Sample records for chlorophyll

  1. Identification of the 7-Hydroxymethyl Chlorophyll a Reductase of the Chlorophyll Cycle in Arabidopsis[W

    PubMed Central

    Meguro, Miki; Ito, Hisashi; Takabayashi, Atsushi; Tanaka, Ryouichi; Tanaka, Ayumi

    2011-01-01

    The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation. PMID:21934147

  2. Unique chlorophylls in picoplankton Prochlorococcus sp. "Physicochemical properties of divinyl chlorophylls, and the discovery of monovinyl chlorophyll b as well as divinyl chlorophyll b in the species Prochlorococcus NIES-2086".

    PubMed

    Komatsu, Hirohisa; Wada, Katsuhiro; Kanjoh, Terumitsu; Miyashita, Hideaki; Sato, Mayumi; Kawachi, Masanobu; Kobayashi, Masami

    2016-12-01

    In this review, we introduce our recent studies on divinyl chlorophylls functioning in unique marine picoplankton Prochlorococcus sp. (1) Essential physicochemical properties of divinyl chlorophylls are compared with those of monovinyl chlorophylls; separation by normal-phase and reversed-phase high-performance liquid chromatography with isocratic eluent mode, absorption spectra in four organic solvents, fluorescence information (emission spectra, quantum yields, and life time), circular dichroism spectra, mass spectra, nuclear magnetic resonance spectra, and redox potentials. The presence of a mass difference of 278 in the mass spectra between [M+H] + and the ions indicates the presence of a phytyl tail in all the chlorophylls. (2) Precise high-performance liquid chromatography analyses show divinyl chlorophyll a' and divinyl pheophytin a as the minor key components in four kinds of Prochlorococcus sp.; neither monovinyl chlorophyll a' nor monovinyl pheophytin a is detected, suggesting that the special pair in photosystem I and the primary electron acceptor in photosystem II are not monovinyl but divinyl-type chlorophylls. (3) Only Prochlorococcus sp. NIES-2086 possesses both monovinyl chlorophyll b and divinyl chlorophyll b, while any other monovinyl-type chlorophylls are absent in this strain. Monovinyl chlorophyll b is not detected at all in the other three strains. Prochlorococcus sp. NIES-2086 is the first example that has both monovinyl chlorophyll b as well as divinyl chlorophylls a/b as major chlorophylls.

  3. Identification of Genes Associated with Chlorophyll Accumulation in Flower Petals

    PubMed Central

    Ohmiya, Akemi; Hirashima, Masumi; Yagi, Masafumi; Tanase, Koji; Yamamizo, Chihiro

    2014-01-01

    Plants have an ability to prevent chlorophyll accumulation, which would mask the bright flower color, in their petals. In contrast, leaves contain substantial amounts of chlorophyll, as it is essential for photosynthesis. The mechanisms of organ-specific chlorophyll accumulation are unknown. To identify factors that determine the chlorophyll content in petals, we compared the expression of genes related to chlorophyll metabolism in different stages of non-green (red and white) petals (very low chlorophyll content), pale-green petals (low chlorophyll content), and leaves (high chlorophyll content) of carnation (Dianthus caryophyllus L.). The expression of many genes encoding chlorophyll biosynthesis enzymes, in particular Mg-chelatase, was lower in non-green petals than in leaves. Non-green petals also showed higher expression of genes involved in chlorophyll degradation, including STAY-GREEN gene and pheophytinase. These data suggest that the absence of chlorophylls in carnation petals may be caused by the low rate of chlorophyll biosynthesis and high rate of degradation. Similar results were obtained by the analysis of Arabidopsis microarray data. In carnation, most genes related to chlorophyll biosynthesis were expressed at similar levels in pale-green petals and leaves, whereas the expression of chlorophyll catabolic genes was higher in pale-green petals than in leaves. Therefore, we hypothesize that the difference in chlorophyll content between non-green and pale-green petals is due to different levels of chlorophyll biosynthesis. Our study provides a basis for future molecular and genetic studies on organ-specific chlorophyll accumulation. PMID:25470367

  4. Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation.

    PubMed

    Airs, R L; Temperton, B; Sambles, C; Farnham, G; Skill, S C; Llewellyn, C A

    2014-10-16

    We report production of chlorophyll f and chlorophyll d in the cyanobacterium Chlorogloeopsis fritschii cultured under near-infrared and natural light conditions. C. fritschii produced chlorophyll f and chlorophyll d when cultured under natural light to a high culture density in a 20 L bubble column photobioreactor. In the laboratory, the ratio of chlorophyll f to chlorophyll a changed from 1:15 under near-infrared, to an undetectable level of chlorophyll f under artificial white light. The results provide support that chlorophylls f and d are both red-light inducible chlorophylls in C. fritschii. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. [Chlorophyll synthesis in cotyledons after gamma ray irradiation of black pine seeds].

    PubMed

    Bogdanović, M; Jelić, G

    1992-01-01

    The radiosensitivity of the greening system of Pinus nigra Arn. cotyledons has been studied in this paper. An exponential relation exists between the effect and dose for chlorophyll synthesis in the dark. Chlorophyll synthesis in the light roughly parallels that of chlorophyll synthesis in the dark. The restoration of chlorophyll was observed both in the light and in the dark. A stimulative effect of low doses of gamma radiation on chlorophyll synthesis was noticed. The radiosensitivity of chlorophyll a and chlorophyll b synthesis varied with the experimental conditions, suggesting that chlorophyll b synthesis might occur independently of chlorophyll a synthesis.

  6. Chlorophyll a is a favorable substrate for Chlamydomonas Mg-dechelatase encoded by STAY-GREEN.

    PubMed

    Matsuda, Kaori; Shimoda, Yousuke; Tanaka, Ayumi; Ito, Hisashi

    2016-12-01

    Mg removal from chlorophyll by Mg-dechelatase is the first step of chlorophyll degradation. Recent studies showed that in Arabidopsis, Stay Green (SGR) encodes Mg-dechelatase. Though the Escherichia coli expression system is advantageous for investigating the properties of Mg-dechelatase, Arabidopsis Mg-dechelatase is not successfully expressed in E. coli. Chlamydomonas reinhardtii SGR (CrSGR) has a long, hydrophilic tail, suggesting that active CrSGR can be expressed in E. coli. After the incubation of chlorophyll a with CrSGR expressed in E. coli, pheophytin a accumulated, indicating that active CrSGR was expressed in E. coli. Substrate specificity of CrSGR against chlorophyll b and an intermediate molecule of the chlorophyll b degradation pathway was examined. CrSGR exhibited no activity against chlorophyll b and low activity against 7-hydroxymethyl chlorophyll a, consistent with the fact that chlorophyll b is degraded only after conversion to chlorophyll a. CrSGR exhibited low activity against divinyl chlorophyll a and chlorophyll a', and no activity against chlorophyllide a, protochlorophyll a, chlorophyll c 2 , and Zn-chlorophyll a. These observations indicate that chlorophyll a is the most favorable substrate for CrSGR. When CrSGR was expressed in Arabidopsis cells, the chlorophyll content decreased, further confirming that SGR has Mg-dechelating activity in chloroplasts. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Relationship between chlorophyll density and SPAD chlorophyll meter reading for Jerusalem artichoke (Helianthus tuberosus L.)

    USDA-ARS?s Scientific Manuscript database

    Chlorophyll is an indicator of crop health and productivity. Measuring chlorophyll is usually done directly and requires significant time and resources. Indirect measurement of chlorophyll density using a handheld portable chlorophyll meter can reduce time. However, this information is very limit...

  8. Inherent limitations of nondestructive chlorophyll meters: a comparison of two types of meters

    NASA Technical Reports Server (NTRS)

    Monje, O. A.; Bugbee, B.

    1992-01-01

    Two types of nondestructive chlorophyll meters were compared with a standard, destructive chlorophyll measurement technique. The nondestructive chlorophyll meters were 1) a custom built, single-wavelength meter, and 2) the recently introduced, dual-wavelengh, chlorophyll meter from Minolta (model SPAD-502). Data from both meters were closely correlated with destructive measurements of chlorophyll (r2 = 0.90 and 0.93; respectively) for leaves with chlorophyll concentrations ranging from 100 to 600 mg m-2, but both meters consistently overestimated chlorophyll outside this range. Although the dual-wavelength meter was slightly more accurate than the single-wavelength meter (higher r2), the light-scattering properties of leaf cells and the nonhomogeneous distribution of chlorophyll in leaves appear to limit the ability of all meters to estimate in vivo chlorophyll concentration.

  9. Characterization of chlorophyll binding to LIL3.

    PubMed

    Mork-Jansson, Astrid Elisabeth; Eichacker, Lutz Andreas

    2018-01-01

    The light harvesting like protein 3 (LIL 3) from higher plants, has been linked to functions in chlorophyll and tocopherol biosynthesis, photo-protection and chlorophyll transfer. However, the binding of chlorophyll to LIL3 is unclear. We present a reconstitution protocol for chlorophyll binding to LIL3 in DDM micelles. It is shown in the absence of lipids and carotenoids that reconstitution of chlorophyll binding to in vitro expressed LIL3 requires pre-incubation of reaction partners at room temperature. We show chlorophyll a but not chlorophyll b binding to LIL3 at a molar ratio of 1:1. Neither dynamic light scattering nor native PAGE, enabled a discrimination between binding of chlorophyll a and/or b to LIL3.

  10. Characterization of chlorophyll binding to LIL3

    PubMed Central

    Mork-Jansson, Astrid Elisabeth

    2018-01-01

    The light harvesting like protein 3 (LIL 3) from higher plants, has been linked to functions in chlorophyll and tocopherol biosynthesis, photo-protection and chlorophyll transfer. However, the binding of chlorophyll to LIL3 is unclear. We present a reconstitution protocol for chlorophyll binding to LIL3 in DDM micelles. It is shown in the absence of lipids and carotenoids that reconstitution of chlorophyll binding to in vitro expressed LIL3 requires pre-incubation of reaction partners at room temperature. We show chlorophyll a but not chlorophyll b binding to LIL3 at a molar ratio of 1:1. Neither dynamic light scattering nor native PAGE, enabled a discrimination between binding of chlorophyll a and/or b to LIL3. PMID:29390011

  11. [Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL models].

    PubMed

    Yang, Xi-guang; Fan, Wen-yi; Yu, Ying

    2010-11-01

    The forest canopy chlorophyll content directly reflects the health and stress of forest. The accurate estimation of the forest canopy chlorophyll content is a significant foundation for researching forest ecosystem cycle models. In the present paper, the inversion of the forest canopy chlorophyll content was based on PROSPECT and SAIL models from the physical mechanism angle. First, leaf spectrum and canopy spectrum were simulated by PROSPECT and SAIL models respectively. And leaf chlorophyll content look-up-table was established for leaf chlorophyll content retrieval. Then leaf chlorophyll content was converted into canopy chlorophyll content by Leaf Area Index (LAD). Finally, canopy chlorophyll content was estimated from Hyperion image. The results indicated that the main effect bands of chlorophyll content were 400-900 nm, the simulation of leaf and canopy spectrum by PROSPECT and SAIL models fit better with the measured spectrum with 7.06% and 16.49% relative error respectively, the RMSE of LAI inversion was 0. 542 6 and the forest canopy chlorophyll content was estimated better by PROSPECT and SAIL models with precision = 77.02%.

  12. Comprehensive chlorophyll composition in the main edible seaweeds.

    PubMed

    Chen, Kewei; Ríos, José Julián; Pérez-Gálvez, Antonio; Roca, María

    2017-08-01

    Natural chlorophylls present in seaweeds have been studied regarding their biological activities and health benefit effects. However, detailed studies regarding characterization of the complete chlorophyll profile either qualitatively and quantitatively are scarce. This work deals with the comprehensive spectrometric study of the chlorophyll derivatives present in the five main coloured edible seaweeds. The novel complete MS 2 characterization of five chlorophyll derivatives: chlorophyll c 2 , chlorophyll c 1 , purpurin-18 a, pheophytin d and phytyl-purpurin-18 a has allowed to obtain fragmentation patterns associated with their different structural features. New chlorophyll derivatives have been identified and quantified by first time in red, green and brown seaweeds, including some oxidative structures. Quantitative data of the chlorophyll content comes to achieve significant information for food composition databases in bioactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. An extended PROSPECT: Advance in the leaf optical properties model separating total chlorophylls into chlorophyll a and b.

    PubMed

    Zhang, Yao; Huang, Jingfeng; Wang, Fumin; Blackburn, George Alan; Zhang, Hankui K; Wang, Xiuzhen; Wei, Chuanwen; Zhang, Kangyu; Wei, Chen

    2017-07-25

    The PROSPECT leaf optical model has, to date, well-separated the effects of total chlorophyll and carotenoids on leaf reflectance and transmittance in the 400-800 nm. Considering variations in chlorophyll a:b ratio with leaf age and physiological stress, a further separation of total plant-based chlorophylls into chlorophyll a and chlorophyll b is necessary for advanced monitoring of plant growth. In this study, we present an extended version of PROSPECT model (hereafter referred to as PROSPECT-MP) that can combine the effects of chlorophyll a, chlorophyll b and carotenoids on leaf directional hemispherical reflectance and transmittance (DHR and DHT) in the 400-800 nm. The LOPEX93 dataset was used to evaluate the capabilities of PROSPECT-MP for spectra modelling and pigment retrieval. The results show that PROSPECT-MP can both simultaneously retrieve leaf chlorophyll a and b, and also performs better than PROSPECT-5 in retrieving carotenoids concentrations. As for the simulation of DHR and DHT, the performances of PROSPECT-MP are similar to that of PROSPECT-5. This study demonstrates the potential of PROSPECT-MP for improving capabilities of remote sensing of leaf photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids) and for providing a framework for future refinements in the modelling of leaf optical properties.

  14. The Use of a Chlorophyll Meter (SPAD-502) for Field Determinations of Red Mangrove (Rhizophora Mangle L.) Leaf Chlorophyll Amount

    NASA Technical Reports Server (NTRS)

    Connelly, Xana M.

    1997-01-01

    The red mangrove Rhizophora mangle L., is a halophytic woody spermatophyte common to the land-sea interface of tropical and subtropical intertidal zones. It has been reported that 60 to 75% of the coastline of the earth's tropical regions are lined with mangroves. Mangroves help prevent shoreline erosion, provide breeding, nesting and feeding areas for many marine animals and birds. Mangroves are important contributors of primary production in the coastal environment, and this is largely proportional to the standing crop of leaf chlorophylls. Higher intensities of ultraviolet radiation, resulting from stratospheric ozone depletion, can lead to a reduction of chlorophyll in terrestrial plants. Since the most common method for determining chlorophyll concentration is by extraction and this is labor intensive and time consuming, few studies on photosynthetic pigments of mangroves have been reported. Chlorophyll meter readings have been related to leaf chlorophyll content in apples and maples. It has also been correlated to nitrogen status in corn and cotton. Peterson et al., (1993) used a chlorophyll meter to detect nitrogen deficiency in crops and in determining the need for additional nitrogen fertilizer. Efforts to correlate chlorophyll meter measurements to chlorophyll content of mangroves have not been reported. This paper describes the use of a hand-held chlorophyll meter (Minolta SPAD-502) to determine the amount of red mangrove foliar chlorophyll present in the field.

  15. Indicators: Chlorophyll a

    EPA Pesticide Factsheets

    Chlorophyll allows plants (including algae) to photosynthesize, i.e., use sunlight to convert simple molecules into organic compounds. Chlorophyll a is the predominant type of chlorophyll found in green plants and algae.

  16. Chlorophyll loss associated with heat-induced senescence in bentgrass.

    PubMed

    Jespersen, David; Zhang, Jing; Huang, Bingru

    2016-08-01

    Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat-induced senescence could aid in the development of genotypes with stay-green traits either through marker assisted selection or transgenic approaches. Copyright © 2016. Published by Elsevier Ireland Ltd.

  17. Chlorophyll Breakdown in Senescent Banana Leaves: Catabolism Reprogrammed for Biosynthesis of Persistent Blue Fluorescent Tetrapyrroles

    PubMed Central

    Vergeiner, Clemens; Banala, Srinivas; Kräutler, Bernhard

    2013-01-01

    Chlorophyll breakdown is a visual phenomenon of leaf senescence and fruit ripening. It leads to the formation of colorless chlorophyll catabolites, a group of (chlorophyll-derived bilin-type) linear tetrapyrroles. Here, analysis and structure elucidation of the chlorophyll breakdown products in leaves of banana (Musa acuminata) is reported. In senescent leaves of this monocot all chlorophyll catabolites identified were hypermodified fluorescent chlorophyll catabolites (hmFCCs). Surprisingly, nonfluorescent chlorophyll catabolites (NCCs) were not found, the often abundant and apparently typical final chlorophyll breakdown products in senescent leaves. As a rule, FCCs exist only fleetingly, and they isomerize rapidly to NCCs in the senescent plant cell. Amazingly, in the leaves of banana plants, persistent hmFCCs were identified that accounted for about 80 % of the chlorophyll broken down, and yellow leaves of M. acuminata display a strong blue luminescence. The structures of eight hmFCCs from banana leaves were analyzed by spectroscopic means. The massive accumulation of the hmFCCs in banana leaves, and their functional group characteristics, indicate a chlorophyll breakdown path, the downstream transformations of which are entirely reprogrammed towards the generation of persistent and blue fluorescent FCCs. As expressed earlier in related studies, the present findings call for attention, as to still elusive biological roles of these linear tetrapyrroles. PMID:23946204

  18. Ocean Chlorophyll as a Precursor of ENSO: An Earth System Modeling Study

    NASA Astrophysics Data System (ADS)

    Park, Jong-Yeon; Dunne, John P.; Stock, Charles A.

    2018-02-01

    Ocean chlorophyll concentration, a proxy for phytoplankton, is strongly influenced by internal ocean dynamics such as those associated with El Niño-Southern Oscillation (ENSO). Observations show that ocean chlorophyll responses to ENSO generally lead sea surface temperature (SST) responses in the equatorial Pacific. A long-term global Earth system model simulation incorporating marine biogeochemical processes also exhibits a preceding chlorophyll response. In contrast to simulated SST anomalies, which significantly lag the wind-driven subsurface heat response to ENSO, chlorophyll anomalies respond rapidly. Iron was found to be the key factor connecting the simulated surface chlorophyll anomalies to the subsurface ocean response. Westerly wind bursts decrease central Pacific chlorophyll by reducing iron supply through wind-driven thermocline deepening but increase western Pacific chlorophyll by enhancing the influx of coastal iron from the maritime continent. Our results mechanistically support the potential for chlorophyll-based indices to inform seasonal ENSO forecasts beyond previously identified SST-based indices.

  19. The role of chlorophyll b in photosynthesis: Hypothesis

    PubMed Central

    Eggink, Laura L; Park, Hyoungshin; Hoober, J Kenneth

    2001-01-01

    Background The physico-chemical properties of chlorophylls b and c have been known for decades. Yet the mechanisms by which these secondary chlorophylls support assembly and accumulation of light-harvesting complexes in vivo have not been resolved. Presentation Biosynthetic modifications that introduce electronegative groups on the periphery of the chlorophyll molecule withdraw electrons from the pyrrole nitrogens and thus reduce their basicity. Consequently, the tendency of the central Mg to form coordination bonds with electron pairs in exogenous ligands, a reflection of its Lewis acid properties, is increased. Our hypothesis states that the stronger coordination bonds between the Mg atom in chlorophyll b and chlorophyll c and amino acid sidechain ligands in chlorophyll a/b- and a/c-binding apoproteins, respectively, enhance their import into the chloroplast and assembly of light-harvesting complexes. Testing Several apoproteins of light-harvesting complexes, in particular, the major protein Lhcb1, are not detectable in leaves of chlorophyll b-less plants. A direct test of the hypothesis – with positive selection – is expression, in mutant plants that synthesize only chlorophyll a, of forms of Lhcb1 in which weak ligands are replaced with stronger Lewis bases. Implications The mechanistic explanation for the effects of deficiencies in chlorophyll b or c points to the need for further research on manipulation of coordination bonds between these chlorophylls and chlorophyll-binding proteins. Understanding these interactions will possibly lead to engineering plants to expand their light-harvesting antenna and ultimately their productivity. PMID:11710960

  20. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].

    PubMed

    Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han

    2014-11-01

    Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.

  1. Chlorophyll metabolism in pollinated vs. parthenocarpic fig fruits throughout development and ripening.

    PubMed

    Rosianskey, Yogev; Dahan, Yardena; Yadav, Sharawan; Freiman, Zohar E; Milo-Cochavi, Shira; Kerem, Zohar; Eyal, Yoram; Flaishman, Moshe A

    2016-08-01

    Expression of 13 genes encoding chlorophyll biosynthesis and degradation was evaluated. Chlorophyll degradation was differentially regulated in pollinated and parthenocarpic fig fruits, leading to earlier chlorophyll degradation in parthenocarpic fruits. Varieties of the common fig typically yield a commercial summer crop that requires no pollination, although it can be pollinated. Fig fruit pollination results in larger fruit size, greener skin and darker interior inflorescence color, and slows the ripening process compared to non-pollinated fruits. We evaluated the effect of pollination on chlorophyll content and levels of transcripts encoding enzymes of the chlorophyll metabolism in fruits of the common fig 'Brown Turkey'. We cloned and evaluated the expression of 13 different genes. All 13 genes showed high expression in the fruit skin, inflorescences and leaves, but extremely low expression in roots. Pollination delayed chlorophyll breakdown in the ripening fruit skin and inflorescences. This was correlated with the expression of genes encoding enzymes in the chlorophyll biosynthesis and degradation pathways. Expression of pheophorbide a oxygenase (PAO) was strongly negatively correlated with chlorophyll levels during ripening in pollinated fruits; along with its high expression levels in yellow leaves, this supports a pivotal role for PAO in chlorophyll degradation in figs. Normalizing expression levels of all chlorophyll metabolism genes in the pollinated and parthenocarpic fruit skin and inflorescences showed three synthesis (FcGluTR1, FcGluTR2 and FcCLS1) and three degradation (FcCLH1, FcCLH2 and FcRCCR1) genes with different temporal expression in the pollinated vs. parthenocarpic fruit skin and inflorescences. FcCAO also showed different expressions in the parthenocarpic fruit skin. Thus, chlorophyll degradation is differentially regulated in the pollinated and parthenocarpic fruit skin and inflorescences, leading to earlier and more sustained chlorophyll degradation in the parthenocarpic fruit.

  2. Biosynthesis of Chlorophyll a in a Purple Bacterial Phototroph and Assembly into a Plant Chlorophyll-Protein Complex.

    PubMed

    Hitchcock, Andrew; Jackson, Philip J; Chidgey, Jack W; Dickman, Mark J; Hunter, C Neil; Canniffe, Daniel P

    2016-09-16

    Improvements to photosynthetic efficiency could be achieved by manipulating pigment biosynthetic pathways of photosynthetic organisms in order to increase the spectral coverage for light absorption. The development of organisms that can produce both bacteriochlorophylls and chlorophylls is one way to achieve this aim, and accordingly we have engineered the bacteriochlorophyll-utilizing anoxygenic phototroph Rhodobacter sphaeroides to make chlorophyll a. Bacteriochlorophyll and chlorophyll share a common biosynthetic pathway up to the precursor chlorophyllide. Deletion of genes responsible for the bacteriochlorophyll-specific modifications of chlorophyllide and replacement of the native bacteriochlorophyll synthase with a cyanobacterial chlorophyll synthase resulted in the production of chlorophyll a. This pigment could be assembled in vivo into the plant water-soluble chlorophyll protein, heterologously produced in Rhodobacter sphaeroides, which represents a proof-of-principle for the engineering of novel antenna complexes that enhance the spectral range of photosynthesis.

  3. Remote sensing of chlorophyll and temperature in marine and fresh waters.

    NASA Technical Reports Server (NTRS)

    Arvesen, J. C.; Millard, J. P.; Weaver, E. C.

    1973-01-01

    An airborne differential radiometer was demonstrated to be a sensitive, real-time detector of surface chlorophyll content in water bodies. The instrument continuously measures the difference in radiance between two wavelength bands, one centered near the maximum of the blue chlorophyll a absorption region and the other at a reference wavelength outside this region. Flights were made over fresh water lakes, marine waters, and an estuary, and the results were compared with 'ground truth' measurements of chlorophyll concentration. A correlation between output signal of the differential radiometer and the chlorophyll concentration was obtained. Examples of flight data are illustrated. Simultaneous airborne measurements of chlorophyll content and water temperature revealed that variations in chlorophyll are often associated with changes in temperature. Thus, simultaneous sensing of chlorophyll and temperature provides useful information for studies of marine food production, water pollution, and physical processes such as upwelling.

  4. Pulse amplitude modulated chlorophyll fluorometer

    DOEpatents

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  5. Revisiting chlorophyll extraction methods in biological soil crusts - methodology for determination of chlorophyll a and chlorophyll a + b as compared to previous methods

    NASA Astrophysics Data System (ADS)

    Caesar, Jennifer; Tamm, Alexandra; Ruckteschler, Nina; Lena Leifke, Anna; Weber, Bettina

    2018-03-01

    Chlorophyll concentrations of biological soil crust (biocrust) samples are commonly determined to quantify the relevance of photosynthetically active organisms within these surface soil communities. Whereas chlorophyll extraction methods for freshwater algae and leaf tissues of vascular plants are well established, there is still some uncertainty regarding the optimal extraction method for biocrusts, where organism composition is highly variable and samples comprise major amounts of soil. In this study we analyzed the efficiency of two different chlorophyll extraction solvents, the effect of grinding the soil samples prior to the extraction procedure, and the impact of shaking as an intermediate step during extraction. The analyses were conducted on four different types of biocrusts. Our results show that for all biocrust types chlorophyll contents obtained with ethanol were significantly lower than those obtained using dimethyl sulfoxide (DMSO) as a solvent. Grinding of biocrust samples prior to analysis caused a highly significant decrease in chlorophyll content for green algal lichen- and cyanolichen-dominated biocrusts, and a tendency towards lower values for moss- and algae-dominated biocrusts. Shaking of the samples after each extraction step had a significant positive effect on the chlorophyll content of green algal lichen- and cyanolichen-dominated biocrusts. Based on our results we confirm a DMSO-based chlorophyll extraction method without grinding pretreatment and suggest the addition of an intermediate shaking step for complete chlorophyll extraction (see Supplement S6 for detailed manual). Determination of a universal chlorophyll extraction method for biocrusts is essential for the inter-comparability of publications conducted across all continents.

  6. Characteristic sediment and water column chlorophyll-a in the sea cucumber’s Paracaudina sp. habitat on the Kenjeran Water, Surabaya

    NASA Astrophysics Data System (ADS)

    Widianingsih, W.; Zaenuri, M.; Anggoro, S.; Kusumaningrum, H. P.; Hartati, R.

    2018-03-01

    The study of characteristic sediment and water column chlorophyll-a has an important role in the sea cucumber habitat. Sediment chlorophyll-a represents a productivity primer for the benthic community. This research has a purpose to investigate characteristic sediment and water column chlorophyll-a on the Kenjeran water, Surabaya. Sediment samples were collected by the ekman grab for analysis, grain size and nutrient. The sample for sediment chlorophyll-a was taken by core sampler. The water samples were taken with Nansen Bottles. According to the research result, the values of sediment chlorophyll-a at station 10, 11 and 12 were higher than the other stations. In contrast, the value of chlorophyll-a in the column water had almost the same value for each station. The sediment chlorophyll-a value on clay and silt sediment type was higher than the fine sand and coarse sediment type. The suitable habitat characteristic for Paracaudina sp. was clay and silt sediment with sediment chlorophyll concentration ranging from 347.82 mg·m-2 to 1135.52 mg·m-2.

  7. Rethinking Chlorophyll Responses To Stress: Fluorescence and Flectance Remote Sensing in a Coastal Environment

    DTIC Science & Technology

    2010-11-15

    fluorescence emission of vegetation for mapping vegetation stress as chlorophyll content and/or carotenoid content changes. 1. REPORT DATE (DD-MM-YYYY...that estimate fluorescence emission of vegetation for mapping vegetation stress as chlorophyll content and/or carotenoid content changes...not related to changes in chlorophyll content or the carotenoids /chlorophyll ratio. PRI is an indicator of chronic salinity stress and may be used as

  8. STAY-GREEN and Chlorophyll Catabolic Enzymes Interact at Light-Harvesting Complex II for Chlorophyll Detoxification during Leaf Senescence in Arabidopsis[C][W

    PubMed Central

    Sakuraba, Yasuhito; Schelbert, Silvia; Park, So-Yon; Han, Su-Hyun; Lee, Byoung-Doo; Andrès, Céline Besagni; Kessler, Felix; Hörtensteiner, Stefan; Paek, Nam-Chon

    2012-01-01

    During leaf senescence, plants degrade chlorophyll to colorless linear tetrapyrroles that are stored in the vacuole of senescing cells. The early steps of chlorophyll breakdown occur in plastids. To date, five chlorophyll catabolic enzymes (CCEs), NONYELLOW COLORING1 (NYC1), NYC1-LIKE, pheophytinase, pheophorbide a oxygenase (PAO), and red chlorophyll catabolite reductase, have been identified; these enzymes catalyze the stepwise degradation of chlorophyll to a fluorescent intermediate, pFCC, which is then exported from the plastid. In addition, STAY-GREEN (SGR), Mendel’s green cotyledon gene encoding a chloroplast protein, is required for the initiation of chlorophyll breakdown in plastids. Senescence-induced SGR binds to light-harvesting complex II (LHCII), but its exact role remains elusive. Here, we show that all five CCEs also specifically interact with LHCII. In addition, SGR and CCEs interact directly or indirectly with each other at LHCII, and SGR is essential for recruiting CCEs in senescing chloroplasts. PAO, which had been attributed to the inner envelope, is found to localize in the thylakoid membrane. These data indicate a predominant role for the SGR-CCE-LHCII protein interaction in the breakdown of LHCII-located chlorophyll, likely to allow metabolic channeling of phototoxic chlorophyll breakdown intermediates upstream of nontoxic pFCC. PMID:22366162

  9. Lil3 dimerization and chlorophyll binding in Arabidopsis thaliana.

    PubMed

    Mork-Jansson, Astrid Elisabeth; Gargano, Daniela; Kmiec, Karol; Furnes, Clemens; Shevela, Dmitriy; Eichacker, Lutz Andreas

    2015-10-07

    The two-helix light harvesting like (Lil) protein Lil3 belongs to the family of chlorophyll binding light harvesting proteins of photosynthetic membranes. A function in tetrapyrrol synthesis and stabilization of geranylgeraniol reductase has been shown. Lil proteins contain the chlorophyll a/b-binding motif; however, binding of chlorophyll has not been demonstrated. We find that Lil3.2 from Arabidopsis thaliana forms heterodimers with Lil3.1 and binds chlorophyll. Lil3.2 heterodimerization (25±7.8 nM) is favored relative to homodimerization (431±59 nM). Interaction of Lil3.2 with chlorophyll a (231±49 nM) suggests that heterodimerization precedes binding of chlorophyll in Arabidopsis thaliana. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Chlorophyll Synthase under Epigenetic Surveillance Is Critical for Vitamin E Synthesis, and Altered Expression Affects Tocopherol Levels in Arabidopsis1[OPEN

    PubMed Central

    Zhang, Chunyu; Zhang, Wei; Ren, Guodong; Li, Delin; Cahoon, Rebecca E.; Chen, Ming; Zhou, Yongming; Yu, Bin

    2015-01-01

    Chlorophyll synthase catalyzes the final step in chlorophyll biosynthesis: the esterification of chlorophyllide with either geranylgeranyl diphosphate or phytyl diphosphate (PDP). Recent studies have pointed to the involvement of chlorophyll-linked reduction of geranylgeranyl by geranylgeranyl reductase as a major pathway for the synthesis of the PDP precursor of tocopherols. This indirect pathway of PDP synthesis suggests a key role of chlorophyll synthase in tocopherol production to generate the geranylgeranyl-chlorophyll substrate for geranylgeranyl reductase. In this study, contributions of chlorophyll synthase to tocopherol formation in Arabidopsis (Arabidopsis thaliana) were explored by disrupting and altering expression of the corresponding gene CHLOROPHYLL SYNTHASE (CHLSYN; At3g51820). Leaves from the homozygous chlysyn1-1 null mutant were nearly devoid of tocopherols, whereas seeds contained only approximately 25% of wild-type tocopherol levels. Leaves of RNA interference lines with partial suppression of CHLSYN displayed marked reductions in chlorophyll but up to a 2-fold increase in tocopherol concentrations. Cauliflower mosaic virus35S-mediated overexpression of CHLSYN unexpectedly caused a cosuppression phenotype at high frequencies accompanied by strongly reduced chlorophyll content and increased tocopherol levels. This phenotype and the associated detection of CHLSYN-derived small interfering RNAs were reversed with CHLSYN overexpression in rna-directed rna polymerase6 (rdr6), which is defective in RNA-dependent RNA polymerase6, a key enzyme in sense transgene-induced small interfering RNA production. CHLSYN overexpression in rdr6 had little effect on chlorophyll content but resulted in up to a 30% reduction in tocopherol levels in leaves. These findings show that altered CHLSYN expression impacts tocopherol levels and also, show a strong epigenetic surveillance of CHLSYN to control chlorophyll and tocopherol synthesis. PMID:26048882

  11. Chlorophyll Synthase under Epigenetic Surveillance Is Critical for Vitamin E Synthesis, and Altered Expression Affects Tocopherol Levels in Arabidopsis.

    PubMed

    Zhang, Chunyu; Zhang, Wei; Ren, Guodong; Li, Delin; Cahoon, Rebecca E; Chen, Ming; Zhou, Yongming; Yu, Bin; Cahoon, Edgar B

    2015-08-01

    Chlorophyll synthase catalyzes the final step in chlorophyll biosynthesis: the esterification of chlorophyllide with either geranylgeranyl diphosphate or phytyl diphosphate (PDP). Recent studies have pointed to the involvement of chlorophyll-linked reduction of geranylgeranyl by geranylgeranyl reductase as a major pathway for the synthesis of the PDP precursor of tocopherols. This indirect pathway of PDP synthesis suggests a key role of chlorophyll synthase in tocopherol production to generate the geranylgeranyl-chlorophyll substrate for geranylgeranyl reductase. In this study, contributions of chlorophyll synthase to tocopherol formation in Arabidopsis (Arabidopsis thaliana) were explored by disrupting and altering expression of the corresponding gene CHLOROPHYLL SYNTHASE (CHLSYN; At3g51820). Leaves from the homozygous chlysyn1-1 null mutant were nearly devoid of tocopherols, whereas seeds contained only approximately 25% of wild-type tocopherol levels. Leaves of RNA interference lines with partial suppression of CHLSYN displayed marked reductions in chlorophyll but up to a 2-fold increase in tocopherol concentrations. Cauliflower mosaic virus35S-mediated overexpression of CHLSYN unexpectedly caused a cosuppression phenotype at high frequencies accompanied by strongly reduced chlorophyll content and increased tocopherol levels. This phenotype and the associated detection of CHLSYN-derived small interfering RNAs were reversed with CHLSYN overexpression in rna-directed rna polymerase6 (rdr6), which is defective in RNA-dependent RNA polymerase6, a key enzyme in sense transgene-induced small interfering RNA production. CHLSYN overexpression in rdr6 had little effect on chlorophyll content but resulted in up to a 30% reduction in tocopherol levels in leaves. These findings show that altered CHLSYN expression impacts tocopherol levels and also, show a strong epigenetic surveillance of CHLSYN to control chlorophyll and tocopherol synthesis. © 2015 American Society of Plant Biologists. All Rights Reserved.

  12. Optimalisation of remote sensing algorithm in mapping of chlorophyl-a concentration at Pasuruan coastal based on surface reflectance images of Aqua Modis

    NASA Astrophysics Data System (ADS)

    Wibisana, H.; Zainab, S.; Dara K., A.

    2018-01-01

    Chlorophyll-a is one of the parameters used to detect the presence of fish populations, as well as one of the parameters to state the quality of a water. Research on chlorophyll concentrations has been extensively investigated as well as with chlorophyll-a mapping using remote sensing satellites. Mapping of chlorophyll concentration is used to obtain an optimal picture of the condition of waters that is often used as a fishing area by the fishermen. The role of remote sensing is a technological breakthrough in broadly monitoring the condition of waters. And in the process to get a complete picture of the aquatic conditions it would be used an algorithm that can provide an image of the concentration of chlorophyll at certain points scattered in the research area of capture fisheries. Remote sensing algorithms have been widely used by researchers to detect the presence of chlorophyll content, where the channels corresponding to the mapping of chlorophyll -concentrations from Landsat 8 images are canals 4, 3 and 2. With multiple channels from Landsat-8 satellite imagery used for chlorophyll detection, optimum algorithmic search can be formulated to obtain maximum results of chlorophyll-a concentration in the research area. From the calculation of remote sensing algorithm hence can be known the suitable algorithm for condition at coast of Pasuruan, where green channel give good enough correlation equal to R2 = 0,853 with algorithm for Chlorophyll-a (mg / m3) = 0,093 (R (-0) Red - 3,7049, from this result it can be concluded that there is a good correlation of the green channel that can illustrate the concentration of chlorophyll scattered along the coast of Pasuruan

  13. HPLC Analysis of Chlorophyll a, Chlorophyll b, and Beta-Carotene in Collard Greens: A Project for a Problem-Oriented Laboratory Course.

    ERIC Educational Resources Information Center

    Silveira, Augustine, Jr.; And Others

    1984-01-01

    High performance liquid chromatography (HPLC) is used to separate and quantitate beta-carotene, chlorophyll a, and chlorophyll b originating from collard greens. Experimental procedures used and typical results obtained are discussed. (JN)

  14. The Green Gut: Chlorophyll Degradation in the Gut of Spodoptera littoralis.

    PubMed

    Badgaa, Amarsanaa; Büchler, Rita; Wielsch, Natalie; Walde, Marie; Heintzmann, Rainer; Pauchet, Yannik; Svatos, Ales; Ploss, Kerstin; Boland, Wilhelm

    2015-11-01

    Chlorophylls, the most prominent natural pigments, are part of the daily diet of herbivorous insects. The spectrum of ingested and digested chlorophyll metabolites compares well to the pattern of early chlorophyll-degradation products in senescent plants. Intact chlorophyll is rapidly degraded by proteins in the front- and midgut. Unlike plants, insects convert both chlorophyll a and b into the corresponding catabolites. MALDI-TOF/MS imaging allowed monitoring the distribution of the chlorophyll catabolites along the gut of Spodoptera littoralis larvae. The chlorophyll degradation in the fore- and mid-gut is strongly pH dependent, and requires alkaline conditions. Using LC-MS/MS analysis we identified a lipocalin-type protein in the intestinal fluid of S. littoralis homolog to the chlorophyllide a binding protein from Bombyx mori. Widefield and high-resolution autofluorescence microscopy revealed that the brush border membranes are covered with the chlorophyllide binding protein tightly bound via its GPI-anchor to the gut membrane. A function in defense against gut microbes is discussed.

  15. Study on changing rules of chlorophyll concentration of detached canola leaves

    NASA Astrophysics Data System (ADS)

    Huang, Min; Feng, Lei; He, Yong; Zhu, Zheyan

    2006-09-01

    Chlorophyll is important for crops. The chlorophyll concentration is commonly used as the principal symptom of senescence. The objective of this paper was to study the relationship between the chlorophyll concentration and the time after the leaves being separated from the canola to confirm the detached leaves' senescence rate. The chlorophyll meter (SPAD meter) has been used in chlorophyll concentration measurement of fruit trees, sugar maple leaves in forest, corn with varying color and so on. In the experiment, a Minolta SPAD-502 chlorophyll Meter was used for measuring the chlorophyll concentration after picking off the canola leaves for 0 hour, 5 hours, 15 hours, 25 hours and 40 hours, and 25 samples were measured. As a result, the leaf senescence rules were found by observing the changing curves of the leaves' SPAD values. The original detached canola leaves were divided into three kinds of samples, and a certain senescence rule was found for each kind of samples. The results could provide good methods support to delay leaf senescence.

  16. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos.

    PubMed

    Smolikova, Galina; Dolgikh, Elena; Vikhnina, Maria; Frolov, Andrej; Medvedev, Sergei

    2017-09-16

    The embryos of some angiosperms (usually referred to as chloroembryos) contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN ( SGR ) genes are the principle ones. On the biochemical level, abscisic acid (ABA) is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.

  17. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus.

    PubMed

    Ferreira, V S; Pinto, R F; Sant'Anna, C

    2016-03-01

    Chlorophyll is a photosynthetic pigment found in plants and algal organisms and is a bioproduct with human health benefits and a great potential for use in the food industry. The chlorophyll content in microalgae strains varies in response to environmental factors. In this work, we assessed the effect of nitrogen depletion and low light intensity on the chlorophyll content of the Scenedesmus dimorphus microalga. The growth of S. dimorphus under low light intensity led to a reduction in cell growth and volume as well as increased cellular chlorophyll content. Nitrogen starvation led to a reduction in cell growth and the chlorophyll content, changes in the yield and productivity of chlorophylls a and b. Transmission electron microscopy was used to investigate the ultrastructural changes in the S. dimorphus exposed to nitrogen and light deficiency. In contrast to nitrogen depletion, low light availability was an effective mean for increasing the total chlorophyll content of green microalga S. dimorphus. The findings acquired in this work are of great biotechnological importance to extend knowledge of choosing the right culture condition to stimulate the effectiveness of microalgae strains for chlorophyll production purposes. © 2015 The Society for Applied Microbiology.

  18. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos

    PubMed Central

    Dolgikh, Elena; Vikhnina, Maria; Frolov, Andrej

    2017-01-01

    The embryos of some angiosperms (usually referred to as chloroembryos) contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN (SGR) genes are the principle ones. On the biochemical level, abscisic acid (ABA) is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds. PMID:28926960

  19. Elucidation of Genetic Backgrounds Necessary for Chlorophyll a Biosynthesis Toward Artificial Creation of Oxygenic Photosynthesis

    NASA Astrophysics Data System (ADS)

    Tsukatani, Yusuke; Masuda, Shinji

    2015-09-01

    We succeeded to create the genetically modified purple photosynthetic bacterium capable of synthesizing chlorophyll a. The results indicate that not only chlorophyll synthase, but also an enzyme for galactolipid synthesis and reaction center proteins are required for accumulating chlorophyll a.

  20. A nondestructive method to estimate the chlorophyll content of Arabidopsis seedlings

    DOE PAGES

    Liang, Ying; Urano, Daisuke; Liao, Kang-Ling; ...

    2017-04-14

    Chlorophyll content decreases in plants under stress conditions, therefore it is used commonly as an indicator of plant health. Arabidopsis thaliana offers a convenient and fast way to test physiological phenotypes of mutations and treatments. But, chlorophyll measurements with conventional solvent extraction are not applicable to Arabidopsis leaves due to their small size, especially when grown on culture dishes. We provide a nondestructive method for chlorophyll measurement whereby the red, green and blue (RGB) values of a color leaf image is used to estimate the chlorophyll content from Arabidopsis leaves. The method accommodates different profiles of digital cameras by incorporatingmore » the ColorChecker chart to make the digital negative profiles, to adjust the white balance, and to calibrate the exposure rate differences caused by the environment so that this method is applicable in any environment. We chose an exponential function model to estimate chlorophyll content from the RGB values, and fitted the model parameters with physical measurements of chlorophyll contents. As further proof of utility, this method was used to estimate chlorophyll content of G protein mutants grown on different sugar to nitrogen ratios. Our method is a simple, fast, inexpensive, and nondestructive estimation of chlorophyll content of Arabidopsis seedlings. This method lead to the discovery that G proteins are important in sensing the C/N balance to control chlorophyll content in Arabidopsis.« less

  1. Plant pigments (antioxidants) of medicinal plants Malva silvestris L. and Malva moschata L. (Malvaceae).

    PubMed

    Redzić, Sulejman; Hodzić, Nizama; Tuka, Mijat

    2005-05-01

    Qualitative-quantitative structure of plant pigments in wild plants Malva silvestrs L. and Malva moschata L. (Malvaceae), which were collected in 20 locations in Sarajevo area and surroundings, was tested during spring and summer in 2003. Acetone extracts of both categories were made and rising paper-chromatography done for the purpose of qualitative analysis. Quantitative analysis was done by spectrophotometry. Chlorophyll a, chlorophyll b and xanthophylls presence was confirmed by separation of pigments from acetone extract of these plant species. Spectrophotometric analysis of acetone extracts showed these results (given in mg/L): chlorophyll a 2,386, chlorophyll b 0,332 and carrotenoides 1,037. Data given in mg/g dry substance are: chlorophyll a 1,193x10(-2), chlorophyll b 1,66x10(-3), and carrotenoides 5,185x10(-3). Pigments structure (in mg/L) in species Malva moschata is 1,6 for chlorophyll; 1,419 for chlorophyll b; and 0,364 for carrotenoides. Data given in mg/g are: chlorophyll a 8x10(-3), chlorophyll b 7,09x10(-3), and carrotenoides 1,82x10(-3). Considering that species Malva moschata L. grows on ecologically clear soils as opposed to well-known medicinal species Malva sylvestris L., and considering the production of phytomass, phytochemical structure and pharmacological influence it can be considered very medical and be given advantage over this wider spread category.

  2. Chlorophyll content retrieval from hyperspectral remote sensing imagery.

    PubMed

    Yang, Xiguang; Yu, Ying; Fan, Wenyi

    2015-07-01

    Chlorophyll content is the essential parameter in the photosynthetic process determining leaf spectral variation in visible bands. Therefore, the accurate estimation of the forest canopy chlorophyll content is a significant foundation in assessing forest growth and stress affected by diseases. Hyperspectral remote sensing with high spatial resolution can be used for estimating chlorophyll content. In this study, the chlorophyll content was retrieved step by step using Hyperion imagery. Firstly, the spectral curve of the leaf was analyzed, 25 spectral characteristic parameters were identified through the correlation coefficient matrix, and a leaf chlorophyll content inversion model was established using a stepwise regression method. Secondly, the pixel reflectance was converted into leaf reflectance by a geometrical-optical model (4-scale). The three most important parameters of reflectance conversion, including the multiple scattering factor (M 0 ), and the probability of viewing the sunlit tree crown (P T ) and the background (P G ), were estimated by leaf area index (LAI), respectively. The results indicated that M 0 , P T , and P G could be described as a logarithmic function of LAI, with all R (2) values above 0.9. Finally, leaf chlorophyll content was retrieved with RMSE = 7.3574 μg/cm(2), and canopy chlorophyll content per unit ground surface area was estimated based on leaf chlorophyll content and LAI. Chlorophyll content mapping can be useful for the assessment of forest growth stage and diseases.

  3. Integrating Biology into the General Chemistry Laboratory: Fluorometric Analysis of Chlorophyll "a"

    ERIC Educational Resources Information Center

    Wesolowski, Meredith C.

    2014-01-01

    A laboratory experiment that introduces fluorometry of chlorophyll "a" at the general chemistry level is described. The use of thin-layer chromatography to isolate chlorophyll "a" from spirulina and leaf matter enables quantification of small amounts of chlorophyll "a" via fluorometry. Student results were reasonably…

  4. Characterisation of chlorophyll a solubilised in sodium lauryl sulphate micelles

    NASA Astrophysics Data System (ADS)

    Mukherjee, T.; Sapre, A. V.; Mittal, Jai P.

    1980-01-01

    Poisson statistics has been applied to the problem of solubilisation of chlorophyll a in sodium lauryl sulphate micelles. Dilution experiments have been carried out to support the finding that each unit of chlorophyll a contributing to the 740 nm band contains just one chlorophyll a molecule.

  5. Chlorophyll a reconstruction from in situ measurements: 1. Method description

    NASA Astrophysics Data System (ADS)

    Fründt, B.; Dippner, J. W.; Waniek, J. J.

    2015-02-01

    Understanding the development of primary production is essential for projections of the global carbon cycle in the context of climate change. A chlorophyll a hindcast that serves as a primary production indicator was obtained by fitting in situ measurements of nitrate, chlorophyll a, and temperature. The resulting fitting functions were adapted to a modeled temperature field. The method was applied to observations from the Madeira Basin, in the northeastern part of the oligotrophic North Atlantic Subtropical Gyre and yielded a chlorophyll a field from 1989 to 2008 with a monthly resolution validated with remotely measured surface chlorophyll a data by SeaWiFS. The chlorophyll a hindcast determined with our method resolved the seasonal and interannual variability in the phytoplankton biomass of the euphotic zone as well as the deep chlorophyll maximum. Moreover, it will allow estimation of carbon uptake over long time scales.

  6. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock

    PubMed Central

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-01-01

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel. PMID:27618070

  7. Global Seasonal Climatologies of Ocean Chlorophyll: Blending In situ and Satellite Data for the CZCS Era

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Conkright, Margarita E.

    1999-01-01

    The historical archives of in situ (National Oceanographic Data Center) and satellite (Coastal Zone Color Scanner) chlorophyll data were combined using the blended analysis method of Reynolds [1988] in an attempt to construct an improved climatological seasonal representation of global chlorophyll distributions. The results of the blended analysis differed dramatically from the CZCS representation: global chlorophyll estimates increased 8-35% in the blended analysis depending upon season. Regional differences were even larger, up to 140% in the equatorial Indian Ocean in summer (during the southwest monsoon). Tropical Pacific chlorophyll values increased 25-41%. The results suggested that the CZCS generally underestimates chlorophyll. Regional and seasonal differences in the blended analysis were sufficiently large as to produce a different representation of global chlorophyll distributions than otherwise inferred from CZCS data alone. Analyses of primary production and biogeochemical cycles may be substantially impacted by these results.

  8. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock.

    PubMed

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-09-07

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.

  9. A novel chlorophyll solar cell

    NASA Astrophysics Data System (ADS)

    Ludlow, J. C.

    The photosynthetic process is reviewed in order to produce a design for a chlorophyll solar cell. In a leaf, antenna chlorophyll absorbs light energy and conducts it to an energy trap composed of a protein and two chlorophyll molecules, which perform the oxidation-reduction chemistry. The redox potential of the trap changes from 0.4 to -0.6 V, which is sufficient to reduce nearby molecules with redox potentials in that range. The reduction occurs by transfer of an electron, and a chlorophyll solar cell would direct the transferred electron to a current carrier. Chlorophyll antenna and traps are placed on a metallic support immersed in an electron acceptor solution, and resulting electrons from exposure to light are gathered by a metallic current collector. Spinach chlorophyll extracted, purified, and applied in a cell featuring a Pt collector and an octane water emulsion resulted in intensity independent voltages.

  10. Chlorophyll Catabolites – Chemical and Structural Footprints of a Fascinating Biological Phenomenon

    PubMed Central

    Moser, Simone; Müller, Thomas; Oberhuber, Michael; Kräutler, Bernhard

    2009-01-01

    Twenty years ago, the molecular basis for the seasonal disappearance of chlorophyll was still enigmatic. In the meantime, our knowledge on chlorophyll breakdown has grown considerably. As outlined here, it has been possible to decipher the basic transformations involved in natural chlorophyll breakdown by identification of chlorophyll catabolites in higher plants, and with the help of the synthesis of (putative) catabolic intermediates. In vascular plants, chlorophyll breakdown typically converts the green plant pigments efficiently into colorless and non-fluorescent tetrapyrroles. It involves colored intermediates only fleetingly and in an (elusive) enzyme-bound form. The non-fluorescent chlorophyll catabolites accumulate in the vacuoles of degreened leaves and are considered the products, primarily, of a detoxification process. However, they are effective antioxidants, and may thus also have physiologically beneficial chemical properties.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) PMID:21037946

  11. A study on distribution of chlorophyll-a in the coastal waters of Anzali Port, south Caspian Sea

    NASA Astrophysics Data System (ADS)

    Jamshidi, S.; Abu Bakar, N. Bin

    2011-02-01

    Phytoplankton as chlorophyll-containing organisms is the first step of production in most marine processes and food chains. Nutrient enhancement in the seawater due to the discharge of agricultural, industrial, and urban wastes threatens the Caspian Sea environment. Increasing concentrations of chlorophyll-a in seawater, in reaction to the elevation of nutrient supply can have severely damaging effects on the marine environment of the Caspian. In this research, seasonal variability of the chlorophyll-a concentrations in the western part of the southern coastal waters of the Caspian Sea near Iranian coast was examined using field observations. The data showed that the most chlorophyll-a was found below the sea surface. The thermal stratification in water column and outflow of the Anzali Lagoon affect the chlorophyll-a concentrations in the region. Concentrations of chlorophyll-a were recorded in midsummer in a range of 0.2-3.4 mg m-3.

  12. Calibrations between chlorophyll meter values and chlorophyll contents vary as the result of differences in leaf structure

    USDA-ARS?s Scientific Manuscript database

    In order to relate leaf chlorophyll meter values with total leaf chlorophyll contents (µg cm-2), calibration equations are established with measured data on leaves. Many studies have documented differences in calibration equations using different species and using different growing conditions for th...

  13. A review of ocean chlorophyll algorithms and primary production models

    NASA Astrophysics Data System (ADS)

    Li, Jingwen; Zhou, Song; Lv, Nan

    2015-12-01

    This paper mainly introduces the five ocean chlorophyll concentration inversion algorithm and 3 main models for computing ocean primary production based on ocean chlorophyll concentration. Through the comparison of five ocean chlorophyll inversion algorithm, sums up the advantages and disadvantages of these algorithm,and briefly analyzes the trend of ocean primary production model.

  14. Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research

    Treesearch

    Tracy S. Hawkins; Emile S. Gardiner; Greg S. Comer

    2009-01-01

    Handheld chlorophyll meters have proven to be useful tools for rapid, nondestructive assessment of chlorophyll and nutrient status in various agricultural and arborescent plant species. We proposed that a SPAD-502 chlorophyll meter would provide valuable information when monitoring life cycle changes and intraspecific variation in...

  15. Observational insights into chlorophyll distributions of subtropical South Indian Ocean eddies

    NASA Astrophysics Data System (ADS)

    Dufois, François; Hardman-Mountford, Nick J.; Fernandes, Michelle; Wojtasiewicz, Bozena; Shenoy, Damodar; Slawinski, Dirk; Gauns, Mangesh; Greenwood, Jim; Toresen, Reidar

    2017-04-01

    The South Indian Ocean subtropical gyre has been described as a unique environment where anticyclonic ocean eddies highlight enhanced surface chlorophyll in winter. The processes responsible for this chlorophyll increase in anticyclones have remained elusive, primarily because previous studies investigating this unusual behavior were mostly based on satellite data, which only views the ocean surface. Here we present in situ data from an oceanographic voyage focusing on the mesoscale variability of biogeochemical variables across the subtropical gyre. During this voyage an autonomous biogeochemical profiling float transected an anticyclonic eddy, recording its physical and biological state over a period of 6 weeks. We show that several processes might be responsible for the eddy/chlorophyll relationship, including horizontal advection of productive waters and deeper convective mixing in anticyclonic eddies. While a deep chlorophyll maximum is present in the subtropical Indian Ocean outside anticyclonic eddies, mixing reaches deeper in anticyclonic eddy cores, resulting in increased surface chlorophyll due to the stirring of the deep chlorophyll maximum and possibly resulting in new production from nitrate injection below the deep chlorophyll maximum.

  16. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    PubMed Central

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-01-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants. PMID:26059057

  17. Identification of a Chlorophyll Dephytylase Involved in Chlorophyll Turnover in Arabidopsis[OPEN

    PubMed Central

    2016-01-01

    Chlorophyll turns over in green organs during photosystem repair and is salvaged via de- and rephytylation, but the enzyme involved in dephytylation is unknown. We have identified an Arabidopsis thaliana thylakoid protein with a putative hydrolase domain that can dephytylate chlorophyll in vitro and in vivo. The corresponding locus, CHLOROPHYLL DEPHYTYLASE1 (CLD1), was identified by mapping a semidominant, heat-sensitive, missense allele (cld1-1). CLD1 is conserved in oxygenic photosynthetic organisms, sharing structural similarity with pheophytinase, which functions in chlorophyll breakdown during leaf senescence. Unlike pheophytinase, CLD1 is predominantly expressed in green organs and can dephytylate chlorophyll in vitro. The specific activity is significantly higher for the mutant protein encoded by cld1-1 than the wild-type enzyme, consistent with the semidominant nature of the cld1-1 mutation. Supraoptimal CLD1 activities in cld1-1 mutants and transgenic seedlings led to the proportional accumulation of chlorophyllides derived from chlorophyll dephytylation after heat shock, which resulted in light-dependent cotyledon bleaching. Reducing CLD1 expression diminished thermotolerance and the photochemical efficiency of photosystem II under prolonged moderate heat stress. Taken together, our results suggest that CLD1 is the long-sought enzyme for removing the phytol chain from chlorophyll during its turnover at steady state within the chloroplast. PMID:27920339

  18. The effect of shade on chlorophyll and anthocyanin content of upland red rice

    NASA Astrophysics Data System (ADS)

    Muhidin; Syam'un, E.; Kaimuddin; Musa, Y.; Sadimantara, G. R.; Usman; Leomo, S.; Rakian, T. C.

    2018-02-01

    Upland red rice (Oryza sativa) is a staple food and contains anthocyanin, which can act as antioxidants, plays an important role both for the plant itself and for human health. Levels of antioxidants in rice can be affected by the availability of light. The results showed that the difference of shade, cultivar, and interaction both significantly affect the content of chlorophyll a, chlorophyll b and total chlorophyll. The results also showed that shade could increase chlorophyll in all cultivars tested. The highest levels of chlorophyll a were present in the moderate shade level (n2), then decreased at the shelter level (n3) and increased again at high levels (n4). While on chlorophyll content b, it appears that shade increased chlorophyll b in all cultivars tested and this increase was linear to the increase of shade. The shade treatment may increase the anthocyanin content and the increase depending on the type of cultivar. Increased levels of anthocyanin highest due to shade occurred on Jangkobembe cultivar. The original level of anthocyanin on Jangkobembe cultivar averaged 0.096 mg g-1 increased to 2.487 mg g-1 or increased 26 fold. It is concluded that the shade had a significant effect on the chlorophyll and anthocyanin content.

  19. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-06-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants.

  20. Instability of chlorophyll in yellow lupin seedlings grown in soil contaminated with ciprofloxacin and tetracycline.

    PubMed

    Rydzyński, Dariusz; Piotrowicz-Cieślak, Agnieszka I; Grajek, Hanna; Michalczyk, Dariusz J

    2017-10-01

    With increasing soil concentrations of ciprofloxacin and tetracycline a decrease of leaf chlorophyll content was observed. Tetracycline was more detrimental than ciprofloxacin. The chlorophyll content in plants growing for ten days on a tetracycline containing soil decreased by 68%. The decrease of chlorophyll concentration was even sharper in new leaves that formed after application of the antibiotic (up to 81% drop). The comparison of absorption spectra of commercial, reagent grade chlorophyll, alone and incubated with antibiotics, has shown that ciprofloxacin and tetracycline can react directly with chlorophyll and decrease its concentration by 47.7% and 48.5%, respectively. The changes in fluorescence spectra confirmed the formation of chlorophyll degradation product. The chlorophyll decay was a second order reaction and depended on antibiotic concentration and duration of exposure. Reaction rate constants differed with antibiotics and their soil concentrations. With increasing contents of antibiotics in soil the constant of chlorophyll degradation rate in lupin plants increased from k = 870 M -1 day -1 for 3 mg ciprofloxacin to k = 2490 M -1 day -1 for 90 mg ciprofloxacin, and in the case of tetracycline the reaction rate constant increased from k = 1330 M -1 day -1 to k = 2910 M -1 day -1 . The sensitivity of chlorophyll to ciprofloxacin and tetracycline was confirmed by determining EC and TU indices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Principal Component Analysis of Chlorophyll Content in Tobacco, Bean and Petunia Plants Exposed to Different Tropospheric Ozone Concentrations

    NASA Astrophysics Data System (ADS)

    Borowiak, Klaudia; Zbierska, Janina; Budka, Anna; Kayzer, Dariusz

    2014-06-01

    Three plant species were assessed in this study - ozone-sensitive and -resistant tobacco, ozone-sensitive petunia and bean. Plants were exposed to ambient air conditions for several weeks in two sites differing in tropospheric ozone concentrations in the growing season of 2009. Every week chlorophyll contents were analysed. Cumulative ozone effects on the chlorophyll content in relation to other meteorological parameters were evaluated using principal component analysis, while the relation between certain days of measurements of the plants were analysed using multivariate analysis of variance. Results revealed variability between plant species response. However, some similarities were noted. Positive relations of all chlorophyll forms to cumulative ozone concentration (AOT 40) were found for all the plant species that were examined. The chlorophyll b/a ratio revealed an opposite position to ozone concentration only in the ozone-resistant tobacco cultivar. In all the plant species the highest average chlorophyll content was noted after the 7th day of the experiment. Afterwards, the plants usually revealed various responses. Ozone-sensitive tobacco revealed decrease of chlorophyll content, and after few weeks of decline again an increase was observed. Probably, due to the accommodation for the stress factor. While during first three weeks relatively high levels of chlorophyll contents were noted in ozone-resistant tobacco. Petunia revealed a slow decrease of chlorophyll content and the lowest values at the end of the experiment. A comparison between the plant species revealed the highest level of chlorophyll contents in ozone-resistant tobacco.

  2. Effect of Different Coating Materials on The Characteristics Of Chlorophyll Microcapsules from Caulerpa racemosa

    NASA Astrophysics Data System (ADS)

    Kurniasih, R. A.; Dewi, E. N.; Purnamayati, L.

    2018-02-01

    The sea grape (Caulerpa racemosa) has a chlorophyll pigment that can be extracted using a non-polar solvent. Chlorophyll as a natural dye has unstable characteristics of temperature, pH, and light. Microencapsulation by the freeze-drying method can be used to protect chlorophyll from degradation caused by external influences where the type of coating material can affect the characteristics of the chlorophyll microcapsules. The objective of this study was to determine the characteristics of chlorophyll microcapsules with various types of coating material. Chlorophyll was microencapsulated using maltodextrin (CM), maltodextrin-alginate (CMA), and maltodextrin-fish gelatin (CMG). Chlorophyll encapsulated with maltodextrin-alginate resulting in the highest yield. The results of FTIR analysis indicated the presence of following functional groups in chlorophyll microcapsules viz., inter- and intra-molecular bonded alcohol OH, C = N stretching imine/oxime or C = O stretching conjugated ketone or alkenes, OH phenol, and CN stretching amine. CM had a particle size between 9,061 - 469.9 nm, CMA between 9,707 - 363.5 nm, and CMG between 11.49 - 433.2 nm. Based on the observation of morphology by using SEM, it showed that the all of the chlorophyll microcapsules were in the form of flake shape and porous. CM and CMA looked more fragile than CMG it can be seen from the cracks in some parts of CM and CMA. Therefore, CMG release time was longer than CM and CMA.

  3. [Simultaneous determination of carotenoids and chlorophylls in algae by high performance liquid chromatography].

    PubMed

    Yuan, J; Zhang, Y; Shi, X; Gong, X; Chen, F

    1997-03-01

    An isocratic reversed-phase HPLC method for the simultaneous determination of carotenoids and chlorophylls in algae is presented. Both carotenoids and chlorophylls were separated by using a C18 column and a mobile phase consisting of dichloromethane/acetonitrile/methanol/water (22.5:9.5:67.5:0.5). The flow rate was 1.0mL/min. These pigments were detected by a UV-VIS absorbance detector set at 450nm. The average recoveries of these pigments by standard addition method were 99.1% for lutein, 98.5% for alpha-carotene, 99.4% for beta-carotene, 100.6% for chlorophyll a and 99.9% for chlorophyll b. The relative standard deviations of these pigments were 2.4% for lutein, 5.6% for alpha-carotene, 6.0% for beta-carotene, 4.1% for chlorophyll a and 4.0% for chlorophyll b. The calibration curves for these pigments gave good linearity over a wide range of 0-50mg/L (r = 0.9992-0.9999). The retention times were 3.0 min for lutein, 4.7 min for chlorophyll b, 6.3 min for chlorophyll a, 14.1 min for alpha-carotene, and 14.7 min for beta-carotene. Using this method, carotenoids and chlorophylls were determined in Spirulina platensis, Chlorella vulgaris and Haematococcus lacustris. Chlorella vulgaris and Haematococcus lacustris samples were ground in a B. Braun homogenizer. Spirulina platensis sample was smashed by supersonic wave. Acetone was used as extractant.

  4. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions.

    PubMed

    Sato, Rei; Ito, Hisashi; Tanaka, Ayumi

    2015-12-01

    The light-harvesting chlorophyll a/b binding protein complex of photosystem II (LHCII) is the main antenna complex of photosystem II (PSII). Plants change their LHCII content depending on the light environment. Under high-light conditions, the content of LHCII should decrease because over-excitation damages the photosystem. Chlorophyll b is indispensable for accumulating LHCII, and chlorophyll b degradation induces LHCII degradation. Chlorophyll b degradation is initiated by chlorophyll b reductase (CBR). In land plants, NON-YELLOW COLORING 1 (NYC1) and NYC1-Like (NOL) are isozymes of CBR. We analyzed these mutants to determine their functions under high-light conditions. During high-light treatment, the chlorophyll a/b ratio was stable in the wild-type (WT) and nol plants, and the LHCII content decreased in WT plants. The chlorophyll a/b ratio decreased in the nyc1 and nyc1/nol plants, and a substantial degree of LHCII was retained in nyc1/nol plants after the high-light treatment. These results demonstrate that NYC1 degrades the chlorophyll b on LHCII under high-light conditions, thus decreasing the LHCII content. After the high-light treatment, the maximum quantum efficiency of the PSII photochemistry was lower in nyc1 and nyc1/nol plants than in WT and nol plants. A larger light-harvesting system would damage PSII in nyc1 and nyc1/nol plants. The fluorescence spectroscopy of the leaves indicated that photosystem I was also damaged by the excess LHCII in nyc1/nol plants. These observations suggest that chlorophyll b degradation by NYC1 is the initial reaction for the optimization of the light-harvesting capacity under high-light conditions.

  5. Ocean Primary Production Estimates from Terra MODIS and Their Dependency on Satellite Chlorophyll Alpha Algorithms

    NASA Technical Reports Server (NTRS)

    Essias, Wayne E.; Abbott, Mark; Carder, Kendall; Campbell, Janet; Clark, Dennis; Evans, Robert; Brown, Otis; Kearns, Ed; Kilpatrick, Kay; Balch, W.

    2003-01-01

    Simplistic models relating global satellite ocean color, temperature, and light to ocean net primary production (ONPP) are sensitive to the accuracy and limitations of the satellite estimate of chlorophyll and other input fields, as well as the primary productivity model. The standard MODIS ONPP product uses the new semi-analytic chlorophyll algorithm as its input for two ONPP indexes. The three primary MODIS chlorophyll Q estimates from MODIS, as well as the SeaWiFS 4 chlorophyll product, were used to assess global and regional performance in estimating ONPP for the full mission, but concentrating on 2001. The two standard ONPP algorithms were examined with 8-day and 39 kilometer resolution to quantify chlorophyll algorithm dependency of ONPP. Ancillary data (MLD from FNMOC, MODIS SSTD1, and PAR from the GSFC DAO) were identical. The standard MODIS ONPP estimates for annual production in 2001 was 59 and 58 GT C for the two ONPP algorithms. Differences in ONPP using alternate chlorophylls were on the order of 10% for global annual ONPP, but ranged to 100% regionally. On all scales the differences in ONPP were smaller between MODIS and SeaWiFS than between ONPP models, or among chlorophyll algorithms within MODIS. Largest regional ONPP differences were found in the Southern Ocean (SO). In the SO, application of the semi-analytic chlorophyll resulted in not only a magnitude difference in ONPP (2x), but also a temporal shift in the time of maximum production compared to empirical algorithms when summed over standard oceanic areas. The resulting increase in global ONPP (6-7 GT) is supported by better performance of the semi-analytic chlorophyll in the SO and other high chlorophyll regions. The differences are significant in terms of understanding regional differences and dynamics of ocean carbon transformations.

  6. Regional to Global Assessments of Phytoplankton Dynamics From The SeaWiFS Mission

    NASA Technical Reports Server (NTRS)

    Siegel, David; Behrenfeld, Michael; Maritorena, Stephanie; McClain, Charles R.; Antoine, David; Bailey, Sean W.; Bontempi, Paula S.; Boss, Emmanuel S.; Dierssen, Heidi M.; Doney, Scott C.; hide

    2013-01-01

    Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13 years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the oceanmay be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll retrievals alone.

  7. Genome-wide association mapping of soybean chlorophyll traits based on canopy spectral reflectance and leaf extracts.

    PubMed

    Dhanapal, Arun Prabhu; Ray, Jeffery D; Singh, Shardendu K; Hoyos-Villegas, Valerio; Smith, James R; Purcell, Larry C; Fritschi, Felix B

    2016-08-04

    Chlorophyll is a major component of chloroplasts and a better understanding of the genetic basis of chlorophyll in soybean [Glycine max (L.) Merr.] might contribute to improving photosynthetic capacity and yield in regions with adverse environmental conditions. A collection of 332 diverse soybean genotypes were grown in 2 years (2009 and 2010) and chlorophyll a (eChl_A), chlorophyll b (eChl_B), and total chlorophyll (eChl_T) content as well as chlorophyll a/b ratio (eChl_R) in leaf tissues were determined by extraction and spectrometric determination. Total chlorophyll was also derived from canopy spectral reflectance measurements using a model of wavelet transformed spectra (tChl_T) as well as with a spectral reflectance index (iChl_T). A genome-wide associating mapping approach was employed using 31,253 single nucleotide polymorphisms (SNPs) to identify loci associated with the extract based eChl_A, eChl_B, eChl_R and eChl_T measurements and the two canopy spectral reflectance-based methods (tChl_T and iChl_T). A total of 23 (14 loci), 15 (7 loci) and 14 SNPs (10 loci) showed significant association with eChl_A, eChl_B and eChl_R respectively. A total of 52 unique SNPs were significantly associated with total chlorophyll content based on at least one of the three approaches (eChl_T, tChl_T and iChl_T) and likely tagged 27 putative loci for total chlorophyll content, four of which were indicated by all three approaches. Results presented here show that markers for chlorophyll traits can be identified in soybean using both extract-based and canopy spectral reflectance-based phenotypes, and confirm that high-throughput phenotyping-amenable canopy spectral reflectance measurements can be used for association mapping.

  8. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves.

    PubMed

    Gitelson, Anatoly A; Gritz, Yuri; Merzlyak, Mark N

    2003-03-01

    Leaf chlorophyll content provides valuable information about physiological status of plants. Reflectance measurement makes it possible to quickly and non-destructively assess, in situ, the chlorophyll content in leaves. Our objective was to investigate the spectral behavior of the relationship between reflectance and chlorophyll content and to develop a technique for non-destructive chlorophyll estimation in leaves with a wide range of pigment content and composition using reflectance in a few broad spectral bands. Spectral reflectance of maple, chestnut, wild vine and beech leaves in a wide range of pigment content and composition was investigated. It was shown that reciprocal reflectance (R lambda)-1 in the spectral range lambda from 520 to 550 nm and 695 to 705 nm related closely to the total chlorophyll content in leaves of all species. Subtraction of near infra-red reciprocal reflectance, (RNIR)-1, from (R lambda)-1 made index [(R lambda)(-1)-(RNIR)-1] linearly proportional to the total chlorophyll content in spectral ranges lambda from 525 to 555 nm and from 695 to 725 nm with coefficient of determination r2 > 0.94. To adjust for differences in leaf structure, the product of the latter index and NIR reflectance [(R lambda)(-1)-(RNIR)-1]*(RNIR) was used; this further increased the accuracy of the chlorophyll estimation in the range lambda from 520 to 585 nm and from 695 to 740 nm. Two independent data sets were used to validate the developed algorithms. The root mean square error of the chlorophyll prediction did not exceed 50 mumol/m2 in leaves with total chlorophyll ranged from 1 to 830 mumol/m2.

  9. Vegetation chlorophyll estimates in the Amazon from multi-angle MODIS observations and canopy reflectance model

    NASA Astrophysics Data System (ADS)

    Hilker, Thomas; Galvão, Lênio Soares; Aragão, Luiz E. O. C.; de Moura, Yhasmin M.; do Amaral, Cibele H.; Lyapustin, Alexei I.; Wu, Jin; Albert, Loren P.; Ferreira, Marciel José; Anderson, Liana O.; dos Santos, Victor A. H. F.; Prohaska, Neill; Tribuzy, Edgard; Barbosa Ceron, João Vitor; Saleska, Scott R.; Wang, Yujie; de Carvalho Gonçalves, José Francisco; de Oliveira Junior, Raimundo Cosme; Cardoso Rodrigues, João Victor Figueiredo; Garcia, Maquelle Neves

    2017-06-01

    As a preparatory study for future hyperspectral missions that can measure canopy chemistry, we introduce a novel approach to investigate whether multi-angle Moderate Resolution Imaging Spectroradiometer (MODIS) data can be used to generate a preliminary database with long-term estimates of chlorophyll. MODIS monthly chlorophyll estimates between 2000 and 2015, derived from a fully coupled canopy reflectance model (ProSAIL), were inspected for consistency with eddy covariance fluxes, tower-based hyperspectral images and chlorophyll measurements. MODIS chlorophyll estimates from the inverse model showed strong seasonal variations across two flux-tower sites in central and eastern Amazon. Marked increases in chlorophyll concentrations were observed during the early dry season. Remotely sensed chlorophyll concentrations were correlated to field measurements (r2 = 0.73 and r2 = 0.98) but the data deviated from the 1:1 line with root mean square errors (RMSE) ranging from 0.355 μg cm-2 (Tapajós tower) to 0.470 μg cm-2 (Manaus tower). The chlorophyll estimates were consistent with flux tower measurements of photosynthetically active radiation (PAR) and net ecosystem productivity (NEP). We also applied ProSAIL to mono-angle hyperspectral observations from a camera installed on a tower to scale modeled chlorophyll pigments to MODIS observations (r2 = 0.73). Chlorophyll pigment concentrations (ChlA+B) were correlated to changes in the amount of young and mature leaf area per month (0.59 ≤ r2 ≤ 0.64). Increases in MODIS observed ChlA+B were preceded by increased PAR during the dry season (0.61 ≤ r2 ≤ 0.62) and followed by changes in net carbon uptake. We conclude that, at these two sites, changes in LAI, coupled with changes in leaf chlorophyll, are comparable with seasonality of plant productivity. Our results allowed the preliminary development of a 15-year time series of chlorophyll estimates over the Amazon to support canopy chemistry studies using future hyperspectral sensors.

  10. Effect of Multiangular Observations on Crop Chlorophyll Content Retrieval Using Field Top-Of Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Jiao, Q.; Liu, L.; Zhang, B.

    2017-12-01

    Leaf chlorophyll content is an important indicator of crop growth condition that determines final crop yield. A lot of research on remote sensing of leaf chlorophyll content were based on reflectance data acquired from nadir direction. However, reflectance data at nadir may be affected by soil background. In fact, many satellite sensors with capability of chlorophyll retrieval, like the 68.5 degrees field-of-view MERIS, have produced large multiangular data. This study tries to assess the anisotropic effect on the retrieval of leaf chlorophyll content using field hyperspectral data of wheat canopy. The field multi-angle observation experiment of winter wheat was carried out in April 2017 in Xiaotangshan agriculture demonstration study site in Beijing. Field canopy spectra and leaf chlorophyll content of winter wheat were measured. The most used indices for chlorophyll content retrieval, such as CIred-edge, REP, MTCI, MCARI/OSAVI[705,750], TCARI/OSAVI[705,750], were calculated based on the filed multiangular reflectance. The ratio index TCARI/OSAVI owned the best results in estimating leaf chlorophyll content (R2 of 0.62) among all the selected indices, when using the top-of-canopy reflectance at nadir. The determination coefficient of the relationship of TCARI/OSAVI with chlorophyll content reached its peak (R2 of 0.70) at angle of 15 degrees, and the minimum R2 value of only 0.25 at angle of 60 degrees. The MTCI got the peak of determination coefficient (R2 of 0.63) at angle of 15 degrees and the minimum value (R2 of 0.57) for 60 degrees. Our results showed the MTCI could keep a more satisfactory correlation with leaf chlorophyll content of winter wheat, however the mean values of the MTCI basically decreased as the observation angle increases. This work shows the strong anisotropic effects of top-of-canopy reflectance which influences most of selected popular chlorophyll indices. If spectral index selection is proper, multiangular remote sensing could produce higher accuracy for leaf chlorophyll content retrieval than only using nadir observation. Multi-angular remote sensing has the potential of leaf chlorophyll content retrieval for diagnosis of crop nitrogen stress or water stress.

  11. Quantifying Foliar Pigment Concentrations of Temperate Forest Species Using Digital Photography and Hyperspectral Reflectance Indices

    NASA Astrophysics Data System (ADS)

    Gagnon, M. T.; Rock, B. N.; Jahnke, L. S.; Lee, T. D.

    2008-12-01

    Determination of leaf chlorophyll content is a common and important procedure for plant scientists. There are many multispectral techniques for non destructive in-vivo, estimation of chlorophyll in foliage. Although much has been done to explore the estimation of foliar pigments using remote sensing, very little work has been done exploring the potential that basic, affordable, digital cameras may have for such analysis. This study utilizes a combination of digital photography, hyperspectral laboratory remote sensing, and chlorophyll extractions to determine if digital photographs can be used to accurately predict foliar chlorophyll concentrations as well to compare this digital approach with several common spectral indices used for estimating foliar chlorophyll content. Foliar materials for this study come from three sources. A large collection of samples were collected (60) from 9 common temperate forest species in July and late September over a 1 kilometer area at the Bartlett Experimental Forest in northern New Hampshire. Secondly, 15 trees were selected in a forested setting near the University of New Hampshire for more intensive phenological analysis. These samples consist of 5 white pine (Pinus strobus), 5 black oak (Quercus velutina) and 5 sugar maple (Acer saccharum). Finally, dozens of samples of white pine utilized in Forest Watch, a successful K-12 science outreach which assesses the impact of tropospheric ozone on forest health in New England, were also analyzed for this study. For all samples in this study, chlorophyll extractions were conducted to determine chlorophyll a, chlorophyll b, and total chlorophyll concentrations. Laboratory spectral analysis was performed using a GER 2600 Spectroradiometer to determine hyperspectral estimates of chlorophyll content using a Red Edge Inflection Point (REIP) approach, as well as a Transformed Chlorophyll Absorption Reflectance Index/Optimized Soil Adjusted Vegetation Index (TCARI/OSAVI) approach. These measures of chlorophyll estimation were utilized to determine whether red, green and blue spectral data from digital images taken with a Kodak C713 model camera could be used to estimate foliar chlorophyll concentrations in forest foliage. Preliminary results of this study will be presented.

  12. From the chlorophyll a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications

    NASA Astrophysics Data System (ADS)

    Cherkasheva, A.; Bracher, A.; Nöthig, E.-M.; Bauerfeind, E.; Melsheimer, C.

    2012-11-01

    Current estimates of global marine primary production range over a factor of two. At high latitudes, the uncertainty is even larger than globally because here in-situ data and ocean color observations are scarce, and the phytoplankton absorption shows specific characteristics due to the low-light adaptation. The improvement of the primary production estimates requires an accurate knowledge on the chlorophyll vertical profile, which is the basis for most primary production models. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer did not include the Arctic region or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the Arctic regions where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S Merian cruises combined with data of the ARCSS-PP database (Arctic primary production in-situ database) for the years 1957-2010. The profiles were categorized according to their mean concentration in the surface layer and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll exceeding 0.7 mg C m-3 showed a clear seasonal cycle with values gradually decreasing from April to August. Chlorophyll profiles maxima moved from lower depths in spring towards the surface in late summer. Profiles with smallest surface values always showed a subsurface chlorophyll maximum with its median magnitude reaching up to three times the surface concentration. While the variability in April, May and June of the Greenland Sea season is following the global non-monthly resolved relationship of the chlorophyll profile to surface chlorophyll concentrations described by the model of Morel and Berthon (1989), it deviates significantly from that in other months (July-September) where the maxima of the chlorophyll are at quite different depths. The Greenland Sea dimensionless monthly median profiles intersect roughly at one common depth within each category. Finally, by applying a Gaussian fitting with 0.1 mg C m-3 surface chlorophyll steps to the median monthly resolved chlorophyll profiles of the defined categories, mathematical approximations have been determined. These will be used as the input to the satellite-based primary production models estimating primary production in Arctic regions.

  13. Evaluating lake phytoplanton response to human disturbance and climate change using satellite imagery

    NASA Astrophysics Data System (ADS)

    Novitski, Linda Nicole

    Accurate and cost-effective assessment of water quality is necessary for proper management and restoration of inland water bodies susceptible to algal bloom conditions. Landsat and MODIS satellite images were used to create chlorophyll and Secchi depth predictive models for algal assessment of Great Lakes and other lakes of the United States. Boosted regression tree (BRT) models using satellite imagery are both easy to use and can have high predictive performance. BRT models inferred chlorophyll and Secchi depth more accurately than linear regression models for all study locations. Inferred chlorophyll of inner Saginaw Bay was subsequently used in ecological models to help understand the ecological drivers of algal blooms in this ecosystem. For small lakes (non-Great Lakes), the best national Landsat model for ln-transformed chlorophyll was the BRT model and had a cross-validation R 2 of 0.44 and a 0.76 ln-transformed mug/L RMSE. The best national Landsat model for Secchi depth was also a BRT model that had an adjusted R 2 of 0.52 and a 0.80 m RMSE. We assessed the applicability of the national chlorophyll model for ecological analysis by comparing the total phosphorus- chlorophyll relationship with chlorophyll determined from sampling or remote sensing, which showed the total phosphorus- chlorophyll relationship had an adjusted R2 = 0.58 and 1.02 ln-transformed microg/L RMSE with sampled chlorophyll versus an adjusted R2 = 0.56 and 1.04 ln-transformed mug/L RMSE with chlorophyll determined by the boosted regression tree remote sensing model. For Great Lakes models, the MODIS BRT model predicted chlorophyll most accurately of the three BRT models and compared well to other models in the literature. BRT models for Landsat ETM+ and TM more accurately predicted chlorophyll than the MSS model and all Landsat models had favorable results when compared to the literature. BRT chlorophyll predictive models are useful in helping to understand historical, long-term chlorophyll trends and to inform us of how climate change may alter ecosystems in the future. In inner Saginaw Bay, annual average and upper quartile Landsat-derived chlorophyll decreased from 7.44 to 6.62 and 8.38 to 7.38 mug/L between 1973-1982, and annual upper quartile of 8-day phosphorus loads increased from 5.29 to 6.79 kg between 1973-2012. Simple linear and multiple regression models and Wilcoxon rank test results for MODIS and Landsat-derived chlorophyll indicate that distance from the Saginaw River mouth influences chlorophyll concentration in Saginaw Bay; Landsat-derived surface water temperature and phosphorus loads to a lesser extent. Mixed-effect models for MODIS and Landsat-derived chlorophyll were related to chlorophyll better than simple linear or multiple regressions, with random effects of pixel and sample date contributing substantially to predictive power (NSE=0.35-70), though phosphorus loads, distance to Saginaw River mouth, and water were significant fixed effects in most models. Water quality changes in Saginaw Bay between 1972-2012 were influenced by phosphorus loading and distance to the Saginaw River's mouth. Landsat and MODIS imagery are complementary platforms because of the long history of Landsat operation and the finer spectral resolution and image frequency of MODIS. Remote sensing water quality assessment tools can be valuable for limnological study, ecological assessment, and water resource management.

  14. Structures of Chlorophyll Catabolites in Bananas (Musa acuminata) Reveal a Split Path of Chlorophyll Breakdown in a Ripening Fruit

    PubMed Central

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Kräutler, Bernhard

    2012-01-01

    Abstract The disappearance of chlorophyll is a visual sign of fruit ripening. Yet, chlorophyll breakdown in fruit has hardly been explored; its non-green degradation products are largely unknown. Here we report the analysis and structure elucidation of colorless tetrapyrrolic chlorophyll breakdown products in commercially available, ripening bananas (Musa acuminata, Cavendish cultivar). In banana peels, chlorophyll catabolites were found in an unprecedented structural richness: a variety of new fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs) were detected. As a rule, FCCs exist only "fleetingly" and are hard to observe. However, in bananas several of the FCCs (named Mc-FCCs) were persistent and carried an ester function at the propionate side-chain. NCCs were less abundant, and exhibited a free propionic acid group, but functional modifications elsewhere. The modifications of NCCs in banana peels were similar to those found in NCCs from senescent leaves. They are presumed to be introduced by enzymatic transformations at the stage of the mostly unobserved, direct FCC-precursors. The observed divergent functional group characteristics of the Mc-FCCs versus those of the Mc-NCCs indicated two major "late" processing lines of chlorophyll breakdown in ripening bananas. The "last common precursor" at the branching point to either the persistent FCCs, or towards the NCCs, was identified as a temporarily abundant "secondary" FCC. The existence of two "downstream" branches of chlorophyll breakdown in banana peels, and the striking accumulation of persistent Mc-FCCs call for attention as to the still-elusive biological roles of the resulting colorless linear tetrapyrroles. PMID:22807397

  15. The effectiveness of laser diode induction to Carica Papaya L. chlorophyll extract to be ROS generating in the photodynamic inactivation mechanisms for C.albicans biofilms

    NASA Astrophysics Data System (ADS)

    Dewi Astuty, S.; Baktir, A.

    2017-05-01

    Research on the effectiveness of photo inactivation of C.albicans biofilms led by a-PDT system mediated by chlorophyll-diode-laser-induced was done. This research was done using in vitro technique in order to effectively determine chlorophyll extract of ROS-generated Carica Papaya L. using in situ technique. This technique induced laser diode on different dose and C. albicans with reduced degree. This research is a preliminary study in efforts to find anew sensitizer agent candidate made of chlorophyll extract and antifungal of Carica Papaya L. The effectiveness of eradication has been tested with MDA’s content and OD of biomass biofilms as well as analyzed using ANOVA and Tukey Test (α=0.05). The characteristic of chlorophyll extract of Carica Papaya L. has maximum absorptions on blue areas (λmax = 420 nm) and red areas (λmax = 670 nm). The MIC value of Carica Papaya L.’schlorophyll extract against C. albicans planktonic and biofilms cell is 63.8 μM and 31.9 μM respectively. The result shows that treatment using laser which was combined with chlorophyll extract is more effective than that with laser only or chlorophyll extract only. The treatment using laser combined with chlorophyll extract obtained more than 65% (α=0.05) (more than that of negative control) for P2L1 group with OD595 0.915. The MDA’s content showed that group of laser which was mediated with chlorophyll extract had larger values than group of laser or chlorophyll extract only.

  16. Analysis of quantitative trait loci affecting chlorophyll content of rice leaves in a double haploid population and two backcross populations.

    PubMed

    Jiang, Gonghao; Zeng, Jing; He, Yuqing

    2014-02-25

    Chlorophyll content, one of the most important physiological parameters related to plant photosynthesis, is usually used to predict yield potential. To map the quantitative trait loci (QTLs) underlying the chlorophyll content of rice leaves, a double haploid (DH) population was developed from an indica/japonica (Zhenshan 97/Wuyujing 2) crossing and two backcross populations were established subsequently by backcrossing DH lines with each of their parents. The contents of chlorophyll a and chlorophyll b were determined by using a spectrophotometer to directly measure the leaf chlorophyll extracts. To determine the leaf chlorophyll retention along with maturation, all measurements were performed on the day of heading and were repeated 30 days later. A total of 60 QTLs were resolved for all the traits using these three populations. These QTLs were distributed on 10 rice chromosomes, except chromosomes 5 and 10; the closer the traits, the more clustering of the QTLs residing on common rice chromosomal regions. In general, the majority of QTLs that specify chlorophyll a content also play a role in determining chlorophyll b content. Strangely, chlorophyll content in this study was found mostly to be lacking or to have a negative correlation with yield. In both backcross F1 populations, overdominant (or underdominant) loci were more important than complete or partially dominant loci for main-effect QTLs and epistatic QTLs, thereby supporting previous findings that overdominant effects are the primary genetic basis for depression in inbreeding and heterosis in rice. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Identification of a Chlorophyll Dephytylase Involved in Chlorophyll Turnover in Arabidopsis.

    PubMed

    Lin, Yao-Pin; Wu, Meng-Chen; Charng, Yee-Yung

    2016-12-01

    Chlorophyll turns over in green organs during photosystem repair and is salvaged via de- and rephytylation, but the enzyme involved in dephytylation is unknown. We have identified an Arabidopsis thaliana thylakoid protein with a putative hydrolase domain that can dephytylate chlorophyll in vitro and in vivo. The corresponding locus, CHLOROPHYLL DEPHYTYLASE1 (CLD1), was identified by mapping a semidominant, heat-sensitive, missense allele (cld1-1). CLD1 is conserved in oxygenic photosynthetic organisms, sharing structural similarity with pheophytinase, which functions in chlorophyll breakdown during leaf senescence. Unlike pheophytinase, CLD1 is predominantly expressed in green organs and can dephytylate chlorophyll in vitro. The specific activity is significantly higher for the mutant protein encoded by cld1-1 than the wild-type enzyme, consistent with the semidominant nature of the cld1-1 mutation. Supraoptimal CLD1 activities in cld1-1 mutants and transgenic seedlings led to the proportional accumulation of chlorophyllides derived from chlorophyll dephytylation after heat shock, which resulted in light-dependent cotyledon bleaching. Reducing CLD1 expression diminished thermotolerance and the photochemical efficiency of photosystem II under prolonged moderate heat stress. Taken together, our results suggest that CLD1 is the long-sought enzyme for removing the phytol chain from chlorophyll during its turnover at steady state within the chloroplast. © 2016 American Society of Plant Biologists. All rights reserved.

  18. Reevaluating the mechanism of excitation energy regulation in iron-starved cyanobacteria.

    PubMed

    Chen, Hui-Yuan S; Liberton, Michelle; Pakrasi, Himadri B; Niedzwiedzki, Dariusz M

    2017-03-01

    This paper presents spectroscopic investigations of IsiA, a chlorophyll a-binding membrane protein produced by cyanobacteria grown in iron-deficient environments. IsiA, if associated with photosystem I, supports photosystem I in light harvesting by efficiently transferring excitation energy. However, if separated from photosystem I, IsiA exhibits considerable excitation quenching observed as a substantial reduction of protein-bound chlorophyll a fluorescence lifetime. Previous spectroscopic studies suggested that carotenoids are involved in excitation energy dissipation and in addition play a second role in this antenna complex by supporting chlorophyll a in light harvesting by absorbing in the spectral range inaccessible for chlorophyll a and transferring excitation to chlorophylls. However, this investigation does not support these proposed roles of carotenoids in this light harvesting protein. This study shows that carotenoids do not transfer excitation energy to chlorophyll a. In addition, our investigations do not support the hypothesis that carotenoids are quenchers of the excited state of chlorophyll a in this protein complex. We propose that quenching of chlorophyll a fluorescence in IsiA is maintained by pigment-protein interaction via electron transfer from an excited chlorophyll a to a cysteine residue, an excitation quenching mechanism that was recently proposed to regulate the light harvesting capabilities of the bacteriochlorophyll a-containing Fenna-Mathews-Olson protein from green sulfur bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Spatial extent and dissipation of the deep chlorophyll layer in Lake Ontario during the Lake Ontario lower foodweb assessment, 2003 and 2008

    USGS Publications Warehouse

    Watkins, J. M.; Weidel, Brian M.; Rudstam, L. G.; Holek, K. T.

    2014-01-01

    Increasing water clarity in Lake Ontario has led to a vertical redistribution of phytoplankton and an increased importance of the deep chlorophyll layer in overall primary productivity. We used in situ fluorometer profiles collected in lakewide surveys of Lake Ontario in 2008 to assess the spatial extent and intensity of the deep chlorophyll layer. In situ fluorometer data were corrected with extracted chlorophyll data using paired samples from Lake Ontario collected in August 2008. The deep chlorophyll layer was present offshore during the stratified conditions of late July 2008 with maximum values from 4-13 μg l-1 corrected chlorophyll a at 10 to 17 m depth within the metalimnion. Deep chlorophyll layer was closely associated with the base of the thermocline and a subsurface maximum of dissolved oxygen, indicating the feature's importance as a growth and productivity maximum. Crucial to the deep chlorophyll layer formation, the photic zone extended deeper than the surface mixed layer in mid-summer. The layer extended through most of the offshore in July 2008, but was not present in the easternmost transect that had a deeper surface mixed layer. By early September 2008, the lakewide deep chlorophyll layer had dissipated. A similar formation and dissipation was observed in the lakewide survey of Lake Ontario in 2003.

  20. Excitation energy transfer in the photosystem I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webber, Andrew N

    2012-09-25

    Photosystem I is a multimeric pigment protein complex in plants, green alage and cyanobacteria that functions in series with Photosystem II to use light energy to oxidize water and reduce carbon dioxide. The Photosystem I core complex contains 96 chlorophyll a molecules and 22 carotenoids that are involved in light harvesting and electron transfer. In eucaryotes, PSI also has a peripheral light harvesting complex I (LHCI). The role of specific chlorophylls in excitation and electron transfer are still unresolved. In particular, the role of so-called bridging chlorophylls, located between the bulk antenna and the core electron transfer chain, in themore » transfer of excitation energy to the reaction center are unknown. During the past funding period, site directed mutagenesis has been used to create mutants that effect the physical properties of these key chlorophylls, and to explore how this alters the function of the photosystem. Studying these mutants using ultrafast absorption spectroscopy has led to a better understanding of the process by which excitation energy is transferred from the antenna chlorophylls to the electron transfer chain chlorophylls, and what the role of connecting chlorophylls and A_0 chlorophylls is in this process. We have also used these mutants to investigate whch of the central group of six chlorophylls are involved in the primary steps of charge separation and electron transfer.« less

  1. Assessing the Application of Cloud-Shadow Atmospheric Correction Algorithm on HICO

    DTIC Science & Technology

    2014-05-01

    multiple times and intercompare the results to assess variability in the retrieved reflectance spectra. Retrieved chlorophyll values from this...intercomparison are similar and also agree well with the In situ chlorophyll measurements. 15. SUBJECT TERMS Atmospheric correction, cloud-shadow...reflectance spectra. Re- trieved chlorophyll values from this intercomparison are similar and also agree well with the in situ chlorophyll measurements

  2. Normal-Phase Open Column versus Reversed-Phase High Performance Liquid Chromatography: Separation of Chlorophyll a and Chlorophyll b from their Diastereomers.

    ERIC Educational Resources Information Center

    Schaber, Peter M.

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment involving the separation of chlorophyll a and chlorophyll b from their diastereomers. Reasons why the experiment can be easily integrated into most laboratory curricula where high-performance liquid chromatography capabilities exist are given. (JN)

  3. Chlorophyll a + b content and chlorophyll fluorescence in avocado

    USDA-ARS?s Scientific Manuscript database

    One Tonnage (T) and one Simmonds (S) avocado tree and four TxS crosses were evaluated for differences in chlorophyll content and maximal quantum yield of photosystem II in sun and shade-type leaves. Total chlorophyll content by area (Chl a+bar) ranged from 981 mg m-2 in TxS240 to 4339 mg m-2 in Simm...

  4. The calculated in vitro and in vivo chlorophyll a absorption bandshape.

    PubMed Central

    Zucchelli, Giuseppe; Jennings, Robert C; Garlaschi, Flavio M; Cinque, Gianfelice; Bassi, Roberto; Cremonesi, Oliviero

    2002-01-01

    The room temperature absorption bandshape for the Q transition region of chlorophyll a is calculated using the vibrational frequency modes and Franck-Condon (FC) factors obtained by line-narrowing spectroscopies of chlorophyll a in a glassy (Rebane and Avarmaa, Chem. Phys. 1982; 68:191-200) and in a native environment (Gillie et al., J. Phys. Chem. 1989; 93:1620-1627) at low temperatures. The calculated bandshapes are compared with the absorption spectra of chlorophyll a measured in two different solvents and with that obtained in vivo by a mutational analysis of a chlorophyll-protein complex. It is demonstrated that the measured distributions of FC factors can account for the absorption bandshape of chlorophyll a in a hexacoordinated state, whereas, when pentacoordinated, reduced FC coupling for vibrational frequencies in the range 540-850 cm(-1) occurs. The FC factor distribution for pentacoordinated chlorophyll also describes the native chlorophyll a spectrum but, in this case, either a low-frequency mode (nu < 200 cm(-1)) must be added or else the 262-cm(-1) mode must increase in coupling by about one order of magnitude to describe the skewness of the main absorption bandshape. PMID:11751324

  5. Performance of dye sensitized solar cells (DSSC) using Syngonium Podophyllum Schott as natural dye and counter electrode

    NASA Astrophysics Data System (ADS)

    Oktariza, Lingga Ghufira; Yuliarto, Brian; Suyatman

    2018-05-01

    The extraction of chlorophyll pigment of Syngonium podophyllum Schott leaves which is used as natural dyes in this DSSC devices. The use of dye from nature with its simple production process is very effective to reduce DSSC production cost. Besides being used as a natural dye, chlorophyll can also be used as an alternative counter electrode. Chlorophyll that is used as a counter electrode has been through chemical activation and carbonization processes. The characterization were done using Uv-Vis, Cyclic Voltametry and DSSC device under solar simulator. Characterization of chlorophyll absorbance using UV-Vis has resulted in typical absorbance peak at visible light wavelength of 447 nm and 666 nm. The Tauc equation analysis of the Uv-Vis characterization showed 1.91 eV energy gap of chlorophyll. Chlorophyll carbonized dye is used as an alternative to Pt counter electrode. Carbonized chlorophyll dye resulted in lower conversion efficiency of 0.308% with HSE electrolyte.

  6. Coincident patterns of waste water suspended solids reduction, water transparency increase and chlorophyll decline in Narragansett Bay.

    PubMed

    Borkman, David G; Smayda, Theodore J

    2016-06-15

    Dramatic changes occurred in Narragansett Bay during the 1980s: water clarity increased, while phytoplankton abundance and chlorophyll concentration decreased. We examine how changes in total suspended solids (TSS) loading from wastewater treatment plants may have influenced this decline in phytoplankton chlorophyll. TSS loading, light and phytoplankton observations were compiled and a light- and temperature-dependent Skeletonema-based phytoplankton growth model was applied to evaluate chlorophyll supported by TSS nitrogen during 1983-1995. TSS loading declined 75% from ~0.60×10(6)kgmonth(-1) to ~0.15×10(6)kgmonth(-1) during 1983-1995. Model results indicate that nitrogen reduction related to TSS reduction was minor and explained a small fraction (~15%) of the long-term chlorophyll decline. The decline in NBay TSS loading appears to have increased water clarity and in situ irradiance and contributed to the long-term chlorophyll decline by inducing a physiological response of a ~20% reduction in chlorophyll per cell. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Chlorophyllase in Piper betle L. has a role in chlorophyll homeostasis and senescence dependent chlorophyll breakdown.

    PubMed

    Gupta, Supriya; Gupta, Sanjay Mohan; Sane, Aniruddha P; Kumar, Nikhil

    2012-06-01

    Total chlorophyll content and chlorophyllase (chlorophyll-chlorophyllido hydrolase EC 3.1.1.14) activity in fresh leaves of Piper betle L. landrace KS was, respectively, twofold higher and eight fold lower than KV, showing negative correlation between chlorophyll and chlorophyllase activity. Specific chlorophyllase activity was nearly eightfold more in KV than KS. ORF of 918 nt was found in cloned putative chlorophyllase cDNAs from KV and KS. The gene was present as single copy in both the landraces. The encoded polypeptide of 306 amino acids differed only at two positions between the KV and KS; 203 (cysteine to tyrosine) and 301 (glutamine to glycine). Difference in chlorophyllase gene expression between KV and KS was evident in fresh and excised leaves. Up regulation of chlorophyllase gene by ABA and down regulation by BAP was observed in both the landraces; however, there was quantitative difference between KV and KS. Data suggests that chlorophyllase in P. betle is involved in chlorophyll homeostasis and chlorophyll loss during post harvest senescence.

  8. The effect of High Pressure and High Temperature processing on carotenoids and chlorophylls content in some vegetables.

    PubMed

    Sánchez, Celia; Baranda, Ana Beatriz; Martínez de Marañón, Iñigo

    2014-11-15

    The effect of High Pressure (HP) and High Pressure High Temperature (HPHT) processing on carotenoid and chlorophyll content of six vegetables was evaluated. In general, carotenoid content was not significantly influenced by HP or HPHT treatments (625 MPa; 5 min; 20, 70 and 117 °C). Regarding chlorophylls, HP treatment caused no degradation or slight increases, while HPHT processes degraded both chlorophylls. Chlorophyll b was more stable than chlorophyll a at 70 °C, but both of them were highly degraded at 117 °C. HPHT treatment at 117 °C provided products with a good retention of carotenoids and colour in the case of red vegetables. Even though the carotenoids also remained in the green vegetables, their chlorophylls and therefore their colour were so affected that milder temperatures need to be applied. As an industrial scale equipment was used, results will be useful for future industrial implementation of this technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Wind effects on coastal zone color scanner chlorophyll patterns in the U.S. Mid-Atlantic Bight during spring 1979

    NASA Technical Reports Server (NTRS)

    Eslinger, David L.; Iverson, Richard L.

    1986-01-01

    Coastal zone color scanner (CZCS) chlorophyll concentration increases in the Mid-Atlantic Bight were associated with high wind speeds in continental shelf waters during March and May 1979. Maximum spring CZCS chlorophyll concentrations occurred during April when the water column was not thermally stratified and were spatially and temporally associated with reductions in wind speed both in onshelf and in offshelf regions. Increased chlorophyll concentrations in offshelf waters were associated with high wind speeds during May when a deep chlorophyll maximum was present. Chlorophyll patchiness was observed on length scales typical of those controlled by biological processes during the April low-wind period but not during March or May when wind speeds were greater. The spring CZCS chlorophyll maximum in the southern portion of the Mid-Atlantic Bight occurred in response to a reduction in mixed layer depth caused by decreased wind speeds and not by increased water column stratification.

  10. Calibration of the Minolta SPAD-502 leaf chlorophyll meter.

    PubMed

    Markwell, J; Osterman, J C; Mitchell, J L

    1995-01-01

    Use of leaf meters to provide an instantaneous assessment of leaf chlorophyll has become common, but calibration of meter output into direct units of leaf chlorophyll concentration has been difficult and an understanding of the relationship between these two parameters has remained elusive. We examined the correlation of soybean (Glycine max) and maize (Zea mays L.) leaf chlorophyll concentration, as measured by organic extraction and spectrophotometric analysis, with output (M) of the Minolta SPAD-502 leaf chlorophyll meter. The relationship is non-linear and can be described by the equation chlorophyll (μmol m(-2))=10((M0.265)), r (2)=0.94. Use of such an exponential equation is theoretically justified and forces a more appropriate fit to a limited data set than polynomial equations. The exact relationship will vary from meter to meter, but will be similar and can be readily determined by empirical methods. The ability to rapidly determine leaf chlorophyll concentrations by use of the calibration method reported herein should be useful in studies on photosynthesis and crop physiology.

  11. Influences of mass Chlorophyll-a blends using P3HT:PCBM for efficiency of organic solar cells

    NASA Astrophysics Data System (ADS)

    Lestari, E.; Supriyanto, A.; Iriani, Y.; Ramelan, A. H.; Nurosyid, F.

    2017-02-01

    Organic solar cells have been made using the material poly (3-hexylthiophene)(P3HT), [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM), and Chlorophyll-a with blend metods. Active layer of P3HT:PCBM:Chlorophyll-a are deposited using spin coating with rotary speed of 2500 rpm for 10 seconds and subsequently heated at 1000C for 10 min. Mass of chlorophyll-a are 0.1 mg, 0.2 mg, and 0.3 mg. Thin layers are characterized by UV-Visible Spectrometer Lamda 25 for optical properties and Keithley 2602 for electrical properties. From the UV-Vis showed that absorbance of P3HT:PCBM:Chlorophyll-a are 400-614nm and 620-700 nm. Efficiency of P3HT:PCBM:Chlorophyll-a for mass chlorophyll 0.1 mg, 0.2 mg, and 0.3 mg are 2.68 x 10-2 %, 3.93 x 10-2 %, and 8.79 x 10-2 % respectively.

  12. From the chlorophyll a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications

    NASA Astrophysics Data System (ADS)

    Cherkasheva, A.; Nöthig, E.-M.; Bauerfeind, E.; Melsheimer, C.; Bracher, A.

    2013-04-01

    Current estimates of global marine primary production range over a factor of two. Improving these estimates requires an accurate knowledge of the chlorophyll vertical profiles, since they are the basis for most primary production models. At high latitudes, the uncertainty in primary production estimates is larger than globally, because here phytoplankton absorption shows specific characteristics due to the low-light adaptation, and in situ data and ocean colour observations are scarce. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer have not included the Arctic region, or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved profiles. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the regions in the Arctic where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S. Merian cruises combined with data from the ARCSS-PP database (Arctic primary production in situ database) for the years 1957-2010. The profiles were categorized according to their mean concentration in the surface layer, and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll (CHL) exceeding 0.7 mg C m-3 showed values gradually decreasing from April to August. A similar seasonal pattern was observed when monthly profiles were averaged over all the surface CHL concentrations. The maxima of all chlorophyll profiles moved from the greater depths to the surface from spring to late summer respectively. The profiles with the smallest surface values always showed a subsurface chlorophyll maximum with its median magnitude reaching up to three times the surface concentration. While the variability of the Greenland Sea season in April, May and June followed the global non-monthly resolved relationship of the chlorophyll profile to surface chlorophyll concentrations described by the model of Morel and Berthon (1989), it deviated significantly from the model in the other months (July-September), when the maxima of the chlorophyll are at quite different depths. The Greenland Sea dimensionless monthly median profiles intersected roughly at one common depth within each category. By applying a Gaussian fit with 0.1 mg C m-3 surface chlorophyll steps to the median monthly resolved chlorophyll profiles of the defined categories, mathematical approximations were determined. They generally reproduce the magnitude and position of the CHL maximum, resulting in an average 4% underestimation in Ctot (and 2% in rough primary production estimates) when compared to in situ estimates. These mathematical approximations can be used as the input to the satellite-based primary production models that estimate primary production in the Arctic regions.

  13. Effect of crude oil contamination on the chlorophyll content and morpho-anatomy of Cyperus brevifolius (Rottb.) Hassk.

    PubMed

    Baruah, Plabita; Saikia, Rashmi Rekha; Baruah, Partha Pratim; Deka, Suresh

    2014-11-01

    Chlorophyll plays a pivotal role in the plant physiology and its productivity. Cultivation of plants in crude oil contaminated soil has a great impact on the synthesis of chlorophyll pigment. Morpho-anatomy of the experimental plant also shows structural deformation in higher concentrations. Keeping this in mind, a laboratory investigation has been carried out to study the effect of crude oil on chlorophyll content and morpho-anatomy of Cyperus brevifolius plant. Fifteen-day-old seedling of the plant was planted in different concentrations of the crude oil mixed soil (i.e., 10,000, 20,000, 30,000, 40,000, and 50,000 ppm). A control setup was also maintained without adding crude oil. Results were recorded after 6 months of plantation. Investigation revealed that there is a great impact of crude oil contamination on chlorophyll content of the leaves of the experimental plant. It also showed that chlorophyll a, chlorophyll b, and total chlorophyll content of leaves grown in different concentrations of crude oil were found to be lower than those of the control plant. Further, results also demonstrated that chlorophyll content was lowest in the treatment that received maximum dose of crude oil. It also showed that chlorophyll content was decreased with increased concentration of crude oil. Results also demonstrated that there was a reduction in plant shoot and root biomass with the increase of crude oil concentration. Results also revealed that the shoot biomass is higher than root biomass. Morphology and anatomy of the experimental plant also show structural deformation in higher concentrations. Accumulation of crude oil on the cuticle of the transverse section of the leaves and shoot forms a thick dark layer. Estimation of the level of pollution in an environment due to oil spill is possible by the in-depth study of the harmful effects of oil on the morphology and anatomy and chlorophyll content of the plants grown in that particular environment.

  14. Evaluation of the MERIS terrestrial chlorophyll index (MTCI)

    NASA Astrophysics Data System (ADS)

    Dash, J.; Curran, P. J.

    The Medium Resolution Imaging Spectrometer (MERIS), one of the payloads on Envisat, has fine spectral resolution, moderate spatial resolution and a 3-day repeat cycle. This makes MERIS a potentially valuable sensor for the measurement and monitoring of terrestrial environments at regional to global scales. The red edge, which results from an abrupt reflectance change in red and near-infrared (NIR) wavelengths has a location that is related directly to the chlorophyll content of vegetation. A new index called the MERIS terrestrial chlorophyll index (MTCI) uses data in three red/NIR wavebands centered at 681.25, 708.75 and 753.75 nm (bands 8, 9 and 10 in the MERIS standard band setting). The MTCI is easy to calculate and can be automated. Preliminary indirect evaluation using model, field and MERIS data suggested its sensitivity to chlorophyll content, notably at high values. As a result this index is now a standard level-2 product of the European Space Agency. For direct MTCI evaluation two approaches were used. First, MTCI/chlorophyll content relationships were determined using a chlorophyll content surrogate for sites in southern Vietnam and second, MTCI/chlorophyll relationships were determined using actual chlorophyll content for sites in the New Forest, UK and for plots in the greenhouse. Forests in southern Vietnam were contaminated heavily with herbicides during the Vietnam War. This led to a long term decrease in chlorophyll content within forests that have long since regained full canopy cover. The amount of herbicide dropped onto the forests between 1965 and 1971 was used as a surrogate (inverse) for contemporary chlorophyll content and was related to current MTCI at selected forest sites. The resulting relationship was both strong and negative. Further per-pixel investigation of the MTCI/herbicide concentration relationship is under way for large forest regions. In the second approach MTCI was related directly to chlorophyll content at two scales and the initial relationships were both of strong and positive. Further plans involve MTCI evaluation at local, regional and eventually global scales.

  15. Light Intensity-Dependent Modulation of Chlorophyll b Biosynthesis and Photosynthesis by Overexpression of Chlorophyllide a Oxygenase in Tobacco1[C][OA

    PubMed Central

    Biswal, Ajaya K.; Pattanayak, Gopal K.; Pandey, Shiv S.; Leelavathi, Sadhu; Reddy, Vanga S.; Govindjee; Tripathy, Baishnab C.

    2012-01-01

    Chlorophyll b is synthesized by the oxidation of a methyl group on the B ring of a tetrapyrrole molecule to a formyl group by chlorophyllide a oxygenase (CAO). The full-length CAO from Arabidopsis (Arabidopsis thaliana) was overexpressed in tobacco (Nicotiana tabacum) that grows well at light intensities much higher than those tolerated by Arabidopsis. This resulted in an increased synthesis of glutamate semialdehyde, 5-aminolevulinic acid, magnesium-porphyrins, and chlorophylls. Overexpression of CAO resulted in increased chlorophyll b synthesis and a decreased chlorophyll a/b ratio in low light-grown as well as high light-grown tobacco plants; this effect, however, was more pronounced in high light. The increased potential of the protochlorophyllide oxidoreductase activity and chlorophyll biosynthesis compensated for the usual loss of chlorophylls in high light. Increased chlorophyll b synthesis in CAO-overexpressed plants was accompanied not only by an increased abundance of light-harvesting chlorophyll proteins but also of other proteins of the electron transport chain, which led to an increase in the capture of light as well as enhanced (40%–80%) electron transport rates of photosystems I and II at both limiting and saturating light intensities. Although the quantum yield of carbon dioxide fixation remained unchanged, the light-saturated photosynthetic carbon assimilation, starch content, and dry matter accumulation increased in CAO-overexpressed plants grown in both low- and high-light regimes. These results demonstrate that controlled up-regulation of chlorophyll b biosynthesis comodulates the expression of several thylakoid membrane proteins that increase both the antenna size and the electron transport rates and enhance carbon dioxide assimilation, starch content, and dry matter accumulation. PMID:22419827

  16. Citrus Chlorophyllase Dynamics at Ethylene-Induced Fruit Color-Break: A Study of Chlorophyllase Expression, Posttranslational Processing Kinetics, and in Situ Intracellular Localization1[OA

    PubMed Central

    Azoulay Shemer, Tamar; Harpaz-Saad, Smadar; Belausov, Eduard; Lovat, Nicole; Krokhin, Oleg; Spicer, Victor; Standing, Kenneth G.; Goldschmidt, Eliezer E.; Eyal, Yoram

    2008-01-01

    Fruit color-break is the visual manifestation of the developmentally regulated transition of chloroplasts to chromoplasts during fruit ripening and often involves biosynthesis of copious amounts of carotenoids concomitant with massive breakdown of chlorophyll. Regulation of chlorophyll breakdown at different physiological and developmental stages of the plant life cycle, particularly at fruit color-break, is still not well understood. Here, we present the dynamics of native chlorophyllase (Chlase) and chlorophyll breakdown in lemon (Citrus limon) fruit during ethylene-induced color-break. We show, using in situ immunofluorescence on ethylene-treated fruit peel (flavedo) tissue, that citrus Chlase is located in the plastid, in contrast to recent reports suggesting cytoplasmic localization of Arabidopsis (Arabidopsis thaliana) Chlases. At the intra-organellar level, Chlase signal was found to overlap mostly with chlorophyll fluorescence, suggesting association of most of the Chlase protein with the photosynthetic membranes. Confocal microscopy analysis showed that the kinetics of chlorophyll breakdown was not uniform in the flavedo cells. Chlorophyll quantity at the cellular level was negatively correlated with plastid Chlase accumulation; plastids with reduced chlorophyll content were found by in situ immunofluorescence to contain significant levels of Chlase, while plastids containing still-intact chlorophyll lacked any Chlase signal. Immunoblot and protein-mass spectrometry analyses were used to demonstrate that citrus Chlase initially accumulates as an approximately 35-kD precursor, which is subsequently N-terminally processed to approximately 33-kD mature forms by cleavage at either of three consecutive amino acid positions. Chlase plastid localization, expression kinetics, and the negative correlation with chlorophyll levels support the central role of the enzyme in chlorophyll breakdown during citrus fruit color-break. PMID:18633118

  17. Off-line separation and determination of rare earth elements associated with chloroplast pigments of hyperaccumulator Dicranopteris dichotoma by normal-phase liquid chromatography and ICP-MS.

    PubMed

    Wei, Z G; Hong, F S; Yin, M; Li, H X; Hu, F; Zhao, G W; Wong, J W C

    2004-10-01

    An off-line normal-phase liquid chromatography-ICP-MS method has been used for separation and determination of the rare earth elements (REE) associated with chloroplast pigments of Dicranopteris dichotoma. The stability of REE-bound pigments was tested, and almost no destruction of REE-bound pigments occurred during the so-called normal-phase liquid chromatography. The accumulated free REE ions on the microcrystalline cellulose column were cleaned by elution with 5 mmol L(-1) 2-ethylhexyl hydrogen 2-ethylhexylphosphonate (P507), to avoid exchange of these free ions with metals from the pigments. When these precautions were taken, the method was applied to the study of REE-bound pigments in D. dichotoma. ICP-MS results showed REE were present in chlorophylls and lutein, although REE concentrations in carotene and pheophytin were both below procedural blank levels. By careful analysis of the eluate fractions containing chlorophyll a it was found that REE-bound chlorophyll a in D. dichotoma was slightly enriched in the fractions with relatively short retention time. Results indicated that the retention time of REE-bound chlorophyll a might be slightly less than that of magnesium chlorophyll a, and REE-bound chlorophylls might be of relatively low polarity in comparison with magnesium bound chlorophylls. This phenomenon could be explained by the special double-decker sandwich-structure of REE-bound chlorophylls, as was reported by us and other authors. On the basis of these results we preferred to consider that REE can replace magnesium in chlorophyll a of D. dichotoma, and that the role of REE-bound chlorophylls in photosynthesis cannot be neglected. These data might be useful for understanding of both the properties of REE-bound pigments and the effect of REE on plant photosynthesis.

  18. Structures of chlorophyll catabolites in bananas (Musa acuminata) reveal a split path of chlorophyll breakdown in a ripening fruit.

    PubMed

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Kräutler, Bernhard

    2012-08-27

    The disappearance of chlorophyll is a visual sign of fruit ripening. Yet, chlorophyll breakdown in fruit has hardly been explored; its non-green degradation products are largely unknown. Here we report the analysis and structure elucidation of colorless tetrapyrrolic chlorophyll breakdown products in commercially available, ripening bananas (Musa acuminata, Cavendish cultivar). In banana peels, chlorophyll catabolites were found in an unprecedented structural richness: a variety of new fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs) were detected. As a rule, FCCs exist only "fleetingly" and are hard to observe. However, in bananas several of the FCCs (named Mc-FCCs) were persistent and carried an ester function at the propionate side-chain. NCCs were less abundant, and exhibited a free propionic acid group, but functional modifications elsewhere. The modifications of NCCs in banana peels were similar to those found in NCCs from senescent leaves. They are presumed to be introduced by enzymatic transformations at the stage of the mostly unobserved, direct FCC-precursors. The observed divergent functional group characteristics of the Mc-FCCs versus those of the Mc-NCCs indicated two major "late" processing lines of chlorophyll breakdown in ripening bananas. The "last common precursor" at the branching point to either the persistent FCCs, or towards the NCCs, was identified as a temporarily abundant "secondary" FCC. The existence of two "downstream" branches of chlorophyll breakdown in banana peels, and the striking accumulation of persistent Mc-FCCs call for attention as to the still-elusive biological roles of the resulting colorless linear tetrapyrroles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A GIS Approach to Wind,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Mirkhalili, Seyedhamzeh

    2016-07-01

    Chlorophyll is an extremely important bio-molecule, critical in photosynthesis, which allows plants to absorb energy from light. At the base of the ocean food web are single-celled algae and other plant-like organisms known as Phytoplankton. Like plants on land, Phytoplankton use chlorophyll and other light-harvesting pigments to carry out photosynthesis. Where Phytoplankton grow depends on available sunlight, temperature, and nutrient levels. In this research a GIS Approach using ARCGIS software and QuikSCAT satellite data was applied to visualize WIND,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea.Results indicate that increase in chlorophyll concentration in coastal areas is primarily driven by terrestrial nutrients and does not imply that warmer SST will lead to an increase in chlorophyll concentration and consequently Phytoplankton abundance.

  20. Decadal Changes in Global Ocean Chlorophyll

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Conkright, Margarita E.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The global ocean chlorophyll archive produced by the Coastal Zone Color Scanner (CZCS) was revised using compatible algorithms with the Sea-viewing Wide Field-of-view Sensor (SeaWIFS), and both were blended with in situ data. This methodology permitted a quantitative comparison of decadal changes in global ocean chlorophyll from the CZCS (1979-1986) and SeaWiFS (Sep. 1997-Dec. 2000) records. Global seasonal means of ocean chlorophyll decreased over the two observational segments, by 8% in winter to 16% in autumn. Chlorophyll in the high latitudes was responsible for most of the decadal change. Conversely, chlorophyll concentrations in the low latitudes increased. The differences and similarities of the two data records provide evidence of how the Earth's climate may be changing and how ocean biota respond. Furthermore, the results have implications for the ocean carbon cycle.

  1. Mapping of chlorophyll a distributions in coastal zones

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1978-01-01

    It is pointed out that chlorophyll a is an important environmental parameter for monitoring water quality, nutrient loads, and pollution effects in coastal zones. High chlorophyll a concentrations occur in areas which have high nutrient inflows from sources such as sewage treatment plants and industrial wastes. Low chlorophyll a concentrations may be due to the addition of toxic substances from industrial wastes or other sources. Remote sensing provides an opportunity to assess distributions of water quality parameters, such as chlorophyll a. A description is presented of the chlorophyll a analysis and a quantitative mapping of the James River, Virginia. An approach considered by Johnson (1977) was used in the analysis. An application of the multiple regression analysis technique to a data set collected over the New York Bight, an environmentally different area of the coastal zone, is also discussed.

  2. Inversion of chlorophyll contents by use of hyperspectral CHRIS data based on radiative transfer model

    NASA Astrophysics Data System (ADS)

    Wang, M. C.; Niu, X. F.; Chen, S. B.; Guo, P. J.; Yang, Q.; Wang, Z. J.

    2014-03-01

    Chlorophyll content, the most important pigment related to photosynthesis, is the key parameter for vegetation growth. The continuous spectrum characteristics of ground objects can be captured through hyperspectral remotely sensed data. In this study, based on the coniferous forest radiative transfer model, chlorophyll contents were inverted by use of hyperspectral CHRIS data in the coniferous forest coverage of Changbai Mountain Area. In addition, the sensitivity of LIBERTY model was analyzed. The experimental results validated that the reflectance simulation of different chlorophyll contents was coincided with that of the field measurement, and hyperspectral vegetation indices applied to the quantitative inversion of chlorophyll contents was feasible and accurate. This study presents a reasonable method of chlorophyll inversion for the coniferous forest, promotes the inversion precision, is of significance in coniferous forest monitoring.

  3. Functional Accumulation of Antenna Proteins in Chlorophyll b-Less Mutants of Chlamydomonas reinhardtii.

    PubMed

    Bujaldon, Sandrine; Kodama, Natsumi; Rappaport, Fabrice; Subramanyam, Rajagopal; de Vitry, Catherine; Takahashi, Yuichiro; Wollman, Francis-André

    2017-01-09

    The green alga Chlamydomonas reinhardtii contains several light-harvesting chlorophyll a/b complexes (LHC): four major LHCIIs, two minor LHCIIs, and nine LHCIs. We characterized three chlorophyll b-less mutants to assess the effect of chlorophyll b deficiency on the function, assembly, and stability of these chlorophyll a/b binding proteins. We identified point mutations in two mutants that inactivate the CAO gene responsible for chlorophyll a to chlorophyll b conversion. All LHCIIs accumulated to wild-type levels in a CAO mutant but their light-harvesting function for photosystem II was impaired. In contrast, most LHCIs accumulated to wild-type levels in the mutant and their light-harvesting capability for photosystem I remained unaltered. Unexpectedly, LHCI accumulation and the photosystem I functional antenna size increased in the mutant compared with in the wild type when grown in dim light. When the CAO mutation was placed in a yellow-in-the-dark background (yid-BF3), in which chlorophyll a synthesis remains limited in dim light, accumulation of the major LHCIIs and of most LHCIs was markedly reduced, indicating that sustained synthesis of chlorophyll a is required to preserve the proteolytic resistance of antenna proteins. Indeed, after crossing yid-BF3 with a mutant defective for the thylakoid FtsH protease activity, yid-BF3-ftsh1 restored wild-type levels of LHCI, which defines LHCI as a new substrate for the FtsH protease. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  4. Analysis of Remote Sensing Data Reveals the Correlation of Anomalies between Aerosol Optical Depth and Chlorophyll-a Concentrations in the Red Sea Area

    NASA Astrophysics Data System (ADS)

    Coria, J.; Bonilla, J., III; Li, W.; El-Askary, H. M.; Qurban, M.; Garay, M. J.; Kalashnikova, O. V.

    2017-12-01

    The Red Sea has one of the highest salinities and one of the most diverse ecosystems in the world. We wanted to investigate how chlorophyll-a contributes to this diverse ecosystem. From 2002 to 2015, we observed an increase in aerosol optical depth (AOD) levels which we believed contributed to an increase in chlorophyll-a concentration levels. Focusing on the Red Sea we used the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra and Aqua platforms in order to acquire the data necessary for our research. After gathering the monthly data for the chlorophyll-a concentration and AOD for this period we normalized the data in order to find correlations between the two parameters. We found that there was a continuous increase in AOD from 2002 to 2015. Inversely we found that there was an overall decrease in chlorophyll-a concentration during this same time period. However, there was a correlation between AOD anomalies and chlorophyll-a anomalies that did not follow the decreasing trend of chlorophyll-a. These findings exemplified a two-month lag between the AOD anomalies and chlorophyll-a concentration anomalies. This shows that the increase in AOD has a significant impact on the chlorophyll-a conentration anomalies which in turn contributes to the overall greenness of the Red Sea. This is significant because there are many cities surrounding the Red Sea that depend on this diverse ecosystem as a stable food source.

  5. Completing the Feedback Loop: The Impact of Chlorophyll Data Assimilation on the Ocean State

    NASA Technical Reports Server (NTRS)

    Borovikov, Anna; Keppenne, Christian; Kovach, Robin

    2015-01-01

    In anticipation of the integration of a full biochemical model into the next generation GMAO coupled system, an intermediate solution has been implemented to estimate the penetration depth (1Kd_PAR) of ocean radiation based on the chlorophyll concentration. The chlorophyll is modeled as a tracer with sources-sinks coming from the assimilation of MODIS chlorophyll data. Two experiments were conducted with the coupled ocean-atmosphere model. In the first, climatological values of Kpar were used. In the second, retrieved daily chlorophyll concentrations were assimilated and Kd_PAR was derived according to Morel et al (2007). No other data was assimilated to isolate the effects of the time-evolving chlorophyll field. The daily MODIS Kd_PAR product was used to validate the skill of the penetration depth estimation and the MERRA-OCEAN re-analysis was used as a benchmark to study the sensitivity of the upper ocean heat content and vertical temperature distribution to the chlorophyll input. In the experiment with daily chlorophyll data assimilation, the penetration depth was estimated more accurately, especially in the tropics. As a result, the temperature bias of the model was reduced. A notably robust albeit small (2-5 percent) improvement was found across the equatorial Pacific ocean, which is a critical region for seasonal to inter-annual prediction.

  6. Efficiency of chlorophyll in gross primary productivity: A proof of concept and application in crops.

    PubMed

    Gitelson, Anatoly A; Peng, Yi; Viña, Andrés; Arkebauer, Timothy; Schepers, James S

    2016-08-20

    One of the main factors affecting vegetation productivity is absorbed light, which is largely governed by chlorophyll. In this paper, we introduce the concept of chlorophyll efficiency, representing the amount of gross primary production per unit of canopy chlorophyll content (Chl) and incident PAR. We analyzed chlorophyll efficiency in two contrasting crops (soybean and maize). Given that they have different photosynthetic pathways (C3 vs. C4), leaf structures (dicot vs. monocot) and canopy architectures (a heliotrophic leaf angle distribution vs. a spherical leaf angle distribution), they cover a large spectrum of biophysical conditions. Our results show that chlorophyll efficiency in primary productivity is highly variable and responds to various physiological and phenological conditions, and water availability. Since Chl is accessible through non-destructive, remotely sensed techniques, the use of chlorophyll efficiency for modeling and monitoring plant optimization patterns is practical at different scales (e.g., leaf, canopy) and under widely-varying environmental conditions. Through this analysis, we directly related a functional characteristic, gross primary production with a structural characteristic, canopy chlorophyll content. Understanding the efficiency of the structural characteristic is of great interest as it allows explaining functional components of the plant system. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Plant abiotic stress diagnostic by laser induced chlorophyll fluorescence spectral analysis of in vivo leaf tissue of biofuel species

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; Costa, Ernande B.; Bueno, Luciano A.; Silva, Luciana M. H.; Granja, Manuela M. C.; Medeiros, Maria J. L.; Câmara, Terezinha J. R.; Willadino, Lilia G.

    2010-02-01

    Laser induced fluorescence is exploited to evaluate the effect of abiotic stresses upon the evolution and characteristics of in vivo chlorophyll emission spectra of leaves tissues of brazilian biofuel plants species(Saccharum officinarum and Jatropha curcas). The chlorophyll fluorescence spectra of 20 min predarkened intact leaves were studied employing several excitation wavelengths in the UV-VIS spectral region. Red(Fr) and far-red (FFr) chlorophyll fluorescence emission signals around 685 nm and 735 nm, respectively, were analyzed as a function of the stress intensity and the time of illumination(Kautsky effect). The Chl fluorescence ratio Fr/FFr which is a valuable nondestructive indicator of the chlorophyll content of leaves was investigated during a period of time of 30 days. The dependence of the Chl fluorescence ratio Fr/FFr upon the intensity of the abiotic stress(salinity) was examined. The results indicated that the salinity plays a major hole in the chlorophyll concentration of leaves in both plants spieces, with a significant reduction in the chlorophyll content for NaCl concentrations in the 25 - 200 mM range. The laser induced chlorophyll fluorescence analysis allowed detection of damage caused by salinity in the early stages of the plants growing process, and can be used as an early-warning indicator of salinity stress

  8. Optical Method for Estimating the Chlorophyll Contents in Plant Leaves.

    PubMed

    Pérez-Patricio, Madaín; Camas-Anzueto, Jorge Luis; Sanchez-Alegría, Avisaí; Aguilar-González, Abiel; Gutiérrez-Miceli, Federico; Escobar-Gómez, Elías; Voisin, Yvon; Rios-Rojas, Carlos; Grajales-Coutiño, Ruben

    2018-02-22

    This work introduces a new vision-based approach for estimating chlorophyll contents in a plant leaf using reflectance and transmittance as base parameters. Images of the top and underside of the leaf are captured. To estimate the base parameters (reflectance/transmittance), a novel optical arrangement is proposed. The chlorophyll content is then estimated by using linear regression where the inputs are the reflectance and transmittance of the leaf. Performance of the proposed method for chlorophyll content estimation was compared with a spectrophotometer and a Soil Plant Analysis Development (SPAD) meter. Chlorophyll content estimation was realized for Lactuca sativa L., Azadirachta indica , Canavalia ensiforme , and Lycopersicon esculentum . Experimental results showed that-in terms of accuracy and processing speed-the proposed algorithm outperformed many of the previous vision-based approach methods that have used SPAD as a reference device. On the other hand, the accuracy reached is 91% for crops such as Azadirachta indica , where the chlorophyll value was obtained using the spectrophotometer. Additionally, it was possible to achieve an estimation of the chlorophyll content in the leaf every 200 ms with a low-cost camera and a simple optical arrangement. This non-destructive method increased accuracy in the chlorophyll content estimation by using an optical arrangement that yielded both the reflectance and transmittance information, while the required hardware is cheap.

  9. Different responses of chlorophyll-a concentration and Sea Surface Temperature (SST) on southeasterly wind blowing in the Sunda Strait

    NASA Astrophysics Data System (ADS)

    Wirasatriya, A.; Kunarso; Maslukah, L.; Satriadi, A.; Armanto, R. D.

    2018-03-01

    During southeast monsoon, along the western coast of Sumatra Island and southern coast of Java Island are known as the coastal upwelling areas denoted by the occurrence of Sea Surface Temperature (SST) cooling and chlorophyll-a blooming. Located between Sumatra and Java Islands, Sunda Strait waters may give different response to the southeasterly wind blowing above. Using SST and chlorophyll-a data obtained from daily MODIS level 3 during 2006–2016, this study demonstrated the evidence on how bathymetry and topography modified the effect of southeasterly wind on the spatial variability of SST and chlorophyll-a. All datasets were composed into monthly and monthly climatology. The area in the center of Sunda Strait had the lowest chlorophyll-a concentration and the warmest SST during the peak of upwelling season. The deep bottom topography and the absence of barrier land prevented the generation of wind driven coastal upwelling. However, the chlorophyll-a concentration in this area had the highest correlation with the wind speed which means that the variation of chlorophyll-a concentration in this area was highly depended on the variability of wind. On the other hand, the areas with shallow bathymetry and in front of Panaitan and Java Islands had higher chlorophyll-a concentration and cooler SSTs.

  10. Chlorophyll-a specific volume scattering function of phytoplankton.

    PubMed

    Tan, Hiroyuki; Oishi, Tomohiko; Tanaka, Akihiko; Doerffer, Roland; Tan, Yasuhiro

    2017-06-12

    Chlorophyll-a specific light volume scattering functions (VSFs) by cultured phytoplankton in visible spectrum range is presented. Chlorophyll-a specific VSFs were determined based on the linear least squares method using a measured VSFs with different chlorophyll-a concentrations. We found obvious variability of it in terms of spectral and angular shapes of VSF between cultures. It was also presented that chlorophyll-a specific scattering significantly affected on spectral variation of the remote sensing reflectance, depending on spectral shape of b. This result is useful for developing an advance algorithm of ocean color remote sensing and for deep understanding of light in the sea.

  11. Rapid assessment of water pollution by airborne measurement of chlorophyll content.

    NASA Technical Reports Server (NTRS)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1971-01-01

    Present techniques of airborne chlorophyll measurement are discussed as an approach to water pollution assessment. The differential radiometer, the chlorophyll correlation radiometer, and an infrared radiometer for water temperature measurements are described as the key components of the equipment. Also covered are flight missions carried out to evaluate the capability of the chlorophyll correlation radiometer in measuring the chlorophyll content in water bodies with widely different levels of nutrients, such as fresh-water lakes of high and low eutrophic levels, marine waters of high and low productivity, and an estuary with a high sediment content. The feasibility and usefulness of these techniques are indicated.

  12. Multispectral In-situ Measurements of Organic Matter and Chlorophyll Fluorescence in Seawater: Documenting the Intrusion of the Mississippi River Plume in the West Florida Shelf

    NASA Technical Reports Server (NTRS)

    DelCastillo, Carlos E.; Coble, Paula G.; Conmy, Robyn N.; Mueller-Karger, Frank E.; Vanderbloomen, Lisa; Vargo, Gabriel A.

    2000-01-01

    We performed multispectral in-situ fluorescence measurement of colored dissolved organic matter and chlorophyll in surface water of the West Florida Shelf using West Labs Spectral absorption and Fluorescence Instrument (SAFIre). Continuous measurements underway allowed us to simultaneously map the dispersion of riverine organic material and chlorophyll on the shelf. By using two fluorescence emission ratios we were able to differentiate between riverine and marine CDOM. Our data also showed unusually high concentrations of CDOM offshore. These were attributed to an intrusion of the Mississippi River Plume. We performed limited comparisons between in-situ chlorophyll concentrations measured with SAFIre and chlorophyll values obtained from SeaWiFS satellite data using OC4 and MODIS algorithm. Our results show that, although both algorithms overestimated chlorophyll, MODIS performed better than OC4, particularly in areas with high CDOM concentrations. Analysis of the relationship between chlorophyll and CDOM concentrations within the study area showed regional variability causes by differences in river source.

  13. Inhibition of chlorophyll synthesis and carotenoid accumulation by manganese and cobalt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clairmont, K.B.; Davis, E.; Hagar, W.

    1986-05-01

    The authors have developed methods for the separation and identification of the major pigments of the photosynthetic apparatus in plants using reversed phase microbore high performance liquid chromatography. Using these methods they have monitored the concentrations of pigments in tissue cultured tobacco callus in the absence and presence of excess manganese and cobalt. Manganese and cobalt were reported to inhibit chlorophyll synthesis in blue green algae. They have found that excess manganese blocks chlorophyll synthesis in tobacco callus also. In the manganese inhibited callus there is an increase in the concentration of protoporphyrin IX- the last common precursor to bothmore » the chlorophyll and heme synthetic pathways. They have found that cobalt also blocks chlorophyll synthesis in tissue cultured tobacco callus, but at a much lower concentration. In addition to the inhibition of chlorophyll synthesis by excess manganese and cobalt, the accumulation of carotenoids is reduced by several orders of magnitude in this tissue. The absence of chlorophyll may prevent assembly of any components of the photosynthetic apparatus in these cells.« less

  14. Changes in chlorophyll and polyphenols content in Camellia sinensis var. sinensis at different stage of leaf maturity

    NASA Astrophysics Data System (ADS)

    Prawira-Atmaja, M. I.; Shabri; Khomaini, H. S.; Maulana, H.; Harianto, S.; Rohdiana, D.

    2018-03-01

    Chlorophyll and polyphenols are chemical compound related to parameter quality of green tea. We studied the variation of chlorophyll and polyphenol in the development stage of tea leaves (bud, 1st, 2nd, 3rd, and 4th). Five clones of tea (Camelia sinensis var. sinensis) from Indonesia and a clone from Japan were used in this study. The results showed that total chlorophyll and total polyphenol content in bud between 1.59-2.15 mg/g (db) and 12.24-14.59% respectively. The concentration of chlorophyll increased significantly with developments stage of leaf while total polyphenol tended to decrease with leaf maturity. Pearson Correlation analysis showed that chlorophyll content was negatively correlated (r = -0.83; p = 0.05) with total polyphenol during developmental stage of tea leaves. Results suggests that five clones of tea from Indonesia have similar quality with tea clone from Japan in chlorophyll and polyphenol content. The present study also provides guidelines on application plucking standard to produce high quality of green tea.

  15. Interaction of Chloroplasts with Inhibitors

    PubMed Central

    Ridley, Stuart M.

    1977-01-01

    A primary symptom of diuron (DCMU) phytotoxicity in plants is the destruction of chlorophyll. To study this process in vitro, chloroplasts from pea leaves (Pisum sativum L.) have been incubated in the light with DCMU for periods of up to 34 hours. The sequence of photodestruction of chlorophylls and carotenoids has been followed to try and establish the nature of the chloroplast protection mechanisms that are destroyed by DCMU. β-Carotene decays most rapidly, followed by chlorophyll a and xanthophylls which are destroyed in a constant ratio, followed finally by chlorophyll b. Bypassing the DCMU block in the electron transport system with an artificial electron donor provides complete protection against chlorophyll and carotenoid photodestruction. The same protection by this electron donor system is afforded to stroma-free lamellae from which soluble reductants have been removed so that NADPH formation, which has been proposed as an essential part of a protective xanthophyll cycle, is not possible. Both this and the simultaneous loss of chlorophyll a and xanthophylls tend to preclude the breakdown of a xanthophyll cycle from the possible protective mechanisms inhibited or destroyed by DCMU. Cofactors of cyclic electron transport also protect against DCMU-induced photodestruction of pigments. Their concentration dependence for this protection appears to reflect their various abilities to catalyze cyclic photophosphorylation. The extent to which the chlorophylls are destroyed in the major pigment-protein complexes from chloroplasts illuminated with and without DCMU has been measured. In the absence of DCMU, the light-harvesting chlorophyll a/b protein complex is destroyed most rapidly. In the presence of DCMU, the losses of chlorophyll a from the photosystem I P700-chlorophyll a protein and the chlorophyll a/b complex are about the same. Chlorophyll losses are matched by simultaneous losses of the protein moieties; spectral analyses show that the remaining chlorophyll a is held in a loose association with the protein. Phenazine methosulfate protects the chlorophyll of the light-harvesting complex in DCMU-treated chloroplasts more than it protects that in photosystem I. Data published on DCMU-induced fluorescence and its quenching are used to interpret the longer term DCMU-induced chlorosis and its protection. By blocking electron transport, conformational changes in the membrane that allow spillover of excitation energy from photosystem II to photosystem I (and quenching of fluorescence by this means) are prevented. The mechanism that normally protects the chloroplast against excessive illumination is then overloaded which impairs the harmless dissipation of absorbed light energy; consequently, the pigments are destroyed. When photosystem I is allowed to function again through cyclic electron flow, a necessary conformational change is believed to be reintroduced that once again allows the harmless dissipation of excitation energy through spillover. A functional electron transport system associated with photosystem I will protect against DCMU-induced chlorosis when the thylakoid membranes are intact, but when the P700-chlorophyll a protein complex is in isolation, there is only a limited degree of protection. PMID:16659926

  16. Determination of phytoplankton chlorophyll concentrations in the Chesapeake Bay with aircraft remote sensing

    NASA Technical Reports Server (NTRS)

    Harding, Lawrence W., Jr.; Itsweire, Eric C.; Esaias, Wayne E.

    1992-01-01

    Remote sensing measurements of the distribution of phytoplankton chlorophyll concentrations in Chesapeake Bay during 1989 are described. It is shown that remote sensing from light aircraft can complement and extend measurements made from traditional platforms and provide data of improved temporal and spatial resolution, leading to a better understanding of phytoplankton dynamics in the estuary. The developments of the winter-spring diatom bloom in the polyhaline to mesohaline regions of the estuary and of the late-spring and summer dinoflagellate blooms in oligohaline and mesohaline regions are traced. The study presents the local chlorophyll algorithm developed using the NASA Ocean Data Acquisition System data and in situ chlorophyll data, interpolated maps of chlorophyll concentration generated by applying the algorithm to aircraft radiance data, ancillary in situ data on nutrients, turbidity, streamflow, and light availability, and an interpretation of phytoplankton dynamics in terms of the chlorophyll distribution in Chesapeake Bay during 1989.

  17. Chlorophyll degradation in a Chlamydomonas reinhardtii mutant: an accumulation of pyropheophorbide a by anaerobiosis.

    PubMed

    Doi, M; Inage, T; Shioi, Y

    2001-05-01

    Chlorophyll degradation was investigated in cells of a chlorophyll b-less mutant of Chlamydomonas reinhardtii under aerobic and anaerobic conditions. During degradation of chlorophyll under anaerobic conditions, chlorophyll catabolite P535, an open-tetrapyrrole, was not excreted, but pyropheophorbide a was accumulated as the end product with a transient accumulation of chlorophyllide a and pheophorbide a in cells, in contrast to the breakdown under aerobic conditions. It is likely that in the absence of oxygen, degradation of chlorophyll a proceeds to pyropheophorbide a by three consecutive reactions, dephytylation, metal-releasing and demethoxycarbonylation, and then stops due to a limitation of the oxygen that the monooxygenase reaction requires for bilin formation. A novel enzyme catalyzing demethoxycarbonylation of pheophorbide a was partially purified. The enzyme activity increased dependent on the age of cells, and its increase was completely suppressed by cycloheximide. Production of P535 was also dependent on cytoplasmic protein synthesis.

  18. The relationship between concentration of clorophyll-a with skipjack (Katsuwonus pelamis, Linnaeus 1758) production at West Sumatera waters, Indonesia

    NASA Astrophysics Data System (ADS)

    Usman; Ersti Yulika Sari, T.; Syaifuddin; Audina

    2017-01-01

    The regression and correlation technic was uses to evaluated the contribution of chlorophyll-a concentration on variation of longline skipjack tuna production. An analysis was performed by placing Chlorophyll-a as predictor and Skipjack (Katsuwonus pelamis, Linnaeus 1758) production as dependent variable, using Chlorophyll-a derived from NPP VIIRS, and CPUE derived from longline fisherman log books for the year of 2013. Chlorophyll-a distribution which derived from NPP VIIRS between 0.13-0.26 mg/m3 whereas maximum CPUE as much as 0,1875 kg/trip in April. The regression equation obtained was CPUE = -1.12 + 11.5 Chl-a. Correlation between chlorophyll-a and CPUE have moderate relationship (r=0.51). From regression equation for those variables showed that the variation of chlorophyll-a had affected about 26% on variation of CPUE, only.

  19. Stomata character and chlorophyll content of tomato in response to Zn application under drought condition

    NASA Astrophysics Data System (ADS)

    Sakya, A. T.; Sulistyaningsih, E.; Indradewa, D.; Purwanto, B. H.

    2018-03-01

    This experiment was performed in order to evaluate the effects of Zn application under drought condition on tomato, especially its chlorophyll content and stomata character. This experiment was arranged in factorial using randomized complete block design with three replications. The treatment consisted of the Zn application method, namely: soil and foliar, the Zn dosage, namely: 0, 40 and 60 mg ZnSO4 kg-1 soil and two cultivars of tomato, namely: ‘Tyrana’ F1 and ‘Permata’ F1. The stress condition was induced by watering every 12 days of 3 weeks after transplanting until harvesting. The results showed that the soil with a Zn application under drought conditions increased the aperture stomata, chlorophyll b and chlorophyll a/b ratio. The response of stomata character, chlorophyll a and total chlorophyll in both cultivars was similar.

  20. Manipulation of Origin of Life Molecules: Recognizing Single-Molecule Conformations in β-Carotene and Chlorophyll-a/β-Carotene Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngo, Anh T.; Skeini, Timur; Iancu, Violeta

    Carotenoids and chlorophyll are essential parts of plant leaves and are involved in photosynthesis, a vital biological process responsible for the origin of life on Earth. Here, we investigate how beta-carotene and chlorophyll-a form mixed molecular phases On a Au(111) surface using low-temperature scanning tunneling microscopy and molecular manipulation at the single-molecule level supported by density functional theory calculations. By isolating individual molecules from nanoscale molecular clusters with a scanning tunneling microscope tip, we are able to identify five beta-carotene conformations including a structure exhibiting a three-dimensional conformation. Furthermore, molecular resolution images enable direct visualization of beta-carotene/chlorophyll-a clsuters, with intimatemore » structural details highlighting how they pair: beta-carotene preferentially positions next to chlorophyll-a and induces switching of chlorophyll-a from straight to several bent tail conformations in the molecular clusters.« less

  1. Temporal variability of chlorophyll distribution in the Gulf of Mexico: bio-optical data from profiling floats

    NASA Astrophysics Data System (ADS)

    Pasqueron de Fommervault, Orens; Perez-Brunius, Paula; Damien, Pierre; Camacho-Ibar, Victor F.; Sheinbaum, Julio

    2017-12-01

    Chlorophyll concentration is a key oceanic biogeochemical variable. In the Gulf of Mexico (GOM), its distribution, which is mainly obtained from satellite surface observations and scarce in situ experiments, is still poorly understood. In 2011-2012, eight profiling floats equipped with biogeochemical sensors were deployed for the first time in the GOM and generated an unprecedented dataset that significantly increased the number of chlorophyll vertical distribution measurements in the region. The analysis of these data, once calibrated, permits us to reconsider the spatial and temporal variability of the chlorophyll concentration in the water column. At a seasonal scale, results confirm the surface signal seen by satellites, presenting maximum concentrations in winter and low values in summer. It is shown that the deepening of the mixed layer is the primary factor triggering the chlorophyll surface increase in winter. In the GOM, a possible interpretation is that this surface increase corresponds to a biomass increase. However, the present dataset suggests that the basin-scale climatological surface increase in chlorophyll content results from a vertical redistribution of subsurface chlorophyll and/or photoacclimation processes, rather than a net increase of biomass. One plausible explanation for this is the decoupling between the mixed-layer depth and the deep nutrient reservoir since mixed-layer depth only reaches the nitracline in sporadic events in the observations. Float measurements also provide evidence that the depth and the magnitude of the deep chlorophyll maximum is strongly controlled by the mesoscale variability, with higher chlorophyll biomass generally observed in cyclones rather than anticyclones.

  2. Chlorophyll b Reductase Plays an Essential Role in Maturation and Storability of Arabidopsis Seeds1[W

    PubMed Central

    Nakajima, Saori; Ito, Hisashi; Tanaka, Ryouichi; Tanaka, Ayumi

    2012-01-01

    Although seeds are a sink organ, chlorophyll synthesis and degradation occurs during embryogenesis and in a manner similar to that observed in photosynthetic leaves. Some mutants retain chlorophyll after seed maturation, and they are disturbed in seed storability. To elucidate the effects of chlorophyll retention on the seed storability of Arabidopsis (Arabidopsis thaliana), we examined the non-yellow coloring1 (nyc1)/nyc1-like (nol) mutants that do not degrade chlorophyll properly. Approximately 10 times more chlorophyll was retained in the dry seeds of the nyc1/nol mutant than in the wild-type seeds. The germination rates rapidly decreased during storage, with most of the mutant seeds failing to germinate after storage for 23 months, whereas 75% of the wild-type seeds germinated after 42 months. These results indicate that chlorophyll retention in the seeds affects seed longevity. Electron microscopic studies indicated that many small oil bodies appeared in the embryonic cotyledons of the nyc1/nol mutant; this finding indicates that the retention of chlorophyll affects the development of organelles in embryonic cells. A sequence analysis of the NYC1 promoter identified a potential abscisic acid (ABA)-responsive element. An electrophoretic mobility shift assay confirmed the binding of an ABA-responsive transcriptional factor to the NYC1 promoter DNA fragment, thus suggesting that NYC1 expression is regulated by ABA. Furthermore, NYC1 expression was repressed in the ABA-insensitive mutants during embryogenesis. These data indicate that chlorophyll degradation is induced by ABA during seed maturation to produce storable seeds. PMID:22751379

  3. Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (II) Dephytylated derivatives.

    PubMed

    Chen, Kewei; Ríos, José Julián; Roca, María; Pérez-Gálvez, Antonio

    2015-09-18

    Dephytylated chlorophylls (chlorophyllides and pheophorbides) are the starting point of the chlorophyll catabolism in green tissues, components of the chlorophyll pattern in storage/processed food vegetables, as well as the favoured structural arrangement for chlorophyll absorption. In addition, dephytylated native chlorophylls are prone to several modifications of their structure yielding pyro-, 13(2)-hydroxy- and 15(1)-hydroxy-lactone derivatives. Despite of these outstanding remarks only few of them have been analysed by MS(n). Besides new protocols for obtaining standards, we have developed a new high throughput methodology able to determine the fragmentation pathway of 16 dephytylated chlorophyll derivatives, elucidating the structures of the new product ions and new mechanisms of fragmentation. The new methodology combines, by first time, high resolution time-of-flight mass spectrometry and powerful post-processing software. Native chlorophyllides and pheophorbides mainly exhibit product ions that involve the fragmentation of D ring, as well as additional exclusive product ions. The introduction of an oxygenated function at E ring enhances the progress of fragmentation reactions through the β-keto ester group, developing also exclusive product ions for 13(2)-hydroxy derivatives and for 15(1)-hydroxy-lactone ones. Consequently, while MS(2)-based reactions of phytylated chlorophyll derivatives point to fragmentations at the phytyl and propionic chains, dephytylated chlorophyll derivatives behave different as the absence of phytyl makes β-keto ester group and E ring more prone to fragmentation. Proposals of the key reaction mechanisms underlying the origin of new product ions have been made. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Photoprotective Energy Dissipation in Higher Plants Involves Alteration of the Excited State Energy of the Emitting Chlorophyll(s) in the Light Harvesting Antenna II (LHCII)*

    PubMed Central

    Johnson, Matthew P.; Ruban, Alexander V.

    2009-01-01

    Non-photochemical quenching (NPQ), a mechanism of energy dissipation in higher plants protects photosystem II (PSII) reaction centers from damage by excess light. NPQ involves a reduction in the chlorophyll excited state lifetime in the PSII harvesting antenna (LHCII) by a quencher. Yet, little is known about the effect of the quencher on chlorophyll excited state energy and dynamics. Application of picosecond time-resolved fluorescence spectroscopy demonstrated that NPQ involves a red-shift (60 ± 5 cm−1) and slight enhancement of the vibronic satellite of the main PSII lifetime component present in intact chloroplasts. Whereas this fluorescence red-shift was enhanced by the presence of zeaxanthin, it was not dependent upon it. The red-shifted fluorescence of intact chloroplasts in the NPQ state was accompanied by red-shifted chlorophyll a absorption. Nearly identical absorption and fluorescence changes were observed in isolated LHCII complexes quenched in a low detergent media, suggesting that the mechanism of quenching is the same in both systems. In both cases, the extent of the fluorescence red-shift was shown to correlate with the lifetime of a component. The alteration in the energy of the emitting chlorophyll(s) in intact chloroplasts and isolated LHCII was also accompanied by changes in lutein 1 observed in their 77K fluorescence excitation spectra. We suggest that the characteristic red-shifted fluorescence emission reflects an altered environment of the emitting chlorophyll(s) in LHCII brought about by their closer interaction with lutein 1 in the quenching locus. PMID:19567871

  5. Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in the light harvesting antenna II (LHCII).

    PubMed

    Johnson, Matthew P; Ruban, Alexander V

    2009-08-28

    Non-photochemical quenching (NPQ), a mechanism of energy dissipation in higher plants protects photosystem II (PSII) reaction centers from damage by excess light. NPQ involves a reduction in the chlorophyll excited state lifetime in the PSII harvesting antenna (LHCII) by a quencher. Yet, little is known about the effect of the quencher on chlorophyll excited state energy and dynamics. Application of picosecond time-resolved fluorescence spectroscopy demonstrated that NPQ involves a red-shift (60 +/- 5 cm(-1)) and slight enhancement of the vibronic satellite of the main PSII lifetime component present in intact chloroplasts. Whereas this fluorescence red-shift was enhanced by the presence of zeaxanthin, it was not dependent upon it. The red-shifted fluorescence of intact chloroplasts in the NPQ state was accompanied by red-shifted chlorophyll a absorption. Nearly identical absorption and fluorescence changes were observed in isolated LHCII complexes quenched in a low detergent media, suggesting that the mechanism of quenching is the same in both systems. In both cases, the extent of the fluorescence red-shift was shown to correlate with the lifetime of a component. The alteration in the energy of the emitting chlorophyll(s) in intact chloroplasts and isolated LHCII was also accompanied by changes in lutein 1 observed in their 77K fluorescence excitation spectra. We suggest that the characteristic red-shifted fluorescence emission reflects an altered environment of the emitting chlorophyll(s) in LHCII brought about by their closer interaction with lutein 1 in the quenching locus.

  6. MANUFACTURE OF PHOTOVOLTAIC SOLAR CELL USING PLANT CHLOROPHYLL

    EPA Science Inventory

    To date, we have successfully manufactured working chlorophyll sensitized solar cells using chlorophyll (and b mixture) from spinach leaves. We have evaluated the electronic characteristics (voltage, current, and power outputs using different loading resistors) of this solar c...

  7. Sequential resuspension of biofilm components (viruses, prokaryotes and protists) as measured by erodimetry experiments in the Brouage mudflat (French Atlantic coast)

    NASA Astrophysics Data System (ADS)

    Dupuy, Christine; Mallet, Clarisse; Guizien, Katell; Montanié, Hélène; Bréret, Martine; Mornet, Françoise; Fontaine, Camille; Nérot, Caroline; Orvain, Francis

    2014-09-01

    Resuspension thresholds in terms of friction velocity were experimentally quantified for the prokaryotes, protists and for the first time, viruses of intertidal mudflat biofilms. Differences in resuspension thresholds could be related to the type, behaviour and size of microorganisms and their association with particles. Free microorganisms (viruses, bacteria and some nanoflagellates) were resuspended by weak flow at friction velocities lower than 2 cm s- 1. Chlorophyll a, some nanoflagellates and attached bacteria were resuspended together with the bed's muddy sediment, which required friction velocities larger than 3 cm s- 1. Diatoms smaller than 60 μm were resuspended at velocities between 3 and 5 cm s- 1, while those larger than 60 μm were resuspended at higher friction velocities (5.5 to 6.5 cm s- 1). The thresholds of resuspension also depended on the micro-scale position of microorganisms in the sediment (horizontal and vertical distributions). In the field, the vertical distribution of chlorophyll a (a proxy of microphytobenthos) was skewed, with a maximum in the first 2 mm of sediment. Along the neap-spring tidal cycle, chlorophyll a revealed an increase in MPB biomass in the first 2 mm of the sediment, in relation to light increases with exposure durations. The horizontal distribution of chlorophyll a could be inferred from erosion experiments. During the initial phase of biofilm growth, the distribution of chlorophyll a seemed horizontally homogeneous, and was uniformly eroded at the beginning of the increase in chlorophyll a. From these results, we can make a hypothesis: in the subsequent phase of biofilm growth until the maximum of emersion duration, the eroded quantity of chlorophyll a was larger than expected based from chlorophyll a vertical distribution, suggesting that biofilm horizontal distribution became patchy and enriched chlorophyll a was preferentially eroded. When emersion duration and biofilm growth decreased, the trend was reversed, and eroded quantity of chlorophyll a was lower than expected from chlorophyll a vertical distribution, suggesting that areas with low chlorophyll a were preferentially eroded. Such erosion patterns when biofilm growth decreased probably resulted from the bulldozing activity of a surficial sediment bioturbator, the gastropod Peringia ulvae. Our study did not directly prove this horizontal distribution but it should be further discussed. This distribution needs to be studied to acquire real evidence of patchy distributions.

  8. Root-shoot interaction in the greening of wheat seedlings grown under red light

    NASA Technical Reports Server (NTRS)

    Tripathy, B. C.; Brown, C. S.

    1995-01-01

    Wheat seedlings grown with roots exposed to constant red light (300-500 micromoles m-2 s-1) did not accumulate chlorophyll in the leaves. In contrast, seedlings grown with their roots shielded from light accumulated chlorophylls. Chlorophyll biosynthesis could be induced in red-light-grown chlorophyll-deficient yellow plants by either reducing the red-light intensity at the root surface to 100 micromoles m-1 s-1 or supplementing with 6% blue light. The inhibition of chlorophyll biosynthesis was due to impairment of the Mg-chelatase enzyme working at the origin of the Mg-tetrapyrrole pathway. The root-perceived photomorphogenic inhibition of shoot greening demonstrates root-shoot interaction in the greening process.

  9. Excited and ionic states of dimeric chlorophyll derivatives. Biomimetic modelling of the primary events of photosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasielewski, M. R.

    1978-01-01

    The following topics are discussed: preparation of covalently bound dimeric species of chlorophyll; molecular structure of bis(bacteriochlorophyllide a) ethylene glycol diester; /sup 1/H spectra of BChl, a covalent dimer, dissolved in various solvents; chemical shift changes in proton resonances; C/sub 2/ symmetric folded configuration of covalently linked BChl; electronic transition spectrum of Chl a covalent dimer in dry CCl/sub 4/ and in water-saturated CCl/sub 4/; special pair models of bis(chlorophyll) cyclophanes; synthetic pathway for preparation of bis(chlorophyll) cyclophane 8; proton magnetic resonance data; redox potentials of chlorophyll; and optical and EPR properties of special pairs. (HLW)

  10. A Cyanobacterial Chlorophyll Synthase-HliD Complex Associates with the Ycf39 Protein and the YidC/Alb3 Insertase[W][OPEN

    PubMed Central

    Chidgey, Jack W.; Linhartová, Markéta; Komenda, Josef; Jackson, Philip J.; Dickman, Mark J.; Canniffe, Daniel P.; Koník, Peter; Pilný, Jan; Hunter, C. Neil; Sobotka, Roman

    2014-01-01

    Macromolecular membrane assemblies of chlorophyll-protein complexes efficiently harvest and trap light energy for photosynthesis. To investigate the delivery of chlorophylls to the newly synthesized photosystem apoproteins, a terminal enzyme of chlorophyll biosynthesis, chlorophyll synthase (ChlG), was tagged in the cyanobacterium Synechocystis PCC 6803 (Synechocystis) and used as bait in pull-down experiments. We retrieved an enzymatically active complex comprising ChlG and the high-light-inducible protein HliD, which associates with the Ycf39 protein, a putative assembly factor for photosystem II, and with the YidC/Alb3 insertase. 2D electrophoresis and immunoblotting also provided evidence for the presence of SecY and ribosome subunits. The isolated complex contained chlorophyll, chlorophyllide, and carotenoid pigments. Deletion of hliD elevated the level of the ChlG substrate, chlorophyllide, more than 6-fold; HliD is apparently required for assembly of FLAG-ChlG into larger complexes with other proteins such as Ycf39. These data reveal a link between chlorophyll biosynthesis and the Sec/YidC-dependent cotranslational insertion of nascent photosystem polypeptides into membranes. We expect that this close physical linkage coordinates the arrival of pigments and nascent apoproteins to produce photosynthetic pigment-protein complexes with minimal risk of accumulating phototoxic unbound chlorophylls. PMID:24681617

  11. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    PubMed

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated.

    PubMed

    Harpaz-Saad, Smadar; Azoulay, Tamar; Arazi, Tzahi; Ben-Yaakov, Eran; Mett, Anahit; Shiboleth, Yoel M; Hörtensteiner, Stefan; Gidoni, David; Gal-On, Amit; Goldschmidt, Eliezer E; Eyal, Yoram

    2007-03-01

    Chlorophyll is a central player in harvesting light energy for photosynthesis, yet the rate-limiting steps of chlorophyll catabolism and the regulation of the catabolic enzymes remain unresolved. To study the role and regulation of chlorophyllase (Chlase), the first enzyme of the chlorophyll catabolic pathway, we expressed precursor and mature versions of citrus (Citrus sinensis) Chlase in two heterologous plant systems: (1) squash (Cucurbita pepo) plants using a viral vector expression system; and (2) transiently transformed tobacco (Nicotiana tabacum) protoplasts. Expression of full-length citrus Chlase resulted in limited chlorophyll breakdown in protoplasts and no visible leaf phenotype in whole plants, whereas expression of a Chlase version lacking the N-terminal 21 amino acids (ChlaseDeltaN), which corresponds to the mature protein, led to extensive chlorophyll breakdown in both tobacco protoplasts and squash leaves. ChlaseDeltaN-expressing squash leaves displayed a dramatic chlorotic phenotype in plants grown under low-intensity light, whereas under natural light a lesion-mimic phenotype occurred, which was demonstrated to follow the accumulation of chlorophyllide, a photodynamic chlorophyll breakdown product. Full-length and mature citrus Chlase versions were localized to the chloroplast membrane fraction in expressing tobacco protoplasts, where processing of the N-terminal 21 amino acids appears to occur. Results obtained in both plant systems suggest that Chlase functions as a rate-limiting enzyme in chlorophyll catabolism controlled via posttranslational regulation.

  13. Transposase-Derived Proteins FHY3/FAR1 Interact with PHYTOCHROME-INTERACTING FACTOR1 to Regulate Chlorophyll Biosynthesis by Modulating HEMB1 during Deetiolation in Arabidopsis[W

    PubMed Central

    Tang, Weijiang; Wang, Wanqing; Chen, Dongqin; Ji, Qiang; Jing, Yanjun; Wang, Haiyang; Lin, Rongcheng

    2012-01-01

    Successful chlorophyll biosynthesis during initial light exposure is critical for plant survival and growth, as excess accumulation of chlorophyll precursors in darkness can cause photooxidative damage to cells. Therefore, efficient mechanisms have evolved to precisely regulate chlorophyll biosynthesis in plants. Here, we identify FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED IMPAIRED RESPONSE1 (FAR1), two transposase-derived transcription factors, as positive regulators of chlorophyll biosynthesis in Arabidopsis thaliana. We show that null mutations in FHY3 and FAR1 cause reduced protochlorophyllide (a precursor of chlorophyll) levels in darkness and less photobleaching in the light. We find that FHY3 directly binds to the promoter and activates expression of HEMB1, which encodes 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. We reveal that PHYTOCHROME-INTERACTING FACTOR1 physically interacts with the DNA binding domain of FHY3, thereby partly repressing FHY3/FAR1-activated HEMB1 expression. Strikingly, FHY3 expression is upregulated by white light. In addition, our genetic data indicate that overexpression, severe reduction, or lack of HEMB1 impairs plant growth and development. Together, our findings reveal a crucial role of FHY3/FAR1 in regulating chlorophyll biosynthesis, thus uncovering a new layer of regulation by which light promotes plant dark–light transition in early seedling development. PMID:22634759

  14. Evaluation of the MERIS terrestrial Chlorophyll Index

    NASA Astrophysics Data System (ADS)

    Dash, J.; Curran, P.

    The MEdium Resolution Imaging Spectrometer (MERIS), one of the payloads on Envisat, has fine spectral resolution, moderate spatial resolution and a three day repeat cycle. This makes MERIS a potentially valuable sensor for the measurement and monitoring of terrestrial environments at regional to global scales. The red edge, which results from an abrupt change in reflectance in red and near-infrared wavelengths has a location that is related directly to the chlorophyll content of vegetation. A new index called the MERIS terrestrial chlorophyll index (MTCI) uses data in three red and NIR wavebands centred at 681.25nm, 705nm and 753.75nm (bands 8, 9 and 10 in the MERIS standard band setting). The MTCI is easy to calculate and can be automated. Preliminary indirect evaluation using model, field and MERIS data suggested its sensitivity, notably to high values of chlorophyll content and its limited sensitivity to spatial resolution and atmospheric effects. As a result this index is now a standard level-2 product of the European Space Agency. For direct MTCI evaluation two different approaches were used. First, the MTCI/chlorophyll content relationship were determined using a surrogate of chlorophyll content for sites in southern Vietnam and second, the MTCI/chlorophyll relationship was determined using actual chlorophyll content for sites in the New Forest, UK and for plots in a greenhouse. Forests in southern Vietnam were contaminated heavily with Agent Orange during the Vietnam War. The contamination levels were so high that it led to a long term decrease in chlorophyll content within forests that have long since regained full canopy cover. In this approach the amount of Agent Orange dropped onto the forest between 1965 and 1971 was used as a surrogate for contemporary chlorophyll content and was related to current MTCI at selected forest sites. The resulting relationship was positive. Further per pixel investigation of the MTCI/Agent Orange concentration relationship is underway for large forest regions. In the second approach MTCI was related directly to chlorophyll content at two scales and the initial resulting relationships were also positive. Further plans involve the evaluation of the MTCI at local, regional and eventually global scales.

  15. Is It Possible to Distinguish Between Dust and Salt Aerosol Over Waters with Unknown Chlorophyll Concentrations Using Spectral Remote Sensing?

    NASA Technical Reports Server (NTRS)

    Levy, R. C.; Kaufman, Y. J.

    1999-01-01

    Atmospheric aerosol has uncertain impacts on the global climate system, as well as on atmospheric and bio-geo-chemical processes of regional and local scales. EOS-MODIS is one example of a satellite sensor designed to improve understanding of the aerosols' type, size and distribution at all temporal and spatial scales. Ocean scientists also plan to use data from EOS-MODIS to assess the temporal and spatial coverage of in-water chlorophyll. MODIS is the first sensor planned to observe the combined ocean-atmosphere system with a wide spectral range (from 410 to 2200 nm). Dust aerosol and salt aerosol have similar spectral signals for wavelengths longer than 550 nm, but because dust selectively absorbs blue light, they have divergent signals in the blue wavelength regions (412 to 490 nm). Chlorophyll also selectively absorbs blue radiation, so that varying chlorophyll concentrations produces a highly varying signal in the blue regions, but less variability in the green, and almost no signal in the red to mid-infrared regions. Thus, theoretically, it may be difficult to differentiate dust and salt in the presence of unknown chlorophyll in the ocean. This study attempts to address the cases in which aerosol and chlorophyll signals can and cannot be separated. For the aerosol spectra, we use the aerosol lookup table from the operational MODIS aerosol-over-ocean algorithm, and for chlorophyll spectra, we use the SeaBAM data set (created for SeaWiFS). We compare the signals using Principal Component Analysis and attempt to retrieve both chlorophyll and aerosol properties using a variant of the operational MODIS aerosol-over-ocean algorithm. Results show that for small optical depths, less than 0.5, it is not possible to differentiate between dust and salt and to determine the chlorophyll concentration at the same time. For larger aerosol optical depths, the chlorophyll signals are comparatively insignificant, and we can hope to distinguish between dust and salt.

  16. An evaluation of the latitudinal gradient of chlorophyll in the California Current

    NASA Astrophysics Data System (ADS)

    Dietrich, W.; Broughton, J.; Kudela, R. M.

    2013-12-01

    Tracking of spatial and temporal trends in phytoplankton abundance and distribution is an important step toward understanding large-scale macroecological processes in the ocean. Measurements of ocean radiance from satellite-borne sensors, such as SeaWiFS and MODIS, can be used to estimate surface chlorophyll concentration, which is a good indicator of phytoplankton biomass. The primary goal of this study was to evaluate the latitudinal gradient in chlorophyll concentration within the California Current first reported by Ware and Thomson (2005). They found that average chlorophyll concentration tended to increase steadily from 32-48°N latitude. This concentration gradient was reevaluated using a longer dataset and an algorithm refined for the region. Radiance data from the MODIS-Aqua instrument were obtained for every year from 2002 through 2013. Data included annual averages of remote sensing radiance as well as monthly averages for February, April, and August. These months were chosen to represent each of the three oceanographic seasons present in the California Current. Estimates of chlorophyll concentration were derived from these data using the CALFIT algorithm developed by Kahru et al. (2012). The resulting maps of chlorophyll concentration were processed in MATLAB and linear regressions were performed using SYSTAT 13 software. A statistically significant (p < 0.05) latitudinal trend in chlorophyll was observed in the annual averaged data as well as in the averaged seasonal data from February and August. No significant trend was observed in the averaged April data. Chlorophyll concentration was positively correlated with latitude in every instance, except in April 2003 and April 2005, where a negative correlation was observed. The positive latitudinal trend was strongest during August and weakest during April. Strong peaks in chlorophyll were observed near San Francisco Bay and the mouth of the Columbia River, suggesting that river-borne nutrient input may be the dominant factor responsible for the existence of this chlorophyll gradient.

  17. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications.

    PubMed

    da Silva Ferreira, Veronica; Sant'Anna, Celso

    2017-01-01

    Chlorophyll is a commercially important natural green pigment responsible for the absorption of light energy and its conversion into chemical energy via photosynthesis in plants and algae. This bioactive compound is widely used in the food, cosmetic, and pharmaceutical industries. Chlorophyll has been consumed for health benefits as a nutraceutical agent with antioxidant, anti-inflammatory, antimutagenic, and antimicrobial properties. Microalgae are photosynthesizing microorganisms which can be extracted for several high-value bioproducts in the biotechnology industry. These microorganisms are highly efficient at adapting to physicochemical variations in the local environment. This allows optimization of culture conditions for inducing microalgal growth and biomass production as well as for changing their biochemical composition. The modulation of microalgal culture under controlled conditions has been proposed to maximize chlorophyll accumulation. Strategies reported in the literature to promote the chlorophyll content in microalgae include variation in light intensity, culture agitation, and changes in temperature and nutrient availability. These factors affect chlorophyll concentration in a species-specific manner; therefore, optimization of culture conditions has become an essential requirement. This paper provides an overview of the current knowledge on the effects of key environmental factors on microalgal chlorophyll accumulation, focusing on small-scale laboratory experiments.

  18. Chlorophyll-Based Organic-Inorganic Heterojunction Solar Cells.

    PubMed

    Li, Yue; Zhao, Wenjie; Li, Mengzhen; Chen, Gang; Wang, Xiao-Feng; Fu, Xueqi; Kitao, Osamu; Tamiaki, Hitoshi; Sakai, Kotowa; Ikeuchi, Toshitaka; Sasaki, Shin-Ichi

    2017-08-10

    Solid-state chlorophyll solar cells (CSCs) employing a carboxylated chlorophyll derivative, methyl trans-3 2 -carboxypyropheophorbide a, as a light-harvesting dye sensitizer chlorophyll (DSC) deposited on mesoporous TiO 2 , on which four zinc hydroxylated chlorophyll derivatives were spin-coated for hole transporter chlorophylls (HTCs), are described. Key parameters, including the effective carrier mobility of the HTC films, as determined by the space charge-limited current method, and the frontier molecular orbitals of these DSCs and HTCs, as estimated from cyclic voltammetry and electronic absorption spectra, suggest that both charge separation and carrier transport are favorable. The power conversion efficiencies (PCEs) of the present CSCs with fluorine-doped tin oxide (FTO)/TiO 2 /DSC/HTCs/Ag were determined to follow the order of HTC-1>HTC-2>HTC-3>HTC-4, which coincided perfectly with the order of their hole mobilities. The maximum PCE achieved was 0.86 % with HTC-1. The photovoltaic devices studied herein with two types of chlorophyll derivatives as dye sensitizers and hole transporters provide a unique solution for the utilization of solar energy with a view to truly realizing "green energy". © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The impact of ENSO on regional chlorophyll-a anomaly in the Arafura Sea

    NASA Astrophysics Data System (ADS)

    Dewi, D. M. P. R.; Fatmasari, D.; Kurniawan, A.; Munandar, M. A.

    2018-03-01

    The El Niño-Southern Oscillation (ENSO) is a naturally occurring phenomenon that involves fluctuating ocean temperature in the equatorial Pacific. ENSO influences ocean climate variability in Indonesia including the Arafura Sea. The relationship between oceanic chlorophyll-a and ENSO has been the focus of study over the past decade. Here we examine the impact of ENSO on regional chlorophyll-a anomaly in the Papua waters using 14 years of chlorophyll-a and sea surface temperature (SST) data from AQUA MODIS and sea level anomaly data from AVISO. It is found that when El Niño events occur the negative SST anomaly in the Papua waters as well as the enhanced upwelling cause the increase of chlorophyll-a concentration. The highest chlorophyll-a concentration (> 1 mg–cm-3) occured during El Niño and observed around the Aru archipelago. In contrast during La Niña event, the positive SST anomaly in Papua waters and the suppressed upwelling cause the decrease of chlorophyll-a concentration. Our results suggest that during El Niño (La Niña), the enhanced (suppressed) upwelling related to the significant decreasing (increasing) of sea level anomaly.

  20. [Distribution features of chlorophyll a and primary productivity in high frequency area of red tide in East China Sea during spring].

    PubMed

    Zhou, Weihua; Huo, Wenyi; Yuan, Xiangcheng; Yin, Kedong

    2003-07-01

    The distributions of chlorophyll a and primary productivity were determined during April to May 2002 in the East China Sea. The results showed that the average concentration of chlorophyll a was 1.086 mg.m-3 at surface layer, and that nano- and pico-phytoplankton (< 20 microns) dominated the phytoplankton biomass in this sea region during Spring (up to 64% of total chlorophyll a content). Ultra-phytoplankton (< 5 microns) consisted 27% of total phytoplankton biomass. Nutrients and feeding pressure of zooplankton affected the distribution of chlorophyll a and its size-fractionation. The average primary productivity was 10.091 mg.m-3.h-1, while that of red tide tracking stations R-03, RL-01 and RG-01 was 399.984 mg.m-3.h-1. Light and nutrients were the main factors affecting the distributions of chlorophyll a and primary productivity. The station DC-11 had a high concentration of phytoplankton biomass. The surface layer concentration of chlorophyll a and primary productivity were up to 9,082 mg.m-3 and 128,79 mg.m-3.h-1, respectively, but the color of the seawater was normal.

  1. Coastal Zone Color Scanner data of rich coastal waters

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Klooster, S. A.

    1983-01-01

    Comparisons of chlorophyll concentrations and diffuse attenuation coefficients measured from ships off the central California coast were made with satellite derived estimates of the same parameters using data from the Coastal Zone Color Scanner. Very high chlorophyll concentrations were encountered in Monterey Bay. Although lower chlorophyll values acquired off Pt. Sur agreed satisfactorily with the satellite data, the high chlorophyll values departed markedly from agreement. Two possible causes for the disagreement are suggested. Comparison of diffuse attenuation coefficients from the same data sets showed closer agreement.

  2. Improving Assessments of Chlorophyll Concentration From In Situ Optical Measurements

    NASA Astrophysics Data System (ADS)

    Nardelli, S.; Twardowski, M.

    2016-02-01

    Florescence as a chlorophyll proxy has poor accuracy because it is dependent on specific absorption (effective molar absorptivity of packaged chlorophyll in living cells) and fluorescence quantum yield, both of which are highly variable. Absorption is a better proxy, as it is only dependent on specific absorption for packaged chlorophyll, although excepted accuracy in using a nominal specific absorption for all phytoplankton is still about 50%. Bricaud et al. (1995), Ciotti et al. (2002), Mouw et al. (2010), etc. have shown, however, that specific absorption is closely related to the average size of phytoplankton due to the relative packaging effect. Through other methods that have been developed over the years (Morel 1973; Diehl and Haart 1980; Boss et al. 2001; Slade and Boss 2015), it has been shown that measurements of spectral particulate attenuation (i.e., light transmission), and perhaps spectral particulate backscattering, can be used as simple proxies for the average size of the particle field. We therefore test the hypothesis that information on average particle size may be used to better estimate specific absorption for packaged chlorophyll, possibly enabling more accurate retrievals of chlorophyll concentration from optical measurements. The required optical measurements can be made with compact commercial off-the-shelf sensors with high sampling frequency that can be operated from autonomous vehicles; as a result, derived chlorophyll concentration could be resolved at far higher temporal and spatial frequency than is currently possible through extracting chlorophyll from discretely collected samples. This study examines the relationship between specific absorption and the attenuation spectral slope in extensive datasets from Case I and Case II waters found globally in an attempt to assess the link between pigment packaging and phytoplankton size dynamics and the impact on improving the derivation of chlorophyll from in situ optical measurements.

  3. Uphill energy transfer in photosystem I from Chlamydomonas reinhardtii. Time-resolved fluorescence measurements at 77 K.

    PubMed

    Giera, Wojciech; Szewczyk, Sebastian; McConnell, Michael D; Redding, Kevin E; van Grondelle, Rienk; Gibasiewicz, Krzysztof

    2018-04-04

    Energetic properties of chlorophylls in photosynthetic complexes are strongly modulated by their interaction with the protein matrix and by inter-pigment coupling. This spectral tuning is especially striking in photosystem I (PSI) complexes that contain low-energy chlorophylls emitting above 700 nm. Such low-energy chlorophylls have been observed in cyanobacterial PSI, algal and plant PSI-LHCI complexes, and individual light-harvesting complex I (LHCI) proteins. However, there has been no direct evidence of their presence in algal PSI core complexes lacking LHCI. In order to determine the lowest-energy states of chlorophylls and their dynamics in algal PSI antenna systems, we performed time-resolved fluorescence measurements at 77 K for PSI core and PSI-LHCI complexes isolated from the green alga Chlamydomonas reinhardtii. The pool of low-energy chlorophylls observed in PSI cores is generally smaller and less red-shifted than that observed in PSI-LHCI complexes. Excitation energy equilibration between bulk and low-energy chlorophylls in the PSI-LHCI complexes at 77 K leads to population of excited states that are less red-shifted (by ~ 12 nm) than at room temperature. On the other hand, analysis of the detection wavelength dependence of the effective trapping time of bulk excitations in the PSI core at 77 K provided evidence for an energy threshold at ~ 675 nm, above which trapping slows down. Based on these observations, we postulate that excitation energy transfer from bulk to low-energy chlorophylls and from bulk to reaction center chlorophylls are thermally activated uphill processes that likely occur via higher excitonic states of energy accepting chlorophylls.

  4. Identifying Distribution of Chlorophyll-a Concentration Using Landsat 8 OLI on Marine Waters Area of Cirebon

    NASA Astrophysics Data System (ADS)

    Buditama, Gilang; Damayanti, Astrid; Giok Pin, Tjiong

    2017-12-01

    Phytoplankton is a microscopic plant that has a function to produces oxygen and organic substances. It also plays a role as a main producer in the food chain of a marine ecosystem. Chlorophyll-a is a colour pigment most common in phytoplankton species, so that the concentration level of chlorophyll-a can be used as an indicator of the abundance of phytoplankton cells, and as a reference for predicting organic potency in the aquatic area. This research discusses about the spatial and temporal distribution of chlorophyll-a and its correlation with salinity and total suspended solid (TSS), in the seawaters of Cirebon, West Java. The goal of this research is to be a source of information for fishermen, and other stakeholders whose related subjects in the field of marine and fisheries to predict fertile water regions and can also be used as an indicator in discovering potential areas to catch pelagic fish in Cirebon seawaters. Chlorophyll-a concentration, salinity, and TSS are identified using remote sensing data such as Landsat-8 OLI multi temporal images according to dry and wet month parameters in the 2014-2015. The results of the processed image are then validated between in-situ measurements in the field and remote sensing imagery at the same time. This research utilizes descriptive analysis, and statistics with spatial approach. The results of the research show that temporally, chlorophyll-a levels have a tendency to be higher in wet months compared to dry months, while chlorophyll-a is higher in areas near the coastline compared to open sea areas. The distribution of chlorophyll-a concentration is affected by salinity and TSS distribution, where salinity has the negative relationship and TSS has the positive relationship with chlorophyll-a distribution.

  5. Spatial and Temporal Patterns of Chlorophyll Concentration in the Southern California Bight

    NASA Astrophysics Data System (ADS)

    Nezlin, Nikolay P.; McLaughlin, Karen; Booth, J. Ashley T.; Cash, Curtis L.; Diehl, Dario W.; Davis, Kristen A.; Feit, Adriano; Goericke, Ralf; Gully, Joseph R.; Howard, Meredith D. A.; Johnson, Scott; Latker, Ami; Mengel, Michael J.; Robertson, George L.; Steele, Alex; Terriquez, Laura; Washburn, Libe; Weisberg, Stephen B.

    2018-01-01

    Distinguishing between local, anthropogenic nutrient inputs and large-scale climatic forcing as drivers of coastal phytoplankton biomass is critical to developing effective nutrient management strategies. Here we assess the relative importance of these two drivers by comparing trends in chlorophyll-a between shallow coastal (0.1-16.5 km) and deep offshore (17-700 km) areas, hypothesizing that coastal regions influenced by anthropogenic nutrient inputs may have different spatial and temporal patterns in chlorophyll-a concentration from offshore regions where coastal inputs are less influential. Quarterly conductivity-temperature-depth (CTD) fluorescence measurements collected from three southern California continental shelf regions since 1998 were compared to chlorophyll-a data from the more offshore California Cooperative Fisheries Investigations (CalCOFI) program. The trends in the coastal zone were similar to those offshore, with a gradual increase of chlorophyll-a biomass and shallowing of its maximum layer since the beginning of observations, followed by chlorophyll-a declining and deepening from 2010 to present. An exception was the northern coastal part of SCB, where chlorophyll-a continued increasing after 2010. The long-term increase in chlorophyll-a prior to 2010 was correlated with increased nitrate concentrations in deep waters, while the recent decline was associated with deepening of the upper mixed layer, both linked to the low-frequency climatic cycles of the Pacific Decadal Oscillation and North Pacific Gyre Oscillation. These large-scale factors affecting the physical structure of the water column may also influence the delivery of nutrients from deep ocean outfalls to the euphotic zone, making it difficult to distinguish the effects of anthropogenic inputs on chlorophyll along the coast.

  6. Chlorophyll Degradation: The Tocopherol Biosynthesis-Related Phytol Hydrolase in Arabidopsis Seeds Is Still Missing1[C][W][OPEN

    PubMed Central

    Zhang, Wei; Liu, Tianqi; Ren, Guodong; Hörtensteiner, Stefan; Zhou, Yongming; Cahoon, Edgar B.; Zhang, Chunyu

    2014-01-01

    Phytyl diphosphate (PDP) is the prenyl precursor for tocopherol biosynthesis. Based on recent genetic evidence, PDP is supplied to the tocopherol biosynthetic pathway primarily by chlorophyll degradation and sequential phytol phosphorylation. Three enzymes of Arabidopsis (Arabidopsis thaliana) are known to be capable of removing the phytol chain from chlorophyll in vitro: chlorophyllase1 (CLH1), CLH2, and pheophytin pheophorbide hydrolase (PPH), which specifically hydrolyzes pheophytin. While PPH, but not chlorophyllases, is required for in vivo chlorophyll breakdown during Arabidopsis leaf senescence, little is known about the involvement of these phytol-releasing enzymes in tocopherol biosynthesis. To explore the origin of PDP for tocopherol synthesis, seed tocopherol concentrations were determined in Arabidopsis lines engineered for seed-specific overexpression of PPH and in single and multiple mutants in the three genes encoding known dephytylating enzymes. Except for modestly increasing tocopherol content observed in the PPH overexpressor, none of the remaining lines exhibited significantly reduced tocopherol concentrations, suggesting that the known chlorophyll-derived phytol-releasing enzymes do not play major roles in tocopherol biosynthesis. Tocopherol content of seeds from double mutants in NONYELLOWING1 (NYE1) and NYE2, regulators of chlorophyll degradation, had modest reduction compared with wild-type seeds, although mature seeds of the double mutant retained significantly higher chlorophyll levels. These findings suggest that NYEs may play limited roles in regulating an unknown tocopherol biosynthesis-related phytol hydrolase. Meanwhile, seeds of wild-type over-expressing NYE1 had lower tocopherol levels, suggesting that phytol derived from NYE1-dependent chlorophyll degradation probably doesn’t enter tocopherol biosynthesis. Potential routes of chlorophyll degradation are discussed in relation to tocopherol biosynthesis. PMID:25059706

  7. Quantification of Plant Chlorophyll Content Using Google Glass

    PubMed Central

    Cortazar, Bingen; Koydemir, Hatice Ceylan; Tseng, Derek; Feng, Steve; Ozcan, Aydogan

    2015-01-01

    Measuring plant chlorophyll concentration is a well-known and commonly used method in agriculture and environmental applications for monitoring plant health, which also correlates with many other plant parameters including, e.g., carotenoids, nitrogen, maximum green fluorescence, etc. Direct chlorophyll measurement using chemical extraction is destructive, complex and time-consuming, which has led to the development of mobile optical readers, providing non-destructive but at the same time relatively expensive tools for evaluation of plant chlorophyll levels. Here we demonstrate accurate measurement of chlorophyll concentration in plant leaves using Google Glass and a custom-developed software application together with a cost-effective leaf holder and multi-spectral illuminator device. Two images, taken using Google Glass, of a leaf placed in our portable illuminator device under red and white (i.e., broadband) light-emitting-diode (LED) illumination are uploaded to our servers for remote digital processing and chlorophyll quantification, with results returned to the user in less than 10 seconds. Intensity measurements extracted from the uploaded images are mapped against gold-standard colorimetric measurements made through a commercially available reader to generate calibration curves for plant leaf chlorophyll concentration. Using five plant species to calibrate our system, we demonstrate that our approach can accurately and rapidly estimate chlorophyll concentration of fifteen different plant species under both indoor and outdoor lighting conditions. This Google Glass based chlorophyll measurement platform can display the results in spatiotemporal and tabular forms and would be highly useful for monitoring of plant health in environmental and agriculture related applications, including e.g., urban plant monitoring, indirect measurements of the effects of climate change, and as an early indicator for water, soil, and air quality degradation. PMID:25669673

  8. Satellites and Human Health: Potential for Tracking Cholera Outbreaks

    NASA Astrophysics Data System (ADS)

    Jutla, A. S.; Akanda, A. S.; Islam, S.

    2009-12-01

    Cholera continues to be a significant health threat across the globe. The pattern and magnitude of the seven global pandemics suggest that cholera outbreaks primarily originate in coastal regions and spread inland through secondary means. Cholera bacteria show strong association with zooplankton and phytoplankton abundance in coastal ecosystems. Characterization of space-time variability of chlorophyll, a surrogate for phytoplankton abundance, in Northern Bay of Bengal (BoB) is an essential step to develop any methodology for tracking cholera in the Bengal Delta from space. Using ten years of satellite data, this study (a) quantifies the space-time distribution of chlorophyll in BoB region and (b) presents a hypothesis as to how coastal plankton may be related with cholera outbreaks. Preliminary results suggest that variability of chlorophyll at daily scale, irrespective of spatial averaging, resembles white noise. At a monthly scale, chlorophyll shows distinct annual seasonality and chlorophyll values are significantly higher close to the coast than those in the offshore regions. At pixel level (9 km) on monthly scale, on the other hand, chlorophyll does not exhibit much persistence in time. With increased spatial averaging, temporal persistence of monthly chlorophyll increases and lag one autocorrelation stabilizes around 0.60 for 1200 km2 or larger areal averages. Spatial analyses of chlorophyll suggest that coastal region in BoB have a stable sill at 100 km range. Using satellite chlorophyll data, we observe that phytoplankton blooms occur every year in BoB, yet severe cholera outbreaks happen in certain years. This study provides a working hypothesis on how BoB coastal plankton blooms aided by regional hydroclimatic processes may lead to possible cholera outbreaks in Bengal Delta.

  9. Photosynthesis and chlorophyll fluorescence characteristics in relationship to changes in pigment and element composition of leaves of Platanus occidentalis L. during autumnal leaf senescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, W.W. III; Winter, K.; Schreiber, U.

    1990-04-01

    The loss of chlorophyll and total leaf nitrogen during autumnal senescence of leaves from the deciduous tree Platanus occidentalis L. was accompanied by a marked decline in the photosynthetic capacity of O{sub 2} evolution on a leaf area basis. When expressed on a chlorophyll basis, however, the capacity for light- and CO{sub 2}-saturated O{sub 2} evolution did not decline, but rather increased as leaf chlorophyll content decreased. The photon yield of O{sub 2} evolution in white light (400-700 nanometers) declined markedly with decreases in leaf chlorophyll content below 150 milligrams of chlorophyll per square meter on both an incident andmore » an absorbed basis, due largely to the absorption of light by nonphotosynthetic pigments which were not degraded as rapidly as the chlorophylls. Data indicate that the efficiency for photochemical energy conversion of the remaining functional components was maintained at a high level during the natural course of autumnal senescence, and are consistent with previous studies which have characterized leaf senescence as being a controlled process. The loss of chlorophyll during senescence was also accompanied by a decline in fluorescence emanating from PSI, whereas there was little change in PSII fluorescence (measured at 77 Kelvin), presumably due to decreased reabsorption of PSII fluorescence by chlorophyll. Nitrogen was the only element examined to exhibit a decline with senescence on a dry weight basis. However, on a leaf area basis, all elements (C, Ca, K, Mg, N, P, S) declined in senescent leaves, although the contents of sulfur and calcium, which are not easily retranslocated, decreased to the smallest extent.« less

  10. Quantification of plant chlorophyll content using Google Glass.

    PubMed

    Cortazar, Bingen; Koydemir, Hatice Ceylan; Tseng, Derek; Feng, Steve; Ozcan, Aydogan

    2015-04-07

    Measuring plant chlorophyll concentration is a well-known and commonly used method in agriculture and environmental applications for monitoring plant health, which also correlates with many other plant parameters including, e.g., carotenoids, nitrogen, maximum green fluorescence, etc. Direct chlorophyll measurement using chemical extraction is destructive, complex and time-consuming, which has led to the development of mobile optical readers, providing non-destructive but at the same time relatively expensive tools for evaluation of plant chlorophyll levels. Here we demonstrate accurate measurement of chlorophyll concentration in plant leaves using Google Glass and a custom-developed software application together with a cost-effective leaf holder and multi-spectral illuminator device. Two images, taken using Google Glass, of a leaf placed in our portable illuminator device under red and white (i.e., broadband) light-emitting-diode (LED) illumination are uploaded to our servers for remote digital processing and chlorophyll quantification, with results returned to the user in less than 10 seconds. Intensity measurements extracted from the uploaded images are mapped against gold-standard colorimetric measurements made through a commercially available reader to generate calibration curves for plant leaf chlorophyll concentration. Using five plant species to calibrate our system, we demonstrate that our approach can accurately and rapidly estimate chlorophyll concentration of fifteen different plant species under both indoor and outdoor lighting conditions. This Google Glass based chlorophyll measurement platform can display the results in spatiotemporal and tabular forms and would be highly useful for monitoring of plant health in environmental and agriculture related applications, including e.g., urban plant monitoring, indirect measurements of the effects of climate change, and as an early indicator for water, soil, and air quality degradation.

  11. Measuring leaf chlorophyll concentration from its color: A way in monitoring environment change to plantations

    NASA Astrophysics Data System (ADS)

    Shibghatallah, Muhammad Abdul Hakim; Khotimah, Siti Nurul; Suhandono, Sony; Viridi, Sparisoma; Kesuma, Teja

    2013-09-01

    Leaf colors of a plant can be used to identify stress level due to its adaptation to environmental change. For most leaves green-related colors are sourced from chlorophyll a and b. Chlorophyll concentration is normally measured using a spectrophotometer in laboratory. In some remote observation places, it is impossible to collect the leaves, preserve them, and bring them to laboratory to measure their chlorophyll content. Based on this need, measurement of chlorophyll content is observed through its color. Using CIE chromaticity diagram leaf_color information in RGB is transformed into wavelength (in nm). Paddy seed with variety name IR-64 is used in observation during its vegetation stage t (age of 0-10 days). Light exposure time τ is chosen as environmental change, which normally should be about 12 hours/day, is varied (0-12 hours/day). Each day sample from different exposure time is taken, its color is recorded using HP Deskjet 1050 scanner with 1200 dpi, and its chlorophyll content is obtained from absorption spectrum measured using Campspec M501 Single Beam UV/Vis Spectrophotometer after it is rinsed in 85 % acetone solution and the information from the spectrum is calculated using Arnon method. It has been observed that average wavelength of leaf color λavg is decreased from 570.55 nm to 566.01 nm as is measured for t = 1 - 10 days with τ = 9 hours/day, but chlorophyll concentration C is increased from 0.015 g/l to 3.250 g/l and from 0.000 g/l to 0.774 g/l for chlorophyll a and b, respectively. Other value of τ gives similar results. Based on these results an empirical relation between concentration of chlorophyll a Cc-a and its wavelength λavg can be formulated.

  12. Trends in ocean colour and chlorophyll concentration from 1889 to 2000, worldwide.

    PubMed

    Wernand, Marcel R; van der Woerd, Hendrik J; Gieskes, Winfried W C

    2013-01-01

    Marine primary productivity is an important agent in the global cycling of carbon dioxide, a major 'greenhouse gas', and variations in the concentration of the ocean's phytoplankton biomass can therefore explain trends in the global carbon budget. Since the launch of satellite-mounted sensors globe-wide monitoring of chlorophyll, a phytoplankton biomass proxy, became feasible. Just as satellites, the Forel-Ule (FU) scale record (a hardly explored database of ocean colour) has covered all seas and oceans--but already since 1889. We provide evidence that changes of ocean surface chlorophyll can be reconstructed with confidence from this record. The EcoLight radiative transfer numerical model indicates that the FU index is closely related to chlorophyll concentrations in open ocean regions. The most complete FU record is that of the North Atlantic in terms of coverage over space and in time; this dataset has been used to test the validity of colour changes that can be translated to chlorophyll. The FU and FU-derived chlorophyll data were analysed for monotonously increasing or decreasing trends with the non-parametric Mann-Kendall test, a method to establish the presence of a consistent trend. Our analysis has not revealed a globe-wide trend of increase or decrease in chlorophyll concentration during the past century; ocean regions have apparently responded differentially to changes in meteorological, hydrological and biological conditions at the surface, including potential long-term trends related to global warming. Since 1889, chlorophyll concentrations have decreased in the Indian Ocean and in the Pacific; increased in the Atlantic Ocean, the Mediterranean, the Chinese Sea, and in the seas west and north-west of Japan. This suggests that explanations of chlorophyll changes over long periods should focus on hydrographical and biological characteristics typical of single ocean regions, not on those of 'the' ocean.

  13. Satellite and hydrographic observations of the Bering Sea ‘Green Belt’

    NASA Astrophysics Data System (ADS)

    Okkonen, Stephen R.; Schmidt, G. M.; Cokelet, E. D.; Stabeno, P. J.

    2004-05-01

    Green Belt is the aptly named region of high productivity occurring principally along and above the shelf-slope boundary in the Bering Sea. TOPEX altimeter measurements of sea-surface topography, SeaWiFS imagery of chlorophyll a concentration, and shipboard measurements of salinity and fluorescence are used to describe the surface structure of the Green Belt and its relationship to the Bering Slope Current eddy field during the 2000, 2001, and 2002 spring blooms. During spring 2000, high surface chlorophyll a concentrations (>10 mg m -3) were observed within a ˜200-km wide band adjacent to and seaward of the shelf break in the northwest Bering Sea. This high concentration chlorophyll band was associated with an anticyclonic eddy group that propagated along isobaths above the continental slope and entrained chlorophyll from the shelf-slope front. During spring 2001, anticyclonic eddies in the northwest Bering Sea had propagated off-slope prior to the onset of the spring bloom and were too far from the shelf-slope front to entrain frontal chlorophyll during the bloom. A second chlorophyll front associated with the leading edge of the off-slope eddies was observed. Between these two fronts was a region of relatively low chlorophyll a concentration (˜1 mg m -3). The eddy field during the 2002 spring bloom was observed to propagate northwestward adjacent to the shelf-break and entrain chlorophyll from the shelf-slope region in a manner similar to what was observed during the 2000 spring bloom. These observations suggest that eddies are important, if not the principal, agents that cause variability in the distribution of chlorophyll during the spring bloom in the central Bering Sea.

  14. Complex formation between chlorophyll a and cytochrome c: surface properties at the air-water interface. Absorbance, fluorescence and fluorescence-lifetime in Langmuir-Blodgett films.

    PubMed

    Lamarche, F; Picard, G; Téchy, F; Aghion, J; Leblanc, R M

    1991-04-23

    The binding of cytochrome c to an insoluble monolayer of chlorophyll a was studied. Surface pressure (II), surface potential (delta V) and [14C]cytochrome c surface-concentration (gamma) isotherms were measured versus molecular area (sigma) in mixed films. Compared to the successive-addition method, this procedure allows the formation of homogeneous mixed films. The cytochrome c is incorporated into a chlorophyll a monolayer, compressed at a surface pressure of 20 mN.m-1. On expansion, the quantity of protein incorporated into the monolayer gradually increases. Subsequent compression-expansion cycles result in similar isotherms, distinct from that measured during the first expansion. All surface properties measured, but more specifically the surface radioactivity of [14C]cytochrome c, indicate the irreversibility of protein incorporation into the chlorophyll a monolayer. In fact, surface properties of the binary film are completely different from the properties of either of the pure components. As a result, calculated values of surface potentials for mixed films using the additivity law deviate from experimentally measured potentials. The absorption and fluorescence spectra of mixed films transferred onto a solid substrate by the Langmuir-Blodgett technique, indicate a dilution effect of chlorophyll a by cytochrome c. However, the dilution effect cannot be detected by the fluorescence lifetimes of pure chlorophyll a and mixed chlorophyll a-cytochrome c films, both shorter than 0.2 ns. This provides support for the existence of an energy-transfer mechanism between chlorophyll a monomer and chlorophyll a aggregates which could serve as an energy trap. The role of the protein could be related to that of the matrix.

  15. [Effects of covering on growth potential and chlorophyll content of hardwood cutting of Lycium barbarum].

    PubMed

    Zhang, Ju-qiong; Lin, Hai-ming; Lin, Nan

    2011-07-01

    To study the effect of plastic film covering, straw covering, plastic film covering in greenhouse and no-covering cutting on growth and Chlorophyll content of Lycium barbarum hardwood cutting seedlings. Single factor randomized block design method was used in this research. The effect of different covering treatments on germination rate, seedling rate and growth potential were all plastic film covering in greenhouse > plastic film covering > straw covering > no-covering cutting. Chlorophyll a, Chlorophyll b, Chlorophyll a + b content and Ca/Cb were significantly different with different coverings in different periods. The optimal covering on hardwood cutting of Lycium barbarum is plastic film covering in greenhouse. Both plastic film and straw covering are better than no-covering cutting.

  16. Remote sensing of oligotrophic waters: model divergence at low chlorophyll concentrations.

    PubMed

    Mehrtens, Hela; Martin, Thomas

    2002-11-20

    The performance of the OC2 Sea-viewing Wide Field-of-view Sensor (SeaWiFS) algorithm based on 490- and 555-nm water-leaving radiances at low chlorophyll contents is compared with those of semianalytical models and a Monte Carlo radiative transfer model. We introduce our model, which uses two particle phase functions and scattering coefficient parameterizations to achieve a backscattering ratio that varies with chlorophyll concentration. We discuss the various parameterizations and compare them with existent measurements. The SeaWiFS algorithm could be confirmed within an accuracy of 35% over a chlorophyll range from 0.1 to 1 mg m(-3), whereas for lower chlorophyll concentrations we found a significant overestimation of the OC2 algorithm.

  17. Investigating the control of chlorophyll degradation by genomic correlation mining

    USDA-ARS?s Scientific Manuscript database

    Chlorophyll degradation is an intricate process that is critical in a variety of plant tissues at different times during the plant life cycle. Many of the photoactive chlorophyll degradation intermediates are exceptionally cytotoxic necessitating that the pathway be carefully coordinated and regulat...

  18. Hyperspectral imaging detection of decayed honey peaches based on their chlorophyll content.

    PubMed

    Sun, Ye; Wang, Yihang; Xiao, Hui; Gu, Xinzhe; Pan, Leiqing; Tu, Kang

    2017-11-15

    Honey peach is a very common but highly perishable market fruit. When pathogens infect fruit, chlorophyll as one of the important components related to fruit quality, decreased significantly. Here, the feasibility of hyperspectral imaging to determine the chlorophyll content thus distinguishing diseased peaches was investigated. Three optimal wavelengths (617nm, 675nm, and 818nm) were selected according to chlorophyll content via successive projections algorithm. Partial least square regression models were established to determine chlorophyll content. Three band ratios were obtained using these optimal wavelengths, which improved spatial details, but also integrates the information of chemical composition from spectral characteristics. The band ratio values were suitable to classify the diseased peaches with 98.75% accuracy and clearly show the spatial distribution of diseased parts. This study provides a new perspective for the selection of optimal wavelengths of hyperspectral imaging via chlorophyll content, thus enabling the detection of fungal diseases in peaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Instrumentation in Developing Chlorophyll Fluorescence Biosensing: A Review

    PubMed Central

    Fernandez-Jaramillo, Arturo A.; Duarte-Galvan, Carlos; Contreras-Medina, Luis M.; Torres-Pacheco, Irineo; de J. Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon G.; Millan-Almaraz, Jesus R.

    2012-01-01

    Chlorophyll fluorescence can be defined as the red and far-red light emitted by photosynthetic tissue when it is excited by a light source. This is an important phenomenon which permits investigators to obtain important information about the state of health of a photosynthetic sample. This article reviews the current state of the art knowledge regarding the design of new chlorophyll fluorescence sensing systems, providing appropriate information about processes, instrumentation and electronic devices. These types of systems and applications can be created to determine both comfort conditions and current problems within a given subject. The procedure to measure chlorophyll fluorescence is commonly split into two main parts; the first involves chlorophyll excitation, for which there are passive or active methods. The second part of the procedure is to closely measure the chlorophyll fluorescence response with specialized instrumentation systems. Such systems utilize several methods, each with different characteristics regarding to cost, resolution, ease of processing or portability. These methods for the most part include cameras, photodiodes and satellite images. PMID:23112686

  20. Fabrication of dye-sensitized solar cell using chlorophylls pigment from sargassum

    NASA Astrophysics Data System (ADS)

    Ridwan, M. A.; Noor, E.; Rusli, M. S.; Akhiruddin

    2018-04-01

    Dye-sensitized solar cell (DSSC) is a new generation of the solar cell. Its development in the dye-sensitized system is varied. Natural dyes have been the choice in developing DSSC. This study used a dye-sensitized chlorophyll pigment from Sargassum sp. as a dye-sensitized solar cell. This study aims to obtain chlorophyll pigment extract to be used as a dye in DSSC and to obtain the best energy conversion efficiency from DSSC. The chlorophyll pigments were extracted using APHA method (2012), and the TiO2 coating method used was doctor blade method. The two fabricated cells have an area of 1 cm2 immersed with chlorophyll dye for 30 hours. Then these cells were tested using direct sun radiation. The concentration value of chlorophyll in acetone solution was 61.176 mg/L. The efficiency value obtained was 1.50% with VOC of 241 mV, ISC 2.9 x 10-4 mA and fill factor 0.432.

  1. Surface disturbance of cryptobiotic soil crusts: nitrogenase activity, chlorophyll content, and chlorophyll degradation

    USGS Publications Warehouse

    Belnap, Jayne; Harper, Kimball T.; Warren, Steven D.

    1994-01-01

    Cryptobiotic soil crusts are an important component of semiarid and arid ecosystems. An important role of these crusts is the contribution of fixed nitrogen to cold‐desert ecosystems. This study examines the residual effects of various intensities and combinations of different surface disturbances (raking, scalping, and tracked vehicles) on nitrogenase activity, chlorophyll content, and chlorophyll degradation in these soil crusts. Nine months after disturbance chlorophyll content of disturbed soils was not statistically different from undisturbed controls, except in the scalped treatments, indicating recovery of this characteristic is fairly quick unless surface material is removed. Differences in chlorophyll degradation among treatments were not statistically significant. However, nitrogenase activity in all treatments showed tremendous reductions, ranging from 77–97%, when compared to the control, indicating this characteristic is slow to recover. Consequently, assessment of crustal recovery from disturbance must include not only visual and biomass characteristics but other physiological measurements as well. Areas dominated by these crusts should be managed conservatively until the implications of crustal disturbance is better understood.

  2. Impact of chlorophyll bias on the tropical Pacific mean climate in an earth system model

    NASA Astrophysics Data System (ADS)

    Lim, Hyung-Gyu; Park, Jong-Yeon; Kug, Jong-Seong

    2017-12-01

    Climate modeling groups nowadays develop earth system models (ESMs) by incorporating biogeochemical processes in their climate models. The ESMs, however, often show substantial bias in simulated marine biogeochemistry which can potentially introduce an undesirable bias in physical ocean fields through biogeophysical interactions. This study examines how and how much the chlorophyll bias in a state-of-the-art ESM affects the mean and seasonal cycle of tropical Pacific sea-surface temperature (SST). The ESM used in the present study shows a sizeable positive bias in the simulated tropical chlorophyll. We found that the correction of the chlorophyll bias can reduce the ESM's intrinsic cold SST mean bias in the equatorial Pacific. The biologically-induced cold SST bias is strongly affected by seasonally-dependent air-sea coupling strength. In addition, the correction of chlorophyll bias can improve the annual cycle of SST by up to 25%. This result suggests a possible modeling approach in understanding the two-way interactions between physical and chlorophyll biases by biogeophysical effects.

  3. Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butkus, Vytautas; Gelzinis, Andrius; Valkunas, Leonas

    2015-06-07

    Energy transfer processes and coherent phenomena in the fucoxanthin–chlorophyll protein complex, which is responsible for the light harvesting function in marine algae diatoms, were investigated at 77 K by using two-dimensional electronic spectroscopy. Experiments performed on femtosecond and picosecond timescales led to separation of spectral dynamics, witnessing evolutions of coherence and population states of the system in the spectral region of Q{sub y} transitions of chlorophylls a and c. Analysis of the coherence dynamics allowed us to identify chlorophyll (Chl) a and fucoxanthin intramolecular vibrations dominating over the first few picoseconds. Closer inspection of the spectral region of the Q{submore » y} transition of Chl c revealed previously not identified, mutually non-interacting chlorophyll c states participating in femtosecond or picosecond energy transfer to the Chl a molecules. Consideration of separated coherent and incoherent dynamics allowed us to hypothesize the vibrations-assisted coherent energy transfer between Chl c and Chl a and the overall spatial arrangement of chlorophyll molecules.« less

  4. Visible foliar injury caused by ozone alters the relationship between SPAD meter readings and chlorophyll concentrations in cutleaf coneflower.

    PubMed

    Neufeld, Howard S; Chappelka, Arthur H; Somers, Greg L; Burkey, Kent O; Davison, Alan W; Finkelstein, Peter L

    2006-03-01

    The ability of the SPAD-502 chlorophyll meter to quantify chlorophyll amounts in ozone-affected leaves of cutleaf coneflower (Rudbeckia laciniata var. digitata) was assessed in this study. When relatively uninjured leaves were measured (percent leaf area affected by stipple less than 6%), SPAD meter readings were linearly related to total chlorophyll with an adjusted R (2) of 0.84. However, when leaves with foliar injury (characterized as a purple to brownish stipple on the upper leaf surface affecting more than 6% of the leaf area) were added, likelihood ratio tests showed that it was no longer possible to use the same equation to obtain chlorophyll estimations for both classes of leaves. Either an equation with a common slope or a common intercept was necessary. We suspect several factors are involved in altering the calibration of the SPAD meter for measuring chlorophyll amounts in visibly ozone-injured leaves, with the most likely being changes in either light absorption or scattering resulting from tissue necrosis.

  5. Near infrared fluorescent chlorophyll nanoscale liposomes for sentinel lymph node mapping

    PubMed Central

    Fan, Lina; Wu, Qiang; Chu, Maoquan

    2012-01-01

    Background Sentinel lymph node (SLN) mapping using in vivo near infrared fluorescence imaging has attracted great attention during the past few years. Here we report on the early use of poorly water-soluble chlorophyll with near infrared fluorescence extracted from the leaf of Chimonanthus salicifolius, for mouse axillary SLN mapping. Methods and results To improve the water solubility and SLN targeting of the chlorophyll, we encapsulated the chlorophyll in nanoscale liposomes. The liposome-coated chlorophyll nanocomposites obtained were spherical in shape and had an average diameter of 21.7 ± 6.0 nm. The nanocomposites dispersed well in water, and in aqueous suspension they exhibited brighter near infrared fluorescence than chlorophyll alone. After incubation of the nanocomposites with normal liver cells (QSG-7701) and macrophage cells (Ana-1) for no more than 48 hours, there was no obvious reduction in cell viability. When the nanocomposites were injected intradermally into the paw of a mouse, the axillary SLN was found to be strongly fluorescent and was easily visualized in real time without a requirement for surgery. The intensity of the near infrared fluorescence emitted by the SLN was obviously brighter than that emitted by the SLN of another mouse that had been intradermally injected with chlorophyll alone. Conclusion Our data show that the liposome-coated chlorophyll nanocomposites could have great potential for clinical SLN mapping due to their lack of toxicity, bright near infrared fluorescence, and small diameter. PMID:22787402

  6. Cytochrome P450 CYP89A9 Is Involved in the Formation of Major Chlorophyll Catabolites during Leaf Senescence in Arabidopsis[W][OA

    PubMed Central

    Christ, Bastien; Süssenbacher, Iris; Moser, Simone; Bichsel, Nicole; Egert, Aurelie; Müller, Thomas; Hörtensteiner, Stefan

    2013-01-01

    Nonfluorescent chlorophyll catabolites (NCCs) were described as products of chlorophyll breakdown in Arabidopsis thaliana. NCCs are formyloxobilin-type catabolites derived from chlorophyll by oxygenolytic opening of the chlorin macrocycle. These linear tetrapyrroles are generated from their fluorescent chlorophyll catabolite (FCC) precursors by a nonenzymatic isomerization inside the vacuole of senescing cells. Here, we identified a group of distinct dioxobilin-type chlorophyll catabolites (DCCs) as the major breakdown products in wild-type Arabidopsis, representing more than 90% of the chlorophyll of green leaves. The molecular constitution of the most abundant nonfluorescent DCC (NDCC), At-NDCC-1, was determined. We further identified cytochrome P450 monooxygenase CYP89A9 as being responsible for NDCC accumulation in wild-type Arabidopsis; cyp89a9 mutants that are deficient in CYP89A9 function were devoid of NDCCs but accumulated proportionally higher amounts of NCCs. CYP89A9 localized outside the chloroplasts, implying that FCCs occurring in the cytosol might be its natural substrate. Using recombinant CYP89A9, we confirm FCC specificity and show that fluorescent DCCs are the products of the CYP89A9 reaction. Fluorescent DCCs, formed by this enzyme, isomerize to the respective NDCCs in weakly acidic medium, as found in vacuoles. We conclude that CYP89A9 is involved in the formation of dioxobilin-type catabolites of chlorophyll in Arabidopsis. PMID:23723324

  7. An Integrated Protein Chemistry Laboratory: Chlorophyll and Chlorophyllase

    ERIC Educational Resources Information Center

    Arkus, Kiani A. J.; Jez, Joseph M.

    2008-01-01

    Chlorophyll, the most abundant pigment in nature, is degraded during normal plant growth, when leaves change color, and at specific developmental stages. Chlorophyllase catalyzes the first chemical reaction in this process, that is, the hydrolysis of chlorophyll into chlorophyllide. Here, we describe a series of laboratory sessions designed to…

  8. Modulated Chlorophyll "a" Fluorescence: A Tool for Teaching Photosynthesis

    ERIC Educational Resources Information Center

    Marques da Silva, Jorge; Bernardes da Silva, Anabela; Padua, Mario

    2007-01-01

    "In vivo" chlorophyll "a" fluorescence is a key technique in photosynthesis research. The recent release of a low cost, commercial, modulated fluorometer enables this powerful technology to be used in education. Modulated chlorophyll a fluorescence measurement "in vivo" is here proposed as a tool to demonstrate basic…

  9. Chlorophyll fluorescence: What is it and what do the numbers mean?

    Treesearch

    Gary A. Ritchie

    2006-01-01

    Although results of chlorophyll fluorescence (CF) measurements in nursery seedlings are becoming widely reported in the literature, the theory, terminology, and interpretation of these data are often obscure and confusing to nursery practitioners. This report outlines the underlying physiological basis for chlorophyll fluorometry and discusses measurement protocols and...

  10. Chlorophyll derivatives for pest and disease control: Are they safe?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azizullah, Azizullah, E-mail: azizswabi@gmail.com; Murad, Waheed

    2015-01-15

    Chlorophyll derivatives are getting widespread acceptance among the researchers as natural photosensitizers for photodynamic control of pests and disease vectors; however, rare attention has been given to evaluation of their toxicity to non-target organisms in the environment. This perspective article highlights that chlorophyll derivatives may not be as safe as believed and can possibly pose risk to non-target organisms in the environment. We invite the attention of environmental biologists, particularly ecotoxicologists, to contribute their role in making the application of chlorophyll derivatives more environmentally friendly and publicly acceptable.

  11. Simulated laser fluorosensor signals from subsurface chlorophyll distributions

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Khatun, S.; Punjabi, A.; Poole, L.

    1986-01-01

    A semianalytic Monte Carlo model has been used to simulate laser fluorosensor signals returned from subsurface distributions of chlorophyll. This study assumes the only constituent of the ocean medium is the common coastal zone dinoflagellate Prorocentrum minimum. The concentration is represented by Gaussian distributions in which the location of the distribution maximum and the standard deviation are variable. Most of the qualitative features observed in the fluorescence signal for total chlorophyll concentrations up to 1.0 microg/liter can be accounted for with a simple analytic solution assuming a rectangular chlorophyll distribution function.

  12. Remote measurement of turbidity and chlorophyll through aerial photography

    NASA Technical Reports Server (NTRS)

    Schwebel, M. D.; James, W. P.; Clark, W. J.

    1973-01-01

    Studies were conducted utilizing six different film and filter combinations to quantitatively detect chlorophyll and turbidity in six farm ponds. The low range of turbidity from 0-35 JTU correlated well with the density readings from the green band of normal color film and the high range above 35 JTU was found to correlate with density readings in the red band of color infrared film. The effect of many of the significant variables can be reduced by using standardized procedures in taking the photography. Attempts to detect chlorophyll were masked by the turbidity. The ponds which were highly turbid also had high chlorophyll concentrations; whereas, the ponds with low turbidity also had low chlorophyll concentrations. This prevented a direct correlation for this parameter. Several suggested approaches are cited for possible future investigations.

  13. Analysis of high altitude remotely sensed data collected in the Nantucket Shoals experiment 4-15 May, 1981

    NASA Technical Reports Server (NTRS)

    Ohlhorst, C. W.

    1982-01-01

    High altitude ocean color scanner ratios of band 2 (456 to 476 nanometers) to band 4 (539 to 559 nanometers) and band 1 (418 to 438 nanometers) to band 3 (498 to 518 nanometers) had high correlation coefficient values (-0.928 and 0.891 respectively) with seven boat sampled chlorophyll a measurements. The range of chlorophyll a concentrations was small (1.7-2.58 mg/cu m.). Each ratio was used to calculate chlorophyll a values for the center pixel of each scan line on flight lines 5 and 6. The two ratios produced dissimilar chlorophyll a trends. Due to the high noise level in the scanner data, no reliable synoptic chlorophyll a map could be generated with either ratio algorithm.

  14. Inhibition of the light-independent synthesis of chlorophyll in pine cotyledons at low temperature.

    PubMed

    Muramatsu, S; Kojima, K; Igasaki, T; Azumi, Y; Shinohara, K

    2001-08-01

    Cotyledons of Japanese black pine (Pinus thunbergii) were yellow when they developed in darkness at 8 degrees C since the light-independent synthesis of chlorophyll was almost completely inhibited in these cotyledons. The level of chlorophyll in dark-grown cotyledons was less than one-twentieth of that in light-grown cotyledons at the same temperature. In the yellow cotyledons, levels of transcripts of cab, rbcS, rbcL and psbA genes were quite high. The large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase were also detected at relatively high levels in yellow cotyledons. However, the accumulation of the two apoproteins of the light-harvesting chlorophyll a/b-binding protein of PSII was limited because of the limited supply of chlorophyll.

  15. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance

    PubMed Central

    Zeng, Chen; Xu, Huiping; Fischer, Andrew M.

    2016-01-01

    Ocean color remote sensing significantly contributes to our understanding of phytoplankton distribution and abundance and primary productivity in the Southern Ocean (SO). However, the current SO in situ optical database is still insufficient and unevenly distributed. This limits the ability to produce robust and accurate measurements of satellite-based chlorophyll. Based on data collected on cruises around the Antarctica Peninsula (AP) on January 2014 and 2016, this research intends to enhance our knowledge of SO water and atmospheric optical characteristics and address satellite algorithm deficiency of ocean color products. We collected high resolution in situ water leaving reflectance (±1 nm band resolution), simultaneous in situ chlorophyll-a concentrations and satellite (MODIS and VIIRS) water leaving reflectance. Field samples show that clouds have a great impact on the visible green bands and are difficult to detect because NASA protocols apply the NIR band as a cloud contamination threshold. When compared to global case I water, water around the AP has lower water leaving reflectance and a narrower blue-green band ratio, which explains chlorophyll-a underestimation in high chlorophyll-a regions and overestimation in low chlorophyll-a regions. VIIRS shows higher spatial coverage and detection accuracy than MODIS. After coefficient improvement, VIIRS is able to predict chlorophyll a with 53% accuracy. PMID:27941596

  16. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance.

    PubMed

    Zeng, Chen; Xu, Huiping; Fischer, Andrew M

    2016-12-07

    Ocean color remote sensing significantly contributes to our understanding of phytoplankton distribution and abundance and primary productivity in the Southern Ocean (SO). However, the current SO in situ optical database is still insufficient and unevenly distributed. This limits the ability to produce robust and accurate measurements of satellite-based chlorophyll. Based on data collected on cruises around the Antarctica Peninsula (AP) on January 2014 and 2016, this research intends to enhance our knowledge of SO water and atmospheric optical characteristics and address satellite algorithm deficiency of ocean color products. We collected high resolution in situ water leaving reflectance (±1 nm band resolution), simultaneous in situ chlorophyll-a concentrations and satellite (MODIS and VIIRS) water leaving reflectance. Field samples show that clouds have a great impact on the visible green bands and are difficult to detect because NASA protocols apply the NIR band as a cloud contamination threshold. When compared to global case I water, water around the AP has lower water leaving reflectance and a narrower blue-green band ratio, which explains chlorophyll-a underestimation in high chlorophyll-a regions and overestimation in low chlorophyll-a regions. VIIRS shows higher spatial coverage and detection accuracy than MODIS. After coefficient improvement, VIIRS is able to predict chlorophyll a with 53% accuracy.

  17. Dustfall Effect on Hyperspectral Inversion of Chlorophyll Content - a Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Chen, Yuteng; Ma, Baodong; Li, Xuexin; Zhang, Song; Wu, Lixin

    2018-04-01

    Dust pollution is serious in many areas of China. It is of great significance to estimate chlorophyll content of vegetation accurately by hyperspectral remote sensing for assessing the vegetation growth status and monitoring the ecological environment in dusty areas. By using selected vegetation indices including Medium Resolution Imaging Spectrometer Terrestrial Chlorophyll Index (MTCI) Double Difference Index (DD) and Red Edge Position Index (REP), chlorophyll inversion models were built to study the accuracy of hyperspectral inversion of chlorophyll content based on a laboratory experiment. The results show that: (1) REP exponential model has the most stable accuracy for inversion of chlorophyll content in dusty environment. When dustfall amount is less than 80 g/m2, the inversion accuracy based on REP is stable with the variation of dustfall amount. When dustfall amount is greater than 80 g/m2, the inversion accuracy is slightly fluctuation. (2) Inversion accuracy of DD is worst among three models. (3) MTCI logarithm model has high inversion accuracy when dustfall amount is less than 80 g/m2; When dustfall amount is greater than 80 g/m2, inversion accuracy decreases regularly and inversion accuracy of modified MTCI (mMTCI) increases significantly. The results provide experimental basis and theoretical reference for hyperspectral remote sensing inversion of chlorophyll content.

  18. The Thermocline Layer and Chlorophyll-a Concentration Variability during Southeast Monsoon in the Banda Sea

    NASA Astrophysics Data System (ADS)

    Pusparini, Nikita; Prasetyo, Budi; Ambariyanto; Widowati, Ita

    2017-02-01

    Thermocline layer and chlorophyll-a concentration can be used to investigate the upwelling region. This investigation is focused in the Banda Sea because the upwelling event in this area is quite large and has a longer upwelling duration than other waters in Indonesia. In addition, Banda Sea is also influenced by climatic factors such as monsoon. The aim of this research is to determine the validation of secondary data (from satellite imagery data and model) and in situ observation data (from research cruise) and to determine the variability of thermocline layer and chlorophyll-a concentration during Southeast Monsoon in the Banda Sea. The data used in this study were chlorophyll-a concentration, seawater vertical temperature at depths 0-400 meters, and sea surface temperature from remote sensing and in situ data. Spatial and temporal analysis of all parameters was conducted by quantitative descriptive method. The results showed that the variability of thermocline layer and the chlorophyll-a distribution were strongly related to seasonal pattern. In most cases, the estimates of thermocline layer and chlorophyll-a concentration using remote sensing algorithm were higher than in situ measured values. The greatest variability occurred in the eastern Banda Sea during the Southeast Monsoon with shallower thermocline layer, more abundance of chlorophyll-a concentration, and lower sea surface temperature.

  19. Action spectra of chlorophyll a biosynthesis in cyanobacteria: dark-operative protochlorophyllide oxidoreductase-deficient mutants.

    PubMed

    Gao, Yang; Xiong, Wei; He, Ming J; Tang, Li; Xiang, Jin Y; Wu, Qing Y

    2009-01-01

    Both light-dependent and light-independent (dark) protochlorophyllide (Pchlide) reductase account for catalyzing the reduction of Pchlide to chlorophyllide during the biosynthesis of Mg-tetrapyrrole pigments in cyanobacteria. To gain more insight into the interaction between the wavelength of the light and these two chlorophyll synthetic pathways in Synechocystis sp. PCC 6803, the spectral effectiveness of the formation of chlorophyll a was investigated during the regreening process in chlL(-) and chlN(-) mutants, which could not synthesize chlorophyll during growth in the dark. The action spectra showed obvious maxima around 450 nm and 650 nm, similar to those of higher plants except that the intensities of two peaks are reversed. The mRNA levels of chlL and chlN and chlorophyll a content under different wavelengths of light in the wild-type strain were also measured. The RT-PCR analysis revealed that the transcripts of chlL and chlN were up-regulated in red light but simultaneously down-regulated in green light which resulted in corresponding changes of the chlorophyll content. This fact indicates that the regulation of dark-operative protochlorophyllide oxidoreductase (DPOR) in the transcriptional level is essential for cyanobacteria to synthesize appropriate chlorophyll for acclimating in various light colour environments.

  20. Simultaneous measurement of chlorophyll and astaxanthin in Haematococcus pluvialis cells by first-order derivative ultraviolet-visible spectrophotometry.

    PubMed

    Lababpour, Abdolmajid; Lee, Choul-Gyun

    2006-02-01

    A first-order derivative spectrophotometric method has been developed for the simultaneous measurement of chlorophyll and astaxanthin concentrations in Haematococcus pluvialis cells. Acetone was selected for the extraction of pigments because of its good sensitivity and low toxicity compared with other organic solvents tested; the tested solvents included acetone, methanol, hexane, chloroform, n-propanol, and acetonitrile. A first-order derivative spectrophotometric method was used to eliminate the effects of the overlaping of the chlorophyll and astaxanthin peaks. The linear ranges in 1D evaluation were from 0.50 to 20.0 microg x ml(-1) for chlorophyll and from 1.00 to 12.0 microg x ml(-1) for astaxanthin. The limits of detection of the analytical procedure were found to be 0.35 microg x ml(-1) for chlorophyll and 0.25 microg x ml(-1) for astaxanthin. The relative standard deviations for the determination of 7.0 microg x ml(-1) chlorophyll and 5.0 microg x ml(-1) astaxanthin were 1.2% and 1.1%, respectively. The procedure was found to be simple, rapid, and reliable. This method was successfully applied to the determination of chlorophyll and astaxanthin concentrations in H. pluvialis cells. A good agreement was achieved between the results obtained by the proposed method and HPLC method.

  1. Chlorophyll extraction from suji leaf (Pleomele angustifolia Roxb.) with ZnCl2 stabilizer.

    PubMed

    Rahayuningsih, Edia; Pamungkas, Mukmin Sapto; Olvianas, Muhammad; Putera, Andreas Diga Pratama

    2018-03-01

    Suji ( Pleomele angustifolia Roxb .) leaves are a prominent source of chlorophyll and well-known for their ability to produce green color for food ingredients. However, chlorophyll is suspectible to color degradation at high temperature. Color degradation occurred because porphyrin loses magnesium in its ring and it can be avoided by adding zinc. The aim of this work was to investigate the combined effect of independent variables on chlorophyll extraction process using ZnCl 2 as a stabilizer. Suji leaves were blanched with boiling water for 2 min, Zn-chlorophyll synthesis was done by varying concentration of ZnCl 2 , Zn-chlorophyll extraction with ethanol, and UV-Vis spectrophotometry analysis of the final extracted solutions. A full three-level factorial design under response surface methodology was used to obtain the optimum condition of extraction process. The experimental data were analyzed by analysis of variance and fitted with second order polynomial equation. The coefficient of determination (R 2 ) was found to be 81.99%. The optimum operating conditions were obtained at pH 7, ZnCl 2 concentration of 700 ppm and temperature of 85 °C with desirability value of 1.0000. At the optimum conditions, the total chlorophyll content (TCC) was found to be 47.2975 mg/100 g fresh weight.

  2. Long-term Trend of Satellite-observed Chlorophyll-a Concentration Variations in the East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Park, J. E.; PARK, K. A.

    2016-02-01

    Long-term time-series of satellite ocean color data enable us to analyze the effects of climate change on ocean ecosystem through chlorophyll-a concentration as a proxy for phytoplankton biomass. In this study, we constructed a 17 year-long time-series dataset (1998-2014) of chlorophyll-a concentration by combining SeaWiFS (Obrview-2, 1997-2010) and MODIS (Aqua, 2002-present) data in the East Sea (Japan Sea). Several types of errors such as anonymously high values (a speckle error), stripe-like patterns, discrepancy originating from time gap between the two satellites were eliminated to enhance the accuracy of chlorophyll-a concentration data. The composited chlorophyll-a concentration maps, passing through the post-processing of the speckle errors, were improved significantly, by 14% of abnormal variability in maximum. Using the database, we investigated spatial and temporal variability of chlorophyll-a concentration in the East Sea. Spatial distribution of long-term trend of chlorophyll-a concentration indicated obvious distinction between northern and southern regions of the subpolar front. It revealed predominant seasonal variabilities as well as long-term changes in the timings of spring bloom. This study addresses the important role of local climate change on fast changing ecosystem of the East Sea as one of miniature oceans.

  3. Estimating chlorophyll content of spartina alterniflora at leaf level using hyper-spectral data

    NASA Astrophysics Data System (ADS)

    Wang, Jiapeng; Shi, Runhe; Liu, Pudong; Zhang, Chao; Chen, Maosi

    2017-09-01

    Spartina alterniflora, one of most successful invasive species in the world, was firstly introduced to China in 1979 to accelerate sedimentation and land formation via so-called "ecological engineering", and it is now widely distributed in coastal saltmarshes in China. A key question is how to retrieve chlorophyll content to reflect growth status, which has important implication of potential invasiveness. In this work, an estimation model of chlorophyll content of S. alterniflora was developed based on hyper-spectral data in the Dongtan Wetland, Yangtze Estuary, China. The spectral reflectance of S. alterniflora leaves and their corresponding chlorophyll contents were measured, and then the correlation analysis and regression (i.e., linear, logarithmic, quadratic, power and exponential regression) method were established. The spectral reflectance was transformed and the feature parameters (i.e., "san bian", "lv feng" and "hong gu") were extracted to retrieve the chlorophyll content of S. alterniflora . The results showed that these parameters had a large correlation coefficient with chlorophyll content. On the basis of the correlation coefficient, mathematical models were established, and the models of power and exponential based on SDb had the least RMSE and larger R2 , which had a good performance regarding the inversion of chlorophyll content of S. alterniflora.

  4. Satellite chlorophyll off the British Columbia Coast, 1997-2010

    NASA Astrophysics Data System (ADS)

    Jackson, Jennifer M.; Thomson, Richard E.; Brown, Leslie N.; Willis, Peter G.; Borstad, Gary A.

    2015-07-01

    We examine the spatial and temporal variability of satellite-sensed sea surface chlorophyll off the west coast of North America from 1997 to 2010, with focus on coastal British Columbia. The variability in surface chlorophyll is complex. Whereas the spring bloom generates the highest phytoplankton concentration for coastal Alaska, the north and east coasts of Haida Gwaii, Queen Charlotte Sound, the Strait of Georgia, and coastal Oregon and California, it is the fall bloom that normally generates the highest concentration for the west coast of Vancouver Island, Juan de Fuca Strait, and the west coast of Washington. The highest satellite-sensed chlorophyll concentrations occur in the Strait of Georgia, where mean values are at least 2 times higher than elsewhere in the northeast Pacific. Moreover, the annual average surface chlorophyll concentration increased significantly in the Strait of Georgia during this period, with highest concentration observed during the near neutral ENSO conditions of the spring of 2007. The next highest concentrations occur off southwest Vancouver Island but have no statistically significant trend. The lowest average peak chlorophyll concentration is observed off Southern California. The timing of the highest chlorophyll concentration is latest off the coast of Washington and earliest off the coast of Southern California. Small increasing concentration trends are observed off the Washington and California coasts.

  5. A new method for fast extraction and determination of chlorophylls in natural water.

    PubMed

    Qiu, Nianwei; Wang, Xiushun; Zhou, Feng

    2018-01-26

    Algae collection and chlorophyll extraction are two troublesome steps in the traditional methods used for the determination of chlorophyll concentration in natural water. A new method was established in this study for fast collection and extraction of chlorophyll. Based on our results, the optimum centrifugation condition for collecting algae was determined as: 5000 g for 15 min at 4 °C, and the optimum dilution ratio of dimethyl sulfoxide: 90% acetone was 1:4. The specific steps were as follows: the algae in water samples were collected by centrifugation at 5000 g at 4 °C for 15 min. The precipitated algae were suspended with 2 mL DMSO. Then the sample was transferred to a 15 mL centrifuge tube, and the tube was incubated at 65 °C for 1-2 h in the dark until the sample turned white. After cooling, the chlorophyll extract was diluted with 8 mL 90% acetone, before centrifugation at 5000 g for 5 min. The absorbance values of the supernatants at 750, 664, 647 and 630 nm were used for the calculation of chlorophyll concentrations by the trichromatic equations. This new method saved the filter cost, simplified the extraction process, improved the algae acquisition efficiency, and accelerated the chlorophyll extraction rate.

  6. Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana.

    PubMed

    Ling, Qihua; Huang, Weihua; Jarvis, Paul

    2011-02-01

    The SPAD-502 meter is a hand-held device that is widely used for the rapid, accurate and non-destructive measurement of leaf chlorophyll concentrations. It has been employed extensively in both research and agricultural applications, with a range of different plant species. However, its utility has not been fully exploited in relation to the most intensively studied model organism for plant science research, Arabidopsis thaliana. Measurements with the SPAD-502 meter produce relative SPAD meter values that are proportional to the amount of chlorophyll present in the leaf. In order to convert these values into absolute units of chlorophyll concentration, calibration curves must be derived and utilized. Here, we present calibration equations for Arabidopsis that can be used to convert SPAD values into total chlorophyll per unit leaf area (nmol/cm(2); R(2) = 0.9960) or per unit fresh weight of leaf tissue (nmol/mg; R(2) = 0.9809). These relationships were derived using a series of Arabidopsis chloroplast biogenesis mutants that exhibit chlorophyll deficiencies of varying severity, and were verified by the subsequent analysis of senescent or light-stressed leaves. Our results revealed that the converted SPAD values differ from photometric measurements of solvent-extracted chlorophyll by just ~6% on average.

  7. Phytochrome B Mediates the Regulation of Chlorophyll Biosynthesis through Transcriptional Regulation of ChlH and GUN4 in Rice Seedlings

    PubMed Central

    Kagawa, Takatoshi; Tanaka, Ayumi; Ueno, Osamu; Shimada, Hiroaki; Takano, Makoto

    2015-01-01

    Accurate regulation of chlorophyll synthesis is crucial for chloroplast formation during the greening process in angiosperms. In this study, we examined the role of phytochrome B (phyB) in the regulation of chlorophyll synthesis in rice seedlings (Oryza sativa L.) through the characterization of a pale-green phenotype observed in the phyB mutant grown under continuous red light (Rc) irradiation. Our results show that the Rc-induced chlorophyll accumulation can be divided into two components—a phyB-dependent and a phyB-independent component, and that the pale-green phenotype is caused by the absence of the phyB-dependent component. To elucidate the role of the missing component we established an Rc-induced greening experiment, the results of which revealed that several genes encoding proteins on the chlorophyll branch were repressed in the phyB mutant. Notable among them were ChlH and GUN4 genes, which encode subunit H and an activating factor of magnesium chelatase (Mg-chelatase), respectively, that were largely repressed in the mutant. Moreover, the kinetic profiles of chlorophyll precursors suggested that Mg-chelatase activity simultaneously decreased with the reduction in the transcript levels of ChlH and GUN4. These results suggest that phyB mediates the regulation of chlorophyll synthesis through transcriptional regulation of these two genes, whose products exert their action at the branching point of the chlorophyll biosynthesis pathway. Reduction of 5-aminolevulinic acid (5-ALA) synthesis could be detected in the mutant, but the kinetic profiles of chlorophyll precursors indicated that it was an event posterior to the reduction of the Mg-chelatase activity. It means that the repression of 5-ALA synthesis should not be a triggering event for the appearance of the pale-green phenotype. Instead, the repression of 5-ALA synthesis might be important for the subsequent stabilization of the pale-green phenotype for preventing excessive accumulation of hazardous chlorophyll precursors, which is an inevitable consequence of the reduction of Mg-chelatase activity. PMID:26270815

  8. In Vivo Single-Cell Fluorescence and Size Scaling of Phytoplankton Chlorophyll Content.

    PubMed

    Álvarez, Eva; Nogueira, Enrique; López-Urrutia, Ángel

    2017-04-01

    In unicellular phytoplankton, the size scaling exponent of chlorophyll content per cell decreases with increasing light limitation. Empirical studies have explored this allometry by combining data from several species, using average values of pigment content and cell size for each species. The resulting allometry thus includes phylogenetic and size scaling effects. The possibility of measuring single-cell fluorescence with imaging-in-flow cytometry devices allows the study of the size scaling of chlorophyll content at both the inter- and intraspecific levels. In this work, the changing allometry of chlorophyll content was estimated for the first time for single phytoplankton populations by using data from a series of incubations with monocultures exposed to different light levels. Interspecifically, our experiments confirm previous modeling and experimental results of increasing size scaling exponents with increasing irradiance. A similar pattern was observed intraspecifically but with a larger variability in size scaling exponents. Our results show that size-based processes and geometrical approaches explain variations in chlorophyll content. We also show that the single-cell fluorescence measurements provided by imaging-in-flow devices can be applied to field samples to understand the changes in the size dependence of chlorophyll content in response to environmental variables affecting primary production. IMPORTANCE The chlorophyll concentrations in phytoplankton register physiological adjustments in cellular pigmentation arising mainly from changes in light conditions. The extent of these adjustments is constrained by the size of the phytoplankton cells, even within single populations. Hence, variations in community chlorophyll derived from photoacclimation are also dependent on the phytoplankton size distribution. Copyright © 2017 American Society for Microbiology.

  9. Green vegetables, red meat and colon cancer: chlorophyll prevents the cytotoxic and hyperproliferative effects of haem in rat colon.

    PubMed

    de Vogel, Johan; Jonker-Termont, Denise S M L; van Lieshout, Esther M M; Katan, Martijn B; van der Meer, Roelof

    2005-02-01

    Diets high in red meat and low in green vegetables are associated with increased colon cancer risk. This association might be partly due to the haem content of red meat. In rats, dietary haem is metabolized in the gut to a cytotoxic factor that increases colonic cytotoxicity and epithelial proliferation. Green vegetables contain chlorophyll, a magnesium porphyrin structurally analogous to haem. We studied whether green vegetables inhibit the unfavourable colonic effects of haem. First, rats were fed a purified control diet or purified diets supplemented with 0.5 mmol haem/kg, spinach (chlorophyll concentration 1.2 mmol/kg) or haem plus spinach (n = 8/group) for 14 days. In a second experiment we also studied a group that received haem plus purified chlorophyll (1.2 mmol/kg). Cytotoxicity of faecal water was determined with a bioassay and colonic epithelial cell proliferation was quantified in vivo by [methyl-(3)H]thymidine incorporation into newly synthesized DNA. Exfoliation of colonocytes was measured as the amount of rat DNA in faeces. In both studies haem increased cytotoxicity of the colonic contents approximately 8-fold and proliferation of the colonocytes almost 2-fold. Spinach or an equimolar amount of chlorophyll supplement in the haem diet inhibited these haem effects completely. Haem clearly inhibited exfoliation of colonocytes, an effect counteracted by spinach and chlorophyll. Finally, size exclusion chromatography showed that chlorophyll prevented formation of the cytotoxic haem metabolite. We conclude that green vegetables may decrease colon cancer risk because chlorophyll prevents the detrimental, cytotoxic and hyperproliferative colonic effects of dietary haem.

  10. Temperature and Plant Adaptation. I. Interaction of Temperature and Light in the Synthesis of Chlorophyll in Corn 1

    PubMed Central

    McWilliam, J. R.; Naylor, A. W.

    1967-01-01

    The effect of temperature and light intensity have been studied in relation to the greening of etiolated corn (Zea mays cv. Pioneer 309-B) seedlings. Chlorophyll accumulation is rapid at high temperature (28°) under all conditions of light intensity. At low temperature (16°), and particularly in combination with high light intensity (3000-4500 ft-c), the accumulation of both chlorophyll and carotene is inhibited. Low pigment content at 16° is not directly due to a block in the pigment synthesizing mechanism, but rather to the photodestruction of chlorophyll prior to its stabilization in the membrane structure of the chloroplast lamellae. The parallel reduction in carotene content at high light intensity is probably a contributing factor, because of its role in protecting chlorophyll from photodestruction. The greater severity of photo-oxidation of chlorophyll at low temperature in corn when compared with wheat, appears to be due to a slower rate of protochlorophyllide synthesis and subsequent esterification. Thus in corn at 16° there is a prolongation of the photosensitive stage during chlorophyll synthesis. Photo-oxidation at 16° has also been shown to be a function of the incident light energy, with the photosynthetic pigments acting as receptors for their own destruction. In comparison with the behavior of corn, wheat seedlings green rapidly at high light intensity at both 16° and 28°. This contrasting temperature response with respect to chlorophyll synthesis may underlie a fundamental difference in adaptation of these 2 species to growth in the temperate zones of the world. PMID:16656709

  11. Evaluation of Bio-optical Algorithms for Chlorophyll Mapping in the Southwestern Atlantic

    NASA Astrophysics Data System (ADS)

    Garcia, V. M.; Garcia, C. A.; Signorini, S.; McClain, C. R.

    2005-05-01

    Efforts have been made over the past decade to study bio-optical properties of seawater in the Southwestern Atlantic for mapping chlorophyll concentration from space. Coastal regions deserve a greater attention due to the optical complexity from continental influence. Here we present an attempt to derive reliable bio-optical chlorophyll algorithms in the shelf region 25-40o S and 60-45o W. This area is subject to large optical interference by continental runoffs from La Plata River and Patos Lagoon. Spectral upwelling radiance and surface chlorophyll concentration data have been collected in the past years and have been used to generate a regional version of the NASA's OC2v4 model. The regional 2-band algorithm (termed OC2-LP), reduces chlorophyll positive bias to 11% as compared to the global SeaWiFS OC4v4 algorithm (bias = 27%). However, OC2-LP remains with an overall inaccuracy of over 40% in chlorophyll concentration, as calculated by the absolute percentage difference between in-situ and model-derived values. In-situ chlorophyll data from two cruises to the study region (La Plata I - winter of 2003 and La Plata II - summer of 2004) have been used to test the accuracy of the derived algorithm as well as the global version. A marked seasonal difference was found, where both OC4v4 and OC2-LP overestimate chlorophyll in summer at a higher magnitude than in the winter. These results indicate the need for other approaches rather than use of empirical band-ratio models in coastal waters of this region.

  12. Exploring the Relationship Between Reflectance Red Edge and Chlorophyll Content in Slash Pine

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Dungan, Jennifer L.; Gholz, Henry L.

    1990-01-01

    Chlorophyll is a key indicator of the physiological status of a forest canopy. However, its distribution may vary greatly in time and space, so that the estimation of chlorophyll content of canopies or branches by extrapolation from leaf values obtained by destructive sampling is labor intensive and potentially inaccurate. Chlorophy11 content is related positively to the point of maximum slope in vegetation reflectance spectra which occurs at wavelengths between 690-740 nm and is known as the "red edge." The red edge of needles on individual slash pine (Piniis elliottii Engelm.) branches and in whole forest canopies was measured with a spectroradiometer. Branches were measured on the ground against a spectrally flat reflectance target and canopies were measured from observation towers against a spectrally variable understory and forest floor. There was a linear relationship between red edge and chlorophyll content of branches (R(exp 2) = 0.91). Measurements of the red edge and this relationship were used to estimate the chlorophyll content of other branches with an error that was lower than that associated with the colorimetric (laboratory) method. There was no relationship between the red edge and the chlorophyll content of whole canopies. This can be explained by the overriding influence of the understory and forest floor, an influence that was illustrated by spectral mixture modeling. The results suggest that the red edge could be used to estimate the chlorophyll content in branches but it is unlikely to be of value for the estimation of chlorophyll content in canopies unless the canopy cover is high.

  13. Physical associations to spring phytoplankton biomass interannual variability in the U.S. Northeast Continental Shelf

    NASA Astrophysics Data System (ADS)

    Saba, Vincent S.; Hyde, Kimberly J. W.; Rebuck, Nathan D.; Friedland, Kevin D.; Hare, Jonathan A.; Kahru, Mati; Fogarty, Michael J.

    2015-02-01

    The continental shelf of the Northeast United States and Nova Scotia is a productive marine ecosystem that supports a robust biomass of living marine resources. Understanding marine ecosystem sensitivity to changes in the physical environment can start with the first-order response of phytoplankton (i.e., chlorophyll a), the base of the marine food web. However, the primary physical associations to the interannual variability of chlorophyll a in these waters are unclear. Here we used ocean color satellite measurements and identified the local and remote physical associations to interannual variability of spring surface chlorophyll a from 1998 to 2013. The highest interannual variability of chlorophyll a occurred in March and April on the northern flank of Georges Bank, the western Gulf of Maine, and Nantucket Shoals. Complex interactions between winter wind speed over the Shelf, local winter water levels, and the relative proportions of Atlantic versus Labrador Sea source waters entering the Gulf of Maine from the previous summer/fall were associated with the variability of March/April chlorophyll a in Georges Bank and the Gulf of Maine. Sea surface temperature and sea surface salinity were not robust correlates to spring chlorophyll a. Surface nitrate in the winter was not a robust correlate to chlorophyll a or the physical variables in every case suggesting that nitrate limitation may not be the primary constraint on the interannual variability of the spring bloom throughout all regions. Generalized linear models suggest that we can resolve 88% of March chlorophyll a interannual variability in Georges Bank using lagged physical data.

  14. In Vivo Single-Cell Fluorescence and Size Scaling of Phytoplankton Chlorophyll Content

    PubMed Central

    Nogueira, Enrique; López-Urrutia, Ángel

    2017-01-01

    ABSTRACT In unicellular phytoplankton, the size scaling exponent of chlorophyll content per cell decreases with increasing light limitation. Empirical studies have explored this allometry by combining data from several species, using average values of pigment content and cell size for each species. The resulting allometry thus includes phylogenetic and size scaling effects. The possibility of measuring single-cell fluorescence with imaging-in-flow cytometry devices allows the study of the size scaling of chlorophyll content at both the inter- and intraspecific levels. In this work, the changing allometry of chlorophyll content was estimated for the first time for single phytoplankton populations by using data from a series of incubations with monocultures exposed to different light levels. Interspecifically, our experiments confirm previous modeling and experimental results of increasing size scaling exponents with increasing irradiance. A similar pattern was observed intraspecifically but with a larger variability in size scaling exponents. Our results show that size-based processes and geometrical approaches explain variations in chlorophyll content. We also show that the single-cell fluorescence measurements provided by imaging-in-flow devices can be applied to field samples to understand the changes in the size dependence of chlorophyll content in response to environmental variables affecting primary production. IMPORTANCE The chlorophyll concentrations in phytoplankton register physiological adjustments in cellular pigmentation arising mainly from changes in light conditions. The extent of these adjustments is constrained by the size of the phytoplankton cells, even within single populations. Hence, variations in community chlorophyll derived from photoacclimation are also dependent on the phytoplankton size distribution. PMID:28115378

  15. Optical properties of intact leaves for estimating chlorophyll concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Spiering, Bruce A.

    2002-01-01

    Changes in leaf chlorophyll content can serve as relative indicators of plant vigor and environmental quality. This study identified reflectance, transmittance, and absorptance wavebands and band ratios within the 400- to 850-nm range for intact leaves that could be used to estimate extracted leaf chlorophyll per unit leaf area (areal concentration) with minimal error. Leaf optical properties along with chlorophyll a, b, and a + b concentrations were measured for the planar-leaved sweetgum (Liquidambar styraciflua L.), red maple (Acer rubrum L.), wild grape (Vitis rotundifolia Michx.), and switchcane [Arundinaria gigantea (Walter) Muhl.], and for needles of longleaf pine (Pinus palustris Miller). Generally, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentrations at wavelengths near 700 nm, although regressions were also strong in the 550- to 625-nm range. A power function was superior to a simple linear function in yielding low standard deviations of the estimate (s). When data were combined among the planar-leaved species, s values were low at approximately 50 mumol/m2 out of a 940 mumol/m2 range in chlorophyll a + b at best-fit wavelengths of 707 to 709 nm. Minimal s values for chlorophyll a + b ranged from 32 to 62 mumol/m2 across species when band ratios having numerator wavelengths of 693 to 720 nm were used with the application of a power function. Optimal denominator wavelengths for the band ratios were 850 nm for reflectance and transmittance and 400 nm for absorptance. This information can be applied in designing field portable chlorophyll meters and in the landscape-scale remote sensing of plant responses to the environment.

  16. Genome-wide association mapping of soybean chlorophyll traits based on canopy spectral reflectance and leaf extracts

    USDA-ARS?s Scientific Manuscript database

    Chlorophyll is one of the major components of chloroplasts and a better understanding of the genetic basis of chlorophyll in soybean [Glycine max (L.) Merr.] might contribute to improving photosynthetic capacity and yield in regions with adverse environmental conditions. A collection of 332 diverse ...

  17. Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2

    USDA-ARS?s Scientific Manuscript database

    Photosynthetic pigments such as chlorophyll (Chl) a, Chl b and carotenoids concentration, and chlorophyll fluorescence (CF) have widely been used as indicators of stress and photosynthetic performance in plants. Although photosynthetic pigments and CF are partly interdependent due to absorption and ...

  18. Function of terahertz spectra in monitoring the decomposing process of biological macromolecules and in investigating the causes of photoinhibition.

    PubMed

    Qu, Yuangang; Zhang, Shuai; Lian, Yuji; Kuang, Tingyun

    2017-03-01

    Chlorophyll a and β-carotene play an important role in harvesting light energy, which is used to drive photosynthesis in plants. In this study, terahertz (THz) and visible range spectra of chlorophyll a and β-carotene and their changes under light treatment were investigated. The results show that the all THz transmission and absorption spectra of chlorophyll a and β-carotene changed upon light treatment, with the maximum changes at 15 min of illumination indicating the greatest changes of the collective vibrational mode of chlorophyll a and β-carotene. The absorption spectra of chlorophyll a in the visible light region decreased upon light treatment, signifying the degradation of chlorophyll a molecules. It can be inferred from these results that the THz spectra are very sensitive in monitoring the changes of the collective vibrational mode, despite the absence of changes in molecular configuration. The THz spectra can therefore be used to monitor the decomposing process of biological macromolecules; however, visible absorption spectra can only be used to monitor the breakdown extent of biological macromolecules.

  19. Culture of a high-chlorophyll-producing and halotolerant Chlorella vulgaris.

    PubMed

    Nakanishi, Koichi; Deuchi, Keiji

    2014-05-01

    In order to increase the value of freshwater algae as raw ingredients for health foods and feed for seawater-based farmed fish, we sought to breed high-chlorophyll halotolerant Chlorella with the objective of generating strains with both high chlorophyll concentrations (≥ 5%) and halotolerance (up to 1% NaCl). We used the Chlorella vulgaris K strain in our research institute culture collection and induced mutations with UV irradiation and acriflavine which is known to effect mutations of mitochondrial DNA that are associated with chlorophyll production. Screenings were conducted on seawater-based "For Chlorella spp." (FC) agar medium, and dark-green-colored colonies were visually selected by macroscopic inspection. We obtained a high-chlorophyll halotolerant strain (designated C. vulgaris M-207A7) that had a chlorophyll concentration of 6.7% (d.m.), a level at least three-fold higher than that of K strain. This isolate also exhibited a greater survival rate in seawater that of K strain. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. An algorithm for chlorophyll using first difference transformations of AVIRIS reflectance spectra

    NASA Technical Reports Server (NTRS)

    Novo, Evlyn; Gastil, Mary; Melack, John

    1995-01-01

    Experimental results have shown the existence of a strong relationship between chlorophyll alpha concentration and remote sensing reflectance measured at lake level with a high resolution spectroradiometer. The objective of our study was to investigate the relationship between surface chlorophyll alpha concentration at Mono Lake and water reflectance retrieved from Airborne Visible - Infrared Imaging Spectrometer (AVIRIS) data obtained in october 7, 1992. AVIRIS data were atmospherically corrected as described by Green et al. A description of the lake-level sampling is found in Melack and Gastil. The relationship between chlorophyll concentration and both the single band reflectance and the first difference transformation of the reflectance spectra for the first 40 AVIRIS spectral bands (400 nm to 740 nm) was examined. The relationship was then used to produce a map of the surface chlorophyll distribution.

  1. Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]pyrene in water

    PubMed Central

    Luo, Lijuan; Lai, Xueying; Chen, Baowei; Lin, Li; Fang, Ling; Tam, Nora F. Y.; Luan, Tiangang

    2015-01-01

    Algal blooms cause great damage to water quality and aquaculture. However, this study showed that dead algal cells and chlorophyll could accelerate the photo-transformation of benzo[a]pyrene (BaP), a ubiquitous and persistent pollutant with potently mutagenic and carcinogenic toxicities, under visible light irradiation. Chlorophyll was found to be the major active substance in dead algal cells, and generated a high level of singlet oxygen to catalyse the photo-transformation of BaP. According to various BaP metabolites formed, the degradation mechanism was proposed as that chlorophyll in dead algal cells photo-oxidized BaP to quinones via photocatalytic generation of singlet oxygen. The results provided a good insight into the role of chlorophyll in the photo-transformation of organic contaminants and could be a possible remediation strategy of organic pollutants in natural environment. PMID:26239357

  2. Chlorophyll derivatives enhance invertebrate red-light and ultraviolet phototaxis.

    PubMed

    Degl'Innocenti, Andrea; Rossi, Leonardo; Salvetti, Alessandra; Marino, Attilio; Meloni, Gabriella; Mazzolai, Barbara; Ciofani, Gianni

    2017-06-13

    Chlorophyll derivatives are known to enhance vision in vertebrates. They are thought to bind visual pigments (i.e., opsins apoproteins bound to retinal chromophores) directly within the retina. Consistent with previous findings in vertebrates, here we show that chlorin e 6 - a chlorophyll derivative - enhances photophobicity in a flatworm (Dugesia japonica), specifically when exposed to UV radiation (λ = 405 nm) or red light (λ = 660 nm). This is the first report of chlorophyll derivatives acting as modulators of invertebrate phototaxis, and in general the first account demonstrating that they can artificially alter animal response to light at a behavioral level. Our findings show that the interaction between chlorophyll derivatives and opsins virtually concerns the vast majority of bilaterian animals, and also occurs in visual systems based on rhabdomeric (rather than ciliary) opsins.

  3. Chlorophyll degradation in aqueous mediums induced by light and UV-B irradiation: An UHPLC-ESI-MS study

    NASA Astrophysics Data System (ADS)

    Petrović, Sanja; Zvezdanović, Jelena; Marković, Dejan

    2017-12-01

    Irreversible chlorophyll degradation induced by continuous white light illumination and UV-B irradiation in the aqueous mediums (with 10%, 30% and 50% of methanol) was investigated using the ultrahigh liquid chromatography coupled with diode array and electrospray ionization mass spectrometry detectors (UHPLC-DAD-ESIMS). The degradation was governed by energy input of photons: higher energy of UV-B irradiation induced faster chlorophyll degradation and accordingly faster products formation in comparison to the white light treatment. Main light- or/and UV-B-induced products of chlorophyll in the aqueous mediums were hydroxy-pheophytin a, pheophytin a and hydroxy-lactone-pheophytin a, accompanied with the corresponding epimers. Chlorophylls aggregation dominant in the aqueous medium with the highest methanol content (50%) play a protective role against the UV-B radiation and white light illumination.

  4. Ocean Chlorophyll Studies from a U-2 Aircraft Platform

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Mcclain, C. R.; Blaine, L. R.; Hart, W. D.; Atkinson, L. P.; Yoder, J. A.

    1979-01-01

    Chlorophyll gradient maps of large ocean areas were generated from U-2 ocean color scanner data obtained over test sites in the Pacific and Atlantic Oceans. The delineation of oceanic features using the upward radiant intensity relies on an analysis method which presupposes that radiation backscattered from the atmosphere and ocean surface can be properly modeled using a measurement made at 778 nm. An estimation of the chlorophyll concentration was performed by properly ratioing radiances measured at 472 nm and 548 nm after removing the atmospheric effects. The correlation between the remotely sensed data and in-situ surface chlorophyll measurements was validated in two sets of data. The results show that the correlation between the in-situ measured chlorophyll and the derived quantity is a negative exponential function and the correlation coefficient was calculated to be -0.965.

  5. Photosynthesis at the far-red region of the spectrum in Acaryochloris marina.

    PubMed

    Badshah, Syed Lal; Mabkhot, Yahia; Al-Showiman, Salim S

    2017-05-19

    Acaryochloris marina is an oxygenic cyanobacterium that utilizes far-red light for photosynthesis. It has an expanded genome, which helps in its adaptability to the environment, where it can survive on low energy photons. Its major light absorbing pigment is chlorophyll d and it has α-carotene as a major carotenoid. Light harvesting antenna includes the external phycobilin binding proteins, which are hexameric rods made of phycocyanin and allophycocyanins, while the small integral membrane bound chlorophyll binding proteins are also present. There is specific chlorophyll a molecule in both the reaction center of Photosystem I (PSI) and PSII, but majority of the reaction center consists of chlorophyll d. The composition of the PSII reaction center is debatable especially the role and position of chlorophyll a in it. Here we discuss the photosystems of this bacterium and its related biology.

  6. Trends in Ocean Colour and Chlorophyll Concentration from 1889 to 2000, Worldwide

    PubMed Central

    Wernand, Marcel R.; van der Woerd, Hendrik J.; Gieskes, Winfried W. C.

    2013-01-01

    Marine primary productivity is an important agent in the global cycling of carbon dioxide, a major ‘greenhouse gas’, and variations in the concentration of the ocean's phytoplankton biomass can therefore explain trends in the global carbon budget. Since the launch of satellite-mounted sensors globe-wide monitoring of chlorophyll, a phytoplankton biomass proxy, became feasible. Just as satellites, the Forel-Ule (FU) scale record (a hardly explored database of ocean colour) has covered all seas and oceans – but already since 1889. We provide evidence that changes of ocean surface chlorophyll can be reconstructed with confidence from this record. The EcoLight radiative transfer numerical model indicates that the FU index is closely related to chlorophyll concentrations in open ocean regions. The most complete FU record is that of the North Atlantic in terms of coverage over space and in time; this dataset has been used to test the validity of colour changes that can be translated to chlorophyll. The FU and FU-derived chlorophyll data were analysed for monotonously increasing or decreasing trends with the non-parametric Mann-Kendall test, a method to establish the presence of a consistent trend. Our analysis has not revealed a globe-wide trend of increase or decrease in chlorophyll concentration during the past century; ocean regions have apparently responded differentially to changes in meteorological, hydrological and biological conditions at the surface, including potential long-term trends related to global warming. Since 1889, chlorophyll concentrations have decreased in the Indian Ocean and in the Pacific; increased in the Atlantic Ocean, the Mediterranean, the Chinese Sea, and in the seas west and north-west of Japan. This suggests that explanations of chlorophyll changes over long periods should focus on hydrographical and biological characteristics typical of single ocean regions, not on those of ‘the’ ocean. PMID:23776435

  7. Spatial and temporal variability of phytoplankton chlorophyll and carbon in the equatorial Pacific, 2005 to 2008: Observations from ships and satellites.

    NASA Astrophysics Data System (ADS)

    Craig, J. D.; Strutton, P. G.; Evans, W.

    2008-12-01

    A database of chlorophyll fluorescence, particulate backscatter and beam attenuation was constructed from 17 cruises spanning the equatorial Pacific between August 2005 and February 2008. These optical measurements serve at least two important purposes. First, they can be used to document changes in phytoplankton abundance and physiology in a globally significant ecosystem. Second, they represent an important validation database for satellite observations that form the core of emerging primary productivity models. The data consist of CTD profiles from the surface to 1000m at least every degree of latitude between 8N and 8S, from near the Galapagos to beyond the date line. The optical data were calibrated with in situ samples of chlorophyll and particulate organic carbon (POC) from 4 of the 17 cruises. Chlorophyll concentration was derived from a multiple linear regression of chlorophyll fluorescence, time of day and depth, to account for photoinhibition of the fluorescence signal near the surface during the day. POC was derived from both particulate backscatter and beam attenuation. The optical data were then used to produce maps and latitude-depth sections of chlorophyll and POC for cruises where no in situ samples exist. In the eastern and central equatorial Pacific, phytoplankton chlorophyll to carbon ratios decreased by 30 to 50 percent during the weak El Nino conditions of 2006-2007. This change was due mostly to a decrease in chlorophyll, while POC remained relatively constant. In the western Pacific, the decrease in chl:C was absent, but an increase occurred in early 2008 when the system recovered from El Nino. Changes in chl:C, mostly indicative of photoadaptation, were also observed with depth and latitude as upwelled waters from the equator move poleward. Satellite-based maps of chlorophyll, phytoplankton C and chl:C were also produced and compared with the in situ optical measurements, with mostly good agreement.

  8. Spatio-temporal patterns of Ulva prolifera blooms and the corresponding influence on chlorophyll-a concentration in the Southern Yellow Sea, China.

    PubMed

    Sun, Xiao; Wu, Mengquan; Xing, Qianguo; Song, Xiaodong; Zhao, Deheng; Han, Qianqian; Zhang, Guangzong

    2018-06-04

    The world's largest macroalgal blooms (MABs) caused by the Ulva prolifera outbreaks have occurred every summer since 2007 in the Southern Yellow Sea, China. Accumulating evidence showed that MABs may deteriorate the regional marine environment and influence the growth of some primary producers such as phytoplankton. In this study, we investigated the spatio-temporal patterns of U. prolifera green tides and chlorophyll-a concentration in the Southern Yellow Sea in 2015 using satellite images obtained from HJ-1 CCD, MODIS, and GOCI. The correlation between the distributions of U. prolifera abundance and chlorophyll-a concentration was analyzed quantitatively by setting up a series of 5 × 5 km experimental grids, and we also discussed the possible mechanisms about the influence of U. prolifera blooms on the other floating microalgae. The results showed that the development of U. prolifera blooms in the Southern Yellow Sea in 2015 could be featured as "appearance - development - outbreak - decline - disappearance", while the concentration of chlorophyll-a showed "increase - sharp decline - slow recovery - stabilization" from April to August. We also found that the concentration of chlorophyll-a had the following relationships with U. prolifera temporally: (1) the concentration of chlorophyll-a increased with the growth of U. prolifera from April to mid-May; (2) the chlorophyll-a concentration decreased sharply with the dramatically increased coverage of U. prolifera in June; and (3) the chlorophyll-a concentration slowly recovered and finally stabilized as U. prolifera decreased in July. Generally, there was a negative correlation between the occurrence of U. prolifera and chlorophyll-a concentration in the Southern Yellow Sea, China. Our results showed that the outbreak of U. prolifera does have a certain impact on the growth and reproduction of planktonic microalgae, and it suggests that U. prolifera blooms have potentially altered the ecological balance in the coastal waters of the Southern Yellow Sea. Copyright © 2018. Published by Elsevier B.V.

  9. Magnetic field dependence of the current flowing in the spin-coated chlorophyll thin films

    NASA Astrophysics Data System (ADS)

    Aji, J. R. P.; Kusumandari; Purnama, B.

    2018-03-01

    The magnetic dependence of the current flowing in the spin coated chlorophyll films on a patterned Cu PCB substrate has been presented. Chlorophyll was isolated from Spirulina sp and deposited by spin coated methods. The reducing of current by the change of magnetic field (magneto conductance effect) was performed by inducing the magnetic field parallel to the inplane of film at room temp. The magnetoconductance ratio decreases as the increase of voltage. It was indicated that the origin of carrier charge in chlorophyll films should be different with the carrier charge injection (electron).

  10. Effects of Sucrose and Kinetin on Growth and Chlorophyll Synthesis in Tobacco Tissue Cultures 1

    PubMed Central

    Kaul, K.; Sabharwal, P. S.

    1971-01-01

    Investigations were carried out on the effects of various combinations of sucrose and kinetin concentrations on growth and chlorophyll production in a green and a nongreen clone of pith callus of Nicotiana tabacum L. It was found that 2 milligrams per liter or higher amounts of kinetin induced greening in the nongreen tissue. The observations suggested that growth of the callus and synthesis of chlorophyll and soluble protein are controlled by relative concentrations of sucrose and kinetin in the medium. Kinetin was found to be inhibitory for chlorophyll synthesis in the green callus. PMID:16657686

  11. Response of Grape Leaf Spectra to Phylloxera Infestation

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.

    1999-01-01

    During the 1993 growing season, leaf reflectance and chlorophyll concentrations were monitored with respect to phylloxera (root-louse) infestation in a Napa Valley (California) vineyard. Study plots were established in areas of severely infested, mildly infested, and uninfested sections of the vineyard. A handheld chlorophyll meter, measuring leaf transmittance of near-infrared and red light, confirmed that reduced foliar chlorophyll concentrations were symptomatic of phylloxera stress in the sample vines. Bidirectional reflectance measurements of green and near-infrared light, taken on fresh leaves with a laboratory spectrophotometer, were related to chlorophyll concentration but did not allow discrimination of mildly infested from uninfested vines.

  12. Optimal Reflectance, Transmittance, and Absorptance Wavebands and Band Ratios for the Estimation of Leaf Chlorophyll Concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Spiering, Bruce A.

    2000-01-01

    The present study utilized regression analysis to identify: wavebands and band ratios within the 400-850 nm range that could be used to estimate total chlorophyll concentration with minimal error; and simple regression models that were most effective in estimating chlorophyll concentrations were measured for two broadleaved species, a broadleaved vine, a needle-leaved conifer, and a representative of the grass family.Overall, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentration at wavelengths near 700 nm, although regressions were strong as well in the 550-625 nm range.

  13. Beneficial role of spermidine in chlorophyll metabolism and D1 protein content in tomato seedlings under salinity-alkalinity stress.

    PubMed

    Hu, Lipan; Xiang, Lixia; Li, Shuting; Zou, Zhirong; Hu, Xiao-Hui

    2016-04-01

    Polyamines are important in protecting plants against various environmental stresses, including protection against photodamage to the photosynthetic apparatus. The molecular mechanism of this latter effect is not completely understood. Here, we have investigated the effects of salinity-alkalinity stress and spermidine (Spd) on tomato seedlings at both physiological and transcriptional levels. Salinity-alkalinity stress decreased leaf area, net photosynthetic rate, maximum net photosynthetic rate, light saturation point, apparent quantum efficiency, total chlorophyll, chlorophyll a and chlorophyll a:chlorophyll b relative to the control. The amount of D1 protein, an important component of photosystem II, was reduced compared with the control, as was the expression of psbA, which codes for D1. Expression of the chlorophyll biosynthesis gene porphobilinogen deaminase (PBGD) was reduced following salinity-alkalinity stress, whereas the expression of Chlase, which codes for chlorophyllase, was increased. These negative physiological effects of salinity-alkalinity stress were alleviated by exogenous Spd. Expression of PBGD and psbA were enhanced, whereas the expression of Chlase was reduced, when exogenous Spd was included in the stress treatment compared with when it was not. The protective effect of Spd on chlorophyll and D1 protein content during stress may maintain the photosynthetic apparatus, permitting continued photosynthesis and growth of tomato seedlings (Solanum lycopersicum cv. Jinpengchaoguan) under salinity-alkalinity stress. © 2015 Scandinavian Plant Physiology Society.

  14. Efficacy of chlorophyll c2 for seasonal allergic rhinitis: single-center double-blind randomized control trial.

    PubMed

    Fujiwara, Takashi; Nishida, Naoya; Nota, Jumpei; Kitani, Takashi; Aoishi, Kunihide; Takahashi, Hirotaka; Sugahara, Takuya; Hato, Naohito

    2016-12-01

    Chlorophyll c2 extracted from Sargassum horneri improved allergic symptoms in an animal model of allergic rhinitis. In the present study, we explored the efficacy of chlorophyll c2 in patients with seasonal allergic rhinitis. This was a single-center, randomized, double-blind placebo-controlled trial. Sixty-six patients aged 20-43 years, each with a 2-year history of seasonal allergic rhinitis, were randomly assigned to receive either a single daily dose (0.7 mg) of chlorophyll c2 or placebo for 12 weeks. The use of medications including H1-antihistamines and topical nasal steroids was recorded by rescue medication scores (RMSs) noted after 4, 8, and 12 weeks of treatment. Disease-specific quality of life was measured using the Japan Rhinitis Quality of Life Questionnaire (JRQLQ) both before and after 4, 8, and 12 weeks of treatment. The RMS at 8 weeks was significantly better in the chlorophyll c2 than the placebo group (mean RMS difference = -3.09; 95 % confidence interval = -5.96 to -0.22); the mean RMS at 4 weeks was only slightly better in the chlorophyll c2 group. The JRQLQ scores did not differ significantly between the two groups. Chlorophyll c2 would have a potential to be an alternative treatment for allergic rhinitis.

  15. Coherent stimulated light emission (lasing) in covalently linked chlorophyll dimers

    PubMed Central

    Hindman, James C.; Kugel, Roger; Wasielewski, Michael R.; Katz, Joseph J.

    1978-01-01

    The covalently linked chlorophyll a dimer exhibits remarkably different properties in the folded and open configurations. In the folded configuration the absorption maximum is at 695 nm and the fluorescence maximum is at 730 nm. Laser output at 733 and 735 nm is obtained for solutions in wet benzene and 0.1 M ethanol/toluene, respectively. Measurements of fluorescence lineshapes, made with a transverse excited atmospheric (TEA) nitrogen laser for excitation, show the lifetime shortening associated with stimulated emission resulting from appreciable concentrations of molecules in S1 excited states. In contrast, the open dimer has absorption and fluorescence spectra essentially the same as those of chlorophyll a monomer. Unlike either the folded dimer or chlorophyll a monomer, the open dimer shows no laser emission or fluorescene lifetime shortening. It does not appear that the behavior of the open dimer can be explained in terms of excimer or triplet formation or by nonradiative decay processes. It is suggested that absorption of the exciting radiation by S1, leading to the formation of an exciplex or charge transfer state, may be involved. Significantly, no large changes in fluorescence quantum yield or fluorescence lifetime are observed for these dimers as compared to monomer chlorophyll. This suggests that concentration quenching and lifetime shortening in condensed chlorophyll systems involve more than the simple proximity of two chlorophyll molecules. Images PMID:16592524

  16. Comparison of the Light-Harvesting Networks of Plant and Cyanobacterial Photosystem I

    PubMed Central

    Şener, Melih K.; Jolley, Craig; Ben-Shem, Adam; Fromme, Petra; Nelson, Nathan; Croce, Roberta; Schulten, Klaus

    2005-01-01

    With the availability of structural models for photosystem I (PSI) in cyanobacteria and plants it is possible to compare the excitation transfer networks in this ubiquitous photosystem from two domains of life separated by over one billion years of divergent evolution, thus providing an insight into the physical constraints that shape the networks' evolution. Structure-based modeling methods are used to examine the excitation transfer kinetics of the plant PSI-LHCI supercomplex. For this purpose an effective Hamiltonian is constructed that combines an existing cyanobacterial model for structurally conserved chlorophylls with spectral information for chlorophylls in the Lhca subunits. The plant PSI excitation migration network thus characterized is compared to its cyanobacterial counterpart investigated earlier. In agreement with observations, an average excitation transfer lifetime of ∼49 ps is computed for the plant PSI-LHCI supercomplex with a corresponding quantum yield of 95%. The sensitivity of the results to chlorophyll site energy assignments is discussed. Lhca subunits are efficiently coupled to the PSI core via gap chlorophylls. In contrast to the chlorophylls in the vicinity of the reaction center, previously shown to optimize the quantum yield of the excitation transfer process, the orientational ordering of peripheral chlorophylls does not show such optimality. The finding suggests that after close packing of chlorophylls was achieved, constraints other than efficiency of the overall excitation transfer process precluded further evolution of pigment ordering. PMID:15994896

  17. Potential Impact of North Atlantic Climate Variability on Ocean Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Muhling, B.; Lee, S. K.; Muller-Karger, F. E.; Enfield, D. B.; Lamkin, J. T.; Roffer, M. A.

    2016-02-01

    Previous studies have shown that upper ocean circulations largely determine primary production in the euphotic layers, here the global ocean model with biogeochemistry (GFDL's Modular Ocean Model with TOPAZ biogeochemistry) forced with the ERA-Interim is used to simulate the natural variability of biogeochemical processes in global ocean during 1979-present. Preliminary results show that the surface chlorophyll is overall underestimated in MOM-TOPAZ, but its spatial pattern is fairly realistic. Relatively high chlorophyll variability is shown in the subpolar North Atlantic, northeastern tropical Atlantic, and equatorial Atlantic. Further analysis suggests that the chlorophyll variability in the North Atlantic Ocean is affected by long-term climate variability. For the subpolar North Atlantic region, the chlorophyll variability is light-limited and is significantly correlated with North Atlantic Oscillation. A dipole pattern of chlorophyll variability is found between the northeastern tropical Atlantic and equatorial Atlantic. For the northeastern North Atlantic, the chlorophyll variability is significantly correlated with Atlantic Meridional Mode (AMM) and Atlantic Multidecadal Oscillation (AMO). During the negative phase of AMM and AMO, the increased trade wind in the northeast North Atlantic can lead to increased upwelling of nutrients. In the equatorial Atlantic region, the chlorophyll variability is largely link to Atlantic-Niño and associated equatorial upwelling of nutrients. The potential impact of climate variability on the distribution of pelagic fishes (i.e. yellowfin tuna) are discussed.

  18. Contribution of Co2+ in increasing chlorophyll a concentration of Nannochloropsis salina in controlled Conwy medium

    NASA Astrophysics Data System (ADS)

    Hala, Y.; Taba, P.; Suryati, E.; Kasih, P.; Firman, N. F.

    2018-03-01

    A research in determining the contribution of Co2+ on the increase of chlorophyll a concentration of Nannochloropsis salina has been caried out. The cultivation of N. salina was conducted in the Conwy medium with a salinity of 5%o and 25%o and various Co2+ concentration (2, 4, and 8 ppm). In this research, Co2+ was exposed early in the cultivation of N. salina. The growth of N. salina was observed daily by counting the number of populations using a haemocytometer while the chlorophyll a concentration was determined by a Uv-Vis spectrophotometer. The results showed that the growth of N. salina in the control was higher than that in the medium containing Co2+. The optimum growth time was achieved on 15th days (5%) and 8th days (25%). In the cultivation medium with a salinity of 5%, Co2+ with a concentration of 2 ppm increased the chlorophyll a level while Co2+ with concentrations of 4 and 8 ppm decreased it. In the medium of cultivation with a salinity of 25%, the increase in chlorophyll a level was observed at Co2+ concentrations of 2 and 4 ppm whereas the decrease in chlorophyl a level was given at a concentration of 8 ppm. It can be concluded that at low concentrations, Co2+ increased the concentration of chlorophyll a in N. salina.

  19. Photodynamic therapy using chlorophyll-a in the treatment of acne vulgaris: a randomized, single-blind, split-face study.

    PubMed

    Song, Byong Han; Lee, Dong Hun; Kim, Byung Chul; Ku, Sang Hyeon; Park, Eun Joo; Kwon, In Ho; Kim, Kwang Ho; Kim, Kwang Joong

    2014-10-01

    Chlorophyll-a is a novel photosensitizer recently tested for the treatment of acne vulgaris. We sought to evaluate the clinical efficacy and safety of chlorophyll-a photodynamic therapy used for acne treatment. Subjects with acne on both sides of the face were included. Eight treatment sessions were performed over a 4-week duration. Half of the face was irradiated using a blue and red light-emitting diode after topical application of chlorophyll-lipoid complex. The other half underwent only light-emitting diode phototherapy. The lesion counts and acne severity were assessed by a blinded examiner. Sebum secretion, safety, and histologic changes were also evaluated. In total, 24 subjects completed the study. Facial acne improved on both treated sides. On the chlorophyll-a photodynamic therapy-treated side, there were significant reductions in acne lesion counts, acne severity grades, and sebum levels compared with the side treated with light-emitting diode phototherapy alone. The side effects were tolerable in all the cases. All the subjects were of Asian descent with darker skin types, which may limit the generalizability of the study. A chlorophyll-a arm alone is absent, as is a no-treatment arm. We suggest that chlorophyll-a photodynamic therapy for the treatment of acne vulgaris can be effective and safe with minimal side effects. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  20. Effects of high temperature frying of Spinach leaves in sunflower oil on carotenoids, chlorophylls and tocopherol composition

    NASA Astrophysics Data System (ADS)

    Zeb, Alam; Nisar, Parveen

    2017-03-01

    Spinach is one of the highly consumed vegetable, with significant nutritional and beneficial properties. This study revealed for the first time, the effects of high temperature frying on the carotenoids, chlorophylls and tocopherol contents of spinach leaves. Spinach leaves were thermally processed in the sunflower oil for 15, 30, 45 and 60 min at 250 °C. HPLC-DAD results revealed a total of eight carotenoids, four chlorophylls and α-tocopherol in the spinach leaves. Lutein, neoxanthin, violaxanthin and β-carotene-5,6-epoxide were the major carotenoids, while chlorophyll a and b' were present in higher amounts. Frying of spinach leaves increased significantly the amount of α-tocopherol, β-carotene-5,6-epoxide, luteoxanthin, lutein and its Z-isomers and chlorophyll b' isomer. There was a dose dependent decrease in the amounts of neoxanthin, violaxanthin, chlorophyll b, b' and chlorophyll a with increase of frying time. The increase of frying time increased the total phenolic contents in spinach leaves and fried sunflower oil samples. Chemical characteristics such as peroxide values, free fatty acids, conjugated dienes, conjugated trienes and radical scavenging activity were significantly affected by frying, while spinach leaves increased the stability of the frying oil. This study can be used to improve the quality of fried vegetable leaves or their products at high temperature frying in food industries for increasing consumer acceptability.

  1. Leaf Chlorophyll and Total Carotenoid Content, Barrow, Alaska, 2013-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alistair Rogers; Stefanie Lasota; Kim S. Ely

    Chlorophyll a, Chlorophyll b and total carotenoid content were determined on 146 samples collected from Arctic plant species within the Barrow Environmental Observatory in 2013 and 2015. Species sampled are Arctophila fulva, Arctagrostis latifolia, Carex aquatilis, Dupontia fisheri, Eriophorum angustifolium, Petasites frigidus, Salix pulchra, Vaccinium vitis-idaea, Salix rotundifolia, Luzula arctica and Saxifraga punctata.

  2. CHANGES IN CHLOROPHYLL A FLUORENSCENCE AND PIGMENT RATIOS DURING DIFFERENT GROWTH PHASES OF A UNICELLULAR MARINE CHEATOSEROS (BACILLARIOPHYCEAE) IN BATCH CULTURE

    EPA Science Inventory

    Photosystem II reaction centers per cell decreased as the cultures began to decline. The degree of inactivation increased daily as the cell numbers continued to decrease. The concentration of chlorophyll a per cell and the ratio of the major accessory pigments to chlorophyll a (e...

  3. Performance evaluation of Normalized Difference Chlorophyll Index in northern Gulf of Mexico estuaries using the Hyperspectral Imager for the Coastal Ocean

    EPA Science Inventory

    The Hyperspectral Imager for the Coastal Ocean (HICO) was used to derive chlorophyll-a (chl-a) based on the Normalized Difference Chlorophyll Index (NDCI) in two Gulf of Mexico coastal estuaries. Chl-a data were acquired from discrete in-situ water sample analysis and above-water...

  4. Diurnal patterns of chlorophyll fluorescence and CO2 fixation in orchard grown Torreya taxifolia (Arn.).

    Treesearch

    Anita C. Koehn; Robert L. Doudrick

    1999-01-01

    Diurnal patterns of chlorophyll fluorescence and CO2 fixation in orchard measurements were taken on sunny days in October 1996, on three Torreya taxifolia (Arn.) plants grown in an open canopy orchard. Information from chlorophyll fluorescence quenching analysis indicated that during periods of highest light intensity and temperatures there were...

  5. Remote sensing of ocean color and detection of chlorophyll content

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Lecompte, P.; Viollier, M.

    1977-01-01

    The chlorophyll enrichment of the water in an equatorial upwelling was surveyed and described with the aid of a radiometer specially designed for the airborne measurement of ocean color. A relation is proposed between airborne measurement of difference of albedos at two wavelengths in the blue and green, and the concentration of chlorophyll in the ocean.

  6. Relations of biological indicators to nutrient data for lakes and streams in Pennsylvania and West Virginia, 1990-98

    USGS Publications Warehouse

    Brightbill, Robin A.; Koerkle, Edward H.

    2003-01-01

    The Clean Water Action Plan of 1998 provides a blueprint for federal agencies to work with states, tribes, and other stakeholders to protect and restore the Nation's water resources. The plan includes an initiative that addresses the nutrient-enrichment problem of lakes and streams across the United States. The U.S. Environmental Protection Agency (USEPA) is working to set nutrient criteria by nationwide nutrient ecoregions that are an aggregation of the Omernik level III ecoregions. Because low levels of nutrients are necessary for healthy streams and elevated concentrations can cause algal blooms that deplete available oxygen and kill off aquatic organisms, criteria levels are to be set, in part, using the relation between chlorophyll a and concentrations of total nitrogen and total phosphorus.Data from Pennsylvania and West Virginia, collected between 1990 and 1998, were analyzed for relations between chlorophyll a, nutrients, and other explanatory variables. Both phytoplankton and periphyton chlorophyll a concentrations from lakes and streams were analyzed separately within each of the USEPA nutrient ecoregions located within the boundaries of the two states. These four nutrient ecoregions are VII (Mostly Glaciated Dairy), VIII (Nutrient Poor, Largely Glaciated Upper Midwest and Northeast), IX (Southeastern Temperate Forested Plains and Hills), and XI (Central and Eastern Forested Uplands).Phytoplankton chlorophyll a concentrations in lakes were related to total nitrogen, total phosphorus, Secchi depth, concentration of dissolved oxygen, pH, water temperature, and specific conductivity. In nutrient ecoregion VII, nutrients were not significant predictors of chlorophyll a concentrations. Total nitrogen, Secchi depth, and pH were significantly related to phytoplankton chlorophyll a concentrations in nutrient ecoregion IX. Lake periphyton chlorophyll a concentrations from nutrient ecoregion XI were related to total phosphorus rather than total nitrogen, Secchi depth, and pH. In all cases, Secchi depth was inversely related to the chlorophyll a concentrations in a lake. Nutrient ecoregion VIII had too few samples for any type of analysis.Streams within the different nutrient ecoregions had many variables that were significantly related to periphyton chlorophyll a concentrations. These variables consisted of total nitrogen, total phosphorus, drainage area, percent forest cover, several macroinvertebrate indices, pH, basin slope, total residue, total suspended solids, and water temperature. Nutrients were not significantly related to periphyton chlorophyll a in streams within nutrient ecoregions VII or IX but were in nutrient ecoregion XI. Drainage area, percent forest cover, and several invertebrate indices were significant variables in nutrient ecoregion VII. Percent forest cover and several invertebrate indices had a negative relation with chlorophyll a concentrations in these streams. Percent forest cover and basin slope had a negative effect on periphyton in nutrient ecoregion IX streams. Light availability was more critical to periphyton growth in streams than nutrients.Ecoregion XI had enough samples to do seasonal analyses. Summer-season periphyton chlorophyll a concentrations in nutrient ecoregion XI streams were positively related to total phosphorus and drainage area but negatively related to percent forest cover. Summer-season phytoplankton in streams was related to different variables within the same nutrient ecoregion. Both total nitrogen and total phosphorus were positively related with chlorophyll a concentrations as well as basin slope, total residue, and total suspended solids but negatively related to pH. The winter stream phytoplankton chlorophyll a concentrations were related to water temperature only.

  7. Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance

    NASA Astrophysics Data System (ADS)

    Xue, Lihong; Yang, Linzhang

    Different nitrogen (N) treatments of four common green-leafy vegetable varieties with different leaf color: lettuce ( Lactuca sativa L. var. crispa L.) with yellow green leaves, pakchoi ( Brassica chinensis L.) var. aijiaohuang in Chinese (AJH) with middle green leaves, spinach ( Spinacia oleracea L.) with green leaves and pakchoi ( B. chinensis L.) var. shanghaiqing in Chinese (SHQ) with dark green leaves, were carried out to achieve a wide range of chlorophyll content. The relationship of vegetable leaf hyperspectral response to its chlorophyll content was examined in this study. Almost all reported successful leaf chlorophyll indices in the literature were evaluated for their ability to predict the chlorophyll content in vegetable leaves. Some new indices based on the first derivative curve were also developed, and compared with the chlorophyll indices published. The results showed that most of the indices showed a strong relation with leaf chlorophyll content. In general, modified indices with the blue or near red edge wavelength performed better than their simple counterpart without modification, ratio indices performed a little better than normalized indices when chlorophyll expressed on area basis and reversed when chlorophyll expressed on fresh weight basis. A normalized derivative difference ratio (BND: (D722-D700)/(D722+D700) calibrated by Maire et al. [Maire, G., Francois, C., Dufrene, E., 2004. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment 89 (1), 1-28]) gave the best results among all published indices in this study (RMSE=22.1 mg m -2), then the mSR-like indices with the RMSE between 22.6 and 23.0 mg m -2. The new indices EBAR (ratio of the area of red and blue, ∑ dRE/∑ dB), EBFN (normalized difference of the amplitude of red and blue, (dRE-dB)/(dRE+dB)) and EBAN (normalized difference of the area of red and blue, (∑ dRE-∑ dB)/(∑ dRE+∑ dB)) calculated with the derivatives also showed a good performance with the RMSE of 23.3, 24.15 and 24.33 mg m -2, respectively. The study suggests that spectral reflectance measurements hold promise for the assessment of chlorophyll content at the leaf level for green-leafy vegetables. Further investigation is needed to evaluate the effectiveness of such techniques on other vegetable varieties or at the canopy level.

  8. Microdroplet fusion mass spectrometry: accelerated kinetics of acid-induced chlorophyll demetallation

    PubMed Central

    Lee, Jae Kyoo; Nam, Hong Gil; Zare, Richard N.

    2017-01-01

    Kinetics of acid-induced chlorophyll demetallation was recorded in microdroplets by fusing a stream of microdroplets containing 40 μM chlorophyll a or b dissolved in methanol with a stream of aqueous microdroplets containing 35 mM hydrochloric acid (pH = 1·46). The kinetics of the demetallation of chlorophyll in the fused microdroplets (14 ± 6 μm diameter; 84 ± 18 m s−1 velocity) was recorded by controlling the traveling distance of the fused microdroplets between the fusion region and the inlet of a mass spectrometer. The rate of acid-induced chlorophyll demetallation was about 960 ± 120 times faster in the charged microdroplets compared with that reported in bulk solution. If no voltage was applied to the sprayed microdroplets, then the acceleration factor was about 580 ± 90, suggesting that the applied voltage is not a major factor determining the acceleration. Chlorophyll a was more rapidly demetallated than chlorophyll b by a factor of ~26 in bulk solution and ~5 in charged microdroplets. The demetallation kinetics was second order in the H+ concentration, but the acceleration factor of microdroplets compared with bulk solution appeared to be unchanged in going from pH = 1·3 to 7·0. The water:methanol ratio of the fused microdroplets was varied from 7:3 to 3:7 causing an increase in the reaction rate of chlorophyll a demetallation by 20%. This observation demonstrates that the solvent composition, which has different evaporation rates, does not significantly affect the acceleration. We believe that a major portion of the acceleration can be attributed to confinement effects involving surface reactions rather than either to evaporation of solvents or to the introduction of charges to the microdroplets. PMID:29233214

  9. Femtosecond Visible Transient Absorption Spectroscopy of Chlorophyll f-Containing Photosystem I.

    PubMed

    Kaucikas, Marius; Nürnberg, Dennis; Dorlhiac, Gabriel; Rutherford, A William; van Thor, Jasper J

    2017-01-24

    Photosystem I (PSI) from Chroococcidiopsis thermalis PCC 7203 grown under far-red light (FRL; >725 nm) contains both chlorophyll a and a small proportion of chlorophyll f. Here, we investigated excitation energy transfer and charge separation using this FRL-grown form of PSI (FRL-PSI). We compared femtosecond transient visible absorption changes of normal, white-light (WL)-grown PSI (WL-PSI) with those of FRL-PSI using excitation at 670 nm, 700 nm, and (in the case of FRL-PSI) 740 nm. The possibility that chlorophyll f participates in energy transfer or charge separation is discussed on the basis of spectral assignments. With selective pumping of chlorophyll f at 740 nm, we observe a final ∼150 ps decay assigned to trapping by charge separation, and the amplitude of the resulting P700 +• A 1 -• charge-separated state indicates that the yield is directly comparable to that of WL-PSI. The kinetics shows a rapid 2 ps time constant for almost complete transfer to chlorophyll f if chlorophyll a is pumped with a wavelength of 670 nm or 700 nm. Although the physical role of chlorophyll f is best supported as a low-energy radiative trap, the physical location should be close to or potentially within the charge-separating pigments to allow efficient transfer for charge separation on the 150 ps timescale. Target models can be developed that include a branching in the formation of the charge separation for either WL-PSI or FRL-PSI. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Modeling Primary Productivity in the Margin Ice Zone from Glider-Based Measurements of Chlorophyll and Light during the 2014 Miz Program

    NASA Astrophysics Data System (ADS)

    Perry, M. J.; Lee, C.; Rainville, L.; Cetinic, I.; Yang, E. J.; Kang, S. H.

    2016-02-01

    In late summer 2014 during the Marginal Ice Zone (MIZ) Experiment, an international project sponsored by ONR, four Seagliders transited open water, through the marginal ice zone, and under ice-covered regions in the Beaufort Sea, penetrating as far as 100 km into the ice pack. The gliders navigated either by GPS in open water or, when under the ice, by acoustics from sound sources embedded in the MIZ autonomous observing array. The glider sensor suite included temperature, temperature microstructure, salinity, oxygen, chlorophyll fluorescence, optical backscatter, and multi-spectral downwelling irradiance. Cruises on the IBRV Araon operating in the open Beaufort Sea and on the R/V Ukpik and Norseman operating in continental shelf waters off Alaska's north slope allowed us to construct proxy libraries for converting chlorophyll fluorescence to chlorophyll concentration and optical backscatter to particulate organic carbon concentration. Water samples were collected for chlorophyll and particulate organic carbon analysis on the cruises and aligned with optical profiles of fluorescence and backscatter using sensors that were factory calibrated at the same time as the glider sensors. Fields of chlorophyll, particulate organic carbon, light, and primary productivity are constructed from the glider data. Productivity is modeled as a function of chlorophyll and light, using photosynthesis-light (PE) models with available PE parameters from Arctic measurements. During August the region under the ice was characterized by a deep chlorophyll maximum layer with low rates of production in overlying waters. A phytoplankton bloom developed in open water at the end of September, preceding the rapid reformation of ice, despite shorter days and reduce irradiation.

  11. Inferring Source Regions and Supply Mechanisms of Iron in the Southern Ocean from Satellite Data

    NASA Astrophysics Data System (ADS)

    Graham, R. M.

    2016-02-01

    In many biogeochemical models a large shelf sediment iron flux is prescribed through the seafloor over all areas of bathymetry shallower than 1000 m. Here we infer the likely location of shelf sediment iron sources by identifying where mean annual satellite chlorophyll concentrations are enhanced over shallow bathymetry ( < 1000 m). We show that mean annual chlorophyll concentrations are not visibly enhanced over areas of shallow bathymetry located more than 500 km from a coastline. Chlorophyll concentrations > 2 mg m-3are only found within 50 km of a continental or island coastline. These results suggest that large sedimentary iron fluxes only exist on continental or island shelves. Large sedimentary iron fluxes are unlikely to be found on isolated seamounts and submerged plateaus. We further compare satellite chlorophyll concentrations to the position of ocean fronts to assess the relative role of horizontal advection and upwelling for supplying iron to the ocean surface. Sharp gradients in chlorophyll concentrations are observed across western boundary currents. Large chlorophyll blooms develop where western boundary currents detach from the continental shelves and turn eastwards into the Southern Ocean. Chlorophyll concentrations are enhanced along contours of sea surface height extending off continental and island shelves. These observations support the hypothesis that bioavailable iron from continental shelves is entrained into western boundary currents and advected into the Sub-Antarctic Zone along the Dynamical Subtropical Front. Likewise, iron from island shelves is entrained into nearby fronts and advected downstream. Mean annual chlorophyll concentrations are very low in open ocean regions with large modelled upwelling velocities, where fronts cross over topographic ridges. These results suggests that open ocean upwelling is unlikely to deliver iron to the surface from deep sources such as hydrothermal vents.

  12. Long-term dynamics of chlorophyll concentration in the ocean surface layer (by space data)

    NASA Astrophysics Data System (ADS)

    Shevyrnogov, A.; Vysotskaya, G.

    To preserve the biosphere and to use it efficiently, it is necessary to gain a deep insight into the dynamics of the primary production process on our planet. Variability of chlorophyll concentration in the ocean is one of the most important components of this process. These investigations are, however, very labor-consuming, because of the difficulties related to the accessibility of the water surface and its large size. In this work long-term changes in chlorophyll concentration in the surface layer of the ocean have been analyzed on the basis of the CZCS data for 7.5 years from 1979 to 1986 and the SeaWiFS data from 1997 to 2004. It has been shown that the average chlorophyll concentration calculated in all investigated areas varies moderately. However, when analyzing spatially local trends, the areas have been detected that have significant rise and fall of chlorophyll concentrations. Some interesting features of the long-term dynamics of chlorophyll concentration have been found. The opposite directions of long-term trends (essential increase or decrease) cannot be explained only by large-scale hydrological phenomena in the ocean (currents, upwellings, etc.). The measured chlorophyll concentration results from the balance between production and destruction processes. Which process dominates is determined by various hydrophysical, hydrobiological, and climatic processes, leading to sharp rises or falls of the concentration. It is important to estimate the scale of the areas in which this or that process dominates. Therefore, the study addresses not only the dynamics of the mean value but also the dynamics of the areas in which the dominance of certain factors has led to a sharp fall or rise in chlorophyll concentration. Thus, the obtained results can be used to estimate long-term changes in the ocean biota.

  13. Microdroplet fusion mass spectrometry: accelerated kinetics of acid-induced chlorophyll demetallation.

    PubMed

    Lee, Jae Kyoo; Nam, Hong Gil; Zare, Richard N

    2017-01-01

    Kinetics of acid-induced chlorophyll demetallation was recorded in microdroplets by fusing a stream of microdroplets containing 40 µM chlorophyll a or b dissolved in methanol with a stream of aqueous microdroplets containing 35 mM hydrochloric acid (pH = 1·46). The kinetics of the demetallation of chlorophyll in the fused microdroplets (14 ± 6 µm diameter; 84 ± 18 m s-1 velocity) was recorded by controlling the traveling distance of the fused microdroplets between the fusion region and the inlet of a mass spectrometer. The rate of acid-induced chlorophyll demetallation was about 960 ± 120 times faster in the charged microdroplets compared with that reported in bulk solution. If no voltage was applied to the sprayed microdroplets, then the acceleration factor was about 580 ± 90, suggesting that the applied voltage is not a major factor determining the acceleration. Chlorophyll a was more rapidly demetallated than chlorophyll b by a factor of ~26 in bulk solution and ~5 in charged microdroplets. The demetallation kinetics was second order in the H+ concentration, but the acceleration factor of microdroplets compared with bulk solution appeared to be unchanged in going from pH = 1·3 to 7·0. The water:methanol ratio of the fused microdroplets was varied from 7:3 to 3:7 causing an increase in the reaction rate of chlorophyll a demetallation by 20%. This observation demonstrates that the solvent composition, which has different evaporation rates, does not significantly affect the acceleration. We believe that a major portion of the acceleration can be attributed to confinement effects involving surface reactions rather than either to evaporation of solvents or to the introduction of charges to the microdroplets.

  14. Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean

    NASA Astrophysics Data System (ADS)

    Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.

    2015-04-01

    In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted in phytoplankton biomass (i.e. chlorophyll a concentration) and size-based community composition (i.e. microphytoplankton, nanophytoplankton and picophytoplankton), using a~method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over five decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available in open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition: http://doi.pangaea.de/10.1594/PANGAEA.844485.

  15. The Impact of Iron Limitation on Remote Sensing Reflectance in Phaeocystis antarctica

    NASA Astrophysics Data System (ADS)

    Tagliabue, A.; van Dijken, G. L.; Arrigo, K. R.

    2006-12-01

    The iron limited Southern Ocean is an important controller of the global carbon cycle and is predicted to be heavily impacted by future changes in climate. Such remote regions are heavily reliant on acquiring data from remotely sensed satellite observations of pigment concentrations, via algorithms that utilize bio-optical properties to estimate chlorophyll a concentrations. The haptophyte Phaeocystis antarctica is a key phytoplankton functional group across the Southern Ocean and dominates phytoplankton biomass in the highly productive southwestern Ross Sea. In this study, we examine absorption spectra obtained from laboratory cultures of P. antarctica grown under iron sufficient and deficient conditions. We then utilize a semi-analytical reflectance model, alongside data collected from the Ross Sea, to compare remote sensing reflectance (Rrs) derived from absorption spectra to chlorophyll a. We find that Rrs(490):Rrs(555) per unit chlorophyll a for iron sufficient P. antarctica is consistent with the existing Ross Sea algorithm. However, the increased chlorophyll specific absorption at 490 and 555 nm of iron deficient P. antarctica results in a reduction in Rrs(490):Rrs(555) per unit chlorophyll a. Therefore, remotely sensed chlorophyll a concentrations based on Rrs(490):Rrs(555) will be overestimated when waters dominated by P. antarctica experience iron stress. If remotely sensed chlorophyll a concentrations are erroneously high when P. antarctica is iron limited, then both the magnitude and duration of P. antarctica blooms might have been overestimated. We suggest that an in situ investigation of the P. antarctica Rrs to chlorophyll a relationship is necessary during the onset of iron limitation. The likely causes and broader implications of these conclusions will also be discussed.

  16. A database of chlorophyll a in Australian waters

    PubMed Central

    Davies, Claire H.; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Baird, Mark E.; Beard, Jason; Bonham, Pru; Burford, Michele; Clementson, Lesley; Coad, Peter; Crawford, Christine; Dela-Cruz, Jocelyn; Doblin, Martina A.; Edgar, Steven; Eriksen, Ruth; Everett, Jason D.; Furnas, Miles; Harrison, Daniel P.; Hassler, Christel; Henschke, Natasha; Hoenner, Xavier; Ingleton, Tim; Jameson, Ian; Keesing, John; Leterme, Sophie C.; James McLaughlin, M; Miller, Margaret; Moffatt, David; Moss, Andrew; Nayar, Sasi; Patten, Nicole L.; Patten, Renee; Pausina, Sarah A.; Proctor, Roger; Raes, Eric; Robb, Malcolm; Rothlisberg, Peter; Saeck, Emily A.; Scanes, Peter; Suthers, Iain M.; Swadling, Kerrie M.; Talbot, Samantha; Thompson, Peter; Thomson, Paul G.; Uribe-Palomino, Julian; van Ruth, Paul; Waite, Anya M.; Wright, Simon; Richardson, Anthony J.

    2018-01-01

    Chlorophyll a is the most commonly used indicator of phytoplankton biomass in the marine environment. It is relatively simple and cost effective to measure when compared to phytoplankton abundance and is thus routinely included in many surveys. Here we collate 173, 333 records of chlorophyll a collected since 1965 from Australian waters gathered from researchers on regular coastal monitoring surveys and ocean voyages into a single repository. This dataset includes the chlorophyll a values as measured from samples analysed using spectrophotometry, fluorometry and high performance liquid chromatography (HPLC). The Australian Chlorophyll a database is freely available through the Australian Ocean Data Network portal (https://portal.aodn.org.au/). These data can be used in isolation as an index of phytoplankton biomass or in combination with other data to provide insight into water quality, ecosystem state, and relationships with other trophic levels such as zooplankton or fish. PMID:29461516

  17. Response of North Atlantic Ocean Chlorophyll a to the Change of Atlantic Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Zhang, Yuanling; Shu, Qi; Zhao, Chang; Wang, Gang; Wu, Zhaohua; Qiao, Fangli

    2017-04-01

    Changes in marine phytoplankton are a vital component in global carbon cycling. Despite this far-reaching importance, the variable trend in phytoplankton and its response to climate variability remain unclear. This work presents the spatiotemporal evolution of the chlorophyll a trend in the North Atlantic Ocean by using merged ocean color products for the period 1997-2016. We find a dipole pattern between the subpolar gyre and the Gulf Stream path,and chlorophyll a trend signal propagatedalong the opposite direction of the North Atlantic Current. Such a dipole pattern and opposite propagation of chlorophyll a signal are consistent with the recent distinctive signature of the slowdown of the Atlantic MeridionalOverturning Circulation (AMOC). It is suggested that the spatiotemporal evolution of chlorophyll a during the two most recent decades is a part of the multidecadal variation and regulated byAMOC, which could be used as an indicator of AMOC variations.

  18. Photochemical studies of a fluorescent chlorophyll catabolite--source of bright blue fluorescence in plant tissue and efficient sensitizer of singlet oxygen.

    PubMed

    Jockusch, Steffen; Turro, Nicholas J; Banala, Srinivas; Kräutler, Bernhard

    2014-02-01

    Fluorescent chlorophyll catabolites (FCCs) are fleeting intermediates of chlorophyll breakdown, which is seen as an enzyme controlled detoxification process of the chlorophylls in plants. However, some plants accumulate large amounts of persistent FCCs, such as in senescent leaves and in peels of yellow bananas. The photophysical properties of such a persistent FCC (Me-sFCC) were investigated in detail. FCCs absorb in the near UV spectral region and show blue fluorescence (max at 437 nm). The Me-sFCC fluorescence had a quantum yield of 0.21 (lifetime 1.6 ns). Photoexcited Me-sFCC intersystem crosses into the triplet state (quantum yield 0.6) and generates efficiently singlet oxygen (quantum yield 0.59). The efficient generation of singlet oxygen makes fluorescent chlorophyll catabolites phototoxic, but might also be useful as a (stress) signal and for defense of the plant tissue against infection by pathogens.

  19. Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products

    NASA Technical Reports Server (NTRS)

    Carder, K. L.; Hawes, S. K.; Steward, R. G.; Baker, K. A.; Smith, R. C.; Mitchell, B. G.

    1991-01-01

    A reflectance model developed to estimate chlorophyll a concentrations in the presence of marine colored dissolved organic matter, pheopigments, detritus, and bacteria is presented. Nomograms and lookup tables are generated to describe the effects of different mixtures of chlorophyll a and these degradation products on the R(412):R(443) and R(443):R(565) remote-sensing reflectance or irradiance reflectance ratios. These are used to simulate the accuracy of potential ocean color satellite algorithms, assuming that atmospheric effects have been removed. For the California Current upwelling and offshore regions, with chlorophyll a not greater than 1.3 mg/cu m, the average error for chlorophyll a retrievals derived from irradiance reflectance data for degradation product-rich areas was reduced from +/-61 percent to +/-23 percent by application of an algorithm using two reflectance ratios rather than the commonly used algorithm applying a single reflectance ratio.

  20. Quantitation of chlorophylls and 22 of their colored degradation products in culinary aromatic herbs by HPLC-DAD-MS and correlation with color changes during the dehydration process.

    PubMed

    Lafeuille, Jean-Louis; Lefèvre, Stéphane; Lebuhotel, Julie

    2014-02-26

    Chlorophylls and their green and olive-brown derivatives were successfully separated from culinary herb extracts by HPLC with photodiode-array and mass spectrometry detection. The method involved a ternary gradient elution and reverse-phase separation conditions capable of resolving 24 different pigments (2 chlorophylls and 22 of their derivatives) of different polarities within 28 min. The method was applied to monitor color changes in 50 samples of culinary aromatic herbs subjected to five different drying treatments. Of the 24 pigments, 14 were key to understanding the differences between the primary degradation pathways of chlorophyll a and chlorophyll b in culinary herbs during drying processes. A color degradation ladder based on the total molar percentage of all the remaining green pigments was also proposed as a tool to measure the impact of drying treatments on aromatic herb visual aspects.

  1. A database of chlorophyll a in Australian waters

    NASA Astrophysics Data System (ADS)

    Davies, Claire H.; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Baird, Mark E.; Beard, Jason; Bonham, Pru; Burford, Michele; Clementson, Lesley; Coad, Peter; Crawford, Christine; Dela-Cruz, Jocelyn; Doblin, Martina A.; Edgar, Steven; Eriksen, Ruth; Everett, Jason D.; Furnas, Miles; Harrison, Daniel P.; Hassler, Christel; Henschke, Natasha; Hoenner, Xavier; Ingleton, Tim; Jameson, Ian; Keesing, John; Leterme, Sophie C.; James McLaughlin, M.; Miller, Margaret; Moffatt, David; Moss, Andrew; Nayar, Sasi; Patten, Nicole L.; Patten, Renee; Pausina, Sarah A.; Proctor, Roger; Raes, Eric; Robb, Malcolm; Rothlisberg, Peter; Saeck, Emily A.; Scanes, Peter; Suthers, Iain M.; Swadling, Kerrie M.; Talbot, Samantha; Thompson, Peter; Thomson, Paul G.; Uribe-Palomino, Julian; van Ruth, Paul; Waite, Anya M.; Wright, Simon; Richardson, Anthony J.

    2018-02-01

    Chlorophyll a is the most commonly used indicator of phytoplankton biomass in the marine environment. It is relatively simple and cost effective to measure when compared to phytoplankton abundance and is thus routinely included in many surveys. Here we collate 173, 333 records of chlorophyll a collected since 1965 from Australian waters gathered from researchers on regular coastal monitoring surveys and ocean voyages into a single repository. This dataset includes the chlorophyll a values as measured from samples analysed using spectrophotometry, fluorometry and high performance liquid chromatography (HPLC). The Australian Chlorophyll a database is freely available through the Australian Ocean Data Network portal (https://portal.aodn.org.au/). These data can be used in isolation as an index of phytoplankton biomass or in combination with other data to provide insight into water quality, ecosystem state, and relationships with other trophic levels such as zooplankton or fish.

  2. An Improved Method for the Extraction and Thin-Layer Chromatography of Chlorophyll A and B from Spinach

    ERIC Educational Resources Information Center

    Quach, Hao T.; Steeper, Robert L.; Griffin, William G.

    2004-01-01

    A simple and fast method, which resolves chlorophyll a and b from spinach leaves on analytical plates while minimizing the appearance of chlorophyll degradation products is shown. An improved mobile phase for the Thin-layer chromatographic analysis of spinach extract that allows for the complete resolution of the common plant pigments found in…

  3. Marginal Ice Zone: Biogeochemical Sampling with Gliders

    DTIC Science & Technology

    2015-09-30

    chlorophyll primary productivity model to estimate and compare phytoplankton productivity under full ice cover, in the MIZ, and in open ice-free water...observing array (Fig. 1). The glider sensor suite included temperature, temperature microstructure, salinity, oxygen, chlorophyll fluorescence, optical...operating in continental shelf waters off Alaska’s north slope allowed us to construct proxy libraries for converting chlorophyll fluorescence to

  4. Method 446.0: In Vitro Determination of Chlorophylls a, b, c + c and Pheopigments in 1 2Marine And Freshwater Algae by Visible Spectrophotometry

    EPA Science Inventory

    This method provides a procedure for determination of chlorophylls a (chl a), b (chl b), c + c 1 2 (chl c + c ) and pheopigments of chlorophyll a (pheo a) 1 2 found in marine and freshwater phytoplankton. Chlorophyllide a is determined as chl a. Visible wavelength spectrophotomet...

  5. Portable chlorophyll meter (PCM-502) values are related to total chlorophyll concentration and photosynthetic capacity in papaya (Carica papaya L.)

    USDA-ARS?s Scientific Manuscript database

    This study was carried out to verify the practical use of the portable chlorophyll meter-PCM502 (PCM) in two papaya cultivars with contrasting green coloring of the leaf blade (‘Golden’: yellowish-green; ‘Solo’: dark green). The relationship was studied between the photosynthetic process and leaf n...

  6. Characterization of [8-ethyl]-chlorophyll c3 from Emiliania huxleyi.

    PubMed

    Álvarez, Susana; Zapata, Manuel; Garrido, José L; Vaz, Belén

    2012-06-04

    We report herein the isolation and complete characterization of a member of the chlorophyll c family, designated as [8-ethyl]-chlorophyll c(3) ([8-ethyl]-chl c(3)). Structural elucidation of this pigment rested on the analysis of mono- and bidimensional NMR, UV-VIS spectroscopy and ESI-MS data, and the configuration at the 13(2) position on chiral HPLC analysis.

  7. Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data

    NASA Technical Reports Server (NTRS)

    Hamilton, Michael K.; Davis, Curtiss O.; Rhea, W. J.; Pilorz, Stuart H.; Carder, Kendall L.

    1993-01-01

    Data on chlorophyll content and bathymetry of Lake Tahoe obtained on August 9, 1990 by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) are compared to concurrent in situ surface and in-water measurements. Measured parameters included profiles of percent transmission of monochromatic light, stimulated chlorophyll fluorescence, photosynthetically available radiation, spectral upwelling and downwelling irradiance, and upwelling radiance. Several analyses were performed illustrating the utility of the AVIRIS over a dark water scene. Image-derived chlorophyll concentration compared extremely well with that measured with bottle samples. A bathymetry map of the shallow parts of the lake was constructed which compares favorably with published lake soundings.

  8. Transcriptomic analysis illuminates genes involved in chlorophyll synthesis after nitrogen starvation in Acaryochloris sp. CCMEE 5410.

    PubMed

    Yoneda, Aki; Wittmann, Bruce J; King, Jeremy D; Blankenship, Robert E; Dantas, Gautam

    2016-08-01

    Acaryochloris species are a genus of cyanobacteria that utilize chlorophyll (chl) d as their primary chlorophyll molecule during oxygenic photosynthesis. Chl d allows Acaryochloris to harvest red-shifted light, which gives them the ability to live in filtered light environments that are depleted in visible light. Although genomes of multiple Acaryochloris species have been sequenced, their analysis has not revealed how chl d is synthesized. Here, we demonstrate that Acaryochloris sp. CCMEE 5410 cells undergo chlorosis by nitrogen depletion and exhibit robust regeneration of chl d by nitrogen repletion. We performed a time course RNA-Seq experiment to quantify global transcriptomic changes during chlorophyll recovery. We observed upregulation of numerous known chl biosynthesis genes and also identified an oxygenase gene with a similar transcriptional profile as these chl biosynthesis genes, suggesting its possible involvement in chl d biosynthesis. Moreover, our data suggest that multiple prochlorophyte chlorophyll-binding homologs are important during chlorophyll recovery, and light-independent chl synthesis genes are more dominant than the light-dependent gene at the transcription level. Transcriptomic characterization of this organism provides crucial clues toward mechanistic elucidation of chl d biosynthesis.

  9. Mining a sea of data: deducing the environmental controls of ocean chlorophyll.

    PubMed

    Irwin, Andrew J; Finkel, Zoe V

    2008-01-01

    Chlorophyll biomass in the surface ocean is regulated by a complex interaction of physiological, oceanographic, and ecological factors and in turn regulates the rates of primary production and export of organic carbon to the deep ocean. Mechanistic models of phytoplankton responses to climate change require the parameterization of many processes of which we have limited knowledge. We develop a statistical approach to estimate the response of remote-sensed ocean chlorophyll to a variety of physical and chemical variables. Irradiance over the mixed layer depth, surface nitrate, sea-surface temperature, and latitude and longitude together can predict 83% of the variation in log chlorophyll in the North Atlantic. Light and nitrate regulate biomass through an empirically determined minimum function explaining nearly 50% of the variation in log chlorophyll by themselves and confirming that either light or macronutrients are often limiting and that much of the variation in chlorophyll concentration is determined by bottom-up mechanisms. Assuming the dynamics of the future ocean are governed by the same processes at work today, we should be able to apply these response functions to future climate change scenarios, with changes in temperature, nutrient distributions, irradiance, and ocean physics.

  10. Non-destructive plant health sensing using absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Bledsoe, Jim; Manukian, Ara; Pearce, Michael; Weiss, Lee

    1988-01-01

    The sensor group of the 1988 EGM 4001 class, working on NASA's Controlled Ecological Life Support Systems (CELSS) project, investigated many different plant health indicators and the technologies used to test them. The project selected by the group was to measure chlorophyll levels using absorption spectroscopy. The spectrometer measures the amount of chlorophyll in a leaf by measuring the intensity of light of a specific wavelength that is passed through a leaf. The three wavelengths of light being used corresponded to the near-IR absorption peaks of chlorophyll a, chlorophyll b, and chlorophyll-free structures. Experimentation showed that the sensor is indeed measuring levels of chlorophyll a and b and their changes before the human eye can see any changes. The detector clamp causes little damage to the leaf and will give fairly accurate readings on similar locations on a leaf, freeing the clamp from having to remain on the same spot of a leaf for all measurements. External light affects the readings only slightly so that measurements may be taken in light or dark environments. Future designs and experimentation will concentrate on reducing the size of the sensor and adapting it to a wider range of plants.

  11. Expanded separation technique for chlorophyll metabolites in Oriental tobacco leaf using non aqueous reversed phase chromatography.

    PubMed

    Ishida, Naoyuki

    2011-08-26

    An improved separation method for chlorophyll metabolites in Oriental tobacco leaf was developed. While Oriental leaf still gives the green color even after the curing process, little attention has been paid to the detailed composition of the remaining green pigments. This study aimed to identify the green pigments using non aqueous reversed phase chromatography (NARPC). To this end, liquid chromatograph (LC) equipped with a photo diode array detector (DAD) and an atmospheric pressure chemical ionization/mass spectrometer (APCI/MSD) was selected, because it is useful for detecting low polar non-volatile compounds giving green color such as pheophytin a. Identification was based on the wavelength spectrum, mass spectrum and retention time, comparing the analytes in Oriental leaf with the commercially available and synthesized components. Consequently, several chlorophyll metabolites such as hydroxypheophytin a, solanesyl pheophorbide a and solanesyl hydroxypheophorbide a were newly identified, in addition to typical green pigments such as chlorophyll a and pheophytin a. Chlorophyll metabolites bound to solanesol were considered the tobacco specific components. NARPC expanded the number of detectable low polar chlorophyll metabolites in Oriental tobacco leaf. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. The effect of cerium (III) on the chlorophyll formation in spinach.

    PubMed

    Fashui, Hong; Ling, Wang; Xiangxuan, Meng; Zheng, Wei; Guiwen, Zhao

    2002-12-01

    The effect of Ce(3+) on the chlorophyll (chl) of spinach was studied in pot culture experiments. The results showed that Ce(3+) could obviously stimulate the growth of spinach and increase its chlorophyll contents and photosynthetic rate. It could also improve the PSII formation and enhance its electron transport rate of PSII as well. By inductively coupled plasma-mass spectroscopy and atom absorption spectroscopy methods, it was revealed that the rare-earth-element (REE) distribution pattern in the Ce(3+)-treated spinach was leaf > root > shoot in Ce(3+) contents. The spinach leaves easily absorbed REEs. The Ce(3+) contents of chloroplast and chlorophyll of the Ce(3+)-treated spinach were higher than that of any other rare earth and were much higher than that of the control; it was also suggested that Ce(3+) could enter the chloroplast and bind easily to chlorophyll and might replace magnesium to form Ce-chlorophyll. By ultraviolet-visible, Fourier transform infrared, and extended X-ray absorption fine structure (EXAFS) methods, Ce(3+)-coordinated nitrogen of porphyrin rings with eight coordination numbers and average length of the Ce-N bond of 0.251 nm.

  13. An overview of remote sensing of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Xing, Xiao-Gang; Zhao, Dong-Zhi; Liu, Yu-Guang; Yang, Jian-Hong; Xiu, Peng; Wang, Lin

    2007-03-01

    Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyl l - a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.

  14. Development of an eco-protocol for seaweed chlorophylls extraction and possible applications in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Armeli Minicante, S.; Ambrosi, E.; Back, M.; Barichello, J.; Cattaruzza, E.; Gonella, F.; Scantamburlo, E.; Trave, E.

    2016-07-01

    Seaweeds are a reserve of natural dyes (chlorophylls a, b and c), characterized by low cost and easy supply, without potential environmental load in terms of land subtraction, and also complying with the requirements of an efficient waste management policy. In particular, the brown seaweed Undaria pinnatifida is a species largely present in the Venice Lagoon area, and for it a removal strategy is actually mandatory. In this paper, we set-up an eco-protocol for the best extraction and preparation procedures of the pigment, with the aim of finding an easy and affordable method for chlorophyll c extraction, exploring at the same time the possibility of using these algae within local sustainable management integrated strategies, among which the possible use of chlorophylls as a dye source in dye sensitized solar cells (DSSCs) is investigated. Experimental results suggest that the developed protocols are useful to optimize the chlorophyll c extraction, as shown by optical absorption spectroscopy measurements. The DSSCs built with the chlorophyll extracted by the proposed eco-protocol exhibit solar energy conversion efficiencies are similar to those obtained following extraction protocols with larger environmental impacts.

  15. Chlorophyll maxima in mountain ponds and lakes, Mount Rainier National Park, Washington State, USA

    USGS Publications Warehouse

    Larson, Gary L.

    2000-01-01

    Hypolimnetic chlorophyll maxima are common in clear lakes and often occur at depths with between 1 and 0.1% of the surface incident light. Little is known, however, about the concentrations of chlorophyll in thermally unstratified mountain ponds and how these concentrations compare to epilimnetic and hypolimnetic concentrations in mountain lakes. The objectives of this study were to document the concentrations of chlorophyll in thermally unstratified ponds and stratified lakes in Mount Rainier National Park (MORA) and to compare the results with concentrations and distributions of chlorophyll in clear-deep lakes in the Oregon Cascade Range and the Sierra Nevada Range. Thirty-two ponds (<2.5 m deep) and 14 lakes(>9.9 m deep) were sampled primarily during the summers of 1992 to 1996 at MORA. Water samples from near the surface (0.1–0.5 m) of ponds and near the surface and near the bottom of lakes were collected over the deepest part of each system. One exception, Mowich Lake, was sampled at seven depths between the surface and 50 m (Z=58.6 m). Chlorophyll concentrations were low in all systems, but higher in ponds (average 1.8 μg·L−1) than in lakes. Chlorophyll concentrations were higher in hypolimnetic lake samples (average 0.7 μg·L−1) than in epilimnetic lake samples (average 0.2 μg·L−1). Elevated concentrations of chlorophyll in mountain ponds, relative to those in hypolimnetic lake samples, may have been influenced by increased nutrient availability from interactions at the mud-water interface and, in this park, defecation by elk that used many of the ponds as wallows. Mowich Lake showed a chlorophyll maximum (~1.5 μg·L−1) near the lake bottom. Based on Secchi disk clarity readings, the depth of 1.0% incident surface solar radiation was greater than the maximum depths of the ponds and lakes. Comparative data from other clear-deep lakes in the Oregon Cascade Range and Sierra Nevada Range suggested that deep-chlorophyll maxima (~1.5 μg·L−1) occurred at <1.0% and > 0.1% of the incident surface solar radiation, and that the typical maximum depths ranged between 75 and 140 m during thermal stratification.

  16. [Pigment-protein complexes nd the number of the reaction photosystem centers in pea chlorophyll mutants].

    PubMed

    Ladygin, V G

    2004-01-01

    We studied fluorescent and absorption properties of the chloroplasts and pigment-protein complexes isolated by gel electrophoresis from the leaves of pea, the initial cultivar Torsdag and mutants chlorotica 2004 and 2014. Specific maxima of fluorescence and chlorophyll forms in individual complexes have been determined from the absorption and fluorescence spectra of the chloroplast chlorophyll and their secondary derivatives at 23 and -196 degrees C. Chlorotica 2004 mutant proved to have an increased intensity of a long-wave band at both 23 degrees C (745 nm) and -196 degrees C (728 nm) of the light-harvesting complex I. At the same time, this mutant featured a decreased accumulation of chlorophyll forms at 690, 697, and 708 nm forming the nearest-neighbor antenna of PSI reaction center. No spectral differences have been revealed between chlorotica 2014 mutant and the initial cultivar. Gel electrophoresis demonstrated synthesis of all chlorophyll-protein complexes in both mutants. At the same time, analysis of photochemical activity of PSI and PSII reaction centers and evaluation of the light-harvesting antenna as well as the number of reaction centers of the photosystems suggest that chlorotica 2004 mutant has 1.7 times less PSI reaction centers due to a mutation-disturbed chlorophyll a-protein complex of PSI. The primary effect of chlorotica 2014 mutation remains unclear. The proportional changes in the photosystem complexes in this mutant suggest that they are secondary and result from a 50% decrease in chlorophyll content.

  17. Optofluidic chlorophyll lasers.

    PubMed

    Chen, Yu-Cheng; Chen, Qiushu; Fan, Xudong

    2016-06-21

    Chlorophylls are essential for photosynthesis and also one of the most abundant pigments on earth. Using an optofluidic ring resonator of extremely high Q-factors (>10(7)), we investigated the unique characteristics and underlying mechanism of chlorophyll lasers. Chlorophyll lasers with dual lasing bands at 680 nm and 730 nm were observed for the first time in isolated chlorophyll a (Chla). Particularly, a laser at the 730 nm band was realized in 0.1 mM Chla with a lasing threshold of only 8 μJ mm(-2). Additionally, we observed lasing competition between the two lasing bands. The presence of laser emission at the 680 nm band can lead to quenching or significant reduction of laser emission at the 730 nm band, effectively increasing the lasing threshold for the 730 nm band. Further concentration-dependent studies, along with theoretical analysis, elucidated the mechanism that determines when and why the laser emission band appears at one of the two bands, or concomitantly at both bands. Finally, Chla was exploited as the donor in fluorescence resonance energy transfer to extend the laser emission to the near infrared regime with an unprecedented wavelength shift as large as 380 nm. Our work will open a door to the development of novel biocompatible and biodegradable chlorophyll-based lasers for various applications such as miniaturized tunable coherent light sources and in vitro/in vivo biosensing. It will also provide important insight into the chlorophyll fluorescence and photosynthesis processes inside plants.

  18. Tomato seeds maturity detection system based on chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Li, Cuiling; Wang, Xiu; Meng, Zhijun

    2016-10-01

    Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.

  19. Reexamination of Chlorophyllase Function Implies Its Involvement in Defense against Chewing Herbivores1[OPEN

    PubMed Central

    Hu, Xueyun; Makita, Satoru; Schelbert, Silvia; Sano, Shinsuke; Tsuchiya, Tohru; Hasegawa, Shigeaki F.; Hörtensteiner, Stefan; Tanaka, Ayumi

    2015-01-01

    Chlorophyllase (CLH) is a common plant enzyme that catalyzes the hydrolysis of chlorophyll to form chlorophyllide, a more hydrophilic derivative. For more than a century, the biological role of CLH has been controversial, although this enzyme has been often considered to catalyze chlorophyll catabolism during stress-induced chlorophyll breakdown. In this study, we found that the absence of CLH does not affect chlorophyll breakdown in intact leaf tissue in the absence or the presence of methyl-jasmonate, which is known to enhance stress-induced chlorophyll breakdown. Fractionation of cellular membranes shows that Arabidopsis (Arabidopsis thaliana) CLH is located in the endoplasmic reticulum and the tonoplast of intact plant cells. These results indicate that CLH is not involved in endogenous chlorophyll catabolism. Instead, we found that CLH promotes chlorophyllide formation upon disruption of leaf cells, or when it is artificially mistargeted to the chloroplast. These results indicate that CLH is responsible for chlorophyllide formation after the collapse of cells, which led us to hypothesize that chlorophyllide formation might be a process of defense against chewing herbivores. We found that Arabidopsis leaves with genetically enhanced CLH activity exhibit toxicity when fed to Spodoptera litura larvae, an insect herbivore. In addition, purified chlorophyllide partially suppresses the growth of the larvae. Taken together, these results support the presence of a unique binary defense system against insect herbivores involving chlorophyll and CLH. Potential mechanisms of chlorophyllide action for defense are discussed. PMID:25583926

  20. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings.

    PubMed

    Uddling, J; Gelang-Alfredsson, J; Piikki, K; Pleijel, H

    2007-01-01

    Relationships between chlorophyll concentration ([chl]) and SPAD values were determined for birch, wheat, and potato. For all three species, the relationships were non-linear with an increasing slope with increasing SPAD. The relationships for birch and wheat were strong (r (2) approximately 0.9), while the potato relationship was comparatively weak (r (2) approximately 0.5). Birch and wheat had very similar relationships when the chlorophyll concentration was expressed per unit leaf area, but diverged when it was expressed per unit fresh weight. Furthermore, wheat showed similar SPAD-[chl] relationships for two different cultivars and during two different growing seasons. The curvilinear shape of the SPAD-[chl] relationships agreed well with the simulated effects of non-uniform chlorophyll distribution across the leaf surface and multiple scattering, causing deviations from linearity in the high and low SPAD range, respectively. The effect of non-uniformly distributed chlorophyll is likely to be more important in explaining the non-linearity in the empirical relationships, since the effect of scattering was predicted to be comparatively weak. The simulations were based on the algorithm for the calculation of SPAD-502 output values. We suggest that SPAD calibration curves should generally be parameterised as non-linear equations, and we hope that the relationships between [chl] and SPAD and the simulations of the present study can facilitate the interpretation of chlorophyll meter calibrations in relation to optical properties of leaves in future studies.

  1. The Effects of Chlorophyll Assimilation on Carbon Fluxes in a Global Biogeochemical Model. [Technical Report Series on Global Modeling and Data Assimilation

    NASA Technical Reports Server (NTRS)

    Koster, Randal D. (Editor); Rousseaux, Cecile Severine; Gregg, Watson W.

    2014-01-01

    In this paper, we investigated whether the assimilation of remotely-sensed chlorophyll data can improve the estimates of air-sea carbon dioxide fluxes (FCO2). Using a global, established biogeochemical model (NASA Ocean Biogeochemical Model, NOBM) for the period 2003-2010, we found that the global FCO2 values produced in the free-run and after assimilation were within -0.6 mol C m(sup -2) y(sup -1) of the observations. The effect of satellite chlorophyll assimilation was assessed in 12 major oceanographic regions. The region with the highest bias was the North Atlantic. Here the model underestimated the fluxes by 1.4 mol C m(sup -2) y(sup -1) whereas all the other regions were within 1 mol C m(sup -2) y(sup -1) of the data. The FCO2 values were not strongly impacted by the assimilation, and the uncertainty in FCO2 was not decreased, despite the decrease in the uncertainty in chlorophyll concentration. Chlorophyll concentrations were within approximately 25% of the database in 7 out of the 12 regions, and the assimilation improved the chlorophyll concentration in the regions with the highest bias by 10-20%. These results suggest that the assimilation of chlorophyll data does not considerably improve FCO2 estimates and that other components of the carbon cycle play a role that could further improve our FCO2 estimates.

  2. Marginal Ice Zone: Biogeochemical Sampling with Gliders

    DTIC Science & Technology

    2014-09-30

    chlorophyll primary productivity model to estimate and compare phytoplankton productivity under full ice cover, in the MIZ, and in open ice-free water...September, the gliders and still operating but will be retrieved in early October from the R/V Norseman. All gliders carried sensors for chlorophyll ...program, with modification for local conditions. The specific protocols for each sensor – backscatter and chlorophyll fluorescence – are described in

  3. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit

    USDA-ARS?s Scientific Manuscript database

    The chlorophyll gives the green color in plants. Any mutations in chloroplhyll biosynthesis or regulation may result in colr changes. Leaf color mutants are common in higher plants, which can be used as markers in crop breeding or as a tool in understanding regulatory mechanisms in chlorophyll biosy...

  4. A Scoping Study of Water Quality Conditions in the Missouri National Recreational River Reach from Near Gavins Point Dam to Ponca State Park, Nebraska

    DTIC Science & Technology

    2002-03-01

    37 Plate 12. Box plots of turbidity, total suspended solids, and chlorophyll a levels for the...38 Plate 13. Box plots of turbidity, total suspended solids, and chlorophyll a levels for the...39 Plate 14. Box plots of turbidity, total suspended solids, and chlorophyll a levels for the backwater and

  5. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading.

    PubMed

    García-Sánchez, M A; Serratos, I N; Sosa, R; Tapia-Esquivel, T; González-García, F; Rojas-González, F; Tello-Solís, S R; Palacios-Enriquez, A Y; Esparza Schulz, J M; Arrieta, A

    2016-07-22

    Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO₂, TiO₂ or ZrO₂ synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most physicochemical properties of trapped chlorophyll for diverse technological applications. The data herein collected suggest the possibility of applying the developed methodology to other active, captive molecules in order to synthesize new hybrid materials with optimized properties, suitable to be applied in diverse technological fields.

  6. MJO (Madden-Julian Oscillation) Analysis of the Chlorophyll-a Distribution in Western Waters Bengkulu

    NASA Astrophysics Data System (ADS)

    Haryanto, Y. D.; Fitrianti, N.; Hartoko, A.; Anggoro, S.; Zainuri, M.

    2017-02-01

    The global phenomenon Madden-Julian Oscillation (MJO) is one of the dominant oscillation in the equatorial region of the Indian Ocean that oscillates between 30-60 days and experience the process of convection movement from west to east. MJO has a correlation of high intensity rainfall of the area in its path. During his journey eastward, the MJO is influenced by the position of the sun. When the sun in the equatorial MJO moves straight east. Meanwhile, when the position of the sun in the south of the equator, MJO shifted slightly to the south of the equator, known as the propagation of the south-east (south-eastern propagation). When the position of the sun is in the north of the equator, MJO shifted slightly to the north of the equator, known as the propagation of the north-east (north-east of propagation). Waters west of Bengkulu has a huge potential in the fisheries sector, which is situated overlooking the Indian Ocean. The phenomenon MJO influence on rainfall, sea surface temperature, and the concentration of chlorophyll-a. This study aims to look at the temporal distribution of sea surface temperature and chlorophyll-a and decide how MJO relationship with SST and precipitation conditions and increasing the amount of chlorophyll during the phase of the MJO in Bengkulu waters. The dataset used is data of chlorophyll-a which download in oceancolor.gfsc.nasa.gov , sea surface temperature data is used is a model of Kaplan Extended V2, RMM1 index data and RMM2 on www.bom.gov.au and rainfall data of Bengkulu region. The method used is descriptive statistical methods, Conditional Probability and logistics regression. From the above explanation can be said that there is a relationship between the incidence of MJO by the number of chlorophyll-a. Odds the addition of chlorophyll-a have a linear relationship with the duration of the incident MJO in Bengkulu, odds increase the amount of chlorophyll-a in Bengkulu region reaches a threshold value of 0.5, it means that the length occurrence MJO able to identify increasing the number of chlorophyll-a in Bengkulu.

  7. Genetic variation and control of chloroplast pigment concentrations in Picea rubens, Picea mariana and their hybrids. I. Ambient and elevated [CO2] environments.

    PubMed

    Major, John E; Barsi, Debby C; Mosseler, Alex; Campbell, Moira

    2007-03-01

    Traits related to light-energy processing have significant ecological implications for plant fitness. We studied the effects of elevated atmospheric CO(2) concentration ([CO(2)]) on chloroplast pigment traits of a red spruce (RS) (Picea rubens Sarg.)-black spruce (BS) (P. mariana (Mill.) B.S.P.) genetic complex in two experiments: (1) a comparative species' provenance experiment from across the near-northern part of the RS range; and (2) an intra- and interspecific controlled-cross experiment. Results from the provenance experiment showed that total chlorophyll (a + b) concentration was, on average, 15% higher in ambient [CO(2)] than in elevated [CO(2)] (P < 0.001). In ambient [CO(2)], BS populations averaged 11% higher total chlorophyll and carotenoid concentrations than RS populations (P < 0.001). There were significant species, CO(2), and species x CO(2) interaction effects, with chlorophyll concentration decreasing about 7 and 26% for BS and RS, respectively, in response to elevated [CO(2)]. Results from the controlled-cross experiment showed that families with a hybrid index of 25 (25% RS) had the highest total chlorophyll concentrations, and families with hybrid indices of 75 and 100 had among the lowest amounts. Initial analysis of the controlled-cross experiment supported a more additive model of inheritance; however, parental analysis showed a significant and predominant male effect for chlorophyll concentration. In ambient and elevated [CO(2)] environments, crosses with BS males had 10.6 and 17.6% higher total chlorophyll concentrations than crosses with hybrid and RS males, respectively. Our results show that chlorophyll concentration is under strong genetic control, and that these traits are positively correlated with productivity within and across species. A significant positive correlation between chlorophyll concentration and the ratio of total plant N to root dry mass was also found (r = 0.872). The almost fourfold decrease in chlorophyll concentration in RS suggests that it would be at a competitive disadvantage compared with BS in a high [CO(2)] environment.

  8. Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions.

    PubMed

    Ogawa, Takako; Misumi, Masahiro; Sonoike, Kintake

    2017-09-01

    Cyanobacteria are photosynthetic prokaryotes and widely used for photosynthetic research as model organisms. Partly due to their prokaryotic nature, however, estimation of photosynthesis by chlorophyll fluorescence measurements is sometimes problematic in cyanobacteria. For example, plastoquinone pool is reduced in the dark-acclimated samples in many cyanobacterial species so that conventional protocol developed for land plants cannot be directly applied for cyanobacteria. Even for the estimation of the simplest chlorophyll fluorescence parameter, F v /F m , some additional protocol such as addition of DCMU or illumination of weak blue light is necessary. In this review, those problems in the measurements of chlorophyll fluorescence in cyanobacteria are introduced, and solutions to those problems are given.

  9. Does Primary Productivity Turn Up the Volume? Exploring the Relationship Between Chlorophyll a and the Soundscape of Coral Reefs in the Pacific.

    PubMed

    Fisher-Pool, Pollyanna I; Lammers, Marc O; Gove, Jamison; Wong, Kevin B

    2016-01-01

    Chlorophyll is the basis for ecosystem productivity in most marine environments. We report on an ongoing effort to examine whether ambient sounds are tied to chlorophyll levels. We hypothesized that an increase in food-web available energy will be distributed across trophic levels, eventually reaching sound-producing animals and increasing acoustic levels. To test our hypothesis, we compared reef environments to explore links between soundscapes and chlorophyll a concentrations. The study sites resided in disparate oceanographic regimes that experienced substantially different oceanographic conditions. We anticipated that the results would show differing patterns of primary productivity between sites and therefore would be reflected in the soundscapes.

  10. Patterns and Variability in Global Ocean Chlorophyll: Satellite Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Gregg, Watson

    2004-01-01

    Recent analyses of SeaWiFS data have shown that global ocean chlorophyll has increased more than 4% since 1998. The North Pacific ocean basin has increased nearly 19%. These trend analyses follow earlier results showing decadal declines in global ocean chlorophyll and primary production. To understand the causes of these changes and trends we have applied the newly developed NASA Ocean Biogeochemical Assimilation Model (OBAM), which is driven in mechanistic fashion by surface winds, sea surface temperature, atmospheric iron deposition, sea ice, and surface irradiance. The model utilizes chlorophyll from SeaWiFS in a daily assimilation. The model has in place many of the climatic variables that can be expected to produce the changes observed in SeaWiFS data. This enables us to diagnose the model performance, the assimilation performance, and possible causes for the increase in chlorophyll. A full discussion of the changes and trends, possible causes, modeling approaches, and data assimilation will be the focus of the seminar.

  11. Hydroxymethylated Dioxobilins in Senescent Arabidopsis thaliana Leaves: Sign of a Puzzling Biosynthetic Intermezzo of Chlorophyll Breakdown.

    PubMed

    Süssenbacher, Iris; Kreutz, Christoph R; Christ, Bastien; Hörtensteiner, Stefan; Kräutler, Bernhard

    2015-08-10

    1-Formyl-19-oxobilin-type tetrapyrroles are characteristic, abundant products of chlorophyll breakdown in senescent leaves. However, in some leaves, 1,19-dioxobilin-type chlorophyll catabolites (DCCs) lacking the formyl group accumulate instead. A P450 enzyme was identified in in vitro studies that removed the formyl group of a primary fluorescent chlorophyll catabolite (pFCC) and generated fluorescent DCCs. These DCCs are precursors of isomeric nonfluorescent DCCs (NDCCs). Here, we report a structural investigation of the NDCCs in senescent leaves of wild-type Arabidopsis thaliana. Four new NDCCs were characterized, two of which carried a stereoselectively added hydroxymethyl group. Such formal DCC hydroxymethylations were previously found in DCCs in leaves of a mutant of A. thaliana. They are now indicated to be a feature of chlorophyll breakdown in A. thaliana, associated with the specific in vivo deformylation of pFCC en route to NDCCs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chlorophyll catabolism in olive fruits (var. Arbequina and Hojiblanca) during maturation.

    PubMed

    Vergara-Domínguez, Honorio; Ríos, José Julían; Gandul-Rojas, Beatriz; Roca, María

    2016-12-01

    The central reaction of chlorophyll (chl) breakdown pathway occurring during olive fruits maturation is the cleavage of the macrocycle pheophorbide a to a primary fluorescent chl catabolite (pFCC) and it is catalyzed by two enzymes: pheophorbide a oxygenase (PaO) and red chl catabolite reductase (RCCR). In subsequent steps, pFCC is converted to different fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs). This work demonstrated that RCCR activity of olive fruits is type II. During the study of evolution of PaO and RCCR activities through the olive fruits maturation in two varieties: Hojiblanca and Arbequina, a significant increase in PaO and RCCR activity was found in ripening stage. In addition, the profile and structure of NCCs present in epicarp of this fruit was studied using HPLC/ESI-TOF-MS. Five different NCCs were defined and for the first time the enzymatic reactions implied in chlorophyll degradations in olive fruits elucidated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Retrieval of chlorophyll from remote-sensing reflectance in the china seas.

    PubMed

    He, M X; Liu, Z S; Du, K P; Li, L P; Chen, R; Carder, K L; Lee, Z P

    2000-05-20

    The East China Sea is a typical case 2 water environment, where concentrations of phytoplankton pigments, suspended matter, and chromophoric dissolved organic matter (CDOM) are all higher than those in the open oceans, because of the discharge from the Yangtze River and the Yellow River. By using a hyperspectral semianalytical model, we simulated a set of remote-sensing reflectance for a variety of chlorophyll, suspended matter, and CDOM concentrations. From this simulated data set, a new algorithm for the retrieval of chlorophyll concentration from remote-sensing reflectance is proposed. For this method, we took into account the 682-nm spectral channel in addition to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) channels. When this algorithm was applied to a field data set, the chlorophyll concentrations retrieved through the new algorithm were consistent with field measurements to within a small error of 18%, in contrast with that of 147% between the SeaWiFS ocean chlorophyll 2 algorithm and the in situ observation.

  14. Evolution of the Marginal Ice Zone: Adaptive Sampling with Autonomous Gliders

    DTIC Science & Technology

    2015-09-30

    kinetic energy (ε). Gliders also sampled dissolved oxygen, optical backscatter ( chlorophyll and CDOM fluorescence) and multi-spectral downwelling...Fig. 2). In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become...Sections across the ice edge just prior to recovery, during freeze-up, reveal elevated chlorophyll fluorescence throughout the mixed layer (Fig. 4

  15. Oceanic Lidar

    NASA Technical Reports Server (NTRS)

    Carder, K. L. (Editor)

    1981-01-01

    Instrument concepts which measure ocean temperature, chlorophyll, sediment and Gelbstoffe concentrations in three dimensions on a quantitative, quasi-synoptic basis were considered. Coastal zone color scanner chlorophyll imagery, laser stimulated Raman temperaure and fluorescence spectroscopy, existing airborne Lidar and laser fluorosensing instruments, and their accuracies in quantifying concentrations of chlorophyll, suspended sediments and Gelbstoffe are presented. Lidar applications to phytoplankton dynamics and photochemistry, Lidar radiative transfer and signal interpretation, and Lidar technology are discussed.

  16. Chlorophyll a reconstruction from in situ measurements: 2. Marked carbon uptake decrease in the last century

    NASA Astrophysics Data System (ADS)

    Fründt, B.; Dippner, J. W.; Schulz-Bull, D. E.; Waniek, J. J.

    2015-02-01

    A chlorophyll a hindcast in the Madeira Basin from 1871 to 2008 was used to analyze the long-term variability in the oligotrophic, subtropical gyres in relation to the climate change of the last century. The deep chlorophyll maximum (DCM), as dominant pattern of the chlorophyll a field, showed a fast decrease in its strength in the 1940s. An absolute minimum was reached between 1967 and 1973 when no DCM established with a recovering to the end of the time series. Long-term variability of the DCM was related to the North Atlantic Oscillation with a time delay of 9 years. The marked decrease in the 1940s was correlated to the drop of the solar radiation in transition from early brightening to global dimming. Caused by the influence of the solar radiation and maybe related to increasing global temperatures in the last century, the integrated chlorophyll a concentration decreased by about 0.7 mg m-2 in 2008 compared to 1871. The high-resolved chlorophyll a hindcast allowed an estimation of the carbon uptake by the ocean due to primary production in the euphotic zone. A rough calculation over the area of the global subtropical oceans showed 700 megaton less carbon uptake in 2008.

  17. Arabidopsis Chlorophyll Biosynthesis: An Essential Balance between the Methylerythritol Phosphate and Tetrapyrrole Pathways[C][W

    PubMed Central

    Kim, Se; Schlicke, Hagen; Van Ree, Kalie; Karvonen, Kristine; Subramaniam, Anant; Richter, Andreas; Grimm, Bernhard; Braam, Janet

    2013-01-01

    Chlorophyll, essential for photosynthesis, is composed of a chlorin ring and a geranylgeranyl diphosphate (GGPP)–derived isoprenoid, which are generated by the tetrapyrrole and methylerythritol phosphate (MEP) biosynthesis pathways, respectively. Although a functional MEP pathway is essential for plant viability, the underlying basis of the requirement has been unclear. We hypothesized that MEP pathway inhibition is lethal because a reduction in GGPP availability results in a stoichiometric imbalance in tetrapyrrolic chlorophyll precursors, which can cause deadly photooxidative stress. Consistent with this hypothesis, lethality of MEP pathway inhibition in Arabidopsis thaliana by fosmidomycin (FSM) is light dependent, and toxicity of MEP pathway inhibition is reduced by genetic and chemical impairment of the tetrapyrrole pathway. In addition, FSM treatment causes a transient accumulation of chlorophyllide and transcripts associated with singlet oxygen-induced stress. Furthermore, exogenous provision of the phytol molecule reduces FSM toxicity when the phytol can be modified for chlorophyll incorporation. These data provide an explanation for FSM toxicity and thereby provide enhanced understanding of the mechanisms of FSM resistance. This insight into MEP pathway inhibition consequences underlines the risk plants undertake to synthesize chlorophyll and suggests the existence of regulation, possibly involving chloroplast-to-nucleus retrograde signaling, that may monitor and maintain balance of chlorophyll precursor synthesis. PMID:24363312

  18. A Light Harvesting Complex-Like Protein in Maintenance of Photosynthetic Components in Chlamydomonas1[OPEN

    PubMed Central

    Zhao, Lei; Cheng, Dongmei; Huang, Xiahe; Chen, Mei; Xing, Jiale; Gao, Liyan; Li, Lingyu; Wang, Yale; Peng, Lianwei; Wang, Yingchun

    2017-01-01

    Using a genetic approach, we have identified and characterized a novel protein, named Msf1 (Maintenance factor for photosystem I), that is required for the maintenance of specific components of the photosynthetic apparatus in the green alga Chlamydomonas reinhardtii. Msf1 belongs to the superfamily of light-harvesting complex proteins with three transmembrane domains and consensus chlorophyll-binding sites. Loss of Msf1 leads to reduced accumulation of photosystem I and chlorophyll-binding proteins/complexes. Msf1is a component of a thylakoid complex containing key enzymes of the tetrapyrrole biosynthetic pathway, thus revealing a possible link between Msf1 and chlorophyll biosynthesis. Protein interaction assays and greening experiments demonstrate that Msf1 interacts with Copper target homolog1 (CHL27B) and accumulates concomitantly with chlorophyll in Chlamydomonas, implying that chlorophyll stabilizes Msf1. Contrary to other light-harvesting complex-like genes, the expression of Msf1 is not stimulated by high-light stress, but its protein level increases significantly under heat shock, iron and copper limitation, as well as in stationary cells. Based on these results, we propose that Msf1 is required for the maintenance of photosystem I and specific protein-chlorophyll complexes especially under certain stress conditions. PMID:28637830

  19. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors.

    PubMed

    Zhang, Jianfeng; Han, Wenting; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian; Hu, Yamin

    2016-03-25

    The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis.

  20. Significant enhancement in the power-conversion efficiency of chlorophyll co-sensitized solar cells by mimicking the principles of natural photosynthetic light-harvesting complexes.

    PubMed

    Wang, Xiao-Feng; Koyama, Yasushi; Kitao, Osamu; Wada, Yuji; Sasaki, Shin-Ich; Tamiaki, Hitoshi; Zhou, Haoshen

    2010-04-15

    Dye-sensitized solar cells (DSSCs) are similar to natural photosynthesis in the initial processes involving in light-harvesting and charge separation. In order to mimic those natural photosynthetic systems mainly containing multiple pigments, six different chlorophyllous sensitizers have been isolated from natural photosynthetic organism or synthesized based on natural photosynthetic precursors, and used for fabricating DSSCs. These dye sensitizers can be placed into three classes, i.e., a-type, b-type, or c-type, based on the structural similarity to their analogs of the natural photosynthesis pigments chlorophylls a, b, and c. We succeeded in demonstrating homogeneous co-sensitization among these analogues when these were present together on mesoporous TiO2 films, and we measured the photovoltaic performance of the resulting chlorophyll-sensitized solar cells. Significantly enhanced power-conversion efficiencies (eta) were achieved with DSSCs based on co-sensitization of a chlorophyll a derivative with a chlorophyll b or c derivative. A highest power-conversion efficiency of up to 5.4% has been obtained. These results suggest that it is possible to apply multiple pigments and the energy transfer mechanism from natural photosynthetic systems in fabricating high-efficiency DSSCs. 2010 Elsevier B.V. All rights reserved.

  1. Arabidopsis chlorophyll biosynthesis: an essential balance between the methylerythritol phosphate and tetrapyrrole pathways.

    PubMed

    Kim, Se; Schlicke, Hagen; Van Ree, Kalie; Karvonen, Kristine; Subramaniam, Anant; Richter, Andreas; Grimm, Bernhard; Braam, Janet

    2013-12-01

    Chlorophyll, essential for photosynthesis, is composed of a chlorin ring and a geranylgeranyl diphosphate (GGPP)-derived isoprenoid, which are generated by the tetrapyrrole and methylerythritol phosphate (MEP) biosynthesis pathways, respectively. Although a functional MEP pathway is essential for plant viability, the underlying basis of the requirement has been unclear. We hypothesized that MEP pathway inhibition is lethal because a reduction in GGPP availability results in a stoichiometric imbalance in tetrapyrrolic chlorophyll precursors, which can cause deadly photooxidative stress. Consistent with this hypothesis, lethality of MEP pathway inhibition in Arabidopsis thaliana by fosmidomycin (FSM) is light dependent, and toxicity of MEP pathway inhibition is reduced by genetic and chemical impairment of the tetrapyrrole pathway. In addition, FSM treatment causes a transient accumulation of chlorophyllide and transcripts associated with singlet oxygen-induced stress. Furthermore, exogenous provision of the phytol molecule reduces FSM toxicity when the phytol can be modified for chlorophyll incorporation. These data provide an explanation for FSM toxicity and thereby provide enhanced understanding of the mechanisms of FSM resistance. This insight into MEP pathway inhibition consequences underlines the risk plants undertake to synthesize chlorophyll and suggests the existence of regulation, possibly involving chloroplast-to-nucleus retrograde signaling, that may monitor and maintain balance of chlorophyll precursor synthesis.

  2. Temperature-Correlated Changes in Phytoplankton Community Structure Are Restricted to Polar Waters.

    PubMed

    Ward, Ben A

    2015-01-01

    Globally distributed observations of size-fractionated chlorophyll a and temperature were used to incorporate temperature dependence into an existing semi-empirical model of phytoplankton community size structure. The additional temperature-dependent term significantly increased the model's ability to both reproduce and predict observations of chlorophyll a size-fractionation at temperatures below 2°C. The most notable improvements were in the smallest (picoplankton) size-class, for which overall model fit was more than doubled, and predictive skill was increased by approximately 40%. The model was subsequently applied to generate global maps for three phytoplankton size classes, on the basis of satellite-derived estimates of surface chlorophyll a and sea surface temperature. Polar waters were associated with marked decline in the chlorophyll a biomass of the smallest cells, relative to lower latitude waters of equivalent total chlorophyll a. In the same regions a complementary increase was seen in the chlorophyll a biomass of larger size classes. These findings suggest that a warming and stratifying ocean will see a poleward expansion of the habitat range of the smallest phytoplankton, with the possible displacement of some larger groups that currently dominate. There was no evidence of a strong temperature dependence in tropical or sub-tropical regions, suggesting that future direct temperature effects on community structure at lower latitudes may be small.

  3. Chlorophyll Biosynthesis Gene Evolution Indicates Photosystem Gene Duplication, Not Photosystem Merger, at the Origin of Oxygenic Photosynthesis

    PubMed Central

    Sousa, Filipa L.; Shavit-Grievink, Liat; Allen, John F.; Martin, William F.

    2013-01-01

    An open question regarding the evolution of photosynthesis is how cyanobacteria came to possess the two reaction center (RC) types, Type I reaction center (RCI) and Type II reaction center (RCII). The two main competing theories in the foreground of current thinking on this issue are that either 1) RCI and RCII are related via lineage divergence among anoxygenic photosynthetic bacteria and became merged in cyanobacteria via an event of large-scale lateral gene transfer (also called "fusion" theories) or 2) the two RC types are related via gene duplication in an ancestral, anoxygenic but protocyanobacterial phototroph that possessed both RC types before making the transition to using water as an electron donor. To distinguish between these possibilities, we studied the evolution of the core (bacterio)chlorophyll biosynthetic pathway from protoporphyrin IX (Proto IX) up to (bacterio)chlorophyllide a. The results show no dichotomy of chlorophyll biosynthesis genes into RCI- and RCII-specific chlorophyll biosynthetic clades, thereby excluding models of fusion at the origin of cyanobacteria and supporting the selective-loss hypothesis. By considering the cofactor demands of the pathway and the source genes from which several steps in chlorophyll biosynthesis are derived, we infer that the cell that first synthesized chlorophyll was a cobalamin-dependent, heme-synthesizing, diazotrophic anaerobe. PMID:23258841

  4. Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis.

    PubMed

    Sousa, Filipa L; Shavit-Grievink, Liat; Allen, John F; Martin, William F

    2013-01-01

    An open question regarding the evolution of photosynthesis is how cyanobacteria came to possess the two reaction center (RC) types, Type I reaction center (RCI) and Type II reaction center (RCII). The two main competing theories in the foreground of current thinking on this issue are that either 1) RCI and RCII are related via lineage divergence among anoxygenic photosynthetic bacteria and became merged in cyanobacteria via an event of large-scale lateral gene transfer (also called "fusion" theories) or 2) the two RC types are related via gene duplication in an ancestral, anoxygenic but protocyanobacterial phototroph that possessed both RC types before making the transition to using water as an electron donor. To distinguish between these possibilities, we studied the evolution of the core (bacterio)chlorophyll biosynthetic pathway from protoporphyrin IX (Proto IX) up to (bacterio)chlorophyllide a. The results show no dichotomy of chlorophyll biosynthesis genes into RCI- and RCII-specific chlorophyll biosynthetic clades, thereby excluding models of fusion at the origin of cyanobacteria and supporting the selective-loss hypothesis. By considering the cofactor demands of the pathway and the source genes from which several steps in chlorophyll biosynthesis are derived, we infer that the cell that first synthesized chlorophyll was a cobalamin-dependent, heme-synthesizing, diazotrophic anaerobe.

  5. Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) I: transcriptome analysis of the effects of uniconazole on chlorophyll and endogenous hormone biosynthesis.

    PubMed

    Liu, Yang; Fang, Yang; Huang, Mengjun; Jin, Yanling; Sun, Jiaolong; Tao, Xiang; Zhang, Guohua; He, Kaize; Zhao, Yun; Zhao, Hai

    2015-01-01

    Duckweed is a novel aquatic bioenergy crop that is found ubiquitously throughout the world. Uniconazole plays an important role in improving crop production through the regulation of endogenous hormone levels. We found that a high quantity and quality of duckweed growth can be achieved by uniconazole application, although the mechanisms are unknown. The fronds of Landoltia punctata were sprayed evenly with 800 mg/L uniconazole. The dry weight following treatment increased by 10% compared to the controls at 240 h. Endogenous cytokinin (CK) and abscisic acid (ABA) content both increased compared to the control, while the level of gibberellins (GAs) decreased. Additionally, gene expression profiling results showed that the expression of transcripts encoding key enzymes involved in endogenous CK and ABA biosynthesis were up-regulated, while the transcripts of key enzymes for GAs biosynthesis were down-regulated. On the other hand, chlorophyll a and chlorophyll b contents were both increased compared with the control. Moreover, the net photosynthetic rate was elevated to 25.6 μmol CO2/m(2)/s compared with the control value of 22.05 μmol CO2/m(2)/s. Importantly, the expression of some chlorophyll biosynthesis-related transcripts was up-regulated. Uniconazole treatment altered endogenous hormone levels and enhanced chlorophyll content and net photosynthetic rate in duckweed by regulating key enzymes involved in endogenous hormone and chlorophyll biosynthesis. The alterations of endogenous hormones and the increase of chlorophyll and photosynthetic rate data support the increase of biomass and starch accumulation.

  6. The features of chlorophyll concentration long-standing dynamics in the ocean surface layer (comparison of czcs and seawifs data)

    NASA Astrophysics Data System (ADS)

    Shevyrnogov, A.; Vysotskaya, G.

    To preserve biosphere and make its utilization expedient makes imperative to comprehend in depth long-standing dynamics of the primary production process on our planet. Variability of chlorophyll concentration in the ocean is one of the most important components of this process. However, hard access and large size of the water surface make its investigation labor-consuming. Besides, the dependence of primary production on high variability of hydrophysical phenomena in the ocean (fluctuations of currents, frontal zones, etc.) makes the location of points for measuring the chlorophyll concentration dynamics significant. In this work the long-standing changes in chlorophyll concentration in the surface layer of the ocean have been analyzed on the basis of the CZCS data for 7.5 years and the SeaWiFS data from 1997 to 2003. It was shown that the average chlorophyll concentration calculated at all investigated area is varied moderately. However when analyzing spatially local trends, it was detected that areas exist with stable rise and fall of chlorophyll concentration. Some interesting features of the long-standing dynamics of chlorophyll concentration several interesting features were found. There are the various directions of long-term trends (constant increase or decrease) that cannot be explained only by large-scale hydrological phenomena in the ocean (currents, upwellings etc.). The next feature is a difference between the trends revealed by using the CZCS data and the trends based on the SeaWiFS data. Thus, the obtained results allow the possibility of identification of the ocean biota role in the global biospheric gas exchange.

  7. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China.

    PubMed

    Du, Enzai; Dong, Dan; Zeng, Xuetong; Sun, Zhengzhong; Jiang, Xiaofei; de Vries, Wim

    2017-12-15

    Anthropogenic emissions of acid precursors in China have resulted in widespread acid rain since the 1980s. Although efforts have been made to assess the indirect, soil mediated ecological effects of acid rain, a systematic assessment of the direct foliage injury by acid rain across terrestrial plants is lacking. Leaf chlorophyll content is an important indicator of direct foliage damage and strongly related to plant productivity. We synthesized data from published literature on experiments of simulated acid rain, by directly exposing plants to acid solutions with varying pH levels, to assess the direct effect of acid rain on leaf chlorophyll content across 67 terrestrial plants in China. Our results indicate that acid rain substantially reduces leaf chlorophyll content by 6.71% per pH unit across the recorded plant species. The direct reduction of leaf chlorophyll content due to acid rain exposure showed no significant difference across calcicole, ubiquist or calcifuge species, implying that soil acidity preference does not influence the sensitivity to leaf injury by acid rain. On average, the direct effects of acid rain on leaf chlorophyll on trees, shrubs and herbs were comparable. The effects, however varied across functional groups and economic use types. Specifically, leaf chlorophyll content of deciduous species was more sensitive to acid rain in comparison to evergreen species. Moreover, vegetables and fruit trees were more sensitive to acid rain than other economically used plants. Our findings imply a potential production reduction and economic loss due to the direct foliage damage by acid rain. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit.

    PubMed

    Gao, Meiling; Hu, Liangliang; Li, Yuhong; Weng, Yiqun

    2016-10-01

    The cucumber chlorophyll-deficient golden leaf mutation is due to a single nucleotide substitution in the CsChlI gene for magnesium chelatase I subunit which plays important roles in the chlorophyll biosynthesis pathway. The Mg-chelatase catalyzes the insertion of Mg(2+) into the protoporphyrin IX in the chlorophyll biosynthesis pathway, which is a protein complex encompassing three subunits CHLI, CHLD, and CHLH. Chlorophyll-deficient mutations in genes encoding the three subunits have played important roles in understanding the structure, function and regulation of this important enzyme. In an EMS mutagenesis population, we identified a chlorophyll-deficient mutant C528 with golden leaf color throughout its development which was viable and able to set fruits and seeds. Segregation analysis in multiple populations indicated that this leaf color mutation was recessively inherited and the green color showed complete dominance over golden color. Map-based cloning identified CsChlI as the candidate gene for this mutation which encoded the CHLI subunit of cucumber Mg-chelatase. The 1757-bp CsChlI gene had three exons and a single nucleotide change (G to A) in its third exon resulted in an amino acid substitution (G269R) and the golden leaf color in C528. This mutation occurred in the highly conserved nucleotide-binding domain of the CHLI protein in which chlorophyll-deficient mutations have been frequently identified. The mutant phenotype, CsChlI expression pattern and the mutated residue in the CHLI protein suggested the mutant allele in C528 is unique among mutations identified so far in different species. This golden leaf mutant not only has its potential in cucumber breeding, but also provides a useful tool in understanding the CHLI function and its regulation in the chlorophyll biosynthesis pathway as well as chloroplast development.

  9. Ultrafast Nonradiative Decay and Excitation Energy Transfer by Carotenoids in Photosynthetic Light-Harvesting Proteins

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumen

    This dissertation investigates the photophysical and structural dynamics that allow carotenoids to serve as efficient excitation energy transfer donor to chlorophyll acceptors in photosynthetic light harvesting proteins. Femtosecond transient grating spectroscopy with optical heterodyne detection has been employed to follow the nonradiative decay pathways of carotenoids and excitation energy transfer to chlorophylls. It was found that the optically prepared S2 (11Bu+) state of beta-carotene decays in 12 fs fs to populate an intermediate electronic state, Sx, which then decays nonradiatively to the S 1 state. The ultrafast rise of the dispersion component of the heterodyne transient grating signal reports the formation of Sx intermediate since the rise of the dispersion signal is controlled by the loss of stimulated emission from the S2 state. These findings were extended to studies of peridinin, a carbonyl substituted carotenoid that serves as a photosynthetic light-harvesting chromophore in dinoflagellates. Numerical simulations using nonlinear response formalism and the multimode Brownian oscillator model assigned the Sx intermediate to a torsionally distorted structure evolving on the S2 potential surface. The decay of the Sx state is promoted by large amplitude out-of-plane torsional motions and is significantly retarded by solvent friction owing to the development of an intramolecular charge transfer character in peridinin. The slowing of the nonradiative decay allows the Sx state to transfer significant portion of the excitation energy to chlorophyll a acceptors in the peridinin-chlorophyll a protein. The results of heterodyne transient grating study on peridinin-chlorophyll a protein suggests two distinct energy transfer channels from peridinin to chlorophyll a: a 30 fs process involving quantum coherence and delocalized peridinin-Chl states and an incoherent, 2.5 ps process involving the distorted S2 state of peridinin. The torsional evolution on the S2 state is accompanied by the formation of an ICT character and dynamic exciton localization, which controls the mechanism of excitation energy transfer to chlorophyll a acceptors in the peridinin-chlorophyll a protein.

  10. Wind driven nutrient and subsurface chlorophyll-a enhancement in the Bay of La Paz, Gulf of California

    NASA Astrophysics Data System (ADS)

    Coria-Monter, Erik; Monreal-Gómez, María Adela; Salas de León, David Alberto; Durán-Campos, Elizabeth; Merino-Ibarra, Martín

    2017-09-01

    Nutrient and chlorophyll-a distributions in the Bay of La Paz, Gulf of California, Mexico were analyzed during the late spring of 2004 to assess their relations to hydrography and circulation patterns. The results show the presence of both Gulf of California Water and Subtropical Subsurface Water. Water circulation was dominated by wind stress driven cyclonic circulation along f / H contours (f is planetary vorticity and H is depth), and upwelling resulting from the divergence shows a vertical velocity of ∼0.4 m d-1. Nutrient concentrations were higher in the center of the cyclonic pattern, where a rise in the nutricline contributed nutrients to the euphotic layer as a result of Ekman pumping. The vertical section showed the presence of a chlorophyll-a maximum at the thermocline shoaling to a depth of only 12 m. Along the surface, two peaks of chlorophyll-a were observed, one at Boca Grande and another off San Juan de la Costa, associated with upwelling and mixing derived from current interactions with abrupt topographies. The chlorophyll-a maximum increased from 0.8 mg m-3 in the external part of the cyclonic pattern to 2.0 mg m-3 in its center. The vertically integrated chlorophyll-a concentrations followed a similar pattern, rising from 10 to 20 mg m-2 and reaching their highest values in the center of the cyclonic circulation pattern. A schematic model was developed to describe processes that occur in late spring: the wind stress driven cyclonic structure promotes upward nutrient flux, which in turn drives an enhancement of chlorophyll-a. Upwelling was found to be the main mechanism of fertilization responsible for the enhancement of productivity levels by means of nutrient transport into the euphotic zone during spring. Other chlorophyll enhancement areas point to the occurrence of additional fertilization processes that may derive from interactions between cyclonic circulation patterns and the topography off of San Juan de la Costa, where phosphate mining occurs.

  11. Predicting crappie recruitment in Ohio reservoirs with spawning stock size, larval density, and chlorophyll concentrations

    USGS Publications Warehouse

    Bunnell, David B.; Hale, R. Scott; Vanni, Michael J.; Stein, Roy A.

    2006-01-01

    Stock-recruit models typically use only spawning stock size as a predictor of recruitment to a fishery. In this paper, however, we used spawning stock size as well as larval density and key environmental variables to predict recruitment of white crappies Pomoxis annularis and black crappies P. nigromaculatus, a genus notorious for variable recruitment. We sampled adults and recruits from 11 Ohio reservoirs and larvae from 9 reservoirs during 1998-2001. We sampled chlorophyll as an index of reservoir productivity and obtained daily estimates of water elevation to determine the impact of hydrology on recruitment. Akaike's information criterion (AIC) revealed that Ricker and Beverton-Holt stock-recruit models that included chlorophyll best explained the variation in larval density and age-2 recruits. Specifically, spawning stock catch per effort (CPE) and chlorophyll explained 63-64% of the variation in larval density. In turn, larval density and chlorophyll explained 43-49% of the variation in age-2 recruit CPE. Finally, spawning stock CPE and chlorophyll were the best predictors of recruit CPE (i.e., 74-86%). Although larval density and recruitment increased with chlorophyll, neither was related to seasonal water elevation. Also, the AIC generally did not distinguish between Ricker and Beverton-Holt models. From these relationships, we concluded that crappie recruitment can be limited by spawning stock CPE and larval production when spawning stock sizes are low (i.e., CPE , 5 crappies/net-night). At higher levels of spawning stock sizes, spawning stock CPE and recruitment were less clearly related. To predict recruitment in Ohio reservoirs, managers should assess spawning stock CPE with trap nets and estimate chlorophyll concentrations. To increase crappie recruitment in reservoirs where recruitment is consistently poor, managers should use regulations to increase spawning stock size, which, in turn, should increase larval production and recruits to the fishery.

  12. How is the chlorophyll count affected by burned and unburned marsh areas?

    NASA Astrophysics Data System (ADS)

    Kendrick, C.

    2017-12-01

    Does marsh burnings, either man made or natural, hinder or help Louisiana's vitally important coastal plant life? Does the carbon produced from the fires have a negative effect on the chlorophyll count of these precious living protective barriers? Or does it help contribute to raising the plants chlorophyll count? Along Louisiana's Gulf Coast, marsh burnings are conducted every 2-4 years to destroy some of the Spartina patens. Fires and smoke may have an effect on the chlorophyll count of the plants found in Louisiana's marshes. Peat burns, root burns, and cover burns are the three types of marsh fires. These burns can be either man made or started by natural causes. Peat burns occur when the soil is dry due to a drained marsh. Root burns occur when plant roots are burned without the soil being consumed. Cover burns occur when several centimeters of water covers the soil. Cover burns are often used by Wildlife and Fisheries personnel to promote preferred plant food growth like Scirpus olneyi rather than the dominant Spartina patens. Our project was conducted by testing marsh plants and obtaining chlorophyll count of both a burned (cover burn) and an unburned area. Approximately one year after the burn, in August 2015, we tested the burned area's site. We retested the same site in December 2016. The results from our testing showed that there was a slightly higher chlorophyll count in the burned area. The chlorophyll count average from the two testing days was 33.5 in the burned area and 30.15 in the unburned area. Our hypothesis was that the chlorophyll content of "controlled" burned wetland areas will have a higher amount than the "no" burn area. The experiment results supported this hypothesis by showing an increase of 3.35 average in the burned area.

  13. Assessing the Skill of Chlorophyll Forecasts: Latest Development and Challenges Ahead Using the Case of the Equatorial Pacific

    NASA Technical Reports Server (NTRS)

    Rousseaux, Cecile S.; Gregg, Watson W.

    2018-01-01

    Using a global ocean biogeochemical model combined with a forecast of physical oceanic and atmospheric variables from the NASA Global Modeling and Assimilation Office, we assess the skill of a chlorophyll concentrations forecast in the Equatorial Pacific for the period 2012-2015 with a focus on the forecast of the onset of the 2015 El Nino event. Using a series of retrospective 9-month hindcasts, we assess the uncertainties of the forecasted chlorophyll by comparing the monthly total chlorophyll concentration from the forecast with the corresponding monthly ocean chlorophyll data from the Suomi-National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (S-NPP VIIRS) satellite. The forecast was able to reproduce the phasing of the variability in chlorophyll concentration in the Equatorial Pacific, including the beginning of the 2015-2016 El Nino. The anomaly correlation coefficient (ACC) was significant (p less than 0.05) for forecast at 1-month (R=0.33), 8-month (R=0.42) and 9-month (R=0.41) lead times. The root mean square error (RMSE) increased from 0.0399 microgram chl L(exp -1) for the 1-month lead forecast to a maximum of 0.0472 microgram chl L(exp -1) for the 9-month lead forecast indicating that the forecast of the amplitude of chlorophyll concentration variability was getting worse. Forecasts with a 3-month lead time were on average the closest to the S-NPP VIIRS data (23% or 0.033 microgram chl L(exp -1)) while the forecast with a 9-month lead time were the furthest (31% or 0.042 microgram chl L(exp -1)). These results indicate the potential for forecasting chlorophyll concentration in this region but also highlights various deficiencies and suggestions for improvements to the current biogeochemical forecasting system. This system provides an initial basis for future applications including the effects of El Nino events on fisheries and other ocean resources given improvements identified in the analysis of these results.

  14. Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean

    NASA Astrophysics Data System (ADS)

    Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.

    2015-10-01

    In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms has led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted into phytoplankton biomass (i.e., chlorophyll a concentration) and size-based community composition (i.e., microphytoplankton, nanophytoplankton and picophytoplankton), using a method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over 5 decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from the surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available on open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition: http://doi.pangaea.de/10.1594/PANGAEA.844485

  15. Forecasting Ocean Chlorophyll in the Equatorial Pacific.

    PubMed

    Rousseaux, Cecile S; Gregg, Watson W

    2017-01-01

    Using a global ocean biogeochemical model combined with a forecast of physical oceanic and atmospheric variables from the NASA Global Modeling and Assimilation Office, we assess the skill of a chlorophyll concentrations forecast in the Equatorial Pacific for the period 2012-2015 with a focus on the forecast of the onset of the 2015 El Niño event. Using a series of retrospective 9-month hindcasts, we assess the uncertainties of the forecasted chlorophyll by comparing the monthly total chlorophyll concentration from the forecast with the corresponding monthly ocean chlorophyll data from the Suomi-National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (S-NPP VIIRS) satellite. The forecast was able to reproduce the phasing of the variability in chlorophyll concentration in the Equatorial Pacific, including the beginning of the 2015-2016 El Niño. The anomaly correlation coefficient (ACC) was significant ( p < 0.05) for forecast at 1-month ( R = 0.33), 8-month ( R = 0.42) and 9-month ( R = 0.41) lead times. The root mean square error (RMSE) increased from 0.0399 μg chl L -1 for the 1-month lead forecast to a maximum of 0.0472 μg chl L -1 for the 9-month lead forecast indicating that the forecast of the amplitude of chlorophyll concentration variability was getting worse. Forecasts with a 3-month lead time were on average the closest to the S-NPP VIIRS data (23% or 0.033 μg chl L -1 ) while the forecast with a 9-month lead time were the furthest (31% or 0.042 μg chl L -1 ). These results indicate the potential for forecasting chlorophyll concentration in this region but also highlights various deficiencies and suggestions for improvements to the current biogeochemical forecasting system. This system provides an initial basis for future applications including the effects of El Niño events on fisheries and other ocean resources given improvements identified in the analysis of these results.

  16. Linking phytoplankton nitrogen uptake, macronutrients and chlorophyll- a in SW Atlantic waters: The case of the Gulf of San Jorge, Argentina

    NASA Astrophysics Data System (ADS)

    Paparazzo, Flavio E.; Williams, Gabriela N.; Pisoni, Juan P.; Solís, Miriam; Esteves, José L.; Varela, Diana E.

    2017-08-01

    We compared biological and chemical parameters in surface waters of the Gulf of San Jorge to better understand carbon export and the factors that control phytoplankton production in an area of the Argentinian Continental Shelf, a vastly under sampled region of the SW Atlantic Ocean. In April of 2012, we estimated new and regenerated primary production in the Gulf by measuring nitrate and ammonium uptake, respectively. We also measured macronutrient, and in situ chlorophyll-a concentrations, which were compared to chlorophyll-a estimates from remote sensing. Although the Gulf of San Jorge presents high levels of chlorophyll-a and primary production, the relationship between these parameters is not straightforward. Previous studies showed that surface chlorophyll-a explains only part of the variance in euphotic-zone integrated primary production, and that satellite-derived chlorophyll-a underestimates in situ primary production. Our results showed large spatial variability in the Gulf, with transitional physico-chemical conditions, such as fronts, that could favor an increase in biological production. In situ chlorophyll-a concentrations were highest at the mid-shelf station (6.0 mg m- 3) and lowest at the northernmost location by an order of magnitude. Remote sensing measurements of chlorophyll-a underestimated our in situ chlorophyll-a concentrations. Total nitrogen (nitrate + ammonium) uptake showed relatively similar rates throughout the study area (≈ 130 nM-N d- 1), except in the northernmost station where it was much lower (53 nM-N d- 1). This north region had a distinct water mass and maximal levels of macronutrients (nitrate ≈ 6 μM, ammonium ≈ 1.2 μM, phosphate ≈ 1.2 μM and silicic acid ≈ 4 μM). For the entire sampling region, chlorophyll-a concentrations strongly correlated with total nitrogen uptake (r = 0.76, n = 8, p < 0.05) and new primary production (r = 0.78, n = 8, p < 0.05). Values of the f-ratio were 0.9 in mid-shelf, and ranged between 0.35 and 0.45 in inner and coastal stations. Our results indicate that highest carbon export may occur in the outer part of the Gulf, closer to the mid-shelf region. Further studies will be necessary to better understand the functioning of this ecosystem, including the impact of fisheries and horizontal transport by currents in the overall CO2 balance.

  17. Nutrient and chlorophyll relations in selected streams of the New England Coastal Basins in Massachusetts and New Hampshire, June-September 2001

    USGS Publications Warehouse

    Riskin, Melissa L.; Deacon, J.R.; Liebman, M.L.; Robinson, K.W.

    2003-01-01

    The U.S. Environmental Protection Agency is developing guidance to assist states with defining nutrient criteria for rivers and streams and to better describe nutrient-algal relations. As part of this effort, 13 wadeable stream sites were selected, primarily in eastern Massachusetts, for a nutrient-assessment study during the summer of 2001. The sites represent a range of water-quality impairment conditions (reference, moderately impaired, impaired) based on state regulatory agency assessments and previously assessed nitrogen, phosphorus, and dissolved-oxygen data. In addition, a combination of open- and closed-canopy locations were sampled at six of the sites to investigate the effect of sunlight on algal growth. Samples for nutrients and for chlorophyll I from phytoplankton and periphyton were collected at all stream sites. Total nitrogen (dissolved nitrite + nitrate + total ammonia + organic nitrogen) and total phosphorus (phosphorus in an unfiltered water sample) concentrations were lowest at reference sites and highest at impaired sites. There were statistically significant differences (p < 0.05) among reference, moderately impaired, and impaired sites for total nitrogen and total phosphorus. Chlorophyll a concentrations from phytoplankton were not significantly different among site impairment designations. Concentrations of chlorophyll a from periphyton were highest at nutrient-impaired open-canopy sites. Chlorophyll a concentrations from periphyton samples were positively correlated with total nitrogen and total phosphorus at the open- and closed-canopy sites. Correlations were higher at open-canopy sites (p < 0.05, rho = 0.64 to 0.71) than at closed-canopy sites (p < 0.05, rho = 0.36 to 0.40). Statistically significant differences in the median concentrations of chlorophyll a from periphyton samples were observed between the open- and closed-canopy sites (p < 0.05). Total nitrogen and total phosphorus data from moderately impaired and impaired sites in this study exceeded the preliminary U.S. Environmental Protection Agency nutrient criteria values for the coastal region of New England. In an effort to establish more appropriate nutrient and chlorophyll criteria for streams in the New England coastal region, relations between total nitrogen and total phosphorus to periphyton chlorophyll a in wadeable streams from this study were quantified to present potential techniques for determining nutrient concentrations. Linear regression was used to estimate the total nitrogen and total phosphorus concentrations that corresponded to various chlorophyll a concentrations. On the basis of this relation, a median concentration for moderately enriched streams of 21 milligrams per square meter (mg/m2) of periphyton chlorophyll a from the literature corresponded to estimated concentrations of 1.3 milligrams per liter (mg/L) for total nitrogen and 0.12 mg/L for total phosphorus. The median concentration for periphyton chlorophyll a from the literature is similar to the 50th-percentile concentration of periphyton chlorophyll a (17 mg/m2) calculated with the data from open-canopy sites in this study. The 25th-percentile concentration for periphyton chlorophyll a of all open-canopy sites (5.2 mg/m2) and the 75th-percentile concentration for periphyton chlorophyll a of open-canopy reference sites (16 mg/m2) also were plotted to provide additional estimates and methods for developing total nitrogen and total phosphorus criteria. The 25th-percentile concentrations of total nitrogen and total phosphorus were calculated based on all sites in this study and were used as another potential criteria estimation. A concentration of 0.64 mg/L for total nitrogen and 0.030 mg/L for total phosphorus were calculated. As another possible method to develop threshold concentrations, the 10th-percentile concentrations of total nitrogen and total phosphorus were calculated based on all the impaired sites in this study. A concentration threshold of 0

  18. Impact of Submesoscale Processes on Dynamics of Phytoplankton Filaments

    DTIC Science & Technology

    2015-02-12

    submesoscale processes on the formation of chlorophyll a filaments during late springearlier summer, and late summer time frames. We show that during...the late summer time frame, ASC leads to the development of filaments with high values of chlorophyll a concentration along the edge of the cold jet...in contrast to the earlier summer time, when the ASC mixes phytoplankton much deeper to the area below of the euphotic depth, and chlorophyll a

  19. Sensitivity of Calibration Gains to Ocean Color Processing in Coastal and Open Waters Using Ensembles Members for NPP-VIIRS

    DTIC Science & Technology

    2014-07-01

    a different impact on spectral normalized water leaving radiances and the derived ocean color products (inherent optical properties, chlorophyll ). We...leaving radiances and the derived ocean color products (inherent optical properties, chlorophyll ). We evaluated the influence of gains from open and...34gain" on ocean color products. These products include the spectral Remote Sensing Reflectance (RRS), chlorophyll concentration, and Inherent Optical

  20. Combining Satellite Ocean Color and Hydrodynamic Model Uncertainties in Bio-Optical Forecasts

    DTIC Science & Technology

    2014-04-03

    observed chlorophyll distribution for that day (MODIS Image for October 17, 2011), without regard to sign, I.e., IFigs. 11(c)-11(a)l. Black pixels indicate...time using the current field from the model. Uncertainties in both the satellite chlorophyll values and the currents from the circulation model impact...ensemole techniques to partition the chlorophyll uncertainties into components due to atmospheric correction and bio-optical inversion. By combining

  1. Physiological and Biogeochemical Traits of Bleaching and Recovery in the Mounding Species of Coral Porites lobata: Implications for Resilience in Mounding Corals

    DTIC Science & Technology

    2013-05-02

    each recovery interval a suite of analyses were performed to assess their recovery (photosynthesis, respiration, chlorophyll a, energy reserves...maintained despite reductions in chlorophyll a, photosynthesis, and the assimilation of photosynthetically fixed carbon. At the same time, P. lobata corals...lobata corals immediately following bleaching and throughout 11 months of recovery: photosynthesis (P), respiration (R), chlorophyll a (Chl a), total

  2. Recent Trends in Global Ocean Chlorophyll

    NASA Technical Reports Server (NTRS)

    Gregg, Watson; Casey, Nancy

    2004-01-01

    Recent analyses of SeaWiFS data have shown that global ocean chlorophyll has increased more than 5% since 1998. The North Pacific ocean basin has increased nearly 19%. To understand the causes of these trends we have applied the newly developed NASA Ocean Biogeochemical Assimilation Model (OBAM), which is driven in mechanistic fashion by surface winds, sea surface temperature, atmospheric iron deposition, sea ice, and surface irradiance. The mode1 utilizes chlorophyll from SeaWiFS in a daily assimilation. The model has in place many of the climatic variables that can be expected to produce the changes observed in SeaWiFS data. Ths enables us to diagnose the model performance, the assimilation performance, and possible causes for the increase in chlorophyll.

  3. Remote measurement of water color in coastal waters. [spectral radiance data used to obtain quantitative values for chlorophyll and turbidity

    NASA Technical Reports Server (NTRS)

    Weldon, J. W.

    1973-01-01

    An investigation was conducted to develop procedure to obtain quantitative values for chlorophyll and turbidity in coastal waters by observing the changes in spectral radiance of the backscattered spectrum. The technique under consideration consists of Examining Exotech model 20-D spectral radiometer data and determining which radiance ratios best correlated with chlorophyll and turbidity measurements as obtained from analyses of water samples and sechi visibility readings. Preliminary results indicate that there is a correlation between backscattered light and chlorophyll concentration and secchi visibility. The tests were conducted with the spectrometer mounted in a light aircraft over the Mississippi Sound at altitudes of 2.5K, 2.8K and 10K feet.

  4. Aerial photography for sensing plant anomalies

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Cardenas, R.; Hart, W. G.

    1970-01-01

    Changes in the red tonal response of Kodak Ektrachrome Infrared Aero 8443 film (EIR) are often incorrectly attributed solely to variations in infrared light reflectance of plant leaves, when the primary influence is a difference in visible light reflectance induced by varying chlorophyll contents. Comparisons are made among aerial photographic images of high- and low-chlorophyll foliage. New growth, foot rot, and boron and chloride nutrient toxicites produce low-chlorophyll foliage, and EIR transparency images of light red or white compared with dark-red images of high-chlorophyll foliage. Deposits of the sooty mold fungus that subsists on the honeydew produced by brown soft scale insects, obscure the citrus leaves' green color. Infected trees appear as black images on EIR film transparencies compared with red images of healthy trees.

  5. Growth studies of Mytilus californianus using satellite surface temperatures and chlorophyll data for coastal Oregon

    NASA Astrophysics Data System (ADS)

    Price, J.; Lakshmi, V.

    2013-12-01

    The advancement of remote sensing technology has led to better understanding of the spatial and temporal variation in many physical and biological parameters, such as, temperature, salinity, soil moisture, vegetation cover, and community composition. This research takes a novel approach in understanding the temporal and spatial variability of mussel body growth using remotely sensed surface temperatures and chlorophyll-a concentration. Within marine rocky intertidal ecosystems, temperature and food availability influence species abundance, physiological performance, and distribution of mussel species. Current methods to determine the temperature mussel species experience range from in-situ field observations, temperature loggers, temperature models, and using other temperature variables. However, since the temperature that mussel species experience is different from the air temperature due to physical and biological characteristics (size, color, gaping, etc.), it is difficult to accurately predict the thermal stresses they experience. Methods to determine food availability (chlorophyll-a concentration used as a proxy) for mussel species are mostly done at specific study sites using water sampling. This implies that analysis of temperature and food availability across large spatial scales and long temporal scales is not a trivial task given spatial heterogeneity. However, this is an essential step in determination of the impact of changing climate on vulnerable ecosystems such as the marine rocky intertidal system. The purpose of this study was to investigate the potential of using remotely sensed surface temperatures and chlorophyll-a concentration to better understand the temporal and spatial variability of the body growth of the ecologically and economically important rocky intertidal mussel species, Mytilus californianus. Remotely sensed sea surface temperature (SST), land surface temperature (LST), intertidal surface temperature (IST), chlorophyll-a concentration, and mussel body growth were collected for eight study sites along the coast of Oregon, USA for a 12 year period from 2000 through 2011. Differences in surface temperatures, chlorophyll-a concentration, and mussel body growth were seen across study sites. The northernmost study site, Cape Meares, had the highest average SST and the lowest average chlorophyll-a concentration. Interestingly, it also had high average mussel growth. Whereas, Cape Arago and Cape Blanco, the two southernmost study sites, had the lowest average SST and lowest average mussel growth, but had higher average chlorophyll-a concentrations. Furthermore, some study sites showed that mussel growth was related to temperature and at other study sites chlorophyll-a concentration was related to mussel growth. The strongest relationship between either temperature or chlorophyll-a concentration, was found at Boiler Bay, Oregon. Approximately 81% of the variations in mean size-specific mussel growth was explained by mean annual LST anomalies. This means that at Boiler Bay, cooler LST years resulted in less mussel growth and warmer years resulted in higher mussel growth. Results suggest that SST may influence mussel body growth more than chlorophyll-a concentration.

  6. Investigating the Control of Chlorophyll Degradation by Genomic Correlation Mining.

    PubMed

    Ghandchi, Frederick P; Caetano-Anolles, Gustavo; Clough, Steven J; Ort, Donald R

    2016-01-01

    Chlorophyll degradation is an intricate process that is critical in a variety of plant tissues at different times during the plant life cycle. Many of the photoactive chlorophyll degradation intermediates are exceptionally cytotoxic necessitating that the pathway be carefully coordinated and regulated. The primary regulatory step in the chlorophyll degradation pathway involves the enzyme pheophorbide a oxygenase (PAO), which oxidizes the chlorophyll intermediate pheophorbide a, that is eventually converted to non-fluorescent chlorophyll catabolites. There is evidence that PAO is differentially regulated across different environmental and developmental conditions with both transcriptional and post-transcriptional components, but the involved regulatory elements are uncertain or unknown. We hypothesized that transcription factors modulate PAO expression across different environmental conditions, such as cold and drought, as well as during developmental transitions to leaf senescence and maturation of green seeds. To test these hypotheses, several sets of Arabidopsis genomic and bioinformatic experiments were investigated and re-analyzed using computational approaches. PAO expression was compared across varied environmental conditions in the three separate datasets using regression modeling and correlation mining to identify gene elements co-expressed with PAO. Their functions were investigated as candidate upstream transcription factors or other regulatory elements that may regulate PAO expression. PAO transcript expression was found to be significantly up-regulated in warm conditions, during leaf senescence, and in drought conditions, and in all three conditions significantly positively correlated with expression of transcription factor Arabidopsis thaliana activating factor 1 (ATAF1), suggesting that ATAF1 is triggered in the plant response to these processes or abiotic stresses and in result up-regulates PAO expression. The proposed regulatory network includes the freezing, senescence, and drought stresses modulating factor ATAF1 and various other transcription factors and pathways, which in turn act to regulate chlorophyll degradation by up-regulating PAO expression.

  7. [Flag leaf photosynthetic characteristics, change in chlorophyll fluorescence parameters, and their relationships with yield of winter wheat sowed in spring].

    PubMed

    Xu, Lan; Gao, Zhi-qang; An, Wei; Li, Yan-liang; Jiao, Xiong-fei; Wang, Chuang-yun

    2016-01-01

    With five good winter wheat cultivars selected from the middle and lower reaches of Yangtze River and Southwest China as test materials, a field experiment in Xinding basin area of Shanxi Province was conducted to study the photosynthetic characteristics, chlorophyll content, and chlorophyll fluorescence parameters of flag leaf at different sowing dates, as well as the correlations between these indices and yield for two years (2013-2014). The results showed that the difference in most fluorescence parameters except chlorophyll content among cultivars was significant. The correlations between these fluorescence parameters and yield were significant. The variation coefficient of chlorophyll (Chl) content was low (0.12-0.17), and that of performance index based on absorption (PIabs) was high (0.32-0.39), with the partial correlation coefficients of them with grain yield from 2013 to 2014 ranged in 0.70-0.81. Under the early sowing condition, the grain yield positively correlated with PIabs at flowering and filling stages and chlorophyll content at grain filling stage, but negatively correlated with the relative variable fluorescence at I point (Vi) at grain filling stage. About 81.1%-82.8% of grain yield were determined by the variations of PIabs, Chl, and Vi. Wheat cultivars had various performances in the treatments with different sowing dates and a consistent trend was observed in the two experimental years. Among these 5 cultivars, Yangmai 13 was suitable for early sowing, with the flag leaf photosynthetic rate (Pn), Chl, most fluorescence parame-ters, and grain yield showed obviously high levels. In conclusion, under early sowing condition chlorophyll content at grain filling stages, PIabs at flowering and filling stages, and Pn were important indices for selecting wheat cultivars with high photosynthetic efficiency.

  8. The chemical bonds effect of anthocyanin and chlorophyll dyes on TiO2 for dye-sensitized solar cell (DSSC)

    NASA Astrophysics Data System (ADS)

    Ahliha, A. H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T.

    2017-11-01

    Anthocyanin and chlorophyll dyes have been blended as the photosensitizer of Dye-Sensitized Solar Cell (DSSC). The results study showed the effect of chemical bond dyes on TiO2 and the efficiency of DSSC. Ratio blend of the anthocyanin and chlorophyll dyes are 1:1. The absorbance of dyes and TiO2 were characterized using UV-Vis Spectrophotometer. The chemical bonds contained in TiO2-dyes were characterized using FT-IR spectrophotometer. The efficiency of DSSC was calculated using I-V meter. The absorption spectra of chlorophyll: anthocyanin blend dye solutions and TiO2 films can increase after the dye adsorption. Absorbance characterization of anthocyanin and chlorophyll dye blend solutions showed three peaks at the wavelength of 412 nm; 535.5 nm; and 656.5 nm. Absorbance characterization of spinach before being blend with anthocyanin dyes solutions showed two peaks at the wavelength of 431 nm and 665.5 nm. The absorption spectra of TiO2 films can increase after the dyes adsorption at the wavelength of 400 nm. FT-IR spectra of TiO2 founded the functional groups C-Br, C=C, and O-H. The functional groups founded in anthocyanin: chlorophyll dye blended on the surface of TiO2 are C-Br, C-O, O-H, C-H, C=C, C=O, and O-H. The result showed that the greatest efficiency of 0.0544% at dye red cabbage-spinach. Adsorption blends of anthocyanin and chlorophyll dyes on the surface of TiO2 can be used as the photosensitizer for DSSC.

  9. Dynamics of Photosystem II and Its Light Harvesting System in Response to Light Changes in the Halotolerant Alga Dunaliella salina1

    PubMed Central

    Pick, Uri; Gounaris, Kleoniki; Barber, James

    1987-01-01

    A photosystem two (PSII) core complex consisting of five major polypeptides (47, 40, 32, 30, and 10 kilodaltons) and a light harvesting chlorophyll a/b complex (LHC-2) have been isolated from the halotolerant alga Dunaliella salina. The chlorophyll and polypeptide composition of both complexes were compared in illuminated and dark-adapted cultures. Dark adaptation is accompanied by a decrease in the chlorophyll a to chlorophyll b (Chl a/Chl b) ratio of intact thylakoids without any change in total chlorophyll. These changes occur with a half-time of 3 hours and are reversed upon reillumination. Analyses of PSII enriched membrane fragments suggest that the decrease in the Chl a/Chl b is due partly to an increase in the Chl b content of LHC-2 and partly to changes in the relative levels of the two complexes. Apparently during dark adaptation there is: (a) a net synthesis of chlorophyll b, (b) removal of PSII core complexes resulting in a 2-fold drop in the PSII cores to LHC-2 chlorophyll ratio. These changes should dramatically increase the light harvesting capacity of the remaining PSII reaction centers. Presumably this adjustment of antenna size and composition is a physiological mechanism necessary for responding to shade conditions. Also detected, using 32P, are light-induced phosphorylation of the LHC-2 (consistent with the ability to undergo State transitions) and of the 40 and 30 kilodalton subunits of the PSII core complex. These observations indicate that additional mechanisms may also exist to help optimize the interception of quanta during rapid changes in illumination conditions. Images Fig. 4 PMID:16665656

  10. [Effects of soil acidity on Pinus resinosa seedlings photosynthesis and chlorophyll fluorescence].

    PubMed

    Liu, Shuang; Wang, Qing-cheng; Liu, Ya-li; Tian, Yu-ming; Sun, Jing; Xu, Jing

    2009-12-01

    Red pine (Pinus resinosa) is one of the most important tree species for timber plantation in North America, and preliminary success has been achieved in its introduction to the mountainous area of Northeast China since 2004. In order to expand its growth area in other parts of Northeast China, a pot experiment was conducted to study the adaptability of this tree species to varying soil acidity. P. resinosa seedlings were grown in soils with different acidity (pH = 4.5, 5.5, 6.5, 7.5, and 8.0) to test the responses of their photosynthesis and chlorophyll fluorescence parameters to soil pH levels, and the appropriate soil acidity was evaluated. Dramatic responses in chlorophyll a and b contents, Pn and chlorophyll fluorescence parameters (Fo, Fm, Fv, Fv/Fm, and phi(PS II)) were detected under different soil acidity (P < 0.05), with the highest chlorophyll content and Pn under soil pH 5.5, and significantly lower chlorophyll content and Pn under soil pH 7.5 and 8.0. The chlorophyll content and Pn were 41% and 50%, and 61% and 88% higher under soil pH 5.5 than under soil pH 7.5 and 8.0. The seedlings had a significant photosynthetic inhibition under soil pH 7.5 and 8.0, but the highest Fv/Fm and phi (PS II) under soil pH 5.5. Comparing with those under soil pH 7.5 and 8.0, the Fv/Fm and phi (PS II) under soil pH 5.5 were 8% and 12%, and 22% and 35% higher, respectively. It was suggested that soil pH 5.5 was most appropriate for P. resinosa growth.

  11. Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components.

    PubMed

    Riccardi, M; Mele, G; Pulvento, C; Lavini, A; d'Andria, R; Jacobsen, S-E

    2014-06-01

    Leaf chlorophyll content provides valuable information about physiological status of plants; it is directly linked to photosynthetic potential and primary production. In vitro assessment by wet chemical extraction is the standard method for leaf chlorophyll determination. This measurement is expensive, laborious, and time consuming. Over the years alternative methods, rapid and non-destructive, have been explored. The aim of this work was to evaluate the applicability of a fast and non-invasive field method for estimation of chlorophyll content in quinoa and amaranth leaves based on RGB components analysis of digital images acquired with a standard SLR camera. Digital images of leaves from different genotypes of quinoa and amaranth were acquired directly in the field. Mean values of each RGB component were evaluated via image analysis software and correlated to leaf chlorophyll provided by standard laboratory procedure. Single and multiple regression models using RGB color components as independent variables have been tested and validated. The performance of the proposed method was compared to that of the widely used non-destructive SPAD method. Sensitivity of the best regression models for different genotypes of quinoa and amaranth was also checked. Color data acquisition of the leaves in the field with a digital camera was quick, more effective, and lower cost than SPAD. The proposed RGB models provided better correlation (highest R (2)) and prediction (lowest RMSEP) of the true value of foliar chlorophyll content and had a lower amount of noise in the whole range of chlorophyll studied compared with SPAD and other leaf image processing based models when applied to quinoa and amaranth.

  12. An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters.

    PubMed

    Moore, Timothy S; Dowell, Mark D; Bradt, Shane; Verdu, Antonio Ruiz

    2014-03-05

    Bio-optical models are based on relationships between the spectral remote sensing reflectance and optical properties of in-water constituents. The wavelength range where this information can be exploited changes depending on the water characteristics. In low chlorophyll- a waters, the blue/green region of the spectrum is more sensitive to changes in chlorophyll- a concentration, whereas the red/NIR region becomes more important in turbid and/or eutrophic waters. In this work we present an approach to manage the shift from blue/green ratios to red/NIR-based chlorophyll- a algorithms for optically complex waters. Based on a combined in situ data set of coastal and inland waters, measures of overall algorithm uncertainty were roughly equal for two chlorophyll- a algorithms-the standard NASA OC4 algorithm based on blue/green bands and a MERIS 3-band algorithm based on red/NIR bands-with RMS error of 0.416 and 0.437 for each in log chlorophyll- a units, respectively. However, it is clear that each algorithm performs better at different chlorophyll- a ranges. When a blending approach is used based on an optical water type classification, the overall RMS error was reduced to 0.320. Bias and relative error were also reduced when evaluating the blended chlorophyll- a product compared to either of the single algorithm products. As a demonstration for ocean color applications, the algorithm blending approach was applied to MERIS imagery over Lake Erie. We also examined the use of this approach in several coastal marine environments, and examined the long-term frequency of the OWTs to MODIS-Aqua imagery over Lake Erie.

  13. An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters

    PubMed Central

    Moore, Timothy S.; Dowell, Mark D.; Bradt, Shane; Verdu, Antonio Ruiz

    2014-01-01

    Bio-optical models are based on relationships between the spectral remote sensing reflectance and optical properties of in-water constituents. The wavelength range where this information can be exploited changes depending on the water characteristics. In low chlorophyll-a waters, the blue/green region of the spectrum is more sensitive to changes in chlorophyll-a concentration, whereas the red/NIR region becomes more important in turbid and/or eutrophic waters. In this work we present an approach to manage the shift from blue/green ratios to red/NIR-based chlorophyll-a algorithms for optically complex waters. Based on a combined in situ data set of coastal and inland waters, measures of overall algorithm uncertainty were roughly equal for two chlorophyll-a algorithms—the standard NASA OC4 algorithm based on blue/green bands and a MERIS 3-band algorithm based on red/NIR bands—with RMS error of 0.416 and 0.437 for each in log chlorophyll-a units, respectively. However, it is clear that each algorithm performs better at different chlorophyll-a ranges. When a blending approach is used based on an optical water type classification, the overall RMS error was reduced to 0.320. Bias and relative error were also reduced when evaluating the blended chlorophyll-a product compared to either of the single algorithm products. As a demonstration for ocean color applications, the algorithm blending approach was applied to MERIS imagery over Lake Erie. We also examined the use of this approach in several coastal marine environments, and examined the long-term frequency of the OWTs to MODIS-Aqua imagery over Lake Erie. PMID:24839311

  14. Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.

    PubMed

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-10-23

    A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.

  15. Plant Leaf Chlorophyll Content Retrieval Based on a Field Imaging Spectroscopy System

    PubMed Central

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-01-01

    A field imaging spectrometer system (FISS; 380–870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%–35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector. PMID:25341439

  16. Seasonal Forcing of Summer Dissolved Inorganic Carbon and Chlorophyll a on the Western Shelf of the Antarctic Peninsula

    DTIC Science & Technology

    2010-03-30

    Click Here for Full Article Seasonal forcing of summer dissolved inorganic carbon and chlorophyll a on the western shelf of the Antarctic Peninsula... season characterized by decreased spring sea ice cover or nearshore accumulation of phytoplankton in association with sea ice. The impact of these wind...Stammerjohn, and O. Schofield (2010), Seasonal forcing of summer dissolved inorganic carbon and chlorophyll a on the western shelf of the Antarctic

  17. Salinity, Temperature, and Optical Characterization of a Tidally Choked Estuary Connected to Two Contrasting Intra-Coastal Waterways

    DTIC Science & Technology

    2013-06-01

    phytoplankton production, and hence chlorophyll a concentration. As a result, light absorption in coastal waters is dominated by CDOM, while light ...water influence in the ocean and to track river plumes in open water (Chen 1999). In one particular case, the addition of chlorophyll a fluorescence...matter (CDOM) (Chen 1999) that consists of the humic and fluvic acids (yellow substance) of decaying plant matter (Nieke et al. 1997). Like chlorophyll

  18. Morphological and biochemical changes in Azadirachta indica from coal combustion fly ash dumping site from a thermal power plant in Delhi, India.

    PubMed

    Qadir, Sami Ullah; Raja, Vaseem; Siddiqui, Weqar A

    2016-07-01

    The foliar and biochemical traits of Azadirachta indica A. Juss from fly ash (FA) dumping site in Badarpur thermal power plant (BTPP) New Delhi, India was studied. Three different experimental sites were selected at different distances from the thermal power plant. Ambient suspended particulate matter (SPM) and plant responses such as leaf pigments (chlorophyll a, chlorophyll b, and carotenoids), total chlorophyll, net photosynthetic rate, stomatal index (SI), stomatal conductance (SC), intercellular carbon dioxide concentration [CO2]i, net photosynthetic rate (NPR), nitrogen, nitrate, nitrate reductase activity, proline, protein, reducing sugar and sulphur content were measured. Considerable reduction in pigments (chlorophyll a, chlorophyll b and carotenoids), and total chlorophyll was observed at fly ash dumping site. Fly ash stress revealed the inhibitory effect on Nitrate reductase activity (NRA), Nitrate, soluble protein, and reducing sugar content, whereas stimulatory effect was found for the stomatal index, nitrogen, proline, antioxidants and sulphur content in the leaves. Under fly ash stress, stomatal conductance was low, leading to declining in photosynthetic rate and increase in the internal CO2 concentration of leaf. Single leaf area (SLA), leaf length and leaf width also showed a declining trend from control to the polluted site. Antioxidant enzymes increased in leaves reflecting stress and extenuation of reactive oxygen species (ROS). Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase (Dclcyb1) expression

    PubMed Central

    Moreno, J.C.; Cerda, A.; Simpson, K.; Lopez-Diaz, I.; Carrera, E; Handford, M.; Stange, C.

    2016-01-01

    Carotenoids, chlorophylls and gibberellins are derived from the common precursor geranylgeranyl diphosphate (GGPP). One of the enzymes in carotenoid biosynthesis is lycopene β-cyclase (LCYB) that catalyzes the conversion of lycopene into β-carotene. In carrot, Dclcyb1 is essential for carotenoid synthesis in the whole plant. Here we show that when expressed in tobacco, increments in total carotenoids, β-carotene and chlorophyll levels occur. Furthermore, photosynthetic efficiency is enhanced in transgenic lines. Interestingly, and contrary to previous observations where overexpression of a carotenogenic gene resulted in the inhibition of the synthesis of gibberellins, we found raised levels of active GA4 and the concommitant increases in plant height, leaf size and whole plant biomass, as well as an early flowering phenotype. Moreover, a significant increase in the expression of the key carotenogenic genes, Ntpsy1, Ntpsy2 and Ntlcyb, as well as those involved in the synthesis of chlorophyll (Ntchl), gibberellin (Ntga20ox, Ntcps and Ntks) and isoprenoid precursors (Ntdxs2 and Ntggpps) was observed. These results indicate that the expression of Dclcyb1 induces a positive feedback affecting the expression of isoprenoid gene precursors and genes involved in carotenoid, gibberellin and chlorophyll pathways leading to an enhancement in fitness measured as biomass, photosynthetic efficiency and carotenoid/chlorophyll composition. PMID:26893492

  20. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection.

    PubMed

    Lei, Rong; Jiang, Hongshan; Hu, Fan; Yan, Jin; Zhu, Shuifang

    2017-02-01

    Leaf chlorosis induced by plant virus infection has a short fluorescence lifetime, which reflects damaged photosynthetic complexes and degraded chloroplasts. Plant viruses often induce chlorosis and necrosis, which are intimately related to photosynthetic functions. Chlorophyll fluorescence lifetime measurement is a valuable noninvasive tool for analyzing photosynthetic processes and is a sensitive indicator of the environment surrounding the fluorescent molecules. In this study, our central goal was to explore the effect of viral infection on photosynthesis by employing chlorophyll fluorescence lifetime imaging (FLIM), steady-state fluorescence, non-photochemical quenching (NPQ), transmission electron microscopy (TEM), and pigment analysis. The data indicated that the chlorophyll fluorescence lifetime of chlorotic leaves was significantly shorter than that of healthy control leaves, and the fitted short lifetime component of chlorophyll fluorescence of chlorotic leaves was dominant. This dominant short lifetime component may result from damage to the structure of thylakoid, which was confirmed by TEM. The NPQ value of chlorotic leaves was slightly higher than that of healthy green leaves, which can be explained by increased neoxanthin, lutein and violaxanthin content relative to chlorophyll a. The difference in NPQ is slight, but FLIM can provide simple and direct characterization of PSII structure and photosynthetic function. Therefore, this technique shows great potential as a simple and rapid method for studying mechanisms of plant virus infection.

  1. Correlation between Chlorophyll and Chlorogenic Acid Content in Tobacco Leaves 1

    PubMed Central

    Sheen, S. J.

    1973-01-01

    A positive correlation (r = 0.75, P < 0.01) was obtained between chlorophyll and chlorogenic acid content in the seedling leaves of burley and dark tobaccos. The dark tobaccos contained significantly higher concentrations of both constituents than the burleys. Such a correlation also occurred in a cytoplasmic mutant of chlorophyll-variegated tobacco when the green and yellow laminae were compared. In addition, the activity of phenylalanine ammonia-lyase and polyphenol-oxidase was higher in the green lamina than in the yellow tissue, which coincided with quantitative distribution of chlorogenic acid. Chlorophyll deficiency induced by streptomycin in tobacco seedlings resulted in a progressive decrease in chlorogenic acid content. However, an interruption of streptomycin treatment provoked accumulation of the two compounds. Dark-grown seedlings showed an increase in the content of chlorophyll and chlorogenic acid upon illumination. Incorporation of l-phenylalanine-U-14C into chlorogenic acid during leaf greening was drastically reduced owing to the presence of phenylpyruvate; the latter compound is a possible by-product of chlorophyll biosynthesis. This phenomenon was also evident with light-grown leaves. Results suggest that in addition to phenylalanine ammonia-lyase as a key enzyme regulating chlorogenic acid biosynthesis, an alternative pathway involving the conversion of phenylpyruvate to cinnamate may be functional in tobacco leaves. This pathway may bear importance as to higher chlorogenic acid content in dark tobaccos than in burleys. PMID:16658575

  2. Growth inhibition of Microcystis aeruginosa by white-rot fungus Lopharia spadicea.

    PubMed

    Wang, Q; Su, M; Zhu, W; Li, X; Jia, Y; Guo, P; Chen, Z; Jiang, W; Tian, X

    2010-01-01

    Harmful cyanobacterial blooms cause water deterioration and threaten human health. It is necessary to remove harmful cyanobacteria with useful methods. A bio-treatment may be one of the best ways to do this. A strain of specific white-rot fungus, Lopharia spadicea, with algicidal ability was isolated. Its algicidal ability on algae under various conditions was determined using three main influence factors: initial chlorophyll-a content, initial pH, and algal cell mixture. The result showed that the chlorophyll-a content of Microcystis aeruginosa FACHB-912, Oocystis borgei FACHB-1108, and Microcystis flos-aquae FACHB-1028 decreased from 798+/-13, 756+/-40, and 773+/-24 microg/L to 0 within 39 h. L. spadicea could also remove more than 95% chlorophyll-a when initial chlorophyll-a content increased from 397+/-13 to 2,132+/-4 microg/L. Moreover, the strain has great removal ability under a broad initial pH range of 5.5 to 9.5. The chlorophyll-a content of the three algal strain mixtures decreased from about 672+/-23 microg/L to 0 within 45 h. After superoxide dismutase (SOD) and malondialdehyde (MAD) were assessed in a co-culture of L. spadicea, it was observed that an increase in MAD content was correlated with the decrease in chlorophyll-a content of M. aeruginosa FACHB-912. This result suggested that the algae was not only greatly inhibited but also severely damaged by the fungus.

  3. Chlorophyll as a biomarker for early disease diagnosis

    NASA Astrophysics Data System (ADS)

    Manzoor Atta, Babar; Saleem, M.; Ali, Hina; Arshad, Hafiz Muhammad Imran; Ahmed, M.

    2018-06-01

    The current study was designed to identify the stage for the diagnosis of disease before visible symptoms appeared. Fluorescence spectroscopy has been employed to identify disease signatures for its early diagnosis in rice plant leaves. Bacterial leaf blight (BLB) diseased and healthy leaf samples were collected from the rice fields in September, 2017 which were then used to record spectra using an excitation wavelength at 410 nm. The spectral range of emission was set from 420 to 800 nm which covers the blue–green and the chlorophyll bands. It was found that diseased leaves have a narrower ‘chlorophyll a’ band than healthy ones, and furthermore, that the emission band at 730 nm was either declined or depleted in the sample with high infection symptoms. In contrast, the blue–green region was observed to increase due to the emergence of disease. As the band intensity of chlorophyll decreases during infection, this decrease in chlorophyll content and increase in the blue–green spectral region could provide a new approach for predicting BLB at an early stage. The important finding was that the chlorophyll degradation and rise in the blue–green region take place in leaves with BLB or during BLB infection. Principal component analysis has been applied to spectral data which successfully separated diseased samples from healthy ones even with very small spectral variations.

  4. Monitoring of chlorophyll-a and sea surface silicate concentrations in the south part of Cheju island in the East China sea using MODIS data

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanzhi; Huang, Zhaojun; Fu, Dongyang; Tsou, Jin Yeu; Jiang, Tingchen; Liang, X. San; Lu, Xia

    2018-05-01

    Continually supplied with nutrients, phytoplankton maintains high productivity under ideal illumination and temperature conditions. Data in the south part of Cheju Island in the East China Sea (ECS), which has experienced a spring bloom since the 2000s, were acquired during a research cruise in the spring of 2007. Compared with in-situ measurements, MODIS chlorophyll-a measurements showed high stability in this area. Excluding some invalid stations data, the relationships between nutrients and chlorophyll-a concentrations in the study area were examined and compared with the results in 2015. A high positive correlation between silicate and chlorophyll-a concentration was identified, and a regression relationship was proposed. MODIS chlorophyll-a measurements and sea surface temperature were utilized to determine surface silicate distribution. The silicate concentration retrieved from MODIS exhibited good agreement with in-situ measurements with R2 of 0.803, root mean square error (RMSE) of 0.326 μmol/L (8.23%), and mean absolute error (MAE) of 0.925 μmol/L (23.38%). The study provides a new solution to identify nutrient distributions using satellite data such as MODIS for water bodies, but the method still needs to be refined to determine the relationship of chlorophyll-a and nutrients during other seasons to monitor water quality in this and other areas.

  5. Bowel perforation detection using metabolic fluorescent chlorophylls

    NASA Astrophysics Data System (ADS)

    Han, Jung Hyun; Jo, Young Goun; Kim, Jung Chul; Choi, Sujeong; Kang, Hoonsoo; Kim, Yong-Chul; Hwang, In-Wook

    2016-03-01

    Thus far, there have been tries of detection of disease using fluorescent materials. We introduce the chlorophyll derivatives from food plants, which have longer-wavelength emissions (at >650 nm) than those of fluorescence of tissues and organs, for detection of bowel perforation. To figure out the possibility of fluorescence spectroscopy as a monitoring sensor of bowel perforation, fluorescence from organs of rodent models, intestinal and peritoneal fluids of rodent models and human were analyzed. In IVIS fluorescence image of rodent abdominal organ, visualization of perforated area only was possible when threshold of image is extremely finely controlled. Generally, both perforated area of bowel and normal bowel which filled with large amount of chlorophyll derivatives were visualized with fluorescence. The fluorescence from chlorophyll derivatives penetrated through the normal bowel wall makes difficult to distinguish perforation area from normal bowel with direct visualization of fluorescence. However, intestinal fluids containing chlorophyll derivatives from food contents can leak from perforation sites in situation of bowel perforation. It may show brighter and longer-wavelength regime emissions of chlorophyll derivatives than those of pure peritoneal fluid or bioorgans. Peritoneal fluid mixed with intestinal fluids show much brighter emissions in longer wavelength (at>650 nm) than those of pure peritoneal fluid. In addition, irrigation fluid, which is used for the cleansing of organ and peritoneal cavity, made of mixed intestinal and peritoneal fluid diluted with physiologic saline also can be monitored bowel perforation during surgery.

  6. Low-cost chlorophyll meter (LCCM): portable measuring device for leaf chlorophyll

    NASA Astrophysics Data System (ADS)

    Hutomo E. P., Evan; Adibawa, Marcelinus Alfasisurya S.; Prilianti, Kestrilia R.; Heriyanto, Heriyanto; Brotosudarmo, Tatas H. P.

    2016-11-01

    Portable leaf chlorophyll meter, named low-cost chlorophyll meter (LCCM), has been created. This device was created to help farmer determining the health condition of plant based on the greenness level of leaf surface. According to previous studies, leaf greenness with a certain amount of chlorophyll level has a direct correlation with the amount of nitrogen in the leaf that indicates health of the plant and this fact needed to provide an estimate of further measures to keep the plants healthy. Device that enables to measure the leaf color change is soil plant analysis development (SPAD) meter 502 from Konica Minolta but it is relatively expensive. To answer the need of low-cost chlorophyll scanner device, this research conducted experiment using light reflectance as the base mechanism. Reflectance system from LCCM consists of near-infrared light emitting diode (LED) and red LED as light resources and photodiode. The output from both of light resources calculated using normalized difference vegetation index (NDVI) formula as the results fetched and displayed on the smartphone application using Bluetooth communication protocol. Finally, the scanner has been made as well as the Android application named NDVI Reader. The LCCM system which has been tested on 20 sample of cassava leaf with SPAD meter as a variable control showed coefficient of determination 0.9681 and root-mean-square error (RMSE) 0.014.

  7. UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts

    PubMed Central

    Moreira-Rodríguez, Melissa; Benavides, Jorge

    2017-01-01

    Broccoli sprouts contain health-promoting phytochemicals that can be enhanced by applying ultraviolet light (UV) or phytohormones. The separate and combined effects of methyl jasmonate (MJ), UVA, or UVB lights on glucosinolate, phenolic, carotenoid, and chlorophyll profiles were assessed in broccoli sprouts. Seven-day-old broccoli sprouts were exposed to UVA (9.47 W/m2) or UVB (7.16 W/m2) radiation for 120 min alone or in combination with a 25 µM MJ solution, also applied to sprouts without UV supplementation. UVA + MJ and UVB + MJ treatments increased the total glucosinolate content by ~154% and ~148%, respectively. MJ induced the biosynthesis of indole glucosinolates, especially neoglucobrassicin (~538%), showing a synergistic effect with UVA stress. UVB increased the content of aliphatic and indole glucosinolates, such as glucoraphanin (~78%) and 4-methoxy-glucobrassicin (~177%). UVA increased several phenolics such as gallic acid (~57%) and a kaempferol glucoside (~25.4%). MJ treatment decreased most phenolic levels but greatly induced accumulation of 5-sinapoylquinic acid (~239%). MJ treatments also reduced carotenoid and chlorophyll content, while UVA increased lutein (~23%), chlorophyll b (~31%), neoxanthin (~34%), and chlorophyll a (~67%). Results indicated that UV- and/or MJ-treated broccoli sprouts redirect the carbon flux to the biosynthesis of specific glucosinolates, phenolics, carotenoids, and chlorophylls depending on the type of stress applied. PMID:29113068

  8. UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts.

    PubMed

    Moreira-Rodríguez, Melissa; Nair, Vimal; Benavides, Jorge; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2017-11-04

    Broccoli sprouts contain health-promoting phytochemicals that can be enhanced by applying ultraviolet light (UV) or phytohormones. The separate and combined effects of methyl jasmonate (MJ), UVA, or UVB lights on glucosinolate, phenolic, carotenoid, and chlorophyll profiles were assessed in broccoli sprouts. Seven-day-old broccoli sprouts were exposed to UVA (9.47 W/m²) or UVB (7.16 W/m²) radiation for 120 min alone or in combination with a 25 µM MJ solution, also applied to sprouts without UV supplementation. UVA + MJ and UVB + MJ treatments increased the total glucosinolate content by ~154% and ~148%, respectively. MJ induced the biosynthesis of indole glucosinolates, especially neoglucobrassicin (~538%), showing a synergistic effect with UVA stress. UVB increased the content of aliphatic and indole glucosinolates, such as glucoraphanin (~78%) and 4-methoxy-glucobrassicin (~177%). UVA increased several phenolics such as gallic acid (~57%) and a kaempferol glucoside (~25.4%). MJ treatment decreased most phenolic levels but greatly induced accumulation of 5-sinapoylquinic acid (~239%). MJ treatments also reduced carotenoid and chlorophyll content, while UVA increased lutein (~23%), chlorophyll b (~31%), neoxanthin (~34%), and chlorophyll a (~67%). Results indicated that UV- and/or MJ-treated broccoli sprouts redirect the carbon flux to the biosynthesis of specific glucosinolates, phenolics, carotenoids, and chlorophylls depending on the type of stress applied.

  9. Chloroplast chlB gene is required for light-independent chlorophyll accumulation in Chlamydomonas reinhardtii.

    PubMed

    Liu, X Q; Xu, H; Huang, C

    1993-10-01

    Light-independent chlorophyll synthesis occurs in some algae, lower plants, and gymnosperms, but not in angiosperms. We have identified a new chloroplast gene, chlB, that is required for the light-independent accumulation of chlorophyll in the green alga Chlamydomonas reinhardtii. The chlB gene was cloned, sequenced, and then disrupted by performing particle gun-mediated chloroplast transformation. The resulting homoplasmic mutant was unable to accumulate chlorophyll in the dark and thus exhibited a 'yellow-in-the-dark' phenotype. The chlB gene encodes a polypeptide of 688 amino acid residues, and is distinct from two previously characterized chloroplast genes (chlN and chlL) also required for light-independent chlorophyll accumulation in C. reinhardtii. Three unidentified open reading frames in chloroplast genomes of liverwort, black pine, and Chlamydomonas moewusii were also identified as chlB genes, based on their striking sequence similarities to the C. reinhardtii chlB gene. A chlB-like gene is absent in chloroplast genomes of tobacco and rice, consistent with the lack of light-independent chlorophyll synthesis in these plants. Polypeptides encoded by the chloroplast chlB genes also show significant sequence similarities with the bchB gene product of Rhodobacter capsulatus. Comparisons among the chloroplast chlB and the bacterial bchB gene products revealed five highly conserved sequence areas that are interspersed by four stretches of highly variable and probably insertional sequences.

  10. Crystal Structure and Catalytic Mechanism of 7-Hydroxymethyl Chlorophyll a Reductase*

    PubMed Central

    Wang, Xiao; Liu, Lin

    2016-01-01

    7-Hydroxymethyl chlorophyll a reductase (HCAR) catalyzes the second half-reaction in chlorophyll b to chlorophyll a conversion. HCAR is required for the degradation of light-harvesting complexes and is necessary for efficient photosynthesis by balancing the chlorophyll a/b ratio. Reduction of the hydroxymethyl group uses redox cofactors [4Fe-4S] cluster and FAD to transfer electrons and is difficult because of the strong carbon-oxygen bond. Here, we report the crystal structure of Arabidopsis HCAR at 2.7-Å resolution and reveal that two [4Fe-4S]clusters and one FAD within a very short distance form a consecutive electron pathway to the substrate pocket. In vitro kinetic analysis confirms the ferredoxin-dependent electron transport chain, thus supporting a proton-activated electron transfer mechanism. HCAR resembles a partial reconstruction of an archaeal F420-reducing [NiFe] hydrogenase, which suggests a common mode of efficient proton-coupled electron transfer through conserved cofactor arrangements. Furthermore, the trimeric form of HCAR provides a biological clue of its interaction with light-harvesting complex II. PMID:27072131

  11. Ectopic expression of GA 2-oxidase 6 from rapeseed (Brassica napus L.) causes dwarfism, late flowering and enhanced chlorophyll accumulation in Arabidopsis thaliana.

    PubMed

    Yan, Jindong; Liao, Xiaoying; He, Reqing; Zhong, Ming; Feng, Panpan; Li, Xinmei; Tang, Dongying; Liu, Xuanming; Zhao, Xiaoying

    2017-02-01

    Gibberellins (GAs) are endogenous hormones that play an important role in higher plant growth and development. GA2-oxidase (GA2ox) promotes catabolism and inactivation of bioactive GAs or their precursors. In this study, we identified the GA2-oxidase gene, BnGA2ox6, and found it to be highly expressed in the silique and flower. Overexpression of BnGA2ox6 in Arabidopsis resulted in GA-deficiency symptoms, including inhibited elongation of the hypocotyl and stem, delayed seed germination, and late flowering. BnGA2ox6 overexpression reduced silique growth, but had no effect on seed development. Additionally, BnGA2ox6 overexpression enhanced chlorophyll b and total chlorophyll accumulation, and downregulated mRNA expression levels of the CHL1 and RCCR genes, which are involved in the chlorophyll degradation. These findings suggest that BnGA2ox6 regulates plant hight, silique development, flowering and chlorophyll accumulation in transgenic Arabidopsis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Enzyme-assisted extraction of stabilized chlorophyll from spinach.

    PubMed

    Özkan, Gülay; Ersus Bilek, Seda

    2015-06-01

    Zinc complex formation with chlorophyll derivatives in spinach pulp was studied by adding 300ppm Zn(2+) for production of stable food colorant, followed by the heating at 110°C for 15min. Zinc complex formation increased at pH values of 7.0 or greater. Pectinex Ultra SP-L was selected for enzyme-assisted release of zinc-chlorophyll derivatives from spinach pulp. Effect of enzyme concentration (1-9%), treatment temperature (30-60°C), and time (30-210min) on total chlorophyll content (TCC) were optimized using response surface methodology. A quadratic regression model (R(2)=0.9486) was obtained from the experimental design. Optimum treatment conditions were 8% enzyme concentration, 45°C, and 30min, which yielded a 50.747mgTCC/100g spinach pulp. Enzymatic treatment was followed by solvent extraction with ethanol at a solvent-to-sample ratio of 2.5:1 at 60°C for 45min for the highest TCC recovery. Pretreatment with enzyme and extraction in ethanol resulted in 39% increase in Zn-chlorophyll derivative yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Genetic regulation of cold-induced albinism in the maize inbred line A661

    PubMed Central

    Rodríguez, Víctor M.; Velasco, Pablo; Garrido, José L.; Revilla, Pedro; Ordás, Amando; Butrón, Ana

    2013-01-01

    In spite of multiple studies elucidating the regulatory pathways controlling chlorophyll biosynthesis and photosynthetic activity, little is known about the molecular mechanism regulating cold-induced chlorosis in higher plants. Herein the characterization of the maize inbred line A661 which shows a cold-induced albino phenotype is reported. The data show that exposure of seedlings to low temperatures during early leaf biogenesis led to chlorophyll losses in this inbred. A661 shows a high plasticity, recovering resting levels of photosynthesis activity when exposed to optimal temperatures. Biochemical and transcriptome data indicate that at suboptimal temperatures chlorophyll could not be fully accommodated in the photosynthetic antenna in A661, remaining free in the chloroplast. The accumulation of free chlorophyll activates the expression of an early light inducible protein (elip) gene which binds chlorophyll to avoid cross-reactions that could lead to the generation of harmful reactive oxygen species. Higher levels of the elip transcript were observed in plants showing a cold-induced albino phenotype. Forward genetic analysis reveals that a gene located on the short arm of chromosome 2 regulates this protective mechanism. PMID:23881393

  14. Using violet laser-induced chlorophyll fluorescence emission spectra for crop yield assessment of cowpea (Vigna unguiculata (L) Walp) varieties

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin; Buah-Bassuah, Paul K.; Tetteh, Jonathan P.

    2004-07-01

    The use of violet laser-induced chlorophyll fluorescence (LICF) emission spectra to monitor the growth of five varieties of cowpea in the University of Cape Coast Botanical Garden is presented. Radiation from a continuous-wave violet laser diode emitting at 396 nm through a fibre is closely incident on in vivo leaves of cowpea to excite chlorophyll fluorescence, which is detected by an integrated spectrometer with CCD readout. The chlorophyll fluorescence spectra with peaks at 683 and 731 nm were used for growth monitoring of the cowpea plants over three weeks and analysed using Gaussian spectral functions with curve fitted parameters to determine the peak positions, area under the spectral curve and the intensity ratio F683/F731. The variation in the intensity ratio of the chlorophyll bands showed sensitive changes indicating the photosynthetic activity of the cowpea varieties. A discussion of the fluorescence result as compared to conventional assessment is presented with regard to discrimination between the cowpea varieties in terms of crop yield performance.

  15. Genetically engineered mutant of the cyanobacterium Synechocystis 6803 lacks the photosystem II chlorophyll-binding protein CP-47

    PubMed Central

    Vermaas, Wim F. J.; Williams, John G. K.; Rutherford, A. William; Mathis, Paul; Arntzen, Charles J.

    1986-01-01

    CP-47 is absent in a genetically engineered mutant of cyanobacterium Synechocystis 6803, in which the psbB gene [encoding the chlorophyll-binding photosystem II (PSII) protein CP-47] was interrupted. Another chlorophyll-binding PSII protein, CP-43, is present in the mutant, and functionally inactive PSII-enriched particles can be isolated from mutant thylakoids. We interpret these data as indicating that the PSII core complex of the mutant still assembles in the absence of CP-47. The mutant lacks a 77 K fluorescence emission maximum at 695 nm, suggesting that the PSII reaction center is not functional. The absence of primary photochemistry was indicated by EPR and optical measurements: no chlorophyll triplet originating from charge recombination between P680+ and Pheo- was observed in the mutant, and there were no flash-induced absorption changes at 820 nm attributable to chlorophyll P680 oxidation. These observations lead us to conclude that CP-47 plays an essential role in the activity of the PSII reaction center. Images PMID:16593788

  16. Contribution of Polyphenol Oxidation, Chlorophyll and Vitamin C Degradation to the Blackening of Piper nigrum L.

    PubMed

    Gu, Fenglin; Huang, Feifei; Wu, Guiping; Zhu, Hongying

    2018-02-09

    Black pepper ( Piper nigrum L.) is the most widely used spice in the world. Blackening is considered to be beneficial and important in the processing of black pepper because it contributes to its color and flavor. The purpose of this paper is to investigate polyphenol oxidation as well as the chlorophyll and vitamin C (VC) degradation in the blackening of Piper nigrum L. Black pepper was produced by four methods, and changes in polyphenols, chlorophyll and VC were studied by high performance liquid chromatography (HPLC) and ultraviolet-visible and visible (UV-Vis) spectrophotometry. The results show that polyphenol oxidase activity significantly decreased during the preparation of black pepper, and the concentrations of phenolic compounds, VC, and chlorophyll a and b also significantly decreased. Polyphenol oxidation and chlorophyll and VC degradation contribute to the blackening. A crude extract of phenolic compounds from black pepper was prepared by the system solvent method. The greater the polarity of the extraction solvent, the higher the extraction rates of the phenolic compounds and the total phenol content. Pepper phenolic compounds were analyzed by HPLC analysis.

  17. Relationship between the Fluorescence Lifetime of Chlorophyll 'a' and Primary Productivity within the Mississippi River Plume and Adjacent Shelf Region

    NASA Technical Reports Server (NTRS)

    Hall, Callie; Miller, Richard L.; Fernandez, Salvador M.; McKee, Brent A.

    2000-01-01

    In situ measurements of chlorophyll fluorescence intensity have been widely used to estimate phytoplankton biomass. However, because the fluorescence quantum yield of chlorophyll a in vivo can be highly variable, measurements of chlorophyll fluorescence intensity cannot be directly correlated with phytoplankton biomass and do not provide information on the physiological state of the phytoplankton under study. Conversely, lifetime-based measurements of chlorophyll fluorescence provide a framework in which photosynthetic rates of phytoplankton can be analyzed according to phytoplankton physiology. Along with the measurement of primary production and ambient nutrient concentrations within the Mississippi River plume in the northern Gulf of Mexico, phytoplankton fluorescence lifetimes were measured using a Fluorescence Lifetime Phytoplankton Analyzer (developed under a NASA Small Business Innovative Research contract to Ciencia, Inc.). Variability of fluorescence lifetimes within the plume can be used as a background from which to interpret variations in the maximum quantum yield of photochemistry. The extent to which nutrient and effluent loading in this dynamic coastal area affect the photosynthetic performance of phytoplankton will be presented as a function of phytoplankton fluorescence lifetimes.

  18. Apparent Optical Properties in Waters Influenced by the Mississippi River

    NASA Technical Reports Server (NTRS)

    D'Sa, E.; Miller, R. L.; McKee, B. A.; Trzaska, R.

    2002-01-01

    In-water downwelling irradiance (E(sub d)) and upwelling radiance (L(sub u)) were measured in coastal waters influenced by the Mississippi River at wavelengths corresponding to SeaWiFS spectral bands in April of 2000. Results of derived apparent optical properties (AOP's) such as spectral diffise attenuation coefficient for downwelling irradiance (K(sub d)) suggest that they are mainly influenced by phytoplankton chlorophyll. Large variations in chlorophyll concentrations (0.2 to greater than 10 mg per cubic meters) correspond to variations in K(sub d) at 443 nm ranging from about 0.1 to greater than 1.5 per meter. Attenuation values at 443 nm generally peaked (or were minimal at 555 nm) at depths where chlorophyll concentrations were high. Above water remote sensing reflectance R(sub rs) (443) derived from E(sub d) and L(sub u) shows good agreement to surface chlorophyll. Ratios of remote sensing reflectance, R(sub rs)(443/R(sub rs)(555)versus chlorophyll suggests a potential for obtaining a suitable bio-optical algorithm for the region influenced by the Mississippi River.

  19. Biological thresholds of nitrogen and phosphorus in a typical urban river system of the Yangtz delta, China.

    PubMed

    Liang, Xinqiang; Zhu, Sirui; Ye, Rongzhong; Guo, Ru; Zhu, Chunyan; Fu, Chaodong; Tian, Guangming; Chen, Yingxu

    2014-09-01

    River health and associated risks are fundamentally dependent on the levels of the primary productivities, i.e., sestonic and benthic chlorophyll-a. We selected a typical urban river system of the Yangtz delta to investigate nutrient and non-nutrient responses of chlorophyll-a contents and to determine biological thresholds of N and P. Results showed the mean contents of sestonic and benthic chlorophyll-a across all sampling points reached 10.2 μg L(-1) and 149.3 mg m(-2). The self-organized mapping analysis suggested both chlorophyll-a contents clearly responded to measurements of N, P, and water temperature. Based on the chlorophyll-a criteria for fresh water and measured variables, we recommend the biological thresholds of N and P for our river system be set at 2.4 mg N L(-1) and 0.2 mg P L(-1), and these be used as initial nutrient reference values for local river managers to implement appropriate strategies to alleviate nutrient loads and trophic status. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Saharan Dust Deposition May Affect Phytoplankton Growth in the Mediterranean Sea at Ecological Time Scales

    PubMed Central

    Gallisai, Rachele; Peters, Francesc; Volpe, Gianluca; Basart, Sara; Baldasano, José Maria

    2014-01-01

    The surface waters of the Mediterranean Sea are extremely poor in the nutrients necessary for plankton growth. At the same time, the Mediterranean Sea borders with the largest and most active desert areas in the world and the atmosphere over the basin is subject to frequent injections of mineral dust particles. We describe statistical correlations between dust deposition over the Mediterranean Sea and surface chlorophyll concentrations at ecological time scales. Aerosol deposition of Saharan origin may explain 1 to 10% (average 5%) of seasonally detrended chlorophyll variability in the low nutrient-low chlorophyll Mediterranean. Most of the statistically significant correlations are positive with main effects in spring over the Eastern and Central Mediterranean, conforming to a view of dust events fueling needed nutrients to the planktonic community. Some areas show negative effects of dust deposition on chlorophyll, coinciding with regions under a large influence of aerosols from European origin. The influence of dust deposition on chlorophyll dynamics may become larger in future scenarios of increased aridity and shallowing of the mixed layer. PMID:25333783

  1. Assessing the link between chlorophyll concentration and absorption line height at 676 nm over a broad range of water types.

    PubMed

    Nardelli, Schuyler C; Twardowski, Michael S

    2016-10-31

    The relationship between absorption at 676 nm normalized to chlorophyll-a, i.e., specific absorption aph*(676), and various optical and environmental properties is examined in extensive data sets from Case I and Case II waters found globally to assess drivers of variability such as pigment packaging. A better understanding of this variability could lead to more accurate estimates of chlorophyll concentrations from in situ optical measurements that may be made autonomously. Values of aph*(676) ranged from 0.00006 to 0.0944 m2/mg Chl a across all sites studied, but converged on median and mean values (n = 563) of 0.0108 and 0.0139 m2/mg Chl a respectively, with no apparent relationship with various optical properties, latitude, coastal or open ocean environment, depth, temperature, salinity, photoadaptation, ecosystem health, or albedo. Relative consistency in aph* across such diverse water types and the full range in chlorophyll concentration suggests a single aph* may be used to estimate chlorophyll concentration from absorption measurements with better accuracy than currently thought.

  2. Applicability of linear regression equation for prediction of chlorophyll content in rice leaves

    NASA Astrophysics Data System (ADS)

    Li, Yunmei

    2005-09-01

    A modeling approach is used to assess the applicability of the derived equations which are capable to predict chlorophyll content of rice leaves at a given view direction. Two radiative transfer models, including PROSPECT model operated at leaf level and FCR model operated at canopy level, are used in the study. The study is consisted of three steps: (1) Simulation of bidirectional reflectance from canopy with different leaf chlorophyll contents, leaf-area-index (LAI) and under storey configurations; (2) Establishment of prediction relations of chlorophyll content by stepwise regression; and (3) Assessment of the applicability of these relations. The result shows that the accuracy of prediction is affected by different under storey configurations and, however, the accuracy tends to be greatly improved with increase of LAI.

  3. Chlorophyll and its degradation products in the two-spotted spider mite, Tetranychus urticae: observations using epifluorescence and confocal laser scanning microscopy.

    PubMed

    Occhipinti, Andrea; Maffei, Massimo E

    2013-10-01

    Chlorophyll and chlorophyll degradation products were observed in the two-spotted spider mite (Tetranychus urticae) using epifluorescence microscopy (EFM) and confocal laser scanning microscopy (CLSM). A clear red fluorescence (EFM) and a fluorescence induced by a laser wavelength of 650 nm (CLSM) were observed. In the lateral caeca, in the ventriculus and in the excretory organ, a bright light blue fluorescence was observed in close association with chlorophyll by using EFM. The same material can be localized with CLSM by using a laser with a wavelength of 488 nm. By comparison with synthetic guanine, this bright fluorescence is supposed to be guanine. The presence of guanine fluorescence in the mite pellets confirms this hypothesis. A possible mechanism for guanine formation is discussed.

  4. Detecting crop population growth using chlorophyll fluorescence imaging.

    PubMed

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2017-12-10

    For both field and greenhouse crops, it is challenging to evaluate their growth information on a large area over a long time. In this work, we developed a chlorophyll fluorescence imaging-based system for crop population growth information detection. Modular design was used to make the system provide high-intensity uniform illumination. This system can perform modulated chlorophyll fluorescence induction kinetics measurement and chlorophyll fluorescence parameter imaging over a large area of up to 45  cm×34  cm. The system can provide different lighting intensity by modulating the duty cycle of its control signal. Results of continuous monitoring of cucumbers in nitrogen deficiency show the system can reduce the judge error of crop physiological status and improve monitoring efficiency. Meanwhile, the system is promising in high throughput application scenarios.

  5. Photosynthetic Pigments in Hypogymnia Physodes with Different Metal Contents

    NASA Astrophysics Data System (ADS)

    Meysurova, A. F.; Notov, A. A.; Pungin, A. V.

    2018-01-01

    Chlorophyll a and b contents in Hypogymnia physodes specimens collected from various economic areas and natural complexes of Tver Region were found to differ substantially using a spectrophotometric method, showing that the lichen photosynthetic system is highly adaptable. The chlorophyll b content was linked primarily to adaptation to specific environmental features in various plant communities. The chlorophyll a content changed to provide the necessary compensatory responses under technogenic stress. A total of 15 metals (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Ti, V, and Zn) were detected in H. physodes samples using inductively coupled plasma atomicemission spectroscopy (ICP AES). The most widespread of them were Fe, Al, and Ti. Significant correlations among the concentrations of these metals and the chlorophyll a content were revealed.

  6. Effect of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rupiasih, N. Nyoman, E-mail: rupiasih@gmail.com; Vidyasagar, Pandit B., E-mail: prof-pbv@yahoo.com

    2016-03-11

    An investigation of the effects of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings has been done. The UV-C irradiation periods of exposure were 30, 60, 90, 120 and 180 minutes. The hypergravity used were 1000 g, 2000 g and 2500 g. The combination treatment is UV-C irradiation for 180 min followed by each hypergravity. The results showed that irradiation of UV-C on wheat seeds have stimulated the seed germination, but hypergravity and combination treatments on wheat seeds have inhibited the seed germination. Those treatments gave negative effects to growth rate, the content of chlorophyll a, b andmore » total chlorophyll of wheat seedlings.« less

  7. Growth and photosynthesis of Japanese flowering cherry under simulated microgravity conditions

    NASA Technical Reports Server (NTRS)

    Sugano, Mami; Ino, Yoshio; Nakamura, Teruko

    2002-01-01

    The photosynthetic rate, the leaf characteristics related to photosynthesis, such as the chlorophyll content, chlorophyll a/b ratio and density of the stomata, the leaf area and the dry weight in seedlings of Japanese flowering cherry grown under normal gravity and simulated microgravity conditions were examined. No significant differences were found in the photosynthetic rates between the two conditions. Moreover, leaf characteristics such as the chlorophyll content, chlorophyll a/b ratio and density of the stomata in the seedlings grown under the simulated microgravity condition were not affected. However, the photosynthetic product of the whole seedling under the simulated microgravity condition increased compared with the control due to its leaf area increase. The results suggest that dynamic gravitational stimulus controls the partitioning of the products of photosynthesis.

  8. Two-Dimensional Electronic-Vibrational Spectroscopy of Chlorophyll a and b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Nicholas H. C.; Fleming, Graham R.

    2016-03-03

    Presented are two-dimensional electronic-vibrational (2DEV) spectra of isolated chlorophyll a and b in deuterated ethanol. We excite the Q-band electronic transitions and measure the effects on the carbonyl and C=C double-bond stretch region of the infrared spectrum. With the aid of density functional theory calculations, we provide assignments for the major features of the spectrum. We show how the 2DEV spectra can be used to readily distinguish different solvation states of the chlorophyll, with features corresponding to the minority pentacoordinate magnesium (Mg) species being resolved along each dimension of the 2DEV spectra from the dominant hexacoordinate Mg species. These assignmentsmore » represent a crucial first step toward the application of 2DEV spectroscopy to chlorophyll-containing pigment-protein complexes.« less

  9. Analysis of six broadband optical filters for measuring chlorophyll alpha and suspended solids in the Patuxent River

    NASA Technical Reports Server (NTRS)

    Ohlhorst, C. W.

    1976-01-01

    Kodak Wratten broadband optical filters numbered 47B (400 to 500 nm), 57 (500 to 600 nm), 58 (500 to 600 nm), 12 (500 to 700 nm), 25 (600 to 700 nm), and 89B (690 to 900 nm) were tested on October 17, 1972, to see whether each spectral band by itself could be used to quantify chlorophyll a and suspended sediment in the Patuxent River. Band 690 to 900 nm showed promise in being able to detect gross changes in chlorophyll a above 28 micrograms/l. None of the broad spectral bands seem capable of measuring chlorophyll a concentrations less than 28 micrograms/l in turbid estuarine water. Except for the 47B spectral band, the bands do show promise for measuring suspended solids.

  10. Changes in topography and function of thylakoid membranes following membrane protein phosphorylation.

    PubMed

    Black, M T; Lee, P; Horton, P

    1986-09-01

    Changes in topography and function of pea (Pisum sativum L.) thylakoid membrane fractions following membrane protein phosphorylation have been studied. After protein phosphorylation the stromal membrane fraction had a higher chlorophyll a/b ratio, an increased content of light-harvesting chlorophyll protein and a higher ratio of chlorophyll to cytochrome f. This indicates that a pool of light-harvesting chlorophyll protein migrates from the photosystem II-enriched grana regions to the photosystem I-enriched stroma lamellae, in agreement with Kyle et al. (1984, Biochim. Biophys. Acta 765, 89-96) and Larsson et al. (1983, Eur. J. Biochem. 136, 25-29). Phosphorylation caused a stimulation in the rate of light-limited photosystem-I electron transfer in the unappressed membrane fraction, indicating that the translocated LHC-II becomes functionally associated with photosystem I.

  11. The Validity Chlorophyll-a Estimation by Sun Induced Fluorescence in Estuarine Waters: An Analysis of Long-term (2003-2011) Water Quality Data from Tampa Bay, Florida (USA)

    NASA Technical Reports Server (NTRS)

    Moreno-Madrinan, Max Jacobo; Fischer, Andrew

    2012-01-01

    Satellite observation of phytoplankton concentration or chlorophyll-a is an important characteristic, critically integral to monitoring coastal water quality. However, the optical properties of estuarine and coastal waters are highly variable and complex and pose a great challenge for accurate analysis. Constituents such as suspended solids and dissolved organic matter and the overlapping and uncorrelated absorptions in the blue region of the spectrum renders the blue-green ratio algorithms for estimating chlorophyll-a inaccurate. Measurement of sun-induced chlorophyll fluorescence, on the other hand, which utilizes the near infrared portion of the electromagnetic spectrum, may provide a better estimate of phytoplankton concentrations. While modelling and laboratory studies have illustrated both the utility and limitations of satellite baseline algorithms based on the sun induced chlorophyll fluorescence signal, few have examined the empirical validity of these algorithms using a comprehensive long term in situ data set. In an unprecedented analysis of a long term (2003-2011) in situ monitoring data from Tampa Bay, Florida (USA), we assess the validity of the FLH product from the Moderate Resolution Imaging Spectrometer (MODIS) against chlorophyll ]a and a suite of water quality parameters taken in a variety of conditions throughout a large optically complex estuarine system. A systematic analysis of sampling sites throughout the bay is undertaken to understand how the relationship between FLH and in situ chlorophyll-a responds to varying conditions within the estuary including water depth, distance from shore and structures and eight water quality parameters. From the 39 station for which data was derived, 22 stations showed significant correlations when the FLH product was matched with in situ chlorophyll-alpha data. The correlations (r2) for individual stations within Tampa Bay ranged between 0.67 (n=28, pless than 0.01) and-0.457 (n=12, p=.016), indicating that for some areas within the Bay, FLH can be a good predictor of chlorophyll-alpha concentration and hence a useful tool for the analysis of water quality. Overall, the results show a 106% increase in the validity of chlorophyll -a concentration estimates using FLH over the standard the blue-green OC3M algorithm. This analysis also illustrates that the correlations between FLH and in situ chlorophyll -a measurements increases with increasing water depth and distance of the monitoring sites from both the shore and structures. However, due to confounding factors related to the complexity of the estuarine system, a linear improvement in the FLH to chlorophyll ]a relationship was not clearly noted with increasing depth and distance from shore alone. Correlations of FLH with turbidity, nutrients (total nitrogen and total phosphorous) biological oxygen demand, salinity, sea surface temperature correlated positively with FLH concentrations, while dissolved oxygen and pH showed negative correlations. Principle component analyses are employed to further describe the relationships between the multivariate water quality parameters and the FLH product. The majority of sites with higher and very significant correlations (pless than 0.01) also showed high correlation values for nutrients, turbidity and biological oxygen demand. These sites were on average in greater than seven meters of water and over five kilometers from shore. A thorough understanding of the relationship between the MODIS FLH product and in situ water quality parameters will enhance our understanding of the accuracy MODIS fs global FLH algorithm and assist in optimizing its calibration for use in monitoring the quality of estuarine and coastal waters worldwide.

  12. Leaf reflectance-nitrogen-chlorophyll relations among three south Texas woody rangeland plant species

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Everitt, J. H.; Escobar, D. E. (Principal Investigator)

    1982-01-01

    Annual variations in the nitrogen-chlorophyll leaf reflectance of hackberry, honey mesquite and live oak in south Texas, were compared. In spring, leaf reflectance at the 0.55 m wavelength and nitrogen (N) concentration was high but leaf chlorophyll (chl) concentrations were low. In summer, leaf reflectance and N-concentration were low but lead chl concentrations were high. Linear correlations for both spring and summer of leaf reflectance with N and chl concentration or deviations from linear regression were not statistically significant.

  13. Spectral Dependence of Chlorophyll Biosynthesis Pathways in Plant Leaves.

    PubMed

    Belyaeva, O B; Litvin, F F

    2015-12-01

    This review covers studies on the dependence of chlorophyll photobiosynthesis reactions from protochlorophyllide on the spectral composition of actinic light. A general scheme of the reaction sequence for the photochemical stage in chlorophyll biosynthesis for etiolated plant leaves is presented. Comparative analysis of the data shows that the use of light with varied wavelengths for etiolated plant illumination reveals parallel transformation pathways of different protochlorophyllide forms into chlorophyllide, including a pathway for early photosystem II reaction center P-680 pigment formation.

  14. Assessment of water pollution by airborne measurement of chlorophyll

    NASA Technical Reports Server (NTRS)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1972-01-01

    Remote measurement of chlorophyll concentrations to determine extent of water pollution is discussed. Construction and operation of radiometer to provide measurement capability are explained. Diagram of equipment is provided.

  15. Performance of a two-leaf light use efficiency model for mapping gross primary productivity against remotely sensed sun-induced chlorophyll fluorescence data.

    PubMed

    Zan, Mei; Zhou, Yanlian; Ju, Weimin; Zhang, Yongguang; Zhang, Leiming; Liu, Yibo

    2018-02-01

    Estimating terrestrial gross primary production is an important task when studying the carbon cycle. In this study, the ability of a two-leaf light use efficiency model to simulate regional gross primary production in China was validated using satellite Global Ozone Monitoring Instrument - 2 sun-induced chlorophyll fluorescence data. The two-leaf light use efficiency model was used to estimate daily gross primary production in China's terrestrial ecosystems with 500-m resolution for the period from 2007 to 2014. Gross primary production simulated with the two-leaf light use efficiency model was resampled to a spatial resolution of 0.5° and then compared with sun-induced chlorophyll fluorescence. During the study period, sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model exhibited similar spatial and temporal patterns in China. The correlation coefficient between sun-induced chlorophyll fluorescence and monthly gross primary production simulated by the two-leaf light use efficiency model was significant (p<0.05, n=96) in 88.9% of vegetated areas in China (average value 0.78) and varied among vegetation types. The interannual variations in monthly sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model were similar in spring and autumn in most vegetated regions, but dissimilar in winter and summer. The spatial variability of sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model was similar in spring, summer, and autumn. The proportion of spatial variations of sun-induced chlorophyll fluorescence and annual gross primary production simulated by the two-leaf light use efficiency model explained by ranged from 0.76 (2011) to 0.80 (2013) during the study period. Overall, the two-leaf light use efficiency model was capable of capturing spatial and temporal variations in gross primary production in China. However, the model needs further improvement to better simulate gross primary production in summer. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Nonlinear Optical Properties of Carotenoid and Chlorophyll Harmonophores

    NASA Astrophysics Data System (ADS)

    Tokarz, Danielle Barbara

    Information regarding the structure and function of living tissues and cells is instrumental to the advancement of cell biology and biophysics. Nonlinear optical microscopy can provide such information, but only certain biological structures generate nonlinear optical signals. Therefore, structural specificity can be achieved by introducing labels for nonlinear optical microscopy. Few studies exist in the literature about labels that facilitate harmonic generation, coined "harmonophores". This thesis consists of the first major investigation of harmonophores for third harmonic generation (THG) microscopy. Carotenoids and chlorophylls were investigated as potential harmonophores. Their nonlinear optical properties were studied by the THG ratio technique. In addition, a tunable refractometer was built in order to determine their second hyperpolarizability (gamma). At 830 nm excitation wavelength, carotenoids and chlorophylls were found to have large negative gamma values however, at 1028 nm, the sign of gamma reversed for carotenoids and remained negative for chlorophylls. Consequently, at 1028 nm wavelength, THG signal is canceled with mixtures of carotenoids and chlorophylls. Furthermore, when such molecules are covalently bonded as dyads or interact within photosynthetic pigment-protein complexes, it is found that additive effects with the gamma values still play a role, however, the overall gamma value is also influenced by the intra-pigment and inter-pigment interaction. The nonlinear optical properties of aggregates containing chlorophylls and carotenoids were the target of subsequent investigations. Carotenoid aggregates were imaged with polarization-dependent second harmonic generation and THG microscopy. Both techniques revealed crystallographic information pertaining to H and J aggregates and beta-carotene crystalline aggregates found in orange carrot. In order to demonstrate THG enhancement due to labeling, cultured cells were labeled with carotenoid incorporated liposomes. In addition, Drosophila melanogaster larvae muscle as well as keratin structures in the hair cortex were labeled with beta-carotene. Polarization-dependent THG studies may be particularly useful in understanding the structural organization that occurs within biological structures containing carotenoids and chlorophylls such as photosynthetic pigment-protein complexes and carotenoid aggregates in plants and alga. Further, artificial labeling with carotenoids and chlorophylls may be useful in clinical applications since they are nontoxic, nutritionally valuable, and they can aid in visualizing structural changes in cellular components.

  17. EIN3 and ORE1 Accelerate Degreening during Ethylene-Mediated Leaf Senescence by Directly Activating Chlorophyll Catabolic Genes in Arabidopsis

    PubMed Central

    Qiu, Kai; Li, Zhongpeng; Yang, Zhen; Chen, Junyi; Wu, Shouxin; Zhu, Xiaoyu; Gao, Shan; Gao, Jiong; Ren, Guodong; Kuai, Benke; Zhou, Xin

    2015-01-01

    Degreening, caused by chlorophyll degradation, is the most obvious symptom of senescing leaves. Chlorophyll degradation can be triggered by endogenous and environmental cues, and ethylene is one of the major inducers. ETHYLENE INSENSITIVE3 (EIN3) is a key transcription factor in the ethylene signaling pathway. It was previously reported that EIN3, miR164, and a NAC (NAM, ATAF, and CUC) transcription factor ORE1/NAC2 constitute a regulatory network mediating leaf senescence. However, how this network regulates chlorophyll degradation at molecular level is not yet elucidated. Here we report a feed-forward regulation of chlorophyll degradation that involves EIN3, ORE1, and chlorophyll catabolic genes (CCGs). Gene expression analysis showed that the induction of three major CCGs, NYE1, NYC1 and PAO, by ethylene was largely repressed in ein3 eil1 double mutant. Dual-luciferase assay revealed that EIN3 significantly enhanced the promoter activity of NYE1, NYC1 and PAO in Arabidopsis protoplasts. Furthermore, Electrophoretic mobility shift assay (EMSA) indicated that EIN3 could directly bind to NYE1, NYC1 and PAO promoters. These results reveal that EIN3 functions as a positive regulator of CCG expression during ethylene-mediated chlorophyll degradation. Interestingly, ORE1, a senescence regulator which is a downstream target of EIN3, could also activate the expression of NYE1, NYC1 and PAO by directly binding to their promoters in EMSA and chromatin immunoprecipitation (ChIP) assays. In addition, EIN3 and ORE1 promoted NYE1 and NYC1 transcriptions in an additive manner. These results suggest that ORE1 is also involved in the direct regulation of CCG transcription. Moreover, ORE1 activated the expression of ACS2, a major ethylene biosynthesis gene, and subsequently promoted ethylene production. Collectively, our work reveals that EIN3, ORE1 and CCGs constitute a coherent feed-forward loop involving in the robust regulation of ethylene-mediated chlorophyll degradation during leaf senescence in Arabidopsis. PMID:26218222

  18. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake.

    PubMed

    Dörnhöfer, Katja; Klinger, Philip; Heege, Thomas; Oppelt, Natascha

    2018-01-15

    Phytoplankton indicated by its photosynthetic pigment chlorophyll-a is an important pointer on lake ecology and a regularly monitored parameter within the European Water Framework Directive. Along with eutrophication and global warming cyanobacteria gain increasing importance concerning human health aspects. Optical remote sensing may support both the monitoring of horizontal distribution of phytoplankton and cyanobacteria at the lake surface and the reduction of spatial uncertainties associated with limited water sample analyses. Temporal and spatial resolution of using only one satellite sensor, however, may constrain its information value. To discuss the advantages of a multi-sensor approach the sensor-independent, physically based model MIP (Modular Inversion and Processing System) was applied at Lake Kummerow, Germany, and lake surface chlorophyll-a was derived from 33 images of five different sensors (MODIS-Terra, MODIS-Aqua, Landsat 8, Landsat 7 and Sentinel-2A). Remotely sensed lake average chlorophyll-a concentration showed a reasonable development and varied between 2.3±0.4 and 35.8±2.0mg·m -3 from July to October 2015. Match-ups between in situ and satellite chlorophyll-a revealed varying performances of Landsat 8 (RMSE: 3.6 and 19.7mg·m -3 ), Landsat 7 (RMSE: 6.2mg·m -3 ), Sentinel-2A (RMSE: 5.1mg·m -3 ) and MODIS (RMSE: 12.8mg·m -3 ), whereas an in situ data uncertainty of 48% needs to be respected. The temporal development of an index on harmful algal blooms corresponded well with the cyanobacteria biomass development during summer months. Satellite chlorophyll-a maps allowed to follow spatial patterns of chlorophyll-a distribution during a phytoplankton bloom event. Wind conditions mainly explained spatial patterns. Integrating satellite chlorophyll-a into trophic state assessment resulted in different trophic classes. Our study endorsed a combined use of satellite and in situ chlorophyll-a data to alleviate weaknesses of both approaches and to better characterise and understand phytoplankton development in lakes. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Evaluation of the dual differential radiometer for remote sensing of sediment and chlorophyll in turbid waters

    NASA Technical Reports Server (NTRS)

    Witte, W. G.

    1975-01-01

    The dual differential radiometer (DDR) was tested to determine its capability for measuring suspended sediment and chlorophyll in turbid waters. Measurements were obtained from a boat dock and from a helicopter with combinations of sample and reference filters with peak transmissions at various wavelengths. Water samples were taken concurrently and were analyzed for light scattering, particle count, and total chlorophyll. Least-squares estimates of the linear relationship between DDR output and the water parameters yielded correlation coefficients of less than 0.7. Under the turbid water conditions of the present tests, the DDR did not accurately measure either suspended sediment or chlorophyll. A precise knowledge of the spectral signatures of various pollutants might enable appropriate filters to be selected for tuning the DDR to monitor a particular pollutant.

  20. Lunisolar tidal force and its relationship to chlorophyll fluorescence in Arabidopsis thaliana.

    PubMed

    Fisahn, Joachim; Klingelé, Emile; Barlow, Peter

    2015-01-01

    The yield of chlorophyll fluorescence Ft was measured in leaves of Arabidopsis thaliana over periods of several days under conditions of continuous illumination (LL) without the application of saturating light pulses. After linearization of the time series of the chlorophyll fluorescence yield (ΔFt), oscillations became apparent with periodicities in the circatidal range. Alignments of these linearized time series ΔFt with the lunisolar tidal acceleration revealed high degrees of synchrony and phase congruence. Similar congruence with the lunisolar tide was obtained with the linearized quantum yield of PSII (ΔФII), recorded after application of saturating light pulses. These findings strongly suggest that there is an exogenous timekeeper which is a stimulus for the oscillations detected in both the linearized yield of chlorophyll fluorescence (ΔFt) and the linearized quantum yield of PSII (ΔФII).

  1. Modeling of estuarne chlorophyll a from an airborne scanner

    USGS Publications Warehouse

    Khorram, Siamak; Catts, Glenn P.; Cloern, James E.; Knight, Allen W.

    1987-01-01

    Near simultaneous collection of 34 surface water samples and airborne multispectral scanner data provided input for regression models developed to predict surface concentrations of estuarine chlorophyll a. Two wavelength ratios were employed in model development. The ratios werechosen to capitalize on the spectral characteristics of chlorophyll a, while minimizing atmospheric influences. Models were then applied to data previously acquired over the study area thre years earlier. Results are in the form of color-coded displays of predicted chlorophyll a concentrations and comparisons of the agreement among measured surface samples and predictions basedon coincident remotely sensed data. The influence of large variations in fresh-water inflow to the estuary are clearly apparent in the results. The synoptic view provided by remote sensing is another method of examining important estuarine dynamics difficult to observe from in situ sampling alone.

  2. Lunisolar tidal force and its relationship to chlorophyll fluorescence in Arabidopsis thaliana

    PubMed Central

    Fisahn, Joachim; Klingelé, Emile; Barlow, Peter

    2015-01-01

    The yield of chlorophyll fluorescence Ft was measured in leaves of Arabidopsis thaliana over periods of several days under conditions of continuous illumination (LL) without the application of saturating light pulses. After linearization of the time series of the chlorophyll fluorescence yield (ΔFt), oscillations became apparent with periodicities in the circatidal range. Alignments of these linearized time series ΔFt with the lunisolar tidal acceleration revealed high degrees of synchrony and phase congruence. Similar congruence with the lunisolar tide was obtained with the linearized quantum yield of PSII (ΔФII), recorded after application of saturating light pulses. These findings strongly suggest that there is an exogenous timekeeper which is a stimulus for the oscillations detected in both the linearized yield of chlorophyll fluorescence (ΔFt) and the linearized quantum yield of PSII (ΔФII). PMID:26376108

  3. Genetic Architecture of Natural Variation in Rice Chlorophyll Content Revealed by a Genome-Wide Association Study.

    PubMed

    Wang, Quanxiu; Xie, Weibo; Xing, Hongkun; Yan, Ju; Meng, Xiangzhou; Li, Xinglei; Fu, Xiangkui; Xu, Jiuyue; Lian, Xingming; Yu, Sibin; Xing, Yongzhong; Wang, Gongwei

    2015-06-01

    Chlorophyll content is one of the most important physiological traits as it is closely related to leaf photosynthesis and crop yield potential. So far, few genes have been reported to be involved in natural variation of chlorophyll content in rice (Oryza sativa) and the extent of variations explored is very limited. We conducted a genome-wide association study (GWAS) using a diverse worldwide collection of 529 O. sativa accessions. A total of 46 significant association loci were identified. Three F2 mapping populations with parents selected from the association panel were tested for validation of GWAS signals. We clearly demonstrated that Grain number, plant height, and heading date7 (Ghd7) was a major locus for natural variation of chlorophyll content at the heading stage by combining evidence from near-isogenic lines and transgenic plants. The enhanced expression of Ghd7 decreased the chlorophyll content, mainly through down-regulating the expression of genes involved in the biosynthesis of chlorophyll and chloroplast. In addition, Narrow leaf1 (NAL1) corresponded to one significant association region repeatedly detected over two years. We revealed a high degree of polymorphism in the 5' UTR and four non-synonymous SNPs in the coding region of NAL1, and observed diverse effects of the major haplotypes. The loci or candidate genes identified would help to fine-tune and optimize the antenna size of canopies in rice breeding. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  4. Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase (Dclcyb1) expression.

    PubMed

    Moreno, J C; Cerda, A; Simpson, K; Lopez-Diaz, I; Carrera, E; Handford, M; Stange, C

    2016-04-01

    Carotenoids, chlorophylls and gibberellins are derived from the common precursor geranylgeranyl diphosphate (GGPP). One of the enzymes in carotenoid biosynthesis is lycopene β-cyclase (LCYB) that catalyzes the conversion of lycopene into β-carotene. In carrot, Dclcyb1 is essential for carotenoid synthesis in the whole plant. Here we show that when expressed in tobacco, increments in total carotenoids, β-carotene and chlorophyll levels occur. Furthermore, photosynthetic efficiency is enhanced in transgenic lines. Interestingly, and contrary to previous observations where overexpression of a carotenogenic gene resulted in the inhibition of the synthesis of gibberellins, we found raised levels of active GA4 and the concommitant increases in plant height, leaf size and whole plant biomass, as well as an early flowering phenotype. Moreover, a significant increase in the expression of the key carotenogenic genes, Ntpsy1, Ntpsy2 and Ntlcyb, as well as those involved in the synthesis of chlorophyll (Ntchl), gibberellin (Ntga20ox, Ntcps and Ntks) and isoprenoid precursors (Ntdxs2 and Ntggpps) was observed. These results indicate that the expression of Dclcyb1 induces a positive feedback affecting the expression of isoprenoid gene precursors and genes involved in carotenoid, gibberellin and chlorophyll pathways leading to an enhancement in fitness measured as biomass, photosynthetic efficiency and carotenoid/chlorophyll composition. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Effect of composition of chlorophyll and ruthenium dyes mixture (hybrid) on the dye-sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Pratiwi, D. D.; Nurosyid, F.; Kusumandari; Supriyanto, A.; Suryana, R.

    2018-03-01

    The fabrication of dye-sensitized solar cell (DSSC) has been conducted by varying the composition of natural dye from moss chlorophyll (Bryophyte) and synthesis dye from ruthenium complex N719. The sandwich structure of DSSC consists of the working electrode using TiO2, dye, electrolyte, and counter electrode using carbon. The composition of chlorophyll and synthesis dyes mixture were 100% and 0%, 80% and 20%, 60% and 40%, 40% and 60%, and 20% and 80%. The UV-Vis absorption spectra of moss chlorophyll showed the first peak in the wavelength range of 450-500 nm and the second peak at wavelength of 650-700 nm. The peak value of absorbance at wavelengths of 450-500 nm was 6.1004 and at wavelengths of 650-700 nm was 3.5835. The IPCE characteristic curves showed the absorption peak of photon for DSSCs occurred at wavelength of 550-650 nm. It considered that photon in this wavelength can contribute dominantly to produce the optimum electrons. The I-V characteristics of DSSCs with composition of chlorophyll and synthesis dyes mixture of 100% and 0%, 80% and 20%, 60% and 40%, 40% and 60%, and 20% and 80% resulted the efficiency of 0.0022; 0.0194; 0.0239; 0.0342; and 0.0414, respectively. It suggested that the addition of a little composition of the ruthenium complex dye into moss chlorophyll dye can increase the efficiency significantly.

  6. The effect of increased levels of carbon dioxide on chlorophyll fluorescence and photosynthetic pigments in pinus ponderosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anschel, D.

    1994-05-06

    Levels of atmospheric carbon dioxide have been increasing at an unprecedented rate in modern times. In response to this situation, we have initiated a long-term study of a forest species` response to elevated carbon dioxide levels. We have set up a facility for subjecting P. ponderosa to ambient, ambient + 175 {mu}1 1{sup {minus}1}, and ambient + 350 {mu}1 1{sup {minus}1} CO{sub 2}. This report specifically concentrates on the effects of elevated CO{sub 2} on the photosynthetic system, as indicated by chlorophyll fluorescence and pigment assays. We tested for intraspecific variability by selecting nine different families of trees from fivemore » different geographic areas of California. There are differential responses to carbon dioxide treatments which appear to be dependent upon the tree`s genotype, as indicated by the relative efficiencies of photochemical electron flow in photosystem II (Fv/Fm). During the same testing period Fv/Fm varied by as much as 21.1% relative to ambient in the treated groups. Total chlorophyll, chlorophyll {alpha} and carotenoid values all showed statistically significant (p<0.05) drops in the treatment groups regardless of genotype. Chlorophyll {alpha} at one time showed the most dramatic drop of 3 mg/m2 in the + 350 {mu}1 1{sup {minus}1} CO{sub 2} group versus the ambient. Findings for both photosynthetic pigments and chlorophyll fluorescence vary somewhat over the course of several months.« less

  7. Chlorophyll fluorescence, a nondestructive method to assess maturity of mango fruits (Cv. 'Cogshall') without growth conditions bias.

    PubMed

    Lechaudel, Mathieu; Urban, Laurent; Joas, Jacques

    2010-07-14

    The quality of ripe mango fruits depends on maturity stage at harvest, which is usually assessed by visible criteria or from estimates of the age of fruit. The present study deals with the potential of chlorophyll fluorescence as a nondestructive method to assess the degree of fruit maturity regardless of fruit growing conditions. Chlorophyll fluorescence parameters were measured along with respiration rates of fruits still attached to the tree. At the same harvest stage, based on the fruit age or the thermal time sum (degree-days) method, physical and biochemical measurements related to fruit maturity and quality were made. Shaded fruits had a significantly greener flesh color, as well as a lower fruit density and flesh dry matter content, than well-exposed fruits, showing that fruits at the top of the canopy were more mature than fruits within the canopy, which were still in a growth phase. Additionally, chlorophyll fluorescence parameters, F(o), F(m), and F(v), were significantly lower for fruits taken from the top of the canopy than for those from within the canopy. The unique relationship observed between chlorophyll fluorescence parameters and fruit maturity, estimated by internal carbon dioxide content, on fruit still attached to trees is independent of growing conditions, such as the position of the fruit in the canopy and carbohydrate supply. The chlorophyll fluorescence method evaluates maturity much more accurately than the degree-day method and, moreover, nondestructively provides values for individual fruits before harvest.

  8. Estimation of Phytoplankton Accessory Pigments From Hyperspectral Reflectance Spectra: Toward a Global Algorithm

    NASA Astrophysics Data System (ADS)

    Chase, A. P.; Boss, E.; Cetinić, I.; Slade, W.

    2017-12-01

    Phytoplankton community composition in the ocean is complex and highly variable over a wide range of space and time scales. Able to cover these scales, remote-sensing reflectance spectra can be measured both by satellite and by in situ radiometers. The spectral shape of reflectance in the open ocean is influenced by the particles in the water, mainly phytoplankton and covarying nonalgal particles. We investigate the utility of in situ hyperspectral remote-sensing reflectance measurements to detect phytoplankton pigments by using an inversion algorithm that defines phytoplankton pigment absorption as a sum of Gaussian functions. The inverted amplitudes of the Gaussian functions representing pigment absorption are compared to coincident High Performance Liquid Chromatography measurements of pigment concentration. We determined strong predictive capability for chlorophylls a, b, c1+c2, and the photoprotective carotenoids. We also tested the estimation of pigment concentrations from reflectance-derived chlorophyll a using global relationships of covariation between chlorophyll a and the accessory pigments. We found similar errors in pigment estimation based on the relationships of covariation versus the inversion algorithm. An investigation of spectral residuals in reflectance data after removal of chlorophyll-based average absorption spectra showed no strong relationship between spectral residuals and pigments. Ultimately, we are able to estimate concentrations of three chlorophylls and the photoprotective carotenoid pigments, noting that further work is necessary to address the challenge of extracting information from hyperspectral reflectance beyond the information that can be determined from chlorophyll a and its covariation with other pigments.

  9. Water deficit and salt stress diagnosis through LED induced chlorophyll fluorescence analysis in Jatropha curcas L. oil plants for biodiesel

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; Oliveira, Ronaldo A.; Cunha, Patrícia C.; Costa, Ernande B.; Câmara, Terezinha J. R.; Willadino, Lilia G.

    2011-02-01

    Light-emitting-diode induced chlorophyll fluorescence analysis is employed to investigate the effect of water and salt stress upon the growth process of physicnut(jatropha curcas) grain oil plants for biofuel. Red(Fr) and far-red (FFr) chlorophyll fluorescence emission signals around 685 nm and 735 nm, respectively, were observed and examined as a function of the stress intensity(salt concentration and water deficit) for a period of time of 30 days. The chlorophyll fluorescence(ChlF) ratio Fr/FFr which is a valuable nondestructive and nonintrusive indicator of the chlorophyll content of leaves was exploited to monitor the level of stress experienced by the jatropha plants. The ChlF technique data indicated that salinity plays a minor role in the chlorophyll concentration of leaves tissues for NaCl concentrations in the 25 to 200 mM range, and results agreed quite well with those obtained using conventional destructive spectrophotometric methods. Nevertheless, for higher NaCl concentrations a noticeable decrease in the Chl content was observed. The Chl fluorescence ratio analysis also permitted detection of damage caused by water deficit in the early stages of the plants growing process. A significant variation of the Fr/FFr ratio was observed sample in the first 10 days of the experiment when one compared control and nonwatered samples. The results suggest that the technique may potentially be applied as an early-warning indicator of stress caused by water deficit.

  10. Studies on the performance of TiO{sub 2} thin films as protective layer to chlorophyll in Ocimum tenuiflorum L from UV radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malliga, P.; Selvi, B. Karunai; Pandiarajan, J.

    Thin films of TiO{sub 2} were prepared on glass substrates using sol-gel dip coating technique. The films with 10 coatings were prepared and annealed at temperatures 350°C, 450°C and 550°C for 1 hour in muffle furnace. The annealed films were characterized by X – Ray diffraction (XRD), UV – Visible, AFM, Field Effect Scanning Electron Microscopy (FESEM) and EDAX studies. Chlorophyll has many health benefits due to its structural similarity to human blood and its good chelating ability. It has antimutagenic and anticarcinogenic properties. UV light impairs photosynthesis and reduces size, productivity, and quality in many of the crop plantmore » species. Increased exposure of UV light reduces chlorophyll contents a, b and total content in plants. Titanium Dioxide (TiO{sub 2}) is a wide band gap semiconductor and efficient light harvester. TiO{sub 2} has strong UltraViolet (UV) light absorbing capability. Here, we have studied the performance of TiO{sub 2} thin films as a protective layer to the chlorophyll contents present in medicinal plant, tulsi (Ocimum tenuiflorum L) from UV radiation. The study reveals that crystallite size increases, transmittance decreases and chlorophyll contents increases with increase in annealing temperature. This study showed that TiO{sub 2} thin films are good absorber of UV light and protect the chlorophyll contents a, b and total content in medicinal plants.« less

  11. Simulating Carbon Flux Dynamics with the Product of PAR Absorbed by Chlorophyll (fAPARchl)

    NASA Astrophysics Data System (ADS)

    Yao, T.; Zhang, Q.

    2016-12-01

    A common way to estimate the gross primary production (GPP) is to use the fraction of photosynthetically radiation (PAR) absorbed by vegetation (FPAR). However, only the PAR absorbed by chlorophyll of the canopy, not the PAR absorbed by the foliage or by the entire canopy, is used for photosynthesis. MODIS fAPARchl product, which refers to the fraction of PAR absorbed by chlorophyll of the canopy, is derived from Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance by using an advanced leaf-canopy-soil-water-snow coupled radiative transfer model PROSAIL4. PROSAIL4 can retrieve surface water cover fraction, snow cover fraction, and physiologically active canopy chemistry components (chlorophyll concentration and water content), fraction of photosynthetically active radiation (PAR) absorbed by a canopy (fAPARcanopy), fraction of PAR absorbed by photosynthetic vegetation (PV) component (mainly chlorophyll) throughout the canopy (fAPARPV, i.e., fAPARchl) and fraction of PAR absorbed by non-photosynthetic vegetation (NPV) component of the canopy (fAPARNPV). We have successfully retrieved these vegetation parameters for selected areas with PROSAIL4 and the MODIS images, or simulated spectrally MODIS-like images. In this study, the product of PAR absorbed by chlorophyll (fAPARchl) has been used to simulate carbon flux over different kinds of vegetation types. The results show that MODIS fAPARchl product has the ability to better characterize phenology than current phenology model in the Community Land Model and it also will likely be able to increase the accuracy of carbon fluxes simulations.

  12. Characterization of a Thermo-Inducible Chlorophyll-Deficient Mutant in Barley.

    PubMed

    Wang, Rong; Yang, Fei; Zhang, Xiao-Qi; Wu, Dianxin; Tan, Cong; Westcott, Sharon; Broughton, Sue; Li, Chengdao; Zhang, Wenying; Xu, Yanhao

    2017-01-01

    Leaf color is an important trait for not only controlling crop yield but also monitoring plant status under temperature stress. In this study, a thermo-inducible chlorophyll-deficient mutant, named V-V-Y, was identified from a gamma-radiated population of the barley variety Vlamingh. The leaves of the mutant were green under normal growing temperature but turned yellowish under high temperature in the glasshouse experiment. The ratio of chlorophyll a and chlorophyll b in the mutant declined much faster in the first 7-9 days under heat treatment. The leaves of V-V-Y turned yellowish but took longer to senesce under heat stress in the field experiment. Genetic analysis indicated that a single nuclear gene controlled the mutant trait. The mutant gene ( vvy ) was mapped to the long arm of chromosome 4H between SNP markers 1_0269 and 1_1531 with a genetic distance of 2.2 cM and a physical interval of 9.85 Mb. A QTL for grain yield was mapped to the same interval and explained 10.4% of the yield variation with a LOD score of 4. This QTL is coincident with the vvy gene interval that is responsible for the thermo-inducible chlorophyll-deficient trait. Fine mapping, based on the barley reference genome sequence, further narrowed the vvy gene to a physical interval of 0.428 Mb with 11 annotated genes. This is the first report of fine mapping a thermo-inducible chlorophyll-deficient gene in barley.

  13. Model for fluorescence quenching in light harvesting complex II in different aggregation states.

    PubMed

    Andreeva, Atanaska; Abarova, Silvia; Stoitchkova, Katerina; Busheva, Mira

    2009-02-01

    Low-temperature (77 K) steady-state fluorescence emission spectroscopy and dynamic light scattering were applied to the main chlorophyll a/b protein light harvesting complex of photosystem II (LHC II) in different aggregation states to elucidate the mechanism of fluorescence quenching within LHC II oligomers. Evidences presented that LHC II oligomers are heterogeneous and consist of large and small particles with different fluorescence yield. At intermediate detergent concentrations the mean size of the small particles is similar to that of trimers, while the size of large particles is comparable to that of aggregated trimers without added detergent. It is suggested that in small particles and trimers the emitter is monomeric chlorophyll, whereas in large aggregates there is also another emitter, which is a poorly fluorescing chlorophyll associate. A model, describing populations of antenna chlorophyll molecules in small and large aggregates in their ground and first singlet excited states, is considered. The model enables us to obtain the ratio of the singlet excited-state lifetimes in small and large particles, the relative amount of chlorophyll molecules in large particles, and the amount of quenchers as a function of the degree of aggregation. These dependencies reveal that the quenching of the chl a fluorescence upon aggregation is due to the formation of large aggregates and the increasing of the amount of chlorophyll molecules forming these aggregates. As a consequence, the amount of quenchers, located in large aggregates, is increased, and their singlet excited-state lifetimes steeply decrease.

  14. Trophic Mode-Dependent Proteomic Analysis Reveals Functional Significance of Light-Independent Chlorophyll Synthesis in Synechocystis sp. PCC 6803.

    PubMed

    Fang, Longfa; Ge, Haitao; Huang, Xiahe; Liu, Ye; Lu, Min; Wang, Jinlong; Chen, Weiyang; Xu, Wu; Wang, Yingchun

    2017-01-09

    The photosynthetic model organism Synechocystis sp. PCC 6803 can grow in different trophic modes, depending on the availability of light and exogenous organic carbon source. However, how the protein profile changes to facilitate the cells differentially propagate in different modes has not been comprehensively investigated. Using isobaric labeling-based quantitative proteomics, we simultaneously identified and quantified 45% Synechocystis proteome across four different trophic modes, i.e., autotrophic, heterotrophic, photoheterotrophic, and mixotrophic modes. Among the 155 proteins that are differentially expressed across four trophic modes, proteins involved in nitrogen assimilation and light-independent chlorophyll synthesis are dramatically upregulated in the mixotrophic mode, concomitant with a dramatic increase of P II phosphorylation that senses carbon and nitrogen assimilation status. Moreover, functional study using a mutant defective in light-independent chlorophyll synthesis revealed that this pathway is important for chlorophyll accumulation under a cycled light/dark illumination regime, a condition mimicking day/night cycles in certain natural habitats. Collectively, these results provide the most comprehensive information on trophic mode-dependent protein expression in cyanobacterium, and reveal the functional significance of light-independent chlorophyll synthesis in trophic growth. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  15. Effect of soybean lecithin on iron-catalyzed or chlorophyll-photosensitized oxidation of canola oil emulsion.

    PubMed

    Choe, Jeesu; Oh, Boyoung; Choe, Eunok

    2014-11-01

    The effect of soybean lecithin addition on the iron-catalyzed or chlorophyll-photosensitized oxidation of emulsions consisting of purified canola oil and water (1:1, w/w) was studied based on headspace oxygen consumption using gas chromatography and hydroperoxide production using the ferric thiocyanate method. Addition levels of iron sulfate, chlorophyll, and soybean lecithin were 5, 4, and 350 mg/kg, respectively. Phospholipids (PLs) during oxidation of the emulsions were monitored by high performance liquid chromatography. Addition of soybean lecithin to the emulsions significantly reduced and decelerated iron-catalyzed oil oxidation by lowering headspace oxygen consumption and hydroperoxide production. However, soybean lecithin had no significant antioxidant effect on chlorophyll-photosensitized oxidation of the emulsions. PLs in soybean lecithin added to the emulsions were degraded during both oxidation processes, although there was little change in PL composition. Among PLs in soybean lecithin, phosphatidylethanolamine and phosphatidylinositol were degraded the fastest in the iron-catalyzed and the chlorophyll-photosensitized oxidation, respectively. The results suggest that addition of soybean lecithin as an emulsifier can also improve the oxidative stability of oil in an emulsion. © 2014 Institute of Food Technologists®

  16. Water Raman normalization of airborne laser fluorosensor measurements - A computer model study

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Esaias, W. E.

    1982-01-01

    The technique for normalizing airborne lidar measurements of chlorophyll fluoresence by the water Raman scattering signal is investigated for laser-excitation wavelengths of 480 and 532 nm using a semianalytic Monte Carlo methodology (SALMON). The signal-integration depth for chlorophyll fluorescence Z(90,F), is found to be insensitive to excitation wavelength and ranges from a maximum of 4.5 m in clearest waters to less than 1 m at a chlorophyll concentration of 20 microgram/liter. For excitation at 532 nm, the signal-integration depth for Raman scattering, Z(90,R), is comparable to Z(90,F). For excitation at 480 nm, Z(90,R) is four times as large as Z(90,F) in clearest waters but nearly equivalent at chlorophyll concentrations greater than 2-3 microgram/liter. Absolute signal levels are stronger with excitation at 480 nm than with excitation at 532 nm, but this advantage must be weighed against potential ambiguities resulting from different integration depths for the fluorescence and Raman scattering signals in clearer waters. To the precision of the simulations, Raman normalization produces effectively linear response to chlorophyll concentration for both excitation wavelengths.

  17. An Optical Index of Phytoplankton Photoacclimation and Its Relation to Light-Saturated Photosynthesis in the Sea

    NASA Technical Reports Server (NTRS)

    Behrenfeld, Michael J.; Boss, Emmanuel; Lyon, Paul E.; Fennel, Katja; Hoge, Frank E.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    In relation to understanding ocean biology at the global scale, one of NASA's primary foci has been measurements of near-surface concentrations of phytoplankton chlorophyll. Chlorophyll is an important light-absorbing pigment in phytoplankton. The absorbed light energy is used to fix carbon in the process of photosynthesis. Photosynthesis, in turn, is critical to the growth of phytoplankton and the function of entire marine ecosystems. Thus, the use of satellite surface chlorophyll data to estimate primary production in the ocean has been a key focus of much biological oceanography research. One of the major challenges in this research is to develop relationships that allow a given chlorophyll concentration (a standing stock) to be interpreted in terms of carbon fixation (a rate). This problem centers on the description of the light-saturated photosynthetic rate, Pbmax. In this paper, we describe how optical measurements of light attenuation provide information on particulate organic carbon (POC) concentrations. We then show how the ratio of POC to chlorophyll (Theta) provides critical information on variability in Pbmax. We then test this relationship between Theta and Pbmax using field data from a variety of open ocean ecosystems.

  18. SGRL can regulate chlorophyll metabolism and contributes to normal plant growth and development in Pisum sativum L.

    PubMed

    Bell, Andrew; Moreau, Carol; Chinoy, Catherine; Spanner, Rebecca; Dalmais, Marion; Le Signor, Christine; Bendahmane, Abdel; Klenell, Markus; Domoney, Claire

    2015-12-01

    Among a set of genes in pea (Pisum sativum L.) that were induced under drought-stress growth conditions, one encoded a protein with significant similarity to a regulator of chlorophyll catabolism, SGR. This gene, SGRL, is distinct from SGR in genomic location, encoded carboxy-terminal motif, and expression through plant and seed development. Divergence of the two encoded proteins is associated with a loss of similarity in intron/exon gene structure. Transient expression of SGRL in leaves of Nicotiana benthamiana promoted the degradation of chlorophyll, in a manner that was distinct from that shown by SGR. Removal of a predicted transmembrane domain from SGRL reduced its activity in transient expression assays, although variants with and without this domain reduced SGR-induced chlorophyll degradation, indicating that the effects of the two proteins are not additive. The combined data suggest that the function of SGRL during growth and development is in chlorophyll re-cycling, and its mode of action is distinct from that of SGR. Studies of pea sgrL mutants revealed that plants had significantly lower stature and yield, a likely consequence of reduced photosynthetic efficiencies in mutant compared with control plants under conditions of high light intensity.

  19. Investigating chlorophyll and nitrogen levels of mangroves at Al-Khor, Qatar: an integrated chemical analysis and remote sensing approach.

    PubMed

    Al-Naimi, Noora; Al-Ghouti, Mohammad A; Balakrishnan, Perumal

    2016-05-01

    Mangroves are unique ecosystems that dominate tropical and subtropical coastlines around the world. They provide shelter and nursery to wide variety of species such as fish and birds. Around 73 species of mangroves were recognized around the world. In Qatar, there is only one mangrove species Avicennia marina that is predominant along the northeastern coast. Assessing the health of these valuable ecosystems is vital for protection, management, and conservation of those resources. In this study, an integrated approach of chemical and remote sensing analysis was implemented to investigate the current status of the mangrove trees in Al-Khor, Qatar. Fifteen different A. marina trees from different locations in the mangrove forest were examined for their chlorophyll and nitrogen content levels. Soil analysis was also conducted to understand the effect of moisture on nitrogen availability. Results shows that currently, mangroves are in a good status in terms of nitrogen availability and chlorophyll levels which are related and both are key factors for photosynthesis. Remote sensing techniques were used for chlorophyll prediction. The results showed that these methods have the potential to be used for chlorophyll prediction and estimation.

  20. Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery.

    PubMed

    Giardino, C; Pepe, M; Brivio, P A; Ghezzi, P; Zilioli, E

    2001-03-14

    Some bio-physical parameters, such as chlorophyll a concentration, Secchi disk depth and water surface temperature were mapped in the sub-alpine Lake Iseo (Italy) using Landsat Thematic Mapper (TM) data acquired on the 7 March 1997. In order to adequately investigate the water-leaving radiance, TM data were atmospherically corrected using a partially image-based method, and the atmospheric transmittance was measured in synchrony with the satellite passage. An empirical approach of relating atmospherically corrected TM spectral reflectance values to in situ measurements, collected during the satellite data acquisition, was used. The models developed were used to map the chlorophyll concentration and Secchi disk depth throughout the lake. Both models gave high determination coefficients (R2 = 0.99 for chlorophyll and R2 = 0.85 for the Secchi disk) and the spatial distribution of chlorophyll concentration and Secchi disk depth was mapped with contour intervals of 1 mg/m3 and 1 m, respectively. A scene-independent procedure was used to derive the surface temperature of the lake from the TM data with a root mean square error of 0.3 degrees C.

  1. PHYTOCHROME INTERACTING FACTOR3 Associates with the Histone Deacetylase HDA15 in Repression of Chlorophyll Biosynthesis and Photosynthesis in Etiolated Arabidopsis Seedlings[W][OA

    PubMed Central

    Liu, Xuncheng; Chen, Chia-Yang; Wang, Ko-Ching; Luo, Ming; Tai, Ready; Yuan, Lianyu; Zhao, Minglei; Yang, Songguang; Tian, Gang; Cui, Yuhai; Hsieh, Hsu-Liang; Wu, Keqiang

    2013-01-01

    PHYTOCHROME INTERACTING FACTOR3 (PIF3) is a key basic helix-loop-helix transcription factor of Arabidopsis thaliana that negatively regulates light responses, repressing chlorophyll biosynthesis, photosynthesis, and photomorphogenesis in the dark. However, the mechanism for the PIF3-mediated transcription regulation remains largely unknown. In this study, we found that the REDUCED POTASSIUM DEPENDENCY3/HISTONE DEACETYLASE1-type histone deacetylase HDA15 directly interacted with PIF3 in vivo and in vitro. Genome-wide transcriptome analysis revealed that HDA15 acts mainly as a transcriptional repressor and negatively regulates chlorophyll biosynthesis and photosynthesis gene expression in etiolated seedlings. HDA15 and PIF3 cotarget to the genes involved in chlorophyll biosynthesis and photosynthesis in the dark and repress gene expression by decreasing the acetylation levels and RNA Polymerase II–associated transcription. The binding of HDA15 to the target genes depends on the presence of PIF3. In addition, PIF3 and HDA15 are dissociated from the target genes upon exposure to red light. Taken together, our results indicate that PIF3 associates with HDA15 to repress chlorophyll biosynthetic and photosynthetic genes in etiolated seedlings. PMID:23548744

  2. Assimilation of seasonal chlorophyll and nutrient data into an adjoint three-dimensional ocean carbon cycle model: Sensitivity analysis and ecosystem parameter optimization

    NASA Astrophysics Data System (ADS)

    Tjiputra, Jerry F.; Polzin, Dierk; Winguth, Arne M. E.

    2007-03-01

    An adjoint method is applied to a three-dimensional global ocean biogeochemical cycle model to optimize the ecosystem parameters on the basis of SeaWiFS surface chlorophyll observation. We showed with identical twin experiments that the model simulated chlorophyll concentration is sensitive to perturbation of phytoplankton and zooplankton exudation, herbivore egestion as fecal pellets, zooplankton grazing, and the assimilation efficiency parameters. The assimilation of SeaWiFS chlorophyll data significantly improved the prediction of chlorophyll concentration, especially in the high-latitude regions. Experiments that considered regional variations of parameters yielded a high seasonal variance of ecosystem parameters in the high latitudes, but a low variance in the tropical regions. These experiments indicate that the adjoint model is, despite the many uncertainties, generally capable to optimize sensitive parameters and carbon fluxes in the euphotic zone. The best fit regional parameters predict a global net primary production of 36 Pg C yr-1, which lies within the range suggested by Antoine et al. (1996). Additional constraints of nutrient data from the World Ocean Atlas showed further reduction in the model-data misfit and that assimilation with extensive data sets is necessary.

  3. The relationship between phytoplankton concentration and light attenuation in ocean waters

    NASA Technical Reports Server (NTRS)

    Phinney, David A.; Yentsch, Charles S.

    1986-01-01

    The accuracy of chlorophyll estimates by ocean color algorithms is affected by the variability of particulate attenuation; the presence of dissolved organic matter; and the nonlinear inverse relationship between the attenuation coefficient, K, and chlorophyll. Data collected during the Warm Core Rings Program were used to model the downwelling light field and determine the impact of these errors. A possible mechanism for the nonlinearity of K and chlorophyll is suggested; namely, that changing substrate from nitrate-nitrogen to ammonium causes enhanced blue absorption by photosynthetic phytoplankton in oligotrophic surface waters.

  4. Estimating ocean production from satellite-derived chlorophyll - Insights from the EASTROPAC data set

    NASA Technical Reports Server (NTRS)

    Eppley, R. W.; Stewart, E.; Abbott, M. R.; Owen, R. W.

    1985-01-01

    The EASTROPAC expedition took place in 1967-68 in the eastern tropical Pacific Ocean. Primary production was related to near-surface chlorophyll in these data. Much of the variability in the relation was due to the light-history of the phytoplankton and its photoadaptive state. This was due to changes in the depth of mixing of the surface waters more than changes in insolation. Accurate estimates of production from satellite chlorophyll measurements may require knowledge of the temporal and spatial variation in mixing of this region.

  5. S190 interpretation techniques development and application to New York State water resources. [Lake Ontario and Conesus Lake

    NASA Technical Reports Server (NTRS)

    Piech, K. R. (Principal Investigator); Schott, J. R.; Stewart, K. M.

    1975-01-01

    The author has identified the following significant results. The program has demonstrated that Skylab imagery can be utilized to regularly monitor eutrophication indices of lakes, such as chlorophyll concentration and photic zone depth. The relationship between the blue to green reflectance ratio and chlorophyll concentration was shown, along with changes in lake properties caused by chlorophyll, lignin, and humic acid using reflectance ratios and changes. A data processing technique was developed for detecting atmospheric fluctuations occurring over a large lake.

  6. Continuous excitation chlorophyll fluorescence parameters: a review for practitioners.

    PubMed

    Banks, Jonathan M

    2017-08-01

    This review introduces, defines and critically reviews a number of chlorophyll fluorescence parameters with specific reference to those derived from continuous excitation chlorophyll fluorescence. A number of common issues and criticisms are addressed. The parameters fluorescence origin (F0) and the performance indices (PI) are discussed as examples. This review attempts to unify definitions for the wide range of parameters available for measuring plant vitality, facilitating their calculation and use. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. An Empirical Approach to Ocean Color Data: Reducing Bias and the Need for Post-Launch Radiometric Re-Calibration

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Casey, Nancy W.; O'Reilly, John E.; Esaias, Wayne E.

    2009-01-01

    A new empirical approach is developed for ocean color remote sensing. Called the Empirical Satellite Radiance-In situ Data (ESRID) algorithm, the approach uses relationships between satellite water-leaving radiances and in situ data after full processing, i.e., at Level-3, to improve estimates of surface variables while relaxing requirements on post-launch radiometric re-calibration. The approach is evaluated using SeaWiFS chlorophyll, which is the longest time series of the most widely used ocean color geophysical product. The results suggest that ESRID 1) drastically reduces the bias of ocean chlorophyll, most impressively in coastal regions, 2) modestly improves the uncertainty, and 3) reduces the sensitivity of global annual median chlorophyll to changes in radiometric re-calibration. Simulated calibration errors of 1% or less produce small changes in global median chlorophyll (less than 2.7%). In contrast, the standard NASA algorithm set is highly sensitive to radiometric calibration: similar 1% calibration errors produce changes in global median chlorophyll up to nearly 25%. We show that 0.1% radiometric calibration error (about 1% in water-leaving radiance) is needed to prevent radiometric calibration errors from changing global annual median chlorophyll more than the maximum interannual variability observed in the SeaWiFS 9-year record (+/- 3%), using the standard method. This is much more stringent than the goal for SeaWiFS of 5% uncertainty for water leaving radiance. The results suggest ocean color programs might consider less emphasis of expensive efforts to improve post-launch radiometric re-calibration in favor of increased efforts to characterize in situ observations of ocean surface geophysical products. Although the results here are focused on chlorophyll, in principle the approach described by ESRID can be applied to any surface variable potentially observable by visible remote sensing.

  8. Water color component analysis in saltwater intrusion reach: a case study in Shawan-Humen Watercourse, Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Fang, Li-gang; Chen, Shui-Sen; Li, Dan; Zhang, Lixin; Li, Dong

    2008-11-01

    The saline water color component characteristic (chlorophyll-a and chromophoric dissolved organic matter (CDOM)) and their spatial change tendency in the Pearl River Estuary from the In-situ data in December of 2006 was studied. Based on the experimental results, the mixing behavior of CDOM in the Shawan-Humen Watercourse was analyzed. The mixing behavior was controlled by topography, hydrological and biological factors, and the relationships among absorption characteristics of CDOM (at 400 nm, ag400). Contained is a discussion of chlorophyll-a concentration and salinity. The chlorophyll-a concentration decreases with increasing CDOM absorption under a salinity of 10, while the chlorophyll-a concentration decreases with increasing salinity. The salinity becomes less aggressive towards the Lingding Bay in the saltwater intrusion reach of Shawan-Humen, and a low chlorophyll-a concentration area occurs in the Shiziyang riverway where the salinity is greater than 20. The highest chlorophyll-a concentration of surface water was observed in the Dadaoshawei site of the Shawan tributary reach- where the saltwater and freshwater interface. The slope distribution of the CDOM spectral absorption curve in the Shawan-Humen watercourse was increased towards the Lingding Bay direction. The spectral slope S value of CDOM varied from 0.0107 to 0.0121 nm-1 with an average value of 0.0116 nm-1. This was an indication that the terrestrial river input was the main resource of CDOM in the Shawan-Humen watercourse. The high correlation (R2=0.9458)of surface water and bottom water (-7.5m ) salinity showed that salinity can be monitored by remote sensing. The ag400 in the saltwater intrusion reach showed conservative behavior, indicating strong characteristics of the CDOM it reflected. There was a correlative relationship between ag400, chlorophyll-a concentration and the salinity, showing that a water color analysis technique can be used to study the distribution and behavior of salinity, as well as saltwater intrusion to a certain extent.

  9. Arabidopsis miR171-Targeted Scarecrow-Like Proteins Bind to GT cis-Elements and Mediate Gibberellin-Regulated Chlorophyll Biosynthesis under Light Conditions

    PubMed Central

    Ma, Zhaoxue; Hu, Xupeng; Cai, Wenjuan; Huang, Weihua; Zhou, Xin; Luo, Qian; Yang, Hongquan; Wang, Jiawei; Huang, Jirong

    2014-01-01

    An extraordinarily precise regulation of chlorophyll biosynthesis is essential for plant growth and development. However, our knowledge on the complex regulatory mechanisms of chlorophyll biosynthesis is very limited. Previous studies have demonstrated that miR171-targeted scarecrow-like proteins (SCL6/22/27) negatively regulate chlorophyll biosynthesis via an unknown mechanism. Here we showed that SCLs inhibit the expression of the key gene encoding protochlorophyllide oxidoreductase (POR) in light-grown plants, but have no significant effect on protochlorophyllide biosynthesis in etiolated seedlings. Histochemical analysis of β-glucuronidase (GUS) activity in transgenic plants expressing pSCL27::rSCL27-GUS revealed that SCL27-GUS accumulates at high levels and suppresses chlorophyll biosynthesis at the leaf basal proliferation region during leaf development. Transient gene expression assays showed that the promoter activity of PORC is indeed regulated by SCL27. Consistently, chromatin immunoprecipitation and quantitative PCR assays showed that SCL27 binds to the promoter region of PORC in vivo. An electrophoretic mobility shift assay revealed that SCL27 is directly interacted with G(A/G)(A/T)AA(A/T)GT cis-elements of the PORC promoter. Furthermore, genetic analysis showed that gibberellin (GA)-regulated chlorophyll biosynthesis is mediated, at least in part, by SCLs. We demonstrated that SCL27 interacts with DELLA proteins in vitro and in vivo by yeast-two-hybrid and coimmunoprecipitation analysis and found that their interaction reduces the binding activity of SCL27 to the PORC promoter. Additionally, we showed that SCL27 activates MIR171 gene expression, forming a feedback regulatory loop. Taken together, our data suggest that the miR171-SCL module is critical for mediating GA-DELLA signaling in the coordinate regulation of chlorophyll biosynthesis and leaf growth in light. PMID:25101599

  10. Capability of Hyperspectral data in Spatial Variability Distribution of Chlorophyll and Water Stress in Rice Agriculture System

    NASA Astrophysics Data System (ADS)

    Moharana, S.; Dutta, S.

    2016-12-01

    Abstract : The mapping and analysis of spatial variability within the field is a challenging task. However, field variability of a single vegetation cover does not give satisfactory results mainly due to low spectral resolution and non-availability of remote sensing data. From the NASA Earth Observing-1 (EO-1) satellite data, spatial distribution of biophysical parameters like chlorophyll and relative water content in a rice agriculture system is carried out in the present study. Hyperion L1R product composed of 242 spectral bands with 30m spatial resolution was acquired for Assam, India. This high dimensional data is allowed for pre-processing to get an atmospherically corrected imagery. Moreover, ground based hyperspectral measurements are collected from experimental rice fields from the study site using hand held ASD spectroradiometer (350-1050 nm). Published indices specifically designed for chlorophyll (OASVI, mSR, and MTCI indices) and water content (WI and WBI indices) are selected based on stastical performance of the in-situ hyperspectral data. Index models are established for the respective biophysical parameters and observed that the aforementioned indices followed different linear and nonlinear relationships which are completely different from the published indices. By employing the presently developed relationships, spatial variation of total chlorophyll and water stress are mapped for a rice agriculture system from Hyperion imagery. The findings showed that, the variation of chlorophyll and water content ranged from 1.77-10.61mg/g and 40-90% respectively for the studied rice agriculture system. The spatial distribution of these parameters resulted from presently developed index models are well captured from Hyperion imagery and they have good agreement with observed field based chlorophyll (1.14-7.26 mg/g) and water content (60-95%) of paddy crop. This study can be useful in providing essential information to assess the paddy field heterogeneity in an agriculture system. Keywords: Paddy crop, vegetation index, hyperspectral data, chlorophyll, water content

  11. Spectral analysis of coniferous foliage and possible links to soil chemistry: are spectral chlorophyll indices related to forest floor dissolved organic C and N?

    PubMed

    Albrechtova, Jana; Seidl, Zdenek; Aitkenhead-Peterson, Jacqueline; Lhotáková, Zuzana; Rock, Barrett N; Alexander, Jess E; Malenovský, Zbynek; McDowell, William H

    2008-10-15

    Dissolved organic matter in soils can be predicted from forest floor C:N ratio, which in turn is related to foliar chemistry. Little is known about the linkages between foliar constituents such as chlorophylls, lignin, and cellulose and the concentrations of water-extractable forest floor dissolved organic carbon and dissolved organic nitrogen. Lignin and cellulose are not mobile in foliage and thus may be indicative of growing conditions during prior years, while chlorophylls respond more rapidly to the current physiological status of a tree and reflect nutrient availability. The aim of this study was to examine potential links among spectral foliar data, and the organic C and N of forest soils. Two coniferous species (red spruce and balsam fir) were studied in the White Mountains of New Hampshire, USA. Six trees of each species were sampled at 5 watersheds (2 in the Hubbard Brook Experimental Forest, 3 in the Bartlett Experimental Forest). We hypothesized that in a coniferous forest, chemistry of old foliage would better predict the chemical composition of the forest floor litter layer than younger foliage, which is the more physiologically active and the most likely to be captured by remote sensing of the canopy. Contrary to our expectations, chlorophyll concentration of young needles proved to be most tightly linked to soil properties, in particular water-extractable dissolved organic carbon. Spectral indices related to the chlorophyll content of needles could be used to predict variation in forest floor dissolved organic carbon and dissolved organic nitrogen. Strong correlations were found between optical spectral indices based on chlorophyll absorption and forest floor dissolved organic carbon, with higher foliage chlorophyll content corresponding to lower forest floor dissolved organic carbon. The mechanisms behind these correlations are uncertain and need further investigation. However, the direction of the linkage from soil to tree via nutrient availability is hypothesized based on negative correlations found between foliar N and forest floor dissolved organic carbon.

  12. Overview of plant pigments

    USDA-ARS?s Scientific Manuscript database

    Chlorophylls, carotenoids, flavonoids and betalains are four major classes of biological pigments produced in plants. Chlorophylls are the primary pigments responsible for plant green and photosynthesis. The other three are accessary pigments and secondary metabolites that yield non-green colors and...

  13. Spatial and Temporal Coherence of SeaWiFS Chlorophyll Concentration Anomalies in the North Atlantic Bloom (1998-2005) Examined with Giovanni

    NASA Technical Reports Server (NTRS)

    Acker, James G.

    2006-01-01

    The availability of climatological chlorophyll-a concentration data products from the SeaWiFS mission spanning the eight-year mission period allowed the creation of a climatological anomaly analysis function in Giovanni, the GES DISC Interactive Online Visualization and ANalysis Infrastructure. This study utilizes the Giovanni anomaly analysis function to examine mesoscale anomalies in the North Atlantic Ocean during the springtime North Atlantic Bloom. This examination indicates that areas exhibiting positive anomalies and areas exhibiting negative anomalies are coherent over significant spatial scales, with relatively abrupt boundaries between areas with positive and negative anomalies. Year-to-year variability in anomaly "intensity" can be caused by either variability in the temporal occurrence of the bloom peak or by variability in the peak chlorophyll concentration in a particular area. The study will also discuss the feasibility of combining chlorophyll anomaly analysis with other data types.

  14. Origin of petroporphyrins. 2. Evidence from stable carbon isotopes

    NASA Technical Reports Server (NTRS)

    Boreham, C. J.; Fookes, C. J.; Popp, B. N.; Hayes, J. M.

    1990-01-01

    Compared with the carbon-13 isotopic composition of the ubiquitous C32DPEP (DPEP, deoxophylloerythroetioporphyrin) the heavy but equivalent carbon-13 isotopic composition for the porphyrin structures 15(2)-methyl-15,17-ethano-17-nor-H-C30DPEP and 15,17-butano-, 13,15-ethano-13(2),17-propano-, and 13(1)-methyl-13,15-ethano-13(2),17-propanoporphyrin suggests a common precursor, presumably chlorophyll c, for these petroporphyrins isolated from the marine Julia Creek oil shale and the lacustrine Condor oil shale. Similarly, the heavy but variable carbon-13 isotopic composition of 7-nor-H-C31DPEP compared with C32DPEP is consistent with an origin from both chlorophyll b and chlorophyll c3. The equivalent carbon-13 isotopic composition for 13(2)-methyl-C33DPEP compared with C32DPEP suggests a common origin resulting from a weighted average of chlorophyll inputs.

  15. Analysis of the Light-harvesting Pigment-Protein Complex of Wild Type and a Chlorophyll-b-less Mutant of Barley 1

    PubMed Central

    Burke, John J.; Steinback, Katherine E.; Arntzen, Charles J.

    1979-01-01

    we have compared chloroplast lamellae isolated from a chlorophyll-b-less mutant and wild type barley (Hordeum vulgare). The results demonstrate that: (a) one of the two major polypeptides comprising the lightharvesting complex (LHC) is present in the chlorophyll-b-less mutant; (b) higher cation concentrations are required to maintain grana stacks in the mutant; and (c) cation effects on excitation energy distribution are present in the chlorophyll-b-less mutant but are reduced in amount and are dependent on higher concentrations of cations. We interpret these data to support the concept that the LHC mediates cation-induced grana stacking and cation regulation of excitation energy distribution between photosystems I and Ii in chloroplast lamellae. A partial LHC complement in the mutant alters the quantitative cation requirement for both phenomena, but not the over-all qualitative response. Images PMID:16660704

  16. Remote sensing of chlorophyll in an atmosphere-ocean environment: a theoretical study.

    PubMed

    Kattawar, G W; Humphreys, T J

    1976-01-01

    A Monte Carlo program was written to compute the effect of chlorophyll on the ratio of upwelling to down-welling radiance and irradiance as a function of wavelength, height above the ocean, and depth within the ocean. This program simulates the actual physical situation, since a real atmospheric model was used, i.e., one that contained both aerosol and Rayleigh scattering as well as ozone absorption. The complete interaction of the radiation field with the ocean was also taken into account. The chlorophyll was assumed to be uniformly mixed in the ocean and was also assumed to act only as an absorbing agent. For the ocean model both scattering and absorption by hydrosols was included. Results have been obtained for both a very clear ocean and a medium turbid ocean. Recommendations are made for optimum techniques for remotely sensing chlorophyll both in situ and in vitro.

  17. Airborne discrimination between ice and water - Application to the laser measurement of chlorophyll-in-water in a marginal ice zone

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Wright, C. Wayne; Swift, Robert N.; Yungel, James K.

    1989-01-01

    The concurrent active-passive measurement capabilities of the NASA Airborne Oceanographic Lidar have been used to (1) discriminate between ice and water in a large ice field within the Greenland Sea and (2) achieve the detection and measurement of chlorophyll-in-water by laser-induced and water-Raman-normalized pigment fluorescence. Passive upwelled radiances from sea ice are significantly stronger than those from the neighboring water, even when the optical receiver field-of-view is only partially filled with ice. Thus, weaker passive upwelled radiances, together with concurrently acquired laser-induced spectra, can rather confidently be assigned to the intervening water column. The laser-induced spectrum can then be processed using previously established methods to measure the chlorophyll-in-water concentration. Significant phytoplankton patchiness and elevated chlorophyll concentrations were found within the waters of the melting ice compared to ice-free regions just outside the ice field.

  18. Remote sensing of phytoplankton density and diversity in Narragansett Bay using an airborne fluorosensor

    NASA Technical Reports Server (NTRS)

    Farmer, F. H.; Brown, C. A., Jr.; Jarrett, O., Jr.; Campbell, J. W.; Staton, W. L.

    1979-01-01

    An aircraft-borne remote system is presented that utilizes narrow-band light from multiple dye lasers to excite selected algae photopigments and then measures the resultant flourescence emitted from chlorophyll a at 685 nm. Tests were conducted with both pure and mixed cultures of marine algae from a series of field tests taken from piers and bridges of Narragansett Bay, and a prototype remote fluorosensor was flown over the Bay during the 1978 winter-spring diatom bloom. Remote fluorescence obtained at hover points over sea-truth stations showed correlations with in situ fluorescence, total chlorophyll a, and cell count. It was concluded that the ratio of remote fluorescence to direct chlorophyll a concentration was less variable than expected, and the distribution of total chlorophyll a between two major photoplankton color groups showed three distinct areas, within the Bay, of green and golden-brown species.

  19. Biochemical characteristics of thylakoid membranes in chloroplasts of dark-grown pine cotyledons.

    PubMed

    Shinohara, K; Murakami, A; Fujita, Y

    1992-01-01

    Japanese black pine (Pinus thunbergii) cotyledons were found to synthesize chlorophylls in complete darkness during germination, although the synthesis was not as great as that in the light. The compositions of thylakoid components in plastids of cotyledons grown in the dark and light were compared using sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns of polypeptides and spectroscopic determination of membrane redox components. All thylakoid membrane proteins found in preparations from light-grown cotyledons were also present in preparations from dark-grown cotyledons. However, levels of photosystem I, photosystem II, cytochrome b([ill])/f, and light-harvesting chlorophyll-protein complexes in dark-grown cotyledons were only one-fourth of those in light-grown cotyledons, on a fresh weight basis. These results suggest that the low abundance of thylakoid components in dark-grown cotyledons is associated with the limited supply of chlorophyll needed to assemble the two photosystem complexes and the light-harvesting chlorophyll-protein complex.

  20. Knock-out of the magnesium protoporphyrin IX methyltransferase gene in Arabidopsis. Effects on chloroplast development and on chloroplast-to-nucleus signaling

    PubMed Central

    Pontier, Dominique; Albrieux, Catherine; Joyard, Jacques; Lagrange, Thierry; Block, Maryse

    2007-01-01

    Protoporphyrin IX is the last common intermediate between the haem and chlorophyll biosynthesis pathways. The addition of Mg directs this molecule toward chlorophyll biosynthesis. The first step downstream from the branchpoint is catalyzed by the Mg chelatase and is a highly regulated process. The corresponding product, Mg protoporphyrin IX, has been proposed to play an important role as a signaling molecule implicated in plastid-to-nucleus communication. In order to get more information on the chlorophyll biosynthesis pathway and on Mg protoporphyrin IX derivative functions, we have identified an Mg protoporphyrin IX methyltransferase (CHLM) knock-out mutant in Arabidopsis in which the mutation induces a blockage downstream from Mg protoporphyrin IX and an accumulation of this chlorophyll biosynthesis intermediate. Our results demonstrate that the CHLM gene is essential for the formation of chlorophyll and subsequently for the formation of photosystems I and II and cyt b6f complexes. Analysis of gene expression in the chlm mutant provides an independent indication that Mg protoporphyrin IX is a negative effector of nuclear photosynthetic gene expression, as previously reported. Moreover, it suggests the possible implication of Mg protoporphyrin IX methylester, the product of CHLM, in chloroplast-to-nucleus signaling. Finally, post-transcriptional up-regulation of the level of the CHLH subunit of the Mg chelatase has been detected in the chlm mutant and most likely corresponds to specific accumulation of this protein inside plastids. This result suggests that the CHLH subunit might play an important regulatory role when the chlorophyll biosynthetic pathway is disrupted at this particular step. PMID:17135235

  1. Photosystem II Component Lifetimes in the Cyanobacterium Synechocystis sp. Strain PCC 6803

    PubMed Central

    Yao, Danny C. I.; Brune, Daniel C.; Vavilin, Dmitri; Vermaas, Wim F. J.

    2012-01-01

    To gain insight in the lifetimes of photosystem II (PSII) chlorophyll and proteins, a combined stable isotope labeling (15N)/mass spectrometry method was used to follow both old and new pigments and proteins. Photosystem I-less Synechocystis cells were grown to exponential or post-exponential phase and then diluted in BG-11 medium with [15N]ammonium and [15N]nitrate. PSII was isolated, and the masses of PSII protein fragments and chlorophyll were determined. Lifetimes of PSII components ranged from 1.5 to 40 h, implying that at least some of the proteins and chlorophyll turned over independently from each other. Also, a significant amount of nascent PSII components accumulated in thylakoids when cells were in post-exponential growth phase. In a mutant lacking small Cab-like proteins (SCPs), most PSII protein lifetimes were unaffected, but the lifetime of chlorophyll and the amount of nascent PSII components that accumulated were decreased. In the absence of SCPs, one of the PSII biosynthesis intermediates, the monomeric PSII complex without CP43, was missing. Therefore, SCPs may stabilize nascent PSII protein complexes. Moreover, upon SCP deletion, the rate of chlorophyll synthesis and the accumulation of early tetrapyrrole precursors were drastically reduced. When [14N]aminolevulinic acid (ALA) was supplemented to 15N-BG-11 cultures, the mutant lacking SCPs incorporated much more exogenous ALA into chlorophyll than the control demonstrating that ALA biosynthesis was impaired in the absence of SCPs. This illustrates the major effects that nonstoichiometric PSII components such as SCPs have on intermediates and assembly but not on the lifetime of PSII proteins. PMID:22090028

  2. Development of FT-NIR Models for the Simultaneous Estimation of Chlorophyll and Nitrogen Content in Fresh Apple (Malus Domestica) Leaves

    PubMed Central

    Tamburini, Elena; Ferrari, Giuseppe; Marchetti, Maria Gabriella; Pedrini, Paola; Ferro, Sergio

    2015-01-01

    Agricultural practices determine the level of food production and, to great extent, the state of the global environment. During the last decades, the indiscriminate recourse to fertilizers as well as the nitrogen losses from land application have been recognized as serious issues of modern agriculture, globally contributing to nitrate pollution. The development of a reliable Near-Infra-Red Spectroscopy (NIRS)-based method, for the simultaneous monitoring of nitrogen and chlorophyll in fresh apple (Malus domestica) leaves, was investigated on a set of 133 samples, with the aim of estimating the nutritional and physiological status of trees, in real time, cheaply and non-destructively. By means of a FT (Fourier Transform)-NIR instrument, Partial Least Squares (PLS) regression models were developed, spanning a concentration range of 0.577%–0.817% for the total Kjeldahl nitrogen (TKN) content (R2 = 0.983; SEC = 0.012; SEP = 0.028), and of 1.534–2.372 mg/g for the total chlorophyll content (R2 = 0.941; SEC = 0.132; SEP = 0.162). Chlorophyll-a and chlorophyll-b contents were also evaluated (R2 = 0.913; SEC = 0.076; SEP = 0.101 and R2 = 0.899; SEC = 0.059; SEP = 0.101, respectively). All calibration models were validated by means of 47 independent samples. The NIR approach allows a rapid evaluation of the nitrogen and chlorophyll contents, and may represent a useful tool for determining nutritional and physiological status of plants, in order to allow a correction of nutrition programs during the season. PMID:25629703

  3. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves

    NASA Astrophysics Data System (ADS)

    Zeb, Alam; Ullah, Fareed

    2017-04-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins and two chlorophylls. Lutein (806.0 µg/g), chlorophyll b' (410.0 µg/g), chlorophyll a (162.4 µg/g), 9'-Z-neoxanthin (142.8 µg/g) and all-E-violaxanthin (82.2 µg/g)) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of thirteen compounds, namely p-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5-O-caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g) and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for possible medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a potential source of nutraceuticals or as a functional food ingredient.

  4. Bio-optical observations of the 2004 Labrador Sea phytoplankton bloom

    NASA Astrophysics Data System (ADS)

    Strutton, Peter G.; Martz, Todd R.; Degrandpre, Michael D.; McGillis, Wade R.; Drennan, William M.; Boss, Emmanuel

    2011-11-01

    A unique time series of moored bio-optical measurements documented the 2004 spring-summer bloom in the southern Labrador Sea. In situ and satellite chlorophyll data show that chlorophyll levels in the 2004 bloom were at the upper end of those typically observed in this region. Satellite chlorophyll and profiling float temperature/salinity data show that the main bloom, which typically peaks in June/July, is often preceded by ephemeral mixed layer shoaling and a lesser, short-lived bloom in May; this was the case in 2004. The particulate backscatter to beam attenuation ratio (bbp[470 nm]/Cp[660 nm]) showed peaks in the relative abundance of small particles at bloom initiation and during the decline of the bloom, while larger particles dominated during the bloom. Chlorophyll/Cp and bbp/chlorophyll were correlated with carbon export and dominated by changes in the pigment per cell associated with lower light levels due to enhanced attenuation of solar radiation during the bloom. An NPZ (nutrients, phytoplankton, zooplankton) model captured the phytoplankton bloom and an early July peak in zooplankton. Moored acoustic Doppler current profiler (ADCP) data showed an additional mid-June peak in zooplankton biomass which was attributed to egg-laying copepods. The data reported here represent one of the few moored time series of Cp, bbp and chlorophyll extending over several months in an open ocean region. Interpretation of data sets such as this will become increasingly important as these deployments become more commonplace via ocean observing systems. Moreover, these data contribute to the understanding of biological-physical coupling in a biogeochemically important, yet poorly studied region.

  5. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves

    PubMed Central

    Zeb, Alam; Ullah, Fareed

    2017-01-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins, and two chlorophylls. Lutein (806.0 μg/g), chlorophyll b′ (410.0 μg/g), chlorophyll a (162.4 μg/g), 9′-Z-neoxanthin (142.8 μg/g) and all-E-violaxanthin (82.2 μg/g) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of 13 compounds, namely 4-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5-O-caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g), and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of Adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for the potential medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a possible source of nutraceuticals or as a functional food ingredient. PMID:28497036

  6. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves.

    PubMed

    Zeb, Alam; Ullah, Fareed

    2017-01-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins, and two chlorophylls. Lutein (806.0 μg/g), chlorophyll b ' (410.0 μg/g), chlorophyll a (162.4 μg/g), 9'- Z -neoxanthin (142.8 μg/g) and all- E -violaxanthin (82.2 μg/g) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of 13 compounds, namely 4-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5- O -caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g), and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of Adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for the potential medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a possible source of nutraceuticals or as a functional food ingredient.

  7. Quantification of phototrophic biomass on rocks: optimization of chlorophyll-a extraction by response surface methodology.

    PubMed

    Fernández-Silva, I; Sanmartín, P; Silva, B; Moldes, A; Prieto, B

    2011-01-01

    Biological colonization of rock surfaces constitutes an important problem for maintenance of buildings and monuments. In this work, we aim to establish an efficient extraction protocol for chlorophyll-a specific for rock materials, as this is one of the most commonly used biomarkers for quantifying phototrophic biomass. For this purpose, rock samples were cut into blocks, and three different mechanical treatments were tested, prior to extraction in dimethyl sulfoxide (DMSO). To evaluate the influence of the experimental factors (1) extractant-to-sample ratio, (2) temperature, and (3) time of incubation, on chlorophyll-a recovery (response variable), incomplete factorial designs of experiments were followed. Temperature of incubation was the most relevant variable for chlorophyll-a extraction. The experimental data obtained were analyzed following a response surface methodology, which allowed the development of empirical models describing the interrelationship between the considered response and experimental variables. The optimal extraction conditions for chlorophyll-a were estimated, and the expected yields were calculated. Based on these results, we propose a method involving application of ultrasound directly to intact sample, followed by incubation in 0.43 ml DMSO/cm(2) sample at 63°C for 40 min. Confirmation experiments were performed at the predicted optimal conditions, allowing chlorophyll-a recovery of 84.4 ± 11.6% (90% was expected), which implies a substantial improvement with respect to the expected recovery using previous methods (68%). This method will enable detection of small amounts of photosynthetic microorganisms and quantification of the extent of biocolonization of stone surfaces.

  8. [Algorithm for estimating chlorophyll-a concentration in case II water body based on bio-optical model].

    PubMed

    Yang, Wei; Chen, Jin; Mausushita, Bunki

    2009-01-01

    In the present study, a novel retrieval method for estimating chlorophyll-a concentration in case II waters based on bio-optical model was proposed and was tested with the data measured in the laboratory. A series of reflectance spectra, with which the concentration of each sample constituent (for example chlorophyll-a, NPSS etc.) was obtained from accurate experiments, were used to calculate the absorption and backscattering coefficients of the constituents of the case II waters. Then non-negative least square method was applied to calculate the concentration of chlorophyll-a and non-phytoplankton suspended sediments (NPSS). Green algae was firstly collected from the Kasumigaura lake in Japan and then cultured in the laboratory. The reflectance spectra of waters with different amounts of phytoplankton and NPSS were measured in the dark room using FieldSpec Pro VNIR (Analytical Spectral Devises Inc. , Boulder, CO, USA). In order to validate whether this method can be applied in multispectral data (for example Landsat TM), the spectra measured in the laboratory were resampled with Landsat TM bands 1, 2, 3 and 4. Different combinations of TM bands were compared to derive the most appropriate wavelength for detecting chlorophyll-a in case II water for green algae. The results indicated that the combination of TM bands 2, 3 and 4 achieved much better accuracy than other combinations, and the estimated concentration of chlorophyll-a was significantly more accurate than empirical methods. It is expected that this method can be directly applied to the real remotely sensed image because it is based on bio-optical model.

  9. Copy Number Variation of Cytokinin Oxidase Gene Tackx4 Associated with Grain Weight and Chlorophyll Content of Flag Leaf in Common Wheat

    PubMed Central

    Chang, Cheng; Lu, Jie; Zhang, Hai-Ping; Ma, Chuan-Xi; Sun, Genlou

    2015-01-01

    As the main pigment in photosynthesis, chlorophyll significantly affects grain filling and grain weight of crop. Cytokinin (CTK) can effectively increase chlorophyll content and chloroplast stability, but it is irreversibly inactivated by cytokinin oxidase (CKX). In this study, therefore, twenty-four pairs of primers were designed to identify variations of wheat CKX (Tackx) genes associated with flag leaf chlorophyll content after anthesis, as well as grain weight in 169 recombinant inbred lines (RIL) derived from Triticum aestivum Jing 411 × Hongmangchun 21. Results indicated variation of Tackx4, identified by primer pair T19-20, was proven to significantly associate with chlorophyll content and grain weight in the RIL population. Here, two Tackx4 patterns were identified: one with two co-segregated fragments (Tackx4-1/Tackx4-2) containing 618 bp and 620 bp in size (as in Jing 411), and another with no PCR product. The two genotypes were designated as genotype-A and genotype-B, respectively. Grain weight and leaf chlorophyll content at 5~15 days after anthesis (DAA) were significantly higher in genotype-A lines than those in genotype-B lines. Mapping analysis indicated Tackx4 was closely linked to Xwmc169 on chromosome 3AL, as well as co-segregated with a major quantitative trait locus (QTL) for both grain weight and chlorophyll content of flag leaf at 5~15 DAA. This QTL explained 8.9~22.3% phenotypic variations of the two traits across four cropping seasons. Among 102 wheat varieties, a third genotype of Tackx4 was found and designated as genotype-C, also having two co-segregated fragments, Tackx4-2 and Tackx4-3 (615bp). The sequences of three fragments, Tackx4-1, Tackx4-2, and Tackx4-3, showed high identity (>98%). Therefore, these fragments could be considered as different copies at Tackx4 locus on chromosome 3AL. The effect of copy number variation (CNV) of Tackx4 was further validated. In general, genotype-A contains both significantly higher grain weight and flag leaf chlorophyll content at 5~15 DAA than those in genotype-B and genotype-C, among 102 varieties under various environments. PMID:26714276

  10. Copy Number Variation of Cytokinin Oxidase Gene Tackx4 Associated with Grain Weight and Chlorophyll Content of Flag Leaf in Common Wheat.

    PubMed

    Chang, Cheng; Lu, Jie; Zhang, Hai-Ping; Ma, Chuan-Xi; Sun, Genlou

    2015-01-01

    As the main pigment in photosynthesis, chlorophyll significantly affects grain filling and grain weight of crop. Cytokinin (CTK) can effectively increase chlorophyll content and chloroplast stability, but it is irreversibly inactivated by cytokinin oxidase (CKX). In this study, therefore, twenty-four pairs of primers were designed to identify variations of wheat CKX (Tackx) genes associated with flag leaf chlorophyll content after anthesis, as well as grain weight in 169 recombinant inbred lines (RIL) derived from Triticum aestivum Jing 411 × Hongmangchun 21. Results indicated variation of Tackx4, identified by primer pair T19-20, was proven to significantly associate with chlorophyll content and grain weight in the RIL population. Here, two Tackx4 patterns were identified: one with two co-segregated fragments (Tackx4-1/Tackx4-2) containing 618 bp and 620 bp in size (as in Jing 411), and another with no PCR product. The two genotypes were designated as genotype-A and genotype-B, respectively. Grain weight and leaf chlorophyll content at 5~15 days after anthesis (DAA) were significantly higher in genotype-A lines than those in genotype-B lines. Mapping analysis indicated Tackx4 was closely linked to Xwmc169 on chromosome 3AL, as well as co-segregated with a major quantitative trait locus (QTL) for both grain weight and chlorophyll content of flag leaf at 5~15 DAA. This QTL explained 8.9~22.3% phenotypic variations of the two traits across four cropping seasons. Among 102 wheat varieties, a third genotype of Tackx4 was found and designated as genotype-C, also having two co-segregated fragments, Tackx4-2 and Tackx4-3 (615bp). The sequences of three fragments, Tackx4-1, Tackx4-2, and Tackx4-3, showed high identity (>98%). Therefore, these fragments could be considered as different copies at Tackx4 locus on chromosome 3AL. The effect of copy number variation (CNV) of Tackx4 was further validated. In general, genotype-A contains both significantly higher grain weight and flag leaf chlorophyll content at 5~15 DAA than those in genotype-B and genotype-C, among 102 varieties under various environments.

  11. Simultaneous Measurements of Chlorophyll Concentration by Lidar, Fluorometry, above-Water Radiometry, and Ocean Color MODIS Images in the Southwestern Atlantic.

    PubMed

    Kampel, Milton; Lorenzzetti, João A; Bentz, Cristina M; Nunes, Raul A; Paranhos, Rodolfo; Rudorff, Frederico M; Politano, Alexandre T

    2009-01-01

    Comparisons between in situ measurements of surface chlorophyll-a concentration (CHL) and ocean color remote sensing estimates were conducted during an oceanographic cruise on the Brazilian Southeastern continental shelf and slope, Southwestern South Atlantic. In situ values were based on fluorometry, above-water radiometry and lidar fluorosensor. Three empirical algorithms were used to estimate CHL from radiometric measurements: Ocean Chlorophyll 3 bands (OC3M(RAD)), Ocean Chlorophyll 4 bands (OC4v4(RAD)), and Ocean Chlorophyll 2 bands (OC2v4(RAD)). The satellite estimates of CHL were derived from data collected by the MODerate-resolution Imaging Spectroradiometer (MODIS) with a nominal 1.1 km resolution at nadir. Three algorithms were used to estimate chlorophyll concentrations from MODIS data: one empirical - OC3M(SAT), and two semi-analytical - Garver, Siegel, Maritorena version 01 (GSM01(SAT)), and Carder(SAT). In the present work, MODIS, lidar and in situ above-water radiometry and fluorometry are briefly described and the estimated values of chlorophyll retrieved by these techniques are compared. The chlorophyll concentration in the study area was in the range 0.01 to 0.2 mg/m(3). In general, the empirical algorithms applied to the in situ radiometric and satellite data showed a tendency to overestimate CHL with a mean difference between estimated and measured values of as much as 0.17 mg/m(3) (OC2v4(RAD)). The semi-analytical GSM01 algorithm applied to MODIS data performed better (rmse 0.28, rmse-L 0.08, mean diff. -0.01 mg/m(3)) than the Carder and the empirical OC3M algorithms (rmse 1.14 and 0.36, rmse-L 0.34 and 0.11, mean diff. 0.17 and 0.02 mg/m(3), respectively). We find that rmsd values between MODIS relative to the in situ radiometric measurements are < 26%, i.e., there is a trend towards overestimation of R(RS) by MODIS for the stations considered in this work. Other authors have already reported over and under estimation of MODIS remotely sensed reflectance due to several errors in the bio-optical algorithm performance, in the satellite sensor calibration, and in the atmospheric-correction algorithm.

  12. Algae Tile Data: 2004-2007, BPA-51; Preliminary Report, October 28, 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holderman, Charles

    Multiple files containing 2004 through 2007 Tile Chlorophyll data for the Kootenai River sites designated as: KR1, KR2, KR3, KR4 (Downriver) and KR6, KR7, KR9, KR9.1, KR10, KR11, KR12, KR13, KR14 (Upriver) were received by SCS. For a complete description of the sites covered, please refer to http://ktoi.scsnetw.com. To maintain consistency with the previous SCS algae reports, all analyses were carried out separately for the Upriver and Downriver categories, as defined in the aforementioned paragraph. The Upriver designation, however, now includes three additional sites, KR11, KR12, and the nutrient addition site, KR9.1. Summary statistics and information on the four responses,more » chlorophyll a, chlorophyll a Accrual Rate, Total Chlorophyll, and Total Chlorophyll Accrual Rate are presented in Print Out 2. Computations were carried out separately for each river position (Upriver and Downriver) and year. For example, the Downriver position in 2004 showed an average Chlorophyll a level of 25.5 mg with a standard deviation of 21.4 and minimum and maximum values of 3.1 and 196 mg, respectively. The Upriver data in 2004 showed a lower overall average chlorophyll a level at 2.23 mg with a lower standard deviation (3.6) and minimum and maximum values of (0.13 and 28.7, respectively). A more comprehensive summary of each variable and position is given in Print Out 3. This lists the information above as well as other summary information such as the variance, standard error, various percentiles and extreme values. Using the 2004 Downriver Chlorophyll a as an example again, the variance of this data was 459.3 and the standard error of the mean was 1.55. The median value or 50th percentile was 21.3, meaning 50% of the data fell above and below this value. It should be noted that this value is somewhat different than the mean of 25.5. This is an indication that the frequency distribution of the data is not symmetrical (skewed). The skewness statistic, listed as part of the first section of each analysis, quantifies this. In a symmetric distribution, such as a Normal distribution, the skewness value would be 0. The tile chlorophyll data, however, shows larger values. Chlorophyll a, in the 2004 Downriver example, has a skewness statistic of 3.54, which is quite high. In the last section of the summary analysis, the stem and leaf plot graphically demonstrates the asymmetry, showing most of the data centered around 25 with a large value at 196. The final plot is referred to as a normal probability plot and graphically compares the data to a theoretical normal distribution. For chlorophyll a, the data (asterisks) deviate substantially from the theoretical normal distribution (diagonal reference line of pluses), indicating that the data is non-normal. Other response variables in both the Downriver and Upriver categories also indicated skewed distributions. Because the sample size and mean comparison procedures below require symmetrical, normally distributed data, each response in the data set was logarithmically transformed. The logarithmic transformation, in this case, can help mitigate skewness problems. The summary statistics for the four transformed responses (log-ChlorA, log-TotChlor, and log-accrual ) are given in Print Out 4. For the 2004 Downriver Chlorophyll a data, the logarithmic transformation reduced the skewness value to -0.36 and produced a more bell-shaped symmetric frequency distribution. Similar improvements are shown for the remaining variables and river categories. Hence, all subsequent analyses given below are based on logarithmic transformations of the original responses.« less

  13. Validation Test Report for the BioCast Optical Forecast Model Version 1.0

    DTIC Science & Technology

    2015-04-09

    can generate such as: total absorption (a), backscattering (bb), chlorophyll (chl), sea surface temperature (SST), diver visibility, etc. The...optical backscattering coefficient BSP - Battle Space Profiler CHARTS - Compact Hydrographic Airborne Rapid Total Survey Chl - Chlorophyll EO

  14. Productivity and Diversity of Phytoplankton in Relation to Copper Levels in San Diego Bay.

    DTIC Science & Technology

    1980-03-01

    phytoplankton assemblages taken from the PIER (P), INLET (1), and NAVY (N) sites from July 1978 through June 1979... 15 Figure 7. Chlorophyll A levels (mg/m 3...PIER (P) and INLET (1) assemblages as a function of added copper (ppb)... 23 Figure 17. Trends in chlorophyll A levels (mg/m 3 ) of the PIER (P) and...E 10 P 5- J A S O N 0 J F M A M J 1978 1979Date Figure 7. Chlorophyll A levels (mg/m 3) of the phytoplank- ton assemblages taken from the PIER (P

  15. Synthesis of chlorophyll-a derivatives methylated in the 3-vinyl group and their intrinsic site energy.

    PubMed

    Tamiaki, Hitoshi; Tsuji, Kazuki; Kuno, Masaki; Kimura, Yuki; Watanabe, Hiroaki; Miyatake, Tomohiro

    2016-07-01

    Wittig reaction of methyl pyropheophorbide-d possessing the 3-formyl group gave readily methyl pyropheophorbides-a bearing a variety of 3-alkenyl groups as semi-synthetic models of chlorophyll-a. The 3-substituents rotated around the C3-C3(1) bond from the coplanar conformation with the chlorin π-system, moving the redmost visible absorption maxima to a shorter wavelength. The model experiments showed that natural chlorophyll-a carrying the 3-vinyl group would take a similar rotamer to control its intrinsic site energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. How green is green chemistry? Chlorophylls as a bioresource from biorefineries and their commercial potential in medicine and photovoltaics.

    PubMed

    Ryan, Aoife A; Senge, Mathias O

    2015-04-01

    As the world strives to create a more sustainable environment, green chemistry has come to the fore in attempts to minimize the use of hazardous materials and shift the focus towards renewable sources. Chlorophylls, being the definitive "green" chemical are rarely used for such purposes and this article focuses on the exploitation of this natural resource, the current applications of chlorophylls and their derivatives whilst also providing a perspective on the commercial potential of large-scale isolation of these pigments from biomass for energy and medicinal applications.

  17. A study of marine luminescence signatures, part 1

    NASA Technical Reports Server (NTRS)

    Hornig, A. W.; Eastwood, D.

    1973-01-01

    Fluorescent excitation and emission spectral data on chlorophyll and Gelbstoff in natural sea waters from the Atlantic, Gulf, and Pacific coasts show that algae particulates are totally absorbing over much of the near ultraviolet and visible spectra and act approximately as quantum counters; plant pigments absorb energy and transfer a large portion to chlorophyll where some fraction is emitted as chlorophyll fluorescence. Gelbstoff data do not exhibit quantum counter action because of their low concentration. It is concluded that luminescence data of natural sea waters are useful in monitoring algal and Gelbstoff as well as pollutant concentrations.

  18. Involvement of Arabidopsis glutaredoxin S14 in the maintenance of chlorophyll content.

    PubMed

    Rey, Pascal; Becuwe, Noëlle; Tourrette, Sébastien; Rouhier, Nicolas

    2017-10-01

    Plant class-II glutaredoxins (GRXs) are oxidoreductases carrying a CGFS active site signature and are able to bind iron-sulfur clusters in vitro. In order to explore the physiological functions of the 2 plastidial class-II isoforms, GRXS14 and GRXS16, we generated knockdown and overexpression Arabidopsis thaliana lines and characterized their phenotypes using physiological and biochemical approaches. Plants deficient in one GRX did not display any growth defect, whereas the growth of plants lacking both was slowed. Plants overexpressing GRXS14 exhibited reduced chlorophyll content in control, high-light, and high-salt conditions. However, when exposed to prolonged darkness, plants lacking GRXS14 showed accelerated chlorophyll loss compared to wild-type and overexpression lines. We observed that the GRXS14 abundance and the proportion of reduced form were modified in wild type upon darkness and high salt. The dark treatment also resulted in decreased abundance of proteins involved in the maturation of iron-sulfur proteins. We propose that the phenotype of GRXS14-modified lines results from its participation in the control of chlorophyll content in relation with light and osmotic conditions, possibly through a dual action in regulating the redox status of biosynthetic enzymes and contributing to the biogenesis of iron-sulfur clusters, which are essential cofactors in chlorophyll metabolism. © 2017 John Wiley & Sons Ltd.

  19. Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress.

    PubMed

    Sayyad-Amin, Parvaneh; Jahansooz, Mohammad-Reza; Borzouei, Azam; Ajili, Fatemeh

    2016-10-01

    Water shortage leads to a low quality of water, especially saline water in most parts of agricultural regions. This experiment was designed to determine the effects of saline irrigation on sorghum as a moderately salt-tolerant crop. To study salinity effects on photosynthetic pigment attributes including the chlorophyll content and chlorophyll fluorescence, an experiment was performed in a climate-controlled greenhouse at two vegetative and reproductive stages. The experimental design was factorial based on a completely randomized design with five NaCl concentrations (control, 50, 100, 150, and 200 mM), two grain and sweet-forage sorghum cultivars (Kimia and Pegah, respectively) and four replications. According to the experimental data, there were no significant differences between two grain and sweet-forage cultivars. Except for 100 and 150 mM NaCl, salinity significantly decreased the chlorophyll index and pigment contents of the leaf, while it increased the chlorophyll-a fluorescence characteristics. Although salinity reduced photosynthetic pigments and the crop yield, either grain or sweet-forage cultivars could significantly control the effect of salinity between 100 and 150 mM NaCl at both developmental stages, showing the possibility of using saline water in sorghum cultivation up to 150 mM NaCl.

  20. Green mosses date the Storegga tsunami to the chilliest decades of the 8.2 ka cold event

    NASA Astrophysics Data System (ADS)

    Bondevik, Stein; Stormo, Svein Kristian; Skjerdal, Gudrun

    2012-06-01

    Chlorophyll in dead plants ordinarily decomposes completely before permanent burial through exposure to light, water and oxygen. Here we describe 8000-year-old terrestrial mosses that retain several percent of its original chlorophyll. The mosses were ripped of the land surface, carried 50-100 m off the Norwegian coast of the time, and deposited in depressions on the sea floor by the Storegga tsunami. A little of the chlorophyll survived because, within hours after entraining it, the tsunami buried the mosses in shell-rich sediments. These sediments preserved the chlorophyll by keeping out light and oxygen, and by keeping the pH above 7—three factors known to favour chlorophyll's stability. Because the green mosses were buried alive, their radiocarbon clock started ticking within hours after the Storegga Slide had set off the tsunami. Radiocarbon measurement of the mosses therefore give slide ages of uncommon geological precision, and these, together with a sequence of ages above and below the boundary, date the Storegga Slide to the chilliest decades of the 8.2 ka cold event at 8120-8175 years before AD 1950. North Atlantic coastal- and fjord- climatic records claimed to show evidence of the 8.2 cold event should be carefully examined for possible contamination and disturbance from the Storegga tsunami.

  1. Stay-green phenotype slows the carotenogenic process in Capsicum annuum (L.) fruits.

    PubMed

    Roca, María; Hornero-Méndez, Dámaso; Gandul-Rojas, Beatriz; Mínguez-Mosquera, María Isabel

    2006-11-15

    Stay-green mutants have been very useful for elucidating the chlorophyll catabolism pathway in higher plants. In the present study the possible relationship between the retention/catabolism of chlorophylls and the carotenogenic process taking place in ripening Capsicum annuum (L.) fruits has been investigated. Phytylated, dephytylated and oxidized chlorophyll derivatives, and total and individual carotenoids were analyzed over the whole ripening period. In general terms, the biosynthesis of carotenoid pigments taking place during the ripening of C. annuum fruits is identical in both red and stay-green lines, so that the carotenogenic process is independent of the retention of chlorophylls. However, it has been found that the carotenogenesis is slowed in the stay-green lines. Therefore, although the catabolism of chlorophylls and biosynthesis of carotenoids seem to be separate processes, the fact that they are taking place in the chloroplast/chromoplast suggests that some kind of interaction between the two processes may occur at different levels. Plastids corresponding to the wild genotype (red color fruit phenotype) show high plastoglobuli density and thylakoids are almost absent, whereas in the case of stay-green phenotype, thylakoids and plastoglobuli coexist in the same plastid (chlorochromoplasts). The role of carotenoid pigments on the physiological mechanism for protecting the preserved thylakoid structures is discussed.

  2. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture

    NASA Astrophysics Data System (ADS)

    Elarab, Manal; Ticlavilca, Andres M.; Torres-Rua, Alfonso F.; Maslova, Inga; McKee, Mac

    2015-12-01

    Precision agriculture requires high-resolution information to enable greater precision in the management of inputs to production. Actionable information about crop and field status must be acquired at high spatial resolution and at a temporal frequency appropriate for timely responses. In this study, high spatial resolution imagery was obtained through the use of a small, unmanned aerial system called AggieAirTM. Simultaneously with the AggieAir flights, intensive ground sampling for plant chlorophyll was conducted at precisely determined locations. This study reports the application of a relevance vector machine coupled with cross validation and backward elimination to a dataset composed of reflectance from high-resolution multi-spectral imagery (VIS-NIR), thermal infrared imagery, and vegetative indices, in conjunction with in situ SPAD measurements from which chlorophyll concentrations were derived, to estimate chlorophyll concentration from remotely sensed data at 15-cm resolution. The results indicate that a relevance vector machine with a thin plate spline kernel type and kernel width of 5.4, having LAI, NDVI, thermal and red bands as the selected set of inputs, can be used to spatially estimate chlorophyll concentration with a root-mean-squared-error of 5.31 μg cm-2, efficiency of 0.76, and 9 relevance vectors.

  3. Combined effects of lead and acid rain on photosynthesis in soybean seedlings.

    PubMed

    Hu, Huiqing; Wang, Lihong; Liao, Chenyu; Fan, Caixia; Zhou, Qing; Huang, Xiaohua

    2014-10-01

    To explore how lead (Pb) and acid rain simultaneously affect plants, the combined effects of Pb and acid rain on the chlorophyll content, chlorophyll fluorescence reaction, Hill reaction rate, and Mg(2+)-ATPase activity in soybean seedlings were investigated. The results indicated that, when soybean seedlings were treated with Pb or acid rain alone, the chlorophyll content, Hill reaction rate, Mg(2+)-ATPase activity, and maximal photochemical efficiency (F(v)/F(m)) were decreased, while the initial fluorescence (F 0) and maximum quantum yield (Y) were increased, compared with those of the control. The combined treatment with Pb and acid rain decreased the chlorophyll content, Hill reaction rate, Mg(2+)-ATPase activity, F(v)/F(m), and Y and increased F 0 in soybean seedlings. Under the combined treatment with Pb and acid rain, the two factors showed additive effects on the chlorophyll content in soybean seedlings and exhibited antagonistic effects on the Hill reaction rate. Under the combined treatment with high-concentration Pb and acid rain, the two factors exhibited synergistic effects on the Mg(2+)-ATPase activity, F 0, F v/F m, as well as Y. In summary, the inhibition of the photosynthetic process is an important physiological basis for the simultaneous actions of Pb and acid rain in soybean seedlings.

  4. Molecular breeding of a novel orange-brown tomato fruit with enhanced beta-carotene and chlorophyll accumulation.

    PubMed

    Manoharan, Ranjith Kumar; Jung, Hee-Jeong; Hwang, Indeok; Jeong, Namhee; Kho, Kang Hee; Chung, Mi-Young; Nou, Ill-Sup

    2017-01-01

    Tomatoes provide a significant dietary source of the carotenoids, lycopene and β-carotene. During ripening, carotenoid accumulation determines the fruit colors while chlorophyll degradation. These traits have been, and continue to be, a significant focus for plant breeding efforts. Previous work has found strong evidence for a relationship between CYC-B gene expression and the orange color of fleshy fruit. Other work has identified a point mutation in SGR that impedes chlorophyll degradation and causes brown flesh color to be retained in some tomato varieties. We crossed two inbred lines, KNY2 (orange) and KNB1 (brown) and evaluated the relationship between these genes for their effect on fruit color. Phenotypes of F2 generation plants were analyzed and a novel 'orange-brown' fruit color was identified. We confirm two SNPs, one in CYC-B and another in SGR gene sequence, associated with segregation of 'orange-brown' fruit color in F2 generation. The carotenoid and chlorophyll content of a fleshy fruit was assessed across the different phenotypes and showed a strong correlation with expression pattern of carotenoid biosynthesis genes and SGR function. The orange-brown fruit has high β-carotene and chlorophyll. Our results provide valuable information for breeders to develop tomato fruit of a novel color using molecular markers.

  5. What is beta-carotene doing in the photosystem II reaction centre?

    PubMed Central

    Telfer, Alison

    2002-01-01

    During photosynthesis carotenoids normally serve as antenna pigments, transferring singlet excitation energy to chlorophyll, and preventing singlet oxygen production from chlorophyll triplet states, by rapid spin exchange and decay of the carotenoid triplet to the ground state. The presence of two beta-carotene molecules in the photosystem II reaction centre (RC) now seems well established, but they do not quench the triplet state of the primary electron-donor chlorophylls, which are known as P(680). The beta-carotenes cannot be close enough to P(680) for triplet quenching because that would also allow extremely fast electron transfer from beta-carotene to P(+)(680), preventing the oxidation of water. Their transfer of excitation energy to chlorophyll, though not very efficient, indicates close proximity to the chlorophylls ligated by histidine 118 towards the periphery of the two main RC polypeptides. The primary function of the beta-carotenes is probably the quenching of singlet oxygen produced after charge recombination to the triplet state of P(680). Only when electron donation from water is disturbed does beta-carotene become oxidized. One beta-carotene can mediate cyclic electron transfer via cytochrome b559. The other is probably destroyed upon oxidation, which might trigger a breakdown of the polypeptide that binds the cofactors that carry out charge separation. PMID:12437882

  6. Analysis of Photosynthetic Antenna Function in a Mutant of Arabidopsis thaliana (L.) Lacking trans-Hexadecenoic Acid 1

    PubMed Central

    McCourt, Peter; Browse, John; Watson, Jan; Arntzen, Charles J.; Somerville, Chris R.

    1985-01-01

    Several lines of evidence support the proposal that the unusual chloroplast-specific lipid acyl group Δ3,trans-hexadecenoic acid (trans-C16:1) stimulates the formation or maintenance of the oligomeric form of the light-harvesting chlorophyll a/b complex (LHCP). To assess the functional significance of this apparent association we have analyzed LHCP structure and function in a mutant of Arabidopsis thaliana (L.) which lacks trans-C16:1 by electrophoretic analysis of the protein-chlorophyll complexes and by measurements of chlorophyll fluorescence under a variety of conditions. By these criteria the putative oligomeric form of LHCP appears to be slightly more labile to detergent-mediated dissociation in the mutant. The oligomeric PSI chlorophyll-protein complex, associated with PSI, was also more labile to detergent-mediated dissociation in the mutant, suggesting a previously unsuspected association of trans-C16:1 with the PSI complex. However, no significant effect of the mutation on the efficiency of energy transfer from LHCP to the photochemical reaction centers was observed under any of the various conditions imposed. Also, the stability of the chlorophyll-protein complexes to temperature-induced dissociation was unaffected in the mutant. The role of trans-C16:1 is very subtle or is only conditionally expressed. Images Fig. 1 PMID:16664340

  7. Potential Improvements to Remote Primary Productivity Estimation in the Southern California Current System

    NASA Astrophysics Data System (ADS)

    Jacox, M.; Edwards, C. A.; Kahru, M.; Rudnick, D. L.; Kudela, R. M.

    2012-12-01

    A 26-year record of depth integrated primary productivity (PP) in the Southern California Current System (SCCS) is analyzed with the goal of improving satellite net primary productivity (PP) estimates. The ratio of integrated primary productivity to surface chlorophyll correlates strongly to surface chlorophyll concentration (chl0). However, chl0 does not correlate to chlorophyll-specific productivity, and appears to be a proxy for vertical phytoplankton distribution rather than phytoplankton physiology. Modest improvements in PP model performance are achieved by tuning existing algorithms for the SCCS, particularly by empirical parameterization of photosynthetic efficiency in the Vertically Generalized Production Model. Much larger improvements are enabled by improving accuracy of subsurface chlorophyll and light profiles. In a simple vertically resolved production model, substitution of in situ surface data for remote sensing estimates offers only marginal improvements in model r2 and total log10 root mean squared difference, while inclusion of in situ chlorophyll and light profiles improves these metrics significantly. Autonomous underwater gliders, capable of measuring subsurface fluorescence on long-term, long-range deployments, significantly improve PP model fidelity in the SCCS. We suggest their use (and that of other autonomous profilers such as Argo floats) in conjunction with satellites as a way forward for improved PP estimation in coastal upwelling systems.

  8. Integration of Remote Sensing Technology Using Sentinel-2A Satellite images For Fertilization and Water Pollution Analysis in Estuaries Inlet of Semarang Eastern Flood Canal

    NASA Astrophysics Data System (ADS)

    Subiyanto, Sawitri; Ramadhanis, Zainab; Baktiar, Aditya Hafidh

    2018-02-01

    One of the waters that has been contaminated by industrial waste and domestic waste is the waters in estuaries inlet of Semarang Eastern Flood Canal which is the estuary of the river system, which passes through the eastern city of Semarang which is dense with residential and industrial. So it is necessary to have information about the assessment of water quality in Estuaries Inlet of Semarang Eastern Flood Canal. Remote sensing technology can analyze the results of recording the spectral characteristics of water with water quality parameters. One of the parameters for assessing water quality is Chlorophyll-a and Total Suspended Solid, can be estimated through remote sensing technology using multispectral Sentinel-2A Satellite images. In this research there are 3 algorithms that will be used in determining the content of chlorophyll a, and for determining TSS. Image accuracy test is done to find out how far the image can give information about Chlorophyll-a and TSS in the waters. The results of the image accuracy test will be compared with the value of chlorophyll-a and TSS that have been tested through laboratory analysis. The result of this research is the distribution map of chlorophyll-a and TSS content in the waters.

  9. Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia.

    PubMed

    Dupouy, Cécile; Neveux, Jacques; Ouillon, Sylvain; Frouin, Robert; Murakami, Hiroshi; Hochard, Sébastien; Dirberg, Guillaume

    2010-01-01

    The retrieval of chlorophyll-a concentration from remote sensing reflectance (Rrs) data was tested with the NASA OC4v4 algorithm on the inner New Caledonian lagoon (Case 2) and adjacent open ocean (Case 1) waters. The input to OC4v4 was Rrs measured in situ or modeled from water's inherent optical properties (2001-2007). At open ocean stations, backscattering and absorption coefficients were correlated with chlorophyll (R(2)=0.31-0.51, respectively), in agreement with models for Case 1 waters. Taking spectrofluorometric measurement as reference, the OC4v4 model leads to an average underestimation of 33% of the chlorophyll concentration. For the lagoon waters, OC4v4 performed inadequately because the backscattering coefficient, highly correlated with turbidity and suspended matter (R(2)=0.98), was poorly correlated to chlorophyll (R(2)=0.42). The OC4v4 performance was better in deep lagoon waters for stations with a TDT index (Tchla x depth/turbidity) higher than 19 mg m(-2) NTU(-1) (R(2)=0.974, bias=10.2%). Global Imager Rrs provided a good estimate of Tchla (R(2)=0.79, N=28) in the deeper part of the lagoon. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Improving photosynthetic efficiency to address food security in the 21st century: Strategies for a more efficient crop canopy

    NASA Astrophysics Data System (ADS)

    VanLoocke, A. D.; Slattery, R.; Bernacchi, C.; Zhu, X.; Ort, D. R.

    2013-12-01

    Global food production will need to increase by approximately 70% by mid-century to meet the caloric and nutritional demand of population and economic growth. Achieving this goal will require successfully implementing a wide range of strategies, spanning the social and physical sciences. Here we will present opportunities for improving crop production through increasing photosynthetic rates for a crop canopy that do not require additional agronomic inputs. We will focus on a specific strategy related optimizing the distribution of light within a crop canopy because it is a possible way to improve canopy photosynthesis in crops that form dense canopies, such as soybean, by increasing the transmission of light within a canopy via reduced chlorophyll content. We hypothesized that if decreasing chlorophyll content in soybean leaves will result in greater light penetration into the canopy then this will enhance canopy photosynthesis and improve yields. In addition, if current chlorophyll content in soybean results in excess light absorption, then decreasing chlorophyll content will result in decreased photoprotection that results in the suppression of upper canopy photosynthesis associated with super-optimal light. These hypotheses were tested in 2012 and 2013 in the field on the soybean cultivar 'Clark' (WT) and a nearly isogenic chlorophyll-b deficient mutant (Y11y11). Throughout the season, profiles of light sensors measured incident and reflected light intensity at the canopy surface as well as light levels at ten heights within the canopy. Analyses of these data indicated greater reflectivity, transmissivity and within-canopy light levels for the Y11y11 canopy relative to WT especially in the top half of the canopy. A Gas exchange method was used to determine photosynthetic capacity and suppression high light levels. Daily integrals of leaf-level photosynthesis in sun leaves were greater in Y11y11 compared to WT at several times during the growing season and photoprotection in high light was greater in the WT compared to the chlorophyll mutant. However, despite greater photosynthetic rates and lower levels of photoprotection in the upper canopy of the mutants, seed yields did not increase with reduced chlorophyll content in 2012. The 2013 field season is currently underway with the aim of determining what factors, including possible side effects of the higher chlorophyll a/b ratio, limit the translation of greater photosynthesis at the top of the canopy into increased yield. The presentation will conclude with a discussion of future avenues to be pursued with regards to improving photosynthesis by reducing chlorophyll in a more targeted manner that may outperform the current generation of plants study in this experiment.

  11. Spectral Feature Analysis for Quantitative Estimation of Cyanobacteria Chlorophyll-A

    NASA Astrophysics Data System (ADS)

    Lin, Yi; Ye, Zhanglin; Zhang, Yugan; Yu, Jie

    2016-06-01

    In recent years, lake eutrophication caused a large of Cyanobacteria bloom which not only brought serious ecological disaster but also restricted the sustainable development of regional economy in our country. Chlorophyll-a is a very important environmental factor to monitor water quality, especially for lake eutrophication. Remote sensed technique has been widely utilized in estimating the concentration of chlorophyll-a by different kind of vegetation indices and monitoring its distribution in lakes, rivers or along coastline. For each vegetation index, its quantitative estimation accuracy for different satellite data might change since there might be a discrepancy of spectral resolution and channel center between different satellites. The purpose this paper is to analyze the spectral feature of chlorophyll-a with hyperspectral data (totally 651 bands) and use the result to choose the optimal band combination for different satellites. The analysis method developed here in this study could be useful to recognize and monitor cyanobacteria bloom automatically and accrately. In our experiment, the reflectance (from 350nm to 1000nm) of wild cyanobacteria in different consistency (from 0 to 1362.11ug/L) and the corresponding chlorophyll-a concentration were measured simultaneously. Two kinds of hyperspectral vegetation indices were applied in this study: simple ratio (SR) and narrow band normalized difference vegetation index (NDVI), both of which consists of any two bands in the entire 651 narrow bands. Then multivariate statistical analysis was used to construct the linear, power and exponential models. After analyzing the correlation between chlorophyll-a and single band reflectance, SR, NDVI respetively, the optimal spectral index for quantitative estimation of cyanobacteria chlorophyll-a, as well corresponding central wavelength and band width were extracted. Results show that: Under the condition of water disturbance, SR and NDVI are both suitable for quantitative estimation of chlorophyll-a, and more effective than the traditional single band model; the best regression models for SR, NDVI with chlorophyll-a are linear and power, respectively. Under the condition without water disturbance, the single band model works the best. For the SR index, there are two optimal band combinations, which is comprised of infrared (700nm-900nm) and blue-green range (450nm-550nm), infrared and red range (600nm-650nm) respectively, with band width between 45nm to 125nm. For NDVI, the optimal band combination includes the range from 750nm to 900nm and 700nm to 750nm, with band width less than 30nm. For single band model, band center located between 733nm-935nm, and its width mustn't exceed the interval where band center located in. This study proved , as for SR or NDVI, the centers and widths are crucial factors for quantitative estimating chlorophyll-a. As for remote sensor, proper spectrum channel could not only improve the accuracy of recognizing cyanobacteria bloom, but reduce the redundancy of hyperspectral data. Those results will provide better reference for designing the suitable spectrum channel of customized sensors for cyanobacteria bloom monitoring at a low altitude. In other words, this study is also the basic research for developing the real-time remote sensing monitoring system with high time and high spatial resolution.

  12. Isolation and characterization of two chlorophyll-deficient genes in soybean

    USDA-ARS?s Scientific Manuscript database

    We have identified a viable-yellow and a lethal-yellow mutant in soybean. The three phenotypes green, lethal- and viable-yellow were easily distinguished based on their light reflectance indices, chlorophyll abundance and photochemical conversion efficiency. Photochemical conversion efficiency was r...

  13. Integrating multiple vegetation indices via an artificial neural network model for estimating the leaf chlorophyll content of Spartina alterniflora under interspecies competition.

    PubMed

    Liu, Pudong; Shi, Runhe; Zhang, Chao; Zeng, Yuyan; Wang, Jiapeng; Tao, Zhu; Gao, Wei

    2017-10-31

    The invasive species Spartina alterniflora and native species Phragmites australis display a significant co-occurrence zonation pattern and this co-exist region exerts most competitive situations between these two species, competing for the limited space, directly influencing the co-exist distribution in the future. However, these two species have different growth ratios in this area, which increase the difficulty to detect the distribution situation directly by remote sensing. As chlorophyll content is a key indicator of plant growth and physiological status, the objective of this study was to reduce the effect of interspecies competition when estimating Cab content; we evaluated 79 published representative indices to determine the optimal indices for estimating the chlorophyll a and b (Cab) content. After performing a sensitivity analysis for all 79 spectral indices, five spectral indices were selected and integrated using an artificial neural network (ANN) to estimate the Cab content of different competition ratios: the Gitelson ratio green index, the transformed chlorophyll absorption ratio index/optimized soil-adjusted vegetation index, the modified normalized difference vegetation index, the chlorophyll fluorescence index, and the Vogelmann chlorophyll index. The ANN method yielded better results (R 2  = 0.7110 and RMSE = 8.3829 μg cm -2 ) on average than the best single spectral index (R 2  = 0.6319 and RMSE = 9.3535 μg cm -2 ), representing an increase of 10.78% in R 2 and a decrease of 10.38% in RMSE. Our results indicated that integrating multiple vegetation indices with an ANN can alleviate the impact of interspecies competition and achieve higher estimation accuracy than the traditional approach using a single index.

  14. Imaging the Photosystem I/Photosystem II chlorophyll ratio inside the leaf.

    PubMed

    Wientjes, Emilie; Philippi, John; Borst, Jan Willem; van Amerongen, Herbert

    2017-03-01

    Oxygenic photosynthesis is driven by photosystems I (PSI) and II (PSII). In plants the number of chlorophylls of PSI versus PSII is adjusted to the light irradiance spectrum. On a timescale of days, this is regulated at the level of protein concentration. Instead, on a timescale of minutes, it is regulated by the dynamic association of light-harvesting complex II with either PSI or PSII. Thus far very diverse values have been reported for the PSI/PSII chlorophyll ratio, ranging from 0.54 to 1.4. The methods used require the isolation of chloroplasts and are time consuming. We present a fluorescence lifetime imaging approach that quantifies the PSI/PSII Chl ratio of chloroplasts directly in their natural leaf environment. In wild type Arabidopsis thaliana plants, grown under white light, the PSI/PSII chlorophyll ratio appeared to be 0.99±0.09 at the adaxial side and 0.83±0.05 at the abaxial side of the leaf. When these plants were acclimated to far red light for several days the PSI/PSII chlorophyll ratio decreased by more than a factor of 3 to compensate for the ineffective far red light absorption of PSII. This shows how plants optimize their light-harvesting capacity to the specific light conditions they encounter. Zooming in on single chloroplasts inside the leaf allowed to study the grana/stroma membrane network and their PSI/PSII chlorophyll ratios. The developed method will be useful to study dynamic processes in chloroplasts in intact leaves which involve changes in the grana and the stroma membranes such as state transitions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis

    PubMed Central

    Brouwer, Bastiaan; Gardeström, Per; Keech, Olivier

    2014-01-01

    Phytochrome is thought to control the induction of leaf senescence directly, however, the signalling and molecular mechanisms remain unclear. In the present study, an ecophysiological approach was used to establish a functional connection between phytochrome signalling and the physiological processes underlying the induction of leaf senescence in response to shade. With shade it is important to distinguish between complete and partial shading, during which either the whole or only a part of the plant is shaded, respectively. It is first shown here that, while PHYB is required to maintain chlorophyll content in a completely shaded plant, only PHYA is involved in maintaining the leaf chlorophyll content in response to partial plant shading. Second, it is shown that leaf yellowing associated with strong partial shading in phyA-mutant plants actually correlates to a decreased biosynthesis of chlorophyll rather than to an increase of its degradation. Third, it is shown that the physiological impact of this decreased biosynthesis of chlorophyll in strongly shaded phyA-mutant leaves is accompanied by a decreased capacity to adjust the Light Compensation Point. However, the increased leaf yellowing in phyA-mutant plants is not accompanied by an increase of senescence-specific molecular markers, which argues against a direct role of PHYA in inducing leaf senescence in response to partial shade. In conclusion, it is proposed that PHYA, but not PHYB, is essential for fine-tuning the chlorophyll biosynthetic pathway in response to partial shading. In turn, this mechanism allows the shaded leaf to adjust its photosynthetic machinery to very low irradiances, thus maintaining a positive carbon balance and repressing the induction of leaf senescence, which can occur under prolonged periods of shade. PMID:24604733

  16. Light-regulated translation of chloroplast proteins. I. Transcripts of psaA-psaB, psbA, and rbcL are associated with polysomes in dark-grown and illuminated barley seedlings

    PubMed Central

    1988-01-01

    We have previously observed (Klein, R. R., and J. E. Mullet, 1986, J. Biol. Chem. 261:11138-11145) that translation of two 65-70-kD chlorophyll a-apoproteins of Photosystem I (gene products of psaA and psaB) and a 32-kD quinone-binding protein of Photosystem II (gene product of psbA) was not detected in plastids of dark-grown barley seedlings even though transcripts for these proteins were present. In the present study it was found that nearly all of the psaA-psaB transcripts in plastids of dark-grown plants were associated with membrane-bound polysomes. Membrane-associated polysomes from plastids of dark-grown plants synthesized the 65-70-kD chlorophyll a-apoproteins at low levels when added to a homologous in vitro translation extract capable of translation elongation. However, when etioplast membranes were disrupted with detergent, in vitro synthesis of the 65-70-kD chlorophyll a-apoproteins increased to levels observed with polysomes of plastids from illuminated plants. These results suggest that synthesis of the chlorophyll a-apoproteins of Photosystem I is arrested on membrane-bound polysomes at the level of polypeptide chain elongation. In addition to the selective activation of chlorophyll a- apoprotein translation, illumination also caused an increase in chloroplast polysomes (membrane-associated and stromal) and induced a recruitment of psbA and rbcL transcripts into chloroplast polysomes. These results indicate that in conjunction with the selective activation of chlorophyll a-apoprotein elongation, illumination also caused a general stimulation of chloroplast translation initiation. PMID:3339092

  17. Retention time generates short-term phytoplankton blooms in a shallow microtidal subtropical estuary

    NASA Astrophysics Data System (ADS)

    Odebrecht, Clarisse; Abreu, Paulo C.; Carstensen, Jacob

    2015-09-01

    In this study it was hypothesised that increasing water retention time promotes phytoplankton blooms in the shallow microtidal Patos Lagoon estuary (PLE). This hypothesis was tested using salinity variation as a proxy of water retention time and chlorophyll a for phytoplankton biomass. Submersible sensors fixed at 5 m depth near the mouth of PLE continuously measured water temperature, salinity and pigments fluorescence (calibrated to chlorophyll a) between March 2010 and 12th of December 2011, with some gaps. Salinity variations were used to separate alternating patterns of outflow of lagoon water (salinity <8; 46% of the time) and inflow of marine water (salinity >24; 35% of the time). The two transition phases represented a rapid change from lagoon water outflow to marine water inflow and a more gradually declining salinity between the dominating inflow and outflow conditions. During the latter of these, a significant chlorophyll a increase relative to that expected from a linear mixing relationship was observed at intermediate salinities (10-20). The increase in chlorophyll a was positively related to the duration of the prior coastal water inflow in the PLE. Moreover, chlorophyll a increase was significantly higher during austral spring-summer than autumn-winter, probably due to higher light and nutrient availability in the former. Moreover, the retention time process operating on time scales of days influences the long-term phytoplankton variability in this ecosystem. Comparing these results with monthly data from a nearby long-term water quality monitoring station (1993-2011) support the hypothesis that chlorophyll a accumulations occur after marine inflow events, whereas phytoplankton does not accumulate during high water outflow, when the water residence time is short. These results suggest that changing hydrological pattern is the most important mechanism underlying phytoplankton blooms in the PLE.

  18. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2- and ABA-induced stomatal closing

    PubMed Central

    Azoulay-Shemer, Tamar; Palomares, Axxell; Bagheri, Andish; Israelsson-Nordstrom, Maria; Engineer, Cawas B.; Bargmann, Bastiaan O.R.; Stephan, Aaron B.; Schroeder, Julian I.

    2015-01-01

    SUMMARY Stomata mediate gas exchange between the inter-cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2]. [CO2] in leaves mediates stomatal movements. The role of guard-cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll-deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard-cell specific enhancer trap-line. Our data show that more than 90% of guard cells were chlorophyll-deficient. Interestingly, approximately ~ 45% of stomata had an unusual, previously not-described, morphology of thin-shaped chlorophyll-less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole-leaf photosynthetic parameters (PSII, qP, qN, FV′/FM′) were comparable to wild-type plants. Time-resolved intact leaf gas exchange analyses showed a reduction in stomatal conductance and carbon assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2] shifts. Detailed stomatal aperture measurements of normal kidney-shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2] elevation and abscisic acid (ABA), while thin-shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard-cell CO2 and ABA signal transduction are not directly modulated by guard-cell photosynthesis/electron transport. Moreover, the finding that chlorophyll-less stomata cause a “deflated” thin-shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard-cell turgor production. PMID:26096271

  19. Controlling effects of mesoscale eddies on thermohaline structure and in situ chlorophyll distribution in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Wang, Zhenyan; Zhang, Kainan

    2017-11-01

    Based on the conductivity, temperature and depth (CTD) data collected at 93 hydrographic stations during a marine cruise and on contemporary satellite altimeter observations, a series of eddies have been observed passing over the stratified upper water of the Parece Vela Basin. The results from hydrographic measurements and in situ chlorophyll fluorescence measurements have revealed that these eddies exerted significant controlling effects on the thermohaline structure and chlorophyll distribution, especially on the prevalent subsurface chlorophyll maximum layer (SCML). Based on these observations and particulate beam attenuation coefficient (cp) data, the in situ phytoplankton bloom around the pycnocline can be largely attributable to the formation of a well-developed SCML in the studied system. The uplift of the cold subsurface water within the cyclone, shoaling the pycnocline to a shallower layer, resulted in a low-temperature anomaly and different salinity anomalies at different depths. This uplift in the cyclone further caused the SCML to appear at a shallower depth with a higher in situ chlorophyll concentration than that in the normal domain. Conversely, the sinking of the warm surface water to the subsurface layer within the anticyclone depressed the pycnocline to a deeper layer and generated a high-temperature anomaly and opposite salinity anomalies compared with the cyclone. The sinking of the pycnocline within the anticyclone considerably influenced the characteristics of the SCML, which had a deeper depth and a lower in situ chlorophyll concentration than that of the normal sea. This study contributes rare quasi-synchronous CTD observations capturing mesoscale eddies and provides valuable descriptions of the variations in the SCML under the influence of mesoscale eddies based on in situ optical measurements from the seldom-discussed western North Pacific.

  20. Dynamics of size-fractionated phytoplankton biomass in a monsoonal estuary: Patterns and drivers for seasonal and spatial variability

    NASA Astrophysics Data System (ADS)

    Rajaneesh, K. M.; Mitbavkar, Smita; Anil, Arga Chandrashekar

    2018-07-01

    Phytoplankton size-fractionated biomass is an important determinant of the type of food web functioning in aquatic ecosystems. Knowledge about the effect of seasonal salinity gradient on the size-fractionated biomass dynamics is still lacking, especially in tropical estuaries experiencing monsoon. The phytoplankton size-fractionated chlorophyll a biomass (>3 μm and <3 μm) and picophytoplankton community structure were characterized in the monsoonal Zuari estuary, along the west coast of India, from October 2010 to September 2011 across the salinity gradient (0-35). On an annual scale, >3 μm size-fraction was the major contributor to the total phytoplankton chlorophyll a biomass with the ephemeral dominance of <3 μm size-fraction. During monsoon season, freshwater runoff and shorter water residence time resulted in a size-independent response. The lowest annual chlorophyll a biomass concentration of both size-fractions showed signs of recovery with increasing salinity downstream towards the end of the monsoon season. In contrast, the chlorophyll a biomass response was size-dependent during the non-monsoon seasons with the sporadic dominance (>50%) of <3 μm chlorophyll a biomass during high water temperature episodes from downstream to middle estuary during pre-monsoon and at low salinity and high nutrient conditions upstream during post-monsoon. These conditions also influenced the picophytoplankton community structure with picoeukaryotes dominating during the pre-monsoon, phycoerythrin containing Synechococcus during the monsoon and phycocyanin containing Synechococcus during the post-monsoon. This study highlights switching over of dominance in size-fractionated phytoplankton chlorophyll a biomass at intra, inter-seasonal and spatial scales which will likely govern the estuarine trophodynamics.

  1. LIL3, a Light-Harvesting Complex Protein, Links Terpenoid and Tetrapyrrole Biosynthesis in Arabidopsis thaliana1[OPEN

    PubMed Central

    Rothbart, Maxi; Herbst, Josephine; Wittmann, Daniel; Gruhl, Kirsten

    2017-01-01

    The LIL3 protein of Arabidopsis (Arabidopsis thaliana) belongs to the light-harvesting complex (LHC) protein family, which also includes the light-harvesting chlorophyll-binding proteins of photosystems I and II, the early-light-inducible proteins, PsbS involved in nonphotochemical quenching, and the one-helix proteins and their cyanobacterial homologs designated high-light-inducible proteins. Each member of this family is characterized by one or two LHC transmembrane domains (referred to as the LHC motif) to which potential functions such as chlorophyll binding, protein interaction, and integration of interacting partners into the plastid membranes have been attributed. Initially, LIL3 was shown to interact with geranylgeranyl reductase (CHLP), an enzyme of terpene biosynthesis that supplies the hydrocarbon chain for chlorophyll and tocopherol. Here, we show another function of LIL3 for the stability of protochlorophyllide oxidoreductase (POR). Multiple protein-protein interaction analyses suggest the direct physical interaction of LIL3 with POR but not with chlorophyll synthase. Consistently, LIL3-deficient plants exhibit substantial loss of POR as well as CHLP, which is not due to defective transcription of the POR and CHLP genes but to the posttranslational modification of their protein products. Interestingly, in vitro biochemical analyses provide novel evidence that LIL3 shows high binding affinity to protochlorophyllide, the substrate of POR. Taken together, this study suggests a critical role for LIL3 in the organization of later steps in chlorophyll biosynthesis. We suggest that LIL3 associates with POR and CHLP and thus contributes to the supply of the two metabolites, chlorophyllide and phytyl pyrophosphate, required for the final step in chlorophyll a synthesis. PMID:28432258

  2. A new chlorophyll d-containing cyanobacterium: evidence for niche adaptation in the genus Acaryochloris.

    PubMed

    Mohr, Remus; Voss, Björn; Schliep, Martin; Kurz, Thorsten; Maldener, Iris; Adams, David G; Larkum, Anthony D W; Chen, Min; Hess, Wolfgang R

    2010-11-01

    Chlorophyll d is a photosynthetic pigment that, based on chemical analyses, has only recently been recognized to be widespread in oceanic and lacustrine environments. However, the diversity of organisms harbouring this pigment is not known. Until now, the unicellular cyanobacterium Acaryochloris marina is the only characterized organism that uses chlorophyll d as a major photopigment. In this study we describe a new cyanobacterium possessing a high amount of chlorophyll d, which was isolated from waters around Heron Island, Great Barrier Reef (23° 26' 31.2″ S, 151° 54' 50.4″ E). The 16S ribosomal RNA is 2% divergent from the two previously described isolates of A. marina, which were isolated from waters around the Palau islands (Pacific Ocean) and the Salton Sea lake (California), suggesting that it belongs to a different clade within the genus Acaryochloris. An overview sequence analysis of its genome based on Illumina technology yielded 871 contigs with an accumulated length of 8 371 965 nt. Their analysis revealed typical features associated with Acaryochloris, such as an extended gene family for chlorophyll-binding proteins. However, compared with A. marina MBIC11017, distinct genetic, morphological and physiological differences were observed. Light saturation is reached at lower light intensities, Chl d/a ratios are less variable with light intensity and the phycobiliprotein phycocyanin is lacking, suggesting that cyanobacteria of the genus Acaryochloris occur in distinct ecotypes. These data characterize Acaryochloris as a niche-adapted cyanobacterium and show that more rigorous attempts are worthwhile to isolate, cultivate and analyse chlorophyll d-containing cyanobacteria for understanding the ecophysiology of these organisms.

  3. LIL3, a Light-Harvesting Complex Protein, Links Terpenoid and Tetrapyrrole Biosynthesis in Arabidopsis thaliana.

    PubMed

    Hey, Daniel; Rothbart, Maxi; Herbst, Josephine; Wang, Peng; Müller, Jakob; Wittmann, Daniel; Gruhl, Kirsten; Grimm, Bernhard

    2017-06-01

    The LIL3 protein of Arabidopsis ( Arabidopsis thaliana ) belongs to the light-harvesting complex (LHC) protein family, which also includes the light-harvesting chlorophyll-binding proteins of photosystems I and II, the early-light-inducible proteins, PsbS involved in nonphotochemical quenching, and the one-helix proteins and their cyanobacterial homologs designated high-light-inducible proteins. Each member of this family is characterized by one or two LHC transmembrane domains (referred to as the LHC motif) to which potential functions such as chlorophyll binding, protein interaction, and integration of interacting partners into the plastid membranes have been attributed. Initially, LIL3 was shown to interact with geranylgeranyl reductase (CHLP), an enzyme of terpene biosynthesis that supplies the hydrocarbon chain for chlorophyll and tocopherol. Here, we show another function of LIL3 for the stability of protochlorophyllide oxidoreductase (POR). Multiple protein-protein interaction analyses suggest the direct physical interaction of LIL3 with POR but not with chlorophyll synthase. Consistently, LIL3-deficient plants exhibit substantial loss of POR as well as CHLP, which is not due to defective transcription of the POR and CHLP genes but to the posttranslational modification of their protein products. Interestingly, in vitro biochemical analyses provide novel evidence that LIL3 shows high binding affinity to protochlorophyllide, the substrate of POR. Taken together, this study suggests a critical role for LIL3 in the organization of later steps in chlorophyll biosynthesis. We suggest that LIL3 associates with POR and CHLP and thus contributes to the supply of the two metabolites, chlorophyllide and phytyl pyrophosphate, required for the final step in chlorophyll a synthesis. © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. Global trends in ocean phytoplankton: a new assessment using revised ocean colour data.

    PubMed

    Gregg, Watson W; Rousseaux, Cécile S; Franz, Bryan A

    2017-01-01

    A recent revision of the NASA global ocean colour record shows changes in global ocean chlorophyll trends. This new 18-year time series now includes three global satellite sensors, the Sea-viewing Wide Field of view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua), and Visible Infrared Imaging Radiometer Suite (VIIRS). The major changes are radiometric drift correction, a new algorithm for chlorophyll, and a new sensor VIIRS. The new satellite data record shows no significant trend in global annual median chlorophyll from 1998 to 2015, in contrast to a statistically significant negative trend from 1998 to 2012 in the previous version. When revised satellite data are assimilated into a global ocean biogeochemical model, no trend is observed in global annual median chlorophyll. This is consistent with previous findings for the 1998-2012 time period using the previous processing version and only two sensors (SeaWiFS and MODIS). Detecting trends in ocean chlorophyll with satellites is sensitive to data processing options and radiometric drift correction. The assimilation of these data, however, reduces sensitivity to algorithms and radiometry, as well as the addition of a new sensor. This suggests the assimilation model has skill in detecting trends in global ocean colour. Using the assimilation model, spatial distributions of significant trends for the 18-year record (1998-2015) show recent decadal changes. Most notable are the North and Equatorial Indian Oceans basins, which exhibit a striking decline in chlorophyll. It is exemplified by declines in diatoms and chlorophytes, which in the model are large and intermediate size phytoplankton. This decline is partially compensated by significant increases in cyanobacteria, which represent very small phytoplankton. This suggests the beginning of a shift in phytoplankton composition in these tropical and subtropical Indian basins.

  5. A modern robust approach to remotely estimate chlorophyll in coastal and inland zones

    NASA Astrophysics Data System (ADS)

    Shanmugam, Palanisamy; He, Xianqiang; Singh, Rakesh Kumar; Varunan, Theenathayalan

    2018-05-01

    The chlorophyll concentration of a water body is an important proxy for representing the phytoplankton biomass. Its estimation from multi or hyper-spectral remote sensing data in natural waters is generally achieved by using (i) the waveband ratioing in two or more bands in the blue-green or (ii) by using a combination of the radiance peak position and magnitude in the red-near-infrared (NIR) spectrum. The blue-green ratio algorithms have been extensively used with satellite ocean color data to investigate chlorophyll distributions in open ocean and clear waters and the application of red-NIR algorithms is often restricted to turbid productive water bodies. These issues present the greatest obstacles to our ability to formulate a modern robust method suitable for quantitative assessments of the chlorophyll concentration in a diverse range of water types. The present study is focused to investigate the normalized water-leaving radiance spectra in the visible and NIR region and propose a robust algorithm (Generalized ABI, GABI algorithm) for chlorophyll concentration retrieval based on Algal Bloom index (ABI) which separates phytoplankton signals from other constituents in the water column. The GABI algorithm is validated using independent in-situ data from various regional to global waters and its performance is further evaluated by comparison with the blue-green waveband ratios and red-NIR algorithms. The results revealed that GABI yields significantly more accurate chlorophyll concentrations (with uncertainties less than 13.5%) and remains more stable in different waters types when compared with the blue-green waveband ratios and red-NIR algorithms. The performance of GABI is further demonstrated using HICO images from nearshore turbid productive waters and MERIS and MODIS-Aqua images from coastal and offshore waters of the Arabian Sea, Bay of Bengal and East China Sea.

  6. Impacts of Organic Macromolecules, Chlorophyll and Soot on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Flanner, M.; Dubey, M. K.

    2014-12-01

    Recent intensification of Arctic amplification can be strongly connected to positive feedback relating black carbon deposition to sea ice surface albedo. In addition to soot deposition on the ice and snow pack, ice algal chlorophyll is likely to compete as an absorber and redistributor of energy. Hence, solar radiation absorption by chlorophyll and some components of organic macromolecules in/under the ice column is currently being examined to determine the level of influence on predicted rate of ice loss. High amounts of organic macromolecules and chlorophyll are produced in global sea ice by the bottom microbial community and also in vertically distributed layers where substantial biological activities take place. Brine channeling in columnar ice can allow for upward flow of nutrients which leads to greater primary production in the presence of moderate light. Modeling of the sea-ice processes in tandem with experiments and field observations promises rapid progress in enhancing Arctic ice predictions. We are designing and conducting global climate model experiments to determine the impact of organic macromolecules and chlorophyll on Arctic sea ice. Influences on brine network permeability and radiation/albedo will be considered in this exercise. Absorption by anthropogenic materials such as soot and black carbon will be compared with that of natural pigments. We will indicate areas of soot and biological absorption dominance in the sense of single scattering, then couple into a full radiation transfer scheme to attribute the various contributions to polar climate change amplification. The work prepares us to study more traditional issues such as chlorophyll warming of the pack periphery and chemical effects of the flow of organics from ice internal communities. The experiments started in the Arctic will broaden to include Antarctic sea ice and shelves. Results from the Arctic simulations will be presented.

  7. The impact of multi-decadal sub-surface circulation changes on sea surface chlorophyll patterns in the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Schollaert Uz, S.; Busalacchi, A. J.; Smith, T. M.; Evans, M. N.; Brown, C.; Hackert, E. C.; Wang, X.

    2016-12-01

    The tropical Pacific is a region of strong forcing where physical oceanography primarily controls biological variability over the seasonal to interannual time scales observed since dedicated ocean color satellite remote sensing began in 1997. To quantify how multi-decadal, climate-scale changes impact marine biological dynamics, we used the correlation with sea-surface temperature and height to reconstruct a 50-year time series of surface chlorophyll concentrations. The reconstruction demonstrates greatest skill away from the coast and within 10o of the equator where chlorophyll variance is greatest and primarily associated with El Niño Southern Oscillation (ENSO) dynamics and secondarily associated with decadal variability. We observe significant basin-wide differences between east and central Pacific events when the El Niño events are strong: chlorophyll increases with La Niña and decreases with El Niño, with larger declines east of 180o for remotely-forced east Pacific events and west of 180o for locally-forced central Pacific events. Chlorophyll variations also reflect the physical dynamics of Pacific decadal variability with small but significant differences between cool and warm eras: consistent with advection variability west of 180o and likely driven by subsurface changes in the nutricline depth between 110-140oW. Comparisons with output from a fully-coupled biogeochemical model support the hypothesis that this anomalous region is controlled by lower frequency changes in subsurface circulation patterns that transport nutrients to the surface. Basin-wide chlorophyll distributions exhibiting spatial heterogeneity in response to multi-decadal climate forcing imply similar long-term changes in phytoplankton productivity, with implications for the marine food web and the ocean's role as a carbon sink.

  8. Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Moharana, Shreedevi; Dutta, Subashisa

    2016-12-01

    Chlorophyll and nitrogen are the most essential parameters for paddy crop growth. Spectroradiometric measurements were collected at canopy level during critical growth period of rice. Chemical analysis was performed to quantify the total leaf content. By exploiting the ground based measurements, regression models were established for chlorophyll and nitrogen aimed indices with their corresponding crop growth variables. Vegetation index models were developed for mapping these parameters from Hyperion imagery in an agriculture system. It was inferred that the present Simple Ratio (SR) and Leaf Nitrogen Concentration (LNC) indices, which followed a linear and nonlinear relationship respectively, were completely different from published Tian et al. (2011). The nitrogen content varied widely from 1 to 4% and only 2 to 3% for paddy crop using present modified index models and Tian et al. (2011) respectively. The modified LNC index model performed better than the established Tian et al. (2011) model as far as estimated nitrogen content from Hyperion imagery was concerned. Furthermore, within the observed chlorophyll range obtained from the studied rice varieties grown in the rice agriculture system, the index models (LNC, OASVI, Gitelson, mSR and MTCI) performed well in the spatial distribution of rice chlorophyll content from Hyperion imagery. Spatial distribution of total chlorophyll content varied widely from 1.77 to 5.81 mg/g (LNC), 3.0 to 13 mg/g (OASVI), 0.5 to 10.43 mg/g (Gitelson), 2.18 to 10.61 mg/g (mSR) and 2.90 to 5.40 mg/g (MTCI). The spatial information of these parameters will help in proper nutrient management, yield forecasting, and will serve as inputs for crop growth and forecasting models for a precision rice agriculture system.

  9. Phosphorus, nitrogen and chlorophyll-a are significant factors controlling ciliate communities in summer in the northern Beibu Gulf, South China Sea.

    PubMed

    Wang, Yibo; Zhang, Wenjing; Lin, Yuanshao; Cao, Wenqing; Zheng, Lianming; Yang, Jun

    2014-01-01

    Ciliates (protozoa) are ubiquitous components of plankton community and play important roles in aquatic ecosystems in regards of their abundance, biomass, diversity and energy turnover. Based on the stratified samples collected from the northern Beibu Gulf in August 2011, species composition, abundance, biomass, diversity and spatial pattern of planktonic ciliates were studied. Furthermore the main environmental factors controlling ciliate communities were determined. A total of 101 species belonging to 44 genera and 7 orders (i.e., Oligotrichida, Haptorida, Euplotida, Sessilida, Pleurostomatida, Scuticociliatida and Tintinnida) were identified. The variation of ciliate communities was significant at horizontal level, but that was not at vertical level. Based on cluster analysis, ciliate communities were divided into three main groups. Redundancy analysis (RDA) revealed that Group A, existing in the waters with higher concentration of phosphorus and nitrogen, was dominated by Tintinnidium primitivum. Group B in the waters with lower temperature and chlorophyll-a concentration, was dominated by Leegaardiella ovalis. Group C, existing in the waters with higher temperature and chlorophyll-a concentration, was dominated by large Strombidium spp. and Mesodinium rubrum. Combining multiple analytic methods, our results strongly supported that phosphorus, nitrogen and chlorophyll-a were the most significant factors affecting the ciliate communities in the northern Beibu Gulf in summer. Concentration of phosphorus and nitrogen primarily influenced ciliate biomass, implying a potential impact of eutrophication on ciliate growth. The correlation with chlorophyll-a concentration, on one hand indicate the response of ciliates to the food availability, and on the other hand, the ciliates containing chloroplasts or endosymbionts may contribute greatly to the chlorophyll-a.

  10. OHIO RIVER WATER QUALITY ASSESSMENT USING LANDSAT-7 DATA

    EPA Science Inventory

    The objectives of this project were (1) to develop a universal index for measuring Turbidity and Chlorophyll-A from remote sensing data and (2) to correlate satellite image parameters from Landsat-7 data with field measurements of water quality for five parameters: Chlorophyll-A ...

  11. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence

    USDA-ARS?s Scientific Manuscript database

    Global monitoring of agricultural productivity is critical in a world under a continuous increase of food demand. Here we have used new spaceborne retrievals of chlorophyll fluorescence, an emission quantity intrinsically linked to photosynthesis, to derive spatially explicit photosynthetic uptake r...

  12. Relationships between Concentrations of Phytoplankton Chlorophyll a and Total Nitrogen in Ten U.S. Estuaries

    EPA Science Inventory

    This presentation focuses on the summertime response of phytoplankton chlorophyll to nitrogen concentrations in the upper water columns of ten U.S. estuaries. Using publicly available data from monitoring programs, regression relationships have been developed between summer surfa...

  13. Cross-system comparison of factors influencing chlorophyll-a concentration in Oregon estuaries

    EPA Science Inventory

    Water column chlorophyll-a (chla) is a proxy for phytoplankton biomass and is often used as a biological response indicator of eutrophication. Although watershed nutrient loading may influence chla concentration in estuaries, factors such as freshwater inflow, residence time, and...

  14. Green-fleshed watermelon contains chlorophyll

    USDA-ARS?s Scientific Manuscript database

    Many popular and technical reports on watermelon ignore an uncommon color, green, even though mention of this color has been in the literature since 1901. However, what causes the green hue has not been reported. Since some cucurbits have chloroplasts, and chlorophyll in the flesh tissue, we surmi...

  15. Spatiotemporal chlorophyll-a dynamics on the Louisiana continental shelf derived from a dual satellite imagery algorithm

    EPA Science Inventory

    A monthly time series of remotely sensed chlorophyll-a (Chlars) over the Louisiana continental shelf (LCS) was developed and examined for its relationship to river discharge, nitrate concentration, total phosphorus concentration, photosynthetically available radiation (PAR), wind...

  16. Spatio-Temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian; Wu, Jin; Wu, Xiaocui; Gioli, Beniamino; Wohlfahrt, Georg; Cescatti, Alessandro; van der Tol, Christiaan; Zhou, Sha; Gough, Christopher M.; Gentine, Pierre; Zhang, Yongguang; Steinbrecher, Rainer; Ardö, Jonas

    2018-04-01

    Light-use efficiency (LUE), which quantifies the plants' efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production estimation. Here we use satellite-based solar-induced chlorophyll fluorescence as a proxy for photosynthetically active radiation absorbed by chlorophyll (APARchl) and derive an estimation of the fraction of APARchl (fPARchl) from four remotely sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (ɛmaxchl), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPARchl, suggesting the corresponding ɛmaxchl to have less seasonal variation. This spatio-temporal convergence of LUE derived from fPARchl can be used to build simple but robust gross primary production models and to better constrain process-based models.

  17. Synthesis of methyl (13(2)R/S)-alkyl-pyropheophorbide a and a non-epimerized chlorophyll a mimic.

    PubMed

    Ogasawara, Shin; Tamiaki, Hitoshi

    2015-10-15

    The (13(2)R/S)-methoxycarbonyl group of methyl pheophorbides a/a' (chlorophyll a/a' derivatives) was converted to methyl, ethyl, propyl, and isopropyl groups through the C13(2)-alkylation under basic conditions followed by pyrolysis in 2,4,6-collidine with lithium iodide. All the resulting products, methyl 13(2)-alkyl-pyropheophorbides a, predominantly gave the (13(2)R)-stereoisomers with about one tenth of the (13(2)S)-epimers. Their stereochemistry was determined by 1D/2D NMR and their optical properties were characterized by visible absorption and circular dichroism spectroscopy. Methyl (13(2)R)-propyl-pyropheophorbide a was converted to (13(2)R)-propyl-pyrochlorophyll a by ester exchanging and magnesium chelating reactions. The synthetic chlorophyll a analogue showed non-epimerization at the 13(2)-position in pyridine-d5 at 40°C, while naturally occurring chlorophyll a was easily epimerized under the same conditions to give its epimeric mixture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Defining Chlorophyll-a Reference Conditions in European Lakes

    PubMed Central

    Alves, Maria Helena; Argillier, Christine; van den Berg, Marcel; Buzzi, Fabio; Hoehn, Eberhard; de Hoyos, Caridad; Karottki, Ivan; Laplace-Treyture, Christophe; Solheim, Anne Lyche; Ortiz-Casas, José; Ott, Ingmar; Phillips, Geoff; Pilke, Ansa; Pádua, João; Remec-Rekar, Spela; Riedmüller, Ursula; Schaumburg, Jochen; Serrano, Maria Luisa; Soszka, Hanna; Tierney, Deirdre; Urbanič, Gorazd; Wolfram, Georg

    2010-01-01

    The concept of “reference conditions” describes the benchmark against which current conditions are compared when assessing the status of water bodies. In this paper we focus on the establishment of reference conditions for European lakes according to a phytoplankton biomass indicator—the concentration of chlorophyll-a. A mostly spatial approach (selection of existing lakes with no or minor human impact) was used to set the reference conditions for chlorophyll-a values, supplemented by historical data, paleolimnological investigations and modelling. The work resulted in definition of reference conditions and the boundary between “high” and “good” status for 15 main lake types and five ecoregions of Europe: Alpine, Atlantic, Central/Baltic, Mediterranean, and Northern. Additionally, empirical models were developed for estimating site-specific reference chlorophyll-a concentrations from a set of potential predictor variables. The results were recently formulated into the EU legislation, marking the first attempt in international water policy to move from chemical quality standards to ecological quality targets. PMID:20401659

  19. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, T.G.; Roessler, P.G.; Jarvis, E.E.

    1997-08-26

    Disclosed is a method to transform chlorophyll C-containing algae. The method includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further, specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae. 2 figs.

  20. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, Terri Goodman; Roessler, Paul G.; Jarvis, Eric E.

    1997-01-01

    Disclosed is a method to transform chlorophyll C-containing algae which includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae.

  1. Physiological performance of the soybean crosses in salinity stress

    NASA Astrophysics Data System (ADS)

    Wibowo, F.; Armaniar

    2018-02-01

    Plants grown in saline soils will experience salinity stress. Salinity stresses, one of which causes oxidative stress, that cause an imbalance in the production ROS compounds (Reactive Oxygen Species), antioxidants and chlorophyll. Where the reaction of this compound can affect plant growth and plant production. This study aims to inform performance and action gene to soybean physiological character that potential to tolerant from salinity soil that characterized by the presence of SOD and POD antioxidant compounds and chlorophyll. This research used a destructive analysis from crossbred (AxN) and (GxN). A = Anjasmoro varieties and G = Grobogan varieties as female elders and N = Grobogan varieties as male elders (N1, N2, N3, N4, N5) that have been through the stage of saline soil selection. Research result can be concluded that GxN cross is more potential for Inheritance of the offspring. This can be seen from the observed skewness of character SOD, POD compounds, Chlorophyll a and chlorophyll b.

  2. Coupling of Coastal Zone Color Scanner data to a physical-biological model of the southeastern U.S. continental shelf ecosystem. I - CZCS data description and Lagrangian particle tracing experiments. II - An Eulerian model. III - Nutrient and phytoplankton fluxes and CZCS data assimilation

    NASA Technical Reports Server (NTRS)

    Ishizaka, Joji

    1990-01-01

    Surface phytoplankton biomass of the southeastern U.S. continental shelf area is discussed based on coastal zone color scanner (CZCS) images obtained in April 1980. Data of chlorophyll distributions are analyzed in conjunction with concurrent flow and temperature fields. Lagrangian particle tracing experiments show that the particles move consistently with the evolution of the chlorophyll patterns. A four-component physical-biological model for a horizontal plane at a nominal depth of 17 m is presented. Model simulations using various physical-biological dynamics and boundary conditions show that the variability of chlorophyll distributions is controlled by horizontal advection. Phytoplankton and nutrient fluxes, calculated using the model, show considerable variability with time. The chlorophyll distributions obtained from the CZCS images are assimilated into the model to improve the phytoplankton flux estimates.

  3. Laboratory tank studies of a single species of phytoplankton using a remote sensing fluorosensor

    NASA Technical Reports Server (NTRS)

    Brown, C. A., Jr.; Jarrett, O., Jr.; Farmer, F. H.

    1981-01-01

    Phytoplankton were grown in the laboratory for the purpose of testing a remote fluorosensor. The fluorosensor uses a unique four-wavelength dye laser system to excite phytoplankton bearing chlorophyll and to measure the chlorophyll fluorescence generated by this excitation. Six different species were tested, one at a time, and each was grown two to four times. Fluorescence measured by the fluorosensor provides good quantitative measurement of chlorophyll concentrations for all species tested while the cultures were in log phase growth. Fluorescene cross section ratios obtained in the single species tank tests support the hypothesis that the shape of the fluorescence cross section curve remains constant with the species (differences in fluorescence cross section ratios are a basis for determining composition of phytoplankton according to color group when a multiwavelength source of excitation is used. Linear relationships exist between extracted chlorophyll concentration and fluorescence measured by the remote fluorosensor during the log phase growth of phytoplankton cultures tested.

  4. Chlorophyll and carotenoid pigments of prochloron (prochlorophyta)

    NASA Technical Reports Server (NTRS)

    Paerl, H. W.; Lewin, R. A.; Cheng, L.

    1983-01-01

    High-performance liquid chromatography (HPLC) with a gradient-elution technique was utilized to separate and quantify chlorophylls a and b as well as major carotenoid pigments present in freeze-dried preprations of prochloron-didemnid associations and in Prochloron cells separated from host colonies. Results confirm earlier spectrophotometric evidence for both chlorophylls a and b in this prokaryote. Chlorophyll a:b ratios range from 4.14 to 19.71; generally good agreement was found between ratios determined in isolated cell preprations and in symbiotic colonies (in hospite). These values are 1.5 to 5-fold higher than ratios determined in a variety of eukaryotic green plants. The carotenoids in Prochloron are quantitatively and qualitatively similar to those found in various freshwater and marine blue-green algae (cyanopbytes) from high-light environments. However, Prochloron differs from cyanophytes by the absence of myxoxanthophyll and related glycosidic carotenoids. It pigment characteristics are considered sufficiently different from those of cyanophytes to justify its assignment to a separate algal division.

  5. A new relative referencing method for crop monitoring using chlorophyll fluorescence

    NASA Technical Reports Server (NTRS)

    Norikane, J.; Goto, E.; Kurata, K.; Takakura, T.

    2003-01-01

    The measurement of plant chlorophyll fluorescence has been used for many years as a method to monitor a plant's health status. These types of methods have been mostly relegated to the laboratory. The newly developed Relative Referencing Method allows for the measurement of chlorophyll fluorescence under artificial lighting conditions. The fluorescence signal can be determined by first taking a reference signal measurement, then a second measurement with an additional fluorescence excitation source. The first signal can then be subtracted from the second and the plant's chlorophyll fluorescence due to the second lighting source can be determined. With this simple approach, a photosynthesizing plant can be monitored to detect signs of water stress. Using this approach experiments on tomato plants have shown that it was possible to detect water stress, while the plants were continuously illuminated by fluorescent lamps. This method is a promising tool for the remote monitoring of crops grown in a CELSS-type application. Published by Elsevier Science Ltd on behalf of COSPAR.

  6. In Vivo Assessment of Cold Tolerance through Chlorophyll-a Fluorescence in Transgenic Zoysiagrass Expressing Mutant Phytochrome A

    PubMed Central

    Gururani, Mayank Anand; Venkatesh, Jelli; Ganesan, Markkandan; Strasser, Reto Jörg; Han, Yunjeong; Kim, Jeong-Il; Lee, Hyo-Yeon; Song, Pill-Soon

    2015-01-01

    Chlorophyll-a fluorescence analysis provides relevant information about the physiology of plants growing under abiotic stress. In this study, we evaluated the influence of cold stress on the photosynthetic machinery of transgenic turfgrass, Zoysia japonica, expressing oat phytochrome A (PhyA) or a hyperactive mutant phytochrome A (S599A) with post-translational phosphorylation blocked. Biochemical analysis of zoysiagrass subjected to cold stress revealed reduced levels of hydrogen peroxide, increased proline accumulation, and enhanced specific activities of antioxidant enzymes compared to those of control plants. Detailed analyses of the chlorophyll-a fluorescence data through the so-called OJIP test exhibited a marked difference in the physiological status among transgenic and control plants. Overall, these findings suggest an enhanced level of cold tolerance in S599A zoysiagrass cultivars as reflected in the biochemical and physiological analyses. Further, we propose that chlorophyll-a fluorescence analysis using OJIP test is an efficient tool in determining the physiological status of plants under cold stress conditions. PMID:26010864

  7. Physiological effects of the Mexico City atmosphere on lichen transplants on oaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zambrano, A.; Nash, T.H. III; Gries, C.

    1999-10-01

    Two lichen species, Usnea ceratina Ach. and Everniastrum neocirrhatum (Hale M. Wirth) Hale ex Sipman, were transplanted for 54 d into an oak forest (Quercus rugosa) in the vicinity of Mexico City to assess their ability to survive near a highly polluted urban environment. Net photosynthesis based on dry weight and chlorophyll b decreased respectively ca. 30 and 25% compared with control samples in a less polluted site, ca. 100 km north of Mexico City. There was no interspecific difference in the response of carbon fixation, but E. neocirrhatum was more sensitive to chlorophyll b degradation near Mexico City thanmore » U. ceratina. Chlorophyll a was also degradated (ca. 15%) near Mexico City. Changes in total carotenes were mostly dependent on species and time rather than on location. High concurrent levels of ozone and sulfur dioxide in the air are discussed as possible causes of the decline in the lichen photosynthesis and chlorophyll content.« less

  8. Towards a more ecologically relevant assessment of the impact of heavy metals on the photosynthesis of the seagrass, Zostera capricorni.

    PubMed

    Macinnis-Ng, Catriona M O; Ralph, Peter J

    2002-01-01

    This in situ study used photosynthetic activity (measured as chlorophyll a fluorescence) and photosynthetic pigment concentrations to assess the effect of copper, cadmium, lead and zinc on the seagrass Zostera capricorni. Custom-made portable in situ exposure (PIE) chambers were developed so seagrasses could be dosed within the meadow. Z capricorni was exposed to 0.1 and I mg l(-1) of metal solutions for 10 h. During this time and for the subsequent four-day recovery period, the effective quantum yield of photosystem II (PS II) (deltaF/Fm') was measured. While the results were variable, copper and zinc exposed samples had a depressed deltaF/Fm' during the exposure period. Samples exposed to zinc recovered to pre-exposure levels but those exposed to copper did not. Cadmium and lead did not impact on the chlorophyll a fluorescence and the chlorophyll pigment data supported these findings. This study presents an innovative new application of chlorophyll a fluorescence stress assessment.

  9. Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy.

    PubMed

    Wells, Kym L; Lambrev, Petar H; Zhang, Zhengyang; Garab, Gyözö; Tan, Howe-Siang

    2014-06-21

    We present here the first room-temperature 2D electronic spectroscopy study of energy transfer in the plant light-harvesting complex II, LHCII. Two-dimensional electronic spectroscopy has been used to study energy transfer dynamics in LHCII trimers from the chlorophyll b Qy band to the chlorophyll a Qy band. Observing cross-peak regions corresponding to couplings between different excitonic states reveals partially resolved fine structure at the exciton level that cannot be isolated by pump-probe or linear spectroscopy measurements alone. Global analysis of the data has been performed to identify the pathways and time constants of energy transfer. The measured waiting time (Tw) dependent 2D spectra are found to be composed of 2D decay-associated spectra with three timescales (0.3 ps, 2.3 ps and >20 ps). Direct and multistep cascading pathways from the high-energy chlorophyll b states to the lowest-energy chlorophyll a states have been resolved occurring on time scales of hundreds of femtoseconds to picoseconds.

  10. Characterization of the terminal stages of chlorophyll (ide) synthesis in etioplast membrane preparations.

    PubMed Central

    Griffiths, W T

    1975-01-01

    1. Chlorophyll (ide) formation from protochlorophyll (ide) that is normally inactive was demonstrated in etioplast membranes isolated from maize and barlley plants, the process being dependent on intermittent illumination and the addition of NADPH. 2. The addition of NADPH to the membranes was shown to result in the conversion of inactive protochlorophyll (ide) absorbing at about 630 nm into a form(s) with light-absorption maxima at about 640 and 652 nm, both of which disappear when chlorophyll (ide) is formed on illumination. 3. The temperature-dependence of the activation process and its response to a variety of reagents were examined. From these, the conclusion is drawn that -SH groups are involved in the activation but in the active complex these are unavailable for reaction with -SH reagents. 4. Evidence is presented for the occurrence of glucose 6-phosphate dehydrogenase activity within etioplasts and the suggestion is made that the oxidative pentose phosphate pathway can provide the NADPH required for chlorophyll biosynthesis during the early stages of greening. PMID:5998

  11. [An analysis of nutritional and harmful components of vegetables grown in plastic greenhouses].

    PubMed

    Yao, H; Yan, W; Li, G; Chen, Y; Guo, W; Wang, G; Xu, Z; Feng, C; Liu, K; Jin, D

    1999-09-01

    To study the changes in nutritional and harmful components of vegetables grown in plastic greenhouses. In plastic greenhouses, microclimate and air concentrations of carbon monoxide, carbon dioxide, fluoride and respirable particulate were measured, and chlorophyll, total sugar, crude fiber, nitrite, fluoride, arsenic and some mineral elements in vegetables were determined as compared with those grown in the open-air fields. Greenhouse appeared a lower wind speed and darker illumination. Contents of chlorophyll a an b, total chlorophyll, reduced vitamin C, crude fiber in vegetables grown in greenhouse all were lower than those grown in open-air fields. Contents of potassium, calcium, magnesium, iron, zinc, copper and phosphorous were all lower in the vegetables grown in greenhouse than those grown in open-air fields. The contents of chlorophyll reducing Vitamin C. Lower wind speed and inadequate illumination in greenhouse affected photosynthesis and uptake of water in vegetables causing changes in their nutritional components. But, no contamination of burning coal was found in vegetables grown in greenhouse.

  12. Detection of hidden mineral deposits by airborne spectral analysis of forest canopies. [Spirit Lake, Washington; Catheart Mountain, Maine; Blacktail Mountain, Montana; and Cotter Basin, Montana

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1984-01-01

    Data from field surveys and biogeochemical tests conducted in Maine, Montana, and Washington strongly correlate with results obtained using high resolution airborne spectroradiometer which detects an anomalous spectral waveform that appears definitely associated with sulfide mineralization. The spectral region most affected by mineral stress is between 550 nm and 750 nm. Spectral variations observed in the field occur on the wings of the red chlorophyll band centered at about 690 nm. The metal-stress-induced variations on the absorption band wing are most successfully resolved in the high spectral resolution field data using a waveform analysis technique. The development of chlorophyll pigments was retarded in greenhouse plants doped with copper and zinc in the laboratory. The lowered chlorophyll production resulted in changes on the wings of the chlorophyll bands of reflectance spectra of the plants. The airborne spectroradiometer system and waveform analysis remains the most sensitive technique for biogeochemical surveys.

  13. The effects of lead stress on photosynthetic function and chloroplast ultrastructure of Robinia pseudoacacia seedlings.

    PubMed

    Zhou, Jian; Jiang, Zeping; Ma, Jie; Yang, Lifeng; Wei, Yuan

    2017-04-01

    In this experiment, the effects of different lead (Pb) concentrations (0, 200, 600, 1000, 1400 mg kg -1 ) on photosynthesis and chlorophyll fluorescence in Robinia pseudoacacia seedlings were examined. As Pb concentration increased, chlorophyll a, chlorophyll b, total chlorophyll content, net photosynthetic rate, transpiration rate, stomatal conductance (g s ), and mesophyll intercellular carbon dioxide concentration were gradually reduced. Maximal photochemical efficiency, photochemical quenching, and quantum yield also decreased. However, the initial fluorescence and nonphotochemical quenching gradually increased. Chloroplasts swelled owing to local plasmolysis and lost most of their starch content, and their thylakoid lamellae gradually became disordered and loosely packed. When the chloroplast envelope was lost under high Pb stress (≥1000 mg kg -1 ), lipid globules were released into the surrounding mesophyll cell. Multiple regression analysis showed that g s and inactivity of the PSII reaction center had the greatest effect on photosynthetic function, whereas inhibition of electron transport had minimal effects on black locust seedlings under Pb stress.

  14. Reducing variability that is due to secondary pigments in the retrieval of chlorophyll a concentration from marine reflectance: a case study in the western equatorial Pacific Ocean.

    PubMed

    Gross, Lydwine; Frouin, Robert; Dupouy, Cécile; André, Jean Michel; Thiria, Sylvie

    2004-07-10

    A neural network is developed to retrieve chlorophyll a concentration from marine reflectance by use of the five visible spectral bands of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The network, dedicated to the western equatorial Pacific Ocean, is calibrated with synthetic data that vary in terms of atmospheric content, solar zenith angle, and secondary pigments. Pigment variability is based on in situ data collected in the study region and is introduced through nonlinear modeling of phytoplankton absorption as a function of chlorophyll a, b, and c and photosynthetic and photoprotectant carotenoids. Tests performed on simulated yet realistic data show that chlorophyll a retrievals are substantially improved by use of the neural network instead of classical algorithms, which are sensitive to spectrally uncorrelated effects. The methodology is general, i.e., is applicable to regions other than the western equatorial Pacific Ocean.

  15. Non-radiative relaxation of photoexcited chlorophylls: Theoretical and experimental study

    DOE PAGES

    Bricker, William P.; Shenai, Prathamesh M.; Ghosh, Avishek; ...

    2015-09-08

    Nonradiative relaxation of high-energy excited states to the lowest excited state in chlorophylls marks the first step in the process of photosynthesis. We perform ultrafast transient absorption spectroscopy measurements, that reveal this internal conversion dynamics to be slightly slower in chlorophyll B than in chlorophyll A. With modeling this process, non-adiabatic excited state molecular dynamics simulations uncovers a critical role played by the different side groups in the two molecules in governing the intramolecular redistribution of excited state wavefunction, leading, in turn, to different time-scales. Even given smaller electron-vibrational couplings compared to common organic conjugated chromophores, these molecules are ablemore » to efficiently dissipate about 1 eV of electronic energy into heat on the timescale of around 200 fs. This is achieved via selective participation of specific atomic groups and complex global migration of the wavefunction from the outer to inner ring, which may have important implications for biological light-harvesting function.« less

  16. Exogenous spermidine is enhancing tomato tolerance to salinity-alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism.

    PubMed

    Li, Jianming; Hu, Lipan; Zhang, Li; Pan, Xiongbo; Hu, Xiaohui

    2015-12-29

    Salinity-alkalinity stress is known to adversely affect a variety of processes in plants, thus inhibiting growth and decreasing crop yield. Polyamines protect plants against a variety of environmental stresses. However, whether exogenous spermidine increases the tolerance of tomato seedlings via effects on chloroplast antioxidant enzymes and chlorophyll metabolism is unknown. In this study, we examined the effect of exogenous spermidine on chlorophyll synthesis and degradation pathway intermediates and related enzyme activities, as well as chloroplast ultrastructure, gene expression, and antioxidants in salinity-alkalinity-stressed tomato seedlings. Salinity-alkalinity stress disrupted chlorophyll metabolism and hindered uroorphyrinogen III conversion to protoporphyrin IX. These effects were more pronounced in seedlings of cultivar Zhongza No. 9 than cultivar Jinpengchaoguan. Under salinity-alkalinity stress, exogenous spermidine alleviated decreases in the contents of total chlorophyll and chlorophyll a and b in seedlings of both cultivars following 4 days of stress. With extended stress, exogenous spermidine reduced the accumulation of δ-aminolevulinic acid, porphobilinogen, and uroorphyrinogen III and increased the levels of protoporphyrin IX, Mg-protoporphyrin IX, and protochlorophyllide, suggesting that spermidine promotes the conversion of uroorphyrinogen III to protoporphyrin IX. The effect occurred earlier in cultivar Jinpengchaoguan than in cultivar Zhongza No. 9. Exogenous spermidine also alleviated the stress-induced increases in malondialdehyde content, superoxide radical generation rate, chlorophyllase activity, and expression of the chlorophyllase gene and the stress-induced decreases in the activities of antioxidant enzymes, antioxidants, and expression of the porphobilinogen deaminase gene. In addition, exogenous spermidine stabilized the chloroplast ultrastructure in stressed tomato seedlings. The tomato cultivars examined exhibited different capacities for responding to salinity-alkalinity stress. Exogenous spermidine triggers effective protection against damage induced by salinity-alkalinity stress in tomato seedlings, probably by maintaining chloroplast structural integrity and alleviating salinity-alkalinity-induced oxidative damage, most likely through regulation of chlorophyll metabolism and the enzymatic and non-enzymatic antioxidant systems in chloroplast. Exogenous spermidine also exerts positive effects at the transcription level, such as down-regulation of the expression of the chlorophyllase gene and up-regulation of the expression of the porphobilinogen deaminase gene.

  17. Multi-decadal synthesis of benthic pelagic coupling in the western arctic: Role of cross-shelf advective processes

    NASA Astrophysics Data System (ADS)

    Dunton, Kenneth H.; Goodall, Jonathan L.; Schonberg, Susan V.; Grebmeier, Jacqueline M.; Maidment, David R.

    2005-12-01

    Using geographic information systems (GIS) software and geostatistical techniques, we utilized three decades of water-column chlorophyll a data to examine the relative importance of autochthonous versus allochthonous sources of reduced carbon to benthic communities that occur from the northern Bering to the eastern Beaufort Sea shelf. Spatial trend analyses revealed areas of high benthic biomass (>300 g m -2) and chlorophyll (>150 mg m -2) on both the southern and northern Chukchi shelf; both areas are known as depositional centers for reduced organic matter that originates on the Bering Sea shelf and is advected northward in Anadyr and Bering shelf water masses. We found a significant correlation between biomass and chlorophyll a in the Chukchi Sea, reflective of the strong benthic-pelagic coupling in a system that is utilized heavily by benthic-feeding marine mammals. In contrast, there was no significant correlation between biomass and chlorophyll in the Beaufort Sea, which by comparison, is considerably less productive (biomass and chlorophyll, <75 g m -2 and <50 mg m -2, respectively). One notable exception is an area of relatively high biomass (50-100 g m -2) and chlorophyll (80 mg m -2) near Barter Island in the eastern Beaufort Sea. Compared to other adjacent areas in the Beaufort Sea, the chlorophyll values in the vicinity of Barter Island were considerably higher and likely reflect a long-hypothesized upwelling in that area and close coupling between the benthos and autochthonous production. In the Bering Sea, a drop in benthic biomass in 1994 compared with previous measurements (1974-1993) may support earlier observations that document a decline in biomass that began between the 1980s and 1990s in the Chirikov Basin and south of St. Lawrence Island. The results of this study indicate that the benthos is an excellent long-term indicator of both local and physical advective processes. In addition, this work provides further evidence that secondary production on arctic shelves can be significantly augmented by reduced carbon advected from highly productive adjacent shelves.

  18. Carbon Monoxide Is Involved in Hydrogen Gas-Induced Adventitious Root Development in Cucumber under Simulated Drought Stress

    PubMed Central

    Chen, Yue; Wang, Meng; Hu, Linli; Liao, Weibiao; Dawuda, Mohammed M.; Li, Chunlan

    2017-01-01

    Hydrogen gas (H2) and carbon monoxide (CO) are involved in plant growth and developmental processes and may induce plant tolerance to several stresses. However, the independent roles and interaction effect of H2 and CO in adventitious root development under drought conditions have still not received the needed research attention. We hypothesize that there exists crosstalk between H2 and CO during adventitious root development under drought stress. The results of our current study revealed that 50% (v/v) hydrogen-rich water (HRW), 500 μM Hemin (the CO donor) and 30% (w/v) CO aqueous solution apparently promoted the development of adventitious roots in cucumber explants (Cucumis Sativus L.) under drought stress. H2 and CO increased relative water content (RWC), leaf chlorophyll content (chlorophyll a, b, and a+b), and chlorophyll fluorescence parameters [photochemical efficiency of photosystem II (PSII), PSII actual photochemical efficiency and photochemical quench coefficient] under drought condition. When the CO scavenger hemoglobin (Hb) or zinc protoporphyrin IX (ZnPPIX) was added to HRW/CO aqueous solution, the positive effect of HRW/CO aqueous solution on RWC, leaf chlorophyll content, and chlorophyll fluorescence parameters were reversed. Additionally, superoxide dismutases, peroxidase, catalase, and ascorbate peroxidase was significantly increased in the explants treated with HRW and CO aqueous solution under drought stress, thus alleviating oxidative damage, as indicated by decreases in thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), and superoxide radical (O2-) levels. H2 and CO also improved the levels of water soluble carbohydrate, total soluble protein, and proline content. However, the above CO/H2-mediated effects were reversed by CO scavenger Hb or CO specific synthetic inhibitor ZnPPIX. Therefore, CO may be involved in H2-induced adventitious rooting under drought stress and alleviate oxidative damage by enhancing RWC, leaf chlorophyll content, chlorophyll fluorescence parameters, metabolic constituent content, activating anti-oxidant enzymes and reducing TBARS, O2-, and H2O2 levels. PMID:28223992

  19. Vegetation Function and Physiology: Photosynthesis, Fluorescence and Non-photochemical Quenching (NPQ)

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Yao, T.

    2017-12-01

    Photosynthesis is a basic physiological function of vegetation that relies on PAR provided through photosynthetic pigments (mainly chlorophyll) for plant growth and biomass accumulation. Vegetation chlorophyll (chl) content and non-chlorophyll (non-chl) components vary with plant functional types (PFTs) and growing stages. The PAR absorbed by canopy chlorophyll (APARchl) is associated with photosynthesis (i.e., gross primary production, GPP) while the PAR absorbed by canopy non-chl components (APARnon-chl) is not associated with photosynthesis. Under non-optimal environmental conditions, vegetation is "stressed" and both photosynthesis (GPP) and light use efficiency are reduced, therefore, excess portions of APARchl are discarded as fluorescence or non-photochemical quenching (NPQ). The photochemical reflectance index (PRI) is a measurement related to NPQ. Both PRI and yield of solar induced chlorophyll fluorescence (SIFyield = SIF/APARchl) have been proposed as possible bio-indicators of LUEchl. We have successfully developed an algorithm to distinguish between chlorophyll and non-chl components of vegetation, and to retrieve fractional absorptions of PAR by chlorophyll (fAPARchl) and by non-chl components (fAPARnon-chl) with surface reflectance of MODIS bands 1 - 7. A method originally pioneered by Hanan et al. (2002) has been used to retrieve fAPAR for vegetation photosynthesis (fAPARPSN) at flux tower sites based on the light response curve of tower net ecosystem exchange (NEE) and incident PAR at low light intensity. We have also retrieved the PRI from MODIS data (bands 11 and 1) and have derived SIFyield with the Global Ozone Monitoring Experiment - 2 (GOME-2) SIF data. We find that fAPARPSN at flux tower sites matches well with site fAPARchl, and ratio fAPARnon-chl/fAPARchl varies largely. APARchl can explain >=78% variation in seasonal GPP . We disentangle the possible impact of fAPARchl on PRI from physiological stress response, disentangle the possible impact of APARchl on SIFyield from physiological stress response, and find that integrating three bio-parameters fAPARchl, PRI and SIFyield can explain >=87% variation in seasonal GPP . Therefore, quantifying fAPARchl, PRI and SIF has the best potential to monitor vegetation function and physiology.

  20. Sampling Biases in MODIS and SeaWiFS Ocean Chlorophyll Data

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Casey, Nancy W.

    2007-01-01

    Although modem ocean color sensors, such as MODIS and SeaWiFS are often considered global missions, in reality it takes many days, even months, to sample the ocean surface enough to provide complete global coverage. The irregular temporal sampling of ocean color sensors can produce biases in monthly and annual mean chlorophyll estimates. We quantified the biases due to sampling using data assimilation to create a "truth field", which we then sub-sampled using the observational patterns of MODIS and SeaWiFS. Monthly and annual mean chlorophyll estimates from these sub-sampled, incomplete daily fields were constructed and compared to monthly and annual means from the complete daily fields of the assimilation model, at a spatial resolution of 1.25deg longitude by 0.67deg latitude. The results showed that global annual mean biases were positive, reaching nearly 8% (MODIS) and >5% (SeaWiFS). For perspective the maximum interannual variability in the SeaWiFS chlorophyll record was about 3%. Annual mean sampling biases were low (<3%) in the midlatitudes (between -40deg and 40deg). Low interannual variability in the global annual mean sampling biases suggested that global scale trend analyses were valid. High latitude biases were much higher than the global annual means, up to 20% as a basin annual mean, and over 80% in some months. This was the result of the high solar zenith angle exclusion in the processing algorithms. Only data where the solar angle is <75deg are permitted, in contrast to the assimilation which samples regularly over the entire area and month. High solar zenith angles do not facilitate phytoplankton photosynthesis and consequently low chlorophyll concentrations occurring here are missed by the data sets. Ocean color sensors selectively sample in locations and times of favorable phytoplankton growth, producing overestimates of chlorophyll. The biases derived from lack of sampling in the high latitudes varied monthly, leading to artifacts in the apparent seasonal cycle from ocean color sensors. A false secondary peak in chlorophyll occurred in May-August, which resulted from lack of sampling in the Antarctic.

  1. Light Absorption in Arctic Sea Ice - Black Carbon vs Chlorophyll

    NASA Astrophysics Data System (ADS)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Hunke, E. C.; Flanner, M.; Wang, H.; Dubey, M. K.; Jeffery, N.

    2015-12-01

    The fingerprint of climate change is more obvious in the Arctic than any other place on Earth. This is not only because the surface temperature there has increased at twice the rate of global mean temperature but also because Arctic sea ice extent has reached a record low of 49% reduction relative to the 1979-2000 climatology. Radiation absorption through black carbon (BC) deposited on Arctic snow and sea ice surface is one of the major hypothesized contributors to the decline. However, we note that chlorophyll-a absorption owing to increasing biology activity in this region could be a major competitor during boreal spring. Modeling of sea-ice physical and biological processes together with experiments and field observations promise rapid progress in the quality of Arctic ice predictions. Here we develop a dynamic ice system module to investigate discrete absorption of both BC and chlorophyll in the Arctic, using BC deposition fields from version 5 of Community Atmosphere Model (CAM5) and vertically distributed layers of chlorophyll concentrations from Sea Ice Model (CICE). To this point, our black carbon mixing ratios compare well with available in situ data. Both results are in the same order of magnitude. Estimates from our calculations show that sea ice and snow around the Canadian Arctic Archipelago and Baffin Bay has the least black carbon absorption while values at the ice-ocean perimeter in the region of the Barents Sea peak significantly. With regard to pigment concentrations, high amounts of chlorophyll are produced in Arctic sea ice by the bottom microbial community, and also within the columnar pack wherever substantial biological activity takes place in the presence of moderate light. We show that the percentage of photons absorbed by chlorophyll in the spring is comparable to the amount attributed to BC, especially in areas where the total deposition rates are decreasing with time on interannual timescale. We expect a continuous increase in chlorophyll absorption as the biological activity becomes stronger in thin ice toward the center of the Arctic basin. Alternatively, a shift in relative importance could occur as total BC mixing ratios are reduced because of environmental advocacy.

  2. Tracking upwind areas associated with enhanced chlorophyll-a concentrations to examine the impact of atmospheric deposition on phytoplankton production in the Sargasso and Mediterranean Seas

    NASA Astrophysics Data System (ADS)

    Kim, T. W.

    2016-12-01

    Transports of terrestrial materials through the atmosphere and their depositions influence ocean biogeochemistry. In particular, growth of phytoplankton in oligotrophic oceans may be stimulated by the atmospheric deposition of nutrients (e.g. reactive nitrogen species and iron). The Sargasso and Mediterranean Seas are two oligotrophic oceans that may show the enhancements in phytoplankton production by the atmospheric deposition, because their upwind areas include African deserts and urban areas of the United States and the Europe. To test this hypothesis, time series of chlorophyll-a concentration (from the Moderate Resolution Imaging Spectroradiometer) were combined with air mass back trajectory (from Hybrid Single Particle Lagrangian Integrated Trajectory Model) to perform the Concentration-Weighted Trajectory (CWT) receptor model. In this model, all individual endpoints of a single air mass back trajectory are associated with a chlorophyll-a concentration measured at the starting time of air mass back trajectory. The upwind areas showing relatively high CWT values represent they are mostly associated with enhanced chlorophyll-a concentration and contribute to phytoplankton production. We carried out the CWT in 65 and 188 stations for the Mediterranean and Saragossa Seas, respectively. The results showed relatively high CWT values in the North American and northern African continents. However, wind usually flows from these continents to ocean during cold months when chlorophyll-a concentrations are generally high. Thus the results appeared to largely originate from seasonal cycle of ocean mixed layer depth. To minimize the effect of seasonal variations, we divided chlorophyll-a concentrations by monthly climatology, which resulted in much reduced contrast in the CWT values between land and ocean areas. However, some upwind areas including the northern African desert regions still showed relatively high CWT values, maybe implying deposition-induced stimulation of phytoplankton production. We also performed CWT receptor model using sea surface temperature instead of chlorophyll-a concentration to see the effect of ocean mixed layer depth. These results will be included in the presentation.

  3. Success Continues: NASA-Developed Plant Health Measurement Technology is Becoming Big Business for Illinois Company

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Originally produced in 2001, sales of Spectrum Technologies' CM 1000 chlorophyll meter have now topped $290,000 on 140 units. Up-to-date sales figures for 2003 have shown an almost 50% increase over the combined sales totals of 2001 and 2002. The CM 1000 chlorophyll meter identifies the failing health of a plant based on the chlorophyll content of the plant up to 16 days before it is physically detectable by the human eye. Poor health, 'stress' in a plant, is a result of unfavorable growing conditions; lack of nutrients, insufficient water, disease or insect damage.

  4. Prochloron research

    NASA Technical Reports Server (NTRS)

    Lewin, R. A.; Cheng, L.

    1983-01-01

    The purpose was to prepare Prochloron photosynthetic membranes for the isolation of the two major chlorophyll-proteins, the P700-chlorophyll a-protein and the light-harvesting chlorophyll a/b-protein, using SDS-polyacrylamide gel electrophoresis. The prepared proteins (purified) were examined for their cross-reactivity to polyclonal antibodies prepared from higher plant proteins. In addition, material was prepared for electron microscopy, and isolation of the DNA for determination of its general complexity (COT analysis) and similarity to barley chloroplast DNA and Anabaena DNA by using restriction-endonuclease analysis. Kleinschmidt spreads of the DNA were in the electron microscope to identify and measure the extent and size of the circlar DNA.

  5. Estimating Chlorophyll Conditions in Southern New England Coastal Waters from Hyperspectral Aircraft Remote Sensing

    EPA Science Inventory

    Chlorophyll a (chl a) is commonly measured in water quality monitoring programs for coastal and freshwater systems. The concentration of chl a, when evaluated with other condition indicators such as water clarity and dissolved oxygen concentrations, provides information on the en...

  6. CHLOROPHYLL A DISTRIBUTION IN NARRAGANSETT BAY, RI: USING A SPECTRAL CURVATURE ALGORITHM

    EPA Science Inventory

    Chlorophyll a, a primary indicator of eutrophication in estuarine waters, varies enough in time and space to create spatial problems when monitored by satellite, and temporal problems when measured with in situ field programs. Using aircraft to sense ocean color of local waters, ...

  7. Sun-induced chlorophyll fluorescence, photosynthesis, and light use efficiency of a soybean field from seasonally continuous measurements

    USDA-ARS?s Scientific Manuscript database

    Recent development of sun-induced chlorophyll fluorescence (SIF) technology is stimulating studies to remotely approximate canopy photosynthesis (measured as gross primary production, GPP). While multiple applications have advanced the empirical relationship between GPP and SIF, mechanistic understa...

  8. Impact of change in climate and policy from 1988 to 2007 on environmental and microbial variables at the time series station Boknis Eck, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hoppe, H.-G.; Giesenhagen, H. C.; Koppe, R.; Hansen, H.-P.; Gocke, K.

    2013-07-01

    Phytoplankton and bacteria are sensitive indicators of environmental change. The temporal development of these key organisms was monitored from 1988 to the end of 2007 at the time series station Boknis Eck in the western Baltic Sea. This period was characterized by the adaption of the Baltic Sea ecosystem to changes in the environmental conditions caused by the conversion of the political system in the southern and eastern border states, accompanied by the general effects of global climate change. Measured variables were chlorophyll, primary production, bacteria number, -biomass and -production, glucose turnover rate, macro-nutrients, pH, temperature and salinity. Negative trends with time were recorded for chlorophyll, bacteria number, bacterial biomass and bacterial production, nitrate, ammonia, phosphate, silicate, oxygen and salinity while temperature, pH, and the ratio between bacteria numbers and chlorophyll increased. Strongest reductions with time occurred for the annual maximum values, e.g. for chlorophyll during the spring bloom or for nitrate during winter, while the annual minimum values remained more stable. In deep water above sediment the negative trends of oxygen, nitrate, phosphate and bacterial variables as well as the positive trend of temperature were similar to those in the surface while the trends of salinity, ammonia and silicate were opposite to those in the surface. Decreasing oxygen, even in the surface layer, was of particular interest because it suggested enhanced recycling of nutrients from the deep hypoxic zones to the surface by vertical mixing. The long-term seasonal patterns of all variables correlated positively with temperature, except chlorophyll and salinity. Salinity correlated negatively with all bacterial variables (as well as precipitation) and positively with chlorophyll. Surprisingly, bacterial variables did not correlate with chlorophyll, which may be inherent with the time lag between the peaks of phytoplankton and bacteria during spring. Compared to the 20-yr averages of the environmental and microbial variables, the strongest negative deviations of corresponding annual averages were measured about ten years after political change for nitrate and bacterial secondary production (~ -60%), followed by chlorophyll (-50%) and bacterial biomass (-40%). Considering the circulation of surface currents in the Baltic Sea we interpret the observed patterns of the microbial variables at the Boknis Eck time series station as a consequence of the improved management of water resources after 1989 and - to a minor extent - the trends of the climate variables salinity and temperature.

  9. Impact of change in climate and policy from 1988 to 2007 on environmental and microbial variables at the time series station Boknis Eck, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hoppe, H.-G.; Giesenhagen, H. C.; Koppe, R.; Hansen, H.-P.; Gocke, K.

    2012-12-01

    Phytoplankton and bacteria are sensitive indicators of environmental change. The temporal development of these key organisms was monitored from 1988 to the end of 2007 at the time series station Boknis Eck in the Western Baltic Sea. This period was characterized by the adaption of the Baltic Sea ecosystem to changes in the environmental conditions caused by the collapse and conversion of the political system in the Southern and Eastern Border States, accompanied by the general effects of global climate change. Measured variables were chlorophyll, primary production, bacteria number, -biomass and -production, glucose turnover rate, macro-nutrients, pH, temperature and salinity. Negative trends with time were recorded for chlorophyll, the bacterial variables, nitrate, ammonia, phosphate, silicate, oxygen and salinity while temperature, pH, and the ratio between bacteria numbers and chlorophyll increased. The strongest reductions with time occurred for the annual maximum values, e.g. for chlorophyll during the spring bloom or for nitrate during winter, while the annual minimum values remained more stable. In deep water above sediment the negative trends of oxygen, nitrate, phosphate and bacterial variables as well as the positive trend of temperature were similar to those in the surface while the trends of salinity, ammonia and silicate were opposite to those in the surface. Decreasing oxygen even in the surface layer was of particular interest because it suggested enhanced recycling of nutrients from the deep hypoxic zones to the surface by vertical mixing. In the long run all variables correlated positively with temperature, except chlorophyll and salinity. Salinity correlated negatively with all bacterial variables as well as precipitation and positively with chlorophyll. Surprisingly, bacterial variables did not correlate with chlorophyll which may be inherent with the time lag between the peaks of phytoplankton and bacteria during spring. Compared to the 20-yr averages of the environmental and microbial variables, the strongest negative deviations of corresponding annual averages were measured about ten years after political change for nitrate and bacterial secondary production (~ -60%), followed by chlorophyll (-50%) and bacterial biomass (-40%). Considering the circulation of surface currents in the Baltic Sea we conclude that the improved management of water resources after 1989 together with the trends of the climate variables salinity and temperature were responsible for the observed patterns of the microbial variables at the Boknis Eck time series station.

  10. Remobilization of Phytol from Chlorophyll Degradation Is Essential for Tocopherol Synthesis and Growth of Arabidopsis

    PubMed Central

    vom Dorp, Katharina; Hölzl, Georg; Plohmann, Christian; Eisenhut, Marion; Abraham, Marion

    2015-01-01

    Phytol from chlorophyll degradation can be phosphorylated to phytyl-phosphate and phytyl-diphosphate, the substrate for tocopherol (vitamin E) synthesis. A candidate for the phytyl-phosphate kinase from Arabidopsis thaliana (At1g78620) was identified via a phylogeny-based approach. This gene was designated VITAMIN E DEFICIENT6 (VTE6) because the leaves of the Arabidopsis vte6 mutants are tocopherol deficient. The vte6 mutant plants are incapable of photoautotrophic growth. Phytol and phytyl-phosphate accumulate, and the phytyl-diphosphate content is strongly decreased in vte6 leaves. Phytol feeding and enzyme assays with Arabidopsis and recombinant Escherichia coli cells demonstrated that VTE6 has phytyl-P kinase activity. Overexpression of VTE6 resulted in increased phytyl-diphosphate and tocopherol contents in seeds, indicating that VTE6 encodes phytyl-phosphate kinase. The severe growth retardation of vte6 mutants was partially rescued by introducing the phytol kinase mutation vte5. Double mutant plants (vte5 vte6) are tocopherol deficient and contain more chlorophyll, but reduced amounts of phytol and phytyl-phosphate compared with vte6 mutants, suggesting that phytol or phytyl-phosphate are detrimental to plant growth. Therefore, VTE6 represents the missing phytyl-phosphate kinase, linking phytol release from chlorophyll with tocopherol synthesis. Moreover, tocopherol synthesis in leaves depends on phytol derived from chlorophyll, not on de novo synthesis of phytyl-diphosphate from geranylgeranyl-diphosphate. PMID:26452599

  11. Effects of sodium pentaborate pentahydrate exposure on Chlorella vulgaris growth, chlorophyll content, and enzyme activities.

    PubMed

    Chen, Xueqing; Pei, Yuansheng

    2016-10-01

    Sodium pentaborate pentahydrate (SPP) is a rare mineral. In this study, SPP was synthesized from boric acid and borax through low-temperature crystallization, and its effects on the growth of the alga, Chlorella vulgaris (C. vulgaris) were assessed. The newly synthesized SPP was characterized by chemical analysis, X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and differential thermal analysis. The changes in C. vulgaris growth, chlorophyll content, and enzyme activities upon exposure to SPP for 168h were evaluated. Results showed that SPP treatment was detrimental to C. vulgaris growth during the first 24-120h of exposure. The harmful effects, however, diminished over time (168h), even at an effective medium concentration of 226.37mg BL(-1) (the concentration of boron applied per liter of culture medium). A similar trend was observed for chlorophyll content (chlorophyll a and b) and indicated that the photosynthesis of C. vulgaris was not affected and that high levels of SPP may even promote chlorophyll synthesis. Superoxide dismutase and catalase activities of C. vulgaris increased during 24-120h exposure to SPP, but these activities gradually decreased as culture time progressed. In other words, the initial detrimental effects of synthetic SPP on C. vulgaris were temporary and reversible. This research provides a scientific basis for applications of SPP in the environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Immobilization of Chlamydomonas reinhardtii CLH1 on APTES-Coated Magnetic Iron Oxide Nanoparticles and Its Potential in the Production of Chlorophyll Derivatives.

    PubMed

    Yen, Chih-Chung; Chuang, Yao-Chen; Ko, Chia-Yun; Chen, Long-Fang O; Chen, Sheau-Shyang; Lin, Chia-Jung; Chou, Yi-Li; Shaw, Jei-Fu

    2016-07-26

    Recombinant Chlamydomonas reinhardtii chlorophyllase 1 (CrCLH1) that could catalyze chlorophyll hydrolysis to chlorophyllide and phytol in vitro was successfully expressed in Escherichia coli. The recombinant CrCLH1 was immobilized through covalent binding with a cubic (3-aminopropyl) triethoxysilane (APTES) coating on magnetic iron oxide nanoparticles (MIONPs), which led to markedly improved enzyme performance and decreased biocatalyst costs for potential industrial application. The immobilized enzyme exhibited a high immobilization yield (98.99 ± 0.91 mg/g of gel) and a chlorophyllase assay confirmed that the immobilized recombinant CrCLH1 retained enzymatic activity (722.3 ± 50.3 U/g of gel). Biochemical analysis of the immobilized enzyme, compared with the free enzyme, showed higher optimal pH and pH stability for chlorophyll-a hydrolysis in an acidic environment (pH 3-5). In addition, compared with the free enzyme, the immobilized enzyme showed higher activity in chlorophyll-a hydrolysis in a high temperature environment (50-60 °C). Moreover, the immobilized enzyme retained a residual activity of more than 64% of its initial enzyme activity after 14 cycles in a repeated-batch operation. Therefore, APTES-coated MIONP-immobilized recombinant CrCLH1 can be repeatedly used to lower costs and is potentially useful for the industrial production of chlorophyll derivatives.

  13. Evaluating the capabilities of vegetation spectral indices on chlorophyll content estimation at Sentinel-2 spectral resolutions

    NASA Astrophysics Data System (ADS)

    Sun, Qi; Jiao, Quanjun; Dai, Huayang

    2018-03-01

    Chlorophyll is an important pigment in green plants for photosynthesis and obtaining the energy for growth and development. The rapid, nondestructive and accurate estimation of chlorophyll content is significant for understanding the crops growth, monitoring the disease and insect, and assessing the yield of crops. Sentinel-2 equipped with the Multi-Spectral Instrument (MSI), which will provide images with high spatial, spectral and temporal resolution. It covers the VNIR/SWIR spectral region in 13 bands and incorporates two new spectral bands in the red-edge region and a spatial resolution of 20nm, which can be used to derive vegetation indices using red-edge bands. In this paper, we will focus on assessing the potential of vegetation spectral indices for retrieving chlorophyll content from Sentinel-2 at different angles. Subsequently, we used in-situ spectral data and Sentinel-2 data to test the relationship between VIs and chlorophyll content. The REP, MTCI, CIred-edge, CIgreen, Macc01, TCARI/OSAVI [705,750], NDRE1 and NDRE2 were calculated. NDRE2 index displays a strongly similar result for hyperspectral and simulated Sentinel-2 spectral bands (R2 =0.53, R2 =0.51, for hyperspectral and Sentinel-2, respectively). At different observation angles, NDRE2 has the smallest difference in performance (R2 = 0.51, R2 =0.64, at 0° and 15° , respectively).

  14. Overexpression of OsGATA12 regulates chlorophyll content, delays plant senescence and improves rice yield under high density planting.

    PubMed

    Lu, Guangwen; Casaretto, José A; Ying, Shan; Mahmood, Kashif; Liu, Fang; Bi, Yong-Mei; Rothstein, Steven J

    2017-05-01

    Agronomic traits controlling the formation, architecture and physiology of source and sink organs are main determinants of rice productivity. Semi-dwarf rice varieties with low tiller formation but high seed production per panicle and dark green and thick leaves with prolonged source activity are among the desirable traits to further increase the yield potential of rice. Here, we report the functional characterization of a zinc finger transcription factor, OsGATA12, whose overexpression causes increased leaf greenness, reduction of leaf and tiller number, and affects yield parameters. Reduced tillering allowed testing the transgenic plants under high density which resulted in significantly increased yield per area and higher harvest index compared to wild-type. We show that delayed senescence of transgenic plants and the corresponding longer stay-green phenotype is mainly due to increased chlorophyll and chloroplast number. Further, our work postulates that the increased greenness observed in the transgenic plants is due to more chlorophyll synthesis but most significantly to decreased chlorophyll degradation, which is supported by the reduced expression of genes involved in the chlorophyll degradation pathway. In particular we show evidence for the down-regulation of the STAY GREEN RICE gene and in vivo repression of its promoter by OsGATA12, which suggests a transcriptional repression function for a GATA transcription factor for prolonging the onset of senescence in cereals.

  15. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus.

    PubMed

    Zhu, Lixia; Yang, Zonghui; Zeng, Xinhua; Gao, Jie; Liu, Jie; Yi, Bin; Ma, Chaozhi; Shen, Jinxiong; Tu, Jinxing; Fu, Tingdong; Wen, Jing

    2017-04-01

    We previously described a Brassica napus chlorophyll-deficient mutant (ygl) with yellow-green seedling leaves and mapped the related gene, BnaC.YGL, to a 0.35 cM region. However, the molecular mechanisms involved in this chlorophyll defect are still unknown. In this study, the BnaC07.HO1 gene (equivalent to BnaC.YGL) was isolated by the candidate gene approach, and its function was confirmed by genetic complementation. Comparative sequencing analysis suggested that BnaC07.HO1 was lost in the mutant, while a long noncoding-RNA was inserted into the promoter of the homologous gene BnaA07.HO1. This insert was widely present in B. napus cultivars and down-regulated BnaA07.HO1 expression. BnaC07.HO1 was highly expressed in the seedling leaves and encoded heme oxygenase 1, which was localized in the chloroplast. Biochemical analysis showed that BnaC07.HO1 can catalyze heme conversion to form biliverdin IXα. RNA-seq analysis revealed that the loss of BnaC07.HO1 impaired tetrapyrrole metabolism, especially chlorophyll biosynthesis. According, the levels of chlorophyll intermediates were reduced in the ygl mutant. In addition, gene expression in multiple pathways was affected in ygl. These findings provide molecular evidences for the basis of the yellow-green leaf phenotype and further insights into the crucial role of HO1 in B. napus.

  16. Potential of the Sentinel-2 Red Edge Spectral Bands for Estimation of Eco-Physiological Plant Parameters

    NASA Astrophysics Data System (ADS)

    Malenovsky, Zbynek; Homolova, Lucie; Janoutova, Ruzena; Landier, Lucas; Gastellu-Etchegorry, Jean-Philippe; Berthelot, Beatrice; Huck, Alexis

    2016-08-01

    In this study we investigated importance of the space- borne instrument Sentinel-2 red edge spectral bands and reconstructed red edge position (REP) for retrieval of the three eco-physiological plant parameters, leaf and canopy chlorophyll content and leaf area index (LAI), in case of maize agricultural fields and beech and spruce forest stands. Sentinel-2 spectral bands and REP of the investigated vegetation canopies were simulated in the Discrete Anisotropic Radiative Transfer (DART) model. Their potential for estimation of the plant parameters was assessed through training support vector regressions (SVR) and examining their P-vector matrices indicating significance of each input. The trained SVR were then applied on Sentinel-2 simulated images and the acquired estimates were cross-compared with results from high spatial resolution airborne retrievals. Results showed that contribution of REP was significant for canopy chlorophyll content, but less significant for leaf chlorophyll content and insignificant for leaf area index estimations. However, the red edge spectral bands contributed strongly to the retrievals of all parameters, especially canopy and leaf chlorophyll content. Application of SVR on Sentinel-2 simulated images demonstrated, in general, an overestimation of leaf chlorophyll content and an underestimation of LAI when compared to the reciprocal airborne estimates. In the follow-up investigation, we will apply the trained SVR algorithms on real Sentinel-2 multispectral images acquired during vegetation seasons 2015 and 2016.

  17. Synergistic Effects of Bacillus amyloliquefaciens (GB03) and Water Retaining Agent on Drought Tolerance of Perennial Ryegrass

    PubMed Central

    Su, An-Yu; Niu, Shu-Qi; Liu, Yuan-Zheng; He, Ao-Lei; Zhao, Qi; Li, Meng-Fei; Han, Qing-Qing; Ali Khan, Sardar

    2017-01-01

    Water retaining agent (WRA) is widely used for soil erosion control and agricultural water saving. Here, we evaluated the effects of the combination of beneficial soil bacterium Bacillus amyloliquefaciens strain GB03 and WRA (the compound is super absorbent hydrogels) on drought tolerance of perennial ryegrass (Lolium perenne L.). Seedlings were subjected to natural drought for maximum 20 days by stopping watering and then rewatered for seven days. Plant survival rate, biomass, photosynthesis, water status and leaf cell membrane integrity were measured. The results showed that under severe drought stress (20-day natural drought), compared to control, GB03, WRA and GB03+WRA all significantly improved shoot fresh weight, dry weight, relative water content (RWC) and chlorophyll content and decreased leaf relative electric conductivity (REC) and leaf malondialdehyde (MDA) content; GB03+WRA significantly enhanced chlorophyll content compared to control and other two treatments. Seven days after rewatering, GB03, WRA and GB03+WRA all significantly enhanced plant survival rate, biomass, RWC and maintained chlorophyll content compared to control; GB03+WRA significantly enhanced plant survival rate, biomass and chlorophyll content compared to control and other two treatments. The results established that GB03 together with water retaining agent promotes ryegrass growth under drought conditions by improving survival rate and maintaining chlorophyll content. PMID:29232909

  18. Characteristics of plastids responsible for starch synthesis in developing pea embryos.

    PubMed

    Smith, A M; Quinton-Tulloch, J; Denyer, K

    1990-03-01

    The nature of the starch-synthesising plastids in developing pea (Pisum sativum L.) embryos has been investigated. Chlorophyll and starch were distributed throughout the cotyledon during development. Chlorophyll content increased initially, then showed little change up to the point of drying out of the embryo. Starch content per embryo increased dramatically throughout development. The chlorophyll content per unit volume was highest on the outer edge of the cotyledon, while the starch content was highest on inner face. Nycodenz gradients, which fractionated mechanically-prepared plastids according to their starch content, failed to achieve any significant separation of plastids rich in starch and ADP-glucose pyrophosphorylase from those rich in chlorophyll and a Calvin-cycle marker enzyme, NADP-glyceraldehyde-3-phosphate dehydrogenase. However, material that was not sufficiently dense to enter the gradients was enriched in activity of the Calvin-cycle marker enzyme relative to that of ADP-glucose pyrophosphorylase. Nomarski and epi-fluorescence microscopy showed that intact, isolated plastids, including those with very large starch grains, invariably contained chlorophyll in stromal structures peripheral to the starch grain. We suggest that the starch-storing plastids of developing pea embryos are derived directly from chloroplasts, and retain chloroplast-like characteristics throughout their development. Developing pea embryos also contain chloroplasts which store little or no starch. These are probably located primarily on the outer edge of the cotyledons where there is sufficient light for photosynthesis at some stages of development.

  19. Synergistic Effects of Bacillus amyloliquefaciens (GB03) and Water Retaining Agent on Drought Tolerance of Perennial Ryegrass.

    PubMed

    Su, An-Yu; Niu, Shu-Qi; Liu, Yuan-Zheng; He, Ao-Lei; Zhao, Qi; Paré, Paul W; Li, Meng-Fei; Han, Qing-Qing; Ali Khan, Sardar; Zhang, Jin-Lin

    2017-12-11

    Water retaining agent (WRA) is widely used for soil erosion control and agricultural water saving. Here, we evaluated the effects of the combination of beneficial soil bacterium Bacillus amyloliquefaciens strain GB03 and WRA (the compound is super absorbent hydrogels) on drought tolerance of perennial ryegrass ( Lolium perenne L.). Seedlings were subjected to natural drought for maximum 20 days by stopping watering and then rewatered for seven days. Plant survival rate, biomass, photosynthesis, water status and leaf cell membrane integrity were measured. The results showed that under severe drought stress (20-day natural drought), compared to control, GB03, WRA and GB03+WRA all significantly improved shoot fresh weight, dry weight, relative water content (RWC) and chlorophyll content and decreased leaf relative electric conductivity (REC) and leaf malondialdehyde (MDA) content; GB03+WRA significantly enhanced chlorophyll content compared to control and other two treatments. Seven days after rewatering, GB03, WRA and GB03+WRA all significantly enhanced plant survival rate, biomass, RWC and maintained chlorophyll content compared to control; GB03+WRA significantly enhanced plant survival rate, biomass and chlorophyll content compared to control and other two treatments. The results established that GB03 together with water retaining agent promotes ryegrass growth under drought conditions by improving survival rate and maintaining chlorophyll content.

  20. Effect of the LHCII pigment-protein complex aggregation on photovoltaic properties of sensitized TiO2 solar cells.

    PubMed

    Yang, Yiqun; Jankowiak, Ryszard; Lin, Chen; Pawlak, Krzysztof; Reus, Michael; Holzwarth, Alfred R; Li, Jun

    2014-10-14

    A modified dye-sensitized solar cell consisting of a thin TiO2 barrier layer sensitized with natural trimeric light-harvesting complex II (LHCII) from spinach was used as a biomimetic model to study the effects of LHCII aggregation on the photovoltaic properties. The aggregation of individual trimers induced molecular reorganization, which dramatically increased the photocurrent. The morphology of small- and large-size LHCII aggregates deposited on a surface was confirmed by atomic force microscopy. Enhanced LHCII immobilization was accomplished via electrostatic interaction with amine-functionalized photoanodes. The photocurrent responses of the assembled solar cells under illumination at three characteristic wavelength bands in the UV-Vis absorption spectra of LHCII solutions confirmed that a significant photocurrent was generated by LHCII photosensitizers. The enhanced photocurrent by large aggregated LHCII is shown to correlate with the quenching in the far-red fluorescence deriving from chlorophyll-chlorophyll charge transfer states that are effectively coupled with the TiO2 surface and thus inject electrons into the TiO2 conduction band. The large aggregated LHCII with more chlorophyll-chlorophyll charge transfer states is a much better sensitizer since it injects electrons more efficiently into the conduction band of TiO2 than the small aggregated LHCII mostly consisting of unquenched chlorophyll excited state. The assembled solar cells demonstrated remarkable stability in both aqueous buffer and acetonitrile electrolytes over 30 days.

Top