure of the input matrices. In this paper, we characterize the communication cost of a sparse matrix-matrix multiplication algorithm in terms of the size of a cut of an associated hypergraph that encodes the computation for a given input nonzero structure. Obtaining an optimal algorithm corresponds to solving a hypergraph partitioning problem. Furthermore, our hypergraph model generalizes several existing models for sparse matrix-vector multiplication, and we can leverage hypergraph partitioners developed for that computation to improve application-specific algorithms for multiplying sparse matrices.

  8. Brief announcement: Hypergraph parititioning for parallel sparse matrix-matrix multiplication

    DOE PAGES

    Ballard, Grey; Druinsky, Alex; Knight, Nicholas; ...

    2015-01-01

    The performance of parallel algorithms for sparse matrix-matrix multiplication is typically determined by the amount of interprocessor communication performed, which in turn depends on the nonzero structure of the input matrices. In this paper, we characterize the communication cost of a sparse matrix-matrix multiplication algorithm in terms of the size of a cut of an associated hypergraph that encodes the computation for a given input nonzero structure. Obtaining an optimal algorithm corresponds to solving a hypergraph partitioning problem. Furthermore, our hypergraph model generalizes several existing models for sparse matrix-vector multiplication, and we can leverage hypergraph partitioners developed for that computationmore » to improve application-specific algorithms for multiplying sparse matrices.« less

  9. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  10. Bioengineering Human Myocardium on Native Extracellular Matrix

    PubMed Central

    Guyette, Jacques P.; Charest, Jonathan M; Mills, Robert W; Jank, Bernhard J.; Moser, Philipp T.; Gilpin, Sarah E.; Gershlak, Joshua R.; Okamoto, Tatsuya; Gonzalez, Gabriel; Milan, David J.; Gaudette, Glenn R.; Ott, Harald C.

    2015-01-01

    Rationale More than 25 million individuals suffer from heart failure worldwide, with nearly 4,000 patients currently awaiting heart transplantation in the United States. Donor organ shortage and allograft rejection remain major limitations with only about 2,500 hearts transplanted each year. As a theoretical alternative to allotransplantation, patient-derived bioartificial myocardium could provide functional support and ultimately impact the treatment of heart failure. Objective The objective of this study is to translate previous work to human scale and clinically relevant cells, for the bioengineering of functional myocardial tissue based on the combination of human cardiac matrix and human iPS-derived cardiac myocytes. Methods and Results To provide a clinically relevant tissue scaffold, we translated perfusion-decellularization to human scale and obtained biocompatible human acellular cardiac scaffolds with preserved extracellular matrix composition, architecture, and perfusable coronary vasculature. We then repopulated this native human cardiac matrix with cardiac myocytes derived from non-transgenic human induced pluripotent stem cells (iPSCs) and generated tissues of increasing three-dimensional complexity. We maintained such cardiac tissue constructs in culture for 120 days to demonstrate definitive sarcomeric structure, cell and matrix deformation, contractile force, and electrical conduction. To show that functional myocardial tissue of human scale can be built on this platform, we then partially recellularized human whole heart scaffolds with human iPSC-derived cardiac myocytes. Under biomimetic culture, the seeded constructs developed force-generating human myocardial tissue, showed electrical conductivity, left ventricular pressure development, and metabolic function. Conclusions Native cardiac extracellular matrix scaffolds maintain matrix components and structure to support the seeding and engraftment of human iPS-derived cardiac myocytes, and enable

  11. Generating Nice Linear Systems for Matrix Gaussian Elimination

    ERIC Educational Resources Information Center

    Homewood, L. James

    2004-01-01

    In this article an augmented matrix that represents a system of linear equations is called nice if a sequence of elementary row operations that reduces the matrix to row-echelon form, through matrix Gaussian elimination, does so by restricting all entries to integers in every step. Many instructors wish to use the example of matrix Gaussian…

  12. 48 CFR 1652.370 - Use of the matrix.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Use of the matrix. 1652.370... HEALTH BENEFITS ACQUISITION REGULATION CLAUSES AND FORMS CONTRACT CLAUSES FEHBP Clause Matrix 1652.370 Use of the matrix. (a) The matrix in this section lists the FAR and FEHBAR clauses to be used...

  13. HXeOBr in a xenon matrix

    SciTech Connect

    Khriachtchev, Leonid; Tapio, Salla; Domanskaya, Alexandra V.; Raesaenen, Markku; Isokoski, Karoliina; Lundell, Jan

    2011-03-28

    We report on a new noble-gas molecule HXeOBr prepared in a low-temperature xenon matrix from the HBr and N{sub 2}O precursors by UV photolysis and thermal annealing. This molecule is assigned with the help of deuteration experiments and ab initio calculations including anharmonic methods. The H-Xe stretching frequency of HXeOBr is observed at 1634 cm{sup -1}, which is larger by 56 cm{sup -1} than the frequency of HXeOH identified previously. The experiments show a higher thermal stability of HXeOBr molecules in a xenon matrix compared to HXeOH.

  14. Analytical solutions to matrix diffusion problems

    SciTech Connect

    Kekäläinen, Pekka

    2014-10-06

    We report an analytical method to solve in a few cases of practical interest the equations which have traditionally been proposed for the matrix diffusion problem. In matrix diffusion, elements dissolved in ground water can penetrate the porous rock surronuding the advective flow paths. In the context of radioactive waste repositories this phenomenon provides a mechanism by which the area of rock surface in contact with advecting elements is greatly enhanced, and can thus be an important delay mechanism. The cases solved are relevant for laboratory as well for in situ experiments. Solutions are given as integral representations well suited for easy numerical solution.

  15. Ceramic Matrix Composite (CMC) Materials Development

    NASA Technical Reports Server (NTRS)

    DiCarlo, James

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  16. Ceramic Matrix Composite (CMC) Materials Characterization

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  17. Universality in complex networks: random matrix analysis.

    PubMed

    Bandyopadhyay, Jayendra N; Jalan, Sarika

    2007-08-01

    We apply random matrix theory to complex networks. We show that nearest neighbor spacing distribution of the eigenvalues of the adjacency matrices of various model networks, namely scale-free, small-world, and random networks follow universal Gaussian orthogonal ensemble statistics of random matrix theory. Second, we show an analogy between the onset of small-world behavior, quantified by the structural properties of networks, and the transition from Poisson to Gaussian orthogonal ensemble statistics, quantified by Brody parameter characterizing a spectral property. We also present our analysis for a protein-protein interaction network in budding yeast.

  18. Some remarks on unilateral matrix equations

    SciTech Connect

    Cerchiai, Bianca L.; Zumino, Bruno

    2001-02-01

    We briefly review the results of our paper LBNL-46775: We study certain solutions of left-unilateral matrix equations. These are algebraic equations where the coefficients and the unknown are square matrices of the same order, or, more abstractly, elements of an associative, but possibly noncommutative algebra, and all coefficients are on the left. Recently such equations have appeared in a discussion of generalized Born-Infeld theories. In particular, two equations, their perturbative solutions and the relation between them are studied, applying a unified approach based on the generalized Bezout theorem for matrix polynomials.

  19. Interaction picture density matrix quantum Monte Carlo

    SciTech Connect

    Malone, Fionn D. Lee, D. K. K.; Foulkes, W. M. C.; Blunt, N. S.; Shepherd, James J.; Spencer, J. S.

    2015-07-28

    The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible.

  20. New components of the Golgi matrix

    PubMed Central

    Xiang, Yi; Wang, Yanzhuang

    2012-01-01

    The eukaryotic Golgi apparatus is characterized by a stack of flattened cisternae that are surrounded by transport vesicles. The organization and function of the Golgi require Golgi matrix proteins, including GRASPs and golgins, which exist primarily as fiber-like bridges between Golgi cisternae or between cisternae and vesicles. In this review, we highlight recent findings on Golgi matrix proteins, including their roles in maintaining the Golgi structure, vesicle tethering, and novel, unexpected functions. These new discoveries further our understanding of the molecular mechanisms that maintain the structure and the function of the Golgi, as well as its relationship with other cellular organelles such as the centrosome. PMID:21494806

  1. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.

    1977-01-01

    The results of research for the origination of graphite-fiber reinforced glass matrix composites are presented. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a glass matrix.

  2. Polymeric matrix materials for infrared metamaterials

    SciTech Connect

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  3. Conducted Emission Evaluation for Direct Matrix Converters

    NASA Astrophysics Data System (ADS)

    Nothofer, A.; Tarisciotti, L.; Greedy, S.; Empringham, L.; De Lillo, L.; Degano, M.

    2016-05-01

    Matrix converters have been recently proposed as an alternative solution to the standard back-to-back converter in aerospace applications. However, Electromagnetic Interference (EMI), in particular, conducted emissions represent a critical aspect for this converter family. Direct Matrix Converter (DMC) are usually modelled only at the normal operating frequency, but for the research presented in this paper, the model is modified in order to include a detailed high frequency description, which is of interest for conducted emission studies.This paper analyzes the performance of DMC, when different control and modulation techniques are used. Experimental results are shown to validate the simulation models.

  4. Chaos in the BMN matrix model

    NASA Astrophysics Data System (ADS)

    Asano, Yuhma; Kawai, Daisuke; Yoshida, Kentaroh

    2015-06-01

    We study classical chaotic motions in the Berenstein-Maldacena-Nastase (BMN) matrix model. For this purpose, it is convenient to focus upon a reduced system composed of two-coupled anharmonic oscillators by supposing an ansatz. We examine three ansätze: 1) two pulsating fuzzy spheres, 2) a single Coulomb-type potential, and 3) integrable fuzzy spheres. For the first two cases, we show the existence of chaos by computing Poincaré sections and a Lyapunov spectrum. The third case leads to an integrable system. As a result, the BMN matrix model is not integrable in the sense of Liouville, though there may be some integrable subsectors.

  5. Postglacial matrix diffusion in a boulder sample

    SciTech Connect

    Rasilainen, K.; Suksi, J.; Kulmala, S.; Hellmuth, K.H.; Lindberg, A.

    1996-08-01

    A boulder sample was studied for its unusual U content. Analyses of U-series nuclides within the rock matrix perpendicular to an assumed fracture face show abrupt pulse-like concentration distributions with very low concentrations of U daughters. Both Th-230/U-234 and Pa-231/U-235 activity ratios are low, indicating recent U accumulation into the rock. Matrix diffusion is tested as a possible cause for the experimental observations. The authors assume that the diffusion process was triggered and controlled by rock expansion, strong mixing of different water types and rapid land uplift at the end phase of the last glaciation.

  6. Polymer Matrix Composites for Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    2003-01-01

    The Access-to-Space study identified the requirement for lightweight structures to achieve orbit with a single-stage vehicle. Thus a task was undertaken to examine the use of polymer matrix composites for propulsion components. It was determined that the effort of this task would be to extend previous efforts with polymer matrix composite feedlines and demonstrate the feasibility of manufacturing large diameter feedlines with a complex shape and integral flanges, (i.e. all one piece with a 90 deg bend), and assess their performance under a cryogenic atmosphere.

  7. Novel formulations of CKM matrix renormalization

    SciTech Connect

    Kniehl, Bernd A.; Sirlin, Alberto

    2009-12-17

    We review two recently proposed on-shell schemes for the renormalization of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix in the Standard Model. One first constructs gauge-independent mass counterterm matrices for the up- and down-type quarks complying with the hermiticity of the complete mass matrices. Diagonalization of the latter then leads to explicit expressions for the CKM counterterm matrix, which are gauge independent, preserve unitarity, and lead to renormalized amplitudes that are non-singular in the limit in which any two quarks become mass degenerate. One of the schemes also automatically satisfies flavor democracy.

  8. Matrix metalloproteinases in plants: a brief overview.

    PubMed

    Marino, Giada; Funk, Christiane

    2012-05-01

    Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases belonging to the metzincin clan. MMPs have been characterized in detail in mammals, and they have been shown to play key roles in many physiological and pathological processes. Plant MMP-like proteases exist, but relatively few have been characterized. It has been speculated that plant MMPs are involved in remodeling of the plant extracellular matrix during growth, development and stress response. However, the precise functions and physiological substrates in higher plants remain to be determined. In this brief overview, we summarize the current knowledge of MMPs in higher plants and algae.

  9. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    NASA Astrophysics Data System (ADS)

    Naslain, R.

    2011-10-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  10. Connective stability of nonlinear matrix systems

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1974-01-01

    Consideration of stability under structural perturbations of free dynamic systems described by the differential equation dx/dt = A(t,x)x, where the matrix A(t,x) has time-varying nonlinear elements. The concept of 'connective stability' is introduced to study the structural properties of competitive-cooperative nonlinear matrix systems. It is shown that stability reliability in such systems is high and that they remain stable despite time-varying (including 'on-off') interaction among individual agents present in the system. The results obtained can be used to study stability aspects of mathematical models arising in as diverse fields as economics, biology, arms races, and transistor circuits.

  11. Differential matrix formalism for depolarizing anisotropic media.

    PubMed

    Ossikovski, Razvigor

    2011-06-15

    Azzam's differential matrix formalism [J. Opt. Soc. Am. 68, 1756 (1978)], originally developed for longitudinally inhomogeneous anisotropic nondepolarizing media, is extended to include depolarizing media. The generalization is physically interpreted in terms of means and uncertainties of the elementary optical properties of the medium, as well as of three anisotropy absorption parameters introduced to describe the depolarization. The formalism results in a particularly simple mathematical procedure for the retrieval of the elementary properties of a generally depolarizing anisotropic medium, assumed to be globally homogeneous, from its experimental Mueller matrix. The approach is illustrated on literature data and the conditions of its validity are identified and discussed.

  12. Motion Control for Nonholonomic Systems on Matrix Lie Groups

    DTIC Science & Technology

    1998-01-01

    representations of systems on a certain nilpotent matrix group. After studying the technique of nilpotentization in the setting of systems on matrix ...the technique of nilpotentization in the setting of systems on matrix Lie groups we show how motion control laws derived for nilpotent systems can be...of systems on a certain nilpotent matrix group. After studying the technique of nilpotentization in the setting of systems on matrix Lie groups we show

  13. Uniqueness of the differential Mueller matrix of uniform homogeneous media.

    PubMed

    Devlaminck, Vincent; Ossikovski, Razvigor

    2014-06-01

    We show that the differential matrix of a uniform homogeneous medium containing birefringence may not be uniquely determined from its Mueller matrix, resulting in the potential existence of an infinite set of elementary polarization properties parameterized by an integer parameter. The uniqueness depends on the symmetry properties of a special differential matrix derived from the eigenvalue decomposition of the Mueller matrix. The conditions for the uniqueness of the differential matrix are identified, physically discussed, and illustrated in examples from the literature.

  14. Matrix Recipes for Hard Thresholding Methods

    DTIC Science & Technology

    2012-11-07

    present below some characteristic examples for the linear operator A: Matrix Completion (MC): As a motivating example, consider the famous Netflix ...basis independent models from point queries via low-rank methods. Technical report, EPFL, 2012. [8] J. Bennett and S. Lanning. The netflix prize. In In

  15. TAUBERIAN THEOREMS FOR MATRIX REGULAR VARIATION

    PubMed Central

    MEERSCHAERT, M. M.; SCHEFFLER, H.-P.

    2013-01-01

    Karamata’s Tauberian theorem relates the asymptotics of a nondecreasing right-continuous function to that of its Laplace-Stieltjes transform, using regular variation. This paper establishes the analogous Tauberian theorem for matrix-valued functions. Some applications to time series analysis are indicated. PMID:24644367

  16. The Curriculum Matrix: Transcendence and Mathematics.

    ERIC Educational Resources Information Center

    Foshay, Arthur W.

    1991-01-01

    Describes a curriculum matrix embodying three elements (purpose, substance, practice) and their various dimensions. Argues for a transcendent view of mathematics as a profoundly human, spiritual, astonishing, majestic, and powerful enterprise. Outlines seven mathematical ideas that have transformed human experience by celebrating unlimited freedom…

  17. Matrix vesicles: Are they anchored exosomes?

    PubMed

    Shapiro, Irving M; Landis, William J; Risbud, Makarand V

    2015-10-01

    Numerous studies have documented that matrix vesicles are unique extracellular membrane-bound microparticles that serve as initial sites for mineral formation in the growth plate and most other vertebrate mineralizing tissues. Microparticle generation is not confined to hard tissues, as cells in soft tissues generate similar structures; numerous studies have shown that a common type of extracellular particle, termed an exosome, a product of the endosomal pathway, shares many characteristics of matrix vesicles. Indeed, analyses of size, morphology and lipid and protein content indicate that matrix vesicles and exosomes are homologous structures. Such a possibility impacts our understanding of the biogenesis, processing and function of matrix vesicles (exosomes) in vertebrate hard tissues and explains in part how cells control the earliest stages of mineral deposition. Moreover, since exosomes influence a spectrum of functions, including cell-cell communication, it is suggested that this type of microparticle may provide a mechanism for the transfer of signaling molecules between cells within the growth plate and thereby regulate endochondral bone development and formation.

  18. Derive Workshop Matrix Algebra and Linear Algebra.

    ERIC Educational Resources Information Center

    Townsley Kulich, Lisa; Victor, Barbara

    This document presents the course content for a workshop that integrates the use of the computer algebra system Derive with topics in matrix and linear algebra. The first section is a guide to using Derive that provides information on how to write algebraic expressions, make graphs, save files, edit, define functions, differentiate expressions,…

  19. Emerging Educational Institutional Decision-Making Matrix

    ERIC Educational Resources Information Center

    Ashford-Rowe, Kevin H.; Holt, Marnie

    2011-01-01

    The "emerging educational institutional decision-making matrix" is developed to allow educational institutions to adopt a rigorous and consistent methodology of determining which of the myriad of emerging educational technologies will be the most compelling for the institution, particularly ensuring that it is the educational or pedagogical but…

  20. Non-Hermitian Euclidean random matrix theory.

    PubMed

    Goetschy, A; Skipetrov, S E

    2011-07-01

    We develop a theory for the eigenvalue density of arbitrary non-Hermitian Euclidean matrices. Closed equations for the resolvent and the eigenvector correlator are derived. The theory is applied to the random Green's matrix relevant to wave propagation in an ensemble of pointlike scattering centers. This opens a new perspective in the study of wave diffusion, Anderson localization, and random lasing.

  1. Inverter Matrix for the Clementine Mission

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Blaes, B. R.; Tardio, G.; Soli, G. A.

    1994-01-01

    An inverter matrix test circuit was designed for the Clementine space mission and is built into the RRELAX (Radiation and Reliability Assurance Experiment). The objective is to develop a circuit that will allow the evaluation of the CMOS FETs using a lean data set in the noisy spacecraft environment.

  2. Mueller matrix imaging ellipsometry for nanostructure metrology.

    PubMed

    Liu, Shiyuan; Du, Weichao; Chen, Xiuguo; Jiang, Hao; Zhang, Chuanwei

    2015-06-29

    In order to achieve effective process control, fast, inexpensive, nondestructive and reliable nanometer scale feature measurements are extremely useful in high-volume nanomanufacturing. Among the possible techniques, optical scatterometry is relatively ideal due to its high throughput, low cost, and minimal sample damage. However, this technique is inherently limited by the illumination spot size of the instrument and the low efficiency in construction of a map of the sample over a wide area. Aiming at these issues, we introduce conventional imaging techniques to optical scatterometry and combine them with Mueller matrix ellipsometry based scatterometry, which is expected to be a powerful tool for the measurement of nanostructures in future high-volume nanomanufacturing, and propose to apply Mueller matrix imaging ellipsometry (MMIE) for nanostructure metrology. Two kinds of nanostructures were measured using an in-house developed Mueller matrix imaging ellipsometer in this work. The experimental results demonstrate that we can achieve Mueller matrix measurement and analysis for nanostructures with pixel-sized illumination spots by using MMIE. We can also efficiently construct parameter maps of the nanostructures over a wide area with pixel-sized lateral resolution by performing parallel ellipsometric analysis for all the pixels of interest.

  3. Science Unlimited: Grades K-6 Competency Matrix.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg. Div. of Arts and Sciences.

    This competency matrix matches the primary and intermediate Science Unlimited lessons with the established competencies which appear in the Science Unlimited competency continuum. Primary lessons deal with: investigating dripping faucets; classification/sorting; smell; eyes; color; air; weather; observation and description; mystery boxes; change;…

  4. Critical state of sand matrix soils.

    PubMed

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803-0.998, 0.144-0.248, and 1.727-2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated.

  5. Evaluation of the Matrix Project. Interchange 77.

    ERIC Educational Resources Information Center

    McIvor, Gill; Moodie, Kristina

    The Matrix Project is a program that has been established in central Scotland with the aim of reducing the risk of offending and anti-social behavior among vulnerable children. The project provides a range of services to children between eight and 11 years of age who are at risk in the local authority areas of Clackmannanshire, Falkirk and…

  6. Fracture toughness testing of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    1992-01-01

    The experimental techniques and associated data analysis methods used to measure the resistance to interlaminar fracture, or 'fracture toughness', of polymer matrix composite materials are described. A review in the use of energy techniques to characterize fracture behavior in elastic solids is given. An overview is presented of the types of approaches employed in the design of delamination-resistant composite materials.

  7. Proving Program Termination With Matrix Weighted Digraphs

    NASA Technical Reports Server (NTRS)

    Dutle, Aaron

    2015-01-01

    Program termination analysis is an important task in logic and computer science. While determining if a program terminates is known to be undecidable in general, there has been a significant amount of attention given to finding sufficient and computationally practical conditions to prove termination. One such method takes a program and builds from it a matrix weighted digraph. These are directed graphs whose edges are labeled by square matrices with entries in {-1,0,1}, equipped with a nonstandard matrix multiplication. Certain properties of this digraph are known to imply the termination of the related program. In particular, termination of the program can be determined from the weights of the circuits in the digraph. In this talk, the motivation for addressing termination and how matrix weighted digraphs arise will be briefly discussed. The remainder of the talk will describe an efficient method for bounding the weights of a finite set of the circuits in a matrix weighted digraph, which allows termination of the related program to be deduced.

  8. The Bushido Matrix for Couple Communication

    ERIC Educational Resources Information Center

    Li, Chi-Sing; Lin, Yu-Fen; Ginsburg, Phil; Eckstein, Daniel

    2012-01-01

    The concept of Japanese Bushido and its seven virtues were introduced by the authors in this article for the practice and application of couple communication. The Bushido Matrix Worksheet (BMW) was created for enhancing couple's awareness and understanding of each other's values and experiences. An activity and a case study to demonstrate the use…

  9. High performance SMC matrix for structural applications

    NASA Astrophysics Data System (ADS)

    Salard, T.; Lortie, F.; Gérard, J. F.; Peyre, C.

    2016-07-01

    Mechanical properties of a common SMC (Sheet Molding Compound) matrix constituted of a vinylester resin and a Low-Profile Additive (LPA) were compared to those of vinylester modified with core-shell rubber (CSR) particles. Valuable properties are brought by CSR, especially high impact strength, high fracture toughness with little loss in stiffness, in spite of the presence of CSR agglomerates in blends.

  10. Matrix Encoding For Correction Of Errors

    NASA Technical Reports Server (NTRS)

    Dotson, Ronald S.

    1991-01-01

    Method of matrix encoding and associated decoding provides for correction of errors in digital data recorded on magnetic tape. Intended specifically for use with commercial control circuit board and associated software making it possible to use video cassette recorder as backup for hard-disk memory of personal computer.

  11. Light weight polymer matrix composite material

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J. (Inventor); Lowell, Carl E. (Inventor)

    1991-01-01

    A graphite fiber reinforced polymer matrix is layed up, cured, and thermally aged at about 750.degree. F. in the presence of an inert gas. The heat treatment improves the structural integrity and alters the electrical conductivity of the materials. In the preferred embodiment PMR-15 polyimides and Celion-6000 graphite fibers are used.

  12. The MOON project and DBD matrix elements

    NASA Astrophysics Data System (ADS)

    Ejiri, H.

    2009-06-01

    This is a brief report on experimental studies of double beta decays (DBD) in Japan, the MOON project for spectroscopic studies of neutrino-less DBD (0vββ) and on experimental studies of DBD nuclear matrix elements. Experimental DBD studies in Japan were made by geochemical methods on 130Te, 128Te and 96Zr and by a series of ELEGANT(EL) counting methods, EL III on 76Ge, EL IV, V on 100Mo, 116Cd, and EL VI on 48Ca. Future counter experiments are MOON, CANDLES, XMASS and DCBA. The MOON project, which is based on EL V, aims at studies of the Majorana nature of the neutrino (v) and the v-mass spectrum by spectroscopic 0vββ experiments with the v-mass sensitivity of < mmv > = 100-30 meV. The MOON detector is a super ensemble of multi-layer modules, each being composed by PL scintillator plates and position-sensitive detector planes. DBD nuclear matrix elements have been studied experimentally by using charge exchange reactions. The 2-neutrino DBD matrix elements are expressed by successive single-β matrix elements through low-lying intermediate states.

  13. Enhanced Resource Descriptions Help Learning Matrix Users.

    ERIC Educational Resources Information Center

    Roempler, Kimberly S.

    2003-01-01

    Describes the Learning Matrix digital library which focuses on improving the preparation of math and science teachers by supporting faculty who teach introductory math and science courses in two- and four-year colleges. Suggests it is a valuable resource for school library media specialists to support new science and math teachers. (LRW)

  14. Probabilistic Modeling of Ceramic Matrix Composite Strength

    NASA Technical Reports Server (NTRS)

    Shan, Ashwin R.; Murthy, Pappu L. N.; Mital, Subodh K.; Bhatt, Ramakrishna T.

    1998-01-01

    Uncertainties associated with the primitive random variables such as manufacturing process (processing temperature, fiber volume ratio, void volume ratio), constituent properties (fiber, matrix and interface), and geometric parameters (ply thickness, interphase thickness) have been simulated to quantify the scatter in the first matrix cracking strength (FMCS) and the ultimate tensile strength of SCS-6/RBSN (SiC fiber (SCS-6) reinforced reaction-bonded silicon nitride composite) ceramic matrix composite laminate at room temperature. Cumulative probability distribution function for the FMCS and ultimate tensile strength at room temperature (RT) of (0)(sub 8), (0(sub 2)/90(sub 2), and (+/-45(sub 2))(sub S) laminates have been simulated and the sensitivity of primitive variables to the respective strengths have been quantified. Computationally predicted scatter of the strengths for a uniaxial laminate have been compared with those from limited experimental data. Also the experimental procedure used in the tests has been described briefly. Results show a very good agreement between the computational simulation and the experimental data. Dominating failure modes in (0)(sub 8), (0/90)(sub s) and (+/-45)(sub S) laminates have been identified. Results indicate that the first matrix cracking strength for the (0)(sub S), and (0/90)(sub S) laminates is sensitive to the thermal properties, modulus and strengths of both the fiber and matrix whereas the ultimate tensile strength is sensitive to the fiber strength and the fiber volume ratio. In the case of a (+/-45)(sub S), laminate, both the FMCS and the ultimate tensile strengths have a small scatter range and are sensitive to the fiber tensile strength as well as the fiber volume ratio.

  15. Determination of Matrix Diffusion Properties of Granite

    SciTech Connect

    Holtta, Pirkko; Siitari-Kauppi, Marja; Huittinen, Nina; Poteri, Antti

    2007-07-01

    Rock-core column experiments were introduced to estimate the diffusion and sorption properties of Kuru Grey granite used in block-scale experiments. The objective was to examine the processes causing retention in solute transport through rock fractures, especially matrix diffusion. The objective was also to estimate the importance of retention processes during transport in different scales and flow conditions. Rock-core columns were constructed from cores drilled into the fracture and were placed inside tubes to form flow channels in the 0.5 mm gap between the cores and the tube walls. Tracer experiments were performed using uranin, HTO, {sup 36}Cl, {sup 131}I, {sup 22}Na and {sup 85}Sr at flow rates of 1-50 {mu}L.min{sup -1}. Rock matrix was characterized using {sup 14}C-PMMA method, scanning electron microscopy (SEM), energy dispersive X-ray micro analysis (EDX) and the B.E.T. method. Solute mass flux through a column was modelled by applying the assumption of a linear velocity profile and molecular diffusion. Coupling of the advection and diffusion processes was based on the model of generalised Taylor dispersion in the linear velocity profile. Experiments could be modelled applying a consistent parameterization and transport processes. The results provide evidence that it is possible to investigate matrix diffusion at the laboratory scale. The effects of matrix diffusion were demonstrated on the slightly-sorbing tracer breakthrough curves. Based on scoping calculations matrix diffusion begins to be clearly observable for non-sorbing tracer when the flow rate is 0.1 {mu}L.min{sup -1}. The experimental results presented here cannot be transferred directly to the spatial and temporal scales that prevail in an underground repository. However, the knowledge and understanding of transport and retention processes gained from this study is transferable to different scales from laboratory to in-situ conditions. (authors)

  16. High-frequency matrix converter with square wave input

    DOEpatents

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  17. Application of transmissibility matrix and random matrix to Bayesian system identification with response measurements only

    NASA Astrophysics Data System (ADS)

    Yan, Wang-Ji; Katafygiotis, Lambros S.

    2016-10-01

    The problem of stochastic system identification utilizing response measurements only is considered in this paper. A negative log-likelihood function utilized to determine the posterior most probable parameters and their associated uncertainties is formulated by incorporating transmissibility matrix concept, random matrix theory and Bayes’ theorem. A numerically iterative coupled method involving the optimization of the parameters in groups is proposed so as to reduce the dimension of the numerical optimization problem involved. The initial guess for the parameters to be optimized is also properly estimated through asymptotic analysis. One novel feature of the proposed method is to avoid repeated time-consuming evaluation of the determinant and inverse of the covariance matrix during optimization due to exploring the statistical properties of the trace of Wishart matrix. The proposed method requires no information about the model of the external input. The theory described in this work is illustrated with synthetic data and field data measured from a laboratory model installed with wireless sensors.

  18. Dentin matrix degradation by host matrix metalloproteinases: inhibition and clinical perspectives toward regeneration

    PubMed Central

    Chaussain, Catherine; Boukpessi, Tchilalo; Khaddam, Mayssam; Tjaderhane, Leo; George, Anne; Menashi, Suzanne

    2013-01-01

    Bacterial enzymes have long been considered solely accountable for the degradation of the dentin matrix during the carious process. However, the emerging literature suggests that host-derived enzymes, and in particular the matrix metalloproteinases (MMPs) contained in dentin and saliva can play a major role in this process by their ability to degrade the dentin matrix from within. These findings are important since they open new therapeutic options for caries prevention and treatment. The possibility of using MMP inhibitors to interfere with dentin caries progression is discussed. Furthermore, the potential release of bioactive peptides by the enzymatic cleavage of dentin matrix proteins by MMPs during the carious process is discussed. These peptides, once identified, may constitute promising therapeutical tools for tooth and bone regeneration. PMID:24198787

  19. Hepatocyte Culture in Autologous Decellularized Spleen Matrix

    PubMed Central

    Gao, Rui; Wu, Wanquan; Xiang, Junxi; Lv, Yi; Zheng, Xinglong; Chen, Qian; Wang, Haohua; Wang, Bo; Liu, Zhengwen; Ma, Feng

    2015-01-01

    abstract Background and Aims: Using decellularized scaffold to reengineer liver tissue is a promising alternative therapy for end-stage liver diseases. Though the decellularized human liver matrix is the ideal scaffold for reconstruction of the liver theoretically, the shortage of liver donors is still an obstacle for potential clinical application. Therefore, an appropriate alternative scaffold is needed. In the present study, we used a tissue engineering approach to prepare a rat decellularized spleen matrix (DSM) and evaluate the effectiveness of this DSM for primary rat hepatocytes culture. Methods: Rat decellularized spleen matrix (DSM) was prepared by perfusion of a series of detergents through spleen vasculature. DSM was characterized by residual DNA and specific extracellular matrix distribution. Thereafter, primary rat hepatocytes were cultured in the DSM in a 3-dimensional dynamic culture system, and liver cell survival and biological functions were evaluated by comparison with 3-dimensional sandwich culture and also with cultured in decellularized liver matrix (DLM). Results: Our research found that DSM did not exhibit any cellular components, but preserved the main extracellular matrix and the intact vasculature evaluated by DNA detection, histology, immunohistochemical staining, vessel corrosion cast and upright metallurgical microscope. Moreover, the method of DSM preparation procedure was relatively simple with high success rate (100%). After seeding primary hepatocytes in DSM, the cultured hepatocytes survived inside DSM with albumin synthesis and urea secretion within 10 d. Additionally, hepatocytes in dynamic culture medium had better biological functions at day 10 than that in sandwich culture. Albumin synthesis was 85.67 ± 6.34 μg/107cell/24h in dynamic culture in DSM compared to 62.43 ± 4.59 μg/107cell/24h in sandwich culture (P < 0.01) and to 87.54 ± 5.25 μg/107cell/24h in DLM culture (P > 0.05); urea release was 32.14 ± 8.62

  20. Optimizing Tpetra%3CU%2B2019%3Es sparse matrix-matrix multiplication routine.

    SciTech Connect

    Nusbaum, Kurtis Lee

    2011-08-01

    Over the course of the last year, a sparse matrix-matrix multiplication routine has been developed for the Tpetra package. This routine is based on the same algorithm that is used in EpetraExt with heavy modifications. Since it achieved a working state, several major optimizations have been made in an effort to speed up the routine. This report will discuss the optimizations made to the routine, its current state, and where future work needs to be done.

  1. Rovibrational matrix elements of the quadrupole moment of N2 in a solid parahydrogen matrix

    NASA Astrophysics Data System (ADS)

    Mishra, Adya P.; Balasubramanian, T. K.

    2008-11-01

    The present work pertains to the study of the rotational dynamics of N2 molecules solvated in a matrix of solid para-H2. It is shown that the mixing of the rotational states due to the anisotropic part of the N2-H2 pair potential in the solid gives rise to an additional 5.4% contribution to the intensity of quadrupole-induced double transitions involving N2-H2 pair. Hence the recently reported quadrupole moment matrix element of N2 in a solid para-H2 crystal [A. P. Mishra and T. K. Balasubramanian, J. Chem. Phys. 125, 124507 (2006)], which was deduced from a comparison of the theoretical intensity (with rotational mixing of states neglected) with the measured value is larger by ˜2.7%. The ground electronic state rovibrational matrix elements ⟨v'J'|Q2(r)|vJ⟩ of N2 molecule in a solid parahydrogen matrix for v,v'≤1 and J,J'≤4 have also been computed by taking into account the changes in the intramolecular potential of N2 due to the intermolecular interaction in the matrix. The computed quadrupole moment matrix elements agree well with a few available values (for v =v'=0) deduced from the observed transitions.

  2. Matrix metalloproteinases and other matrix proteinases in relation to cariology: the era of 'dentin degradomics'.

    PubMed

    Tjäderhane, Leo; Buzalaf, Marília Afonso Rabelo; Carrilho, Marcela; Chaussain, Catherine

    2015-01-01

    Dentin organic matrix, with type I collagen as the main component, is exposed after demineralization in dentinal caries, erosion or acidic conditioning during adhesive composite restorative treatment. This exposed matrix is prone to slow hydrolytic degradation by host collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins. Here we review the recent findings demonstrating that inhibition of salivary or dentin endogenous collagenolytic enzymes may provide preventive means against progression of caries or erosion, just as they have been shown to retain the integrity and improve the longevity of resin composite filling bonding to dentin. This paper also presents the case that the organic matrix in caries-affected dentin may not be preserved as intact as previously considered. In partially demineralized dentin, MMPs and cysteine cathepsins with the ability to cleave off the terminal non-helical ends of collagen molecules (telopeptides) may lead to the gradual loss of intramolecular gap areas. This would seriously compromise the matrix ability for intrafibrillar remineralization, which is considered essential in restoring the dentin's mechanical properties. More detailed data of the enzymes responsible and their detailed function in dentin-destructive conditions may not only help to find new and better preventive means, but better preservation of demineralized dentin collagenous matrix may also facilitate true biological remineralization for the better restoration of tooth structural and mechanical integrity and mechanical properties.

  3. Mid-infrared matrix assisted laser desorption ionization with a water/glycerol matrix

    NASA Astrophysics Data System (ADS)

    Caldwell, Kathleen L.; Murray, Kermit K.

    1998-05-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectra were obtained using a water and glycerol matrix with a tunable mid-infrared optical parametric oscillator. The matrix consists of a 1:1 mixture of water and glycerol deposited on a thin layer of nitrocellulose and cooled to -30°C. When exposed to vacuum, most of the water evaporates, leaving a matrix of glycerol with residual water. The peptide bradykinin and the protein bovine insulin were used to test this new matrix. Mass spectra were obtained for bradykinin between 2.76 and 3.1 μm with the maximum analyte signal at 2.8 μm. Mass resolution in excess of 2000 for bradykinin and 500 for insulin was obtained with delayed ion extraction and a linear time of flight mass spectrometer. The addition of nitrocellulose to the matrix resulted in exceptionally durable samples: more than 10,000 laser shots which produced analyte signal could be obtained from a single sample spot.

  4. Pendulum impact resistance of tungsten fiber/metal matrix composites.

    NASA Technical Reports Server (NTRS)

    Winsa, E. A.; Petrasek, D. W.

    1972-01-01

    The impact properties of copper, copper-10 nickel, and a superalloy matrix reinforced with tungsten fibers were studied. In most cases the following increased composite impact strength: increased fiber or matrix toughness, decreased fiber-matrix reaction, increased test temperature, hot working and heat treatment. Notch sensitivity was reduced by increasing fiber or matrix toughness. The effect of fiber content depended on the relative toughness of the fibers and matrix. Above 530 K a 60 volume per cent superalloy matrix composite had a greater impact strength than a turbine blade superalloy, whereas below 530 K a hot worked 56 volume per cent composite had a greater impact strength than the superalloy.

  5. Membrane type-1 matrix metalloprotease-independent activation of pro-matrix metalloprotease-2 by proprotein convertases.

    PubMed

    Koo, Bon-Hun; Kim, Hee-Hyun; Park, Michael Y; Jeon, Ok-Hee; Kim, Doo-Sik

    2009-11-01

    Matrix metalloprotease-2 is implicated in many biological processes and degrades extracellular and non-extracellular matrix molecules. Matrix metalloprotease-2 maintains a latent state through a cysteine-zinc ion pairing which, when disrupted, results in full enzyme activation. This pairing can be disrupted by a conformational change or cleavage within the propeptide. The best known activation mechanism for pro-matrix metalloprotease-2 occurs via cleavage of the propeptide by membrane type-1 matrix metalloprotease. However, significant residual activation of pro-matrix metalloprotease-2 is seen in membrane type-1 matrix metalloprotease knockout mice and in fibroblasts treated with metalloprotease inhibitors. These findings indicate the presence of a membrane type-1 matrix metalloprotease-independent activation mechanism for pro-matrix metalloprotease-2 in vivo, which prompted us to explore an alternative activation mechanism for pro-matrix metalloprotese-2. In this study, we demonstrate membrane type-1 matrix metalloprotease-independent propeptide processing of matrix metalloprotease-2 in HEK293F and various tumor cell lines, and show that proprotein convertases can mediate the processing intracellularly as well as extracellularly. Furthermore, processed matrix metalloprotease-2 exhibits enzymatic activity that is enhanced by intermolecular autolytic cleavage. Thus, our experimental data, taken together with the broad expression of proprotein convertases, suggest that the proprotein convertase-mediated processing may be a general activation mechanism for pro-matrix metalloprotease-2 in vivo.

  6. Matrix metalloproteinase interactions with collagen and elastin

    PubMed Central

    Van Doren, Steven R.

    2015-01-01

    Most abundant in the extracellular matrix are collagens, joined by elastin that confers elastic recoil to the lung, aorta, and skin. These fibrils are highly resistant to proteolysis but can succumb to a minority of the matrix metalloproteinases (MMPs). Considerable inroads to understanding how such MMPs move to the susceptible sites in collagen and then unwind the triple helix of collagen monomers have been gained. The essential role in unwinding of the hemopexin-like domain of interstitial collagenases or the collagen binding domain of gelatinases is highlighted. Elastolysis is also facilitated by the collagen binding domain in the cases of MMP-2 and MMP-9, and remote exosites of the catalytic domain in the case of MMP-12. PMID:25599938

  7. Tensile properties of ceramic matrix fiber composites

    SciTech Connect

    Shin, D.W.; Auh, K.H.; Tanaka, Hidehiko

    1995-11-01

    The mechanical properties of various 2D ceramic matrix fiber composites were characterized by tension testing, using the gripping and alignment techniques developed in this work. The woven fabric composites used for the test had the basic combinations of Al{sub 2}O{sub 3} fabric/Al{sub 2}O{sub 3}, SiC fabric/SiC, and SiC monofilament uniweave fabric/SiC. Tension testing was performed with strain gauge and acoustic emission instrumentation to identify the first-matrix cracking stress and assure a valid alignment. The peak tensile stresses of these laminate composites were about one-third of the flexural strengths. The SiC monofilament uniweave fabric (14 vol%)/SiC composites showed a relatively high peak stress of 370 MPa in tension testing.

  8. Matrix Remodeling in Pulmonary Fibrosis and Emphysema.

    PubMed

    Kulkarni, Tejaswini; O'Reilly, Philip; Antony, Veena B; Gaggar, Amit; Thannickal, Victor J

    2016-06-01

    Pulmonary fibrosis and emphysema are chronic lung diseases characterized by a progressive decline in lung function, resulting in significant morbidity and mortality. A hallmark of these diseases is recurrent or persistent alveolar epithelial injury, typically caused by common environmental exposures such as cigarette smoke. We propose that critical determinants of the outcome of the injury-repair processes that result in fibrosis versus emphysema are mesenchymal cell fate and associated extracellular matrix dynamics. In this review, we explore the concept that regulation of mesenchymal cells under the influence of soluble factors, in particular transforming growth factor-β1, and the extracellular matrix determine the divergent tissue remodeling responses seen in pulmonary fibrosis and emphysema.

  9. Matrix transformations for spacecraft attitude determination

    NASA Technical Reports Server (NTRS)

    Cauffman, D. P.

    1972-01-01

    A common problem for experimental space physicists is the determination of the attitude matrix T which transforms vectors between representations in X and X' coordinate systems according to (vector V sub X) = (T sub XX')(vector V sub X'). A straightforward, simple, and efficient solution for the transformation matrix is a double-cross transformation. It is calculated from any two directions A and B, which are vectors normalized to unit length and are known in both X and X' coordinates. The B direction need be known only well enough to define the plane in which vectors A and B lie. The problem of the intersection of two cones as applicable to attitude solutions is also discussed.

  10. Universal shocks in random matrix theory.

    PubMed

    Blaizot, Jean-Paul; Nowak, Maciej A

    2010-11-01

    We link the appearance of universal kernels in random matrix ensembles to the phenomenon of shock formation in some fluid dynamical equations. Such equations are derived from Dyson's random walks after a proper rescaling of the time. In the case of the gaussian unitary ensemble, on which we focus in this paper, we show that the characteristics polynomials and their inverse evolve according to a viscid Burgers equation with an effective "spectral viscosity" ν(s)=1/2N, where N is the size of the matrices. We relate the edge of the spectrum of eigenvalues to the shock that naturally appears in the Burgers equation for appropriate initial conditions, thereby suggesting a connection between the well-known microscopic universality of random matrix theory and the universal properties of the solution of the Burgers equation in the vicinity of a shock.

  11. Reliability analysis of ceramic matrix composite laminates

    NASA Technical Reports Server (NTRS)

    Thomas, David J.; Wetherhold, Robert C.

    1991-01-01

    At a macroscopic level, a composite lamina may be considered as a homogeneous orthotropic solid whose directional strengths are random variables. Incorporation of these random variable strengths into failure models, either interactive or non-interactive, allows for the evaluation of the lamina reliability under a given stress state. Using a non-interactive criterion for demonstration purposes, laminate reliabilities are calculated assuming previously established load sharing rules for the redistribution of load as the failure of laminae occur. The matrix cracking predicted by ACK theory is modeled to allow a loss of stiffness in the fiber direction. The subsequent failure in the fiber direction is controlled by a modified bundle theory. Results using this modified bundle model are compared with previous models which did not permit separate consideration of matrix cracking, as well as to results obtained from experimental data.

  12. Random matrix analysis of complex networks.

    PubMed

    Jalan, Sarika; Bandyopadhyay, Jayendra N

    2007-10-01

    We study complex networks under random matrix theory (RMT) framework. Using nearest-neighbor and next-nearest-neighbor spacing distributions we analyze the eigenvalues of the adjacency matrix of various model networks, namely, random, scale-free, and small-world networks. These distributions follow the Gaussian orthogonal ensemble statistic of RMT. To probe long-range correlations in the eigenvalues we study spectral rigidity via the Delta_{3} statistic of RMT as well. It follows RMT prediction of linear behavior in semilogarithmic scale with the slope being approximately 1pi;{2} . Random and scale-free networks follow RMT prediction for very large scale. A small-world network follows it for sufficiently large scale, but much less than the random and scale-free networks.

  13. Rolling Element Bearing Stiffness Matrix Determination (Presentation)

    SciTech Connect

    Guo, Y.; Parker, R.

    2014-01-01

    Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.

  14. Luneburg lens and optical matrix algebra research

    NASA Technical Reports Server (NTRS)

    Wood, V. E.; Busch, J. R.; Verber, C. M.; Caulfield, H. J.

    1984-01-01

    Planar, as opposed to channelized, integrated optical circuits (IOCs) were stressed as the basis for computational devices. Both fully-parallel and systolic architectures are considered and the tradeoffs between the two device types are discussed. The Kalman filter approach is a most important computational method for many NASA problems. This approach to deriving a best-fit estimate for the state vector describing a large system leads to matrix sizes which are beyond the predicted capacities of planar IOCs. This problem is overcome by matrix partitioning, and several architectures for accomplishing this are described. The Luneburg lens work has involved development of lens design techniques, design of mask arrangements for producing lenses of desired shape, investigation of optical and chemical properties of arsenic trisulfide films, deposition of lenses both by thermal evaporation and by RF sputtering, optical testing of these lenses, modification of lens properties through ultraviolet irradiation, and comparison of measured lens properties with those expected from ray trace analyses.

  15. Advanced ceramic matrix composites for TPS

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    1992-01-01

    Recent advances in ceramic matrix composite (CMC) technology provide considerable opportunity for application to future aircraft thermal protection system (TPS), providing materials with higher temperature capability, lower weight, and higher strength and stiffness than traditional materials. The Thermal Protection Material Branch at NASA Ames Research Center has been making significant progress in the development, characterization, and entry simulation (arc-jet) testing of new CMC's. This protection gives a general overview of the Ames Thermal Protection Materials Branch research activities, followed by more detailed descriptions of recent advances in very-high temperature Zr and Hf based ceramics, high temperature, high strength SiC matrix composites, and some activities in polymer precursors and ceramic coating processing. The presentation closes with a brief comparison of maximum heat flux capabilities of advanced TPS materials.

  16. Matrix Metalloproteinases as Regulators of Periodontal Inflammation.

    PubMed

    Franco, Cavalla; Patricia, Hernández-Ríos; Timo, Sorsa; Claudia, Biguetti; Marcela, Hernández

    2017-02-17

    Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the 'protease web' is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules-such as cytokines, chemokines, and growth factors, among others-regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation.

  17. Data from acellular human heart matrix.

    PubMed

    Sánchez, Pedro L; Fernández-Santos, M Eugenia; Espinosa, M Angeles; González-Nicolas, M Angeles; Acebes, Judith R; Costanza, Salvatore; Moscoso, Isabel; Rodríguez, Hugo; García, Julio; Romero, Jesús; Kren, Stefan M; Bermejo, Javier; Yotti, Raquel; Del Villar, Candelas Pérez; Sanz-Ruiz, Ricardo; Elizaga, Jaime; Taylor, Doris A; Fernández-Avilés, Francisco

    2016-09-01

    Perfusion decellularization of cadaveric hearts removes cells and generates a cell-free extracellular matrix scaffold containing acellular vascular conduits, which are theoretically sufficient to perfuse and support tissue-engineered heart constructs. This article contains additional data of our experience decellularizing and testing structural integrity and composition of a large series of human hearts, "Acellular human heart matrix: a critical step toward whole heat grafts" (Sanchez et al., 2015) [1]. Here we provide the information about the heart decellularization technique, the valve competence evaluation of the decellularized scaffolds, the integrity evaluation of epicardial and myocardial coronary circulation, the pressure volume measurements, the primers used to assess cardiac muscle gene expression and, the characteristics of donors, donor hearts, scaffolds and perfusion decellularization process.

  18. Ceramic fiber ceramic matrix filter development

    SciTech Connect

    Judkins, R.R.; Stinton, D.P.; Smith, R.G.; Fischer, E.M.

    1994-09-01

    The objectives of this project were to develop a novel type of candle filter based on a ceramic fiber-ceramic matrix composite material, and to extend the development to full-size, 60-mm OD by 1-meter-long candle filters. The goal is to develop a ceramic filter suitable for use in a variety of fossil energy system environments such as integrated coal gasification combined cycles (IGCC), pressurized fluidized-bed combustion (PFBC), and other advanced coal combustion environments. Further, the ceramic fiber ceramic matrix composite filter, hereinafter referred to as the ceramic composite filter, was to be inherently crack resistant, a property not found in conventional monolithic ceramic candle filters, such as those fabricated from clay-bonded silicon carbide. Finally, the adequacy of the filters in the fossil energy system environments is to be proven through simulated and in-plant tests.

  19. Random matrix approach to categorical data analysis

    NASA Astrophysics Data System (ADS)

    Patil, Aashay; Santhanam, M. S.

    2015-09-01

    Correlation and similarity measures are widely used in all the areas of sciences and social sciences. Often the variables are not numbers but are instead qualitative descriptors called categorical data. We define and study similarity matrix, as a measure of similarity, for the case of categorical data. This is of interest due to a deluge of categorical data, such as movie ratings, top-10 rankings, and data from social media, in the public domain that require analysis. We show that the statistical properties of the spectra of similarity matrices, constructed from categorical data, follow random matrix predictions with the dominant eigenvalue being an exception. We demonstrate this approach by applying it to the data for Indian general elections and sea level pressures in the North Atlantic ocean.

  20. OVARIAN CANCER: INVOLVEMENT OF THE MATRIX METALLOPROTEINASES

    PubMed Central

    Al-Alem, Linah; Curry, Thomas E.

    2016-01-01

    Ovarian cancer is the leading cause of death from gynecologic malignancies. Reasons for the high mortality rate associated with ovarian cancer include a late diagnosis at which time the cancer has metastasized throughout the peritoneal cavity. Cancer metastasis is facilitated by the remodeling of the extracellular tumor matrix by a family of proteolytic enzymes known as the matrix metalloproteinases (MMPs). There are 23 members in the MMP family, many of which have been reported to be associated with ovarian cancer. In the current paradigm, ovarian tumor cells and the surrounding stromal cells stimulate the synthesis and/or activation of various MMPs to aid in tumor growth, invasion, and eventual metastasis. This review sheds light on the different MMPs in the various types of ovarian cancer and their impact on the progression of this gynecologic malignancy. PMID:25918438

  1. Ovarian cancer: involvement of the matrix metalloproteinases.

    PubMed

    Al-Alem, Linah; Curry, Thomas E

    2015-08-01

    Ovarian cancer is the leading cause of death from gynecologic malignancies. One of the reasons for the high mortality rate associated with ovarian cancer is its late diagnosis, which often occurs after the cancer has metastasized throughout the peritoneal cavity. Cancer metastasis is facilitated by the remodeling of the extracellular tumor matrix by a family of proteolytic enzymes known as the matrix metalloproteinases (MMPs). There are 23 members of the MMP family, many of which have been reported to be associated with ovarian cancer. In the current paradigm, ovarian tumor cells and the surrounding stromal cells stimulate the synthesis and/or activation of various MMPs to aid in tumor growth, invasion, and eventual metastasis. The present review sheds light on the different MMPs in the various types of ovarian cancer and on their impact on the progression of this gynecologic malignancy.

  2. System Matrix Analysis for Computed Tomography Imaging.

    PubMed

    Flores, Liubov; Vidal, Vicent; Verdú, Gumersindo

    2015-01-01

    In practical applications of computed tomography imaging (CT), it is often the case that the set of projection data is incomplete owing to the physical conditions of the data acquisition process. On the other hand, the high radiation dose imposed on patients is also undesired. These issues demand that high quality CT images can be reconstructed from limited projection data. For this reason, iterative methods of image reconstruction have become a topic of increased research interest. Several algorithms have been proposed for few-view CT. We consider that the accurate solution of the reconstruction problem also depends on the system matrix that simulates the scanning process. In this work, we analyze the application of the Siddon method to generate elements of the matrix and we present results based on real projection data.

  3. Matrix representation of the time operator

    SciTech Connect

    Bender, Carl M.; Gianfreda, Mariagiovanna

    2012-06-15

    In quantum mechanics the time operator {Theta} satisfies the commutation relation [{Theta}, H]=i, and thus it may be thought of as being formally canonically conjugate to the Hamiltonian H. The time operator associated with a given Hamiltonian H is not unique because one can replace {Theta} by {Theta}+{Theta}{sub hom}, where {Theta}{sub hom} satisfies the homogeneous condition [{Theta}{sub hom}, H]= 0. To study this nonuniqueness the matrix elements of {Theta} for the harmonic-oscillator Hamiltonian are calculated in the eigenstate basis. This calculation requires the summation of divergent series, and the summation is accomplished by using zeta-summation techniques. It is shown that by including appropriate homogeneous contributions, the matrix elements of {Theta} simplify dramatically. However, it is still not clear whether there is an optimally simple representation of the time operator.

  4. Examples of Matrix Factorizations from SYZ

    NASA Astrophysics Data System (ADS)

    Cho, Cheol-Hyun; Hong, Hansol; Lee, Sangwook

    2012-08-01

    We find matrix factorization corresponding to an anti-diagonal in CP^1 × CP^1, and circle fibers in weighted projective lines using the idea of Chan and Leung of Strominger-Yau-Zaslow transformations. For the tear drop orbifolds, we apply this idea to find matrix factorizations for two types of potential, the usual Hori-Vafa potential or the bulk deformed (orbi)-potential. We also show that the direct sum of anti-diagonal with its shift, is equivalent to the direct sum of central torus fibers with holonomy (1,-1) and (-1,1) in the Fukaya category of CP^1 × CP^1, which was predicted by Kapustin and Li from B-model calculations.

  5. Studying genetic code by a matrix approach.

    PubMed

    Crowder, Tanner; Li, Chi-Kwong

    2010-05-01

    Following Petoukhov and his collaborators, we use two length n zero-one sequences, alpha and beta, to represent a length n genetic sequence (alpha/beta) so that the columns of (alpha/beta) have the following correspondence with the nucleotides: C ~ (0/0), U ~ (1/0), G ~ (1/1), A ~ (0/1). Using the Gray code ordering to arrange alpha and beta, we build a 2(n) x 2(n) matrix C(n) including all the 4(n) length n genetic sequences. Furthermore, we use the Hamming distance of alpha and beta to construct a 2(n) x 2(n) matrix D(n). We explore structures of these matrices, refine the results in earlier papers, and propose new directions for further research.

  6. Social patterns revealed through random matrix theory

    NASA Astrophysics Data System (ADS)

    Sarkar, Camellia; Jalan, Sarika

    2014-11-01

    Despite the tremendous advancements in the field of network theory, very few studies have taken weights in the interactions into consideration that emerge naturally in all real-world systems. Using random matrix analysis of a weighted social network, we demonstrate the profound impact of weights in interactions on emerging structural properties. The analysis reveals that randomness existing in particular time frame affects the decisions of individuals rendering them more freedom of choice in situations of financial security. While the structural organization of networks remains the same throughout all datasets, random matrix theory provides insight into the interaction pattern of individuals of the society in situations of crisis. It has also been contemplated that individual accountability in terms of weighted interactions remains as a key to success unless segregation of tasks comes into play.

  7. Schwarzschild geometry emerging from matrix models

    NASA Astrophysics Data System (ADS)

    Blaschke, Daniel N.; Steinacker, Harold

    2010-09-01

    We demonstrate how various geometries can emerge from Yang-Mills-type matrix models with branes, and consider the examples of Schwarzschild and Reissner-Nordström geometries. We provide an explicit embedding of these branes in \\mathds{R}^{2,5} and \\mathds{R}^{4,6}, as well as an appropriate Poisson resp. symplectic structure which determines the non-commutativity of spacetime. The embedding is asymptotically flat with the asymptotically constant θμν for large r, and therefore suitable for a generalization to many-body configurations. This is an illustration of our previous work (Blaschke and Steinacker 2010 Class. Quantum Grav. 27 165010 (arXiv:1003.4132)), where we have shown how the Einstein-Hilbert action can be realized within such matrix models.

  8. Matrix Metalloproteinases as Regulators of Periodontal Inflammation

    PubMed Central

    Franco, Cavalla; Patricia, Hernández-Ríos; Timo, Sorsa; Claudia, Biguetti; Marcela, Hernández

    2017-01-01

    Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the ‘protease web’ is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules—such as cytokines, chemokines, and growth factors, among others—regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation. PMID:28218665

  9. Primitive material surviving in chondrites - Matrix

    NASA Technical Reports Server (NTRS)

    Scott, E. R. D.; Barber, D. J.; Alexander, C. M.; Hutchinson, R.; Peck, J. A.

    1988-01-01

    A logical place to search for surviving pristine nebular material is in the fine-grained matrices of ordinary and carbonaceous chondrites of petrographic type 3. Unfortunately, many of these chondrites have experienced brecciation, thermal metamorphism, and aqueous alteration, so that interpreting individual features in terms of specific nebular conditions and/or processes is difficult. It follows that the origin and evolutionary history of such matrix phases are controversial, and a consensus is difficult to define. In this chapter, therefore, after summarizing the salient mineralogical, petrographic, chemical, and isotopic features of matrix in apparently primitive chondrites, an attempt is made to provide an overview both of areas of agreement and of topics that are currently in dispute.

  10. Prediction of thermal cycling induced matrix cracking

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1992-01-01

    Thermal fatigue has been observed to cause matrix cracking in laminated composite materials. A method is presented to predict transverse matrix cracks in composite laminates subjected to cyclic thermal load. Shear lag stress approximations and a simple energy-based fracture criteria are used to predict crack densities as a function of temperature. Prediction of crack densities as a function of thermal cycling is accomplished by assuming that fatigue degrades the material's inherent resistance to cracking. The method is implemented as a computer program. A simple experiment provides data on progressive cracking of a laminate with decreasing temperature. Existing data on thermal fatigue is also used. Correlations of the analytical predictions to the data are very good. A parametric study using the analytical method is presented which provides insight into material behavior under cyclical thermal loads.

  11. Photoacoustic measurement of lutein in biological matrix

    NASA Astrophysics Data System (ADS)

    Bicanic, D.; Luterotti, S.; Becucci, M.; Fogliano, V.; Versloot, P.

    2005-06-01

    Photoacoustic (PA) spectroscopy was applied for the first time to quantify lutein in a complex biological matrix. Standard addition of lutein to a biological low-lutein matrix was used for the calibration. The PA signal was found linearly proportional (R > 0.98) to lutein concentration up to 0.3% (w/w). The dynamic range of concentrations extends to 1% (w/w) lutein. For a given experimental set-up the responsivity of PA detector within the range of linearity was estimated to 1.1 mV/1% lutein. Precision of repeated analyses is good with average RSD values of 4 and 5% for blanks and spiked samples, respectively. The analytical parameters indicate that the PA method is fast and sensitive enough for quantification of lutein in supplementary drugs and in the lutein-rich foods.

  12. Matrix product states for gauge field theories.

    PubMed

    Buyens, Boye; Haegeman, Jutho; Van Acoleyen, Karel; Verschelde, Henri; Verstraete, Frank

    2014-08-29

    The matrix product state formalism is used to simulate Hamiltonian lattice gauge theories. To this end, we define matrix product state manifolds which are manifestly gauge invariant. As an application, we study (1+1)-dimensional one flavor quantum electrodynamics, also known as the massive Schwinger model, and are able to determine very accurately the ground-state properties and elementary one-particle excitations in the continuum limit. In particular, a novel particle excitation in the form of a heavy vector boson is uncovered, compatible with the strong coupling expansion in the continuum. We also study full quantum nonequilibrium dynamics by simulating the real-time evolution of the system induced by a quench in the form of a uniform background electric field.

  13. System Matrix Analysis for Computed Tomography Imaging

    PubMed Central

    Flores, Liubov; Vidal, Vicent; Verdú, Gumersindo

    2015-01-01

    In practical applications of computed tomography imaging (CT), it is often the case that the set of projection data is incomplete owing to the physical conditions of the data acquisition process. On the other hand, the high radiation dose imposed on patients is also undesired. These issues demand that high quality CT images can be reconstructed from limited projection data. For this reason, iterative methods of image reconstruction have become a topic of increased research interest. Several algorithms have been proposed for few-view CT. We consider that the accurate solution of the reconstruction problem also depends on the system matrix that simulates the scanning process. In this work, we analyze the application of the Siddon method to generate elements of the matrix and we present results based on real projection data. PMID:26575482

  14. Efficient Matrix Models for Relational Learning

    DTIC Science & Technology

    2009-10-01

    Haesun Park. Orthogonal nonnegative matrix tri-factorizations for clustering. In Tina Eliassi-Rad, Lyle H. Ungar , Mark Craven, and Dimitrios Gunopulos...97] A. Popescul and L. Ungar . Structural logistic regression for link analysis. KDD Workshop on Multi-Relational Data Mining, 2003. [98] Yuan Qi and...asking questions, pages 167–192. Morgan Kaufman, 1986. [112] Andrew I. Schein, Lawrence K. Saul, and Lyle H. Ungar . A generalized linear model for

  15. Ceramic Matrix Composites for Rotorcraft Engines

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.

    2011-01-01

    Ceramic matrix composite (CMC) components are being developed for turbine engine applications. Compared to metallic components, the CMC components offer benefits of higher temperature capability and less cooling requirements which correlates to improved efficiency and reduced emissions. This presentation discusses a technology develop effort for overcoming challenges in fabricating a CMC vane for the high pressure turbine. The areas of technology development include small component fabrication, ceramic joining and integration, material and component testing and characterization, and design and analysis of concept components.

  16. Boost matrix converters in clean energy systems

    NASA Astrophysics Data System (ADS)

    Karaman, Ekrem

    This dissertation describes an investigation of novel power electronic converters, based on the ultra-sparse matrix topology and characterized by the minimum number of semiconductor switches. The Z-source, Quasi Z-source, Series Z-source and Switched-inductor Z-source networks were originally proposed for boosting the output voltage of power electronic inverters. These ideas were extended here on three-phase to three-phase and three-phase to single-phase indirect matrix converters. For the three-phase to three-phase matrix converters, the Z-source networks are placed between the three-switch input rectifier stage and the output six-switch inverter stage. A brief shoot-through state produces the voltage boost. An optimal pulse width modulation technique was developed to achieve high boosting capability and minimum switching losses in the converter. For the three-phase to single-phase matrix converters, those networks are placed similarly. For control purposes, a new modulation technique has been developed. As an example application, the proposed converters constitute a viable alternative to the existing solutions in residential wind-energy systems, where a low-voltage variable-speed generator feeds power to the higher-voltage fixed-frequency grid. Comprehensive analytical derivations and simulation results were carried out to investigate the operation of the proposed converters. Performance of the proposed converters was then compared between each other as well as with conventional converters. The operation of the converters was experimentally validated using a laboratory prototype.

  17. Matrix-addressable electrochromic display cell

    NASA Astrophysics Data System (ADS)

    Beni, G.; Schiavone, L. M.

    1981-04-01

    We report an electrochromic display cell with intrinsic matrix addressability. The cell, based on a sputtered iridium oxide film (SIROF) and a tantalum-oxide hysteretic counterelectrode, has electrochromic parameters (i.e., response times, operating voltages, and contrast) similar to those of other SIROF display devices, but in addition, has short-circuit memory and voltage threshold. Memory and threshold are sufficiently large to allow, in principle, multiplexing of electrochromic display panels of large-screen TV pixel size.

  18. Compiler blockability of dense matrix factorizations.

    SciTech Connect

    Carr, S.; Lehoucq, R. B.; Mathematics and Computer Science; Michigan Technological Univ.

    1997-09-01

    The goal of the LAPACK project is to provide efficient and portable software for dense numerical linear algebra computations. By recasting many of the fundamental dense matrix computations in terms of calls to an efficient implementation of the BLAS (Basic Linear Algebra Subprograms), the LAPACK project has, in large part, achieved its goal. Unfortunately, the efficient implementation of the BLAS results often in machine-specific code that is not portable across multiple architectures without a significant loss in performance or a significant effort to reoptimize them. This article examines whether most of the hand optimizations performed on matrix factorization codes are unnecessary because they can (and should) be performed by the compiler. We believe that it is better for the programmer to express algorithms in a machine-independent form and allow the compiler to handle the machine-dependent details. This gives the algorithms portability across architectures and removes the error-prone, expensive and tedious process of hand optimization. Although there currently exist no production compilers that can perform all the loop transformations discussed in this article, a description of current research in compiler technology is provided that will prove beneficial to the numerical linear algebra community. We show that the Cholesky and optimized automatically by a compiler to be as efficient as the same hand-optimized version found in LAPACK. We also show that the QR factorization may be optimized by the compiler to perform comparably with the hand-optimized LAPACK version on modest matrix sizes. Our approach allows us to conclude that with the advent of the compiler optimizations discussed in this article, matrix factorizations may be efficiently implemented in a BLAS-less form.

  19. Ceramic Matrix Composite Vane Subelement Burst Testing

    NASA Technical Reports Server (NTRS)

    Brewer, David N.; Verrilli, Michael; Calomino, Anthony

    2006-01-01

    Burst tests were performed on Ceramic Matrix Composite (CMC) vane specimens, manufactured by two vendors, under the Ultra Efficient Engine Technology (UEET) project. Burst specimens were machined from the ends of 76mm long vane sub-elements blanks and from High Pressure Burner Rig (HPBR) tested specimens. The results of burst tests will be used to compare virgin specimens with specimens that have had an Environmental Barrier Coating (EBC) applied, both HPBR tested and untested, as well as a comparison between vendors.

  20. Graphite matrix materials for nuclear waste isolation

    SciTech Connect

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept.

  1. A direct method for BBD matrix inversion

    SciTech Connect

    Milovanovic, I.Z.; Kovacevic, M.A.; Stojcev, M.K.; Milovanovic, E.I.

    1994-11-01

    In VLSI circuit simulation, large systems of equations are solved. In order to do that the system is partitioned into groups of tightly coupled variables, called blocks, such as the subcircuits in the VLSI structure. Further, the equations are ordered by subcircuits to produce a matrix in a bordered block diagonal form. Each diagonal block represents the internal variables of a subcircuit, and the border represents the interconnections among the subcircuits.

  2. Computing Matrix Representations of Filiform Lie Algebras

    NASA Astrophysics Data System (ADS)

    Ceballos, Manuel; Núñez, Juan; Tenorio, Ángel F.

    In this paper, we compute minimal faithful unitriangular matrix representations of filiform Lie algebras. To do it, we use the nilpotent Lie algebra, g_n, formed of n ×n strictly upper-triangular matrices. More concretely, we search the lowest natural number n such that the Lie algebra g_n contains a given filiform Lie algebra, also computing a representative of this algebra. All the computations in this paper have been done using MAPLE 9.5.

  3. Diagonalizing sensing matrix of broadband RSE

    NASA Astrophysics Data System (ADS)

    Sato, Shuichi; Kokeyama, Keiko; Kawazoe, Fumiko; Somiya, Kentaro; Kawamura, Seiji

    2006-03-01

    For a broadband-operated RSE interferometer, a simple and smart length sensing and control scheme was newly proposed. The sensing matrix could be diagonal, owing to a simple allocation of two RF modulations and to a macroscopic displacement of cavity mirrors, which cause a detuning of the RF modulation sidebands. In this article, the idea of the sensing scheme and an optimization of the relevant parameters will be described.

  4. Metal matrix composite structural panel construction

    NASA Technical Reports Server (NTRS)

    Mcwithey, R. R.; Royster, D. M. (Inventor); Bales, T. T.

    1983-01-01

    Lightweight capped honeycomb stiffeners for use in fabricating metal or metal/matrix exterior structural panels on aerospace type vehicles and the process for fabricating same are disclosed. The stiffener stringers are formed in sheets, cut to the desired width and length and brazed in spaced relationship to a skin with the honeycomb material serving directly as the required lightweight stiffeners and not requiring separate metal encasement for the exposed honeycomb cells.

  5. Nanophosphor composite scintillators comprising a polymer matrix

    DOEpatents

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  6. Absorption properties of waste matrix materials

    SciTech Connect

    Briggs, J.B.

    1997-06-01

    This paper very briefly discusses the need for studies of the limiting critical concentration of radioactive waste matrix materials. Calculated limiting critical concentration values for some common waste materials are listed. However, for systems containing large quantities of waste materials, differences up to 10% in calculated k{sub eff} values are obtained by changing cross section data sets. Therefore, experimental results are needed to compare with calculation results for resolving these differences and establishing realistic biases.

  7. Airspace Operations Demo Functional Requirements Matrix

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Flight IPT assessed the reasonableness of demonstrating each of the Access 5 Step 1 functional requirements. The functional requirements listed in this matrix are from the September 2005 release of the Access 5 Functional Requirements Document. The demonstration mission considered was a notional Western US mission (WUS). The conclusion of the assessment is that 90% of the Access 5 Step 1 functional requirements can be demonstrated using the notional Western US mission.

  8. Matrix Metalloproteinases, Synaptic Injury, and Multiple Sclerosis

    PubMed Central

    Szklarczyk, Arek; Conant, Katherine

    2010-01-01

    Multiple sclerosis (MS) is a disease of the central nervous system in which immune mediated damage to myelin is characteristic. For an overview of this condition and its pathophysiology, please refer to one of many excellent published reviews (Sorensen and Ransohoff, 1998; Weiner, 2009). To follow, is a discussion focused on the possibility that synaptic injury occurs in at least a subset of patients, and that matrix metalloproteinases (MMPs) play a role in such. PMID:21423441

  9. Plastic matrix composites with continuous fiber reinforcement

    SciTech Connect

    1991-09-19

    Most plastic resins are not suitable for structural applications. Although many resins are extremely tough, most lack strength, stiffness, and deform under load with time. By mixing strong, stiff, fibrous materials into the plastic matrix, a variety of structural composite materials can be formed. The properties of these composites can be tailored by fiber selection, orientation, and other factors to suit specific applications. The advantages and disadvantages of fiberglass, carbon-graphite, aramid (Kevlar 49), and boron fibers are summarized.

  10. Random Matrix Theory and Elliptic Curves

    DTIC Science & Technology

    2014-11-24

    related to the intervals of prime numbers. 15. SUBJECT TERMS EOARD, Random Matrix theory, Riemann Hypothesis, Elliptic Curves 16. SECURITY...range of quantities of fundamental importance in number theory. In the cases of the Riemann zeta function and Dirichlet L-functions, this information...investigation using analytic techniques. As an indication of their significance, two of the Clay Millennium Prize Problems, the Riemann Hypothesis and the

  11. Lattice QCD calculations of weak matrix elements

    NASA Astrophysics Data System (ADS)

    Detar, Carleton

    2017-01-01

    Lattice QCD has become the method of choice for calculating the hadronic environment of the electroweak interactions of quarks. So it is now an essential tool in the search for new physics beyond the Standard Model. Advances in computing power and algorithms have resulted in increasingly precise predictions and increasingly stringent tests of the Standard Model. I review results of recent calculations of weak matrix elements and discuss their implications for new physics. Supported by US NSF grant PHY10-034278.

  12. Twisted mass QCD for weak matrix elements

    NASA Astrophysics Data System (ADS)

    Pena, Carlos

    2006-12-01

    I report on the application of tmQCD techniques to the computation of hadronic matrix elements of four-fermion operators. Emphasis is put on the computation of BK in quenched QCD performed by the ALPHA Collaboration. The extension of tmQCD strategies to the study of neutral B- meson mixing is briefly discussed. Finally, some remarks are made concerning proposals to apply tmQCD to the computation of K → ππ amplitudes.

  13. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  14. Analyticity and the Holographic S-Matrix

    SciTech Connect

    Fitzpatrick, A.Liam; Kaplan, Jared; /SLAC

    2012-04-03

    We derive a simple relation between the Mellin amplitude for AdS/CFT correlation functions and the bulk S-Matrix in the flat spacetime limit, proving a conjecture of Penedones. As a consequence of the Operator Product Expansion, the Mellin amplitude for any unitary CFT must be a meromorphic function with simple poles on the real axis. This provides a powerful and suggestive handle on the locality vis-a-vis analyticity properties of the S-Matrix. We begin to explore analyticity by showing how the familiar poles and branch cuts of scattering amplitudes arise from the holographic description. For this purpose we compute examples of Mellin amplitudes corresponding to 1-loop and 2-loop Witten diagrams in AdS. We also examine the flat spacetime limit of conformal blocks, implicitly relating the S-Matrix program to the Bootstrap program for CFTs. We use this connection to show how the existence of small black holes in AdS leads to a universal prediction for the conformal block decomposition of the dual CFT.

  15. Matrix-bound nanovesicles within ECM bioscaffolds.

    PubMed

    Huleihel, Luai; Hussey, George S; Naranjo, Juan Diego; Zhang, Li; Dziki, Jenna L; Turner, Neill J; Stolz, Donna B; Badylak, Stephen F

    2016-06-01

    Biologic scaffold materials composed of extracellular matrix (ECM) have been used in a variety of surgical and tissue engineering/regenerative medicine applications and are associated with favorable constructive remodeling properties including angiogenesis, stem cell recruitment, and modulation of macrophage phenotype toward an anti-inflammatory effector cell type. However, the mechanisms by which these events are mediated are largely unknown. Matrix-bound nanovesicles (MBVs) are identified as an integral and functional component of ECM bioscaffolds. Extracellular vesicles (EVs) are potent vehicles of intercellular communication due to their ability to transfer RNA, proteins, enzymes, and lipids, thereby affecting physiologic and pathologic processes. Formerly identified exclusively in biologic fluids, the presence of EVs within the ECM of connective tissue has not been reported. In both laboratory-produced and commercially available biologic scaffolds, MBVs can be separated from the matrix only after enzymatic digestion of the ECM scaffold material, a temporal sequence similar to the functional activity attributed to implanted bioscaffolds during and following their degradation when used in clinical applications. The present study shows that MBVs contain microRNA capable of exerting phenotypical and functional effects on macrophage activation and neuroblastoma cell differentiation. The identification of MBVs embedded within the ECM of biologic scaffolds provides mechanistic insights not only into the inductive properties of ECM bioscaffolds but also into the regulation of tissue homeostasis.

  16. Extracellular Matrix, a Hard Player in Angiogenesis

    PubMed Central

    Mongiat, Maurizio; Andreuzzi, Eva; Tarticchio, Giulia; Paulitti, Alice

    2016-01-01

    The extracellular matrix (ECM) is a complex network of proteins, glycoproteins, proteoglycans, and polysaccharides. Through multiple interactions with each other and the cell surface receptors, not only the ECM determines the physical and mechanical properties of the tissues, but also profoundly influences cell behavior and many physiological and pathological processes. One of the functions that have been extensively explored is its impingement on angiogenesis. The strong impact of the ECM in this context is both direct and indirect by virtue of its ability to interact and/or store several growth factors and cytokines. The aim of this review is to provide some examples of the complex molecular mechanisms that are elicited by these molecules in promoting or weakening the angiogenic processes. The scenario is intricate, since matrix remodeling often generates fragments displaying opposite effects compared to those exerted by the whole molecules. Thus, the balance will tilt towards angiogenesis or angiostasis depending on the relative expression of pro- or anti-angiogenetic molecules/fragments composing the matrix of a given tissue. One of the vital aspects of this field of research is that, for its endogenous nature, the ECM can be viewed as a reservoir to draw from for the development of new more efficacious therapies to treat angiogenesis-dependent pathologies. PMID:27809279

  17. Polymer Matrix Composite Lines and Ducts

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    2001-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, a task was undertaken to assess the feasibility of making cryogenic feedlines with integral flanges from polymer matrix composite materials. An additional level of complexity was added by having the feedlines be elbow shaped. Four materials, each with a unique manufacturing method, were chosen for this program. Feedlines were to be made by hand layup (HLU) with standard autoclave cure, HLU with electron beam cure, solvent-assisted resin transfer molding (SARTM), and thermoplastic tape laying (TTL). A test matrix of fill and drain cycles with both liquid nitrogen and liquid helium, along with a heat up to 250 F, was planned for each of the feedlines. A pressurization to failure was performed on any feedlines that passed the cryogenic cycling testing. A damage tolerance subtask was also undertaken in this study. The effects of foreign object impact to the materials used was assessed by cross-sectional examination and by permeability after impact testing. At the end of the program, the manufacture of the electron beam-cured feedlines never came to fruition. All of the TTL feedlines leaked heavily before any cryogenic testing, all of the SARTM feedlines leaked heavily after one cryogenic cycle. Thus, only the HLU with autoclave cure feedlines underwent the complete test matrix. They passed the cyclic testing and were pressurized to failure.

  18. Multispectral palmprint recognition using a quaternion matrix.

    PubMed

    Xu, Xingpeng; Guo, Zhenhua; Song, Changjiang; Li, Yafeng

    2012-01-01

    Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR) illuminations were represented by a quaternion matrix, then principal component analysis (PCA) and discrete wavelet transform (DWT) were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%.

  19. Google matrix, dynamical attractors, and Ulam networks

    NASA Astrophysics Data System (ADS)

    Shepelyansky, D. L.; Zhirov, O. V.

    2010-03-01

    We study the properties of the Google matrix generated by a coarse-grained Perron-Frobenius operator of the Chirikov typical map with dissipation. The finite-size matrix approximant of this operator is constructed by the Ulam method. This method applied to the simple dynamical model generates directed Ulam networks with approximate scale-free scaling and characteristics being in certain features similar to those of the world wide web with approximate scale-free degree distributions as well as two characteristics similar to the web: a power-law decay in PageRank that mirrors the decay of PageRank on the world wide web and a sensitivity to the value α in PageRank. The simple dynamical attractors play here the role of popular websites with a strong concentration of PageRank. A variation in the Google parameter α or other parameters of the dynamical map can drive the PageRank of the Google matrix to a delocalized phase with a strange attractor where the Google search becomes inefficient.

  20. Constructing acoustic timefronts using random matrix theory.

    PubMed

    Hegewisch, Katherine C; Tomsovic, Steven

    2013-10-01

    In a recent letter [Hegewisch and Tomsovic, Europhys. Lett. 97, 34002 (2012)], random matrix theory is introduced for long-range acoustic propagation in the ocean. The theory is expressed in terms of unitary propagation matrices that represent the scattering between acoustic modes due to sound speed fluctuations induced by the ocean's internal waves. The scattering exhibits a power-law decay as a function of the differences in mode numbers thereby generating a power-law, banded, random unitary matrix ensemble. This work gives a more complete account of that approach and extends the methods to the construction of an ensemble of acoustic timefronts. The result is a very efficient method for studying the statistical properties of timefronts at various propagation ranges that agrees well with propagation based on the parabolic equation. It helps identify which information about the ocean environment can be deduced from the timefronts and how to connect features of the data to that environmental information. It also makes direct connections to methods used in other disordered waveguide contexts where the use of random matrix theory has a multi-decade history.

  1. Polymer matrix effects on acid generation

    NASA Astrophysics Data System (ADS)

    Fedynyshyn, Theodore H.; Goodman, Russell B.; Roberts, Jeanette

    2008-03-01

    We have measured the acid generation efficiency with EUV exposure of a PAG in different polymer matrixes representing the main classes of resist polymers as well as some previously described fluoropolymers for lithographic applications. The polymer matrix was found to have a significant effect on the acid generation efficiency of the PAG studied. A linear relationship exists between the absorbance of the resist and the acid generation efficiency. A second inverse relationship exists between Dill C and aromatic content of the resist polymer. It was shown that polymer sensitization is important for acid generation with EUV exposure and the Dill C parameter can be increased by up to five times with highly absorbing non-aromatic polymers, such as non-aromatic fluoropolymers, over an ESCAP polymer. The increase in the Dill C value will lead to an up to five fold increase in resist sensitivity. It is our expectation that these insights into the nature of polymer matrix effects on acid generation could lead to increased sensitivity for EUV resists.

  2. Matrix elasticity directs stem cell lineage specification

    NASA Astrophysics Data System (ADS)

    Discher, Dennis

    2010-03-01

    Adhesion of stem cells - like most cells - is not just a membrane phenomenon. Most tissue cells need to adhere to a ``solid'' for viability, and over the last decade it has become increasingly clear that the physical ``elasticity'' of that solid is literally ``felt'' by cells. Here we show that Mesenchymal Stem Cells (MSCs) specify lineage and commit to phenotypes with extreme sensitivity to the elasticity typical of tissues [1]. In serum only media, soft matrices that mimic brain appear neurogenic, stiffer matrices that mimic muscle are myogenic, and comparatively rigid matrices that mimic collagenous bone prove osteogenic. Inhibition of nonmuscle myosin II activity blocks all elasticity directed lineage specification, which indicates that the cytoskeleton pulls on matrix through adhesive attachments. Results have significant implications for `therapeutic' stem cells and have motivated development of a proteomic-scale method to identify mechano-responsive protein structures [2] as well as deeper physical studies of matrix physics [3] and growth factor pathways [4]. [4pt] [1] A. Engler, et al. Matrix elasticity directs stem cell lineage specification. Cell (2006).[0pt] [2] C.P. Johnson, et al. Forced unfolding of proteins within cells. Science (2007).[0pt] [3] A.E.X. Brown, et al. Multiscale mechanics of fibrin polymer: Gel stretching with protein unfolding and loss of water. Science (2009).[0pt] [4] D.E. Discher, et al. Growth factors, matrices, and forces combine and control stem cells. Science (2009).

  3. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Thompson, E. R.

    1980-01-01

    High levels of mechanical performance in tension, flexure, fatigue, and creep loading situations of graphite fiber reinforced glass matrix composites are discussed. At test temperatures of up to 813 K it was found that the major limiting factor was the oxidative instability of the reinforcing graphite fibers. Particular points to note include the following: (1) a wide variety of graphite fibers were found to be comparable with the glass matrix composite fabrication process; (2) choice of fiber, to a large extent, controlled resultant composite performance; (3) composite fatigue performance was found to be excellent at both 300 K and 703 K; (4) composite creep and stress rupture at temperatures of up to 813 K was limited by the oxidative stability of the fiber; (5) exceptionally low values of composite thermal expansion coefficient were attributable to the dimensional stability of both matrix and fiber; and (6) component fabricability was demonstrated through the hot pressing of hot sections and brazing using glass and metal joining phases.

  4. The Evidence Value Matrix for Diagnostic Imaging.

    PubMed

    Seidel, David; Frank, Richard A; Schmidt, Sebastian

    2016-10-01

    Evidence and value are independent factors that together affect the adoption of diagnostic imaging. For example, noncoverage decisions by reimbursement authorities can be justified by a lack of evidence and/or value. To create transparency and a common understanding among various stakeholders, we have proposed a two-dimensional matrix that allows classification of imaging devices into three distinct categories based on the available evidence and value: "question marks" (low value demonstrated in studies of any evidence level), "candidates" (high value demonstrated in retrospective case-control studies and smaller case series), and "stars" (high value demonstrated in large prospective cohort studies or, preferably, randomized controlled trials). We use several examples to illustrate the application of our matrix. A major benefit of the matrix includes the development of specific strategies for evidence and value generation. High-evidence/low-value studies are expensive and unlikely to convince decision makers, given the uncertainty of the impact on patient management and outcomes. Developing question marks into candidates first and then into stars will often be quicker and less expensive ("success sequence"). Only this more sophisticated and objective approach can justify the additional funding necessary to generate the evidence base to inform reimbursement by payers and adoption by providers.

  5. Properties of five toughened matrix composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Dow, Marvin B.

    1992-01-01

    The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.

  6. Matrix-bound phosphine in Antarctic biosphere.

    PubMed

    Zhu, Renbin; Sun, Liguang; Kong, Deming; Geng, Jinju; Wang, Ning; Wang, Qiang; Wang, Xiaorong

    2006-08-01

    Phosphine (PH(3)) is a natural gaseous carrier of phosphorus in its geochemical cycles, and it might be of importance to the phosphorus balance of natural ecosystem. For the first time phosphine levels were investigated in the Earth's coldest, driest, and most southerly Antarctic biosphere. Matrix-bound phosphine (MBP) was found in sea animal guanos, ornithogenic sediments and soils. Phosphine concentrations varied with different sea animal guanos. Average phosphine concentrations in empire penguin, gentoo penguin, sea lion, skua and gull guanos were 2.54+/-1.28 ng kg(-1), 6.21+/-2.15 ng kg(-1), 9.12+/-4.66 ng kg(-1), 11.90+/-1.29 ng kg(-1) and 14.55+/-6.74 ng kg(-1), respectively. The contents of phosphorus in these various matrixes have an important effect on MBP concentrations. The levels of phosphine appeared an increasing tendency with the content of TP, IP and OP in sea animal guanos, ornithogenic sediments or soils. The correlation between PH(3) and Fe, Mn, Al in these matrixes was also analyzed and discussed. Phosphine showed an obviously positive correlation with Fe in sea animal guanos. However, excessively high Fe, Al and Mn may inhibit the formation of PH(3) in the ornithogenic soils or sediments in the Antarctic biosphere.

  7. Gas chromatography/matrix-isolation apparatus

    DOEpatents

    Reedy, Gerald T.

    1986-01-01

    A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring.

  8. Matrix metalloproteinases in wound repair (review).

    PubMed

    Ravanti, L; Kähäri, V M

    2000-10-01

    Wound repair is initiated with the aggregation of platelets, formation of a fibrin clot, and release of growth factors from the activated coagulation pathways, injured cells, platelets, and extracellular matrix (ECM), followed by migration of inflammatory cells to the wound site. Thereafter, keratinocytes migrate over the wound, angiogenesis is initiated, and fibroblasts deposit and remodel the granulation tissue. Cell migration, angiogenesis, degradation of provisional matrix, and remodeling of newly formed granulation tissue, all require controlled degradation of the ECM. Disturbance in the balance between ECM production and degradation leads to formation of chronic ulcers with excessive ECM degradation, or to fibrosis, for example hypertrophic scars or keloids characterized by excessive accumulation of ECM components. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases, which as a group can degrade essentially all ECM components. So far, 20 members of the human MMP family have been identified. Based on their structure and substrate specificity, they can be divided into subgroups of collagenases, stromelysins, stromelysin-like MMPs, gelatinases, membrane-type MMPs (MT-MMPs), and other MMPs. In this review, the role of MMPs in normal wound repair as well as in chronic ulcers is discussed. In addition, the role of signaling pathways, in particular, mitogen-activated protein kinases (MAPKs) in regulating MMP expression is discussed as possible therapeutical targets for wound healing disorders.

  9. Matrix Metalloproteinases-7 and Kidney Fibrosis

    PubMed Central

    Ke, Ben; Fan, Chuqiao; Yang, Liping; Fang, Xiangdong

    2017-01-01

    Matrix metalloproteinase-7 (MMP-7) is a secreted zinc- and calcium-dependent endopeptidase that degrades a broad range of extracellular matrix substrates and additional substrates. MMP-7 playsa crucial role in a diverse array of cellular processes and appears to be a key regulator of fibrosis in several diseases, including pulmonary fibrosis, liver fibrosis, and cystic fibrosis. In particular, the relationship between MMP-7 and kidney fibrosis has attracted significant attention in recent years. Growing evidence indicates that MMP-7 plays an important role in the pathogenesis of kidney fibrosis. Here, we summarize the recent progress in the understanding of the role of MMP-7 in kidney fibrosis. In particular, we discuss how MMP-7 contributes to kidney fibrotic lesions via the following three pathways: epithelial-mesenchymal transition (EMT), transforming growth factor-beta (TGF-β) signaling, and extracellular matrix (ECM) deposition. Further dissection of the crosstalk among and regulation of these pathways will help clinicians and researchers develop effective therapeutic approaches for treating chronic kidney disease. PMID:28239354

  10. Two-Matrix Photometer Control System

    NASA Astrophysics Data System (ADS)

    Zhantayev, Zh. Sh.; Kuratov, K. S.; Seytimbetov, A. M.; Mailybayev, A. G.; Alimgazinova, N. Sh.; Manapbayeva, A. B.; Kuratova, A. K.; Iztleuov, N. T.

    In this paper astronomical two-matrix photometer is described. It differs from common one CCD camera photometers by using the second CCD camera. It enables simultaneously to carry out the studied star and standard star light inputs measurements. The second camera application enables significantly to increase measurements accuracy and at least twice time decrease of one star observation. The significant increase of measurements accuracy is reached by carrying out simultaneous observations, and errors caused by the Earth atmosphere fluctuation are the same as for studied star so for standard star. Time decrease is reached by carrying out both stars simultaneous observations. In the paper photometer's optical mechanics scheme is given. The motion mechanism of receiving and recording block with micrometer screw rotated by stepping motor is described. It is demonstrated that exact coordinates of matrix position attached to clutch on micrometer screw are shoot by absolute magnetic encoder. The applied two-matrix photometer control system electronic equipment is described. The photometer operation control algorithm installed on Tien-Shan astronomical observatory 1-meter telescope is presented.

  11. Supergravity Duals of Matrix String Theory

    NASA Astrophysics Data System (ADS)

    Morales, Jose F.; Samtleben, Henning

    2002-08-01

    We study holographic duals of type II and heterotic matrix string theories described by warped AdS3 supergravities. By explicitly solving the linearized equations of motion around near horizon D-string geometries, we determine the spectrum of Kaluza-Klein primaries for type I, II supergravities on warped AdS3 × S7. The results match those coming from the dual two-dimensional gauge theories living on the D-string worldvolumes. We briefly discuss the connections with the Script N = (8,8), Script N = (8,0) orbifold superconformal field theories to which type IIB/heterotic matrix strings flow in the infrared. In particular, we associate the dimension (h,bar h) = (3/2,3/2) twisted operator which brings the matrix string theories out from the conformal point (Bbb R8)N/SN with the dilaton profile in the supergravity background. The familiar dictionary between masses and ``scaling'' dimensions of field and operators are modified by the presence of non-trivial warp factors and running dilatons. These modifications are worked out for the general case of domain wall/QFT correspondences between supergravities on warped AdSd+1 × Sq geometries and super Yang-Mills theories with 16 supercharges.

  12. Thermoforming of thermoplastic matrix composites. Part I

    SciTech Connect

    Harper, R.C.

    1992-03-01

    Long-fiber-reinforced polymer matrix composites find widespread use in a variety of commercial applications requiring properties that cannot be provided by unreinforced plastics or other common materials of construction. However, thermosetting matrix resins have long been plagued by production processes that are slow and difficult to automate. This has limited the use of long-fiber-reinforced composites to relatively low productivity applications in which higher production costs can be justified. Unreinforced thermoplastics, by their very nature, can easily be made into sheet form and processed into a variety of formed shapes by various pressure assisted thermoforming means. It is possible to incorporate various types of fiber reinforcement to suit the end use of the thermoformed shape. Recently developed thermoplastic resins can also sometimes correct physical property deficiencies in a thermoset matrix composite. Many forms of thermoplastic composite material now exist that meet all the requirements of present day automotive and aerospace parts. Some of these are presently in production, while others are still in the development stage. This opens the possibility that long-fiber-reinforced thermoplastics might break the barrier that has long limited the applications for fiber-reinforced composites. 37 refs., 8 figs., 5 tabs.

  13. Multispectral Palmprint Recognition Using a Quaternion Matrix

    PubMed Central

    Xu, Xingpeng; Guo, Zhenhua; Song, Changjiang; Li, Yafeng

    2012-01-01

    Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR) illuminations were represented by a quaternion matrix, then principal component analysis (PCA) and discrete wavelet transform (DWT) were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%. PMID:22666049

  14. Airway and Extracellular Matrix Mechanics in COPD

    PubMed Central

    Bidan, Cécile M.; Veldsink, Annemiek C.; Meurs, Herman; Gosens, Reinoud

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases worldwide, and is characterized by airflow obstruction that is not fully reversible with treatment. Even though airflow obstruction is caused by airway smooth muscle contraction, the extent of airway narrowing depends on a range of other structural and functional determinants that impact on active and passive tissue mechanics. Cells and extracellular matrix in the airway and parenchymal compartments respond both passively and actively to the mechanical stimulation induced by smooth muscle contraction. In this review, we summarize the factors that regulate airway narrowing and provide insight into the relative contributions of different constituents of the extracellular matrix and their biomechanical impact on airway obstruction. We then review the changes in extracellular matrix composition in the airway and parenchymal compartments at different stages of COPD, and finally discuss how these changes impact airway narrowing and the development of airway hyperresponsiveness. Finally, we position these data in the context of therapeutic research focused on defective tissue repair. As a conclusion, we propose that future works should primarily target mild or early COPD, prior to the widespread structural changes in the alveolar compartment that are more characteristic of severe COPD. PMID:26696894

  15. Full CKM matrix with lattice QCD

    SciTech Connect

    Okamoto, Masataka; /Fermilab

    2004-12-01

    The authors show that it is now possible to fully determine the CKM matrix, for the first time, using lattice QCD. |V{sub cd}|, |V{sub cs}|, |V{sub ub}|, |V{sub cb}| and |V{sub us}| are, respectively, directly determined with the lattice results for form factors of semileptonic D {yields} {pi}lv, D {yields} Klv, B {yields} {pi}lv, B {yields} Dlv and K {yields} {pi}lv decays. The error from the quenched approximation is removed by using the MILC unquenced lattice gauge configurations, where the effect of u, d and s quarks is included. The error from the ''chiral'' extrapolation (m{sub l} {yields} m{sub ud}) is greatly reduced by using improved staggered quarks. The accuracy is comparable to that of the Particle Data Group averages. In addition, |V{sub ud}|, |V{sub ts}|, |V{sub ts}| and |V{sub td}| are determined by using unitarity of the CKM matrix and the experimental result for sin (2{beta}). In this way, they obtain all 9 CKM matrix elements, where the only theoretical input is lattice QCD. They also obtain all the Wolfenstein parameters, for the first time, using lattice QCD.

  16. Matrix Metalloproteinases in Non-Neoplastic Disorders

    PubMed Central

    Tokito, Akinori; Jougasaki, Michihisa

    2016-01-01

    The matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. There are at least 23 members of MMPs ever reported in human, and they and their substrates are widely expressed in many tissues. Recent growing evidence has established that MMP not only can degrade a variety of components of extracellular matrix, but also can cleave and activate various non-matrix proteins, including cytokines, chemokines and growth factors, contributing to both physiological and pathological processes. In normal conditions, MMP expression and activity are tightly regulated via interactions between their activators and inhibitors. Imbalance among these factors, however, results in dysregulated MMP activity, which causes tissue destruction and functional alteration or local inflammation, leading to the development of diverse diseases, such as cardiovascular disease, arthritis, neurodegenerative disease, as well as cancer. This article focuses on the accumulated evidence supporting a wide range of roles of MMPs in various non-neoplastic diseases and provides an outlook on the therapeutic potential of inhibiting MMP action. PMID:27455234

  17. Matrix-bound nanovesicles within ECM bioscaffolds

    PubMed Central

    Huleihel, Luai; Hussey, George S.; Naranjo, Juan Diego; Zhang, Li; Dziki, Jenna L.; Turner, Neill J.; Stolz, Donna B.; Badylak, Stephen F.

    2016-01-01

    Biologic scaffold materials composed of extracellular matrix (ECM) have been used in a variety of surgical and tissue engineering/regenerative medicine applications and are associated with favorable constructive remodeling properties including angiogenesis, stem cell recruitment, and modulation of macrophage phenotype toward an anti-inflammatory effector cell type. However, the mechanisms by which these events are mediated are largely unknown. Matrix-bound nanovesicles (MBVs) are identified as an integral and functional component of ECM bioscaffolds. Extracellular vesicles (EVs) are potent vehicles of intercellular communication due to their ability to transfer RNA, proteins, enzymes, and lipids, thereby affecting physiologic and pathologic processes. Formerly identified exclusively in biologic fluids, the presence of EVs within the ECM of connective tissue has not been reported. In both laboratory-produced and commercially available biologic scaffolds, MBVs can be separated from the matrix only after enzymatic digestion of the ECM scaffold material, a temporal sequence similar to the functional activity attributed to implanted bioscaffolds during and following their degradation when used in clinical applications. The present study shows that MBVs contain microRNA capable of exerting phenotypical and functional effects on macrophage activation and neuroblastoma cell differentiation. The identification of MBVs embedded within the ECM of biologic scaffolds provides mechanistic insights not only into the inductive properties of ECM bioscaffolds but also into the regulation of tissue homeostasis. PMID:27386584

  18. Molecular imprinting in sol-gel matrix.

    PubMed

    Gupta, Radha; Kumar, Ashok

    2008-01-01

    Molecular imprinting is a newly developed methodology which provides molecular assemblies of desired structures and properties and is being increasingly used for several applications such as in separation processes, microreactors, immunoassays and antibody mimics, catalysis, artificial enzymes, biosensor recognition elements and bio- and chemo-sensors. The ambient processing conditions and versatility of the sol-gel process makes sol-gel glassy matrix suitable for molecular imprinting. The progress of sol-gel based molecular imprinted polymers (MIPs) for various applications can be seen from the growing number of publications. The main focus of the review is molecular imprinting in sol-gel matrix and applications of molecular imprinted sol-gel derived materials for the development of sensors. Combining sol-gel process with molecular imprinting enables to procure the sensors with greater sensitivity and selectivity necessary for sensing applications. The merits, problems, challenges and factors affecting molecular imprinting in sol-gel matrix have been discussed. Considerable attention has been drawn on recent developments like use of organically modified silane precursors (ORMOSILS) for the synthesis of hybrid molecular imprinted polymers (HMIPs) and applying surface sol-gel process for molecular imprinting. The development of molecular imprinted sol-gel nanotubes for biochemical separation and bio-imprinting is a new advancement and is under progress. Templated xerogels and molecularly imprinted sol-gel films provide a good platform for various sensor applications.

  19. Measuring Entanglement Spectrum via Density Matrix Exponentiation

    NASA Astrophysics Data System (ADS)

    Zhu, Guanyu; Seif, Alireza; Pichler, Hannes; Zoller, Peter; Hafezi, Mohammad

    Entanglement spectrum (ES), the eigenvalues of the reduced density matrix of a subsystem, serves as a powerful theoretical tool to study many-body systems. For example, the gap and degeneracies of the entanglement spectrum have been used to identify various topological phases. However, the usefulness of such a concept in real experiments has been debated, since it is believed that obtaining the ES requires full state tomography, at a cost which exponentially grows with the systems size. Inspired by a recent density matrix exponentiation technique, we propose a scheme to measure ES by evolving the system with a Hamiltonian that is the subsystem's own reduced density matrix. Such a time evolution can be induced by an ancilla photon that is coupled to multiple qubits at the same time. The phase associated with the time evolution can be detected and converted into ES through either a digital or an analogue scheme. The digital scheme involves a modified quantum phase estimation algorithm based on random time evolution, while the analogue scheme is in the spirit of Ramsey interferometry. Both schemes are not limited by the size of the system, and are especially sensitive to the gap and degeneracies. We also discuss the implementation in cavity/circuit-QED and ion trap systems.

  20. Renormalization group equations for the CKM matrix

    SciTech Connect

    Kielanowski, P.; Juarez W, S. R.; Montes de Oca Y, J. H.

    2008-12-01

    We derive the one loop renormalization group equations for the Cabibbo-Kobayashi-Maskawa (CKM) matrix for the standard model, its two Higgs extension, and the minimal supersymmetric extension in a novel way. The derived equations depend only on a subset of the model parameters of the renormalization group equations for the quark Yukawa couplings so the CKM matrix evolution cannot fully test the renormalization group evolution of the quark Yukawa couplings. From the derived equations we obtain the invariant of the renormalization group evolution for three models which is the angle {phi}{sub 2} of the unitarity triangle. For the special case of the standard model and its extensions with v{sub 1}{approx_equal}v{sub 2} we demonstrate that also the shape of the unitarity triangle and the Buras-Wolfenstein parameters {rho} and {eta} are conserved. The invariance of the angles of the unitarity triangle means that it is not possible to find a model in which the CKM matrix might have a simple, special form at asymptotic energies.

  1. Properties of melt extruded enteric matrix pellets.

    PubMed

    Schilling, Sandra U; Shah, Navnit H; Waseem Malick, A; McGinity, James W

    2010-02-01

    The objective of this study was to investigate the properties of enteric matrix pellets that were prepared by hot-melt extrusion in a one-step, continuous process. Five polymers (Eudragit) L100-55, L100 and S100, Aqoat grades LF and HF) were investigated as possible matrix formers, and pellets prepared with Eudragit S100 demonstrated superior gastric protection and acceptable processibility. Extruded pellets containing Eudragit S100 and up to 40% theophylline released less than 10% drug over 2h in acid, however, the processibility and yields were compromised by the high amounts of the non-melting drug material in the formulation. Efficient plasticization of Eudragit S100 was necessary to reduce the polymer's glass transition temperature and melt viscosity. Five compounds including triethyl citrate, methylparaben, polyethylene glycol 8000, citric acid monohydrate and acetyltributyl citrate were investigated in terms of plasticization efficiency and preservation of the delayed drug release properties. The aqueous solubility of the plasticizer and its plasticization efficiency impacted the drug release rate from the matrix pellets. The use of water-soluble plasticizers resulted in a loss of gastric protection, whereas low drug release rates in acid were found for pellets containing insoluble plasticizers or no plasticizer, independent of the extent of Eudragit S100 plasticization. The release rate of theophylline in buffer pH 7.4 was faster for pellets that were prepared with efficient plasticizers. The microstructure and solid-state properties of plasticized pellets were further investigated by scanning electron microscopy and powder X-ray diffraction. Pellets prepared with efficient plasticizers (TEC, methylparaben, PEG 8000) exhibited matrices of low porosity, and the drug was homogeneously dispersed in its original polymorphic form. Pellets containing ATBC or citric acid monohydrate had to be extruded at elevated temperature and showed physical instabilities in

  2. The Project-Oriented Matrix and Instructional Development Project Management.

    ERIC Educational Resources Information Center

    Clymer, E. William

    1984-01-01

    Describes organizational factors that influence most instructional development projects, relates them to the features of the project-oriented matrix, and lists and explains specific matrix management strategies that instructional developers can use to solve common management problems. (MBR)

  3. Using SEM Programs To Perform Matrix Manipulations and Data Simulation.

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.; Boyd, Jeremy

    2003-01-01

    Illustrates how commonly available structural equation modeling programs can be used to conduct some basic matrix manipulations and generate multivariate normal data with given means and positive definite covariance matrix. Demonstrates the outlined procedure. (SLD)

  4. Involvement of extracellular matrix constituents in breast cancer

    SciTech Connect

    Lochter, Andre; Bissell, Mina J

    1995-06-01

    It has recently been established that the extracellular matrix is required for normal functional differentiation of mammary epithelia not only in culture, but also in vivo. The mechanisms by which extracellular matrix affects differentiation, as well as the nature of extracellular matrix constituents which have major impacts on mammary gland function, have only now begun to be dissected. The intricate variety of extracellular matrix-mediated events and the remarkable degree of plasticity of extracellular matrix structure and composition at virtually all times during ontogeny, make such studies difficult. Similarly, during carcinogenesis, the extracellular matrix undergoes gross alterations, the consequences of which are not yet precisely understood. Nevertheless, an increasing amount of data suggests that the extracellular matrix and extracellular matrix-receptors might participate in the control of most, if not all, of the successive stages of breast tumors, from appearance to progression and metastasis.

  5. Novel entries in a fungal biofilm matrix encyclopedia.

    PubMed

    Zarnowski, Robert; Westler, William M; Lacmbouh, Ghislain Ade; Marita, Jane M; Bothe, Jameson R; Bernhardt, Jörg; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Sanchez, Hiram; Hatfield, Ronald D; Ntambi, James M; Nett, Jeniel E; Mitchell, Aaron P; Andes, David R

    2014-08-05

    Virulence of Candida is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we provide a comprehensive analysis of the matrix manufactured by Candida albicans both in vitro and in a clinical niche animal model. We further explore the function of matrix components, including the impact on drug resistance. We uncovered components from each of the macromolecular classes (55% protein, 25% carbohydrate, 15% lipid, and 5% nucleic acid) in the C. albicans biofilm matrix. Three individual polysaccharides were identified and were suggested to interact physically. Surprisingly, a previously identified polysaccharide of functional importance, β-1,3-glucan, comprised only a small portion of the total matrix carbohydrate. Newly described, more abundant polysaccharides included α-1,2 branched α-1,6-mannans (87%) associated with unbranched β-1,6-glucans (13%) in an apparent mannan-glucan complex (MGCx). Functional matrix proteomic analysis revealed 458 distinct activities. The matrix lipids consisted of neutral glycerolipids (89.1%), polar glycerolipids (10.4%), and sphingolipids (0.5%). Examination of matrix nucleic acid identified DNA, primarily noncoding sequences. Several of the in vitro matrix components, including proteins and each of the polysaccharides, were also present in the matrix of a clinically relevant in vivo biofilm. Nuclear magnetic resonance (NMR) analysis demonstrated interaction of aggregate matrix with the antifungal fluconazole, consistent with a role in drug impedance and contribution of multiple matrix components. Importance: This report is the first to decipher the complex and unique macromolecular composition of the Candida biofilm matrix, demonstrate the clinical relevance of matrix components, and show that multiple matrix components are needed

  6. String coupling and interactions in type IIB matrix model

    SciTech Connect

    Kitazawa, Yoshihisa; Nagaoka, Satoshi

    2009-05-15

    We investigate the interactions of closed strings in a IIB matrix model. The basic interaction of the closed superstring is realized by the recombination of two intersecting strings. Such interaction is investigated in a IIB matrix model via two-dimensional noncommutative gauge theory in the IR limit. By estimating the probability of the recombination, we identify the string coupling g{sub s} in the IIB matrix model. We confirm that our identification is consistent with matrix string theory.

  7. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 1; Matrix Constitutive Equations

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.

  8. Another elementary proof of the Jordan form of a matrix

    NASA Astrophysics Data System (ADS)

    Budhi, Wono Setya

    2012-05-01

    In this paper we establish the Jordan Form for a matrix using the elementary concepts of vector differentiation and partial fractions. The idea comes from the resolvent of the operator. For the matrix, the Laurent series is finite and easy to compute through rational representation. We also give a proof of some famous theorems in matrix analysis as consequences from the result.

  9. Teaching Improvement Model Designed with DEA Method and Management Matrix

    ERIC Educational Resources Information Center

    Montoneri, Bernard

    2014-01-01

    This study uses student evaluation of teachers to design a teaching improvement matrix based on teaching efficiency and performance by combining management matrix and data envelopment analysis. This matrix is designed to formulate suggestions to improve teaching. The research sample consists of 42 classes of freshmen following a course of English…

  10. Dot Matrix Impact Printers: An Overview and Guide.

    ERIC Educational Resources Information Center

    Warden, William H.; Warden, Bette M.

    1983-01-01

    Comparison of dot matrix impact printers details price, matrix density, speed, print sizes, feed width, interface connectors, and true descender characteristics. Dot matrix versus preformed characters, maintenance and repair, installing printers at microcomputer workstations, value comparisons, and descriptions of specific printers are…

  11. Matrix Training of Preliteracy Skills with Preschoolers with Autism

    ERIC Educational Resources Information Center

    Axe, Judah B.; Sainato, Diane M.

    2010-01-01

    Matrix training is a generative approach to instruction in which words are arranged in a matrix so that some multiword phrases are taught and others emerge without direct teaching. We taught 4 preschoolers with autism to follow instructions to perform action-picture combinations (e.g., circle the pepper, underline the deer). Each matrix contained…

  12. Conversion of a Rhotrix to a "Coupled Matrix"

    ERIC Educational Resources Information Center

    Sani, B.

    2008-01-01

    In this note, a method of converting a rhotrix to a special form of matrix termed a "coupled matrix" is proposed. The special matrix can be used to solve various problems involving n x n and (n - 1) x (n - 1) matrices simultaneously.

  13. 48 CFR 2152.370 - Use of the matrix.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GROUP LIFE INSURANCE FEDERAL ACQUISITION REGULATION CLAUSES AND FORMS PRECONTRACT PROVISIONS AND CONTRACT CLAUSES Provision and Clause Matrix 2152.370 Use of the matrix. (a) The matrix in this section... M FAR 52.203-5 FAR 3.404 Covenant against Contingent Fees M FAR 52.203-6 FAR 3.503-2 Restrictions...

  14. Condition and Error Estimates in Numerical Matrix Computations

    SciTech Connect

    Konstantinov, M. M.; Petkov, P. H.

    2008-10-30

    This tutorial paper deals with sensitivity and error estimates in matrix computational processes. The main factors determining the accuracy of the result computed in floating--point machine arithmetics are considered. Special attention is paid to the perturbation analysis of matrix algebraic equations and unitary matrix decompositions.

  15. Modeling the Effect of Multiple Matrix Cracking Modes on Cyclic Hysteresis Loops of 2D Woven Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2016-08-01

    In this paper, the effect of multiple matrix cracking modes on cyclic loading/unloading hysteresis loops of 2D woven ceramic-matrix composites (CMCs) has been investigated. The interface slip between fibers and the matrix existed in matrix cracking mode 3 and mode 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, are considered as the major reason for hysteresis loops of 2D woven CMCs. The effects of fiber volume content, peak stress, matrix crack spacing, interface properties, matrix cracking mode proportion and interface wear on interface slip and hysteresis loops have been analyzed. The cyclic loading/unloading hysteresis loops of 2D woven SiC/SiC composite corresponding to different peak stresses have been predicted using the present analysis. It was found that the damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire cracking modes of the composite, increases with increasing peak stress.

  16. Chondrites: The Compaction of Fine Matrix and Matrix-like Chondrule Rims

    NASA Astrophysics Data System (ADS)

    Wasson, J. T.

    1995-09-01

    Primitive chondritic meteorites mainly consist of chondrules, sulfide+/-metal, and fine-grained matrix. The most unequilibrated chondrites preserve in their phase compositions and, to a lesser degree, their textures, many details about processes that occurred in the solar nebula. On the other hand, much of the textural evidence records processes that occurred in or on the parent body. I suggest that the low-porosity of chondrule matrix and matrix-like rims reflects compaction processes that occurred in asteroid-size bodies, and that neither matrix lumps nor compact matrix-like rims on chondrules could have achieved their observed low porosities in the solar nebula. Recent theoretical studies by Donn and Meakin (1) and Chokshi et al. (2) have concluded that grain-grain sticking in the solar nebula mainly produces fluffy structures having very high porosities (probably >>50%). If these structures grow large enough, they can provide an aerogel-like matrix that can trap chondrules as well as metal and sulfide grains, and thus form suitable precursors of chondritic meteorites. However, the strength of any such structure formed in the solar nebula must be a trivial fraction of that required to survive passage through the Earth's atmosphere in order to fall as a meteorite. The best evidence of accretionary structures appears to be that reported by Metzler et al. (3). They made SEM images of entire thin sections of CM chondrites, and showed that, in the best preserved chondrites, rims are present on all entitities--on chondrules, chondrule fragments, refractory inclusions, etc. A study by Krot and Wasson (4) shows a more complex situation in ordinary chondrites. Although matrix is common, a sizable fraction of chondrules are not surrounded by matrix-like rims. As summarized by Rubin and Krot (1995), there are reports of small textural and compositional differences between matrix lumps and mean matrix-like chondrule rims, but there is so much overlap in properties between

  17. SALTSTONE MATRIX CHARACTERIZATION AND STADIUM SIMULATION RESULTS

    SciTech Connect

    Langton, C.

    2009-07-30

    SIMCO Technologies, Inc. was contracted to evaluate the durability of the saltstone matrix material and to measure saltstone transport properties. This information will be used to: (1) Parameterize the STADIUM{reg_sign} service life code, (2) Predict the leach rate (degradation rate) for the saltstone matrix over 10,000 years using the STADIUM{reg_sign} concrete service life code, and (3) Validate the modeled results by conducting leaching (water immersion) tests. Saltstone durability for this evaluation is limited to changes in the matrix itself and does not include changes in the chemical speciation of the contaminants in the saltstone. This report summarized results obtained to date which include: characterization data for saltstone cured up to 365 days and characterization of saltstone cured for 137 days and immersed in water for 31 days. Chemicals for preparing simulated non-radioactive salt solution were obtained from chemical suppliers. The saltstone slurry was mixed according to directions provided by SRNL. However SIMCO Technologies Inc. personnel made a mistake in the premix proportions. The formulation SIMCO personnel used to prepare saltstone premix was not the reference mix proportions: 45 wt% slag, 45 wt% fly ash, and 10 wt% cement. SIMCO Technologies Inc. personnel used the following proportions: 21 wt% slag, 65 wt% fly ash, and 14 wt% cement. The mistake was acknowledged and new mixes have been prepared and are curing. The results presented in this report are assumed to be conservative since the excessive fly ash was used in the SIMCO saltstone. The SIMCO mixes are low in slag which is very reactive in the caustic salt solution. The impact is that the results presented in this report are expected to be conservative since the samples prepared were deficient in slag and contained excess fly ash. The hydraulic reactivity of slag is about four times that of fly ash so the amount of hydrated binder formed per unit volume in the SIMCO saltstone samples is

  18. Error analysis and feasibility study of dynamic stiffness matrix-based damping matrix identification

    NASA Astrophysics Data System (ADS)

    Ozgen, Gokhan O.; Kim, Jay H.

    2009-02-01

    Developing a method to formulate a damping matrix that represents the actual spatial distribution and mechanism of damping of the dynamic system has been an elusive goal. The dynamic stiffness matrix (DSM)-based damping identification method proposed by Lee and Kim is attractive and promising because it identifies the damping matrix from the measured DSM without relying on any unfounded assumptions. However, in ensuing works it was found that damping matrices identified from the method had unexpected forms and showed traces of large variance errors. The causes and possible remedies of the problem are sought for in this work. The variance and leakage errors are identified as the major sources of the problem, which are then related to system parameters through numerical and experimental simulations. An improved experimental procedure is developed to reduce the effect of these errors in order to make the DSM-based damping identification method a practical option.

  19. Analytical techniques for instrument design - matrix methods

    SciTech Connect

    Robinson, R.A.

    1997-09-01

    We take the traditional Cooper-Nathans approach, as has been applied for many years for steady-state triple-axis spectrometers, and consider its generalisation to other inelastic scattering spectrometers. This involves a number of simple manipulations of exponentials of quadratic forms. In particular, we discuss a toolbox of matrix manipulations that can be performed on the 6- dimensional Cooper-Nathans matrix: diagonalisation (Moller-Nielsen method), coordinate changes e.g. from ({Delta}k{sub I},{Delta}k{sub F} to {Delta}E, {Delta}Q & 2 dummy variables), integration of one or more variables (e.g. over such dummy variables), integration subject to linear constraints (e.g. Bragg`s Law for analysers), inversion to give the variance-covariance matrix, and so on. We show how these tools can be combined to solve a number of important problems, within the narrow-band limit and the gaussian approximation. We will argue that a generalised program that can handle multiple different spectrometers could (and should) be written in parallel to the Monte-Carlo packages that are becoming available. We will also discuss the complementarity between detailed Monte-Carlo calculations and the approach presented here. In particular, Monte-Carlo methods traditionally simulate the real experiment as performed in practice, given a model scattering law, while the Cooper-Nathans method asks the inverse question: given that a neutron turns up in a particular spectrometer configuration (e.g. angle and time of flight), what is the probability distribution of possible scattering events at the sample? The Monte-Carlo approach could be applied in the same spirit to this question.

  20. Curing of epoxy matrix composite in stratosphere

    NASA Astrophysics Data System (ADS)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela

    Large structures for habitats, greenhouses, space bases, space factories are needed for next stage of space exploitation. A new approach enabling large-size constructions in space relies on the use of the polymerization technology of fiber-filled composites with a curable polymer matrix applied in the free space environment. The polymerisation process is proposed for the material exposed to high vacuum, dramatic temperature changes, space plasma, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The stratospheric flight experiments are directed to an investigation of the curing polymer matrix under the stratospheric conditions on. The unique combination of low atmospheric pressure, high intensity UV radiation including short wavelength UV and diurnal temperature variations associated with solar irradiation strongly influences the chemical processes in polymeric materials. The first flight experiment with uncured composites was a part of the NASA scientific balloon flight program realised at the NASA stratospheric balloon station in Alice Springs, Australia. A flight cassette installed on payload was lifted with a “zero-pressure” stratospheric balloon filled with Helium. Columbia Scientific Balloon Facility (CSBF) provided the launch, flight telemetry and landing of the balloon and payload. A cassette of uncured composite materials with an epoxy resin matrix was exposed 3 days in the stratosphere (40 km altitude). The second flight experiment was realised in South Australia in 2012, when the cassette was exposed in 27 km altitude. An analysis of the chemical structure of the composites showed, that the space irradiations are responsible for crosslinking of the uncured polymers exposed in the stratosphere. The first prepreg in the world was cured successfully in stratosphere. The investigations were supported by Alexander von Humboldt Foundation, NASA and RFBR (12-08-00970) grants.