DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, M.N.; Vire, D.E.
This article reviews the role chloroform has played in dentistry and describes an occupational health clinical investigation into the possible hazards of chloroform use in the operatory. Due to a Food and Drug Administration ban on drugs and cosmetics containing chloroform, there has been some confusion as to whether the use of chloroform in the practice of dentistry is considered unsafe or has been prohibited. Utilizing common endodontic treatment methods employing chloroform, this study reports no negative health effects to the dentist or assistant and air vapor levels well below Occupational Health and Safety Administration mandated maximum levels. The reportmore » concludes that, with careful and controlled use, chloroform can be a useful adjunct in the practice of dentistry. The Food and Drug Administration has no jurisdiction over a dentist's use of chloroform in clinical practice and has not proven that chloroform is a human carcinogen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang Cheng; Behr, Melissa; Xie Fang
2008-02-15
Chloroform causes hepatic and renal toxicity in a number of species. In vitro studies have indicated that chloroform can be metabolized by P450 enzymes in the kidney to nephrotoxic intermediate, although direct in vivo evidence for the role of renal P450 in the nephrotoxicity has not been reported. This study was to determine whether chloroform renal toxicity persists in a mouse model with a liver-specific deletion of the P450 reductase (Cpr) gene (liver-Cpr-null). Chloroform-induced renal toxicity and chloroform tissue levels were compared between the liver-Cpr-null and wild-type mice at 24 h following differing doses of chloroform. At a chloroform dosemore » of 150 mg/kg, the levels of blood urea nitrogen (BUN) were five times higher in the exposed group than in the vehicle-treated one for the liver-Cpr-null mice, but they were only slightly higher in the exposed group than in the vehicle-treated group for the wild-type mice. Severe lesions were found in the kidney of the liver-Cpr-null mice, while only mild lesions were found in the wild-type mice. At a chloroform dose of 300 mg/kg, severe kidney lesions were observed in both strains, yet the BUN levels were still higher in the liver-Cpr-null than in the wild-type mice. Higher chloroform levels were found in the tissues of the liver-Cpr-null mice. These findings indicated that loss of hepatic P450-dependent chloroform metabolism does not protect against chloroform-induced renal toxicity, suggesting that renal P450 enzymes play an essential role in chloroform renal toxicity.« less
Kwak, Kyungwon; Rosenfeld, Daniel E; Chung, Jean K; Fayer, Michael D
2008-11-06
Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions.
Apparent pollution of groundwater caused by natural formation of chloroform in forest soils
NASA Astrophysics Data System (ADS)
Jacobsen, O.; Laier, T.; Albers, C. N.; Hunkeler, D.
2011-12-01
Halogenated compounds are known to be formed in natural environments. Many of these compounds are similar to industrially produced compounds and are toxic or carcinogenic. High concentration of chloroform in groundwater is usually attributed to anthropogenic input, but we have found that the groundwater beneath some pristine areas contained chloroform exceeding 1 μg/L. We investigated four coniferous forests over a period of several years in order to measure the net-formation of chloroform. Field measurements of atmospheric and soil air concentrations of chloroform were monitored. Analyses of soil air at 40 cm depth in different parts of the forests and adjacent areas revealed an extremely large variation in chloroform concentration exceeding two orders of magnitude. Up to 100 ppbv was found in soil air under the spruce forest, to be compared to an ambient atmospheric concentration of 0.02 ppbv. The concentration of chloroform in soil air showed seasonal variation similar to that of CO2. Chloroform formation during incubation of undisturbed top-soil samples was found to be largest in soils from dense conifers stands with well-developed humus layers, while low chloroform formation occurred in soils from beech forest and agricultural grassland. We suggest that the mechanism behind the formation of chloroform is an unspecific chlorination of organic matter, caused by microbial activity in the soil. The aquifers are in fluvio-glacial sands with few layers of silt and a groundwater table from 4 to 7 m below the surface. In the shallowest parts of the aquifer, the groundwater has chloroform concentrations of 0.1 to 5 μg/L, and the groundwater is oxic with an age from 5 to 45 years using CFC-dating. Analyses of oxic groundwater > 40 years showed that it still contained chloroform at concentrations of 1 μg/L. Stable carbon isotopic analyses of chloroform from the uppermost groundwater in different parts of the forests and from soil water showed values from δ13C = -13 % to -27 %, corresponding to the ratio in natural organic materials and quite different from those of industrial products and from contaminated groundwater (δ13C = -46 % to -63 %). The isotopic ratio showed a minor decrease with depth due to a decomposition of chloroform. Measurements in a groundwater transect in one of the forest areas indicated that anoxic conditions in the groundwater depleted chloroform totally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philip, Binu K.; Anand, Sathanandam S.; Palkar, Prajakta S.
2006-10-01
Protection offered by pre-exposure priming with a small dose of a toxicant against the toxic and lethal effects of a subsequently administered high dose of the same toxicant is autoprotection. Although autoprotection has been extensively studied with diverse toxicants in acute exposure regimen, not much is known about autoprotection after priming with repeated exposure. The objective of this study was to investigate this concept following repeated exposure to a common water contaminant, chloroform. Swiss Webster (SW) mice, exposed continuously to either vehicle (5% Emulphor, unprimed) or chloroform (150 mg/kg/day po, primed) for 30 days, were challenged with a normally lethalmore » dose of chloroform (750 mg chloroform/kg po) 24 h after the last exposure. As expected, 90% of the unprimed mice died between 48 and 96 h after administration of the lethal dose in contrast to 100% survival of mice primed with chloroform. Time course studies indicated lower hepato- and nephrotoxicity in primed mice as compared to unprimed mice. Hepatic CYP2E1, glutathione levels (GSH), and covalent binding of {sup 14}C-chloroform-derived radiolabel did not differ between livers of unprimed and primed mice after lethal dose exposure, indicating that protection in liver is neither due to decreased bioactivation nor increased detoxification. Kidney GSH and glutathione reductase activity were upregulated, with a concomitant reduction in oxidized glutathione in the primed mice following lethal dose challenge, leading to decreased renal covalent binding of {sup 14}C-chloroform-derived radiolabel, in the absence of any change in CYP2E1 levels. Buthionine sulfoximine (BSO) intervention led to 70% mortality in primed mice challenged with lethal dose. These data suggest that higher detoxification may play a role in the lower initiation of kidney injury observed in primed mice. Exposure of primed mice to a lethal dose of chloroform led to 40% lower chloroform levels (AUC{sub 15-360min}) in the systemic circulation. Exhalation of {sup 14}C-chloroform was unchanged in primed as compared to unprimed mice (AUC{sub 1-6h}). Urinary excretion of {sup 14}C-chloroform was higher in primed mice after administration of the lethal dose. However, neither slightly higher urinary elimination nor unchanged expiration can account for the difference in systemic levels of chloroform. Liver and kidney regeneration was inhibited by the lethal dose in unprimed mice leading to progressive injury, organ failure, and 90% mortality. In contrast, sustained and highly stimulated compensatory hepato- and nephrogenic repair prevented the progression of injury resulting in 100% survival of primed mice challenged with the lethal dose. These findings affirm the critical role of tissue regeneration and favorable detoxification (only in kidney) of the lethal dose of chloroform in subchronic chloroform priming-induced autoprotection.« less
Bacterial Cellular Materials as Precursors of Chloroform
NASA Astrophysics Data System (ADS)
Wang, J.; Ng, T.; Zhang, Q.; Chow, A. T.; Wong, P.
2011-12-01
The environmental sources of chloroform and other halocarbons have been intensively investigated because their effects of stratospheric ozone destruction and environmental toxicity. It has been demonstrated that microorganisms could facilitate the biotic generation of chloroform from natural organic matters in soil, but whether the cellular materials itself also serves as an important precursor due to photo-disinfection is poorly known. Herein, seven common pure bacterial cultures (Acinetobacter junii, Aeromonas hydrophila, Bacillus cereus, Bacillus substilis, Escherichia coli, Shigella sonnei, Staphylococcus sciuri) were chlorinated to evaluate the yields of chloroform, dibromochloromethane, dichlorobromomethane, and bromoform. The effects of bromide on these chemical productions and speciations were also investigated. Results showed that, on average, 5.64-36.42 μg-chloroform /mg-C were generated during the bacterial chlorination, in similar order of magnitude to that generated by humic acid (previously reported as 78 μg-chloroform/mg-C). However, unlike humic acid in water chlorination, chloroform concentration did not simply increase with the total organic carbon in water mixture. In the presence of bromide, the yield of brominated species responded linearly to the bromide concentration. This study provides useful information to understand the contributions of chloroform from photodisinfection processes in coastal environments.
A comparison of the effectiveness of chloroform and eucalyptus oil in dissolving root canal sealers.
Schäfer, Edgar; Zandbiglari, Tannaz
2002-05-01
The solubility of 8 different root canal sealers in chloroform and in eucalyptus oil was compared. For standardized samples (n=12), ring molds were filled with mixed sealers based on epoxy resin, silicone, calcium hydroxide, zinc oxide-eugenol, glass ionomer, and polyketone. These samples were immersed in chloroform or eucalyptus oil for 30 seconds, 1 minute, 2 minutes, 5 minutes, 10 minutes, and 20 minutes. Then, the mean weight loss was determined and statistically analyzed. With the exception of the silicone, all the sealers showed significantly higher solubilities (P <.05) in chloroform than in eucalyptus oil. Epoxy resin was the most soluble sealer in chloroform. In eucalyptus oil, calcium hydroxide, and zinc oxide-eugenol showed the highest solubility. Under the conditions of this study, chloroform was a far more effective solvent of root canal sealers than eucalyptus oil. Because of the potential hazards of chloroform, further studies on the dissolution of root canal sealers in different solvents seem to be necessary.
Acute chloroform ingestion successfully treated with intravenously administered N-acetylcysteine.
Dell'Aglio, Damon M; Sutter, Mark E; Schwartz, Michael D; Koch, David D; Algren, D A; Morgan, Brent W
2010-06-01
Chloroform, a halogenated hydrocarbon, causes central nervous system depression, cardiac arrhythmias, and hepatotoxicity. We describe a case of chloroform ingestion with a confirmatory serum level and resultant hepatotoxicity successfully treated with intravenously administered N-acetylcysteine (NAC). A 19-year-old man attempting suicide ingested approximately 75 mL of chloroform. He was unresponsive and intubated upon arrival. Intravenously administered NAC was started after initial stabilization was complete. His vital signs were normal. Admission laboratory values revealed normal serum electrolytes, AST, ALT, PT, BUN, creatinine, and bilirubin. Serum ethanol level was 15 mg/dL, and aspirin and acetaminophen were undetectable. The patient was extubated but developed liver function abnormalities with a peak AST of 224 IU/L, ALT of 583 IU/L, and bilirubin level reaching 16.3 mg/dL. NAC was continued through hospital day 6. Serum chloroform level obtained on admission was 91 μg/mL. The patient was discharged to psychiatry without known sequelae and normal liver function tests. The average serum chloroform level in fatal cases of inhalational chloroform poisoning was 64 μg/mL, significantly lower than our patient. The toxicity is believed to be similar in both inhalation and ingestion routes of exposure, with mortality predominantly resulting from anoxia secondary to central nervous system depression. Hepatocellular toxicity is thought to result from free radical-induced oxidative damage. Previous reports describe survival after treatment with orally administered NAC, we report the first use of intravenously administered NAC for chloroform ingestion. Acute oral ingestion of chloroform is extremely rare. Our case illustrates that with appropriate supportive care, patients can recover from chloroform ingestion, and intravenously administered NAC may be of benefit in such cases.
D’Souza, Malcolm J.; Sandosky, Brandon; Fernandez-Bueno, Gabriel A.; McAneny, Matthew J.; Kevill, Dennis N.
2014-01-01
To provide insight and to identify the occurrence of mechanistic changes in relation to variance in solvent-type, the solvent effects on the rates of solvolysis of three substrates, 2,2,2-trichloro-1,1-dimethylethyl chloroformate, 2,2,2-trichloroethyl chloroformate, and 1-chloroethyl chloroformate, are analyzed using linear free energy relationships (LFERs) such as the extended Grunwald-Winstein equation, and a similarity-based LFER model approach that is based on the solvolysis of phenyl chloroformate. At 25.0 °C, in four common solvents, the α-chloroethyl chloroformate was found to react considerably faster than the two β,β,β-trichloro-substituted analogs. This immense rate enhancement can be directly related to the proximity of the electron-withdrawing α-chlorine atom to the carbonyl carbon reaction center. In the thirteen solvents studied, 1-chloroethyl chloroformate was found to strictly follow a carbonyl addition process, with the addition-step being rate-determining. For the two β,β,β-trichloro-substrates, in aqueous mixtures that are very rich in a fluoroalcohol component, there is compelling evidence for the occurrence of side-by-side addition-elimination and ionization mechanisms, with the ionization pathway being predominant. The presence of the two methyl groups on the α-carbon of 2,2,2-trichloro-1,1-dimethylethyl chloroformate has additive steric and stereoelectronic implications, causing its rate of reaction to be significantly slower than that of 2,2,2-trichloroethyl chloroformate. PMID:24812595
Microbial reductive dehalogenation of trihalomethanes by a Dehalobacter-containing co-culture.
Zhao, Siyan; Rogers, Matthew J; He, Jianzhong
2017-07-01
Trihalomethanes such as chloroform and bromoform, although well-known as a prominent class of disinfection by-products, are ubiquitously distributed in the environment due to widespread industrial usage in the past decades. Chloroform and bromoform are particularly concerning, of high concentrations detected and with long half-lives up to several hundred days in soils and groundwater. In this study, we report a Dehalobacter- and Desulfovibrio-containing co-culture that exhibits dehalogenation of chloroform (~0.61 mM) to dichloromethane and bromoform (~0.67 mM) to dibromomethane within 10-15 days. This co-culture was further found to dechlorinate 1,1,1-trichloroethane (1,1,1-TCA) (~0.65 mM) to 1,1-dichloroethane within 12 days. The Dehalobacter species present in this co-culture, designated Dehalobacter sp. THM1, was found to couple growth with dehalogenation of chloroform, bromoform, and 1,1,1-TCA. Strain THM1 harbors a newly identified reductive dehalogenase (RDase), ThmA, which catalyzes chloroform, bromoform, and 1,1,1-TCA dehalogenation. Additionally, based on the sequences of thmA and other identified chloroform RDase genes, ctrA, cfrA, and tmrA, a pair of chloroform RDase gene-specific primers were designed and successfully applied to investigate the chloroform dechlorinating potential of microbial communities. The comparative analysis of chloroform RDases with tetrachloroethene RDases suggests a possible approach in predicting the substrate specificity of uncharacterized RDases in the future.
Chloroform-induced insanity defence confounds lawyer Lincoln.
Spiegel, A D; Suskind, P B
1997-12-01
During an 1857 trial, the defence claimed that the accused should be absolved of wilful murder because an overdose of chloroform during surgery induced insanity. In a rare appearance as a prosecutor, Abraham Lincoln tried the case for the State of Illinois. Expert medical witnesses testified about the side effects of chloroform and chloroform-induced insanity. Significantly, Lincoln was not knowledgeable about medical jurisprudence and overlooked potential sources of evidence and expert witnesses. Defence lawyers presented an impressive array of physicians to testify about insanity, about chloroform and about the results of an overdosage during anaesthesia. Considering the state of scientific knowledge at the time, the trial was notable.
D’Souza, Malcolm J.; Knapp, Jaci A.; Fernandez-Bueno, Gabriel A.; Kevill, Dennis N.
2012-01-01
The specific rates of solvolysis of 2-butyn-1-yl-chloroformate (1) and 2-methoxyphenyl chloroformate (2) are studied at 25.0 °C in a series of binary aqueousorganic mixtures. The rates of reaction obtained are then analyzed using the extended Grunwald-Winstein (G-W) equation and the results are compared to previously published G-W analyses for phenyl chloroformate (3), propargyl chloroformate (4), p-methoxyphenyl choroformate (5), and p-nitrophenyl chloroformate (6). For 1, the results indicate that dual side-by-side addition-elimination and ionization pathways are occurring in some highly ionizing solvents due to the presence of the electron-donating γ-methyl group. For 2, the analyses indicate that the dominant mechanism is a bimolecular one where the formation of a tetrahedral intermediate is rate-determining. PMID:22312278
D’Souza, Malcolm J.; Shuman, Kevin E.; Carter, Shannon E.; Kevill, Dennis N.
2008-01-01
Specific rates of solvolysis at 25 °C for p-nitrophenyl chloroformate (1) are analyzed using the extended (two-term) Grunwald-Winstein equation. For 39 solvents, the sensitivities (l = 1.68±0.06 and m = 0.46±0.04) towards changes in solvent nucleophilicity (l) and solvent ionizing power (m) obtained, are similar to those previously observed for phenyl chloroformate (2) and p-methoxyphenyl chloroformate (3). The observations incorporating new kinetic data in several fluoroalcohol-containing mixtures, are rationalized in terms of the reaction being sensitive to substituent effects and the mechanism of reaction involving the addition (association) step of an addition-elimination (association-dissociation) pathway being rate-determining. The l/m ratios obtained for 1, 2, and 3, are also compared to the previously published l/m ratios for benzyl chloroformate (4) and p-nitrobenzyl chloroformate (5). PMID:19330071
Characterization of hot spots for natural chloroform formation: Relevance for groundwater quality
NASA Astrophysics Data System (ADS)
Jacobsen, Ole S.; Albers, Christian N.; Laier, Troels
2015-04-01
Chloroform soil hot spot may deteriorate groundwater quality and may even result in chloroform concentration exceeding the Danish maximum limit of 1 µg/L in groundwater for potable use. In order to characterize the soil properties important for the chloroform production, various ecosystems were examined with respect to soil air chloroform and soil organic matter type and content. Coniferous forest areas, responsible for highest chloroform concentrations, were examined on widely different scales from km to cm scale. Furthermore, regular soil gas measurements including chloroform were performed during 4 seasons at various depths, together with various meteorological measurements and soil temperature recordings. Laboratory incubation experiments were also performed on undisturbed soil samples in order to examine the role of various microbiota, fungi and bacteria. To identify hot spots responsible for the natural contamination we have measured the production of chloroform in the upper soil from different terrestrial systems. Field measurements of chloroform in top soil air were used as production indicators. The production was however not evenly distributed at any scale. The ecosystems seem to have quite different net-productions of chloroform from very low in grassland to very high in some coniferous forests. Within the forest ecosystem we found large variation in chloroform concentrations depending on vegetation. In beech forest we found the lowest values, somewhat higher in an open pine forest, but the highest concentrations were detected in spruce forest without any vegetation beneath. Within this ecotype, it appeared that the variation was also large; hot spots with 2-4 decades higher production than the surrounding area. These hot spots were not in any way visually different from the surroundings and were of variable size from 3 to 20 meters in diameter. Besides this, measurements within a seemingly homogenous hot spot showed that there was still high variability at 10 cm level. We suggest that the mechanism behind the formation of chloroform is an unspecific chlorination of organic matter, caused by microbial activity in the soil forming trichloroacetyl compounds. Laboratory measurements on intact soil cores have identified that the F and H horizons in the forest soil are the main producers of chloroform. Despite various attempts to identify the mechanisms responsible for the variability within a visually and chemically homogeneous area we have not yet succeeded. Parameters like soil respiration, inorganic and total organic chlorine, organic matter and soil structure were studied without any significant difference in favour of hot spots. By the use of 13C-isotopes we could identify the natural origin of the chloroform, and over a three years period we could conclude that the hot spots were permanent on the sites. At the same time a significant seasonal variation were measured depending on temperature and soil moisture.
Shi, Yanqi; Li, Xueming; Yang, Jianchun; Gao, Fang; Tao, Chuanyi
2011-03-01
Efficient encapsulation of small molecules with supermolecules is one of significantly important subjects due to strong application potentials. This article presents the interaction between cryptophane-M and chloroform by fluorescence spectroscopy. The sonicated cryptophane-M solution exhibits light green color in chloroform, and the solid obtained from the evaporation of chloroform also has different color from that of cryptophane-M. In contrast, the sonicated cryptophane-M solutions in other solvents are colorless, and the solid obtained from the evaporation of these solvents has the same color as that of cryptophane-M. Furthermore, the freshly prepared cryptophane-M solution in different solvents is almost colorless, and the solid obtained from the evaporation of these solvents displays the same color as that of cryptophane-M. Although the sonicated cryptophane-M solutions in different solvents have very similar absorption spectra, they exhibit quite different emission spectra in chloroform. In contrast, the freshly-prepared cryptophane-M solutions show similar absorption and emission spectroscopy in various solvents. The variation of the fluorescence spectroscopy in binary solvents with the increasing chloroform ratio suggests that cryptophane-M and chloroform form a 1:1 exciplex, and the binding constant is estimated to be 292.95 M(-1). Although all solvents are able to enter into the cavity of cryptophane-M, only chloroform can stay in the cavity of cryptophane-M for a while, which is mostly due to the strong intermolecular interaction between cryptophane-M and chloroform, and this results in the formation of the exciplex between them. © Springer Science+Business Media, LLC 2010
Oltra, Enrique; Cox, Timothy C; LaCourse, Matthew R; Johnson, James D; Paranjpe, Avina
2017-02-01
Recently, bioceramic sealers like EndoSequence BC Sealer (BC Sealer) have been introduced and are being used in endodontic practice. However, this sealer has limited research related to its retreatability. Hence, the aim of this study was to evaluate the retreatability of two sealers, BC Sealer as compared with AH Plus using micro-computed tomographic (micro-CT) analysis. Fifty-six extracted human maxillary incisors were instrumented and randomly divided into 4 groups of 14 teeth: 1A, gutta-percha, AH Plus retreated with chloroform; 1B, gutta-percha, AH Plus retreated without chloroform; 2A, gutta-percha, EndoSequence BC Sealer retreated with chloroform; 2B, gutta-percha, EndoSequence BC Sealer retreated without chloroform. Micro-CT scans were taken before and after obturation and retreatment and analyzed for the volume of residual material. The specimens were longitudinally sectioned and digitized images were taken with the dental operating microscope. Data was analyzed using an ANOVA and a post-hoc Tukey test. Fisher exact tests were performed to analyze the ability to regain patency. There was significantly less residual root canal filling material in the AH Plus groups retreated with chloroform as compared to the others. The BC Sealer samples retreated with chloroform had better results than those retreated without chloroform. Furthermore, patency could be re-established in only 14% of teeth in the BC Sealer without chloroform group. The results of this study demonstrate that the BC Sealer group had significantly more residual filling material than the AH Plus group regardless of whether or not both sealers were retreated with chloroform.
IRIS Toxicological Review of Chloroform (Final Report)
EPA is announcing the release of the final report, Toxicological Review of Chloroform: in support of the Integrated Risk Information System (IRIS). The updated Summary for Chloroform and accompanying Quickview have also been added to the IRIS Database.
Chen, M-J; Duh, J-M; Shie, R-H; Weng, J-H; Hsu, H-T
2016-06-01
This study used open-path Fourier transform infrared (OP-FTIR) spectroscopy to continuously assess the variation in chloroform concentrations in the air of an indoor swimming pool. Variables affecting the concentrations of chloroform in air were also monitored. The results showed that chloroform concentrations in air varied significantly during the time of operation of the swimming pool and that there were two peaks in chloroform concentration during the time of operation of the pool. The highest concentration was at 17:30, which is coincident with the time with the highest number of swimmers in the pool in a day. The swimmer load was one of the most important factors influencing the chloroform concentration in the air. When the number of swimmers surpassed 40, the concentrations of chloroform were on average 4.4 times higher than the concentration measured without swimmers in the pool. According to the results of this study, we suggest that those who swim regularly should avoid times with highest number of swimmers, in order to decrease the risk of exposure to high concentrations of chloroform. It is also recommended that an automatic mechanical ventilation system is installed to increase the ventilation rate during times of high swimmer load. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
CANCER RISK ASSESSMENT FOR CHLOROFORM
Chloroform is a common chlorination by-product in drinking water. EPA has regulated chloroform as a probable human carcinogen under the Safe Drinking Water Act. The cancer risk estimate via ingestion was based on the 1985 Jorgenson study identifying kidney tumors in male Osborne ...
CONTROLLED, SHORT-TERM DERMAL AND INHALATION EXPOSURE TO CHLOROFORM
Studies were conducted to determine the uptake by humans of chloroform as a result of controlled short-term dermal and inhalation exposures. The approach used continuous real-time breath analysis to determine exhaled-breath profiles and evaluate chloroform kinetics in the huma...
Oltra, Enrique; Cox, Timothy C.; LaCourse, Matthew R.; Johnson, James D.
2017-01-01
Objectives Recently, bioceramic sealers like EndoSequence BC Sealer (BC Sealer) have been introduced and are being used in endodontic practice. However, this sealer has limited research related to its retreatability. Hence, the aim of this study was to evaluate the retreatability of two sealers, BC Sealer as compared with AH Plus using micro-computed tomographic (micro-CT) analysis. Materials and Methods Fifty-six extracted human maxillary incisors were instrumented and randomly divided into 4 groups of 14 teeth: 1A, gutta-percha, AH Plus retreated with chloroform; 1B, gutta-percha, AH Plus retreated without chloroform; 2A, gutta-percha, EndoSequence BC Sealer retreated with chloroform; 2B, gutta-percha, EndoSequence BC Sealer retreated without chloroform. Micro-CT scans were taken before and after obturation and retreatment and analyzed for the volume of residual material. The specimens were longitudinally sectioned and digitized images were taken with the dental operating microscope. Data was analyzed using an ANOVA and a post-hoc Tukey test. Fisher exact tests were performed to analyze the ability to regain patency. Results There was significantly less residual root canal filling material in the AH Plus groups retreated with chloroform as compared to the others. The BC Sealer samples retreated with chloroform had better results than those retreated without chloroform. Furthermore, patency could be re-established in only 14% of teeth in the BC Sealer without chloroform group. Conclusion The results of this study demonstrate that the BC Sealer group had significantly more residual filling material than the AH Plus group regardless of whether or not both sealers were retreated with chloroform. PMID:28194360
NASA Astrophysics Data System (ADS)
Rachmawaty, Farida Juliantina; Julianto, Tatang Shabur; Tamhid, Hady Anshory
2018-04-01
This research aims to identify the antimycobacterial activity of fraction of red betel vine leaves ethanol extract (methanol fraction, ethyl acetate, and chloroform) toward M. tuberculosis. Red betel vine leaves ethanol extract was made with maceration method using ethanol solvent 70%. Resulted extract was then fractionated using Liquid Vacuum Chromatography (LVC) with methanol, ethyl acetate, and chloroform solvent. Each fractionation was exposed to M. tuberculosis with serial dilution method. Controls of fraction, media, bacteria, and isoniazid as standard drug were included in this research. The group of compound from the most active fraction was then identified. The research found that the best fraction for antimycobacterial activity toward M. tuberculosisis chloroform fraction. The compound group of chloroform fraction was then identified. The fraction contains flavonoid, tannin, alkaloid, and terpenoid. The fraction of methanol, ethyl acetate, and chloroform from red betel vine leaves has antimycobacterial activity toward M. tuberculosis. Chloroform fraction has the best antimycobacterial activity and it contains flavonoid, tannin, alkaloid, and terpenoid.
Chloroform Hydrodechlorination over Palladium–Gold Catalysts: A First-Principles DFT Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lang; Yao, Xiaoqian; Khan, Ahmad
2016-04-20
Hydrodechlorination is a promising method for treating toxic chlorocarbon compounds. Pd is among the most effective catalysts for chloroform hydrodechlorination, and experiments have shown that the Pd–Au alloy catalyst yields superior catalytic performance over pure Pd. In this paper, we examine the chloroform hydrodechlorination mechanism over Pd(1 1 1) and Pd ML/Au(1 1 1) surfaces using periodic, self-consistent density functional theory calculations (DFT, GGA–PW91) and maximum rate analysis. We suggest that the reaction occurs on both surfaces through complete dechlorination of chloroform followed by hydrogenation of CH* to methane, and that the initial dechlorination step is likely the rate-limiting step.more » Finally, on Pd(1 1 1), the chloroform dechlorination barrier is 0.24 eV higher than the desorption barrier, whereas on Pd ML/Au(1 1 1), the chloroform dechlorination barrier is 0.07 eV lower than the desorption barrier, which can explain the higher hydrodechlorination activity of the Pd–Au alloy catalyst.« less
Breider, Florian; Hunkeler, Daniel
2014-01-01
Chloroperoxidase (CPO) is suspected to play an important role in the biosynthesis of natural chloroform. The aims of the present study are to evaluate the variability of the δ(37)Cl value of naturally produced chloroform and to better understand the reaction steps that control the chlorine isotope signature of chloroform. The isotope analyses have shown that the chlorination of the humic substances (HS) in the presence of high H3O(+) and Cl(-) concentrations induces a large apparent kinetic isotope effect (AKIE = 1.010-1.018) likely associated with the transfer of chlorine between two heavy atoms, whereas in the presence of low H3O(+) and Cl(-) concentrations, the formation of chloroform induces a smaller AKIE (1.005-1.006) likely associated with the formation of an HOCl-ferriprotoporphyrin IX intermediate. As the concentration of H3O(+) and Cl(-) in soils are generally at submillimolar levels, the formation of the HOCl-ferriprotoporphyrin IX intermediate is likely rate-limiting in a terrestrial environment. Given that the δ(37)Cl values of naturally occurring chloride tend to range between -1 and +1‰, the δ(37)Cl value of natural chloroform should vary between -5‰ and -8‰. As the median δ(37)Cl value of industrial chloroform is -3.0‰, the present study suggests that chlorine isotopic composition of chloroform might be used to discriminate industrial and natural sources in the environment.
Biofiltration of Chloroform in a Trickle Bed Air Biofilter Under Acidic Conditions
In this paper, the application of biofiltration is investigated for controlled removal of gas phase chloroform through cometabolic degradation with ethanol. A trickle bed air biofilter (TBAB) operated under acidic pH 4 is subjected to aerobic biodegradation of chloroform and etha...
THE ENHANCEMENT OF CHLOROFORM-INDUCED PLASMA PROTEOLYTIC ACTIVITY BY EPSILON AMINOCAPROIC ACID
Donaldson, Virginia H.; Ratnoff, Oscar D.
1962-01-01
The proteolytic activity in chloroform-treated plasma euglobulins has been attributed to plasmin. Plasmin can digest both casein and fibrin. Epsilon aminocaproic acid, which inhibits the activation of plasminogen, the precursor of plasmin, by streptokinase, urokinase, and tissue activators enhanced the development of casein hydrolytic activity in a mixture of chloroform and plasma euglobulins. Fibrinolytic activity was also enhanced, but this was evident only if the epsilon aminocaproic acid was removed from the chloroform-treated euglobulins prior to assay. The reasons for the paradoxical enhancement of chloroform-induced casein hydrolysis by euglobulins containing epsilon aminocaproic acid are unclear. However, studies of optimal pH, heat stability, and the effect of ionic strength on the activation of the precursor of this proteolytic enzyme do not differentiate it from plasminogen. PMID:13887179
Theoretical study on the mechanism of the gas-phase elimination kinetics of alkyl chloroformates
NASA Astrophysics Data System (ADS)
Alcázar, Jackson J.; Marquez, Edgar; Mora, José R.; Cordova-Sintjago, Tania; Chuchani, Gabriel
2016-03-01
The theoretical calculations on the mechanism of the homogeneous and unimolecular gas-phase elimination kinetics of alkyl chloroformates- ethyl chloroformate (ECF), isopropyl chloroformate (ICF), and sec-butyl chloroformate (SCF) - have been carried out by using CBS-QB3 level of theory and density functional theory (DFT) functionals CAM-B3LYP, M06, MPW1PW91, and PBE1PBE with the basis sets 6-311++G(d,p) and 6-311++G(2d,2p). The chlorofomate compounds with alkyl ester Cβ-H bond undergo thermal decomposition producing the corresponding olefin, HCl and CO2. These homogeneous eliminations are proposed to undergo two different types of mechanisms: a concerted process, or via the formation of an unstable intermediate chloroformic acid (ClCOOH), which rapidly decomposes to HCl and CO2 gas. Since both elimination mechanisms may occur through a six-membered cyclic transition state structure, it is difficult to elucidate experimentally which is the most reasonable reaction mechanism. Theoretical calculations show that the stepwise mechanism with the formation of the unstable intermediate chloroformic acid from ECF, ICF, and SCF is favoured over one-step elimination. Reasonable agreements were found between theoretical and experimental values at the CAM-B3LYP/6-311++G(d,p) level.
Mohammed, Mona Salih; Alajmi, Mohamed Fahad; Alam, Perwez; Khalid, Hassan Subki; Mahmoud, Abelkhalig Muddathir; Ahmed, Wadah Jamal
2014-03-01
To develop HPTLC fingerprint profile of anti-inflammatory active extract fractions of Tribulus terrestris (family Zygophyllaceae). The anti-inflammatory activity was tested for the methanol and its fractions (chloroform, ethyl acetate, n-butanol and aqueous) and chloroform extract of Tribulus terrestris (aerial parts) by injecting different groups of rats (6 each) with carrageenan in hind paw and measuring the edema volume before and 1, 2 and 3 h after carrageenan injection. Control group received saline i.p. The extracts treatment was injected i.p. in doses of 200 mg/kg 1 h before carrageenan administration. Indomethacin (30 mg/kg) was used as standard. HPTLC studies were carried out using CAMAG HPTLC system equipped with Linomat IV applicator, TLC scanner 3, Reprostar 3, CAMAG ADC 2 and WIN CATS-4 software for the active fractions of chloroform fraction of methanol extract. The methanol extract showed good antiedematous effect with percentage of inhibition more than 72%, indicating its ability to inhibit the inflammatory mediators. The methanol extract was re-dissolved in 100 mL of distilled water and fractionated with chloroform, ethyl acetate and n-butanol. The four fractions (chloroform, ethyl acetate, n-butanol and aqueous) were subjected to anti-inflammatory activity. Chloroform fraction showed good anti-inflammatory activity at dose of 200 mg/kg. Chloroform fraction was then subjected to normal phase silica gel column chromatography and eluted with petroleum ether-chloroform, chloroform-ethyl acetate mixtures of increasing polarity which produced 15 fractions (F1-F15). Only fractions F1, F2, F4, F5, F7, F9, F11 and F14 were found to be active, hence these were analyzed with HPTLC to develop their finger print profile. These fractions showed different spots with different Rf values. The different chloroform fractions F1, F2, F4, F5, F7, F9, F11 and F14 revealed 4, 7, 7, 8, 9, 7, 7 and 6 major spots, respectively. The results obtained in this experiment strongly support and validate the traditional uses of this Sudanese medicinal plant.
Mohammed, Mona Salih; Alajmi, Mohamed Fahad; Alam, Perwez; Khalid, Hassan Subki; Mahmoud, Abelkhalig Muddathir; Ahmed, Wadah Jamal
2014-01-01
Objective To develop HPTLC fingerprint profile of anti-inflammatory active extract fractions of Tribulus terrestris (family Zygophyllaceae). Methods The anti-inflammatory activity was tested for the methanol and its fractions (chloroform, ethyl acetate, n-butanol and aqueous) and chloroform extract of Tribulus terrestris (aerial parts) by injecting different groups of rats (6 each) with carrageenan in hind paw and measuring the edema volume before and 1, 2 and 3 h after carrageenan injection. Control group received saline i.p. The extracts treatment was injected i.p. in doses of 200 mg/kg 1 h before carrageenan administration. Indomethacin (30 mg/kg) was used as standard. HPTLC studies were carried out using CAMAG HPTLC system equipped with Linomat IV applicator, TLC scanner 3, Reprostar 3, CAMAG ADC 2 and WIN CATS-4 software for the active fractions of chloroform fraction of methanol extract. Results The methanol extract showed good antiedematous effect with percentage of inhibition more than 72%, indicating its ability to inhibit the inflammatory mediators. The methanol extract was re-dissolved in 100 mL of distilled water and fractionated with chloroform, ethyl acetate and n-butanol. The four fractions (chloroform, ethyl acetate, n-butanol and aqueous) were subjected to anti-inflammatory activity. Chloroform fraction showed good anti-inflammatory activity at dose of 200 mg/kg. Chloroform fraction was then subjected to normal phase silica gel column chromatography and eluted with petroleum ether-chloroform, chloroform-ethyl acetate mixtures of increasing polarity which produced 15 fractions (F1-F15). Only fractions F1, F2, F4, F5, F7, F9, F11 and F14 were found to be active, hence these were analyzed with HPTLC to develop their finger print profile. These fractions showed different spots with different Rf values. Conclusions The different chloroform fractions F1, F2, F4, F5, F7, F9, F11 and F14 revealed 4, 7, 7, 8, 9, 7, 7 and 6 major spots, respectively. The results obtained in this experiment strongly support and validate the traditional uses of this Sudanese medicinal plant. PMID:25182438
The objective of current work is to develop a new cancer dose-response assessment for chloroform using a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model. The PBPK/PD model is based on a mode of action in which the cytolethality of chloroform occurs when the ...
Selective chloroform sensor using thiol functionalized reduced graphene oxide at room temperature
NASA Astrophysics Data System (ADS)
Midya, Anupam; Mukherjee, Subhrajit; Roy, Shreyasee; Santra, Sumita; Manna, Nilotpal; Ray, Samit K.
2018-02-01
This paper presents a highly selective chloroform sensor using functionalised reduced graphene oxide (RGO) as a sensing layer. Thiol group is covalently attached on the basal plan of RGO film by a simple one-step aryl diazonium chemistry to improve its selectivity. Several spectroscopic techniques like X-ray photoelectron, Raman and Fourier transform infrared spectroscopy confirm successful thiol functionalization of RGO. Finally, the fabricated chemiresistor type sensor is exposed to chloroform in the concentration range 200-800 ppm (parts per million). The sensor shows a 4.3% of response towards 800 ppm chloroform. The selectivity of the sensor is analyzed using various volatile organic compounds as well. The devices show enhanced response and faster recovery attributed to the physiosorption of chloroform onto thiol functionalized graphene making them attractive for 2D materials based sensing applications.
Bioactive plants from Argentina and Bolivia.
Bardón, Alicia; Borkosky, Susana; Ybarra, María I; Montanaro, Susana; Cartagena, Elena
2007-04-01
Antibacterial and molluscicidal activities of methanol and chloroform extracts of 16 plant species belonging to the families Compositae and Melastomataceae were evaluated. The chloroform extract of Vernonanthura tweediana and the methanol extract of Senecio santelisis resulted to be very toxic to brine shrimp nauplii (LC(50)=1 microg/ml). Chloroform extracts of S. santelisis and Senecio leucostachys as well as the methanol extract of Wedelia subvaginata displayed molluscicidal effects on Biomphalaria peregrina showing LC(100)<100 microg/ml. Moderate antibacterial action was produced by the chloroform extracts of Flaveria bidentis, Grindelia scorzonerifolia and Vernonia incana against two strains of Staphylococcus aureus.
Self-Diffusion and Heteroassociation in an Acetone-Chloroform Mixture at 298 K
NASA Astrophysics Data System (ADS)
Golubev, V. A.; Gurina, D. L.; Kumeev, R. S.
2018-01-01
The self-diffusion coefficients of acetone and chloroform in a binary acetone-chloroform mixture at 298 K are determined via pulsed field gradient NMR spectroscopy. It is estimated that the hydrodynamic radii of the mixture's components, calculated using the Stokes-Einstein equation, grow as the concentrations of the components fall. It is shown that such behavior of hydrodynamic radii is due to acetone-chloroform heteroassociation. The hydrodynamic radii of monomers and heteroassociates in a 1: 1 ratio are determined along with the constant of heteroassociation, using the proposed model of an associated solution.
USE OF SENSITIVITY ANALYSIS ON A PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODEL FOR CHLOROFORM IN RATS TO DETERMINE AGE-RELATED TOXICITY.
CR Eklund, MV Evans, and JE Simmons. US EPA, ORD, NHEERL, ETD,PKB, Research Triangle Park, NC.
Chloroform (CHCl3) is a disinfec...
Immunotoxicological Profile of Chloroform in Female B6c3f1 Mice When Administered In Drinking Water
Chloroform can be formed as a disinfection by-product during water chlorination, one of the primary modalities for purifying municipal water supplies for human consumption. The goal of this study was to characterize the immunotoxic effects of chloroform in female B6C3F1 mice when...
Squillace, Paul J.; Pankow, James F.; Barbash, Jack E.; Price, Curtis V.; Zogorski, John S.
1999-01-01
Water samples collected for the determination of volatile organic compounds (VOCs) are often preserved with hydrochloric acid (HCl) to inhibit the biotransformation of the analytes of interest until the chemical analyses can he performed. However, it is theoretically possible that residual free chlorine in the HCl can react with dissolved organic carbon (DOC) to form chloroform via the haloform reaction. Analyses of 1501 ground water samples preserved with HCl from the U.S. Geological Survey's National Water-Quality Assessment Program indicate that chloroform was the most commonly detected VOC among 60 VOCs monitored. The DOC concentrations were not significantly larger in samples with detectable chloroform than in those with no delectable chloroform, nor was there any correlation between the concentrations of chloroform and DOC. Furthermore, chloroform was detected more frequently in shallow ground water in urban areas (28.5% of the wells sampled) than in agricultural areas (1.6% of the wells sampled), which indicates that its detection was more related to urban land-use activities than to sample acidification. These data provide strong evidence that acidification with HCl does not lead to the production of significant amounts of chloroform in ground water samples. To verify these results, an acidification study was designed to measure the concentrations of all trihalomethanes (THMs) that can form as a result of HCl preservation in ground water samples and to determine if ascorbic acid (C6H8O6) could inhibit this reaction if it did occur. This study showed that no THMs were formed as a result of HCl acidification, and that ascorbic acid had no discernible effect on the concentrations of THMs measured.
Correlation of the rates of solvolysis of neopentyl chloroformate-a recommended protecting agent.
D'Souza, Malcolm J; Carter, Shannon E; Kevill, Dennis N
2011-02-15
The specific rates of solvolysis of neopentyl chloroformate (1) have been determined in 21 pure and binary solvents at 45.0 °C. In most solvents the values are essentially identical to those for ethyl and n-propyl chloroformates. However, in aqueous-1,1,1,3,3,3-hexafluoro-2-propanol mixtures (HFIP) rich in fluoroalcohol, 1 solvolyses appreciably faster than the other two substrates. Linear free energy relationship (LFER) comparison of the specific rates of solvolysis of 1 with those for phenyl chloroformate and those for n-propyl chloroformate are helpful in the mechanistic considerations, as is also the treatment in terms of the Extended Grunwald-Winstein equation. It is proposed that the faster reaction for 1 in HFIP rich solvents is due to the influence of a 1,2-methyl shift, leading to a tertiary alkyl cation, outweighing the only weak nucleophilic solvation of the cation possible in these low nucleophilicity solvents.
Theodore Roosevelt Chloroforming Uncle Sam "In the Hopeless Ward".
Drew, Benjamin A; Bause, George S
2016-10-01
In March of 1905 in Judge magazine, Louis Dalrymple published his political cartoon of Theodore Roosevelt chloroforming "Uncle Sam." Having sampled a host of Democratic remedies, the 125-year-old Sam can expect that Roosevelt's chloroform will either cure him with major Republican surgery or kill him with Osler-linked euthanasia. Copyright © 2016 Elsevier Inc. All rights reserved.
The failure of chloroform administered in drinking water to induce renal tubular cell neoplasia in male F344/N rats
Chloroform (TCM) has been demonstrated to be a renal carcinogen in the male Osborne-
Mendel rat when administered either by corn oil gavage or in drin...
Kinetic Studies that Evaluate the Solvolytic Mechanisms of Allyl and Vinyl Chloroformate Esters
D’Souza, Malcolm J.; Givens, Aaron F.; Lorchak, Peter A.; Greenwood, Abigail E.; Gottschall, Stacey L.; Carter, Shannon E.; Kevill, Dennis N.
2013-01-01
At 25.0 °C the specific rates of solvolysis for allyl and vinyl chloroformates have been determined in a wide mix of pure and aqueous organic mixtures. In all the solvents studied, vinyl chloroformate was found to react significantly faster than allyl chloroformate. Multiple correlation analyses of these rates are completed using the extended (two-term) Grunwald-Winstein equation with incorporation of literature values for solvent nucleophilicity (NT) and solvent ionizing power (YCl). Both substrates were found to solvolyze by similar dual bimolecular carbonyl-addition and unimolecular ionization channels, each heavily dependent upon the solvents nucleophilicity and ionizing ability. PMID:23549265
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, F.; Ozawa, N.; Hanai, J.
Twenty-one water-soluble acid dyes, including eleven azo, five triphenylmethane four xanthene, one naphthol derivatives, used at practical concentrations for food coloration, were quantitatively extracted from water and various carbonated beverages into a 0.1 M quinine-chloroform solution in the presence of 0.5 M boric acid by brief shaking. Quantitative extraction of these dyes was also accomplished by the 0.1 M quinine-chloroform solution made conveniently from chloroform, quinine hydrochloride, and sodium hydroxide added successively to water or beverages containing boric acid. Quinine acted as a countercation on the dyes having sulfonic and/or carboxylic acid group(s) to form chloroform-soluble ion-pair complexes. The diacidicmore » base alkaloid interacted with each acid group of mono-, di-, tri-, and tetrasulfonic acid dyes approximately in the ratio 0.8-0.9 to 1. The dyes in the chloroform solution were quantitatively concentrated into a small volume of sodium hydroxide solution also by brief shaking. The convenient quinine-chloroform method was applicable to the quantitative extraction of a mixture of 12 dyes from carbonated beverages, which are all currently used for food coloration. A high-pressure liquid chromatographic method is also presented for the systematic separation and determination of these 12 dyes following their concentration into the aqueous alkaline solution. The chromatogram was monitored by double-wavelength absorptiometry in the visible and ultraviolet ray regions.« less
Driedger, S Michelle; Eyles, John
2003-04-01
The United States Environmental Protection Agency (US EPA) and the Chlorine Chemistry Council, the Chemical Manufacturers Association, and others have been embroiled in a legal challenge concerning the US EPA's "reversal" regarding the scientific assessment of chloroform's carcinogenicity. This issue arose during the US EPA's November 1998 promulgation of a Maximum Contaminant Level Goal for chloroform in the Stage 1 Final Rules for Disinfectants and Disinfection Byproducts in drinking water. In this paper we adopt a claimsmaking approach: to trace the development and outcome of the chloroform court challenge in the USA, to examine the construction of scientific knowledge claims concerning chloroform risk assessments, and to investigate how different interpretations of scientific uncertainties regarding the evidence are contested when such uncertainties are brought into a regulatory and judicial arena. This "science war" (Chlorine Chemistry Council and others v. US EPA and others) took place in the US Court of Appeals for the District of Columbia Circuit. The scientific "authority" in the construction of scientific claims in this dispute is based on the International Life Sciences Institute expert panel report on chloroform. Examining these science wars is important because they signal critical shifts in science policy agendas. The regulatory outcome of the chloroform science war in the United States can have profound implications for the construction and acceptance of scientific claims regarding drinking water in other jurisdictions (e.g., Canada). In this challenge, we argue that the actors involved in the dispute constructed "boundaries" around accepted and credible scientific claims.
Methyl Chloroform Elimination from the Production of Space Shuttle Sold Rocket Motors
NASA Technical Reports Server (NTRS)
Golde, Rick P.; Burt, Rick; Key, Leigh
1997-01-01
Thiokol Space Operations manufactures the Reusable Solid Rocket Motors used to launch America's fleet of Space Shuttles. In 1989, Thiokol used more than 1.4 Mlb of methyl chloroform to produce rocket motors. The ban placed by the Environmental Protection Agency on the sale of methyl chloroform had a significant effect on future Reusable Solid Rocket Motor production. As a result, changes in the materials and processes became necessary. A multiphased plan was established by Thiokol in partnership with NASA's Marshall Space Flight Center to eliminate the use of methyl chloroform in the Reusable Solid Rocket Motor production process. Because of the extensive scope of this effort, the plan was phased to target the elimination of the majority of methyl chloroform use (90 percent) by January 1, 1996, the 3 Environmental Protection Agency deadline. Referred to as Phase I, this effort includes the elimination of two large vapor degreasers, grease diluent processes, and propellant tooling handcleaning using methyl chloroform. Meanwhile, a request was made for an essential use exemption to allow the continued use of the remaining 10 percent of methyl chloroform after the 1996 deadline, while total elimination was pursued for this final, critical phase (Phase II). This paper provides an update to three previous presentations prepared for the 1993, 1994, and 1995 CFC/Halon Alternative Conferences, and will outline the overall Ozone Depleting Compounds Elimination Program from the initial phases through the final testing and implementation phases, including facility and equipment development. Processes and materials to be discussed include low-pressure aqueous wash systems, high-pressure water blast systems- environmental shipping containers, aqueous and semi-aqueous cleaning solutions, and bond integrity and inspection criteria. Progress toward completion of facility implementation and lessons learned during the scope of the program, as well as the current development efforts and basic requirements of future methyl chloroform handcleaning elimination, will also be outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Senyan; Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201; Yao, Yunyi
The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity withmore » the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.« less
NASA Astrophysics Data System (ADS)
Shaparenko, N. O.; Beketova, D. I.; Demidova, M. G.; Bulavchenko, A. I.
2018-05-01
The hydrodynamic diameter and electrophoretic mobility of titania nanoparticles in AOT microemulsions are studied depending on their water content (from 0 to 1.5 vol %), chloroform content in n-decane-chloroform mixture (from 0 to 30 vol %) and temperature (from 0 to 60°C). Considerable changes in diameter (from 20 to 400 nm) are detected upon adding water to the microemulsion. The electrophoretic mobility grows by 2-3 times upon adding chloroform, or as the temperature falls. The observed features allow us to halve the time of electrophoretic concentration for 140 nm TiO2 nanoparticles, and to concentrate 14 nm nanoparticles that do not exhibit electrophoretic mobility in the absence of chloroform.
Ivahnenko, Tamara; Barbash, Jack E.
2004-01-01
Chloroform is one of the volatile organic compounds (VOCs) detected most frequently in both ground and surface water. Because it is also one of the four trihalomethanes (THMs) produced in the highest concentrations during the chlorination of drinking water and wastewater, the frequent detection of this compound in ground and surface water of the United States is presumed to be caused primarily by the input of chlorinated water to the hydrologic system. Although anthropogenic sources of the compound are substantial, they are currently estimated to constitute only 10 percent of the total global input to the hydrologic system. Natural sources of the compound include volcanic gases, biomass burning, marine algae, and soil microorganisms. Under most conditions (except in the presence of unusually high bromide concentrations), chloroform is the THM produced in the highest concentrations during chlorination. Furthermore, in most cases where more than one THM is produced from chlorination, the relative concentrations among the different compounds usually decrease with increasing bromination (chloroform > dichlorobromomethane > chlorodibromomethane > bromoform). This phenomenon is presumed to be responsible for the common observation that when more than one THM is detected during investigations of the occurrence of these compounds in the hydrologic system, this same trend is typically observed among their relative concentrations or, for a uniform reporting limit, their relative frequencies of detection. This pattern could provide a valuable means for distinguishing between chlorinated water and other potential sources of chloroform in the environment. Chloroform has been widely detected in national, regional, and local studies of VOCs in ground, surface, source, and drinking waters. Total THM (TTHM) concentrations of the compound, however, were typically less than the Maximum Contaminant Level (MCL) of 80 ?g/L (micrograms per liter) established by the U.S. Environmental Protection Agency (USEPA) for TTHMs. In the studies that compared land-use settings, frequencies of detection of chloroform were higher beneath urban and residential areas than beneath agricultural or undeveloped areas. Because chloroform is a suspected human carcinogen, its presence in drinking water is a potential human health concern. Liver damage, however, is known to occur at chloroform exposures lower than those required to cause cancer, an observation that has been considered by the USEPA as the basis for setting a new, non-zero Maximum Contaminant Level Goal of 70 ?g/L for the compound. As part of its National Water-Quality Assessment Program, the U.S. Geological Survey has been assembling and analyzing data on the occurrence of VOCs (including chloroform) in ground and surface water on a national scale from studies conducted between 1991 and the present. This report presents a summary of current (2004) information on the uses, sources, formation, transport, fate, and occurrence of chloroform, as well as its effects on human health and aquatic organisms.
Jayaweera, Dushan; Islam, Shawkat; Gunja, Naren; Cowie, Chris; Broska, James; Poojara, Latesh; Roberts, Michael S; Isbister, Geoffrey K
2017-02-01
Poisoning due to chloroform ingestion is rare. The classic features of acute chloroform toxicity include central nervous system (CNS) and respiratory depression, and delayed hepatotoxicity. A 30-year-old female ingested 20-30 mL of 99% chloroform solution, which caused rapid loss of consciousness, transient hypotension and severe respiratory depression requiring endotracheal intubation and ventilation. She was alert by 12 h and extubated 16 h post-overdose. At 38-h post-ingestion, her liver function tests started to rise and she was commenced on intravenous acetylcysteine. Her alanine transaminase (1283 U/L), aspartate transaminase (734 U/L) and international normalized ratio (2.3) peaked 67- to 72-h post-ingestion. She also developed severe abdominal pain, vomiting and diarrhoea. An abdominal CT scan was consistent with severe enterocolitis, and an upper gastrointestinal endoscopy showed erosive oesophagitis, severe erosive gastritis and ulceration. She was treated with opioid analgesia, proton pump inhibitors, sucralfate and total parenteral nutrition. Secretions caused a contact dermatitis of her face and back. Nine days post-ingestion she was able to tolerate food. Her liver function tests normalized and the dermatitis resolved. Chloroform was measured using headspace gas chromatograph mass spectrometry, with a peak concentration of 2.00 μg/mL, 4 h 20 min post-ingestion. The concentration-time data fitted a 1-compartment model with elimination half-life 6.5 h. In addition to early CNS depression and delayed hepatotoxicity, we report severe gastrointestinal injury and dermatitis with chloroform ingestion. Recovery occurred with good supportive care, acetylcysteine and management of gastrointestinal complications.
Khallef, Messaouda; Liman, Recep; Konuk, Muhsin; Ciğerci, İbrahim Hakkı; Benouareth, Djameleddine; Tabet, Mouna; Abda, Ahlem
2015-03-01
Genotoxic effects of bromoform and chloroform, disinfection by-products of the chlorination of drinking water, were examined by using mitotic index (MI), mitotic phase, chromosome aberrations (CAs) and comet assay on root meristematic cells of Allium cepa. Different concentrations of bromoform (25, 50, 75 and 100 μg/mL) and chloroform (25, 50, 100 and 200 μg/mL) were introduced to onion tuber roots. Distilled water was used as a negative control and methyl methansulfonate (MMS-10 μg/mL) as positive control. All obtained data were subjected to statistical analyses by using SPSS 15.0 for Windows software. For comparison purposes, Duncan multiple range tests by using one-way analysis of variance were employed and p < 0.05 was accepted as significant value. Exposure of both chemicals (except 25 μg/mL applications of bromoform) significantly decreased MI. Bromoform and chloroform (except 25 μg/mL applications) increased total CAs in Allium anaphase-telophase test. A significant increase in DNA damage was also observed at all concentrations of both bromoform and chloroform examined by comet assay. The damages were higher than that of positive control especially at 75-100 μg/mL for bromoform and 100-200 μg/mL for chloroform.
Biofiltration of Chloroform in a Trickle Bed Air Biofilter Under ...
In this paper, the application of biofiltration is investigated for controlled removal of gas phase chloroform through cometabolic degradation with ethanol. A trickle bed air biofilter (TBAB) operated under acidic pH 4 is subjected to aerobic biodegradation of chloroform and ethanol. The TBAB is composed of pelleted diatomaceous earth filter media inoculated with filamentous fungi species, which served as the principle biodegrading microorganism. The removal efficiencies of 5 ppmv of chloroform mixed with different ratios of ethanol as cometabolite (25, 50, 100, 150, and 200 ppmv) ranged between 69.9 and 80.9%. The removal efficiency, reaction rate kinetics, and the elimination capacity increased proportionately with an increase in the cometabolite concentration. The carbon recovery from the TBAB amounted to 69.6% of the total carbon input. It is postulated that the remaining carbon contributed to excess biomass yield within the system. Biomass control strategies such as starvation and stagnation were employed at different phases of the experiment. The chloroform removal kinetics provided a maximum reaction rate constant of 0.0018 s−1. The highest ratio of chemical oxygen demand (COD)removal/nitrogenutilization was observed at 14.5. This study provides significant evidence that the biodegradation of a highly chlorinated methane can be favored by cometabolism in a fungi-based TBAB. Chloroform is volatile hazardous chemical emitted from publicly owned treatment
Characterization of the extracellular bactericidal factors of rat alveolar lining material.
Coonrod, J D; Lester, R L; Hsu, L C
1984-01-01
The surfactant fraction (55,000-g pellet) of leukocyte-free rat bronchoalveolar lavage fluid contains factors that rapidly kill and lyse pneumococci. These factors were purified and identified biochemically by using a quantitative bactericidal test to monitor fractionation procedures. 91% of the antipneumococcal activity of rat surfactant was recovered in chloroform after extraction of rat surfactant with chloroform-methanol (Bligh-Dyer procedure). After chromatography on silicic acid with chloroform, acetone, and methanol, all detectable antibacterial activity (approximately 80% of the initial activity) eluted with the neutral lipids in chloroform. When rechromatographed on silicic acid with hexane, hexane-chloroform, and chloroform, the antibacterial activity eluted with FFA. Thin-layer chromatography (TLC) established that the antibacterial activity was confined to the FFA fraction. Gas-liquid chromatography showed that the fatty acid fraction contained a mixture of long-chain FFA (C12 to C22) of which 66.7% were saturated and 32.4% were unsaturated. The quantity of TLC-purified FFA needed to kill 50% of 10(8) pneumococci under standardized conditions (one bactericidal unit) was 10.6 +/- 0.5 micrograms. Purified FFA acted as detergents, causing release of [3H]choline from pneumococcal cell walls and increased bacterial cell membrane permeability, evidenced by rapid unloading of 3-O-[3H]methyl-D-glucose. FFA acting as detergents appear to account for the bactericidal and bacteriolytic activity of rat pulmonary surfactant for pneumococci. PMID:6548228
Description of trihalomethane levels in three UK water suppliers.
Whitaker, Heather; Nieuwenhuijsen, Mark J; Best, Nicola; Fawell, John; Gowers, Alison; Elliot, Paul
2003-01-01
Samples of drinking water are routinely analysed for four trihalomethanes (THMs), which are indicators of by-products of disinfection with chlorine, by UK water suppliers to demonstrate compliance with regulations. The THM data for 1992-1993 to 1997-1998 for three water suppliers in the north and midlands of England were made available for a UK epidemiological study of the association between disinfection by-products and adverse birth outcomes. This paper describes the THM levels in these three supply regions and discusses possible sources of variation. THM levels varied between different suppliers' water, and average THM levels were within the regulatory limits. Chloroform was the predominant THM in all water types apart from the ground water of one supplier. The supplier that distributed more ground and lowland surface water had higher dibromochloromethane (DBCM) and bromoform levels and lower chloroform levels than the other two suppliers. In the water of two suppliers, seasonal fluctuations in bromodichloromethane (BDCM) and DBCM levels were found with levels peaking in the summer and autumn. In the other water supplier, chloroform levels followed a similar seasonal trend whereas BDCM and DBCM levels did not. For all three water suppliers, chloroform levels declined throughout 1995 when there was a drought period. There was a moderate positive correlation between the THMs most similar in their structure (chloroform and BDCM, BDCM and DBCM, and DBCM and bromoform) and a slight negative correlation between chloroform and bromoform levels.
21 CFR 177.1595 - Polyetherimide resin.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... Polyetherimide resin identified in paragraph (a) of this section shall have an intrinsic viscosity in chloroform... Viscosity of ULTEM Polyetherimide Using Chloroform as the Solvent,” which is incorporated by reference...
2008-09-01
sodium carbonate, and extracted with 2-mL chloroform. The chloroform layer was analyzed for residual agent by Gas Chromatography /Atomic Emission...agent remaining on the panel. Solutions were analyzed by Gas Chromatography /Flame-Ionization Detector (GC/FID) to determine the amounts of agent...transferred to glass scintillation vials. A 100-µL aliquot of the DEP was diluted with 900-µL chloroform (1:10 dilution) in a Gas Chromatography
Martinez-Fernandez, Gonzalo; Denman, Stuart E; Cheung, Jane; McSweeney, Christopher S
2017-01-01
Strategies to manage metabolic hydrogen ([H]) in the rumen should be considered when reducing ruminant methane (CH 4 ) emissions. However, little is known about the use of dietary treatments to stimulate rumen microorganisms capable of capturing the [H] available when CH 4 is inhibited in vivo . The effects of the phenolic compound phloroglucinol on CH 4 production, [H] flows and subsequent responses in rumen fermentation and microbial community composition when methanogenesis is inhibited were investigated in cattle. Eight rumen fistulated Brahman steers were randomly allocated in two groups receiving chloroform as an antimethanogenic compound for 21 days. Following that period one group received chloroform + phloroglucinol for another 16 days, whilst the other group received only chloroform during the same period. The chloroform treatment resulted in a decrease in CH 4 production and an increase in H 2 expelled with a shift in rumen fermentation toward higher levels of propionate and formate and lower levels of acetate at day 21 of treatment. Bacterial operational taxonomic units (OTUs) assigned to Prevotella were promoted whilst Archaea and Synergistetes OTUs were decreased with the chloroform treatment as expected. The shift toward formate coincided with increases in Ruminococcus flavefaciens , Butyrivibrio fibrisolvens , and Methanobrevibacter ruminantium species. The addition of chloroform + phloroglucinol in the rumen resulted in a decrease of H 2 expelled (g) per kg of DMI and moles of H 2 expelled per mol of CH 4 decreased compared with the chloroform only treated animals. A shift toward acetate and a decrease in formate were observed for the chloroform + phloroglucinol-treated animals at day 37. These changes in the rumen fermentation profile were accompanied by a relative increase of OTUs assigned to Coprococcus spp., which could suggest this genus is a significant contributor to the metabolism of this phenolic compound in the rumen. This study demonstrates for the first time in vivo that under methanogenesis inhibition, H 2 gas accumulation can be decreased by redirecting [H] toward alternative sinks through the nutritional stimulation of specific microbial groups. This results in the generation of metabolites of value for the host while also helping to maintain a low H 2 partial pressure in the methane-inhibited rumen.
Dhayalan, Arunachalam; Gracilla, Daniel E; Dela Peña, Renato A; Malison, Marilyn T; Pangilinan, Christian R
2018-01-01
The study investigated the medicinal properties of Spathiphyllum cannifolium (Dryand. ex Sims) Schott as a possible source of antimicrobial compounds. The phytochemical constituents were screened using qualitative methods and the antibacterial and antifungal activities were determined using agar well diffusion method. One-way analysis of variance and Fisher's least significant difference test were used. The phytochemical screening showed the presence of sterols, flavonoids, alkaloids, saponins, glycosides, and tannins in both ethanol and chloroform leaf extracts, but triterpenes were detected only in the ethanol leaf extract. The antimicrobial assay revealed that the chloroform leaf extract inhibited Candida albicans, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa , whereas the ethanol leaf extract inhibited E. coli , S. aureus , and B. subtilis only. The ethanol and chloroform leaf extracts exhibited the highest zone of inhibition against B. subtilis . The antifungal assay showed that both the leaf extracts have no bioactivity against Aspergillus niger and C. albicans . Results suggest that chloroform is the better solvent for the extraction of antimicrobial compounds against the test organisms used in this study. Findings of this research will add new knowledge in advancing drug discovery and development in the Philippines.
Du, Yong-Hua; Jia, Ren-Yong; Yin, Zhong-Qiong; Pu, Zhong-Hui; Chen, Jiao; Yang, Fan; Zhang, Yu-Qun; Lu, Yang
2008-10-20
The acaricidal activity of the petroleum ether extract, the chloroform extract and the acetic ether extract of neem (Azadirachta indica) oil against Sarcoptes scabiei var. cuniculi larvae was tested in vitro. A complementary log-log (CLL) model was used to analyze the data of the toxicity tests. The results showed that at all test time points, the petroleum ether extract demonstrated the highest activity against the larvae of S. scabiei var. cuniculi, while the activities of the chloroform extract and the acetic ether extract were similar. The activities of both the petroleum ether extract and the chloroform extract against the larvae showed the relation of time and concentration dependent. The median lethal concentration (LC50) of the petroleum ether extract (1.3 microL/mL) was about three times that of the chloroform extract (4.1 microL/mL) at 24 h post-treatment. At the concentrations of 500.0 microL/mL, the median lethal time (LT50) of the petroleum ether extract and the chloroform extract was 8.4 and 9.6 h, respectively.
Uutela, Päivi; Ketola, Raimo A; Piepponen, Petteri; Kostiainen, Risto
2009-02-09
The efficiencies of three derivatisation reagents that react with either the amine (9-fluorenylmethyl chloroformate (FMOC)) or the carboxylic acid group (butanol) of amino acid or with both types of functional groups (propyl chloroformate) were compared in the analysis of amino acids by liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS). Separation of 20 amino acids derivatised with these three reagents was studied on reversed-phase chromatography. Linearity, repeatability and limits of detection of the LC-ESI-MS/MS method were determined by analysing FMOC-, butanol- and propyl chloroformate-derivatised lysine, beta-aminobutyric acid, threonine and glutamic acid. The limits of detection for the derivatised amino acids (7.5-75fmol) were as much as 2-60 times lower than those of the corresponding underivatised molecules. The best linearity was observed for amino acids derivatised with propyl chloroformate or butanol (r(2)=0.996-0.999, range=100-8500nmolL(-1)). Propyl chloroformate was the best suited of the reagents tested for the analysis of amino acids with LC-MS/MS and was used for the analysis of amino acids in rat brain microdialysis samples.
Xiao, Xiu Feng; Liu, Rong Fang; Tang, Xiao Lian
2008-01-01
Silicon Substituted Hydroxyapatite (Si-HA) coatings were prepared on titanium substrates by electrophoretic deposition (EPD). The stability of Si-HA suspension in n-butanol and chloroform mixture has been studied by electricity conductivity and sedimentation test. The microstructure, shear strength and bioactivity in vitro has been tested. The stability of Si-HA suspension containing n-butanol and chloroform mixture as medium is better than that of pure n-butanol as medium. The good adhesion of the particles with the substrate and good cohesion between the particles were obtained in n-butanol and chloroform mixture. Adding triethanolamine (TEA) as additive into the suspension is in favor of the formation of uniform and compact Si-HA coatings on the titanium substrates by EPD. The shear strength of the coatings can reach 20.43 MPa after sintering at 700 degrees C for 2 h, when the volume ratio of n-butanol: chloroform is 2:1 and the concentration of TEA is 15 ml/L. Titanium substrates etched in H(2)O(2)/NH(3) solution help to improve the shear strength of the coatings. After immersion in simulated body fluid for 7 days, Si-HA coatings have the ability to induce the bone-like apatite formation.
21 CFR 700.18 - Use of chloroform as an ingredient in cosmetic products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... animals. Studies conducted by the National Cancer Institute have demonstrated that the oral administration of chloroform to mice and rats induced hepatocellular carcinomas (liver cancer) in mice and renal...
21 CFR 700.18 - Use of chloroform as an ingredient in cosmetic products.
Code of Federal Regulations, 2011 CFR
2011-04-01
... animals. Studies conducted by the National Cancer Institute have demonstrated that the oral administration of chloroform to mice and rats induced hepatocellular carcinomas (liver cancer) in mice and renal...
21 CFR 700.18 - Use of chloroform as an ingredient in cosmetic products.
Code of Federal Regulations, 2013 CFR
2013-04-01
... animals. Studies conducted by the National Cancer Institute have demonstrated that the oral administration of chloroform to mice and rats induced hepatocellular carcinomas (liver cancer) in mice and renal...
21 CFR 700.18 - Use of chloroform as an ingredient in cosmetic products.
Code of Federal Regulations, 2012 CFR
2012-04-01
... animals. Studies conducted by the National Cancer Institute have demonstrated that the oral administration of chloroform to mice and rats induced hepatocellular carcinomas (liver cancer) in mice and renal...
21 CFR 700.18 - Use of chloroform as an ingredient in cosmetic products.
Code of Federal Regulations, 2014 CFR
2014-04-01
... animals. Studies conducted by the National Cancer Institute have demonstrated that the oral administration of chloroform to mice and rats induced hepatocellular carcinomas (liver cancer) in mice and renal...
NASA Astrophysics Data System (ADS)
Strokova, N. E.; Yagodovskaya, T. V.; Savilov, S. V.; Lukhovitskaya, E. E.; Vasil'ev, E. S.; Morozov, I. I.; Lunin, V. V.
2013-02-01
The reactions of ozone with chloroform and bromoform are studied using a flow gas discharge vacuum unit under conditions close to stratospheric (temperature range, 77-250 K; pressure, 10-3-0.1 Torr in the presence of nitrate ice). It is shown that the reaction with bromoform begins at 160 K; the reaction with chloroform, at 190 K. The reaction products are chlorine and bromine oxides of different composition, identified by low-temperature FTIR spectroscopy. The presence of nitrate ice raises the temperature of reaction onset to 210 K.
Integrated Risk Information System (IRIS)
Chloroform ; CASRN 67 - 66 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects
21 CFR 177.1595 - Polyetherimide resin.
Code of Federal Regulations, 2013 CFR
2013-04-01
... shall have an intrinsic viscosity in chloroform at 25 °C (77 °F) of not less than 0.35 deciliter per gram as determined by a method titled “Intrinsic Viscosity of ULTEM Polyetherimide Using Chloroform as...
21 CFR 177.1595 - Polyetherimide resin.
Code of Federal Regulations, 2012 CFR
2012-04-01
... shall have an intrinsic viscosity in chloroform at 25 °C (77 °F) of not less than 0.35 deciliter per gram as determined by a method titled “Intrinsic Viscosity of ULTEM Polyetherimide Using Chloroform as...
21 CFR 177.1595 - Polyetherimide resin.
Code of Federal Regulations, 2011 CFR
2011-04-01
... shall have an intrinsic viscosity in chloroform at 25 °C (77 °F) of not less than 0.35 deciliter per gram as determined by a method titled “Intrinsic Viscosity of ULTEM Polyetherimide Using Chloroform as...
Antitubercular activity of the semi-polar extractives of Uvaria rufa.
Macabeo, Allan Patrick G; Tudla, Florie A; Krohn, Karsten; Franzblau, Scott G
2012-10-01
To investigate the inhibitory activity of the chloroform extract, petroleum ether and chloroform sub-extracts, lead-acetate treated chloroform extract, fractions and secondary metabolites of Uvaria rufa (U. rufa) against Mycobacterium tuberculosis (M. tuberculosis) H(37)Rv. The antituberculosis susceptibility assay was carried out using the colorimetric Microplate Alamar blue assay (MABA). In addition, the cytotoxicity of the most active fraction was evaluated using the VERO cell toxicity assay. The in vitro inhibitory activity against M. tuberculosis H(37)Rv increased as purification progressed to fractionation (MIC up to 23 μg/mL). The chloroform extract and its sub-extracts showed moderate toxicity while the most active fraction from chloroform sub-extract exhibited no cytotoxicity against VERO cells. Meanwhile, the lead acetate-treated crude chloroform extract and its fractions showed complete inhibitions (100%) with MIC values up to 8 μg/mL. Phytochemical screening of the most active fraction showed, in general, the presence of terpenoids, steroids and phenolic compounds. Evaluation of the antimycobacterial activity of known secondary metabolites isolated showed no promising inhibitory activity against the test organism. The present results demonstrate the potential of U. rufa as a phytomedicinal source of compounds that may exhibit promising antituberculosis activity. In addition, elimination of polar pigments revealed enhanced inhibition against M. tuberculosis H(37)Rv. While several compounds known for this plant did not show antimycobacterial activity, the obtained results are considered sufficient reason for further study to isolate the metabolites from U. rufa responsible for the antitubercular activity. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Lame, Younoussa; Nukenine, Elias Nchiwan; Pierre, Danga Yinyang Simon; Elijah, Ajaegbu Eze; Esimone, Charles Okechukwu
2015-12-01
Within the framework to control mosquitoes, ovicidal, larvicidal and pupicidal activity of Annona senegalensis leaf extract and its 4 fractions against Anopheles gambiae and Culex quinquefasciatus were evaluated in the laboratory conditions. Ovicidal test was performed by submitting at least 100 eggs of mosquitoes to 125, 250, 500, 1000 and 2000 ppm concentrations, while larvicidal and pupicidal effects were assessed by submitting 25 larvae or pupae to the concentrations of 2500, 1250, 625 and 312.5 ppm of plant extract or fractions of A. senegalensis. The eggs of An. gambiae were most affected by N-hexane (0.00% hatchability) and chloroform (03.67% hatchability) fractions compared to Cx. quinquefasciatus where at least 25 % hatchability were recorded at 2000 ppm. For larvicidal test, N-hexane (LC50= 298.8 ppm) and chloroform (LC50= 418.3 ppm) fractions were more effective than other fractions on An. gambiae larvae while, a moderate effectiveness was also observed with N-hexane (LC50= 2087.6 ppm), chloroform (LC50= 9010.1 ppm) fractions on Cx. quinquefasciatus larvae. The highest mortality percent of the pupae were also recorded with N-hexane and chloroform fractions on An. gambiae at 2500 ppm. As for Cx. quinquefasciatus only 50 % and 36 % mortality were recorded with N-hexane and chloroform fractions respectively. The extract of A. senegalensis was toxic on immature stage of mosquito species tested. By splitting methanolic crude extract, only N-hexane and chloroform fractions were revealed to possess a mosquitocidal effects and could be considered and utilized for future immature mosquito vectors control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraga, Carlos G.; Bronk, Krys; Dockendorff, Brian P.
Chemical attribution signatures (CAS) are being investigated for the sourcing of chemical warfare (CW) agents and their starting materials that may be implicated in chemical attacks or CW proliferation. The work reported here demonstrates for the first time trace impurities produced during the synthesis of tris(2-chloroethyl)amine (HN3) that point to specific reagent stocks used in the synthesis of this CW agent. Thirty batches of HN3 were synthesized using different combinations of commercial stocks of triethanolamine (TEA), thionyl chloride, chloroform, and acetone. The HN3 batches and reagent stocks were then analyzed for impurities by gas chromatography/mass spectrometry. Reaction-produced impurities indicative ofmore » specific TEA and chloroform stocks were exclusively discovered in HN3 batches made with those reagent stocks. In addition, some reagent impurities were found in the HN3 batches that were presumably not altered during synthesis and believed to be indicative of reagent type regardless of stock. Supervised classification using partial least squares discriminant analysis (PLSDA) on the impurity profiles of chloroform samples from seven stocks resulted in an average classification error by cross-validation of 2.4%. A classification error of zero was obtained using the seven-stock PLSDA model on a validation set of samples from an arbitrarily selected chloroform stock. In a separate analysis, all samples from two of seven chloroform stocks that were purposely not modeled had their samples matched to a chloroform stock rather than assigned a “no class” classification.« less
Carcinogenicity of by-products of disinfection in mouse and rat liver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herren-Freund, S.L.; Pereira, M.A.
1986-11-01
By-products of disinfection were tested for initiating and/or promoting activity in rat liver by using the rat liver foci bioassay. The assay uses an increased incidence of ..gamma..-glutamyltranspeptidase-positive foci (GGT foci) as an indicator of carcinogenicity. The by-products of disinfection, including chloramine, halogenated humic acids, halogenated ethanes, halogenated acetonitriles, halogenated methanes, halogenated ethylene, and N-Cl piperidine, did not initiate GGT foci, which would indicate that they are not capable of initiating carcinogenesis. Chloroform and halogenated benzenes were tested in this assay for their ability to promote the occurrence of GGT foci and tumors initiated by diethylnitrosamine (DENA). Chloroform either hadmore » no effect or inhibited the occurrence of GGT foci when administered subsequent to a single dose of DENA. However, when the chloroform was administered in drinking water concurrently with weekly doses of DENA, it enhanced the formation of liver tumors. Of 20 halogenated benzenes tested, only 1,2,4,5-tetrachlorobenzene and hexachlorobenzene promoted the occurrence of DENA-initiated GGT foci. Thus in rat liver, the tested by-products of drinking water disinfection did not demonstrate tumor-initiating activity, although a few appeared to possess tumor-promoting activity. Chloroform was also tested for tumor-promoting activity in 15-days-old Swiss mice initiated with ethylnitrosourea (ENU). ENU at 5 and 20 ..mu..g/g caused a dose-dependent increase in liver tumors. In male mice, chloroform inhibited both spontaneous and ENU-induced liver tumors. When administered in the drinking water, chloroform inhibited, whereas phenobarbital promoted, hepatocarcinogenesis in mice.« less
Martinez-Fernandez, Gonzalo; Denman, Stuart E.; Cheung, Jane; McSweeney, Christopher S.
2017-01-01
Strategies to manage metabolic hydrogen ([H]) in the rumen should be considered when reducing ruminant methane (CH4) emissions. However, little is known about the use of dietary treatments to stimulate rumen microorganisms capable of capturing the [H] available when CH4 is inhibited in vivo. The effects of the phenolic compound phloroglucinol on CH4 production, [H] flows and subsequent responses in rumen fermentation and microbial community composition when methanogenesis is inhibited were investigated in cattle. Eight rumen fistulated Brahman steers were randomly allocated in two groups receiving chloroform as an antimethanogenic compound for 21 days. Following that period one group received chloroform + phloroglucinol for another 16 days, whilst the other group received only chloroform during the same period. The chloroform treatment resulted in a decrease in CH4 production and an increase in H2 expelled with a shift in rumen fermentation toward higher levels of propionate and formate and lower levels of acetate at day 21 of treatment. Bacterial operational taxonomic units (OTUs) assigned to Prevotella were promoted whilst Archaea and Synergistetes OTUs were decreased with the chloroform treatment as expected. The shift toward formate coincided with increases in Ruminococcus flavefaciens, Butyrivibrio fibrisolvens, and Methanobrevibacter ruminantium species. The addition of chloroform + phloroglucinol in the rumen resulted in a decrease of H2 expelled (g) per kg of DMI and moles of H2 expelled per mol of CH4 decreased compared with the chloroform only treated animals. A shift toward acetate and a decrease in formate were observed for the chloroform + phloroglucinol-treated animals at day 37. These changes in the rumen fermentation profile were accompanied by a relative increase of OTUs assigned to Coprococcus spp., which could suggest this genus is a significant contributor to the metabolism of this phenolic compound in the rumen. This study demonstrates for the first time in vivo that under methanogenesis inhibition, H2 gas accumulation can be decreased by redirecting [H] toward alternative sinks through the nutritional stimulation of specific microbial groups. This results in the generation of metabolites of value for the host while also helping to maintain a low H2 partial pressure in the methane-inhibited rumen. PMID:29051749
The interaction of insulin with phospholipids
Perry, M. C.; Tampion, W.; Lucy, J. A.
1971-01-01
1. A simple two-phase chloroform–aqueous buffer system was used to investigate the interaction of insulin with phospholipids and other amphipathic substances. 2. The distribution of 125I-labelled insulin in this system was determined after incubation at 37°C. Phosphatidic acid, dicetylphosphoric acid and, to a lesser extent, phosphatidylcholine and cetyltrimethylammonium bromide solubilized 125I-labelled insulin in the chloroform phase, indicating the formation of chloroform-soluble insulin–phospholipid or insulin–amphipath complexes. Phosphatidylethanolamine, sphingomyelin, cholesterol, stearylamine and Triton X-100 were without effect. 3. Formation of insulin–phospholipid complex was confirmed by paper chromatography. 4. The two-phase system was adapted to act as a simple functional system with which to investigate possible effects of insulin on the structural and functional properties of phospholipid micelles in chloroform, by using the distribution of [14C]glucose between the two phases as a monitor of phospholipid–insulin interactions. The ability of phospholipids to solubilize [14C]glucose in chloroform increased in the order phosphatidylcholine
Bouhlel, Ines; Valenti, Kita; Kilani, Soumaya; Skandrani, Ines; Ben Sghaier, Mohamed; Mariotte, Anne-Marie; Dijoux-Franca, Marie-Genevieve; Ghedira, Kamel; Hininger-Favier, Isabelle; Laporte, François; Chekir-Ghedira, Leila
2008-08-01
The total oligomers flavonoids (TOF), chloroform, petroleum ether and aqueous extracts from Acacia salicina, were investigated for the antioxidative, cytotoxic, antimutagenic and antigenotoxic activities. The viability of K562 cells were affected by all extracts after 48 h exposure. Our results showed that A. salicina extracts have antigenotoxic and/or antimutagenic activities. TOF and chloroform extracts exhibit antioxidant properties, expressed by the capacity of these extracts to inhibit xanthine oxidase activity. To further explore the mechanism of action of A. salicina extracts, we characterized expression profiles of genes involved in antioxidant protection and DNA repair in the human lymphoblastic cell line K562 exposed to H2O2. Transcription of several genes related to the thioredoxin antioxidant system and to the DNA base-excision repair pathway was up-regulated after incubation with chloroform, TOF and petroleum ether extracts. Moreover genes involved in the nucleotide-excision repair pathway and genes coding for catalase and Mn-superoxide-dismutase, two important antioxidant enzymes, were induced after incubation with the chloroform extract. Taken together, these observations provide evidence that the chloroform and TOF extracts of A. salicina leaves contain bioactive compounds that are able to protect cells against the consequences of an oxidative stress.
Effect of casting solvent on crystallinity of ondansetron in transdermal films.
Pattnaik, Satyanarayan; Swain, Kalpana; Mallick, Subrata; Lin, Zhiqun
2011-03-15
The purpose of the present investigation is to assess the influence of casting solvent on crystallinity of ondansetron hydrochloride in transdermal polymeric matrix films fabricated using povidone and ethyl cellulose as matrix forming polymers. Various casting solvents like chloroform (CHL), dichloromethane (DCM), methanol (MET); and mixture of chloroform and ethanol (C-ETH) were used for fabrication of the transdermal films. Analytical tools like scanning electron microscopy (SEM), X-ray diffraction (XRD) studies, differential scanning calorimetry (DSC), etc. were utilized to characterize the crystalline state of ondansetron in the film. Recrystallisation was observed in all the transdermal films fabricated using the casting solvents other than chloroform. Long thin slab-looking, long wire-like or spherulite-looking crystals with beautiful impinged boundaries were observed in SEM. Moreover, XRD revealed no crystalline peaks of ondansetron hydrochloride in the transdermal films prepared using chloroform as casting solvent. The significantly decreased intensity and sharpness of the DSC endothermic peaks corresponding to the melting point of ondansetron in the formulation (specifically in CHL) indicated partial dissolution of ondansetron crystals in the polymeric films. The employed analytical tools suggested chloroform as a preferred casting solvent with minimum or practically absence of recrystallization indicating a relatively amorphous state of ondansetron in transdermal films. Copyright © 2011 Elsevier B.V. All rights reserved.
Forczek, Sándor T; Pavlík, Milan; Holík, Josef; Rederer, Luděk; Ferenčík, Martin
2016-08-01
Chlorine cycle in natural ecosystems involves formation of low and high molecular weight organic compounds of living organisms, soil organic matter and atmospherically deposited chloride. Chloroform (CHCl3) and adsorbable organohalogens (AOX) are part of the chlorine cycle. We attempted to characterize the dynamical changes in the levels of total organic carbon (TOC), AOX, chlorine and CHCl3 in a drinking water reservoir and in its tributaries, mainly at its spring, and attempt to relate the presence of AOX and CHCl3 with meteorological, chemical or biological factors. Water temperature and pH influence the formation and accumulation of CHCl3 and affect the conditions for biological processes, which are demonstrated by the correlation between CHCl3 and ΣAOX/Cl(-) ratio, and also by CHCl3/ΣAOX, CHCl3/AOXLMW, CHCl3/ΣTOC, CHCl3/TOCLMW and CHCl3/Cl(-) ratios in different microecosystems (e.g. old spruce forest, stagnant acidic water, humid and warm conditions with high biological activity). These processes start with the biotransformation of AOX from TOC, continue via degradation of AOX to smaller molecules and further chlorination, and finish with the formation of small chlorinated molecules, and their subsequent volatilization and mineralization. The determined concentrations of chloroform result from a dynamic equilibrium between its formation and degradation in the water; in the Hamry water reservoir, this results in a total amount of 0.1-0.7 kg chloroform and 5.2-15.4 t chloride. The formation of chloroform is affected by Cl(-) concentration, by concentrations and ratios of biogenic substrates (TOC and AOX), and by the ratios of the substrates and the product (feedback control by chloroform itself). Copyright © 2016 Elsevier Ltd. All rights reserved.
Formation and transformation of chloroform during managed aquifer recharge (MAR).
Liu, Dan; Liang, Xiujuan; Zhang, Wenjing; Wang, Zhuo; Ma, Tianyi; Li, Fulin; Chen, Xuequn
2018-05-09
Chlorination is an effective method to protect the safety of groundwater systems during managed aquifer recharge. However, chlorination leads to the formation of disinfection by-products, whose behavior in aquifers remains unclear and has caused public concern. In this study, an in-site test was performed on an anoxic aquifer in Shouguang City, China, to investigate the formation and transformation of chloroform during managed aquifer recharge. The field tests showed that the formation of chloroform in groundwater caused by the recharge of chlorinated water, and that the fate of chloroform was affected by adsorption and biodegradation. The retardation factor was 1.27, and the half-life was 29 days. The formation and transformation of chloroform during continuous recharge under different hydrochemical conditions was further investigated by batch experiments. These experiments showed that the formation of chloroform increased with contact time, tended to be stable after 10 h, and was facilitated by high chloride/TOC ratios, high pH, and low ionic strength (IS) for a given contact time. The adsorption experiments showed that the process accords with the pseudo-second-order kinetic equations and the Freundlich model. The adsorption capacity was pH dependent (1.01-1.66 μg/g at pH 5 and 2.17-3.05 μg/g at pH 9). Increasing the IS promotes adsorption. The results from biodegradation experiments indicated that the biodegradation was well fitted by the Monod equation. The retardation factor in the batch experiments was close to that of the field test, but the half-life was less than the field test. This is mainly due to the difference in the concentration of dissolved oxygen. Copyright © 2018 Elsevier Ltd. All rights reserved.
The early steps of chloroform anaesthesia in Turkey during the Ottoman Empire in the 19th century.
Ulman, Yesim Isil
2005-04-01
The aim of this study was to research the pioneering steps for the employment of chloroform in Turkey in comparison with the developments in the West i.e. in the United States and in Europe. The development of anaesthesiology in the West started in the first half of the 19th century. As an anaesthetic substance, ether was first employed in a medical operation by R. Liston in December 1846. But taking into consideration of its bronchially irritant effect, British gynaecologist Dr. J.Y. Simpson preferred to utilize chloroform in obstetrical operations in 1847. The paper aims at shedding light on the earlier steps for modern anaesthesiology in Turkey in that sense. The survey used evaluation of archival documents, first hand-original sources such as the annual medical reports of the Medical School, books, official journals, and newspapers of the time, and also secondary sources concerned with the subject. In view of the findings of the survey, chloroform, as an anaesthetic material, began to be administered surgically in Turkey much earlier than it was already known. It was experienced and used in operations at the surgical clinic of the Imperial School of Medicine at the Capital city, Istanbul in 1848. The Crimean War (1853-1855) induced to the prevalent surgical use of chloroform in Istanbul on the soldiers back from the front. In other words, it was evidenced that surgeons started to make use of this anaesthetic substance in the Ottoman Empire, shortly after it was put into medical practice in Europe. This study deals with that phenomenal progress of chloroform anaesthesia in the medical history in Turkey during the second half of the 19th century.
Dissolution of root canal sealer cements in volatile solvents.
Whitworth, J M; Boursin, E M
2000-01-01
There are few published data on the solubility profiles of endodontic sealers in solvents commonly employed in root canal retreatment. This study tested the hypothesis that root canal sealer cements are insoluble in the volatile solvents chloroform and halothane. Standardized samples (n = 5) of glass ionomer (Ketac Endo), zinc oxide-eugenol (Tubli-Seal EWT), calcium hydroxide (Apexit) and epoxy resin (AH Plus) based sealers were immersed in chloroform or halothane for 30 s, 1 min, 5 min and 10 min. Mean loss of weight was plotted against time of exposure, and differences in behaviour assessed by multiple paired t-tests (P < 0.01). Clear differences were shown in the solubility profiles of major classes of root canal sealer cements in two common volatile solvents. In comparison with other classes of material, Ketac Endo was the least soluble in chloroform and halothane (P < 0.01), with less than 1% weight loss after 10 min exposure to either solvent. Apexit had low solubility with 11.6% and 14.19% weight loss after 10 min exposure to chloroform and halothane, respectively. The difference between solvents was not significant (P > 0.01). Tubli-Seal EWT was significantly less soluble in halothane than chloroform (5.19% and 62.5% weight loss after 10 min exposure, respectively (P < 0.01)). Its solubility in halothane was not significantly different from that of Apexit. AH Plus was significantly more soluble than all other materials in both chloroform and halothane (96% and 68% weight loss after 10 min exposure, respectively (P < 0.01)). There are significant differences in the solubility profiles of major classes of root canal sealer in common organic solvents. Efforts should continue to find a more universally effective solvent for use in root canal treatment.
Lame, Younoussa; Nukenine, Elias Nchiwan; Pierre, Danga Yinyang Simon; Elijah, Ajaegbu Eze; Esimone, Charles Okechukwu
2015-01-01
Background: Within the framework to control mosquitoes, ovicidal, larvicidal and pupicidal activity of Annona senegalensis leaf extract and its 4 fractions against Anopheles gambiae and Culex quinquefasciatus were evaluated in the laboratory conditions. Methods: Ovicidal test was performed by submitting at least 100 eggs of mosquitoes to 125, 250, 500, 1000 and 2000 ppm concentrations, while larvicidal and pupicidal effects were assessed by submitting 25 larvae or pupae to the concentrations of 2500, 1250, 625 and 312.5 ppm of plant extract or fractions of A. senegalensis. Results: The eggs of An. gambiae were most affected by N-hexane (0.00% hatchability) and chloroform (03.67% hatchability) fractions compared to Cx. quinquefasciatus where at least 25 % hatchability were recorded at 2000 ppm. For larvicidal test, N-hexane (LC50= 298.8 ppm) and chloroform (LC50= 418.3 ppm) fractions were more effective than other fractions on An. gambiae larvae while, a moderate effectiveness was also observed with N-hexane (LC50= 2087.6 ppm), chloroform (LC50= 9010.1 ppm) fractions on Cx. quinquefasciatus larvae. The highest mortality percent of the pupae were also recorded with N-hexane and chloroform fractions on An. gambiae at 2500 ppm. As for Cx. quinquefasciatus only 50 % and 36 % mortality were recorded with N-hexane and chloroform fractions respectively. Conclusion: The extract of A. senegalensis was toxic on immature stage of mosquito species tested. By splitting methanolic crude extract, only N-hexane and chloroform fractions were revealed to possess a mosquitocidal effects and could be considered and utilized for future immature mosquito vectors control. PMID:26623434
Zheng, Xiaomin; Liang, Liang; Hei, Changchun; Yang, Wenjuan; Zhang, Tingyuan; Wu, Kai; Qin, Yi; Chang, Qing
2018-04-17
Chloroform-induced olfactory mucosal degeneration has been reported in adult rats following gavage. We used fixed-point chloroform infusions on different postnatal days (PNDs) to investigate the effects of early olfactory bilateral deprivation on the main olfactory bulbs in Sprague Dawley rats. The experimental groups included rats infused with chloroform (5 μl) or saline (sham, 5 μl) on PNDs 3 and 8, and rats not receiving infusions (control) (n = 6 in all groups). Rats receiving chloroform on PND 3 showed significant hypoevolutism when compared to those in other groups (P < 0.05). There was a complete disappearance and a significant reduction in the size of olfactory glomeruli in the PND 3 and 8 groups, respectively, when compared to the respective sham groups. Rats receiving chloroform on PND 3 had significant memory impairment (P < 0.01) and increased levels of learned helplessness (P < 0.05), as measured using the Morris water maze and tail suspension tests, respectively. GABA A receptor alpha5 subunit (α5GABA A R) expression in hippocampal neurons was significantly lower in rats receiving chloroform on PND 3 than in rats in other groups (P < 0.01), as measured using immunohistochemistry and polymerase chain reaction. There was thus a critical period for the preservation of regenerative ability in olfactory receptor neurons, during which damage and olfactory deprivation led to altered rhinencephalon structure and disappearance of olfactory glomeruli, which induced hypoevolutism. Olfactory deprivation after the critical period had no significant effect on olfactory receptor neuron regeneration, leading to reduced developmental and behavioral effects in Sprague Dawley rats.
IRIS Assessment Plan for Chloroform (Scoping and Problem Formulation Materials)
In September 2017, EPA released the draft IRIS Assessment Plan (IAP) for Chloroform for public review and comment. ...
IRIS Assessment Plan for Chloroform (Scoping and Problem Formulation Materials)
In September 2017, EPA released the draft IRIS Assessment Plan (IAP) for Chloroform for public review and comment. Th...
Did the use of chloroform by Queen Victoria influence its acceptance in obstetric practice?
Connor, H; Connor, T
1996-10-01
Examination of contemporaneous publications suggests that the use of chloroform by Queen Victoria in 1853 did not result in the major breakthrough in the acceptability of obstetric anaesthesia with which the event has been credited by some later writers.
NASA Astrophysics Data System (ADS)
Smiljanić, Jelena D.; Kijevčanin, Mirjana Lj.; Djordjević, Bojan D.; Grozdanić, Dušan K.; Šerbanović, Slobodan P.
2008-04-01
Densities ρ of the 1-butanol + chloroform + benzene ternary mixture and the 1-butanol + chloroform and 1-butanol + benzene binaries have been measured at six temperatures (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure, using an oscillating U-tube densimeter. From these densities, excess molar volumes ( V E) were calculated and fitted to the Redlich Kister equation for all binary mixtures and to the Nagata and Tamura equation for the ternary system. The Radojković et al. equation has been used to predict excess molar volumes of the ternary mixtures. Also, V E data of the binary systems were correlated by the van der Waals (vdW1) and Twu Coon Bluck Tilton (TCBT) mixing rules coupled with the Peng Robinson Stryjek Vera (PRSV) equation of state. The prediction and correlation of V E data for the ternary system were performed by the same models.
Correlation of the Rates of Solvolysis of Neopentyl Chloroformate—A Recommended Protecting Agent
D’Souza, Malcolm J.; Carter, Shannon E.; Kevill, Dennis N.
2011-01-01
The specific rates of solvolysis of neopentyl chloroformate (1) have been determined in 21 pure and binary solvents at 45.0 °C. In most solvents the values are essentially identical to those for ethyl and n-propyl chloroformates. However, in aqueous-1,1,1,3,3,3-hexafluoro-2-propanol mixtures (HFIP) rich in fluoroalcohol, 1 solvolyses appreciably faster than the other two substrates. Linear free energy relationship (LFER) comparison of the specific rates of solvolysis of 1 with those for phenyl chloroformate and those for n-propyl chloroformate are helpful in the mechanistic considerations, as is also the treatment in terms of the Extended Grunwald-Winstein equation. It is proposed that the faster reaction for 1 in HFIP rich solvents is due to the influence of a 1,2-methyl shift, leading to a tertiary alkyl cation, outweighing the only weak nucleophilic solvation of the cation possible in these low nucleophilicity solvents. PMID:21541050
D’Souza, Malcolm J.; Kevill, Dennis N.
2014-01-01
Chloroformates are important laboratory and industrial chemicals with almost one hundred listed in the catalogs of leading suppliers. They are, for example, of prime importance as protecting groups in peptide synthesis. In some instances, the more stable fluoroformate is preferred. In recent years, the specific rates of solvolysis (k) for chloroformates and fluoroformates in solvents of widely ranging nucleophilicity and ionizing power have been studied. Analysis of these rates using the extended (two-term) Grunwald-Winstein equation has led to important information concerning reaction mechanism. Also assisting in this effort have been studies of kinetic solvent isotope effects (KSIE), of leaving group effects (especially kF/kCl ratios), and of entropies of activation from studies of specific rate variations with temperature. For solvolyses of chloroformate esters, two mechanisms (addition-elimination and ionization) are commonly encountered. For solvolyses of fluoroformates, mainly because of a strong C–F bond, the ionization pathway is rare and the addition-elimination pathway is in most situations the one encountered. PMID:25364780
Javed, S; Shoaib, A; Mahmood, Z; Mushtaq, S; Iftikhar, S
2012-01-01
In vitro antifungal activity and phytochemical constituents of essential oil, aqueous, methanol and chloroform extract of Eucalyptus citriodora Hook leaves were investigated. A qualitative phytochemical analysis was performed for the detection of alkaloids, cardiac glycosides, flavonoids, saponins, sterols, tannins and phenols. Methanolic extract holds all identified biochemical constituents except for the tannin. While these biochemical constituents were found to be absent in essential oil, aqueous and chloroform extracts with the exception of sterols, cardiac glycosides and phenols in essential oil and sterols and phenols in aqueous and chloroform extracts. Antimycotic activity of four fractions of E. citriodora was investigated through agar-well diffusion method against four post-harvest fungi, namely, Aspergillus flavus Link ex Gray, Aspergillus fumigatus Fres., Aspergillus nidulans Eidam ex Win and Aspergillus terreus Thom. The results revealed maximum fungal growth inhibition by methanolic extract (14.5%) followed by essential oil (12.9%), chloroform extract (10.15%) and aqueous extract (10%).
Hintzenstern, U v; Schwarz, W
1996-02-01
The era of modern anaesthesia in Germany began on January 24th, 1847. This day, professor in ordinary Johann Ferdinand Heyfelder anaesthetized a patient with sulphuric ether in the clinic of surgery and ophthalmology of the University of Erlangen. By March 17th, 1847, Heyfelder had performed 121 surgical procedures under ether. The operations in majority were teeth-extractions, and a few more complex operations such as the treatment of a harelip or of lip cancer or the resection of the shoulder joint. Heyfelder described in detail 108 of these inhalations in a little book entitled The experiments with sulphuric ether. This monograph published in March, 1847, represents one of the first complete dissertations on sulphuric ether in the German literature. In a special chapter he analyzed the development of various physiological and psychological parameters during etherization. Heyfelder also examined blood and urine of some etherized patients and reported that he did not find any important or specific alterations. In 1847, Heyfelder was probably the first to apply salt-ether in man. After 4 administrations he concluded that salt ether acted more quickly but shorter than sulphuric ether. Advantageous were its application without problems and ease of induction. Disadvantageous were its high volatility, its price and the difficulty of getting it in a pure form. From December, 1847, on Heyfelder started to use chloroform. He was now able to perform more major operations, for example, the total resection of the hip-joint. In his book The experiments with sulphuric ether, salt ether, and chloroform he describes a great number of anaesthetic administrations using these 3 agents. In his summary Heyfelder concluded, that chloroform was undoubtly superior to sulphuric ether mainly because it was a quicker acting and longer lasting agent and leads to deeper narcosis. Moreover its application was much easier for it needed no special apparatus. However, because of its great anaesthetic potency, Heyfelder particularly demanded great caution in the application of chloroform. Explicitely he expected an assistant for chloroformizations, whose only duty was to supervise the inhalations and the patient--a forerunner of the modern specialized anaesthesiologist.
Santos, Sérgio M; Costa, Paulo J; Lankshear, Michael D; Beer, Paul D; Félix, Vítor
2010-09-02
The ability of two heteroditopic calix[4]diquinone receptors to transport a KCl ion-pair and a dopamine zwitterion through a water-chloroform interface was investigated via molecular dynamics (MD) simulations. Gas-phase conformational analysis has been carried on KCl and dopamine receptor binding associations and the lowest energy structures found in both cases show that the recognition of KCl and dopamine zwitterion occurs through multiple and cooperative N-H...anion and O...cation bonding interactions, with the receptor adopting equivalent folded conformations stabilized by pi-stacking interactions. The unconstrained MD simulations performed on KCl and dopamine complexes inserted in either the chloroform or water phase revealed that receptors are preferentially located at the interface with the hydrophobic tert-butyl groups of the calix[4]diquinone moiety immersed in the chloroform bulk while the polar anion binding cavity is directed toward the water phase. When the KCl complex is placed in chloroform, the release of the ion-pair occurs only after the first contact with the water interface, being a nonsimultaneous event, with the chloride anion leaving the receptor before the potassium cation. The dopamine, via the -NH(3)(+) binding entity, remains bound to the receptor during the entire time of the MD simulation (10 ns). In contrast, when both complexes were inserted in the water bulk, the full release of KCl and dopamine are fast events. The potentials of mean force (PMFs), associated with the migration of the complexes from chloroform to water through the interface, were calculated from steered molecular dynamics (SMD) simulations. The PMFs for the free KCl and zwitterionic dopamine migrations were also obtained for comparison purposes. The transport of KCl from water to chloroform (the reverse path) mediated by the receptor has a free energy barrier estimated in 6.50 kcal mol(-1), which is 3.0 kcal mol(-1) smaller than that found for the free KCl. The transport of dopamine complex along the reverse path is characterized by downhill energy profile, with a small free energy barrier of 6.56 kcal mol(-1).
Antibacterial and cytotoxic activities of the sesquiterpene lactones cnicin and onopordopicrin.
Bach, Sandra M; Fortuna, Mario A; Attarian, Rodgoun; de Trimarco, Juliana T; Catalán, César A N; Av-Gay, Yossef; Bach, Horacio
2011-02-01
The antimicrobial and cytotoxic activities of chloroform extracts from the weeds Centaurea tweediei and C. diffusa, and the main sesquiterpene lactones isolated from these species, onopordopicrin and cnicin, respectively, were assayed. Results show that the chloroform extracts from both Centaurea species possess antibacterial activities against a panel of Gram-positive and Gram-negative bacteria. Remarkable antibacterial activity against methicillin-resistant Staphylococcus aureus was also measured. Both the extracts and the purified sesquiterpene lactones show high cytotoxicity against human-derived macrophages. Despite this cytotoxicity, C. diffusa chloroform extract and cnicin are attractive candidates for evaluation as antibiotics in topical preparations against skin-associated pathogens.
Phytochemical analysis of Gymnema sylvestre and evaluation of its antimicrobial activity.
Chodisetti, Bhuvaneswari; Rao, Kiranmayee; Giri, Archana
2013-01-01
Gymnema sylvestre (CS 149), known to be a rich source of saponins and other valuable phytochemicals, has been analysed for antimicrobial activity. The chloroform extracts of aerial and root parts of G. sylvestre exhibited higher antimicrobial activity as compared to diethyl ether and acetone. The root extracts of chloroform have shown competitive minimum inhibitory concentration and minimum bactericidal concentration values in the range of 0.04-1.28 mg mL(-1) and 0.08-2.56 mg/mL, respectively, towards the pathogens. The GC-MS analysis of chloroform extracts has shown the presence of compounds like eicosane, oleic acid, stigmasterol and vitamin E.
In January 2018, EPA released the Systematic Review Protocol for the IRIS Chloroform Assessment (Inhalation). As part of developing a draft IRIS assessment, EPA presents a methods document, referred to as the protocol, for conducting a chemical-specific systematic revie...
Trichloroethylene (TCE) and chloroform (CHCl3) are two of the most common environmental contaminants found in water. PBPK models have been increasingly used to predict target dose in internal tissues from available environmental exposure concentrations. A closed inhalation (or g...
Carter, Janet M.; Moran, Michael J.; Zogorski, John S.; Price, Curtis V.
2012-01-01
Multiple lines of evidence for indicating factors associated with the sources, transport, and fate of chloroform and three other trihalomethanes (THMs) in untreated groundwater were revealed by evaluating low-level analytical results and logistic regression results for THMs. Samples of untreated groundwater from wells used for drinking water were collected from 1996-2007 from 2492 wells across the United States and analyzed for chloroform, bromodichloromethane, dibromochloromethane, and bromoform by a low-level analytical method implemented in April 1996. Using an assessment level of 0.02 μg/L, chloroform was detected in 36.5% of public-well samples and 17.6% of domestic-well samples, with most concentrations less than 1 μg/L. Brominated THMs occurred less frequently than chloroform but more frequently in public-well samples than domestic-well samples. For both public and domestic wells, THMs occurred most frequently in urban areas. Logistic regression analyses showed that the occurrence of THMs was related to nonpoint sources such as urban land use and to point sources like septic systems. The frequent occurrence and concentration distribution pattern of THMs, as well as their frequent co-occurrence with other organic compounds and nitrate, all known to have anthropogenic sources, and the positive associations between THM occurrence and dissolved oxygen and recharge indicate the recycling of water that contains THMs and other anthropogenic contaminants.
Numerous epidemiologic studies have associated episodes of increased air pollution with increased incidence of respiratory disease, including pneumonia, croup, and bronchitis. Trichloroethylene (TCE) and chloroform are among 33 hazardous air pollutants identified by the U.S. Env...
Persulfate Oxidation of MTBE- and Chloroform-Spent Granular Activated Carbon
Activated persulfate (Na2S2O8) regeneration of methyl tert-butyl ether (MTBE) and chloroform-spent GAC was evaluated in this study. Thermal-activation of persulfate was effective and resulted in greater MTBE removal than either alkaline-activation or H2O2–persulfate binary mixtur...
Use of biotrickling filter (BTF) for gas phase treatment of volatile trihalomethanes (THMs) stripped from water treatment plants could be an attractive treatment option. The aim of this study is to use laboratory-scale anaerobic BTF to treat gaseous chloroform (recalcitrant to bi...
A rapid, safe and efficient procedure was developed to synthesize perfluorinated chloroformates in the small scale generally required to perform analytical derivatizations. This new family of derivatizing agents allows straightforward derivatization of highly polar compounds, co...
THE INFLUENCE OF ADVANCED AGE ON THE HEPATIC AND RENAL TOXICITY OF CHLOROFORM
THE INFLUENCE OF ADVANCED AGE ON THE HEPATIC AND RENAL TOXICITY OF CHLOROFORM (CHC13). A McDonald, Y M Sey and J E Simmons. NHEERL, ORD, U.S. EPA, RTP, NC.
Disinfection, by chlorination or by ozonation followed by treatment with either chlorine or chloramine, of water containi...
HEPATOTOXIC EVALUATION OF THE BINARY INTERACTIONS OF BROMODICHLOROMETHANE (BDCM) WITH CHLOROFORM (CHC13), CHLORODIBROMOMETHANE (CDBM) AND BROMOFORM (CHBr3). Y M Se'', C Gennings2, A McDonald', L K Teuschler3, A Hamm2and J E Simmons .'NHEERL, ORD, U.S. EPA, RTP, NC; 2MCV, VCU, Ric...
Karataş, Ertuğrul; Kol, Elif; Bayrakdar, İbrahim Şevki; Arslan, Hakan
2016-04-01
The purpose of the present study was to assess the effect of solvents on root canal transportation in endodontic retreatment. Sixty extracted human permanent mandibular first molars with curved root canals were selected. All of the root canals were prepared using Twisted File Adaptive instruments (SybronEndo, Orange, CA, USA) and filled with gutta-percha and AH Plus sealer (Dentsply DeTrey, Konstanz, Germany) using the cold lateral compaction technique. The teeth were assigned to four retreatment groups as follows (n = 15): eucalyptol, chloroform, orange oil and control. The canals were scanned using cone-beam computed tomography scanning before and after instrumentation. The chloroform group showed a significantly higher mean transportation value than the orange oil and control groups at the 3 and 5 mm levels (P = 0.011 and P = 0.003, respectively). There was no significant difference among the orange oil, eucalyptol and control groups in terms of canal transportation (P > 0.61). The chloroform led to more canal transportation than the eucalyptol and orange oil during endodontic retreatment. © 2015 Australian Society of Endodontology.
Jafarian, Abbas; Zolfaghari, Behzad; Shirani, Kobra
2014-01-01
Background: It has been shown that plants from the family Rhamnaceae possess anticancer activity. In this study, we sought to determine if Ziziphus spina-christi, a species from this family, has cytotoxic effect on cancer cell lines. Materials and Methods: Using maceration method, different extracts of leaves of Z. spina-christi were prepared. Hexane, chloroform, chloroform-methanol (9:1), methanol-water (7:1) methanol, butanol and water were used for extraction, after preliminary phytochemical analyses were done. The cytotoxic activity of the extracts against Hela and MDA-MB-468 tumor cells was evaluated by MTT assay. Briefly, cells were seeded in microplates and different concentrations of extracts were added. After incubation of cells for 72 h, their viability was evaluated by addition of tetrazolium salt solution. After 3 h medium was aspirated, dimethyl sulfoxide was added and absorbance was determined at 540 nm with an ELISA plate reader. Extracts were considered cytotoxic when more than 50% reduction on cell survival was observed. Results: Hexane, chloroform, chloroform-methanol, butanol, methanol-water and aqueous extracts of Z. spina-christi significantly and concentration-dependently reduced viability of Hela and MAD-MB-468 cells. In the both cell lines, chloroform-methanol extract of Z. spina-christi was more potent than the other extracts. Results: From the finding of this study it can be concluded that Z. spina-christi is a good candidate for further study for new cytotoxic agents. PMID:24627846
Umar, Muhammad Ihtisham; Asmawi, Mohd Zaini; Sadikun, Amirin; Abdul Majid, A M S; Atangwho, Item Justin; Khadeer Ahamed, Mohamed B; Altaf, Rabia; Ahmad, Ashfaq
2014-11-01
Azadirachta indica A. Juss. (Meliaceaes) leaves have been used traditionally to treat swelling and rheumatism in Indian cultures. To fractionate A. indica leaf extracts using bioactivity guided manner for identification of the active anti-inflammatory principles. Polarity-gradient sequential extracts (petroleum ether, chloroform, methanol, and water) of A. indica leaves were screened for their anti-inflammatory potential using the carrageenan-induced rat paw edema model (1 g/kg). The chloroform extract was sequentially fractionated to obtain n-hexane (F-1), n-hexane-chloroform (F-2), and chloroform (F-3) fractions and their inhibitory effect on rat paw edema was evaluated (500 mg/kg). Inhibitory effect of F-2 on granuloma formation, plasma interleukin (IL-1), and tumor necrosis factor (TNF-α) was assessed at the doses of 100, 200, and 400 mg/kg using the cotton pellet assay in rats. Three sub-fractions (SF-1, SF-2, and SF-3) were obtained upon chromatography of F-2, and their inhibitory effect on cyclooxygenase was assessed at 200 µg/mL concentration. The sub-fractions were subjected to gas chromatography-mass spectrometry (GC-MS). All the extracts showed significant anti-inflammatory effect; however, chloroform extract was the most effective against paw edema (53.25% inhibition). The three fractions of chloroform extract showed significant effect, while F-2 being the most potent (51.02%). F-2 demonstrated dose-dependent inhibition of granuloma and cytokines. Interestingly, all the sub-fractions of F-2 inhibited COX-1 and COX-2 with almost equal potential. GC-MS revealed that chemically the sub-fractions were totally different from each other. Anti-inflammatory effect of A. indica is a result of cumulative and synergistic effects of diversified constituents with varying polarities that collectively exert the effect via suppression of cyclo-oxygenases and cytokines (IL-1 and TNF-α).
Disassembly Control of Saccharide-Based Amphiphiles Driven by Electrostatic Repulsion.
Yamada, Taihei; Kokado, Kenta; Sada, Kazuki
2017-03-14
According to the design of disassembly using electrostatic repulsion, novel amphiphiles consisting of a lipophilic ion part and a hydrophilic saccharide part were synthesized via the facile copper-catalyzed click reaction, and their molecular assemblies in water and chloroform were studied. The amphiphiles exhibited a molecular orientation opposite to that of the conventional amphiphiles in each case. ζ Potential measurements indicated that the lipophilic ion part is exposed outside in chloroform. The size of a solvophobic part in the amphiphiles dominates the size of an assembling structure; that is, in water, these amphiphiles tethering different lengths of the saccharide part exhibited almost identical assembling size, whereas in chloroform, the size depends on the length of the saccharide part in the amphiphiles.
Song, Hyuk-Hwan; Chae, Hee-Sung; Oh, Sei-Ryang; Lee, Hyeong-Kyu; Chin, Young-Won
2012-01-01
In this study, the anti-inflammatory and anti-allergic effects of the chloroform-soluble extract of Agaricus blazei in mouse bone marrow-derived mast cells (BMMCs) were investigated. The chloroform-soluble extract inhibited IL-6 production in PMA plus A23187-stimulated BMMCs, and down-regulated the phosphorylation of Akt. In addition, this extract demonstrated inhibition of the degranulation of β-hexosaminidase and the production of IL-6, prostaglandin D(2) and leukotriene C(4) in PMA plus A23187-induced BMMCs. In conclusion, the chloroform-soluble extract of Agaricus blazei exerted anti-inflammatory and anti-allergic activities mediated by influencing IL-6, prostaglandin D(2), leukotriene C(4), and the phosphorylation of Akt.
Absorption spectra of PTCDI: A combined UV-Vis and TD-DFT study
NASA Astrophysics Data System (ADS)
Oltean, Mircea; Calborean, Adrian; Mile, George; Vidrighin, Mihai; Iosin, Monica; Leopold, Loredana; Maniu, Dana; Leopold, Nicolae; Chiş, Vasile
2012-11-01
Absorption spectra of PTCDI (3,4,9,10-perylene-tetracarboxylic-diimide) have been investigated in chloroform, N,N'-dimethylformamide (DMF) and dimethylsulfoxide (DMSO). While no signature of assembled PTCDI molecules is observed in chloroform solution, distinct bands assigned to their aggregation have been identified in DMF and DMSO solutions. PTCDI monomers show very similar absorption patterns in chloroform and DMSO solutions. Experimental data, including the vibronic structure of the absorption spectra were explained based on the Franck-Condon approximation and quantum chemical results obtained at PBE0-DCP/6-31+G(d,p) level of theory. Geometry optimization of the first excited state leads to a nice agreement between the calculated adiabatic transition energies and experimental data.
Hypolipidemic Activity of Chloroform Extract of Mimosa pudica Leaves
Rajendran, Rekha; Krishnakumar, Ekambaram
2010-01-01
Mimosa pudica Lin., known as chue Mue, is a stout straggling prostrate shrubby plant, with spinous stipules and globose pinkish flower heads, and grows as weed in almost all parts of the country. It is traditionally used for its various properties and hence in the present study, chloroform extract of Mimosa pudica leaves has been screened for its hypolipidemic activity. Hypolipidemic activity is screened by inducing hyperlipidemia with the help of atherogenic diet in wistar albino rats and serum levels of various biochemical parameters such as total cholesterol, triglycerides, LDL, VLDL and HDL cholesterol were determined. Atherogenic index shows the measure of the athero-genic potential of the drugs. Chloroform extract showed significant (p < 0.05) hypolipidemic effect by lowering the serum levels of biochemical parameters such as significant reduction in the level of serum cholesterol, triglyceride, LDL, VLDL and increase in HDL level which was similar to the standard drug Atorvastatin. Chloroform extract exhibited significant atherogenic index and percentage protection against hyperlipidemia. These biochemical observations were in turn confirmed by histopathological examinations of aorta, liver and kidney sections and are comparable with the standard hypolipidemic drug Atorvastatin. Preliminary phytochemical analysis revealed the presence of phytoconstituents such as steroids, flavonoids, glycosides, alkaloids, phenolic compounds which is further confirmed by the thin layer chromatography, High Performance Thin Layer Chromatography (HPTLC). The overall experimental results suggests that the biologically active phytoconstituents such as flavonoids, glycosides alkaloids present in the chloroform extract of Mimosa pudica, may be responsible for the significant hypolipidemic activity and the results justify the use of Mimosa pudica as a significant hypolipidemic agent. PMID:23408779
Lyons, Michael A.; Yang, Raymond S.H.; Mayeno, Arthur N.; Reisfeld, Brad
2008-01-01
Background One problem of interpreting population-based biomonitoring data is the reconstruction of corresponding external exposure in cases where no such data are available. Objectives We demonstrate the use of a computational framework that integrates physiologically based pharmacokinetic (PBPK) modeling, Bayesian inference, and Markov chain Monte Carlo simulation to obtain a population estimate of environmental chloroform source concentrations consistent with human biomonitoring data. The biomonitoring data consist of chloroform blood concentrations measured as part of the Third National Health and Nutrition Examination Survey (NHANES III), and for which no corresponding exposure data were collected. Methods We used a combined PBPK and shower exposure model to consider several routes and sources of exposure: ingestion of tap water, inhalation of ambient household air, and inhalation and dermal absorption while showering. We determined posterior distributions for chloroform concentration in tap water and ambient household air using U.S. Environmental Protection Agency Total Exposure Assessment Methodology (TEAM) data as prior distributions for the Bayesian analysis. Results Posterior distributions for exposure indicate that 95% of the population represented by the NHANES III data had likely chloroform exposures ≤ 67 μg/L in tap water and ≤ 0.02 μg/L in ambient household air. Conclusions Our results demonstrate the application of computer simulation to aid in the interpretation of human biomonitoring data in the context of the exposure–health evaluation–risk assessment continuum. These results should be considered as a demonstration of the method and can be improved with the addition of more detailed data. PMID:18709138
Hypericum grandifolium Choisy: a species native to Macaronesian Region with antidepressant effect.
Sánchez-Mateo, C C; Bonkanka, C X; Rabanal, R M
2009-01-21
Various species of Hypericum genus have been used in the Canary Islands as sedative, diuretic, vermifuge, wound healing, antihysteric and antidepressant agent. Studies have shown that methanol extract of Hypericum grandifolium Choisy is active in tetrabenazine-induced ptosis and forced swimming tests. In the current study, the aqueous, butanol and chloroform fractions obtained from the methanol extract as well as three sub-fractions derived from the chloroform fraction were evaluated for their central nervous effects in mice, particularly their antidepressant activity. The central nervous effect of different fractions and sub-fractions of Hypericum grandifolium was evaluated in mice using various behavioural models including locomotor and muscle relaxant activity, forced swimming test, effect on normal body temperature, barbiturate-induced sleep, tetrabenazine-induced syndrome and 5-hydroxytryptohan-induced head twitches and syndrome. We found that the butanol and chloroform fractions and all sub-fractions showed an antidepressant effect in the forced swimming test, the chloroform fraction being the most active. They produced no effects or only a slight depression of locomotor activity. Chloroform fraction significantly increased the pentobarbital-induced sleeping time, produced a slight but significant hypothermia and antagonized tetrabenazine-induced ptosis, whereas the butanol fraction produced a slight potentiation of 5-HTP-induced head twitches and syndrome. The present results, together with previous pharmacological and phytochemical data, indicated that Hypericum grandifolium possess antidepressant-like effects in mice and that different constituents, such as the flavonoids and the benzophenone derivatives, could be responsible at least in part for the antidepressant effects observed for this species.
The interaction between trichloroethylene (TCE) and chloroform (CHCI3) has been described as less than additive, with co-exposure to TCE and CHC13 resulting in less hepatic and renal toxicity than observed with CHCl3 alone. In contrast, the nonadditive interaction between TCE and...
Antimicrobial activity of Miconia species (Melastomataceae).
Rodrigues, Juliana; Michelin, Danielle Carvalho; Rinaldo, Daniel; Zocolo, Guilherme Julião; dos Santos, Lourdes Campaner; Vilegas, Wagner; Salgado, Hérida Regina Nunes
2008-03-01
This work evaluated the antimicrobial activity of the methanol and chloroform extracts of the leaves of Miconia cabucu, Miconia rubiginosa, and Miconia stenostachya using the disc-diffusion method. The results obtained showed that the methanol extracts of the leaves of M. rubiginosa and M. stenostachya and the chloroform extract of the leaves of M. cabucu presented antimicrobial activity against the tested microorganisms.
ESTIMATING CHLOROFORM BIOTRANSFORMATION IN F-344 RAT LIVER USING IN VITRO TECHNIQUES AND PHARMACOKINETIC MODELING
Linskey, C.F.1, Harrison, R.A.2., Zhao, G.3., Barton, H.A., Lipscomb, J.C4., and Evans, M.V2., 1UNC, ESE, Chapel Hill, NC ; 2USEPA, ORD, NHEERL, RTP, NC; 3 UN...
Khallef, Messaouda; Cenkci, Süleyman; Akyil, Dilek; Özkara, Arzu; Konuk, Muhsin; Benouareth, Djamel Eddine
2018-01-28
Chloroform and Bromoform are two abundant trihalomethanes found in Algerian drinking water. The investigation of the mutagenic hazard of these disinfection by-products was studied by Ames test as prokaryotic bioassay to show their mutagenic effects. For this, Salmonella typhimurium TA98 and TA100 strains were employed. Both chloroform and bromoform showed a direct mutagenic effect since the number of revertant colonies gradually increase in dose-dependent manner with all concentrations tested with the two bacterial strains and these were both in the absence and presence of S9 metabolic activation. The genotoxic hazard was also studied by random amplified polymorphic DNA test on the root cells of Allium cepa as eukaryotic bioassay. DNA extracted from the roots of the onion were incubated at different concentrations of chloroform and bromoform and then amplified by polymerase chain reaction. This was based on demonstrating a major effect of disappearance of bands compared to roots incubated in the negative control (distilled water). The results showed that these two compounds affected genomic DNA by breaks although by mutations.
Axtell, Stephen P; Russell, Scott M; Berman, Elliot
2006-04-01
This study was conducted to evaluate the effect of immersion chilling of broiler chicken carcasses in tap water (TAP) or TAP containing 50 ppm of monochloramine (MON) with respect to chloroform formation, total chlorine content, 2-thiobarbituric acid (TBA) values, and fatty acid profiles. Ten broiler chicken carcasses were chilled in TAP or MON for 6 h. After exposure, the carcasses were removed and cut in half along the median plane into right and left halves. After roasting the left halves, samples of the breast, thigh, and skin (with fat) were collected, subjected to fatty acid profiling, and assayed for chloroform, total chlorine, and TBA. The uncooked right halves of each carcass were stored at 4 degrees C for 10 days and then roasted. After roasting these right halves, samples of breast, thigh, and skin (with fat) were collected from each carcass half, subjected to fatty acid profiling, and assayed for chloroform, total chlorine, and TBA. There were no statistical differences between TAP- and MON-treated fresh or stored products with regard to chloroform levels, total chlorine content, TBA values, or fatty acid profiles.
Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting
Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia
2015-01-01
Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods. PMID:26640089
Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting
NASA Astrophysics Data System (ADS)
Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia
2015-12-01
Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.
Anti-angiogenic activity of Entada africana root.
Germanò, Maria Paola; Certo, Giovanna; D'Angelo, Valeria; Sanogo, Rokia; Malafronte, Nicola; De Tommasi, Nunziatina; Rapisarda, Antonio
2015-01-01
Entada africana roots are used in African traditional medicine for various diseases including inflammation. This application may be mediated through anti-angiogenic effects. Thus, in this study the anti-angiogenic activity of E. africana root extracts (n-hexane, chloroform, chloroform/methanol and methanol) was preliminarily evaluated by the quantitative determination of endogenous alkaline phosphatase in zebrafish embryos. A bioactivity-guided fractionation of chloroform/methanol extract yielded apigenin and robinetin as the main constituents from the most active fractions. In addition, a marked reduction on capillary formation was evidenced in chick chorioallantoic membrane after treatment with the active fractions or isolated compounds. Results obtained in this study suggest that the anti-angiogenic effects of E. africana root may account for its use in inflammatory diseases and other related pathological conditions.
A novel derivatizing agent, 5-chloro-2,2,3,3,4,4,5,5-octafluoropentyl chloroformate (ClOFPCF), was synthesized and tested as a reagent for direct water derivatization of highly polar and hydrophilic analytes. Its analytical performance satisfactorily compared to a perfluorinated ...
In vitro antimicrobial activity of ethanolic fractions of Cryptolepis sanguinolenta
2012-01-01
Background Following claims that some plants have antimicrobial activities against infectious microbes, the in vitro antimicrobial activities of different solvent fractions of ethanolic extract of Cryptolepis sanguinolenta were evaluated against eight standard bacteria and clinical isolates. Methods The solvent partitioning protocol involving ethanol, petroleum ether, chloroform, ethyl acetate and water, was used to extract various fractions of dried pulverized Cryptolepis sanguinolenta roots. Qualitative phyto-constituents screening was performed on the ethanol extract, chloroform fraction and the water fraction. The Kirby Bauer disk diffusion method was employed to ascertain the antibiogram of the test organisms while the agar diffusion method was used to investigate the antimicrobial properties of the crude plant extracts. The microplate dilution method aided in finding the MICs while the MBCs were obtained by the method of Nester and friends. The SPSS 16.0 version was used to analyze the percentages of inhibitions and bactericidal activities. Results The phytochemical screening revealed the presence of alkaloids, reducing sugars, polyuronides, anthocyanosides and triterpenes. The ethanol extract inhibited 5 out of 8 (62.5%) of the standard organisms and 6 out of 8 (75%) clinical isolates. The petroleum ether fraction inhibited 4 out of 8 (50%) of the standard microbes and 1 out of 8 (12.5%) clinical isolates. It was also observed that the chloroform fraction inhibited the growth of all the organisms (100%). Average inhibition zones of 14.0 ± 1.0 mm to 24.67 ± 0.58 mm was seen in the ethyl acetate fraction which halted the growth of 3 (37.5%) of the standard organisms. Inhibition of 7 (87.5%) of standard strains and 6 (75%) of clinical isolates were observed in the water fraction. The chloroform fraction exhibited bactericidal activity against all the test organisms while the remaining fractions showed varying degrees of bacteriostatic activity. Conclusion The study confirmed that fractions of Cryptolepis sanguinolenta have antimicrobial activity. The chloroform fraction had the highest activity, followed by water, ethanol, petroleum ether and ethyl acetate respectively. Only the chloroform fraction exhibited bactericidal activity and further investigations are needed to ascertain its safety and prospects of drug development. PMID:22709723
Landmeyer, J.E.; Bradley, P.M.; Thomas, J.M.
2000-01-01
The biodegradation potential of two drinking water disinfection byproducts was investigated using aquifer materials obtained from approximately 100 and 200 meters below land surface in an aerobic aquifer system undergoing aquifer storage recovery of treated surface water. No significant biodegradation of a model trihalomethane compound, chloroform, was observed in aquifer microcosms under aerobic or anaerobic conditions. In contrast, between 16 and 27 percent mineralization of a radiolabeled model haloacetic acid compound, chloroacetic acid, was observed. These results indicate that although the potential for biodegradation of chloroacetic acid exists in deep aquifer systems, chloroform entrained within these aquifers or formed in situ will tend to persist. These results have important implications for water managers planning to meet anticipated lowered permissible levels of tri-halomethanes in drinking water.The biodegradation potential of two drinking water disinfection byproducts was investigated using aquifer materials obtained from approximately 100 and 200 meters below land surface in an aerobic aquifer system undergoing aquifer storage recovery of treated surface water. No significant biodegradation of a model trihalomethane compound, chloroform, was observed in aquifer microcosms under aerobic or anaerobic conditions. In contrast, between 16 and 27 percent mineralization of a radiolabeled model haloacetic acid compound, chloroacetic acid, was observed. These results indicate that although the potential for biodegradation of chloroacetic acid exists in deep aquifer systems, chloroform entrained within these aquifers or formed in situ will tend to persist. These results have important implications for water managers planning to meet anticipated lowered permissible levels of trihalomethanes in drinking water.Aquifer-storage-recovery injection water often contains disinfection byproducts. Results are presented from a study in which two model disinfection byproducts, chloroform and chloroacetic acid, were used to examine biodegradation by indigenous microorganisms. The recharge system studied was near Las Vegas, NV, where the aquifers are recharged artificially during the winter months. Microcosms were constructed using aquifer material recovered from two layers. Results showed that no significant biodegradation of chloroform occurred under aerobic or anaerobic conditions, but chloroacetic acid was biodegraded under both aerobic and anaerobic conditions.
Chemical constituents of Swertia longifolia Boiss. with α-amylase inhibitory activity.
Saeidnia, Soodabeh; Ara, Leila; Hajimehdipoor, Homa; Read, Roger W; Arshadi, Sattar; Nikan, Marjan
2016-01-01
α-Amylase inhibitors play a critical role in the control of diabetes and many of medicinal plants have been found to act as α-amylase inhibitors. Swertia genus, belonging to the family Gentianaceae, comprises different species most of which have been used in traditional medicine of several cultures as antidiabetic, anti-pyretic, analgesic, liver and gastrointestinal tonic. Swertia longifolia Boiss. is the only species of Swertia growing in Iran. In the present investigation, phytochemical study of S. longifolia was performed and α-amylase inhibitory effects of the plant fractions and purified compounds were determined. Aerial parts of the plant were extracted with hexane, chloroform, methanol and water, respectively. The components of the hexane and chloroform fractions were isolated by different chromatographic methods and their structures were determined by (1)H NMR and (13)C NMR data. α-Amylase inhibitory activity was determined by a colorimetric assay using 3,5-dinitro salysilic acid. During phytochemical examination, α-amyrin, β-amyrin and β-sitosterol were purified from the hexane fraction, while ursolic acid, daucosterol and swertiamarin were isolated from chloroform fraction. The results of the biochemical assay revealed α-amylase inhibitory activity of hexane, chloroform, methanol and water fractions, of which the chloroform and methanol fractions were more potent (IC50 16.8 and 18.1 mg/ml, respectively). Among examined compounds, daucosterol was found to be the most potent α-amylase inhibitor (57.5% in concentration 10 mg/ml). With regard to α-amylase inhibitory effects of the plant extracts, purified constituents, and antidiabetic application of the species of Swertia genus in traditional medicine of different countries, S. longifolia seems more appropriate species for further mechanistic antidiabetic evaluations.
Chemical constituents of Swertia longifolia Boiss. with α-amylase inhibitory activity
Saeidnia, Soodabeh; Ara, Leila; Hajimehdipoor, Homa; Read, Roger W.; Arshadi, Sattar; Nikan, Marjan
2016-01-01
α-Amylase inhibitors play a critical role in the control of diabetes and many of medicinal plants have been found to act as α-amylase inhibitors. Swertia genus, belonging to the family Gentianaceae, comprises different species most of which have been used in traditional medicine of several cultures as antidiabetic, anti-pyretic, analgesic, liver and gastrointestinal tonic. Swertia longifolia Boiss. is the only species of Swertia growing in Iran. In the present investigation, phytochemical study of S. longifolia was performed and α-amylase inhibitory effects of the plant fractions and purified compounds were determined. Aerial parts of the plant were extracted with hexane, chloroform, methanol and water, respectively. The components of the hexane and chloroform fractions were isolated by different chromatographic methods and their structures were determined by 1H NMR and 13C NMR data. α-Amylase inhibitory activity was determined by a colorimetric assay using 3,5-dinitro salysilic acid. During phytochemical examination, α-amyrin, β-amyrin and β-sitosterol were purified from the hexane fraction, while ursolic acid, daucosterol and swertiamarin were isolated from chloroform fraction. The results of the biochemical assay revealed α-amylase inhibitory activity of hexane, chloroform, methanol and water fractions, of which the chloroform and methanol fractions were more potent (IC50 16.8 and 18.1 mg/ml, respectively). Among examined compounds, daucosterol was found to be the most potent α-amylase inhibitor (57.5% in concentration 10 mg/ml). With regard to α-amylase inhibitory effects of the plant extracts, purified constituents, and antidiabetic application of the species of Swertia genus in traditional medicine of different countries, S. longifolia seems more appropriate species for further mechanistic antidiabetic evaluations. PMID:27051429
Predictors of blood trihalomethane concentrations in NHANES 1999-2006.
Riederer, Anne M; Dhingra, Radhika; Blount, Benjamin C; Steenland, Kyle
2014-07-01
Trihalomethanes (THMs) are water disinfection by-products that have been associated with bladder cancer and adverse birth outcomes. Four THMs (bromoform, chloroform, bromodichloromethane, dibromochloromethane) were measured in blood and tap water of U.S. adults in the National Health and Nutrition Examination Survey (NHANES) 1999-2006. THMs are metabolized to potentially toxic/mutagenic intermediates by cytochrome p450 (CYP) 2D6 and CYP2E1 enzymes. We conducted exploratory analyses of blood THMs, including factors affecting CYP2D6 and CYP2E1 activity. We used weighted multivariable regressions to evaluate associations between blood THMs and water concentrations, survey year, and other factors potentially affecting THM exposure or metabolism (e.g., prescription medications, cruciferous vegetables, diabetes, fasting, pregnancy, swimming). From 1999 to 2006, geometric mean blood and water THM levels dropped in parallel, with decreases of 32%-76% in blood and 38%-52% in water, likely resulting, in part, from the lowering of the total THM drinking water standard in 2002-2004. The strongest predictors of blood THM levels were survey year and water concentration (n = 4,232 total THM; n = 4,080 bromoform; n = 4,582 chloroform; n = 4,374 bromodichloromethane; n = 4,464 dibromochloromethane). We detected statistically significant inverse associations with diabetes and eating cruciferous vegetables in all but the bromoform model. Medications did not consistently predict blood levels. Afternoon/evening blood samples had lower THM concentrations than morning samples. In a subsample (n = 230), air chloroform better predicted blood chloroform than water chloroform, suggesting showering/bathing was a more important source than drinking. We identified several factors associated with blood THMs that may affect their metabolism. The potential health implications require further study.
In Vitro Comparison of Gutta-Percha Removal with H-File and ProTaper with or without Chloroform
Khalilak, Zohreh; Vatanpour, Mehdi; Dadresanfar, Bahareh; Moshkelgosha, Pouneh; Nourbakhsh, HamidReza
2013-01-01
Introduction Removal of root filling materials is one of the key steps in success of root canal retreatment. The purpose of this study was to evaluate the efficacy of H-File and ProTaper with or without chloroform in the removal of gutta-percha during retreatment of mandibular premolars. Materials and Methods Sixty mandibular premolars with one canal, and curvatures less than 30 degrees were used in this experimental study. They were instrumented with K-files and laterally obturated with condensed gutta-percha using AH26 as the sealer and were stored in 100% humidity at 37°C for 2 weeks. The teeth were randomly divided into four groups of 15 teeth each. Removal of gutta-percha was performed with H-File and ProTaper. All techniques were used with or without chloroform. The teeth were split longitudinally and the area of remaining gutta-percha/sealer on the root canal wall was explored under stereomicroscope. Retreatment time duration was also recorded for each sample. Data were analyzed statistically by Two-way ANOVA, t-test and Tukey’s. Results In all groups, no significant difference was found in remaining gutta-percha and sealer with or without using chloroform, but chloroform shortened the time of retreatment. ProTaper left significantly less remaining filling materials than H-File (P<0.05). Retreatment time was significantly different between the studied groups (P<0.001). Conclusion ProTaper Ni-Ti instruments proved to be more efficient and time-saving devices for removal of gutta-percha compared to H-File in canals with no or slight curvature. PMID:23413203
Gracioso, J S; Paulo, M Q; Hiruma Lima, C A; Souza Brito, A R
1998-12-01
An infusion of the aerial parts of Neurolaena lobata (L.) R. Br. (Compositae-Asteraceae) is used in Caribbean folk medicine to treat several kinds of pain. In this investigation we studied the acute oral toxicity of the hydroalcoholic extract of the plant and the antinociceptive effect of the extract and of its hexane- and chloroform-partitioned fractions, given orally, in nociception and inflammatory models in mice. No signs of toxicity were observed for oral doses up to 5000 mg kg(-1) in mice. Morphine hydrochloride (100 mg kg(-1)), dipyrone sodium (200 mg kg(-1)), the hydroalcoholic extract (1000 mg kg(-1)), and its chloroform- and hexane-partitioned fractions (100 mg kg(-1)) significantly inhibited acetic acid-induced abdominal constriction in mice (100, 95, 47, 62 and 60% inhibition, respectively when compared with the negative control). In the hot-plate test in mice, morphine hydrochloride, the chloroform- and hexane-partitioned fractions, but not the hydroalcoholic extract, resulted in a significant latency increase in all observation times. In the acetic acid-induced abdominal constriction in mice, pretreatment of the animals with naloxone significantly reversed the analgesic effect of morphine, but not that of the hydroalcoholic extract or of its hexane- and chloroform-partitioned fractions. Finally, administration of the hexane- and chloroform-partitioned fractions (100 mg kg(-1)) had a significant anti-oedematogenic effect on carrageenan-induced oedema in mice. These data show that the hydroalcoholic extract of N. lobata and, in particular, its partitioned fractions have significant analgesic properties when assessed through these pain models. Their antinociceptive effect might be the result of interference with the inflammatory process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kun; Li, Shuni; Jiang, Yucheng
A new 3D metal-organic framework, namely, (Zn{sub 4}(H{sub 2}BPTC){sub 2}(HCOO){sub 4}){sub n} (SNNU-1, H{sub 4}BPTC=biphenyl-3,3',5,5'-tetracarboxylic acid, SNNU=Shaanxi Normal University) has been solvothermal synthesized. Four independent tetrahedral Zn atoms are connected by organic ligands to form a 2D Zn-H{sub 2}BPTC layer, which is further bridged by in-situ generated HCOO{sup -} to give the 3D pillar-layered framework of SNNU-1. Unique Zn and H{sub 2}BPTC all act as 4-connected nodes leading to a new 4,4,4-connected topological net with point symbol of (4·5·6{sup 2}·8{sup 2})(4·5{sup 2}·6{sup 2}·8)(5{sup 2}·6{sup 3}·7). Notably, intense blue emission band is observed for SNNU-1, which exhibits solvent-dependent effect. Compared tomore » other common organic solvents, chloroform can specially improve the photoluminescent intensity of SNNU-1. Further repeated response and release experiments clearly showed that SNNU-1 can act as luminescent sensor for selective and reversible detection of chloroform. - Graphical abstract: Zn{sup 2+} ions are bridged by aromatic tetracarboxylate ligands and inorganic formate anions to give a microporous pillar layered open-framework, which exhibits not only strong photoluminescence but also selective and reversible luminescent sensing for chloroform. - Highlights: • Novel Zn-tetracarboxylate-formate microporous pillar layered open-framework. • New 4,4,4-connected topology and rod-packing net. • Solvent-dependent photoluminescent intensity. • Selective and reversible response for chloroform.« less
[The uterotropismus of halothane, chloroform or methoxyflurane in clinical use (author's transl)].
Fassolt, A; Schubiger, V; Hauser, G A
1976-11-01
To perform episiotomy, 89 women after childbirth were anaesthetized with either halothane (50 patients), methoxyflurane (24 patients) or chloroform (15 patients). The activity of the uterus was registered tocodynamographically. To examine the alternate influence of narcotics and uterotonica, 57 patients were pre-medicated with sintocinon and methergin i.m. as a prophylaxis. The second group (32 patients) received no premedication to stimulate labor activity, however in 18 cases towards the end of narcosis oxytocin and methergin were given i.v. In addition to these examinations 5 vaginal deliveries were anaesthetised with halothane only. Concerning our own experimental study it can be observed: 1. The relaxative properties of halothane wich suppresses completly the activity of myometrium during the deep stages of anaesthesia are superior to chloroform and methoxyflurane. 2. More rapid relaxation of the uterus with halothane compared with chloroform and methoxyflurane. 3. After the use of halothane a quicker return of the activity of the uterus compared with chloroform and methoxyflurane. 4. The value of a prophylaxis with uterotonica can be demonstrated by a comparatively reduced slowing-down of labour-activity during anaesthesia. 5. In every one of the cases, an interuption of the labour-suppressing, caused by the anaesthesia, can be obtained by injecting intravenously oxytocin or methergin. 6. During vaginal delivery, compared to the post placentar phase, there is no need for higher concentrations of halothane to be used to suppress labour contractions. The discussion deals with the intensity of reduction of the uterus contraction caused by the above mentioned narcotics, the dangers of the atony of the uterus, and the indications and contra-indications of obstetrical anaesthesia with halothane or methoxyflurane.
Kevill, Dennis N.; Koyoshi, Fumie; D’Souza, Malcolm J.
2007-01-01
Additional specific rates of solvolysis are determined for phenyl chloroformate. These values are combined with literature values to give a total of 49 data points, which are used within simple and extended Grunwald-Winstein treatments. Literature values are also brought together to allow treatments in more solvents than previously for three N-aryl-N-methylcarbamoyl chlorides, phenyl chlorothionoformate, phenyl chlorodithioformate, and N,N-diphenylcarbamoyl chloride. For the last two listed, moderately strong evidence for a meaningful inclusion of a term governed by the aromatic ring parameter (I) was indicated. No evidence was found requiring inclusion of this parameter for ionization reactions with only one aromatic ring on the nitrogen of carbamoyl chlorides or for the solvolyses of the chloroformate or chlorothionoformate proceeding by an addition-elimination (association-dissociation) mechanism.
Detailed Analysis for the Solvolysis of Isopropenyl Chloroformate
D’Souza, Malcolm John; Shuman, Kevin Edward; Omondi, Arnold Ochieng; Kevill, Dennis Neil
2011-01-01
The specific rates of solvolysis (including those obtained from the literature) of isopropenyl chloroformate (1) are analyzed using the extended Grunwald-Winstein equation, involving the NT scale of solvent nucleophilicity (S-methyldibenzothiophenium ion) combined with a YCl scale based on 1-adamantyl chloride solvolysis. A similarity model approach, using phenyl chloroformate solvolyses for comparison, indicated a dominant bimolecular carbonyl-addition mechanism for the solvolyses of 1 in all solvents except 97% 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). An extensive evaluation of the outcomes acquired through the application of the extended Grunwald-Winstein equation resulted in the proposal of an addition-elimination mechanism dominating in most of the solvents, but in 97-70% HFIP, and 97% 2,2,2-trifluoroethanol (TFE), it is proposed that a superimposed unimolecular (SN1) type ionization is making a significant contribution. PMID:21881623
Anticholinesterase activity of endemic plant extracts from Soqotra.
Bakthira, Hussein; Awadh Ali, Nasser A; Arnold, Norbert; Teichert, Axel; Wessjohann, Ludger
2011-01-01
A total of 30 chloroform and methanol extracts from the following endemic Soqotran plants Acridocarpus socotranus Olive, Boswellia socotranao Balf.fil, Boswellia elongata Balf. fil., Caralluma socotrana N. Br, Cephalocroton socotranus Balf.f, Croton socotranus Balf. fil.., Dendrosicycos socotrana Balf.f., Dorstenia gigas Schweinf. ex Balf. fil., Eureiandra balfourii Cogn. & Balf. fil., Kalanchoe farinaceae Balf.f, Limonium sokotranum (Vierh) Radcl. Sm), Oldenlandia pulvinata, Pulicaria diversifolia (Balf. and Pulicaria stephanocarpa Balf. were screened for their acetylcholinesterase inhibitory activity by using in vitro Ellman method at 50 and 200 µg/ml concentrations. Chloroform extracts of Croton socotranus, Boswellia socotrana, Dorstenia gigas, and Pulicaria stephanocarpa as well as methanol extracts of Eureiandra balfourii exhibited inhibitory activities higher than 50 % at concentration of 200 µg. At a concentrations of 50 µg, the chloroform extract of Croton socotranus exhibited an inhibition of 40.6 %.
Asphyxial suicide by inhalation of chloroform inside a plastic bag.
Zorro, Andres Rodriguez
2014-01-01
Asphyxia suicide by placing a plastic bag over the head in addition with inhalation of gases or use of sedative substances is an unusual method of committing suicide, but frequently referenced by right to die groups in the Internet. This article reports 2 suicides in which chloroform was used to induce unconsciousness and subsequent asphyxia by placing the head in a plastic bag. Case histories of 2 males, ages 23 and 28, are described with special emphasis on characteristics death related to suffocation using plastic bags and chloroform. The final remarkable point in both cases is that the victims previously searched the WEB for instructions of suicide methods. The importance of the phenomenon of misuse of Internet by young people who commit suicide is stressed. Copyright © 2013 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
NASA Astrophysics Data System (ADS)
Steiner, Thomas
1998-06-01
Structural data on three chalcogenido complexes published by M. C. Kuchta and G. Parkin, J. Chem. Soc., Chem. Commun. (1994) 1351, provide sound evidence that chloroform molecules can donate hydrogen bonds to S, Se and Te acceptors. This is the first documented example of CHżTe hydrogen bonding. The HżTe distance is only 2.67 Å.
Detecting trihalomethanes using nanoporous-carbon coated surface-acoustic-wave sensors
Siegal, Michael P.; Mowry, Curtis D.; Pfeifer, Kent B.; ...
2015-03-07
We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as a sorbent coating on 96.5-MHz surface-acoustic-wave (SAW) devices to detect trihalomethanes (THMs), regulated byproducts from the chemical treatment of drinking water. Using both insertion-loss and isothermal-response measurements from known quantities of chloroform, the highest vapor pressure THM, we optimize the NPC mass-density at 1.05 ± 0.08 g/cm3 by controlling the background argon pressure during PLD. Precise THM quantities in a chlorobenzene solvent are directly injected into a separation column and detected as the phase-angle shift of the SAW device output compared to the drive signal. Using optimized NPC-coated SAWs,more » we study the chloroform response as a function of operating temperatures ranging from 10–50°C. Finally, we demonstrate individual responses from complex mixtures of all four THMs, with masses ranging from 10–2000 ng, after gas chromatography separation. As a result, estimates for each THM detection limit using a simple peak-height response evaluation are 4.4 ng for chloroform and 1 ng for bromoform; using an integrated-peak area response analysis improves the detection limits to 0.73 ng for chloroform and 0.003 ng bromoform.« less
Roy, Sudeshna; Sharma, Ashutosh
2015-07-01
Dewetting pathways, kinetics and morphologies of thin films of phase separating polymer blends are governed by the relative mobilities of the two components. We characterize the morphological transformations of the nanostructures of a PS/PMMA blend by annealing in toluene and chloroform vapors. Toluene leads to faster reorganization of PS, whereas chloroform engenders the opposite effect. Spin coating produces a very rough PMMA rich layer that completely wets the substrate and forms a plethora of slender columns protruding through the continuous PS rich layer on top. The nanostructures were stable under long thermal annealing but in the vapor annealing, phase separation and dewetting occurred readily to form the equilibrium structures of dewetted droplets of PS on top of PMMA which also climbed around the PS droplets to form rims. Toluene and chloroform annealing required around 50 h and 1 h respectively to attain the equilibrium. Substantial differences are observed in the intermediate morphologies (heights of nanostructures, roughness and size). PMMA columns remained embedded in the dewetted PS droplets, whereas a high mobility of PMMA in chloroform allowed its rapid evacuation during dewetting to produce an intermediate swiss-cheese like morphology of PS domains. Copyright © 2015 Elsevier Inc. All rights reserved.
Citizen scientist lepidopterists exposed to potential carcinogens.
Vainio, Petri J; Vahlberg, Tero; Liesivuori, Jyrki
2016-05-01
Lepidopterists use substantial volumes of solvents, such as chloroform, 1,1,2,2-tetrachloroethane and xylene, in their traps when collecting faunistic and phenological data. A majority of them are citizen scientists and thus in part not identified by occupational healthcare as being at risk due to solvent handling. We surveyed the extent of solvent use, the frequency and extent of potential exposure and the safety precautions taken in trapping and catch handling by Finnish lepidopterists. Chloroform and 1,1,2,2-tetrachloroethane were the most frequently used anaesthetics. Potential for exposure prevailed during trap maintenance and exploration and catch sorting. Adequate protection against vapours or spills was worn by 17% during trap exploration. Subjects completed a median of 100 trap explorations per season. Dermal or mucosal spills were recorded at a median rate of one spill per ten (chloroform) to 20 (1,1,2,2-tetrachloroethane and xylene) trap explorations. Median annual cumulative durations of 8 and 20 h of exposure to chloroform and 1,1,2,2-tetrachloroethane at levels above odour detection threshold were reported. Subjective adverse findings possibly related solvents had been noticed by 24 (9.8%) lepidopterists. All the events had been mild to moderate. No factor predicting unsafe procedures or adverse reactions was recorded despite thorough statistical testing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Svagera, Zdeněk; Hanzlíková, Dagmar; Simek, Petr; Hušek, Petr
2012-03-01
Four disulfide-reducing agents, dithiothreitol (DTT), 2,3-dimercaptopropanesulfonate (DMPS), and the newly tested 2-mercaptoethanesulfonate (MESNA) and Tris(hydroxypropyl)phosphine (THP), were investigated in detail for release of sulfur amino acids in human plasma. After protein precipitation with trichloroacetic acid (TCA), the plasma supernatant was treated with methyl, ethyl, or propyl chloroformate via the well-proven derivatization-extraction technique and the products were subjected to gas chromatographic-mass spectrometric (GC-MS) analysis. All the tested agents proved to be rapid and effective reducing agents for the assay of plasma thiols. When compared with DTT, the novel reducing agents DMPS, MESNA, and THP provided much cleaner extracts and improved analytical performance. Quantification of homocysteine, cysteine, and methionine was performed using their deuterated analogues, whereas other analytes were quantified by means of 4-chlorophenylalanine. Precise and reliable assay of all examined analytes was achieved, irrespective of the chloroformate reagent used. Average relative standard deviations at each analyte level were ≤6%, quantification limits were 0.1-0.2 μmol L(-1), recoveries were 94-121%, and linearity was over three orders of magnitude (r(2) equal to 0.997-0.998). Validation performed with the THP agent and propyl chloroformate derivatization demonstrated the robustness and reliability of this simple sample-preparation methodology.
Residual toxicity after biodegradation: interactions among benzene, toluene, and chloroform.
da Silva Nunes-Halldorson, Vânia; Steiner, Robert L; Smith, Geoffrey B
2004-02-01
A microbial enrichment originating from a pristine aquifer was found to aerobically biodegrade benzene and toluene, but not chloroform. This enrichment culture was used to study changes in pollutant toxicity as affected by biodegradative activity. Two assays for toxicity were used: (1) a 48-h acute toxicity test using the freshwater invertebrate Ceriodaphnia dubia and (2) microbial biodegradation activity as affected by the presence of mixed pollutants. At 20-ppm concentrations, toluene was significantly more toxic (99% mortality) to C. dubia than benzene (48% mortality) or chloroform (40% mortality). Also at 20-ppm concentrations, but before biodegradation, toluene was significantly more toxic (88% mortality) to C. dubia than benzene (33% mortality). After biodegradation of 98% of toluene and benzene, significant residual toxicity still remained in the bacterial supernatant: toluene-degraded supernatant caused 33% mortality in C. dubia and benzene-degraded supernatant caused 24% mortality. In the second toxicity assay, examining the effect of mixed pollutants on biodegradation activity, the presence of benzene slowed the biodegradation of toluene, but chloroform had no effect on either benzene or toluene biodegradation. Results indicate that significant toxicity remain after biodegradation and that halogenated aliphatic hydrocarbons may have little or no effect on aromatic hydrocarbon biodegradation at sites impacted by mixed pollutants.
Chloroform Emissions from the Arctic Tundra
NASA Astrophysics Data System (ADS)
Abel, T.; Rhew, R. C.; Teh, Y.; Atwood, A.; Mazeas, O.
2006-12-01
The global budget of atmospheric chloroform (CHCl3) has many uncertainties, especially regarding the magnitude of its natural and anthropogenic sources. CHCl3 has an atmospheric lifetime of ~0.5 years based on reaction with hydroxyl radical and a north to south interhemispheric gradient of 2-3. Thus, a majority of CHCl3 emissions comes from the Northern Hemisphere, with half or more of the emissions emanating from 30-90 °N. The production of CHCl3 has been observed in microalgae, termite mounds, forest soils, rice paddies and temperate peatlands, but direct flux measurements are very limited. Here we report CHCl3 emissions measured from the Arctic tundra during the 2005 and 2006 growing seasons near Barrow, Alaska (n=60) and Toolik Lake, Alaska (n=16). These sites encompassed a range of vegetation zones, from wet sedge coastal tundra to upland tussock tundra. Fluxes were highly variable, ranging from 0 to 260 nmol m-2 d-1 and showed no clear trends with microtopography or time of season, although many of the highest fluxes were found at the moist meadow sites. Chloroform fluxes did not correlate with methane or methyl halide fluxes. A rough extrapolation based on average observed fluxes suggests that the tundra globally can account for 1-2% of the total estimated source of atmospheric chloroform.
NASA Astrophysics Data System (ADS)
Prihapsara, F.; Mufidah; Artanti, A. N.; Harini, M.
2018-03-01
The present study was aimed to study the acute and subchronic toxicity of Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with Palm Kernel Oil as carrier. In acute toxicity test, five groups of rat (n=5/groups) were orally treated with Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with doses at 48, 240, 1200 and 6000 mg/kg/day respectively, then the median lethal dose LD50, advers effect and mortality were recorded up to 14 days. Meanwhile, in subchronic toxicity study, 4 groups of rats (n=6/group) received by orally treatment of SNEDDS from chloroform bay leaf extract with doses at 91.75; 183.5; 367 mg/kg/day respectively for 28 days, and biochemical, hematological and histopatological change in tissue such as liver, kidney, and pancreatic were determined. The result show that LD50 is 1045.44 mg/kg. Although histopathological examination of most of the organs exhibited no structural changes, some moderate damage was observed in high‑ dose group animals (367 mg/kg/day). The high dose of SNEDDS extract has shown mild signs of toxicity on organ function test.
Sun, Zhi-Rong; Li, Bao-Hua; Hu, Xiang; Shi, Min; Peng, Yong-Zhen
2008-05-01
The electrochemical deposition behaviors of Pd-Ni bimetal on glassy carbon (GC) electrode were studied by means of cyclic voltammetry (CV) based on orthogonal experiments. CV results reveal that Pd-Ni bimetal shows larger hydrogen adsorption peak than that of single Pd or Ni. The mixture of Ni2+ and Pd2+ can get hydrogen adsorption peak of -24.83 mA at - 500 mV (vs Hg/Hg2SO4). Scanning Electron Microscope (SEM) images reveal that nickel addition changes the distributing configuration of Pd microparticles on GC. And the appearance of Pd-Ni bimetal microparticles is distinctly different from that of single Pd and single Ni microparticles. Diameter of Pd-Ni microparticle is bigger than that of Pd microparticle and smaller than that of Ni microparticle. Effects of dechlorination current and time on removal efficiency of chloroform were also studied. The removal efficiency of chloroform increases at higher dechlorination current and longer dechlorination time. It reaches 42.53% when the dechlorination current and time are 0.5 mA and 180 min respectively on Pd-Ni/GC electrode prepared at optimum conditions. It can be envisioned that the removal efficiency of chloroform would increase further at longer dechlorination time.
NASA Technical Reports Server (NTRS)
Kurylo, M. J.; Anderson, P. C.; Klais, O.
1979-01-01
The absolute rate constant for the reaction OH + CH3CCl3 yields H2O + CH2CCl3 was determined by the flash photolysis resonance fluorescence method from 253 to 363K. The use of the Arrhenius equation with atmospheric observational data on methyl chloroform nearly doubles the predicted tropospheric OH reaction sink strength for the removal of atmospheric gases whose lifetimes are controlled by OH. The increased use of methyl chloroform instead of the restricted trichloroethylene focused attention to its role in stratospheric ozone depletion, producing modeling analyses to determine the amount of released methyl chloroform which reaches the stratosphere. Since the primary atmospheric loss of CH3CCl3 is considered by reaction with OH radicals, these data are used to compute an average tropospheric OH concentration and the strength of the 'global tropospheric OH reaction sink'.
Yang, Xia; Guo, Bao-Lin; Hu, Hong-Yu; Huang, Wen-Hua; Qiao, He-Ping; Fan, Sheng-Ci; Guan, Zha-Gen
2013-09-01
A Cleanert Alumina-N-SPE column (0.5 g/6 mL) chromatograpy with 5 mL of chloroform-methanol (7: 3) as eluent, instead of aluminum oxide column (100-200 mesh, 5 g, 1 cm) chromatograpy eluted successively with chloroform and the chloroform-methanol (7:3) (20 mL each), was applied to enrich matrine and oxymatrine in Sophora flavescens. Also, the optimization of the HPLC determination conditions with acetonitrile-ethanol absolute-3% phosphoric acid solution (84: 6: 10) as mobile phase, instead of acetonitrile-ethanol absolute -3% Phosphoric acid solution (80: 10: 10) recorded in Chinese Pharmacopoeia 2010 Edition, was more suitable for determination of matrine and oxymatrine in S. flavescens. This method has advantage of reducing sample handling time and solvent volume and increasing the accuracy and feasibility, which can simplify the procedure for determination of matrine and oxymatrine in S. flavescens.
Shendge, Anil Khushalrao; Basu, Tapasree; Chaudhuri, Dipankar; Panja, Sourav; Mandal, Nripendranath
2017-07-01
Free radicals such as reactive oxygen and nitrogen species, generated in the body, play an important role in the fulfillment of various physiological functions but their imbalance in the body lead to cellular injury and various clinical disorders such as cancer, neurodegenaration, and inflammation. The objective of this study is to fight this problem, natural antioxidant from plants can be considered as possible protective agents against various diseases such as cancer which might also modify the redox microenvironment to reduce the genetic instability. This study was designed to evaluate the antioxidant and antiproliferative potential of Clerodendrum viscosum fractions against various carcinomas. In this present study, 70% methanolic extract of C. viscosum leaves have been fractionated to obtain hexane, chloroform, ethyl acetate, butanol, and water fractions, which were tested for their antioxidant and anticancer properties. It was observed that chloroform and ethyl acetate fractions showed good free radical scavenging properties as well as inhibited the proliferation of human lung cancer (A459), breast (MCF-7), and brain (U87) cells. Moreover, they arrested the cell cycle at G2/M phase of breast and brain cancer. These inhibitory effects were further confirmed by bromodeoxyuridine uptake imaging. Phytochemical investigations further indicate the presence of tannic acid, quercetin, ellagic caid, gallic acid, reserpine, and methyl gallate which might be the reason for these fractions' antioxidant and antiproliferative activities. Clerodendrum viscosum leaf chloroform and Clerodendrum viscosum leaf ethyl acetate fractions from C. viscosum showed good reactive oxygen species and reactive nitrogen species scavenging potential. Both the fractions arrested cell cycle at G2/M phase in MCF-7 and U87 cells which lead to induce apoptosis. Crude extract of Clerodendrum viscosum leaves was fractionated using different solventsAmong them, chloroform and ethyl acetate fractions exhibited excellent free radical scavenging propertiesThe same fractions inhibited the proliferation of human lung cancer (A459), breast (MCF-7), and brain (U87) cellsChloroform and ethyl acetate fractions arrested the cell cycle at G2/M phase of breast and brain cancerPhytochemical investigations further indicate the presence of several bioactive principles present in them. Abbreviations used: CVLME: Clerodendrum viscosum leaf methanolic extract; CVLH: Clerodendrum viscosum leaf hexane; CVLC: Clerodendrum viscosum leaf chloroform; CVLE: Clerodendrum viscosum leaf ethyl acetate; CVLB: Clerodendrum viscosum leaf butanol; CVLW: Clerodendrum viscosum leaf water; BrdU: Bromodeoxyuridine; WST-1: Water soluble tetrazolium salt.
Al-Oqail, Mai M; Al-Sheddi, Ebtesam S; Siddiqui, Maqsood A; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Farshori, Nida N
2015-10-01
Cancer is one of the major causes of death worldwide. The plant-derived natural products have received considerable attention in recent years due to their diverse pharmacological properties including anticancer effects. Nepeta deflersiana (ND) is used in the folk medicine as antiseptic, carminative, antimicrobial, antioxidant, and for treating rheumatic disorders. However, the anticancer activity of ND chloroform extract has not been explored so far. The present study was aimed to investigate the anticancer activities of chloroform Nepeta deflersiana extract and various sub-fractions (ND-1-ND-15) of ND against human breast cancer cells (MCF-7) and human lung cancer cells (A-549). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and neutral red uptake assays, and cellular morphological alterations using phase contrast light microscope were studied. Cells were exposed with 10-1000 μg/ml of sub-fractions of ND for 24 h. Results showed that selected sub-fractions of the chloroform extract significantly reduced the cell viability of MCF-7 and A-549 cells, and altered the cellular morphology in a concentration-dependent manner. Among the sub-fractions, ND-10 fraction showed relatively higher cytotoxicity compared to other fractions whereas, ND-1 did not cause any cytotoxicity even at higher concentrations. The A-549 cells were found to be more sensitive to growth inhibition by all the extracts as compared to the MCF-7 cells. The present study provides preliminary screening of anticancer activities of chloroform extract and sub-fractions of ND, which can be further used for the development of a potential therapeutic anticancer agent. Nepeta deflersiana extract exhibit cytotoxicity and altered the cellular morphology. Sub-fractions of the chloroform extract of Nepeta deflersiana reduced the cell viability of MCF-7 and A-549 cells. Among the sub-fractions, ND-10 fraction showed relatively higher cytotoxicity. The A-549 cells were found to be more sensitive as compared to the MCF-7 cells. Abbreviations used: MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; NRU: Neutral red uptake; DMEM: Dulbecco's modified eagle medium; FBS: Fetal bovine serum; PBS: Phosphate buffer saline; DMSO: Dimethyl sulfoxide.
Suzuki, Yuji; Mae, Tadahiko; Makino, Amane
2008-07-01
High-quality total RNA was extracted using a cethyltrimethylammonium bromide-containing buffer followed by an acid guanidium thiocyanate-phenol-chloroform treatment from recalcitrant plant tissues such as tree leaves (pine, Norway spruce, ginkgo, Japanese cedar, rose), flowers (rose, Lotus japonicus) and storage tissues (seeds of Lotus japonicus and rice, sweet potato tuber, banana fruit). This protocol greatly reduced the time required for RNA extraction.
A molecular dynamics simulation study of chloroform
NASA Astrophysics Data System (ADS)
Tironi, Ilario G.; van Gunsteren, Wilfred F.
Three different chloroform models have been investigated using molecular dynamics computer simulation. The thermodynamic, structural and dynamic properties of the various models were investigated in detail. In particular, the potential energies, diffusion coefficients and rotational correlation times obtained for each model are compared with experiment. It is found that the theory of rotational Brownian motion fails in describing the rotational diffusion of chloroform. The force field of Dietz and Heinzinger was found to give good overall agreement with experiment. An extended investigation of this chloroform model has been performed. Values are reported for the isothermal compressibility, the thermal expansion coefficient and the constant volume heat capacity. The values agree well with experiment. The static and frequency dependent dielectric permittivity were computed from a 1·2 ns simulation conducted under reaction field boundary conditions. Considering the fact that the model is rigid with fixed partial charges, the static dielectric constant and Debye relaxation time compare well with experiment. From the same simulation the shear viscosity was computed using the off-diagonal elements of the pressure tensor, both via an Einstein type relation and via a Green-Kubo equation. The calculated viscosities show good agreement with experimental values. The excess Helmholtz energy is calculated using the thermodynamic integration technique and simulations of 50 and 80 ps. The value obtained for the excess Helmholtz energy matches the theoretical value within a few per cent.
Aristatile, Balakrishnan; Alshammari, Ghedeir M
2017-05-01
Cucurbita ficifolia (C. ficifolia) has been traditionally known for its medicinal properties as an antioxidant, anti-diabetic and anti-inflammatory agent. However, there has been an enduring attention towards the identification of unique method, to isolate the natural components for therapeutic applications. Our study focuses on different polar and non-polar solvents (methanol, hexane and chloroform) to extract the bioactive components from C. ficifolia (pumpkin) and to study the biocompatibility and cytotoxicity effects on human bone marrow-mesenchymal stem cells (hBM-MSCs). The extracts were screened for their effects on cytotoxicity, cell proliferation and cell cycle on the hBM-MSCs cell line. The assays demonstrated that the chloroform extract was highly biocompatible, with less cytotoxic effect, and enhanced the cell proliferation. The methanol extract did not exhibit significant cytotoxicity when compare to the control. Concordantly, the cell cycle analysis confirmed that chloroform extract enhances the proliferation at lower concentrations. On the other hand, hexane extract showed high level of cytotoxicity with apoptotic and necrotic changes in hBM-MSCs. Collectively, our data revealed that chloroform is a good candidate to extract the bioactive components from C. ficifolia. Furthermore, our results suggest that specific gravity and density of the solvent might play a crucial role in the extraction process, which warrants further investigations. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Shoujie; Ye, Philip; Borole, Abhijeet P
Bio-oil aqueous phase contains a considerable amount of furans, alcohols, ketones, aldehydes and phenolics besides the major components of organic acids and anhydrosugars. The complexity of bio-oil aqueous phase limits its efficient utilization. To improve the efficiency of bio-oil biorefinery, this study focused on the separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extractions. Due to their high recoverability and low solubility in water, four solvents (hexane, petroleum ether, chloroform, and ethyl acetate) with different polarities were evaluated, and the optimum process conditions for chemical extraction were determined. Chloroform had high extraction efficiency for furans, phenolics,more » and ketones. In addition to these chemical groups, ethyl acetate had high extraction efficiency for organic acids. The sequential extraction by using chloroform followed by ethyl acetate rendered that 62.2 wt.% of original furans, ketones, alcohols, and phenolics were extracted to chloroform, over 62 wt.% acetic acid was extracted to ethyl acetate, resulting in a high concentration of levoglucosan (~53.0 wt.%) in the final aqueous phase. Chemicals separated via the sequential extraction could be used as feedstocks in biorefinery using processes such as catalytic upgrading of furans and phenolics to hydrocarbons, fermentation of levoglucosan to produce alcohols and diols, and hydrogen production from organic acids via microbial electrolysis.« less
Separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extraction
Ren, Shoujie; Ye, Philip; Borole, Abhijeet P
2017-01-05
Bio-oil aqueous phase contains a considerable amount of furans, alcohols, ketones, aldehydes and phenolics besides the major components of organic acids and anhydrosugars. The complexity of bio-oil aqueous phase limits its efficient utilization. To improve the efficiency of bio-oil biorefinery, this study focused on the separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extractions. Due to their high recoverability and low solubility in water, four solvents (hexane, petroleum ether, chloroform, and ethyl acetate) with different polarities were evaluated, and the optimum process conditions for chemical extraction were determined. Chloroform had high extraction efficiency for furans, phenolics,more » and ketones. In addition to these chemical groups, ethyl acetate had high extraction efficiency for organic acids. The sequential extraction by using chloroform followed by ethyl acetate rendered that 62.2 wt.% of original furans, ketones, alcohols, and phenolics were extracted to chloroform, over 62 wt.% acetic acid was extracted to ethyl acetate, resulting in a high concentration of levoglucosan (~53.0 wt.%) in the final aqueous phase. Chemicals separated via the sequential extraction could be used as feedstocks in biorefinery using processes such as catalytic upgrading of furans and phenolics to hydrocarbons, fermentation of levoglucosan to produce alcohols and diols, and hydrogen production from organic acids via microbial electrolysis.« less
Ivahnenko, Tamara; Zogorski, J.S.
2006-01-01
Chloroform and three other trihalomethanes (THMs)--bromodichloromethane, dibromochloromethane, and bromoform--are disinfection by-products commonly produced during the chlorination of water and wastewater. Samples of untreated ground water from drinking-water supply wells (1,096 public and 2,400 domestic wells) were analyzed for THMs and other volatile organic compounds (VOCs) during 1986-2001, or compiled, as part of the U.S. Geological Survey's National Water-Quality Assessment Program. This report provides a summary of potential sources of THMs and of the occurrence and geographical distribution of THMs in samples from public and domestic wells. Evidence for an anthropogenic source of THMs and implications for future research also are presented. Potential sources of THMs to both public and domestic wells include the discharge of chlorinated drinking water and wastewater that may be intentional or inadvertent. Intentional discharge includes the use of municipally supplied chlorinated water to irrigate lawns, golf courses, parks, gardens, and other areas; the use of septic systems; or the regulated discharge of chlorinated wastewater to surface waters or ground-water recharge facilities. Inadvertent discharge includes leakage of chlorinated water from swimming pools, spas, or distribution systems for drinking water or wastewater sewers. Statistical analyses indicate that population density, the percentage of urban land, and the number of Resource Conservation and Recovery Act hazardous-waste facilities near sampled wells are significantly associated with the probability of detection of chloroform, especially for public wells. Domestic wells may have several other sources of THMs, including the practice of well disinfection through shock chlorination, laundry wastewater containing bleach, and septic system effluent. Chloroform was the most frequently detected VOC in samples from drinking-water supply wells (public and domestic wells) in the United States. Although chloroform was detected frequently in samples from public and domestic wells and the other THMs were detected in some samples, no concentrations in samples from either well type exceeded the U.S. Environmental Protection Agency's Maximum Contaminant Level of 80 micrograms per liter for total THMs. Chloroform was detected in public well samples almost twice as frequently (11 percent) as in domestic well samples (5 percent). The other three THMs also were detected more frequently in public well samples than in domestic well samples. This detection pattern may be attributed to public wells having a higher pumping capacity than domestic wells. The higher capacity wells create a larger capture zone that potentially intercepts more urban and other land uses and associated point and nonpoint sources of contamination than the smaller capacity domestic wells. THM detection frequencies in domestic well samples show a pattern of decreasing frequency with increasing bromide content, that is in the order: chloroform > bromodichloromethane >= dibromochloromethane >= bromoform. This same pattern has been documented in studies of water chlorination, indicating that an important source of chloroform and other THMs in drinking-water supply wells may be the recycling of chlorinated water and wastewater. Mixtures of THMs commonly occur in public well samples, and the most frequently occurring are combinations of the brominated THMs. These THMs have limited industrial production, few natural sources, and small or no reported direct releases to the environment. Therefore, industrial, commercial, or natural sources are not likely sources of the brominated THMs in public and domestic well samples. The THM detection frequency pattern, the co-occurrence of brominated THMs, and other lines of evidence indicate that the recycling of water with a history of chlorination is an important source of these compounds in samples from drinking-water supply wells.
Kostić, Nađa; Dotsikas, Yannis; Malenović, Anđelija; Medenica, Mirjana
2013-11-15
In the current study, three antiepileptic drugs with zwitterionic properties, namely vigabatrin, pregabalin and gabapentin, were chosen as model analytes to undergo derivatization by applying various n-alkyl chloroformate/n-alcohol combinations, followed by LC-ESI-MS/MS analysis. The employment of 16 combinations per drug using methyl, ethyl, propyl or butyl chloroformate coupled with methanol, ethanol, propanol or butanol, greatly affected a series of parameters of the derivatives, such as retention time on C8 column, signal expressed via areas, limit of detection values, as well as the yields of the main and side reactions. Practically, even slight modification of n-alkyl group of either chloroformate or alcohol resulted in significant changes in the chromatographic and mass spectrometric behavior of the novel derivative. It was clearly demonstrated that all the estimated parameters were highly correlated with the length of n-alkyl groups of the involved chloroformate and alcohol. The most significant influence was monitored in peak area values, indicating that the length of the n-alkyl chain plays an important role in electrospray ionization efficiency. For this parameter, increasing the n-alkyl chain from methyl to butyl led to increment up to 2089%, 508.7% and 1075% for area values of derivatized vigabatrin, pregabalin and gabapentin, respectively. These changes affected also the corresponding values of limits of detection, with the estimated improvements up to 1553%, 397.7% and 875.0% for the aforementioned derivatized drugs, respectively. Besides the obvious utilization of these conclusions in the development of bioanalytical methods for these analytes with the current protocol, this study offers valuable data which can be useful in more general approaches, giving insights into the effects of this derivatization reaction and its performances. Copyright © 2013 Elsevier B.V. All rights reserved.
Grazuleviciene, Regina; Nieuwenhuijsen, Mark J; Vencloviene, Jone; Kostopoulou-Karadanelli, Maria; Krasner, Stuart W; Danileviciute, Asta; Balcius, Gediminas; Kapustinskiene, Violeta
2011-04-19
Evidence for an association between exposure during pregnancy to trihalomethanes (THMs) in drinking water and impaired fetal growth is still inconsistent and inconclusive, in particular, for various exposure routes. We examined the relationship of individual exposures to THMs in drinking water on low birth weight (LBW), small for gestational age (SGA), and birth weight (BW) in singleton births. We conducted a cohort study of 4,161 pregnant women in Kaunas (Lithuania), using individual information on drinking water, ingestion, showering and bathing, and uptake factors of THMs in blood, to estimate an internal dose of THM. We used regression analysis to evaluate the relationship between internal THM dose and birth outcomes, adjusting for family status, education, smoking, alcohol consumption, body mass index, blood pressure, ethnic group, previous preterm, infant gender, and birth year. The estimated internal dose of THMs ranged from 0.0025 to 2.40 mg/d. We found dose-response relationships for the entire pregnancy and trimester-specific THM and chloroform internal dose and risk for LBW and a reduction in BW. The adjusted odds ratio for third tertile vs. first tertile chloroform internal dose of entire pregnancy was 2.17, 95% CI 1.19-3.98 for LBW; the OR per every 0.1 μg/d increase in chloroform internal dose was 1.10, 95% CI 1.01-1.19. Chloroform internal dose was associated with a slightly increased risk of SGA (OR 1.19, 95% CI 0.87-1.63 and OR 1.22, 95% CI 0.89-1.68, respectively, for second and third tertile of third trimester); the risk increased by 4% per every 0.1 μg/d increase in chloroform internal dose (OR 1.04, 95% CI 1.00-1.09). THM internal dose in pregnancy varies substantially across individuals, and depends on both water THM levels and water use habits. Increased internal dose may affect fetal growth.
Kim, Hae-Young; Hwang, Kwang Woo; Park, So-Young
2014-11-01
The inflammatory response protects our body from bacteria and tumors, but chronic inflammation driven by the persistent activation of macrophages can lead to serious adverse effects including gastrointestinal problems, cardiac disorders, and a sore throat. Part of the ongoing research is focused on searching for antiinflammatory compounds from natural sources, so we investigated the effects of hardy kiwis (Actinidia arguta, Lauraceae) stems on inflammation induced by lipopolysaccharide (LPS) in Raw 264.7 cells to test the hypothesis that antiinflammatory effects of A. arguta stems were exerted through the inhibition of the nuclear factor (NF)-κB pathway. The methanol extract of A. arguta (20 μg/mL) stems lowered nitric oxide production in LPS-stimulated Raw 264.7 cells by 40%. It was then partitioned with hexane, chloroform, ethyl acetate, butanol, and water based on the polarity of each compound. Among the 5 layers, the chloroform layer had the greatest inhibitory effect on LPS-stimulated nitric oxide production and inducible nitric oxide synthase mRNA expression in Raw 264.7 cells. However, the levels of prostaglandin E2 and cyclooxygease 2 were not altered. On the other hand, treatment of cells with the chloroform layer of A. arguta before LPS stimulation also reduced them RNA expression of proinflammatory cytokines including tumor necrosis factor α and interleukin 1β. Nuclear translocation of NF-κB p50 and p65 subunits induced by LPS was also inhibited by treatment with the chloroform layer of A. arguta. This was accompanied with the reduced phosphorylation of mitogen-activated protein kinases including extracellular signal-regulated protein kinase 1/2, c-Jun N-terminal protein kinase, and p38. Taken together, these results suggest that chloroform layer of A. arguta exerted antiinflammatory effects by the inhibition of mitogen-activated protein kinase phosphorylation and nuclear translocation of NF-κB.
Jafarian, A.; Ghannadi, A.; Mohebi, B.
2014-01-01
Previous studies have indicated that some species of Cuscuta possess anticancer activity on various cell lines. Due to the lack of detailed researches on the cytotoxic effects of Cuscuta chinensis and Cuscuta epithymum, the aim of the present study was to evaluate cytotoxic effects of chloroform and hydroalcoholic extracts of these plants on the human breast carcinoma cell line (MDA-MB-468), human colorectal adenocarcinoma cell line (HT29) and human uterine cervical carcinoma (Hela). Using maceration method, different extracts of aerial parts of C. chinensis and C. epithymum were prepared. Extraction was performed using chloroform and ethanol/water (70/30). Total phenolic contents of the extracts were determined according to the Folin-Ciocalteu method. Using MTT assay, the cytotoxic activity of the extracts against HT29, Hela and MDA-MB-468 tumor cells was evaluated. Extracts were considered cytotoxic when more than 50% reduction on cell survival was observed. The poly-phenolic content of the hydroalcoholic and chloroform extracts of C. chinensis and C. epithymum were 56.08 ± 4.11, 21.49 ± 2.00, 10.64 ± 0.86 and 4.81 ± 0.38, respectively. Our findings showed that the chloroform extracts of C. chinensis and C. epithyum significantly reduced the viability of Hela, HT-29 and MDA-MB-468 cells. Also, hydroalcoholic extracts of C. chinensis significantly decreased the viability of HT29, Hela and MDA-MB-468 cells. However, in the case of hydroalcoholic extracts of C. epithymum only significant decrease in the viability of MDA-MB-468 cells was observed (IC50 = 340 μg/ml). From these findings it can be concluded that C. chinensis and C. epithymum are good candidates for further study to find new possible cytotoxic agents. PMID:25657780
Jafarian, A; Ghannadi, A; Mohebi, B
2014-01-01
Previous studies have indicated that some species of Cuscuta possess anticancer activity on various cell lines. Due to the lack of detailed researches on the cytotoxic effects of Cuscuta chinensis and Cuscuta epithymum, the aim of the present study was to evaluate cytotoxic effects of chloroform and hydroalcoholic extracts of these plants on the human breast carcinoma cell line (MDA-MB-468), human colorectal adenocarcinoma cell line (HT29) and human uterine cervical carcinoma (Hela). Using maceration method, different extracts of aerial parts of C. chinensis and C. epithymum were prepared. Extraction was performed using chloroform and ethanol/water (70/30). Total phenolic contents of the extracts were determined according to the Folin-Ciocalteu method. Using MTT assay, the cytotoxic activity of the extracts against HT29, Hela and MDA-MB-468 tumor cells was evaluated. Extracts were considered cytotoxic when more than 50% reduction on cell survival was observed. The poly-phenolic content of the hydroalcoholic and chloroform extracts of C. chinensis and C. epithymum were 56.08 ± 4.11, 21.49 ± 2.00, 10.64 ± 0.86 and 4.81 ± 0.38, respectively. Our findings showed that the chloroform extracts of C. chinensis and C. epithyum significantly reduced the viability of Hela, HT-29 and MDA-MB-468 cells. Also, hydroalcoholic extracts of C. chinensis significantly decreased the viability of HT29, Hela and MDA-MB-468 cells. However, in the case of hydroalcoholic extracts of C. epithymum only significant decrease in the viability of MDA-MB-468 cells was observed (IC50 = 340 μg/ml). From these findings it can be concluded that C. chinensis and C. epithymum are good candidates for further study to find new possible cytotoxic agents.
Predictors of Blood Trihalomethane Concentrations in NHANES 1999–2006
Dhingra, Radhika; Blount, Benjamin C.; Steenland, Kyle
2014-01-01
Background: Trihalomethanes (THMs) are water disinfection by-products that have been associated with bladder cancer and adverse birth outcomes. Four THMs (bromoform, chloroform, bromodichloromethane, dibromochloromethane) were measured in blood and tap water of U.S. adults in the National Health and Nutrition Examination Survey (NHANES) 1999–2006. THMs are metabolized to potentially toxic/mutagenic intermediates by cytochrome p450 (CYP) 2D6 and CYP2E1 enzymes. Objectives: We conducted exploratory analyses of blood THMs, including factors affecting CYP2D6 and CYP2E1 activity. Methods: We used weighted multivariable regressions to evaluate associations between blood THMs and water concentrations, survey year, and other factors potentially affecting THM exposure or metabolism (e.g., prescription medications, cruciferous vegetables, diabetes, fasting, pregnancy, swimming). Results: From 1999 to 2006, geometric mean blood and water THM levels dropped in parallel, with decreases of 32%–76% in blood and 38%–52% in water, likely resulting, in part, from the lowering of the total THM drinking water standard in 2002–2004. The strongest predictors of blood THM levels were survey year and water concentration (n = 4,232 total THM; n = 4,080 bromoform; n = 4,582 chloroform; n = 4,374 bromodichloromethane; n = 4,464 dibromochloromethane). We detected statistically significant inverse associations with diabetes and eating cruciferous vegetables in all but the bromoform model. Medications did not consistently predict blood levels. Afternoon/evening blood samples had lower THM concentrations than morning samples. In a subsample (n = 230), air chloroform better predicted blood chloroform than water chloroform, suggesting showering/bathing was a more important source than drinking. Conclusions: We identified several factors associated with blood THMs that may affect their metabolism. The potential health implications require further study. Citation: Riederer AM, Dhingra R, Blount BC, Steenland K. 2014. Predictors of blood trihalomethane concentrations in NHANES 1999–2006. Environ Health Perspect 122:695–702; http://dx.doi.org/10.1289/ehp.1306499 PMID:24647036
2011-01-01
Background Evidence for an association between exposure during pregnancy to trihalomethanes (THMs) in drinking water and impaired fetal growth is still inconsistent and inconclusive, in particular, for various exposure routes. We examined the relationship of individual exposures to THMs in drinking water on low birth weight (LBW), small for gestational age (SGA), and birth weight (BW) in singleton births. Methods We conducted a cohort study of 4,161 pregnant women in Kaunas (Lithuania), using individual information on drinking water, ingestion, showering and bathing, and uptake factors of THMs in blood, to estimate an internal dose of THM. We used regression analysis to evaluate the relationship between internal THM dose and birth outcomes, adjusting for family status, education, smoking, alcohol consumption, body mass index, blood pressure, ethnic group, previous preterm, infant gender, and birth year. Results The estimated internal dose of THMs ranged from 0.0025 to 2.40 mg/d. We found dose-response relationships for the entire pregnancy and trimester-specific THM and chloroform internal dose and risk for LBW and a reduction in BW. The adjusted odds ratio for third tertile vs. first tertile chloroform internal dose of entire pregnancy was 2.17, 95% CI 1.19-3.98 for LBW; the OR per every 0.1 μg/d increase in chloroform internal dose was 1.10, 95% CI 1.01-1.19. Chloroform internal dose was associated with a slightly increased risk of SGA (OR 1.19, 95% CI 0.87-1.63 and OR 1.22, 95% CI 0.89-1.68, respectively, for second and third tertile of third trimester); the risk increased by 4% per every 0.1 μg/d increase in chloroform internal dose (OR 1.04, 95% CI 1.00-1.09). Conclusions THM internal dose in pregnancy varies substantially across individuals, and depends on both water THM levels and water use habits. Increased internal dose may affect fetal growth. PMID:21501533
Development of an impact- and solvent-resistant thermoplastic composite matrix
NASA Technical Reports Server (NTRS)
Delano, C. B.; Kiskiras, C. J.
1984-01-01
Synthesis, moldability and chloroform, acetone and tricresyl phosphate resistance of 16 polymer compositions are described. These aliphatic heterocyclic polymers include polyimides, polybenzimidazoles, and N-arylenepolybenzimidazoles. A solution condensation (cresol) method to prepare imidized aliphaic polyimides is described. Two polyimides and one polybenzimidazole demonstrate no crazing or cracking during 500 hr exposure to the cited solvents under stress. Modification of one aliphatic polyimide with several aromatic amines suggests that m-phenylenediamine is singular in its behavior to improve the chloroform resistance of that class of polyimides.
1980-06-01
in evaluators and the evaluation method. Also in Goldman’s study reagents, nitric acid and sodium hypochlorite , were used in retrieving the gutta...Inlo Di-5r7W~f~ IU* Report) DTIC illE LECTE f_ IS. KEY WORDS (Conthue on revere* side It necessay and Identify by block numbei) -. , endodontics ...TECHNIQUES. PART 2: THREE CHLOROFORM-GUTTA PERCHA FILLING TECHNIQUES M. Wong, DDS Resident, Endodontics Dept. of Dentistry - PO Box 59 Madigan Army Medical
Chloroform-Treated Filamentous Phage as a Bioreceptor for Piezoelectric Sensors
2005-01-01
Gels were rinsed in double-deionized water (DDH2O) then treated by immersion in 0.2 N NaOH for 1 h, 1 M Tris-HCl (pH 7.5) for 15 min, and 0.05 M...Filamentous bacteriophage contract into hollow spherical particles upon exposure to a chloroform- water interface. Cell 23, 747- 753. Manning, M...Chrysogelos, S., Griffith, J., 1981. Mechanism of coliphage M13 contraction: intermediate structures trapped at low temperatures. J. Virol. 40, 912-919. Naylor
Molecular dynamics simulations of theoretical cellulose nanotube models.
Uto, Takuya; Kodama, Yuta; Miyata, Tatsuhiko; Yui, Toshifumi
2018-06-15
Nanotubes are remarkable nanoscale architectures for a wide range of potential applications. In the present paper, we report a molecular dynamics (MD) study of the theoretical cellulose nanotube (CelNT) models to evaluate their dynamic behavior in solution (either chloroform or benzene). Based on the one-quarter chain staggering relationship, we constructed six CelNT models by combining the two chain polarities (parallel (P) and antiparallel (AP)) and three symmetry operations (helical right (H R ), helical left (H L ), and rotation (R)) to generate a circular arrangement of molecular chains. Among the four models that retained the tubular form (P-H R , P-H L , P-R, and AP-R), the P-R and AP-R models have the lowest steric energies in benzene and chloroform, respectively. The structural features of the CelNT models were characterized in terms of the hydroxymethyl group conformation and intermolecular hydrogen bonds. Solvent structuring more clearly occurred with benzene than chloroform, suggesting that the CelNT models may disperse in benzene. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wada, Kunio; Fukuyama, Tomoki; Nakashima, Nobuaki; Matsumoto, Kyomu
2015-07-01
As part of the Japanese Center for the Validation of Alternative Methods (JaCVAM) international validation study of in vivo rat alkaline comet assays, we examined cadmium chloride, chloroform, and D,L-menthol under blind conditions as coded chemicals in the liver and stomach of Sprague-Dawley rats after 3 days of administration. Cadmium chloride showed equivocal responses in the liver and stomach, supporting previous reports of its poor mutagenic potential and non-carcinogenic effects in these organs. Treatment with chloroform, which is a non-genotoxic carcinogen, did not induce DNA damage in the liver or stomach. Some histopathological changes, such as necrosis and degeneration, were observed in the liver; however, they did not affect the comet assay results. D,L-Menthol, a non-genotoxic non-carcinogen, did not induce liver or stomach DNA damage. These results indicate that the comet assay can reflect genotoxic properties under blind conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Grunwald-Winstein Analysis - Isopropyl Chloroformate Solvolysis Revisited
D’Souza, Malcolm J.; Reed, Darneisha N.; Erdman, Kevin J.; Kyong, Jin Burm; Kevill, Dennis N.
2009-01-01
Specific rates of solvolysis at 25 °C for isopropyl chloroformate (1) in 24 solvents of widely varying nucleophilicity and ionizing power, plus literature values for studies in water and formic acid, are reported. Previously published solvolytic rate constants at 40.0 °C are supplemented with two additional values in the highly ionizing fluoroalcohols. These rates are now are analyzed using the one and two-term Grunwald-Winstein Equations. In the more ionizing solvents including ten fluoroalcohols negligible sensitivities towards changes in solvent nucleophilicity (l) and very low sensitivities towards changes in solvent ionizing power (m) values are obtained, evocative to those previously observed for 1-adamantyl and 2-adamantyl chloroformates 2 and 3. These observations are rationalized in terms of a dominant solvolysis-decomposition with loss of the CO2 molecule. In nine of the more nucleophilic pure alchohols and aqueous solutions an association-dissociation mechanism is believed to be operative. Deficiencies in the acid production indicate 2-33% isopropyl chloride formation, with the higher values in less nucleophilic solvents. PMID:19399225
Some fluorescence properties of dimethylaminochalcone and its novel cyclic analogues
NASA Astrophysics Data System (ADS)
Tomečková, Vladimíra; Poškrobová, Martina; Štefanišinová, Miroslava; Perjési, Pál
2009-12-01
This paper demonstrates the basic character (polarity, solubility, colour, absorption and fluorescence quantum yield) of synthetic dimethylaminochalcone ( 1) and its cyclic analogues measured in toluene, chloroform, dimethylsulfoxide and ethanol, which have been studied by absorption and fluorescence spectroscopy. The biologically active dye 4'-dimethylaminochalcone ( 1b) and its less flexible analogues 4-dimethylaminoindanone ( 2b), -tetralone ( 3b), and -benzosuberone ( 4b) are lipophilic molecules that displayed the best solubility in toluene and chloroform. The highest fluorescence and quantum yields of compounds 1 and 2 have been obtained in DMSO and chloroform. Quenching effect of fluorescence compounds ( 1- 4) has been studied in the mixture of the most polar organic solvents DMSO and water. In the presence of water, fluorescence of compound 1 has been quenched the best from all studied chalcones and emission maxima of molecules 1- 4 have been shifted to the longer wavelengths. Quenching effect of fluorescence by water was in order 1 > 2 > 3 > 4.
Veeramani, V; Sakthivelkumar, S; Tamilarasan, K; Aisha, S O; Janarthanan, S
2014-09-01
The ectoparasitic tick, Rhipicephalus (Boophilus) microplus collected at various cattle farms in and around Chennai was subjected to treatment of different crude solvent extracts of leaves of Ocimum basilicum and Spilanthes acmella for acaricidal activity. Among various solvent extracts of leaves of O. basilicum and S. acmella used, chloroform extract of O. basilicum at concentrations between 6% and 10% exhibited 70% and 100% mortality of ticks when compared to control. The LC50 and LC90 values of the chloroform extract of leaves of O. basilicum treatment on the ticks after 24 h were observed as 5.46% and 7.69%. Quantitative and qualitative analysis of α- and β- carboxylesterase enzymes in the whole gut homogenate of cattle tick, R. microplus treated with chloroform extract of leaves of O. basilicum revealed higher level of activities for the enzymes. This indicated that there was an induced response in the tick, R. microplus against the toxic effects of the extract of O. basilicum.
Gbodi, T A
1993-06-01
Some physico-chemical and toxicological studies were carried out on mycotoxins elaborated by Aspergillus quadrilineatus isolated from a grain foodstuff, acha (Digitaria exilis) in the Plateau State of Nigeria. The mycotoxins produced by A quadrilineatus were extractable from rice culture by chloroform. Column chromatographic separations of the crude extract in silica gel using different elution solvents and biological tests showed that the mycotoxins came off in the diethylether, chloroform and mostly in the ethyl acetate fractions. Use of different available mycotoxin standards on silica gel G coated chromatoplates revealed that 1 of the mycotoxins produced by A quadrilineatus was sterigmatocystin. Two other more toxic mycotoxins were isolated and purified from the crude chloroform extract; their column, preparative thin-layer chromatographic, infrared and UV-spectrophotometric characteristics were established. The infrared spectra of the 2 purified mycotoxins suggested that the carbonyl group of their structures were similar to that of aflatoxin.
Cheng, Jun; Huang, Rui; Li, Tao; Zhou, Junhu; Cen, Kefa
2014-10-01
A chloroform-free novel process for the efficient production of biodiesel from wet microalgae is proposed. Crude biodiesel is produced through extraction with hexane after microwave-assisted transesterification (EHMT) of lipids in wet microalgae. Effects of different parameters, including reaction temperature, reaction time, methanol dosage, and catalyst dosage, on fatty acids methyl esters (FAMEs) yield are investigated. The yield of FAME extracted into the hexane from the wet microalgae is increased 6-fold after the transesterification of lipids. The yield of FAME obtained through EHMT of lipids in wet microalgae is comparable to that obtained through direct transesterification of dried microalgae biomass with chloroform; however, FAME content in crude biodiesel obtained through EHMT is 86.74%, while that in crude biodiesel obtained through the chloroform-based process is 75.93%. EHMT ensures that polar pigments present in microalgae are not extracted into crude biodiesel, which leads to a 50% reduction in nitrogen content in crude biodiesel. Copyright © 2014 Elsevier Ltd. All rights reserved.
Antimicrobial activities of the rhizome extract of Zingiber zerumbet Linn.
Kader, Golam; Nikkon, Farjana; Rashid, Mohammad Abdur; Yeasmin, Tanzima
2011-10-01
To investigate antimicrobial effects of ethanolic extract of Zingiber zerumbet (Z. zerumbet) (L.) Smith and its chloroform and petroleum ether soluble fractions against pathogenic bacteria and fungi. The fresh rhizomes of Zingiber zerumbet were extracted in cold with ethanol (4.0 L) after concentration. The crude ethanol extract was fractionated by petroleum ether and chloroform to form a suspension of ethanol extract (15.0 g), petroleum ether fraction (6.6 g) and chloroform soluble fraction (5.0 g). The crude ethanol extract and its petroleum ether and chloroform fractions were evaluated for antibacterial and antifungal activity against thirteen pathogenic bacteria and three fungi by the disc diffusion method. Commercially available kanamycin (30 µg/disc) was used as standard disc and blank discs impregnated with the respective solvents were used as negative control. At a concentration of 400 µg/disc, all the samples showed mild to moderate antibacterial and antifungal activity and produced the zone of inhibition ranging from 6 mm to 10 mm. Among the tested samples, the crude ethanol extract showed the highest activity against Vibrio parahemolyticus (V. parahemolyticus). The minimum inhibitory concentration (MIC) of the crude ethanol extract and its fractions were within the value of 128-256 µg/mL against two Gram positive and four Gram negative bacteria and all the samples showed the lowest MIC value against V. parahemolyticus (128 µg/mL). It can be concluded that, potent antibacterial and antifungal phytochemicals are present in ethanol extract of Z. zerumbet (L).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chern, Yann-Cherng; Wu, Hung-Ruei; Chen, Yen-Chu
2015-08-15
A solvent soaking and rinsing method, in which the solvent was allowed to soak all over the surface followed by a spinning for solvent draining, was found to produce perovskite layers with high uniformity on a centimeter scale and with much improved reliability. Besides the enhanced crystallinity and surface morphology due to the rinsing induced surface precipitation that constrains the grain growth underneath in the precursor films, large-area uniformity with film thickness determined exclusively by the rotational speed of rinsing spinning for solvent draining was observed. With chloroform as rinsing solvent, highly uniform and mirror-like perovskite layers of area asmore » large as 8 cm × 8 cm were produced and highly uniform planar perovskite solar cells with power conversion efficiency of 10.6 ± 0.2% as well as much prolonged lifetime were obtained. The high uniformity and reliability observed with this solvent soaking and rinsing method were ascribed to the low viscosity of chloroform as well as its feasibility of mixing with the solvent used in the precursor solution. Moreover, since the surface precipitation forms before the solvent draining, this solvent soaking and rinsing method may be adapted to spinless process and be compatible with large-area and continuous production. With the large-area uniformity and reliability for the resultant perovskite layers, this chloroform soaking and rinsing approach may thus be promising for the mass production and commercialization of large-area perovskite solar cells.« less
Breil, Cassandra; Abert Vian, Maryline; Zemb, Thomas; Kunz, Werner; Chemat, Farid
2017-03-27
Bligh and Dyer (B & D) or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are "gold standards" for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS), we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid-liquid extraction of yeast ( Yarrowia lipolytica IFP29 ) and subsequent liquid-liquid partition-the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid-liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID) to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol-chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity.
Breil, Cassandra; Abert Vian, Maryline; Zemb, Thomas; Kunz, Werner; Chemat, Farid
2017-01-01
Bligh and Dyer (B & D) or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are “gold standards” for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS), we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid–liquid extraction of yeast (Yarrowia lipolytica IFP29) and subsequent liquid–liquid partition—the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid–liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID) to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol–chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity. PMID:28346372
Niizuma, Shun; Matsui, Yoshihiko; Ohno, Koichi; Itoh, Sadahiko; Matsushita, Taku; Shirasaki, Nobutaka
2013-10-01
Drinking water quality standard (DWQS) criteria for chemicals for which there is a threshold for toxicity are derived by allocating a fraction of tolerable daily intake (TDI) to exposure from drinking water. We conducted physiologically based pharmacokinetic model simulations for chloroform and have proposed an equation for total oral-equivalent potential intake via three routes (oral ingestion, inhalation, and dermal exposures), the biologically effective doses of which were converted to oral-equivalent potential intakes. The probability distributions of total oral-equivalent potential intake in Japanese people were estimated by Monte Carlo simulations. Even when the chloroform concentration in drinking water equaled the current DWQS criterion, there was sufficient margin between the intake and the TDI: the probability that the intake exceeded TDI was below 0.1%. If a criterion that the 95th percentile estimate equals the TDI is regarded as both providing protection to highly exposed persons and leaving a reasonable margin of exposure relative to the TDI, then the chloroform drinking water criterion could be a concentration of 0.11mg/L. This implies a daily intake equal to 34% of the TDI allocated to the oral intake (2L/d) of drinking water for typical adults. For the highly exposed persons, inhalation exposure via evaporation from water contributed 53% of the total intake, whereas dermal absorption contributed only 3%. Copyright © 2013 Elsevier Inc. All rights reserved.
Hazards of Improper Dispensary: Literature Review and Report of an Accidental Chloroform Injection.
Verma, Prashant; Tordik, Patricia; Nosrat, Ali
2018-06-01
Several clear, transparent solutions are used in endodontics. Inappropriate dispensing methods can lead to accidental injection or accidental irrigation. These accidents can cause permanent tissue damage including damage to the bone, periodontium, nerves, and vasculature. This article reports on the consequences of an accidental chloroform injection. Nonsurgical retreatment of tooth #8 was planned as part of a restorative treatment plan in a 69-year-old woman. The dentist accidentally injected chloroform instead of local anesthesia because chloroform was loaded into the anesthetic syringe. The patient experienced severe pain and swelling and soft tissue necrosis and suffered permanent sensory and motor nerve damage. A review of the literature was performed on accidents caused by improper dispensary, namely accidental injections and accidental irrigations. The data were extracted and summarized. Sodium hypochlorite, chlorhexidine, formalin, formocresol, 1:1000 adrenaline, benzalkonium chloride, and lighter fuel were accidentally injected as an intraoral nerve block or as infiltration injections. Bone and soft tissue necrosis, tooth loss, and sensory nerve damage (anesthesia and paresthesia) were the most common consequences reported. Such disastrous events can be prevented by appropriate labeling and separate dispensing methods for each solution. There is a need for disseminating information on toxicity and biocompatibility of materials/solutions used in endodontics. The authors recommend training dental students and endodontic residents on immediate and long-term therapeutic management of patients when an accidental injection or accidental irrigation occurs. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Duirk, Stephen E; Bridenstine, David R; Leslie, Daniel C
2013-02-01
The transformation of two benzophenone UV filters (Oxybenzone and Dioxybenzone) was examined over the pH range 6-11 in the presence of excess aqueous chlorine. Under these conditions, both UV filters were rapidly transformed by aqueous chlorine just above circumneutral pH while transformation rates were significantly lower near the extremes of the pH range investigated. Observed first-order rate coefficients (k(obs)) were obtained at each pH for aqueous chlorine concentrations ranging from 10 to 75 μM. The k(obs) were used to determine the apparent second-order rate coefficient (k(app)) at each pH investigated as well as determine the reaction order of aqueous chlorine with each UV filter. The reaction of aqueous chlorine with either UV filter was found to be an overall second-order reaction, first-order with respect to each reactant. Assuming elemental stoichiometry described the reaction between aqueous chlorine and each UV filter, models were developed to determine intrinsic rate coefficients (k(int)) from the k(app) as a function of pH for both UV filters. The rate coefficients for the reaction of HOCl with 3-methoxyphenol moieties of oxybenzone (OXY) and dioxybenzone (DiOXY) were k(1,OxY) = 306 ± 81 M⁻¹s⁻¹ and k(1,DiOxY) = 154 ± 76 M⁻¹s⁻¹, respectively. The k(int) for the reaction of aqueous chlorine with the 3-methoxyphenolate forms were orders of magnitude greater than the un-ionized species, k(2,OxY) = 1.03(±0.52) × 10⁶ M⁻¹s⁻¹ and k(2_1,DiOxY) = 4.14(±0.68) × 10⁵ M⁻¹s⁻¹. Also, k(int) for the reaction of aqueous chlorine with the DiOXY ortho-substituted phenolate moiety was k(2_2,DiOxY) = 2.17(±0.30) × 10³ M⁻¹s⁻¹. Finally, chloroform formation potential for OXY and DiOXY was assessed over the pH range 6-10. While chloroform formation decreased as pH increased for OXY, chloroform formation increased as pH increased from 6 to 10 for DiOXY. Ultimate molar yields of chloroform per mole of UV filter were pH dependent; however, chloroform to UV filter molar yields at pH 8 were 0.221 CHCl₃/OXY and 0.212 CHCl₃/DiOXY. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shendge, Anil Khushalrao; Basu, Tapasree; Chaudhuri, Dipankar; Panja, Sourav; Mandal, Nripendranath
2017-01-01
Background: Free radicals such as reactive oxygen and nitrogen species, generated in the body, play an important role in the fulfillment of various physiological functions but their imbalance in the body lead to cellular injury and various clinical disorders such as cancer, neurodegenaration, and inflammation. Objective: The objective of this study is to fight this problem, natural antioxidant from plants can be considered as possible protective agents against various diseases such as cancer which might also modify the redox microenvironment to reduce the genetic instability. This study was designed to evaluate the antioxidant and antiproliferative potential of Clerodendrum viscosum fractions against various carcinomas. Materials and Methods: In this present study, 70% methanolic extract of C. viscosum leaves have been fractionated to obtain hexane, chloroform, ethyl acetate, butanol, and water fractions, which were tested for their antioxidant and anticancer properties. Results: It was observed that chloroform and ethyl acetate fractions showed good free radical scavenging properties as well as inhibited the proliferation of human lung cancer (A459), breast (MCF-7), and brain (U87) cells. Moreover, they arrested the cell cycle at G2/M phase of breast and brain cancer. These inhibitory effects were further confirmed by bromodeoxyuridine uptake imaging. Phytochemical investigations further indicate the presence of tannic acid, quercetin, ellagic caid, gallic acid, reserpine, and methyl gallate which might be the reason for these fractions’ antioxidant and antiproliferative activities. Conclusion: Clerodendrum viscosum leaf chloroform and Clerodendrum viscosum leaf ethyl acetate fractions from C. viscosum showed good reactive oxygen species and reactive nitrogen species scavenging potential. Both the fractions arrested cell cycle at G2/M phase in MCF-7 and U87 cells which lead to induce apoptosis. SUMMARY Crude extract of Clerodendrum viscosum leaves was fractionated using different solventsAmong them, chloroform and ethyl acetate fractions exhibited excellent free radical scavenging propertiesThe same fractions inhibited the proliferation of human lung cancer (A459), breast (MCF-7), and brain (U87) cellsChloroform and ethyl acetate fractions arrested the cell cycle at G2/M phase of breast and brain cancerPhytochemical investigations further indicate the presence of several bioactive principles present in them. Abbreviations used: CVLME: Clerodendrum viscosum leaf methanolic extract; CVLH: Clerodendrum viscosum leaf hexane; CVLC: Clerodendrum viscosum leaf chloroform; CVLE: Clerodendrum viscosum leaf ethyl acetate; CVLB: Clerodendrum viscosum leaf butanol; CVLW: Clerodendrum viscosum leaf water; BrdU: Bromodeoxyuridine; WST-1: Water soluble tetrazolium salt. PMID:28808404
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loneman, Derek M.; Peddicord, Layton; Al-Rashid, Amani
Aerial plant organs possess a diverse array of extracellular surface lipids, including both non-polar and amphipathic constituents that collectively provide a primary line of defense against environmental stressors. Extracellular surface lipids on the stigmatic silks of maize are composed primarily of saturated and unsaturated linear hydrocarbons, as well as fatty acids, and aldehydes. To efficiently extract lipids of differing polarities from maize silks, five solvent systems (hexanes; hexanes:diethyl ether (95:5); hexanes:diethyl ether (90:10); chloroform:hexanes (1:1) and chloroform) were tested by immersing fresh silks in solvent for different extraction times. Surface lipid recovery and the relative composition of individual constituents weremore » impacted to varying degrees depending on solvent choice and duration of extraction. Analyses were performed using both silks and leaves to demonstrate the utility of the solvent- and time-optimized protocol in comparison to extraction with the commonly used chloroform solvent. Overall, the preferred solvent system was identified as hexanes:diethyl ether (90:10), based on its effectiveness in extracting surface hydrocarbons and fatty acids as well as its reduced propensity to extract presumed internal fatty acids. Metabolite profiling of wildtype and glossy1 seedlings, which are impaired in surface lipid biosynthesis, demonstrated the ability of the preferred solvent to extract extracellular surface lipids rich in amphipathic compounds (aldehydes and alcohols). In addition to the expected deficiencies in dotriacontanal and dotriacontan-1-ol for gl1 seedlings, an unexpected increase in fatty acid recovery was observed in gl1 seedlings extracted in chloroform, suggesting that chloro-form extracts lipids from internal tissues of gl1 seedlings. This highlights the importance of extraction method when evaluating mutants that have altered cuticular lipid compositions. Lastly, metabolite profiling of silks from maize inbreds B73 and Mo17, exposed to different environments and harvested at different ages, revealed differences in hydrocarbon and fatty acid composition, demonstrating the dynamic nature of surface lipid accumulation on silks.« less
Lipid extraction of wet BLT0404 microalgae for biofuel application
NASA Astrophysics Data System (ADS)
Mansur, Dieni; Fitriady, Muhammad Arifuddin; Susilaningsih, Dwi; Simanungkalit, Sabar Pangihutan; Agustian, Egi
2017-01-01
Recently, research and development of microalgae for biodiesel production were conducted by researchers in the world. This research becomes popular because of an exponential growth of the microalgae under nutrient limitation. Lipid of microalgae grows faster than oil producing land crops. Therefore, microalgae lipid content could improve the economics of biodiesel production. The aim of this study was to investigate yield of lipid extract and chemicals compounds containing in non-acylglycerol neutral lipid from BLT 0404 microalga. The study was conducted because lipid extraction was an important step for biodiesel as well as biofuel production. The extraction was carried out using polar and non-polar mixture solvents. The polar solvent was methanol and non-polar one was chloroform. Process extraction was conducted under various stirring time between the microalgae and methanol and volume ratio between the methanol and chloroform. Methanol as a polar solvent was able to extract polar lipid (phospholipid and glycolipid) because it removed polar membrane lipid and lipid-associated to polar molecule. Moreover, the non-polar solvent was used for extraction non-acylglycerol neutral lipid (hydrocarbons, sterols, ketones, free fatty acids, carotenes, and chlorophylls) for biofuel production. Under ratio of microalgae: methanol: chloroform of 0.8: 4: 2 that stirring time of the microalgae with methanol was 30 min yielded 58% of total lipid extract. The yield value consisted of 14.5% of non-acylglycerol neutral lipid and 43.5% of polar lipid. The non-acylglycerol neutral lipid will be converted into biofuel. Therefore, analysis of its chemical compounds was required. The non-acylglycerol neutral lipid was analyzed by GCMS and found that the extract contained long chains of hydrocarbon compounds. The hydrocarbons consisted of C18-C30 that high peaks with larger percentage area were C20-C26. The results suggested that stirring between microalgae and methanol for 30 min was needed before additional of chloroform. Moreover, the ratio of methanol must be higher than chloroform due to the higher portion of polar lipid content in the microalgae.
Rammohan, Bera; Samit, Karmakar; Chinmoy, Das; Arup, Saha; Amit, Kundu; Ratul, Sarkar; Sanmoy, Karmakar; Dipan, Adhikari; Tuhinadri, Sen
2016-07-01
Traditionally GS is used to treat diabetes mellitus. Drug-herb interaction of GS via cytochrome P450 enzyme system by substrate cocktail method using HLM has not been reported. To evaluate the in-vitro modulatory effects of GS extracts (aqueous, methanol, ethyl acetate, chloroform and n -hexane) and deacylgymnemic acid (DGA) on human CYP1A2, 2C8, 2C9, 2D6 and 3A4 activities in HLM. Probe substrate-based LCMS/MS method was established for all CYPs. The metabolite formations were examined after incubation of probe substrates with HLM in the presence or absence of extracts and DGA. The inhibitory effects of GS extracts and DGA were characterized with kinetic parameters IC50 and Ki values. GS extracts showed differential effect on CYP activities in the following order of inhibitory potency: ethyl acetate > Chloroform > methanol > n -hexane > aqueous > DGA. This differential effect was observed against CYP1A2, 2C9 and less on CYP3A4 and 2C8 but all CYPs were unaffected by aqueous extract and DGA. The ethyl acetate and chloroform extract exhibited moderate inhibition towards CYP1A2 and 3A4. The aqueous extract and DGA however showed negligible inhibition towards all five major human CYPs with very high IC50 values (>90μg/ml). The results of our study revealed that phytoconstituents contained in GS, particularly in ethyl acetate and chloroform extracts, were able to inhibit CYP1A2, 3A4 and 2C9. The presence of relatively small, lipophillic yet slightly polar compounds within the GS extracts may be attributed for inhibition activities. These suggest that the herb or its extracts should be examined for potential pharmacokinetic drug interactions in vivo . Abbreviations used: GS: Gymnema sylvestre , GSE: Gymnema sylvestre extract, DGA: deacyl gymnemic acid, CYP: cytochrome P450, DMSO: dimethylsulphoxide, HLM: human liver microsomes, LC-MS/MS: liquid chromatography tandem mass spectroscopy, NADPH: reduced nicotinamide adeninedinucleotide phosphate, NRS: nicotinamide adeninedinucleotide phosphate regenerating system, CHE: chloroform extract, EAE: ethyl acetate extract, NHE- n -hexane extract, AE: aqueous extract, ME: methanol extract.
Loneman, Derek M.; Peddicord, Layton; Al-Rashid, Amani; ...
2017-07-11
Aerial plant organs possess a diverse array of extracellular surface lipids, including both non-polar and amphipathic constituents that collectively provide a primary line of defense against environmental stressors. Extracellular surface lipids on the stigmatic silks of maize are composed primarily of saturated and unsaturated linear hydrocarbons, as well as fatty acids, and aldehydes. To efficiently extract lipids of differing polarities from maize silks, five solvent systems (hexanes; hexanes:diethyl ether (95:5); hexanes:diethyl ether (90:10); chloroform:hexanes (1:1) and chloroform) were tested by immersing fresh silks in solvent for different extraction times. Surface lipid recovery and the relative composition of individual constituents weremore » impacted to varying degrees depending on solvent choice and duration of extraction. Analyses were performed using both silks and leaves to demonstrate the utility of the solvent- and time-optimized protocol in comparison to extraction with the commonly used chloroform solvent. Overall, the preferred solvent system was identified as hexanes:diethyl ether (90:10), based on its effectiveness in extracting surface hydrocarbons and fatty acids as well as its reduced propensity to extract presumed internal fatty acids. Metabolite profiling of wildtype and glossy1 seedlings, which are impaired in surface lipid biosynthesis, demonstrated the ability of the preferred solvent to extract extracellular surface lipids rich in amphipathic compounds (aldehydes and alcohols). In addition to the expected deficiencies in dotriacontanal and dotriacontan-1-ol for gl1 seedlings, an unexpected increase in fatty acid recovery was observed in gl1 seedlings extracted in chloroform, suggesting that chloro-form extracts lipids from internal tissues of gl1 seedlings. This highlights the importance of extraction method when evaluating mutants that have altered cuticular lipid compositions. Lastly, metabolite profiling of silks from maize inbreds B73 and Mo17, exposed to different environments and harvested at different ages, revealed differences in hydrocarbon and fatty acid composition, demonstrating the dynamic nature of surface lipid accumulation on silks.« less
Zahradnícková, Helena; Husek, Petr; Simek, Petr; Hartvich, Petr; Marsálek, Blahoslav; Holoubek, Ivan
2007-08-01
A rapid and simple method was developed for the determination of free amino acids (AAs) released from cyanobacteria. The procedure involves trapping of AAs from the centrifuged cyanobacterial culture fluid on a cation-exchange resin, their release together with the resin by direct treatment with the reaction medium, followed by immediate derivatization with a corresponding chloroformate. The extractive alkylation transfers the analytes into an organic phase, an aliquot of which is subjected to GC analysis. Identification and quantification of AAs was performed by GC/MS and GC/FID, respectively, using propyl chloroformate (PCF) as the derivatization reagent. For chiral analysis, the cyanobacteria extracts were treated with 2,2,3,3,3-pentafluoropropyl chloroformate (PFPCF) to create more volatile analytes. Separation of the AA enantiomers was accomplished on a Chirasil-Val capillary column and the D/L enantiomeric ratios were determined. AAs of cyanobacteria are considered to be important for the assessment of energy flow in an aquatic food web, nutrition value of cyanobacteria in a food web and for cell-cell communication within cyanobacteria. The highest levels of AAs were found in the summer period at the beginning of the season (July). In the September and October samples, the amount of AAs was lower, the number of D-AAs decreased and the D/L ratio was higher than in the July sample. Based on the obtained results it can be assumed that young populations excrete AAs in higher concentrations and a different composition compared to actively growing populations.
Maas, Miriam; van Roon, Annika; Dam-Deisz, Cecile; Opsteegh, Marieke; Massolo, Alessandro; Deksne, Gunita; Teunis, Peter; van der Giessen, Joke
2016-10-30
A new method, based on a magnetic capture based DNA extraction followed by qPCR, was developed for the detection of the zoonotic parasite Echinococcus multilocularis in definitive hosts. Latent class analysis was used to compare this new method with the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. In total, 60 red foxes and coyotes from three different locations were tested with both molecular methods and the sedimentation and counting technique (SCT) or intestinal scraping technique (IST). Though based on a limited number of samples, it could be established that the magnetic capture based DNA extraction followed by qPCR showed similar sensitivity and specificity as the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. All methods have a high specificity as shown by Bayesian latent class analysis. Both molecular assays have higher sensitivities than the combined SCT and IST, though the uncertainties in sensitivity estimates were wide for all assays tested. The magnetic capture based DNA extraction followed by qPCR has the advantage of not requiring hazardous chemicals like the phenol-chloroform DNA extraction followed by single tube nested PCR. This supports the replacement of the phenol-chloroform DNA extraction followed by single tube nested PCR by the magnetic capture based DNA extraction followed by qPCR for molecular detection of E. multilocularis in definitive hosts. Copyright © 2016 Elsevier B.V. All rights reserved.
Safaeian, Leila; Ghanadian, Mustafa; Shafiee-Moghadam, Zahra
2018-01-01
This study was aimed to screen the antihyperlipidemic effect of different fractions of Teucrium polium to obtain the most efficient herbal fraction for isolation of bioactive constituents responsible for hypolipidemic activity. Chloroform, butanol, and aqueous fractions were obtained from hydroalcoholic extract of T. polium aerial parts using partitioning process. To induce hyperlipidemia, dexamethasone (Dex) was injected 10 mg/kg/day (s.c.) for 8 days. In the test groups, animals received 50, 100 and 150 mg/kg of T. polium hydroalcoholic extract and different fractions orally simultaneously with Dex. Serum lipid profile and hepatic marker enzymes were evaluated using biochemical kits. All treatments, especially chloroform and aqueous fractions, reversed serum lipid markers in hyperlipidemic rats. Maximum reduction in triglyceride (60.2%, P < 0.001) and maximum elevation in high-density lipoprotein (HDL) (35.0%, P < 0.01) was observed for chloroform fraction. Maximum cholesterol-lowering effect (29.0%, P < 0.001) and maximum reduction in low-density lipoprotein were found for hydroalcoholic extract (72.9%, P < 0.001). Aqueous fraction improved all lipid markers at the highest dose. Butanol fraction decreased triglyceride at the lowest dose (43.9%, P < 0.001) and increased HDL (33%, P < 0.05) at the highest dose. There was a significant increase in alanine aminotransferase and aspartate aminotransferase levels in all tested groups compared to normal group ( P < 0.001). This study showed strong antihyperlipidemic effect of various fractions derived from hydroalcoholic extract of T. polium . Chloroform and aqueous fractions may be worthy candidates for isolation of bioactive hypolipidemic constituents. However, possible hepatotoxicity should be considered for clinical application.
Cotinus coggyria: a rich source of antioxidants.
Riaz, Tauheeda; Abbasi, Muhammad Athar; Aziz-ur-Rehman; Rubab, Kaniz; Shahzadi, Tayyaba; Ajaib, Muhammad; Khan, Khalid Mohammed
2012-07-01
Methanolic extract of Cotinus coggyria Scop. was mixed in distilled water and partitioned first with the n-hexane, then with chloroform, then ethyl acetate and at the end with n-butanol. The phytochemical screening of plant showed presence of the phenolics, cardiac glycosides and flavonoides in large amount in the chloroform, n-butanol and ethyl acetate soluble fraction. Antioxidant activity of these four fractions and the left behind aqueous fraction was measured by four methods such as: 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, ferric thiocyanate assay, ferric reducing antioxidant power (FRAP) assay and total antioxidant activity. Total phenolics were also measured. Noteworthy antioxidant potential was shown by the chloroform, n-butanol and ethyl acetate soluble fraction showed. Ethyl acetate fraction showed highest % inhibition of the DPPH radical when compared with the other studied fractions i.e. 81.64 ± 1.29% inhibition of the DPPH radical at the concentration of 30 μg/ml. Its IC(50) value was found to be 15.58 ± 0.09 μg/ml, comparative to the butylated hydroxytoluene (BHT), which has IC(50) value 12.6 ± 0.85μg/ml. This fraction also showed the highest lipid peroxidation inhibition (61.41 ± 1.16%), as well as highest values of FRAP (697.76 ± 1.98 μg of trolox equivalents) total antioxidant activity (1.02 ± 0.09) and total phenolic contents (229.34 ± 0.57) comparative to the other studied fractions. The chloroform and n-butanol soluble fraction also showed good results for all the studied antioxidant assays.
Pan, Enchun; Zhang, Qin; Yang, Fangying; Hu, Wei; Xu, Qiujin; Liang, Cunzhen; He, Yuan; Wang, Chuang
2014-10-01
This study was to understand the status of pollution on drinking water, by volatile organic compounds (VOCs), among rural residents living in the basin of Huaihe River. Relationship between the morbidity, morbidity of cancers and VOCs were also explored. 28 villages were chosen from Xuyi,Jinhu, Chuzhou along the Huaihe River, with water samples collected from ditch pond water, shallow wells, deep wells in November-December 2010. VOCs indicators were evaluated according to the Standard Quality GB 5749-2006 for Drinking Water. Methylene chloride, chloroform, benzene and carbon tetrachloride were all detected in 76 water samples. The rates of chloroform, benzene, carbon tetrachloride which exceeding the quality standards were 3.95% , 21.05% and 22.37% , but no significant differences were found among these three water resources in chloroform, benzene or carbon tetrachloride. Results from the correlation analysis showed that benzene had positive correlation with tumor deaths (r = 0.24, P < 0.05). Results from the risk assessment on health showed that some chloroform, benzene, carbon tetrachloride products which were related to the risks of cancers were exceeding the acceptable ranges of risk, with the rates as 28.95%, 22.37% and 64.47% but with no significant differences among the three water resources (P > 0.05). Drinking waters for rural residents along the Huaihe River were polluted while VOCs might have related to tumor incidence with potential impact and risk to the health of local residents.
Prior, Amir; van de Nieuwenhuijzen, Erik; de Jong, Gerhardus J; Somsen, Govert W
2018-05-22
Chiral analysis of dl-amino acids was achieved by micellar electrokinetic chromatography coupled with UV-excited fluorescence detection. The fluorescent reagent (+)-1-(9-fluorenyl)ethyl chloroformate was employed as chiral amino acid derivatizing agent and sodium dodecyl sulfate served as pseudo-stationary phase for separating the formed amino acid diastereomers. Sensitive analysis of (+)-1-(9-fluorenyl)ethyl chloroformate-amino acids was achieved applying a xenon-mercury lamp for ultraviolet excitation, and a spectrograph and charge-coupled device for wavelength-resolved emission detection. Applying signal integration over a 30-nm emission wavelength interval, signal-to-noise ratios for derivatized amino acids were up to 23 times higher as obtained using a standard photomultiplier for detection. The background electrolyte composition (electrolyte, pH, sodium dodecyl sulfate concentration, and organic solvent) was studied in order to attain optimal chemo- and enantioseparation. Enantioseparation of twelve proteinogenic dl-amino acids was achieved with chiral resolutions between 1.2 and 7.9, and detection limits for most derivatized amino acids in the 13-60 nM range (injected concentration). Linearity (coefficients of determination > 0.985) and peak-area and migration-time repeatabilities (relative standard deviations lower than 2.6 and 1.9%, respectively) were satisfactory. The employed fluorescence detection system provided up to 100-times better signal-to-noise ratios for (+)-1-(9-fluorenyl)ethyl chloroformate-amino acids than ultraviolet absorbance detection, showing good potential for d-amino acid analysis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Cytotoxic and phytotoxic actions of Heliotropium strigosum.
Shah, Syed Majid; Hussain, Sajid; Khan, Arif-Ullah; Shah, Azhar-Ul-Haq Ali; Khan, Haroon; Ullah, Farhat; Barkatullah
2015-05-01
This study describes the cytotoxic and phytotoxic activities of the crude extract of Heliotropium strigosum and its resultant fractions. In brine shrimp toxicology assays, profound cytotoxicity was displayed by ethyl acetate (LD50 8.3 μg/ml) and chloroform (LD50 8.8 μg/ml) fractions, followed by relatively weak crude methanolic extract of H. strigosum (LD50 909 μg/ml) and n-hexane fraction (LD50 1000 μg/ml). In case of phytotoxicity activity against Lemna acquinoctialis, highest phytotoxic effect was showed by ethyl acetate fraction (LD50 91.0 μg/ml), while chloroform fraction, plant crude extract and n-hexane, respectively, caused 50%, 30.76 ± 1.1% and 30.7 ± 1.1% inhibitory action at maximum concentration used, that is, 1000 μg/ml. These data indicates that H. strigosum exhibits cytotoxic and phytotoxic potential, which explore its use as anticancer and herbicidal medicine. The ethyl acetate and chloroform fractions were more potent for the evaluated toxicity effects, thus recommended for isolation and identification of the active compounds. © The Author(s) 2012.
Daniels, Stacy L.; Kempe, Lloyd L.; Graham, E. S.; Beeton, Alfred M.
1963-01-01
Microorganic compounds in waters of Lakes Michigan and Huron have been sampled by adsorption on activated carbon in filters installed aboard the M/V Cisco and at the Hammond Bay Laboratory of the U.S. Bureau of Commercial Fisheries. The organic compounds were eluted from the carbon according to techniques developed at the U.S. Public Health Service. On the assumption that chloroform eluates represent less polar compounds from industrial sources and alcohol eluates the more polar varieties of natural origin, plots of chloroform eluates against alcohol eluates appear to be useful in judging water qualities. Based upon these criteria, the data in this paper indicate that both the waters of northern Lake Michigan and of Lake Huron, in the vicinity of Hammond Bay, Michigan, are relatively free from pollution. The limnetic waters of Lake Michigan showed a particularly high ratio of alcohol to chloroform eluates. Data for monthly samples indicated that this ratio fluctuated seasonally. The periodicity of the fluctuations was similar to those of lake levels and water temperatures.
Shin, Ho-Sang; Lim, Hyun-Hee
2017-05-01
Seven halogenated volatile organic compounds (HVOCs) and two haloacetic acids were detected and quantified in 15 household products, including sodium hypochlorite, by gas chromatography-mass spectrometry (GC-MS). Chloroform was detected in a range of 0.2-30.2 mg kg -1 in all products, and carbon tetrachloride was observed in 13 samples in a range of 0.05-352 mg kg -1 . Dichloroacetic acid and trichloroacetic acid were also detected up to 94 and 146 mg kg -1 in household products. The estimated human exposures of chloroform, carbon tetrachloride, dichloroacetic acid and trichloroacetic acid were calculated to 0.041, 0.240, 0.913 and 2.39 mg/kg/day by the exposure algorithm from the Japan National Institute of Technology and Evaluation, respectively. According to the calculated result, the total estimated human exposure of chloroform were determined to exceed the tolerable concentration of inhalation exposure presented by the World Health Organization. The DBPs should be controlled to the lowest concentrations in the chlorine-containing household cleansing products. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dammertz, K.; Saier, A. M.; Marti, O.; Amirkhani, M.
2014-04-01
External stimuli such as vapours and electric fields can be used to manipulate the formation of AB-diblock copolymers on surfaces. We study the conformational variation of PS-b-PMMA (polystyrene-block-poly(methyl methacrylate)), PS and PMMA adsorbed on mica and their response to saturated water or chloroform atmospheres. Using specimens with only partial polymer coverage, new unanticipated effects were observed. Water vapour, a non-solvent for all three polymers, was found to cause high surface mobility. In contrast, chloroform vapour (a solvent for all three polymers) proved to be less efficient. Furthermore, the influence of an additional applied electric field was investigated. A dc field oriented parallel to the sample surface induces the formation of polymer islands which assemble into wormlike chains. Moreover, PS-b-PMMA forms octopus-like micelles (OLMs) on mica. Under the external stimuli mentioned above, the wormlike formations of OLMs are able to align in the direction of the external electric field. In the absence of an electric field, the OLMs disaggregate and exhibit phase separated structures under chloroform vapour.
Du, Yong-Hua; Li, Jin-Liang; Jia, Ren-Yong; Yin, Zhong-Qiong; Li, Xu-Ting; Lv, Cheng; Ye, Gang; Zhang, Li; Zhang, Yu-Qun
2009-07-07
Four fractions obtained from chloroform extracts of neem (Azadirachta indica) oil by column chromatography were investigated for acaricidal activity against Sarcoptes scabiei var. cuniculi larvae in vitro. Octadecanoic acid-tetrahydrofuran-3,4-diyl ester was isolated from an active fraction of the chloroform extract and its toxicity against S. scabiei larvae was tested in vitro. A complementary log-log model was used to analyse the toxicity data. Activity was found in the third fraction, with 100% corrected mortality after 4.5 h of exposure at a concentration of 200 mg ml(-1). This fraction was repeatedly re-crystallised in acetone to yield a white amorphous powder, identified as octadecanoic acid-tetrahydrofuran-3,4-diyl ester, with a median lethal concentration (LC(50)) of 0.1 mg ml(-1) at 24 h post-treatment. The median lethal time (LT(50)) for this compound was 15.3 h at a concentration of 7.5 mg ml(-1).
Catechol--an oviposition stimulant for cigarette beetle in roasted coffee beans.
Nagasawa, Atsuhiko; Kamada, Yuji; Kosaka, Yuji; Arakida, Naohiro; Hori, Masatoshi
2014-05-01
The cigarette beetle, Lasioderma serricorne, is a serious global pest that preys on stored food products. Larvae of the beetle cannot grow on roasted coffee beans or dried black or green tea leaves, although they oviposit on such products. We investigated oviposition by the beetles on MeOH extracts of the above products. The number of eggs laid increased with an increase in dose of each extract, indicating that chemical factors stimulate oviposition by the beetles. This was especially true for \\ coffee bean extracts, which elicited high numbers of eggs even at a low dose (0.1 g bean equivalent/ml) compared to other extracts. Coffee beans were extracted in hexane, chloroform, 1-butanol, MeOH, and 20% MeOH in water. The number of eggs laid was higher on filter papers treated with chloroform, 1-butanol, MeOH, and 20% MeOH in water extracts than on control (solvent alone) papers. The chloroform extract was fractionated by silica-gel column chromatography. Nine compounds were identified by gas chromatography/mass spectrometry from an active fraction. Of these compounds, only a significant ovipositional response to catechol was observed.
In Vitro Screening of Anti-lice Activity of Pongamia pinnata Leaves
Radhamani, Suraj; Gopinath, Rejitha; Kalusalingam, Anandarajagopal; Vimala, Anita Gnana Kumari Anbumani; Husain, Hj Azman
2009-01-01
Growing patterns of pediculocidal drug resistance towards head louse laid the foundation for research in exploring novel anti-lice agents from medicinal plants. In the present study, various extracts of Pongamia pinnata leaves were tested against the head louse Pediculus humanus capitis. A filter paper diffusion method was conducted for determining the potential pediculocidal and ovicidal activity of chloroform, petroleum ether, methanol, and water extracts of P. pinnata leaves. The findings revealed that petroleum ether extracts possess excellent anti-lice activity with values ranging between 50.3% and 100% where as chloroform and methanol extracts showed moderate pediculocidal effects. The chloroform and methanol extracts were also successful in inhibiting nymph emergence and the petroleum ether extract was the most effective with a complete inhibition of emergence. Water extract was devoid of both pediculocidal and ovicidal activities. All the results were well comparable with benzoyl benzoate (25% w/v). These results showed the prospect of using P. pinnata leave extracts against P. humanus capitis in difficult situations of emergence of resistance to synthetic anti-lice agents. PMID:19967085
Anti-Inflammatory Activity and Composition of Senecio salignus Kunth
Pérez González, Cuauhtemoc; Serrano Vega, Roberto; González-Chávez, Marco; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud
2013-01-01
We investigated the anti-inflammatory activity of Senecio salignus. This medicinal plant is often used in Mexico for the treatment of fever and rheumatism. Chloroform and methanol extracts of the plant were tested on 12-O-tetradecanoylphorbol-13-acetate- (TPA-) induced edema in mice ears. The methanol extract of the plant inhibited edema by 36 ± 4.4% compared with the control, while the chloroform extract exhibited an even greater level of inhibition (64.1%). The chloroform extract was then fractionated, and the composition of the active fraction was determined by GC-MS. The anti-inflammatory activity of this fraction was then tested on TPA-induced ear edema in mice, and we found that the active fraction could inhibit edema by 46.9%. The anti-inflammatory effect of the fraction was also tested on carrageenan-induced paw edema in rats at doses of 100 mg/kg; a 58.9 ± 2.8% reduction of the edema was observed 4 h after administration of carrageenan, and the effect was maintained for 5 h. PMID:23691512
Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures
NASA Astrophysics Data System (ADS)
Abderrafi, Kamal; García-Calzada, Raúl; Sanchez-Royo, Juan F.; Chirvony, Vladimir S.; Agouram, Saïd; Abargues, Rafael; Ibáñez, Rafael; Martínez-Pastor, Juan P.
2013-04-01
With the use of high-resolution transmission electron microscopy, selected area electron diffraction and x-ray photoelectron spectroscopy methods of analysis we show that the laser ablation of a Si target in chloroform (CHCl3) by nanosecond UV pulses (40 ns, 355 nm) results in the formation of about 50-80 nm core-shell nanoparticles with a polycrystalline core composed of small (5-10 nm) Si and SiC mono-crystallites, the core being coated by several layers of carbon with the structure of graphite (the shell). In addition, free carbon multilayer nanostructures (carbon nano-onions) are also found in the suspension. On the basis of a comparison with similar laser ablation experiments implemented in carbon tetrachloride (CCl4), where only bare (uncoated) Si nanoparticles are produced, we suggest that a chemical (solvent decomposition giving rise to highly reactive CH-containing radicals) rather than a physical (solvent atomization followed by carbon nanostructure formation) mechanism is responsible for the formation of graphitic shells. The silicon carbonization process found for the case of laser ablation in chloroform may be promising for silicon surface protection and functionalization.
Zseltvay, Ivan; Zheltvay, Olga; Antonovich, Valerij
2011-01-01
Copper complex with Curtis macrocyclic tetramine is offered as reagent for extraction-photometric determination of nonsteroidal anti-inflammatory drugs (NSAIDs), belonging to the class of aromatic carboxylic acids. The studies indicate that this method is suitable for quantitative determination of NSAIDs, which have the constant distribution in the system chloroform/water (log P) no less than 3 and dissolubility in chloroform (S) no less than 10 mg/mL. Under optimum conditions, there are liner relationships between the absorption of chloroform extracts and concentration of NSAID in the range of 0.2-4 mg/mL for indometacin (Ind), 0.2-3 mg/mL for mefenamic acid (Mef) and 0.5-3 mg/mL for diclofenac (Dic). The detection limits (S/N = 3) of Ind, Mef and Dic are 0.2, 0.1 and 0.15 mg/mL, respectively. With the help of calculating method (SPARC V4.2) it was predicted the possibility of utilization of this method for extractive-photometric determination of its detached specimen NSAID.
Yam, Mun Fei; Lim, Vuanghao; Salman, Ibrahim Muhammad; Ameer, Omar Ziad; Ang, Lee Fung; Rosidah, Noersal; Abdulkarim, Muthanna Fawzy; Abdullah, Ghassan Zuhair; Basir, Rusliza; Sadikun, Amirin; Asmawi, Mohd Zaini
2010-06-21
The aim of the present study was to verify the anti-inflammatory activity of Orthosiphon stamineus leaf extracts and to identify the active compound(s) contributing to its anti-inflammatory activity using a developed HPLC method. Active chloroform extract of O. stamineus was fractionated into three fractions using a dry flash column chromatography method. These three fractions were investigated for anti-peritoneal capillary permeability, in vitro nitric oxide scavenging activity, anti-inflammatory and nitric oxide (NO) inhibition using carrageenan-induced hind paw edema method. The flavonoid rich chloroform extract fraction (CF2) [containing sinensetin (2.86% w/w), eupatorin (5.05% w/w) and 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (1.101% w/w)], significantly reduced rat hind paw edema, NO and decreased dye leakage to peritoneal cavity at p < 0.05. IC(50) of in vitro NO scavenging of CF2 was 0.3 mg/mL. These results suggest that the anti-inflammatory properties of these CF2 may possibly be due to the presence of flavonoid compounds capable of affecting the NO pathway.
Gowrisankar, Saravanan; Neumann, Helfried; Spannenberg, Anke; Beller, Matthias
2014-07-01
The title compound, [Ru(CO3)(η(6)-C6H6){(C6H11)2P(CH2C10H7)}]·3CHCl3, was synthesized by carbonation of [RuCl2(η(6)-C6H6){(C6H11)2P(CH2C10H7)}] with NaHCO3 in methanol at room temperature. The Ru(II) atom is surrounded by a benzene ligand, a chelating carbonate group and a phosphane ligand in a piano-stool configuration. The crystal packing is consolidated by C-H⋯O and C-H⋯Cl hydrogen-bonding inter-actions between adjacent metal complexes and between the complexes and the solvent mol-ecules. The asymmetric unit contains one metal complex and three chloro-form solvent mol-ecules of which only one was modelled. The estimated diffraction contributions of the other two strongly disordered chloro-form solvent mol-ecules were substracted from the observed diffraction data using the SQUEEZE procedure in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148-155].
Sánchez Miranda, Elizabeth; Pérez Ramos, Julia; Fresán Orozco, Cristina; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud
2013-01-01
We examined the effects of a chloroform extract of Hyptis albida (CHA) on inflammatory responses in mouse lipopolysaccharide (LPS) induced peritoneal macrophages. Our findings indicate that CHA inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6). During the process, levels of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), and nitric oxide (NO) increased in the mouse peritoneal macrophages; however, the extract suppressed them significantly. These results provide novel insights into the anti-inflammatory actions of CHA and support its potential use in the treatment of inflammatory diseases. PMID:23970974
Five isomers of C 60 generated in microwave plasma of chloroform
NASA Astrophysics Data System (ADS)
Xie, Su-Yuan; Deng, Shun-Liu; Huang, Rong-Bin; Yu, La-Jia; Zheng, Lan-Sun
2001-08-01
In addition to Ih symmetry buckminsterfullerene, four other isomers of C 60 were generated in a microwave plasma of chloroform. The newly observed isomers, separated and identified by a high performance liquid chromatography coupled with mass spectrometry (HPLC-MS), were found to be stable at room temperature but transform to buckminsterfullerene when heated. With regards to the generation of various fully chlorinated carbon clusters as well as the C 60 isomers, which may be attributed to the rapidly cooling of the synthetic reaction, a modified Pentagon Road scheme is suggested for fullerene formation.
1992-04-01
1 :--.. - .-C1 r 1,-r ... r - nlns r’,rt n wa~r ’te r .sn data source,. q ath.tad m.,,tA1fMnq the ddta flCa,,dr d 0 . 11 EC~m, .n’ . - r, In .7- ,m...effluent and are potential catalytic inhibitors . Rate expression 5 accounts for only the inhibition due the adsorption of the reaction product(s). Rate...tempcraturc being required to achieve a similar chloroform conversion. These results indicate that HCI is a strong catalytic inhibitor and is consistent with
Use of routinely collected data on trihalomethane in drinking water for epidemiological purposes
Keegan, T; Whitaker, H; Nieuwenhuijsen, M; Toledano, M; Elliott, P; Fawell, J; Wilkinson, M; Best, N
2001-01-01
OBJECTIVES—To explore the use of routinely collected trihalomethane (THM) measurements for epidemiological studies. Recently there has been interest in the relation between byproducts of disinfection of public drinking water and certain adverse reproductive outcomes, including stillbirth, congenital malformations, and low birth weight. METHOD—Five years of THM readings (1992-6), collected for compliance with statutory limits, were analysed. One water company in the north west of England, divided into 288 water zones, provided 15 984 observations for statistical analysis. On average each zone was sampled 11.1 times a year. Five year, annual, monthly, and seasonal variation in THMs were examined as well as the variability within and between zones. RESULTS—Between 1992 and 1996 the total THM (TTHM) annual zone means were less than half the statutory concentration, at approximately 46 µg/l. Differences in annual water zone means were within 7%. Over the study period, the maximum water zone mean fell from 142.2 to 88.1 µg/l. Mean annual concentrations for individual THMs (µg/l) were 36.6, 8.0, and 2.8 for chloroform, bromodichloromethane (BDCM), and dibromochloromethane (DBCM) respectively. Bromoform data were not analysed, because a high proportion of the data were below the detection limit. The correlation between chloroform and TTHM was 0.98, between BDCM and TTHM 0.62, and between DBCM and TTHM −0.09. Between zone variation was larger than within zone variation for chloroform and BDCM, but not for DBCM. There was only little seasonal variation (<3%). Monthly variation was found although there were no consistent trends within years. CONCLUSION—In an area where the TTHM concentrations were less than half the statutory limit (48 µg/l) chloroform formed a high proportion of TTHM. The results of the correlation analysis suggest that TTHM concentrations provided a good indication of chloroform concentrations, a reasonable indication of BDCM concentrations, but no indication of DBCM. Zone means were similar over the years, but the maximum concentrations reduced considerably, which suggests that successful improvements in treatment have been made to reduce high TTHM concentrations in the area. For chloroform and BDCM, the main THMs, the component between water zones was greater than variation within water zones and explained most of the overall exposure variation. Variation between months and seasons was low and showed no clear trends within years. The results indicate that routinely collected data can be used to obtain exposure estimates for epidemiological studies at a small area level. Keywords: chlorination byproducts; exposure; birth outcomes; routine data; trihalomethanes PMID:11404449
Molla, Yalew; Nedi, Teshome; Tadesse, Getachew; Alemayehu, Haile; Shibeshi, Workineh
2016-08-15
Medicinal plants play great roles in the treatment of various infectious diseases. Rhamnus prinoides is one of the medicinal plants used traditionally for treatment of bacterial diseases. The antibacterial activity of the crude extract of the plant had been shown by a previous study, but this study was undertaken to further the claimed medicinal use of the plant by screening its solvent fractions for the said activity so that it could serve as a basis for subsequent studies. The solvent fractions of the plant were obtained by successive soxhlet extraction with solvents of increasing polarity, with chloroform and methanol, followed by maceration of the marc of methanol fraction with water. The antibacterial activity of the solvent fractions was evaluated on seven bacterial species using agar well diffusion method at different concentrations (78 mg/well, 39 mg/well and 19.5 mg/well) in the presence of positive and negative controls. The minimum inhibitory concentration of the solvent fractions was determined by micro-broth dilution method using resazurin as indicator. Methanol and chloroform fractions revealed antibacterial activities against the growth of test bacterial strains with varying antibacterial spectrum and the susceptible bacterial species were Staphylococcus aureus, Streptococcus pyogen, Streptococcus pneumoniae and Salmonella typhi. The average minimum inhibitory concentration value of the methanol and chloroform fractions ranged from 8.13 mg/ml to 32.5 mg/ml and from 8.13 mg/ml to 16.25 mg/ml, respectively. The methanol and chloroform fractions demonstrated significant antibacterial activities against the growth of pathogenic bacteria but the aqueous fraction did not reveal antibacterial activity against any of the test bacteria.
Iszatt, Nina; Nieuwenhuijsen, Mark J; Bennett, James E; Toledano, Mireille B
2014-12-01
During 2003-2004, United Utilities water company in North West England introduced enhanced coagulation (EC) to four treatment works to mitigate disinfection by-product (DBP) formation. This enabled examination of the relation between DBPs and birth outcomes whilst reducing socioeconomic confounding. We compared stillbirth, and low and very low birth weight rates three years before (2000-2002) with three years after (2005-2007) the intervention, and in relation to categories of THM change. We created exposure metrics for EC and trihalomethane (THM) concentration change (n=258 water zones). We linked 429,599 live births and 2279 stillbirths from national birth registers to the water zone at birth. We used Poisson regression to model the differences in birth outcome rates with an interaction between before/after the intervention and EC or THM change. EC treatment reduced chloroform concentrations more than non-treatment (mean -29.7 µg/l vs. -14.5 µg/l), but not brominated THM concentrations. Only 6% of EC water zones received 100% EC water, creating exposure misclassification concerns. EC intervention was not associated with a statistically significant reduction in birth outcome rates. Areas with the highest chloroform decrease (30 - 65 μg/l) had the greatest percentage decrease in low -9 % (-12, -5) and very low birth weight -16% (-24, -8) rates. The interaction between before/after intervention and chloroform change was statistically significant only for very low birth weight, p=0.02. There were no significant decreases in stillbirth rates. In a novel approach for studying DBPs and adverse reproductive outcomes, the EC intervention to reduce DBPs did not affect birth outcome rates. However, a measured large decrease in chloroform concentrations was associated with statistically significant reductions in very low birth weight rates. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Malassis, Ludivine; Jishkariani, Davit; Murray, Christopher B.; Donnio, Bertrand
2016-07-01
The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates.The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates. Electronic supplementary information (ESI) available: TEM microscope images. See DOI: 10.1039/c6nr03404g
Odabasi, Mustafa
2008-03-01
Sodium hypochlorite (NaOCl) and many organic chemicals contained in household cleaning products may react to generate halogenated volatile organic compounds (VOCs). Halogenated VOC emissions from eight different chlorine bleach containing household products (pure and diluted) were investigated by headspace experiments. Chloroform and carbon tetrachloride were the leading compounds along with several halogenated compounds in the headspace of chlorine bleach products. One of the most surprising results was the presence of carbon tetrachloride (a probable human carcinogen and a powerful greenhouse gas that was banned for household use by the U.S. Food and Drug Administration) in very high concentrations (up to 101 mg m(-3)). By mixing surfactants or soap with NaOCl, it was shown that the formation of carbon tetrachloride and several other halogenated VOCs is possible. In addition to quantitatively determined halogenated VOCs (n = 15), several nitrogen-containing (n = 4), chlorinated (n = 10), oxygenated compounds (n = 22), and hydrocarbons (n = 14) were identified in the headspace of bleach products. Among these, 1,1-dichlorobutane and 2-chloro-2-nitropropane were the most abundant chlorinated VOCs, whereas trichloronitromethane and hexachloroethane were the most frequently detected ones. Indoor air halogenated VOC concentrations resulting from the use of four selected household products were also measured before, during, and 30 min after bathroom, kitchen, and floor cleaning applications. Chloroform (2.9-24.6 microg m(-3)) and carbon tetrachloride (0.25-459 microg m(-3)) concentrations significantly increased during the use of bleach containing products. During/ before concentration ratios ranged between 8 and 52 (25 +/- 14, average +/- SD) for chloroform and 1-1170 (146 +/- 367, average +/- SD) for carbon tetrachloride, respectively. These results indicated that the bleach use can be important in terms of inhalation exposure to carbon tetrachloride, chloroform and several other halogenated VOCs.
Hossain, M Amzad; Shah, Muhammad Dawood; Gnanaraj, Charles; Iqbal, Muhammad
2011-09-01
To detect the in vitro total phenolics, flavonoids contents and antioxidant activity of essential oil, various organic extracts from the leaves of tropical medicinal plant Tetrastigma from Sabah. The dry powder leaves of Tetrastigma were extracted with different organic solvent such as hexane, ethyl acetate, chloroform, butanol and aqueous methanol. The total phenolic and total flavonoids contents of the essential oil and various organic extracts such as hexane, ethyl acetate, chloroform, butanol and aqueous ethanol were determined by Folin - Ciocalteu method and the assayed antioxidant activity was determined in vitro models such as antioxidant capacity by radical scavenging activity using α, α-diphenyl- β-picrylhydrazyl (DPPH) method. The total phenolic contents of the essential oil and different extracts as gallic acid equivalents were found to be highest in methanol extract (386.22 mg/g) followed by ethyl acetate (190.89 mg/g), chloroform (175.89 mg/g), hexane (173.44 mg/g), and butanol extract (131.72 mg/g) and the phenolic contents not detected in essential oil. The antioxidant capacity of the essential oil and different extracts as ascorbic acid standard was in the order of methanol extract > ethyl acetate extract >chloroform> butanol > hexane extract also the antioxidant activity was not detected in essential oil. The findings show that the extent of antioxidant activity of the essential oil and all extracts are in accordance with the amount of phenolics present in that extract. Leaves of Tetrastigma being rich in phenolics may provide a good source of antioxidant. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Fardin, K M; Young, M C M
2015-07-01
There is significant interest in research to develop plant extracts with fungicidal activities that are less harmful to the environment and human health than synthetic fungicides. This study aimed to evaluate the antifungal activity of the extracts of Avicennia schaueriana against Colletotrichum and Cladosporium species and to identify the compounds responsible for the activity. Leaves and stems of A. schaueriana were extracted with ethanol and partitioned with petroleum ether, chloroform and ethyl acetate. The antifungal activity of such extracts was tested by bioautography against Cladosporium sphaerospermum, Cladosporium cladosporioides and Colletotrichum lagenarium. Ethanolic extracts, petroleum ether and chloroform fractions of stems had the highest antifungal activity with several active bands (Rf = 0·72 and Rf = 0·55). In the agar dilution assay, ethanolic extract, petroleum ether and chloroform fractions of stems were the most efficacious, presenting 85, 62 and 63% growth inhibition of Colletotrichum gloeopsporioides and minimum inhibitory concentration values between 1 and 1·5 mg ml(-1) , respectively. Analysis carried out using gas chromatography coupled to a mass spectrometry of petroleum ether and chloroform fractions allowed the identification of fatty acids methyl esters, lupeol and naphthoquinones such as lapachol, α-lapachone, naphtho[2,3-b]furan-4,9-dione, 2-isopropyl- and avicenol-C. We may infer that the antifungal activity of A. schaueriana is due to the abundance of these compounds. This study shows that Avicennia schaueriana extracts have a high potential for the growth inhibition of Colletotrichum and Cladosporium ssp. and will provide a starting point for discovering new natural products with antifungal activity. Their development is of particular interest to organic production systems where synthetic fungicides cannot be used. © 2015 The Society for Applied Microbiology.
Hezaveh, Samira; Samanta, Susruta; Milano, Giuseppe; Roccatano, Danilo
2012-03-28
In this paper, the conformation and dynamics properties of polyethylene oxide (PEO) and polypropylene oxide (PPO) polymer chains at 298 K have been studied in the melt and at infinite dilution condition in water, methanol, chloroform, carbon tetrachloride, and n-heptane using molecular dynamics simulations. The calculated density of PEO melt with chain lengths of n = 2, 3, 4, 5 and, for PPO, n = 7 are in good agreement with the available experimental data. The conformational properties of PEO and PPO show an increasing gauche preference for the O-C-C-O dihedral in the following order water>methanol>chloroform>carbon tetrachloride = n-heptane. On the contrary, the preference for trans conformation has a maximum in carbon tetrachloride and n-heptane followed in the order by chloroform, methanol, and water. The PEO conformational preferences are in qualitative agreement with results of NMR studies. PEO chains formed different types of hydrogen bonds with polar solvent molecules. In particular, the occurrence of bifurcated hydrogen bonding in chloroform was also observed. Radii of gyration of PEO chains of length larger than n = 9 monomers showed a good agreement with light scattering data in water and in methanol. For the shorter chains the observed deviations are probably due to the enhanced hydrophobic effects caused by the terminal methyl groups. For PEO the fitting of end-to-end distance distributions with the semi-flexible chain model at 298 K provided persistence lengths of 0.375 and 0.387 nm in water and methanol, respectively. Finally, the radius of gyration of Pluronic P85 turned out to be 2.25 ± 0.4 nm at 293 K in water in agreement with experimental data.
NASA Astrophysics Data System (ADS)
Hezaveh, Samira; Samanta, Susruta; Milano, Giuseppe; Roccatano, Danilo
2012-03-01
In this paper, the conformation and dynamics properties of polyethylene oxide (PEO) and polypropylene oxide (PPO) polymer chains at 298 K have been studied in the melt and at infinite dilution condition in water, methanol, chloroform, carbon tetrachloride, and n-heptane using molecular dynamics simulations. The calculated density of PEO melt with chain lengths of n = 2, 3, 4, 5 and, for PPO, n = 7 are in good agreement with the available experimental data. The conformational properties of PEO and PPO show an increasing gauche preference for the O-C-C-O dihedral in the following order water>methanol>chloroform>carbon tetrachloride = n-heptane. On the contrary, the preference for trans conformation has a maximum in carbon tetrachloride and n-heptane followed in the order by chloroform, methanol, and water. The PEO conformational preferences are in qualitative agreement with results of NMR studies. PEO chains formed different types of hydrogen bonds with polar solvent molecules. In particular, the occurrence of bifurcated hydrogen bonding in chloroform was also observed. Radii of gyration of PEO chains of length larger than n = 9 monomers showed a good agreement with light scattering data in water and in methanol. For the shorter chains the observed deviations are probably due to the enhanced hydrophobic effects caused by the terminal methyl groups. For PEO the fitting of end-to-end distance distributions with the semi-flexible chain model at 298 K provided persistence lengths of 0.375 and 0.387 nm in water and methanol, respectively. Finally, the radius of gyration of Pluronic P85 turned out to be 2.25 ± 0.4 nm at 293 K in water in agreement with experimental data.
Sharifzadeh, Mohammad; Hadjiakhoondi, Abbas; Khanavi, Mahnaz; Susanabadi, Maryam
2006-06-01
In the present study, the effects of rhizomes and aerial parts extracts of Valeriana officinalis L. on morphine dependence in mice have been investigated. Animals were treated subcutaneously with morphine (50, 50 and 75 mg/kg) three times daily (10 am, 1 pm and 4 pm) for 3 days, and a last dose of morphine (50 mg/kg) was administered on the fourth day. Withdrawal syndrome (jumping) was precipitated by naloxone (5 mg/kg) which was administered intraperitoneally 2 hours after the last dose of morphine. To study the effects of the aqueous, methanolic and chloroform extracts of both aerial parts and rhizome of the V. officinalis L. on naloxone-induced jumping in morphine-dependent animals, 10 injections of morphine (three administrations each day) for dependence and a dose of 5 mg/kg of naloxone for withdrawal induction were employed. Intraperitoneal injection of different doses (1, 5, 25 and 50 mg/kg) of aqueous, methanolic and chloroform extracts of the rhizome of V. officinalis L. 60 minutes before naloxone injection decreased the jumping response dose-dependently. Pre-treatment of animals with different doses (1, 5, 25, 50 and 100 mg/kg) of aqueous and methanolic extracts of aerial parts of V. officinalis L. 60 minutes before naloxone injection caused a significant decrease on naloxone-induced jumping. The chloroform extract of the aerial parts of V. officinalis L. did not show any significant changes on jumping response in morphine-dependent animals. It is concluded that the extracts of V. officinalis L. could affect morphine withdrawal syndrome via possible interactions with inhibitory neurotransmitters in nervous system.
Shi, Min-Min; Chen, Yi; Nan, Ya-Xiong; Ling, Jun; Zuo, Li-Jian; Qiu, Wei-Ming; Wang, Mang; Chen, Hong-Zheng
2011-02-03
To investigate the relationship between π-π stacking and charge transport property of organic semiconductors, a highly soluble violanthrone derivative, 16,17-bis(2-ethylhexyloxy)anthra[9,1,2-cde-]benzo[rst]pentaphene-5,10-dione (3), is designed and synthesized. The π-π stacking behavior and the aggregation of compound 3 in both solution and thin film were studied in detail by (1)H nuclear magnetic resonance (NMR) spectroscopy, ultraviolet-visible (UV-vis) absorption, X-ray diffraction (XRD), and atomic force microscopy (AFM). When (1)H NMR spectroscopy and theoretical modeling results were combined, the arrangements of compound 3 molecules in the aggregates are demonstrated, where the dipole moments of the two adjacent molecules are nearly reversed to achieve efficient intermolecular π-π overlapping. Furthermore, it is interesting to find that the π-π stacking of compound 3, in both solution and thin films, can be enhanced by introducing a poor solvent n-hexane into the dilute chloroform solution. The resulting film exhibits more red-shifted absorption and higher crystallinity than the film made from pure chloroform solvent, suggesting that π-π interactions in the solid state are intensified by the poor solvent. Organic field-effect transistors (OFETs) with compound 3 film as the transportation layer were fabricated. It is disclosed that the compound 3 film obtained from the chloroform/n-hexane mixed solvents exhibits 1 order of magnitude higher hole mobility than that from the pure chloroform solvent because of the enhanced π-π interactions and the higher crystallinity in the former film. This work provided us valuable information in the improvement of electronic and optoelectronic performances of organic semiconductors by tuning their aggregate structures.
Zamani, Isaac; Bouzari, Majid; Emtiazi, Giti; Fanaei, Maryam
2015-03-01
Halomethanes are toxic and carcinogenic chemicals, which are widely used in industry. Also they can be formed during water disinfection by chlorine. Biodegradation by methylotrophs is the most important way to remove these pollutants from the environment. This study aimed to represent a simple and rapid method for quantitative study of halomethanes utilizing bacteria in drinking water and also a method to facilitate the biodegradation of these compounds in the environment compared to cometabolism. Enumeration of chlorinated methane utilizing bacteria in drinking water was carried out by most probable number (MPN) method in two steps. First, the presence and the number of methylotroph bacteria were confirmed on methanol-containing medium. Then, utilization of dichloromethane was determined by measuring the released chloride after the addition of 0.04 mol/L of it to the growth medium. Also, the effect of nanosilver particles on biodegradation of multiple chlorinated methanes was studied by bacterial growth on Bushnell-Haas Broth containing chloroform (trichloromethane) that was treated with 0.2 ppm nanosilver. Most probable number of methylotrophs and chlorinated methane utilizing bacteria in tested drinking water were 10 and 4 MPN Index/L, respectively. Chloroform treatment by nanosilver leads to dechlorination and the production of formaldehyde. The highest growth of bacteria and formic acid production were observed in the tubes containing 1% chloroform treated with nanosilver. By combining the two tests, a rapid approach to estimation of most probable number of chlorinated methane utilizing bacteria is introduced. Treatment by nanosilver particles was resulted in the easier and faster biodegradation of chloroform by bacteria. Thus, degradation of these chlorinated compounds is more efficient compared to cometabolism.
Sadi, Gökhan; Emsen, Buğrahan; Kaya, Abdullah; Kocabaş, Aytaç; Çınar, Seval; Kartal, Deniz İrtem
2015-01-01
Background: Mushrooms have been valued for their nutritive content and as traditional medicines; several important medicinal properties of mushrooms have been recognized worldwide. Objective: The purpose of this study was to elucidate the cell growth inhibitory potential of four edible mushrooms; Coprinus comatus (O.F. Mull.) Pers. (Agaricaceae), Tricholoma fracticum (Britzelm.) Kreisel (Tricholomataceae), Rhizopogon luteolus Fr. and Nordholm (Rhizopogonaceae), Lentinus tigrinus (Bull.) Fr. (Polyporaceae) on hepatocellular carcinoma (HepG2) cells in conjunction with their antioxidant and antibacterial capacities. Materials and Methods: Five different extracts of edible mushrooms were obtained using water, methanol, acetone, n-hexane and chloroform as solvent systems for cytotoxic, antioxidant and antibacterial properties. Results: C. comatus showed substantial in vitro cytotoxic activity against HepG2 cell lines with all extracts especially with chloroform 50% inhibition (IC50 value of 0.086 mg/ml) and acetone (IC50 value of 0.420 mg/ml). Chloroform extract of C. comatus had maximum amount of β-carotene (25.94 μg/mg), total phenolic content (76.32 μg/mg) and lycopene (12.00 μg/mg), and n-hexane extract of L. tigrinus had maximum amount of flavonoid (3.67 μg/mg). While chloroform extract of C. comatus showed the highest 2, 2-diphenyl-1-picrylhydrazyl (DPPH) capturing activity (1.579 mg/ml), the best result for metal chelating activity was obtained from methanolic extract (0.842 mg/ml). Moreover, all tested mushrooms demonstrated antibacterial activity and n-hexane extract of L. tigrinus and acetone extracts of T. fracticum were the most active against tested microorganism. Conclusion: These results indicate that different extracts of investigated mushroom have considerable cytotoxic, antioxidant and antibacterial properties and may be utilized as a promising source of therapeutics. PMID:26109775
Akhtar, Mohammad; Maikiyo, Aliyu Muhammad; Najmi, Abul Kalam; Khanam, Razia; Mujeeb, Mohd; Aqil, Mohd
2013-01-01
PURPOSE: Stroke still remains a challenge for the researchers and scientists for developing ideal drug. Several new drugs are being evaluated showing excellent results in preclinical studies but when tested in clinical trials, they failed. Many herbal drugs in different indigenous system of medicine claim to have beneficial effects but not extensively evaluated for stroke (cerebral ischemia). AIM: The present study was undertaken to evaluate chloroform and petroleum ether extract of Nigella sativa seeds administered at a dose of 400 mg/kg, per orally for seven days in middle cerebral artery occluded (MCAO) rats for its neuroprotective role in cerebral ischemia. MATERIALS AND METHODS: Focal cerebral ischemia was induced by middle cerebral artery occlusion for two hours followed by reperfusion for 22 hours. After 24 hours, grip strength, locomotor activity tests were performed in different treatment groups of rats. After completing behavioral tests, animals were sacrificed; brains were removed for the measurement of infarct volume followed by the estimation of markers of oxidative stress. RESULTS: Both chloroform and petroleum ether extracts-pretreated rats showed improvement in locomotor activity and grip strength, reduced infarct volume when compared with MCAO rats. MCA occlusion resulted in the elevation of levels of thiobarbituric acid reactive substance (TBARS), while a reduction in the levels of glutathione (GSH) and antioxidant enzymes viz. superoxide dismutase (SOD) and catalase levels were observed. Pre-treatment of both extracts of Nigella sativa showed reduction in TBARS, elevation in glutathione, SOD, and catalase levels when compared with MCAO rats. CONCLUSION: The chloroform and petroleum ether extract of Nigella sativa showed the protective effects in cerebral ischemia. The present study confirms the antioxidant, free radical scavenging, and anti-inflammatory properties of Nigella sativa already reported. PMID:23833517
The determination of nanogram amounts of Chromium in urine by x-ray fluorescence spectroscopy
Beyermann, K.; Rose, H.J.; Christian, R.P.
1969-01-01
Nanogram amounts of chromium can be extracted as oxinate into chloform. By treatment of the chloroform layer 3 M hydrochloric acid, oxinates of other elements and excess of reagent are removed, leaving a chloroform solution of the chromium chelate only. This solution is concentrated and transferred to the top of a small brass rod acting as sample holder. The intensity of the X-ray fluorescence of the Cr K?? line is measured with curved crystal optics. Chromium amounts greater than 5 ng can be detected. The application of the procedure to the analysis of the chromium content of urine is demonstrated. ?? 1969.
Phase transition in conjugated oligomers suspended in chloroform
NASA Astrophysics Data System (ADS)
Dwivedi, Shikha; Kumar, Anupam; Yadav, S. N. S.; Mishra, Pankaj
2015-08-01
Density functional theory (DFT) has been used to investigate the isotropic-nematic (I-N) phase transition in a system of high aspect ratio conjugated oligomers suspended in chloroform. The interaction between the oligomers is modeled using Gay-Berne potential in which effect of solvent is implicit. Percus-Yevick integral equation theory has been used to evaluate the pair correlation functions of the fluid phase at several temperatures and densities. These pair correlation function has been used in the DFT to evaluate the I-N freezing parameters. Highly oriented nematic is found to stabilize at low density. The results obtained are in qualitative agreement with the simulation and are verifiable.
Luzhetsky, K P; Ustinova, O Yu; Shur, P Z; Kiryanov, D A; Dolgikh, O V; Chigvintsev, v M; Perevalov, A Ya
2015-01-01
Evaluation of effects caused by environmental peroral exposure to chlorine organic compounds revealed that individuals with AG variation of HTR2A gene are a community with increased sensitivity to chloroform and a risk group for lipid and carbohydrates metabolism disorders. Individual risk of endocrine disorders (ICD: E67.8 excessive nutrition and E66.0 obesity) in these individuals is higher than in general population exposed to chloroform at residence (HQ1.72). Serum serotonin level, that is functionally connected with HTR2A gene, is 1.3 times lower vs. the reference group value.
Mehrez, O Abou; Dossier-Berne, F; Legube, B
2015-01-01
Chlorination and monochloramination of aminophenols (AP) were carried out in aqueous solution at 25°C and at pH 8.5. Oxidant demand and disinfection by-product formation were determined in excess of oxidant. Experiments have shown that chlorine consumption of AP was 40-60% higher than monochloramine consumption. Compared with monochloramination, chlorination of AP formed more chloroform and haloacetic acids (HAA). Dichloroacetic acid was the major species of HAA. Chloroform and HAA represented, respectively, only 1-8% and 14-15% of adsorbable organic halides (AOX) by monochloramination but up to 29% and 39% of AOX by chlorination.
Calliste, C A; Trouillas, P; Allais, D P; Simon, A; Duroux, J L
2001-07-01
In an effort to discover new antioxidant natural compounds, seven plants that grow in France (most of them in the Limousin countryside) were screened. Among these plants, was the extensively studied Vitis vinifera as reference. For each plant, sequential percolation was realized with five solvents of increasing polarities (hexane, chloroform, ethyl acetate, methanol, and water). Free radical scavenging activities were examined in different systems using electron spin resonance (ESR) spectroscopy. These assays were based on the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH), the hydroxyl radicals generated by a Fenton reaction, and the superoxide radicals generated by the X/XO system. Antiproliferative behavior was studied on B16 melanoma cells. ESR results showed that three plants (Castanea sativa, Filipendula ulmaria, and Betula pendula) possessed, for the most polar fractions (presence of phenolic compounds), high antioxidant activities in comparison with the Vitis vinifera reference. Gentiana lutea was the only one that presented a hydroxyl scavenging activity for the ethyl acetate and chloroform fractions. The antiproliferative test results showed that the same three plants are the most effective, but for the apolar fractions (chloroform and hexane).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Bruce A; Sloop Jr, Frederick; Fowler, Christopher J
2010-01-01
When certain macrocyclic anion receptors are added to a chloroform solution of the nitrate form of a lipophilic quaternary ammonium salt (methyltri-C8,10-ammonium nitrate, Aliquat 336N), the extraction of sulphate from an aqueous sodium nitrate solution via exchange with the organic-phase nitrate is significantly enhanced. Eight macrocycles were surveyed, including two derivatives of a tetraamide macrocycle, five derivatives of calix[4]pyrrole and -decafluorocalix[5]pyrrole. Under the hypothesis that the enhancement originates from sulphate binding by the anion receptors in the chloroform phase, it was possible to obtain reasonable fits to the sulphate distribution survey data based on the formation of 1:1 and 2:1more » receptor:sulphate complexes in the chloroform phase. Apparent 1:1 sulphate-binding constants obtained from the model in this system fell in the range . Comparison of the results for the various anion receptors included in this study reveals that sulphate binding is sensitive to the nature of the substituents on the parent macrocycle scaffolds in a way that does not follow straightforwardly from simple chemical expectations, such as electron-withdrawing effects on hydrogen-bond donor strength.« less
Comparison of methods for extracting DNA from formalin-fixed paraffin sections for nonisotopic PCR.
Frank, T S; Svoboda-Newman, S M; Hsi, E D
1996-09-01
DNA was extracted from unstained 5-microns sections of neutral buffered 10% formalin-fixed paraffin-embedded tissue by proteinase K digestion without detergents followed by boiling, proteinase K digestion with ionic detergents with and without phenol chloroform extraction and ethanol precipitation, sonication with proteinase K followed by boiling, or boiling alone. Serial 1:10 dilutions of the extracted DNA were subject to polymerase chain reaction (PCR) amplification of a 255-bp portion of the p53 gene. Digestion with proteinase K without ionic detergents followed by boiling (without phenol chloroform extraction) gave the best yield, enabling visualization of ethidium bromide-stained PCR product from a DNA dilution corresponding to 0.1 mm2 of tissue containing of the order of 10(3) nuclear profiles. Proteinase K digestion with detergents followed by phenol-chloroform extraction was no more effective than simple boiling. Although the success of PCR from preserved tissue will vary with the fixative and size of the amplified fragment, DNA extracted with this optimized method can be used for identification of viruses, loss of heterozygosity, and immunoglobulin gene rearrangements in paraffin-embedded tissue without radioisotopes.
Apu, As; Muhit, Ma; Tareq, Sm; Pathan, Ah; Jamaluddin, Atm; Ahmed, M
2010-01-01
The crude methanolic extract of Dillenia indica Linn. (Dilleniaceae) leaves has been investigated for the evaluation of antimicrobial and cytotoxic activities. Organic solvent (n-hexane, carbon tetrachloride and chloroform) fractions of methanolic extract and methanolic fraction (aqueous) were screened for their antimicrobial activity by disc diffusion method. Besides, the fractions were screened for cytotoxic activity using brine shrimp (Artemia salina) lethality bioassay. Among the four fractions tested, n-hexane, carbon tetrachloride, and chloroform fractions showed moderate antibacterial and antifungal activity compared to standard antibiotic, kanamycin. The average zone of inhibition was ranged from 6 to 8 mm at a concentration of 400 µg/disc. But the aqueous fraction was found to be insensitive to microbial growth. Compared to vincristine sulfate (with LC(50) of 0.52 µg/ ml), n-hexane and chloroform fractions demonstrated a significant cytotoxic activity (having LC(50) of 1.94 µg/ml and 2.13 µg/ml, respectively). The LC(50) values of the carbon tetrachloride and aqueous fraction were 4.46 µg/ml and 5.13 µg/ ml, respectively. The study confirms the moderate antimicrobial and potent cytotoxic activities of Dillenia indica leaves extract and therefore demands the isolation of active principles and thorough bioassay.
Andrade, Sérgio F; Antoniolli, Daiane; Comunello, Eros; Cardoso, Luis G V; Carvalho, José C T; Bastos, Jairo K
2006-01-01
Many plant crude extracts and their isolated compounds are the most attractive sources of new drugs and show promising results for the treatment of gastric ulcers. Austroplenckia populnea is commonly known as "marmelinho-do campo, mangabeira-brava, mangabarana and vime" and it has been used in folk medicine as anti-dysenteric and anti-rheumatic. Powdered bark wood (3.25 kg) was macerated with aqueous ethanol (96%) and the extract was concentrated under reduced pressure to yield 406 g of crude hydralcoholic extract. The hydralcoholic extract was suspended in aqueous methanol and partitioned with hexane, chloroform and ethyl acetate (EtOAc) in sequence, yielding 8.0 g, 9.5 g and 98.17 g of crude extracts, respectively. Chromatography of the hexane extract over a silica gel column led to the isolation of the triterpene populnoic acid. The oral administration of hydralcoholic, hexane, chloroform and EtOAc extracts (200 mg/kg) decreased the ulcer lesion index (ULI) by 83.15%, 46.87%, 32.2%, 68.12%, respectively. Oral administration of populnoic acid (100 mg/kg) diminished the ULI by 55.29%. All the obtained results were significant in comparison with the negative control, with exception of the chloroform extract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, M.A.K.; Rasmussen, R.A.; French, J.R.J.
Based on field studies of mounds of Australian termites the authors estimate that on a global scale termites emit about 12 {times} 10{sup 12} g/yr of methane (< 20 tg/yr) and about 4 {times} 10{sup 15} g CO{sub 2}/yr (< 8 pg/yr). Most of the detailed results are based on studies of the species Coptotermes lacteus. They found that in mid-latitudes the emissions vary seasonally. As much methane is emitted in the summers as in all other seasons combined. The soils a few meters from the mounds consumed methane at an average rate of 40 {mu}g/m{sup 2}/h. They found nomore » evidence of net emissions of CO and found that H{sub 2} is consistently consumed by the mounds and the soils near the mounds. All six species studied produced chloroform. The concentrations of chloroform inside the mounds of C. lacteus were a thousand times greater than ambient levels, but calculations show that termites are not likely to be a significant global source of chloroform. Finally, they used the results of this study, and others before them, to construct a view of the role of termites in the global carbon cycle.« less
NASA Astrophysics Data System (ADS)
Szöllösi, György; Bartók, Mihály
1999-05-01
In this study our aim was to identify the active sites and the surface species responsible for deactivation of MgO during catalytic transfer hydrogenations (CTH) of ketones using alcohols as hydrogen donors. Our previous studies showed that deactivation of MgO could be prevented by previous treatment with chloromethanes. Therefore the surface species formed during the reaction were studied before and after treatment with chloroform or chloroform- d by in situ infrared spectroscopy (IR). As a result, it was concluded that the reaction requires the presence of surface basic and acidic centers. The presence of Lewis acid centers was not necessary, the reaction could proceed on weakly acidic surface Brönsted sites, as the alterations in intensity and position of the ν(OH) bands indicated. Modification with chloroform resulted also in the generation of surface OH groups with a proper acidity for the reaction. The shift in carbonyl vibrations led us to the conclusion that Lewis acid and base centers were responsible for the catalyst poisoning, so covering these acid sites by Cl - led to a stable catalyst.
Wang, Yifei; Jia, Aiyin; Wu, Yue; Wu, Chunde; Chen, Lijun
2015-01-01
The effect of hydrodynamic cavitation (HC) on potable water disinfection of chemicals was investigated. The bore well water was introduced into HC set-up to examine the effect of HC alone and combination of HC and chemicals such as chlorine dioxide and sodium hypochlorite. The effect of inlet pressure and geometrical parameters on disinfection was studied using HC alone and the results showed that increasing inlet pressure and using more and bigger holes of orifice plates can result in a higher disinfection rates. When HC was combined with chemicals, HC can reduce the doses of the chemicals and shorten the time of disinfection. It was also found that the decrease in bacteria concentration followed a first-order kinetic model. As for the experiment of combination of HC and sodium hypochlorite for disinfection, HC not only improves the disinfection rate but also degrades natural organic matter and chloroform. Compared with only sodium hypochlorite disinfection, combined processes get higher disinfection rate and lower production of chloroform, particularly the pretreatment with HC enhances the disinfection rate by 32% and there is a simultaneous reduction in production of chloroform by 39%.
Köddermann, Thorsten; Ludwig, Ralf; Paschek, Dietmar
2008-09-15
Stokes-Einstein (SE) and Stokes-Einstein-Debye (SED) relations in the neat ionic liquid (IL) [C(2)mim][NTf(2)] and IL/chloroform mixtures are studied by means of molecular dynamics (MD) simulations. For this purpose, we simulate the translational diffusion coefficients of the cations and anions, the rotational correlation times of the C(2)--H bond in the cation C(2)mim(+), and the viscosities of the whole system. We find that the SE and SED relations are not valid for the pure ionic liquid, nor for IL/chloroform mixtures down to the miscibility gap (at 50 wt % IL). The deviations from both relations could be related to dynamical heterogeneities described by the non-Gaussian parameter alpha(t). If alpha(t) is close to zero, at a concentration of 1 wt % IL in chloroform, both relations become valid. Then, the effective radii and volumes calculated from the SE and SED equations can be related to the structures found in the MD simulations, such as aggregates of ion pairs. Overall, similarities are observed between the dynamical properties of supercooled water and those of ionic liquids.
NASA Technical Reports Server (NTRS)
Taylor, John A.; Brasseur, G. P.; Zimmerman, P. R.; Cicerone, R. J.
1991-01-01
Sources and sinks of methane and methyl chloroform are investigated using a global three-dimensional Lagrangian tropospheric tracer transport model with parameterized hydroxyl and temperature fields. Using the hydroxyl radical field calibrated to the methyl chloroform observations, the globally averaged release of methane and its spatial and temporal distribution were investigated. Two source function models of the spatial and temporal distribution of the flux of methane to the atmosphere were developed. The first model was based on the assumption that methane is emitted as a proportion of net primary productivity (NPP). The second model identified source regions for methane from rice paddies, wetlands, enteric fermentation, termites, and biomass burning based on high-resolution land use data. The most significant difference between the two models were predictions of methane fluxes over China and South East Asia, the location of most of the world's rice paddies, indicating that either the assumption that a uniform fraction of NPP is converted to methane is not valid for rice paddies, or that NPP is underestimated for rice paddies, or that present methane emission estimates from rice paddies are too high.
Habib, M. Rowshanul; Karim, M. Rezaul; Hossain, M. Shamim; Mosaddik, M. Ashik; Haque, M. Ekramul
2008-01-01
The crude ethanol extracts (stem and fruits), their fractions and two triterpenes, β-Amyrin and 12-Oleanene 3β, 21β-diol, isolated as a mixture from the chloroform soluble fraction of an ethanolic extract of Duranta repens stem, were evaluated for antibacterial, antifungal activities by the disc diffusion method and cytotoxicity by brine shrimp lethality bioassay. The structures of the two compounds were confirmed by IR, 1H-NMR, 13C-NMR and LC-MS spectral data. The chloroform soluble fraction of stem and ethanol extract of fruits possess potent antishigellosis activity and also exhibited moderate activity against some pathogenic bacteria and fungi but the isolated compound 1 (mixture of β-Amyrin and 12-Oleanene 3β, 21β-diol) showed mild to moderate inhibitory activity to microbial growth. The minimum inhibitory concentrations (MICs) of the extracts (stem and fruits), their fractions and compound 1 were found to be in the range of 32~128 µg/ml. The chloroform soluble fractions of stem and ethanol extract of fruit showed significant cytotoxicity with LC50 value of 0.94 µg/ml and 0.49 µg/ml, respectively against brine shrimp larvae. PMID:23997620
Rammohan, Bera; Samit, Karmakar; Chinmoy, Das; Arup, Saha; Amit, Kundu; Ratul, Sarkar; Sanmoy, Karmakar; Dipan, Adhikari; Tuhinadri, Sen
2016-01-01
Background: Traditionally GS is used to treat diabetes mellitus. Drug-herb interaction of GS via cytochrome P450 enzyme system by substrate cocktail method using HLM has not been reported. Objective: To evaluate the in-vitro modulatory effects of GS extracts (aqueous, methanol, ethyl acetate, chloroform and n-hexane) and deacylgymnemic acid (DGA) on human CYP1A2, 2C8, 2C9, 2D6 and 3A4 activities in HLM. Material and Methods: Probe substrate-based LCMS/MS method was established for all CYPs. The metabolite formations were examined after incubation of probe substrates with HLM in the presence or absence of extracts and DGA. The inhibitory effects of GS extracts and DGA were characterized with kinetic parameters IC50 and Ki values. Results: GS extracts showed differential effect on CYP activities in the following order of inhibitory potency: ethyl acetate > Chloroform > methanol > n-hexane > aqueous > DGA. This differential effect was observed against CYP1A2, 2C9 and less on CYP3A4 and 2C8 but all CYPs were unaffected by aqueous extract and DGA. The ethyl acetate and chloroform extract exhibited moderate inhibition towards CYP1A2 and 3A4. The aqueous extract and DGA however showed negligible inhibition towards all five major human CYPs with very high IC50 values (>90μg/ml). Conclusion: The results of our study revealed that phytoconstituents contained in GS, particularly in ethyl acetate and chloroform extracts, were able to inhibit CYP1A2, 3A4 and 2C9. The presence of relatively small, lipophillic yet slightly polar compounds within the GS extracts may be attributed for inhibition activities. These suggest that the herb or its extracts should be examined for potential pharmacokinetic drug interactions in vivo. Abbreviations used: GS: Gymnema sylvestre, GSE: Gymnema sylvestre extract, DGA: deacyl gymnemic acid, CYP: cytochrome P450, DMSO: dimethylsulphoxide, HLM: human liver microsomes, LC-MS/MS: liquid chromatography tandem mass spectroscopy, NADPH: reduced nicotinamide adeninedinucleotide phosphate, NRS: nicotinamide adeninedinucleotide phosphate regenerating system, CHE: chloroform extract, EAE: ethyl acetate extract, NHE- n-hexane extract, AE: aqueous extract, ME: methanol extract PMID:27761064
Juárez, J; Galaz, J G; Machi, L; Burboa, M; Gutiérrez-Millán, L E; Goycoolea, F M; Valdez, M A
2007-03-15
Interfacial properties of N-nitrosodiethylamine/bovine serum albumin (NDA/BSA) complexes were investigated at the air-water interface. The interfacial behavior at the chloroform-water interface of the interaction product of phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), dissolved in the chloroform phase, and NDA/BSA complex, in the aqueous phase, were also analyzed by using a drop tensiometer. The secondary structure changes of BSA with different NDA concentrations were monitored by circular dichroism spectroscopy at different pH and the NDA/BSA interaction was probed by fluorescence spectroscopy. Different NDA/BSA mixtures were prepared from 0, 7.5 x 10(-5), 2.2 x 10(-4), 3.7 x 10(-4), 5 x 10(-4), 1.6 x 10(-3), and 3.1 x 10(-3) M NDA solutions in order to afford 0, 300/1, 900/1, 1 500/1, 2 000/1, 6 000/1, and 12 500/1 NDA/BSA molar ratios, respectively, in the aqueous solutions. Increments of BSA alpha-helix contents were obtained up to the 2 000/1 NDA/BSA molar ratio, but at ratios beyond this value, the alpha-helix content practically disappeared. These BSA structure changes produced an increment of the surface pressure at the air-water interface, as the alpha-helix content increased with the concentration of NDA. On the contrary, when alpha-helix content decreased, the surface pressure also appeared lower than the one obtained with pure BSA solutions. The interaction of DPPC with NDA/BSA molecules at the chloroform-water interface produced also a small, but measurable, pressure increment with the addition of NDA molecules. Dynamic light scattering measurements of the molecular sizes of NDA/BSA complex at pH 4.6, 7.1, and 8.4 indicated that the size of extended BSA molecules at pH 4.6 increased in a greater proportion with the increment in NDA concentration than at the other studied pH values. Diffusion coefficients calculated from dynamic surface tension values, using a short-term solution of the general adsorption model of Ward and Tordai, also showed differences with pH and the NDA concentration. Both, the storage and loss dilatational elastic modulus were obtained at the air-water and at the chloroform-water interfaces. The interaction of NDA/BSA with DPPC at the chloroform-water produced a less rigid monolayer than the one obtained with pure DPPC (1 x 10(-5) M), indicating a significant penetration of NDA/BSA molecules at the interface. At short times and pH 4.6, the values of the storage elastic modulus were larger and more sensible to the NDA addition than the ones at pH 7.1 and 8.4, probably due to a gel-like network formation at the air-water interface.
Antioxidant and anti-inflammatory effects of Scoparia dulcis L.
Coulibaly, Ahmed Y; Kiendrebeogo, Martin; Kehoe, Patrick G; Sombie, Pierre A E D; Lamien, Charles E; Millogo, Jeanne F; Nacoulma, Odile G
2011-12-01
Different extracts were obtained from Scoparia dulcis L. (Scrophulariaceae) by successive extraction with hexane, chloroform, and methanol. These extracts exhibited significant antioxidant capacity in various antioxidant models mediated (xantine oxidase and lipoxygenase) or not mediated (2,2-diphenyl-picrylhydrazyl, ferric-reducing antioxidant power, β-carotene bleaching, lipid peroxidation) by enzymes. The antioxidant activity of the extracts was related to their phytochemical composition in terms of polyphenol and carotenoid contents. The chloroform extract was richest in phytochemicals and had the highest antioxidant activity in the different antioxidant systems. All the extracts exhibited less than 50% inhibition on xanthine oxidase but more than 50% inhibition on lipid peroxidation and lipoxygenase. The extracts strongly inhibited lipid peroxidation mediated by lipoxygenase.
Kyong, Jin Burm; Lee, Yelin; D’Souza, Malcolm John; Kevill, Dennis Neil; Kevill, Dennis Neil
2012-01-01
The “parent” tertiary alkyl chloroformate, tert-butyl chloroformate, is unstable, but the tert-butyl chlorothioformate (1) is of increased stability and a kinetic investigation of the solvolyses is presented. Analyses in terms of the simple and extended Grunwald-Winstein equations are carried out. The original one-term equation satisfactorily correlates the data with a sensitivity towards changes in solvent ionizing power of 0.73 ±0.03. When the two-term equation is applied, the sensitivity towards changes in solvent nucleophilicity of 0.13 ± 0.09 is associated with a high (0.17) probability that the term that it governs is not statistically significant. PMID:23538747
Atmospheric halocarbons - A discussion with emphasis on chloroform
NASA Technical Reports Server (NTRS)
Yung, Y. L.; Mcelroy, M. B.; Wofsy, S. C.
1975-01-01
Bleaching of paper pulp represents a major industrial use of chlorine and could provide an environmentally significant source of atmospheric halocarbons. The related global production of chloroform is estimated at 300,000 ton per year and there could be additional production associated with atmospheric decomposition of perchloroethylene. Estimates are given for the production of methyl chloride, methyl bromide and methyl iodide, 5.2 million, 77 thousand, and 740 thousand ton per year respectively. The relative yields of CH3Cl, CH3Br and CH3I are consistent with the hypothesis of a marine biological source for these compounds. Concentrations of other halocarbons observed in the atmosphere appear to indicate industrial sources.
A DOG TEST FOR MEASURING THE IMMUNIZING POTENCY OF ANTIRABIES VACCINES
Webster, Leslie T.; Casals, J.
1940-01-01
1. A quantitative method is described for testing the immunizing potency of antirabies vaccines in dogs. 2. Phenolized, single-injection, canine vaccines from seven manufacturers, when administered to dogs according to directions, failed to protect them against the least measurable amount of test virus fatal to 50 per cent or more of controls. Chloroformized vaccines from two of three manufacturers, under the same conditions, gave equivocal or suggestive results. 3. Commercial chloroformized vaccines in 10 cc. doses, injected intraperitoneally rather than subcutaneously into dogs, conferred a significant degree of immunity but proved temporarily irritative to the peritoneum. 4. These results of canine vaccines in dogs parallel closely those already reported in mice. PMID:19870993
Extraction and LC determination of lysine clonixinate salt in water/oil microemulsions.
Pineros, I; Ballesteros, P; Lastres, J L
2002-02-01
A new reversed-phase high performance liquid chromatography method has been developed and validated for the quantitative determination of lysine clonixinate salt in water/oil microemulsions. The mobile phase was acetonitrile-buffer phosphate pH 3.3. Detection was UV absorbance at 252 nm. The precision and accurately of the method were excellent. The established linearity range was 5-60 microg ml(-1) (r(2)=0.999). Microemulsions samples were dispersed with chloroform and extracted lysine clonixinate salt with water. This easy method employing chloroformic extraction has been done three times. The recovery of lysine clonixinate salt from spiked placebo and microemulsion were >90% over the linear range.
Popiel, Stanisław; Nalepa, Tomasz; Dzierzak, Dorota; Stankiewicz, Romuald; Witkiewicz, Zygfryd
2008-09-15
A scheme of dibutyl sulfide (DBS) oxidation with ozone and generation of transitional products was determined in this study. The main identified intermediate product was dibutyl sulfoxide (DBSO), and the main end product of DBS oxidation was dibutyl sulfone (DBSO2). It was determined that for three temperatures: 0, 10 and 20 degrees C there was certain initial DBS concentration for which half-times observed in experimental conditions were equal and independent from temperature. Generation of phosgene and water as by-products was confirmed for the reaction of DBS with ozone in chloroform. Results of the described study allowed to present generalized mechanism of sulfide oxidation with ozone.
Use of beer bran as an adsorbent for the removal of organic compounds from wastewater.
Adachi, Atsuko; Ozaki, Hiroaki; Kasuga, Ikuno; Okano, Toshio
2006-08-23
Beer bran was found to effectively adsorb several organic compounds, such as dichloromethane, chloroform, trichloroethylene, benzene, pretilachlor, and esprocarb. Equilibrium adsorption isotherms conformed to the Freundlich isotherm (log-log linear). Adsorption of these organic compounds by beer bran was observed in the pH range of 1-11. At equilibrium, the adsorption efficiency of beer bran for benzene, chloroform, and dichiloromethane was higher than that of activated carbon. The removal of these organic compounds by beer bran was attributed to the uptake by intracellular particles called spherosomes. The object of this work was to investigate several adsorbents for the effective removal of organic compounds from wastewater.
Ishnava, Kalpesh B.; Chauhan, Jenabhai B.; Garg, Akanksha A.; Thakkar, Arpit M.
2011-01-01
In vitro antibacterial potential of the chloroform, ethyl acetate, hexane, methanol and aqueous extracts of Calotropis gigantia (L.) R. Br. was evaluated by using five cariogenic bacteria, Actinomyces viscosus, Lactobacillus acidophilus, Lactobacillus casei, Streptococcus mitis and Streptococcus mutans. Agar well diffusion method and minimum inhibitory concentration (MIC) were used for this purpose. The chloroform extracted fraction of latex showed inhibitory effect against S. mutans and L. acidophilus with MIC value of 0.032 and 0.52 mg/mL, respectively. Qualitative investigation on structure elucidation of bioactive compound using IR, NMR and GC–MS techniques revealed the presence of methyl nonanoate, a saturated fatty acid. PMID:23961166
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-11-15
The Stamina Mills site is on the National Priorities List (NPL). The environmental contamination of concern consists of methylene chloride, chromium, lead, nickel, trichloroethylene, perchloroethylene, and 1,2-dichloro- ethylene in groundwater; trichloroethylene, 1,2-dichloroethylene, methylene chloride, and nickel in surface water; trichloroethylene, 1,2-dichloroethylene, chloroform, methylene chloride, cyanide, 2-butanone, cadmium, lead, chromium, nickel, and dieldrin in soil; and chloroform, lead, nickel, and chromium in sediment. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via soil, sediment, and surface water.
Biodegradation of Trihalomethanes and Other Halogenated Aliphatic Compounds
NASA Technical Reports Server (NTRS)
Smith, G. B.
1996-01-01
The biological dehalogenation of common water pollutants such as trichloromethane (chloroform) and other halogenated aliphatic compounds was the subject of this project. Samples from diverse water environments such as from groundwater contaminated with halogenated compounds and wastewaters from regional treatment plants were studied to identify conditions that favor certain dehalogenation reactions over others. Gene probe analyses of DNA extracted from the dichlormethane-degrading wastewater indicated the presence of the gene coding for dichloromethane dehalogenase, indicating the genetic basis for the dechlorination activity observed. These studies indicate that methanogenic bacteria are the organisms responsible for the chloroform dechlorination. Dechlorination of a common chlorofluorocarbon (CFC-11) was identified in samples taken from a regional aquifer contaminated with halogenated aliphatic compounds.
Badwaik, Laxmikant S; Borah, Pallab Kumar; Deka, Sankar C
2015-02-01
Wild-type lactobacillus isolated form Khorisa, a fermented bamboo shoot product of Assam, India were evaluated for production anti-bacterial secondary biometabolites, against Staphylococcus aureus. Submerged fermentation technique was used for the production of secondary anti-microbial biometabolite by a single wild-type lactobacillus strain, which tested positive for the release of anti-bacterial factor(s). Crude cell-free supernatant was obtained, followed by extraction in water-immiscible solvents viz., chloroform, hexane, petroleum ether. Chloroform extract of cell-free crude supernatant showed maximum yield (0.054 g/ml) and inhibited all indicator bacterial strains viz., Escherichia coli, Staphylococcus aureus, and Bacillus cereus. Yields of hexane and petroleum ether extract were 0.052 and 0.026 g/ml, respectively. Minimum lethal dose concentration assay of the chloroform extract showed LDmin values at 27, 1.68, and 1.68 mg/ml for E. coli, S. aureus, and B. cereus, respectively. Kill time for all the indicator bacterial strains were less than 12 h. The efficacy of the anti-bacterial substance seemed to depend on the presence of organic acids, particularly lactic acid. Conceptual-based suggestion for the development of an onsite secondary metabolites recovery system during continuous fermentation has also been attempted.
Polymer Latex Stability Modification by Exposure to Hydrophobic Solvents.
de Oliveira Cardoso A; Galembeck
1998-08-01
The stability of latex particles toward coagulation in the presence of salt is modified by swelling the latex with toluene and chloroform vapors. Short-term stability was determined by turbidimetric titrations, and the long-term stability was evaluated by adding latex and salt solutions, allowing the mixture to age for 24 or 48 h and determining the characteristics of the supernatant and of the sediment. Nine different latexes were examined, with variable results: in some cases, both apolar solvents stabilize the latex; in other cases, increased stability is induced by only one of the solvents, either toluene or chloroform. There is also coherence, but not a strict correlation, between the solvent effects on short- and long-term stability. For instance, in the case of a core-and-shell styrene-butyl methacrylate latex, chloroform has a small stabilizing effect in the titration experiment, but it prevents the formation of a coagulated latex sediment even 48 h after mixing latex and salt. Two hypotheses are discussed to account for these observations: (i) swelling solvents decrease the particles ability to dissipate the collision kinetic energy, so that particles collide but without joining each other; (ii) the solvents induce the release of trapped charged groups from the particle interior to the interface, enhancing the usual (electrostatic, steric, hydration) stability factors. Copyright 1998 Academic Press.
[STUDY OF LIPIDS SEED'S OIL OF VITEX AGNUS CASTUS GROWING IN GEORGIA].
Kikalishvili, B; Zurabashvili, D; Sulakvelidze, Ts; Malania, M; Turabelidze, D
2016-07-01
There was established the lipid composition of the seeds of Vitex agnus castus L. by the qualitative and quantitative methods of analyses. There were received neutral lipids from the seeds by extraction with hexane in the yield 10%, counted on dry material. For the divide of neutral lipids there was used silica gel plates LS 5/40 in the systems of solvents: 1. petroleum ether-diethylether-acidum aceticum (85:14:1), 2. hexane-diethylether (1:1). After obtaining neutral lipids from the residual plant shrot pollar lipids was extracted with the mixture of chloroform-methanol (2:1) and was divided on silica gel plates LS 5/40, mobile phase: 1. chloroform-methanol-25% ammonium hydrate 2. chloroform-methanol icy acetic acid-water (170:25:25:6). In the sum of polar lipids qualitatively were established phospholipids: lisophosphatidylcholine, phosphatidylinosit, phospatidylethanolamine and N-acylphosphatidylethanolamine, in neutral lipids, hydrocarbons, triglycerids, free fatty acids and sterines. By the method of high performance liquid chromatography analyses there were identified following free fatty acids: lauric, myristic, palmitic, stearic, linolic, linolenic, arachidic and begenic, unsaturated oleic and polyunsaturated linolic and linolenic acids. obtained oil with unique composition from the seeds of Vitex agnus-castus indicates to its high biological activity and importance for usage in medicine.
Apu, AS; Muhit, MA; Tareq, SM; Pathan, AH; Jamaluddin, ATM; Ahmed, M
2010-01-01
The crude methanolic extract of Dillenia indica Linn. (Dilleniaceae) leaves has been investigated for the evaluation of antimicrobial and cytotoxic activities. Organic solvent (n-hexane, carbon tetrachloride and chloroform) fractions of methanolic extract and methanolic fraction (aqueous) were screened for their antimicrobial activity by disc diffusion method. Besides, the fractions were screened for cytotoxic activity using brine shrimp (Artemia salina) lethality bioassay. Among the four fractions tested, n-hexane, carbon tetrachloride, and chloroform fractions showed moderate antibacterial and antifungal activity compared to standard antibiotic, kanamycin. The average zone of inhibition was ranged from 6 to 8 mm at a concentration of 400 µg/disc. But the aqueous fraction was found to be insensitive to microbial growth. Compared to vincristine sulfate (with LC50 of 0.52 µg/ ml), n-hexane and chloroform fractions demonstrated a significant cytotoxic activity (having LC50 of 1.94 µg/ml and 2.13 µg/ml, respectively). The LC50 values of the carbon tetrachloride and aqueous fraction were 4.46 µg/ml and 5.13 µg/ ml, respectively. The study confirms the moderate antimicrobial and potent cytotoxic activities of Dillenia indica leaves extract and therefore demands the isolation of active principles and thorough bioassay. PMID:21331191
Takahashi, Cristiane Midori; Cunha, Rodrigo Sanches; de Martin, Alexandre Sigrist; Fontana, Carlos Eduardo; Silveira, Cláudia Fernandes M; da Silveira Bueno, Carlos Eduardo
2009-11-01
Effective removal of gutta-percha in endodontic retreatment is a significant factor to ensure a favorable outcome from failed procedures. The purpose of this study was to evaluate the efficacy of a nickel-titanium rotary instrument system with or without a solvent versus stainless steel hand files for gutta-percha removal. Forty extracted human maxillary anterior teeth were prepared and filled. They were divided into 4 groups: Gates-Glidden and K-files, Gates-Glidden and K-files with chloroform, ProTaper Universal rotary retreatment system, and ProTaper Universal rotary retreatment system with chloroform. The operating time was recorded. The teeth were longitudinally sectioned and photographed. The images were analyzed and the filling remnants were quantified by using the IMAGE TOOL software. With Kruskall-Wallis test, statistical analysis showed that there was no significant difference between the techniques in regard to the amount of the endodontic filling remnants (P < .05); however, the ProTaper Universal rotary retreatment system was faster than the hand files (P < .05). All of the techniques proved helpful for the removal of endodontic filling material, and they were similar in material remaining after retreatment, but the ProTaper Universal rotary retreatment system without chloroform was faster.
D’Souza, Malcolm J.; Kevill, Dennis N.
2014-01-01
The replacement of oxygen within a chloroformate ester (ROCOCl) by sulfur can lead to a chlorothioformate (RSCOCl), a chlorothionoformate (ROCSCl), or a chlorodithioformate (RSCSCl). Phenyl chloroformate (PhOCOCl) reacts over the full range of solvents usually included in Grunwald-Winstein equation studies of solvolysis by an addition-elimination (A-E) pathway. At the other extreme, phenyl chlorodithioformate (PhSCSCl) reacts across the range by an ionization pathway. The phenyl chlorothioformate (PhSCOCl) and phenyl chlorothionoformate (PhOCSCl) react at remarkably similar rates in a given solvent and there is a dichotomy of behavior with the A-E pathway favored in solvents such as ethanol-water and the ionization mechanism favored in aqueous solvents rich in fluoroalcohol. Alkyl esters behave similarly but with increased tendency to ionization as the alkyl group goes from 1° to 2° to 3°. N,N-Disubstituted carbamoyl halides favor the ionization pathway as do also the considerably faster reacting thiocarbamoyl chlorides. The tendency towards ionization increases as, within the three contributing structures of the resonance hybrid for the formed cation, the atoms carrying positive charge (other than the central carbon) change from oxygen to sulfur to nitrogen, consistent with the relative stabilities of species with positive charge on these atoms. PMID:25310653
A MOUSE TEST FOR MEASURING THE IMMUNIZING POTENCY OF ANTIRABIES VACCINES
Webster, Leslie T.
1939-01-01
1. A quantitative practical mouse test is described for measuring the immunizing potency of antirabies vaccines. 2. Virulent virus, injected intraperitoneally as a vaccine, immunized mice within 10 days and for a period of at least 9 months. Demonstrable neutralizing antibodies accompanied this immunity. Virus given subcutaneously failed to immunize as effectively. The margin between immunizing and infecting dose of vaccine was small. 3. Commercial vaccines containing virulent virus prepared for the treatment of man gave results similar to those obtained with laboratory virus. 4. Commercial vaccines inactivated with phenol and prepared for the treatment of man in general failed to immunize mice. None contained virulent virus. The phenolized preparation from one commercial firm, however, as also the chloroformized preparation from another, immunized mice consistently when given intraperitoneally in quantities approximating 5 times that advocated per gm. of body weight in man. 5. Commercial canine vaccines inactivated with phenol proved non-virulent and failed to immunize mice. 6. Commercial canine vaccines inactivated with chloroform (Kelser) proved non-virulent but capable of immunizing mice provided a single intraperitoneal injection of 2 to 5 times that prescribed for dogs per gm. of body weight was given. 7. Chloroformized vaccines proved irritative to the peritoneum of mice. PMID:19870893
Pothoczki, Szilvia; Temleitner, László; Pusztai, László
2011-01-28
Analyses of the intermolecular structure of molecular liquids containing slightly distorted tetrahedral molecules of the CXY(3)-type are described. The process is composed of the determination of several different distance-dependent orientational correlation functions, including ones that are introduced here. As a result, a complete structure classification could be provided for CXY(3) molecular liquids, namely for liquid chloroform, bromoform, and methyl-iodide. In the present work, the calculations have been conducted on particle configurations resulting from reverse Monte Carlo computer modeling: these particle arrangements have the advantage that they are fully consistent with structure factors from neutron and x-ray diffraction measurements. It has been established that as the separation between neighboring molecules increases, the dominant mutual orientations change from face-to-face to edge-to-edge, via the edge-to-face arrangements. Depending on the actual liquid, these geometrical elements (edges and faces of the distorted tetrahedra) were found to contain different atoms. From the set of liquids studied here, the structure of methyl-iodide was found to be easiest to describe on the basis of pure steric effects (molecular shape, size, and density) and the structure of liquid chloroform seems to be the furthest away from the corresponding "flexible fused hard spheres" like reference system.
Gamboa, Fredy; Chaves, Margarita
2012-01-01
In recent years, the antimicrobial activity of Stevia rebaudiana Bertoni leaf extracts against a large number of microorganisms has been evaluated, but not its activity against microorganisms of importance in dental caries. The aim of this study was to evaluate the antibacterial activity of Stevia rebaudiana Bertoni leaf extracts against cariogenic bacteria. Extracts were obtained from the dried Stevia rebaudiana Bertoni leaves in hexane, methanol, ethanol, ethyl acetate and chloroform. The antimicrobial activity of the 5 extracts against 16 bacterial strains of the genera Streptococcus (n= 12) and Lactobacillus (n= 4) was evaluated by the well diffusion method. Minimal inhibitory concentrations (MIC) of the extracts in hexane, methanol, ethanol, ethyl acetate and chloroform on the 16 bacterial strains were respectively 30 mg/ml, 120 mg/ml, 120 mg/ml, 60 mg/ml and 60 mg/ml. The zones of inhibition present at the MIC were variable, ranging from 9 mm to 17.3 mm. Our results suggest that inhibition zones with a hexane extract are similar to those obtained with ethanol and methanol, but the minimal inhibitory concentration (30 mg/ml) is lower. For the four Lactobacillus species, the inhibition zones obtained between 12.3 and 17.3 mm were somewhat larger with ethyl acetate and chloroform extracts, suggesting they were the most susceptible microorganisms.
Lichte, F.E.; Wilson, S.M.; Brooks, R.R.; Reeves, R.D.; Holzbecher, J.; Ryan, D.E.
1986-01-01
The determination of osmium content and isotopic abundances in geological materials has received increasing attention in recent years following the proposal of Alvarez et al.1 that mass extinctions at the end of the Cretaceous period were caused by the impact of a large (???10km) meteorite which left anomalously high iridium levels as a geochemical signature in the boundary shales. Here we report a new and simple method for measuring osmium in geological materials, involving fusion of the sample with sodium peroxide, distillation of the osmium as the tetroxide using perchloric acid, extraction into chloroform, and absorption of the chloroform extract onto graphite powder before instrumental neutron activation analysis. In a variant of this technique, the chloroform extract is back-extracted into an aqueous phase and the osmium isotopes are determined by plasma-source mass spectrometry (ICPMS). We have used this method on the Woodside Creek (New Zealand) Cretaceous/Tertiary boundary clay and have obtained the first osmium content (6g ng g-1) for this material. The 187Os/186Os ratio is 1.12??0.16, showing a typical non-crustal signature. This combined distillation-extraction- ICPMS method will prove to be useful for measuring osmium isotopes in other geological materials. ?? 1986 Nature Publishing Group.
NASA Astrophysics Data System (ADS)
Priyanka, V.; Vijai Anand, A. S.; Mahesh, K.; Karpagam, S.
2017-11-01
The new donor-acceptor type conjugated moiety, namely 3-([4-(2-Cyano-2pyridine-2yl-vinyl)-phenyl]-dodecyl-amino)-phenyl)-2-pyridine-2-yl-acrylonitrile (DPA-PA) has been synthesized according to the Knoevenagel condensation. Here dodecyloxy diphenylamine moiety acts as an electron donor and cyano-pyridyl moiety acts as an electron acceptor. These moieties are recently showing great interest in optoelectronic applications. The structure of the DPA-PA was confirmed by FT-IR, 1H NMR. The final product showed great solubility in common organic solvents such as toluene, tetrahydrofuran, ethyl acetate, dichloromethane, chloroform etc due to the dodecyl chain. The absorption maximum of DPA-PA appeared at 433 nm in chloroform solution. The optical band gap is 2.2 eV calculated from thin film absorption edge (550 nm). The photoluminescence spectra exhibited a maximum peak at 513 nm with greenish fluorescence in chloroform solution and at 541 nm as the thin film state. The emission spectra of thin film state are 28 nm red shifted with broadening peak. The lower electrochemical band gap 1.55 eV was observed by cyclic voltammetry. This type of low band gap materials has much attention for their various potential applications in optoelectronic devices.
Pieroni, Laís Goyos; de Rezende, Fernanda Mendes; Ximenes, Valdecir Farias; Dokkedal, Anne Lígia
2011-11-10
Miconia is one of the largest genus of the Melastomataceae, with approximately 1,000 species. Studies aiming to describe the diverse biological activities of the Miconia species have shown promising results, such as analgesic, antimicrobial and trypanocidal properties. M. albicans leaves were dried, powdered and extracted to afford chloroformic and methanolic extracts. Total phenolic contents in the methanolic extract were determined according to modified Folin-Ciocalteu method. The antioxidant activity was measured using AAPH and DPPH radical assays. Chemical analysis was performed with the n-butanol fraction of the methanolic extract and the chloroformic extract, using different chromatographic techniques (CC, HPLC). The structural elucidation of compounds was performed using 500 MHz NMR and HPLC methods. The methanolic extract showed a high level of total phenolic contents; the results with antioxidant assays showed that the methanolic extract, the n-butanolic fraction and the isolated flavonoids from M. albicans had a significant scavenging capacity against AAPH and DPPH. Quercetin, quercetin-3-O-glucoside, rutin, 3-(E)-p-coumaroyl-α-amyrin was isolated from the n-butanolic fraction and α-amyrin, epi-betulinic acid, ursolic acid, epi-ursolic acid from the chloroformic extract. The results presented in this study demonstrate that M. albicans is a promising species in the search for biologically active compounds.
Micro-miniature gas chromatograph column disposed in silicon wafers
Yu, Conrad M.
2000-01-01
A micro-miniature gas chromatograph column is fabricated by forming matching halves of a circular cross-section spiral microcapillary in two silicon wafers and then bonding the two wafers together using visual or physical alignment methods. Heating wires are deposited on the outside surfaces of each wafer in a spiral or serpentine pattern large enough in area to cover the whole microcapillary area inside the joined wafers. The visual alignment method includes etching through an alignment window in one wafer and a precision-matching alignment target in the other wafer. The two wafers are then bonded together using the window and target. The physical alignment methods include etching through vertical alignment holes in both wafers and then using pins or posts through corresponding vertical alignment holes to force precision alignment during bonding. The pins or posts may be withdrawn after curing of the bond. Once the wafers are bonded together, a solid phase of very pure silicone is injected in a solution of very pure chloroform into one end of the microcapillary. The chloroform lowers the viscosity of the silicone enough that a high pressure hypodermic needle with a thumbscrew plunger can force the solution into the whole length of the spiral microcapillary. The chloroform is then evaporated out slowly to leave the silicone behind in a deposit.
Sobieski, Brian J; Noda, Isao; Rabolt, John F; Chase, D Bruce
2017-10-01
In this work, we describe polymer-solvent interactions in biosynthesized and biodegradable poly[(R)-3-hydroxybutyrate- co-(R)-3-hydroxyhexanoate] (PHBHx) and the atactic homopolymer, poly(3-hydroxybutyrate) (a-PHB), which were studied both as neat polymers and in solutions of chloroform and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). Specifically, infrared frequency shifts of the carbonyl band were observed in semi-crystalline PHBHx, but not in a-PHB, because it cannot form the helical conformation required for crystallization. The carbonyl band of PHBHx exhibited the high frequency associated with amorphous structure in chloroform and the lower frequency traditionally attributed to the helical crystalline structure in HFIP. The same results were obtained for a-PHB, demonstrating that the helical structure is not required for a lower frequency carbonyl-stretching mode. It is proposed that the band shift is due to hydrogen bonding between the carbonyl and hydroxyl hydrogen in HFIP. Therefore, the carbonyl frequency observed upon crystallization is most likely due to hydrogen bonding between the carbonyl and methyl hydrogen of the neighboring polymer chain in the crystal lattice as previously suggested.
Park, Min Soo; Joo, Wonchul; Kim, Jin Kon
2006-05-09
We investigate the effects of interfacial energy between water and solvent as well as polymer concentration on the formation of porous structures of polymer films prepared by spin coating of cellulose acetate butyrate (CAB) in mixed solvent of tetrahydrofuran (THF) and chloroform under humid condition. The interfacial energy between water and the solvent was gradually changed by the addition of chloroform to the solvent. At a high polymer concentration (0.15 g/cm3 in THF), porous structures were limited only at the top surfaces of CAB films, regardless of interfacial energies, due to the high viscosity of the solution. At a medium concentration (approximately 0.08 g/cm3 in THF), CAB film had relatively uniform pores at the top surface and very small pores inside the film because of the mixing of the water droplets with THF solution. When chloroform was added to THF, pores at the inner CAB film had a comparable size with those at the top surface because of the reduced degree of the mixing between the water droplets and the mixed solvent. A further decrease in polymer concentration (0.05 g/cm3 in THF) caused the final films to have a two-layer porous structure, and the size of pores at each layer was almost the same.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-12-02
The Welsh Road/Barkman Landfill site in Honey Brook, Pennsylvania was an unpermitted residential and commercial refuse disposal facility that operated from 1963 to sometime in the 1980s. After 1977, the landfill continued to operate in defiance of legal action to support a closure plan. Various investigations conducted in the 1980s revealed that industrial and hazardous waste had been accepted by the site. The environmental contamination on-site consists of copper, lead, 1,2-dichloropropane, toluene, chloroform and methylene chloride in drummed wastes; and mercury, toluene, dichlorofluoromethane, methylene chloride, trichlorofluoromethane, 5-methyl-2-hexanone, trichloroethylene, 1,2-dichloroethane, and 1,3,5-cycloheptatriene in groundwater. One time sampling indicated the presence ofmore » volatile compounds in air (hydrogen chloride and chloroform). The environmental contamination off-site consists of cadmium in sediment; and chloromethane, chloroform, xylenes, dichlorofluoromethane, 1,1-dichloroethane, tetrachloroethylene, p-cresol, toluene, methyl isobutyl ketone, di-n-butyl phthalate, lead, mercury, and zinc in residential well water. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via contaminated groundwater, surface water, soil, sediment, and airborne gases, vapors, and particulate.« less
Antimutagenic and free radical scavenger effects of leaf extracts from Accacia salicina
2011-01-01
Background Three extracts were prepared from the leaves of Accacia salicina; ethyl acetate (EA), chloroform (Chl) and petroleum ether (PE) extracts and was designed to examine antimutagenic, antioxidant potenty and oxidative DNA damage protecting activity. Methods Antioxidant activity of A. salicina extracts was determined by the ability of each extract to protect against plasmid DNA strand scission induced by hydroxyl radicals. An assay for the ability of these extracts to prevent mutations induced by various oxidants in Salmonella typhimurium TA102 and TA 104 strains was conducted. In addition, nonenzymatic methods were employed to evaluate anti-oxidative effects of tested extracts. Results These extracts from leaf parts of A. salicina showed no mutagenicity either with or without the metabolic enzyme preparation (S9). The highest protections against methylmethanesulfonate induced mutagenicity were observed with all extracts and especially chloroform extract. This extract exhibited the highest inhibitiory level of the Ames response induced by the indirect mutagen 2- aminoanthracene. All extracts exhibited the highest ability to protect plasmid DNA against hydroxyl radicals induced DNA damages. The ethyl acetate (EA) and chloroform (Chl) extracts showed with high TEAC values radical of 0.95 and 0.81 mM respectively, against the ABTS.+. Conclusion The present study revealed the antimutagenic and antioxidant potenty of plant extract from Accacia salicina leaves. PMID:22132863
NASA Astrophysics Data System (ADS)
Bandlamudi, Santosh Rathan Paul; Benjamin, Kenneth M.
2018-05-01
Molecular dynamics (MD) simulations were conducted for 1-ethyl-3-methylimidazolium methylsulfate [EMIM][MeSO4] dissolved in six polar covalent molecules [acetic acid, acetone, chloroform, dimethyl sulfoxide (DMSO), isopropyl alcohol, and methanol] to understand the free energies of ionic liquid (IL) ion pairing/aggregation in the limit of infinite dilution. Free energy landscapes or potentials of mean force (PMF) were computed using umbrella sampling and the weighted histogram analysis method. The PMF studies showed the strongest IL ion pairing in chloroform, and the strength of IL ion pairing decreases in the order of chloroform, acetone, propanol, acetic acid, DMSO, and methanol. In the limit of infinite dilution, the free energy curves for IL ion aggregation in co-solvents were characterized by two distinct minima [global (˜3.6 Å) and local (˜5.7 Å)], while free energy values at these minima differed significantly for IL in each co-solvent. The PMF studies were extended for determining the free energy of IL ion aggregation as a function of concentration of methanol. Studies showed that as the concentration of methanol increased, the free energy of ion aggregation decreased, suggesting greater ion pair stability, in agreement with previously reported MD clustering and radial distribution function data.
Changes in Breath Trihalomethane Levels Resulting from Household Water-Use Activities
Gordon, Sydney M.; Brinkman, Marielle C.; Ashley, David L.; Blount, Benjamin C.; Lyu, Christopher; Masters, John; Singer, Philip C.
2006-01-01
Common household water-use activities such as showering, bathing, drinking, and washing clothes or dishes are potentially important contributors to individual exposure to trihalomethanes (THMs), the major class of disinfection by-products of water treated with chlorine. Previous studies have focused on showering or bathing activities. In this study, we selected 12 common water-use activities and determined which may lead to the greatest THM exposures and result in the greatest increase in the internal dose. Seven subjects performed the various water-use activities in two residences served by water utilities with relatively high and moderate total THM levels. To maintain a consistent exposure environment, the activities, exposure times, air exchange rates, water flows, water temperatures, and extraneous THM emissions to the indoor air were carefully controlled. Water, indoor air, blood, and exhaled-breath samples were collected during each exposure session for each activity, in accordance with a strict, well-defined protocol. Although showering (for 10 min) and bathing (for 14 min), as well as machine washing of clothes and opening mechanical dishwashers at the end of the cycle, resulted in substantial increases in indoor air chloroform concentrations, only showering and bathing caused significant increases in the breath chloroform levels. In the case of bromodichloromethane (BDCM), only bathing yielded a significantly higher air level in relation to the preexposure concentration. For chloroform from showering, strong correlations were observed for indoor air and exhaled breath, blood and exhaled breath, indoor air and blood, and tap water and blood. Only water and breath, and blood and breath were significantly associated for chloroform from bathing. For BDCM, significant correlations were obtained for blood and air, and blood and water from showering. Neither dibromochloromethane nor bromoform gave measurable breath concentrations for any of the activities investigated because of their much lower tap-water concentrations. Future studies will address the effects that changes in these common water-use activities may have on exposure. PMID:16581538
Banerjee, Malabika; Moulick, Soumitra; Bhattacharya, Kunal Kumar; Parai, Debaprasad; Chattopadhyay, Subrata; Mukherjee, Samir Kumar
2017-12-01
Quorum-sensing (QS) is known to play an essential role in regulation of virulence factors and toxins during Pseudomonas aeruginosa infection which may frequently cause antibiotic resistance and hostile outcomes of inflammatory injury. Therefore, it is an urgent need to search for a novel agent with low risk of resistance development that can target QS and inflammatory damage prevention as well. Andrographis paniculata, a herbaceous plant under the family Acanthaceae, native to Asian countries and also cultivated in Scandinavia and some parts of Europe, has a strong traditional usage with its known antibacterial, anti-inflammatory, antipyretic, antiviral and antioxidant properties. In this study, three different solvent extracts (viz., chloroform, methanol and aqueous) of A. paniculata were examined for their anti-QS and anti-inflammatory activities. Study was carried out to assess the effect on some selected QS-regulatory genes at transcriptional level using Real Time-PCR. In addition, ability to attenuate MAPK pathways upon P. aeruginosa infection was performed to check its potential anti-inflammatory activity. Chloroform and methanol extracts showed significant reduction (p < 0.05) of the QS-controlled extracellular virulence factors in P. aeruginosa including the expression of pyocyanin, elastase, total protease, rhamnolipid and hemolysin without affecting bacterial viability. They also significantly (p < 0.05) reduced swarming motility and biofilm formation of P. aeruginosa. The chloroform extract, which was found to be more effective, decreased expression of lasI, lasR, rhlI and rhlR by 61%, 75%, 41%, and 44%, respectively. Moreover, chloroform extract decreased activation of p-p38 and p-ERK1/2 expression levels in MAPK signal pathways in P. aeruginosa infected macrophage cells. As the present study demonstrates that A. paniculata extracts inhibit QS in P. aeruginosa and exhibit anti-inflammatory activities, therefore it represents itself as a prospective therapeutic agent against P. aeruginosa infection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cho, Wan-Cheol; Poo, Kyung-Min; Mohamed, Hend Omar; Kim, Tae-Nam; Kim, Yul-Seong; Hwang, Moon Hyun; Jung, Do-Won; Chae, Kyu-Jung
2018-05-11
Volatile organic compounds (VOCs) are highly toxic contaminants commonly dissolved in industrial wastewater. Therefore, treatment of VOC-containing wastewater requires a robust and rapid reaction because liquid VOCs can become volatile secondary pollutants. In this study, electro-oxidation with catalytic composite dimensionally stable anodes (DSAs)-a promising process for degrading organic pollutants-was applied to remove various VOCs (chloroform, benzene, toluene, and trichloroethylene). Excellent treatment efficiency of VOCs was demonstrated. To evaluate the VOC removal rate of each DSA, a titanium plate, a frequently used substratum, was coated with four different highly electrocatalytic composite materials (platinum group metals), Ir, IrPt, IrRu, and IrPd. Ir was used as a base catalyst to maintain the electrochemical stability of the anode. Current density and electrolyte concentration were evaluated over various ranges (20-45 mA/cm 2 and 0.01-0.15 mol/L as NaCl, respectively) to determine the optimum operating condition. Results indicated that chloroform was the most refractory VOC tested due to its robust chemical bond strength. Moreover, the optimum current density and electrolyte concentration were 25 mA/cm 2 and 0.05 M, respectively, representing the most cost-effective condition. Four DSAs were examined (Ir/Ti, IrPt/Ti, IrRu/Ti, and IrPd/Ti). The IrPd/Ti anode was the most suitable for treatment of VOCs presenting the highest chloroform removal performance of 78.8%, energy consumption of 0.38 kWh per unit mass (g) of oxidized chloroform, and the least volatilized fraction of 4.4%. IrPd/Ti was the most suitable anode material for VOC treatment because of its unique structure, high wettability, and high surface area. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bagavan, A; Kamaraj, C; Rahuman, A Abdul; Elango, G; Zahir, A Abduz; Pandiyan, G
2009-04-01
The acetone, chloroform, ethyl acetate, hexane and methanol extracts of peel and leaf extracts of Citrus sinensis, Ocimum canum, Ocimum sanctum and Rhinacanthus nasutus were tested against fourth instar larvae of malaria vector, Anopheles subpictus Grassi, Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae) and feeding deterrence to nymphs of cotton pest, Aphis gossypii Glover (Homoptera: Aphididae). The larval and nymph mortality were observed after 24 h of exposure. All extracts showed moderate larvicidal and nymphicidal effects; however, the highest mortality was found in peel chloroform extract of C. sinensis, leaf ethyl acetate extracts of O. canum and O. sanctum and leaf chloroform extract of R. nasutus against the larvae of A. subpictus (LC(50) = 58.25, 88.15, 21.67 and 40.46 ppm; LC(90) = 298.31, 528.70, 98.34 and 267.20 ppm), peel methanol extract of C. sinensis, leaf methanol extract of O. canum, ethyl acetate extracts of O. sanctum and R. nasutus against the larvae of C. tritaeniorhynchus (LC(50) = 38.15, 72.40, 109.12 and 39.32 ppm; LC(90) = 184.67, 268.93, 646.62 and 176.39 ppm), peel hexane extract of C. sinensis, leaf methanol extracts of O. canum and R. nasutus and leaf ethyl acetate extract of O. sanctum against the nymph of A. gossypii (LC(50) = 162.89, 80.99, 73.27 and 130.19 ppm; LC(90) = 595.40, 293.33, 338.74 and 450.90 ppm), respectively. These results suggest that the peel methanol extracts of C. sinensis and O. canum, ethyl acetate leaf extract of O. sanctum and leaf chloroform and ethyl acetate extract of R. nasutus have the potential to be used as an ideal eco-friendly approach for the control of the A. subpictus, C. tritaeniorhynchus and A. gossypii.
Cytotoxic effect of Alpinia scabra (Blume) Náves extracts on human breast and ovarian cancer cells
2013-01-01
Background Alpinia scabra, locally known as 'Lengkuas raya’, is an aromatic, perennial and rhizomatous herb from the family Zingiberaceae. It is a wild species which grows largely on mountains at moderate elevations in Peninsular Malaysia, but it can also survive in the lowlands like in the states of Terengganu and Northern Johor. The present study reports the cytotoxic potential of A. scabra extracts from different parts of the plant. Methods The experimental approach in the present study was based on a bioassay-guided fractionation. The crude methanol and fractionated extracts (hexane, chloroform and water) from different parts of A. scabra (leaves, rhizomes, roots and pseudo stems) were prepared prior to the cytotoxicity evaluation against human ovarian (SKOV-3) and hormone-dependent breast (MCF7) carcinoma cells. The identified cytotoxic extracts were then subjected to chemical investigations in order to identify the active ingredients. A normal human lung fibroblast cell line (MRC-5) was used to determine the specificity for cancerous cells. The cytotoxic extracts and fractions were also subjected to morphological assessment, DNA fragmentation analysis and DAPI nuclear staining. Results The leaf (hexane and chloroform) and rhizome (chloroform) extracts showed high inhibitory effect against the tested cells. Ten fractions (LC1-LC10) were yielded after purification of the leaf chloroform extract. Fraction LC4 which showed excellent cytotoxic activity was further purified and resulted in 17 sub-fractions (VLC1-VLC17). Sub-fraction VLC9 showed excellent cytotoxicity against MCF7 and SKOV-3 cells but not toxic against normal MRC-5 cells. Meanwhile, eighteen fractions (RC1-RC18) were obtained after purification of the rhizome chloroform extract, of which fraction RC5 showed cytotoxicity against SKOV-3 cells with high selectivity index. There were marked morphological changes when observed using phase-contrast inverted microscope, DAPI nuclear staining and also DNA fragmentations in MCF7 and SKOV-3 cells after treatment with the cytotoxic extracts and fractions which were indicative of cell apoptosis. Methyl palmitate and methyl stearate were identified in the hexane leaf extract by GC-MS analysis. Conclusions The data obtained from the current study demonstrated that the cell death induced by cytotoxic extracts and fractions of A. scabra may be due to apoptosis induction which was characterized by apoptotic morphological changes and DNA fragmentation. The active ingredients in the leaf sub-fraction VLC9 and rhizome fraction RC5 may lead to valuable compounds that have the ability to kill cancer cells but not normal cells. PMID:24215354
Chai, Tsun-Thai; Khoo, Chee-Siong; Tee, Chong-Siang; Wong, Fai-Chu
2016-01-01
Alternanthera sessilis is a medicinal herb which is consumed as vegetable and used as traditional remedies of various ailments in Asia and Africa. This study aimed to investigate the antiglucosidase and antioxidant activity of solvent fractions of A. sessilis leaf and callus. Leaf and callus methanol extracts were fractionated to produce hexane, chloroform, ethyl acetate, butanol, and water fractions. Antiglucosidase and 1,1-diphenyl-2-picrylhydrazyl scavenging activities as well as total phenolic (TP), total flavonoid (TF), and total coumarin (TC) contents were evaluated. Lineweaver-Burk plot analysis was performed on leaf and callus fractions with the strongest antiglucosidase activity. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractions. Callus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12 μg/mL) activity, respectively, among callus fractions. LEF and CEF were identified as noncompetitive and competitive α-glucosidase inhibitors, respectively. LEF and CEF had greater antiglucosidase activity than acarbose. Leaf fractions had higher phytochemical contents than callus fractions. LEF had the highest TP, TF, and TC contents. Antiglucosidase and antioxidant activities of leaf fractions correlated with phytochemical contents. LEF had potent antiglucosidase activity and concurrent antioxidant activity. CEF had the highest antiglucosidase activity among all fractions. Callus culture is a promising tool for enhancing production of potent α-glucosidase inhibitors. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractionsCallus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12 μg/mL) activity, respectively, among callus fractionsLEF and CEF were identified as noncompetitive and competitive á-glucosidase inhibitors, respectivelyAntiglucosidase and antioxidant activities of leaf fractions correlated with phytochemical contents. Abbreviations used: LHF: Leaf hexane fraction, LCF: Leaf chloroform fraction, LEF: Leaf ethyl acetate fraction, LBF: Leaf butanol fraction, LWF: Leaf water fraction, CHF: Callus hexane fraction, CCF: Callus chloroform fraction, CEF: Callus ethyl acetate fraction, CBF: Callus butanol fraction, CWF: Callus water fraction, TP: Total phenolic, TF: Total flavonoid, TC: Total coumarin.
NASA Astrophysics Data System (ADS)
Pal, Chiranjit; Chaudhuri, Tandrima; Chattopdhyay, Subrata; Banerjee, Manas
2017-04-01
This study sort out chemical physics of non-covalent interaction between Copper phthalocyanine (CuPC) with Methanato borondifluoride derivatives (MBDF) in chloroform and ethanol. Formation of isosbestic points indicated stable ground state equilibrium between CuPC and MBDF, association ability were more pronounced in less polar chloroform. Interesting overall parallel orientation of MBDF over CuPC in gas phase geometries indicated that fluorine centre of MBDF lying just above the Cu-centre of CuPC. Thus strong interaction between Cu(II)- and F- centre could not be overruled and was also established by NBO calculation. TDDFT along with FMO features and heat of reaction values clearly designated the existence of π-π interaction and effect of solvent polarity on that interaction.
Adsorption of lipids on silicalite-1
NASA Astrophysics Data System (ADS)
Atyaksheva, L. F.; Ivanova, I. I.; Ivanova, M. V.; Tarasevich, B. N.; Fedosov, D. A.
2017-05-01
The adsorption of egg lecithin and cholesterol from chloroform solutions onto silicalite-1 (hydrophobic silica with MFI zeolite structure) is investigated. Adsorption isotherms of the L-type for lecithin and the S-type for cholesterol are obtained in the 0.05-4.5 mg/mL range of equilibrium lipid concentrations. The maximum adsorption for lecithin is 30 mg/g; for cholesterol it is 70 mg/g. Chloroform treatment results in the desorption of no more than 10% of the lecithin and up to 50% of the cholesterol from the silicalite-1 surface. The lecithin molecules in the monolayer on the silicalite-1 are oriented such that their hydrophobic tails are oriented toward the surface and are partially inside the pores of the adsorbent.
Bipyrrole-Strapped Calix[4]pyrroles: Strong Anion Receptors That Extract the Sulfate Anion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sung Kuk; Lee, Juhoon; Williams, Neil J
Cage-type calix[4]pyrroles 2 and 3 bearing two additional pyrrole groups on the strap have been synthesized. Compared with the parent calix[4]pyrrole (1), they were found to exhibit remarkably enhanced affinities for anions, including the sulfate anion (TBA+ salts), in organic media (CD2Cl2). This increase is ascribed to participation of the bipyrrole units in anion binding. Receptors 2 and 3 extract the hydrophilic sulfate anion (as the methyltrialkyl(C8-10)ammonium (A336+) salt)) from aqueous media into a chloroform phase with significantly improved efficiency (>10-fold relative to calix[4]pyrrole 1). These two receptors also solubilize into chloroform the otherwise insoluble sulfate salt, (TMA)2SO4 (tetramethylammonium sulfate).
Qadir, Muhammad Imran; Abbas, Khizar; Younus, Adnan; Shaikh, Rehan Sadiq
2016-09-01
Objective of the present study was to investigate the antibacterial activity of Sea buckthorn (Hippophae rhamnoides L.) berries and leaves against methicillin resistant Staphylococcus aureus (MRSA) by using the standard disc diffusion method. Chloroform, n-hexane and aqueous extract of the plant parts were used. Doses of 2mg/ml, 4 mg/ml and 6mg/ml were tested against the microorganism, and the zone of inhibition was compared against the standard drug vancomycin. Results indicated that n-hexane and chloroform extracts of berries and n-hexane extract leaves showed significant (p<0.05) antibacterial activity comparable with vancomycin. It was concluded from the study that extracts berries and leaves of Hippophae rhamnoides have antibacterial activity against MRSA.
NASA Technical Reports Server (NTRS)
Zhang, S. Y.; Wang, G. F.; Wu, Y. T.; Baldwin, K. M. (Principal Investigator)
1993-01-01
On a partition chromatographic column in which the support is Kieselguhr and the stationary phase is sulfuric acid solution (2 mol/L), three components of compound theophylline tablet were simultaneously eluted by chloroform and three other components were simultaneously eluted by ammonia-saturated chloroform. The two mixtures were determined by computer-aided convolution curve method separately. The corresponding average recovery and relative standard deviation of the six components were as follows: 101.6, 1.46% for caffeine; 99.7, 0.10% for phenacetin; 100.9, 1.31% for phenobarbitone; 100.2, 0.81% for theophylline; 99.9, 0.81% for theobromine and 100.8, 0.48% for aminopyrine.
Optical limiting properties of optically active phthalocyanine derivatives
NASA Astrophysics Data System (ADS)
Wang, Peng; Zhang, Shuang; Wu, Peiji; Ye, Cheng; Liu, Hongwei; Xi, Fu
2001-06-01
The optical limiting properties of four optically active phthalocyanine derivatives in chloroform solutions and epoxy resin thin plates were measured at 532 nm with 10 ns pulses. The excited state absorption cross-section σex and refractive-index cross-section σr were determined with the Z-scan technique. These chromophores possess larger σex than the ground state absorption cross-section σ0, indicating that they are the potential materials for reverse saturable absorption (RSA). The negative σr values of these chromophores add to the thermal contribution, producing a larger defocusing effect, which may be helpful in further enhancing their optical limiting performance. The optical limiting responses of the thin plate samples are stronger than those of the chloroform solutions.
Baena, Yolima; Pinzón, Jorge A; Barbosa, Helber J; Martínez, Fleming
2005-06-01
The molar (K(C)(o/w)) and rational (K(X)(o/w)) partition coefficients in the octanol/buffer, i-propyl myristate/buffer, chloroform/buffer, and cyclohexane/buffer systems were determined for acetanilide and phenacetin at 25.0, 30.0, 35.0, and 40.0 degrees C. In all cases except for cyclohexane, the K(C)(o/w) and K(X)(o/w) values were greater than unity. This demonstrates that these two drugs have predominantly lipophilic behavior. Gibbs and van't Hoff thermodynamic analyses have revealed that the transfer of these drugs from water to organic solvents is spontaneous and that it is mainly driven enthalpically for i-propyl myristate and chloroform, and entropy-driven for octanol and cyclohexane.
40 CFR Appendix Vii to Part 261 - Basis for Listing Hazardous Waste
Code of Federal Regulations, 2012 CFR
2012-07-01
..., acrylamide. K015 Benzyl chloride, chlorobenzene, toluene, benzotrichloride. K016 Hexachlorobenzene... Benzotrichloride, benzyl chloride, chloroform, chloromethane, chlorobenzene, 1,4-dichlorobenzene, hexachlorobenzene...
40 CFR Appendix Vii to Part 261 - Basis for Listing Hazardous Waste
Code of Federal Regulations, 2013 CFR
2013-07-01
..., acrylamide. K015 Benzyl chloride, chlorobenzene, toluene, benzotrichloride. K016 Hexachlorobenzene... Benzotrichloride, benzyl chloride, chloroform, chloromethane, chlorobenzene, 1,4-dichlorobenzene, hexachlorobenzene...
40 CFR Appendix Vii to Part 261 - Basis for Listing Hazardous Waste
Code of Federal Regulations, 2011 CFR
2011-07-01
..., acrylamide. K015 Benzyl chloride, chlorobenzene, toluene, benzotrichloride. K016 Hexachlorobenzene... Benzotrichloride, benzyl chloride, chloroform, chloromethane, chlorobenzene, 1,4-dichlorobenzene, hexachlorobenzene...
40 CFR Appendix Vii to Part 261 - Basis for Listing Hazardous Waste
Code of Federal Regulations, 2014 CFR
2014-07-01
..., acrylamide. K015 Benzyl chloride, chlorobenzene, toluene, benzotrichloride. K016 Hexachlorobenzene... Benzotrichloride, benzyl chloride, chloroform, chloromethane, chlorobenzene, 1,4-dichlorobenzene, hexachlorobenzene...
Zhang, Jingnan; Bai, Yanxia; Fan, Yaoting; Hou, Hongwei
2016-10-01
Improved hydrogen production from glucose was achieved by adding a specific methane inhibitor (such as chloroform) to repress the activity of methanogens in a single-chamber microbial electrolysis cells (MECs) with a double anode arrangement. A maximum hydrogen production of 8.4±0.2 mol H2/mol-G (G represents glucose), a hydrogen production rate of 2.39±0.3 m(3) H2/m3/d and a high energy efficiency (relative to the electrical input) of ηE=165±5% had been recorded from 1 g/L glucose at a low dosage of chloroform (5‰, v:v) and an applied voltage of 0.8 V. Almost all of the glucose was removed within 4 h, with 66% of the electrons in intermediates (mainly including acetate and ethanol), and methane gas was not detected in the MECs through 11 batch cycles. The experimental results confirmed that chloroform was an effective methane inhibitor that improved hydrogen production from glucose in the MECs. In addition, the cyclic voltammetry tests demonstrated that the electron transfer in the MECs was mainly due to the biofilm-bound redox compounds rather than soluble electron shuttles. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Sethupathy, A; Sivashanmugam, P
2018-06-04
In this study, a novel biosurfactant potential bacterial strain Pseudomonas pachastrellae RW43 was isolated from pulp and paper sludge and the biosurfactant namely rhamnolipid produced by Pseudomonas pachastrellae RW43 was investigated by varying pH and incubation time in batch liquid fermentation process. The maximal yield of rhamnolipid was found to be 12.1 g/L at an optimized condition of pH 7 and incubation time of 168 h. NMR analysis was performed for identification of molecular structure of produced rhamnolipid and its results concluded that the product was identified as di rhamnolipid. Then, statistically the global optimum conditions for hydrolytic enzymes extraction parameters (sonication power (100 W), extraction time (15 min) and rhamnolipid dosage (2% v/v)) were established. At 30,456 kJ/kg TS specific energy, ultrasonication with rhamnolipid disintegration method extracted maximal consortium activity of hydrolytic enzymes from mixed sludge (municipal and pulp & paper sludge) and the maximum observed were found to be 42.22, 51.75, 34.26, 24.21, 11.35 Units/g VSS respectively for protease, α-amylase, cellulase, lipase and α-glucosidase. Polyhydroxyalkanoates was recovered from enzymes extracted sludge using various solvents namely chloroform, sodium hypochlorite with chloroform and sodium lauryl sulfate with sodium hypochlorite. The maximum recovery was found to be 74 g/kg using sodium hypochlorite and chloroform extraction solvents.
Reduction in hypericin-induced phototoxicity by Hypericum perforatum extracts and pure compounds
Schmitt, Laura A.; Liu, Yi; Murphy, Patricia A.; Petrich, Jacob W.; Dixon, Philip M.; Birt, Diane F.
2006-01-01
Clinical evidence suggests that administration of Hypericum perforatum (Hp) extracts containing the photo-activated hypericin compounds may cause fewer skin photosensitization reactions than administration of pure hypericin. This study was conducted to determine whether the phototoxicity of hypericin in HaCaT keratinocytes could be attenuated by H. perforatum extracts and constituents. Two extracts, when supplemented with 20 μM hypericin: (1) an ethanol re-extraction of residue following a chloroform extraction (denoted ethanol(-chloroform)) (3.35 μM hypericin and 124.0 μM total flavonoids); and (2) a chloroform extract (hypericin and flavonoids not detected), showed 25% and 50% (p < 0.0001) less phototoxicity than 20 μM hypericin alone. Two H. perforatum constituents, when supplemented with 20 μM hypericin: (1) 10 μM chlorogenic acid; and (2) 0.25 μM pyropheophorbide, exhibited 24% (p < 0.05) and 40% (p < 0.05) less phototoxicity than 20 μM hypericin alone. The peroxidation of arachidonic acid was assessed as a measure of oxidative damage by photo-activated hypericin, but this parameter of lipid peroxidation was not influenced by the extracts or constituents. However α-tocopherol, a known antioxidant also did not influence the amount of lipid peroxidation induced in this system. These observations indicate that hypericin combined with H. perforatum extracts or constituents may exert less phototoxicity than pure hypericin, but possibly not through a reduction in arachidonic acid peroxidation. PMID:16859921
Jain, Rajeev; Mudiam, Mohana Krishna Reddy; Chauhan, Abhishek; Ch, Ratnasekhar; Murthy, R C; Khan, Haider A
2013-11-01
A simple, rapid and economical method has been proposed for the quantitative determination of parabens (methyl, ethyl, propyl and butyl paraben) in different samples (food, cosmetics and water) based on isobutyl chloroformate (IBCF) derivatisation and preconcentration using dispersive liquid-liquid microextraction in single step. Under optimum conditions, solid samples were extracted with ethanol (disperser solvent) and 200 μL of this extract along with 50 μL of chloroform (extraction solvent) and 10 μL of IBCF was rapidly injected into 2 mL of ultra-pure water containing 150 μL of pyridine to induce formation of a cloudy state. After centrifugation, 1 μL of the sedimented phase was analysed using gas chromatograph-flame ionisation detector (GC-FID) and the peaks were confirmed using gas chromatograph-positive chemical ionisation-mass spectrometer (GC-PCI-MS). Method was found to be linear over the range of 0.1-10 μg mL(-1) with square of correlation coefficient (R(2)) in the range of 0.9913-0.9992. Limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.029-0.102 μg mL(-1) and 0.095-0.336 μg mL(-1) with a signal to noise ratio of 3:1 and 10:1, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Detection and quantification of trihalomethanes in drinking water from Alexandria, Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, A.A.M.; Benfenati, E.; Fanelli, R.
1996-03-01
Trihalomethanes (THMs) are one group of harmful chlorinated compounds which are known to contaminate drinking water. The total concentration of the four THMs in drinking water may vary up to 1000 {mu}g/l but it should not exceed 100 {mu}g/l. Toxicological studies suggest that chloroform and other THMs may have detrimental effect on human health. Chloroform was reported to cause cancer in experimental animals. Other THMs, based on the structural similarity to chloroform, may be also classified as health hazard compounds. Accordingly, THMs in water supplies should be monitored closely so that measures may be taken to minimize or eliminate theirmore » presence whenever the concentration approach levels of concern. Little is known about the levels of THMs in drinking water of Egypt compared to other countries. Few studies have been reported from Cairo. To our knowledge, no studies concerning the THMs levels in drinking water have been reported from Alexandria. Therefore, the aim of this study is to detect and quantitate the levels of THMs in drinking water from some main districts in Alexandria, Solid Phase Micro Extraction (SPME) is a fast, sensitive, inexpensive, portable and solvent-free method for extracting organic compounds from aqueous samples. It is amenable to automation and can be used with any gas chromatograph (or mass spectrometer). The technique meets detection limits specified by EPA methods and was therefore used in this work.« less
Mehmood, Basharat; Dar, Kamran Khurshid; Ali, Shaukat; Awan, Uzma Azeem; Nayyer, Abdul Qayyum; Ghous, Tahseen; Andleeb, Saiqa
2015-01-01
Antibacterial effect of Citrus sinensis peel extracts was evaluated against several pathogenic bacteria associated with human and fish infections viz., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus pyogenes, Staphylococcus epidermidis, Serratia marcesnces, Shigella flexneri, Enterobacter amnigenus, Salmonella Typhimurium and Serratia odorifera. Methanol, ethanol, chloroform and diethyl ether solvents were used for extraction. In vitro antibacterial activity was analyzed by agar well and agar disc diffusion methods. It was found that ethanol extract showed highly significant inhibition of E. coli and K. pneumonia (12.6±0.94 mm and 11.6±1.2 mm) whereas methanol extract of C. sinensis also showed high zone of inhibition of S. odorifera (10.0±2.16 mm). The potential activity of active extracts was assessed and also compared with standard antibiotics through activity index formulation. The order of antioxidant activity through ABTS·+ and DPPH free radical scavenging activity was ethanol>methanol>chloroform>diethyl ether. Phytochemical screening of all solvents had determined the presence of terpenoids, alkaloids, steroids, glycosides and flavonoids. It was also found that Chloroform/Methanol (5:5) and Butanol/Ethanol/Water (4:1:2.2) solvent systems showed significant separation of active phytochemical constituents. These findings reveal the potential use of C. sinensis peel to treat infectious diseases, which are being caused by microorganisms.
Extraction of steroidal glucosiduronic acids from aqueous solutions by anionic liquid ion-exchangers
Mattox, Vernon R.; Litwiller, Robert D.; Goodrich, June E.
1972-01-01
A pilot study on the extraction of three steroidal glucosiduronic acids from water into organic solutions of liquid ion-exchangers is reported. A single extraction of a 0.5mm aqueous solution of either 11-deoxycorticosterone 21-glucosiduronic acid or cortisone 21-glucosiduronic acid with 0.1m-tetraheptylammonium chloride in chloroform took more than 99% of the conjugate into the organic phase; under the same conditions, the very polar conjugate, β-cortol 3-glucosiduronic acid, was extracted to the extent of 43%. The presence of a small amount of chloride, acetate, or sulphate ion in the aqueous phase inhibited extraction, but making the aqueous phase 4.0m with ammonium sulphate promoted extraction strongly. An increase in the concentration of ion-exchanger in the organic phase also promoted extraction. The amount of cortisone 21-glucosiduronic acid extracted by tetraheptylammonium chloride over the pH range of 3.9 to 10.7 was essentially constant. Chloroform solutions of a tertiary, a secondary, or a primary amine hydrochloride also will extract cortisone 21-glucosiduronic acid from water. The various liquid ion exchangers will extract steroidal glucosiduronic acid methyl esters from water into chloroform, although less completely than the corresponding free acids. The extraction of the glucosiduronic acids from water by tetraheptylammonium chloride occurs by an ion-exchange process; extraction of the esters does not involve ion exchange. PMID:5075264
Chandrasekaran, Rajkuberan; Seetharaman, Prabukumar; Krishnan, Muthukumar; Gnanasekar, Sathishkumar; Sivaperumal, Sivaramakrishnan
2018-02-01
This study manifests the larvicidal efficacy of Carica papaya latex extract and silver nanoparticles (CPAgNPs) synthesized using latex, against developing immature juveniles of Aedes aegypti and Culex quinquefasciatus . Briefly, the latex was collected and fractioned with different solvents such as chloroform, methanol and aqueously. The obtained crude extracts were subjected to larvicidal activity in the dose-dependent method. After 24 h, the mortality rate was calculated and statistically analyzed. From the results, it was demonstrated that the chloroform extract displayed prominent activity in IInd and IIIrd instar larvae of A. aegypti and C. quinquefasciatus with better LC 50 values followed by methanol and aqueous extract. Subsequently, we profiled the qualitative analysis of a chloroform extract through biochemical tests; Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. Moreover, we authenticated the major secondary metabolites and activated larvicidal compound present in the extract. Further, we synthesized CPAgNPs using aqueous latex extract and challenged with IInd and IIIrd instar larvae of A. aegypti and C. quinquefasciatus. Noticeably, the synthesized nanoproducts were showed 100% mortality in a 24-h treatment with significant LC 50 values. Hence, this study has opened up new vistas in the field of parasitological research to develop Carica papaya latex as a new stratagem in the insect vector management program.
Sadeghi, Ramezan; Kobarfard, Farzad; Yazdanpanah, Hassan; Eslamizad, Samira; Bayat, Mitra
2016-01-01
Dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography–mass spectrometry (GC–MS) was used for the extraction and determination of 13 polycyclic aromatic hydrocarbons (PAHs) in mineral water samples. In this procedure, the suitable combination of extraction solvent (500 µL chloroform) and disperser solvent (1000 µL acetone) were quickly injected into the water sample (10.00 mL) by Hamilton syringe. After centrifugation, 500 µL of the lower organic phase was dried under a gentle stream of nitrogen, re-dissolved in chloroform and injected into GC-MS. Chloroform and acetone were found to be the best extraction and disperser solvent, respectively. Validation of the method was performed using spiked calibration curves. The enrichment factor ranged from 93 to 129 and the recovery ranged from 71 to 90%. The linear ranges for all the PAHs were 0.10-2.80 ngmL-1. The relative standard deviations (RSDs) of PAHs in water by using anthracene-d10 as internal standard, were in the range of 4-11% for most of the analytes (n = 3). Limit of detection (LOD) for different PAHs were between 0.03 and 0.1 ngmL-1. The method was successfully applied for the analysis of PAHs in mineral water samples collected from Tehran. PMID:27610156
The cytotoxic effect of Elephantopus scaber Linn extract against breast cancer (T47D) cells
NASA Astrophysics Data System (ADS)
Sulistyani, N.; Nurkhasanah
2017-11-01
Breast cancer is one of the main cause of death. Elephantopus scaber Linn (ES) which has been used as a traditional medicine contains an antitumor compounds. This study aimed to explore the active fraction from ethanolic extract of ES as anticancer and to determine its inhibition effect on the cell proliferation cycle of breast cancer (T47D) cells. The ES leaf was macerated with ethanol and then evaporated to get the concentrated extract. The extract was fractionated using petroleum ether, chloroform, and methanol respectively. The cytotoxic activity of each fraction was carried out with MTT method, and the inhibition of cell cycle test were observed by flowcytometry method. The result showed that ES and the fractions have cytotoxic activity against T47D cell lines with IC50 values of extract, petroleum ether, chloroform, and methanol fractions were 58.36±2.38, 132.17±9.69, 7.08±2.11, and 572.89±69.23 µg/mL. The inhibition effect of ethanol extract on the lifecycle of cells was occured in sub G1 phase. There was no prolonging of G1, S, G2/M and polyploidy phase of T47D cell lines. The chloroform fraction of ES is the most cytotoxic fraction against T47D cells without prolonging the cell lifecycle.
Huang, Ai-Guo; Yi, Yang-Lei; Ling, Fei; Lu, Lin; Zhang, Qi-Zhong; Wang, Gao-Xue
2013-12-01
With the aim of finding natural anthelmintic agents against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus), 26 plants were screened for antiparasitic properties using in vivo anthelmintic efficacy assay. The results showed that Caesalpinia sappan, Lysima chiachristinae, Cuscuta chinensis, Artemisia argyi, and Eupatorium fortunei were found to have 100% anthelmintic efficacy at 125, 150, 225, 300, and 500 mg L(-1) after 48 h of exposure. Crude extract of the five plants were further partitioned with petroleum ether, chloroform, ethyl acetate, methanol, and water to obtain anthelmintically active fractions with various polarity. Among these fractions tested, the ethyl acetate extract of L. chiachristinae was found to be the most effective with a 50% effective concentration (EC50) value of 5.1 mg/L after 48 h of exposure. This was followed by ethyl acetate extract of C. chinensis (48 h-EC50 = 8.5 mg L(-1)), chloroform extracts of C. sappan (48 h-EC50 = 15.6 mg L(-1)), methanol extract of C. chinensis (48 h-EC50 = 15.9 mg L(-1)), and chloroform and petroleum ether extract of L. chiachristinae (EC50 values of 17.2 and 21.1 mg/L, respectively), suggesting that these plants, as well as the active fractions, provide potential sources of botanic drugs for the control of D. intermedius in aquaculture.
Sá, Mirivaldo Barros; Ralph, Maria Taciana; Nascimento, Danielle Cristina Oliveira; Ramos, Clécio Souza; Barbosa, Isvânia Maria Serafin; Sá, Fabrício Bezerra; Lima-Filho, J. V.
2014-01-01
The chloroform extract of the stem bark of Amburana cearensis was chemically characterized and tested for antibacterial activity.The extract was analyzed by gas chromatography and mass spectrometry. The main compounds identified were 4-methoxy-3-methylphenol (76.7%), triciclene (3.9%), α-pinene (1.0%), β-pinene (2.2%), and 4-hydroxybenzoic acid (3.1%). Preliminary antibacterial tests were carried out against species of distinct morphophysiological characteristics: Escherichia coli, Salmonella enterica Serotype Typhimurium, Pseudomonas aeruginosa, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus. The minimum inhibitory concentration (MIC) was determinate in 96-well microplates for the chloroform extract and an analogue of themain compound identified, which was purchased commercially.We have shown that plant's extract was only inhibitory (but not bactericidal) at the maximum concentration of 6900 μg/mL against Pseudomonas aeruginosa and Bacillus cereus. Conversely, the analogue 2-methoxy-4-methylphenol produced MICs ranging from215 to 431 μg/mL against all bacterial species.New antibacterial assays conducted with such chemical compound against Klebsiella pneumoniae carbapenemase-producing strains have shown similarMICresults and minimumbactericidal concentration (MBC) of 431 μg/mL.We conclude that A. cearensis is a good source of methoxy-methylphenol compounds,which could be screened for antibacterial activity againstmultiresistant bacteria fromdifferent species PMID:24772183
Frkanec; Visnjevac; Kojic-Prodic; Zinic
2000-02-04
Chiral calix[4]arene derivatives with four O-(N-acetyl-PhgOMe), (1), (Phg denotes R-phenylglycine), or O-(N-acetyl-LeuOMe) (2) strands have been synthesised. Both compounds exist in chloroform in stable cone conformations with a noncovalently organised cavity at the lower rim that is formed by circular interstrand amidic hydrogen bonds. Such organisation affects both the selectivity and extraction/transport properties of 1 and 2 toward metal cations. Calix[4]arene derivatives with one OCH2COPhgOMe strand (3), two OCH2COPhgOMe strands (5) and with 1,3-OMe-2,4-(O-CH2COPhgOMe) substituents (4) at the lower rim have also been prepared. For 3, a conformation stabilised by a circular hydrogen-bond arrangement is found in chloroform, while 4 exists as a time-averaged C2 conformation with two intramolecular NH ...OCH3 hydrogen bonds. Compound 5 has a unique hydrogen-bonding motif in solution and in the solid state with two three-centred NH-.. O and two OH...O hydrogen bonds at the lower rim. This motif keeps 5 in the flattened cone conformation in chloroform. The X-ray structure analysis of 1 revealed a molecular structure with C2 symmetry; this structure is organised in infinite chains by intra- and intermolecular H bonds. The solid-state and solution structures of the [1-Na]ClO4 complex are identical, C4 symmetric cone conformations.
Anti-fertility effects of different fractions of Anethum graveolens L. extracts on female rats.
Malihezaman, Monsefi; Mojaba, Masoudi; Elham, Hosseini; Farnaz, Gramifar; Ramin, Miri
2012-01-01
Our previous studies showed the effects of aqueous and ethanol extracts of Anethum graveolens L. (dill) on female infertility. In the present study we investigated whether different fractions of this herb extract can cause infertility in rats. Female rats were divided into the control groups, the groups receiving either a low (0.5 g/kg)) or a high dose (5g/kg) of water, N-butanol, chloroform and ether fractions of the aqueous plant extract, and the groups receiving either a low (0.045 g/kg) or a high dose (0.45 g/kg) of the same fractions of ethanol extract. The mentioned doses were gavaged in 1mL for 10 days. Vaginal smears were prepared daily. Estradiol and progesterone levels were measured. The left oviduct and ovary were removed, their tissue subsequently being prepared in form of histology slides and stained using haematoxylin-eosin and Masson's trichrome. Female rats assigned to each group were mated with males; after that, crown-rump lengths and weights of newborn rats were measured. Results showed that each fraction produced some changes such as hormonal level reduction (chloroform fraction), diestrus phase prolongation and infertility (water fraction), and increase in pregnancy duration (chloroform and ether fractions). We concluded that each fraction comprises only some of the mentioned components and therefore recommended the usage of crude extract, especially the aqueous one, in case infertility aims to be induced.
Antimutagenic and free radical scavenger effects of leaf extracts from Accacia salicina.
Boubaker, Jihed; Mansour, Hedi Ben; Ghedira, Kamel; Chekir-Ghedira, Leila
2011-12-01
Three extracts were prepared from the leaves of Accacia salicina; ethyl acetate (EA), chloroform (Chl) and petroleum ether (PE) extracts and was designed to examine antimutagenic, antioxidant potenty and oxidative DNA damage protecting activity. Antioxidant activity of A. salicina extracts was determined by the ability of each extract to protect against plasmid DNA strand scission induced by hydroxyl radicals. An assay for the ability of these extracts to prevent mutations induced by various oxidants in Salmonella typhimurium TA102 and TA 104 strains was conducted. In addition, nonenzymatic methods were employed to evaluate anti-oxidative effects of tested extracts. These extracts from leaf parts of A. salicina showed no mutagenicity either with or without the metabolic enzyme preparation (S9). The highest protections against methylmethanesulfonate induced mutagenicity were observed with all extracts and especially chloroform extract. This extract exhibited the highest inhibitiory level of the Ames response induced by the indirect mutagen 2- aminoanthracene. All extracts exhibited the highest ability to protect plasmid DNA against hydroxyl radicals induced DNA damages. The ethyl acetate (EA) and chloroform (Chl) extracts showed with high TEAC values radical of 0.95 and 0.81 mM respectively, against the ABTS(.+). The present study revealed the antimutagenic and antioxidant potenty of plant extract from Accacia salicina leaves. © 2011 Boubaker et al; licensee BioMed Central Ltd.
NASA Astrophysics Data System (ADS)
Aminah; Nugraheni, E. R.; Yugatama, A.
2018-03-01
The aim of this study was to evaluate the antibacterial activity from Attacus atlas cocoon extract against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) with 3 diffferent solvents polar, semi-polar and non polar which was ethanol, ethyl acetate and chloroform, also to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the extract. Cocoon was extracted with maceration method using 3 solvents with ratio of sample and solvent 1:10. Antibacterial activity of the Extracts obtained was evaluated with Agar disk diffusion method. The best result was then continued to determine the MIC and MBC of the extract using broth macro-dilution method. The results show that each of the extracts have antibacterial activity with broad spectrum against two different type of bacteria at concentration of 1 g/mL with different clear zone between these extracts. Clear zone from the biggest to the smallest against Escherichia coli was ethyl acetate (10.5 mm), chloroform (9 mm) and ethanol (8 mm). While against Staphylococcus aureus, was obtained by chloroform (12.5 mm), ethyl acetate (10.5 mm) and ethanol (7 mm). The MIC value of extracts can not be determine. The smallest MBC value against both bacteria was obtained by ethyl acetate with concentration of 3.125% b/v as a bactericidal.
MODELING VOLATILE ORGANIC COMPOUND PHARMACOKINETICS IN RAT PUPS
PBPK model predictions of internal dosimetry in young rats were compared to adult animals for benzene, chloroform (CHL), methylene chloride, methyl ethly ketone (MEK), perchloroethylene, and trichloroethylene.
THE NATURE OF SERUM ANTITRYPSIN
Jobling, James W.; Petersen, William
1914-01-01
1. The ferment-inhibiting action of the serum is due to the presence of compounds of the unsaturated fatty acids. 2. These fatty acid compounds may be removed from the serum by means of chloroform or ether. 3. Soaps prepared by saponifying the chloroform or ether extracts inhibit the action of trypsin. 4. The anti-enzyme action of the serum can be removed by filtering acid serum through kaolin, and can in part be restored by extracting the kaolin. 5. The decrease in strength of anti-enzyme in old sera is probably due to the action of the serum lipase. 6. Iodin, potassium iodide, or hydrogen peroxide remove the inhibiting action of the serum. 7. Soaps of the unsaturated fatty acids lose their ferment-inhibiting action when heated with serum at 70° C. PMID:19867786
Abhishek, R U; Thippeswamy, S; Manjunath, K; Mohana, D C
2015-12-01
The main objective of this study was to investigate the antifungal effect of Solanum torvum leaves against different field and storage fungi, and to identify its active compound. In addition, to evaluate in vitro and in vivo inhibitory efficacy on toxigenic strains of Aspergillus flavus and Fusarium verticillioides. Leaves of S. torvum were sequentially extracted with petroleum ether, toluene, chloroform, methanol and ethanol. The antifungal compound isolated from chloroform extract was identified as torvoside K based on spectral analysis. The antifungal activity of chloroform extract and torvoside K was determined by broth microdilution and poisoned food techniques. The minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC) and zone of inhibition (ZOI) were recorded. Further, inhibitory effects of chloroform extract and torvoside K on growth of A. flavus and F. verticillioides, and their toxin productions were evaluated using in vitro and in vivo assays. Torvoside K showed the significant activity against tested fungi with ZOIs and MICs ranging from 33·4 to 87·4% and 31·25-250 μg ml(-1) , respectively. Further, torvoside K showed concentration-dependent antimycotoxigenic activity against aflatoxin B1 and fumonisin B1 production by A. flavus and F. verticillioides, respectively. It was observed that the compound torvoside K significantly inhibited the growth of all fungi tested. Growth of A. flavus and F. verticillioides, and aflatoxin B1 and fumonisin B1 productions were completely inhibited in vitro and in vivo by torvoside K with increasing concentration. Control of mycotoxigenic fungi requires compounds that able to inhibit both fungal growth and mycotoxin production. The antimycotoxigenic potential of torvoside K of S. torvum is described in this study for the first time. The results indicate the possible use of S. torvum as source of antifungal agents against postharvest fungal infestation of food commodities and mycotoxin contaminations. © 2015 The Society for Applied Microbiology.
Antimicrobial activity of Memecylon malabaricum leaves.
Hullatti, Kiran Kumar; Rai, V Ravishankar
2004-06-01
The petroleum ether, chloroform and methanol extracts of Memecylon malabaricum leaves were tested for antimicrobial activity. Only methanol extract has shown activity against bacteria both Gram (+) and Gram (-), and fungi. Copyright 2004 Elsevier B.V.
Iwalewa, E O; Iwalewa, O J; Adeboye, J O
2003-06-01
The chloroform, methanolic and ether extracts of Vernonia cinerea (Asteraceae; Less) leaf (100, 200 and 400mg/kg intraperitoneally) were tested in: acetic acid-induced writhing in mice, carrageenin-induced oedema and brewer's yeast-induced pyrexia in rats to assess their analgesic, anti-inflammatory, antipyretic and behavioral activities, respectively. The changes in writhings and behavioural activities in mice, the pyrexia and paw volumes in rats were reduced significantly (P<0.05) compared to the control. There was an increase in pain threshold on the oedematous right hind limb paw of the rats. These results indicate that the extracts could possess analgesic, antipyretic and anti-inflammatory properties. All these effects and the changes in the behavioural activities could be suggested as contributory effects to the use of V. cinerea leaf in the treatment of malaria.
Thorsén, G; Engström, A; Josefsson, B
1997-10-31
New chiral precolumn reagents, (+)- and (-)-1-(9-anthryl)-2-propyl chloroformate (APOC), are introduced for the chiral separation of amino acids and small peptides in capillary electrophoresis. Chiral separation of 17 amino acids and four small peptides as their diastereomeric 1-(9-anthryl)-2-propyl carbamate derivatives have been achieved by micellar electrokinetic chromatography. The detection limit for the derivatives is in the femtomole range with UV detection and in the attomole range with laser-induced fluorescence (LIF) detection. LIF detection was used to determine the enantiomeric excess of four APOC-derivatised peptides. The use of the new, anthracene-based reagents in conjunction with argon ion LIF makes enantiomeric determinations at ppm levels feasible. In this paper determinations below promille levels are performed without overloading the separation system.
Huang, Z H; Gage, D A; Bieber, L L; Sweeley, C C
1991-11-15
A novel approach to the analysis of acylcarnitines has been developed. It involves a direct esterification using propyl chloroformate in aqueous propanol followed by ion-pair extraction with potassium iodide into chloroform and subsequent on-column N-demethylation of the resulting acylcarnitine propyl ester iodides. The products, acyl N-demethylcarnitine propyl esters, are volatile and are easily analyzed by gas chromatography-chemical ionization mass spectrometry. For medium-chain-length (C4-C12) acylcarnitine standards, detection limits are demonstrated to be well below 1 ng starting material using selected ion monitoring. Well-separated gas chromatographic peaks and structure-specific mass spectra are obtained with samples of synthetic and biological origin. Seven acylcarnitines have been characterized in the urine of a patient suffering from medium-chain acyl-CoA dehydrogenase deficiency.
A comparative evaluation of six principal IgY antibody extraction methods.
Ren, Hao; Yang, Wenjing; Thirumalai, Diraviyam; Zhang, Xiaoying; Schade, Rüdiger
2016-03-01
Egg yolk has been considered a promising source of antibodies. Our study was designed to compare six principal IgY extraction methods (water dilution, polyethylene glycol [PEG] precipitation, caprylic acid extraction, chloroform extraction, phenol extraction, and carrageenan extraction), and to assess their relative extraction efficiencies and the purity of the resulting antibodies. The results showed that the organic solvents (chloroform or phenol) minimised the lipid ratio in the egg yolk. The water dilution, PEG precipitation and caprylic acid extraction methods resulted in high yields, and antibodies purified with PEG and carrageenan exhibited high purity. Our results indicate that phenol extraction would be more suitable for preparing high concentrations of IgY for non-therapeutic usage, while the water dilution and carrageenan extraction methods would be more appropriate for use in the preparation of IgY for oral administration. 2016 FRAME.
Rahmatullah, Mohammed; Sultan, Shamsuddin; Toma, Tanzila Taher; Lucky, Sayeda-A-Safa; Chowdhury, Majeedul H; Haque, Wahid Mozammel; Annay, Eashmat Ara; Jahan, Rownak
2009-12-30
Cuscuta reflexa (whole plant) and Calotropis procera (leaves) are used in folk medicine of Bangladesh to control blood sugar in patients suffering from diabetes mellitus. The hypoglycemic effects of methanol and chloroform extracts of whole plants of Cuscuta reflexa, and methanol extract of leaves of Calotropis procera were investigated in oral glucose tolerance tests in Long Evans rats and Swiss albino mice, respectively. Both methanol and chloroform extracts of Cuscuta reflexa whole plant demonstrated significant oral hypoglycemic activity in glucose-loaded rats at doses of 50, 100 and 200 mg/kg body weight. The methanol extract of leaves of Calotropis procera, when tested at doses of 100 and 250 mg/kg body weight did not demonstrate any oral hypoglycemic effect when tested in glucose-loaded mice.
Third-order nonlinear optical properties of phthalocyanines in solution and in polystyrene films
NASA Astrophysics Data System (ADS)
Reeves, Roger J.; Powell, Richard C.; Chang, Young H.; Ford, Warren T.; Zhu, Weiming
1996-01-01
Degenerate four-wave mixing (DFWM) measurements of third-order nonlinear optical (NLO) coefficients of metal-free, Cu, Pt, Pb and Bi octa(2-ethylhexyloxy) phthalocyanines (MPc's) were done with 20 ps duration laser pulses under resonant conditions at 532 nm in polystyrene films and under nonresonant conditions at 1064 nm in chloroform solutions. The NLO coefficients ξxxxx(3) show saturation with increasing incident intensity and no strong dependence on the central metal atom of the MPc below the saturation intensity. Optical delays of the probe-pulse up to 3 ns show an acoustic phonon response in both the polystyrene films and the chloroform solutions. An intensity-dependent absorption coefficient was measured by a pump/probe experiment and used in a simple model to qualitatively account for the saturation of ξ(3) measured by DFWM.
Vitiquinolone--a quinolone alkaloid from Hibiscus vitifolius Linn.
Ramasamy, D; Saraswathy, A
2014-02-15
Phytochemical investigations of the powdered root of Hibiscus vitifolius Linn. (Malvaceae) was extracted successively with n-hexane and chloroform. Analysis of the n-hexane extract by GC-MS led to the identification of twenty-six components by comparison of their mass spectra with GC-MS library data. A novel quinolone alkaloid, vitiquinolone (5) together with eight known compounds viz. β-Amyrin acetate (1), n-octacosanol (2), β-Amyrin (3), stigmasterol (4), xanthyletin (6), alloxanthoxyletin (7), xanthoxyletin (8) and betulinic acid (9) were isolated from chloroform extract by column chromatography over silica gel. The structure of vitiquinolone was established on the basis of spectroscopic methods including UV, IR, 1D, 2D NMR and ESI-MS. The known compounds were identified on the basis of their physical and spectroscopic data as reported in the literature. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yazdani, Darab; Mior Ahmad, Zainal Abidin; Yee How, Tan; Jaganath, Indu Bala; Shahnazi, Sahar
2013-12-01
Food contamination by aflatoxins is an important food safety concern for agricultural products. In order to identify and develop novel antifungal agents, several plant extracts and isolated compounds have been evaluated for their bioactivities. Anti-infectious activity of Piper betle used in traditional medicine of Malaysia has been reported previously. Crude methanol extract from P. betel powdered leaves was partitioned between chloroform and water. The fractions were tested against A. flavus UPMC 89, a strong aflatoxin producing strain. Inhibition of mycelial growth and aflatoxin biosynthesis were tested by disk diffusion and macrodillution techniques, respectively. The presence of aflatoxin was determined by thin-layer chromatography (TLC) and fluorescence spectroscopy techniques using AFB1 standard. The chloroform soluble compounds were identified using HPLC-Tandem mass spectrometry technique. The results, evaluated by measuring the mycelial growth and quantification of aflatoxin B1(AFLB1) production in broth medium revealed that chloroform soluble compounds extract from P. betle dried leaves was able to block the aflatoxin biosynthesis pathway at concentration of 500μg/ml without a significant effect on mycelium growth. In analyzing of this effective fractions using HPLC-MS(2) with ESI ionization technique, 11 phenolic compounds were identified. The results showed that the certain phenolic compounds are able to decline the aflatoxin production in A. flavus with no significant effect on the fungus mycelia growth. The result also suggested P. betle could be used as potential antitoxin product.
Ullah, Najeeb; Ahmad, Ijaz; Ayaz, Sultan
2014-01-01
The study was done to assess the phytochemicals (flavonoids, terpenoids, saponins, tannin, alkaloids, and phenol) in different parts (root, stem, and leaves) of Ballota nigra and correlated it to inhibition of microbes (bacteria and fungi), protozoan (Leishmania), and heavy metals toxicity evaluation. In root and stem flavonoids, terpenes and phenols were present in ethanol, chloroform, and ethyl acetate soluble fraction; these were found to be the most active inhibiting fractions against all the tested strains of bacteria, fungi, and leishmania. While in leaves flavonoids, terpenes, and phenols were present in ethanol, chloroform, and n-butanol fractions which were the most active fractions against both types of microbes and protozoan (leishmania) in in vitro study. Ethanol and chloroform fractions show maximum inhibition against Escherichia coli (17 mm). The phytochemical and biological screenings were correlated with the presence of heavy metals in selected plant Ballota nigra. Cr was found above permissible value (above 1.5 mg/kg) in all parts of the plant. Ni was above WHO limit in B. nigra root and leaves (3.35 ± 1.20 mg/kg and 5.09 ± 0.47 mg/kg, respectively). Fe was above permissible value in all parts of B. nigra (above 20 mg/kg). Cd was above permissible value in all parts of the plant (above 0.3 mg/kg). Pb was above WHO limit (above 2 mg/kg) in all parts of Ballota nigra.
PCI-GC-MS-MS approach for identification of non-amino organic acid and amino acid profiles.
Luan, Hemi; Yang, Lin; Ji, Fenfen; Cai, Zongwei
2017-03-15
Alkyl chloroformate have been wildly used for the fast derivatization of metabolites with amino and/or carboxyl groups, coupling of powerful separation and detection systems, such as GC-MS, which allows the comprehensive analysis of non-amino organic acids and amino acids. The reagents involving n-alkyl chloroformate and n-alcohol are generally employed for providing symmetric labeling terminal alkyl chain with the same length. Here, we developed an asymmetric labeling strategy and positive chemical ionization gas chromatography-tandem mass spectrometry (PCI-GC-MS-MS) approach for determination of non-amino organic acids and amino acids, as well as the short chain fatty acids. Carboxylic and amino groups could be selectively labelled by propyl and ethyl groups, respectively. The specific neutral loss of C 3 H 8 O (60Da), C 3 H 5 O 2 (74Da) and C 4 H 8 O 2 (88Da) were useful in the selective identification for qualitative analysis of organic acids and amino acid derivatives. PCI-GC-MS-MS using multiple reaction monitoring (MRM) was applied for semi-quantification of typical non-amino organic acids and amino acids. This method exhibited a wide range of linear range, good regression coefficient (R 2 ) and repeatability. The relative standard deviation (RSD) of targeted metabolites showed excellent intra- and inter-day precision (<5%). Our method provided a qualitative and semi-quantitative PCI-GC-MS-MS, coupled with alkyl chloroformate derivatization. Copyright © 2016 Elsevier B.V. All rights reserved.
Xanthatin and xanthinosin from the burs of Xanthium strumarium L. as potential anticancer agents.
Ramírez-Erosa, Irving; Huang, Yaoge; Hickie, Robert A; Sutherland, Ronald G; Barl, Branka
2007-11-01
Xanthatin and xanthinosin, 2 sesquiterpene lactones isolated from the burs of Xanthiun strumarium L. (cocklebur), showed moderate to high in vitro cytotoxic activity in the human cancer cell lines WiDr ATCC (colon), MDA-MB-231 ATCC (breast), and NCI-417 (lung). Xanthatin and xanthinosin were purified as the result of a multi-screening bioassay-guided study of wild plant species of the family Asteraceae, collected from various sites in Saskatchewan, Canada. Seventy-five extracts at a single concentration of 100 microg/mL were evaluated for in vitro cytotoxicity to the human cancer cell lines used. The chloroform extract of Carduus nutans L. (nodding thistle) aerial parts (IC50, 9.3 microg/mL) and the hexane extract of Echinacea angustifolia DC. (narrow-leaved purple coneflower) root (IC50, 4.0 microg/mL) were moderately to highly cytotoxic to the lung cancer cell line. The chloroform extracts of X. strumarium L. burs and Tanacetum vulgare L. (tansy) aerial parts exhibited the highest cytotoxicity for all cell lines tested; their IC50 values, obtained from multidose testing, ranged from 0.1 to 6.2 microg/mL (X. strumarium) and from 2.4 to 9.1 microg/mL (T. vulgare). Further purification of the chloroform fraction of X. strumarium yielded xanthatin and xanthinosin in high yields. This is the first time that these compounds have been reported in the burs of X. strumarium. Their IC50 values are also reported herein.
Ullah, Najeeb; Ahmad, Ijaz; Ayaz, Sultan
2014-01-01
The study was done to assess the phytochemicals (flavonoids, terpenoids, saponins, tannin, alkaloids, and phenol) in different parts (root, stem, and leaves) of Ballota nigra and correlated it to inhibition of microbes (bacteria and fungi), protozoan (Leishmania), and heavy metals toxicity evaluation. In root and stem flavonoids, terpenes and phenols were present in ethanol, chloroform, and ethyl acetate soluble fraction; these were found to be the most active inhibiting fractions against all the tested strains of bacteria, fungi, and leishmania. While in leaves flavonoids, terpenes, and phenols were present in ethanol, chloroform, and n-butanol fractions which were the most active fractions against both types of microbes and protozoan (leishmania) in in vitro study. Ethanol and chloroform fractions show maximum inhibition against Escherichia coli (17 mm). The phytochemical and biological screenings were correlated with the presence of heavy metals in selected plant Ballota nigra. Cr was found above permissible value (above 1.5 mg/kg) in all parts of the plant. Ni was above WHO limit in B. nigra root and leaves (3.35 ± 1.20 mg/kg and 5.09 ± 0.47 mg/kg, respectively). Fe was above permissible value in all parts of B. nigra (above 20 mg/kg). Cd was above permissible value in all parts of the plant (above 0.3 mg/kg). Pb was above WHO limit (above 2 mg/kg) in all parts of Ballota nigra. PMID:25054139
Davoren, Jon; Vanek, Daniel; Konjhodzić, Rijad; Crews, John; Huffine, Edwin; Parsons, Thomas J.
2007-01-01
Aim To quantitatively compare a silica extraction method with a commonly used phenol/chloroform extraction method for DNA analysis of specimens exhumed from mass graves. Methods DNA was extracted from twenty randomly chosen femur samples, using the International Commission on Missing Persons (ICMP) silica method, based on Qiagen Blood Maxi Kit, and compared with the DNA extracted by the standard phenol/chloroform-based method. The efficacy of extraction methods was compared by real time polymerase chain reaction (PCR) to measure DNA quantity and the presence of inhibitors and by amplification with the PowerPlex 16 (PP16) multiplex nuclear short tandem repeat (STR) kit. Results DNA quantification results showed that the silica-based method extracted on average 1.94 ng of DNA per gram of bone (range 0.25-9.58 ng/g), compared with only 0.68 ng/g by the organic method extracted (range 0.0016-4.4880 ng/g). Inhibition tests showed that there were on average significantly lower levels of PCR inhibitors in DNA isolated by the organic method. When amplified with PP16, all samples extracted by silica-based method produced 16 full loci profiles, while only 75% of the DNA extracts obtained by organic technique amplified 16 loci profiles. Conclusions The silica-based extraction method showed better results in nuclear STR typing from degraded bone samples than a commonly used phenol/chloroform method. PMID:17696302
Ogston, Derek; Ogston, C. Marie; Ratnoff, Oscar D.; Forbes, Charles D.
1969-01-01
As demonstrated by others, fibrinolytic activity was generated in diluted, acidified normal plasma exposed to kaolin, a process requiring Hageman factor (Factor XII). Generation was impaired by adsorbing plasma with glass or similar agents under conditions which did not deplete its content of Hageman factor or plasminogen. The defect could be repaired by addition of a noneuglobulin fraction of plasma or an agent or agents eluted from diatomaceous earth which had been exposed to normal plasma. The restorative agent, tentatively called Hageman factor-cofactor, was partially purified by chromatography and had an apparent molecular weight of approximately 165,000. It could be distinguished from plasma thromboplastin antecedent (Factor XI) and plasma kallikrein, other substrates of Hageman factor, and from the streptokinase-activated pro-activator of plasminogen. Evidence is presented that an additional component may be needed for the generation of fibrinolytic activity in mixtures containing Hageman factor, HF-cofactor, and plasminogen. The long-recognized generation of plasmin activity in chloroform-treated euglobulin fractions of plasma was found to be dependent upon the presence of Hageman factor. Whether chloroform activation of plasminogen requires Hageman factor-cofactor was not determined, but glass-adsorbed plasma, containing Hageman factor and plasminogen, did not generate appreciable fibrinolytic or caseinolytic activity. These studies emphasize the complex nature of the mechanisms which lead to the generation of plasmin in human plasma. PMID:4241814
Take, Makoto; Takeuchi, Tetsuya; Haresaku, Mitsuru; Matsumoto, Michiharu; Nagano, Kasuke; Yamamoto, Seigo; Takamura-Enya, Takeji; Fukushima, Shoji
2014-01-01
The present study investigated the time-course changes of concentration of chloroform (CHCl3) in the blood during and after exposure of male rats to CHCl3 by inhalation. Increasing the dose of CHCl3 in the inhalation exposed groups caused a commensurate increase in the concentration of CHCl3 in the blood and the area under the blood concentration-time curve (AUC). There was good correlation (r = 0.988) between the inhalation dose and the AUC/kg body weight. Based on the AUC/kg body weight-inhalation dose curve and the AUC/kg body weight after oral administration, inhalation equivalent doses of orally administered CHCl3 were calculated. Calculation of inhalation equivalent doses allows the body burden due to CHCl3 by inhalation exposure and oral exposure to be directly compared. This type of comparison facilitates risk assessment in humans exposed to CHCl3 by different routes. Our results indicate that when calculating inhalation equivalent doses of CHCl3, it is critical to include the AUC from the exposure period in addition to the AUC after the end of the exposure period. Thus, studies which measure the concentration of volatile organic compounds in the blood during the inhalation exposure period are crucial. The data reported here makes an important contribution to the physiologically based pharmacokinetic (PBPK) database of CHCl3 in rodents.
Silva, Zelinda Isabel; Rebelo, Maria Helena; Silva, Manuela Manso; Alves, Ana Martins; Cabral, Maria da Conceição; Almeida, Ana Cristina; Aguiar, Fátima Rôxo; de Oliveira, Anabela Lopes; Nogueira, Ana Cruz; Pinhal, Hermínia Rodrigues; Aguiar, Pedro Manuel; Cardoso, Ana Sofia
2012-01-01
Characterization of water quality from indoor swimming pools, using chorine-based disinfection techniques, was performed during a 6-mo period to study the occurrence, distribution, and concentration factors of trihalomethanes (THM). Several parameters such as levels of water THM, water and air chloroform, water bromodichloromethane (BDCM), water dibromochloromethane (DBCM), water bromoform (BF), free residual chlorine (FrCl), pH, water and air temperature, and permanganate water oxidizability (PWO) were determined in each pool during that period. Chloroform (CF(W)) was the THM detected at higher concentrations in all pools, followed by BDCM, DBCM, and BF detected at 99, 34, and 6% of the samples, respectively. Water THM concentrations ranged from 10.1 to 155 μg/L, with 6.5% of the samples presenting values above 100 μg/L (parametric value established in Portuguese law DL 306/2007). In this study, air chloroform (CF(Air)) concentrations ranged from 45 to 373 μg/m³ with 24% of the samples presenting values above 136 μg/m³ (considered high exposure value). Several significant correlations were observed between total THM and other parameters, namely, CF(W), CF(Air), FrCl, water temperature (T(W)), and PWO. These correlations indicate that FrCl, T(W) and PWO are parameters that influence THM formation. The exposure criterion established for water THM enabled the inclusion of 67% of Lisbon pools in the high exposure group, which reinforces the need for an improvement in pool water quality.
Landa, Premysl; Marsik, Petr; Havlik, Jaroslav; Kloucek, Pavel; Vanek, Tomas; Kokoska, Ladislav
2009-04-01
Seed extracts from six species of the genus Nigella (Family Ranunculaceae)-Nigella arvensis, Nigella damascena, Nigella hispanica, Nigella nigellastrum, Nigella orientalis, and Nigella sativa-obtained by successive extraction with n-hexane, chloroform, and methanol, were tested for their antimicrobial activity against 10 strains of pathogenic bacteria and yeast using the microdilution method as well as for anti-inflammatory properties by in vitro cyclooxygenase (COX)-1 and COX-2 assay. Chemical characterization of active extracts was carried out including free and fixed fatty acid analysis. Comparison of antimicrobial activity showed that N. arvensis chloroform extract was the most potent among all species tested, inhibiting Gram-positive bacterial and yeast strains with minimum inhibitory concentration (MIC) values ranging from 0.25 to 1 mg/mL. With the exception of selective inhibitory action of n-hexane extract of N. orientalis on growth of Bacteroides fragilis (MIC = 0.5 mg/mL), we observed no antimicrobial activity for other Nigella species. Anti-inflammatory screening revealed that N. sativa, N. orientalis, N. hispanica, N. arvensis n-hexane, and N. hispanica chloroform extracts had strong inhibitory activity (more than 80%) on COX-1 and N. orientalis, N. arvensis, and N. hispanica n-hexane extracts were most effective against COX-2, when the concentration of extracts was 100 microg/mL in both COX assays. In conclusion, N. arvensis, N. orientalis, and N. hispanica seeds, for the first time examined for antimicrobial and anti-inflammatory effects, revealed their significant activity in one or both assays.
Antiulcer activity of the chloroform extract of Bauhinia purpurea leaf.
Hisam, Elly Ezlinda Abdul; Zakaria, Zainul Amiruddin; Mohtaruddin, Norhafizah; Rofiee, Mohd Salleh; Hamid, Hasiah Ab; Othman, Fezah
2012-12-01
Bauhinia purpurea L. (Fabaceae) is a native plant species of many Asian countries, including Malaysia and India. In India, the root, stem, bark, and leaf of B. purpurea are used to treat various ailments, including ulcers and stomach cancer. In an attempt to establish its pharmacological potential, we studied the antiulcer activity of lipid-soluble extract of B. purpurea obtained via extraction of air-dried leaves using chloroform. The rats were administered the chloroform extract (dose range of 100-1000 mg/kg) orally after 24 h fasting. They were subjected to the absolute ethanol- and indomethacin-induced gastric ulcer, and pyloric ligation assays after 30 min. The acute toxicity study was conducted using a single oral dose of 5000 mg/kg extract and the rats were observed for the period of 14 days. omeprazole (30 mg/kg) was used as the standard control. At 5000 mg/kg, the extract produced no sign of toxicity in rats. The extract exhibited significant (p < 0.05) dose-dependent antiulcer activity for the ethanol-induced model. The extract also significantly (p < 0.05) increased the gastric wall mucus production and pH of gastric content, while significantly (p < 0.05) reducing the total volume and total acidity of the gastric content in the pylorus ligation assay. The extract possesses antiulcer, antisecretory and cytoprotective activities, which could be attributed to its flavonoid and tannin content. These findings provide new information regarding the potential of lipid-soluble compounds of B. purpurea for the prevention and treatment of gastric ulcers.
Atmospheric Science Data Center
2013-02-19
... NMHC/Halocarbons/Alkyl Nitrates: Methyl Chloride F-12 F-114 F-11 HCFC-141B HCFC-134a HCFC-22 ... 2,2,4-trimethylpentane 2,3,4-trimethylpethane Methylene Chloride Chloroform Perchloroethylene HFC-134A HCFC22 ...
Investigating Cancer Clusters, Brooks AFB, Texas
1990-10-01
based dyes Bladder Benzotrichloride Lung? Cadmium and related compounds Prostate, lung Chloroform Bladder, brain, kidney, lymphoma? Chlorophenols Soft...Dioxine) Vinyl chloride Lung Acrylonitrile Aldrin/dieldrin Arsenic Asbestos Benzo[a]pyrene Benzotrichloride Beryllium Cadmium Chloroprene Chromium Coal
PRN 93-5: Labeling Requirements of the Clean Air Act
A regulation under the Clean Air Act requires a warning statement on products (including pesticide products) manufactured with or containing Class I ozone-depleting substances, including chlorofluorocarbons, methyl chloroform and carbon tetrachloride.
Updated Health Effects Assessment for Chloroform
This report summarizes and evaluates infornation relevant to a preliminary interim assessment of adverse health effects associated with specific chemicals or compounds. The Office of Emergency and Remedial Response (Superfund) uses these documents in preparing cost-benefit analys...
Health Effects Assessment for Chloroform
The document represents a brief, quantitatively oriented scientific summary of health effects data. It was developed by the Environmental Criteria and Assessment Office to assist the Office of Emergency and Remedial Response in establishing chemical-specific health-related goals ...
Atmospheric Science Data Center
2013-02-19
... NMHC/Halocarbons/Alkyl Nitrates: Methyl Chloride F-12 F-114 F-11 HCFC-141B HCFC-134a HCFC-22 ... 2,2,4-trimethylpentane 2,3,4-trimethylpethane Methylene Chloride Chloroform Perchloroethylene HFC-134A HCFC22 ...
Analysis of Chromatin Organisation
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2011-01-01
Terms to be familiar with before you start to solve the test: chromatin, nucleases, sucrose density gradient centrifugation, melting point, gel electrophoresis, ethidium bromide, autoradiography, Southern blotting, Northern blotting, Sanger sequencing, restriction endonucleases, exonucleases, linker DNA, chloroform extraction, nucleosomes,…
40 CFR 141.53 - Maximum contaminant level goals for disinfection byproducts.
Code of Federal Regulations, 2014 CFR
2014-07-01
... byproduct MCLG(mg/L) Bromodichloromethane zero Bromoform zero Bromate zero Chlorite 0.8 Chloroform 0.07 Dibromochloromethane 0.06 Dichloroacetic acid zero Monochloroacetic acid 0.07 Trichloroacetic acid 0.02 [63 FR 69465...
40 CFR 141.53 - Maximum contaminant level goals for disinfection byproducts.
Code of Federal Regulations, 2012 CFR
2012-07-01
... byproduct MCLG(mg/L) Bromodichloromethane zero Bromoform zero Bromate zero Chlorite 0.8 Chloroform 0.07 Dibromochloromethane 0.06 Dichloroacetic acid zero Monochloroacetic acid 0.07 Trichloroacetic acid 0.02 [63 FR 69465...
40 CFR 141.53 - Maximum contaminant level goals for disinfection byproducts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... byproduct MCLG(mg/L) Bromodichloromethane zero Bromoform zero Bromate zero Chlorite 0.8 Chloroform 0.07 Dibromochloromethane 0.06 Dichloroacetic acid zero Monochloroacetic acid 0.07 Trichloroacetic acid 0.02 [63 FR 69465...
40 CFR 141.53 - Maximum contaminant level goals for disinfection byproducts.
Code of Federal Regulations, 2013 CFR
2013-07-01
... byproduct MCLG(mg/L) Bromodichloromethane zero Bromoform zero Bromate zero Chlorite 0.8 Chloroform 0.07 Dibromochloromethane 0.06 Dichloroacetic acid zero Monochloroacetic acid 0.07 Trichloroacetic acid 0.02 [63 FR 69465...
40 CFR 401.15 - Toxic pollutants.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (technical mixture and metabolites) 14. Chlorinated benzenes (other than di-chlorobenzenes) 15. Chlorinated... ethers (chloroethyl and mixed ethers) 17. Chlorinated naphthalene 18. Chlorinated phenols (other than those listed elsewhere; includes trichlorophenols and chlorinated cresols) 19. Chloroform 20. 2...
21 CFR 177.1460 - Melamine-formaldehyde resins in molded articles.
Code of Federal Regulations, 2011 CFR
2011-04-01
... be mixed with refined woodpulp and the mixture may contain other optional adjuvant substances which... temperature as determined from tables 1 and 2 of § 175.300(d) of this chapter, shall yield net chloroform...
21 CFR 177.1460 - Melamine-formaldehyde resins in molded articles.
Code of Federal Regulations, 2014 CFR
2014-04-01
... formaldehyde in water solution. (b) The resins may be mixed with refined woodpulp and the mixture may contain... chapter, shall yield net chloroform-soluble extractives not to exceed 0.5 milligram per square inch of...
21 CFR 177.1460 - Melamine-formaldehyde resins in molded articles.
Code of Federal Regulations, 2013 CFR
2013-04-01
... be mixed with refined woodpulp and the mixture may contain other optional adjuvant substances which... temperature as determined from tables 1 and 2 of § 175.300(d) of this chapter, shall yield net chloroform...
21 CFR 177.1460 - Melamine-formaldehyde resins in molded articles.
Code of Federal Regulations, 2010 CFR
2010-04-01
... be mixed with refined woodpulp and the mixture may contain other optional adjuvant substances which... temperature as determined from tables 1 and 2 of § 175.300(d) of this chapter, shall yield net chloroform...
Anti-angiogenic activity and phytochemical screening of fruit fractions from Vitex agnus castus.
Certo, Giovanna; Costa, Rosaria; D'Angelo, Valeria; Russo, Marina; Albergamo, Ambrogina; Dugo, Giacomo; Germanò, Maria Paola
2017-12-01
Although the antitumour activity of Vitex agnus castus fruits has been already addressed, no work has yet assessed their anti-angiogenic potential. To this purpose, several extractive fractions of such fruits were tested on zebrafish embrios by EAP assay, so that only the bioactive fractions could be subsequently tested on the chick chorioallantoic membrane by CAM assay. Bioactive fractions were also phytochemically screened to identify those bioactive compounds responsible for anti-angiogenic activity. A marked inhibition of vessel formation was detected only in zebrafish embryos treated with chloroform or ethyl acetate fractions. Considering CAM assay, chloroform fraction induced a strong reduction of microvasculature and haemoglobin content; while lower anti-angiogenic effects of the ethyl acetate fraction were determined. Phytochemical analyses confirmed the presence of several bioactive anti-angiogenic compounds. Overall, obtained preliminary results highlighted a potential anti-angiogenic activity of V. agnus castus fruits.
Sengüven, Burcu; Baris, Emre; Oygur, Tulin; Berktas, Mehmet
2014-01-01
Discussing a protocol involving xylene-ethanol deparaffinization on slides followed by a kit-based extraction that allows for the extraction of high quality DNA from FFPE tissues. DNA was extracted from the FFPE tissues of 16 randomly selected blocks. Methods involving deparaffinization on slides or tubes, enzyme digestion overnight or for 72 hours and isolation using phenol chloroform method or a silica-based commercial kit were compared in terms of yields, concentrations and the amplifiability. The highest yield of DNA was produced from the samples that were deparaffinized on slides, digested for 72 hours and isolated with a commercial kit. Samples isolated with the phenol-chloroform method produced DNA of lower purity than the samples that were purified with kit. The samples isolated with the commercial kit resulted in better PCR amplification. Silica-based commercial kits and deparaffinized on slides should be considered for DNA extraction from FFPE.
Studies of Antiviral Activity and Cytotoxicity of Wrightia tinctoria and Morinda citrifolia
Selvam, P.; Murugesh, N.; Witvrouw, M.; Keyaerts, E.; Neyts, J.
2009-01-01
Different extracts of leaf parts of Wrightia tinctoria and fruit powder of Morinda citrifolia have been studied against replication of HIV-1(IIIB) in MT-4 cells and HCV in Huh 5.2 cells. Chloroform extract of Wrightia tinctoria exhibited a maximum protection of 48% against the cytopathic effect of HIV-1(IIIB) in MT-4 cells. Fruit juice of Morinda citrifolia exhibited a displayed marked cytotoxic activity in lymphocyte (MT-4) cells (CC50: 0.19 mg/ml). The 50% effective concentration for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells by Morinda citrifolia was 0.98 μg/ml and by chloroform extract of Wrightia tinctoria was 10 μg/ml. The concentration that reduced the growth of exponentially proliferating Huh 5-2 cells by 50% was greater than 50 μg/ml. PMID:20376221
Yu, Jiawen; Xu, Hongjuan; Mo, Zhihong; Zhu, Huali; Mao, Xianbing
2009-07-01
A simple and sensitive reversed-phase liquid chromatographic method, based on the precolumn derivatization with 9-fluorenylmethyl chloroformate, was developed for the determination of myriocin. The derivatization reaction was performed in organic solvents of pyridine and tetrahydrofuran at 40 degrees C. Several factors influencing the derivative yield were investigated and optimized. The formed derivative was stable for more than 24 h at room temperature. The detection wavelength was 262 nm. The system offered the following analytical parameters: the limit of detection was 0.045 microg ml(-1), the linear correlation coefficient was 0.9963 and the linear range response was from 2.0 to 500.0 microg ml(-1). The precision of the method was <2.0%. As a preliminary application, the method has been successfully applied to the determination of myriocin in natural and cultured Cordyceps cicadae.
Araniti, Fabrizio; Lupini, Antonio; Sorgonà, Agostino; Conforti, Filomena; Marrelli, Mariangela; Statti, Giancarlo Antonio; Menichini, Francesco; Abenavoli, Maria Rosa
2013-01-01
The aerial part of Artemisia arborescens L. (Asteraceae) was extracted with water and methanol, and both extracts were fractionated using n-hexane, chloroform, ethyl acetate and n-butanol. The potential phytotoxicity of both crude extracts and their fractions were assayed in vitro on seed germination and root growth of lettuce (Lactuca sativa L.), a sensitive species largely employed in the allelopathy studies. The inhibitory activities were analysed by dose-response curves and the ED 50 were estimated. Crude extracts strongly inhibited both germination and root growth processes. The fraction-bioassay indicated the following hierarchy of phytotoxicity for both physiological processes: ethyl acetate ≥ n-hexane > chloroform ≥ n-butanol. On the n-hexane fraction, GC-MS analyses were carried out to characterise and quantify some of the potential allelochemicals. Twenty-one compounds were identified and three of them, camphor, trans-caryophyllene and pulegone were quantified.
Awan, Uzma Azeem; Andleeb, Saiqa; Kiyani, Ayesha; Zafar, Atiya; Shafique, Irsa; Riaz, Nazia; Azhar, Muhammad Tehseen; Uddin, Hafeez
2013-11-01
Chloroformic and isoamyl alcohol extracts of Cinnnamomum zylanicum, Cuminum cyminum, Curcuma long Linn, Trachyspermum ammi and selected standard antibiotics were investigated for their in vitro antibacterial activity against six human bacterial pathogens. The antibacterial activity was evaluated and based on the zone of inhibition using agar disc diffusion method. The tested bacterial strains were Streptococcus pyogenes, Staphylococcus epidermidis, Klebsiella pneumonia, Staphylococcus aurues, Serratia marcesnces, and Pseudomonas aeruginosa. Ciprofloxacin showed highly significant action against K. pneumonia and S. epidermidis while Ampicillin and Amoxicillin indicated lowest antibacterial activity against tested pathogens. Among the plants chloroform and isoamyl alcohol extracts of C. cyminum, S. aromaticum and C. long Linn had significant effect against P. aeruginosa, S. marcesnces and S. pyogenes. Comparison of antibacterial activity of medicinal herbs and standard antibiotics was also recorded via activity index. Used medicinal plants have various phytochemicals which reasonably justify their use as antibacterial agent.
Upadhyay, Ganesh; Gomti Devi, Th
2014-12-10
The interacting nature of dimethyl sulfoxide (DMSO) in binary mixtures has been carried out on CH and CSC stretching modes of vibration using chloroform (CLF), chloroform-d (CLFd), acetonitrile (ACN) and acetonitrile-d3 (ACNd) solvents. Peak frequencies of both the stretching modes show blue shift with the increase in solvent concentration. Variation of Raman bandwidth with the solvent concentration was discussed using different mechanisms. Ab initio calculation for geometry optimization and vibrational wavenumber calculation have been performed on monomer and dimer structures of DMSO to explain the experimentally observed Raman spectra. Theoretically calculated values are found in good agreement with the experimental results. Vibrational and reorientational relaxation times have been studied corresponding to solvent concentrations to elucidate the interacting mechanisms of binary mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.
Tan, Li Ying; Yin, Wai-Fong; Chan, Kok-Gan
2013-01-01
Various parts of Piper nigrum, Piper betle and Gnetum gnemon are used as food sources by Malaysians. The purpose of this study is to examine the anti-quorum sensing (anti-QS) properties of P. nigrum, P. betle and G. gnemon extracts. The hexane, chloroform and methanol extracts of these plants were assessed in bioassays involving Pseudomonas aeruginosa PA01, Escherichia coli [pSB401], E. coli [pSB1075] and Chromobacterium violaceum CV026. It was found that the extracts of these three plants have anti-QS ability. Interestingly, the hexane, chloroform and methanol extracts from P. betle showed the most potent anti-QS activity as judged by the bioassays. Since there is a variety of plants that serve as food sources in Malaysia that have yet to be tested for anti-QS activity, future work should focus on identification of these plants and isolation of the anti-QS compounds. PMID:23519352
Tan, Li Ying; Yin, Wai-Fong; Chan, Kok-Gan
2013-03-20
Various parts of Piper nigrum, Piper betle and Gnetum gnemon are used as food sources by Malaysians. The purpose of this study is to examine the anti-quorum sensing (anti-QS) properties of P. nigrum, P. betle and G. gnemon extracts. The hexane, chloroform and methanol extracts of these plants were assessed in bioassays involving Pseudomonas aeruginosa PA01, Escherichia coli [pSB401], E. coli [pSB1075] and Chromobacterium violaceum CV026. It was found that the extracts of these three plants have anti-QS ability. Interestingly, the hexane, chloroform and methanol extracts from P. betle showed the most potent anti-QS activity as judged by the bioassays. Since there is a variety of plants that serve as food sources in Malaysia that have yet to be tested for anti-QS activity, future work should focus on identification of these plants and isolation of the anti-QS compounds.
Christie, K.E.; Hjeltnes, B.; Uglenes , I.; Winton, J.R.
1993-01-01
Plasma was collected from Atlantic salmon Salrno salar with acute infectious salmon anaemia (ISA) and used to challenge Atlantic salmon parr by intraperitoneal injection. Treatment of plasma with the lipid solvent, chloroform, showed that the etiological agent of ISA contained essential lipids, probably as a viral envelope. Some infectivity remained following treatment with freon. Injection challenges using fractions from equilibrium density gradient centrifugation of plasma from fish with acute ISA revealed a band of infectivity in the range 1.184 to 1.262 g cm-3. The band was believed to conta~n both complete ISA-virus particles and infectious particles lacking a complete envelope, nucleocapsid or genome. Density gradient centrifugation of infectious plasma for enrichment of the putative ISA virus appeared to offer a suitable method for obtaining virus-specific nucleic acid for use in the construction of cDNA libraries.
Absorption and emission spectroscopic characterisation of 8-amino-riboflavin
NASA Astrophysics Data System (ADS)
Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.
2009-10-01
The flavin dye 8-amino-8-demethyl- D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.
Antioxidant activities of extracts and flavonoid compounds from Oxytropis falcate Bunge.
Jiang, H; Zhan, W Q; Liu, X; Jiang, S X
2008-12-01
The antioxidant properties of the various extracts and flavonoids prepared from Oxytropis falcate Bunge were investigated by 1,1-diphenyl-2-picryldydrazyl (DPPH) radical-scavenging assay. In the chloroform, ethyl acetate and n-butanol extracts, the ethyl acetate extract exhibited the highest antioxidant activity (IC(50) = 2.05 mg mL(-1)). Furthermore, rhamnocitrin, kaempferol, rhamnetin, 2',4'-dihydroxychalcone and 2',4', beta-trihydroxy-dihydrochalcone were purified from chloroform and ethyl acetate extracts. The radical-scavenging activities of the five compounds were also measured and the results showed that kaempferol (IC(50) = 0.11 mg mL(-1)), rhamnetin (IC(50) = 0.14 mg mL(-1)) and rhamnocitrin (IC(50) = 0.15 mg mL(-1)) exhibited considerable antioxidant activities, but the antioxidant activities of the two dihydrochalcones were very weak. Although these flavonoids are known, this is the first report of antioxidant activity in this plant.
Chou, C C; Yu, R C
1984-01-01
Ground powder of the leaf and fruit of Piper betle L., a tropical spice plant grown in Southeast Asia, was prepared and extracted by chloroform, ethanol and water with one solvent only or with 3 solvents in sequence. The betel powder and various extracts were added to YES broth to determine their effects on the growth and aflatoxin production by Aspergillus parasiticus. Results showed that betel leaf powder exhibited higher antimycotic activity than fruit. One half percent of ground leaf powder completely inhibited the growth and aflatoxin production by A. parasiticus. Among the solvent extracts, chloroform and ethanol extracts of betel leaf prepared from a single solvent extraction showed more antimycotic activity. The ethanol extract of betel leaf at the level of 450 micrograms/ml would eliminate A. parasiticus growth and aflatoxin production. The antimycotic activity of this ethanol extract was most pronounced at pH 4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shehata, F.A.; Khalifa, S.M.; El-Dessouky, S.I.
1993-10-01
The extraction of the trivalent radioactive lanthanides (Ln), Pm and Gd from nitrate aqueous medium by 8-hydroxyquinoline (HOX) and/or trilaurylamine (TLA), trioctylamine (TOA), tributylamine (TBA), tripropylamine (TPA) or triallylamine (TAA),L, in chloroform was investigated. The chemical formulae of the extracted organic phase species for both lanthanides were found Ln.NO{sub 3}.(OX){sub 2} for the chelate and Ln.NO{sub 3}(OX){sub 2}.L for the adduct. The respective extraction and formation constants were evaluated. The synergic extraction of Pm and Gd by HOX-amine was investigated as a function of temperature. The thermodynamic parameters, free energy change, enthalpy change and entropy change were evaluated. The stoichiometrymore » of the extracted organic phase species was established and the different data obtained were discussed. 15 refs., 8 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Azizah, N.; Hashim, U.; Nadzirah, Sh.; Arshad, M. K. Md; Ruslinda, A. R.; Gopinath, Subash C. B.
2017-03-01
The affectability and unwavering quality of PCR for indicative and research purposes require effective fair systems of extraction and sanitization of nucleic acids. One of the real impediments of PCR-based tests is the hindrance of the enhancement procedure by substances exhibit in clinical examples. This examination considers distinctive techniques for extraction and cleaning of viral DNA from serum tests in view of recuperation productivity as far as yield of DNA and rate recouped immaculateness of removed DNA, and rate of restraint. The best extraction strategies were the phenol/chloroform strategy and the silica gel extraction methodology for serum tests, individually. Considering DNA immaculateness, extraction technique by utilizing the phenol/chloroform strategy delivered the most tasteful results in serum tests contrasted with the silica gel, separately. The nearness of inhibitors was overcome by all DNA extraction strategies in serum tests, as confirm by semiquantitative PCR enhancement.
Helietta apiculata: a tropical weapon against Chagas disease.
Elena Ferreira, Maria; Rojas de Arias, Antonieta; Yaluff, Gloria; Vera de Bilbao, Ninfa; Nakayama, Hector; Torres, Susana; Schinini, Alicia; Torres, Susana; Serna, Elva; Torrecilhas, Ana Claudia; Fournet, Alain; Cebrián-Torrejón, Gerardo
2018-05-10
The present study pretends to evaluate the in vivo efficacy of the crude chloroform bark extract of Helietta apiculata, then the activity will be compared with the reference drug, benznidazole, in acute Trypanosoma cruzi infected mice when administered by oral route. The chloroformic extract of Helieta apiculata was administered by oral route at 5, 10 and 50 mg/kg daily for two weeks. This study has shown a moderate efficacy of the H. apiculata bark extract in reducing T. cruzi parasitaemia in 42 to 54% after a monitoring of 60 days post-infection and when compared with control groups. Concerning mice mortality, only two only two mice died, one from the control group and the other one from the group threated with 10 mg of the chlorofom extract of H. apiculata, suggesting the potential of H. apiculta extracts as a safe and inexpensive treatment of Chagas disease.
Kovendan, K; Murugan, K; Vincent, S; Barnard, Donald R
2012-04-01
To determine the mosquito larvicidal activities of hexane, chloroform, ethyl acetate, acetone and methanol leaf extract of Orthosiphon thymiflorus (O. thymiflorus) against Anopheles stephensi (An. stephensi), Culex quinquefasciatus (Cx. quinquefasciatus) and Aedes aegypti (Ae. aegypti). The larvicidal activity was assayed against three mosquito species at various concentrations ranging from (50-450 ppm) under the laboratory conditions. The LC(50) and LC(90) value of the O. thymiflorus leaf extract was determined by Probit analysis. The LC(50) values of hexane, chloroform, ethyl acetate, acetone and methanol extract of O. thymiflorus third instar larvae of An. stephensi were LC(50)= 201.39, 178.76, 158.06, 139.22 and 118.74 ppm; Cx. quinquefasciatus were LC(50)=228.13, 209.72, 183.35, 163.55 and 149.96 ppm and Ae. aegypti were LC(50)=215.65, 197.91, 175.05, 154.80 and 137.26 ppm, respectively. Maximum larvicidal activity was observed in the methanolic extract followed by acetone, ethyl acetate chloroform and hexane extract. The larval mortality was observed after 24 h exposure. No mortality was observed in control. The present results suggest that the effective plant crude extracts have potential to be used as an ideal eco-friendly approach for the control of mosquito vectors. This study provides the first report on the larvicidal activity of this plant crude solvent extract of against An. stephensi, Cx. quinquefasciatus and Ae. aegypti mosquitoes. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Ahmed, Farhana; Rahman, Mohammad Sharifur
2016-07-26
Callistemon citrinus (Curtis.) (Family- Myrtaceae) is a popular evergreen shrub in Bangladesh. In the present study, the leaves of this plant have been assessed comprehensively for free radical scavenging, thrombolytic and membrane stabilizing activities. The leaves were collected, powdered and extracted with methanol. The extract was then concentrated and successively fractionated into petroleum ether, carbon tetrachloride, chloroform and aqueous soluble fractions. The extractives were investigated for free radical scavenging, thrombolytic and membrane stabilizing activities. In case of 1,1 diphenyl-2-picrylhydrazyl (DPPH) and hydrogen peroxide radical scavenging assays, the crude methanol extract of the leaves showed the highest free radical scavenging activity among the tested materials including standard ascorbic acid (p = 0.0000). Besides, this extract was also found significantly rich (p = 0.0000) in phenolics and flavonoids compared to other organic fractions. In thrombolytic study, the petroleum ether fraction exhibited significantly stronger thrombolysis (p = 0.024) than other leaf extractives but was weaker than the standard streptokinase. In membrane stabilizing assay, the activity of chloroform fraction was similar to that of standard acetylsalicylic acid (p = 1.000) in hypotonic solution induced hemolysis. However, membrane stabilization activity of this chloroform fraction was found significantly stronger than that of the standard (p = 0.0000) in heat induced hemolysis. This study has revealed the medicinal capabilities of different organic fractions of C. citrinus displaying free radical scavenging, thrombolysis and membrane stabilizing antiinflammatory potentials. Further bioactivity guided isolation is required to obtain pharmacologically secondary metabolites.
Madsen, René Bjerregaard; Jensen, Mads Mørk; Mørup, Anders Juul; Houlberg, Kasper; Christensen, Per Sigaard; Klemmer, Maika; Becker, Jacob; Iversen, Bo Brummerstedt; Glasius, Marianne
2016-03-01
Hydrothermal liquefaction is a promising technique for the production of bio-oil. The process produces an oil phase, a gas phase, a solid residue, and an aqueous phase. Gas chromatography coupled with mass spectrometry is used to analyze the complex aqueous phase. Especially small organic acids and nitrogen-containing compounds are of interest. The efficient derivatization reagent methyl chloroformate was used to make analysis of the complex aqueous phase from hydrothermal liquefaction of dried distillers grains with solubles possible. A circumscribed central composite design was used to optimize the responses of both derivatized and nonderivatized analytes, which included small organic acids, pyrazines, phenol, and cyclic ketones. Response surface methodology was used to visualize significant factors and identify optimized derivatization conditions (volumes of methyl chloroformate, NaOH solution, methanol, and pyridine). Twenty-nine analytes of small organic acids, pyrazines, phenol, and cyclic ketones were quantified. An additional three analytes were pseudoquantified with use of standards with similar mass spectra. Calibration curves with high correlation coefficients were obtained, in most cases R (2) > 0.991. Method validation was evaluated with repeatability, and spike recoveries of all 29 analytes were obtained. The 32 analytes were quantified in samples from the commissioning of a continuous flow reactor and in samples from recirculation experiments involving the aqueous phase. The results indicated when the steady-state condition of the flow reactor was obtained and the effects of recirculation. The validated method will be especially useful for investigations of the effect of small organic acids on the hydrothermal liquefaction process.
The Formation and Properties of Thin Lipid Membranes from HK and LK Sheep Red Cell Lipids
Andreoli, Thomas E.; Bangham, J. Andrew; Tosteson, Daniel C.
1967-01-01
Lipids were obtained from high potassium (HK) and low potassium (LK) sheep red cells by sequential extraction of the erythrocytes with isopropanol-chloroform, chloroform-methanol-0.1 M KCl, and chloroform. The extract contained cholesterol and phospholipid in a molar ratio of 0.8:1.0, and less than 1% protein contaminant. Stable thin lipid membranes separating two aqueous compartments were formed from an erythrocyte lipid-hydrocarbon solution, and had an electrical resistance of ∼108 ohm-cm2 and a capacitance of 0.38–0.4 µf/cm2. From the capacitance values, membrane thickness was estimated to be 46–132 A, depending on the assumed value for the dielectric constant (2.0–4.5). Membrane voltage was recorded in the presence of ionic (NaCl and/or KCl) concentration gradients in the solutions bathing the membrane. The permeability of the membrane to Na+, K+, and Cl- (expressed as the transference number, T ion) was computed from the steady-state membrane voltage and the activity ratio of the ions in the compartments bathing the membrane. T Na and T K were approximately equal (∼0.8) and considerably greater than T Cl (∼0.2). The ionic transference numbers were independent of temperature, the hydrocarbon solvent, the osmolarity of the solutions bathing the membranes, and the cholesterol content of the membranes, over the range 21–38°C. The high degree of membrane cation selectivity was tentatively attributed to the negatively charged phospholipids (phosphatidylethanolamine and phosphatidylserine) present in the lipid extract. PMID:6034765
Carbon dioxide extraction of residual chloroform from biodegradable polymers.
Koegler, Wendy S; Patrick, Carmen; Cima, Michael J; Griffith, Linda G
2002-01-01
Biodegradable polymeric devices for drug delivery and tissue engineering are often fabricated with the use of organic solvents and may still contain significant amounts of solvent (> 1 wt%) even after aggressive vacuum drying. This excess solvent can interfere with tissue response and the mechanical properties of the devices. The aim of this article is to demonstrate that liquid CO(2) extraction can be used to reduce residual solvent in dense poly(L-lactide-co-glycolide) devices to 50 ppm relatively quickly and with minimal changes in architecture under some conditions. Two liquid CO(2) extraction systems were developed to examine the removal of residual solvents from bar-shaped PLGA devices: (1) a low-pressure (1400 psi) batch system, and (2) a high-pressure (5000 psi) continuous-flow system. Eight hours of extraction in the high-pressure system reduced residual chloroform in 3 mm thick bars below the 50-ppm target. A simple Fickian diffusion model was fit to the extraction results. Diffusion coefficients ranged from 1.10 x 10(-6) cm(2)/s to 2.64 x 10(-6) cm(2)/s. The model predicts that approximately 1 h is needed to dry 1-mm bars to chloroform levels below 50 ppm, and 7 h are needed for 3 mm thick bars. The micro- and macroarchitectures of porous PLGA scaffolds created by particulate leaching were not significantly altered by CO(2) drying if the salt used to make the pores was not removed before drying. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 567-576, 2002
Prabhakar, Alisha; Lynch, Amy P; Ahearne, Mark
2016-04-01
Cartilage defects resulting from osteoarthritis (OA) or physical injury can severely reduce the quality of life for sufferers. Current treatment options are costly and not always effective in producing stable hyaline cartilage. Here we investigated a new treatment option that could potentially repair and regenerate damaged cartilage tissue. This novel approach involves the application of infrapatellar fat-pad derived chondroprogenitor cells onto a mechanically stable biodegradable polymer film that can be easily implanted into a defect site. Poly-ε-caprolactone (PCL) films were fabricated via solvent casting in either acetone or chloroform. The hydrophobicity, mechanical properties, and surface morphology of the films were examined. Progenitor cells from infrapatellar fat-pad were isolated, expanded, and then seeded onto the films. The cells were allowed to self-assemble on films, and these were then cultured in a chemically defined chondrogenic media for 28 days. The self-assembled tissue was characterized via histological staining, gene expression analysis, immunohistochemistry, and biochemical analysis. Chondrogenic differentiation was induced to generate a cartilaginous matrix upon the films. Despite differences between in the appearance, surface morphology, and mechanical properties of the films cast in chloroform or acetone, both methods produced tissues rich in sulfated glycosaminoglycan and collagen, although the extracellular matrix produced on chloroform-cast films appeared to contain more collagen type II and less collagen type I than acetone-cast films. These self-assembled constructs have the potential to be implanted into defect sites as a potential treatment for cartilage defect regeneration. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Hossain, Mohammed Munawar; Kabir, Mohammad Shah Hafez; Dinar, Md Abu Monsur; Arman, Md Saiful Islam; Rahman, Md Mominur; Hosen, S M Zahid; Dash, Raju; Uddin, Mir Muhammad Nasir
2017-09-26
The objective of the study was to evaluate the antidiarrheal and antinociceptive activities of ethanol extract and its chloroform and pet ether fraction of Phrynium imbricatum (Roxb.) leaves in mice. In the present study, the dried leaves of P. imbricatum were subjected to extraction with ethanol, and then it was fractioned by chloroform and pet ether solvent. Antidiarrheal effects were tested by using castor oil-induced diarrhea, castor oil-induced enteropooling, and gastrointestinal transit test. Antinociceptive activity was evaluated by using the acetic acid-induced writhing test and formalin-induced paw licking test. The standard drug loperamide (5 mg/kg) showed significant (p<0.001) inhibitory activity against castor oil-induced diarrhea, in which all the examined treatments decreased the frequency of defecation and were found to possess an anti-castor oil-induced enteropooling effect in mice by reducing both weight and volume of intestinal content significantly, and reducing the propulsive movement in castor oil-induced gastrointestinal transit using charcoal meal in mice. The results showed that the ethanol extract of P. imbricatum leaves has significant dose-dependent antinociceptive activity, and among its two different fractions, the pet ether fraction significantly inhibited the abdominal writhing induced by acetic acid and the licking times in formalin test at both phases. These findings suggest that the plant may be a potential source for the development of a new antinociceptive drug and slightly suitable for diarrhea, as it exhibited lower activity. Our observations resemble previously published data on P. imbricatum leaves.
Danko, Martin; Hrdlovič, Pavol; Kulhánek, Jiří; Bureš, Filip
2011-07-01
Spectral properties of novel type of fluorophores consist of a π-conjugated system end-capped with an electron-donating N,N-dimethylaminophenyl group and an electron-withdrawing imidazole-4,5-dicarbonitrile moiety were examined. An additional π-linker separating these two structural units comprises simple bond (B1P), phenyl (B2B), styryl (B3S) and ethynylphenyl (B4A) moieties. The absorption and fluorescence spectra were taken in cyclohexane, chloroform, acetonitrile, methanol and in polymer matrices such as polystyrene, poly(methyl methacrylate) and poly(vinylchloride). The longest-wavelength absorption band was observed in the range of 300 to 400 nm. Intense fluorescence with quantum yields of 0.2 to 1.0 was observed in cyclohexane, chloroform and in polymer matrices within the range of 380 to 500 nm. The fluorescence was strongly quenched in neat acetonitrile and methanol. The fluorescence lifetimes are in the range of 1-4 ns for all measured fluorophores. The large Stokes shift (4,000 to 8,000 cm(-1)) indicates a large difference in the spatial arrangement of the chromophore in the absorbing and the emitting states. The observed fluorescence of all fluorophores in chloroform was quenched by 1-oxo-2,2,6,6-tetramethyl-4-hydroxy piperidine by the diffusion-controlled bimolecular rate (cca 2 × 10(10) L mol(-1) s(-1)). Polar solvents such as acetonitrile and methanol quenched the fluorescence as well but probably via a different mechanism. © Springer Science+Business Media, LLC 2011
Psychotria viridis: Chemical constituents from leaves and biological properties.
Soares, Débora B S; Duarte, Lucienir P; Cavalcanti, André D; Silva, Fernando C; Braga, Ariadne D; Lopes, Miriam T P; Takahashi, Jacqueline A; Vieira-Filho, Sidney A
2017-01-01
The phytochemical study of hexane, chloroform and methanol extracts from leaves of Psychotria viridis resulted in the identification of: the pentacyclic triterpenes, ursolic and oleanolic acid; the steroids, 24-methylene-cycloartanol, stigmasterol and β-sitosterol; the glycosylated steroids 3-O-β-D-glucosyl-β-sitosterol and 3-O-β-D-glucosyl-stigmasterol; a polyunsaturated triterpene, squalene; the esters of glycerol, 1-palmitoylglycerol and triacylglycerol; a mixture of long chain hydrocarbons; the aldehyde nonacosanal; the long chain fat acids hentriacontanoic, hexadecanoic and heptadenoic acid; the ester methyl heptadecanoate; the 4-methyl-epi-quinate and two indole alkaloids, N,N-dimethyltryptamine (DMT) and N-methyltryptamine. The chemical structures were determined by means of spectroscopic (IR, 1H and 13C NMR, HSQC, HMBC and NOESY) and spectrometric (CG-MS and LCMS-ESI-ITTOF) methods. The study of biologic properties of P. viridis consisted in the evaluation of the acetylcholinesterase inhibition and cytotoxic activities. The hexane, chloroform, ethyl acetate and methanol extracts, the substances 24-methylene-cycloartanol, DMT and a mixture of 3-O-β-D-glucosyl-β-sitosterol and 3-O-β-D-glucosyl-stigmasterol showed cholinesterase inhibiting activity. This activity induced by chloroform and ethyl acetate extracts was higher than 90%. The methanol and ethyl acetate extracts inhibit the growth and/or induce the death of the tumor cells strains B16F10 and 4T1, without damaging the integrity of the normal cells BHK and CHO. DMT also demonstrated a marked activity against tumor cell strains B16F10 and 4T1.
Pruvost, Olivier; Savelon, Caroline; Boyer, Claudine; Chiroleu, Frédéric; Gagnevin, Lionel; Jacques, Marie-Agnès
2009-07-01
Epiphytic survival of several Xanthomonas pathovars has been reported, but most studies failed to determine whether such populations were resident epiphytes, resulting from latent infections, or casual epiphytes. This study aimed at understanding the nature of Xanthomonas citri pv. mangiferaeindicae populations associated with asymptomatic leaves. When spray-inoculated on mango leaves cv. Maison Rouge, the pathogen multiplied markedly in association with juvenile leaves, but was most often detected as low population sizes (<1 x 10(3) cfu g(-1)) in association with mature leaves. Our results suggest a very low biological significance of biofilm-associated populations of X. citri pv. mangiferaeindicae, while saprophytic microbiota associated with mango leaves survived frequently as biofilms. A chloroform vapor-based disinfestation assay which kills cells specifically located on the leaf surface and not those located within the leaf mesophyll was developed. When applied to spray-inoculated leaves maintained under controlled environmental conditions, 155 out of the 168 analyzed datasets collected over three assessment dates for seven bacterial strains representative of the genetic diversity of the pathogen failed to demonstrate a significant X. citri pv. mangiferaeindicae population decrease on chloroform treated leaves up to 13 days after inoculation. We conclude that an efficient survival of X. citri pv. mangiferaeindicae present on mango leaf surfaces following a limited dissemination event is largely dependent on the availability of juvenile plant tissues. The bacterium gains access to protected sites (e.g., mesophyll) through stomata where it becomes endophytic and eventually causes disease. Chloroform vapor-based disinfestation assays should be useful for further studies aiming at evaluating survival sites of bacteria associated with the phyllosphere.
Pyrus pashia: A persuasive source of natural antioxidants.
Siddiqui, Sabahat Zahra; Ali, Saima; Rehman, Azizur; Rubab, Kaniz; vAbbasi, Muhammad Athar; Ajaib, Muhammad; Z Rasool, Zahid Ghulam
2015-09-01
Pyrus pashia Buch. & Ham. was subjected to extraction with methanol. Methanolic extracts of fruit, bark and leaf were partitioned separately with four organic solvents in order of increasing polarity, asn-hexane, chloroform, ethyl acetate and n-butanol after dissolving in distilled water. Phytochemical screening revealed the presence of phenolics, flavonoides, alkaloids and cardiac glycosides in large amount in chloroform, ethyl acetate and n-butanol soluble fractions. The antioxidant activity of crude methanolic extracts, all the obtained fourorganic fractions and remaining aqueous fractions was evaluated by different methods such as: 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, ferric reducing antioxidant power (FRAP) assay and total antioxidant activity by phosphomolybdenum complex method as well as determination of total phenolics. The results of antioxidant activity exhibited that chloroform soluble fraction of fruit showed the highest value of percent inhibition of DPPH (48.16 ± 0.21 μg/ml) at the concentration of 10 μg/ml. Ethyl acetate soluble fraction displayed the lowest antioxidant activity having IC50 value of bark as (8.64 ± 0.32 μg/ml) relative to butylated hydroxytoluene (BHT), having IC50 of 12.1 ± 0.92 μg/ml. The ethyl acetate soluble fraction of bark revealed the highest FRAPs value (174.618 ± 0.11TE µM/ml) among all the three parts. This fraction also showed the highest value of total antioxidant activity as (1.499 ± 0.90), determined by phosphomolybdenum complex method. Moreover, this fraction also conferred the highest phenolic content (393.19 ± 0.72) as compared to other studied fractions of fruit and leaf.
Milk Bottom-Up Proteomics: Method Optimization
Vincent, Delphine; Ezernieks, Vilnis; Elkins, Aaron; Nguyen, Nga; Moate, Peter J.; Cocks, Benjamin G.; Rochfort, Simone
2016-01-01
Milk is a complex fluid whose proteome displays a diverse set of proteins of high abundance such as caseins and medium to low abundance whey proteins such as ß-lactoglobulin, lactoferrin, immunoglobulins, glycoproteins, peptide hormones, and enzymes. A sample preparation method that enables high reproducibility and throughput is key in reliably identifying proteins present or proteins responding to conditions such as a diet, health or genetics. Using skim milk samples from Jersey and Holstein-Friesian cows, we compared three extraction procedures which have not previously been applied to samples of cows' milk. Method A (urea) involved a simple dilution of the milk in a urea-based buffer, method B (TCA/acetone) involved a trichloroacetic acid (TCA)/acetone precipitation, and method C (methanol/chloroform) involved a tri-phasic partition method in chloroform/methanol solution. Protein assays, SDS-PAGE profiling, and trypsin digestion followed by nanoHPLC-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS/MS) analyses were performed to assess their efficiency. Replicates were used at each analytical step (extraction, digestion, injection) to assess reproducibility. Mass spectrometry (MS) data are available via ProteomeXchange with identifier PXD002529. Overall 186 unique accessions, major and minor proteins, were identified with a combination of methods. Method C (methanol/chloroform) yielded the best resolved SDS-patterns and highest protein recovery rates, method A (urea) yielded the greatest number of accessions, and, of the three procedures, method B (TCA/acetone) was the least compatible of all with a wide range of downstream analytical procedures. Our results also highlighted breed differences between the proteins in milk of Jersey and Holstein-Friesian cows. PMID:26793233
Khavani, Mohammad; Izadyar, Mohammad; Housaindokht, Mohammad Reza
2015-10-14
In this article, cyclic peptides (CP) with lipid substituents were theoretically designed. The dynamical behavior of the CP dimers and the cyclic peptide nanotube (CPNT) without lipid substituents in the solution (water and chloroform) during the 50 ns molecular dynamic (MD) simulations has been investigated. As a result, the CP dimers and CPNT in a non-polar solvent are more stable than in a polar solvent and CPNT is a good container for non-polar small molecules such as chloroform. The effect of the lipid substituents on the CP dimers and CPNT has been investigated in the next stage of our studies. Accordingly, these substituents increase the stability of the CP dimers and CPNT, significantly, in polar solvents. MM-PBSA and MM-GBSA calculations confirm that substitution has an important effect on the stability of the CP dimers and CPNT. Finally, the dynamical behavior of CPNT with lipid substituents in a fully hydrated DMPC bilayer shows the high ability of this structure for molecule transmission across the lipid membrane. This structure is stable enough to be used as a molecular channel. DFT calculations on the CP dimers in the gas phase, water and chloroform, indicate that H-bond formation is the driving force for dimerization. CP dimers are more stable in the gas phase in comparison to in solution. HOMO-LUMO orbital analysis indicates that the interaction of the CP units in the dimer structures is due to the molecular orbital interactions between the NH and CO groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Xin R., E-mail: xia@ncsu.ed; Monteiro-Riviere, Nancy A.; Riviere, Jim E.
2010-01-01
Pristine fullerenes (C{sub 60}) in different solvents will be used in many industrial and pharmaceutical manufacturing and derivatizing processes. This report explores the impact of solvents on skin penetration of C{sub 60} from different types of industrial solvents (toluene, cyclohexane, chloroform and mineral oil). Yorkshire weanling pigs (n = 3) were topically dosed with 500 muL of 200 mug/mL C{sub 60} in a given solvent for 24 h and re-dosed daily for 4 days to simulate the worst scenario in occupational exposures. The dose sites were tape-stripped and skin biopsies were taken after 26 tape-strips for quantitative analysis. When dosedmore » in toluene, cyclohexane or chloroform, pristine fullerenes penetrated deeply into the stratum corneum, the primary barrier of skin. More C{sub 60} was detected in the stratum corneum when dosed in chloroform compared to toluene or cyclohexane. Fullerenes were not detected in the skin when dosed in mineral oil. This is the first direct evidence of solvent effects on the skin penetration of pristine fullerenes. The penetration of C{sub 60} into the stratum corneum was verified using isolated stratum corneum in vitro; the solvent effects on the stratum corneum absorption of C{sub 60} were consistent with those observed in vivo. In vitro flow-through diffusion cell experiments were conducted in pig skin and fullerenes were not detected in the receptor solutions by 24 h. The limit of detection was 0.001 mug/mL of fullerenes in 2 mL of the receptor solutions.« less
Antiprotozoal and antimycobacterial activities of Persea americana seeds.
Jiménez-Arellanes, Adelina; Luna-Herrera, Julieta; Ruiz-Nicolás, Ricardo; Cornejo-Garrido, Jorge; Tapia, Amparo; Yépez-Mulia, Lilián
2013-05-16
Persea americana seeds are widely used in traditional Mexican medicine to treat rheumatism, asthma, infectious processes as well as diarrhea and dysentery caused by intestinal parasites. The chloroformic and ethanolic extracts of P. americana seeds were prepared by maceration and their amoebicidal, giardicidal and trichomonicidal activity was evaluated. These extracts were also tested against Mycobacterium tuberculosis H37Rv, four mono-resistant and two multidrug resistant strains of M. tuberculosis as well as five non tuberculosis mycobacterium strains by MABA assay. The chloroformic and ethanolic extracts of P. americana seeds showed significant activity against E. histolytica, G. lamblia and T. vaginalis (IC50 <0.634 μg/ml). The chloroformic extract inhibited the growth of M. tuberculosis H37Rv, M. tuberculosis MDR SIN 4 isolate, three M. tuberculosis H37Rv mono-resistant reference strains and four non tuberculosis mycobacteria (M. fortuitum, M. avium, M. smegmatis and M. absessus) showing MIC values ≤50 μg/ml. Contrariwise, the ethanolic extract affected only the growth of two mono-resistant strains of M. tuberculosis H37Rv and M. smegmatis (MIC ≤50 μg/ml). The CHCl3 and EtOH seed extracts from P. americana showed amoebicidal and giardicidal activity. Importantly, the CHCl3 extract inhibited the growth of a MDR M. tuberculosis isolate and three out of four mono-resistant reference strains of M. tuberculosis H37Rv, showing a MIC = 50 μg/ml. This extract was also active against the NTM strains, M. fortuitum, M. avium, M. smegmatis and M. abscessus, with MIC values <50 μg/ml.
REMOVING TRIHALOMETHANES FROM DRINKING WATER - AN OVERVIEW OF TREATMENT TECHNIQUES
In 1974 trihalomethanes (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) were discovered to be formed during the disinfection step of drinking water if free chlorine was the disinfectant. This, coupled with the perceived hazard to the consumer's health, led...
NASA Astrophysics Data System (ADS)
Odabasi, Mustafa; Elbir, Tolga; Dumanoglu, Yetkin; Sofuoglu, Sait C.
2014-08-01
It was recently shown that substantial amounts of halogenated volatile organic compounds (VOCs) are formed in chlorine-bleach-containing household products as a result of reactions of sodium hypochlorite with organic product components. Use of these household products results in elevated indoor air halogenated VOC concentrations. Halogenated VOCs in several chlorine-bleach-containing household products (plain, n = 9; fragranced, n = 4; and surfactant-added, n = 29) from Europe and North America were measured in the present study. Chloroform and carbon tetrachloride were the dominating compounds having average concentrations of 9.5 ± 29.0 (average ± SD) and 23.2 ± 44.3 (average ± SD) mg L-1, respectively. Halogenated VOC concentrations were the lowest in plain bleach, slightly higher in fragranced products and the highest in the surfactant-added products. Investigation of the relationship between the halogenated VOCs and several product ingredients indicated that chlorinated VOC formation is closely related to product composition. Indoor air concentrations from the household use of bleach products (i.e., bathroom, kitchen, and hallway cleaning) were estimated for the two dominating VOCs (chloroform and carbon tetrachloride). Estimated indoor concentrations ranged between 0.5 and 1030 (34 ± 123, average ± SD) μg m-3 and 0.3-1124 (82 ± 194, average ± SD) μg m-3 for chloroform and carbon tetrachloride, respectively, indicating substantial increases compared to background. Results indicated that indoor air concentrations from surfactant-added products were significantly higher (p < 0.01) than other categories. The highest concentrations were from the use of surfactant-added bleach products for bathroom cleaning (92 ± 228 and 224 ± 334 μg m-3, average ± SD for chloroform and carbon tetrachloride, respectively). Associated carcinogenic risks from the use of these products were also estimated. The risk levels may reach to considerably high levels for a significant portion of the population especially for those steadily using the surfactant-added bleach products. Based on the results of the present study, it could be recommended that if possible the use of chlorine bleach containing household products should be avoided. If they are to be used, plain products should be preferred since the chlorinated VOC content increase with the number and amount of additives.
Dasgupta, A; Spies, J
1998-05-01
Amphetamine and methamphetamine are commonly abused central nervous system stimulants. We describe a rapid new derivatization of amphetamine and methamphetamine using 2,2,2-trichloroethyl chloroformate for gas chromatography-mass spectrometric analysis. Amphetamine and methamphetamine, along with N-propyl amphetamine (internal standard), were extracted from urine using 1-chlorobutane. The derivatization with 2,2,2-trichloroethyl chloroformate can be achieved at room temperature in 10 minutes. The electron ionization mass spectrum of amphetamine 2,2,2-trichloroethyl carbamate showed two weak molecular ions at m/z 309 and 311, but showed diagnostic strong peaks at m/z 218, 220, and 222. In contrast, chemical ionization of the mass spectrum of amphetamine 2,2,2-trichloroethyl carbamate showed strong (M + 1) ions at m/z 310 and 312 and other strong diagnostic peaks at m/z 274 and 276. The major advantages of this derivative are the presence of a diagnostic cluster of peaks due to the isotopic effect of three chlorine atoms (isotopes 35 and 37) in the derivatized molecule and the relative ease of its preparation. We also observed strong molecular ions for derivatized methamphetamine in the chemical ionization mass spectrum, but the molecular ions were very weak in the electron ionization mass spectrum. We used the scan mode of mass spectrometry in all analyses. When using a urine standard containing 1,000 ng/mL of amphetamine (a 7.4-micromol/L concentration) and methamphetamine (a 6.7-micromol/L concentration), the within-run precisions were 4.8% for amphetamine and 3.6% for methamphetamine. The corresponding between-run precisions were 5.3% for amphetamine and 6.7% for methamphetamine. The assay was linear for amphetamine and methamphetamine concentrations of 250 to 5,000 ng/mL (amphetamine, 1.9-37.0 micromol/L; methamphetamine, 1.7-33.6 micromol/L). The detection limit was 100 ng/mL (amphetamine, 0.74 micromol/L; methamphetamine, 0.67 micromol/L) using the scan mode of electron ionization mass spectrometry. We observed good a correlation between the concentrations of amphetamine and methamphetamine in five urine specimens positive for amphetamines using the more conventional pentafluoropropionyl derivative and our new derivative using 2,2,2-trichloroethyl chloroformate.
NASA Astrophysics Data System (ADS)
Marais, Savia S.; Ncube, Esper J.; Haarhoff, Johannes; Msagati, Titus AM; Mamba, Bhekie B.; Nkambule, Thabo I.
2016-04-01
Certain disinfection by-products (DBPs) are likely human carcinogens or present mutagenic effects while many DBPs are unidentified. Considering the possibility of DBPs being harmful to human health and the fact that trihalomethanes (THMs) are the only regulated DBP in the South African National Standard (SANS:241) for drinking water, special interest in the precursors to these DBPs' formation is created. It is essential to understand the reactivity and character of the precursors responsible for the formation of DBPs in order to enhance precursor removal strategies during the treatment of drinking water. In this study the character of NOM within surface water and the subsequent distribution of THMs formed in the drinking water from Rand Waters' full scale treatment plant were investigated. Molecular size distribution (MSD) of NOM within the surface water was determined by high performance size exclusion chromatography (HPSEC). Specific ultraviolet absorbance (SUVA) and UV254 measurements formed part of the NOM character study as they provide an indication of the aromaticity of organic matter. The four THMs; bromoform, chloroform, dibromochloromethane (DBCM) and bromodichloromethane (BDCM)were measured by gas chromatography. The sum of these four THMs was expressed as total trihalomethane (TTHM). On average the chloroform constituted 76.2% of the total TTHM, BDCM 22.5% while DBCM and bromoform measured below the detection limit. THM speciation after chlorination and chloramination concentrations increased in the sequence bromoform < DBCM < BDCM < chloroform. Results of the MSD showed a significant correlation between NOM of high molecular size (peak I) and TTHM formation specifically during the summer months (R2= 0.971, p < 0.05). High molecular weight (HMW) NOM also related well to chloroform formation (R2 = 0.963, p < 0.05) however, the formation of BDCM was not due to HWM fraction as indicated by weak regression coefficient. A positive correlation existed between SUVA and UV254 removal percentage (R2 = 0.937, p < 0.05). Seasonal variability in NOM character was evident in the source water in summer when high temperatures and rainfall occurred. The results displayed are an indication that aromatic NOM were the main precursor to TTHM formation, more prominently during summer. Keywords: disinfection by-products, molecular size distribution, natural organic matter, UV254
In vitro and in vivo anti-malarial activity of plants from the Brazilian Amazon.
Lima, Renata B S; Rocha e Silva, Luiz F; Melo, Marcia R S; Costa, Jaqueline S; Picanço, Neila S; Lima, Emerson S; Vasconcellos, Marne C; Boleti, Ana Paula A; Santos, Jakeline M P; Amorim, Rodrigo C N; Chaves, Francisco C M; Coutinho, Julia P; Tadei, Wanderli P; Krettli, Antoniana U; Pohlit, Adrian M
2015-12-18
The anti-malarials quinine and artemisinin were isolated from traditionally used plants (Cinchona spp. and Artemisia annua, respectively). The synthetic quinoline anti-malarials (e.g. chloroquine) and semi-synthetic artemisinin derivatives (e.g. artesunate) were developed based on these natural products. Malaria is endemic to the Amazon region where Plasmodium falciparum and Plasmodium vivax drug-resistance is of concern. There is an urgent need for new anti-malarials. Traditionally used Amazonian plants may provide new treatments for drug-resistant P. vivax and P. falciparum. Herein, the in vitro and in vivo antiplasmodial activity and cytotoxicity of medicinal plant extracts were investigated. Sixty-nine extracts from 11 plant species were prepared and screened for in vitro activity against P. falciparum K1 strain and for cytotoxicity against human fibroblasts and two melanoma cell lines. Median inhibitory concentrations (IC50) were established against chloroquine-resistant P. falciparum W2 clone using monoclonal anti-HRPII (histidine-rich protein II) antibodies in an enzyme-linked immunosorbent assay. Extracts were evaluated for toxicity against murine macrophages (IC50) and selectivity indices (SI) were determined. Three extracts were also evaluated orally in Plasmodium berghei-infected mice. High in vitro antiplasmodial activity (IC50 = 6.4-9.9 µg/mL) was observed for Andropogon leucostachyus aerial part methanol extracts, Croton cajucara red variety leaf chloroform extracts, Miconia nervosa leaf methanol extracts, and Xylopia amazonica leaf chloroform and branch ethanol extracts. Paullinia cupana branch chloroform extracts and Croton cajucara red variety leaf ethanol extracts were toxic to fibroblasts and or melanoma cells. Xylopia amazonica branch ethanol extracts and Zanthoxylum djalma-batistae branch chloroform extracts were toxic to macrophages (IC50 = 6.9 and 24.7 µg/mL, respectively). Andropogon leucostachyus extracts were the most selective (SI >28.2) and the most active in vivo (at doses of 250 mg/kg, 71% suppression of P. berghei parasitaemia versus untreated controls). Ethnobotanical or ethnopharmacological reports describe the anti-malarial use of these plants or the antiplasmodial activity of congeneric species. No antiplasmodial activity has been demonstrated previously for the extracts of these plants. Seven plants exhibit in vivo and or in vitro anti-malarial potential. Future work should aim to discover the anti-malarial substances present.
Senathilake, K S; Karunanayake, E H; Samarakoon, S R; Tennekoon, K H; de Silva, E D
2016-08-01
Human lymphatic filariasis (LF) is mainly caused by filarial parasite Wuchereria bancrofti and is the second leading cause of long term and permanent disability in tropical countries. To date, incapability to eliminate long lived adult parasites by current drugs remains the major challenge in the elimination of LF. Hence, in the current study, the efficacy of rhizome extracts of Curcuma zedoaria (a plant traditionally used in Sri Lanka in the management of LF) was evaluated as an effective filaricide in vitro. Sequential solvent extracts of C. zedoaria rhizomes were screened for in vitro antifilarial activity at 0.01-1 mg/mL concentrations by motility inhibition assay and 3-(4, 5 dimethylthiazol-2-yl)-2, 5 diphenyl tetrazolium bromide (MTT) reduction assay using cattle parasite Setaria digitata as a model organism. Exposure of parasites to hexane and chloroform extracts of C. zedoaria caused a dose dependant reduction in motility and viability of microfilariae (IC50 = 72.42 μg/mL for hexane extract, 191.14 μg/mL for chloroform extract) and adult parasites (IC50 = 77.07 μg/mL for hexane extract, 259.87 μg/mL for chloroform extract). Both extracts were less toxic to human peripheral blood mononuclear cells when compared to filariae. A dose dependant increase in caspase 3/CED 3 and a decrease in total protein content, cyclooxygenase (COX) and protein tyrosine phosphatase (PTP) activities were observed in adult parasites treated with hexane or chloroform extract. A significant degree of chromatin condensation and apoptotic body formation were also observed in these worms by Hoechst 33342 and terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling (TUNEL) staining respectively. Dose dependant chromosomal DNA laddering was observed in treated adult worms but not in microfilariae in response to both extracts. Oxidative stress parameters such as reduction in reduced glutathione (GSH) levels and increase in glutathione s transferase (GST), superoxide dismutase (SOD) and catalase activities, increased reactive oxygen levels (ROS) and lipid peroxidation were also observed indicating that an apoptotic event is induced by reactive oxygen species. Copyright © 2016 Elsevier Inc. All rights reserved.
A physiologically-based pharmacokinetic (PBPK) model incorporating mixed enzyme inhibition was used to determine mechanism of the metabolic interactions occurring during simultaneous inhalation exposures to the organic solvents chloroform and trichloroethylene (TCE).
V...
A physiologically-based pharmacokinetic (PBPK) model incorporating mixed enzyme inhibition was used to determine the mechanism of metabolic interactions occurring during simultaneous exposures to the organic solvents chloroform and trichloroethylene (TCE). Visualization-based se...
BIOVENTING OF CHLORINATED SOLVENTS FOR GROUND-WATER CLEANUP THROUGH BIOREMEDIATION
Chlorinated solvents such as tetrachloroethylene, trichloroethylene, carbon tetrachloride, chloroform, 1,2-dichloroethane, and dichloromethane (methylene chloride) can exist in contaminated subsurface material as (1) the neat oil, (2) a component of a mixed oily waste, (3) a solu...
Williams, Shannon D.; Farmer, James
2003-01-01
The U.S. Geological Survey (USGS), in cooperation with the Tennessee Department of Environment and Conservation, Division of Superfund, collected discharge, rainfall, continuous water-quality (temperature, dissolved oxygen, specific conductance, and pH), and volatile organic compound (VOC) data from three karst springs in Middle Tennessee from February 2000 to May 2001. Continuous monitoring data indicated that each spring responds differently to storms. Water quality and discharge at Wilson Spring, which is located in the Central Basin karst region of Tennessee, changed rapidly after rainfall. Water quality and discharge also varied at Cascade Spring; however, changes did not occur as frequently or as quickly as changes at Wilson Spring. Water quality and discharge at Big Spring at Rutledge Falls changed little in response to storms. Cascade Spring and Big Spring at Rutledge Falls are located in similar hydrogeologic settings on the escarpment of the Highland Rim. Nonisokinetic dip-sampling methods were used to collect VOC samples from the springs during base-flow conditions. During selected storms, automatic samplers were used to collect water samples at Cascade Spring and Wilson Spring. Water samples were collected as frequently as every 15 minutes at the beginning of a storm, and sampling intervals were gradually increased following a storm. VOC samples were analyzed using a portable gas chromatograph (GC). VOC samples were collected from Wilson, Cascade, and Big Springs during 600, 199, and 55 sampling times, respectively, from February 2000 to May 2001. Chloroform concentrations detected at Wilson Spring ranged from 0.073 to 34 mg/L (milligrams per liter). Chloroform concentrations changed during most storms; the greatest change detected was during the first storm in fall 2000, when chloroform concentrations increased from about 0.5 to about 34 mg/L. Concentrations of cis-1,2-dichloroethylene (cis-1,2-DCE) detected at Cascade Spring ranged from 0.30 to 1.8 ?g/L (micrograms per liter) and gradually decreased between November 2000 and May 2001. In addition to the gradual decrease in cis-1,2-DCE concentrations, some additional decreases were detected during storms. VOC samples collected at weekly intervals from Big Spring indicated a gradual decrease in trichloroethylene (TCE) concentrations from approximately 9 to 6 ?g/L between November 2000 and May 2001. Significant changes in TCE concentrations were not detected during individual storms at Big Spring. Quality-control samples included trip blanks, equipment blanks, replicates, and field-matrix spike samples. VOC concentrations measured using the portable GC were similar to concentrations in replicate samples analyzed by the USGS National Water Quality Laboratory (NWQL) with the exception of chloroform and TCE concentrations. Chloroform and TCE concentrations detected by the portable GC were consistently lower (median percent differences of ?19.2 and ?17.4, respectively) than NWQL results. High correlations, however, were observed between concentrations detected by the portable GC and concentrations detected by the NWQL (Pearson?s r > 0.96). VOC concentrations in automatically collected samples were similar to concentrations in replicates collected using dip-sampling methods. More than 80 percent of the VOC concentrations measured in automatically collected samples were within 12 percent of concentrations in dip samples.
The Pall/Kinetico Purefecta™ POU drinking water treatment system was tested for removal of aldicarb, benzene, cadmium, carbofuran, cesium, chloroform, dichlorvos, dicrotophos, fenamiphos, mercury, mevinphos, oxamyl, strontium, and strychnine. The Purefecta™ employs several compon...
Economics of Chlorofluorocarbon (CFC) Machine Replacement
1994-09-01
trichloroethane (methyl chloroform) CC13CH 3 133.4 74 165 1 41b I , 1 -dichloro- 1 -fluoroothane CC12FCH 3 117.0 32 90 142b I1-chloro- 1 . 1 - difluoroethans ... 1 Introduction... 1 Impact On The Commercial And Industrial Sectors
Atmospheric Science Data Center
2013-02-18
... Trichloroethylene (C2HCl3) Carbon tetrachloride (CCl4) Methylene bromide (CH2Br2) Chlorobromomethane (CH2BrCl) Dichloromethane ... Methylbromide (CH3Br) Chloroform (CH3CCl3) Methyl Chloride (CH3Cl) Methyl Iodide (CH3I) Chlorodibromomethane (CHBr2Cl) ...
Atmospheric Science Data Center
2013-02-19
... Trichloroethylene (C2HCl3) Carbon tetrachloride (CCl4) Methylene bromide (CH2Br2) Chlorobromomethane (CH2BrCl) Dichloromethane ... Methylbromide (CH3Br) Chloroform (CH3CCl3) Methyl Chloride (CH3Cl) Methyl Iodide (CH3I) Chlorodibromomethane (CHBr2Cl) ...
[Methods for the rapid preparation of paraffin blocks].
Shmurun, R I
1992-01-01
Two accelerated chloroform-paraffin processings of materials with the use of ultrasound (US) and microwave (MW) irradiation in the stove "Electronica" as well as a combined method with US- and MW-irradiation are proposed to shorten drastically the duration of the prehistologic processing.
TOXICITY OF CHLOROFORM BIOTRANSFORMATION TO METHANOGENIC BACTERIA. (R825549C053)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
COMPETITIVE ADSORPTION OF VOCS AND BOM: THE ROLE OF MOLECULAR OXYGEN
In this study, the presence of background organic matter (BOM) was seen to reduce the adsorptive capacity of carbon for chloroform, chlorobenzene, and dibromochloropropane. Adsorption of these compounds was further reduced under oxic conditions. This additional reduction in cap...
Krishnappa, K; Elumalai, K; Dhanasekaran, S; Gokulakrishnan, J
2012-06-01
Development of plant-based alternative compounds for mosquito control has gained importance now-a-days, in view of increasing resistance in mosquito vectors to existing insecticides. The larvicidal and repellent activities of benzene, chloroform, hexane and methanol leaf extracts of Indian medicinal plant, Adansonia digitata were investigated against malarial vector, Anopheles stephensi. In all, 25 III instar larvae of An. stephensi were exposed to various concentrations (30-180 mg/l) in the laboratory by using the standard protocol described by WHO (2005). The larvae were exposed for 24 h and mortalities were subjected to log-probit analysis. Repellent activity of crude leaf extract at the dosages of 2, 4 and 6 mg/cm2 was evaluated in a net cage (45 × 30 × 45 cm) containing 100 blood starved female mosquitoes of An. stephensi using the protocol of WHO (1996). Preliminary phytochemical analysis of A. digitata showed the presence of triterpenoids and saponins. The LC50 and LC90 values of hexane, benzene, chloroform, and methanol extracts of A. digitata against An. stephensi larvae in 24 h were 111.32, 97.13, 88.55, 78.18 and 178.63, 176.19, 168.14, 155.42 mg/l, respectively. The repellent activity of methanol extract was found to be most effective and at higher concentration of 6 mg/cm2 benzene, chloroform hexane and methanol extracts provided 100% protection up to 150, 180, 120 and 210 min against An. stephensi, respectively. The preliminary study indicated that A. digitata showed larvicidal and repellent activities against An. stephensi and could be used for controlling mosquitoes. Further studies are indicated to purify the active compounds from these plants for developing larvicide and repellents.
Liu, Boning; Reckhow, David A
2013-10-15
This paper demonstrates that disinfection byproducts (DBP) concentration profiles in heated water were quite different from the DBP concentrations in the cold tap water. Chloroform concentrations in the heated water remained constant or even decreased slightly with increasing distribution system water age. The amount of dichloroacetic acid (DCAA) was much higher in the heated water than in the cold water; however, the maximum levels in heated water with different distribution system water ages did not differ substantially. The levels of trichloroacetic acid (TCAA) in the heated water were similar to the TCAA levels in the tap water, and a slight reduction was observed after the tap water was heated for 24 h. Regardless of water age, significant reductions of nonregulated DBPs were observed after the tap water was heated for 24 h. For tap water with lower water ages, there were significant increases in dichloroacetonitrile (DCAN), chloropicrin (CP), and 1,1-dichloropropane (1,1-DCP) after a short period of heating. Heating of the tap water with low pH led to a more significant increase of chloroform and a more significant short-term increase of DCAN. High pH accelerated the loss of the nonregulated DBPs in the heated water. The results indicated that as the chlorine doses increased, levels of chloroform and DCAA in the heated water increased significantly. However, for TCAA, the thermally induced increase in concentration was only notable for the chlorinated water with very high chlorine dose. Finally, heating may lead to higher DBP concentrations in chlorinated water with lower distribution system temperatures.
Baines, Cornelia Johanna; McKeown-Eyssen, Gail Elizabeth; Riley, Nicole; Cole, David Edward C; Marshall, Lynn; Loescher, Barry; Jazmaji, Vartouhi
2004-09-01
Multiple chemical sensitivity (MCS), although poorly understood, is associated with considerable morbidity. To investigate potential biological mechanisms underlying MCS in a case-control study. Two hundred and twenty-three MCS cases and 194 controls (urban females, aged 30-64 years) fulfilled reproducible eligibility criteria with discriminant validity. Routine laboratory results and serum levels of volatile organic compounds (VOCs) were compared. Dose-response relationships, a criterion for causality, were examined linking exposures to likelihood of case status. Routine laboratory investigations revealed clinically unimportant case-control differences in means. Confounder-adjusted odds ratios (OR) showed MCS was negatively associated with lymphocyte count and total plasma homocysteine, positively associated with mean cell haemoglobin concentration, alanine aminotransferase and serum vitamin B6, and not associated with thyroid stimulating hormone, folate or serum vitamin B12. More cases than controls had detectable serum chloroform (P = 0.001) with the OR for detectability 2.78 (95% confidence interval = 1.73-4.48, P < 0.001). Chloroform levels were higher in cases. However, cases had significantly lower means of detectable serum levels of ethylbenzene, m&p-xylene, 3-methylpentane and hexane, and means of all serum levels of 1,3,5- and 1,2,3-trimethylbenzene, 2- and 3-methylpentane, and m&p-xylene. Our findings are inconsistent with proposals that MCS is associated with vitamin deficiency or thyroid dysfunction, but the association of lower lymphocyte counts with an increased likelihood of MCS is consistent with theories of immune dysfunction in MCS. Whether avoidance of exposures or different metabolic pathways in cases explain the observed lower VOC levels or the higher chloroform levels should be investigated.
Tall fescue seed extraction and partial purification of ergot alkaloids
Ji, Huihua; Fannin, F.; Klotz, J.; Bush, Lowell
2014-01-01
Many substances in the tall fescue/endophyte association (Schedonorus arundinaceus/Epichloë coenophiala) have biological activity. Of these compounds only the ergot alkaloids are known to have significant mammalian toxicity and the predominant ergot alkaloids are ergovaline and ergovalinine. Because synthetically produced ergovaline is difficult to obtain, we developed a seed extraction and partial purification protocol for ergovaline/ergovalinine that provided a biologically active product. Tall fescue seed was ground and packed into several different sized columns for liquid extraction. Smaller particle size and increased extraction time increased efficiency of extraction. Our largest column was a 114 × 52 × 61 cm (W × L × D) stainless steel tub. Approximately 150 kg of seed could be extracted in this tub. The extraction was done with 80% ethanol. When the solvent front migrated to bottom of the column, flow was stopped and seed was allowed to steep for at least 48 h. Light was excluded from the solvent from the beginning of this step to the end of the purification process. Following elution, ethanol was removed from the eluate by evaporation at room temperature and the resulting syrup was freeze-dried. About 80% recovery of alkaloids was achieved with 18-fold increase in concentration of ergovaline. Initial purification of the dried product was accomplished by extracting with hexane/water (6:1, v/v). The aqueous fraction was extracted with chloroform, the aqueous layer discarded, after which the chloroform was removed with a resulting 20-fold increase of ergovaline. About 65% of the ergovaline was recovered from the chloroform residue for an overall recovery of 50%. The resultant partially purified ergovaline had biological activities in in vivo and in vitro bovine bioassays that approximate that of synthetic ergovaline. PMID:25566528
Anjum, Reshma; Krakat, Niclas
2015-10-01
In this study, organochlorine pesticides (OCP) and heavy metals were analyzed from wastewater- and groundwater- irrigated soils (control samples) by gas chromatography (GC) and atomic absorption spectrophotometry (AAS), respectively. Gas chromatographic analysis revealed the presence of high concentration of pesticides in soil irrigated with wastewater (WWS). These concentrations were far above the maximum residue permissible limits indicating that alluvial soils have high binding capacity of OCP. AAS analyses revealed higher concentration of heavy metals in WWS as compared to groundwater (GWS). Also, the DNA repair (SOS)-defective Escherichia coli K-12 mutant assay and the bacteriophage lambda system were employed to estimate the genotoxicity of soils. Therefore, soil samples were extracted by hexane, acetonitrile, methanol, chloroform, and acetone. Both bioassays revealed that hexane-extracted soils from WWS were most genotoxic. A maximum survival of 15.2% and decline of colony-forming units (CFUs) was observed in polA mutants of DNA repair-defective E. coli K-12 strains when hexane was used as solvent. However, the damage of polA (-) mutants triggered by acetonitrile, methanol, chloroform, and acetone extracts was 80.0, 69.8, 65.0, and 60.7%, respectively. These results were also confirmed by the bacteriophage λ test system as hexane extracts of WWS exhibited a maximum decline of plaque-forming units for lexA mutants of E. coli K-12 pointing to an elevated genotoxic potential. The lowest survival was observed for lexA (12%) treated with hexane extracts while the percentage of survival was 25, 49.2, 55, and 78% with acetonitrile, methanol, chloroform, and acetone, respectively, after 6 h of treatment. Thus, our results suggest that agricultural soils irrigated with wastewater from pesticide industries have a notably high genotoxic potential.
Agu, Kingsley C; Okolie, Paulinus N
2017-09-01
Numerous bioactive compounds and phytochemicals have been reported to be present Annona muricata (Soursop). Some of these chemical compounds have been linked to the ethnomedicinal properties of the plant and its antioxidant properties. The aim of this study was to assess the proximate composition, phytochemical constituents and in vitro antioxidant properties of A. muricata using standard biochemical procedures. The defatted Annona muricata crude methanolic extracts of the different parts of the plant were used for the estimation of proximate composition and phytochemical screening. The crude methanolic extracts of the different parts of the plant were also fractionated using solvent-solvent partitioning. Petroleum ether, chloroform, ethyl acetate, methanol, and methanol-water (90:10) were the solvents used for the fractionation. The different fractions obtained were then used to perform in vitro antioxidant analyses including, 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, ferric reducing properties, and hydroxyl radical scavenging ability. The leaf methanolic extract had a higher lipid content, whereas its chloroform fraction demonstrated a better ability to quench DPPH free radical. The root-bark methanol-water, leaf methanol, fruit pulp chloroform, and leaf petroleum ether fractions demonstrated potent ferric reducing properties. The leaf and stem-bark petroleum ether fractions demonstrated better hydroxyl-free radical scavenging abilities. The leaf and fruit pulp of Annona muricata have a very potent antioxidant ability compared to the other parts of the plant. This can be associated with the rich phytochemicals and other phytoconstituents like phenols, flavonoids, alkaloids, and essential lipids, etc. Significant correlations were observed between the antioxidant status and phytochemicals present. These results thus suggest that some of the reported ethnomedicinal properties of this plant could be due to its antioxidant potentials.
Tamrat, Yohannes; Nedi, Teshome; Assefa, Solomon; Teklehaymanot, Tilahun; Shibeshi, Workineh
2017-09-29
Many people still experience pain and inflammation regardless of the available drugs for treatments. In addition, the available drugs have many side effects, which necessitated a quest for new drugs from several sources in which medicinal plants are the major one. This study evaluated the analgesic and anti- inflammatory activity of the solvent fractions of Moringa stenopetala in rodent models of pain and inflammation. Successive soxhlet and maceration were used as methods of extractions using solvents of increasing polarity; chloroform, methanol and water. Swiss albino mice models were used in radiant tail flick latency, acetic acid induced writhing and carrageenan induced paw edema to assess the analgesic and anti-inflammatory activities. The test groups received different doses (100 mg/kg, 200 mg/kg and 400 mg/kg) of the three fractions (chloroform, methanol and aqueous). The positive control groups received morphine (20 mg/kg) or aspirin (100 mg/kg or 150 mg/kg) based on the respective models. The negative control groups received the 10 ml/kg of vehicles (distilled water or 2% Tween 80). In all models, the chloroform fraction had protections only at a dose of 400 mg/kg. However, the methanol and aqueous fraction at all doses have shown significant central and peripheral analgesic activities with a comparable result to the standards. The aqueous and methanol fractions significantly reduced carrageenan induced inflammation in a dose dependent manner, in which the highest reduction of inflammation was observed in aqueous fraction at 400 mg/kg. This study provided evidence on the traditionally claimed uses of the plant in pain and inflammatory diseases, and Moringa stenopetala could be potential source for development of new analgesic and anti-inflammatory drugs.
Antiprotozoal and antimycobacterial activities of Persea americana seeds
2013-01-01
Background Persea americana seeds are widely used in traditional Mexican medicine to treat rheumatism, asthma, infectious processes as well as diarrhea and dysentery caused by intestinal parasites. Methods The chloroformic and ethanolic extracts of P. americana seeds were prepared by maceration and their amoebicidal, giardicidal and trichomonicidal activity was evaluated. These extracts were also tested against Mycobacterium tuberculosis H37Rv, four mono-resistant and two multidrug resistant strains of M. tuberculosis as well as five non tuberculosis mycobacterium strains by MABA assay. Results The chloroformic and ethanolic extracts of P. americana seeds showed significant activity against E. histolytica, G. lamblia and T. vaginalis (IC50 <0.634 μg/ml). The chloroformic extract inhibited the growth of M. tuberculosis H37Rv, M. tuberculosis MDR SIN 4 isolate, three M. tuberculosis H37Rv mono-resistant reference strains and four non tuberculosis mycobacteria (M. fortuitum, M. avium, M. smegmatis and M. absessus) showing MIC values ≤50 μg/ml. Contrariwise, the ethanolic extract affected only the growth of two mono-resistant strains of M. tuberculosis H37Rv and M. smegmatis (MIC ≤50 μg/ml). Conclusions The CHCl3 and EtOH seed extracts from P. americana showed amoebicidal and giardicidal activity. Importantly, the CHCl3 extract inhibited the growth of a MDR M. tuberculosis isolate and three out of four mono-resistant reference strains of M. tuberculosis H37Rv, showing a MIC = 50 μg/ml. This extract was also active against the NTM strains, M. fortuitum, M. avium, M. smegmatis and M. abscessus, with MIC values <50 μg/ml. PMID:23680126
Maury, Wendy; Price, Jason P; Brindley, Melinda A; Oh, ChoonSeok; Neighbors, Jeffrey D; Wiemer, David F; Wills, Nickolas; Carpenter, Susan; Hauck, Cathy; Murphy, Patricia; Widrlechner, Mark P; Delate, Kathleen; Kumar, Ganesh; Kraus, George A; Rizshsky, Ludmila; Nikolau, Basil
2009-01-01
Background Light-dependent activities against enveloped viruses in St. John's Wort (Hypericum perforatum) extracts have been extensively studied. In contrast, light-independent antiviral activity from this species has not been investigated. Results Here, we identify the light-independent inhibition of human immunodeficiency virus-1 (HIV-1) by highly purified fractions of chloroform extracts of H. perforatum. Both cytotoxicity and antiviral activity were evident in initial chloroform extracts, but bioassay-guided fractionation produced fractions that inhibited HIV-1 with little to no cytotoxicity. Separation of these two biological activities has not been reported for constituents responsible for the light-dependent antiviral activities. Antiviral activity was associated with more polar subfractions. GC/MS analysis of the two most active subfractions identified 3-hydroxy lauric acid as predominant in one fraction and 3-hydroxy myristic acid as predominant in the other. Synthetic 3-hydroxy lauric acid inhibited HIV infectivity without cytotoxicity, suggesting that this modified fatty acid is likely responsible for observed antiviral activity present in that fraction. As production of 3-hydroxy fatty acids by plants remains controversial, H. perforatum seedlings were grown sterilely and evaluated for presence of 3-hydroxy fatty acids by GC/MS. Small quantities of some 3-hydroxy fatty acids were detected in sterile plants, whereas different 3-hydroxy fatty acids were detected in our chloroform extracts or field-grown material. Conclusion Through bioguided fractionation, we have identified that 3-hydroxy lauric acid found in field grown Hypericum perforatum has anti-HIV activity. This novel anti-HIV activity can be potentially developed into inexpensive therapies, expanding the current arsenal of anti-retroviral agents. PMID:19594941
Tall fescue seed extraction and partial purification of ergot alkaloids
NASA Astrophysics Data System (ADS)
Bush, Lowell
2014-12-01
Many substances in the tall fescue/endophyte association (Schedonorus arundinaceus/Epichloë coenophiala) have biological activity. Of these compounds only the ergot alkaloids are known to have significant mammalian toxicity and the predominant ergot alkaloids are ergovaline and ergovalinine. Because synthetically produced ergovaline is difficult to obtain, we developed a seed extraction and partial purification protocol for ergovaline/ergovalinine that provided a biologically active product. Tall fescue seed was ground and packed into several different sized columns for liquid extraction. Smaller particle size and increased extraction time increased efficiency of extraction. Our largest column was a 114 × 52 × 61 cm (W×L×D) stainless steel tub. Approximately 150 kg of seed could be extracted in this tub. The extraction was done with 80% ethanol. When the solvent front migrated to bottom of the column, flow was stopped and seed was allowed to steep for at least 48 h. Light was excluded from the solvent from the beginning of this step to the end of the purification process. Following elution, ethanol was removed from the eluate by evaporation at room temperature. Resulting syrup was freeze-dried. About 80% recovery of alkaloids was achieved with 18-fold increase in concentration of ergovaline. Initial purification of the dried product was accomplished by extracting with hexane/water (6:1, v/v) and the hexane fraction was discarded. The aqueous fraction was extracted with chloroform, the aqueous layer discarded, after which the chloroform was removed with a resulting 20-fold increase of ergovaline. About 65% of the ergovaline was recovered from the chloroform residue for an overall recovery of 50%. The resultant partially purified ergovaline had biological activities in in vivo and in vitro bovine bioassays that approximate that of synthetic ergovaline.
Nitroxyl radical incorporated electrospun biodegradable poly(ester Amide) nanofiber membranes.
Li, Lei; Chu, Chih-Chang
2009-01-01
Biodegradable amino-acid-based poly(ester amide) (PEA) ultra-fine fibers pre-loaded with a nitroxyl radical model compound, 4-amino-2.2.6.6-tetramethylpiperidine-1-oxy (4-amino-TEMPO), were prepared by electrospinning. The fiber size and morphology were shown to be greatly affected by the composition ratio of the solvent mixture (chloroform to DMF) prepared for electrospinning. Nano-size PEA fibers (approx. 640 nm) were obtained when PEA dope was electrospun from the chloroform/DMF solvent mixture at a volume ratio of 2 to 1 vs. 3.5 mum size PEA fibers obtained from chloroform-based electrospun dope. Due to the low glass transition temperature and completely amorphous structures, the PEA electrospun fibrous membranes gradually lost their fiber characteristic during 1 month incubation in PBS buffer at 37 degrees C. The glass transition temperature and heat of fusion of PEA electrospun fibers increased with an increasing incubation time and the most significant change occurred in the first day of incubation in PBS. A sustained release of 4-amino-TEMPO from the electrospun PEA nanofiber membranes was observed over the 1-month incubation period in PBS buffer at 37 degrees C and 38% of the incorporated 4-amino-TEMPO (initial loading level 10 mg/g PEA fibers) was released in one month. During this 1 month incubation in PBS buffer, there were only 1.2% weight loss and 11.7% molecular weight reduction for the electrospun PEA fibrous membranes. In an alpha-chymotrypsin medium (0.1 mg/ml PBS), however, the same electrospun PEA fibrous membranes showed more than 80% weight loss within 6 days and a complete release of encapsulated 4-amino-TEMPO within 5 days.
Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro
2013-01-01
Background Propolis is a resin collected by bees from plant buds and exudates, which is further processed through the activity of bee enzymes. Propolis has been shown to possess many biological and pharmacological properties, such as antimicrobial, antioxidant, immunostimulant and antitumor activities. Due to this bioactivity profile, this resin can become an alternative, economic and safe source of natural bioactive compounds. Antitumor action has been reported in vitro and in vivo for propolis extracts or its isolated compounds; however, Portuguese propolis has been little explored. The aim of this work was to evaluate the in vitro antitumor activity of Portuguese propolis on the human colon carcinoma cell line HCT-15, assessing the effect of different fractions (hexane, chloroform and ethanol residual) of a propolis ethanol extract on cell viability, proliferation, metabolism and death. Methods Propolis from Angra do Heroísmo (Azores) was extracted with ethanol and sequentially fractionated in solvents with increasing polarity, n-hexane and chloroform. To assess cell viability, cell proliferation and cell death, Sulforhodamine B, BrDU incorporation assay and Anexin V/Propidium iodide were used, respectively. Glycolytic metabolism was estimated using specific kits. Results All propolis samples exhibited a cytotoxic effect against tumor cells, in a dose- and time-dependent way. Chloroform fraction, the most enriched in phenolic compounds, appears to be the most active, both in terms of inhibition of viability and cell death. Data also show that this cytotoxicity involves disturbance in tumor cell glycolytic metabolism, seen by a decrease in glucose consumption and lactate production. Conclusion Our results show that Portuguese propolis from Angra do Heroísmo (Azores) can be a potential therapeutic agent against human colorectal cancer. PMID:23870175
NASA Astrophysics Data System (ADS)
Mahesh, K.; Priyanka, V.; Vijai Anand, A. S.; Karpagam, S.
2018-02-01
Three simple and small donor-acceptor type conjugated moieties, namely (2Z, 2‧Z)-3,3'-((hexylazanediyl)bis (4,1-phenylene))bis (2-(pyridin-2-yl)acrylonitrile) (DPA-PA-1), (2Z, 2‧Z)-3,3'-((dodecylazanediyl)bis (4,1-phenylene))bis (2-(pyridin-2-yl)acrylonitrile) (DPA-PA-2), (2Z,2‧Z)-3,3'-((allylazanediyl)bis (4,1-phenylene))bis (2-(pyridin-2-yl)acrylonitrile) DPA-PA-3 have been synthesized according to the Knoevenagel condensation. Here alkyl (hexyl, dodecyl, allyl) diphenylamine (DPA) moieties acts as an electron donor and pyridine-acetonitrile (PA) moiety acts as an electron acceptor. These moieties are recently showing great interest in optoelectronic applications. The structures of the DPA-PA-1-3 were confirmed by FT-IR, 1H NMR and 13C NMR. The final products showed great solubility in common organic solvents such as toluene, tetrahydrofuran, ethyl acetate, dichloromethane, chloroform etc due to the alkyl chains. The absorption maximum of DPA-PA-1-3 appeared at 440, 433, 447 nm in chloroform solution. The optical band gaps are 2.33, 2.29, and 2.25 eV calculated from thin film absorption edges. The photoluminescence spectra of three molecules were exhibited a maximum peak at 511, 513, 529 nm with greenish fluorescence in chloroform solution and 553, 541, 554 nm as in thin film state. DPA-PA-1-3 showed a delay fluorescence decay time (τ1) of 35, 16 and 14 μs respectively. The lower electrochemical band gaps 1.90 and 1.80 eV was observed by cyclic voltammetry. The morphological images were indicated that spherical shaped particles were observed with lower surface roughness. These types of low bandgap materials have much attention for their various potential applications in optoelectronic devices.
Neuroprotective effect of Alpinia galanga (L.) fractions on Aβ(25-35) induced amnesia in mice.
Hanish Singh, J C; Alagarsamy, V; Diwan, Prakash V; Sathesh Kumar, S; Nisha, J C; Narsimha Reddy, Y
2011-10-31
The rhizomes of Alpinia galanga (L.) Willd (Zingiberaceae), a ginger substitute for flavouring food was traditionally used as nervine tonic and stimulant. This investigation is designed to screen cognitive improvement of Alpinia galanga (AG) fractions in Alzheimer's type of amnesia in mice induced by Aβ((25-35)). Alzheimer's disease induced mice treated with fractions (n-hexane, chloroform and ethyl acetate) of AG in 200 and 400mg/kg. Neurotoxicity was induced by intracerebroventricular injection of Aβ((25-35)) on the 14th day of 21 days drug treatment. Open field and water maze were carried to determine habituation memory and hippocampal memory. Na(+)/K(+)-ATPase, acetylcholinesterase (AChE) and antioxidant enzymes (SOD, GPx, catalase and vitamin C) were determined in brain tissue homogenate to estimate the brain biochemical changes and its anti-amnesic potential with intensity of oxidative stress signaling. Further bioactive (chloroform) fraction was eluted through column chromatography to identify the lead molecules. Increased habituation memory and decreased escape latency in behavioral parameter are the indicative of the cognitive enhancement after treatment with Alpinia galanga fractions. Increment in Na(+)/K(+)-ATPase and antioxidant activity depicts brain membrane integrity improvement and free radical scavenging property. AChE level was decreased to improve the cognition by enhancing cholinergic transmission. Anti-amnesic effect was exerted by various fractions of Alpinia galanga. Among all fractions, preeminent neuroprotection was exerted by chloroform fraction, which has compound, 1'δ-1'-acetoxyeugenol acetate and it may be a potential therapeutic agent for Alzheimer's type of amnesia. These results further motivate us to explore the activity of lead compound's anti-amnesic effect on transgenic mice model of AD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Yin, Shan; Guo, Pan; Hai, Dafu; Xu, Li; Shu, Jiale; Zhang, Wenjin; Khan, Muhammad Idrees; Kurland, Irwin J; Qiu, Yunping; Liu, Yumin
2017-12-01
In this paper, an optimized method based on gas chromatography/time-of-flight mass spectrometry (GC-TOFMS) platform has been developed for the analysis of gut microbial-host related co-metabolites in fecal samples. The optimization was performed with proportion of chloroform (C), methanol (M) and water (W) for the extraction of specific metabolic pathways of interest. Loading Bi-plots from the PLS regression model revealed that high concentration of chloroform emphasized the extraction of short chain fatty acids and TCA intermediates, while the higher concentration of methanol emphasized indole and phenyl derivatives. Low level of organic solution emphasized some TCA intermediates but not for indole and phenyl species. The highest sum of the peak area and the distribution of metabolites corresponded to the extraction of methanol/chloroform/water of 225:75:300 (v/v/v), which was then selected for method validation and utilized in our application. Excellent linearity was obtained with 62 reference standards representing different classes of gut microbial-host related co-metabolites, with correlation coefficients (r 2 ) higher than 0.99. Limit of detections (LODs) and limit of qualifications (LOQs) for these standards were below 0.9 nmol and 1.6 nmol, respectively. The reproducibility and repeatability of the majority of tested metabolites in fecal samples were observed with RSDs lower than 15%. Chinese rhubarb-treated rats had elevated indole and phenyl species, and decreased levels of polyamine such as putrescine, and several amino acids. Our optimized method has revealed host-microbe relationships of potential importance for intestinal microbial metabolite receptors such as pregnane X receptor (PXR) and aryl hydrocarbon receptor (AHR) activity, and for enzymes such as ornithine decarboxylase (ODC). Copyright © 2017 Elsevier B.V. All rights reserved.
Patra, Jayanta Kumar; Kim, Eun Sil; Oh, Kyounghee; Kim, Hyeon-Jeong; Dhakal, Radhika; Kim, Yangseon; Baek, Kwang-Hyun
2015-04-08
The mouth cavity hosts many types of anaerobic bacteria, including Streptococcus mutans and Porphyromonas gingivalis, which cause periodontal inflammatory diseases and dental caries. The present study was conducted to evaluate the antibacterial potential of extracts of Robinia pseudoacacia and its different fractions, as well as some of its natural compounds against oral pathogens and a nonpathogenic reference bacteria, Escherichia coli. The antibacterial activity of the crude extract and the solvent fractions (hexane, chloroform, ethyl acetate and butanol) of R. pseudoacacia were evaluated against S. mutans, P. gingivalis and E. coli DH5α by standard micro-assay procedure using conventional sterile polystyrene microplates. The results showed that the crude extract was more active against P. gingivalis (100% growth inhibition) than against S. mutans (73% growth inhibition) at 1.8 mg/mL. The chloroform and hexane fractions were active against P. gingivalis, with 91 and 97% growth inhibition, respectively, at 0.2 mg/mL. None of seven natural compounds found in R. pseudoacacia exerted an antibacterial effect on P. gingivalis; however, fisetin and myricetin at 8 µg/mL inhibited the growth of S. mutans by 81% and 86%, respectively. The crude extract of R. pseudoacacia possesses bioactive compounds that could completely control the growth of P. gingivalis. The antibiotic activities of the hexane and chloroform fractions suggest that the active compounds are hydrophobic in nature. The results indicate the effectiveness of the plant in clinical applications for the treatment of dental plaque and periodontal inflammatory diseases and its potential use as disinfectant for various surgical and orthodontic appliances.
ERIC Educational Resources Information Center
Josephson, Julian
1978-01-01
Current use of chlorination technology to disinfect water supplies can cause the production of undesirable products, among them chloroform and chlorobenzene. Alternatives to this methodology include the use of ozone, chlorine dioxide, and bromine chloride in place of chlorine. Presently, the methods are feasible in developed countries only. (MA)
Efficient method for extracting DNA of parasites causing bovine babesiosis from tick vectors
USDA-ARS?s Scientific Manuscript database
The southern cattle tick, Rhipicephalus (Boophilus) microplus, is an economically important pest costing animal agriculture billions of dollars worldwide. This research focuses on a comparison of three different tick DNA extraction methods: phenol-chloroform extraction (method 1), a modified version...
USDA-ARS?s Scientific Manuscript database
Poly(lactic acid) (PLA) nanofibers containing hydroxypropyl methylcellulose (HPMC) and tetracycline hydrochloride (THC) were solution blow spun from two different solvents, chloroform/acetone (CA, 80:20 v/v) and 2,2,2-triflouroethanol (TFE). The diameter distribution, chemical, thermal, thermal stab...
TREATMENT OF VOCS IN HIGH STRENGTH WASTES USING AN ANAEROBIC EXPANDED-BED GAS REACTOR
The potential of the expanded-bed granular activated carbon (GAC) anaerobic reactor in treating a high strength waste containing RCRA volatile organic compounds (VOCs) was studied. A total of six VOCs, methylene chloride, chlorobenzene, carbon tetrachloride, chloroform, toluene ...
The RASco, Inc. ASOP Drinking Water Treatment Module was tested at NSF’s Laboratory for the reduction of the following chemicals of concern: aldicarb, benzene, carbofuran, chloroform, dichlorvos, dicrotophos, methomyl, mevinphos, nicotine, oxamyl, paraquat, phorate, sodium fluor...
DNA ISOLATION FROM SMALL TISSUE SAMPLES USING SALT AND SPERMINE
Common DNA isolation methods rely upon protein denaturation by organic solvents such as phenol and chloroform. hese solvents pose some risk to the user and require special disposal procedures. e have previously reported a method for isolating DNA from peripheral blood lymphocytes...
The carcinogenic potential of chlorinated organics is of direct importance in human risk assessment. Most drinking water chlorinated organics are disinfection by products (DBPs) of water chlorination and many test positive in rodent bioassays. Trihalomethanes (THMs) are the most ...
IDENTIFICATION OF NEW BROMINATED ACIDS IN DRINKING WATER
Since chloroform was identified as the first disinfection by-product (DBP) in drinking water, there has been more than 25 years of research on DBPs. Despite these efforts, more than 50% of the total organic halide (TOX) formed in chlorinated drinking water remains unknown. Ther...
21 CFR 177.1330 - Ionomeric resins.
Code of Federal Regulations, 2014 CFR
2014-04-01
... from a series of extraction times demonstrate equilibrium when the net chloroform-soluble extractives...)(i) and (2)(i) of this section. Should equilibrium not be demonstrated over the above time series... conditions of time and temperature characterizing the conditions of its intended use as determined from...
Bodine, A B; Luer, C A; Gangjee, S A; Walsh, C J
1989-01-01
1. Liver postmitochondrial supernatant preparations of calf, clearnose skate, and nurse shark were able to metabolize the fungal toxin aflatoxin B1 to various metabolites. 2. Calf liver produced aflatoxin M1 and Q1 as the major chloroform soluble metabolites, with small amounts of aflatoxicol formed during incubation. 3. Liver preparations of the elasmobranchs, however, produced aflatoxicol as the major chloroform soluble metabolite with no other metabolite being detected. 4. The water soluble metabolite profiles for the three species were also quite different with the tris diol adduct being produced to a much greater extent in calf liver preparations. 5. Aflatoxicol production by the elasmobranch liver homogenates was reversible with the skate reconverting a large amount (30%) of aflatoxicol to AFB1. The nurse shark, however, appeared to convert a portion of aflatoxicol to an unknown metabolite more polar than AFB1. 6. Calf liver DNA bound approximately 3 x more 3H-AFB1 than shark liver DNA.
Mirza, Mohd Aamir; Ahmad, Sayeed; Mallick, Md Nasar; Manzoor, Nikhat; Talegaonkar, Sushama; Iqbal, Zeenat
2013-03-01
The singular aim of the proposed work is the development of a synergistic thermosensitive gel for vaginal application in subjects prone to recurrent vaginal candidiasis and other microbial infections. The dual loading of Itraconazole and tea tree oil in a single formulation seems promising as it would elaborate the microbial coverage. Despite being low solubility of Itraconazole in tea tree oil, a homogeneous, transparent and stable solution of both was created by co-solvency using chloroform. Complete removal of chloroform was authenticated by GC-MS and the oil solution was used in the development of nanoemulsion which was further translated into a gel bearing thermosensitive properties. In vitro analyses (MTT assay, viscosity measurement, mucoadhesion, ex vivo permeation, etc.) and in vivo studies (bioadhesion, irritation potential and fungal clearance kinetics in rat model) of final formulation were carried out to establish its potential for further clinical evaluation. Copyright © 2012 Elsevier B.V. All rights reserved.
Gong, Zhihong; Chen, Si; Gao, Jiangtao; Li, Meihong; Wang, Xiaxia; Lin, Jun; Yu, Xiaomin
2017-11-08
An effective and simple method was established to simultaneously purify seven tea catechins (gallocatechin (GC), epigallocatechin (EGC), catechin (C), epigallocatechin-3- O -gallate (EGCG), epicatechin (EC), epigallocatechin-3- O -(3- O -methyl)-gallate (EGCG3"Me) and epicatechin-3- O -gallate (ECG)) from fresh tea leaves by semi-preparative high performance liquid chromatography (HPLC). Fresh leaves of Tieguanyin tea were successively extracted with methanol and chloroform. Then crude catechins were precipitated from the aqueous fraction of chloroform extraction by adding lead subacetate. Crude catechins were used for the isolation of the seven target catechin compounds by semi-preparative HPLC. Methanol-water and acetonitrile-water were sequentially used as mobile phases. After two rounds of semi-preparative HPLC, all target compounds were achieved with high purities (>90%). The proposed method was tested on two additional tea cultivars and showed similar results. This method demonstrated a simple and efficient strategy based on solvent extraction, ion precipitation and semi-preparative HPLC for the preparation of multiple catechins from tea leaves.
Sengüven, Burcu; Baris, Emre; Oygur, Tulin; Berktas, Mehmet
2014-01-01
Aim: Discussing a protocol involving xylene-ethanol deparaffinization on slides followed by a kit-based extraction that allows for the extraction of high quality DNA from FFPE tissues. Methods: DNA was extracted from the FFPE tissues of 16 randomly selected blocks. Methods involving deparaffinization on slides or tubes, enzyme digestion overnight or for 72 hours and isolation using phenol chloroform method or a silica-based commercial kit were compared in terms of yields, concentrations and the amplifiability. Results: The highest yield of DNA was produced from the samples that were deparaffinized on slides, digested for 72 hours and isolated with a commercial kit. Samples isolated with the phenol-chloroform method produced DNA of lower purity than the samples that were purified with kit. The samples isolated with the commercial kit resulted in better PCR amplification. Conclusion: Silica-based commercial kits and deparaffinized on slides should be considered for DNA extraction from FFPE. PMID:24688314
NASA Astrophysics Data System (ADS)
Zoromba, M. Sh.
2017-12-01
A new (p-toluidine) oligomer (PTO) was facile synthesized and economically routed via chemical oxidative polymerization by potassium dichromate as an initiator in an acidic aqueous medium at room temperature. The characterization of (p-toluidine) oligomer (PTO) has been described by various techniques including Fourier transform infra-red (FTIR), UV-Visible measurements, Mass spectra, H NMR, and thermal gravimetric analysis (TGA). Solvatochromism of PTO was studied in different polaritiy solvents such as acetic acid, acetone, dimethyl formamide, ethanol, isopropanol, chloroform, p-xylene, dichloromethane and carbon teterachloride. The absorption bands were bathochromically shifted with increased polarity of the solvent (positive solvatochromism). PTO shows three isosbestic points at 333, 388 and 472 nm in a binary mixture of acetone and chloroform. The deprotonation constants of PTO were found to be 3.1 and 5.8, based on spectrophotometric calculations. PTO was successfully used as an acid-base indicator; the acid solution color sharply turned from pink (acidic medium) to yellow (basic medium) at the end point.
Pretto, Juliana B; Cechinel-Filho, Valdir; Noldin, Vânia F; Sartori, Mara R K; Isaias, Daniela E B; Cruz, Alexandre Bella
2004-01-01
Calophyllum brasiliense (Clusiaceae/Guttiferae) is a native Brazilian medicinal plant traditionally used against several diseases, including infectious pathologies. Crude methanolic extracts (CME) and two fractions, denoted non-polar (soluble in chloroform) and polar (nonsoluble in chloroform), were prepared from different parts of the plant (roots, stems, leaves, flowers and fruits) and studied. The following compounds were isolated and tested against pathogenic bacteria and yeasts by determination of the minimal inhibitory concentration (MIC): brasiliensic acid (1), gallic acid (2), epicatechin (3), protocatechuic acid (4), friedelin (5) and 1,5-dihydroxyxanthone (6). The results indicated that all the parts of the plant exhibited antimicrobial activity against Gram-positive bacteria, which are selectively inhibited by components of C. brasiliense. No activity was observed against Gram-negative bacteria and yeasts tested. Regarding the isolated compounds, substance 4 showed antimicrobial activity against all the tested microorganisms, whereas compound 6 exhibited antimicrobial activity only against Gram-positive bacteria. The results from the current study confirm and justify the popular use of this plant to treat infectious processes.
Host–guest complexes between cryptophane-C and chloromethanes revisited
Takacs, Z; Soltesova, M; Kowalewski, J; Lang, J; Brotin, T; Dutasta, J-P
2013-01-01
Cryptophane-C is composed of two nonequivalent cyclotribenzylene caps, one of which contains methoxy group substituents on the phenyl rings. The two caps are connected by three OCH2CH2O linkers in an anti arrangement. Host–guest complexes of cryptophane-C with dichloromethane and chloroform in solution were investigated in detail by nuclear magnetic resonance techniques and density functional theory (DFT) calculations. Variable temperature proton and carbon-13 spectra show a variety of dynamic processes, such as guest exchange and host conformational transitions. The guest exchange was studied quantitatively by exchange spectroscopy measurements or by line-shape analysis. The conformational preferences of the guest-containing host were interpreted through cross-relaxation measurements, providing evidence of the gauche+2 and gauche−2 conformations of the linkers. In addition, the mobility of the chloroform guest inside the cavity was studied by carbon-13 relaxation experiments. Combining different types of evidence led to a detailed picture of molecular recognition, interpreted in terms of conformational selection. Copyright © 2012 John Wiley & Sons, Ltd. PMID:23132654
Khuda, Fazli; Iqbal, Zafar; Khan, Ayub; Zakiullah; Shah, Yasar; Khan, Abad
2014-05-01
In present study four medicinal plants namely Valeriana wallichii, Xanthium strumarium, Achyranthes aspera and Duchesnea indica belonging to different families were collected in Khyber Pakhtunkhwa province and crude extract and subsequent fractions were analyzed for their inhibitory potential against acetylcholinesterase, butyrylcholinesterase and α-glucosidase enzymes. Valeriana wallichii, Xanthium strumarium and Achyranthes aspera were significantly active against cholinesterases. Chloroform and ethylacetate fractions of Valeriana wallichii exhibited significant activity against acetylcholinesterase (IC50: 61μg/ml) and butyrylcholinesterase enzymes (IC50: 58μg/ml), respectively. Similarly ethylacetate fraction of Achyranthes aspera showed significant activity against acetylcholinesterase (IC50: 61 μg/ml) and butyrylcholinesterase enzymes (IC50: 61 μg/ml), respectively. In case of α-glucosidase enzyme, the chloroform fraction of Xanthium strumarium exhibited significant inhibitory activity (IC50: 72 μg/ml) as compared to the standard compound acarbose (IC50: 483 μg/ml). Duchesnea indica showed no such activities.
Khan, Alam; Islam, Md Hedayetul; Islam, Md Ekramul; Al-Bari, Md Abdul Alim; Parvin, Mst Shahnaj; Sayeed, Mohammed Abu; Islam, Md Nurul; Haque, Md Ekramul
2014-10-01
Tribolium castaneum (Herbst) is a harmful pest of stored grain and flour-based products in tropical and subtropical region. In the present study, rhizome of Drynaria quercifolia (J. Smith) was evaluated for pesticidal and pest repellency activities against T. castaneum, using surface film method and filter paper disc method, respectively. In addition, activity of the isolated compound 3,4-dihydroxybenzoic acid was evaluated against the pest. Chloroform soluble fraction of ethanol extract of rhizome of D. quercifolia showed significant pesticidal activity at doses 0.88 to 1.77 mg/cm(2) and significant pest repellency activity at doses 0.94 to 0.23 mg/cm(2). No pesticidal and pest repellency activity was found for petroleum ether, ethyl acetate and methanol soluble fractions of ethanol extract as well as for 3,4-dihydroxybenzoic acid. Considering our findings it can be concluded that chloroform soluble fraction of rhizome of D. quercifolia is useful in controlling T. castaneum of stored grain and flour-based products.
NASA Astrophysics Data System (ADS)
Antoszczak, Michał; Janczak, Jan; Brzezinski, Bogumił; Huczyński, Adam
2017-02-01
For the first time, the crystalline complex of salinomycin with benzylamine was obtained and its molecular structure was studied using single crystal X-ray diffraction, FT-IR, 1H NMR, 13C NMR, 2D NMR and ESI MS methods. These studies provided evidence that the proton from the carboxylic group of salinomycin (SAL) is transferred to the amine group of benzylamine (BnA) forming the host-guest complex (SAL-BnA). It was shown that the SAL-BnA complex both in solid state and in chloroform solution is stabilized by the intramolecular O-H⋯O hydrogen bonds and also by the intermolecular hydrogen bonding interactions of the carboxylate, ketone and/or hydroxyl groups of SAL with water molecules present in the investigated system. The solvated acetonitrile molecules are additionally located in the voids between the SAL-BnA complex molecules in the crystal structure, while water molecules involved in the dihydrated crystalline SAL-BnA complex partially move into the solvent upon dissolution in chloroform.
Disinfection by-product formation from the chlorination and chloramination of amines.
Bond, Tom; Mokhtar Kamal, Nurul Hana; Bonnisseau, Thomas; Templeton, Michael R
2014-08-15
This study investigated the relative effect of chlorination and chloramination on DBP formation from seven model amine precursor compounds, representative of those commonly found in natural waters, at pH 6, 7 and 8. The quantified DBPs included chloroform, dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN) and chloropicrin (trichloronitromethane). The aggregate formation (i.e. the mass sum of the formation from the individual precursors) of chloroform, DCAN and TCAN from all precursors was reduced by respectively 75-87%, 66-90% and 89-93% when considering pre-formed monochloramine compared to chlorine. The formation of both haloacetonitriles decreased with increasing pH following chlorination, but formation after chloramination was relatively insensitive to pH change. The highest formation of chloropicrin was from chloramination at pH 7. These results indicate that, while chloramination is effective at reducing the concentrations of trihalomethanes and haloacetonitriles in drinking water compared with chlorination, the opposite is true for the halonitromethanes. Copyright © 2014 Elsevier B.V. All rights reserved.
Evaluation of control parameters for Spray-In-Air (SIA) aqueous cleaning for shuttle RSRM hardware
NASA Technical Reports Server (NTRS)
Davis, S. J.; Deweese, C. D.
1995-01-01
HD-2 grease is deliberately applied to Shuttle Redesigned Solid Rocket Motor (RSRM) D6AC steel hardware parts as a temporary protective coating for storage and shipping. This HD-2 grease is the most common form of surface contamination on RSRM hardware and must be removed prior to subsequent surface treatment. Failure to achieve an acceptable level of cleanliness (HD-2 calcium grease removal) is a common cause of defect incidence. Common failures from ineffective cleaning include poor adhesion of surface coatings, reduced bond performance of structural adhesives, and failure to pass cleanliness inspection standards. The RSRM hardware is currently cleaned and refurbished using methyl chloroform (1,1,1-trichloroethane). This chlorinated solvent is mandated for elimination due to its ozone depleting characteristics. This report describes an experimental study of an aqueous cleaning system (which uses Brulin 815 GD) as a replacement for methyl chloroform. Evaluation of process control parameters for this cleaner are discussed as well as cleaning mechanisms for a spray-in-air process.
Boison, Joe; Lee, Stephen; Gedir, Ron
2009-01-01
A liquid chromatographic-mass spectrometric (LC-MS) method was developed and validated for the determination and confirmation of virginiamycin (VMY) M1 residues in porcine liver, kidney, and muscle tissues at concentrations > or =2 ng/g. Porcine liver, kidney, or muscle tissue is homogenized with methanol-acetonitrile. After centrifugation, the supernatant is diluted with phosphate buffer and cleaned up on a C18 solid-phase extraction cartridge. VMY in the eluate is partitioned into chloroform and the aqueous upper layer is removed by aspiration. After evaporating the chloroform in the residual mixture to dryness, the dried extract is reconstituted in mobile phase and VMY is quantified by LC-MS. Any samples eliciting quantifiable levels of VMY M1 (i.e., at concentrations > or =2 ng/g) are subjected to confirmatory analysis by LC-MSIMS. VMY S1, a minor component of the VMY complex, is monitored but not quantified or confirmed.
Modeling Human Exposure to Indoor Contaminants: External Source to Body Tissues.
Webster, Eva M; Qian, Hua; Mackay, Donald; Christensen, Rebecca D; Tietjen, Britta; Zaleski, Rosemary
2016-08-16
Information on human indoor exposure is necessary to assess the potential risk to individuals from many chemicals of interest. Dynamic indoor and human physicologically based pharmacokinetic (PBPK) models of the distribution of nonionizing, organic chemical concentrations in indoor environments resulting in delivered tissue doses are developed, described and tested. The Indoor model successfully reproduced independently measured, reported time-dependent air concentrations of chloroform released during showering and of 2-butyoxyethanol following use of a volatile surface cleaner. The Indoor model predictions were also comparable to those from a higher tier consumer model (ConsExpo 4.1) for the surface cleaner scenario. The PBPK model successful reproduced observed chloroform exhaled air concentrations resulting from an inhalation exposure. Fugacity based modeling provided a seamless description of the partitioning, fluxes, accumulation and release of the chemical in indoor media and tissues of the exposed subject. This has the potential to assist in health risk assessments, provided that appropriate physical/chemical property, usage characteristics, and toxicological information are available.
Cheng, Xueli
2016-11-01
The absorption and emission spectra of dichlorvos and the dichlorvos-MAA complex in methanol, water, and chloroform in the molecularly imprinted recognition were investigated systematically. The M06-2X results revealed that: 1) the hydroxyl groups in polar solvents such as methanol and water may markedly influence the weak interactions, and then alter the adsorption and emission spectra; 2) the electronic excitation in absorption spectra of dichlorvos is dominated by the configuration HOMO → LUMO, but in the most stable dichlorvos-MAA it becomes the ππ* excitation of HOMO → LUMO + 1; 3) Mulliken charges reveal that dichlorvos almost dissociates to Cl - and a cation in its S 1 excitation state; 4) the phosphorescence spectra of dichlorvos-MAA are relatively weak. Graphical Abstract The absorption and emission spectra of dichlorvos and the dichlorvos-MAA complex in the molecularly imprinted recognition of dichlorvos were investigated systematically in methanol, water, and chloroform as solvents.
Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel
2008-10-31
A simple, rapid, solventless method for the determination of trihalomethanes (THMs) (chloroform, bromodichloromethane, dibromochloromethane and bromoform) in water samples is presented. The analytes are extracted from the headspace of the aqueous matrix into a 2 microL drop of the ionic liquid 1-octyl-3-methyl-imidazolium hexafluorophosphate working at 30 degrees C for 30 min. The separation and detection of the target compounds is accomplished by gas chromatography/mass spectrometry owing to the use of an interface that efficiently transfers the analytes extracted in the ionic liquid drop to the gas chromatograph while preventing the ionic liquid from entering the column. The detection limits obtained are below the values compelled by the legislation, ranging from 0.5 microg L(-1) for chloroform and bromodichloromethane to 0.9 microg L(-1) for dibromochloromethane. The use of ionic liquid in the extraction procedure avoids the use of organic solvents and leads to relative standard deviations that range from 3.1% to 4.8%.
An improved high-throughput lipid extraction method for the analysis of human brain lipids.
Abbott, Sarah K; Jenner, Andrew M; Mitchell, Todd W; Brown, Simon H J; Halliday, Glenda M; Garner, Brett
2013-03-01
We have developed a protocol suitable for high-throughput lipidomic analysis of human brain samples. The traditional Folch extraction (using chloroform and glass-glass homogenization) was compared to a high-throughput method combining methyl-tert-butyl ether (MTBE) extraction with mechanical homogenization utilizing ceramic beads. This high-throughput method significantly reduced sample handling time and increased efficiency compared to glass-glass homogenizing. Furthermore, replacing chloroform with MTBE is safer (less carcinogenic/toxic), with lipids dissolving in the upper phase, allowing for easier pipetting and the potential for automation (i.e., robotics). Both methods were applied to the analysis of human occipital cortex. Lipid species (including ceramides, sphingomyelins, choline glycerophospholipids, ethanolamine glycerophospholipids and phosphatidylserines) were analyzed via electrospray ionization mass spectrometry and sterol species were analyzed using gas chromatography mass spectrometry. No differences in lipid species composition were evident when the lipid extraction protocols were compared, indicating that MTBE extraction with mechanical bead homogenization provides an improved method for the lipidomic profiling of human brain tissue.
Phytochemical contents and biological evaluation of Ruta chalepennsis L. growing in Saudi Arabia.
Alotaibi, Shorok M; Saleem, Monerah S; Al-Humaidi, Jehan G
2018-05-01
Phytochemical screening of Ruta chalepensis L. exhibited the presence of different chemical groups. The dried aerial parts of the plant was total extracted by ethanol and successively using chloroform, ethyl acetate and Butanol, out of the successive extracts four compounds namely, scopletin, kaempferol, quercetin, quercetin 3- O -α-L-rhamno glucopyranosyl (Rutin) were isolated and biological evaluations. Total ethanol and successive extracts; chloroform, ethyl acetate and Butanol were produced excellent antimicrobial activities against gram negative bacteria, gram positive bacteria and fungi. Ethyl acetate extract was the best for inhibition of the microorganism's growth. All extracts (total ethanol, and successive extracts) showed DPPH radical scavenging activity in a concentration-dependent manner. The best antioxidant activity was obtained by ethyl acetate & n -butanol extract (94.28%, IC 50 = 56.6 µg/ml). Also All extracts (total ethanol, and successive extracts) showed anticoagulant activity at higher concentration with prolonged clotting time 6:30 and 4:30 s at 10 mg/ml concentrations, respectively.
Composition of Fatty Acids and Carbohydrates in Leptospira1
Kondo, Eiko; Ueta, Nobuo
1972-01-01
The fatty acid and monosaccharide composition of four pathogenic and two saprophytic strains of Leptospira was analyzed by gas chromatography (GC) and GC-mass spectrometry. Among the fatty acids, palmitic acid was most abundant and constituted 30 to 50% of the total fatty acids. Even-numbered unsaturated acids including octadecenoic, hexadecenoic, octadecadienoic, and tetradecadienoic acids comprised 40 to 60% of the total fatty acids. Tetradecanoic acid was about 5% in saprophytic strains, but 1% or less in pathogenic strains. The amount of chloroform-methanol extract of L. biflexa strain Ancona was 14 to 20% of the dry weight of the cell. Tetradecadienoic acid was found in the chloroform-methanol insoluble fraction, suggesting the presence of the acid in a bound form. GC analysis of monosaccharides revealed the existence of arabinose, xylose, rhamnose, mannose, galactose, glucose, glucosamine, and muramic acid in the cells. Among the neutral sugars, glucose was a minor component and was especially low in pathogenic strains. Total pentose content was about two to three times greater than total hexose. PMID:5022167
Ares, Manuel
2012-09-01
In this bacterial RNA isolation protocol, an "RNA-protective" treatment is followed by lysozyme digestion of the peptidoglycan component of the cell wall. EDTA promotes the loss of the outer membrane of Gram-negative bacteria and allows the lysozyme better access to the peptidoglycan. Cells begin to lyse during digestion in hypotonic lysozyme buffer and lysis is completed by sodium dodecyl sulfate (SDS) and hot phenol:chloroform:isoamyl alcohol (PCA) extraction. SDS and hot phenol disrupt membranes, denature protein (including RNase), and strip proteins from RNA. The separation of the organic phase from the aqueous phase is achieved using Phase Lock Gel, an inert material with a density intermediate between the organic and aqueous samples. The sample is split into three phases: from bottom to top, these are phenol and chloroform (organic phase), the inert gel with the interface material, and the aqueous phase with the RNA. The gel acts as a physical barrier between the sample and the organic phase plus interface. Following organic extraction, the RNA is concentrated by ethanol precipitation.
Extraction and Analysis of Food Lipids
USDA-ARS?s Scientific Manuscript database
Along with proteins and carbohydrates, lipids are one of the main components of foods. Lipids are often defined as a group of biomolecules that are insoluble in water and soluble in organic solvents such as hexane, diethyl ether or chloroform. Modern methods for the extraction and analysis of lipi...
Strong oxidants are supposed to produce quite extensive cleavage of the hydrocarbon backbone of natural organic matter, resulting in the release of partly oxidized organic molecules. The identification and detection of these small and highly polar compounds represents a challengi...
Exposure to mixtures is frequent, but biologic pathways such as metabolic inhibition, are poorly understood. CHCl3 and TCE are model volatiles frequently co-occurring; combined exposure results in less than additive hepatotoxicity. Here, we explore the underlying metabolic inte...
Although disinfection of drinking water is important for control of microbial contamination, it results in the formation of hundreds of disinfection by-products (DBPs). The most prevalent DBPs are trihalomethanes (THMs; chloroform, bromodichloromethane, chlorodibromomethane, bro...
ERIC Educational Resources Information Center
Ozog, J. Z.; Morrison, J. A.
1983-01-01
Presents information, laboratory procedures, and results of an undergraduate experiment in which activity coefficients for a two-component liquid-vapor system are determined. Working in pairs, students can perform the experiment with 10 solutions in a given three-hour laboratory period. (Author/JN)
Electrochemical systems and methods using metal halide to form products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Thomas A.; Solas, Dennis; Leclerc, Margarete K.
There are provided electrochemical methods and systems to form one or more organic compounds or enantiomers thereof selected from the group consisting of substituted or unsubstituted dioxane, substituted or unsubstituted dioxolane, dichloroethylether, dichloromethyl methyl ether, dichloroethyl methyl ether, chloroform, carbon tetrachloride, phosgene, and combinations thereof.
Designer stabilizer for preparation of pristine graphene/polysiloxane films and networks
NASA Astrophysics Data System (ADS)
Parviz, Dorsa; Yu, Ziniu; Hedden, Ronald C.; Green, Micah J.
2014-09-01
A conductive polymer film containing pristine graphene was prepared by designing a polysiloxane-based stabilizer for graphene. The stabilizer was prepared by grafting 1-ethynylpyrene to the backbone of a poly(dimethylsiloxane)-co-(methylhydrosiloxane) (PDMS-PHMS) random copolymer by Pt-catalyzed hydrosilylation with a SiH-ethynyl ratio of 1.0 : 1.3. The resulting copolymer was able to stabilize pristine graphene in chloroform solution via π-π interactions between the pyrene groups and graphene sheets. TEM and SEM images show a homogeneous distribution of the graphene in cast films deposited from chloroform. The conductivity of a graphene/PDMS film prepared from copolymer with a 1.7 vol.% graphene loading was measured as 220 S m-1 after the removal of unbound polymer by a simple separation technique. With a SiH-ethynyl ratio of 1.7 : 1.0, the copolymer self-crosslinked at 110 °C in the presence of adventitious moisture, providing a straightforward route to incorporate graphene into silicone elastomers. The crosslinking process (with and without added graphene) was characterized by FT-IR spectroscopy and by swelling and extraction of the obtained networks. Again, unbound polymer removal increases the conductivity of the composite.A conductive polymer film containing pristine graphene was prepared by designing a polysiloxane-based stabilizer for graphene. The stabilizer was prepared by grafting 1-ethynylpyrene to the backbone of a poly(dimethylsiloxane)-co-(methylhydrosiloxane) (PDMS-PHMS) random copolymer by Pt-catalyzed hydrosilylation with a SiH-ethynyl ratio of 1.0 : 1.3. The resulting copolymer was able to stabilize pristine graphene in chloroform solution via π-π interactions between the pyrene groups and graphene sheets. TEM and SEM images show a homogeneous distribution of the graphene in cast films deposited from chloroform. The conductivity of a graphene/PDMS film prepared from copolymer with a 1.7 vol.% graphene loading was measured as 220 S m-1 after the removal of unbound polymer by a simple separation technique. With a SiH-ethynyl ratio of 1.7 : 1.0, the copolymer self-crosslinked at 110 °C in the presence of adventitious moisture, providing a straightforward route to incorporate graphene into silicone elastomers. The crosslinking process (with and without added graphene) was characterized by FT-IR spectroscopy and by swelling and extraction of the obtained networks. Again, unbound polymer removal increases the conductivity of the composite. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01431f
2013-01-01
Background Caesalpinia bonducella is an important medicinal plant for its traditional uses against different types of diseases. Therefore, the present study investigated the antimicrobial, antidiarrhoeal, and cytotoxic activities of the methanol extract and ethyl acetate, chloroform, and petroleum ether (pet. ether) fractions of C. bonducella leaves. Methods The antibacterial potentialities of methanol extract and its fractions of C. bonducella leaves were investigated by the disc diffusion method against four gram-positive and five gram-negative bacteria at 300, 500 and 800 μg/disc. Kanamycin (30 μg/disc) was used as the standard drug. Antidiarrhoeal activities of leaf extracts were evaluated at two doses (200 and 400 mg/kg) and compared with loperamide in a castor oil-induced diarrhoeal model in rat. The fractions were subjected to a brine shrimp lethality test to evaluate their cytotoxicity. Results The methanol extract and other three fractions exhibited better activities at higher concentrations. Amongst, the chloroform fraction showed maximum activity at all three concentrations (300, 500, and 800 μg/disc) against almost all bacteria. S. aureus and P. aeruginosa showed better sensitivities to all extracts at all three concentrations excluding the pet. ether fraction. Bacillus megaterium and Klebsiella spp. were two bacteria amongst nine that showed lowest sensitivity to the extracts. Maximum zone of inhibition (25-mm) was obtained by the methanol extract at an 800 μg/disc concentration against S. aureus. In the antidiarrhoeal test, all fractions exhibited dose-dependent actions, which were statistically significant (p < 0.05). Ethyl acetate fraction exerted maximum inhibition (51.11%) against defecation, whereas 57.75% inhibition was obtained for loperamide. Moderate cytotoxicity was found for the methanol extract and its three fractions compared with the standard drug vincristine sulfate in the brine shrimp bioassay. In the present study, the LC50 values of the methanol crude extract and ethyl acetate, chloroform, pet. ether fractions and vincristine sulfate were 223.87, 281.84, 112.2, 199.53, and 12.59 μg/mL, respectively. Therefore, the ethyl acetate fraction showed maximum cytotoxicity, whereas minimum cytotoxicity was observed for the chloroform fraction. Conclusion The present study revealed that the ethyl acetate fraction of the C. bonducella leaves has significant antidiarrhoeal properties. The methanol extract and other three fractions of the C. bonducella leaves possess potent antibacterial activities along with moderate cytotoxicities that may lead to new drug development. PMID:23663985
Billah, Muhammad Mutassim; Islam, Rafikul; Khatun, Hajera; Parvin, Shahnaj; Islam, Ekramul; Islam, Sm Anisul; Mia, Akbar Ali
2013-05-12
Caesalpinia bonducella is an important medicinal plant for its traditional uses against different types of diseases. Therefore, the present study investigated the antimicrobial, antidiarrhoeal, and cytotoxic activities of the methanol extract and ethyl acetate, chloroform, and petroleum ether (pet. ether) fractions of C. bonducella leaves. The antibacterial potentialities of methanol extract and its fractions of C. bonducella leaves were investigated by the disc diffusion method against four gram-positive and five gram-negative bacteria at 300, 500 and 800 μg/disc. Kanamycin (30 μg/disc) was used as the standard drug. Antidiarrhoeal activities of leaf extracts were evaluated at two doses (200 and 400 mg/kg) and compared with loperamide in a castor oil-induced diarrhoeal model in rat. The fractions were subjected to a brine shrimp lethality test to evaluate their cytotoxicity. The methanol extract and other three fractions exhibited better activities at higher concentrations. Amongst, the chloroform fraction showed maximum activity at all three concentrations (300, 500, and 800 μg/disc) against almost all bacteria. S. aureus and P. aeruginosa showed better sensitivities to all extracts at all three concentrations excluding the pet. ether fraction. Bacillus megaterium and Klebsiella spp. were two bacteria amongst nine that showed lowest sensitivity to the extracts. Maximum zone of inhibition (25-mm) was obtained by the methanol extract at an 800 μg/disc concentration against S. aureus. In the antidiarrhoeal test, all fractions exhibited dose-dependent actions, which were statistically significant (p < 0.05). Ethyl acetate fraction exerted maximum inhibition (51.11%) against defecation, whereas 57.75% inhibition was obtained for loperamide. Moderate cytotoxicity was found for the methanol extract and its three fractions compared with the standard drug vincristine sulfate in the brine shrimp bioassay. In the present study, the LC50 values of the methanol crude extract and ethyl acetate, chloroform, pet. ether fractions and vincristine sulfate were 223.87, 281.84, 112.2, 199.53, and 12.59 μg/mL, respectively. Therefore, the ethyl acetate fraction showed maximum cytotoxicity, whereas minimum cytotoxicity was observed for the chloroform fraction. The present study revealed that the ethyl acetate fraction of the C. bonducella leaves has significant antidiarrhoeal properties. The methanol extract and other three fractions of the C. bonducella leaves possess potent antibacterial activities along with moderate cytotoxicities that may lead to new drug development.
Kovendan, Kalimuthu; Murugan, Kadarkarai; Vincent, Savariar
2012-02-01
The leaf extract of Acalypha alnifolia with different solvents - hexane, chloroform, ethyl acetate, acetone and methanol - were tested for larvicidal activity against three important mosquitoes such as malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus. The medicinal plants were collected from the area around Kallar Hills near the Western Ghats, Coimbatore, India. A. alnifolia plant was washed with tap water and shade dried at room temperature. The dried leaves were powdered mechanically using commercial electrical stainless steel blender. The powder 800 g of the leaf material was extract with 2.5 litre of various each organic solvents such as hexane, chloroform, ethyl acetate, acetone, methanol for 8 h using Soxhlet apparatus, and filtered. The crude plant extracts were evaporated to dryness in a rotary vacuum evaporator. The yield of extracts was hexane (8.64 g), chloroform (10.74 g), ethyl acetate (9.14 g), acetone (10.02 g), and methanol (11.43 g). One gram of the each plant residue was dissolved separately in 100 ml of acetone (stock solution) from which different concentrations, i.e., 50, 150, 250, 350 and 450 ppm, was prepared. The hexane, chloroform, ethyl acetate, acetone was moderate considerable mortality; however, the highest larval mortality was methanolic extract observed in three mosquito vectors. The larval mortality was observed after 24 h exposure. No mortality was observed in the control. The early fourth-instar larvae of A. stephensi had values of LC(50) = 197.37, 178.75, 164.34, 149.90 and 125.73 ppm and LC(90) = 477.60, 459.21, 435.07, 416.20 and 395.50 ppm, respectively. The A. aegypti had values of LC(50) = 202.15, 182.58, 160.35, 146.07 and 128.55 ppm and LC(90) = 476.57, 460.83, 440.78, 415.38 and 381.67 ppm, respectively. The C. quinquefasciatus had values of LC(50) = 198.79, 172.48, 151.06, 140.69 and 127.98 ppm and LC(90) = 458.73, 430.66, 418.78, 408.83 and 386.26 ppm, respectively. The results of the leaf extract of A. alnifloia are promising as good larvicidal activity against the mosquito vector, A. stephensi, A. aegypti, C. quinquefasciatus. Therefore, this study provides first report on the larvicidal activities against three species of mosquito vectors of this plant extracts from Southern India.
N-Heterocyclic Carbene-Catalyzed Alcohol Acetylation: An Organic Experiment Using Organocatalysis
ERIC Educational Resources Information Center
Morgan, John P.; Shrimp, Jonathan H.
2014-01-01
Undergraduate students in the teaching laboratory have successfully used N-heterocyclic carbenes (NHCs) as organocatalysts for the acetylation of primary alcohols, despite the high water sensitivity of uncomplexed ("free") NHCs. The free NHC readily reacted with chloroform, resulting in an air- and moisture-stable adduct that liberates…
NASA Technical Reports Server (NTRS)
Marder, S. R.; Tiemann, B. G.; Friedli, A. C.; Cheng, L. -T.; Blanchard-Desce, M.
1993-01-01
Conjugated organic compounds with 3-phenyl-5-isoxazolone, or N, N'-diethylthiobarbituric acid acceptors have large first molecular hyperpolarizabilities in comparison to compounds with 4-nitrophenyl acceptors as measured by electric feld induced second harmonic generation, (EFISH), in chloroform, with 1.907 micron fundamental radiation.
RESULTS OF THE NATIONWIDE DBP OCCURRENCE STUDY: IDENTIFICATION OF NEW AND INTERESTING DBPS
Drinking water disinfection by-products (DBPs) are formed when disinfectants, such as chlorine, react with natural organic matter and bromide present in the water. Chloroform was the first DBP identified in drinking water (in 1974), and was subsequently shown (along with other t...
LIPID METHODOLOGY AND POLLUTANT NORMALIZATION RELATIONSHIPS FOR NEUTRAL NONPOLAR ORGANIC POLLUTANTS
This work compares the ability of hexane and chloroform with methanol (C/M) to extract lipid, polychlorinated biphenyls (PCBs), and p,p'-DDE from white croaker (Geneonus lineatus) muscle tissue. Hexane extracted on average 25% of the lipid and 73% of the PCB congeners that were e...
USDA-ARS?s Scientific Manuscript database
In this study, chemical extracts of Jatropha curcas, Hyptis suaveolens, Abutilon indicum, and Leucas aspera were tested for toxicity to larvae of the filariasis vector Culex quinquefasciatus. Respective median lethal concentrations (LC50) for hexane, chloroform, ethyl acetate, and methanol extracts...
USDA-ARS?s Scientific Manuscript database
Objective: To determine the larvicidal activity of hexane, chloroform, ethyl acetate, acetone, and methanol extracts of Orthosiphon thymiflorus leaves against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. Methods: Larvicidal activity was determined in laboratory bioassays using var...
Studying the Greenhouse Effect: A Simple Demonstration.
ERIC Educational Resources Information Center
Papageorgiou, G.; Ouzounis, K.
2000-01-01
Studies the parameters involved in a presentation of the greenhouse effect and describes a simple demonstration of this effect. Required equipment includes a 100-120 watt lamp, a 250mL beaker, and a thermometer capable of recording 0-750 degrees Celsius together with a small amount of chloroform. (Author/SAH)
Microbial incorporation of nitrogen in stream detritus
Diane M. Sanzone; Jennifer L. Tank; Judy L. Meyer; Patrick J. Mulholland; Stuart E.G. Findlay
2001-01-01
We adapted the chloroform fumigation method to determine microbial nitrogen (N) and microbial incorporation of 15N on three common substrates [leaves, wood and fine benthic organic matter (FBOM)] in three forest streams. We compared microbial N and 15 content of samples collected during a 6-week15N-NH...
21 CFR 74.1710 - D&C Yellow No. 10.
Code of Federal Regulations, 2010 CFR
2010-04-01
... with phthalic anhydride to give the unsulfonated dye, which is then sulfonated with oleum. (2) Color... water and chloroform, not more than 0.2 percent. Total sulfonated quinaldines, sodium salts, not more than 0.2 percent. Total sulfonated phthalic acids, sodium salts, not more than 0.2 percent. 2-(2...
21 CFR 74.1710 - D&C Yellow No. 10.
Code of Federal Regulations, 2011 CFR
2011-04-01
... with phthalic anhydride to give the unsulfonated dye, which is then sulfonated with oleum. (2) Color... water and chloroform, not more than 0.2 percent. Total sulfonated quinaldines, sodium salts, not more than 0.2 percent. Total sulfonated phthalic acids, sodium salts, not more than 0.2 percent. 2-(2...
USDA-ARS?s Scientific Manuscript database
To determine the ovicidal efficacy of different solvent leaf extracts of Ageratina adenophora against dengue vector Aedes aegypti . Methods: The ovicidal efficacy of the crude leaf extracts of A. adenophora with five different solvents (hexane, benzene, chloroform, ethyl acetate, methanol) and was ...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Oxidizing disinfectants reduce microbial contamination but react with inorganic and organic materials in water forming disinfection byproducts (DBPs). The U.S. EPA regulates 4 THM DBPs (chloroform, CHCI3; bromodichloromethane, BDCM; chlorodibromomethane, CDBM; bromoform, CHBr3) a...
The objective of this research was to evaluate the biodegradation of chloroform by using biotrickling filter (BTF) and determining the dominant bacteria responsible for the degradation. The research was conducted in three phases under anaerobic condition, namely, in the presence ...
40 CFR 82.106 - Warning statement requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... calendar year. If at any time future usage exceeds the 95% reduction, all products manufactured with methyl... controlled substances or blends of controlled substances bound for discard; (4) Products manufactured using methyl chloroform or CFC-113 by persons who can demonstrate and certify a 95% reduction in overall usage...
40 CFR 82.106 - Warning statement requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... calendar year. If at any time future usage exceeds the 95% reduction, all products manufactured with methyl... controlled substances or blends of controlled substances bound for discard; (4) Products manufactured using methyl chloroform or CFC-113 by persons who can demonstrate and certify a 95% reduction in overall usage...
Chlorination of drinking water results in the formation of hundreds of disinfection byproducts (DBPs), the most prevalent are trihalomethanes (THMs) and haloacetic acids (HAAs). Four THMs (chloroform, bromodichloromethane, chlorodibromomethane, bromoform) and five HAAs (chloroac...
A. G. Vernon Harcourt: A Founder of Chemical Kinetics and a Friend of "Lewis Carroll."
ERIC Educational Resources Information Center
Shorter, John
1980-01-01
Outlines the life of A. G. Vernon Harcourt, a founder of chemical kinetics, contributor to the purification of coal gas from sulfur compounds, inventor of the percentage chloroform inhaler, friend to Lewis Carroll, and instructor to the Prince of Wales. (CS)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
2008-10-27
was repeated twice, dissolving the product in chloroform and diethyl ether, respectively. The polymer was dried at 60 °C under vacuum overnight...the Tg of the i Bu remains the same. Table 1. Tg for Butyl Methacrylate-co- Propyl Methacryl POSS Polymers with Various POSS Substituents
Drinking water disinfection by-products (DBPs) are formed when disinfectants, such as chlorine, react with natural organic matter and bromide present in the water. Chloroform was the first DBP identified in drinking water (in 1974), and was subsequently shown (along with other t...
A Study to Maximize the Learning Experience in the Physical Chemistry Laboratory
1979-01-01
commercial instrument is equipped with a platinum- iridium ring of standard dimen- sions for which the dial has been calibrated to read directly in dynes...a standard procedure with antimony trichloride in chloroform to produce a blue color. The percent transmission of the incident filtered light for each
40 CFR Table 8 to Subpart Ffff of... - Partially Soluble Hazardous Air Pollutants
Code of Federal Regulations, 2012 CFR
2012-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing Pt. 63, Subpt. FFFF, Table 8 Table 8 to Subpart FFFF of Part 63—Partially Soluble...: Chemical name . . . CAS No. 1. 1,1,1-Trichloroethane (methyl chloroform) 71556 2. 1,1,2,2-Tetrachloroethane...
Mathany, Timothy M.; Belitz, Kenneth
2015-01-01
Chloroform, simazine, and perchlorate were observed in the Interior Basins and Coastal Basins study areas, predominantly at shallow sites with top-of-perforation depths ≤70 feet below land surface, with modern water (post-1950s), and with oxic groundwater conditions.
Chemical Aspects of General Anesthesia: Part 1. From Ether to Halothane
ERIC Educational Resources Information Center
Brunsvold, Robert; Ostercamp, Daryl L.
2006-01-01
The history and evolution of general anesthesia, which invokes a variety of drugs, each compound having a specific purpose from muscle relaxation to unconsciousness is discussed. Some of the popular anesthetics discussed are ether, chloroform, halocarbons, gaseous nitrous oxide, halothane, and mixture of 70% nitrous oxide and 30% oxygen.
The EcoWater Systems ERO-R450E POU drinking water treatment system was tested for removal of aldicarb, benzene, cadmium, carbofuran, cesium, chloroform, dichlorvos, dicrotophos, fenamiphos, mercury, mevinphos, oxamyl, strontium, and strychnine. The ERO-R450E employs a reverse os...
The Watts Premier WP-4V POU drinking water treatment system was tested for removal of aldicarb, benzene, cadmium, carbofuran, cesium, chloroform, dichlorvos, dicrotophos, fenamiphos, mercury, mevinphos, oxamyl, strontium, and strychnine. The WP-4V employs a reverse osmosis (RO) m...
Allelopathic agents from Cyrtocymura cincta.
Alvarez Valdés, D; Elías, A; Bardón, A
2001-01-01
The sesquiterpenoid fractions from the chloroform extracts of roots and aerial parts of the weed Cyrtocymura cincta (Griseb.) H. Robinson (Compositae) were tested to observe the effects on seed germination and growth of three dicot and four monocot species. Promotion and inhibition effects were observed according to the examined compound, specific seed or cultivar, and concentration.
Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities
Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo
2016-01-01
The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression. PMID:27598154
Light-triggered self-assembly of triarylamine-based nanospheres
NASA Astrophysics Data System (ADS)
Moulin, Emilie; Niess, Frédéric; Fuks, Gad; Jouault, Nicolas; Buhler, Eric; Giuseppone, Nicolas
2012-10-01
Tailored triarylamine units modified with terpyridine ligands were coordinated to Zn2+ ions and characterized as discrete dimeric entities. Interestingly, when these complexes were subsequently irradiated with simple visible light in chloroform, they readily self-assembled into monodisperse spheres with a mean diameter of 160 nm.Tailored triarylamine units modified with terpyridine ligands were coordinated to Zn2+ ions and characterized as discrete dimeric entities. Interestingly, when these complexes were subsequently irradiated with simple visible light in chloroform, they readily self-assembled into monodisperse spheres with a mean diameter of 160 nm. Electronic supplementary information (ESI) available: Synthetic procedures and products' characterization (2-4 and 6-9). 1H NMR titration of compound 6 by Zn(OTf)2 to form complex 7. Kinetic measurements by UV-Vis-NIR spectroscopy. Transmission electron microscopy imaging for complexes 8 and 9. UV-Vis-NIR for an Fe2+ analogue of complex 7. Dynamic light scattering and time autocorrelation function for self-assembly of complexes 7-9. Copies of 1H and 13C NMR spectra for compounds 2-4 and 6. See DOI: 10.1039/c2nr32168h
Ho, Y C; Ho, K J
1988-04-01
Our purpose is to develop a standard method for preparing the bile for beta-glucuronidase determination by removal of bile acids and conjugated bilirubin which interfere with its activity. The bile acids and conjugated bilirubin in their purified solutions and in the diluted gallbladder biles could be extracted completely with cholestyramine in powder form or tetrahexylammonium chloride (THAC) in chloroform or ethyl acetate. The enzyme was, however, partially precipitated with cholestyramine and denatured by chloroform but not by ethyl acetate. A standard procedure, therefore, includes extraction of the diluted gallbladder bile with THAC in ethyl acetate, followed by determination of the maximal velocity (Vmax) of the enzyme by a kinetic method employing phenolphthalein glucuronide as the substrate. The average Vmax of beta-glucuronidase in the 20 normal gallbladder biles was 165 +/- 86 nmol/min/ml (mean +/- SD), a 23.5-fold increase over the activity before extraction. The measured activity represented the true activity of the enzyme in the bile for recovery of activity of the enzyme added to the bile was practically complete.
Development of Singlet Oxygen Absorption Capacity (SOAC) Assay Method Using a Microplate Reader.
Takahashi, Shingo; Iwasaki-Kino, Yuko; Aizawa, Koichi; Terao, Junji; Mukai, Kazuo
2016-01-01
Recently, a new assay method that can quantify the singlet oxygen absorption capacity (SOAC) of natural antioxidants and food extracts was developed. The SOAC values were measured in ethanol-chloroform-D2O (50 + 50 + 1, v/v/v) solution at 35°C using a UV-Vis spectrophotometer equipped with a six-channel cell positioner and an electron-temperature control unit. In the present study, measurement of the SOAC values was performed for eight representative carotenoids and three vegetable extracts (tomato, carrot, and red paprika) using a versatile instrument, the microplate reader. A 24-well glass microplate was used for measurements because a plastic microplate, commonly used in the laboratory, dissolves in the ethanol-chloroform-D2O solution. The SOAC values of eight carotenoids and three vegetable extracts measured using a microplate reader were in good agreement with the corresponding values measured using a UV-Vis spectrophotometer, suggesting that the microplate reader is an applicable instrument for the measurement of reliable SOAC values for general antioxidants and food extracts in solution.
A family of doctors over 250 years: innovation and controversy.
Watkins, Peter J
2011-05-01
A family of Watkins doctors originating in the Northamptonshire town of Towcester included 13 doctors in seven generations during 250 years. In each generation there were between one and four doctors. Three doctors involved themselves actively in innovative yet controversial practises, described in their own writings and publications. Timothy Watkins' (1755-1834) own handwritten lecture notes describe the problems affecting an 18th-century man-midwife, while his accounts book provides insights into his lifestyle. The concept of the waterborne spread of cholera during the 1854 epidemic in Towcester is described by Robert Webb Watkins (1822-1901) during the same year as the observations made by John Snow (1813-58). John Webb Watkins (1833-1903) in his MD thesis (1856) describes his use of chloroform in labour in Towcester during the early 1850s, followed by self-experimentation with chloroform administered to him between 40 and 50 times by Sir James Young Simpson (1811-70) in Edinburgh. Descriptions of the two 19th-century general practitioners offer insights into the exemplary extent of their civic involvement in all walks of local community life, and of their family ties.
Kwak, Moo Jin; Yoo, Youngmin; Lee, Han Sol; Kim, Jiyeon; Yang, Ji-Won; Han, Jong-In; Im, Sung Gap; Kwon, Jong-Hee
2016-01-13
For the efficient separation of lipid extracted from microalgae cells, a novel membrane was devised by introducing a functional polymer coating onto a membrane surface by means of an initiated chemical vapor deposition (iCVD) process. To this end, a steel-use-stainless (SUS) membrane was modified in a way that its surface energy was systemically modified. The surface modification by conformal coating of functional polymer film allowed for selective separation of oil-water mixture, by harnessing the tuned interfacial energy between each liquid phase and the membrane surface. The surface-modified membrane, when used with chloroform-based solvent, exhibited superb permeate flux, breakthrough pressure, and also separation yield: it allowed separation of 95.5 ± 1.2% of converted lipid (FAME) in the chloroform phase from the water/MeOH phase with microalgal debris. This result clearly supported that the membrane-based lipid separation is indeed facilitated by way of membrane being functionalized, enabling us to simplify the whole downstream process of microalgae-derived biodiesel production.
Siddiqua, Shaila; Mamun, Abdullah Al; Enayetul Babar, Sheikh Md
2015-01-01
Renewable biodiesels are needed as an alternative to petroleum-derived transport fuels, which contribute to global warming and are of limited availability. Algae biomass, are a potential source of renewable energy, and they can be converted into energy such as biofuels. This study introduces an integrated method for the production of biodiesel from Chara vulgaris algae collected from the coastal region of Bangladesh. The Box-Behnken design based on response surface methods (RSM) used as the statistical tool to optimize three variables for predicting the best performing conditions (calorific value and yield) of algae biodiesel. The three parameters for production condition were chloroform (X1), sodium chloride concentration (X2) and temperature (X3). Optimal conditions were estimated by the aid of statistical regression analysis and surface plot chart. The optimal condition of biodiesel production parameter for 12 g of dry algae biomass was observed to be 198 ml chloroform with 0.75 % sodium chloride at 65 °C temperature, where the calorific value of biodiesel is 9255.106 kcal/kg and yield 3.6 ml.
Yamamoto, K; Matsumoto, A
1997-11-01
The solvent extraction of an ion associate of tetrabromoindate(III) ion, InBr(-)(4), with quaternary ammonium cations (Q(+)) has been studied. The extraction constant (K(ex)) were determined for the ion associates of InBr(-)(4) with Q(+) between an aqueous phase and several organic phases (chloroform, chlorobenzene, benzene and toluene). A linear relationship was found between log K(ex) and the total number of carbon atoms in Q(+); from the slope of the lines, the contribution of a methylene group to log K(ex) was calculated to be 0.91 for the chloroform extraction system and 0.52 for the other extraction systems. The extractability with alkyltrimethylammonium cations was larger than that with symmetrical tetraalkylammonium cations and the mean difference in log K(ex) for two cations (one of each type) with the same number of carbon atoms was about 1.3. From the extraction constant obtained, the extractability of InBr(-)(4) among metal-halogeno complex anions was in the order TlBr(-)(4) > BiI(-)(4) > AuBr(-)(4) > AuCl(-)(4) > TlCl(-)(4) > InBr(-)(4) > CuCl(-)(2).
Multiple hydrogen-bonded complexes based on 2-ureido-4[1H]-pyrimidinone: a theoretical study.
Sun, Hao; Lee, Hui Hui; Blakey, Idriss; Dargaville, Bronwin; Chirila, Traian V; Whittaker, Andrew K; Smith, Sean C
2011-09-29
In the present work, the electronic structures and properties of a series of 2-ureido-4[1H]-pyrimidinone(UPy)-based monomers and dimers in various environments (vacuum, chloroform, and water) are studied by density functional theoretical methods. Most dimers prefer to form a DDAA-AADD (D, H-bond donor; A, H-bond acceptor) array in both vacuum and solvents. Topological analysis proved that intramolecular and intermolecular hydrogen bonds coexist in the dimers. Frequency and NBO calculations show that all the hydrogen bonds exhibit an obvious red shift in their stretching vibrational frequencies. Larger substituents at position 6 of the pyrimidinone ring with stronger electron-donating ability favor the total binding energy and free energy of dimerization. Calculations on the solvent effect show that dimerization is discouraged by the stronger polarity of the solvent. Further computations show that Dimer-1 may be formed in chloroform, but water molecules may interact with the donor or acceptor sites and hence disrupt the hydrogen bonds of Dimer-1. © 2011 American Chemical Society
Automated GC-MS analysis of free amino acids in biological fluids.
Kaspar, Hannelore; Dettmer, Katja; Gronwald, Wolfram; Oefner, Peter J
2008-07-15
A gas chromatography-mass spectrometry (GC-MS) method was developed for the quantitative analysis of free amino acids as their propyl chloroformate derivatives in biological fluids. Derivatization with propyl chloroformate is carried out directly in the biological samples without prior protein precipitation or solid-phase extraction of the amino acids, thereby allowing automation of the entire procedure, including addition of reagents, extraction and injection into the GC-MS. The total analysis time was 30 min and 30 amino acids could be reliably quantified using 19 stable isotope-labeled amino acids as internal standards. Limits of detection (LOD) and lower limits of quantification (LLOQ) were in the range of 0.03-12 microM and 0.3-30 microM, respectively. The method was validated using a certified amino acid standard and reference plasma, and its applicability to different biological fluids was shown. Intra-day precision for the analysis of human urine, blood plasma, and cell culture medium was 2.0-8.8%, 0.9-8.3%, and 2.0-14.3%, respectively, while the inter-day precision for human urine was 1.5-14.1%.
Dettmer, Katja; Stevens, Axel P; Fagerer, Stephan R; Kaspar, Hannelore; Oefner, Peter J
2012-01-01
Two mass spectrometry-based methods for the quantitative analysis of free amino acids are described. The first method uses propyl chloroformate/propanol derivatization and gas chromatography-quadrupole mass spectrometry (GC-qMS) analysis in single-ion monitoring mode. Derivatization is carried out directly in aqueous samples, thereby allowing automation of the entire procedure, including addition of reagents, extraction, and injection into the GC-MS. The method delivers the quantification of 26 amino acids. The isobaric tagging for relative and absolute quantification (iTRAQ) method employs the labeling of amino acids with isobaric iTRAQ tags. The tags contain two different cleavable reporter ions, one for the sample and one for the standard, which are detected by fragmentation in a tandem mass spectrometer. Reversed-phase liquid chromatography of the labeled amino acids is performed prior to mass spectrometric analysis to separate isobaric amino acids. The commercial iTRAQ kit allows for the analysis of 42 physiological amino acids with a respective isotope-labeled standard for each of these 42 amino acids.
[Tricholoma equestre--animal toxicity study].
Chodorowski, Zygmunt; Sznitowska, Małgorzata; Wiśniewski, Marek; Sein Anand, Jacek; Waldman, Wojciech; Ronikier, Anna
2004-01-01
Animal toxicity study of Tricholoma equestre mushrooms stored for 12 months at (-)20 degrees C was performed using 30 male BALB/c mice. Three groups of 5 mice each were given suspension of T. equestre powder in water, boiled aqueous extract and chloroform-methanol extract dissolved in Miglyol 812 by gavage for three consecutive days. Mice in control groups were given water, Miglyol 812 and p-phenylenediamine (CAS 106-50-3). Creatine kinase activity was determined in serum collected 72 hours after the final dose. Mean activity of serum creatine kinase in mice treated with T. equestre powder, aqueous extract, chloroform-methanol extract and Miglyol 812 were 157 +/- 93, 129 +/- 30, 96 +/- 38, 111 +/- 66 U/L respectively and did not differ significantly from mean activity in mice which were given water (107 +/- 38 U/L). Mean serum creatine kinase activity in p-phenylenediamine group (265 +/- 63 U/L) was significantly higher than in group treated with water (p<0.01). Extracts of Tricholoma equestre mushrooms stored for 12 months at (-)20 degrees C did not cause rhabdomyolysis in male BALB/c mice.
QSPR for predicting chloroform formation in drinking water disinfection.
Luilo, G B; Cabaniss, S E
2011-01-01
Chlorination is the most widely used technique for water disinfection, but may lead to the formation of chloroform (trichloromethane; TCM) and other by-products. This article reports the first quantitative structure-property relationship (QSPR) for predicting the formation of TCM in chlorinated drinking water. Model compounds (n = 117) drawn from 10 literature sources were divided into training data (n = 90, analysed by five-way leave-many-out internal cross-validation) and external validation data (n = 27). QSPR internal cross-validation had Q² = 0.94 and root mean square error (RMSE) of 0.09 moles TCM per mole compound, consistent with external validation Q2 of 0.94 and RMSE of 0.08 moles TCM per mole compound, and met criteria for high predictive power and robustness. In contrast, log TCM QSPR performed poorly and did not meet the criteria for predictive power. The QSPR predictions were consistent with experimental values for TCM formation from tannic acid and for model fulvic acid structures. The descriptors used are consistent with a relatively small number of important TCM precursor structures based upon 1,3-dicarbonyls or 1,3-diphenols.
Harada, Yoshiko; Yamamoto, Tatsuhiro; Sakai, Masaru; Saiki, Toshiharu; Kawano, Kumi; Maitani, Yoshie; Yokoyama, Masayuki
2011-02-14
We incorporated an anticancer agent, camptothecin (CPT), into polymeric micelle carriers by using two different solvents (TFE and chloroform) in the solvent-evaporation drug incorporation process. We observed significant differences in the drug-incorporation behaviors, in the morphologies of the incorporated drug and the polymeric micelles, and in the pharmacokinetic behaviors between the two solvents' cases. In particular, the CPT-incorporated polymeric micelles prepared with TFE as the incorporation solvent exhibited more stable circulation in blood than those prepared with chloroform. This contrast indicates a novel technological perspective regarding the drug incorporation into polymeric micelle carriers. Morphological analyses of the inner core have revealed the presence of the directed alignment of the CPT molecules and CPT crystals in the micelle inner core. This is the first report of the morphologies of the drug incorporated into the polymeric micelle inner cores. We believe these analyses are very important for further pharmaceutical developments of polymeric micelle drug-carrier systems. Copyright © 2010 Elsevier B.V. All rights reserved.
Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities.
Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo
2016-09-03
The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodgson, R.H.; Hoffer, B.L.
Nutrient-solution-grown pepper (Capsicum frutescens L. Early Calwonder) absorbed 62% of the diphenamid (N,N-dimethyl-2,2-diphenylacetamide) supplied via the roots for 48 h, and 74% in 150 h. Extensive translocation accompanied absorption, and 70 +/- 3% of the absorbed /sup 14/C was present in shoots of plants harvested after 24- to 150-h treatments. Diphenamid was metabolized rapidly to chloroform-soluble and water-soluble compounds, and to unextracted residues. Chloroform-soluble compounds persisted for 150 h and accounted for more than 50% of the /sup 14/C in leaves. Water-soluble compounds other than N-hydroxymethyl-..beta..-D-glycosides accounted for 25% of the water-soluble metabolites in leaves of nonfumigated plants. Ozone fumigationmore » did not affect diphenamid absorption or translocation significantly. In leaves, ozone-enhanced accumulation of water-soluble metabolites more polar than N-hydroxymethyl-N-methyl-2,2-diphenylacetamide-..beta..-D-glucoside (MDAG) and unextracted residues was observed. Ozone fumigation reduced the accumulation of these /sup 14/C-fractions in roots. 16 references, 1 figure, 3 tables.« less
Stíbal, David; Süss-Fink, Georg; Therrien, Bruno
2015-10-01
The mol-ecular structure of the title complex, [Ru2(C8H9OS)2Cl2(C10H14)2]·2CHCl3 or (p-MeC6H4Pr (i) )2Ru2(SCH2-p-C6H5-OCH3)2Cl2·2CHCl3, shows inversion symmetry. The two symmetry-related Ru(II) atoms are bridged by two 4-meth-oxy-α-toluene-thiol-ato [(4-meth-oxy-phen-yl)methane-thiol-ato] units. One chlorido ligand and the p-cymene ligand complete the typical piano-stool coordination environment of the Ru(II) atom. In the crystal, the CH moiety of the chloro-form mol-ecule inter-acts with the chlorido ligand of the dinuclear complex, while one Cl atom of the solvent inter-acts more weakly with the methyl group of the bridging 4-meth-oxy-α-toluene-thiol-ato unit. This assembly leads to the formation of supra-molecular chains extending parallel to [021].
NASA Astrophysics Data System (ADS)
Kumar, Arvind; Bhat, Tahir Ahmad; Singh, Rattan Deep
2017-07-01
The study was designed to examine the in vitro antimicrobial efficacy of extracts and isolated compound of Dalbergia stipulacea. Combined extracts (chloroform and methanol) of plant leaves fractionated with n-butanol loaded with column afforded a flavonoid glycoside compound identified as luteolin 4'-rutinoside. Different extracts and isolated compound exhibited pronounced antibacterial and antifungal varied activities against four bacteria (Clostridium acetobutylinium, Bacillus subtilis, Streptococcus mutans, and Pseudomonas sp.) and one fungus (Candida albicans) susceptibility were determined using disc diffusion method. The minimum inhibitory concentration (MIC) of extracts and isolated compounds was determined by broth dilution method. The maximum activity was shown by chloroform extract against C. albicans with a zone of inhibition of 17 mm and minimum activity was displayed by methanolic extract against Pseudomonas sp. with 5 mm. However, isolated compound has shown maximum activity against Pseudomonas sp. with 15 mm. The MIC values higher in methanol extract against Pseudomonas sp. and isolated compound shows good against Pseudomonas sp. and B. subtilis. Our findings indicate that plant could be used as a good antimicrobial agent in food, pharmaceutical and bio-pesticide industries.
Rho, Taewoong; Yoon, Kee Dong
2018-05-01
In this study, the chloroform-soluble extract of Cuscuta auralis was separated successfully using off-line two-dimensional high-performance countercurrent chromatography, yielding a γ-pyrone, two alkaloids, a flavonoid, and four lignans. The first-dimensional countercurrent separation using a methylene chloride/methanol/water (11:6:5, v/v/v) system yielded three subfractions (fractions I-III). The second-dimensional countercurrent separations, conducted on fractions I-III using n-hexane/ethyl acetate/methanol/water/acetic acid (5:5:5:5:0, 3:7:3:7:0, and 1:9:1:9:0.01, v/v/v/v/v) systems, gave maltol (1), (-)-(13S)-cuscutamine (2), (+)-(13R)-cuscutamine (3), (+)-pinoresinol (4), (+)-epipinoresinol (5), kaempferol (6), piperitol (7), and (9R)-hydroxy-d-sesamin (8). To the best of our knowledge, maltol was identified for the first time in Cuscuta species. Furthermore, this report details the first full assignment of spectroscopic data of two cuscutamine epimers, (-)-(13S)-cuscutamine and (+)-(13R)-cuscutamine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Yuping; Ma, Yao; Deng, Mengyu; Shang, Hongxing; Liang, Chunshuang; Jiang, Shimei
2015-07-07
Two novel low molecular weight organogelators (LMOGs) 1 and 2 composed of a cholesteryl group, an amide group and various terminal cyanostilbene moieties were synthesized. They could form stable gels in p-xylene. In particular, 2 with more extended π-conjugation length showed remarkable gelation ability in many aromatic solvents, chloroform and chloroform-containing mixed solvents at a relatively low concentration. FT-IR and XRD spectra indicated that the difference between 1 and 2 in the gelation properties may result from the deviation of the intermolecular hydrogen bonding and π–π stacking as driving forces for the formation of the gels. Significantly, 2 can function as an efficient room-temperature phase-selective gelator (PSG) for potential application in the separation and recovery of various aromatic solvents from its mixture with water. Meanwhile, the gelator can be easily recovered and reused several times. Furthermore, the phase-selective gelation properties of 2 can provide a simple and feasible approach for the removal of the rhodamine B (RhB) dye from water.
Yam, Mun Fei; Tan, Chu Shan; Ahmad, Mariam; Ruan, Shibao
2016-01-01
Orthosiphon stamineus Benth. (Lamiaceae) is an important plant in traditional folk medicine that is used to treat hypertension and kidney stones. In humans, this plant has been tested as an addition regiment for antihypertensive treatment. Among the treatments for hypertension, O. stamineus had been to have diuretic and vasorelaxant effects in animal models. There is still very little information regarding the vasorelaxant effect of O. stamineus. Therefore, the present study was designed to investigate the vasorelaxant activity and mechanism of action of the fractions of O. stamineus. The vasorelaxant activity and the underlying mechanisms of the chloroform fraction of the 50% methanolic extract of O. stamineus (CF) was evaluated on thoracic aortic rings isolated from Sprague Dawley rats. CF caused relaxation of the aortic ring pre-contracted with phenylephrine in the presence and absence of endothelium, and pre-contracted with potassium chloride in endothelium-intact aortic ring. In the presence of endothelium, both indomethacin (a nonselective cyclooxygenase inhibitor) and [Formula: see text]-[1,2,4]Oxadiazolo[4,3-[Formula: see text
NASA Astrophysics Data System (ADS)
Shahdousti, Parvin; Aghamohammadi, Mohammad; Alizadeh, Naader
2008-04-01
The charge-transfer (CT) complexes of methamphetamine (MPA) as a n-donor with several acceptors including bromocresolgreen (BCG), bromocresolpurple (BCP), chlorophenolred (CPR), picric acid (PIC), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) have been studied spectrophotometrically in chloroform solutions in order to obtain some information about their stoichiometry and stability of complexation. The oscillator strengths, transition dipole moments and resonance energy of the complex in the ground state for all complexes have been calculated. Vertical ionization potential of MPA and electron affinity of acceptors were determined by ab initio calculation. The acceptors were also used to utilize a simple and sensitive extraction-spectrophotometric method for the determination of MPA. The method is based on the formation of 1:1 ion-pair association complexes of MPA with BCG, BCP and PIC in chloroform medium. Beer's plots were obeyed in a general concentration range of 0.24-22 μg ml -1 for the investigated drug with different acceptors. The proposed methods were applied successfully for the determination of MAP in pure and abuse drug with good accuracy and precision.
Khodadoust, Saeid; Ghaedi, Mehrorang
2014-12-10
In this study a rapid and effective method (dispersive liquid-liquid microextraction (DLLME)) was developed for extraction of methyl red (MR) prior to its determination by UV-Vis spectrophotometry. Influence variables on DLLME such as volume of chloroform (as extractant solvent) and methanol (as dispersive solvent), pH and ionic strength and extraction time were investigated. Then significant variables were optimized by using a Box-Behnken design (BBD) and desirability function (DF). The optimized conditions (100μL of chloroform, 1.3mL of ethanol, pH 4 and 4% (w/v) NaCl) resulted in a linear calibration graph in the range of 0.015-10.0mgmL(-1) of MR in initial solution with R(2)=0.995 (n=5). The limits of detection (LOD) and limit of quantification (LOQ) were 0.005 and 0.015mgmL(-1), respectively. Finally, the DLLME method was applied for determination of MR in different water samples with relative standard deviation (RSD) less than 5% (n=5). Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stanculescu, A.; Rasoga, O.; Socol, M.; Vacareanu, L.; Grigoras, M.; Socol, G.; Stanculescu, F.; Breazu, C.; Matei, E.; Preda, N.; Girtan, M.
2017-09-01
Mixed layers of azomethine oligomers containing 2,5-diamino-3,4-dicyanothiophene as central unit and triphenylamine (LV5) or carbazol (LV4) at both ends as donor and fullerene derivative, [6,6]-phenyl-C61 butyric acid butyl ester ([C60]PCB-C4) as acceptor, have been prepared by Matrix Assisted Pulsed Laser Evaporation (MAPLE) on glass/ITO and Si substrates. The effect of weight ratio between donor and acceptor (1:1; 1:2) and solvent type (chloroform, dimethylsulphoxide) on the optical (UV-vis transmission/absorption, photoluminescence) and morphological properties of LV4 (LV5): [C60]PCB-C4 mixed layers has been evidenced. Dark and under illumination I-V characteristics of the heterostructures realized with these mixed layers sandwiched between ITO and Al electrodes have revealed a solar cell behavior for the heterostructures prepared with both LV4 and LV5 using chloroform as matrix solvent. The solar cell structure realized with oligomer LV5, glass/ITO/LV5: [C60]PCB-C4 (1:1) has shown the best parameters.
Koch, Kerstin; Barthlott, Wilhelm; Wandelt, Klaus
2018-01-01
The time dependence of the formation of lotus wax tubules after recrystallization from various chloroform-based solutions on an HOPG surface at room temperature was studied by atomic force microscopy (magnetic AC mode) taking series of consecutive images of the formation process. The growth of the tubules oriented in an upright fashion follows a sequential rodlet→ring→tubule behavior. The influence of a number of factors, e.g., different wax concentration in chloroform, the additional presence of water, or salts [(NH4)2SO4, NH4NO3] or a mixture of salt/water in the solution on the growth rate and orientation of the tubules is also investigated. Different wax concentrations were found to have no effect on the growth rate or the orientation of tubules in none of the solutions. The presence of water, however, considerably increased the growth rate of tubule formation, while the presence of salt was again found to have no effect on growth rate or orientation of tubules. PMID:29515959
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basti, M.M.
1988-01-01
Both sections of this study include the use of several high-resolution nuclear magnetic resonance (NMR) techniques. The first part is concerned with the conformational analysis of dibucaine (a local anesthetic) by the use of the lanthanide shift reagent Yb(fod){sub 3} and by computer calculations. The second part of the dissertation is concerned with the study of dioctanoylphosphatidylcholine and dodecylphosphorylcholine and the sulfur analogues of these molecules in deuterated chloroform and chloroform/methanol (2:1 v/v). 2D COSY and {sup 1}H-{sup 13}C heteronuclear correlation experiments were used to make {sup 1}H and {sup 13}C assignments. In both analogues of the phosphatidylcholine molecule, themore » three-bond {sup 1}H-{sup 1}H, {sup 31}P-{sup 13}C, and {sup 31}P-{sup 1}H coupling constants were measured using {sup 1}H, {sup 13}C and {sup 31}P NMR spectroscopy. A number of these coupling constants were significantly different between the two analogues.« less
Induced-Dipole-Directed, Cooperative Self-Assembly of a Benzotrithiophene.
Ikeda, Toshiaki; Adachi, Hiroaki; Fueno, Hiroyuki; Tanaka, Kazuyoshi; Haino, Takeharu
2017-10-06
A benzotrithiophene derivative possessing phenylisoxazoles self-assembled to form stacks. The molecule isodesmically self-assembled in chloroform, whereas it self-assembled in a cooperative fashion in decalin and in methylcyclohexane. Thermodynamic studies based on isodesmic, van der Schoot, and Goldstein-Stryer mathematical models revealed that the self-assembly processes are enthalpically driven and entropically opposed. An enthalpy-entropy compensation plot indicates that the assembly processes in chloroform, decalin, and methylcyclohexane are closely related. The enthalpic gains in less-polar solvents are greater than those in more-polar solvents, resulting in the formation of large assemblies in decalin and in methylcyclohexane. The formation of large assemblies leads to cooperative assemblies. The elongation process is enthalpically more favored than the nucleation process, which drives the cooperativity of the self-assembly. DFT calculations suggested that a hexameric assembly is more stable than tetrameric or dimeric assemblies. Cooperative self-assemblies based on intermolecular interactions other than hydrogen bonding have rarely been reported. It is demonstrated herein that van der Waals interactions, including induced dipole-dipole interactions, can drive the cooperative assembly of planar π-conjugated molecules.
Parker, J H; Smith, G A; Fredrickson, H L; Vestal, J R; White, D C
1982-01-01
Biochemical measures have provided insight into the biomass and community structure of sedimentary microbiota without the requirement of selection by growth or quantitative removal from the sediment grains. This study used the assay of the hydroxy fatty acids released from the lipid A of the lipopolysaccharide in sediments to provide an estimate of the gram-negative bacteria. The method was sensitive to picomolar amounts of hydroxy fatty acids. The recovery of lipopolysaccharide hydroxy fatty acids from organisms added to sediments was quantitative. The lipids were extracted from the sediments with single-phase chloroform-methanol extraction. The lipid-extraction residue was hydrolyzed in 1 N HCl, and the hydroxy fatty acids of the lipopolysaccharide were recovered in chloroform for analysis by gas-liquid chromatography. This method proved to be about fivefold more sensitive than the classical phenol-water or trichloroacetic acid methods when applied to marine sediments. By examination of the patterns of hydroxy fatty acids, it was also possible to help define the community structure of the sedimentary gram-negative bacteria. PMID:6817712
General Anesthetics Have Additive Actions on Three Ligand-Gated Ion Channels
Jenkins, Andrew; Lobo, Ingrid A.; Gong, Diane; Trudell, James R.; Solt, Ken; Harris, R. Adron; Eger, Edmond I
2008-01-01
Background The purpose of this study was to determine whether pairs of compounds, including general anesthetics, could simultaneously modulate receptor function in a synergistic manner, thus demonstrating the existence of multiple intra-protein anesthetic binding sites. Methods Using standard electrophysiologic methods, we measured the effects of at least one combination of benzene, isoflurane, halothane, chloroform, flunitrazepam, zinc and pentobarbital on at least one of the following ligand gated ion channels: N-methyl-D-aspartate receptors (NMDARs), glycine receptors (GlyRs) and γ-aminobutyric acid type A receptors (GABAARs). Results All drug-drug-receptor combinations were found to exhibit additive, not synergistic modulation. Isoflurane with benzene additively depressed NMDAR function. Isoflurane with halothane additively enhanced GlyR function, as did isoflurane with zinc. Isoflurane with halothane additively enhanced GABAAR function as did all of the following: halothane with chloroform, pentobarbital with isoflurane, and flunitrazepam with isoflurane. Conclusions The simultaneous allosteric modulation of ligand gated ion channels by general anesthetics is entirely additive. Where pairs of general anesthetic drugs interact synergistically to produce general anesthesia, they must do so on systems more complex than a single receptor. PMID:18633027
NASA Astrophysics Data System (ADS)
Gangani, B. J.; Patel, J. P.; Parsania, P. H.
2015-12-01
The density, viscosity and ultrasonic speed (2 MHz) of chloroform solutions of halogenated symmetric double Schiff bases of 1,1'-bis(4-aminophenyl)cyclohexane were investigated at 308.15 K. Various acoustical parameters such as specific acoustical impedance ( Z), adiabatic compressibility ( Ka), Rao's molar sound function ( R m), van der Waals constant ( b), internal pressure (π), free volume ( V f), intermolecular free path length ( L f), classical absorption coefficient (α/ f 2)Cl) and viscous relaxation time (τ) were determine using ultrasonic speed ( U), viscosity (η) and density (ρ) data of Schiff bases solutions and correlated with concentration. Linear increase of Z, b, R, τ, and (α/ f 2)Cl except π (nonlinear) and linear decrease of Ka and L f except V f (nonlinear) with increasing concentration of Schiff bases suggested presence of strong molecular interactions in the solutions. The positive values of solvation number further supported strong molecular interactions in the solutions. The nature and position of halogen substituent also affected the strength of molecular interactions.
Jiang, Shengjuan; Wang, Yuliang; Zhang, Xiaolong
2016-07-01
Hericium erinaceus (H. erinaceus) is a source of exogenous antioxidants that has been traditionally used in China for the prevention and treatment of oxidative stress-associated disease. In the present study, the bioactive compounds of H. erinaceus were extracted with the following eight representative reagents: n-Hexane, xylene, chloroform, anhydrous ether, ethyl acetate, acetone, anhydrous ethanol and distilled water. The in vitro antioxidant activities were also evaluated. All of the extracted compounds exhibited reducing power and scavenging activity against 1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion free radicals. In addition, the antioxidant capacities varied with the used chemical reagents and exhibited dose-dependent effects. Extracts from anhydrous ethanol, chloroform and acetone were capable of inhibiting lipid peroxidation. The anhydrous ethanol extracts were observed to have significant levels of antioxidant compounds since they had a strong reducing power, high scavenging rates against DPPH and superoxide anion-free radicals (>90%), and high inhibition rates on lipid peroxidation (>60%). The present study will provide reference data for the antioxidant applications of H. erinaceus in pharmaceutical use and disease prevention.
JIANG, SHENGJUAN; WANG, YULIANG; ZHANG, XIAOLONG
2016-01-01
Hericium erinaceus (H. erinaceus) is a source of exogenous antioxidants that has been traditionally used in China for the prevention and treatment of oxidative stress-associated disease. In the present study, the bioactive compounds of H. erinaceus were extracted with the following eight representative reagents: n-Hexane, xylene, chloroform, anhydrous ether, ethyl acetate, acetone, anhydrous ethanol and distilled water. The in vitro antioxidant activities were also evaluated. All of the extracted compounds exhibited reducing power and scavenging activity against 1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion free radicals. In addition, the antioxidant capacities varied with the used chemical reagents and exhibited dose-dependent effects. Extracts from anhydrous ethanol, chloroform and acetone were capable of inhibiting lipid peroxidation. The anhydrous ethanol extracts were observed to have significant levels of antioxidant compounds since they had a strong reducing power, high scavenging rates against DPPH and superoxide anion-free radicals (>90%), and high inhibition rates on lipid peroxidation (>60%). The present study will provide reference data for the antioxidant applications of H. erinaceus in pharmaceutical use and disease prevention. PMID:27347087
Schmid, Matthias; Guihéneuf, Freddy; Stengel, Dagmar B
2016-10-01
This study evaluated the impact of different food- and non-food grade extraction solvents on yield and fatty acid composition of the lipid extracts of two seaweed species (Palmaria palmata and Laminaria digitata). The application of chloroform/methanol and three different food grade solvents (ethanol, hexane, ethanol/hexane) revealed significant differences in both, extraction yield and fatty acid composition. The extraction efficiency, in terms of yields of total fatty acids (TFA), was in the order: chloroform/methanol>ethanol>hexane>ethanol/hexane for both species. Highest levels of polyunsaturated fatty acids (PUFA) were achieved by the extraction with ethanol. Additionally the effect of storage temperature on the stability of PUFA in ground and freeze-dried seaweed biomass was investigated. Seaweed samples were stored for a total duration of 22months at three different temperatures (-20°C, 4°C and 20°C). Levels of TFA and PUFA were only stable after storage at -20°C for the two seaweed species. Copyright © 2016 Elsevier Ltd. All rights reserved.
A new biological recovery approach for PHA using mealworm, Tenebrio molitor.
Murugan, Paramasivam; Han, Lizhu; Gan, Chee-Yuen; Maurer, Frans H J; Sudesh, Kumar
2016-12-10
Bacterial polyhydroxyalkanoates (PHA) are expensive partly due to the recovery and purification processes. Thus, many studies have been carried out in order to minimize the cost. Here we report on the use of mealworm, which is the larva of mealworm beetle (Tenebrio molitor) to recover PHA granules from Cupriavidus necator. Mealworms were shown to readily consume the freeze-dried C. necator cells and excrete the PHA granules in the form of whitish feces. Further purification using water, detergent and heat resulted in almost 100% pure PHA granules. Comparison with chloroform extraction showed no signs of reduction in the molecular weight and dispersion of the PHA molecules. Scanning electron microscopy and dynamic light scattering measurements revealed that the biologically recovered PHA granules retained their native spherical morphology. The PHA granules were subjected to a battery of tests to determine their purity and properties in comparison to the chloroform extracted PHA. This study has demonstrated the possibility of using mealworms as a biological agent to partially purify the PHA granules. Copyright © 2016 Elsevier B.V. All rights reserved.
Singh, Meghna; Shakya, Shilpy; Soni, Vishal Kumar; Dangi, Anil; Kumar, Nikhil; Bhattacharya, Shailja-Misra
2009-06-01
Modulation of immune functions by using herbal plants and their products has become fundamental regime of therapeutic approach. Piper betle Linn. (Piperaceae) is a widely distributed plant in the tropical and subtropical regions of the world and has been attributed as traditional herbal remedy for many diseases. We have recently reported the antifilarial and antileishmanial efficacy in the leaf extract of Bangla Mahoba landrace of P. betle which is a female plant. The present report describes the in vivo immunomodulatory efficacy of the crude methanolic extract and its n-hexane, chloroform, n-butanol fractions of the female plant at various dose levels ranging between 0.3 and 500 mg/kg in BALB/c. Attempts were also made to observe antifilarial activity of the active extracts and correlate it with the antigen specific immune responses in another rodent Mastomys coucha infected with human lymphatic filarial parasite Brugia malayi. The crude methanol extract and n-hexane fraction were found to potentiate significant (p<0.001) enhancement of both humoral (plaque forming cells, hemagglutination titre) as well as cell-mediated (lymphoproliferation, macrophage activation, delayed type hypersensitivity) immune responses in mice. The flow cytometric analysis of splenocytes of treated mice indicated enhanced population of T-cells (CD4(+), CD8(+)) and B-cells (CD19(+)). The n-hexane fraction (3 mg/kg) was found to induce biased type 2 cytokine response as revealed by increased IL-4(+) and decreased IFN-gamma(+) T-cell population while the chloroform fraction (10 mg/kg) produced a predominant type 1 cytokines. Crude methanolic extract (100 mg/kg) demonstrated a mixed type 1 and type 2 cytokine responses thus suggesting a remarkable immunomodulatory property in this plant. The induction of differential T-helper cell immune response appears ideal to overcome immunosuppression as observed in case of lymphatic, filarial Brugia malayi infection which may also be extended to other infections as well.
Mahmood, Samira Abdulla; Pavlovic, Dragan; Hoffmann, Ulrich
2009-05-07
The study investigated the effect of methanol extract and its fractionations obtained from Yemeni khat on the smooth muscle isometric tension in Lewis rat aortal ring preparations and compared the effects of the crimson and green leaves. Khat leaves were sorted into green (khat Light; KL) and crimson (khat Dark; KD) leaves, extracted with methanol, followed with solvent-solvent extraction (benzene, chloroform and ethylacetate). The contractile activity of the fractions was tested using aortal ring preparations. The control (phenylepherine contraction) methanol extracts contracted aortas at concentrations 250, 125 and 67.5 microg/ml buffer by 80.2%, 57.3%, 26.4% and 81.5%, 65.6%, 24.6% for KL and KD, respectively. Fractions of benzene (BF) and ethylacetate (EaF) contracted the aorta with 2 microgm, whereas, chloroform (ChF) with 1 microgm/1 ml buffer was less potent. The shape of contraction curve produced by EaF differed from that of ChF and BF of both (KL and KD). The EaF induced-contraction peaked after 3.3 +/- 0.94 mins, whereas those of BF and CHF peaked after 18.0 +/- 2.2, 19.7 +/- 0.94 mins, respectively. Pre-incubation with nifedipine (10(-6) M) insignificantly reduced the contraction induced by all fractionations, but prazosin (10(-6) M) reduced the contraction by 81.9%, 63.1%, 71.8% with p = 0.23, 0.09, 0.15 for BF, ChF and EaF of KL, respectively. It significantly reduced contraction of ChF, 64.1%; p = 0.02, and of EaF, 73.5%; p = 0.04 of KD, while the reduction in contraction of BF was 63.1%; p = 0.06. In conclusion, fractions of green and crimson Yemeni khat leaves contracted aortas of Lewis rats. Both leaves behave almost similarly. Contraction induced by chloroform fraction produced alpha-sympathetic activity.