Science.gov

Sample records for chlorophyll fluorescence estimation

  1. Simplified, rapid, and inexpensive estimation of water primary productivity based on chlorophyll fluorescence parameter Fo.

    PubMed

    Chen, Hui; Zhou, Wei; Chen, Weixian; Xie, Wei; Jiang, Liping; Liang, Qinlang; Huang, Mingjun; Wu, Zongwen; Wang, Qiang

    2017-04-01

    Primary productivity in water environment relies on the photosynthetic production of microalgae. Chlorophyll fluorescence is widely used to detect the growth status and photosynthetic efficiency of microalgae. In this study, a method was established to determine the Chl a content, cell density of microalgae, and water primary productivity by measuring chlorophyll fluorescence parameter Fo. A significant linear relationship between chlorophyll fluorescence parameter Fo and Chl a content of microalgae, as well as between Fo and cell density, was observed under pure-culture conditions. Furthermore, water samples collected from natural aquaculture ponds were used to validate the correlation between Fo and water primary productivity, which is closely related to Chl a content in water. Thus, for a given pure culture of microalgae or phytoplankton (mainly microalgae) in aquaculture ponds or other natural ponds for which the relationship between the Fo value and Chl a content or cell density could be established, Chl a content or cell density could be determined by measuring the Fo value, thereby making it possible to calculate the water primary productivity. It is believed that this method can provide a convenient way of efficiently estimating the primary productivity in natural aquaculture ponds and bringing economic value in limnetic ecology assessment, as well as in algal bloom monitoring.

  2. Improving the estimation of terrestrial gross primary productivity by downscaling global sun-induced chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Cescatti, A.; Duveiller, G.

    2015-12-01

    The synoptic nature of satellite remote sensing makes this technique a key tool to contribute to estimating the amount of Carbon fixed by vegetation at global scale. From the various types of information that can be derived from space, the recent capacity to create global datasets of sun-induced chlorophyll fluorescence (SIF) may prove to be a game-changer. SIF is a signal emitted by the photosynthetic machinery itself that, under the illumination conditions in which it can be estimated by satellite, has been shown to be proportional to gross primary productivity (GPP). However, this relationship is dependent on vegetation types that are typically spatially mixed at the coarse spatial resolution of SIF datasets (at best 0.5°), which in turn is a consequence of the complexity of the SIF retrieval itself. This study demonstrates how 0.5° SIF derived from GOME-2 data can be downscaled to a more adequate spatial resolution of 0.05° by combining 3 explanatory biophysical variables derived from the MODIS sensor (NDVI, land surface temperature and evapotranspiration) under a semi-empirical light-use efficiency framework. The finer spatial resolution results in a cleaner signal when aggregating it per land cover type. The signal is also better correlated in time with GPP estimated from flux towers, reaching the same level of performance than global GPP products calibrated on such flux towers and driven by meteorological and remote sensing variables (other than SIF). Establishing linear relationships between SIF and flux-tower GPP at vegetation type level allows to estimate values of global terrestrial vegetation gross productivity that have different magnitude but similar temporal patterns as other GPP products. Based on downscaled SIF, the mean global GPP values over the period 2007 to 2013 are (for deciduous broadleaf and mixed forests) 13.7, (for evergreen needleleaf forests) 2.5, (for grasslands) 12.5 and (savannahs and woody savannas) 36.8 Pg of Carbon per year.

  3. Rapid field estimation of biochemical oxygen demand in a subtropical eutrophic urban lake with chlorophyll a fluorescence.

    PubMed

    Xu, Zhen; Xu, Y Jun

    2015-01-01

    Development of a technique for rapid field estimation of biochemical oxygen demand (BOD) is necessary for cost-effective monitoring and management of urban lakes. While several studies reported the usefulness of laboratory tryptophan-like fluorescence technique in predicting 5-day BOD (BOD₅) of wastewater and leachates, little is known about the predictability of field chlorophyll fluorescence measurements for BOD of urban lake waters that are constantly exposed to the mixture of chemical compounds. This study was conducted to develop a numeric relationship between chlorophyll a fluorescence and BOD for a eutrophic urban lake that is widely representative of lake water conditions in the subtropical southern USA. From October 2012 to September 2013, in situ measurements at the studied lake were made every 2 weeks on chlorophyll a fluorescence and other water quality parameters including water temperature, pH, dissolved oxygen, and specific conductivity. Water samples were taken for 5-day BOD and 10-day BOD (BOD₁₀) analysis with and without incubation. The results showed a clear seasonal trend of both BOD measurements being high during the summer and low during the winter. There was a linear, positive relationship between chlorophyll a fluorescence and BOD, and the relationship appeared to be stronger with the 10-day BOD (r(2) = 0.83) than with the 5-day BOD (r(2) = 0.76). BOD dropped each day with declining chlorophyll a fluorescence, suggesting that die-off of phytoplankton has been the main consumption of oxygen in the studied lake. Ambient conditions such as rainfall and water temperature may have partially affected BOD variation.

  4. Estimating chlorophyll content and photochemical yield of photosystem II (ΦPSII) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves

    PubMed Central

    Tubuxin, Bayaer; Rahimzadeh-Bajgiran, Parinaz; Ginnan, Yusaku; Hosoi, Fumiki; Omasa, Kenji

    2015-01-01

    This paper illustrates the possibility of measuring chlorophyll (Chl) content and Chl fluorescence parameters by the solar-induced Chl fluorescence (SIF) method using the Fraunhofer line depth (FLD) principle, and compares the results with the standard measurement methods. A high-spectral resolution HR2000+ and an ordinary USB4000 spectrometer were used to measure leaf reflectance under solar and artificial light, respectively, to estimate Chl fluorescence. Using leaves of Capsicum annuum cv. ‘Sven’ (paprika), the relationships between the Chl content and the steady-state Chl fluorescence near oxygen absorption bands of O2B (686nm) and O2A (760nm), measured under artificial and solar light at different growing stages of leaves, were evaluated. The Chl fluorescence yields of ΦF 686nm/ΦF 760nm ratios obtained from both methods correlated well with the Chl content (steady-state solar light: R2 = 0.73; artificial light: R2 = 0.94). The SIF method was less accurate for Chl content estimation when Chl content was high. The steady-state solar-induced Chl fluorescence yield ratio correlated very well with the artificial-light-induced one (R2 = 0.84). A new methodology is then presented to estimate photochemical yield of photosystem II (ΦPSII) from the SIF measurements, which was verified against the standard Chl fluorescence measurement method (pulse-amplitude modulated method). The high coefficient of determination (R2 = 0.74) between the ΦPSII of the two methods shows that photosynthesis process parameters can be successfully estimated using the presented methodology. PMID:26071530

  5. Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models.

    PubMed

    Zhang, Yongguang; Guanter, Luis; Berry, Joseph A; Joiner, Joanna; van der Tol, Christiaan; Huete, Alfredo; Gitelson, Anatoly; Voigt, Maximilian; Köhler, Philipp

    2014-12-01

    Photosynthesis simulations by terrestrial biosphere models are usually based on the Farquhar's model, in which the maximum rate of carboxylation (Vcmax ) is a key control parameter of photosynthetic capacity. Even though Vcmax is known to vary substantially in space and time in response to environmental controls, it is typically parameterized in models with tabulated values associated to plant functional types. Remote sensing can be used to produce a spatially continuous and temporally resolved view on photosynthetic efficiency, but traditional vegetation observations based on spectral reflectance lack a direct link to plant photochemical processes. Alternatively, recent space-borne measurements of sun-induced chlorophyll fluorescence (SIF) can offer an observational constraint on photosynthesis simulations. Here, we show that top-of-canopy SIF measurements from space are sensitive to Vcmax at the ecosystem level, and present an approach to invert Vcmax from SIF data. We use the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) balance model to derive empirical relationships between seasonal Vcmax and SIF which are used to solve the inverse problem. We evaluate our Vcmax estimation method at six agricultural flux tower sites in the midwestern US using spaced-based SIF retrievals. Our Vcmax estimates agree well with literature values for corn and soybean plants (average values of 37 and 101 μmol m(-2)  s(-1) , respectively) and show plausible seasonal patterns. The effect of the updated seasonally varying Vcmax parameterization on simulated gross primary productivity (GPP) is tested by comparing to simulations with fixed Vcmax values. Validation against flux tower observations demonstrate that simulations of GPP and light use efficiency improve significantly when our time-resolved Vcmax estimates from SIF are used, with R(2) for GPP comparisons increasing from 0.85 to 0.93, and for light use efficiency from 0.44 to 0.83. Our results support the use of

  6. Bowel perforation detection using metabolic fluorescent chlorophylls

    NASA Astrophysics Data System (ADS)

    Han, Jung Hyun; Jo, Young Goun; Kim, Jung Chul; Choi, Sujeong; Kang, Hoonsoo; Kim, Yong-Chul; Hwang, In-Wook

    2016-03-01

    Thus far, there have been tries of detection of disease using fluorescent materials. We introduce the chlorophyll derivatives from food plants, which have longer-wavelength emissions (at >650 nm) than those of fluorescence of tissues and organs, for detection of bowel perforation. To figure out the possibility of fluorescence spectroscopy as a monitoring sensor of bowel perforation, fluorescence from organs of rodent models, intestinal and peritoneal fluids of rodent models and human were analyzed. In IVIS fluorescence image of rodent abdominal organ, visualization of perforated area only was possible when threshold of image is extremely finely controlled. Generally, both perforated area of bowel and normal bowel which filled with large amount of chlorophyll derivatives were visualized with fluorescence. The fluorescence from chlorophyll derivatives penetrated through the normal bowel wall makes difficult to distinguish perforation area from normal bowel with direct visualization of fluorescence. However, intestinal fluids containing chlorophyll derivatives from food contents can leak from perforation sites in situation of bowel perforation. It may show brighter and longer-wavelength regime emissions of chlorophyll derivatives than those of pure peritoneal fluid or bioorgans. Peritoneal fluid mixed with intestinal fluids show much brighter emissions in longer wavelength (at>650 nm) than those of pure peritoneal fluid. In addition, irrigation fluid, which is used for the cleansing of organ and peritoneal cavity, made of mixed intestinal and peritoneal fluid diluted with physiologic saline also can be monitored bowel perforation during surgery.

  7. Comparison of sun-induced chlorophyll fluorescence estimates from commercial spectroradiometers: an optimal setup for field measurement and aerial product validation.

    NASA Astrophysics Data System (ADS)

    Celesti, Marco; Rossini, Micol; Cogliati, Sergio; Panigada, Cinzia; Tagliabue, Giulia; Fava, Francesco; Julitta, Tommaso; MacArthur, Alasdair; Colombo, Roberto

    2016-04-01

    Sun-induced chlorophyll fluorescence signal is explored as a novel remote sensing method, notable for its potential to be used as a direct indicator of photosynthetic efficiency. In the last years, there was an increasing interest of the scientific community on the remote sensing of Sun-Induced chlorophyll Fluorescence (SIF). Several SIF estimates in the far-red region have been produced from spaceborne sensors, and the future FLEX satellite mission (European Space Agency, Earth-Explorer 8) aims to detect canopy level SIF in both red and far-red regions at global scale. In the context of FLEX calibration/validation activities, a network of ground station to calibrate/validate SIF estimates from space can be considered crucial, but few studies have proposed optimal technical requirements for commercially available spectroradiometers. At canopy level, SIF is traditionally retrieved from incoming and upwelling radiance measurements, exploiting two narrow oxygen absorption bands, within the O2-B and O2-A spectral regions. Only recently, the feasibility of retrieving the SIF spectrum was demonstrated. The rationale behind the exploitation of narrow spectral regions, characterized by strong absorptions, resides in the higher contribution of SIF with respect to the reflected radiance. In order to detect the signal in those narrow spectral regions, high spectral resolution observation is needed. In this study, we compared several high resolution field spectroradiometers with different Full Width at Half Maximum (FWHM), Spectral Sampling Interval (SSI) and Signal-to-Noise Ratio (SNR), to evaluate their performance in SIF estimates. We applied several state-of-the-art, radiance-based retrieval algorithms to radiance measurements taken with the FluoWAT. This device allows to measure leaf reflected and transmitted radiance, solar incident radiance and, upward and downward leaf fluorescence spectrum by means of a low pass filter, that were used as a reference.. Results show

  8. A new method to estimate photosynthetic parameters through net assimilation rate-intercellular space CO2 concentration (A-Ci ) curve and chlorophyll fluorescence measurements.

    PubMed

    Moualeu-Ngangue, Dany P; Chen, Tsu-Wei; Stützel, Hartmut

    2017-02-01

    Gas exchange (GE) and chlorophyll fluorescence (CF) measurements are widely used to noninvasively study photosynthetic parameters, for example the rates of maximum Rubisco carboxylation (Vcmax ), electron transport rate (J), daytime respiration (Rd ) and mesophyll conductance (gm ). Existing methods for fitting GE data (net assimilation rate-intercellular space CO2 concentration (A-Ci ) curve) are based on two assumptions: gm is unvaried with CO2 concentration in the intercellular space (Ci ); and light absorption (α) and the proportion of quanta absorbed by photosystem II (β) are constant in the data set. These may result in significant bias in estimating photosynthetic parameters. To avoid the above-mentioned hypotheses, we present a new method for fitting A-Ci curves and CF data simultaneously. This method was applied to a data set obtained from cucumber (Cucumis sativus) leaves of various leaf ages and grown under eight different light conditions. The new method had significantly lower root mean square error and a lower rate of failures compared with previously published methods (6.72% versus 24.1%, respectively) and the effect of light conditions on Vcmax and J was better observed. Furthermore, the new method allows the estimation of a new parameter, the fraction of incoming irradiance harvested by photosystem II, and the dependence of gm on Ci .

  9. Chlorophyll a + b content and chlorophyll fluorescence in avocado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One Tonnage (T) and one Simmonds (S) avocado tree and four TxS crosses were evaluated for differences in chlorophyll content and maximal quantum yield of photosystem II in sun and shade-type leaves. Total chlorophyll content by area (Chl a+bar) ranged from 981 mg m-2 in TxS240 to 4339 mg m-2 in Simm...

  10. Remote sensing of chlorophyll fluorescence with GOSAT

    NASA Astrophysics Data System (ADS)

    Somkuti, Peter; Boesch, Hartmut; Parker, Robert

    2015-04-01

    Sun-induced chlorophyll fluorescence (Fs) emitted by plants as a by-product during photosynthesis carries information about their photosynthetic activity. It is possible to exploit space-based remote sensing measurements to retrieve the fluorescence signal and thus indirectly study carbon fluxes on a global scale. We implement a fluorescence retrieval based on the method pioneered by Frankenberg et al. (2011) into the framework of the University of Leicester Full-Physics GOSAT CO2 retrieval (UoL-FP). This physically-based approach is applied to high-resolution spectra at the edges of the O2 A-Band in the red to NIR range, that feature strong solar as well as a few weak O2 absorption lines. The fluorescence signal, which acts as an additional source, results in an in-filling of the measured solar absorption lines that are used to distinguish Fs from reflectance effects. By analysing GOSAT soundings from 2009 onwards, we examine global and regional long-term trends of Fs and compare them with parameters related to plant physiology, such as spectral vegetation indices and MODIS-derived model GPP values. Following Guanter et al. (2012) and Frankenberg et al. (2011), different regions and biomes are considered and we find that seasonal trends of both model GPP data as well as greenness indicators are well reproduced by our GOSAT-retrieved Fs.

  11. Sun-induced Chlorophyll fluorescence and PRI improve remote sensing GPP estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Perez-Priego, O.; Guan, J.; Rossini, M.; Fava, F.; Wutzler, T.; Moreno, G.; Carvalhais, N.; Carrara, A.; Kolle, O.; Julitta, T.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2015-07-01

    This study investigates the performances of different optical indices to estimate gross primary production (GPP) of herbaceous stratum in a Mediterranean savanna with different Nitrogen (N) and Phosphorous (P) availability. Sun-induced chlorophyll Fluorescence yield computed at 760 nm (Fy760), scaled-photochemical reflectance index (sPRI), MERIS terrestrial-chlorophyll index (MTCI) and Normalized difference vegetation index (NDVI) were computed from near-surface field spectroscopy measurements collected using high spectral resolution spectrometers covering the visible near-infrared regions. GPP was measured using canopy-chambers on the same locations sampled by the spectrometers. We hypothesized that light-use efficiency (LUE) models driven by remote sensing quantities (RSM) can better track changes in GPP caused by nutrient supplies compared to those driven exclusively by meteorological data (MM). Particularly, we compared the performances of different RSM formulations - relying on the use of Fy760 or sPRI as proxy for LUE and NDVI or MTCI as fraction of absorbed photosynthetically active radiation (fAPAR) - with those of classical MM. Results showed significantly higher GPP in the N fertilized experimental plots during the growing period. These differences in GPP disappeared in the drying period when senescence effects masked out potential differences due to plant N content. Consequently, although MTCI was tightly related to plant N content (r2 = 0.86, p < 0.01), it was poorly related to GPP (r2 = 0.45, p < 0.05). On the contrary sPRI and Fy760 correlated well with GPP during the whole measurement period. Results revealed that the relationship between GPP and Fy760 is not unique across treatments but it is affected by N availability. Results from a cross validation analysis showed that MM (AICcv = 127, MEcv = 0.879) outperformed RSM (AICcv = 140, MEcv = 0.8737) when soil moisture was used to constrain the seasonal dynamic of LUE. However, residual analyses

  12. Sun-induced chlorophyll fluorescence and photochemical reflectance index improve remote-sensing gross primary production estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Perez-Priego, O.; Guan, J.; Rossini, M.; Fava, F.; Wutzler, T.; Moreno, G.; Carvalhais, N.; Carrara, A.; Kolle, O.; Julitta, T.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2015-11-01

    This study investigates the performances of different optical indices to estimate gross primary production (GPP) of herbaceous stratum in a Mediterranean savanna with different nitrogen (N) and phosphorous (P) availability. Sun-induced chlorophyll fluorescence yield computed at 760 nm (Fy760), scaled photochemical reflectance index (sPRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI) were computed from near-surface field spectroscopy measurements collected using high spectral resolution spectrometers covering the visible near-infrared regions. GPP was measured using canopy chambers on the same locations sampled by the spectrometers. We tested whether light-use efficiency (LUE) models driven by remote-sensing quantities (RSMs) can better track changes in GPP caused by nutrient supplies compared to those driven exclusively by meteorological data (MM). Particularly, we compared the performances of different RSM formulations - relying on the use of Fy760 or sPRI as a proxy for LUE and NDVI or MTCI as a fraction of absorbed photosynthetically active radiation (fAPAR) - with those of classical MM. Results showed higher GPP in the N-fertilized experimental plots during the growing period. These differences in GPP disappeared in the drying period when senescence effects masked out potential differences due to plant N content. Consequently, although MTCI was closely related to the mean of plant N content across treatments (r2 = 0.86, p < 0.01), it was poorly related to GPP (r2 = 0.45, p < 0.05). On the contrary sPRI and Fy760 correlated well with GPP during the whole measurement period. Results revealed that the relationship between GPP and Fy760 is not unique across treatments, but it is affected by N availability. Results from a cross-validation analysis showed that MM (AICcv = 127, MEcv = 0.879) outperformed RSM (AICcv =140, MEcv = 0.8737) when soil moisture was used to constrain the seasonal dynamic of LUE. However

  13. Modulated Chlorophyll "a" Fluorescence: A Tool for Teaching Photosynthesis

    ERIC Educational Resources Information Center

    Marques da Silva, Jorge; Bernardes da Silva, Anabela; Padua, Mario

    2007-01-01

    "In vivo" chlorophyll "a" fluorescence is a key technique in photosynthesis research. The recent release of a low cost, commercial, modulated fluorometer enables this powerful technology to be used in education. Modulated chlorophyll a fluorescence measurement "in vivo" is here proposed as a tool to demonstrate basic…

  14. Tomato seeds maturity detection system based on chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Li, Cuiling; Wang, Xiu; Meng, Zhijun

    2016-10-01

    Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.

  15. Interpreting chlorophyll fluorescence signals: the effects of leaf age

    NASA Astrophysics Data System (ADS)

    Albert, L.; Vergeli, P.; Martins, G.; Saleska, S. R.; Huxman, T. E.

    2015-12-01

    Remote sensing of sun-induced chlorophyll fluorescence (SIF) promises robust estimation of carbon uptake across landscapes, as studies of plant physiology have shown that fluorescence emission is directly linked to photosynthesis at the leaf level. Yet most leaf-level studies demonstrating the link between chlorophyll fluorescence and photosynthesis have studied leaves in their prime: leaves that recently finished expansion and have yet to senesce. By contrast, remote sensing of landscapes involves observing leaves of different ages. For example, broadleaf deciduous forests and annual plant communities in temperate regions have leaves that develop and then senesce over the course of a growing season. In this experiment, we explored how leaf age and moisture availability affect steady-state fluoresence (Fs) at the leaf level. We simultaneously measured net photosynthesis (Anet) and Fs for leaves of known ages on greenhouse-grown dwarf Helianthus Annuus (sunflowers) from two watering treatments. To monitor plant water status, we measured pre-dawn water potential, and, for a subset of leaves, osmotic potential. Fully expanded or near-fully expanded leaves (~8 to ~23 days old) had higher Anet at saturating light than young, expanding leaves (less than 8 days old) or old leaves nearing senescence (>23 days old). We found a positive relationship between Fs and Anet, suggesting that the link between fluorescence emission and photosynthesis is robust across leaves of different ages. However, leaf age had marked effects on the light response curve of photosynthesis and fluorescence metrics. These results suggest that leaf age distribution, and changes in leaf age distribution due to phenology, should be considered when interpreting SIF at the landscape level.

  16. The Validity Chlorophyll-a Estimation by Sun Induced Fluorescence in Estuarine Waters: An Analysis of Long-term (2003-2011) Water Quality Data from Tampa Bay, Florida (USA)

    NASA Technical Reports Server (NTRS)

    Moreno-Madrinan, Max Jacobo; Fischer, Andrew

    2012-01-01

    Satellite observation of phytoplankton concentration or chlorophyll-a is an important characteristic, critically integral to monitoring coastal water quality. However, the optical properties of estuarine and coastal waters are highly variable and complex and pose a great challenge for accurate analysis. Constituents such as suspended solids and dissolved organic matter and the overlapping and uncorrelated absorptions in the blue region of the spectrum renders the blue-green ratio algorithms for estimating chlorophyll-a inaccurate. Measurement of sun-induced chlorophyll fluorescence, on the other hand, which utilizes the near infrared portion of the electromagnetic spectrum, may provide a better estimate of phytoplankton concentrations. While modelling and laboratory studies have illustrated both the utility and limitations of satellite baseline algorithms based on the sun induced chlorophyll fluorescence signal, few have examined the empirical validity of these algorithms using a comprehensive long term in situ data set. In an unprecedented analysis of a long term (2003-2011) in situ monitoring data from Tampa Bay, Florida (USA), we assess the validity of the FLH product from the Moderate Resolution Imaging Spectrometer (MODIS) against chlorophyll ]a and a suite of water quality parameters taken in a variety of conditions throughout a large optically complex estuarine system. A systematic analysis of sampling sites throughout the bay is undertaken to understand how the relationship between FLH and in situ chlorophyll-a responds to varying conditions within the estuary including water depth, distance from shore and structures and eight water quality parameters. From the 39 station for which data was derived, 22 stations showed significant correlations when the FLH product was matched with in situ chlorophyll-alpha data. The correlations (r2) for individual stations within Tampa Bay ranged between 0.67 (n=28, pless than 0.01) and-0.457 (n=12, p=.016), indicating that

  17. Measurement of Sun Induced Chlorophyll Fluorescence Using Hyperspectral Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Irteza, S. M.; Nichol, J. E.

    2016-06-01

    Solar Induced Chlorophyll Fluorescence (SIF), can be used as an indicator of stress in vegetation. Several scientific approaches have been made and there is considerable evidence that steady state Chlorophyll fluorescence is an accurate indicator of plant stress hence a reliable tool to monitor vegetation health status. Retrieval of Chlorophyll fluorescence provides an insight into photochemical and carbon sequestration processes within vegetation. Detection of Chlorophyll fluorescence has been well understood in the laboratory and field measurement. Fluorescence retrieval methods were applied in and around the atmospheric absorption bands 02B (Red wavelength) approximately 690 nm and 02A (Far red wavelengths) 740 nm. Hyperion satellite images were acquired for the years 2012 to 2015 in different seasons. Atmospheric corrections were applied using the 6S Model. The Fraunhofer Line Discrimanator (FLD) method was applied for retrieval of SIF from the Hyperion images by measuring the signal around the absorption bands in both vegetated and non vegetated land cover types. Absorption values were extracted in all the selected bands and the fluorescence signal was detected. The relationships between NDVI and Fluorescence derived from the satellite images are investigated to understand vegetation response within the absorption bands.

  18. Instrumentation in Developing Chlorophyll Fluorescence Biosensing: A Review

    PubMed Central

    Fernandez-Jaramillo, Arturo A.; Duarte-Galvan, Carlos; Contreras-Medina, Luis M.; Torres-Pacheco, Irineo; de J. Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon G.; Millan-Almaraz, Jesus R.

    2012-01-01

    Chlorophyll fluorescence can be defined as the red and far-red light emitted by photosynthetic tissue when it is excited by a light source. This is an important phenomenon which permits investigators to obtain important information about the state of health of a photosynthetic sample. This article reviews the current state of the art knowledge regarding the design of new chlorophyll fluorescence sensing systems, providing appropriate information about processes, instrumentation and electronic devices. These types of systems and applications can be created to determine both comfort conditions and current problems within a given subject. The procedure to measure chlorophyll fluorescence is commonly split into two main parts; the first involves chlorophyll excitation, for which there are passive or active methods. The second part of the procedure is to closely measure the chlorophyll fluorescence response with specialized instrumentation systems. Such systems utilize several methods, each with different characteristics regarding to cost, resolution, ease of processing or portability. These methods for the most part include cameras, photodiodes and satellite images. PMID:23112686

  19. Contribution of Chlorophyll Fluorescence to the Apparent Reflectance of Vegetation

    NASA Technical Reports Server (NTRS)

    Campbell, P. K. Entcheva; Middleton, E. M.; Kim, M. S.

    2007-01-01

    Current strategies for monitoring the physiologic status of terrestrial vegetation rely on remote sensing reflectance (R) measurements, whi ch provide estimates of relative vegetation vigor based primarily on chlorophyll content. Vegetation chlorophyll fluorescence (CF) offers a non-destructive alternative and a more direct approach for diagnosis of vegetation stress before a significant reduction in chlorophyll content has occurred. Thus, monitoring of vegetation vigor based on CF may allow earlier stress detection and more accurate carbon sequestra tion estimates, than is possible using R data alone. However, the observed apparent vegetation reflectance (Ra) in reality includes contrib utions from both the reflected and fluoresced radiation. The aim of t his study is to determine the relative R and CF fractions contributing to Ra from the vegetation in the red to near-infrared region of the spectrum. The practical objectives of the study are to: 1) evaluate t he relationship between CF and R at the foliar level for corn, soybean, maple; and 2) for corn, determine if the relationship established f or healthy (optimal N) vegetation changes under N defiiency. To obtai n generally applicable results, experimental measurements were conducted on unrelated crop and tree species (maple, soybean and corn), unde r controlled conditions and a gradient of inorganic N fertilization l evels. Optical R spectra and actively induced CF emissions were obtained on the same foliar samples, in conjunction with measurements of p hotosynthetic function, pigment levels, and C and N content. The comm on spectral trends or similarities were examined. On average, 10-20% of apparent R at 685 nm was actually due to CF. The spectral trends in steady and maximum F varied significantly, with Fs (especially red) showing higher ability for species and treatment separation. The relative contribution of ChF to R varied significantly among species, with maple emitting much higher F amounts, as

  20. Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa).

    PubMed

    Novo, Johanna Mendes; Iriel, Analia; Lagorio, M Gabriela

    2012-04-01

    Kiwi fruit displays chlorophyll fluorescence. A physical model was developed to reproduce the observed original fluorescence for the whole fruit, from the emission of the different parts of the kiwi fruit. The spectral distribution of fluorescence in each part of the fruit, was corrected to eliminate distortions due to light re-absorption and it was analyzed in relation to photosystem II-photosystem I ratio. Kiwi fruit also displays variable chlorophyll-fluorescence, similar to that observed from leaves. The maximum quantum efficiency of photosystem II photochemistry (F(v)/F(m)), the quantum efficiency of photosystem II (Φ(PSII)), and the photochemical and non-photochemical quenching coefficients (q(P) and q(NP) respectively) were determined and discussed in terms of the model developed. The study was extended by determining the photosynthetic parameters as a function of the storage time, at both 4 °C and room temperature for 25 days.

  1. Effects of bisphenol A on chlorophyll fluorescence in five plants.

    PubMed

    Zhang, Jiazhi; Wang, Lihong; Li, Man; Jiao, Liya; Zhou, Qing; Huang, Xiaohua

    2015-11-01

    The aim of this study was to evaluate the effects of bisphenol A (BPA) on plant photosynthesis and determine whether the photosynthetic response to BPA exposure varies in different plants. Chlorophyll fluorescence techniques were used to investigate the effects of BPA on chlorophyll fluorescence parameters in tomato (Lycopersicum esculentum), lettuce (Lactuca sativa), soybean (Glycine max), maize (Zea mays), and rice (Oryza sativa) seedlings. Low-dose (1.5 or 3.0 mg L(-1)) BPA exposure improved photosystem II efficiency, increased the absorption and conversion efficiency of primary light energy, and accelerated photosynthetic electron transport in each plant, all of which increased photosynthesis. These effects weakened or disappeared after the withdrawal of BPA. High-dose (10.0 mg L(-1)) BPA exposure damaged the photosystem II reaction center, inhibited the photochemical reaction, and caused excess energy to be released as heat. These effects were more evident after the highest BPA dose (17.2 mg L(-1)), but they weakened after the withdrawal of BPA. The magnitude of BPA exposure effects on the chlorophyll fluorescence parameters in the five plants followed the order: lettuce > tomato > soybean > maize > rice. The opposite order was observed following the removal of BPA. In conclusion, the chlorophyll fluorescence response in plants exposed to BPA depended on BPA dose and plant species.

  2. Photoinhibition of Photosystems I and II Using Chlorophyll Fluorescence Measurements

    ERIC Educational Resources Information Center

    Quiles, Maria Jose

    2005-01-01

    In this study the photoinhibition of photosystems (PS) I and II caused by exposure to high intensity light in oat ("Avena sativa," var Prevision) is measured by the emission of chlorophyll fluorescence in intact leaves adapted to darkness. The maximal quantum yield of PS II was lower in plants grown under high light intensity than in plants grown…

  3. Photosynthetic bark: Use of chlorophyll absorption continuum index to estimate Boswellia papyrifera bark chlorophyll content

    NASA Astrophysics Data System (ADS)

    Girma, Atkilt; Skidmore, Andrew K.; de Bie, C. A. J. M.; Bongers, Frans; Schlerf, Martin

    2013-08-01

    Quantification of chlorophyll content provides useful insight into the physiological performance of plants. Several leaf chlorophyll estimation techniques, using hyperspectral instruments, are available. However, to our knowledge, a non-destructive bark chlorophyll estimation technique is not available. We set out to assess Boswellia papyrifera tree bark chlorophyll content and to provide an appropriate bark chlorophyll estimation technique using hyperspectral remote sensing techniques. In contrast to the leaves, the bark of B. papyrifera has several outer layers masking the inner photosynthetic bark layer. Thus, our interest includes understanding how much light energy is transmitted to the photosynthetic inner bark and to what extent the inner photosynthetic bark chlorophyll activity could be remotely sensed during both the wet and the dry season. In this study, chlorophyll estimation using the chlorophyll absorption continuum index (CACI) yielded a higher R2 (0.87) than others indices and methods, such as the use of single band, simple ratios, normalized differences, and conventional red edge position (REP) based estimation techniques. The chlorophyll absorption continuum index approach considers the increase or widening in area of the chlorophyll absorption region, attributed to high concentrations of chlorophyll causing spectral shifts in both the yellow and the red edge. During the wet season B. papyrifera trees contain more bark layers than during the dry season. Having less bark layers during the dry season (leaf off condition) is an advantage for the plants as then their inner photosynthetic bark is more exposed to light, enabling them to trap light energy. It is concluded that B. papyrifera bark chlorophyll content can be reliably estimated using the chlorophyll absorption continuum index analysis. Further research on the use of bark signatures is recommended, in order to discriminate the deciduous B. papyrifera from other species during the dry season.

  4. Molecular environments of divinyl chlorophylls in Prochlorococcus and Synechocystis: differences in fluorescence properties with chlorophyll replacement.

    PubMed

    Mimuro, Mamoru; Murakami, Akio; Tomo, Tatsuya; Tsuchiya, Tohru; Watabe, Kazuyuki; Yokono, Makio; Akimoto, Seiji

    2011-05-01

    A marine cyanobacterium, Prochlorococcus, is a unique oxygenic photosynthetic organism, which accumulates divinyl chlorophylls instead of the monovinyl chlorophylls. To investigate the molecular environment of pigments after pigment replacement but before optimization of the protein moiety in photosynthetic organisms, we compared the fluorescence properties of the divinyl Chl a-containing cyanobacteria, Prochlorococcus marinus (CCMP 1986, CCMP 2773 and CCMP 1375), by a Synechocystis sp. PCC 6803 (Synechocystis) mutant in which monovinyl Chl a was replaced with divinyl Chl a. P. marinus showed a single fluorescence band for photosystem (PS) II at 687nm at 77K; this was accompanied with change in pigment, because the Synechocystis mutant showed the identical shift. No fluorescence bands corresponding to the PS II 696-nm component and PS I longer-wavelength component were detected in P. marinus, although the presence of the former was suggested using time-resolved fluorescence spectra. Delayed fluorescence (DF) was detected at approximately 688nm with a lifetime of approximately 29ns. In striking contrast, the Synechocystis mutant showed three fluorescence bands at 687, 696, and 727nm, but suppressed DF. These differences in fluorescence behaviors might not only reflect differences in the molecular structure of pigments but also differences in molecular environments of pigments, including pigment-pigment and/or pigment-protein interactions, in the antenna and electron transfer systems.

  5. Frequently asked questions about chlorophyll fluorescence, the sequel.

    PubMed

    Kalaji, Hazem M; Schansker, Gert; Brestic, Marian; Bussotti, Filippo; Calatayud, Angeles; Ferroni, Lorenzo; Goltsev, Vasilij; Guidi, Lucia; Jajoo, Anjana; Li, Pengmin; Losciale, Pasquale; Mishra, Vinod K; Misra, Amarendra N; Nebauer, Sergio G; Pancaldi, Simonetta; Penella, Consuelo; Pollastrini, Martina; Suresh, Kancherla; Tambussi, Eduardo; Yanniccari, Marcos; Zivcak, Marek; Cetner, Magdalena D; Samborska, Izabela A; Stirbet, Alexandrina; Olsovska, Katarina; Kunderlikova, Kristyna; Shelonzek, Henry; Rusinowski, Szymon; Bąba, Wojciech

    2017-04-01

    Using chlorophyll (Chl) a fluorescence many aspects of the photosynthetic apparatus can be studied, both in vitro and, noninvasively, in vivo. Complementary techniques can help to interpret changes in the Chl a fluorescence kinetics. Kalaji et al. (Photosynth Res 122:121-158, 2014a) addressed several questions about instruments, methods and applications based on Chl a fluorescence. Here, additional Chl a fluorescence-related topics are discussed again in a question and answer format. Examples are the effect of connectivity on photochemical quenching, the correction of F V /F M values for PSI fluorescence, the energy partitioning concept, the interpretation of the complementary area, probing the donor side of PSII, the assignment of bands of 77 K fluorescence emission spectra to fluorescence emitters, the relationship between prompt and delayed fluorescence, potential problems when sampling tree canopies, the use of fluorescence parameters in QTL studies, the use of Chl a fluorescence in biosensor applications and the application of neural network approaches for the analysis of fluorescence measurements. The answers draw on knowledge from different Chl a fluorescence analysis domains, yielding in several cases new insights.

  6. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence

    PubMed Central

    van der Tol, C; Berry, J A; Campbell, P K E; Rascher, U

    2014-01-01

    We have extended a conventional photosynthesis model to simulate field and laboratory measurements of chlorophyll fluorescence at the leaf scale. The fluorescence paramaterization is based on a close nonlinear relationship between the relative light saturation of photosynthesis and nonradiative energy dissipation in plants of different species. This relationship diverged only among examined data sets under stressed (strongly light saturated) conditions, possibly caused by differences in xanthophyll pigment concentrations. The relationship was quantified after analyzing data sets of pulse amplitude modulated measurements of chlorophyll fluorescence and gas exchange of leaves of different species exposed to different levels of light, CO2, temperature, nitrogen fertilization treatments, and drought. We used this relationship in a photosynthesis model. The coupled model enabled us to quantify the relationships between steady state chlorophyll fluorescence yield, electron transport rate, and photosynthesis in leaves under different environmental conditions. Key Points Light saturation of photosynthesis determines quenching of leaf fluorescence We incorporated steady state leaf fluorescence in a photosynthesis model PMID:27398266

  7. Chlorophyll fluorescence control in microalgae by biogenic guanine crystals

    NASA Astrophysics Data System (ADS)

    Miyashita, Yuito; Iwasaka, Masakazu; Endo, Hirotoshi

    2015-05-01

    Magnetic fields were applied to water suspensions of guanine crystals to induce changes in light scattering as a possible way to control photosynthesis in microalgae. The effect of guanine microcrystals with and without an applied magnetic field on the photosynthesis of a unicellular microalgae (plant), Pleurochrysis. carterae (P. carterae), was investigated by examining chlorophyll fluorescence. The fluorescence intensity at 600-700 nm of the photosynthetic cells increased remarkably when the concentration ratio of guanine microcrystals was 10 times larger than that of the cells. This increase in fluorescence occurred reproducibly and was proportional to the amount of guanine microcrystals added. It is speculated that the guanine microcrystals enhance the intensity of the excitation light on the cells by concentrating the excitation light or prolonging the time of light exposure to the cells. Moreover, applying a 500-mT magnetic field allowed modulation of the fluorescence intensity, depending on the direction of the fluorescence light.

  8. Quenching of chlorophyll fluorescence induced by silver nanoparticles.

    PubMed

    Queiroz, A M; Mezacasa, A V; Graciano, D E; Falco, W F; M'Peko, J-C; Guimarães, F E G; Lawson, T; Colbeck, I; Oliveira, S L; Caires, A R L

    2016-11-05

    The interaction between chlorophyll (Chl) and silver nanoparticles (AgNPs) was evaluated by analyzing the optical behavior of Chl molecules surrounded by different concentrations of AgNPs (10, 60, and 100nm of diameter). UV-Vis absorption, steady state and time-resolved fluorescence measurements were performed for Chl in the presence and absence of these nanoparticles. AgNPs strongly suppressed the Chl fluorescence intensity at 678nm. The Stern-Volmer constant (KSV) showed that fluorescence suppression is driven by the dynamic quenching process. In particular, KSV was nanoparticle size-dependent with an exponential decrease as a function of the nanoparticle diameter. Finally, changes in the Chl fluorescence lifetime in the presence of nanoparticles demonstrated that the fluorescence quenching may be induced by the excited electron transfer from the Chl molecules to the metal nanoparticles.

  9. Quenching of chlorophyll fluorescence induced by silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Queiroz, A. M.; Mezacasa, A. V.; Graciano, D. E.; Falco, W. F.; M'Peko, J.-C.; Guimarães, F. E. G.; Lawson, T.; Colbeck, I.; Oliveira, S. L.; Caires, A. R. L.

    2016-11-01

    The interaction between chlorophyll (Chl) and silver nanoparticles (AgNPs) was evaluated by analyzing the optical behavior of Chl molecules surrounded by different concentrations of AgNPs (10, 60, and 100 nm of diameter). UV-Vis absorption, steady state and time-resolved fluorescence measurements were performed for Chl in the presence and absence of these nanoparticles. AgNPs strongly suppressed the Chl fluorescence intensity at 678 nm. The Stern-Volmer constant (KSV) showed that fluorescence suppression is driven by the dynamic quenching process. In particular, KSV was nanoparticle size-dependent with an exponential decrease as a function of the nanoparticle diameter. Finally, changes in the Chl fluorescence lifetime in the presence of nanoparticles demonstrated that the fluorescence quenching may be induced by the excited electron transfer from the Chl molecules to the metal nanoparticles.

  10. Chlorophyll fluorescence analysis and imaging in plant stress and disease

    SciTech Connect

    Daley, P.F.

    1994-12-01

    Quantitative analysis of chlorophyll fluorescence transients and quenching has evolved rapidly in the last decade. Instrumentation capable of fluorescence detection in bright actinic light has been used in conjunction with gas exchange analysis to build an empirical foundation relating quenching parameters to photosynthetic electron transport, the state of the photoapparatus, and carbon fixation. We have developed several instruments that collect video images of chlorophyll fluorescence. Digitized versions of these images can be manipulated as numerical data arrays, supporting generation of quenching maps that represent the spatial distribution of photosynthetic activity in leaves. We have applied this technology to analysis of fluorescence quenching during application of stress hormones, herbicides, physical stresses including drought and sudden changes in humidity of the atmosphere surrounding leaves, and during stomatal oscillations in high CO{sub 2}. We describe a recently completed portable fluorescence imaging system utilizing LED illumination and a consumer-grade camcorder, that will be used in long-term, non-destructive field studies of plant virus infections.

  11. Metal-enhanced fluorescence of chlorophylls in light-harvesting complexes coupled to silver nanowires.

    PubMed

    Kowalska, Dorota; Krajnik, Bartosz; Olejnik, Maria; Twardowska, Magdalena; Czechowski, Nikodem; Hofmann, Eckhard; Mackowski, Sebastian

    2013-01-01

    We investigate metal-enhanced fluorescence of peridinin-chlorophyll protein coupled to silver nanowires using optical microscopy combined with spectrally and time-resolved fluorescence techniques. In particular we study two different sample geometries: first, in which the light-harvesting complexes are deposited onto silver nanowires, and second, where solution of both nanostructures are mixed prior deposition on a substrate. The results indicate that for the peridinin-chlorophyll complexes placed in the vicinity of the silver nanowires we observe higher intensities of fluorescence emission as compared to the reference sample, where no nanowires are present. Enhancement factors estimated for the sample where the light-harvesting complexes are mixed together with the silver nanowires prior deposition on a substrate are generally larger in comparison to the other geometry of a hybrid nanostructure. While fluorescence spectra are identical both in terms of overall shape and maximum wavelength for peridinin-chlorophyll-protein complexes both isolated and coupled to metallic nanostructures, we conclude that interaction with plasmon excitations in the latter remains neutral to the functionality of the biological system. Fluorescence transients measured for the PCP complexes coupled to the silver nanowires indicate shortening of the fluorescence lifetime pointing towards modifications of radiative rate due to plasmonic interactions. Our results can be applied for developing ways to plasmonically control the light-harvesting capability of photosynthetic complexes.

  12. Modelling canopy scale solar induced chlorophyll fluorescence simulated by the three dimensional radiative transfer model

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Nagai, S.; Inoue, T.; Yang, W.; Ichii, K.

    2014-12-01

    Recent studies show that the vegetation canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellite. To understand how the canopy scale bidirectional fluorescence observations are related to three-dimensional fluorescence distribution within a plant canopy, it is necessary to evaluate canopy scale fluorescence emission using a detailed plant canopy radiative transfer model. In this study, we developed a three-dimensional plant canopy radiative transfer model that can simulate the bidirectional chlorophyll fluorescence radiance and show several preliminary results of fluorescence distribution at the tree level. To simulate the three dimensional variations in chlorophyll fluorescence from trees, we measured tree structures using a terrestrial LiDAR instrument. The measurements were conducted in Yokohama, Japan (35°22'49" N 139°37'29" E). Three Japanese cherry trees (Cerasus Speciosa) were chosen for our study (Figure 1). Leaf-level sun-induced chlorophyll fluorescence (SIF) is also necessary as an input of radiative transfer model. To measure the leaf-level SIF, we used high spectral resolution spectroradiometer (HR 4000, Ocean Optics Inc. USA). The spectral resolution of this instrument is 0.05 nm (full width half maximum). The spectral range measured was 720 to 780 nm. From the spectral radiance measurements, we estimated SIF using the three band Fraunhofer Line Depth (3FLD) method. The effect of solar and view zenith angles, multiple scattering depends on many factors such as back ground reflectance, leaf reflectance transmittance and landscape structures. To understand how the SIF from both sparse and dense forest stands vary with sun and view angles and optical variables, it is necessary to conduct further sensitivity analysis. Radiative transfer simulation will help understand SIF emission at variety of forest canopy cases.

  13. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Tol, C.; Berry, J. A.; Campbell, P. K. E.; Rascher, U.

    2014-12-01

    We have extended a conventional photosynthesis model to simulate field and laboratory measurements of chlorophyll fluorescence at the leaf scale. The fluorescence paramaterization is based on a close nonlinear relationship between the relative light saturation of photosynthesis and nonradiative energy dissipation in plants of different species. This relationship diverged only among examined data sets under stressed (strongly light saturated) conditions, possibly caused by differences in xanthophyll pigment concentrations. The relationship was quantified after analyzing data sets of pulse amplitude modulated measurements of chlorophyll fluorescence and gas exchange of leaves of different species exposed to different levels of light, CO2, temperature, nitrogen fertilization treatments, and drought. We used this relationship in a photosynthesis model. The coupled model enabled us to quantify the relationships between steady state chlorophyll fluorescence yield, electron transport rate, and photosynthesis in leaves under different environmental conditions.

  14. Laser and sunlight-induced fluorescence from chlorophyll pigments

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Brown, K. S.

    1986-01-01

    Fluorescence properties of chlorophyll pigment bearing plant foliage utilizing a 337 nm nitrogen laser and integrating sphere were studied. Measured yields, in terms of number of photons emitted per 100 photons absorbed, range from 1.5 to 0.1 for the 685 nm peak, and from 4.2 to 0.2 for the 730 nm peak. Decreasing order of magnitude puts herbaceous leaves ahead of all others followed by broad leaves of hardwoods and coniferous needles. Meaningful quantization for the fluorescence peaks at 430 and 530 nm could not be attained. Passive monitoring of these fluorescence peaks is successful only for the 685 nm from the ocean surface. Field data show the reflectance changes at 685 nm due to the algae presence amounts to 1% at most.

  15. In Vivo Single-Cell Fluorescence and Size Scaling of Phytoplankton Chlorophyll Content.

    PubMed

    Álvarez, Eva; Nogueira, Enrique; López-Urrutia, Ángel

    2017-04-01

    In unicellular phytoplankton, the size scaling exponent of chlorophyll content per cell decreases with increasing light limitation. Empirical studies have explored this allometry by combining data from several species, using average values of pigment content and cell size for each species. The resulting allometry thus includes phylogenetic and size scaling effects. The possibility of measuring single-cell fluorescence with imaging-in-flow cytometry devices allows the study of the size scaling of chlorophyll content at both the inter- and intraspecific levels. In this work, the changing allometry of chlorophyll content was estimated for the first time for single phytoplankton populations by using data from a series of incubations with monocultures exposed to different light levels. Interspecifically, our experiments confirm previous modeling and experimental results of increasing size scaling exponents with increasing irradiance. A similar pattern was observed intraspecifically but with a larger variability in size scaling exponents. Our results show that size-based processes and geometrical approaches explain variations in chlorophyll content. We also show that the single-cell fluorescence measurements provided by imaging-in-flow devices can be applied to field samples to understand the changes in the size dependence of chlorophyll content in response to environmental variables affecting primary production.IMPORTANCE The chlorophyll concentrations in phytoplankton register physiological adjustments in cellular pigmentation arising mainly from changes in light conditions. The extent of these adjustments is constrained by the size of the phytoplankton cells, even within single populations. Hence, variations in community chlorophyll derived from photoacclimation are also dependent on the phytoplankton size distribution.

  16. Advances in Remote Sensing of Vegetation Merging NDVI, Soil Moisture, and Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Tucker, Compton

    2016-04-01

    I will describe an advance in remote sensing of vegetation in the time domain that combines simultaneous measurements of the normalized difference vegetation index, soil moisture, and chlorophyll fluorescence, all from different satellite sensors but acquired for the same areas at the same time step. The different sensor data are MODIS NDVI data from both Terra and Aqua platforms, soil moisture data from SMOS & SMP (aka SMAP but with only the passive radiometer), and chlorophyll fluorescence data from GOME-2. The complementary combination of these data provide important crop yield information for agricultural production estimates at critical phenological times in the growing season, provide a scientific basis to map land degradation, and enable quantitative determination of the end of the growing season in temperate zones.

  17. Fluorescent indices of oak and wheat leaves in dependence on chlorophyll content

    NASA Astrophysics Data System (ADS)

    Kalmatskaya, Olesya Ð. ń.; Karavaev, Vladimir A.; Gunar, Lyudmila E.

    2016-04-01

    Fluorescence spectra and fluorescence induction curves of the leaves of two plant species in dependence on chlorophyll content were studied. Red oak (Quercus rubra L.) leaves upon the autumn chlorophyll degradation, as well as wheat leaves (Triticum aestivum L.) at various stages of ontogenesis showed linear dependence between the ratio ω = F740 / F685 (the ratio of the maximum values of fluorescence at respective wavelengths) and chlorophyll content. In both cases, parameter Fv / Fm (the relative value of the variable fluorescence) remained almost unchanged up to significant reduction of chlorophyll content, indicating on maintaining the high photochemical activity of photosystem 2.

  18. A Passive Method for Detecting Vegetation Stress from Orbit: Chlorophyll Fluorescence Spectra from Fraunhofer Lines

    NASA Technical Reports Server (NTRS)

    Theisen, Arnold F.

    2000-01-01

    Solar-stimulated chlorophyll fluorescence measured with the Fraunhofer line depth method has correlated well with vegetation stress in previous studies. However, the instruments used in those studies were limited to a single solar absorption line (e.g. 656.3 nm), obviating the red/far-red ratio (R/FR) method. Optics and detector technology have reached the level whereby multiple, very narrow Fraunhofer lines are resolvable. Thirteen such lines span the visible spectrum in the red to far-red region where chlorophyll fluorescence occurs. Fluorescence intensities at the 13 Fraunhofer line wavelengths were used to model emission spectra. The source data were collected for summer and fall bean crops (Phaseolus vulgaris L.) subjected to various levels of nitrogen fertilization. The intensities were adjusted to account for Fraunhofer line depth and atmospheric transmittance. Multiple R/FR fluorescence ratios, calculated from the modeled fluorescence spectra, correlated strongly with leaf chlorophyll concentration and well with applied nitrogen. The ratio yielding the best correlation with chlorophyll utilized red fluorescence at the 694.5 nm Fraunhofer line and farred fluorescence at the 755.6 nm Fraunhofer line. Twenty R/FR ratios, each evaluated for the maximum differential between low and high (optimal) nitrogen treatments, ranked higher in some cases and lower in others, possibly related to the time of year the crops were grown and the stage of growth of the crops. Ratios with 728.9 nm and 738.9 nm in the denominator consistently ranked in the lowest and next lowest quartile, respectively. Ratios of the 656.3 nm Fraunhofer line and the 755.6 nm line consistently ranked highest for the summer crop. Ratios with 755.6 nm in the denominator ranked in the upper quartile for 10 out of 12 measurement dates. Differences in ratio ranking indicate that physiological conditions may be estimated using selected ratios of Fraunhofer lines within the context of R/FR analysis. A

  19. Chlorophyll fluorescence from creosote-exposed plants in mesocosms: Validation of a bioindicator

    SciTech Connect

    Marwood, C.A.; Harris, M.L.; Day, K.E.; Greenberg, B.M.; Solomon, K.R.

    1995-12-31

    The chlorophyll fluorescence assay is a rapid, sensitive measure of photosynthetic competence in higher plants and algae that can be used to detect the impact of toxicants at many sites in the plant cell. Chlorophyll fluorescence was examined in plants exposed to PAHs as part of a study to validate chlorophyll fluorescence as a bioindicator by correlating effects on fluorescence with population-level effects in outdoor mesocosms. The wood preservative creosote was used as a mixed PAH source. Two species of aquatic plants, Lemna gibba and Myriophyllum sp., were exposed to 0.1--100 uL/L of creosote in 12,000 L artificial ponds. Creosote was introduced into the mesocosms using different dosing schemes to simulate leaching and spill events. The pulse amplitude modulated fluorescence technique was used to measure several parameters from plants in situ during a 60-day exposure. Chlorophyll fluorescence parameters were compared to creosote effects on population-level growth. Chlorophyll fluorescence was inhibited by creosote at concentrations above 3 uL/L, which also caused a similar inhibition of plant growth in the mesocosms. However, chlorophyll fluorescence was more sensitive than growth endpoints at low creosote concentrations. The chlorophyll fluorescence assay also detected damage to the photosynthetic apparatus in plants after only a few days exposure to creosote. Thus, chlorophyll fluorescence from plants exposed to creosote was well correlated with environmentally relevant endpoints at the population level. The effects of the different dosing schemes on creosote toxicity will also be discussed.

  20. Relationship between the Fluorescence Lifetime of Chlorophyll 'a' and Primary Productivity within the Mississippi River Plume and Adjacent Shelf Region

    NASA Technical Reports Server (NTRS)

    Hall, Callie; Miller, Richard L.; Fernandez, Salvador M.; McKee, Brent A.

    2000-01-01

    In situ measurements of chlorophyll fluorescence intensity have been widely used to estimate phytoplankton biomass. However, because the fluorescence quantum yield of chlorophyll a in vivo can be highly variable, measurements of chlorophyll fluorescence intensity cannot be directly correlated with phytoplankton biomass and do not provide information on the physiological state of the phytoplankton under study. Conversely, lifetime-based measurements of chlorophyll fluorescence provide a framework in which photosynthetic rates of phytoplankton can be analyzed according to phytoplankton physiology. Along with the measurement of primary production and ambient nutrient concentrations within the Mississippi River plume in the northern Gulf of Mexico, phytoplankton fluorescence lifetimes were measured using a Fluorescence Lifetime Phytoplankton Analyzer (developed under a NASA Small Business Innovative Research contract to Ciencia, Inc.). Variability of fluorescence lifetimes within the plume can be used as a background from which to interpret variations in the maximum quantum yield of photochemistry. The extent to which nutrient and effluent loading in this dynamic coastal area affect the photosynthetic performance of phytoplankton will be presented as a function of phytoplankton fluorescence lifetimes.

  1. Continental shelf fish production estimation from CZCS chlorophyll data

    NASA Technical Reports Server (NTRS)

    Iverson, Richard L.

    1989-01-01

    A method for ocean fish production estimation was proposed for development. The method was to use data acquired with the Coastal Zone Color Scanner, and processed into chlorophyll concentrations by the GSFC ocean Sciences Division, in combination with fish production and primary production data acquired from different ocean areas. A linear relation exits between annual fish production and annual phytoplankton carbon production for a wide range of coastal ocean environments. The uses of several existing algorithms which relate primary production to CZCS chlorophyll data as input to the fish production regression model is proposed. A question relating phytoplankton production to CZCS chlorophyll was obtained by Eppley (1984) using chlorophyll data obtained from field samples, equivalent to chlorophyll data obtained from CZCS imagery, and primary production data obtained from ship-board observations on a wide variety of coastal and open ocean environments. This equation was modified with additional data and was successfully tested using CZCS data and field chlorophyll and phytoplankton production data obtained from northeastern North American continental shelf waters and Atlantic open ocean waters. The modified Eppley (1984) relation also estimated phytoplankton annual carbon production in the Sargasso Sea within the confidence limits of a mean value obtained from the Eppley (1984) equation for oceanic waters that provide about 90 percent of total ocean primary production. The modified Eppley production formula applied to CZCS chlorophyll data obtained from several northeastern North American coastal environments gave phytoplankton annual carbon production values similar to the values used in the fish production regression equation.

  2. Light use efficiency of terrestrial vegetation from remote sensing of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Badgley, G. M.; Guan, K.; Berry, J. A.; Lobell, D. B.; Ryu, Y.

    2014-12-01

    Light use efficiency, the rate with which plants use absorbed photons to fix carbon dioxide, is a crucial parameter for estimating terrestrial carbon fluxes. Estimates of light use efficiency lie at the heart of how we model and understand ecosystem productivity. Here, we make use of the recent availability of high-resolution, multi-year records of remotely sensed measurements of chlorophyll fluorescence to refine estimates of light use efficiency in terrestrial ecosystems at the global scale. Directly estimating light use efficiency from remote sensing can help guide the current approach of constraining a theoretical maximum light use efficiency using meteorological data. We explore the usefulness of a derived light use efficiency at the global scale from remotely sensed records of chlorophyll fluorescence, photosynthetically active radiation, and canopy leaf area. Our estimates of light use efficiency show good agreement with light use efficiency calculated using Fluxtower data spanning several continents and a wide variety of ecosystems. We further benchmark our approach against the light use efficiency estimated from a variety of ecosystem models, such as BESS. Further refinement of our proposed technique promises to advance our ability to detect ecosystem stresses and further constrain our estimates of carbon fluxes within terrestrial ecosystems.

  3. Chlorophyll Fluorescence in Leaves of Ficus tikoua Under Arsenic Stress.

    PubMed

    Wang, Yong; Chai, Liyuan; Yang, Zhihui; Mubarak, Hussani; Tang, Chongjian

    2016-10-01

    A greenhouse culture experiment was used to quantify effects of arsenic (As) stress on the growth and photochemical efficiency of Ficus tikoua (F. tikoua). Results showed growth of F. tikoua leaves was significantly inhibited at As concentrations higher than 80 μmol/L in solution. Root arsenic concentration was significantly higher than that in stem and leaf. The 320 and 480 μmol/L As concentrations in solution resulted in significant decreases in maximum quantum efficiency of photosystem II (PSII) (Fv/Fm), variable to initial chlorophyll fluorescence (Fv/Fo), and quantum yield of PSII electron transport (Y(II)) of F. tikoua leaves, whereas significantly higher non-photochemical quenching of fluorescence and photochemical quenching of fluorescence values were found at 160, 320 and 480 μmol/L As concentrations in solution, implying that PSII reaction centers were damaged at high As concentrations and that F. tikoua eliminates excess energy stress on the photochemical apparatus to adapt to As stress.

  4. Photosynthesis, chlorophyll fluorescence characteristics, and chlorophyll content of soybean seedlings under combined stress of bisphenol A and cadmium.

    PubMed

    Hu, Huiqing; Wang, Lihong; Wang, Qingqing; Jiao, Liya; Hua, Weiqi; Zhou, Qing; Huang, Xiaohua

    2014-11-01

    Bisphenol A (BPA) is ubiquitous in the environment because of its continual application in plastics and the epoxy resin industry. Cadmium (Cd) is a highly toxic heavy metal element mainly used in smelting, electroplating, and plastic and dye manufacturing. Pollution as a result of BPA and Cd exists simultaneously in many agricultural regions. However, little information is available regarding the combined effects of BPA and Cd on plants. The combined effects of BPA and Cd on the photosynthesis, chlorophyll fluorescence, and chlorophyll content of soybean seedlings were investigated using noninvasive technology. Combined treatment with 1.5 mg/L BPA and 0.2 mg/L Cd synergistically improved the net photosynthetic rate (Pn ), initial fluorescence (F0 ), maximal photochemical efficiency (Fv /Fm ), effective quantum yield of photosystem II (ΦPSII ), photosynthetic electron transport rate (ETR), and chlorophyll content. Combined treatment with 1.5 mg/L BPA and 3.0 mg/L Cd increased the F0 and decreased the Pn , Fv /Fm , ΦPSII , and ETR, whereas BPA and Cd exhibited an antagonistic effect. Furthermore, combined treatment with 17.2/50.0 mg/L BPA and 3.0/10.0 mg/L Cd synergistically decreased the Pn , Fv /Fm , ΦPSII , ETR, and chlorophyll content, although it increased the F0 . Finally, the effects of BPA and Cd on photosynthesis, chlorophyll fluorescence, and chlorophyll content ceased when BPA stress was stopped.

  5. Contribution of Chlorophyll Fluorescence to the Reflectance of Corn Foliage

    NASA Technical Reports Server (NTRS)

    Campbell, Petya K. Entcheva; Middleton, Elizabeth M.; Corp, L. A.; McMurtrey, J. E.; Kim, M. S.; Chappelle, E. W.; Butcher, L. M.; Ranson, K. Jon (Technical Monitor)

    2002-01-01

    To assess the contribution of chlorophyll fluorescence (ChlF) to apparent reflectance (Ra) in the red/far-red, spectra were collected on a C4 agricultural species (corn, Zea Mays L.) under conditions ranging from nitrogen deficiency to excess. A significant contribution of ChlF to Ra was observed, with on average 10-25% at 685nm and 2-6% at 740nm of Ra being due to ChlF. Higher ChlF was consistently measured from the abaxial leaf surface as compared to the adaxial. Using 350-665nm excitation, the study confirms the trends in three ChlF ratios established previously by active F technology, suggesting that the ChlF utility this technology has developed for monitoring vegetation physiological status is likely applicable also under natural solar illumination.

  6. Canopy Level Chlorophyll Fluorescence and the PRI in a Cornfield

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Cheng, Yen-Ben; Corp, Lawrence A.; Campbell, Petya K. E.; Huemmrich, K. Fred; Zhang, Qingyuan; Kustas, William P.

    2012-01-01

    Two bio-indicators, the Photochemical Reflectance Index (PRI) and solar-induced red and far-red Chlorophyll Fluorescence (SIF), were derived from directional hyperspectral observations and studied in a cornfield on two contrasting days in the growing season. Both red and far-red SIF exhibited higher values on the day when the canopy in the early senescent stage, but only the far-red SIF showed sensitivity to viewing geometry. Consequently, the red/far-red SIF ratio varied greatly among azimuth positions while the largest values were obtained for the "hotspot" at both growth stages. This ratio was lower (approx.0.88 +/- 0.4) in early July than in August when the ratio approached equivalence (near approx.1). In concert, the PRI exhibited stronger responses to both zenith and azimuth angles and different values on the two growth stages. The potential of using these indices to monitor photosynthetic activities needs further investigation

  7. Effects of Salinity on Chlorophyll Fluorescence of Nitrogen Fixing Soybean Plants (Glycine max L.)

    NASA Astrophysics Data System (ADS)

    Iliev, Ilko Ts.; Krezhova, Dora D.; Yanev, Tony K.; Kirova, Elisaveta B.

    2010-01-01

    Leaf chlorophyll ffluorescence was measured in order to assess the effect of salinity on nitrogen fixing soybean plants. Three day's seedlings were inoculated with suspension of Bradyrhizobium japonicum strain 273. The plants were grown at nutrient solution of Helrigel and salinyzed at stage of 2nd trifoliate expanded leaves by adding of NaCl at concentrations 40 mM and 80 mM. The chlorophyll fluorescence was registered by an USB2000 spectrometer in the spectral range 600-850 nm. As a source of actinic light a light emitting diode with the maximum of the light output at 470 nm was used. The course of the fluorescence spectra and the slow transient fluorescence kinetics were investigated. The Student's t-criterion and discriminant analysis were applied to estimate the changes between fluorescence spectra of control and treated soybean plants in five characteristic wavelengths in the spectral range 600-850 nm. Statistically significant differences were established by the t-criterion at p<0.05 for data at the first three wavelengths (at the middle of the leading edge, first maximum and at the middle of the first and second maximum) for both NaCl concentrations. The discriminant analysis confirmed these findings. A comparative analysis was performed with leaf spectral reflectance of the same plants collected in the spectral range 450-850 nm by the same spectrometer. All measurements were performed on the 14th day after the salinity treatment. The results from the implementation of the two remote sensing techniques (chlorophyll fluorescence and spectral reflectance) revealed that both NaCl concentrations brought to salinity stress in the nitrogen fixing soybean plants.

  8. In vivo chlorophyll fluorescence study of hazardous waste site vegetation under field and controlled conditions

    SciTech Connect

    Mayasich, S.A.; Zygmont, N.J. CDM Federal Programs Corp., South Plainfield, NJ )

    1993-06-01

    Cattail (Typha sp.) and Arrow Arum (Peltandra virginica) were studied to determine the effects of cadmium and nickel contamination in a freshwater tidal marsh. An in vivo chlorophyll fluorescence instrument was used in the field to estimate photosynthetic capacity. No definitive effects on photosynthesis were observed. A laboratory study was then designed to determine whether fluorescence could detect sublethal impacts of cadmium and whether tolerant plants had developed in the contaminated area. Arrow Arum seeds collected from a reference wetland and from the contaminated wetland were grown in horticultural vermiculite with cadmium concentrations of 0, 1, 2, 5 and 10 mg/L. Results indicate that, regardless of seed origin, fluorescence can detect an effect at cadmium levels at which there are no visual signs of stress. However, the plants from the contaminated wetland exhibited reduced growth, and deformities in several individuals.

  9. A Graphical User Interface for Parameterizing Biochemical Models of Photosynthesis and Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Kornfeld, A.; Van der Tol, C.; Berry, J. A.

    2015-12-01

    Recent advances in optical remote sensing of photosynthesis offer great promise for estimating gross primary productivity (GPP) at leaf, canopy and even global scale. These methods -including solar-induced chlorophyll fluorescence (SIF) emission, fluorescence spectra, and hyperspectral features such as the red edge and the photochemical reflectance index (PRI) - can be used to greatly enhance the predictive power of global circulation models (GCMs) by providing better constraints on GPP. The way to use measured optical data to parameterize existing models such as SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) is not trivial, however. We have therefore extended a biochemical model to include fluorescence and other parameters in a coupled treatment. To help parameterize the model, we then use nonlinear curve-fitting routines to determine the parameter set that enables model results to best fit leaf-level gas exchange and optical data measurements. To make the tool more accessible to all practitioners, we have further designed a graphical user interface (GUI) based front-end to allow researchers to analyze data with a minimum of effort while, at the same time, allowing them to change parameters interactively to visualize how variation in model parameters affect predicted outcomes such as photosynthetic rates, electron transport, and chlorophyll fluorescence. Here we discuss the tool and its effectiveness, using recently-gathered leaf-level data.

  10. Role of formation of statistical aggregates in chlorophyll fluorescence concentration quenching.

    PubMed

    Shi, Wu-Jun; Barber, James; Zhao, Yang

    2013-04-18

    Using extensive Monte Carlo simulations, a comprehensive investigation has been carried out on the phenomenon of chlorophyll fluorescence concentration quenching. Our results reveal that statistical aggregations of chlorophylls act mainly as trapping sites for excitation energy and lead to fluorescence quenching. Due to transition dipolar-dipolar interactions between the chlorophylls within a statistical aggregate, the associated oscillator strength changes in comparison to a monomer, and excited energy states show splitting. Further, as the lower energy states are more likely associated with lower oscillator strengths, the fluorescence intensity is observed to decrease. Due to the rapid energy transfer between chlorophyll molecules after photoexcitation, the excitonic energy can easily reach a statistical aggregate, where trapping of the exciton and its subsequent decay occur. With an increase in the chlorophyll concentration, the probability of statistical aggregation increases, thereby accentuating the fluorescence quenching effect.

  11. Ocean color spectral variability studies using solar-induced chlorophyll fluorescence

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Swift, Robert N.

    1987-01-01

    It is suggested that chlorophyll-induced ocean color spectral variability can be studied using only a passive airborne spectroradiometer instrument, with solar-induced chlorophyll fluorescence used as the standard against which all correlations are performed. The intraspectral correlation (ISC) method is demonstrated with results obtained during an airborne mapping mission in the New York Bight. The curvature algorithm is applied to the solar-induced chlorophyll fluorescence at about 690 nm, and good agreement is found with results obtained using active-passive correlation spectroscopy. The ISC method has application to spectral variability and resulting chlorophyll concentration measurement in different environmental conditions and in different water types.

  12. Optical properties of intact leaves for estimating chlorophyll concentration.

    PubMed

    Carter, Gregory A; Spiering, Bruce A

    2002-01-01

    Changes in leaf chlorophyll content can serve as relative indicators of plant vigor and environmental quality. This study identified reflectance, transmittance, and absorptance wavebands and band ratios within the 400- to 850-nm range for intact leaves that could be used to estimate extracted leaf chlorophyll per unit leaf area (areal concentration) with minimal error. Leaf optical properties along with chlorophyll a, b, and a + b concentrations were measured for the planar-leaved sweetgum (Liquidambar styraciflua L.), red maple (Acer rubrum L.), wild grape (Vitis rotundifolia Michx.), and switchcane [Arundinaria gigantea (Walter) Muhl.], and for needles of longleaf pine (Pinus palustris Miller). Generally, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentrations at wavelengths near 700 nm, although regressions were also strong in the 550- to 625-nm range. A power function was superior to a simple linear function in yielding low standard deviations of the estimate (s). When data were combined among the planar-leaved species, s values were low at approximately 50 mumol/m2 out of a 940 mumol/m2 range in chlorophyll a + b at best-fit wavelengths of 707 to 709 nm. Minimal s values for chlorophyll a + b ranged from 32 to 62 mumol/m2 across species when band ratios having numerator wavelengths of 693 to 720 nm were used with the application of a power function. Optimal denominator wavelengths for the band ratios were 850 nm for reflectance and transmittance and 400 nm for absorptance. This information can be applied in designing field portable chlorophyll meters and in the landscape-scale remote sensing of plant responses to the environment.

  13. Optical properties of intact leaves for estimating chlorophyll concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Spiering, Bruce A.

    2002-01-01

    Changes in leaf chlorophyll content can serve as relative indicators of plant vigor and environmental quality. This study identified reflectance, transmittance, and absorptance wavebands and band ratios within the 400- to 850-nm range for intact leaves that could be used to estimate extracted leaf chlorophyll per unit leaf area (areal concentration) with minimal error. Leaf optical properties along with chlorophyll a, b, and a + b concentrations were measured for the planar-leaved sweetgum (Liquidambar styraciflua L.), red maple (Acer rubrum L.), wild grape (Vitis rotundifolia Michx.), and switchcane [Arundinaria gigantea (Walter) Muhl.], and for needles of longleaf pine (Pinus palustris Miller). Generally, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentrations at wavelengths near 700 nm, although regressions were also strong in the 550- to 625-nm range. A power function was superior to a simple linear function in yielding low standard deviations of the estimate (s). When data were combined among the planar-leaved species, s values were low at approximately 50 mumol/m2 out of a 940 mumol/m2 range in chlorophyll a + b at best-fit wavelengths of 707 to 709 nm. Minimal s values for chlorophyll a + b ranged from 32 to 62 mumol/m2 across species when band ratios having numerator wavelengths of 693 to 720 nm were used with the application of a power function. Optimal denominator wavelengths for the band ratios were 850 nm for reflectance and transmittance and 400 nm for absorptance. This information can be applied in designing field portable chlorophyll meters and in the landscape-scale remote sensing of plant responses to the environment.

  14. Bark and leaf chlorophyll fluorescence are linked to wood structural changes in Eucalyptus saligna

    PubMed Central

    Johnstone, Denise; Tausz, Michael; Moore, Gregory; Nicolas, Marc

    2014-01-01

    Wood structure and wood anatomy are usually considered to be largely independent of the physiological processes that govern tree growth. This paper reports a statistical relationship between leaf and bark chlorophyll fluorescence and wood density. A relationship between leaf and bark chlorophyll fluorescence and the quantity of wood decay in a tree is also described. There was a statistically significant relationship between the leaf chlorophyll fluorescence parameter Fv/Fm and wood density and the quantity of wood decay in summer, but not in spring or autumn. Leaf chlorophyll fluorescence at 0.05 ms (the O step) could predict the quantity of wood decay in trees in spring. Bark chlorophyll fluorescence could predict wood density in spring using the Fv/Fm parameter, but not in summer or autumn. There was a consistent statistical relationship in spring, summer and autumn between the bark chlorophyll fluorescence parameter Fv/Fm and wood decay. This study indicates a relationship between chlorophyll fluorescence and wood structural changes, particularly with bark chlorenchyma. PMID:24790120

  15. Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Commane, R.; Parazoo, N. C.; Benmergui, J.; Euskirchen, E. S.; Frankenberg, C.; Joiner, J.; Lindaas, J.; Miller, C. E.; Oechel, W. C.; Zona, D.; Wofsy, S.; Lin, J. C.

    2017-02-01

    Accurately quantifying the timing and magnitude of respiration and photosynthesis by high-latitude ecosystems is important for understanding how a warming climate influences global carbon cycling. Data-driven estimates of photosynthesis across Arctic regions often rely on satellite-derived enhanced vegetation index (EVI); we find that satellite observations of solar-induced chlorophyll fluorescence (SIF) provide a more direct proxy for photosynthesis. We model Alaskan tundra CO2 cycling (2012-2014) according to temperature and shortwave radiation and alternately input EVI or SIF to prescribe the annual seasonal cycle of photosynthesis. We find that EVI-based seasonality indicates spring "green-up" to occur 9 days prior to SIF-based estimates, and that SIF-based estimates agree with aircraft and tower measurements of CO2. Adopting SIF, instead of EVI, for modeling the seasonal cycle of tundra photosynthesis can result in more accurate estimates of growing season duration and net carbon uptake by arctic vegetation.

  16. Millimeter scale profiles of chlorophyll fluorescence: Deciphering the microscale spatial structure of phytoplankton

    NASA Astrophysics Data System (ADS)

    Doubell, Mark J.; Prairie, Jennifer C.; Yamazaki, Hidekatsu

    2014-03-01

    Marine food webs and biogeochemical cycles are driven by interactions between individual phytoplankton and other micro-organisms embedded within turbulent flows. Understanding the causes and ecological consequences of these interactions requires measurement of the spatial distribution of organisms across sub-meter scales relevant to their activities. However, estimates of many microscale processes (e.g., encounter rates, competition) are implicitly based on a random distribution of plankton despite increasing evidence of patchy distributions of turbulence and phytoplankton at the oceans microscale. Further complicating our understanding of microscale phytoplankton ecology, recent studies have suggested that the high levels of fluorescence variability measured at sub-centimeter scales may be due to the detection of separate, large phytoplankton particles (i.e. large cells, chains and aggregates) rather than 'patches' of increased cell abundances. By comparing coincident fluorescence estimates measured with millimeter (μL) and centimeter (mL) scale resolution, we show that estimates of phytoplankton biomass made at centimeter scales are consistent with averaging discrete variations in fluorescence measured at millimeter scales and that a critical scale exists where measures of fluorescence variability transitions from representing an individual to a patch. Application of nearest neighbor analysis to the discrete fluorescence patterns showed deviations from complete spatial randomness towards clustering across scales of millimeters to tens of centimeters. The strength of the deviation from random increased significantly in regions of elevated phytoplankton concentrations. No relationship was observed between fluorescent particle concentrations or nearest neighbor distances with the rate of dissipation of turbulent kinetic energy. Our results provide empirical evidence that the scale at which phytoplankton distributions are estimated by chlorophyll fluorescence may be

  17. Chlorophyll content and chlorophyll fluorescence in tomato leaves infested with an invasive mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae).

    PubMed

    Huang, Jun; Zhang, Peng-Jun; Zhang, Juan; Lu, Yao-Bin; Huang, Fang; Li, Ming-Jiang

    2013-10-01

    Herbivore injury has indirect effects on the growth and performance of host plants through photosynthetic suppression. It causes uncertain reduction in photosynthesis, which likely depends on the degree of infestation. Rapid light curves provide detailed information on the saturation characteristics of electron transport as well as the overall photosynthetic performance of a plant. We examined the effects of different intensities of infestation of the invasive mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), on the relative chlorophyll content and rapid light curves of tomato Solanum lycopersicum L. leaves using a chlorophyll meter and chlorophyll fluorescence measurement system, respectively, under greenhouse conditions. After 38 d of P. solenopsis feeding, relative chlorophyll content of tomato plants with initial high of P. solenopsis was reduced by 57.3%. Light utilization efficiency (α) for the initial high-density treatment was reduced by 42.4%. However, no significant difference between initial low-density treatment and uninfested control was found. The values of the maximum electron transport rate and minimum saturating irradiance for initial high-density treatment were reduced by 82.0 and 69.7%, respectively, whereas the corresponding values for low-density treatment were reduced by 55.9 and 58.1%, respectively. These data indicated that changes were induced by P. solenopsis feeding in the relative chlorophyll content and chlorophyll fluorescence of infested tomato plants. The results indicating that low initial infestation by P. solenopsis caused no change in relative leaf chlorophyll content or light utilization efficiency could have been because the plants rapidly adapted to P. solenopsis feeding or because of compensatory photosynthesis.

  18. Remote Sensing of Chlorophyll Fluorescence by the Airborne Plant Fluorescence Sensor (APFS)

    NASA Astrophysics Data System (ADS)

    Yee, J. H.; Boldt, J.; Cook, W. B.; Morgan, F., II; Demajistre, R.; Cook, B. D.; Corp, L. A.

    2014-12-01

    Solar-induced chlorophyll fluorescence (ChlF) by terrestrial vegetation is linked closely to photosynthetic efficiency that can be exploited to monitor the plant health status and to assess the terrestrial carbon budget from space. The weak, broad continuum ChlF signal can be detected from the amount of fill-in of strong O2 absorption lines or Fraunhofer lines in the reflected solar spectral radiation. The Johns Hopkins University, Applied Physics Laboratory (JHU/APL) Airborne Plant Fluorescence Sensor (APFS) is designed and constructed specifically for airborne and groundbased ChlF measurements using the line fill-in ChlF measurement technique. In this paper, we will present the design of this triple etalon Fabry-Perot imaging instrument and the results of its vegetation fluorescence measurements obtained from the ground in the laboratory and from a NASA Langley King Air during our 2014 airborne campaign over vegetated targets in North Carolina and Virginia.

  19. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest.

    PubMed

    Yang, Hualei; Yang, Xi; Zhang, Yongguang; Heskel, Mary A; Lu, Xiaoliang; Munger, J William; Sun, Shucun; Tang, Jianwu

    2016-12-14

    Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf-level ChlF was linked with canopy-scale solar-induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts, USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R(2 ) = 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively; P < 0.0001). We developed a model to estimate GPP from the tower-based measurement of SIF and leaf-level ChlF parameters. The estimation of GPP from this model agreed well with flux tower observations of GPP (R(2 ) = 0.68; P < 0.0001), demonstrating the potential of SIF for modeling GPP. At the leaf scale, we found that leaf Fq '/Fm ', the fraction of absorbed photons that are used for photochemistry for a light-adapted measurement from a pulse amplitude modulation fluorometer, was the best leaf fluorescence parameter to correlate with canopy SIF yield (SIF/APAR, R(2 ) = 0.79; P < 0.0001). We also found that canopy SIF and SIF-derived GPP (GPPSIF ) were strongly correlated to leaf-level biochemistry and canopy structure, including chlorophyll content (R(2 ) = 0.65 for canopy GPPSIF and chlorophyll content; P < 0.0001), leaf area index (LAI) (R(2 ) = 0.35 for canopy GPPSIF and LAI; P < 0.0001), and normalized difference vegetation index (NDVI) (R(2 ) = 0.36 for

  20. A new relative referencing method for crop monitoring using chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Norikane, J.; Goto, E.; Kurata, K.; Takakura, T.

    The measurement of plant chlorophyll fluorescence has been used for many years as a method to monitor a plant's health status. These types of methods have been mostly relegated to the laboratory. The newly developed Relative Referencing Method allows for the measurement of chlorophyll fluorescence under artificial lighting conditions. The fluorescence signal can be determined by first taking a reference signal measurement, then a second measurement with an additional fluorescence excitation source. The first signal can then be subtracted from the second and the plant's chlorophyll fluorescence due to the second lighting source can be determined. With this simple approach, a photosynthesizing plant can be monitored to detect signs of water stress. Using this approach experiments on tomato plants have shown that it was possible to detect water stress, while the plants were continuously illuminated by fluorescent lamps. This method is a promising tool for the remote monitoring of crops grown in a CELSS-type application.

  1. Overview of Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space

    NASA Technical Reports Server (NTRS)

    Guanter, Luis; Zhang, Yongguang; Kohler, Philipp; Walther, Sophia; Frankenberg, Christian; Joiner, Joanna

    2016-01-01

    Despite the critical importance of photosynthesis for the Earth system, understanding how it is influenced by factors such as climate variability, disturbance history, and water or nutrient availability remains a challenge because of the complex interactions and the lack of GPP measurements at various temporal and spatial scales. Space observations of the sun-induced chlorophyll fluorescence (SIF) electromagnetic signal emitted by plants in the 650-850nm spectral range hold the promise of providing a new view of vegetation photosynthesis on a global basis. Global retrievals of SIF from space have recently been achieved from a number of spaceborne spectrometers originally intended for atmospheric research. Despite not having been designed for land applications, such instruments have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval from space. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission launched in 2009. The retrieval takes advantage of the high spectral resolution provided by GOSATs Fourier Transform Spectrometer (FTS) which allows the evaluation of the in-filling of solar Fraunhofer lines by SIF. Unfortunately, GOSAT only provides a sparse spatial sampling with individual soundings separated by several hundred kilometers. Complementary, the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B enable SIF retrievals since 2007 with a continuous and global spatial coverage. GOME-2 measures in the red and near-infrared (NIR) spectral regions with a spectral resolution of 0.5 nm and a pixel size of up to 40x40 km2. Most recently, another global and spatially continuous data set of SIF retrievals at 740 nm spanning the 2003-2012 time frame has been produced from ENVISATSCIAMACHY. This observational scenario has been completed by the first fluorescence data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming

  2. Field experiments of multi-channel oceanographic fluorescence lidar for oil spill and chlorophyll- a detection

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Zhao, Chaofang; Ma, Youjun; Liu, Zhishen

    2014-08-01

    A Multi-channel Oceanographic Fluorescence Lidar (MOFL), with a UV excitation at 355 nm and multiple receiving channels at typical wavelengths of fluorescence from oil spills and chlorophyll- a (Chl- a), has been developed using the Laser-induced Fluorescence (LIF) technique. The sketch of the MOFL system equipped with a compact multi-channel photomultiplier tube (MPMT) is introduced in the paper. The methods of differentiating the oil fluorescence from the background water fluorescence and evaluating the Chl- a concentration are described. Two field experiments were carried out to investigate the field performance of the system, i.e., an experiment in coastal areas for oil pollution detection and an experiment over the Yellow Sea for Chl- a monitoring. In the coastal experiment, several oil samples and other fluorescence substances were used to analyze the fluorescence spectral characteristics for oil identification, and to estimate the thickness of oil films at the water surface. The experiment shows that both the spectral shape of fluorescence induced from surface water and the intensity ratio of two channels ( I 495/ I 405) are essential to determine oil-spill occurrence. In the airborne experiment, MOFL was applied to measure relative Chl- a concentrations in the upper layer of the ocean. A comparison of relative Chl- a concentration measurements by MOFL and the Moderate Resolution Imaging Spectroradiometer (MODIS) indicates that the two datasets are in good agreement. The results show that the MOFL system is capable of monitoring oil spills and Chl- a in the upper layer of ocean water.

  3. Measurements of Solar Induced Chlorophyll Fluorescence at 685 nm by Airborne Plant Fluorescence Sensor (APFS)

    NASA Astrophysics Data System (ADS)

    Morgan, F.; Yee, J. H.; Boldt, J.; Cook, W. B.; Corp, L. A.

    2015-12-01

    Solar-induced chlorophyll fluorescence (ChlF) by terrestrial vegetation is linked closely to photosynthetic efficiency that can be exploited to monitor the plant health status and to assess the terrestrial carbon budget from space. The weak, broad continuum ChlF signal can be detected from the fill-in of strong O2 absorption lines or solar Fraunhofer lines in the reflected spectral radiation. The Johns Hopkins University, Applied Physics Laboratory (JHU/APL) Airborne Plant Fluorescence Sensor (APFS) is a triple etalon Fabry-Perot interferometer designed and optimized specifically for the ChlF sensing from an airborne platform using this line fill-in technique. In this paper, we will present the results of APFS ChlF measurements obtained from a NASA Langley King Air during two airborne campaigns (12/12 in 2014 and 5/20 in 2015) over various land, river, and vegetated targets in Virginia during stressed and growth seasons.

  4. A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence

    PubMed Central

    Woo, Nick S; Badger, Murray R; Pogson, Barry J

    2008-01-01

    Background Analysis of survival is commonly used as a means of comparing the performance of plant lines under drought. However, the assessment of plant water status during such studies typically involves detachment to estimate water shock, imprecise methods of estimation or invasive measurements such as osmotic adjustment that influence or annul further evaluation of a specimen's response to drought. Results This article presents a procedure for rapid, inexpensive and non-invasive assessment of the survival of soil-grown plants during drought treatment. The changes in major photosynthetic parameters during increasing water deficit were monitored via chlorophyll fluorescence imaging and the selection of the maximum efficiency of photosystem II (Fv/Fm) parameter as the most straightforward and practical means of monitoring survival is described. The veracity of this technique is validated through application to a variety of Arabidopsis thaliana ecotypes and mutant lines with altered tolerance to drought or reduced photosynthetic efficiencies. Conclusion The method presented here allows the acquisition of quantitative numerical estimates of Arabidopsis drought survival times that are amenable to statistical analysis. Furthermore, the required measurements can be obtained quickly and non-invasively using inexpensive equipment and with minimal expertise in chlorophyll fluorometry. This technique enables the rapid assessment and comparison of the relative viability of germplasm during drought, and may complement detailed physiological and water relations studies. PMID:19014425

  5. [Photosynthetic Parameters Inversion Algorithm Study Based on Chlorophyll Fluorescence Induction Kinetics Curve].

    PubMed

    Qiu, Xiao-han; Zhang, Yu-jun; Yin, Gao-fang; Shi, Chao-yi; Yu, Xiao-ya; Zhao, Nan-jing; Liu, Wen-qing

    2015-08-01

    The fast chlorophyll fluorescence induction curve contains rich information of photosynthesis. It can reflect various information of vegetation, such as, the survival status, the pathological condition and the physiology trends under the stress state. Through the acquisition of algae fluorescence and induced optical signal, the fast phase of chlorophyll fluorescence kinetics curve was fitted. Based on least square fitting method, we introduced adaptive minimum error approaching method for fast multivariate nonlinear regression fitting toward chlorophyll fluorescence kinetics curve. We realized Fo (fixedfluorescent), Fm (maximum fluorescence yield), σPSII (PSII functional absorption cross section) details parameters inversion and the photosynthetic parameters inversion of Chlorella pyrenoidosa. And we also studied physiological variation of Chlorella pyrenoidosa under the stress of Cu(2+).

  6. Monitoring dynamical vegetation processes with solar-induced chlorophyll fluorescence measurements from space (Invited)

    NASA Astrophysics Data System (ADS)

    Moreno, J. F.; Guanter, L.; Alonso, L.; Gomez-Chova, L.; Drusch, M.; Kraft, S.; Carnicero, B.; Bezy, J.

    2009-12-01

    Fluorescence is a powerful non-invasive tool to track the status, resilience, and recovery of photochemical processes and moreover provides important information on overall vegetation photosynthetic performance with implications for related carbon sequestration, allowing to measure planetary photosynthesis by means of a global monitoring of steady-state chlorophyll fluorescence in terrestrial vegetation. The FLuorescence EXperiment (FLEX) is designed to observe the photosynthetic activity of the vegetation layer, by using a completely novel technique measuring the chlorophyll fluorescence signal that originates from the core of the photosynthetic machinery, i.e. the ‘breathing’ of the vegetation layer of the living planet. Conceived as a technology demonstration mission, it proposes a set of instruments for the measurement of the interrelated features of fluorescence, spectral reflectance, and canopy temperature, by using a dedicated small satellite flying in tandem with GMES Sentinel-3. This will provide a completely new possibility to quantify the photosynthetic efficiency of terrestrial ecosystems at the global scale, to improve the predictability of dynamical vegetation models on scales comprising canopies and biomes, and to provide an improved estimate of GPP for a better understanding of the global carbon cycle. It will also improve understanding of the role of vegetation in the coupled global carbon / water cycles, the global assessment of the vegetation health conditions and vegetation stress and the support the development of future crop production strategies in a changing climate. The measurement represent a challenge: the weak fluorescence signal is masked by the reflected background radiance, and accurate compensation of all perturbing effects becomes essential. Recent developments have demonstrated the feasibility of the measurements of canopy fluorescence from space. Recent model developments and data processing tools have made possible to

  7. [Photosynthetic functions and chlorophyll fast fluorescence characteristics of five Pinus species].

    PubMed

    Qiu, Nian-Wei; Zhou, Feng; Gu, Zhu-Jun; Jia, Shu-Qin; Wang, Xing-An

    2012-05-01

    A comparative study was made on the needle morphological characteristics, photosynthetic rate, and chlorophyll fast fluorescence induction curves of five representative Pinus species P. parvifiora, P. armandii, P. bungeana, P. tabuliformis, and P. densiflora. Significant differences were observed in the needle morphological characteristics among the five species. P. tabuliformis had the longest needle length and highest needle density, whereas P. bungeana had the highest chlorophyll content. P. densiflora and P. parvifiora had the maximum and minimum photosynthetic rate, respectively. There was a positive correlation between the photosynthetic rate and stomatal conductance across the five species. The differences in the chlorophyll fast fluorescence induction curves of the five species were mainly manifested in J-step and I-step. Although the five species had similar values of Fv/Fm, Fv/Fo and Tfm, P. parviflora had significantly higher values of dV/dt(o), dVG/d(o), V and Vi, but lower energy flux ratio psi(o), phiEo and phiRo, compared with the other four species. The low PSII activity and efficiency of P. parviflora might relate to its smallest Sm, Sm/Tfm and N. P. densiflora and P. parvifiora had the maximum and minimum vitality indices PI(ABS/CSo/CSm) and DF, respectively, and there existed significant positive correlations between the PI(CSo) and PI(CSm) and the net photosynthetic rate of the five species, suggesting that PI(CSo) and PI(CSm) could be used to estimate the photosynthetic activity of Pinus trees.

  8. Prospects for chlorophyll fluorescence and vegetation remote sensing from the Orbiting Carbon Observatory-2

    NASA Astrophysics Data System (ADS)

    Frankenberg, C.; O'Dell, C.; Berry, J. A.; Guanter, L.; Joiner, J.; Pollock, H.; Taylor, T.

    2013-12-01

    The Orbiting Carbon Observatory-2 is a NASA mission designed to measure atmospheric CO2 and is scheduled to launch in July 2014. It's main purpose is to allow inversions of net flux estimates of CO2 on regional to continental scales using the total column CO2 retrieved using high-resolution spectra in the 0.76,1.6 and 2.0 μm range. Recently, it was shown that solar-induced chlorophyll fluorescence, a proxy for gross primary production (GPP, carbon uptake through photosynthesis), could be accurately retrieved from space using high-resolution spectra in the 750 nm range. Here, we use real OCO-2 thermal vacuum test data as well as a full repeat cycle (16 days) of simulated OCO-2 spectra under realistic conditions to evaluate the potential of OCO-2 for retrievals of chlorophyll fluorescence and also its dependence on clouds and aerosols. We find that the single-measurement precision is 0.3-0.5Wm-2sr-1μm-1, better than current measurements from space but still difficult to interpret on a single-sounding basis. The most significant advancement will come from smaller ground-pixel sizes and increased measurement frequency, with a 100-fold increase compared to GOSAT (and about 8 times higher than GOME-2). This will largely decrease the need for coarse spatial and temporal averaging in data analysis and pave the way to accurate local studies. We also find that the lack of full global mapping from the OCO-2 only incurs small errors for global carbon cycle research. Eventually, the combination of net ecosystem exchange (NEE) and proxy-estimates of GPP from the same satellite will provide a more process-based understanding of the global carbon cycle. Highlights from fluorescence results of the GOSAT satellite will be shown to emphasize the potential of OCO-2.

  9. Chlorophyll fluorescence response to water and nitrogen deficit

    NASA Astrophysics Data System (ADS)

    Cendrero Mateo, Maria del Pilar

    The increasing food demand as well as the need to predict the impact of warming climate on vegetation makes it critical to find the best tools to assess crop production and carbon dioxide (CO2) exchange between the land and atmosphere. Photosynthesis is a good indicator of crop production and CO2 exchange. Chlorophyll fluorescence (ChF) is directly related to photosynthesis. ChF can be measured at leaf-scale using active techniques and at field-scales using passive techniques. The measurement principles of both techniques are different. In this study, three overarching questions about ChF were addressed: Q1) How water, nutrient and ambient light conditions determine the relationships between photosynthesis and ChF? Which is the optimum irradiance level for detecting water and nutrient deficit conditions with ChF? ; Q2) which are the limits within which active and passive techniques are comparable?; and Q3) What is the seasonal relationship between photosynthesis and ChF when nitrogen is the limiting factor? To address these questions, two main experiments were conducted: Exp1) Concurrent photosynthesis and ChF light-response curves were measured in camelina and wheat plants growing under (i) intermediate-light and (ii) high-light conditions respectively. Plant stress was induced by (i) withdrawing water, and (ii) applying different nitrogen levels; and Exp2) coincident active and passive ChF measurements were made in a wheat field under different nitrogen treatments. The results indicated ChF has a direct relationship with photosynthesis when water or nitrogen drives the relationship. This study demonstrates that the light level at which plants were grown was optimum for detecting water and nutrient deficit with ChF. Also, the results showed that for leaf-average-values, active measurements can be used to better understand the daily and seasonal behavior of passive ChF. Further, the seasonal relation between photosynthesis and ChF with nitrogen stress was not a

  10. Chlorophyll Fluorescence Emissions of Vegetation Canopies From High Resolution Field Reflectance Spectra

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Corp, L. A.; Daughtry, C. S. T.; Campbell, P. K. Entcheva

    2006-01-01

    A two-year experiment was performed on corn (Zea mays L.) crops under nitrogen (N) fertilization regimes to examine the use of hyperspectral canopy reflectance information for estimating chlorophyll fluorescence (ChlF) and vegetation production. Fluorescence of foliage in the laboratory has proven more rigorous than reflectance for correlation to plant physiology. Especially useful are emissions produced from two stable red and far-red chlorophyll ChlF peaks centered at 685V10 nm and 735V5 nm. Methods have been developed elsewhere to extract steady state solar induced fluorescence (SF) from apparent reflectance of vegetation canopies/landscapes using the Fraunhofer Line Depth (FLD) principal. Our study utilized these methods in conjunction with field-acquired high spectral resolution canopy reflectance spectra obtained in 2004 and 2005 over corn crops, as part of an ongoing multi-year experiment at the USDA/Agriculture Research Service in Beltsville, MD. A spectroradiometer (ASD-FR Fieldspec Pro, Analytical Spectral Devices, Inc., Boulder, CO) was used to measure canopy radiances 1 m above plant canopies with a 22deg field of view and a 0deg nadir view zenith angle. Canopy and plant measurements were made at the R3 grain fill reproductive stage on 3-4 replicate N application plots provided seasonal inputs of 280, 140, 70, and 28 kg N/ha. Leaf level measurements were also made which included ChlF, photosynthesis, and leaf constituents (photosynthetic pigment, carbon (C), and N contents). Crop yields were determined at harvest. SIF intensities for ChlF were derived directly from canopy reflectance spectra in specific narrowband regions associated with atmospheric oxygen absorption features centered at 688 and 760 nm. The red/far-red S F ratio derived from these field reflectance spectra successfully discriminated foliar pigment levels (e.g., total chlorophyll, Chl) associated with N application rates in both corn crops. This canopy-level spectral ratio was also

  11. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions

    PubMed Central

    Mishra, Anamika; Höermiller, Imke I; Heyer, Arnd G; Nedbal, Ladislav

    2011-01-01

    Non-invasive, high-throughput screening methods are valuable tools in breeding for abiotic stress tolerance in plants. Optical signals such as chlorophyll fluorescence emission can be instrumental in developing new screening techniques. In order to examine the potential of chlorophyll fluorescence to reveal plant tolerance to low temperatures, we used a collection of nine Arabidopsis thaliana accessions and compared their fluorescence features with cold tolerance quantified by the well established electrolyte leakage method on detached leaves. We found that, during progressive cooling, the minimal chlorophyll fluorescence emission rose strongly and that this rise was highly dependent on the cold tolerance of the accessions. Maximum quantum yield of PSII photochemistry and steady state fluorescence normalized to minimal fluorescence were also highly correlated to the cold tolerance measured by the electrolyte leakage method. In order to further increase the capacity of the fluorescence detection to reveal the low temperature tolerance, we applied combinatorial imaging that employs plant classification based on multiple fluorescence features. We found that this method, by including the resolving power of several fluorescence features, can be well employed to detect cold tolerance already at mild sub-zero temperatures. Therefore, there is no need to freeze the screened plants to the largely damaging temperatures of around −15°C. This, together with the method's easy applicability, represents a major advantage of the fluorescence technique over the conventional electrolyte leakage method. PMID:21427532

  12. Estimating global chlorophyll changes over the past century

    NASA Astrophysics Data System (ADS)

    Boyce, Daniel G.; Dowd, Michael; Lewis, Marlon R.; Worm, Boris

    2014-03-01

    Marine phytoplankton account for approximately half of the production of organic matter on earth, support virtually all marine ecosystems, constrain fisheries yields, and influence climate and weather. Despite this importance, long-term trajectories of phytoplankton abundance or biomass are difficult to estimate, and the extent of changes is unresolved. Here, we use a new, publicly-available database of historical shipboard oceanographic measurements to estimate long-term changes in chlorophyll concentration (Chl; a widely used proxy for phytoplankton biomass) from 1890 to 2010. This work builds upon an earlier analysis (Boyce et al., 2010) by taking published criticisms into account, and by using recalibrated data, and novel analysis methods. Rates of long-term chlorophyll change were estimated using generalized additive models within a multi-model inference framework, and post hoc sensitivity analyses were undertaken to test the robustness of results. Our analysis revealed statistically significant Chl declines over 62% of the global ocean surface area where data were present, and in 8 of 11 large ocean regions. While Chl increases have occurred in many locations, weighted syntheses of local- and regional-scale estimates confirmed that average chlorophyll concentrations have declined across the majority of the global ocean area over the past century. Sensitivity analyses indicate that these changes do not arise from any bias between data types, nor do they depend upon the method of spatial or temporal aggregation, nor the use of a particular statistical model. The wider consequences of this long-term decline of marine phytoplankton are presently unresolved, but will need to be considered in future studies of marine ecosystem structure, geochemical cycling, and fishery yields.

  13. Chlorophyll fluorescence induction, chlorophyll content, and chromaticity characteristics of leaves as indicators of photosynthetic apparatus senescence in arboreous plants.

    PubMed

    Ptushenko, V V; Ptushenko, O S; Tikhonov, A N

    2014-03-01

    Parameters of chlorophyll fluorescence induction (CFI) are widely used for assessment of the physiological state of higher plant leaves in biochemical, physiological, and ecological studies and in agricultural applications. In this work we have analyzed data on variability of some CFI parameters - ΦPSII(max) = Fv/Fm (relative value of variable fluorescence), qNPQ (non-photochemical quenching coefficient), RFd ("vitality index") - in autumnal leaves of ten arboreous plant species of the temperate climatic zone. The correlation between the chlorophyll content in the leaves and fluorescence parameters characterizing photosynthetic activity is shown for two representative species, the small-leaved linden Tilia cordata and the rowan tree Sorbus aucuparia. During the period of mass yellowing of the leaves, the ΦPSII(max) value can be used as an adequate characteristic of their photochemical activity, while in summer the qNPQ or RFd values are more informative. We have established a correlation between the ΦPSII(max) value, which characterizes the maximal photochemical activity of the photosystem II, and "chromaticity coordinates" of a leaf characterizing its color features. The chromaticity coordinates determined from the optical reflection spectra of the leaves serve as a quantitative measure of their hues, and this creates certain prerequisites for a visual expert assessment of the physiological state of the leaves.

  14. Modelling satellite-level solar-induced chlorophyll fluorescence and its comparison with OCO-2 observations

    NASA Astrophysics Data System (ADS)

    Pradhan, Rohit; Gohel, Ankit

    2016-04-01

    Solar Induced chlorophyll Fluorescence (SIF) is a direct measure of photosynthesis rate as it is emitted by the photosynthetic system. This paper reports a method to model SIF over India by assimilating spatial inputs (LAI, Chlorophyll content etc.) into FluorMOD leaf and canopy model. Modelled SIF was then compared to Orbiting Carbon Observatory (OCO-2) SIF observations from September 2014 to August 2015. Modelled SIF at 757 nm averaged over the country varied between 0.18 to 0.33 W m-2 sr-1 μm-1 whereas SIF at 771 nm varied between 0.10 to 0.19 W m-2 sr-1 μm-1. OCO-2 observed SIF at 757 nm averaged over the country ranged from 0.18 to 0.42 Wm-2sr-1μm-1. Fairly good agreement (r=0.77, p<0.01 at 757nm; r=0.71, p<0.05 at 771 nm) was observed between modelled and observed SIF except for summer months of April and May. This paper presents a new approach to upscale a leaf and canopy level model to estimate SIF over entire country.

  15. MES16, a member of the methylesterase protein family, specifically demethylates fluorescent chlorophyll catabolites during chlorophyll breakdown in Arabidopsis.

    PubMed

    Christ, Bastien; Schelbert, Silvia; Aubry, Sylvain; Süssenbacher, Iris; Müller, Thomas; Kräutler, Bernhard; Hörtensteiner, Stefan

    2012-02-01

    During leaf senescence, chlorophyll (Chl) is broken down to nonfluorescent chlorophyll catabolites (NCCs). These arise from intermediary fluorescent chlorophyll catabolites (FCCs) by an acid-catalyzed isomerization inside the vacuole. The chemical structures of NCCs from Arabidopsis (Arabidopsis thaliana) indicate the presence of an enzyme activity that demethylates the C13(2)-carboxymethyl group present at the isocyclic ring of Chl. Here, we identified this activity as methylesterase family member 16 (MES16; At4g16690). During senescence, mes16 leaves exhibited a strong ultraviolet-excitable fluorescence, which resulted from large amounts of different FCCs accumulating in the mutants. As confirmed by mass spectrometry, these FCCs had an intact carboxymethyl group, which slowed down their isomerization to respective NCCs. Like a homologous protein cloned from radish (Raphanus sativus) and named pheophorbidase, MES16 catalyzed the demethylation of pheophorbide, an early intermediate of Chl breakdown, in vitro, but MES16 also demethylated an FCC. To determine the in vivo substrate of MES16, we analyzed pheophorbide a oxygenase1 (pao1), which is deficient in pheophorbide catabolism and accumulates pheophorbide in the chloroplast, and a mes16pao1 double mutant. In the pao1 background, we additionally mistargeted MES16 to the chloroplast. Normally, MES16 localizes to the cytosol, as shown by analysis of a MES16-green fluorescent protein fusion. Analysis of the accumulating pigments in these lines revealed that pheophorbide is only accessible for demethylation when MES16 is targeted to the chloroplast. Together, these data demonstrate that MES16 is an integral component of Chl breakdown in Arabidopsis and specifically demethylates Chl catabolites at the level of FCCs in the cytosol.

  16. Lunisolar tidal force and its relationship to chlorophyll fluorescence in Arabidopsis thaliana

    PubMed Central

    Fisahn, Joachim; Klingelé, Emile; Barlow, Peter

    2015-01-01

    The yield of chlorophyll fluorescence Ft was measured in leaves of Arabidopsis thaliana over periods of several days under conditions of continuous illumination (LL) without the application of saturating light pulses. After linearization of the time series of the chlorophyll fluorescence yield (ΔFt), oscillations became apparent with periodicities in the circatidal range. Alignments of these linearized time series ΔFt with the lunisolar tidal acceleration revealed high degrees of synchrony and phase congruence. Similar congruence with the lunisolar tide was obtained with the linearized quantum yield of PSII (ΔФII), recorded after application of saturating light pulses. These findings strongly suggest that there is an exogenous timekeeper which is a stimulus for the oscillations detected in both the linearized yield of chlorophyll fluorescence (ΔFt) and the linearized quantum yield of PSII (ΔФII). PMID:26376108

  17. Remote estimation of canopy chlorophyll content in crops

    NASA Astrophysics Data System (ADS)

    Gitelson, Anatoly A.; Viña, Andrés; Ciganda, Verónica; Rundquist, Donald C.; Arkebauer, Timothy J.

    2005-04-01

    Accurate estimation of spatially distributed chlorophyll content (Chl) in crops is of great importance for regional and global studies of carbon balance and responses to fertilizer (e.g., nitrogen) application. In this paper a recently developed conceptual model was applied for remotely estimating Chl in maize and soybean canopies. We tuned the spectral regions to be included in the model, according to the optical characteristics of the crops studied, and showed that the developed technique allowed accurate estimation of total Chl in both crops, explaining more than 92% of Chl variation. This new technique shows great potential for remotely tracking the physiological status of crops, with contrasting canopy architectures, and their responses to environmental changes.

  18. The Chlorophyll Fluorescence Imaging Spectrometer (CFIS): A New Airborne Instrument for Quantifying Solar-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Drewry, D.; Frankenberg, C.; Verma, M.; Berry, J. A.; Schimel, D.; Geier, S.; Schwochert, M.

    2015-12-01

    Recent demonstrations of the retrieval of vegetation solar-induced fluorescence (SIF) emission from satellite platforms have opened up the possibility of remotely monitoring photosynthetic function, in addition to the structural and biochemical parameters that characterize the current capabilities of vegetation observing systems. These satellite retrievals, from platforms such as GOSAT, GOME-2, and most recently NASA's Orbiting Carbon Observatory 2 (OCO-2), provide powerful evidence of the correlation between vegetation productivity and SIF at seasonal to annual timescales, and at spatial resolutions of tens to hundreds of kilometers. The Chlorophyll Fluorescence Imaging Spectrometer (CFIS) was recently developed for OCO-2 validation purposes and provides an airborne capability to help fill the spatial gap between leaf- or canopy-level observations of SIF flux and extensive satellite footprints. The flexibility of an airborne instrument likewise allows for studies of the temporal variability of SIF emission over consecutive days, or with meteorological variability throughout a day. CFIS is a high resolution (<0.1nm) spectrometer covering the 740-770nm wavelength range, optimized for SIF quantification. Here we present an overview of the instrument design and capabilities, along with the retrieval methodology. An evaluation of data collected during initial campaigns conducted during the spring and summer of 2015 are also presented, demonstrating variability within and between days for campaigns spanning multiple days in the Midwest US and Northern California. Results will be compared to OCO-2 data as well as flux-tower measurements made during the CFIS flights.

  19. Prospects for Chlorophyll Fluorescence Remote Sensing from the Orbiting Carbon Observatory-2

    NASA Technical Reports Server (NTRS)

    Frankenberg, Christian; Odell, Chris; Berry, Joseph; Guanter, Luis; Joiner, Joanna; Kohler, Philipp; Pollock, Randy; Taylor, Thomas E.

    2014-01-01

    The Orbiting Carbon Observatory-2 (OCO-2), scheduled to launch in July 2014, is a NASA mission designed to measure atmospheric CO2. Its main purpose is to allow inversions of net flux estimates of CO2 on regional to continental scales using the total column CO2 retrieved using high-resolution spectra in the 0.76, 1.6, and 2.0 nm ranges. Recently, it was shown that solar-induced chlorophyll fluorescence (SIF), a proxy for gross primary production (GPP, carbon uptake through photosynthesis), can be accurately retrieved from space using high spectral resolution radiances in the 750 nm range from the Japanese GOSAT and European GOME-2 instruments. Here, we use real OCO-2 thermal vacuum test data as well as a full repeat cycle (16 days) of simulated OCO-2 spectra under realistic conditions to evaluate the potential of OCO-2 for retrievals of chlorophyll fluorescence and also its dependence on clouds and aerosols. We find that the single-measurement precision is 0.3-0.5 Wm(exp -2)sr(exp -1) nm(exp -1) (15-25% of typical peak values), better than current measurements from space but still difficult to interpret on a single-sounding basis. The most significant advancement will come from smaller ground-pixel sizes and increased measurement frequency, with a 100-fold increase compared to GOSAT (and about 8 times higher than GOME-2). This will largely decrease the need for coarse spatial and temporal averaging in data analysis and pave the way to accurate local studies.We also find that the lack of full global mapping from the OCO-2 only incurs small representativeness errors on regional averages. Eventually, the combination of net ecosystem exchange (NEE) derived from CO2 source/sink inversions and SIF as proxy for GPP from the same satellite will provide a more process-based understanding of the global carbon cycle.

  20. Chlorophyll Fluorescence as a Possible Tool for Salinity Tolerance Screening in Barley (Hordeum vulgare L.).

    PubMed Central

    Belkhodja, R.; Morales, F.; Abadia, A.; Gomez-Aparisi, J.; Abadia, J.

    1994-01-01

    The application of chlorophyll fluorescence measurements to screening barley (Hordeum vulgare L.) genotypes for salinity tolerance has been investigated. Excised barley leaves were cut under water and incubated with the cut end immersed in water or in a 100-mM NaCl solution, either in the dark or in high light. Changes in rapid fluorescence kinetics occurred in excised barley leaves exposed to the saline solution only when the incubation was carried out in the presence of high light. Fluorescence changes consisted of decreases in the variable to maximum fluorescence ratio and in increases in the relative proportion of variable fluorescence leading to point I in the Kautsky fluorescence induction curve. These relative increases in fluorescence at point I appeared to arise from a delayed plastoquinone reoxidation in the dark, since they disappeared after short, far-red illumination, which is known to excite photosystem I preferentially. We show that a significant correlation existed between some fluorescence parameters, measured after a combined salt and high-light treatment, and other independent measurements of salinity tolerance. These results suggest that chlorophyll fluorescence, and especially the relative fluorescence at point I in the Kautsky fluorescence induction curve, could be used for the screening of barley genotypes for salinity tolerance. PMID:12232117

  1. Modeling regional cropland GPP by empirically incorporating sun-induced chlorophyll fluorescence into a coupled photosynthesis-fluorescence model

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Guanter, L.; Van der Tol, C.; Joiner, J.; Berry, J. A.

    2015-12-01

    Global sun-induced chlorophyll fluorescence (SIF) retrievals are currently available from several satellites. SIF is intrinsically linked to photosynthesis, so the new data sets allow to link remotely-sensed vegetation parameters and the actual photosynthetic activity of plants. In this study, we used space measurements of SIF together with the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) balance model in order to simulate regional photosynthetic uptake of croplands in the US corn belt. SCOPE couples fluorescence and photosynthesis at leaf and canopy levels. To do this, we first retrieved a key parameter of photosynthesis model, the maximum rate of carboxylation (Vcmax), from field measurements of CO2 and water flux during 2007-2012 at some crop eddy covariance flux sites in the Midwestern US. Then we empirically calibrated Vcmax with apparent fluorescence yield which is SIF divided by PAR. SIF retrievals are from the European GOME-2 instrument onboard the MetOp-A platform. The resulting apparent fluorescence yield shows a stronger relationship with Vcmax during the growing season than widely-used vegetation index, EVI and NDVI. New seasonal and regional Vcmax maps were derived based on the calibration model for the cropland of the corn belt. The uncertainties of Vcmax were also estimated through Gaussian error propagation. With the newly derived Vcmax maps, we modeled regional cropland GPP during the growing season for the Midwestern USA, with meteorological data from MERRA reanalysis data and LAI from MODIS product (MCD15A2). The results show the improvement in the seasonal and spatial patterns of cropland productivity in comparisons with both flux tower and agricultural inventory data.

  2. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].

    PubMed

    Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han

    2014-11-01

    Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.

  3. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global monitoring of agricultural productivity is critical in a world under a continuous increase of food demand. Here we have used new spaceborne retrievals of chlorophyll fluorescence, an emission quantity intrinsically linked to photosynthesis, to derive spatially explicit photosynthetic uptake r...

  4. Interregional difference in spring neap variations in stratification and chlorophyll fluorescence during summer in a tidal sea (Yatsushiro Sea, Japan)

    NASA Astrophysics Data System (ADS)

    Aoki, Kazuhiro; Onitsuka, Goh; Shimizu, Manabu; Matsuo, Hitoshi; Kitadai, Yuuki; Ochiai, Hironori; Yamamoto, Takeshi; Furukawa, Shinpei

    2016-10-01

    Spring neap variations in stratification and chlorophyll fluorescence were studied during the summers of 2011-2014 in a tidal sea (Yatsushiro Sea, Japan) using monitoring data and hydrodynamic models. Vertical profiles of salinity, temperature and chlorophyll fluorescence were collected nearly weekly from nine stations in this sea during the same period. Composite analysis using vertical profiles of density clearly indicated enhancement of the stratification during the neap tide and a vertically mixed water column during the spring tide in the tidal area. Interregional differences were revealed in the variation of chlorophyll fluorescence with the spring neap tidal cycle. More notable increases in chlorophyll fluorescence were observed during the neap tide in the tidal area around the narrow strait than in the inner area. Temporal stratification led to an increase in the chlorophyll fluorescence in the tidal strait during the neap tide.

  5. A new relative referencing method for crop monitoring using chlorophyll fluorescence

    NASA Technical Reports Server (NTRS)

    Norikane, J.; Goto, E.; Kurata, K.; Takakura, T.

    2003-01-01

    The measurement of plant chlorophyll fluorescence has been used for many years as a method to monitor a plant's health status. These types of methods have been mostly relegated to the laboratory. The newly developed Relative Referencing Method allows for the measurement of chlorophyll fluorescence under artificial lighting conditions. The fluorescence signal can be determined by first taking a reference signal measurement, then a second measurement with an additional fluorescence excitation source. The first signal can then be subtracted from the second and the plant's chlorophyll fluorescence due to the second lighting source can be determined. With this simple approach, a photosynthesizing plant can be monitored to detect signs of water stress. Using this approach experiments on tomato plants have shown that it was possible to detect water stress, while the plants were continuously illuminated by fluorescent lamps. This method is a promising tool for the remote monitoring of crops grown in a CELSS-type application. Published by Elsevier Science Ltd on behalf of COSPAR.

  6. Variability in chlorophyll fluorescence spectra of eggplant fruit grown under different light environments: a case study.

    PubMed

    Ospina Calvo, Brian; Parapugna, Tamara L; Lagorio, M Gabriela

    2017-03-13

    The main goal of the present work was to clarify physiological strategies in plants whose chloroplasts were developed under different light environments. The specific objective was to elucidate the influence of the spectral distribution of light on the chlorophyll fluorescence ratio and on photosynthetic parameters. To achieve this purpose, three species of eggplant fruit (black, purple and white striped and white) were used as a case study and their chlorophyll fluorescence was analyzed in detail. Spectra of the non-variable fluorescence in each part of the fruit were corrected for distortions by light reabsorption processes using a physical model. The main conclusion of this work was that the corrected fluorescence ratio was dependent on the contribution of each photosystem to the fluorescence and consequently on the environmental lighting conditions, becoming higher when illumination was rich in long wavelengths. Variable chlorophyll fluorescence, similar to that observed from plant leaves, was detected for the pulp of the black eggplant, for the pulp of the purple and white striped eggplant and for the intact fruit of the black eggplant. The maximum quantum efficiency of photosystem II in the light-adapted state (F'v/F'm), the quantum efficiency of photosystem II (ΦPSII), and the photochemical and non-photochemical quenching coefficients (qP and qNP/NPQ respectively) were determined in each case. The results could be explained very interestingly, in relation with the proportion of exciting light reaching each photosystem (I and II). The photochemical parameters obtained from variable chlorophyll fluorescence, allowed us to monitor non-destructively the physiological state of the black fruit during storage under both chilled or room-temperature conditions.

  7. [Monitoring of the Moskva River Water Using Microbiological Parameters and Chlorophyll a Fluorescence].

    PubMed

    Mosharova, I V; Il'inskii, V V; Matorin, D N; Mosharov, S A; Akulova, A Yu; Protopopov, F F

    2015-01-01

    The results of investigations of three Moskva River sites with different degree of pollution using a complex of microbiological characteristics and the parameters of chlorophyll a fluorescence are presented. We determined that the bacterioplankton seasonal dynamics at less polluted waters (Tushino and Vorobyovy Gory) were similar and differed significantly from one in more polluted waters (Dzerzhinskii). The number of bacteria with active electron transport chain, as well as their share in the bacterioplankton structure, was higher in the water of Dzerzhinskii (average annual values of 0.23 x 10(6) cells/mL and 14%), that in the less polluted water of Tushino and Vorobyovy Gory (0.14 x 10(6) cells/mL; 6% and 0.15 x 10(6) cells/mL; 7%, respectively). From April to October, the content of chlorophyll a and its photosynthetic activity were the highest in Tushino. In Dzerzhinskii, during spring the increase in photosynthetic activity commenced earlier and was more intensive that the increase in chlorophyll a content, i.e., the increase in phytoplankton biomass was temporarily suppressed. We suggest association of this phenomenon with suppression of organic matter synthesis by phytoplankton due to the high water pollution in Dzerzhinskii. The second autumn peak of chlorophyll a content, that was typical of clear water and was observed in Tushino, did not occur in Dzerzhinskii. We recommend combined application of these microbiological parameters and characteristics of chlorophyll a fluorescence for a monitoring.

  8. Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific: Scales, patterns, and biogeochemical implications

    NASA Astrophysics Data System (ADS)

    Claustre, Hervé; Morel, André; Babin, Marcel; Cailliau, Caroline; Marie, Dominique; Marty, Jean-Claude; Tailliez, Dominique; Vaulot, Daniel

    1999-02-01

    The variability in particle attenuation (cp) and in chlorophyll in situ fluorescence (Fis) was examined in November 1994 along 150°W in the Pacific Ocean. Two main sources of variation in cp and Fis profiles are identified by analyzing data from a 16°S-1°N transect, and from two 5 day stations (5°S and 16°S). The first source reflects changes in the trophic status resulting from prevailing hydrodynamical regimes at large scales. By using flow cytometric data and some assumptions about the size distribution of the different biological stocks, a decomposition of cp into its vegetal (cveg) and nonvegetal (cnveg) components is attempted. Within the euphotic layer, cveg accounts for 43% of the total cp signal at the equator and for only 20% in the South Pacific gyre. The nonvegetal component is then subdivided into heterotrophic organisms and detritus contributions. The detrital material is an important contributor with 43% of cp at 5°S and 55% at 16°S. A further decomposition of Fis and cveg into the three dominant phytoplanktonic groups (Prochlorococcus, Synechococcus, and picoeucaryotes) confirms that picoeucaryotes are important contributors of the vegetal biomass, especially within and below the deep chlorophyll maximum (DCM) (>50% of the algal stock) at 16°S. The second, and essentially local, source of variation is related to specific rhythms in biological and physiological processes. The prominent signals detected during the time series occur at the daily scale: besides the pronounced fluorescence depression at noon in upper layers, particle attenuation in all the layers examined and fluorescence in the DCM display conspicuous daily oscillations. They result from the balance between daytime accumulation and night removal of particles, of algal cells in particular. Finally, the estimation of cp-based growth rates points out the surprisingly rapid turnover time of the whole particulate matter stock in oligotrophic waters (16°S), not only in the euphotic

  9. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments

    PubMed Central

    Cendrero-Mateo, M. Pilar; Moran, M. Susan; Papuga, Shirley A.; Thorp, K.R.; Alonso, L.; Moreno, J.; Ponce-Campos, G.; Rascher, U.; Wang, G.

    2016-01-01

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management. PMID:26482242

  10. Photochemical and photoelectrochemical quenching of chlorophyll fluorescence in photosystem II.

    PubMed

    Vredenberg, Wim; Durchan, Milan; Prásil, Ondrej

    2009-12-01

    This paper deals with kinetics and properties of variable fluorescence in leaves and thylakoids upon excitation with low intensity multi-turnover actinic light pulses corresponding with an excitation rate of about 10 Hz. These show a relatively small and amply documented rise in the sub-s time range towards the plateau level F(pl) followed by a delayed and S-shaped rise towards a steady state level F(m) which is between three and four fold the initial dark fluorescence level F(o). Properties of this retarded slow rise are i) rate of dark recovery is (1-6 s)(-1), ii) suppression by low concentration of protonophores, iii) responsiveness to complementary single turnover flash excitation with transient amplitude towards a level F(m) which is between five and six fold the initial dark fluorescence level F(o) and iv) in harmony with and quantitatively interpretable in terms of a release of photoelectrochemical quenching controlled by the trans-thylakoid proton pump powered by the light-driven Q cycle. Data show evidence for a sizeable fluorescence increase upon release of (photo) electrochemical quenching, defined as qPE. Release of qPE occurs independent of photochemical quenching defined here as qPP even under conditions at which qPP = 1. The term photochemical quenching, hitherto symbolized by qP, will require a new definition, because it incorporates in its present form a sizeable photoelectrochemical component. The same is likely to be true for definition and use of qN as an indicator of non photochemical quenching.

  11. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence

    PubMed Central

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; Moran, M. Susan; Ponce-Campos, Guillermo; Beer, Christian; Camps-Valls, Gustavo; Buchmann, Nina; Gianelle, Damiano; Klumpp, Katja; Cescatti, Alessandro; Baker, John M.; Griffis, Timothy J.

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50–75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle. PMID:24706867

  12. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence.

    PubMed

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A; Frankenberg, Christian; Huete, Alfredo R; Zarco-Tejada, Pablo; Lee, Jung-Eun; Moran, M Susan; Ponce-Campos, Guillermo; Beer, Christian; Camps-Valls, Gustavo; Buchmann, Nina; Gianelle, Damiano; Klumpp, Katja; Cescatti, Alessandro; Baker, John M; Griffis, Timothy J

    2014-04-08

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50-75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.

  13. Global and Time-Resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence

    NASA Technical Reports Server (NTRS)

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; Moran, M. Susan; Ponce-Campos, Guillermo; Beer, Christian; Camps-Valls, Gustavo; Buchmann, Nina; Gianelle, Damiano; Klumpp, Katja; Cescatti, Alessandro; Baker, John M.; Griffis, Timothy J.

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50-75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.

  14. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence.

    PubMed

    Kumar, K Suresh; Dahms, Hans-Uwe; Lee, Jae-Seong; Kim, Hyung Chul; Lee, Won Chan; Shin, Kyung-Hoon

    2014-06-01

    Chlorophyll a fluorescence is established as a rapid, non-intrusive technique to monitor photosynthetic performance of plants and algae, as well as to analyze their protective responses. Apart from its utility in determining the physiological status of photosynthesizers in the natural environment, chlorophyll a fluorescence-based methods are applied in ecophysiological and toxicological studies to examine the effect of environmental changes and pollutants on plants and algae (microalgae and seaweeds). Pollutants or environmental changes cause alteration of the photosynthetic capacity which could be evaluated by fluorescence kinetics. Hence, evaluating key fluorescence parameters and assessing photosynthetic performances would provide an insight regarding the probable causes of changes in photosynthetic performances. This technique quintessentially provides non-invasive determination of changes in the photosynthetic apparatus prior to the appearance of visible damage. It is reliable, economically feasible, time-saving, highly sensitive, versatile, accurate, non-invasive and portable; thereby comprising an excellent alternative for detecting pollution. The present review demonstrates the applicability of chlorophyll a fluorescence in determining photochemical responses of algae exposed to environmental toxicants (such as toxic metals and herbicides).

  15. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications.

    PubMed

    Murchie, E H; Lawson, T

    2013-10-01

    Chlorophyll fluorescence is a non-invasive measurement of photosystem II (PSII) activity and is a commonly used technique in plant physiology. The sensitivity of PSII activity to abiotic and biotic factors has made this a key technique not only for understanding the photosynthetic mechanisms but also as a broader indicator of how plants respond to environmental change. This, along with low cost and ease of collecting data, has resulted in the appearance of a large array of instrument types for measurement and calculated parameters which can be bewildering for the new user. Moreover, its accessibility can lead to misuse and misinterpretation when the underlying photosynthetic processes are not fully appreciated. This review is timely because it sits at a point of renewed interest in chlorophyll fluorescence where fast measurements of photosynthetic performance are now required for crop improvement purposes. Here we help the researcher make choices in terms of protocols using the equipment and expertise available, especially for field measurements. We start with a basic overview of the principles of fluorescence analysis and provide advice on best practice for taking pulse amplitude-modulated measurements. We also discuss a number of emerging techniques for contemporary crop and ecology research, where we see continual development and application of analytical techniques to meet the new challenges that have arisen in recent years. We end the review by briefly discussing the emerging area of monitoring fluorescence, chlorophyll fluorescence imaging, field phenotyping, and remote sensing of crops for yield and biomass enhancement.

  16. Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death.

    PubMed

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Jockusch, Steffen; Turro, Nicholas J; Kräutler, Bernhard

    2009-09-15

    Breakdown of chlorophyll is a major contributor to the diagnostic color changes in fall leaves, and in ripening apples and pears, where it commonly provides colorless, nonfluorescent tetrapyrroles. In contrast, in ripening bananas (Musa acuminata) chlorophylls fade to give unique fluorescent catabolites (FCCs), causing yellow bananas to glow blue, when observed under UV light. Here, we demonstrate the capacity of the blue fluorescent chlorophyll catabolites to signal symptoms of programmed cell death in a plant. We report on studies of bright blue luminescent rings on the peel of very ripe bananas, which arise as halos around necrotic areas in 'senescence associated' dark spots. These dark spots appear naturally on the peel of ripe bananas and occur in the vicinity of stomata. Wavelength, space, and time resolved fluorescence measurements allowed the luminescent areas to be monitored on whole bananas. Our studies revealed an accumulation of FCCs in luminescent rings, within senescing cells undergoing the transition to dead tissue, as was observable by morphological textural cellular changes. FCCs typically are short lived intermediates of chlorophyll breakdown. In some plants, FCCs are uniquely persistent, as is seen in bananas, and can thus be used as luminescent in vivo markers in tissue undergoing senescence. While FCCs still remain to be tested for their own hypothetical physiological role in plants, they may help fill the demand for specific endogenous molecular reporters in noninvasive assays of plant senescence. Thus, they allow for in vivo studies, which provide insights into critical stages preceding cell death.

  17. Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death

    PubMed Central

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Jockusch, Steffen; Turro, Nicholas J.; Kräutler, Bernhard

    2009-01-01

    Breakdown of chlorophyll is a major contributor to the diagnostic color changes in fall leaves, and in ripening apples and pears, where it commonly provides colorless, nonfluorescent tetrapyrroles. In contrast, in ripening bananas (Musa acuminata) chlorophylls fade to give unique fluorescent catabolites (FCCs), causing yellow bananas to glow blue, when observed under UV light. Here, we demonstrate the capacity of the blue fluorescent chlorophyll catabolites to signal symptoms of programmed cell death in a plant. We report on studies of bright blue luminescent rings on the peel of very ripe bananas, which arise as halos around necrotic areas in ‘senescence associated’ dark spots. These dark spots appear naturally on the peel of ripe bananas and occur in the vicinity of stomata. Wavelength, space, and time resolved fluorescence measurements allowed the luminescent areas to be monitored on whole bananas. Our studies revealed an accumulation of FCCs in luminescent rings, within senescing cells undergoing the transition to dead tissue, as was observable by morphological textural cellular changes. FCCs typically are short lived intermediates of chlorophyll breakdown. In some plants, FCCs are uniquely persistent, as is seen in bananas, and can thus be used as luminescent in vivo markers in tissue undergoing senescence. While FCCs still remain to be tested for their own hypothetical physiological role in plants, they may help fill the demand for specific endogenous molecular reporters in noninvasive assays of plant senescence. Thus, they allow for in vivo studies, which provide insights into critical stages preceding cell death. PMID:19805212

  18. Assimilation of remotely sensed chlorophyll fluorescence data into the land surface model CLM4

    NASA Astrophysics Data System (ADS)

    Wieneke, S.; Ahrends, H. E.; Rascher, U.; Schween, J.; Schickling, A.; Crewell, S.

    2013-12-01

    Photosynthesis is the most important exchange process of CO2 between the atmosphere and the land-surface. Therefore, the prediction of vegetation response to environmental conditions like increasing CO2 concentrations or plant stress is crucial for a reliable prediction of climate change. Photosynthesis is a complex physiological process that consists of numerous bio-physical sub-processes and chemical reactions. Spatial and temporal patterns of photosynthesis depend on dynamic plant-specific adaptation strategies to highly variable environmental conditions. Photosynthesis can be estimated using land-surface models, but, while state-of-the-art models often rely on Plant Functional Type (PFT) specific constants, they poorly simulate the dynamic adaptation of the physiological status of plant canopies in space and time. Remotely sensed sun-induced chlorophyll fluorescence (SICF) gives us now the possibility to estimate the diurnal dynamic vitality of the photosynthetic apparatus at both, the leaf and canopy levels. We installed within the framework of the Transregio32 project (www.tr32.de) automated hyperspectral fluorescence sensors at an agricultural site (winter wheat) in the Rur catchment area in West Germany at the end of July 2012. End of August, additional measurements of SIFC on nearby temperate grassland site (riparian meadow) and on a sugar beet field were performed. Spatial covering SICF data of the region were obtained during a measurement campaign using the newly developed air-borne hyperspectral sensor HyPlant on the 23 and 27 August 2012. SIFC data and data provided by eddy covariance measurements will be used to update certain model parameters that are normally set as constants. First model results demonstrate that the assimilation of SIFC into the Community Land Model 4 (CLM4) will result in a more realistic simulation of plant-specific adaptation strategies and therefore in a more realistic simulation of photosynthesis in space and time.

  19. Mapping cropland GPP in the north temperate region with space measurements of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Guanter, L.; Zhang, Y.; Jung, M.; Joiner, J.; Voigt, M.; Huete, A. R.; Zarco-Tejada, P.; Frankenberg, C.; Lee, J.; Berry, J. A.; Moran, S. M.; Ponce-Campos, G.; Beer, C.; Camps-Valls, G.; Buchmann, N. C.; Gianelle, D.; Klumpp, K.; Cescatti, A.; Baker, J. M.; Griffis, T.

    2013-12-01

    Monitoring agricultural productivity is important for optimizing management practices in a world under a continuous increase of food and biofuel demand. We used new space measurements of sun-induced chlorophyll fluorescence (SIF), a vegetation parameter intrinsically linked to photosynthesis, to capture photosynthetic uptake of the crop belts in the north temperate region. The following data streams and procedures have been used in this analysis: (1) SIF retrievals have been derived from measurements of the MetOp-A / GOME-2 instrument in the 2007-2011 time period; (2) ensembles of process-based and data-driven biogeochemistry models have been analyzed in order to assess the capability of global models to represent crop gross primary production (GPP); (3) flux tower-based GPP estimates covering the 2007-2011 time period have been extracted over 18 cropland and grassland sites in the Midwest US and Western Europe from the Ameriflux and the European Fluxes Database networks; (4) large-scale NPP estimates have been derived by the agricultural inventory data sets developed by USDA-NASS and Monfreda et al. The strong linear correlation between the SIF space retrievals and the flux tower-based GPP, found to be significantly higher than that between reflectance-based vegetation indices (EVI, NDVI and MTCI) and GPP, has enabled the direct upscaling of SIF to cropland GPP maps at the synoptic scale. The new crop GPP estimates we derive from the scaling of SIF space retrievals are consistent with both flux tower GPP estimates and agricultural inventory data. These new GPP estimates show that crop productivity in the US Western Corn Belt, and most likely also in the rice production areas in the Indo-Gangetic plain and China, is up to 50-75% higher than estimates by state-of-the-art data-driven and process-oriented biogeochemistry models. From our analysis we conclude that current carbon models have difficulties in reproducing the special conditions of those highly productive

  20. [Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL models].

    PubMed

    Yang, Xi-guang; Fan, Wen-yi; Yu, Ying

    2010-11-01

    The forest canopy chlorophyll content directly reflects the health and stress of forest. The accurate estimation of the forest canopy chlorophyll content is a significant foundation for researching forest ecosystem cycle models. In the present paper, the inversion of the forest canopy chlorophyll content was based on PROSPECT and SAIL models from the physical mechanism angle. First, leaf spectrum and canopy spectrum were simulated by PROSPECT and SAIL models respectively. And leaf chlorophyll content look-up-table was established for leaf chlorophyll content retrieval. Then leaf chlorophyll content was converted into canopy chlorophyll content by Leaf Area Index (LAD). Finally, canopy chlorophyll content was estimated from Hyperion image. The results indicated that the main effect bands of chlorophyll content were 400-900 nm, the simulation of leaf and canopy spectrum by PROSPECT and SAIL models fit better with the measured spectrum with 7.06% and 16.49% relative error respectively, the RMSE of LAI inversion was 0. 542 6 and the forest canopy chlorophyll content was estimated better by PROSPECT and SAIL models with precision = 77.02%.

  1. Carotenoid-chlorophyll coupling and fluorescence quenching correlate with protein packing density in grana-thylakoids.

    PubMed

    Holleboom, Christoph-Peter; Yoo, Sunny; Liao, Pen-Nan; Compton, Ian; Haase, Winfried; Kirchhoff, Helmut; Walla, Peter Jomo

    2013-09-26

    The regulation of light-harvesting in photosynthesis under conditions of varying solar light irradiation is essential for the survival and fitness of plants and algae. It has been proposed that rearrangements of protein distribution in the stacked grana region of thylakoid membranes connected to changes in the electronic pigment-interaction play a key role for this regulation. In particular, carotenoid-chlorophyll interactions seem to be crucial for the down-regulation of photosynthetic light-harvesting. So far, it has been difficult to determine the influence of the dense protein packing found in native photosynthetic membrane on these interactions. We investigated the changes of the electronic couplings between carotenoids and chlorophylls and the quenching in grana thylakoids of varying protein packing density by two-photon spectroscopy, conventional chlorophyll fluorometry, low-temperature fluorescence spectroscopy, and electron micrographs of freeze-fracture membranes. We observed an increasing carotenoid-chlorophyll coupling and fluorescence quenching with increasing packing density. Simultaneously, the antennas size and excitonic connectivity of Photosystem II increased with increasing quenching and carotenoid-chlorophyll coupling whereas isolated, decoupled LHCII trimers decreased. Two distinct quenching data regimes could be identified that show up at different protein packing densities. In the regime corresponding to higher protein packing densities, quenching is strongly correlated to carotenoid-chlorophyll interactions whereas in the second regime, a weak correlation is apparent with low protein packing densities. Native membranes are in the strong-coupling data regime. Consequently, PSII and LHCII in grana membranes of plants are already quenched by protein crowding. We concluded that this ensures efficient electronic connection of all pigment-protein complexes for intermolecular energy transfer to the reaction centers and allows simultaneously

  2. [Effects of soil acidity on Pinus resinosa seedlings photosynthesis and chlorophyll fluorescence].

    PubMed

    Liu, Shuang; Wang, Qing-cheng; Liu, Ya-li; Tian, Yu-ming; Sun, Jing; Xu, Jing

    2009-12-01

    Red pine (Pinus resinosa) is one of the most important tree species for timber plantation in North America, and preliminary success has been achieved in its introduction to the mountainous area of Northeast China since 2004. In order to expand its growth area in other parts of Northeast China, a pot experiment was conducted to study the adaptability of this tree species to varying soil acidity. P. resinosa seedlings were grown in soils with different acidity (pH = 4.5, 5.5, 6.5, 7.5, and 8.0) to test the responses of their photosynthesis and chlorophyll fluorescence parameters to soil pH levels, and the appropriate soil acidity was evaluated. Dramatic responses in chlorophyll a and b contents, Pn and chlorophyll fluorescence parameters (Fo, Fm, Fv, Fv/Fm, and phi(PS II)) were detected under different soil acidity (P < 0.05), with the highest chlorophyll content and Pn under soil pH 5.5, and significantly lower chlorophyll content and Pn under soil pH 7.5 and 8.0. The chlorophyll content and Pn were 41% and 50%, and 61% and 88% higher under soil pH 5.5 than under soil pH 7.5 and 8.0. The seedlings had a significant photosynthetic inhibition under soil pH 7.5 and 8.0, but the highest Fv/Fm and phi (PS II) under soil pH 5.5. Comparing with those under soil pH 7.5 and 8.0, the Fv/Fm and phi (PS II) under soil pH 5.5 were 8% and 12%, and 22% and 35% higher, respectively. It was suggested that soil pH 5.5 was most appropriate for P. resinosa growth.

  3. CO2, CH4, CO and Chlorophyll Fluorescence Retrievals for the Geostationary Carbon Process Investigation

    NASA Astrophysics Data System (ADS)

    Xi, X.; Natraj, V.; Luo, M.; Shia, R.; Sander, S. P.; Yung, Y. L.

    2013-12-01

    The Geostationary Carbon Process Investigation (GCPI) combines an imaging Fourier Transform Spectrometer instrument with a geostationary Earth orbit vantage point to realize a transformational advance in carbon monitoring beyond the synoptic capabilities of Low Earth Orbit instruments such as SCIAMACHY, GOSAT and OCO-2. GCPI follows the paradigm of numerical weather prediction and aims to provide orders of magnitude improvement in observational density for atmospheric CO2, CH4, CO, and new measurements of chlorophyll fluorescence (CF). These new observations could be used to drive and constrain Earth system models, improve our understanding of the underlying carbon cycle processes and evaluate model forecasting capabilities. GCPI is designed to deliver simultaneous measurements of CF and column averaged CO2, CH4 and CO dry air mole fractions to disentangle biogenic and anthropogenic sources of carbon. Here, we perform radiative transfer simulations over a range of conditions expected to be observed by GCPI and estimate prospective performance of retrievals based on results from Bayesian error analysis and characterizations. The potential benefits from the measurements of CF are also investigated.

  4. Chlorophyll-a determination via continuous measurement of plankton fluorescence: methodology development.

    PubMed

    Pinto, A M; Von Sperling, E; Moreira, R M

    2001-11-01

    A methodology is presented for the continuous measurement of chlorophyll-a concentration due to plankton, in surface water environments. A Turner 10-AU fluorometer equipped with the F4T5.B2/BP lamp (blue lamp), a Cs 5-60 equivalent excitation path filter, and a 680 nm emission filter, has been used. This configuration allows the in vivo, in situ determination of chlorophyll-a by measuring the fluorescence due to the pigments. In field work the fluorometer, data logging and positioning equipment were placed aboard a manageable boat which navigated following a scheme of regularly spaced crossings. Some water samples were collected during the measurement for laboratory chlorophyll-a measurements by the spectrophotometric method, thus providing for calibration and comparison. Spatial chlorophyll-a concentration distributions can be easily defined in large volumes, such as reservoirs, etc. Two distinct environments have been monitored: in the Vargem das Flores reservoir chlorophyll-a concentrations varied between 0.7 and 2.6 mg/m3, whereas in the Lagoa Santa lake these values lied in the 12 to 18 mg/m3 range. The simplicity, versatility and economy of the method, added to the large amount of data that can be gathered in a single run, clearly justify its use in field environmental studies.

  5. Plant abiotic stress diagnostic by laser induced chlorophyll fluorescence spectral analysis of in vivo leaf tissue of biofuel species

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; Costa, Ernande B.; Bueno, Luciano A.; Silva, Luciana M. H.; Granja, Manuela M. C.; Medeiros, Maria J. L.; Câmara, Terezinha J. R.; Willadino, Lilia G.

    2010-02-01

    Laser induced fluorescence is exploited to evaluate the effect of abiotic stresses upon the evolution and characteristics of in vivo chlorophyll emission spectra of leaves tissues of brazilian biofuel plants species(Saccharum officinarum and Jatropha curcas). The chlorophyll fluorescence spectra of 20 min predarkened intact leaves were studied employing several excitation wavelengths in the UV-VIS spectral region. Red(Fr) and far-red (FFr) chlorophyll fluorescence emission signals around 685 nm and 735 nm, respectively, were analyzed as a function of the stress intensity and the time of illumination(Kautsky effect). The Chl fluorescence ratio Fr/FFr which is a valuable nondestructive indicator of the chlorophyll content of leaves was investigated during a period of time of 30 days. The dependence of the Chl fluorescence ratio Fr/FFr upon the intensity of the abiotic stress(salinity) was examined. The results indicated that the salinity plays a major hole in the chlorophyll concentration of leaves in both plants spieces, with a significant reduction in the chlorophyll content for NaCl concentrations in the 25 - 200 mM range. The laser induced chlorophyll fluorescence analysis allowed detection of damage caused by salinity in the early stages of the plants growing process, and can be used as an early-warning indicator of salinity stress

  6. Seasonal, Diurnal and Vertical Variation of Chlorophyll Fluorescence on Phyllostachys humilis in Ireland

    PubMed Central

    Van Goethem, Davina; De Smedt, Sebastiaan; Valcke, Roland; Potters, Geert; Samson, Roeland

    2013-01-01

    In recent years, temperate bamboo species have been introduced in Europe not only as an ornamental plant, but also as a new biomass crop. To measure adaptation stress of bamboo to the climate of Western Europe, chlorophyll fluorescence was measured on a diurnal and seasonal basis in Ballyboughal, Co. Dublin, Ireland. Measurements were attained on the leaves of each node of Phyllostachys humilis. The most frequently used parameter in chlorophyll fluorescence is the photosynthetic efficiency (Fv/Fm). A seasonal dip - as well as a larger variation - of Fv/Fm in spring compared to the rest of the year was observed. Over the year, the upper leaves of the plant perform better than the bottom leaves. These findings were linked to environmental factors such as light intensity, air temperature and precipitation, as increased light intensities, decreasing air temperatures and their interactions, also with precipitation levels have an effect on the photosynthetic efficiency (Fv/Fm) in these plants. PMID:23967282

  7. Photoprotective function of chloroplast avoidance movement: in vivo chlorophyll fluorescence study.

    PubMed

    Sztatelman, Olga; Waloszek, Andrzej; Banaś, Agnieszka Katarzyna; Gabryś, Halina

    2010-06-15

    Light-induced chloroplast avoidance movement has long been considered to be a photoprotective mechanism. Here, we present an experimental model in which this function can be shown for wild type Arabidopsis thaliana. We used blue light of different fluence rates for chloroplast positioning, and strong red light inactive in chloroplast positioning as a stressing light. The performance of photosystem II was measured by means of chlorophyll fluorescence. After stressing light treatment, a smaller decrease in photosystem II quantum yield was observed for leaves with chloroplasts in profile position as compared with leaves with chloroplasts in face position. Three Arabidopsis mutants, phot2 (no avoidance response), npq1 (impaired zeaxanhtin accumulation) and stn7 (no state transition), were examined for their chloroplast positioning and chlorophyll fluorescence parameters under identical experimental conditions. The results obtained for these mutants revealed additional stressing effects of blue light as compared with red light.

  8. [Chlorophyll fluorescence spectrum analysis of greenhouse cucumber disease and insect damage].

    PubMed

    Sui, Yuan-yuan; Yu, Hai-ye; Zhang, Lei; Luo, Han; Ren, Shun; Zhao, Guo-gang

    2012-05-01

    The present paper is based on chlorophyll fluorescence spectrum analysis. The wavelength 685 nm was determined as the primary characteristic point for the analysis of healthy or disease and insect damaged leaf by spectrum configuration. Dimensionality reduction of the spectrum was achieved by combining simple intercorrelation bands selection and principal component analysis (PCA). The principal component factor was reduced from 10 to 5 while the spectrum information was kept reaching 99.999%. By comparing and analysing three modeling methods, namely the partial least square regression (PLSR), BP neural network (BP) and least square support vector machine regression (LSSVMR), regarding correlation coefficient of true value and predicted value as evaluation criterion, eventually, LSSVMR was confirmed as the appropriate method for modeling of greenhouse cucumber disease and insect damage chlorophyll fluorescence spectrum analysis.

  9. Lifetime of fluorescence from light-harvesting chlorophyll a/b proteins: excitation intensity dependence

    SciTech Connect

    Nordlund, T.M.; Knox, W.H.

    1981-10-01

    The fluorescence from a purified, aggregate form of the light-harvesting chlorophyll a/b protein has a lifetime of 1.2 +/- 0.5 ns at low excitation intensity, but the lifetime decreases significantly when the intensity of the 20-ps, 5300nm excitation pulse is increased above about 10/sup 16/ photons/cm/sup 2/. A solubilized, monomeric form of the protein, on the other hand, has a fluorescence lifetime of 3.1 +/- 0.3 ns independent of excitation intensity from 10/sup 14/-10/sup 18/ photons/cm/sup 2//pulse. We interpret the lifetime shortening in the aggregates and the lack of shortening in monomers in terms of exciton annihilation, facilitated in the aggregate by the larger population of interacting chlorophylls.

  10. Spectral effects of LEDs on chlorophyll fluorescence and pigmentation in Phalaenopsis 'Vivien' and 'Purple Star'.

    PubMed

    Ouzounis, Theoharis; Fretté, Xavier; Ottosen, Carl-Otto; Rosenqvist, Eva

    2015-06-01

    We examined the effect of light emitting diode (LED) lighting in greenhouse facilities on growth, chlorophyll fluorescence and pigmentation in Phalaenopsis 'Vivien' and 'Purple Star' under purpose-built LED arrays yielding c. 200 µmol m(-2)  s(-1) at plant height for 14 h per day and 24/18°C day/night temperature, respectively, from January to April 2013. The light treatments were (1) 40% blue in 60% red (40% B/R), (2) 0% blue in 100% red (0% B/R) and (3) white LEDs with 32% blue in white (32% B/W, control), with background daylight under shade screens. The plants were harvested twice for leaf growth and pigmentation. There was no clear pattern in the spectral effect on growth since the order of leaf size differed between harvests in March and April. Fv /Fm was in the range of 0.52-0.72, but overall slightly higher in the control, which indicated a permanent downregulation of PSII in the colored treatments. The fluorescence quenching showed no acclimation to color in 'Purple Star', while 'Vivien' had lower ETR and higher NPQ in the 40% B/R, resembling low light acclimation. The pigmentation showed corresponding spectral response with increasing concentration of lutein while increasing the fraction of blue light, which increased the light absorption in the green/yellow part of the spectrum. The permanent downregulation of PSII moved a substantial part of the thermal dissipation from the light regulated NPQ to non-regulated energy losses estimated by ΦNPQ and ΦNO and the difference found in the balance between ΦPSII and ΦNPQ in 'Vivien' disappeared when ΦNO was included in the thermal dissipation.

  11. Genetic variability and heritability of chlorophyll a fluorescence parameters in Scots pine (Pinus sylvestris L.).

    PubMed

    Čepl, Jaroslav; Holá, Dana; Stejskal, Jan; Korecký, Jiří; Kočová, Marie; Lhotáková, Zuzana; Tomášková, Ivana; Palovská, Markéta; Rothová, Olga; Whetten, Ross W; Kaňák, Jan; Albrechtová, Jana; Lstibůrek, Milan

    2016-07-01

    Current knowledge of the genetic mechanisms underlying the inheritance of photosynthetic activity in forest trees is generally limited, yet it is essential both for various practical forestry purposes and for better understanding of broader evolutionary mechanisms. In this study, we investigated genetic variation underlying selected chlorophyll a fluorescence (ChlF) parameters in structured populations of Scots pine (Pinus sylvestris L.) grown on two sites under non-stress conditions. These parameters were derived from the OJIP part of the ChlF kinetics curve and characterize individual parts of primary photosynthetic processes associated, for example, with the exciton trapping by light-harvesting antennae, energy utilization in photosystem II (PSII) reaction centers (RCs) and its transfer further down the photosynthetic electron-transport chain. An additive relationship matrix was estimated based on pedigree reconstruction, utilizing a set of highly polymorphic single sequence repeat markers. Variance decomposition was conducted using the animal genetic evaluation mixed-linear model. The majority of ChlF parameters in the analyzed pine populations showed significant additive genetic variation. Statistically significant heritability estimates were obtained for most ChlF indices, with the exception of DI0/RC, φD0 and φP0 (Fv/Fm) parameters. Estimated heritabilities varied around the value of 0.15 with the maximal value of 0.23 in the ET0/RC parameter, which indicates electron-transport flux from QA to QB per PSII RC. No significant correlation was found between these indices and selected growth traits. Moreover, no genotype × environment interaction (G × E) was detected, i.e., no differences in genotypes' performance between sites. The absence of significant G × E in our study is interesting, given the relatively low heritability found for the majority of parameters analyzed. Therefore, we infer that polygenic variability of these indices is

  12. Consistency Between Sun-Induced Chlorophyll Fluorescence and Gross Primary Production of Vegetation in North America

    NASA Technical Reports Server (NTRS)

    Zhang, Yao; Xiao, Xiangming; Jin, Cui; Dong, Jinwei; Zhou, Sha; Wagle, Pradeep; Joiner, Joanna; Guanter, Luis; Zhang, Yongguang; Zhang , Geli; Qin, Yuanwei; Wang, Jie; Moore, Berrien, III

    2016-01-01

    Accurate estimation of the gross primary production (GPP) of terrestrial ecosystems is vital for a better understanding of the spatial-temporal patterns of the global carbon cycle. In this study,we estimate GPP in North America (NA) using the satellite-based Vegetation Photosynthesis Model (VPM), MODIS (Moderate Resolution Imaging Spectrometer) images at 8-day temporal and 500 meter spatial resolutions, and NCEP-NARR (National Center for Environmental Prediction-North America Regional Reanalysis) climate data. The simulated GPP (GPP (sub VPM)) agrees well with the flux tower derived GPP (GPPEC) at 39 AmeriFlux sites (155 site-years). The GPP (sub VPM) in 2010 is spatially aggregated to 0.5 by 0.5-degree grid cells and then compared with sun-induced chlorophyll fluorescence (SIF) data from Global Ozone Monitoring Instrument 2 (GOME-2), which is directly related to vegetation photosynthesis. Spatial distribution and seasonal dynamics of GPP (sub VPM) and GOME-2 SIF show good consistency. At the biome scale, GPP (sub VPM) and SIF shows strong linear relationships (R (sup 2) is greater than 0.95) and small variations in regression slopes ((4.60-5.55 grams Carbon per square meter per day) divided by (milliwatts per square meter per nanometer per square radian)). The total annual GPP (sub VPM) in NA in 2010 is approximately 13.53 petagrams Carbon per year, which accounts for approximately 11.0 percent of the global terrestrial GPP and is within the range of annual GPP estimates from six other process-based and data-driven models (11.35-22.23 petagrams Carbon per year). Among the seven models, some models did not capture the spatial pattern of GOME-2 SIF data at annual scale, especially in Midwest cropland region. The results from this study demonstrate the reliable performance of VPM at the continental scale, and the potential of SIF data being used as a benchmark to compare with GPP models.

  13. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission.

    PubMed

    Mishra, Kumud Bandhu; Iannacone, Rina; Petrozza, Angelo; Mishra, Anamika; Armentano, Nadia; La Vecchia, Giovanna; Trtílek, Martin; Cellini, Francesco; Nedbal, Ladislav

    2012-01-01

    Drought stress is one of the most important factors that limit crop productivity worldwide. In order to obtain tomato plants with enhanced drought tolerance, we inserted the transcription factor gene ATHB-7 into the tomato genome. This gene was demonstrated earlier to be up-regulated during drought stress in Arabidopsis thaliana thus acting as a negative regulator of growth. We compared the performance of wild type and transgenic tomato line DTL-20, carrying ATHB-7 gene, under well-irrigated and water limited conditions. We found that transgenic plants had reduced stomatal density and stomatal pore size and exhibited an enhanced resistance to soil water deficit. We used the transgenic plants to investigate the potential of chlorophyll fluorescence to report drought tolerance in a simulated high-throughput screening procedure. Wild type and transgenic tomato plants were exposed to drought stress lasting 18 days. The stress was then terminated by rehydration after which recovery was studied for another 2 days. Plant growth, leaf water potential, and chlorophyll fluorescence were measured during the entire experimental period. We found that water potential in wild type and drought tolerant transgenic plants diverged around day 11 of induced drought stress. The chlorophyll fluorescence parameters: the non-photochemical quenching, effective quantum efficiency of PSII, and the maximum quantum yield of PSII photochemistry yielded a good contrast between wild type and transgenic plants from day 7, day 12, and day 14 of induced stress, respectively. We propose that chlorophyll fluorescence emission reports well on the level of water stress and, thus, can be used to identify elevated drought tolerance in high-throughput screens for selection of resistant genotypes.

  14. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading.

    PubMed

    García-Sánchez, M A; Serratos, I N; Sosa, R; Tapia-Esquivel, T; González-García, F; Rojas-González, F; Tello-Solís, S R; Palacios-Enriquez, A Y; Esparza Schulz, J M; Arrieta, A

    2016-07-22

    Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO₂, TiO₂ or ZrO₂ synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most physicochemical

  15. [Winter wheat GPC estimation based on leaf and canopy chlorophyll parameters].

    PubMed

    Song, Xiao-Yu; Wang, Ji-Hua; Yang, Gui-Jun; Cui, Bei; Chang, Hong

    2014-07-01

    . The study reveals that SPAD value is a good indicator of single plant activity while SFR_G and SFR_R are better indicators for the wheat group activity. Wheat leaf SPAD value and canopy chlorophyll fluorescence information SFR are all feasible and valuable for GPC estimation before wheat harvesting.

  16. SmartFluo: A Method and Affordable Adapter to Measure Chlorophyll a Fluorescence with Smartphones.

    PubMed

    Friedrichs, Anna; Busch, Julia Anke; van der Woerd, Hendrik Jan; Zielinski, Oliver

    2017-03-25

    In order to increase the monitoring capabilities of inland and coastal waters, there is a need for new, affordable, sensitive and mobile instruments that could be operated semi-automatically in the field. This paper presents a prototype device to measure chlorophyll a fluorescence: the SmartFluo. The device is a combination of a smartphone offering an intuitive operation interface and an adapter implying a cuvette holder, as well as a suitable illumination source. SmartFluo is based on stimulated fluorescence of water constituents such as chlorophyll a. The red band of the digital smartphone camera is sensitive enough to detect quantitatively the characteristic red fluorescence emission. The adapter contains a light source, a strong light emitting diode and additional filters to enhance the signal-to-noise ratio and to suppress the impact of scattering. A novel algorithm utilizing the red band of the camera is provided. Laboratory experiments of the SmartFluo show a linear correlation (R 2 = 0.98) to the chlorophyll a concentrations measured by reference instruments, such as a high-performance benchtop laboratory fluorometer (LS 55, PerkinElmer).

  17. Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Photosynthetic pigments such as chlorophyll (Chl) a, Chl b and carotenoids concentration, and chlorophyll fluorescence (CF) have widely been used as indicators of stress and photosynthetic performance in plants. Although photosynthetic pigments and CF are partly interdependent due to absorption and ...

  18. Mechanism of strong quenching of photosystem II chlorophyll fluorescence under drought stress in a lichen, Physciella melanchla, studied by subpicosecond fluorescence spectroscopy.

    PubMed

    Komura, Masayuki; Yamagishi, Atsushi; Shibata, Yutaka; Iwasaki, Ikuko; Itoh, Shigeru

    2010-03-01

    The mechanism of the severe quenching of chlorophyll (Chl) fluorescence under drought stress was studied in a lichen Physciella melanchla, which contains a photobiont green alga, Trebouxia sp., using a streak camera and a reflection-mode fluorescence up-conversion system. We detected a large 0.31 ps rise of fluorescence at 715 and 740 nm in the dry lichen suggesting the rapid energy influx to the 715-740 nm bands from the shorter-wavelength Chls with a small contribution from the internal conversion from Soret bands. The fluorescence, then, decayed with time constants of 23 and 112 ps, suggesting the rapid dissipation into heat through the quencher. The result confirms the accelerated 40 ps decay of fluorescence reported in another lichen (Veerman et al., 2007 [36]) and gives a direct evidence for the rapid energy transfer from bulk Chls to the longer-wavelength quencher. We simulated the entire PS II fluorescence kinetics by a global analysis and estimated the 20.2 ns(-1) or 55.0 ns(-1) energy transfer rate to the quencher that is connected either to the LHC II or to the PS II core antenna. The strong quenching with the 3-12 times higher rate compared to the reported NPQ rate, suggests the operation of a new type of quenching, such as the extreme case of Chl-aggregation in LHCII or a new type of quenching in PS II core antenna in dry lichens.

  19. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence.

    PubMed

    Lee, Jung-Eun; Frankenberg, Christian; van der Tol, Christiaan; Berry, Joseph A; Guanter, Luis; Boyce, C Kevin; Fisher, Joshua B; Morrow, Eric; Worden, John R; Asefi, Salvi; Badgley, Grayson; Saatchi, Sassan

    2013-06-22

    It is unclear to what extent seasonal water stress impacts on plant productivity over Amazonia. Using new Greenhouse gases Observing SATellite (GOSAT) satellite measurements of sun-induced chlorophyll fluorescence, we show that midday fluorescence varies with water availability, both of which decrease in the dry season over Amazonian regions with substantial dry season length, suggesting a parallel decrease in gross primary production (GPP). Using additional SeaWinds Scatterometer onboard QuikSCAT satellite measurements of canopy water content, we found a concomitant decrease in daily storage of canopy water content within branches and leaves during the dry season, supporting our conclusion. A large part (r(2) = 0.75) of the variance in observed monthly midday fluorescence from GOSAT is explained by water stress over moderately stressed evergreen forests over Amazonia, which is reproduced by model simulations that include a full physiological representation of photosynthesis and fluorescence. The strong relationship between GOSAT and model fluorescence (r(2) = 0.79) was obtained using a fixed leaf area index, indicating that GPP changes are more related to environmental conditions than chlorophyll contents. When the dry season extended to drought in 2010 over Amazonia, midday basin-wide GPP was reduced by 15 per cent compared with 2009.

  20. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence

    PubMed Central

    Lee, Jung-Eun; Frankenberg, Christian; van der Tol, Christiaan; Berry, Joseph A.; Guanter, Luis; Boyce, C. Kevin; Fisher, Joshua B.; Morrow, Eric; Worden, John R.; Asefi, Salvi; Badgley, Grayson; Saatchi, Sassan

    2013-01-01

    It is unclear to what extent seasonal water stress impacts on plant productivity over Amazonia. Using new Greenhouse gases Observing SATellite (GOSAT) satellite measurements of sun-induced chlorophyll fluorescence, we show that midday fluorescence varies with water availability, both of which decrease in the dry season over Amazonian regions with substantial dry season length, suggesting a parallel decrease in gross primary production (GPP). Using additional SeaWinds Scatterometer onboard QuikSCAT satellite measurements of canopy water content, we found a concomitant decrease in daily storage of canopy water content within branches and leaves during the dry season, supporting our conclusion. A large part (r2 = 0.75) of the variance in observed monthly midday fluorescence from GOSAT is explained by water stress over moderately stressed evergreen forests over Amazonia, which is reproduced by model simulations that include a full physiological representation of photosynthesis and fluorescence. The strong relationship between GOSAT and model fluorescence (r2 = 0.79) was obtained using a fixed leaf area index, indicating that GPP changes are more related to environmental conditions than chlorophyll contents. When the dry season extended to drought in 2010 over Amazonia, midday basin-wide GPP was reduced by 15 per cent compared with 2009. PMID:23760636

  1. Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants.

    PubMed

    Iriel, Analia; Dundas, Gavin; Fernández Cirelli, Alicia; Lagorio, Maria G

    2015-01-01

    Arsenic pollution of groundwater is a serious problem in many regions of Latin America that causes severe risks to human health. As a consequence, non-destructive monitoring methodologies, sensitive to arsenic presence in the environment and able to perform a rapid screening of large polluted areas, are highly sought-after. Both chlorophyll - a fluorescence and reflectance of aquatic plants may be potential indicators to sense toxicity in water media. In this work, the effects of arsenic on the optical and photophysical properties of leaves of different aquatic plants (Vallisneria gigantea, Azolla filiculoides and Lemna minor) were evaluated. Reflectance spectra were recorded for the plant leaves from 300 to 2400 nm. The spectral distribution of the fluorescence was also studied and corrected for light re-absorption processes. Photosynthetic parameters (Fv/Fm and ΦPSII) were additionally calculated from the variable chlorophyll fluorescence recorded with a pulse amplitude modulated fluorometer. Fluorescence and reflectance properties for V. gigantea and A. filiculoides were sensitive to arsenic presence in contrast to the behaviour of L. minor. Observed changes in fluorescence spectra could be interpreted in terms of preferential damage in photosystem II. The quantum efficiency of photosystem II for the first two species was also affected, decreasing upon arsenic treatment. As a result of this research, V. gigantea and A. filiculoides were proposed as bioindicators of arsenic occurrence in aquatic media.

  2. A model considering light reabsorption processes to correct in vivo chlorophyll fluorescence spectra in apples.

    PubMed

    Ramos, María E; Lagorio, María G

    2006-05-01

    Chlorophyll-a contained in the peel of Granny Smith apples emits fluorescence upon excitation with blue light. The observed emission, collected by an external detector and corrected by its spectral response, is still distorted by light reabsorption processes taking place in the fruit skin and differs appreciably from the true spectral distribution of fluorescence emerging from chlorophyll molecules in the biological tissue. Reabsorption processes particularly affect the ratio of fluorescence intensities at 680 nm and at 730 nm. A model to obtain the correct spectral distribution of the emission, from the experimental fluorescence recorded at a fluorometer detector and corrected for the detector spectral sensitivity, is developed in the present work. Measurements of the whole fruit reflectance, the peel transmittance and the flesh reflectance allow the calculation of the reabsorption-corrected spectra. The model is validated by comparing the corrected emission spectra with that obtained for a thin layer of apple-peel-chloroplasts, where no reabsorption takes place. It is recommended to correct distortions in emission spectra of intact fruits due to light reabsorption effects whenever a correlation between the physiological state of the fruit and its fluorescence spectra is investigated.

  3. Correlation of electronic carotenoid-chlorophyll interactions and fluorescence quenching with the aggregation of native LHC II and chlorophyll deficient mutants

    NASA Astrophysics Data System (ADS)

    Liao, Pen-Nan; Bode, Stefan; Wilk, Laura; Hafi, Nour; Walla, Peter J.

    2010-07-01

    The aggregation dependent correlation between fluorescence quenching and the electronic carotenoid-chlorophyll interactions, ϕCouplingCar S-Chl, as measured by comparing chlorophyll fluorescence observed after two- and one-photon excitation, has been investigated using native LHC II samples as well as mutants lacking Chl 2 and Chl 13. For native LHC II the same linear correlation between ϕCouplingCar S-Chl and the fluorescence quenching was observed as previously reported for the pH and Zea-dependent quenching of LHC II [1]. In order to elucidate which carotenoid-chlorophyll pair might dominate this correlation we also investigated the mutants lacking Chl 2 and Chl 13. However, also with these mutants the same linear correlation as for native LHC II was observed. This provides indication that these two chlorophylls play only a minor role for the observed effects. Nevertheless, we also conclude that this does not exclude that their neighboured carotenoids, lutein 1 and neoxanthin, might interact electronically with other chlorophylls close by.

  4. Quenching of chlorophyll fluorescence in the major light-harvesting complex of photosystem II: a systematic study of the effect of carotenoid structure.

    PubMed Central

    Phillip, D; Ruban, A V; Horton, P; Asato, A; Young, A J

    1996-01-01

    The role of carotenoids in quenching of chlorophyll fluorescence in the major light-harvesting complex of photosystem II has been studied with a view to understanding the molecular basis of the control of photoprotective nonradiative energy dissipation by the xanthophyll cycle in vivo. The control of chlorophyll fluorescence quenching in the isolated complex has been investigated in terms of the number of the conjugated double bonds for a series of carotenoids ranging from n = 5-19, giving an estimated first excited singlet state energy from 20,700 cm-1 to 10,120 cm-1. At pH 7.8 the addition of exogenous carotenoids with >=10 conjugated double bonds (including zeaxanthin) stimulated fluorescence quenching relative to the control with no added carotenoid, whereas those with n fluorescence. When quenching in the light-harvesting complex of photosystem II was induced by a lowering of pH to 5.5, carotenoids with n fluorescence quenching relative to the control. Of the 10 carotenoids tested, quenching induced by the addition of the tertiary amine compound, dibucaine, to isolated light-harvesting complex of photosystem II could only be reversed by violaxanthin. These results are discussed in terms of the two theories developed to explain the role of zeaxanthin and violaxanthin in nonphotochemical quenching of chlorophyll fluorescence. PMID:11607629

  5. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space: Status and Potential for Carbon Cycle Research

    NASA Astrophysics Data System (ADS)

    Guanter, L.; Koehler, P.; Walther, S.; Zhang, Y.; Joiner, J.; Frankenberg, C.

    2015-12-01

    Gross primary production (GPP), or the amount of atmospheric CO2 fixed by vegetation through photosynthesis, represents the largest carbon flux between terrestrial ecosystems and the atmosphere. Despite its importance, large-scale estimates of GPP remain highly uncertain for some terrestrial ecosystems. In this context, measurements of sun-induced chlorophyll fluorescence (SIF), which is emitted in the 650-850nm spectral range by the photosynthetic apparatus of green plants, have the potential to provide a new view on vegetation photosynthesis. Global monitoring of SIF from space have been achieved in the last years by means of a number of atmospheric spectrometers, which have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission. This breakthorugh was followed by retrievals from the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B, which enable a continuous spatial sampling, and lately from ENVISAT/SCIAMACHY. This observational scenario is completed by the first SIF data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming Copernicus' Sentinel 5-Precursor to be launched by early 2016. OCO-2 and TROPOMI offer the possibility of monitoring SIF globally with a 100-fold improvement in spatial and temporal resolution with respect to GOSAT, GOME-2 and SCIAMACHY.In this contribution, we will provide an overview of global SIF monitoring and will illustrate the potential of SIF data to improve our knowledge of vegetation photosynthesis and GPP at the synoptic scale. We will show examples of ongoing research exploiting SIF data for an improved monitoring of photosynthetic activity at different ecosystems, highlighting the usefulness of SIF to constrain estimates of CO2 uptake by vegetation through photosynthesis.

  6. The Seasonal Cycle of Satellite Chlorophyll Fluorescence Observations and its Relationship to Vegetation Phenology and Ecosystem Atmosphere Carbon Exchange

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Yoshida, Y.; Vasilkov, A. P.; Schaefer, K.; Jung, M.; Guanter, L.; Zhang, Y; Garrity, S.; Middleton, E. M.; Huemmrich, K. F.; Gu, L.; Marchesini, L. Belelli

    2014-01-01

    Mapping of terrestrial chlorophyll uorescence from space has shown potentialfor providing global measurements related to gross primary productivity(GPP). In particular, space-based fluorescence may provide information onthe length of the carbon uptake period that can be of use for global carboncycle modeling. Here, we examine the seasonal cycle of photosynthesis asestimated from satellite fluorescence retrievals at wavelengths surroundingthe 740nm emission feature. These retrievals are from the Global OzoneMonitoring Experiment 2 (GOME-2) flying on the MetOp A satellite. Wecompare the fluorescence seasonal cycle with that of GPP as estimated froma diverse set of North American tower gas exchange measurements. Because the GOME-2 has a large ground footprint (40 x 80km2) as compared with that of the flux towers and requires averaging to reduce random errors, we additionally compare with seasonal cycles of upscaled GPP in the satellite averaging area surrounding the tower locations estimated from the Max Planck Institute for Biogeochemistry (MPI-BGC) machine learning algorithm. We also examine the seasonality of absorbed photosynthetically-active radiation(APAR) derived with reflectances from the MODerate-resolution Imaging Spectroradiometer (MODIS). Finally, we examine seasonal cycles of GPP as produced from an ensemble of vegetation models. Several of the data-driven models rely on satellite reflectance-based vegetation parameters to derive estimates of APAR that are used to compute GPP. For forested sites(particularly deciduous broadleaf and mixed forests), the GOME-2 fluorescence captures the spring onset and autumn shutoff of photosynthesis as delineated by the tower-based GPP estimates. In contrast, the reflectance-based indicators and many of the models tend to overestimate the length of the photosynthetically-active period for these and other biomes as has been noted previously in the literature. Satellite fluorescence measurements therefore show potential for

  7. Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data

    NASA Technical Reports Server (NTRS)

    Hamilton, Michael K.; Davis, Curtiss O.; Rhea, W. J.; Pilorz, Stuart H.; Carder, Kendall L.

    1993-01-01

    Data on chlorophyll content and bathymetry of Lake Tahoe obtained on August 9, 1990 by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) are compared to concurrent in situ surface and in-water measurements. Measured parameters included profiles of percent transmission of monochromatic light, stimulated chlorophyll fluorescence, photosynthetically available radiation, spectral upwelling and downwelling irradiance, and upwelling radiance. Several analyses were performed illustrating the utility of the AVIRIS over a dark water scene. Image-derived chlorophyll concentration compared extremely well with that measured with bottle samples. A bathymetry map of the shallow parts of the lake was constructed which compares favorably with published lake soundings.

  8. Photochemical studies of a fluorescent chlorophyll catabolite--source of bright blue fluorescence in plant tissue and efficient sensitizer of singlet oxygen.

    PubMed

    Jockusch, Steffen; Turro, Nicholas J; Banala, Srinivas; Kräutler, Bernhard

    2014-02-01

    Fluorescent chlorophyll catabolites (FCCs) are fleeting intermediates of chlorophyll breakdown, which is seen as an enzyme controlled detoxification process of the chlorophylls in plants. However, some plants accumulate large amounts of persistent FCCs, such as in senescent leaves and in peels of yellow bananas. The photophysical properties of such a persistent FCC (Me-sFCC) were investigated in detail. FCCs absorb in the near UV spectral region and show blue fluorescence (max at 437 nm). The Me-sFCC fluorescence had a quantum yield of 0.21 (lifetime 1.6 ns). Photoexcited Me-sFCC intersystem crosses into the triplet state (quantum yield 0.6) and generates efficiently singlet oxygen (quantum yield 0.59). The efficient generation of singlet oxygen makes fluorescent chlorophyll catabolites phototoxic, but might also be useful as a (stress) signal and for defense of the plant tissue against infection by pathogens.

  9. The Use of Chlorophyll Fluorescence Lifetime to Assess Phytoplankton Physiology within a River-Dominated Environment

    NASA Technical Reports Server (NTRS)

    Hall, Callie M.; Miller, Richard L.; Redalje, Donald G.; Fernandez, Salvador M.

    2002-01-01

    Chlorophyll a fluorescence lifetime was measured for phytoplankton populations inhabiting the three physical zones surrounding the Mississippi River's terminus in the Gulf of Mexico. Observations of river discharge volume, nitrate + nitrite, silicate, phosphate, PAR (Photosynthetically Active Radiation) diffuse attenuation within the water column, salinity, temperature, SPM, and chl a concentration were used to characterize the distribution of chl fluorescence lifetime within a given region within restricted periods of time. 33 stations extending from the Mississippi River plume to the shelf break of the Louisiana coast were surveyed for analysis of chlorophyll fluorescence lifetime during two cruises conducted March 31 - April 6, 2000, and October 24 - November 1, 2000. At each station, two to three depths were chosen for fluorescence lifetime measurement to represent the vertical characteristics of the water column. Where possible, samples were taken from just below the surface and from just above and below the pycnocline. All samples collected were within the 1% light level of the water column (the euphotic zone). Upon collection, samples were transferred to amber Nalgene bottles and left in the dark for at least 15 minutes to reduce the effects of non-photochemical quenching and to insure that photosynthetic reaction centers were open. Before measurements within the phase fluorometer were begun, the instrument was allowed to warm up for no less than one hour.

  10. A comparative study of the photosynthetic capacity in two green tide macroalgae using chlorophyll fluorescence.

    PubMed

    Wang, Ying; Qu, Tongfei; Zhao, Xinyu; Tang, Xianghai; Xiao, Hui; Tang, Xuexi

    2016-01-01

    Green tides have occurred in the Yellow Sea, China, every year from 2007 to 2015. The free-floating Ulva prolifera (Müller) J. Agardh was the causative macroalgal species. The co-occurring, attached U. intestinalis was also observed. Photosynthetic capacities were determined using chlorophyll fluorescence in situ and after 7 days lab acclimation, and a significant differences were noted. Pigment composition showed no obvious differences, but concentrations varied significantly, especially chlorophyll b in U. prolifera two times increase was observed after acclimation. The optimal photochemical efficiency of PS II (Fv/Fm) was significantly higher in U. prolifera. Photosynthetic rate (α), maximum relative electron transport rate (rETRmax), and minimum saturating irradiance (Ek), obtained from rapid light response curves (RLCs), showed almost the same photosynthetic physiological status as Fv/Fm. Quenching coefficients and low temperature (77 K) chlorophyll fluorescence emission spectra of thylakoid membranes analysis showed U. prolifera has a better recovery activity and plasticity of PSII than U. intestinalis. Furthermore, energy dissipation via non-photochemical quenching (NPQ) and state transitions showed efficacious photoprotection solution especially in U. prolifera suffered from the severe stresses. Results in the present study suggested that U. prolifera's higher photosynthetic capacity would contribute to its free-floating proliferation, and efficacious photoprotection in addition to favorable oceanographic conditions and high nutrient levels support its growth and aggregation.

  11. Quenching action of monofunctional sulfur mustard on chlorophyll fluorescence: towards an ultrasensitive biosensor.

    PubMed

    Kaur, Simerjit; Singh, Minni; Flora, Swaran Jeet Singh

    2013-11-01

    An ultrasensitive fluorimetric biosensor for the detection of chemical warfare agent sulfur mustard (SM) was developed using its monofunctional analogue. SM is a vesicant and a potent chemical threat owing to its direct toxic effects on eyes, lungs, skin and DNA. This work investigates the quenching action of the analyte on chlorophyll fluorescence as elucidated by nuclear magnetic resonance, Fourier transform infrared spectroscopy and mass spectrometry studies suggesting the electrophilic attack of carbonium ion on nitrogens of the porphyrin moiety of chlorophyll. The properties of immobilisation matrix were optimised and scanning electron microscope observations confirmed improvement in pore size of sol-gels by addition of 32 % (v/v) glycerol, a feature enabling enhanced sensitivity towards the analyte. Chlorophyll embedded sol-gel was treated with increasing concentrations of monofunctional SM and the corresponding drop in maximum fluorescence intensity as measured by emission at 673 nm was observed, which varied linearly and had a detection limit of 7.68 × 10(-16) M. The biosensor was found to be 6 orders of magnitude more sensitive than the glass microfibre-based disc biosensor previously reported by us.

  12. Improving the modeling of the seasonal carbon cycle of the boreal forest with chlorophyll fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Thum, Tea; Aalto, Tuula; Aurela, Mika; Laurila, Tuomas; Zaehle, Sönke

    2014-05-01

    The boreal ecosystems are characterized a very strong seasonal cycle and they are very sensitive to the climatic variables. The vegetation's deep wintertime dormancy requires a long recovery time during spring before the plants reach their full photosynthetic capacity. During this recovery time the plants are highly susceptible the night frosts. The transition period is different during spring and autumn for the evergreen plants. During spring there is plenty of light, but cold air temperatures inhibit the photosynthesis. The plants therefore experience to high stress levels, as they need to protect their photosynthetic apparatus from intense light. In autumn the air temperature and light level decrease more concurrently. To have a realistic presentation of the carbon cycle in boreal forests it is important to have these characteristics properly modeled, so that also the implications of changing seasonality under climate change can be more reliably predicted. In this study, we focus on the CO2 exchange of a Scots pine forest Sodankylä located in Finnish Lapland, 100 km north from the Arctic Circle. Micrometeorological flux measurements provide information about the exchanges of carbon, energy and water between atmosphere and vegetation. To complement these fluxes, we use dark-adapted chlorophyll fluorescence (CF) measurements, which is an optical measurement and tracks the development of the photosynthetic capacity. These two approaches combined together are very useful when we want to improve the modeling of the forest's CO2 exchange. We used two models that describe the photosynthesis with the biochemical model of Farquhar et al. The FMI-CANOPY is a canopy level model that is feasible to use in parameter estimation. We used the CF measurements of Fv/Fm, that is a measure of the maximum photosynthetic capacity, to include a seasonal development in the base rate of the maximum carboxylation rate (Vc(max)) in FMI-CANOPY. The simulation results matched the

  13. High temperature stress monitoring and detection using chlorophyll a fluorescence and infrared thermography in chrysanthemum (Dendranthema grandiflora).

    PubMed

    Janka, Eshetu; Körner, Oliver; Rosenqvist, Eva; Ottosen, Carl-Otto

    2013-06-01

    Modern highly insulated greenhouses are more energy efficient than conventional types. Furthermore applying dynamic greenhouse climate control regimes will increase energy efficiency relatively more in modern structures. However, this combination may result in higher air and crop temperatures. Too high temperature affects the plant photosynthetic responses, resulting in a lower rate of photosynthesis. To predict and analyse physiological responses as stress indicators, two independent experiments were conducted, to detect the effect of high temperature on photosynthesis: analysing photosystem II (PSII) and stomatal conductance (gs). A combination of chlorophyll a fluorescence, gas exchange measurements and infrared thermography was applied using Chrysanthemum (Dendranthema grandiflora Tzvelev) 'Coral Charm' as a model species. Increasing temperature had a highly significant effect on PSII when the temperature exceeded 38 °C for a period of 7 (±1.8) days. High temperature decreased the maximum photochemical efficiency of PSII (Fv/Fm), the conformation term for primary photochemistry (Fv/Fo) and performance index (PI), as well as increased minimal fluorescence (Fo). However, at elevated CO2 of 1000 μmol mol(-1) and with a photosynthetic photon flux density (PPFD) of 800 μmol m(-2) s(-1), net photosynthesis (Pn) reached its maximum at 35 °C. The thermal index (IG), calculated from the leaf temperature and the temperature of a dry and wet reference leaf, showed a strong correlation with gs. We conclude that 1) chlorophyll a fluorescence and a combination of fluorescence parameters can be used as early stress indicators as well as to detect the temperature limit of PSII damage, and 2) the strong relation between gs and IG enables gs to be estimated non-invasively, which is an important first step in modelling leaf temperature to predict unfavourable growing conditions in a (dynamic) semi closed greenhouse.

  14. [Effects of acid rain stress on Eleocarpus glabripetalus seedlings leaf chlorophyll fluorescence characteristics and growth].

    PubMed

    Yin, Xiu-Min; Yu, Shu-Quan; Jiang, Hong; Liu, Mei-Hu

    2010-06-01

    A pot experiment was conducted to study the Eleocarpus glabripetalus seedlings leaf chlorophyll fluorescence characteristics and growth in different seasons under simulated acid rain stress (heavy, pH = 2. 5; moderate, pH = 4.0; and control, pH = 5.6). In the same treatments, the leaf relative chlorophyll content (SPAD), maximum PS II photochemical efficiency (F(v)/F(m)), actual PSII photochemical quantum yield (phi(PS II)), plant height, and stem diameter in different seasons were all in the order of October > July > April > January. In the same seasons, all the parameters were in the order of heavy acid rain > moderate acid rain > control. The interactions between different acid rain stress and seasons showed significant effects on the SPAD, F(v)/F(m), plant height, and stem diameter, but lesser effects on phi(PS II), qp and qN.

  15. Dualex: A New Instrument for Field Measurements of Epidermal Ultraviolet Absorbance by Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Goulas, Yves; Cerovic, Zoran G.; Cartelat, Aurélie; Moya, Ismaël

    2004-08-01

    Dualex (dual excitation) is a field-portable instrument, hereby described, for the assessment of polyphenolic compounds in leaves from the measurement of UV absorbance of the leaf epidermis by double excitation of chlorophyll fluorescence. The instrument takes advantage of a feedback loop that equalizes the fluorescence level induced by a reference red light to the UV-light-induced fluorescence level. This allows quick measurement from attached leaves even under field conditions. The use of light-emitting diodes and of a leaf-clip configuration makes Dualex a user-friendly instrument with potential applications in ecophysiological research, light climate analysis, agriculture, forestry, horticulture, pest management, selection of medicinal plants, and wherever accumulation of leaf polyphenolics is involved in plant responses to the environment.

  16. Ocean Primary Production Estimates from Terra MODIS and Their Dependency on Satellite Chlorophyll Alpha Algorithms

    NASA Technical Reports Server (NTRS)

    Essias, Wayne E.; Abbott, Mark; Carder, Kendall; Campbell, Janet; Clark, Dennis; Evans, Robert; Brown, Otis; Kearns, Ed; Kilpatrick, Kay; Balch, W.

    2003-01-01

    Simplistic models relating global satellite ocean color, temperature, and light to ocean net primary production (ONPP) are sensitive to the accuracy and limitations of the satellite estimate of chlorophyll and other input fields, as well as the primary productivity model. The standard MODIS ONPP product uses the new semi-analytic chlorophyll algorithm as its input for two ONPP indexes. The three primary MODIS chlorophyll Q estimates from MODIS, as well as the SeaWiFS 4 chlorophyll product, were used to assess global and regional performance in estimating ONPP for the full mission, but concentrating on 2001. The two standard ONPP algorithms were examined with 8-day and 39 kilometer resolution to quantify chlorophyll algorithm dependency of ONPP. Ancillary data (MLD from FNMOC, MODIS SSTD1, and PAR from the GSFC DAO) were identical. The standard MODIS ONPP estimates for annual production in 2001 was 59 and 58 GT C for the two ONPP algorithms. Differences in ONPP using alternate chlorophylls were on the order of 10% for global annual ONPP, but ranged to 100% regionally. On all scales the differences in ONPP were smaller between MODIS and SeaWiFS than between ONPP models, or among chlorophyll algorithms within MODIS. Largest regional ONPP differences were found in the Southern Ocean (SO). In the SO, application of the semi-analytic chlorophyll resulted in not only a magnitude difference in ONPP (2x), but also a temporal shift in the time of maximum production compared to empirical algorithms when summed over standard oceanic areas. The resulting increase in global ONPP (6-7 GT) is supported by better performance of the semi-analytic chlorophyll in the SO and other high chlorophyll regions. The differences are significant in terms of understanding regional differences and dynamics of ocean carbon transformations.

  17. An investigation into robust spectral indices for leaf chlorophyll estimation

    NASA Astrophysics Data System (ADS)

    Main, Russell; Cho, Moses Azong; Mathieu, Renaud; O'Kennedy, Martha M.; Ramoelo, Abel; Koch, Susan

    2011-11-01

    Quantifying photosynthetic activity at the regional scale can provide important information to resource managers, planners and global ecosystem modelling efforts. With increasing availability of both hyperspectral and narrow band multispectral remote sensing data, new users are faced with a plethora of options when choosing an optical index to relate to their chosen or canopy parameter. The literature base regarding optical indices (particularly chlorophyll indices) is wide ranging and extensive, however it is without much consensus regarding robust indices. The wider spectral community could benefit from studies that apply a variety of published indices to differing sets of species data. The consistency and robustness of 73 published chlorophyll spectral indices have been assessed, using leaf level hyperspectral data collected from three crop species and a variety of savanna tree species. Linear regression between total leaf chlorophyll content and bootstrapping were used to determine the leafpredictive capabilities of the various indices. The indices were then ranked based on the prediction error (the average root mean square error (RMSE)) derived from the bootstrapping process involving 1000 iterative resampling with replacement. The results show two red-edge derivative based indices (red-edge position via linear extrapolation index and the modified red-edge inflection point index) as the most consistent and robust, and that the majority of the top performing indices (in spite of species variability) were simple ratio or normalised difference indices that are based on off-chlorophyll absorption centre wavebands (690-730 nm).

  18. [Effects of simulated acid rain on Quercus glauca seedlings photosynthesis and chlorophyll fluorescence].

    PubMed

    Li, Jia; Jiang, Hong; Yu, Shu-quan; Jiang, Fu-wei; Yin, Xiu-min; Lu, Mei-juan

    2009-09-01

    Taking the seedlings of Quercus glauca, a dominant evergreen broadleaf tree species in subtropical area, as test materials, this paper studied their photosynthesis, chlorophyll fluorescence, and chlorophyll content under effects of simulated acid rain with pH 2.5, 4.0, and 5.6 (CK). After 2-year acid rain stress, the net photosynthetic rate of Q. glauca increased significantly with decreasing pH of acid rain. The acid rain with pH 2.5 and 4.0 increased the stomatal conductance and transpiration rate, and the effect was more significant under pH 2.5. The intercellular CO2 concentration decreased in the order of pH 2.5 > pH 5.6 > pH 4.0. The maximum photosynthetic rate, light compensation point, light saturation point, and dark respiration rate were significantly higher under pH 2.5 and 4.0 than under pH 5.6, while the apparent quantum yield was not sensitive to acid rain stress. The maximal photochemical efficiency of PS II and the potential activity of PS II under pH 2.5 and 4.0 were significantly higher than those under pH 5.6. The relative chlorophyll content was in the order of pH 2.5 > pH 5.6 > pH 4.0, and there was a significant difference between pH 2.5 and 4.0. All the results suggested that the photosynthesis and chlorophyll fluorescence of Q. glauca increased under the effects of acid rain with pH 2.5 and 4.0, and the acid rain with pH 2.5 had more obvious effects.

  19. Cytokinin-induced changes in the chlorophyll content and fluorescence of in vitro apple leaves.

    PubMed

    Dobránszki, Judit; Mendler-Drienyovszki, Nóra

    2014-10-15

    Cytokinins (CKs) are one of the main regulators of in vitro growth and development and might affect the developmental state and function of the photosynthetic apparatus of in vitro shoots. Effects of different cytokinin regimes including different types of aromatic cytokinins, such as benzyl-adenine, benzyl-adenine riboside and 3-hydroxy-benzyladenine alone or in combination were studied on the capacity of the photosynthetic apparatus and the pigment content of in vitro apple leaves after 3 weeks of culture. We found that the type of cytokinins affected both chlorophyll a and b contents and its ratio. Chlorophyll content of in vitro apple leaves was the highest when benzyl-adenine was applied as a single source of cytokinin in the medium (1846-2176 μg/1g fresh weight (FW) of the leaf). Increasing the concentration of benzyl-adenine riboside significantly decreased the chlorophyll content of the leaves (from 1923 to 1183 μg/1g FW). The highest chl a/chl b ratio was detected after application of meta-topolin (TOP) at concentrations of 2.0 and 6.0 μM (2.706 and 2.804). Chlorophyll fluorescence was measured both in dark-adapted (Fv/Fm test) and in light-adapted leaf samples (Yield test; Y(II)). The maximum quantum yield and efficiency of leaves depended on the cytokinin source of the medium varied between 0.683 and 0.861 (Fv/Fm) indicating a well-developed and functional photosynthetic apparatus. Our results indicate that the type and concentration of aromatic cytokinins applied in the medium affect the chlorophyll content of the leaves in in vitro apple shoots. Performance of the photosynthetic apparatus measured by chlorophyll fluorescence in the leaves was also modified by the cytokinin supply. This is the first ever study on the relationship between the cytokinin supply and the functionability of photosystem II in plant tissue culture and our findings might help to increase plantlet survival after transfer to ex vitro conditions.

  20. Optimal Reflectance, Transmittance, and Absorptance Wavebands and Band Ratios for the Estimation of Leaf Chlorophyll Concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Spiering, Bruce A.

    2000-01-01

    The present study utilized regression analysis to identify: wavebands and band ratios within the 400-850 nm range that could be used to estimate total chlorophyll concentration with minimal error; and simple regression models that were most effective in estimating chlorophyll concentrations were measured for two broadleaved species, a broadleaved vine, a needle-leaved conifer, and a representative of the grass family.Overall, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentration at wavelengths near 700 nm, although regressions were strong as well in the 550-625 nm range.

  1. Laser Induced Chlorophyll Fluorescence Spectra of Cajanus Cajan L Plant Growing Under Cadmium Stress

    NASA Astrophysics Data System (ADS)

    Gopal, Ram; Pandey, J. K.

    2010-06-01

    Laser-induced Chlorophyll fluorescence (LICF) spectra of Cajanus cajan L leaves treated with different concentrations of Cd (0.05, 0.5 and 1 mM) are recorded at 10 and 20 days after first treatment of cadmium. LICF spectra are recorded in the region of 650-780 nm using violet diode laser (405 nm). LICF spectra of plant leaves show two maxima near 685 and 730nm. Fluorescence induction kinetics (FIK) curve are recorded at 685 and 730 nm with red diode laser (635 nm) for excitation. The fluorescence intensity ratios (FIR) F685/F730 are calculated from LICF spectra and vitality index (Rfd) are determined from FIK curve. FIR and Rfd value are good stress indicator of plant health. These parameters along with chlorophyll content are used to analyze the effect of Cd on wheat plants. The result indicates that higher concentrations of Cd hazardous for photosynthetic activity and health of Arhar plants. The lower concentration of 0.05 mM shows stimulatory response up to 10 days while after 20 days this concentration also shows inhibitory response. R. Gopal, K. B. Mishra, M. Zeeshan, S. M. Prasad, and M. M. Joshi Curr. Sci., 83, 880, 2002 K. B. Mishra and R. Gopal Int. J. Rem. Sen., 29, 157, 2008 R. Maurya, S. M. Prasad, and R. Gopal J. Photochem. Photobio. C: Photochem. Rev., 9, 29, 2008

  2. Leaf Gas Exchange and Chlorophyll a Fluorescence in Maize Leaves Infected with Stenocarpella macrospora.

    PubMed

    Bermúdez-Cardona, Maria Bianney; Wordell Filho, João Américo; Rodrigues, Fabrício Ávila

    2015-01-01

    This study investigated the effect of macrospora leaf spot (MLS), caused by Stenocarpella macrospora, on photosynthetic gas exchange parameters and chlorophyll a fluorescence parameters determined in leaves of plants from two maize cultivars ('ECVSCS155' and 'HIB 32R48H') susceptible and highly susceptible, respectively, to S. macrospora. MLS severity was significantly lower in the leaves of plants from ECVSCS155 relative to the leaves of plants from HIB 32R48H. In both cultivars, net CO2 assimilation rate, stomatal conductance, and transpiration rate significantly decreased, while the internal to ambient CO2 concentration ratio increased in inoculated plants relative to noninoculated plants. The initial fluorescence and nonphotochemical quenching significantly increased in inoculated plants of ECVSCS155 and HIB 32R48H, respectively, relative to noninoculated plants. The maximum fluorescence, maximum PSII quantum efficiency, coefficient for photochemical quenching, and electron transport rate significantly decreased in inoculated plants relative to noninoculated plants. For both cultivars, concentrations of total chlorophyll (Chl) (a+b) and carotenoids and the Chl a/b ratio significantly decreased in inoculated plants relative to noninoculated plants. In conclusion, the results from the present study demonstrate, for the first time, that photosynthesis in the leaves of maize plants is dramatically affected during the infection process of S. macrospora, and impacts are primarily associated with limitations of a diffusive and biochemical nature.

  3. Quantitative genetic analysis of chlorophyll a fluorescence parameters in maize in the field environments.

    PubMed

    Šimić, Domagoj; Lepeduš, Hrvoje; Jurković, Vlatka; Antunović, Jasenka; Cesar, Vera

    2014-07-01

    Chlorophyll fluorescence transient from initial to maximum fluorescence ("P" step) throughout two intermediate steps ("J" and "I") (JIP-test) is considered a reliable early quantitative indicator of stress in plants. The JIP-test is particularly useful for crop plants when applied in variable field environments. The aim of the present study was to conduct a quantitative trait loci (QTL) analysis for nine JIP-test parameters in maize during flowering in four field environments differing in weather conditions. QTL analysis and identification of putative candidate genes might help to explain the genetic relationship between photosynthesis and different field scenarios in maize plants. The JIP-test parameters were analyzed in the intermated B73 × Mo17 (IBM) maize population of 205 recombinant inbred lines. A set of 2,178 molecular markers across the whole maize genome was used for QTL analysis revealing 10 significant QTLs for seven JIP-test parameters, of which five were co-localized when combined over the four environments indicating polygenic inheritance and pleiotropy. Our results demonstrate that QTL analysis of chlorophyll fluorescence parameters was capable of detecting one pleiotropic locus on chromosome 7, coinciding with the gene gst23 that may be associated with efficient photosynthesis under different field scenarios.

  4. Differential heat sensitivity index in barley cultivars (Hordeum vulgare L.) monitored by chlorophyll a fluorescence OKJIP.

    PubMed

    Oukarroum, Abdallah; El Madidi, Saïd; Strasser, Reto J

    2016-08-01

    The objective of this study was to differentiate the heat tolerance in ten varieties of barley (Hordeum vulgare L.) originating from Morocco. Five modern varieties and five landraces (local varieties) collected at five different geographical localities in the south of Morocco were investigated in the present study. After two weeks of growth, detached leaves were short term exposure to various temperatures (25, 30, 35, 40, and 45 °C) for 10 min in the dark. Two chlorophyll a fluorescence parameters derived from chlorophyll a fluorescence transient (OKJIP) (performance index (PIABS) and relative variable fluorescence at the K-step (VK)) were analysed. Heat treatment had a significant effect on the PIABS and VK at 45 °C treatment and the analysis of variance for PIABS and VK is highly significant between all varieties. The slope of the relationship between logPIABS and VK named heat sensitivity index (HSI) was used to evaluate the thermotolerance of photosystem II (PSII) between the studied barley varieties. According to this approach, barley varieties were screened and ranked for improving heat tolerance. HSI was found to be a new indicator with regard to distinguishing heat tolerance of different barley cultivars.

  5. Sensitive Detection of Phosphorus Deficiency in Plants Using Chlorophyll a Fluorescence.

    PubMed

    Frydenvang, Jens; van Maarschalkerweerd, Marie; Carstensen, Andreas; Mundus, Simon; Schmidt, Sidsel Birkelund; Pedas, Pai Rosager; Laursen, Kristian Holst; Schjoerring, Jan K; Husted, Søren

    2015-09-01

    Phosphorus (P) is a finite natural resource and an essential plant macronutrient with major impact on crop productivity and global food security. Here, we demonstrate that time-resolved chlorophyll a fluorescence is a unique tool to monitor bioactive P in plants and can be used to detect latent P deficiency. When plants suffer from P deficiency, the shape of the time-dependent fluorescence transients is altered distinctively, as the so-called I step gradually straightens and eventually disappears. This effect is shown to be fully reversible, as P resupply leads to a rapid restoration of the I step. The fading I step suggests that the electron transport at photosystem I (PSI) is affected in P-deficient plants. This is corroborated by the observation that differences at the I step in chlorophyll a fluorescence transients from healthy and P-deficient plants can be completely eliminated through prior reduction of PSI by far-red illumination. Moreover, it is observed that the barley (Hordeum vulgare) mutant Viridis-zb(63), which is devoid of PSI activity, similarly does not display the I step. Among the essential plant nutrients, the effect of P deficiency is shown to be specific and sufficiently sensitive to enable rapid in situ determination of latent P deficiency across different plant species, thereby providing a unique tool for timely remediation of P deficiency in agriculture.

  6. Photosynthesis, chlorophyll fluorescence and spectral reflectance in Sphagnum moss at varying water contents.

    PubMed

    Van Gaalen, K Eric; Flanagan, Lawrence B; Peddle, Derek R

    2007-08-01

    Moss samples from the Fluxnet-Canada western peatland flux station in the Boreal Region of Alberta were measured in the laboratory to obtain the net photosynthesis rate and chlorophyll fluorescence of the moss under controlled environmental conditions, including the regulation of moss water content, simultaneously with measurements of moss spectral reflectance. One objective was to test whether the photochemical reflectance index (PRI) detected changes in moss photosynthetic light-use efficiency that were consistent with short-term (minutes to hours) changes in xanthophyll cycle pigments and associated changes in non-photochemical quenching (NPQ), as recorded by chlorophyll fluorescence. The rate of net photosynthesis was strongly inhibited by water content at values exceeding approximately 9 (fresh weight/dry weight) and declined as the water content fell below values of approximately 8. Chlorophyll fluorescence measurements of maximum photosystem II efficiency generally remained high until the water content was reduced from the maximum of about 20 to values of approximately 10-11, and then declined with further reductions in moss water content. A significant linear decline in NPQ was observed as moss water content was reduced from maximum to low water content values. There was a strong negative correlation between changes in NPQ and PRI. These data suggest that PRI measurements are a good proxy for short-term shifts in photosynthetic activity in Sphagnum moss. A second objective was to test how accurately the water band index (WBI, ratio of reflectance at 900 and 970 nm) recorded changes in moss water content during controlled laboratory studies. Strong linear relationships occurred between changes in moss water content and the WBI, although the slopes of the linear relationships were significantly different among sample replicates. Therefore, WBI appeared to be a useful tool to determine sample-specific water content without destructive measurements.

  7. Analysis of Sun-Induced Chlorophyll Fluorescence and Biophysical Variable Patterns in a Mixed Forest

    NASA Astrophysics Data System (ADS)

    Tagliabue, Giulia; Panigada, Cinzia; Baret, Frederic; Cogliati, Sergio; Colombo, Roberto; Guanter, Luis; Pinto, Francisco; Rascher, Uwe; Schickling, Anke; Van der Tol, Christiaan; Zarco-Tejada, Pablo; Rossini, Micol

    2016-08-01

    This work aims to analyse far-red Sun-induced chlorophyll fluorescence (F760) and vegetation optical properties in a forest ecosystem (Forêt de Hardt, FR) using ground measurements and airborne data acquired with the novel high-resolution imaging spectrometer HyPlant. The validated forest species map and F760 map obtained from HyPlant images were used to analyse F across a range of species. Results showed that different species are characterised by different F emission and that F can provide additional information in green and dense canopies where vegetation indices tend to saturate.

  8. Violet diode laser-induced chlorophyll fluorescence: a tool for assessing mosaic disease severity in cassava (Manihot esculenta Crantz) cultivars.

    PubMed

    Anderson, Benjamin; Eghan, Moses J; Asare-Bediako, Elvis; Buah-Bassuah, Paul K

    2012-01-01

    Violet diode laser-induced chlorophyll fluorescence was used in agronomical assessment (disease severity and average yield per plant). Because cassava (Manihot esculenta Crantz) is of economic importance, improved cultivars with various levels of affinity for cassava mosaic disease were investigated. Fluorescence data correlated with cassava mosaic disease severity levels and with the average yield per plant.

  9. A Dioxobilin-Type Fluorescent Chlorophyll Catabolite as a Transient Early Intermediate of the Dioxobilin-Branch of Chlorophyll Breakdown in Arabidopsis thaliana.

    PubMed

    Süssenbacher, Iris; Hörtensteiner, Stefan; Kräutler, Bernhard

    2015-11-09

    Chlorophyll breakdown in higher plants occurs by the so called "PaO/phyllobilin" path. It generates two major types of phyllobilins, the characteristic 1-formyl-19-oxobilins and the more recently discovered 1,19-dioxobilins. The hypothetical branching point at which the original 1-formyl-19-oxobilins are transformed into 1,19-dioxobilins is still elusive. Here, we clarify this hypothetical crucial transition on the basis of the identification of the first natural 1,19-dioxobilin-type fluorescent chlorophyll catabolite (DFCC). This transient chlorophyll breakdown intermediate was isolated from leaf extracts of Arabidopsis thaliana at an early stage of senescence. The fleetingly existent DFCC was then shown to represent the direct precursor of the major nonfluorescent 1,19-dioxobilin that accumulated in fully senescent leaves.

  10. Chlorophyll Concentration Estimates for Coastal Waters using Pixel-Based Atmospheric Correction of Landsat Images

    NASA Astrophysics Data System (ADS)

    Kouba, E.; Xie, H.

    2014-12-01

    Ocean color analysis is more challenging for coastal regions than the global ocean due the effects of optical brightness, shallow and turbid water, higher phytoplankton growth rates, and the complex geometry of coastal bays and estuaries. Also, one of the key atmospheric correction assumptions (zero water leaving radiance in the near infrared) is not valid for these complex conditions. This makes it difficult to estimate the spectral radiance noise caused by atmospheric aerosols, which can vary rapidly with time and space. This project evaluated using Landsat-7 ETM+ observations over a set of coastal bays, and allowing atmospheric correction calculations to vary with time and location as much as practical. Precise satellite orbit vector data was combined with operational weather and climate data to create interpolated arrays of atmospheric profiles which varied with time and location, allowing separate calculation of the Rayleigh and aerosol radiance corrections for all pixels. The resulting normalized water-leaving radiance values were compared with chlorophyll fluorescence measurements made at five in-situ stations inside a set of Texas coastal bays: the Mission-Aransas National Estuarine Research Reserve. Curve-fitting analysis showed it was possible to estimate chlorophyll surface area concentrations by using ETM+ water-leaving radiance values and a third-order polynomial equation. Two pairs of ETM+ bands were identified as inputs (Bands 1 and 3, and the Log10 values of Bands 3 and 4), both achieving R2 of 0.69. Additional research efforts were recommended to obtain additional data, identify better curve fitting equations, and potentially extend the radiative transfer model into the water column.

  11. Chlorophyll concentration estimates for coastal water using pixel-based atmospheric correction of Landsat images

    NASA Astrophysics Data System (ADS)

    Kouba, Eric

    Ocean color analysis is more challenging for coastal regions than the global ocean due the effects of optical brightness, shallow and turbid water, higher phytoplankton growth rates, and the complex geometry of coastal bays and estuaries. Also, one of the key atmospheric correction assumptions (zero water leaving radiance in the near infrared) is not valid for these complex conditions. This makes it difficult to estimate the spectral radiance noise caused by atmospheric aerosols, which can vary rapidly with time and space. This study conducts pixel-based atmospheric correction of Landsat-7 ETM+ images over the Texas coast. Precise satellite orbit data, operational weather data, and climate data are combined to create interpolated arrays of viewing angles and atmospheric profiles. These arrays vary with time and location, allowing calculation of the Rayleigh and aerosol radiances separately for all pixels. The resulting normalized water-leaving radiances are then compared with in situ chlorophyll fluorescence measurements from five locations inside a set of Texas coastal bays: the Mission-Aransas National Estuarine Research Reserve. Curve-fitting analysis shows it is possible to estimate chlorophyll-a surface area concentrations by using ETM+ water-leaving radiance values and a third-order polynomial equation. Two pairs of ETM+ bands are identified as inputs (Bands 1 and 3, and the Log10 values of Bands 3 and 4), both achieving good performance (R2 of 0.69). Further research efforts are recommended to obtain additional data, identify better curve fitting equations, and potentially extend the radiative transfer model into the water column.

  12. Changes in foliar spectral reflectance and chlorophyll fluorescence of four temperate species following branch cutting.

    PubMed

    Richardson, Andrew D; Berlyn, Graeme P

    2002-05-01

    Spectral reflectance and chlorophyll fluorescence are rapid non-invasive methods that can be used to quantify plant stress. Because variation in ambient light (e.g., diurnal patterns of solar radiation) may have a confounding effect on these measurements, branches are often excised in the field and then measured under controlled conditions in the laboratory. We studied four temperate tree species (Abies balsamea (L.) Mill. (balsam fir), Betula papyrifera var. cordifolia (Regel) Fern. (paper birch), Picea rubens Sarg. (red spruce) and Sorbus americana Marsh. (mountain-ash)) to determine how quickly reflectance and fluorescence change following branch cutting. We hypothesized that conifer species, which have tough xeromorphic foliage, would exhibit changes more slowly than broadleaf species. Furthermore, we hypothesized that keeping broadleaf samples cool and moist would delay the onset of reflectance and fluorescence changes. In one set of experiments, we did not use any treatments to maintain the freshness of cut branches. During the first 12 h following cutting, changes in reflectance and fluorescence were slight for all species. Two or 3 days after branch cutting, the two conifers still showed only small changes in the ratio of variable to maximum fluorescence (Fv/Fm) and most reflectance indices, whereas paper birch and mountain-ash showed larger and more rapid declines in Fv/Fm and most reflectance indices. We attribute these declines to loss of water. As a consequence of xeromorphic leaf structure, the conifers were better able to minimize water loss than the two broadleaf species. In another experiment, paper birch that had been kept cool and moist after cutting showed only slight changes in fluorescence and reflectance, even after 3 days, indicating that with careful handling the time interval between collection and measurement of reflectance and fluorescence of many broadleaf specimens can be extended to several days. We conclude that measurements of

  13. Modified in situ antimicrobial susceptibility testing method based on cyanobacteria chlorophyll a fluorescence.

    PubMed

    Heliopoulos, Nikolaos S; Galeou, Angeliki; Papageorgiou, Sergios K; Favvas, Evangelos P; Katsaros, Fotios K; Stamatakis, Kostas

    2016-02-01

    The chlorophyll a fluorescence based antimicrobial susceptibility testing (AST) method presented in a previous work was based on the measurement of Chl a fluorescence of the gram(-) cyanobacterium Synechococcus sp. PCC 7942. Synechococcus sp. PCC 7942 as a gram(-) bacterium is affected by antibacterial agents via mechanisms affecting all gram(-) bacteria, however, as an exclusively phototrophic organism it would also be affected by photosynthesis inhibitory action of an agent that otherwise has no antibacterial properties. In this report, the method is modified by replacing the exclusively phototrophic Synechococcus sp. PCC 7942 with the Synechocystis sp. PCC 6714, capable of both phototrophic and heterotrophic growth in order to add versatility and better reflect the antibacterial effects of surfaces under study towards nonphotosynthetic bacteria.

  14. Topography of Photosynthetic Activity of Leaves Obtained from Video Images of Chlorophyll Fluorescence 1

    PubMed Central

    Daley, Paul F.; Raschke, Klaus; Ball, J. Timothy; Berry, Joseph A.

    1989-01-01

    The distribution of photosynthetic activity over the area of a leaf and its change with time was determined (at low partial pressure of O2) by recording images of chlorophyll fluorescence during saturating light flashes. Simultaneously, the gas exchange was being measured. Reductions of local fluorescence intensity quantitatively displayed the extent of nonphotochemical quenching; quench coefficients, qN, were computed pixel by pixel. Because rates of photosynthetic electron transport are positively correlated with (1 − qN), computed images of (1 − qN) represented topographies of photosynthetic activity. Following application of abscisic acid to the heterobaric leaves of Xanthium strumarium L., clearly delineated regions varying in nonphotochemical quenching appeared that coincided with areoles formed by minor veins and indicated stomatal closure in groups. Images Figure 2 Figure 4 Figure 6 PMID:16666912

  15. Chlorophyll a Fluorescence in Evaluation of the Effect of Heavy Metal Soil Contamination on Perennial Grasses

    PubMed Central

    Żurek, Grzegorz; Rybka, Krystyna; Pogrzeba, Marta; Krzyżak, Jacek; Prokopiuk, Kamil

    2014-01-01

    Chlorophyll a fluorescence gives information about the plant physiological status due to its coupling to the photosynthetic electron transfer chain and to the further biochemical processes. Environmental stresses, which acts synergistically, disturbs the photosynthesis. The OJIP test, elaborated by Strasser and co-workers, enables comparison of the physiological status of plants grown on polluted vs. control areas. The paper shows that the Chl a measurements are very useful tool in evaluating of heavy metal ions influence on perennial grasses, tested as potential phytoremediators. Among 5 cultivars tested, the highest concentration of Cd and Zn ions, not associated with the yield reduction, was detected in the biomass of tall fescue cv. Rahela. Chl a fluorescence interpreted as double normalized curves pointed out Rahela as the outstanding cultivar under the HM ions stress. PMID:24633293

  16. Spermine and lutein quench chlorophyll fluorescence in isolated PSII antenna complexes.

    PubMed

    Malliarakis, Dimitris; Tsiavos, Theodoros; Ioannidis, Nikolaos E; Kotzabasis, Kiriakos

    2015-07-01

    Non photochemical quenching is a spontaneous mechanism that protects plants and algae from photodamage. In the last two decades, carotenoids through the xanthophylls cycle have been proposed to play a key role in quenching of chlorophyll. More recently, the involvement of endogenous polyamines in energy-dependent component of non photochemical quenching has been suggested by several research groups. In the present contribution, the combined effect of spermine and the xanthophylls, zeaxanthin and lutein on the fluorescence of antenna complexes of photosystem II was tested in vitro. Lutein caused significant quenching on trimeric and monomeric antenna complexes, whereas zeaxanthin under our experimental conditions had negligible effect. Spermine has been shown to allow fluorescence quenching to be induced in isolated antenna in the absence of ΔpH and to accelerate quenching formation. The simultaneous treatment of spermine and lutein maximizes quenching even at relatively low concentrations.

  17. Chlorophyll fluorescence as a bioindicator of effects on growth in aquatic macrophytes from mixtures of polycyclic aromatic hydrocarbons.

    PubMed

    Marwood, C A; Solomon, K R; Greenberg, B M

    2001-04-01

    Chlorophyll-a fluorescence induction is a rapid technique for measuring photosynthetic electron transport in plants. To assess chlorophyll-a fluorescence as a bioindicator of effects of polycyclic aromatic hydrocarbon mixtures, chlorophyll-a fluorescence parameters and plant growth responses to exposure to the wood preservative creosote were examined in the aquatic plants Lemna gibba and Myriophyllum spicatum. Exposure to creosote inhibited growth of L. gibba (EC50 = 7.2 mg/L total polycyclic aromatic hydrocarbons) and M. spicatum (EC50 = 2.6 mg/L) despite differences in physiology. Creosote also diminished maximum PSII efficiency (Fv/Fm) (EC50 = 36 and 13 mg/L for L. gibba and M. spicatum) and the effective yield of photosystem II photochemistry (deltaF/Fm') (EC50 = 13 and 15 mg/L for L. gibba and M. spicatum). The similarity between growth and chlorophyll-a fluorescence EC50s and slopes of the response curves suggests a close mechanistic link between these end points. The predictive power of chlorophyll-a fluorescence as a bioindicator of whole-organism effects applied to complex contaminant mixtures is discussed.

  18. Chlorophyll fluorescence: implementation in the full physics RemoTeC algorithm

    NASA Astrophysics Data System (ADS)

    Hahne, Philipp; Frankenberg, Christian; Hasekamp, Otto; Landgraf, Jochen; Butz, André

    2014-05-01

    Several operating and future satellite missions are dedicated to enhancing our understanding of the carbon cycle. They infer the atmospheric concentrations of carbon dioxide and methane from shortwave infrared absorption spectra of sunlight backscattered from Earth's atmosphere and surface. Exhibiting high spatial and temporal resolution, the inferred gas concentration databases provide valuable information for inverse modelling of source and sink processes at the Earth's surface. However, the inversion of sources and sinks requires highly accurate total column CO2 (XCO2) and CH4 (XCH4) measurements, which remains a challenge. Recently, Frankenberg et al., 2012, showed that - beside XCO2 and XCH4 - chlorophyll fluorescence can be retrieved from sounders such as GOSAT exploiting Fraunhofer lines in the vicinity of the O2 A-band. This has two implications: a) chlorophyll fluorescence itself being a proxy for photosynthetic activity yields new information on carbon cycle processes and b) the neglect of the fluorescence signal can induce errors in the retrieved greenhouse gas concentrations. Our RemoTeC full physics algorithm iteratively retrieves the target gas concentrations XCO2 and XCH4 along with atmospheric scattering properties and other auxiliary parameters. The radiative transfer model (RTM) LINTRAN provides RemoTeC with the single and multiple scattered intensity field and its analytically calculated derivatives. Here, we report on the implementation of a fluorescence light source at the lower boundary of our RTM. Processing three years of GOSAT data, we evaluate the performance of the refined retrieval method. To this end, we compare different retrieval configurations, using the s- and p-polarization detectors independently and combined, and validate to independent data sources.

  19. Hyperspectral solar-induced chlorophyll fluorescence of urban tree leaves: Analyses and applications

    NASA Astrophysics Data System (ADS)

    Van Wittenberghe, Shari

    Solar energy is the primary energy source for life on Earth which is converted into chemical energy through photosynthesis by plants, algae and cyanobacteria, releasing fuel for the organisms' activities. To dissipate excess of absorbed light energy, plants emit chlorophyll (Chl) fluorescence (650-850 nm) from the same location where photosynthesis takes place. Hence, it provides information on the efficiency of primary energy conversion. From this knowledge, many applications on vegetation and crop stress monitoring could be developed, a necessity for our planet under threat of a changing global climate. Even though the Chl fluorescence signal is weak against the intense reflected radiation background, methods for retrieving the solar-induced Chl fluorescence have been refined over the last years, both at leaf and airborne scale. However, a lack of studies on solar-induced Chl fluorescence gives difficulties for the interpretation of the signal. Within this thesis, hyperspectral upward and downward solar-induced Chl fluorescence is measured at leaf level. Fluorescence yield (FY) is calculated as well as different ratios characterizing the emitted Chl fluorescence shape. The research in this PhD dissertation illustrates the influence of several factors on the solar-induced Chl fluorescence signal. For instance, both the intensity of FY and its spectral shape of urban tree leaves are able to change under influence of stress factors such as traffic air pollution. This shows how solar-induced Chl fluorescence could function as an early stress indicator for vegetation. Further, it is shown that the signal contains information on the ultrastructure of the photosynthetic apparatus. Also, it is proven that the leaf anatomical structure and related light scattering properties play a role in the partitioning between upward and downward Chl fluorescence emission. All these findings indicate how the Chl fluorescence spectrum is influenced by factors which also influence

  20. Development of a canopy Solar-induced chlorophyll fluorescence measurement instrument

    NASA Astrophysics Data System (ADS)

    Sun, G.; Wang, X.; Niu, Zh; Chen, F.

    2014-02-01

    A portable solar-induced chlorophyll fluorescence detecting instrument based on Fraunhofer line principle was designed and tested. The instrument has a valid survey area of 1.3 × 1.3 meter when the height was fixed to 1.3 meter. The instrument uses sunlight as its light source. The instrument is quipped with two sets of special photoelectrical detectors with the centre wavelength at 760 nm and 771 nm respectively and bandwidth less than 1nm. Both sets of detectors are composed of an upper detector which are used for detecting incidence sunlight and a bottom detector which are used for detecting reflex light from the canopy of crop. This instrument includes photoelectric detector module, signal process module, A/D convert module, the data storage and upload module and human-machine interface module. The microprocessor calculates solar-induced fluorescence value based on the A/D values get from detectors. And the value can be displayed on the instrument's LCD, stored in the flash memory of instrument and can also be uploaded to PC through the PC's serial interface. The prototype was tested in the crop field and the results demonstrate that the instrument can measure the solar-induced chlorophyll value exactly with the correlation coefficients was 0.9 compared to the values got from Analytical Spectral Devices FieldSpec Pro spectrometer. This instrument can diagnose the plant growth status by the acquired spectral response.

  1. Effects of fosmidomycin on plant photosynthesis as measured by gas exchange and chlorophyll fluorescence.

    PubMed

    Possell, Malcolm; Ryan, Annette; Vickers, Claudia E; Mullineaux, Philip M; Hewitt, C Nicholas

    2010-04-01

    In higher plants, many isoprenoids are synthesised via the chloroplastic 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Attempts to elucidate the function of individual isoprenoids have used the antibiotic/herbicidal compound fosmidomycin (3-[N-formyl-N-hydroxy amino] propyl phosphonic acid) to inhibit this pathway. Examination of the effect of fosmidomycin on the major components of photosynthesis in leaves of white poplar (Populus alba) and tobacco (Nicotiana tabacum) was made. Fosmidomycin reduced net photosynthesis in both species within 1 h of application, but only when photosynthesis was light-saturated. In P. alba, these reductions were confounded by high light and fosmidomycin inducing stomatal patchiness. In tobacco, this was caused by significant reductions in PSII chlorophyll fluorescence and reductions in V(cmax) and J(max). Our data indicate that the diminution of photosynthesis is likely a complex effect resulting from the inhibition of multiple MEP pathway products, resulting in photoinhibition and photo-damage. These effects should be accounted for in experimental design and analysis when using fosmidomycin to avoid misinterpretation of results as measured by gas exchange and chlorophyll fluorescence.

  2. Image Analysis of Chlorophyll Fluorescence Transients for Diagnosing the Photosynthetic System of Attached Leaves

    PubMed Central

    Omasa, Kenji; Shimazaki, Ken-Ichiro; Aiga, Ichiro; Larcher, Walter; Onoe, Morio

    1987-01-01

    A new image instrumentation system for quantitative analysis of the rapid change in intensity of chlorophyll fluorescence during dark-light transition (CFI, chlorophyll fluorescence induction), which is a sensitive indicator of the various reactions of photosynthesis, was developed and its performance was evaluated. This system made it possible to resolve CFI at any small leaf area (about 1 square millimeter) of a whole leaf when the plant was illuminated by blue-green light at more than 50 micromoles photons per square meter per second. In order to test the usefulness of this system, we applied it to analyze the effect of SO2 on photosynthetic apparatus in attached sunflower leaves. Dynamic CFI imaging over the whole single leaf, where there was no visible injury, indicated not only the local changes in photosynthetic activity but also the site of inhibition in photosynthetic electron transport system in chloroplasts. The new instrumentation system will be useful for the analytical diagnosis of various stress-actions on plants in situ. Images Fig. 1 Fig. 5 Fig. 6 PMID:16665515

  3. Interactions between iron and titanium metabolism in spinach: a chlorophyll fluorescence study in hydropony.

    PubMed

    Cigler, Petr; Olejnickova, Julie; Hruby, Martin; Csefalvay, Ladislav; Peterka, Jiri; Kuzel, Stanislav

    2010-12-15

    One of the elements showing strong beneficial effect on plants at low concentrations and toxic effects at higher concentrations is titanium (Ti). We investigated the interconnection between the Fe uptake and the Ti intoxication in model experiment on Fe-deficient spinach (Spinacia oleracea) plants to help to elucidate the mechanism of the biological activity of titanium in plants. The two different Ti (0 and 20 mg L⁻¹) and two different Fe (0 and 1.35 mg L⁻¹) concentrations in hydroponic medium were used in all four possible combinations. We compared chemical analysis of Ti and Fe in roots and shoots with the changes of the in vivo chlorophyll fluorescence. Although Fe and Ti concentration found in shoots of Ti-non-treated Fe-deficient plants was comparable with that in Ti-treated Fe-deficient plants, the soluble form of Ti present in the growth media had a negative effect on photosynthetic activity monitored by chlorophyll fluorescence measurements. The presence of Fe in growth medium significantly decreased the Ti concentration in shoots and increased the photosynthetic activity. Here, we propose that Ti affect components of electron transport chain containing Fe in their structure (particularly photosystem I) and decrease the photosystem II efficiency.

  4. Detection of Photosynthetic Performance of Stipa bungeana Seedlings under Climatic Change using Chlorophyll Fluorescence Imaging

    PubMed Central

    Song, Xiliang; Zhou, Guangsheng; Xu, Zhenzhu; Lv, Xiaomin; Wang, Yuhui

    2016-01-01

    In this study, the impact of future climate change on photosynthetic efficiency as well as energy partitioning in the Stipa bungeana was investigated by using chlorophyll fluorescence imaging (CFI) technique. Two thermal regimes (room temperature, T0: 23.0/17.0°C; High temperature, T6: 29.0/23.0°C) and three water conditions (Control, W0; Water deficit, W−30; excess precipitation, W+30) were set up in artificial control chambers. The results showed that excess precipitation had no significant effect on chlorophyll fluorescence parameters, while water deficit decreased the maximal quantum yield of photosystem II (PSII) photochemistry for the dark-adapted state (Fv/Fm) by 16.7%, with no large change in maximal quantum yield of PSII photochemistry for the light-adapted state (FV′/FM′) and coefficient of the photochemical quenching (qP) at T0 condition. Under T6 condition, high temperature offset the negative effect of water deficit on Fv/Fm and enhanced the positive effect of excess precipitation on Fv/Fm, Fv′/Fm′, and qP, the values of which all increased. This indicates that the temperature higher by 6°C will be beneficial to the photosynthetic performance of S. bungeana. Spatial changes of photosynthetic performance were monitored in three areas of interest (AOIs) located on the bottom, middle and upper position of leaf. Chlorophyll fluorescence images (Fv/Fm, actual quantum yield of PSII photochemistry for the light-adapted state (ΦPSII), quantum yield of non-regulated energy dissipation for the light-adapted state (ΦNO) at T0 condition, and ΦPSII at T6 condition) showed a large spatial variation, with greater value of ΦNO and lower values of Fv/Fm and ΦPSII in the upper position of leaves. Moreover, there was a closer relationship between ΦPSII and ΦNO, suggesting that the energy dissipation by non-regulated quenching mechanisms played a dominant role in the yield of PSII photochemistry. It was also found that, among all measured fluorescence

  5. [Estimation of chlorophyll content in apple tree canopy based on hyperspectral parameters].

    PubMed

    Pan, Bei; Zhao, Geng-Xing; Zhu, Xi-Cun; Liu, Hai-Teng; Liang, Shuang; Tian, Da-De

    2013-08-01

    The hyperspectral reflectance of apple tree canopy during spring shoots stopping growth period was measured using ASD FieldSpec3 field spectrometer. Original spectral data were processed in deviation forms, and significant spectrum parameters correlated with chlorophyll content were found out with correlation analysis. The best vegetation indices were chosen and the apple canopy chlorophyll content estimation model was established by analyzing vegetation index of two-band combination in the sensitive region 400-1 350 nm. The result showed that (1) The sensitive band region of apple canopy chlorophyll content is 400-1 350 nm. (2) The vegetation index CCI(D(794)/D(763)) can commendably estimate the apple canopy chlorophyll content. (3) The model with CCI(D(794)/D(763)) as the independent variables was determined to be the best for chlorophyll content prediction of apple tree canopy. Therefore, using hyperspectral technology can estimate apple canopy chlorophyll content more rapidly and accurately, and provides a theoretical basis for rapid apple tree canopy nutrition diagnosis and growth monitoring.

  6. A Method for Chlorophyll Fluorescence Imaging Control of the Vegetation under Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Krumov, A.; Vassilev, V.; Vassilev, N.

    term space exploration and flights. The goal is to provide a more natural environment on physiological, psychological and even esthetical levels for the astronauts. One of the important issues to be solved is development of methodologies and apparatus for continuous in-flight monitoring the biophysical status of the vegetation in order to assure it within the required physiological conditions. performed in the last years. There, applying qualitative observations and/or measurement of certain physiological parameters on different vegetation samples, the monitoring of the plant biostatus is done. These samples are prepared and characterized directly on board of the spacecraft, or are sent back to Earth, usually in a dried condition, for further investigation. In such a way, it is not possible to have a quick, real time control of the dynamics of the vegetation bioprocesses. When sudden plant stress condition appears, this can lead to a delayed and improper intervention by the operator and to irreversible changes in the physiological functions of the vegetation. A very promising approach for controlling the vegetation physiological processes and early detection of stress conditions is using the light induced chlorophyll fluorescence as an indicator for the plant biostatus. the registration of the intensity and the spatial distribution of the chlorophyll fluorescence, induced by a discrete spectrum light flux. The use of discontinuous spectrum is implied by the fact that the fluorescence irradiated by the vegetation is of much lower intensity than the one of the incident light. When the incident flux has a wide continuos spectrum, including the spectral bands of florescence, the latter is difficult to detect directly. We suggest to measure the fluorescence in bands of approximately 10nm width, centered at the maximum intensity fluorescence wave lengths, in which the spectrum of the incident light to be discontinued. These maxima of fluorescence are at 440nm and 520nm

  7. Remote Sensing of chlorophyll fluorescence and the impact of clouds on the retrival

    NASA Astrophysics Data System (ADS)

    Köhler, Philipp; Guanter, Luis; Frankenberg, Christian

    2013-04-01

    Remote sensing of sun-induced chlorophyll fluorescence (SIF) is a new, alternative option to gain information about terrestrial photosynthesis and CO2 assimilation on a global scale. The SIF is an electromagnetic signal emitted in the aprox. 650-800 nm spectral window by the photosynthesis apparatus, and can therefore be considered as a direct indicator of plant biochemical processes. The general approach to measure SIF from space is the evaluation of the in-filling of solar Fraunhofer lines or atmospheric absorption bands by SIF. To distinguish the SIF signal from the total incoming radiance at the sensor, which is about 100 times more intense, is a challenge and high resolution measurements are required. The high spectral resolution (approx. 0.02 nm) of the Fourier Transform Spectrometer (FTS) on-board the Greenhouse Gases Observing Satellite (GOSAT) enables such a measurement of SIF by means of the evaluation of the in-filling of solar Fraunhofer lines by SIF. The narrow wavelength band from 755 to 759 nm and around 770 nm can be used for this purpose because they are free from atmospheric absorption features, the solar radiation shows several Fraunhofer lines and the SIF values in this region are relatively high. A new SIF retrieval approach (GARLiC, for GOSAT Retrieval of cholorphyll fluorescence) will be presented in this contribution. This method is intended to simplify some of the assumptions of existing retrieval approaches without a loss in accuracy. The comparison of the GARLiC fluorescence retrievals with two state-of-the-art SIR retrieval methods such as those by Frankenberg et al. (2011) and Guanter et al. (2012) from GOSAT data shows corresponding and feasible results. In addition to the basics of SIF remote sensing, this contribution will assess the effect of clouds in the retrieval. To do this, the SIF retrieval has been coupled to a cloud optical thickness (COT) retrieval algorithm adapted to GOSAT-FTS O2A-band measurements, so that SIF and COT

  8. Chlorophyll a fluorescence lifetime reveals reversible UV-induced photosynthetic activity in the green algae Tetraselmis.

    PubMed

    Kristoffersen, Arne S; Hamre, Børge; Frette, Øyvind; Erga, Svein R

    2016-04-01

    The fluorescence lifetime is a very useful parameter for investigating biological materials on the molecular level as it is mostly independent of the fluorophore concentration. The green alga Tetraselmis blooms in summer, and therefore its response to UV irradiation is of particular interest. In vivo fluorescence lifetimes of chlorophyll a were measured under both normal and UV-stressed conditions of Tetraselmis. Fluorescence was induced by two-photon excitation using a femtosecond laser and laser scanning microscope. The lifetimes were measured in the time domain by time-correlated single-photon counting. Under normal conditions, the fluorescence lifetime was 262 ps, while after 2 h of exposure to UV radiation the lifetime increased to 389 ps, indicating decreased photochemical quenching, likely caused by a damaged and down-regulated photosynthetic apparatus. This was supported by a similar increase in the lifetime to 425 ps when inhibiting photosynthesis chemically using DCMU. Furthermore, the UV-stressed sample was dark-adapted overnight, resulting in a return of the lifetime to 280 ps, revealing that the damage caused by UV radiation is repairable on a relatively short time scale. This reversal of photosynthetic activity was also confirmed by [Formula: see text] measurements.

  9. Temporal variability in chlorophyll fluorescence of back-reef corals in Ofu, American Samoa

    USGS Publications Warehouse

    Piniak, G.A.; Brown, E.K.

    2009-01-01

    Change in the yield of chlorophyll a fluorescence is a common indicator of thermal stress in corals. The present study reports temporal variability in quantum yield measurements for 10 coral species in Ofu, American Samoa - a place known to experience elevated and variable seawater temperatures. In winter, the zooxanthellae generally had higher dark-adapted maximum quantum yield (F v/Fm), higher light- adapted effective quantum yield (??F/F'm), and lower relative electron transport rates (rETR) than in the summer. Temporal changes appeared unrelated to the expected bleaching sensitivity of corals. All species surveyed, with the exception of Montipora grisea, demonstrated significant temporal changes in the three fluorescence parameters. Fluorescence responses were influenced by the microhabitat - temporal differences in fluorescence parameters were usually observed in the habitat with a more variable temperature regime (pool 300), while differences in Fv/Fm between species were observed only in the more environmentally stable habitat (pool 400). Such species-specific responses and microhabitat variability should be considered when attempting to determine whether observed in situ changes are normal seasonal changes or early signs of bleaching. ?? 2009 Marine Biological Laboratory.

  10. [Fluorescence parameters of chlorophyll in leaves of caules plants in different environmental conditions].

    PubMed

    Iakovleva, O V; Talipova, E V; Kukarskikh, G P; Krendeleeva, T E; Rubin, A B

    2005-01-01

    The functional state of medicinal plants of Convallaria majalis L., Vaccinium vitis-idaeae L., Arctostaphylos uva-ursi L. in connection with heavy metal accumulation in their leaves under man impact was studied by the pulse-amplitude-modulation (PAM) fluorometric method. The relative yield of variable fluorescence (F(v)/F(m)), induction of fluorescence of chlorophyll, and fluorescence quenching processes in leaves at different distances from the local Kirov-Sovetsk, Kirov-Omutninsk road in Kirov region were analyzed. Changes in biophysical characteristics with the increasing content of heavy metals in leaves were demonstrated. The most informative characteristic is F(v)/F(m). Its value correlates with the activity of the photosynthetic apparatus and reflects the potential effeciency of photosynthesis. The better are the environmental conditions of plant growth, the higher is the F(v)/F(m) ratio and the lower is its average statistical deviation. Fluorescence induction curves do not always vary in shape under our ecological conditions, indicating relatively favorable conditions at places of plant growth investigated. The rate of the environmental pollution in the investigated region is not critical, since the content of heavy metal in leaves does not change considerably with the distance from the road.

  11. Water deficit and salt stress diagnosis through LED induced chlorophyll fluorescence analysis in Jatropha curcas L. oil plants for biodiesel

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; Oliveira, Ronaldo A.; Cunha, Patrícia C.; Costa, Ernande B.; Câmara, Terezinha J. R.; Willadino, Lilia G.

    2011-02-01

    Light-emitting-diode induced chlorophyll fluorescence analysis is employed to investigate the effect of water and salt stress upon the growth process of physicnut(jatropha curcas) grain oil plants for biofuel. Red(Fr) and far-red (FFr) chlorophyll fluorescence emission signals around 685 nm and 735 nm, respectively, were observed and examined as a function of the stress intensity(salt concentration and water deficit) for a period of time of 30 days. The chlorophyll fluorescence(ChlF) ratio Fr/FFr which is a valuable nondestructive and nonintrusive indicator of the chlorophyll content of leaves was exploited to monitor the level of stress experienced by the jatropha plants. The ChlF technique data indicated that salinity plays a minor role in the chlorophyll concentration of leaves tissues for NaCl concentrations in the 25 to 200 mM range, and results agreed quite well with those obtained using conventional destructive spectrophotometric methods. Nevertheless, for higher NaCl concentrations a noticeable decrease in the Chl content was observed. The Chl fluorescence ratio analysis also permitted detection of damage caused by water deficit in the early stages of the plants growing process. A significant variation of the Fr/FFr ratio was observed sample in the first 10 days of the experiment when one compared control and nonwatered samples. The results suggest that the technique may potentially be applied as an early-warning indicator of stress caused by water deficit.

  12. Neural network-based estimation of chlorophyll-a concentration in coastal waters

    NASA Astrophysics Data System (ADS)

    Musavi, Mohamad T.; Miller, Richard L.; Ressom, Habtom; Natarajan, Padma

    2002-01-01

    The estimation of chlorophyll-a is one of the key indices of monitoring the phytoplankton populations. In this paper, an approach for estimating chlorophyll-a concentration using a neural network model is prose. A dat set assembled form various sources during the SeaWiFS Bio-optical Algorithm Mini-Workshop containing coincident in-situ chlorophyll and remote sensing reflectance measurements is used to evaluate the efficacy of the proposed neural network model. The data comprises of 919 stations and has chlorophyll-a concentrations ranging between 0.019 and 32.79 (mu) g/l. There are approximately 20 observations form more turbid coastal waters. A feed-forward neural network model with 10 noes in the hidden layer has been constructed to estimate chlorophyll-a concentration. The remote sensing reflectances form five SeaWiFS wavelengths are used as inputs to our model. The network is trained using the Levenberg-Marquardt algorithm. A neural network model can deal with non-linear relationships more accurately. Neural networks can effectively include variables that tend to co-vary non- linearly relationships more accurately. Neural networks can effectively include variables that tend to co-vary non- linearly with the output variable. They are flexible towards the choice of inputs and are tolerant to noise and require no a priori knowledge about the effect of these parameters. This makes them an ideal candidate for estimating chlorophyll-a concentration in coastal waters, where the presence of suspended sediments, detritus, and dissolved organic matter creates an optically complex situation. By allowing the neural network model to include several optical parameters as additional inputs to account for the scattering and absorption phenomena the model can be extended to estimate chlorophyll-a concentration turbid coastal waters.

  13. Fluorescence and absorption spectroscopy of the weakly fluorescent chlorophyll a in cytochrome b6f of Synechocystis PCC6803.

    PubMed Central

    Peterman, E J; Wenk, S O; Pullerits, T; Pâlsson, L O; van Grondelle, R; Dekker, J P; Rögner, M; van Amerongen, H

    1998-01-01

    A spectroscopic characterization of the chlorophyll a (Chl) molecule in the monomeric cytochrome b6f complex (Cytb6f) isolated from the cyanobacterium Synechocystis PCC6803 is presented. The fluorescence lifetime and quantum yield have been determined, and it is shown that Chl in Cytb6f has an excited-state lifetime that is 20 times smaller than that of Chl in methanol. This shortening of the Chl excited state lifetime is not caused by an increased rate of intersystem crossing. Most probably it is due to quenching by a nearby amino acid. It is suggested that this quenching is a mechanism for preventing the formation of Chl triplets, which can lead to the formation of harmful singlet oxygen. Using site-selected fluorescence spectroscopy, detailed information on vibrational frequencies in both the ground and Qy excited states has been obtained. The vibrational frequencies indicate that the Chl molecule has one axial ligand bound to its central magnesium and accepts a hydrogen bond to its 13(1)-keto carbonyl. The results show that the Chl binds to a well-defined pocket of the protein and experiences several close contacts with nearby amino acids. From the site-selected fluorescence spectra, it is further concluded that the electron-phonon coupling is moderately strong. Simulations of both the site-selected fluorescence spectra and the temperature dependence of absorption and fluorescence spectra are presented. These simulations indicate that the Huang-Rhys factor characterizing the electron-phonon coupling strength is between 0.6 and 0.9. The width of the Gaussian inhomogeneous distribution function is 210 +/- 10 cm-1. PMID:9649396

  14. Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer model

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Yang, W.; Ichii, K.

    2015-12-01

    Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer modelHideki Kobayashi, Wei Yang, and Kazuhito IchiiDepartment of Environmental Geochemical Cycle Research, Japan Agency for Marine-Earth Science and Technology3173-25, Showa-machi, Kanazawa-ku, Yokohama, Japan.Plant canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellites, such as Greenhouse gases Observation Satellite (GOSAT), Orbiting Carbon Observatory-2 (OCO-2), and Global Ozone Monitoring Experiment-2 (GOME-2), using Fraunhofer lines in the near infrared spectral domain [1]. SIF is used to infer photosynthetic capacity of plant canopy [2]. However, it is not well understoond how the leaf-level SIF emission contributes to the top of canopy directional SIF because SIFs observed by the satellites use the near infrared spectral domain where the multiple scatterings among leaves are not negligible. It is necessary to quantify the fraction of emission for each satellite observation angle. Absorbed photosynthetically active radiation of sunlit leaves are 100 times higher than that of shaded leaves. Thus, contribution of sunlit and shaded leaves to canopy scale directional SIF emission should also be quantified. Here, we show the results of global simulation of SIF using a 3 dimensional radiative transfer simulation with MODIS atmospheric (aerosol optical thickness) and land (land cover and leaf area index) products and a forest landscape data sets prepared for each land cover category. The results are compared with satellite-based SIF (e.g. GOME-2) and the gross primary production empirically estimated by FLUXNET and remote sensing data.

  15. Design of chlorophyll-a and turbidity sensor based on fluorescence induction and scattering-light detection

    NASA Astrophysics Data System (ADS)

    Zhang, Keke; Liu, Shixuan; Chen, Shizhe; Qi, Yong; Miao, Bin; Yan, Xingkui; Bai, Xuejiao

    2014-07-01

    The chlorophyll-a and turbidity sensor based on the principles of fluorescence induction and scattering-light detection is designed. Using fluorescence induction technology, scattering-light detection technology and weak signal detection technology, chlorophyll-a concentration measurement and turbidity measurement in seawater are integrated in a set of testing equipment to implement software and hardware reuse and improve the integration of the device, which has the features of small size and easy operation. The comparative experiments and repetitive experiments are completed with ALEC ACLW-CAR chlorophyll / turbidity sensor. Experiment results show that chlorophyll-a concentration, turbidity and the system output values have good linear relationships, and the fitting coefficients are 0.999. Repeatability standard deviations of chlorophyll-a detection and turbidity detection are better than 0.08 μg/L and 0.04 FTU, respectively, and the accuracy of the device within +/- 2%. Chlorophyll-a and turbidity in-situ monitoring in seawater can be achieved using this testing equipment.

  16. [Flag leaf photosynthetic characteristics, change in chlorophyll fluorescence parameters, and their relationships with yield of winter wheat sowed in spring].

    PubMed

    Xu, Lan; Gao, Zhi-qang; An, Wei; Li, Yan-liang; Jiao, Xiong-fei; Wang, Chuang-yun

    2016-01-01

    With five good winter wheat cultivars selected from the middle and lower reaches of Yangtze River and Southwest China as test materials, a field experiment in Xinding basin area of Shanxi Province was conducted to study the photosynthetic characteristics, chlorophyll content, and chlorophyll fluorescence parameters of flag leaf at different sowing dates, as well as the correlations between these indices and yield for two years (2013-2014). The results showed that the difference in most fluorescence parameters except chlorophyll content among cultivars was significant. The correlations between these fluorescence parameters and yield were significant. The variation coefficient of chlorophyll (Chl) content was low (0.12-0.17), and that of performance index based on absorption (PIabs) was high (0.32-0.39), with the partial correlation coefficients of them with grain yield from 2013 to 2014 ranged in 0.70-0.81. Under the early sowing condition, the grain yield positively correlated with PIabs at flowering and filling stages and chlorophyll content at grain filling stage, but negatively correlated with the relative variable fluorescence at I point (Vi) at grain filling stage. About 81.1%-82.8% of grain yield were determined by the variations of PIabs, Chl, and Vi. Wheat cultivars had various performances in the treatments with different sowing dates and a consistent trend was observed in the two experimental years. Among these 5 cultivars, Yangmai 13 was suitable for early sowing, with the flag leaf photosynthetic rate (Pn), Chl, most fluorescence parame-ters, and grain yield showed obviously high levels. In conclusion, under early sowing condition chlorophyll content at grain filling stages, PIabs at flowering and filling stages, and Pn were important indices for selecting wheat cultivars with high photosynthetic efficiency.

  17. Changes in chlorophyll a fluorescence of glyphosate-tolerant soybean plants induced by glyphosate: in vivo analysis by laser-induced fluorescence spectroscopy.

    PubMed

    Fernandes, Joelson; Falco, William Ferreira; Oliveira, Samuel Leite; Caires, Anderson Rodrigues Lima

    2013-05-01

    A significant increase in the use of the herbicide glyphosate has generated many questions about its residual accumulation in the environment and possible damage to crops. In this study, changes in chlorophyll a (chl-a) fluorescence induced by glyphosate in three varieties of glyphosate-resistant soybean plants were determined with an in vivo analysis based on a portable laser-induced fluorescence system. Strong suppression of chl-a fluorescence was observed for all plants treated with the herbicide. Moreover, the ratio of the emission bands in the red and far-red regions (685 nm/735 nm) indicates that the application of glyphosate led to chlorophyll degradation. The results also indicated that the use of glyphosate, even at concentrations recommended by the manufacturer, suppressed chl-a fluorescence. In summary, this study shows that fluorescence spectroscopy can detect, in vivo, very early changes in the photosynthetic status of transgenic soybeans treated with this herbicide.

  18. [Remote sensing of chlorophyll fluorescence at airborne level based on unmanned airship platform and hyperspectral sensor].

    PubMed

    Yang, Pei-Qi; Liu, Zhi-Gang; Ni, Zhuo-Ya; Wang, Ran; Wang, Qing-Shan

    2013-11-01

    The solar-induced chlorophyll fluorescence (ChlF) has a close relationship with photosynthetic and is considered as a probe of plant photosynthetic activity. In this study, an airborne fluorescence detecting system was constructed by using a hyperspectral imager on board an unmanned airship. Both Fraunhofer Line Discriminator (FLD) and 3FLD used to extract ChlF require the incident solar irradiance, which is always difficult to receive at airborne level. Alternative FLD (aFLD) can overcome the problem by selecting non-fluorescent emitter in the image. However, aFLD is based on the assumption that reflectance is identical around the Fraunhofer line, which is not realistic. A new method, a3FLD, is proposed, which assumes that reflectance varies linearly with the wavelength around Fraunhofer line. The result of simulated data shows that ChlF retrieval error of a3FLD is significantly lower than that of aFLD when vegetation reflectance varies near the Fraunhofer line. The results of hyperspectral remote sensing data with the airborne fluorescence detecting system show that the relative values of retrieved ChlF of 5 kinds of plants extracted by both aFLD and a3FLD are consistent with vegetation growth stage and the ground-level ChlF. The ChlF values of aFLD are about 15% greater than a3FLD. In addition, using aFLD, some non-fluorescent objects have considerable ChlF value, while a3FLD can effectively overcome the problem.

  19. Chloroplast Ultrastructure, Chlorophyll Fluorescence, and Pigment Composition in Chilling-Stressed Soybeans 1

    PubMed Central

    Musser, Robert L.; Thomas, Shirley A.; Wise, Robert R.; Peeler, Thomas C.; Naylor, Aubrey W.

    1984-01-01

    Shoots of 16-day-old soybeans (Glycine max L. Merr. cv Ransom) were chilled to 10°C for 7 days and monitored for visible signs of damage, ultrastructural changes, perturbations in fluorescence of chlorophyll (Chl), and quantitative changes in Chl a and b and associated pigments. Precautions were taken to prevent the confounding effects of water stress. A technique for the separation of lutein and zeaxanthin was developed utilizing a step gradient with the high performance liquid chromatograph. Visible losses in Chl were detectable within the first day of chilling, and regreening did not occur until the shoots were returned to 25°C. Ultrastructurally, unstacking of chloroplast grana occurred, and the envelope membranes developed protrusions. Furthermore, the lipids were altered to the point that the membranes were poorly stabilized by a glutaraldehyde/osmium double-fixation procedure. Chl fluorescence rates were greatly reduced within 2 hours after chilling began and returned to normal only after rewarming. The rapid loss of Chl that occurred during chilling was accompanied by the appearance of zeaxanthin and a decline in violaxanthin. Apparently a zeaxanthin-violaxanthin epoxidation/de-epoxidation cycle was operating. When only the roots were chilled, no substantial changes were detected in ultrastructure, fluorescence rates, or pigment levels. Images Fig. 1 Fig. 2 Fig. 3 PMID:16663504

  20. A simple chlorophyll fluorescence parameter that correlates with the rate coefficient of photoinactivation of photosystem II.

    PubMed

    Hendrickson, Luke; Förster, Britta; Pogson, Barry J; Chow, Wah Soon

    2005-06-01

    A method of partitioning the energy in a mixed population of active and photoinactivated Photosystem II (PS II) complexes based on chlorophyll fluorescence measurements is presented. There are four energy fluxes, each with its quantum efficiency: a flux associated with photochemical electron flow in active PS II reaction centres (JPS II), thermal dissipation in photoinactivated, non-functional PS IIs (JNF), light-regulated thermal dissipation in active PS IIs (JNPQ) and a combined flux of fluorescence and constitutive, light-independent thermal dissipation (Jf,D). The four quantum efficiencies add up to 1.0, without the need to introduce an 'excess' term E, which in other studies has been claimed to be linearly correlated with the rate coefficient of photoinactivation of PS II (kpi). We examined the correlation of kpi with various fluxes, and found that the combined flux (JNPQ + Jf,D= Jpi) is as well correlated with kpi as is E. This combined flux arises from Fs/Fm ', the ratio of steady-state to maximum fluorescence during illumination, which represents the quantum efficiency of combined non-photochemical dissipation pathways in active PS IIs. Since Fs/Fm ' or its equivalent, Jpi, is a likely source of events leading to photoinactivation of PS II, we conclude that Fs/Fm ' is a simple predictor of kpi.

  1. Geomagnetic and strong static magnetic field effects on growth and chlorophyll a fluorescence in Lemna minor.

    PubMed

    Jan, Luka; Fefer, Dušan; Košmelj, Katarina; Gaberščik, Alenka; Jerman, Igor

    2015-04-01

    The geomagnetic field (GMF) varies over Earth's surface and changes over time, but it is generally not considered as a factor that could influence plant growth. The effects of reduced and enhanced GMFs and a strong static magnetic field on growth and chlorophyll a (Chl a) fluorescence of Lemna minor plants were investigated under controlled conditions. A standard 7 day test was conducted in extreme geomagnetic environments of 4 µT and 100 µT as well as in a strong static magnetic field environment of 150 mT. Specific growth rates as well as slow and fast Chl a fluorescence kinetics were measured after 7 days incubation. The results, compared to those of controls, showed that the reduced GMF significantly stimulated growth rate of the total frond area in the magnetically treated plants. However, the enhanced GMF pointed towards inhibition of growth rate in exposed plants in comparison to control, but the difference was not statistically significant. This trend was not observed in the case of treatments with strong static magnetic fields. Our measurements suggest that the efficiency of photosystem II is not affected by variations in GMF. In contrast, the strong static magnetic field seems to have the potential to increase initial Chl a fluorescence and energy dissipation in Lemna minor plants.

  2. Simple replacement of violaxanthin by zeaxanthin in LHC-II does not cause chlorophyll fluorescence quenching.

    PubMed

    Dreuw, Andreas; Wormit, Michael

    2008-03-01

    Recently, a mechanism for the energy-dependent component (qE) of non-photochemical quenching (NPQ), the fundamental photo-protection mechanism in green plants, has been suggested. Replacement of violaxanthin by zeaxanthin in the binding pocket of the major light harvesting complex LHC-II may be sufficient to invoke efficient chlorophyll fluorescence quenching. Our quantum chemical calculations, however, show that the excited state energies of violaxanthin and zeaxanthin are practically identical when their geometry is constrained to the naturally observed structure of violaxanthin in LHC-II. Therefore, since violaxanthin does not quench LHC-II, zeaxanthin should not either. This theoretical finding is nicely in agreement with experimental results obtained by femtosecond spectroscopy on LHC-II complexes containing violaxanthin or zeaxanthin.

  3. Does sun-induced Chlorophyll fluorescence well capture canopy photosynthesis in a rice paddy?

    NASA Astrophysics Data System (ADS)

    Kimm, H.; Ryu, Y.; Kang, M.; Kim, J.

    2015-12-01

    Sun-induced chlorophyll fluorescence (SiF) has emerged as a convincing indicator of carbon assimilation rates under diverse environmental conditions. Here, we present a continuous observation system of SiF at a sporadically irrigated rice paddy site in South Korea. Our site also includes automatic observation systems for eddy covariance, water table depth, and spectral sensors which are composed of LED sensors, and RGB- and NIR cameras. Additionally, we conducted manual observations of photosynthetic parameters (Li-6400), leaf area index (LAI-2200), NDVI and PRI (ASD FieldSpec) once per ten days on average. By analyzing manual- and automatic field observations, we quantify carbon budget of the site. Finally, we investigate how accurately SiF detects canopy photosynthesis, and discuss what factors mainly control canopy photosynthesis.

  4. An in situ antimicrobial susceptibility testing method based on in vivo measurements of chlorophyll α fluorescence.

    PubMed

    Heliopoulos, Nikolaos S; Galeou, Angeliki; Papageorgiou, Sergios K; Favvas, Evangelos P; Katsaros, Fotios K; Stamatakis, Kostas

    2015-05-01

    Up to now antimicrobial susceptibility testing (AST) methods are indirect and generally involve the manual counting of bacterial colonies following the extraction of microorganisms from the surface under study and their inoculation in a separate procedure. In this work, an in situ, direct and instrumental method for the evaluation and assessment of antibacterial properties of materials and surfaces is proposed. Instead of indirectly determining antibacterial activity using the typical gram(-) test organisms with the subsequent manual colony count or inhibition zone measurement, the proposed procedure, employs photosynthetic gram(-) cyanobacteria deposited directly onto the surface under study and assesses cell proliferation and viability by a quick, accurate and reproducible instrumental chlorophyll fluorescence spectrophotometric technique. In contrast with existing methods of determination of antibacterial properties, it produces high resolution and quantitative results and is so versatile that it could be used to evaluate the antibacterial properties of any compound (organic, inorganic, natural or man-made) under any experimental conditions, depending on the targeted application.

  5. A statistical algorithm for estimating chlorophyll concentration from MODIS data

    NASA Astrophysics Data System (ADS)

    Wattelez, Guillaume; Dupouy, Cécile; Mangeas, Morgan; Lèfevre, Jérôme; Touraivane, T.; Frouin, Robert J.

    2014-11-01

    We propose a statistical algorithm to assess chlorophyll-a concentration ([chl-a]) using remote sensing reflectance (Rrs) derived from MODerate Resolution Imaging Spectroradiometer (MODIS) data. This algorithm is a combination of two models: one for low [chl-a] (oligotrophic waters) and one for high [chl-a]. A satellite pixel is classified as low or high [chla] according to the Rrs ratio (488 and 555 nm channels). If a pixel is considered as a low [chl-a] pixel, a log-linear model is applied; otherwise, a more sophisticated model (Support Vector Machine) is applied. The log-linear model was developed thanks to supervised learning on Rrs and [chl-a] data from SeaBASS and more than 15 campaigns accomplished from 2002 to 2010 around New Caledonia. Several models to assess high [chl-a] were also tested with statistical methods. This novel approach outperforms the standard reflectance ratio approach. Compared with algorithms such as the current NASA OC3, Root Mean Square Error is 30% lower in New Caledonian waters.

  6. Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean.

    PubMed

    Jumrani, Kanchan; Bhatia, Virender Singh; Pandey, Govind Prakash

    2017-03-01

    High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2 °C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28 °C, respectively.

  7. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges.

    PubMed

    Porcar-Castell, Albert; Tyystjärvi, Esa; Atherton, Jon; van der Tol, Christiaan; Flexas, Jaume; Pfündel, Erhard E; Moreno, Jose; Frankenberg, Christian; Berry, Joseph A

    2014-08-01

    Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF and photosynthesis remains obscure. Additionally, while the current understanding of in vivo ChlF is based on pulse amplitude-modulated (PAM) measurements, remote sensing applications are based on the measurement of the passive solar-induced chlorophyll fluorescence (SIF), which entails important differences and new challenges that remain to be solved. In this review we introduce and revisit the physical, physiological, and methodological factors that control the leaf-level ChlF signal in the context of the new remote sensing applications. Specifically, we present the basis of photosynthetic acclimation and its optical signals, we introduce the physical and physiological basis of ChlF from the molecular to the leaf level and beyond, and we introduce and compare PAM and SIF methodology. Finally, we evaluate and identify the challenges that still remain to be answered in order to consolidate our mechanistic understanding of the remotely sensed SIF signal.

  8. Compost may affect volatile and semi-volatile plant emissions through nitrogen supply and chlorophyll fluorescence.

    PubMed

    Ormeño, Elena; Olivier, Romain; Mévy, Jean Philippe; Baldy, Virginie; Fernandez, Catherine

    2009-09-01

    The use of composted biosolids as an amendment for forest regeneration in degraded ecosystems is growing since sewage-sludge dumping has been banned in the European Community. Its consequences on plant terpenes are however unknown. Terpene emissions of both Rosmarinus officinalis (a terpene-storing species) and Quercus coccifera (a non-storing species) and terpene content of the former, were studied after a middle-term exposure to compost at intermediate (50tha(-1): D50) and high (100tha(-1): D100) compost rates, in a seven-year-old post-fire shrubland ecosystem. Some chlorophyll fluorescence parameters (Fv/Fm, ETR, Phi(PSII)), soil and plant enrichment in phosphorus (P) and nitrogen (N) were monitored simultaneously in amended and non-amended plots in order to establish what factors were responsible for possible compost effect on terpenes. Compost affected all studied parameters with the exception of Fv/Fm and terpene content. For both species, mono- and sesquiterpene basal emissions were intensified solely under D50 plots. On the contrary leaf P, leaf N levels reached in D50 were partly responsible of terpene changes, suggesting that optimal N conditions occurred therein. N also affected ETR and Phi(PSII) which were, in turn, robustly correlated to terpene emissions. These results imply that emissions of terpene-storing and non-storing species were under nitrogen and chlorophyll fluorescence control, and that a correct management of compost rates applied on soil may modify terpene emission rate of plants, which in turn has consequences in air quality and plant defense mechanisms.

  9. Laser-induced chlorophyll fluorescence: a technique for detection of dimethoate effect on chlorophyll content and photosynthetic activity of wheat plant.

    PubMed

    Pandey, Jitendra Kumar; Gopal, R

    2011-03-01

    Laser-induced chlorophyll fluorescence (LICF) spectra and fluorescence induction kinetics (FIK) curves of wheat plant leaves treated with different concentrations (50, 100 and 200 ppm) of dimethoate are recorded. LICF spectra are recorded in the region of 650-780 nm using violet diode laser (405 nm) and FIK curve at 685 and 730 nm with red diode laser (635 nm) for excitation. The fluorescence intensity ratios (FIR) are determined from LICF spectra and vitality index (R(fd)) from FIK curves. These parameters along with photosynthetic pigment contents and growth parameters are used to analyze the effect of dimethoate on wheat plants. The result indicates that lower concentration of 50 ppm shows stimulatory response while higher concentrations of dimethoate are hazardous for growth, photosynthetic pigments and activity of wheat plants.

  10. Light stress effect and by nitrogen deficiency in plants of Petiveria alliacea measured with two-chlorophyll-fluorescence technique

    NASA Astrophysics Data System (ADS)

    Zuluaga, H.; Oviedo, A.; Solarte, Efrain; Pena, E. J.

    2004-10-01

    The chlorophyll fluorescence was studied in Petiveria alliacea plants exposed to different nitrogen concentrations and light radiation, the response was measured by two different forms; (1) measuring the photosynthetic efficiency with a pulse amplitude modulated fluorometro (PAM) emitted by a 650 nm diode and (2) measuring the fluorescence spectra caused by high power 452 nm diode with a SD2000 spectrometer. It was found out that the photosynthetic efficiency decreased in the plants exposed to high radiance and low nitrogen. Two chlorophyll fluorescence peaks were observed on 684 nm and 739 nm, the intensities in this wavelengths are inversely related with the light radiance. The correlation between the FIR and photosynthetic efficiency was very strong (r2 = -0.809, p <<0.01) this let us conclude that the fluorescence spectral analysis induced by the diode (excitation at 452 nm) is an efficient technique to detect stress by high light intensity and nitrogen in P. Alliacea plants.

  11. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors.

    PubMed

    Zhang, Jianfeng; Han, Wenting; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian; Hu, Yamin

    2016-03-25

    The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis.

  12. [Effects of controlled-release fertilizer on chrysanthemum leaf chlorophyll fluorescence characteristics and ornamental quality].

    PubMed

    Song, Xu-xu; Zheng, Cheng-shu; Sun, Xia; Ma, Hai-yan

    2011-07-01

    Taking cut flower chrysanthemum 'Baima' as test material, a pot experiment was conducted to study the effects of controlled-release fertilizer on the leaf chlorophyll fluorescence parameters, chlorophyll and nutrient contents, and ornamental quality of chrysanthemum. Under no fertilization, the maximal photochemical efficiency of PS II in dark (F(v)/F(m)), potential photochemical efficiency of PS II (F(v)/F(0)), and quantum yield of PS II electron transport (phi(PS II)) decreased significantly, compared with those under fertilization. With the application of conventional compound fertilizers CCFA (N:P:K=20:8:10) and CCFB (N:P:K= 14:14:14), the F(v)/F(m), F(v)/F(0) and phi(PS II) had a slight increase in early period (30-60 d) but a remarkable decrease in mid and later periods (75 - 120 d), compared with those under the application of controlled-release fertilizers CRFA (N:P:K = 20:8:10) and CRFB (N:P:K= 14:14:14). Under the application of CRFA, the F(v)/F(m), phi(PS II), and photochemical quenching (q(P)) had somewhat increase, as compared with the application of CRFB. The non-photochemical quenching (NPQ) under the application of CRFA and CRFB decreased significantly, compared with that under the application of CCFA and CCFB and the control. The chlorophyll content had a similar change trend with F(v)/F(m), F(v)/F(0), and phi(PS II). The leaf N, P, and K contents, flower stalk length and stalk diameter, flower diameter, and flower fresh and dry mass at harvest stage all increased under the application of CRFA and CRFB, compared with those under the application of CCFA and CCFB and the control, and the flower fresh and dry mass was significantly higher under the application of CRFA than of CRFB. This study showed that controlled-release fertilizer could improve the ornamental quality of chrysanthemum via improving the leaf chlorophyll content, photochemical transduction rate, and nutrient uptake, and CRFA had better effects than CRFB.

  13. Chemical bonding of chlorophylls and plant aminic axial ligands impact harvesting of visible light and quenching of fluorescence.

    PubMed

    Ioannidis, Nikolaos E; Tsiavos, Theodoros; Kotzabasis, Kiriakos

    2012-01-01

    In the present work, we tested the mode of interaction of all three polyamines (putrescine, spermidine and spermine) with chlorophyll a and b, as well as pheophytin a and b. The results showed that all three polyamines bind to the Mg ion of chlorophyll ring as probed by Raman spectroscopy. The coordination of spermine with Chl b has the most interesting features from all pigments tested. Spermine induces reversible increases and decreases of the fluorescence yield of Chl b at about 661 nm. Interestingly, equilibrium between a high-fluorescence yield conformation and a low yield is feasible by the interaction of chlorophyll b and aminic ligands. Furthermore, absorption data for the diagnostic regions of 518 and 535 nm are provided for all combinations of pigments and ligands. The significance and consistence of these results with respect to photochemical and bioenergetic principles are discussed.

  14. An Evaluation of an In Situ Fluorometer for the Estimation of Chlorophyll a

    DTIC Science & Technology

    1993-05-01

    acidification ) was measured on a Turner 111 fluorometer calibrated using pure chlorophyll a. Laboratory Calibration. For the phytoplankton culture, we used...Whitledge and Wirick, 1983; Weller et al., 1985; Marra et al. 1990) and in lakes (e.g., Heaney, 1978; Abbott et al., 1982). However, worries have...indicative of photoadaptation of the phytoplankton populations (Fig. 1). The data from OC3 are perhaps clearest in showing a pure fluorescence maximum

  15. [Effects of simulating acid rain on photosynthesis and chlorophyll fluorescence parameters of Quercus glauca Quercus glauca].

    PubMed

    Wang, Sai; Yi, Li-Ta; Yu, Shu-Quan; Zhang, Chao; Shi, Jing-Jing

    2014-08-01

    At three levels of simulated acid rainfall intensities with pH values of 2.5 (severe), 40 (medium) and 5.6 (light) respectively, the responses of chlorophyll fluorescence and photosynthetic parameters of Quercus glauca seedlings were studied in three acid rainfall treatments, i. e. only the aboveground of seedlings exposed to acid rain (T1), both of the seedlings and soil exposed to acid rain (T2), only the soil exposed to acid rain (T3) compared with blank control (CK). Under the severe acid rainfall, T1 significantly inhibited chlorophyll synthesis, and thus reduced the primary photochemical efficiency of PS II ( F(v)/F(m)), potential activity of PS II (F(v)/F(o)) , apparent quantum (Y), net photosynthetic rate (P(n)), and transpiration rate (T(r)), but increased the light compensation point (LCP) and dark respiration rate (R(d)) of Q. glauca seedlings. T2 inhibited, but T3 played a little enhancement on the aforementioned parameters of Q. glauca seedlings. Under the conditions of medium and light acid rainfall intensities, the above parameters in the three treatments were higher than that of CK, except with lower R(d). The chlorophyll fluorescence and photosynthetic parameters showed a similar tendency in the three treatments, i. e. T2>T3 >T1. It indicated that T1 had the strongest inhibition on seedlings in condition of the severe acid rainfall, while T2 had the most dramatic facilitating effect on seedlings under the medium and light acid rainfall. Intensity of acid rainfall had significant influences on SPAD, F(v)/F(m), F(v)/F(o), Y, P(n), T(r), and maximum photosynthetic rate (A(max)), whereas treatments of acid rainfall affected SPAD, F(v)/F(m), Y, P(n), T(r), A(max) and light saturation point (LSP). The interaction of acid rainfall intensities and treatments played significant effects on SPAD, F(v)/F(m), Y, P(n) and A(max).

  16. Remote chlorophyll fluorescence measurements with the laser-induced fluorescence transient approach.

    PubMed

    Pieruschka, Roland; Klimov, Denis; Berry, Joseph A; Osmond, C Barry; Rascher, Uwe; Kolber, Zbigniew S

    2012-01-01

    The interaction of plants with their environment is very dynamic. Studying the underlying processes is important for understanding and modeling plant response to changing environmental conditions. Photosynthesis varies largely between different plants and at different locations within a canopy of a single plant. Thus, continuous and spatially distributed monitoring is necessary to assess the dynamic response of photosynthesis to the environment. Limited scale of observation with portable instrumentation makes it difficult to examine large numbers of plants under different environmental conditions. We report here on the application of a recently developed technique, laser-induced fluorescence transient (LIFT), for continuous remote measurement of photosynthetic efficiency of selected leaves at a distance of up to 50 m. The ability to make continuous, automatic, and remote measurements of photosynthetic efficiency of leaves with the LIFT provides a new approach for studying the interaction of plants with the environment and may become an important tool in phenotyping photosynthetic properties in field applications.

  17. Method 445.0 In Vitro Determination of Chlorophyll a and Pheophytin ain Marine and Freshwater Algae by Fluorescence

    EPA Science Inventory

    This method provides a procedure for low level determination of chlorophyll a (chl a) and its magnesium free derivative, pheophytin a (pheo a), in marine and freshwater phytoplankton using fluorescence detection.(1,2) Phaeophorbides present in the sample are determined collective...

  18. Detection of the onset of glyphosate-induced soybean plant injury through chlorophyll fluorescence signal extraction and measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, Chlorophyll Fluorescence (ChlF) was used to detect the onset of soybean plant injury from glyphosate, the most widely used herbicide. Thirty-six pots of non-glyphosate-resistant soybean (cultivar FM955LL) were randomly divided into three groups and treated with different doses of glyp...

  19. Combined effects of phosphorus nutrition and elevated carbon dioxide concentration on chlorophyll fluorescence, photosynthesis, and nutrient efficiency of cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To examine the combined effects of phosphorus nutrition and CO2 on photosynthetic and chlorophyll fluorescence (CF) processes, and nutrient utilization and uptake, two controlled environment experiments were conducted using 0.20, 0.05 and 0.01 mM external phosphate (Pi) nutrition each at ambient and...

  20. Using violet laser-induced chlorophyll fluorescence emission spectra for crop yield assessment of cowpea (Vigna unguiculata (L) Walp) varieties

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin; Buah-Bassuah, Paul K.; Tetteh, Jonathan P.

    2004-07-01

    The use of violet laser-induced chlorophyll fluorescence (LICF) emission spectra to monitor the growth of five varieties of cowpea in the University of Cape Coast Botanical Garden is presented. Radiation from a continuous-wave violet laser diode emitting at 396 nm through a fibre is closely incident on in vivo leaves of cowpea to excite chlorophyll fluorescence, which is detected by an integrated spectrometer with CCD readout. The chlorophyll fluorescence spectra with peaks at 683 and 731 nm were used for growth monitoring of the cowpea plants over three weeks and analysed using Gaussian spectral functions with curve fitted parameters to determine the peak positions, area under the spectral curve and the intensity ratio F683/F731. The variation in the intensity ratio of the chlorophyll bands showed sensitive changes indicating the photosynthetic activity of the cowpea varieties. A discussion of the fluorescence result as compared to conventional assessment is presented with regard to discrimination between the cowpea varieties in terms of crop yield performance.

  1. Stress-induced alteration of chlorophyll fluorescence polarization and spectrum in leaves of Alocasia macrorrhiza L. Schott.

    PubMed

    Lin, Zhi-Fang; Liu, Nan; Lin, Gui-Zhu; Pan, Xiao-Ping; Peng, Chang-Lian

    2007-11-01

    The value of intrinsic chlorophyll fluorescence polarization, and the intensity in emission spectrum were investigated in leaf segments of Alocasia macrorrhiza under several stress conditions including different temperatures (25-50 degrees C), various concentrations of NaCl (0-250 mM), methyl viologen (MV, 0-25 microM), SDS (0-1.0%) and NaHSO(3) (0-80 microM). Fluorescence emission spectrum of leaves at wavelength regions of 500-800 nm was monitored by excitation at 436 nm. The value of fluorescence polarization (P value), as result of energy transfer and mutual orientation between chlorophyll molecules, was determined by excitation at 436 nm and emission at 685 nm. The results showed that elevated temperature and concentrations of salt (NaCl), photooxidant (MV), surfactant (SDS) and simulated SO(2) (NaHSO(3)) treatments all induced a reduction of fluorescence polarization to various degrees. However, alteration of the fluorescence spectrum and emission intensity of F(685) and F(731) depended on the individual treatment. Increase in temperature and concentration of NaHSO(3) enhanced fluorescence intensity mainly at F(685), while an increase in MV concentration led to a decrease at both F(685) and F(731). On the contrary, NaCl and SDS did not cause remarkable change in fluorescence spectrum. Among different treatments, the negative correlation between polarization and fluorescence intensity was found with NaHSO(3) treatments only. We concluded that P value being measured with intrinsic chlorophyll fluorescence as probe in leaves is a susceptible indicator responding to changes in environmental conditions. The alteration of P value and fluorescence intensity might not always be shown a functional relation pattern. The possible reasons of differed response to various treatments were discussed.

  2. Relaxation of the non-photochemical chlorophyll fluorescence quenching in diatoms: kinetics, components and mechanisms

    PubMed Central

    Roháček, Karel; Bertrand, Martine; Moreau, Brigitte; Jacquette, Boris; Caplat, Christelle; Morant-Manceau, Annick; Schoefs, Benoît

    2014-01-01

    Diatoms are especially important microorganisms because they constitute the larger group of microalgae. To survive the constant variations of the light environment, diatoms have developed mechanisms aiming at the dissipation of excess energy, such as the xanthophyll cycle and the non-photochemical chlorophyll (Chl) fluorescence quenching. This contribution is dedicated to the relaxation of the latter process when the adverse conditions cease. An original nonlinear regression analysis of the relaxation of non-photochemical Chl fluorescence quenching, qN, in diatoms is presented. It was used to obtain experimental evidence for the existence of three time-resolved components in the diatom Phaeodactylum tricornutum: qNf, qNi and qNs. qNf (s time-scale) and qNs (h time-scale) are exponential in shape. By contrast, qNi (min time-scale) is of sigmoidal nature and is dominant among the three components. The application of metabolic inhibitors (dithiothreitol, ammonium chloride, cadmium and diphenyleneiodonium chloride) allowed the identification of the mechanisms on which each component mostly relies. qNi is linked to the relaxation of the ΔpH gradient and the reversal of the xanthophyll cycle. qNs quantifies the stage of photoinhibition caused by the high light exposure, qNf seems to reflect fast conformational changes within thylakoid membranes in the vicinity of the photosystem II complexes. PMID:24591721

  3. Pico-projector-based optical sectioning microscopy for 3D chlorophyll fluorescence imaging of mesophyll cells

    NASA Astrophysics Data System (ADS)

    Chen, Szu-Yu; Hsu, Yu John; Yeh, Chia-Hua; Chen, S.-Wei; Chung, Chien-Han

    2015-03-01

    A pico-projector-based optical sectioning microscope (POSM) was constructed using a pico-projector to generate structured illumination patterns. A net rate of 5.8 × 106 pixel/s and sub-micron spatial resolution in three-dimensions (3D) were achieved. Based on the pico-projector’s flexibility in pattern generation, the characteristics of POSM with different modulation periods and at different imaging depths were measured and discussed. With the application of different modulation periods, 3D chlorophyll fluorescence imaging of mesophyll cells was carried out in freshly plucked leaves of four species without sectioning or staining. For each leaf, an average penetration depth of 120 μm was achieved. Increasing the modulation period along with the increment of imaging depth, optical sectioning images can be obtained with a compromise between the axial resolution and signal-to-noise ratio. After ∼30 min imaging on the same area, photodamage was hardly observed. Taking the advantages of high speed and low damages of POSM, the investigation of the dynamic fluorescence responses to temperature changes was performed under three different treatment temperatures. The three embedded blue, green and red light-emitting diode light sources were applied to observe the responses of the leaves with different wavelength excitation.

  4. Effects of artemisinin on photosystem II performance of Microcystis aeruginosa by in vivo chlorophyll fluorescence.

    PubMed

    Ni, Lixiao; Acharya, Kumud; Hao, Xiangyang; Li, Shiyin; Li, Yong; Li, Yiping

    2012-12-01

    Effects of artemisinin (derived from Artemisia annua) on the photosynthetic activity of Microcystis aeruginosa was investigated by using chlorophyll a (Chl a) fluorescence transient O-J-I-P and JIP-test after exposure to elevated artemisinin concentration. High artemisinin concentration resulted in a significant suppression in photosynthesis and respiration. Results showed that the OJIP curves flattened and the maximal fluorescence yield reached at the J step under artemisinin stress. The decreased values of the energy needed for the RCs' closure (Sm) and the number of oxidation and reduction (N) suggested that the reduction times of primary bound plastoquinone (Q(A)) was also decreased. The absorption flux (ABS/RC) per photosystem II (PSII) reaction center and the electron transport flux (ET(0)/RC) decreased with increasing artemisinin concentration. Excess artemisinin had little effect on the trapping flux (TR(0)/RC). The results showed that the decrease of photosynthesis in exposure to excess artemisinin may be a result of the inactivation of PSII reaction centers and the inhibition of electron transport in the acceptor side.

  5. Assessment of oak forest condition based on leaf biochemical variables and chlorophyll fluorescence.

    PubMed

    Rossini, Micol; Panigada, Cinzia; Meroni, Michele; Colombo, Roberto

    2006-11-01

    Pedunculate oak forests (Quercus robur L.) in the Ticino Regional Park, Italy, are declining as a result of insect attacks, summer droughts and air pollution. The assessment and monitoring of forest condition can provide a basis for managing and conserving forest ecosystems and thereby avoid loss of valuable natural resources. Currently, most forest assessments are limited to ground-based visual evaluations that are local and subjective. It is therefore difficult to compare data collected by different crews or to define reliable trends over years. We examined vegetation variables that can be quantitatively estimated by remote observations and, thus, are suitable for objective monitoring over extended forested areas. We found that total chlorophyll (Chl) concentration is the most suitable variable for assessing pedunculate oak decline. It is highly correlated with visual assessments of discoloration. Furthermore, Chl concentration can be accurately estimated from leaf optical properties, making it feasible to map Chl concentration at the canopy level from satellite and airborne remote observations.

  6. Multispectral In-situ Measurements of Organic Matter and Chlorophyll Fluorescence in Seawater: Documenting the Intrusion of the Mississippi River Plume in the West Florida Shelf

    NASA Technical Reports Server (NTRS)

    DelCastillo, Carlos E.; Coble, Paula G.; Conmy, Robyn N.; Mueller-Karger, Frank E.; Vanderbloomen, Lisa; Vargo, Gabriel A.

    2000-01-01

    We performed multispectral in-situ fluorescence measurement of colored dissolved organic matter and chlorophyll in surface water of the West Florida Shelf using West Labs Spectral absorption and Fluorescence Instrument (SAFIre). Continuous measurements underway allowed us to simultaneously map the dispersion of riverine organic material and chlorophyll on the shelf. By using two fluorescence emission ratios we were able to differentiate between riverine and marine CDOM. Our data also showed unusually high concentrations of CDOM offshore. These were attributed to an intrusion of the Mississippi River Plume. We performed limited comparisons between in-situ chlorophyll concentrations measured with SAFIre and chlorophyll values obtained from SeaWiFS satellite data using OC4 and MODIS algorithm. Our results show that, although both algorithms overestimated chlorophyll, MODIS performed better than OC4, particularly in areas with high CDOM concentrations. Analysis of the relationship between chlorophyll and CDOM concentrations within the study area showed regional variability causes by differences in river source.

  7. The fluorescence of chlorophyll and yellow substances in natural waters: A note on the problems of measurement and the importance of their remote sensing

    NASA Technical Reports Server (NTRS)

    Yentsch, C. S.

    1975-01-01

    There are two chromophylls which, if sensed remotely from high altitude, would revolutionize the ability to survey large areas of the world's oceans. The chromophylls of importance are: the photosynthetic pigments of plankton algae and a group of organic materials frequently termed dissolved yellow substances. These are derived from plants and carried into the ocean by fresh water inflow. The attenuation of light by phytoplankton is characterized by two distinctive bands (450, 675 nm) which represent absorption by chloroplastic pigments. Yellow substances are characterized by a strong ultraviolet absorption which tails over into the visible region. It is emphasized that chlorophyll determination could be a unique technique for estimating the extent of eutrophication in coastal waters, and that a high altitude observer equipped with temperature, chlorophyll and yellow substance sensors has the possibility of detecting the magnitude of eutrophication and its sources by using laser induced fluorescent devices.

  8. Diffuse reflectance of the ocean - The theory of its augmentation by chlorophyll a fluorescence at 685 nm

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.

    1979-01-01

    The radiative transfer equation is modified to include the effect of fluorescent substances and solved in the quasi-single scattering approximation for a homogeneous ocean containing fluorescent particles with wavelength independent quantum efficiency and a Gaussian shaped emission line. The results are applied to the in vivo fluorescence of chlorophyll a (in phytoplankton) in the ocean to determine if the observed quantum efficiencies are large enough to explain the enhancement of the ocean's diffuse reflectance near 685 nm in chlorophyll rich waters without resorting to anomalous dispersion. The computations indicate that the required efficiencies are sufficiently low to account completely for the enhanced reflectance. The validity of the theory is further demonstrated by deriving values for the upwelling irradiance attenuation coefficient at 685 nm which are in close agreement with the observations.

  9. PhotoSpec - Ground-based Remote Sensing of Solar-Induced Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Grossmann, K.; Frankenberg, C.; Seibt, U.; Hurlock, S. C.; Pivovaroff, A.; Stutz, J.

    2015-12-01

    Solar-Induced Chlorophyll Fluorescence (SIF) emitted from vegetation can be used as a constraint for photosynthetic activity and is now observable on a global scale from space. However, many issues on a leaf-to-canopy scale remain poorly understood, such as influences on the SIF signal of environmental conditions, water stress, or radiation. Here, we report on the development and characterization of a novel ground-based spectrometer system for measuring SIF from natural ecosystems (http://www.kiss.caltech.edu/study/photosynthesis/technology.html). The instrumental set-up, requirements, and measurement technique are based on decades of experience using Differential Optical Absorption Spectroscopy (DOAS), an established method to measure atmospheric trace gases. The instrument consists of three thermally stabilized commercial spectrometers that are linked to a 2D scanning telescope unit via optical fiber bundles. The spectrometers cover an SIF retrieval wavelength range at high spectral resolution (670 - 780 nm, 0.1 nm FWHM), but also provide moderate resolution spectra (400 - 800 nm, 1.5 nm FWHM) in order to retrieve vegetation indices and the photochemical reflectance index (PRI). In addition to the instrumental set-up, we will show initial results of test and field measurements with the new instrument that examine the diurnal cycle of the SIF signal of different California native and non-native plants and its correlation with CO2 fluxes. Observations were made under different environmental conditions, variable water and nutrient stress, and with different viewing geometries. We also used concurrent observations by a photosynthetically active radiation (PAR) sensor and a portable chlorophyll fluorometer (PAM) to link the SIF signal to plant metabolism and carbon cycling under a range of environmental conditions.

  10. Deriving chlorophyll fluorescence emissions of vegetation canopies from high resolution field reflectance spectra

    NASA Astrophysics Data System (ADS)

    Middleton, Elizabeth M.; Corp, Lawrence A.; Daughtry, Craig S.; Entcheva Campbell, Petya K.; Butcher, L. Maryn

    2005-11-01

    Fluorescence of foliage in the laboratory has proven more rigorous than reflectance for correlation to plant physiology. Especially useful are emissions produced from two stable red and far-red chlorophyll fluorescence (ChlF) peaks centered at 685 nm and 735 nm. Methods have been developed elsewhere to extract steady state solar induced fluorescence (SIF) from apparent reflectance of vegetation canopies/landscapes using the Fraunhofer Line Depth (FLD) principal. Our study utilized these methods in conjunction with field-acquired high spectral resolution canopy reflectance spectra obtained in 2004 and 2005 over corn crops and small tree plots of three deciduous species (red maple, tulip poplar, sweet gum). Leaf level measurements were also made of foliage which included ChlF, photosynthesis, and leaf constituents (photosynthetic pigment, carbon (C), and nitrogen (N) contents). As part of ongoing experiments, measurements were made on N application plots within corn (280, 140, 70, and 0 kg N/ha) and tree (0, 37.5, 75, 112.5, 150 kg N /ha) sites at the USDA/Agriculture Research Service in Beltsville, MD. SIF intensities for ChlF were derived directly from canopy reflectance spectra in specific narrow- band regions associated with atmospheric oxygen absorption features centered at 688 and 760 nm. The red/far-red SIF ratio (SIFratio) derived from these field reflectance spectra successfully discriminated foliar pigment ratios altered by N application rates in both corn crops. This ratio was also positively correlated to the C/N ratio at leaf and canopy levels, for the available corn data (e.g., 2004). No consistent N treatment or species differences in SIF were detected in the tree foliage, but additional 2005 data are forthcoming. This study has relevance to future passive satellite remote sensing approaches to monitoring C dynamics from space.

  11. [Effect of dibromothymoquinone on chlorophyll a fluorescence in Chlamydomonas reinhardtii cells incubated in complete or sulfur-depleted medium].

    PubMed

    Volgusheva, A A; Kukarskikh, G P; Antal, T K; Lavrukhina, O G; Krendeleva, T E; Rubin, A B

    2008-01-01

    The influence of dibromothymoquinone on chlorophyll fluorescence was studied in Chlamydomonas reinhardtii cells using PAM and PEA fluorometers. The reagent affected differently control cells incubated in complete medium and S-starved cells. Thus, the fluorescence yield in the control essentially increased in the presence of dibromothymoquinone, which can be due to the inactivation of light-harvesting complex II protein kinase, followed by the suppression of membrane transition from high-fluorescence state 1 to low-fluorescence state 2. On the contrary, S-starved cells with membranes in state 2 showed a lower fluorescence yield in the presence of dibromothymoquinone than without it. The JIP test of OJIP fluorescence transients suggests that dibromothymoquinone inhibits both light-harvesting complex II kinase and photosynthetic electron transport when added to control, while in starved cells, it acts predominantly as an electron acceptor.

  12. Study of the effect of reducing conditions on the initial chlorophyll fluorescence rise in the green microalgae Chlamydomonas reinhardtii.

    PubMed

    Antal, T K; Kolacheva, A; Maslakov, A; Riznichenko, G Yu; Krendeleva, T E; Rubin, A B

    2013-03-01

    Incubation of Chlamydomonas reinhardtii cells under nutrient deficiency results in the faster initial rise in the light-induced chlorophyll fluorescence kinetic curve. We showed that short-term anaerobic incubation of algal cells altered initial fluorescence in a way similar to nutrient starvation, suggesting an important role of the plastoquinones redox state in the observed effect. Bi-component analysis of highly resolved initial fluorescence rise kinetics in sulfur- or oxygen-depleted C. reinhardtii cells suggested that one of the mechanisms underlying the observed phenomenon involves primary closure (photochemical inactivation via Qa reduction) of β-type PSII as compared to α-PSII. Moreover, results of modeling of the fluorescence curve brought us to the conclusion that accumulation of closed centers in α-PSII supercomplexes may also cause a faster initial fluorescence rise. The observed correlations between nutrient supply rate and initial fluorescence rise pattern in green algae can serve to characterize culture nutritional status in vivo.

  13. Steady-state chlorophyll fluorescence (Fs) as a tool to monitor plant heat and drought stress

    NASA Astrophysics Data System (ADS)

    Cendrero Mateo, M.; Carmo-Silva, A.; Salvucci, M.; Moran, S. M.; Hernandez, M.

    2012-12-01

    Crop yield decreases when photosynthesis is limited by heat or drought conditions. Yet farmers do not monitor crop photosynthesis because it is difficult to measure at the field scale in real time. Steady-state chlorophyll fluorescence (Fs) can be used at the field level as an indirect measure of photosynthetic activity in both healthy and physiologically-perturbed vegetation. In addition, Fs can be measured by satellite-based sensors on a regular basis over large agricultural regions. In this study, plants of Camelina sativa grown under controlled conditions were subjected to heat and drought stress. Gas exchange and Fs were measured simultaneously with a portable photosynthesis system under light limiting and saturating conditions. Results showed that Fs was directly correlated with net CO2 assimilation (A) and inversely correlated with non-photochemical quenching (NPQ). Analysis of the relationship between Fs and Photosynthetically Active Radiation (PAR) revealed significant differences between control and stressed plants that could be used to track the status, resilience, and recovery of photochemical processes. In summary, the results provide evidence that Fs measurements, even without normalization, are an easy means to monitor changes in plant photosynthesis, and therefore, provide a rapid assessment of plant stress to guide farmers in resource applications. Figure1. Net CO2 assimilation rate (A) of Camelina sativa plants under control conditions and after heat stress exposure for 1 or 3 days (1d-HS and 3d-HS, respectively) (right) and control, drought and re-watering conditions (left). Conditions for infra-red gas analysis were: reference CO2 = 380 μmol mol-1, PPFD = 500 μmol m-2 s-1 and Tleaf set to 25°C (control, drought and re-water) or 35°C (HS). Different letters denote significant differences at the α=0.05 level. Values are means±SEM (n=10). Figure 2. Stable chlorophyll fluorescence (Fs) of Camelina sativa plants under control conditions and

  14. New Methods for Retrieval of Chlorophyll Red Fluorescence from Hyperspectral Satellite Instruments: Simulations and Application to GOME-2 and SCIAMACHY

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Yoshida, Yasuko; Guanter, Luis; Middleton, Elizabeth M.

    2016-01-01

    Global satellite measurements of solar-induced fluorescence (SIF) from chlorophyll over land and ocean have proven useful for a number of different applications related to physiology, phenology, and productivity of plants and phytoplankton. Terrestrial chlorophyll fluorescence is emitted throughout the red and far-red spectrum, producing two broad peaks near 683 and 736nm. From ocean surfaces, phytoplankton fluorescence emissions are entirely from the red region (683nm peak). Studies using satellite-derived SIF over land have focused almost exclusively on measurements in the far red (wavelengths greater than 712nm), since those are the most easily obtained with existing instrumentation. Here, we examine new ways to use existing hyperspectral satellite data sets to retrieve red SIF (wavelengths less than 712nm) over both land and ocean. Red SIF is thought to provide complementary information to that from the far red for terrestrial vegetation. The satellite instruments that we use were designed to make atmospheric trace-gas measurements and are therefore not optimal for observing SIF; they have coarse spatial resolution and only moderate spectral resolution (0.5nm). Nevertheless, these instruments, the Global Ozone Monitoring Instrument 2 (GOME-2) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), offer a unique opportunity to compare red and far-red terrestrial SIF at regional spatial scales. Terrestrial SIF has been estimated with ground-, aircraft-, or satellite-based instruments by measuring the filling-in of atmospheric andor solar absorption spectral features by SIF. Our approach makes use of the oxygen (O2) gamma band that is not affected by SIF. The SIF-free O2 gamma band helps to estimate absorption within the spectrally variable O2 B band, which is filled in by red SIF. SIF also fills in the spectrally stable solar Fraunhofer lines (SFLs) at wavelengths both inside and just outside the O2 B band, which further helps

  15. Scaling effect on the estimation of chlorophyll content using narrow band NDVIs based on radiative transfer model

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Shi, Runhe; Liu, Pudong; Cong, Zhou

    2015-09-01

    The aim of this work is to use narrow band normalized difference vegetation indices to compare the estimations of chlorophyll contents at foliar level and canopy level, through a large number of simulated canopy reflectance spectra under different chlorophyll contents based on PROSPECT model and SAIL model. 10 narrow band NDVIs were selected at the identified ranges that can effectively assess foliar chlorophyll content. We analyzed the correlations between canopy chlorophyll contents and the ten narrow band NDVIs firstly, and then analyze these indices' sensitivities to all canopy parameters, the adaptation of the 10 narrow band NDVIs used in assessing the canopy chlorophyll content were evaluated finally. We found that only two narrow band NDVIs (i.e., NDVI(875, 725) and NDVI(900,720)) can be applied for the estimation of chlorophyll contents at canopy level.

  16. Effects of Dihydroartemisinin and Artemether on the Growth, Chlorophyll Fluorescence, and Extracellular Alkaline Phosphatase Activity of the Cyanobacterium Microcystis aeruginosa

    PubMed Central

    Wang, Shoubing; Xu, Ziran

    2016-01-01

    Increased eutrophication in the recent years has resulted in considerable research focus on identification of methods for preventing cyanobacterial blooms that are rapid and efficient. The objectives of this study were to investigate the effects of dihydroartemisinin and artemether on the growth of Microcystis aeruginosa and to elucidate its mode of action. Variations in cell density, chlorophyll a, soluble protein, malondialdehyde, extracellular alkaline phosphatase activity (APA), and chlorophyll fluorescence parameters (Fv/Fm, ΦPSII, ETR, rapid light curves, fast chlorophyll fluorescence curves on fluorescence intensity, and relative variable fluorescence) were evaluated by lab-cultured experiments. Our results demonstrated that both dihydroartemisinin and artemether inhibited the growth of M.aeruginosa by impairing the photosynthetic center in photosystem II and reducing extracellular APA, with a higher sensitivity exhibited toward artemether. The inhibitory effects of dihydroartemisinin on M.aeruginosa increased with concentration, and the maximum growth inhibitory rate was 42.17% at 24 mg·L-1 after 120h exposure, whereas it was 55.72% at 6 mg·L-1 artemetherafter 120h exposure. Moreover, the chlorophyll fluorescence was significantly inhibited (p<0.05) after 120h exposure to 12 and 24 mg·L-1 dihydroartemisinin. Furthermore, after 120h exposure to 6 mg·L-1 artemether, Fv/Fm, ΦPSII, ETR and rETRmax showed a significant decrease (p<0.01) from initial values of 0.490, 0.516, 17.333, and 104.800, respectively, to 0. One-way analysis of variance showed that 6 mg·L-1 artemether and 24 mg·L-1 dihydroartemisinin had significant inhibitory effects on extracellular APA (p<0.01). The results of this study would be useful to further studies to validate the feasibility of dihydroartemisinin and artemether treatment to inhibit overall cyanobacterial growth in water bodies, before this can be put into practice. PMID:27755566

  17. Assessment of anthocyanins in grape (Vitis vinifera L.) berries using a noninvasive chlorophyll fluorescence method.

    PubMed

    Agati, Giovanni; Meyer, Sylvie; Matteini, Paolo; Cerovic, Zoran G

    2007-02-21

    Anthocyanins (Anths) in grape (Vitis vinifera L.) berries harvested at véraison from Pinot Noir and Pinot Meunier cultivars were assessed nondestructively by measuring chlorophyll fluorescence (ChlF) excitation spectra. With increasing Anth content, less excitation light was transmitted to the deeper Chl layers, and thus the ChlF signal decreased proportionally. By applying Beer-Lambert's law, the logarithm of the ratio between the fluorescence excitation spectra (log FER) from a green and a red berry gave the in vivo absorption spectrum of Anths, which peaked at about 540 nm. Absolute quantitative nondestructive determination of Anths for each berry was obtained by the log FER calculated for two excitation wavelengths, 540 and 635 nm (absorbed and not-absorbed by Anths, respectively) of ChlF at 685 nm. Over a range of skin colors going from green to purple, the relationship between the log [ChlF(635)/ChlF(540)] and the Anth concentration of berry extracts was fairly well fitted (r 2 = 0.92) using a power function. Reflectance spectra on the same berry samples were also measured, and Anth reflectance indices, which were originally developed for apples and table grapes, were derived. The log FER Anth index was superior to the reflectance-ratio-based index, but was as good as the color index for red grapes (CIRG) calculated from the whole visible reflectance spectrum. The proposed log FER method, applied by means of suitable portable devices, may represent a new, rapid, and noninvasive tool for the assessment of grape phenolic maturity in vineyards.

  18. Nondestructive evaluation of anthocyanins in olive (Olea europaea) fruits by in situ chlorophyll fluorescence spectroscopy.

    PubMed

    Agati, Giovanni; Pinelli, Patrizia; Cortés Ebner, Solange; Romani, Annalisa; Cartelat, Aurélie; Cerovic, Zoran G

    2005-03-09

    Anthocyanins (Anths) in olive (Olea europaea L.) fruits at different degrees of pigmentation were assessed nondestructively by measuring chlorophyll fluorescence (ChlF). The method is based on the comparison of the ChlF excitation spectra from olives with different pigmentation from green to green-red, reddish-purple, and purple. The logarithm of the ratio between the fluorescence excitation spectra (logFER) from two different colored zones gave the difference in the absorption spectrum between them. The absorbance spectrum derived from the logFER between a red olive and the same olive devoid of the skin showed the typical Anth green band (at 550 nm). It matched that recorded by microspectrophotometry on a single pulp cell and the in vitro absorbance spectrum of the olive skin extract. As expected, the in vivo Anths absorption maximum increased in intensity going from less to more mature olives and was higher in the sun-exposed olive side with respect to the sun-shaded side. Absolute quantitative nondestructive determination of Anths for each olive sample was obtained by the logFER calculated for two excitation wavelengths, 550 and 625 nm, of ChlF at 740 nm. Going from green to purple skin colors, the Log[ChlF(625)/ChlF(550)] was fairly well-correlated to the extract Anths concentration. Finally, the relationship between the Anths and the other main phenolics present in the olives analyzed by high-performance liquid chromatography was evaluated. The main result was a net increase of verbascoside with increasing Anths content. On the basis of our results, the development of a new rapid and noninvasive method for the monitoring of olive development and ripening can be envisaged.

  19. Short-duration exposure to radiofrequency electromagnetic radiation alters the chlorophyll fluorescence of duckweeds (Lemna minor).

    PubMed

    Senavirathna, Mudalige Don Hiranya Jayasanka; Takashi, Asaeda; Kimura, Yuichi

    2014-12-01

    Plants growing in natural environments are exposed to radiofrequency electromagnetic radiation (EMR) emitted by various communication network base stations. The environmental concentration of this radiation is increasing rapidly with the congested deployment of base stations. Although numerous scientific studies have been conducted to investigate the effects of EMR on the physiology of humans and animals, there have been few attempts to investigate the effects of EMR on plants. In this study, we attempted to evaluate the effects of EMR on photosynthesis by investigating the chlorophyll fluorescence (ChF) parameters of duckweed fronds. During the experiment, the fronds were tested with 2, 2.5, 3.5, 5.5 and 8 GHz EMR frequencies, which are not widely studied even though there is a potentially large concentration of these frequencies in the environment. The duckweed fronds were exposed to EMR for 30 min, 1 h and 24 h durations with electric field strength of 45-50 V/m for each frequency. The results indicated that exposure to EMR causes a change in the non-photochemical quenching of the duckweeds. The changes varied with the frequency of the EMR and were time-varying within a particular frequency. The temperature remained unchanged in the duckweed fronds upon exposure to EMR, which confirms that the effect is non-thermal.

  20. Assessment of phytotoxicity of anthracene in soybean (Glycine max) with a quick method of chlorophyll fluorescence.

    PubMed

    Tomar, R S; Sharma, A; Jajoo, A

    2015-07-01

    A decrease in photosynthetic efficiency may indicate the toxic effects of environmental pollutants on higher plants. Measurement of chlorophyll (Chl) a fluorescence to assess the performance of photosystem II (PSII) was used as an bioindicator of toxicity of the polycyclic aromatic hydrocarbon (PAH) anthracene (ANT) in soybean plants. The results revealed that ANT treatment caused a reduction in quantum yield of PSII, damage to the oxygen evolving complex, as well as a significant reduction in performance index of PSII. However, change in performance index was more prominent, and it seems that the performance index is a more sensitive parameter to environmental contaminants. Moreover, a change in heterogeneity of PSII was also observed. The number of active reaction centres decreased with increasing concentration of ANT, as secondary plastoquinone reducing centres were converted into non-reducing centres, and PSIIα centres were converted into PSIIβ and PSIIγ centres. The influence of ANT on PSII heterogeneity could be an important reason for reductions in the PSII performance.

  1. Effect of seabuckthorn extract on delayed chlorophyll fluorescence on Cd and Co ions treated wheat seedlings.

    PubMed

    Ganiyeva, R A; Novruzov, E M; Bayramova, S A; Kurbanova, I M; Hasanov, R A

    2009-11-01

    The protecting effect of "Hypporamine PL" compound isolated from dry leaves of seabuckthorn (Hippophae rhamneides L.) on photosystem 2 (PS2) activity suppression induced by CdCl2 and CoCl2 treatment in the 7-day-old wheat seedlings (Triticum aestivum L.) under different pH of growth medium was investigated by measurement of millisecond delayed fluorescence (ms-DF) of chlorophyll intact leaves. The value o-i/p-s of ms-DF ratio was reduced under the Cd2+ and Co2+ treatments on 60 and 65% respectively at pH 6.7. Acidification of medium (pH 5.0) results in decreasing of ratio o-i/p-s only approximately on 30% in average. In the alkaline medium the lowering of o-i/p-s on 41% is observed in both ions treatments. This decreasing of o-i/p-s ratio occurred due to decreasing of fast phase o-i amplitude. At the same time the widening and increasing of slow phase p-s amplitude was observed. The compound "Hypporamine PL" limited the decrease of ms-DF components induced by heavy metals. It is suggested that the protective effect of "Hypporamine PL" on the photochemical reactions in the PS2 is due to catechins, epicatechins, quercetin and other polyphenols, containing in this compound, preventing the free radicals formation in the PS2 under treatment by heavy metal ions.

  2. Nonphotochemical Chlorophyll Fluorescence Quenching: Mechanism and Effectiveness in Protecting Plants from Photodamage1

    PubMed Central

    2016-01-01

    We review the mechanism underlying nonphotochemical chlorophyll fluorescence quenching (NPQ) and its role in protecting plants against photoinhibition. This review includes an introduction to this phenomenon, a brief history of major milestones in our understanding of NPQ, definitions, and a discussion of quantitative measurements of NPQ. We discuss the current knowledge and unknown aspects in the NPQ scenario, including the following: ΔpH, the proton gradient (trigger); light-harvesting complex II (LHCII), PSII light harvesting antenna (site); and changes in the antenna induced by ΔpH (change), which lead to the creation of the quencher. We conclude that the minimum requirements for NPQ in vivo are ΔpH, LHCII complexes, and the PsbS protein. We highlight the most important unknown in the NPQ scenario, the mechanism by which PsbS acts upon the LHCII antenna. Finally, we describe a novel, emerging technology for assessing the photoprotective “power” of NPQ and the important findings obtained through this technology. PMID:26864015

  3. Isolation of Chlamydomonas reinhardtii mutants with altered mitochondrial respiration by chlorophyll fluorescence measurement.

    PubMed

    Massoz, Simon; Larosa, Véronique; Horrion, Bastien; Matagne, René F; Remacle, Claire; Cardol, Pierre

    2015-12-10

    The unicellular green alga Chlamydomonas reinhardtii is a model organism for studying energetic metabolism. Most mitochondrial respiratory-deficient mutants characterized to date have been isolated on the basis of their reduced ability to grow in heterotrophic conditions. Mitochondrial deficiencies are usually partly compensated by adjustment of photosynthetic activity and more particularly by transition to state 2. In this work, we explored the opportunity to select mutants impaired in respiration and/or altered in dark metabolism by measuring maximum photosynthetic efficiency by chlorophyll fluorescence analyses (FV/FM). Out of about 2900 hygromycin-resistant insertional mutants generated from wild type or from a mutant strain deficient in state transitions (stt7 strain), 22 were found to grow slowly in heterotrophic conditions and 8 of them also showed a lower FV/FM value. Several disrupted coding sequences were identified, including genes coding for three different subunits of respiratory-chain complex I (NUO9, NUOA9, NUOP4) or for isocitrate lyase (ICL1). Overall, the comparison of respiratory mutants obtained in wild-type or stt7 genetic backgrounds indicated that the FV/FM value can be used to isolate mutants severely impaired in dark metabolism.

  4. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Tang, Jianwu; Mustard, John F.; Lee, Jung-Eun; Rossini, Micol; Joiner, Joanna; Munger, J. William; Kornfeld, Ari; Richardson, Andrew D.

    2015-04-01

    Previous studies have suggested that solar-induced chlorophyll fluorescence (SIF) is correlated with Gross Primary Production (GPP). However, it remains unclear to what extent this relationship is due to absorbed photosynthetically active radiation (APAR) and/or light use efficiency (LUE). Here we present the first time series of near-surface measurement of canopy-scale SIF at 760 nm in temperate deciduous forests. SIF correlated with GPP estimated with eddy covariance at diurnal and seasonal scales (r2 = 0.82 and 0.73, respectively), as well as with APAR diurnally and seasonally (r2 = 0.90 and 0.80, respectively). SIF/APAR is significantly positively correlated with LUE and is higher during cloudy days than sunny days. Weekly tower-based SIF agreed with SIF from the Global Ozone Monitoring Experiment-2 (r2 = 0.82). Our results provide ground-based evidence that SIF is directly related to both APAR and LUE and thus GPP, and confirm that satellite SIF can be used as a proxy for GPP.

  5. Demonstration of thermal dissipation of absorbed quanta during energy-dependent quenching of chlorophyll fluorescence in photosynthetic membranes.

    PubMed

    Yahyaoui, W; Harnois, J; Carpentier, R

    1998-11-27

    When plant leaves or chloroplasts are exposed to illumination that exceeds their photosynthetic capacity, photoprotective mechanisms such as described by the energy-dependent (non-photochemical) quenching of chlorophyll fluorescence are involved. The protective action is attributed to an increased rate constant for thermal dissipation of absorbed quanta. We applied photoacoustic spectroscopy to monitor thermal dissipation in spinach thylakoid membranes together with simultaneous measurement of chlorophyll fluorescence in the presence of inhibitors of opposite action on the formation of delta pH across the thylakoid membrane (tentoxin and nigericin/valinomycin). A linear relationship between the appearance of fluorescence quenching during formation of the delta pH and the reciprocal variation of thermal dissipation was demonstrated. Dicyclohexylcarbodiimide, which is known to prevent protonation of the minor light-harvesting complexes of photosystem II, significantly reduced the formation of fluorescence quenching and the concurrent increase in thermal dissipation. However, the addition of exogenous ascorbate to activate the xanthophyll de-epoxidase increased non-photochemical fluorescence quenching without affecting the measured thermal dissipation. It is concluded that a portion of energy-dependent fluorescence quenching that is independent of de-epoxidase activity can be readily measured by photoacoustic spectroscopy as an increase in thermal deactivation processes.

  6. Rapid effects of diverse toxic water pollutants on chlorophyll a fluorescence: variable responses among freshwater microalgae.

    PubMed

    Choi, Chang Jae; Berges, John A; Young, Erica B

    2012-05-15

    Chlorophyll a fluorescence of microalgae is a compelling indicator of toxicity of dissolved water contaminants, because it is easily measured and responds rapidly. While different chl a fluorescence parameters have been examined, most studies have focused on single species and/or a narrow range of toxins. We assessed the utility of one chl a fluorescence parameter, the maximum quantum yield of PSII (F(v)/F(m)), for detecting effects of nine environmental pollutants from a range of toxin classes on 5 commonly found freshwater algal species, as well as the USEPA model species, Pseudokirchneriella subcapitata. F(v)/F(m) declined rapidly over <20 min in response to low concentrations of photosynthesis-specific herbicides Diuron(®) and metribuzin (both <40 nM), atrazine (<460 nM) and terbuthylazine (<400 nM). However, F(v)/F(m) also responded rapidly and in a dose-dependent way to toxins glyphosate (<90 μM), and KCN (<1 mM) which have modes of action not specific to photosynthesis. F(v)/F(m) was insensitive to 30-40 μM insecticides methyl parathion, carbofuran and malathion. Algal species varied in their sensitivity to toxins. No single species was the most sensitive to all nine toxins, but for six toxins to which algal F(v)/F(m) responded significantly, the model species P. subcapitata was less sensitive than other taxa. In terms of suppression of F(v)/F(m) within 80 min, patterns of concentration-dependence differed among toxins; most showed Michaelis-Menten saturation kinetics, with half-saturation constant (K(m)) values for the PSII inhibitors ranging from 0.14 μM for Diuron(®) to 6.6 μM for terbuthylazine, compared with a K(m) of 330 μM for KCN. Percent suppression of F(v)/F(m) by glyphosate increased exponentially with concentration. F(v)/F(m) provides a sensitive and easily-measured parameter for rapid and cost-effective detection of effects of many dissolved toxins. Field-portable fluorometers will facilitate field testing, however distinct responses

  7. The comparison for leaf nitrogen estimating in rice by chlorophyll meters and reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Fenfang; Wang, Ke

    Handheld chlorophyll sensors is a very important technique to determine the timing and number of N applications, which can improve the fertilizer-N use efficiency and monitor leaf N status of irrigated rice. One solution-culture and two field experiments with four rice genotypes were conducted to obtain variables reflecting nitrogen (N) status at different developmental stages. The paper systemically compared SPAD indices calculated from the SPAD readings of various leaf positions and hyperspectral vegetation indices. The results showed that the indices RSI and RDSI were more reliable SPAD indices for estimating foliar N status in rice plant; In addition, from view of quickness and cheapness, chlorophyll meters are more suitable for estimating foliar N status in rice than reflectance spectroscopy on the basis of meeting accuracy requirements.

  8. Spectral Feature Analysis for Quantitative Estimation of Cyanobacteria Chlorophyll-A

    NASA Astrophysics Data System (ADS)

    Lin, Yi; Ye, Zhanglin; Zhang, Yugan; Yu, Jie

    2016-06-01

    In recent years, lake eutrophication caused a large of Cyanobacteria bloom which not only brought serious ecological disaster but also restricted the sustainable development of regional economy in our country. Chlorophyll-a is a very important environmental factor to monitor water quality, especially for lake eutrophication. Remote sensed technique has been widely utilized in estimating the concentration of chlorophyll-a by different kind of vegetation indices and monitoring its distribution in lakes, rivers or along coastline. For each vegetation index, its quantitative estimation accuracy for different satellite data might change since there might be a discrepancy of spectral resolution and channel center between different satellites. The purpose this paper is to analyze the spectral feature of chlorophyll-a with hyperspectral data (totally 651 bands) and use the result to choose the optimal band combination for different satellites. The analysis method developed here in this study could be useful to recognize and monitor cyanobacteria bloom automatically and accrately. In our experiment, the reflectance (from 350nm to 1000nm) of wild cyanobacteria in different consistency (from 0 to 1362.11ug/L) and the corresponding chlorophyll-a concentration were measured simultaneously. Two kinds of hyperspectral vegetation indices were applied in this study: simple ratio (SR) and narrow band normalized difference vegetation index (NDVI), both of which consists of any two bands in the entire 651 narrow bands. Then multivariate statistical analysis was used to construct the linear, power and exponential models. After analyzing the correlation between chlorophyll-a and single band reflectance, SR, NDVI respetively, the optimal spectral index for quantitative estimation of cyanobacteria chlorophyll-a, as well corresponding central wavelength and band width were extracted. Results show that: Under the condition of water disturbance, SR and NDVI are both suitable for quantitative

  9. In Vivo Assessment of Cold Tolerance through Chlorophyll-a Fluorescence in Transgenic Zoysiagrass Expressing Mutant Phytochrome A

    PubMed Central

    Gururani, Mayank Anand; Venkatesh, Jelli; Ganesan, Markkandan; Strasser, Reto Jörg; Han, Yunjeong; Kim, Jeong-Il; Lee, Hyo-Yeon; Song, Pill-Soon

    2015-01-01

    Chlorophyll-a fluorescence analysis provides relevant information about the physiology of plants growing under abiotic stress. In this study, we evaluated the influence of cold stress on the photosynthetic machinery of transgenic turfgrass, Zoysia japonica, expressing oat phytochrome A (PhyA) or a hyperactive mutant phytochrome A (S599A) with post-translational phosphorylation blocked. Biochemical analysis of zoysiagrass subjected to cold stress revealed reduced levels of hydrogen peroxide, increased proline accumulation, and enhanced specific activities of antioxidant enzymes compared to those of control plants. Detailed analyses of the chlorophyll-a fluorescence data through the so-called OJIP test exhibited a marked difference in the physiological status among transgenic and control plants. Overall, these findings suggest an enhanced level of cold tolerance in S599A zoysiagrass cultivars as reflected in the biochemical and physiological analyses. Further, we propose that chlorophyll-a fluorescence analysis using OJIP test is an efficient tool in determining the physiological status of plants under cold stress conditions. PMID:26010864

  10. Effects of DCMU on chlorophyll fluorescence ratio F685/F735 in marine red, brown and green algae

    NASA Astrophysics Data System (ADS)

    Wu, Bao-Gan; Zuo, Dong-Mei; Zang, Ru-Bo

    1996-03-01

    The chlorophyll fluorescence ratio F685/F735 in vivo can be a useful indicator for stress detection in higher plants and seaweeds. DCMU [3-(3,4-dichlorophenyl)-1, 1-dimethylurea] treatment influences this ratio. The effets of DCMU on F685/F735 of marine red, brown and green algae under excitation light of different wavelengths were investigated. In the brown algae, Laminaria japonica and Undaria pinnatifida, DCMU did not increase this ratio under blue light excitation but increased the ratio slightly under excitation by green light. For the red algae, Halymenia sinensis, DCMU increased the ratio markedly under both blue and green light excitation. The percentage increase could reach 50% (under green light excitation) and was due to unequal enhancement at the two emission maxima by DCMU. A fraction of chlorophyll which contributed to fluorescence in the 735 nm region was less sensitive to DCMU and was likely from photosystem I of red algae. In the green alga, Ulva pertusa, DCMU caused a slight increase in F685/F735 value under blue, green and red light. Green light excitation during DCMU treatment increased the ratio most (16%) but induced the lowest ratio in the control (without DCMU). It is proposed that a considerable fraction of fluorescence from the 735 nm region at room temperature may be emitted by the chlorophyll of photosystem I in red algae.

  11. A chlorophyll a fluorescence-based Lemna minor bioassay to monitor microbial degradation of nanomolar to micromolar concentrations of linuron.

    PubMed

    Hulsen, Kris; Minne, Veerle; Lootens, Peter; Vandecasteele, Paul; Höfte, Monica

    2002-06-01

    A plant-microbial bioassay, based on the aquatic macrophyte Lemna minor L. (duckweed), was used to monitor biodegradation of nano- and micromolar concentrations of the phenylurea herbicide linuron. After 7 days of exposure to linuron, log-logistic-based dose-response analysis revealed significant growth inhibition on the total frond area of L. minor when linuron concentrations > or = 80 nM were added to the bioassay. A plant-protective effect was obtained for all concentrations > 80 nM by inoculation with either a bacterial consortium or Variovorax paradoxus WDL1, which is probably the main actor in this consortium. The outcome of the plant-microbe-toxicant interaction was also assessed using pulse amplitude-modulated chlorophyll a fluorescence and chlorophyll a fluorescence imaging. Linuron toxicity to L. minor became apparent as a significant decrease in the effective quantum yield (Delta F/Fm') within 90 min after exposure of the plants to linuron concentrations > or = 160 nM. Inoculation of the bioassay with the linuron-degrading bacteria neutralized the effect on the effective quantum yield at concentrations > or = 160 nM, indicating microbial degradation of these concentrations. The chlorophyll a fluorescence-based Lemna bioassay described here offers a sensitive, fast and cost-effective approach to study the potential of biodegrading microorganisms to break down minute concentrations of photosynthesis-inhibiting xenobiotics.

  12. Estimation of leaf chlorophyll content and the fraction of light absorption by chlorophyll using MODIS images and a radiative transfer model

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Xiao, X.; Braswell, B.; Linder, E.; Moore, B.

    2005-12-01

    Photosynthetically actively radiation (PAR) absorbed by leaf chlorophyll is used for photosynthesis, therefore, there is a need to quantify the fraction of PAR absorbed by leaf chlorophyll (FAPARchl) within a vegetation canopy. We recently developed a theoretical and modeling framework to estimate leaf chlorophyll content and FAPARchl.in a vegetation canopy The modeling framework coupled a leaf radiative transfer model (PROPSECT) with a canopy radiative transfer model (SAIL-2) and incorporated a Markov Chain Monte Carlo (MCMC) method (the Metropolis algorithm) for model inversion, which provides posterior distributions of retrieved variables. Our two-step procedure is: (1) to invert biophysical and biochemical variables (including leaf chlorophyll content) with the coupled PROSPECT+SAIL-2 (PROSAIL-2) model and multiple daily images (five spectral bands) from MODerate resolution Imaging Spectroradiometer (MODIS) sensor , (2) to reproduce MODIS spectral reflectance and to calculate FAPARchl with the inverted variables from step (1). We ran the PROSAIL-2 model for a deciduous broadleaf forest, an evergreen forest and an agricultural site using MODIS data in 2001-2003. The PROSAIL-2 -reproduced reflectance agrees well with observed MODIS reflectance for the five MODIS spectral bands. The retrieved variables (leaf area index, leaf chlorophyll content) were also evaluated with available literature data. Estimated FAPARchl is substantially lower than the fraction of PAR absorbed by leaf (FAPARleaf) and by vegetation canopy (FAPARcanopy). Biogeochemical models that use either the fraction of PAR absorbed by canopy (FAPARcanopy) or the fraction of PAR absorbed by leaf (FAPARleaf) in estimating gross and net primary production are likely to overestimate the amount of PAR used in photosynthesis process, which represents one large source of error and uncertainty. The results of this study highlight the needs of field works and the potential of a radiative transfer model

  13. Effect of photosystem I inactivation on chlorophyll a fluorescence induction in wheat leaves: Does activity of photosystem I play any role in OJIP rise?

    PubMed

    Zivcak, Marek; Brestic, Marian; Kunderlikova, Kristyna; Olsovska, Katarina; Allakhverdiev, Suleyman I

    2015-11-01

    Interpretation of the fast chlorophyll a fluorescence induction is still a subject of continuing discussion. One of the contentious issues is the influence of photosystem I (PSI) activity on the kinetics of the thermal JIP-phase of OJIP rise. To demonstrate this influence, we realized a series of measurements in wheat leaves subjected to PSI photoinactivation by the sequence of red saturation pulses (15,000 μmol photons m(-2) s(-1) for 0.3 s, every 10 s) applied in darkness. Such a treatment led to a moderate decrease of maximum quantum efficiency of PSII (by ~8%), but a strong decrease of the number of oxidizable PSI (by ~55%), which considerably limited linear electron transport and CO2 assimilation. Surprisingly, the PSI photoinactivation had low effects on OJIP kinetics of variable fluorescence. In particular, the amplitude of variable fluorescence of IP-step (ΔVIP), which has been considered to be a measure of PSI content, was not decreased, despite the low content of photooxidizable PSI. On the other hand, the slower relaxation of chlorophyll fluorescence after saturation pulse as well as the results of the double-hit method suggest that PSI inactivation treatment led to an increase of the fraction of QB-nonreducing PSII reaction centers. Our results somewhat challenge the mainstream interpretations of JIP-thermal phase, and at least suggest that the IP amplitude cannot serve to estimate reliably the PSI content or the PSI to PSII ratio. Moreover, these results recommend the use of the novel method of PSI inactivation, which might help clarify some important issues needed for the correct understanding of the OJIP fluorescence rise.

  14. Optimal estimator for tomographic fluorescence lifetime multiplexing

    PubMed Central

    Hou, Steven S.; Bacskai, Brian J.; Kumar, Anand T. N.

    2016-01-01

    We use the model resolution matrix to analytically derive an optimal Bayesian estimator for multiparameter inverse problems that simultaneously minimizes inter-parameter cross talk and the total reconstruction error. Application of this estimator to time-domain diffuse fluorescence imaging shows that the optimal estimator for lifetime multiplexing is identical to a previously developed asymptotic time-domain (ATD) approach, except for the inclusion of a diagonal regularization term containing decay amplitude uncertainties. We show that, while the optimal estimator and ATD provide zero cross talk, the optimal estimator provides lower reconstruction error, while ATD results in superior relative quantitation. The framework presented here is generally applicable to other multiplexing problems where the simultaneous and accurate relative quantitation of multiple parameters is of interest. PMID:27192234

  15. Thermostability and photostability of photosystem II of the resurrection plant Haberlea rhodopensis studied by chlorophyll fluorescence.

    PubMed

    Georgieva, Katya; Maslenkova, Liliana

    2006-01-01

    The stability of PSII in leaves of the resurrection plant Haberlea rhodopensis to high temperature and high light intensities was studied by means of chlorophyll fluorescence measurements. The photochemical efficiency of PSII in well-hydrated Haberlea leaves was not significantly influenced by temperatures up to 40 degrees C. Fo reached a maximum at 50 degrees C, which is connected with blocking of electron transport in reaction center II. The intrinsic efficiency of PSII photochemistry, monitored as Fv/Fm was less vulnerable to heat stress than the quantum yield of PSII electron transport under illumination (phiPSII). The reduction of phiPSII values was mainly due to a decrease in the proportion of open PSII centers (qP). Haberlea rhodopensis was very sensitive to photoinhibition. The light intensity of 120 micromol m(-2) s(-1) sharply decreased the quantum yield of PSII photochemistry and it was almost fully inhibited at 350 micromol m(-2) s(-1). As could be expected decreased photochemical efficiency of PSII was accompanied by increased proportion of thermal energy dissipation, which is considered as a protective effect regulating the light energy distribution in PSII. When differentiating between the three components of qN it was evident that the energy-dependent quenching, qE, was prevailing over photoinhibitory quenching, qI, and the quenching related to state 1-state 2 transitions, qT, at all light intensities at 25 degrees C. However, the qE values declined with increasing temperature and light intensities. The qI was higher than qE at 40 degrees C and it was the major part of qN at 45 degrees C, indicating a progressing photoinhibition of the photosynthetic apparatus.

  16. Sun-induced chlorophyll fluorescence reveals strong representation of photosynthesis at ecosystem level in rice paddy field in Japan

    NASA Astrophysics Data System (ADS)

    Kato, T.; Tsujimoto, K.; Nasahara, K. N.; Akitsu, T.; Ono, K.; Miyata, A.

    2015-12-01

    Chlorophyll fluorescence emission from ecosystem induced by sunlight (Sun-Induced Fluorescence: SIF) is now a key factor to accurately estimate the ecosystem-level photosynthesis activity as suggested by satellite studies, and has been recently detected by satellites [Frankenberg et al., 2011; Guanter et al., 2012; Joiner et al., 2013] and measured at field stations [Daumard et al., 2010; Porcar-Castell, 2011]. However, the few example of field-based assessment on the representation ability reduces its value for the availability to better understand the dynamics in CO2uptake by land ecosystem. To elucidate the potential of SIF to estimate ecosystem GPP in typical Asian crop type, the canopy-top SIF was calculated from the spectrum data in Japanese rice paddy field in Mase in central Japan (36°03'N, 140°01'E, 11 m a.s.l.), and compared with eddy-tower measured GPP on half-hourly and daily bases during seven years from 2006 to 2012. The rice (Oriza sativa L.; cultivar Koshihikari) was transplanted in May and harvested in September normally. The SIF was estimated from the spectrums of downward Sun irradiance and upward canopy-reflected radiance measured at the height of 3m above ground by HemiSpherical Spectro-Radiometer (HSSR), consisting of the spectroradiometer (MS-700, Eko inc., Tokyo, Japan) with the full-width at half maximum (FWHM) of 10 nm and wavelength interval of 3.3 nm. The SIF around 760nm (O2-A band: Fs760) was calculated according to the Fraunhofer Line Depth principle [Maier et al., 2003] with several additional arrangements. The GPP increased almost linearly as both Fs760 and APAR (Absorbed Photosyntethically Active Radiation) increased based on monthly-averaged diurnal courses during the growing season in 2006. The slopes of their regression lines differed much among the months in APAR, but in Fs760. These nearly constant relationships among the months between GPP and Fs760 were kept for all the observation years. Daily averaged GPP and Fs760

  17. Energetics of Photosystem II charge recombination in Acaryochloris marina studied by thermoluminescence and flash-induced chlorophyll fluorescence measurements.

    PubMed

    Cser, Krisztián; Deák, Zsuzsanna; Telfer, Alison; Barber, James; Vass, Imre

    2008-01-01

    We studied the charge recombination characteristics of Photosystem II (PSII) redox components in whole cells of the chlorophyll (Chl) d-dominated cyanobacterium, Acaryochloris marina, by flash-induced chlorophyll fluorescence and thermoluminescence measurements. Flash-induced chlorophyll fluorescence decay was retarded in the mus and ms time ranges and accelerated in the s time range in Acaryochloris marina relative to that in the Chl a-containing cyanobacterium, Synechocystis PCC 6803. In the presence of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea, which blocks the Q(B) site, the relaxation of fluorescence decay arising from S(2)Q(A)(-) recombination was somewhat faster in Acaryochloris marina than in Synechocystis PCC 6803. Thermoluminescence intensity of the so called B band, arising from the recombination of the S(2)Q(B)(-) charge separated state, was enhanced significantly (2.5 fold) on the basis of equal amounts of PSII in Acaryochloris marina as compared with Synechocystis 6803. Our data show that the energetics of charge recombination is modified in Acaryochloris marina leading to a approximately 15 meV decrease of the free energy gap between the Q(A) and Q(B) acceptors. In addition, the total free energy gap between the ground state and the excited state of the reaction center chlorophyll is at least approximately 25-30 meV smaller in Acaryochloris marina, suggesting that the primary donor species cannot consist entirely of Chl a in Acaryochloris marina, and there is a contribution from Chl d as well.

  18. An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies

    PubMed Central

    Zhou, Xijia; Liu, Zhigang; Xu, Shan; Zhang, Weiwei; Wu, Jun

    2016-01-01

    Detecting sun-induced chlorophyll fluorescence (SIF) offers a new approach for remote sensing photosynthesis. However, to analyse the response characteristics of SIF under different stress states, a long-term time-series comparative observation of vegetation under different stress states must be carried out at the canopy scale, such that the similarities and differences in SIF change law can be summarized under different time scales. A continuous comparative observation system for vegetation canopy SIF is designed in this study. The system, which is based on a high-resolution spectrometer and an optical multiplexer, can achieve comparative observation of multiple targets. To simultaneously measure the commonly used vegetation index and SIF in the O2-A and O2-B atmospheric absorption bands, the following parameters are used: a spectral range of 475.9 to 862.2 nm, a spectral resolution of approximately 0.9 nm, a spectral sampling interval of approximately 0.4 nm, and the signal-to-noise ratio (SNR) can be as high as 1000:1. To obtain data for both the upward radiance of the vegetation canopy and downward irradiance data with a high SNR in relatively short time intervals, the single-step integration time optimization algorithm is proposed. To optimize the extraction accuracy of SIF, the FluorMOD model is used to simulate sets of data according to the spectral resolution, spectral sampling interval and SNR of the spectrometer in this continuous observation system. These data sets are used to determine the best parameters of Fraunhofer Line Depth (FLD), Three FLD (3FLD) and the spectral fitting method (SFM), and 3FLD and SFM are confirmed to be suitable for extracting SIF from the spectral measurements. This system has been used to observe the SIF values in O2-A and O2-B absorption bands and some commonly used vegetation index from sweet potato and bare land, the result of which shows: (1) the daily variation trend of SIF value of sweet potato leaves is basically same

  19. The drought impact on satellite solar-induced chlorophyll fluorescence in China during 2007-2015

    NASA Astrophysics Data System (ADS)

    Li, Ruitao

    2016-04-01

    Drought is one of the most damaging and complicated natural hazards in the world. China is one of the countries which are most severely affected by drought. And there is a severe drought event in China every 2-3 years. From the beginning of the 1980s, some vegetation indices have been used to monitor vegetation under water stress. With the development of remote sensing technology, satellite solar-induced chlorophyll fluorescence (SIF) has emerged as a new method to monitor vegetation in recent years. Some studies have shown that compared with vegetation indices, SIF is more sensitive for vegetation functioning. However, the related studies using the satellite SIF is relatively limited in China. The objective of this study is to investigate the impact of drought on SIF by analyzing the relationships of SIF and crucial land surface parameter under the drought condition and to assess the adaption of satellite SIF in China. The SIF data are from the Global Ozone Monitoring Experiment 2 (GOME-2). Firstly, the widely used Palmer Drought Severity Index (PDSI) was used for drought events identification from 2007 to 2015 in China. On the basis of the identification results, we chose a number of areas of interest according to different land cover types and drought intensity. Then, we analyzed the relationships of SIF and land surface variables, i.e. normalized difference vegetation index (NDVI), the fraction of absorbed photosynthetically active radiation (fPAR), root-zone soil moisture (SMC) and surface skin temperatures (Tskin). The results show that the spatial patterns of negative SIF anomalies are closely relevant to the drought intensity. The decrease of SIF is aggravated in the phase of drought occurs. Moreover we find that the GOME-2 SIF is sensitive to fPAR and fluorescence yield. And the SIF is strongly correlated with SMC, Tskin and NDVI. But the SIF decreases more rapidly during the early time of drought events than NDVI. In other words, the SIF can well capture

  20. An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies.

    PubMed

    Zhou, Xijia; Liu, Zhigang; Xu, Shan; Zhang, Weiwei; Wu, Jun

    2016-05-27

    Detecting sun-induced chlorophyll fluorescence (SIF) offers a new approach for remote sensing photosynthesis. However, to analyse the response characteristics of SIF under different stress states, a long-term time-series comparative observation of vegetation under different stress states must be carried out at the canopy scale, such that the similarities and differences in SIF change law can be summarized under different time scales. A continuous comparative observation system for vegetation canopy SIF is designed in this study. The system, which is based on a high-resolution spectrometer and an optical multiplexer, can achieve comparative observation of multiple targets. To simultaneously measure the commonly used vegetation index and SIF in the O₂-A and O₂-B atmospheric absorption bands, the following parameters are used: a spectral range of 475.9 to 862.2 nm, a spectral resolution of approximately 0.9 nm, a spectral sampling interval of approximately 0.4 nm, and the signal-to-noise ratio (SNR) can be as high as 1000:1. To obtain data for both the upward radiance of the vegetation canopy and downward irradiance data with a high SNR in relatively short time intervals, the single-step integration time optimization algorithm is proposed. To optimize the extraction accuracy of SIF, the FluorMOD model is used to simulate sets of data according to the spectral resolution, spectral sampling interval and SNR of the spectrometer in this continuous observation system. These data sets are used to determine the best parameters of Fraunhofer Line Depth (FLD), Three FLD (3FLD) and the spectral fitting method (SFM), and 3FLD and SFM are confirmed to be suitable for extracting SIF from the spectral measurements. This system has been used to observe the SIF values in O₂-A and O₂-B absorption bands and some commonly used vegetation index from sweet potato and bare land, the result of which shows: (1) the daily variation trend of SIF value of sweet potato leaves is

  1. Spectral reflectance, chlorophyll fluorescence and virological investigations of tobacco plants (Nicotiana tabacum L.) infected with Tobacco mosaic virus (TMV)

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora; Hristova, Dimitrina; Iliev, Ilko; Yanev, Tony

    Application of multispectral remote sensing techniques to plant condition monitoring has been adopted for various purposes. Remote sensing is a reliable tool for detecting signs of vege-tation stress and diseases. Spectral reflectance and chlorophyll fluorescence are functions of tissue optical properties and biological status of the plants, and illumination conditions. The mean reflectance spectrum depends on the relative composition of all the pigments in the leaf including chlorophylls, carotenoids etc. Chlorophyll fluorescence results from the primary re-actions of photosynthesis and during the last decade it finds widening application as a means for revelation of stress and diseases. The changes in chlorophyll function take place before the alteration in chlorophyll content to occur so that changes in the fluorescence signal arise before any visible signs are apparent. The aim of our investigations was to study the development and spreading out of a viral infection on the leaves of two cultivars tobacco plants (Nicotiana tabacum L.) infected with Tobacco mosaic virus (TMV). We applied two remote sensing tech-niques (spectral reflectance and chlorophyll fluorescence measurements) for evaluation of the changes in the optical properties of the plants in accordance to their physiological status. The serological analyses via the Double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) were made with appropriate kits (Leowe, Germany) for quantitative assessment of the concentration of viruses in the plants. The tobacco plants were grown in green house under controlled conditions. The first cultivar Nevrocop 1146 is known as resistive to the TMV, i.e. it shows hypersensitive response. The second cultivar named Krumovgrad is normally sen-sitive to the TMV. At growth stage 4-6 expanded leaf, up to one leaf from 20 plants for each cultivar were inoculated with TMV. The leaves opposite to the infected ones formed the group of control (untreated) leaves. The

  2. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements

    NASA Astrophysics Data System (ADS)

    Darvishzadeh, Roshanak; Skidmore, Andrew; Schlerf, Martin; Atzberger, Clement; Corsi, Fabio; Cho, Moses

    The study shows that leaf area index (LAI), leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC) can be mapped in a heterogeneous Mediterranean grassland from canopy spectral reflectance measurements. Canopy spectral measurements were made in the field using a GER 3700 spectroradiometer, along with concomitant in situ measurements of LAI and LCC. We tested the utility of univariate techniques involving narrow band vegetation indices and the red edge inflection point, as well as multivariate calibration techniques, including stepwise multiple linear regression and partial least squares regression. Among the various investigated models, CCC was estimated with the highest accuracy ( Rcv2=0.74, nRMSE=0.35). All methods failed to estimate LCC ( Rcv2≤0.40), while LAI was estimated with intermediate accuracy ( Rcv2 values ranged from 0.49 to 0.69). Compared with narrow band indices and red edge inflection point, stepwise multiple linear regression generally improved the estimation of LAI. The estimations were further improved when partial least squares regression was used. When a subset of wavelengths was analyzed, it was found that partial least squares regression had reduced the error in the retrieved parameters. The results of the study highlight the significance of multivariate techniques, such as partial least squares regression, rather than univariate methods such as vegetation indices in estimating heterogeneous grass canopy characteristics.

  3. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Köhler, Philipp; Guanter, Luis; Joiner, Joanna

    2015-04-01

    Global retrievals of near-infrared sun-induced chlorophyll fluorescence (SIF) have been achieved in the last several years by means of space-borne atmospheric spectrometers. SIF is an electromagnetic signal emitted by the chlorophyll-a of photosynthetically active vegetation in the 650-850 nm spectral range. It represents a part of the excess energy during the process of photosynthesis and provides a measure of photosynthetic activity. The key challenge to retrieve SIF from space is to isolate the signal from the about 100 times more intense reflected solar radiation in the measured top of atmosphere (TOA) radiance spectrum. Nevertheless, it has been demonstrated that a number of satellite sensors provide the necessary spectral and radiometric performance to evaluate the in-filling of solar Fraunhofer lines and/or atmospheric absorption features by SIF. We will present recent developments for the retrieval of SIF from medium spectral resolution space-borne spectrometers such as the Global Ozone Monitoring Experiment (GOME-2) and the Scanning Imaging Absorption SpectroMeter for Atmospheric ChartographY (SCIAMACHY). Building upon the previous work by Joiner et al. 2013, our approach solves existing issues in the retrieval such as the non-linearity of the forward model and the arbitrary selection of the number of free parameters. In particular, we use a backward elimination algorithm to optimize the number of coefficients to fit, which reduces also the retrieval noise and selects the number of state vector elements automatically. A sensitivity analysis with simulated spectra has been utilized to evaluate the performance of our retrieval approach. The method has also been applied to estimate SIF from real spectra from GOME-2 and for the first time, from SCIAMACHY. We are able to present a time series of GOME-2 SIF results covering the 2007-2011 time period and SCIAMACHY SIF results between 2003-2011. This represents an almost one decade long record of global SIF. We

  4. Estimating a carbon/chlorophyll ratio in nannoplankton (Creteil Lake, S-E Paris, France)

    SciTech Connect

    Garnier, J.; Benest, D. ); Blanc, P. )

    1989-08-01

    The phytoplankton biomass of the Creteil Lake was characterized through 47 paired measurements of particulate organic carbon and chlorophyll. When determining the transfers of organic carbon in the lake, the need to convert the phytoplankton biomass into carbon units led to the estimation of a carbon to chlorophyll ratio using regression analyses. An average C:Chl ratio of 80 was found. C:Chl has been found to be highly variable but the value commonly used is C:Chl = 40. In Creteil Lake, the high C:Chl value would characterize the nannoplankton that dominated in the lake. No general conversion factor apparently exists for natural populations; thus, more studies may be necessary for a better knowledge of the carbon budget in lakes.

  5. Monitoring the Photosynthetic Apparatus During Space Flight: Interspecific Variation in Chlorophyll Fluorescence Signatures Induced by Different Root Zone Stresses

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Patterson, Mark T.; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Chlorophyll fluorescence has been used extensively as a tool to indicate stress to the photosynthetic apparatus in green plants. A rise in fluorescence has been attributed to the blockage of photosystem II photochemistry, and patterns of fluorescence decay (quenching) from dark adapted leaves can be related to specific photochemical and non-photochemical deexcitation pathways of light trapped by the photosynthetic apparatus and thus result in characteristically different fluorescence signatures. Four distantly related plant species, Hypocharis radicata (Asteraceae), Brassica rapa (Brassicaceae), Spinacea oleracea (Chenopodiaceae) and Triticum aestivum (Poaceae), were grown hydroponically for three weeks before the initiation of three different root zone stresses (10 mM Cu, 100 mM NaCl and nitrogen deficient nutrition). After 10 days, characteristic fluorescence signatures for each stress could be noted although the degree varied between species. Fast kinetics analysis showed a reduction in plastoquinone pool size for copper and nitrogen stress for all species but a more species specific result with NaCl stress. Photochemical quenching kinetics varied between species and stress treatments from no quenching in S. oleracea in copper treatments to increased photochemical quenching in NaCl treatments. Non-photochemical quenching kinetics demonstrated a distinct pattern between stresses for all species. Copper treatments characteristically exhibited a shallow, flat non-photochemical quenching profile suggesting a general blockage of electron transport whereas NaCl treatments exhibited a slow rising profile that suggested damage to thylakoid acidification kinetics and nitrogen deficiency exhibited a fast rising and declining profile that suggested an altered state 1-state 2 transition regulated by the phosphorylation of LHCII. These results demonstrate characteristic fluorescence signatures for specific plant stresses that may be applied to different, unrelated plant

  6. Three types of the concentration dependence of the red and far-red chlorophyll a fluorescence ratio

    NASA Astrophysics Data System (ADS)

    Zavoruev, Valerii; Zavorueva, Elena

    2003-04-01

    In this paper the dependence of the F682/F734 on the concentration in plants, grown under continuous light and natural photoperiod is studied. For natural photoperiod the duration of light for all probes was the same, as since leaves with different colors are selected at a time. It is shown, the dependence of the F682/F734 ratio on chlorophyll concentration in plant, grown under high-intensity continuous is described by a parabolic function and under intermittent light - exponential function. Third type of concentration dependence of the parameter F682/F734 was obtained in leaves of poplar in the process of vegetation under study of fluorescence and pigment characteristics. The dependence has complicated character and known functions cannot describe it. It is concluded, that all known dependences of the F682/F734 ratio on concentration of chlorophyll to this moment are used to concrete conditions of growth of plants and the method of probes choice for measurement. Now the universe function, connecting the relation between red and far-red fluorescence with chlorophyll content, is not existed.

  7. Comparison of solar-induced chlorophyll fluorescence, light-use efficiency, and process-based GPP models in maize.

    PubMed

    Wagle, Pradeep; Zhang, Yongguang; Jin, Cui; Xiao, Xiangming

    2016-06-01

    Accurately quantifying cropland gross primary production (GPP) is of great importance to monitor cropland status and carbon budgets. Satellite-based light-use efficiency (LUE) models and process-based terrestrial biosphere models (TBMs) have been widely used to quantify cropland GPP at different scales in past decades. However, model estimates of GPP are still subject to large uncertainties, especially for croplands. More recently, space-borne solar-induced chlorophyll fluorescence (SIF) has shown the ability to monitor photosynthesis from space, providing new insights into actual photosynthesis monitoring. In this study, we examined the potential of SIF data to describe maize phenology and evaluated three GPP modeling approaches (space-borne SIF retrievals, a LUE-based vegetation photosynthesis model [VPM], and a process-based soil canopy observation of photochemistry and energy flux [SCOPE] model constrained by SIF) at a maize (Zea mays L.) site in Mead, Nebraska, USA. The result shows that SIF captured the seasonal variations (particularly during the early and late growing season) of tower-derived GPP (GPP_EC) much better than did satellite-based vegetation indices (enhanced vegetation index [EVI] and land surface water index [LSWI]). Consequently, SIF was strongly correlated with GPP_EC than were EVI and LSWI. Evaluation of GPP estimates against GPP_EC during the growing season demonstrated that all three modeling approaches provided reasonable estimates of maize GPP, with Pearson's correlation coefficients (r) of 0.97, 0.94, and 0.93 for the SCOPE, VPM, and SIF models, respectively. The SCOPE model provided the best simulation of maize GPP when SIF observations were incorporated through optimizing the key parameter of maximum carboxylation capacity (Vcmax). Our results illustrate the potential of SIF data to offer an additional way to investigate the seasonality of photosynthetic activity, to constrain process-based models for improving GPP estimates, and to

  8. The Chlorophyll a Fluorescence Modulated by All-Trans-β-Carotene in the Process of Photosystem II.

    PubMed

    Li, Tianyu; Zhang, Ye; Gong, Nan; Li, Zuowei; Sun, Chenglin; Men, Zhiwei

    2016-06-21

    Modulating the chlorophyll a (Chl-a) fluorescence by all-trans-β-Carotene (β-Car) in the polarity and non-polarity solutions was investigated. The fluorescence intensity of Chl-a decreased as the concentration of β-Car increased. The excited electronic levels of Chl-a and β-Car became much closer owing to the solvent effect, which led to the electron transfer between both two molecules. A electron-separated pair Chl(-)·Chl⁺ that is not luminous was formed due to electron transfer. The solution of Chl-a and β-car in C₃H₆O was similar to the internal environment of chloroplast. We conclude that the polar solvent is good for the fluorescent modulation in photosystem II.

  9. The Chlorophyll a Fluorescence Modulated by All-Trans-β-Carotene in the Process of Photosystem II

    PubMed Central

    Li, Tianyu; Zhang, Ye; Gong, Nan; Li, Zuowei; Sun, Chenglin; Men, Zhiwei

    2016-01-01

    Modulating the chlorophyll a (Chl-a) fluorescence by all-trans-β-Carotene (β-Car) in the polarity and non-polarity solutions was investigated. The fluorescence intensity of Chl-a decreased as the concentration of β-Car increased. The excited electronic levels of Chl-a and β-Car became much closer owing to the solvent effect, which led to the electron transfer between both two molecules. A electron-separated pair Chl−·Chl+ that is not luminous was formed due to electron transfer. The solution of Chl-a and β-car in C3H6O was similar to the internal environment of chloroplast. We conclude that the polar solvent is good for the fluorescent modulation in photosystem II. PMID:27338363

  10. [A Three Band Chlorophyll-a Concentration Estimation Model Based on GOCI Imagery].

    PubMed

    Guo, Yu-long; Li, Yun-mei; Li, Yuan; Lü, Heng; Liu, Ge; Wang, Xu-dong; Zhang, Si-min

    2015-09-01

    A GOCI-based three band model is proposed for chlorophyll-a concentration estimation based on the classical three band model. The model was built based on 289 in-situ measured chlorophyll-a concentration and hyperspectral spectrums-simulated GOCI spectrums, and was compared with MERIS-based three band model and GOCI band ratio model. At last, the model was validated using several GOCI images and an independent in-situ sampling dataset. The results showed that: (1) For the current dataset, the ratio of aph (680) and aph (660) was relatively stable. (2) The GOCI-based three band algorithm had a similar performance with MERIS-based three band algorithm in the modeling dataset. The R2 value of the GOCI-based three band model was 0. 809, which was a little lower than that of the MERIS-based three band model (R2 = 0. 820), but was obviously higher than that of GOCI band ratio model (R2 = 0. 450). (3) The performance of GOCI-based three band model in the validation dataset was similar with that in the modeling dataset, which was close to that of the MERIS-based three band model, and significantly better than that of GOCI band ratio model. (4) The GOCI image data validation indicated that GOCI band ratio model would clearly underestimate chlorophyll-a concentration in Taihu Lake. The spatial difference of chlorophyll-a concentration that yielded by the band ratio model was not clear. Compared with the widely used band ratio algorithm, the GOCI-based three band algorithm has higher stability, better accuracy, and stronger potential in application.

  11. Chlorophyll Fluorescence Is a Better Proxy for Sunlit Leaf Than Total Canopy Photosynthesis

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Wang, Z.; Zhang, F.; Mo, G.

    2015-12-01

    Chlorophyll fluorescence (CF) results from non-photochemical quenching during plant photosynthesis under excessive radiation. We explore the relationship between gross primary productivity (GPP) and CF using a process ecosystem model, which separates a vegetation canopy into sunlit and shaded leaf groups and simulates the total canopy GPP as the sum of sunlit and shaded leaf GPP. Using GOME-2 and GOSAT data acquired in 2010 over the global land surface, we found that measured CF signals gridded in 1 degree resolution are well correlated with simulated total GPP and its sunlit and shaded components, but the correlation coefficients (R) are largest for the sunlit GPP and smallest for shaded GPP. The seasonal R2 values vary from 0.57 to 0.74, 0.58 to 0.71, and 0.48 to 0.56 for sunlit, total and shaded GPP, respectively. The significance levels for these correlations are all greater than p<0.01. Averaged over the globe, the total simulated shaded GPP is 39% of the total GPP. Theoretically, CF from vegetation comes mostly from sunlit leaves. The significant correlation between measured canopy-level CF and the shaded GPP is likely due to the correlation between shaded and sunlit GPP as both increase with leaf area index. Our simulation confirms the validity of using canopy-level CF measurements to assess the total GPP as the first approximation, although these measurements are a consistently better indicator of sunlit GPP than total GPP. In previous studies, the R2 values for the correlation between CF and total GPP were found to range from 0.76 to 0.88, 0.56 to 0.78, and 0.57 to 0.77 for MPI-BGC, MODIS and CASA model results, respectively. These values are similar or larger than those for sunlit GPP simulated in our study, but are considerably larger than those for total GPP in our study because the correlation for total GPP is contaminated by the inclusion of shaded GPP. All these three models use canopy total light use efficiency without considering the differences

  12. Diurnal and Directional Responses of Chlorophyll Fluorescence and the PRI in a Cornfield

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth; Cheng, Y. B.; Corp, L.; Campbell, P.; Kustas, W.

    2010-01-01

    Determining the health and vigor of vegetation using high spectral resolution remote sensing is an important goal which has application to monitoring agriculture and ecosystem productivity and carbon exchange. Two spectral indices used to assess whether vegetation is performing near-optimally or exhibiting symptoms of environmental stress (e.g., drought or nutrient deficiency, non-optimal temperatures, etc.) are the Photochemical Reflectance Index (PRI) and solar-induced red and far-red Chlorophyll Fluorescence (Fs). Both the PRI and Fs capture the dynamics of photoprotection mechanisms within green foliage: the PRI is based on the association of the reflected radiation in the green spectrum with the xanthophyll cycle, whereas Fs measures the emitted radiation in the red and far-red spectrum. Fs was determined from retrievals in the atmospheric oxygen absorption features centered at 688 and 760 nm using a modified Fraunhofer Line Depth (FLD) method. We previously demonstrated diurnal and seasonal PRI differences for sunlit vs. shaded foliage in a conifer forest canopy, as expressed in the hotspot and darkspot of the Bidirectional Reflectance Function (BRF). In a USDA-ARS experimental field site located in Beltsville, MD, USA, measurements were acquired over a corn crop from a nadir view in 2008 with an ASD FieldSpec Pro (Analytical Spectral Devices, Inc., Boulder, CO, USA) to study the behavior of the PRI for sunlit and shaded foliage as captured in reflectance variations associated with the BRF, in a I m tall canopy in the vegetative growth stage. Those observations were compared to simulations obtained from two radiative transfer models. Measurements were then acquired to examine whether the PRI and Fs were influenced by view zenith and azimuth geometries at different times of day. Those measurements were made in 2010 with the Ocean Optics USB4000 Miniature Fiber Optic Spectrometer (Ocean Optics Inc., Dunedin, Florida, USA) at several times during the day on

  13. Spatial distribution and seasonal variability of chlorophyll-a concentration in the Azov Sea turbid waters by means of remote sensing and continuous fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Saprygin, V. V.

    2011-12-01

    The goal of this study was to apply continuous fluorometric and remote estimation of chlorophyll-a concentration (Cchl) techniques to complex turbid waters of Azov Sea and explore Cchl temporal variation and spatial pattern. Azov Sea is the shallowest sea in the world with maximum depth below 15 m. Its maximum salinity is about 14%; total suspended solids and chlorophyll-a concentrations reach 120 [tex]g m^{-3}[/tex] and 100 [tex]mg m^{-3}[/tex] respectively in Taganrog Bay, daily production varies up to 3.5 [tex]gC_{org} m^{-3}[/tex]. Chlorophyll-a concentrations were measured in 2008-2010 year-round spectrophotometrically, 446 water samples were taken to calibrate fluorometerical and remote sensing data. The highest recorded concentration was 149.3, the lowest - 0.3 [tex]mg m^{-3}[/tex]. Continuous-flow fluorometer was applied in the course of 3 expeditions to Taganrog Bay to measure chlorophyll-a fluorescence (Fchl) each 30 meters along the ship path. Two-cuvette fluorometer was used to discount the influence of dissolved organic matter. Fchl measurements were calibrated and Cchl profiles derieved to estimate Cchl spatial heterogeneity in close scale. Fchl measurements were also made during moorings each 6 seconds to estimate temporal Cchl variability. Recently published algorithm based on reflectance in the red and the near-infrared (NIR) spectral regions was applied to MERIS data for the remote estimation of Cchl. Taking in account fluorometric Cchl spatial heterogeneity estimation, the algorithm for culling the outliers in Cchl fields derived from satellite data was developed. 74 images were processed to Cchl maps and then averaged monthly. Consequently, Cchl spatial distribution and seasonal variability were studied. Spectrophotometric, flourumetric measurements and values obtained by NIR-red algorithm showed strong correlation in turbid Case II waters of Azov Sea. Fluorometric and remote measurements showed high Cchl variations in short and long terms

  14. Primary sites of ozone-induced perturbations of photosynthesis in leaves: identification and characterization in Phaseolus vulgaris using high resolution chlorophyll fluorescence imaging.

    PubMed

    Leipner, J; Oxborough, K; Baker, N R

    2001-08-01

    High resolution imaging of chlorophyll a fluorescence was used to identify the sites at which ozone initially induces perturbations of photosynthesis in leaves of Phaseolus vulgaris. Leaves were exposed to 250 and 500 nmol mol(-1) ozone at a photosynthetically active photon flux density of 300 micromol m(-2) s(-1) for 3 h. Images of fluorescence parameters indicated that large decreases in both the maximum and operating quantum efficiencies of photosystem II had occurred in cells adjacent to stomata in the upper, but not lower, leaf surfaces. However, this treatment did not produce any significant changes in the maximum or operating quantum efficiencies of photosystem II in the leaves when estimated from fluorescence parameters measured with a conventional, integrating fluorometer. The localized decreases in photosystem II photochemical efficiencies were accompanied by an increase in the minimal fluorescence level, which is indicative of photoinactivation of photosystem II complexes and a decrease in stomatal conductance. Perturbations of photochemical efficiencies were not observed in cells associated with all of the stomata on the upper leaf surface or within cells distant from the upper leaf surface. It is concluded that ozone penetrates the leaf through stomata and initially damages only cells close to stomatal pores.

  15. Design and daytime performance of laser-induced fluorescence spectrum lidar for simultaneous detection of multiple components, dissolved organic matter, phycocyanin, and chlorophyll in river water.

    PubMed

    Saito, Yasunori; Kakuda, Kei; Yokoyama, Mizuho; Kubota, Tomoki; Tomida, Takayuki; Park, Ho-Dong

    2016-08-20

    In this work, we developed mobile laser-induced fluorescence spectrum (LIFS) lidar based on preliminary experiments on the excitation emission matrix of a water sample and a method for reducing solar background light using the synchronous detection technique. The combination of a UV short-pulse laser (355 nm, 6 ns) for fluorescence excitation with a 10-100 ns short-time synchronous detection using a gated image-intensified multi-channel CCD of the fluorescence made the LIFS lidar operation possible even in daytime. The LIFS lidar with this construction demonstrated the potential of natural river/lake water quality monitoring at the Tenryu River/Lake Suwa. Three main components in the fluorescence data of the water, dissolved organic matter, phycocyanin, and chlorophyll, were extracted by spectral analysis using the standard spectral functions of these components. Their concentrations were estimated by adapting experimentally calibrated data. Results of long-term field observations using our LIFS lidar from 2010 to 2012 show the necessity of simultaneous multi-component detection to understand the natural water environment.

  16. Thermotolerance of apple tree leaves probed by chlorophyll a fluorescence and modulated 820 nm reflection during seasonal shift.

    PubMed

    Duan, Ying; Zhang, Mengxia; Gao, Jin; Li, Pengmin; Goltsev, Vasilij; Ma, Fengwang

    2015-11-01

    During the seasonal shift from June to August, air temperatures increase. To explore how apple trees improve their thermotolerance during this shift, we examined the photochemical reaction capacity of apple tree leaves by simultaneous measurement of prompt chlorophyll fluorescence, delayed chlorophyll fluorescence, and modulated 820 nm reflection at varying temperatures. It was found that the reaction centers and antennae of photosystem II (PSII) and photosystem I (PSI), the donor side of PSII, the electron transfer capacity from QA to QB, and the reoxidation capacity of plastoquinol were all sensitive to heat stress, particularly in June. As the season shifted, apple tree leaves improved in thermotolerance. Interestingly, the acclimation to seasonal shift enhanced the thermotolerance of PSII and PSI reaction centers more than that of their antennae, and the activity of PSII more than that of PSI. This may be a strategy for plant adaptation to changes in environmental temperatures. In addition, results from prompt and delayed fluorescence, as well as modulated 820 nm reflection corroborate each other. We suggest that the simultaneous measurement of the three independent signals may provide more information on thermal acclimation mechanisms of photochemical reactions in plant leaves.

  17. [Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensis leaves].

    PubMed

    Li, Xu-Xin; Liu, Bing-Xiang; Guo, Zhi-Tao; Chang, Yue-Xia; He, Lei; Chen, Fang; Lu, Bing-She

    2013-09-01

    By using fast chlorophyll fluorescence induction dynamics analysis technique (JIP-test), this paper studied the photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of 1-year old Pistacia chinensis seedlings under the stress of NaCl at the concentrations 0% (CK), 0.15%, 0.3%, 0.45%, and 0.6%. With the increasing concentration of NaCl, the contents of Chl a, Chl b, and Chl (a+b) in the seedlings leaves decreased, the Chl a/b ratio decreased after an initial increase, and the carotenoid content increased. The net photosynthetic rate (P(n)) and stomatal conductance (g(s)) decreased gradually with increasing NaCl concentration. The decrease of P(n) was mainly attributed to the stomatal limitation when the NaCl concentration was lower than 0.3%, and to the non-stomatal limitation when the NaCl concentration was higher than 0.3%. The trapped energy flux per RC (TR0/CS0), electron transport flux per RC (ET0/CS0), density of RCs (RC/CS0), and yield or flux ratio (psi(0) or phi(E0)) decreased, but the absorption flux per CS (ABS/CS0) and the K phase (W(k)) and J phase (V) in the O-J-I-P chlorophyll fluorescence induction curves increased distinctly, indicating that NaCl stress damaged the leaf oxygen-evolving complex (OEC), donor sides, and PS II reaction centers. When the NaCl concentration reached 0.3%, the maximum photochemical efficiency (F(v)/F(m)) and performance index (PI(ABS)) decreased 17.7% and 36.6%, respectively, as compared with the control.

  18. Seasonal and intraspecific variability of chlorophyll fluorescence, pigmentation and growth of Pinus ponderosa subjected to elevated CO{sub 2}

    SciTech Connect

    Houpis, J.L.J.; Anschel, D.; Pushnik, J.C.; Demaree, R.S.; Anderson, P.D.

    1994-12-01

    Atmospheric CO{sub 2}2 is expected to double in the next century, and these increases will have substantial impact on forest ecosystems. However, the database on the effects of elevated CO{sub 2} on forests is limited, and the extent of intraspecific variability remains unknown. We are investigating the effects of elevated CO{sub 2} on the intraspecific variability of quantum yield (as measured through chlorophyll fluorescence Fv/Fm ratio) and pigmentation, and how these are correlated to variability in growth. Four-year-old Pinus ponderosa seedlings were obtained from nine different sources across California. These seedlings were grown in standard outdoor exposure chambers for sixteen months at either ambient levels of CO{sub 2}, ambient+175ppm CO{sub 2}, or ambient+350ppm CO{sub 2}. The seedlings were periodically measured for growth, pigmentation, and chlorophyll fluorescence. The results showed a variable growth response of the nine sources during all measurement periods. Increasing CO{sub 2} resulted in a decrease in Fv/Fm among sources ranging from {minus}2.1% to {minus}23.2% in February, and 3.1% to {minus}12.5% in June. The source that had the best growth throughout the study, also had a minimal reduction in quantum yield (Fv/Fm) in the presence of elevated CO{sub 2}. For the seedlings of fastest growing sources, the correspondence between total growth and chlorophyll fluorescence was strongest during the February measurement period. Our results also showed a significant reduction in pigmentation due to increased CO{sub 2}. There are at least three explanations for the different responses during each measurement periods. First, the trees could be adapting favorably to increasing CO{sub 2}. Secondly, 1993 needles could be under less physiological stress than the current year needles. Third, there is a seasonal effect dependent upon temperature or light which is influencing the Fv/Fm ratio and pigmentation.

  19. A retrieval algorithm to evaluate the Photosystem I and Photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures.

    PubMed

    Palombi, Lorenzo; Cecchi, Giovanna; Lognoli, David; Raimondi, Valentina; Toci, Guido; Agati, Giovanni

    2011-09-01

    A new computational procedure to resolve the contribution of Photosystem I (PSI) and Photosystem II (PSII) to the leaf chlorophyll fluorescence emission spectra at room temperature has been developed. It is based on the Principal Component Analysis (PCA) of the leaf fluorescence emission spectra measured during the OI photochemical phase of fluorescence induction kinetics. During this phase, we can assume that only two spectral components are present, one of which is constant (PSI) and the other variable in intensity (PSII). Application of the PCA method to the measured fluorescence emission spectra of Ficus benjamina L. evidences that the temporal variation in the spectra can be ascribed to a single spectral component (the first principal component extracted by PCA), which can be considered to be a good approximation of the PSII fluorescence emission spectrum. The PSI fluorescence emission spectrum was deduced by difference between measured spectra and the first principal component. A single-band spectrum for the PSI fluorescence emission, peaked at about 735 nm, and a 2-band spectrum with maxima at 685 and 740 nm for the PSII were obtained. A linear combination of only these two spectral shapes produced a good fit for any measured emission spectrum of the leaf under investigation and can be used to obtain the fluorescence emission contributions of photosystems under different conditions. With the use of our approach, the dynamics of energy distribution between the two photosystems, such as state transition, can be monitored in vivo, directly at physiological temperatures. Separation of the PSI and PSII emission components can improve the understanding of the fluorescence signal changes induced by environmental factors or stress conditions on plants.

  20. FluorWPS: A Monte Carlo ray-tracing model to compute sun-induced chlorophyll fluorescence of three-dimensional canopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A model to simulate radiative transfer (RT) of sun-induced chlorophyll fluorescence (SIF) of three-dimensional (3-D) canopy, FluorWPS, was proposed and evaluated. The inclusion of fluorescence excitation was implemented with the ‘weight reduction’ and ‘photon spread’ concepts based on Monte Carlo ra...

  1. Heavy metal stress detection and monitoring via LED-induced chlorophyll fluorescence analysis of Zea mays L. seedlings aimed at polluted soil phytoremediation

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; da Silva, Airon José; do Nascimento, Clístenes W. A.

    2012-03-01

    Chlorophyll fluorescence spectroscopy is employed to detect and study the time evolution of metal stress of Zea mays L. seedlings aiming polluted soil phytoremediation. The chlorophyll fluorescence spectra of intact leaves are analyzed using 405 nm LED excitation. Red (Fr) and far-red (FFr) emissions around 685 nm and 735 nm, respectively, are examined as a function of the heavy metal concentration. The fluorescence ratio Fr/FFr was employed to monitor the effect of heavy metal upon the physiological state of the plants before signs of visual stress became apparent. The chlorophyll fluorescence analysis permitted detection and evaluation of the damage caused by heavy metal soil contamination in the early stages of the plants growing process, which is not feasible using conventional in vitro spectral analysis.

  2. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence.

    PubMed

    Vítek, Petr; Novotná, Kateřina; Hodaňová, Petra; Rapantová, Barbora; Klem, Karel

    2017-01-05

    The effects of herbicides from three mode-of-action groups - inhibitors of protoporphyrinogen oxidase (carfentrazone-ethyl), inhibitors of carotenoid biosynthesis (mesotrione, clomazone, and diflufenican), and inhibitors of acetolactate synthase (amidosulfuron) - were studied in sunflower plants (Helianthus annuus). Raman spectroscopy, chlorophyll fluorescence (ChlF) imaging, and UV screening of ChlF were combined to evaluate changes in pigment composition, photosystem II (PSII) photochemistry, and non-photochemical quenching in plant leaves 6d after herbicide application. The Raman signals of phenolic compounds, carotenoids, and chlorophyll were evaluated and differences in their intensity ratios were observed. Strongly augmented relative content of phenolic compounds was observed in the case of amidosulfuron-treated plants, with a simultaneous decrease in the chlorophyll/carotenoid intensity ratio. The results were confirmed by in vivo measurement of flavonols using UV screening of ChlF. Herbicides from the group of carotenoid biosynthesis inhibitors significantly decreased both the maximum quantum efficiency of PSII and non-photochemical quenching as determined by ChlF. Resonance Raman imaging (mapping) data with high resolution (150,000-200,000 spectra) are presented, showing the distribution of carotenoids in H. annuus leaves treated by two of the herbicides acting as inhibitors of carotenoid biosynthesis (clomazone or diflufenican). Clear signs were observed that the treatment induced carotenoid depletion within sunflower leaves. The depletion spatial pattern registered differed depending on the type of herbicide applied.

  3. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence

    NASA Astrophysics Data System (ADS)

    Vítek, Petr; Novotná, Kateřina; Hodaňová, Petra; Rapantová, Barbora; Klem, Karel

    2017-01-01

    The effects of herbicides from three mode-of-action groups - inhibitors of protoporphyrinogen oxidase (carfentrazone-ethyl), inhibitors of carotenoid biosynthesis (mesotrione, clomazone, and diflufenican), and inhibitors of acetolactate synthase (amidosulfuron) - were studied in sunflower plants (Helianthus annuus). Raman spectroscopy, chlorophyll fluorescence (ChlF) imaging, and UV screening of ChlF were combined to evaluate changes in pigment composition, photosystem II (PSII) photochemistry, and non-photochemical quenching in plant leaves 6 d after herbicide application. The Raman signals of phenolic compounds, carotenoids, and chlorophyll were evaluated and differences in their intensity ratios were observed. Strongly augmented relative content of phenolic compounds was observed in the case of amidosulfuron-treated plants, with a simultaneous decrease in the chlorophyll/carotenoid intensity ratio. The results were confirmed by in vivo measurement of flavonols using UV screening of ChlF. Herbicides from the group of carotenoid biosynthesis inhibitors significantly decreased both the maximum quantum efficiency of PSII and non-photochemical quenching as determined by ChlF. Resonance Raman imaging (mapping) data with high resolution (150,000-200,000 spectra) are presented, showing the distribution of carotenoids in H. annuus leaves treated by two of the herbicides acting as inhibitors of carotenoid biosynthesis (clomazone or diflufenican). Clear signs were observed that the treatment induced carotenoid depletion within sunflower leaves. The depletion spatial pattern registered differed depending on the type of herbicide applied.

  4. Sunlight induced chlorophyll fluorescence in the near-infrared spectral region in natural waters: Interpretation of the narrow reflectance peak around 761 nm

    NASA Astrophysics Data System (ADS)

    Lu, Yingcheng; Li, Linhai; Hu, Chuanmin; Li, Lin; Zhang, Minwei; Sun, Shaojie; Lv, Chunguang

    2016-07-01

    Sunlight induced chlorophyll a fluorescence (SICF) can be used as a probe to estimate chlorophyll a concentrations (Chl) and infer phytoplankton physiology. SICF at ˜685 nm has been widely applied to studies of natural waters. SICF around 740 nm has been demonstrated to cause a narrow reflectance peak at ˜761 nm in the reflectance spectra of terrestrial vegetation. This narrow peak has also been observed in the reflectance spectra of natural waters, but its mechanism and applications have not yet been investigated and it has often been treated as measurement artifacts. In this study, we aimed to interpret this reflectance peak at ˜761 nm and discuss its potential applications for remote monitoring of natural waters. A derivative analysis of the spectral reflectance suggests that the 761 nm peak is due to SICF. It was also found that the fluorescence line height (FLH) at 761 nm significantly and linearly correlates with Chl. FLH(761 nm) showed a tighter relationship with Chl than the relationship between FLH(˜685 nm) and Chl mainly due to weaker perturbations by nonalgal materials around 761 nm. While it is not conclusive, a combination of FLH(761 nm) and FLH(˜685 nm) might have some potentials to discriminate cyanobacteria from other phytoplankton due to their different fluorescence responses at the two wavelengths. It was further found that reflectance spectra with a 5 nm spectral resolution are adequate to capture the spectral SICF feature at ˜761 nm. These preliminary results suggest that FLH(761 nm) need to be explored more for future applications in optically complex coastal and inland waters.

  5. The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint.

    PubMed

    Papageorgiou, George C; Tsimilli-Michael, Merope; Stamatakis, Kostas

    2007-01-01

    The light-induced/dark-reversible changes in the chlorophyll (Chl) a fluorescence of photosynthetic cells and membranes in the mus-to-several min time window (fluorescence induction, FI; or Kautsky transient) reflect quantum yield changes (quenching/de-quenching) as well as changes in the number of Chls a in photosystem II (PS II; state transitions). Both relate to excitation trapping in PS II and the ensuing photosynthetic electron transport (PSET), and to secondary PSET effects, such as ion translocation across thylakoid membranes and filling or depletion of post-PS II and post-PS I pools of metabolites. In addition, high actinic light doses may depress Chl a fluorescence irreversibly (photoinhibitory lowering; q(I)). FI has been studied quite extensively in plants an algae (less so in cyanobacteria) as it affords a low resolution panoramic view of the photosynthesis process. Total FI comprises two transients, a fast initial (OPS; for Origin, Peak, Steady state) and a second slower transient (SMT; for Steady state, Maximum, Terminal state), whose details are characteristically different in eukaryotic (plants and algae) and prokaryotic (cyanobacteria) oxygenic photosynthetic organisms. In the former, maximal fluorescence output occurs at peak P, with peak M lying much lower or being absent, in which case the PSMT phases are replaced by a monotonous PT fluorescence decay. In contrast, in phycobilisome (PBS)-containing cyanobacteria maximal fluorescence occurs at M which lies much higher than peak P. It will be argued that this difference is caused by a fluorescence lowering trend (state 1 --> 2 transition) that dominates the FI pattern of plants and algae, and correspondingly by a fluorescence increasing trend (state 2 --> 1 transition) that dominates the FI of PBS-containing cyanobacteria. Characteristically, however, the FI pattern of the PBS-minus cyanobacterium Acaryochloris marina resembles the FI patterns of algae and plants and not of the PBS

  6. Chlorophyll a fluorescence induction (Kautsky curve) in a Venus flytrap (Dionaea muscipula) leaf after mechanical trigger hair irritation.

    PubMed

    Vredenberg, Wim; Pavlovič, Andrej

    2013-02-15

    This paper describes experiments on transient changes in chlorophyll a fluorescence in traps of the carnivorous plant Venus flytrap (Dionaea muscipula) that occur in association with mechanical stimulation of trigger hairs and propagation of action potentials (APs). The experiments show the following reproducible effects of APs on the fluorescence induction (Kautsky-, or OJIPSMT curve) in a 100 s low intensity light pulse (i) no change in the OJ phase attributed to release of photochemical quenching, (ii) a small enhancement, if at all of increase in the thermal JIP phase, (iii) a two- to threefold deceleration of the fluorescence decline (quenching) during the PSMT phase in the 2-100 s time range, and (iv) a transient 15-50% increase in variable fluorescence within ~20 s under steady state light condition with, after ~80 s, a 10% undershoot that reverses in several tens of seconds to the original steady state. The results are discussed in terms of a hypothesis that the fluorescence decline during the SMT phase of the Kautsky induction curve, attributed to NPQ, is caused by the Δμ(H+)-driven increase in proton conductance of the CF(o) channel of the ATPase during its activation. A signal-transducing role of Ca(2+) is suggested.

  7. Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance.

    PubMed

    Oxborough, Kevin

    2004-05-01

    The development of chlorophyll (Chl) a fluorescence imaging systems has greatly increased the versatility of Chl a fluorometry as a non-invasive technique for the investigation of photosynthesis in plants and algae. For example, systems that image at the microscopic level have made it possible to measure PSII photochemical efficiencies from chloroplasts within intact leaves and from individual algal cells within mixed populations, while systems that image over much larger areas have been used to investigate heterogeneous patterns of photosynthetic performance across leaves and in screening programmes that image tens or even hundreds of plants simultaneously. In addition, it is now practical to use fluorescence imaging systems as real-time, multi-channel fluorometers, which can be used to record continuous fluorescence traces from multiple leaves, plants, or algal cells. This paper discusses some of the theoretical and practical issues associated with the imaging of Chl a fluorescence and with Chl a fluorometry in general. This discussion includes a review of the most commonly used Chl a fluorescence parameters.

  8. Spectral analysis on origination of the bands at 437 nm and 475.5 nm of chlorophyll fluorescence excitation spectrum in Arabidopsis chloroplasts.

    PubMed

    Zeng, Lizhang; Wang, Yongqiang; Zhou, Jun

    2016-05-01

    Chlorophyll fluorescence has been often used as an intrinsic optical molecular probe to study photosynthesis. In this study, the origin of bands at 437 and 475.5 nm in the chlorophyll fluorescence excitation spectrum for emission at 685 nm in Arabidopsis chloroplasts was investigated using various optical analysis methods. The results revealed that this fluorescence excitation spectrum was related to the absorption characteristics of pigment molecules in PSII complexes. Moreover, the excitation band centred at 475.5 nm had a blue shift, but the excitation band at 437 nm changed relatively less due to induction of non-photochemical quenching (NPQ). Furthermore, fluorescence emission spectra showed that this blue shift occurred when excitation energy transfer from both chlorophyll b (Chl b) and carotenoids (Cars) to chlorophyll a (Chl a) was blocked. These results demonstrate that the excitation band at 437 nm was mainly contributed by Chl a, while the excitation band at 475.5 nm was mainly contributed by Chl b and Cars. The chlorophyll fluorescence excitation spectrum, therefore, could serve as a useful tool to describe specific characteristics of light absorption and energy transfer between light-harvesting pigments.

  9. Linking Leaf Chlorophyll Fluorescence Properties to Physiological Responses for Stress Detection in Coastal Plant Species

    DTIC Science & Technology

    2007-01-01

    conductance, photosynthesis, xylem pressure potential (c) and fluorescence were conducted following treatment. The onset of stress began at 2 g l21 for M...stress were induced and measurements of stomatal conductance, photosynthesis, xylem pressure potential (c) and fluorescence were conducted following...were induced and measurements of stomatal conductance, photosynthesis, xylem pressure potential (c) and fluorescence were conducted following

  10. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L.

    PubMed

    Hazrati, Saeid; Tahmasebi-Sarvestani, Zeinolabedin; Modarres-Sanavy, Seyed Ali Mohammad; Mokhtassi-Bidgoli, Ali; Nicola, Silvana

    2016-09-01

    Aloe vera L. is one of the most important medicinal plants in the world. In order to determine the effects of light intensity and water deficit stress on chlorophyll (Chl) fluorescence and pigments of A. vera, a split-plot in time experiment was laid out in a randomized complete block design with four replications in a research greenhouse. The factorial combination of three light intensities (50, 75 and 100% of sunlight) and four irrigation regimes (irrigation after depleting 20, 40, 60 and 80% of soil water content) were considered as main factors. Sampling time was considered as sub factor. The first, second and third samplings were performed 90, 180 and 270 days after imposing the treatments, respectively. The results demonstrated that the highest light intensity and the severe water stress decreased maximum fluorescence (Fm), variable fluorescence (Fv)/Fm, quantum yield of PSII photochemistry (ФPSII), Chl and photochemical quenching (qP) but increased non-photochemical quenching (NPQ), minimum fluorescence (F0) and Anthocyanin (Anth). Additionally, the highest Fm, Fv/Fm, ФPSII and qP and the lowest NPQ and F0 were observed when 50% of sunlight was blocked and irrigation was done after 40% soil water depletion. Irradiance of full sunlight and water deficit stress let to the photoinhibition of photosynthesis, as indicated by a reduced quantum yield of PSII, ФPSII, and qP, as well as higher NPQ. Thus, chlorophyll florescence measurements provide valuable physiological data. Close to half of total solar radiation and irrigation after depleting 40% of soil water content were selected as the most efficient treatments.

  11. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements.

    PubMed

    Kalaji, Hazem M; Oukarroum, Abdallah; Alexandrov, Vladimir; Kouzmanova, Margarita; Brestic, Marian; Zivcak, Marek; Samborska, Izabela A; Cetner, Magdalena D; Allakhverdiev, Suleyman I; Goltsev, Vasilij

    2014-08-01

    The impact of some macro (Ca, S, Mg, K, N, P) and micro (Fe) nutrients deficiency on the functioning of the photosynthetic machinery in tomato (Solanum lycopersicum L.) and maize (Zea mays L.) plants grown in hydroponic cultures were investigated. Plants grown on a complete nutrient solution (control) were compared with those grown in a medium, which lacked one of macro- or microelements. The physiological state of the photosynthetic machinery in vivo was analysed after 14-days of deficient condition by the parameters of JIP-test based on fast chlorophyll a fluorescence records. In most of the nutrient-deficient samples, the decrease of photochemical efficiency, increase in non-photochemical dissipation and decrease of the number of active photosystem II (PSII) reaction centres were observed. However, lack of individual nutrients also had nutrient-specific effects on the photochemical processes. In Mg and Ca-deficient plants, the most severe decrease in electron donation by oxygen evolving complex (OEC) was indicated. Sulphur deficiency caused limitation of electron transport beyond PSI, probably due to decrease in the PSI content or activity of PSI electron acceptors; in contrary, Ca deficiency had an opposite effect, where the PSII activity was affected much more than PSI. Despite the fact that clear differences in nutrient deficiency responses between tomato and maize plants were observed, our results indicate that some of presented fluorescence parameters could be used as fluorescence phenotype markers. The principal component analysis of selected JIP-test parameters was presented as a possible species-specific approach to identify/predict the nutrient deficiency using the fast chlorophyll fluorescence records.

  12. O2-dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence.

    PubMed

    Schreiber, U; Neubauer, C

    1990-09-01

    Recent progress in chlorophyll fluorescence research is reviewed, with emphasis on separation of photochemical and non-photochemical quenching coefficients (qP and qN) by the 'saturation pulse method'. This is part of an introductory talk at the Wageningen Meeting on 'The use of chlorophyll fluorescence and other non-invasive techniques in plant stress physiology'. The sequence of events is investigated which leads to down-regulation of PS II quantum yield in vivo, expressed in formation of qN. The role of O2-dependent electron flow for ΔpH- and qN-formation is emphasized. Previous conclusions on the rate of 'pseudocyclic' transport are re-evaluated in view of high ascorbate peroxidase activity observed in intact chloroplasts. It is proposed that the combined Mehler-Peroxidase reaction is responsible for most of the qN developed when CO2-assimilation is limited. Dithiothreitol is shown to inhibit part of qN-formation as well as peroxidase-induced electron flow. As to the actual mechanism of non-photochemical quenching, it is demonstrated that quenching is favored by treatments which slow down reactions at the PS II donor side. The same treatments are shown to stimulate charge recombination, as measured via 50 μs luminescence. It is suggested that also in vivo internal thylakoid acidification leads to stimulation of charge recombination, although on a more rapid time scale. A unifying model is proposed, incorporating reaction center and antenna quenching, with primary control of ΔpH at the PS II reaction center, involving radical pair spin transition and charge recombination to the triplet state in a first quenching step. In a second step, triplet excitation is trapped by zeaxanthin (if present) which in its triplet excited state causes additional quenching of singlet excited chlorophyll.

  13. Analysis of chlorophyll fluorescence spectra for the monitoring of Cd toxicity in a bio-energy crop (Jatropha curcas).

    PubMed

    Marques, Marise Conceição; do Nascimento, Clístenes Williams Araújo

    2013-10-05

    The vegetation of metal-contaminated soils using non-edible crops can be a safe and economical technique for Cd immobilization and the remediation of contaminated sites. Jatropha (Jatropha curcas L.) exhibits a relative tolerance to heavy metals and potential for biofuel production. The study was performed to monitor the Cd-induced alterations in jatropha plants by X-ray chlorophyll fluorescence. The Cd effects on photosynthetic pigments, the mineral composition of plants, defense enzyme activity and soluble proteins were also studied. Plants were grown for 20days in a nutrient solution with five Cd contents: 5, 10, 20, 30 and 40μmolL(-1); a control with no Cd addition was also monitored. The analysis of the chlorophyll fluorescence spectra allowed detecting alterations caused by Cd toxicity in the jatropha plants. The mineral composition of the plants was affected by the Cd doses; however, the Fe and Mg contents were not significantly reduced, which most likely improved the effects on the contents of the photosynthetic pigments. Because of its relative tolerance to Cd, Jatropha curcas may be a promising species to revegetate Cd-contaminated sites. Considering the long period needed to phytoremediate soils, the combination of remediation with bioenergy production could be an attractive option.

  14. [Effects of groundwater level on chlorophyll fluorescence characteristics of Tamarix hispida in lower reaches of Tarim River].

    PubMed

    Zhu, Cheng-gang; Li, Wei-hong; Ma, Jian-xin; Ma, Xiao-dong

    2010-07-01

    Based on the monitoring data of groundwater level at the typical sections in lower reaches of Tarim River, three survey plots nearby the ecological monitoring wells with groundwater depths > 6 m were selected to investigate the chlorophyll fluorescence characteristics of Tamarix hispida and its photosynthetic activity of PSII under effects of different groundwater depths. With increasing groundwater depth, the chlorophyll fluorescence parameters such as actual photochemical efficiency of PSII in the light (phi(PSII)), electron transport rate (ETR), and photochemistry quenching (q(p)) of T. hispida decreased, while the non-photochemistry quenching (q(N), NPQ) and the yield for dissipation by down-regulation (Y(NPQ)) increased remarkably, and the maximal photochemical efficiency of PSII (Fv/Fm) maintained an optimum value. All the results suggested that the PSII photosynthetic activity of T. hispida under drought stress declined with increasing groundwater depth, and the greater excess energy could result in more risk of photo-inhibition. However, the good adaptability and drought tolerance of T. hispida could make its PSII not seriously damaged, though the drought stress actually existed.

  15. A Label-Free Microfluidic Biosensor for Activity Detection of Single Microalgae Cells Based on Chlorophyll Fluorescence

    PubMed Central

    Wang, Junsheng; Sun, Jinyang; Song, Yongxin; Xu, Yongyi; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2013-01-01

    Detection of living microalgae cells is very important for ballast water treatment and analysis. Chlorophyll fluorescence is an indicator of photosynthetic activity and hence the living status of plant cells. In this paper, we developed a novel microfluidic biosensor system that can quickly and accurately detect the viability of single microalgae cells based on chlorophyll fluorescence. The system is composed of a laser diode as an excitation light source, a photodiode detector, a signal analysis circuit, and a microfluidic chip as a microalgae cell transportation platform. To demonstrate the utility of this system, six different living and dead algae samples (Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordiformis, Pyramidomonas delicatula and Dunaliella salina) were tested. The developed biosensor can distinguish clearly between the living microalgae cells and the dead microalgae cells. The smallest microalgae cells that can be detected by using this biosensor are 3 μm ones. Even smaller microalgae cells could be detected by increasing the excitation light power. The developed microfluidic biosensor has great potential for in situ ballast water analysis. PMID:24287532

  16. Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll

    NASA Astrophysics Data System (ADS)

    Antoine, David; André, Jean-Michel; Morel, André

    A fast method has been proposed [Antoine and Morel, this issue] to compute the oceanic primary production from the upper ocean chlorophyll-like pigment concentration, as it can be routinely detected by a spaceborne ocean color sensor. This method is applied here to the monthly global maps of the photosynthetic pigments that were derived from the coastal zone color scanner (CZCS) data archive [Feldman et al., 1989]. The photosynthetically active radiation (PAR) field is computed from the astronomical constant and by using an atmospheric model, thereafter combined with averaged cloud information, derived from the International Satellite Cloud Climatology Project (ISCCP). The aim is to assess the seasonal evolution, as well as the spatial distribution of the photosynthetic carbon fixation within the world ocean and for a ``climatological year,'' to the extent that both the chlorophyll information and the cloud coverage statistics actually are averages obtained over several years. The computed global annual production actually ranges between 36.5 and 45.6 Gt C yr-1 according to the assumption which is made (0.8 or 1) about the ratio of active-to-total pigments (recall that chlorophyll and pheopigments are not radiometrically resolved by CZCS). The relative contributions to the global productivity of the various oceans and zonal belts are examined. By considering the hypotheses needed in such computations, the nature of the data used as inputs, and the results of the sensitivity studies, the global numbers have to be cautiously considered. Improving the reliability of the primary production estimates implies (1) new global data sets allowing a higher temporal resolution and a better coverage, (2) progress in the knowledge of physiological responses of phytoplankton and therefore refinements of the time and space dependent parameterizations of these responses.

  17. Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field.

    PubMed

    Hallik, L; Niinemets, U; Kull, O

    2012-01-01

    Acclimation of foliage photosynthetic properties occurs with varying time kinetics, but structural, chemical and physiological factors controlling the kinetics of acclimation are poorly understood, especially in field environments. We measured chlorophyll fluorescence characteristics, leaf total carotenoid (Car), chlorophyll (Chl) and nitrogen (N) content and leaf dry mass per area (LMA) along vertical light gradients in natural canopies of the herb species, Inula salicina and Centaurea jacea, and tree species, Populus tremula and Tilia cordata, in the middle of the growing season. Presence of stress was assessed on the basis of night measurements of chlorophyll fluorescence. Our aim was to compare the light acclimation of leaf traits, which respond to light availability at long (LMA and N), medium (Chl a/b ratio, Car/Chl ratio) and short time scales (fluorescence characteristics). We found that light acclimation of nitrogen content per unit leaf area (N(area)), chlorophyll content per unit dry mass (Chl(mass)) and Chl/N ratio were related to modifications in LMA. The maximum PSII quantum yield (F(v) /F(m)) increased with increasing growth irradiance in I. salicina and P. tremula but decreased in T. cordata. Leaf growth irradiance, N content and plant species explained the majority of variability in chlorophyll fluorescence characteristics, up to 90% for steady-state fluorescence yield, while the contribution of leaf total carotenoid content was generally not significant. Chlorophyll fluorescence characteristics did not differ strongly between growth forms, but differed among species within a given growth form. These data highlight that foliage acclimation to light is driven by interactions between traits with varying time kinetics.

  18. Herbivory of wild Manduca sexta causes fast down-regulation of photosynthetic efficiency in Datura wrightii: an early signaling cascade visualized by chlorophyll fluorescence.

    PubMed

    Barron-Gafford, Greg A; Rascher, Uwe; Bronstein, Judith L; Davidowitz, Goggy; Chaszar, Brian; Huxman, Travis E

    2012-09-01

    Plants experiencing herbivory suffer indirect costs beyond direct loss of leaf area, but differentially so based on the herbivore involved. We used a combination of chlorophyll fluorescence imaging and gas exchange techniques to quantify photosynthetic performance, the efficiency of photochemistry, and heat dissipation to examine immediate and longer-term physiological responses in the desert perennial Datura wrightii to herbivory by tobacco hornworm, Manduca sexta. Herbivory by colony-reared larvae yielded no significant reduction in carbon assimilation, whereas herbivory by wild larvae induced a fast and spreading down-regulation of photosynthetic efficiency, resulting in significant losses in carbon assimilation in eaten and uneaten leaves. We found both an 89 % reduction in net photosynthetic rates in herbivore-damaged leaves and a whole-plant response (79 % decrease in undamaged leaves from adjacent branches). Consequently, herbivory costs are higher than previously estimated in this well-studied plant-insect interaction. We used chlorophyll fluorescence imaging to elucidate the mechanisms of this down-regulation. Quantum yield decreased up to 70 % in a small concentric band surrounding the feeding area within minutes of the onset of herbivory. Non-photochemical energy dissipation by the plant to avoid permanent damage was elevated near the wound, and increased systematically in distant areas of the leaf away from the wound over subsequent hours. Together, the results underscore not only potential differences between colony-reared and wild-caught herbivores in experimental studies of herbivory but also the benefits of quantifying physiological responses of plants in unattacked leaves.

  19. Linking chlorophyll fluorescence, hyperspectral reflectance and plant physiological responses to detect stress using the photochemical reflectance index (PRI) (Invited)

    NASA Astrophysics Data System (ADS)

    Naumann, J. C.; Young, D.; Anderson, J.

    2009-12-01

    The concept of using vegetation as sentinels to indicate natural or anthropogenic stress is not new and could potentially provide an ideal mechanism for large-scale detection. Advances in fluorescence spectroscopy and reflectance-derived fluorescence have made possible earlier detection of stress in plants, especially before changes in chlorophyll content are visible. Our studies have been used to fuse leaf fluorescence and reflectance characteristics to remotely sense and rapidly detect vegetation stress and terrain characteristics. Laboratory studies have indicated that light-adapted fluorescence (ΔF/F‧m) measurements have been successful in all experiments at detecting stress from flooding, salinity, drought, herbicide and TNT contamination prior to visible signs of damage. ΔF/F‧m was related to plant physiological status in natural stress conditions, as seen in the relationships with stomatal conductance and photosynthesis The photochemical reflectance index (PRI) and other reflectance ratios were effective at tracking changes in ΔF/F‧m at the leaf and canopy-level scales. At the landscape-level, chlorophyll fluorescence and airborne reflectance imagery were used to evaluate spatial variations in stress in the dominant shrub on a barrier island, Myrica cerifera, during a severe drought and compared to an extremely wet year. Measurements of relative water content and the water band index (WBI970) indicated that water stress did not vary across the island. In contrast, there were significant differences in tissue chlorides across sites. Using PRI we were able to detect salinity stress across the landscape. PRI did not differ between wet and dry years. There was a positive relationship between PRI and ΔF/F‧m for M. cerifera (r2 = 0.79). The normalized difference vegetation index (NDVI), the chlorophyll index (CI) and WBI970 were higher during the wet summer but varied little across the island. PRI was not significantly related to NDVI, suggesting that

  20. [Effects of foliar spraying methyl jasmonate on leaf chlorophyll fluorescence characteristics of flue-cured tobacco seedlings under drought and re-watering].

    PubMed

    Jin, Wei-Wei; Wang, Yan; Zhang, Hui-Hui; Jiao, Zhi-Li; Wang, Peng; Li, Xin; Yue, Bing-Bing; Sun, Guang-Yu

    2011-12-01

    Taking the flue-cured tobacco variety of "Longjiang 911" from Heilongjiang Province of Northeast China as test material, a pot experiment was conducted to study the effects of foliar spraying different concentration methyl jasmonate (MeJA) on the seedlings leaf chlorophyll content and chlorophyll fluorescence characteristics during the transplantation stage under drought and re-watering. Under drought condition, the leaf chlorophyll content, maximum fluorescence (F(m)), potential activities of PSII (F(v)/F(o)), maximum photochemical efficiency (F(v)/F(m)), actual photochemical efficiency (psi(PSII)), apparent electron transport rate (ETR), and photochemical quenching (q(P)) decreased, but the minimal fluorescence (F(o)) and non-photochemical quenching (q(N)) increased. Foliar spraying 0.2 and 0.5 mmol x L(-1) of MeJA had obvious positive effects in mitigating the decrease of F(v)/F(m), F(v)/F(o), phi(PSII), ETR, and q(P) and the increase of q(N) under drought stress, while spraying 1.0 mmol x L(-1) of MeJA had lesser effects. After re-watering, all the leaf chlorophyll fluorescence indices had obvious recovery, and spraying MeJA made the indices more close to the original levels before drought. It was suggested that foliar spraying MeJA could alleviate the degradation of chlorophyll and play definite role in protecting the PSII under drought stress, decrease the damage of drought stress on the seedlings, promote the rapid MeJA recovery of chlorophyll fluorescence parameters after re-watering, and thus, ensure the regrowth of flue-cured tobacco seedlings.

  1. Non-destructive estimation of foliar chlorophyll and carotenoid contents: Focus on informative spectral bands

    NASA Astrophysics Data System (ADS)

    Kira, Oz; Linker, Raphael; Gitelson, Anatoly

    2015-06-01

    Leaf pigment content provides valuable insight into the productivity, physiological and phenological status of vegetation. Measurement of spectral reflectance offers a fast, nondestructive method for pigment estimation. A number of methods were used previously for estimation of leaf pigment content, however, spectral bands employed varied widely among the models and data used. Our objective was to find informative spectral bands in three types of models, vegetation indices (VI), neural network (NN) and partial least squares (PLS) regression, for estimating leaf chlorophyll (Chl) and carotenoids (Car) contents of three unrelated tree species and to assess the accuracy of the models using a minimal number of bands. The bands selected by PLS, NN and VIs were in close agreement and did not depend on the data used. The results of the uninformative variable elimination PLS approach, where the reliability parameter was used as an indicator of the information contained in the spectral bands, confirmed the bands selected by the VIs, NN, and PLS models. All three types of models were able to accurately estimate Chl content with coefficient of variation below 12% for all three species with VI showing the best performance. NN and PLS using reflectance in four spectral bands were able to estimate accurately Car content with coefficient of variation below 14%. The quantitative framework presented here offers a new way of estimating foliar pigment content not requiring model re-parameterization for different species. The approach was tested using the spectral bands of the future Sentinel-2 satellite and the results of these simulations showed that accurate pigment estimation from satellite would be possible.

  2. Chlorophyll fluorescence quenching during ozone exposure of leaves of Phaseolus vulgaris (pinto)

    SciTech Connect

    Guralnick, L.J. ); Miller, R.; Heath, R.L. )

    1990-05-01

    During ozone exposure, observations have noted an initial decrease in CO{sub 2} uptake followed by a decrease in stomatal conductance. We examined this response utilizing the technique of fluorescence quenching. Fourteen day old plants were exposed to 0.3 ul/l ozone for 1 hour. Fluorescence quenching was monitored using the Hanstech modulated fluorescence system. This enabled us to measure changes in photochemical quenching (qQ) and non-photochemical quenching (qE) in control and ozone treated plants. Results have indicated no differences in qQ and qE between ozone treated and control plants. We are initiating further studies utilizing different ozone levels.

  3. Effects of sand burial on biomass, chlorophyll fluorescence and extracellular polysaccharides of man-made cyanobacterial crusts under experimental conditions.

    PubMed

    Wang, WeiBo; Yang, CuiYun; Tang, DongShan; Li, DunHai; Liu, YongDing; Hu, ChunXiang

    2007-08-01

    Soil cyanobacterial crusts occur throughout the world, especially in the semiarid and arid regions. It always encounters sand burial, which is an important feature of mobile sand dunes. A greenhouse study was conducted to determine the effects of sand burial on biomass, chlorophyll fluorescence and extracellular polysaccharides of man-made cyanobacterial crusts in six periods of time (0, 5, 10, 15, 20 and 30 d after burying) and at five depths (0, 0.2, 0.5, 1 and 2 cm). The results indicated that with the increase of the burial time and burial depth extracellular polysaccharides content and Fv/Fm decreased correspondingly and there were no significant differences between 20 and 30 burial days under different burial depths. The degradation of chlorophyll a content appeared only at 20 and 30 burial days and there was also no significant difference between them under different burial depths. It was also observed a simultaneous decrease of the values of the Fv/Fm and the content of extracellular polysaccharides happened in the crusted cyanobacterium Microcoleus vaginatus Gom. It may suggest that there exists a relationship between extracellular polysaccharides and recovery of the activity of photosystem II (PS II) after rehydration.

  4. Chlorophyll a and NADPH fluorescence lifetimes in the microalgae Haematococcus pluvialis (Chlorophyceae) under normal and astaxanthin-accumulating conditions.

    PubMed

    Kristoffersen, Arne S; Svensen, Øyvind; Ssebiyonga, Nicolausi; Erga, Svein R; Stamnes, Jakob J; Frette, Øyvind

    2012-10-01

    In vivo fluorescence lifetimes of chlorophyll-a (chl-a) and nicotinamide adenine dinucleotide phosphate (NADPH) were obtained from the green microalgae Haematococcus pluvialis under normal and nutrient-stressed conditions (green stage and red stage, respectively), using two-photon excitation provided by a laser generating pulses in the femtosecond range, and a Leica microscope setup. Analysis of the fluorescence lifetime decay curve revealed two separate lifetime components in all our measurements. A short-lifetime component for chl-a of ~250 ps was completely dominant, contributing more than 90% of overall intensity in both green-stage and red-stage cells. Green-stage cells inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea (DCMU) displayed a significant chl-a lifetime increase for the short component. However, this was not the case for red-stage cells, in which DCMU inhibition did not significantly affect the lifetime. For green-stage cells, we found a short NADPH (free) lifetime component at ~150 ps to be completely dominating, but for red-stage cells, a longer component (protein bound) at ~3 ns contributed as much as 35% of the total intensity. We hypothesize that the long lifetime component of NADPH is connected to photoprotection in the cells and coupled to production of astaxanthin. DCMU does not seem to affect the fluorescence lifetimes of NADPH.

  5. Effects of UVB radiation on Photosynthesis Activity of Wolffia arrhiza as Probed by Chlorophyll Fluorescence Transient

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hao, Zongjie; Chen, Kun; Liu, Yongding

    UV radiation is one major environmental stress for growth of Wolffia arrhiza which is regarded as a good candidate producer for establishing CELSS during extraterrestrial colonization and spaceflight. In this study, we found that UVB radiation inhibited photosynthetic CO2 assimilation activity significantly, and the content of chlorophyll a, chlorophyll b and carotenoids decreased obviously when plants were exposed to UVB radiation for 6 h. High UVB radiation also declined the quantum yield of primary photochemistry (φPo), the quantum yield for electron transport (φEo) and the efficiency per trapped excitation (ψo) in the cells of Wolffia arrhiza simultaneously, while the amount of active PSII reaction centers per excited cross section (RC/CS) and the total number of active reaction center per absorption (RC/ABS) had the same changes under UV-B radiation stress. These results indicated that the effects of UV- B radiation on photosynthesis of Wolffia arrhiza maybe functioned by inhibition the electron transport and inactivation of reaction centers, but the inhibition maybe happen in more than one site in photosynthetic apparatus which is different to that in salt adaptation.

  6. LETTERS TO THE EDITOR: Emission of fluorescence from chlorophyll a in vivo due to nanosecond pulsed laser excitation

    NASA Astrophysics Data System (ADS)

    Bunin, D. K.; Gorbunov, M. Yu; Fadeev, V. V.; Chekalyuk, A. M.

    1992-05-01

    A model was proposed and tested experimentally to describe the emission of fluorescence by chlorophyll a in vivo as a result of pulsed laser excitation. This model takes into account the migration of excitons between various photosynthetic units, singlet-singlet annihilation of excitons, pigment bleaching, and also the influence of various states of the photosystem II reaction centers. A method was developed to measure the average number of excitons reaching a photosystem II reaction center during a pulse. This involved two-pulse laser excitation. It was found that the rates of exciton capture by the reaction centers were the same for the PIQ and P +IQ - states of the photosystem II reaction centers, whereas the rate of exciton capture in the P +I -Q - state was half that for the PIQ - state.

  7. Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa.

    PubMed

    Lin, Li; Feng, Cong; Li, Qingyun; Wu, Min; Zhao, Liangyuan

    2015-10-01

    Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa were investigated in order to reveal the mechanisms of electrolytic inhibition of algae. Threshold of current density was found under a certain initial no. of algae cell. When current density was equal to or higher than the threshold (fixed electrolysis time), growth of algae was inhibited completely and the algae lost the ability to survive. Effect of algal solution volume on algal inhibition was insignificant. Thresholds of current density were 8, 10, 14, 20, and 22 mA cm(-2) at 2.5 × 10(7), 5 × 10(7), 1 × 10(8), 2.5 × 10(8), and 5 × 10(8) cells mL(-1) initial no. of algae cell, respectively. Correlativity between threshold of current and initial no. of algae cells was established for scale-up and determining operating conditions. Changes of chlorophyll fluorescence parameters demonstrated that photosystem (PS) II of algae was damaged by electrolysis but still maintained relatively high activity when algal solution was treated by current densities lower than the threshold. The activity of algae recovered completely after 6 days of cultivation. On the contrary, when current density was higher than the threshold, connection of phycobilisome (PBS) and PS II core complexes was destroyed, PS II system of algae was damaged irreversibly, and algae could not survive thoroughly. The inactivation of M. aeruginosa by electrolysis can be attributed to irreversible separation of PBS from PS II core complexes and the damage of PS II of M. aeruginosa.

  8. Hyperspectral and Chlorophyll Fluorescence Imaging to Analyse the Impact of Fusarium culmorum on the Photosynthetic Integrity of Infected Wheat Ears

    PubMed Central

    Bauriegel, Elke; Giebel, Antje; Herppich, Werner B.

    2011-01-01

    Head blight on wheat, caused by Fusarium spp., is a serious problem for both farmers and food production due to the concomitant production of highly toxic mycotoxins in infected cereals. For selective mycotoxin analyses, information about the on-field status of infestation would be helpful. Early symptom detection directly on ears, together with the corresponding geographic position, would be important for selective harvesting. Hence, the capabilities of various digital imaging methods to detect head blight disease on winter wheat were tested. Time series of images of healthy and artificially Fusarium-infected ears were recorded with a laboratory hyperspectral imaging system (wavelength range: 400 nm to 1,000 nm). Disease-specific spectral signatures were evaluated with an imaging software. Applying the ‘Spectral Angle Mapper’ method, healthy and infected ear tissue could be clearly classified. Simultaneously, chlorophyll fluorescence imaging of healthy and infected ears, and visual rating of the severity of disease was performed. Between six and eleven days after artificial inoculation, photosynthetic efficiency of infected compared to healthy ears decreased. The severity of disease highly correlated with photosynthetic efficiency. Above an infection limit of 5% severity of disease, chlorophyll fluorescence imaging reliably recognised infected ears. With this technique, differentiation of the severity of disease was successful in steps of 10%. Depending on the quality of chosen regions of interests, hyperspectral imaging readily detects head blight 7 d after inoculation up to a severity of disease of 50%. After beginning of ripening, healthy and diseased ears were hardly distinguishable with the evaluated methods. PMID:22163820

  9. The 2010 Russian Drought Impact on Satellite Measurements of Solar-Induced Chlorophyll Fluorescence: Insights from Modeling and Comparisons with the Normalized Differential Vegetation Index (NDVI)

    NASA Technical Reports Server (NTRS)

    Yoshida, Y.; Joiner, J.; Tucker, C.; Berry, J.; Lee, J. -E.; Walker, G.; Reichle, R.; Koster, R.; Lyapustin, A.; Wang, Y.

    2015-01-01

    We examine satellite-based measurements of chlorophyll solar-induced fluorescence (SIF) over the region impacted by the Russian drought and heat wave of 2010. Like the popular Normalized Difference Vegetation Index (NDVI) that has been used for decades to measure photosynthetic capacity, SIF measurements are sensitive to the fraction of absorbed photosynthetically-active radiation (fPAR). However, in addition, SIF is sensitive to the fluorescence yield that is related to the photosynthetic yield. Both SIF and NDVI from satellite data show drought-related declines early in the growing season in 2010 as compared to other years between 2007 and 2013 for areas dominated by crops and grasslands. This suggests an early manifestation of the dry conditions on fPAR. We also simulated SIF using a global land surface model driven by observation-based meteorological fields. The model provides a reasonable simulation of the drought and heat impacts on SIF in terms of the timing and spatial extents of anomalies, but there are some differences between modeled and observed SIF. The model may potentially be improved through data assimilation or parameter estimation using satellite observations of SIF (as well as NDVI). The model simulations also offer the opportunity to examine separately the different components of the SIF signal and relationships with Gross Primary Productivity (GPP).

  10. Remote estimation of chlorophyll-a concentration in turbid water using a spectral index: a case study in Taihu Lake, China

    NASA Astrophysics Data System (ADS)

    Cheng, Chunmei; Wei, Yuchun; Lv, Guonian; Yuan, Zhaojie

    2013-01-01

    Chlorophyll-a concentration (Chla) is a key indicator of water quality, and accurate estimates of Chla using remote sensing data remain challenging in turbid waters. Previous research has demonstrated the feasibility of retrieving Chla in vegetation using spectral index, which may be the potential reference for Chla inversion in turbid waters. In this study, 106 hyperspectral indices, including vegetation, fluorescence, and trilateral indices, as well as combinations thereof, are calculated based on the in situ spectra data of 2004 to 2011 in Taihu Lake, China, to explore their potential use in turbid waters. The results show that the normal chlorophyll index (NCI) (R690/R550-R675/R700)/(R690/R550+R675/R700) is optimal for Chla estimation, with a determination coefficient (R) of 0.92 and a root mean square error (RMSE) of 14.36 mg/m3 for the data from July to August 2004, when Chla ranged from 7 to 192 mg/m3. Validation using the datasets of 2005, 2010, and 2011 shows that after reparameterization, the NCI model yields low RMSEs and is more robust than the three- and four-band algorithms. The results indicate that the NCI model can satisfactorily estimate Chla in multiple datasets without the need of additional band tuning.

  11. Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical phosphorus concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the response of CO2 assimilation (PN) and various chlorophyll fluorescence (CF) parameters to phosphorus (P) nutrition soybean plants were grown in controlled environment growth chambers with sufficient (0.50 mM) and deficient (0.10 and 0.01 mM) P supply under ambient and elevated CO2 (a...

  12. A three-state model for energy trapping and chlorophyll fluorescence in photosystem II incorporating radical pair recombination.

    PubMed Central

    Vredenberg, W J

    2000-01-01

    The multiphasic fluorescence induction kinetics upon a high intensity light pulse have been measured and analyzed at a time resolution of 10 micros in intact leaves of Peperomia metallica and Chenopodium album and in chloroplasts isolated from the latter. Current theories and models on the relation between chlorophyll fluorescence yield and primary photochemistry in photosystem II (PSII) are inadequate to describe changes in the initial phase of fluorescence induction and in the dark fluorescence level F(0) caused by pre-energization of the system with single turnover excitation(s). A novel model is presented, which gives a quantitative relation between the efficiencies of primary photochemistry, energy trapping, and radical pair recombination in PSII. The model takes into account that at least two turnovers are required for stationary closure of a reaction center. An open reaction center is transferred with high efficiency into its semiclosed (-open) state. This state is characterized by Q(A) and P680 in the fully reduced state and a lifetime equal to the inverse of the rate constant of Q(A)(-) oxidation (approx. 250 micros). The fluorescence yield of the system with 100% of the centers in the semiclosed state is 50% of the maximal yield with all centers in the closed state at fluorescence level F(m). A situation with approximately 100% of the centers in the semiclosed state is reached after a single turnover excitation in the presence of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU). The lifetime of this state under these conditions is approximately 10 s. Closure of a semiclosed (-open) center occurs with low efficiency in a second turnover. The low(er) efficiency is caused by the rate of P(+) reduction by the secondary donor Y(Z) being competitive with the rate of radical pair recombination in second and following turnovers. The single-turnover-induced alterations in the initial kinetics of the fluorescence concomitantly with a 15-25% increase in F(o) can be

  13. Study the effect of insecticide dimethoate on photosynthetic pigments and photosynthetic activity of pigeon pea: Laser-induced chlorophyll fluorescence spectroscopy.

    PubMed

    Pandey, Jitendra Kumar; Dubey, Gunjan; Gopal, R

    2015-10-01

    Pigeon pea is one of the most important legume crops in India and dimethoate is a widely used insecticide in various crop plants. We studied the effect of dimethoate on growth and photosynthetic activity of pigeon pea plants over a short and long term exposure. Plant growth parameters, photosynthetic pigment content and chlorophyll fluorescence response of pigeon pea (Cajanus cajan L.) plants treated with various concentrations of the insecticide dimethoate (10, 20, 40 and 80 ppm) have been compared for 30 days at regular intervals of 10 days each. Laser induced chlorophyll fluorescence spectra and fluorescence-induction kinetics (FIK) curve of dimethoate treated pigeon pea plants were recorded after 10, 20 and 30 days of treatment. Fluorescence intensity ratio at the two fluorescence maxima (F685/F730) was calculated by evaluating curve-fitted parameters. The variable chlorophyll fluorescence decrease ratio (Rfd) was determined from the FIK curves. Our study revealed that after 10 days of treatment, 10 ppm of dimethoate showed stimulatory response whereas 20, 40 and 80 ppm of dimethoate showed inhibitory response for growth and photosynthetic activity of pigeon pea plants, but after 20 and 30 days of treatment all the tested concentrations of dimethoate became inhibitory. This study clearly shows that dimethoate is highly toxic to the pigeon pea plant, even at very low concentration (10 ppm), if used for a prolonged duration. Our study may thus be helpful in determining the optimal dose of dimethoate in agricultural practices.

  14. The development of chlorophyll-based markers in poultry diets to aid detection of fluorescent fecal contamination.

    PubMed

    Lee, M R F; Leemans, D; Theobald, V J; Fleming, H R; Gay, A P

    2013-12-01

    Incidents of foodborne illness associated with consuming undercooked or raw chicken are often linked to 2 causative pathogens: Campylobacter spp. or Salmonella spp. Numerous studies have shown that contamination of carcasses results when pathogens are transferred from the intestinal tract or fecal material on feet and feathers to the dressed carcass. Ultraviolet spectral imaging to detect surface fecal and ingesta contamination on poultry carcasses may provide a solution to aid detection. However, poultry diets do not provide sufficiently high levels of natural fluorophores for this system to be reliable. This study investigated the potential of chlorophyll-based feed additives to improve fluorescence of the feces and narrow the excitation and emission wavelengths to aid in the development of a simple visualization system. Twenty-four hens (Gallus gallus domesticus) were allocated at random to 1 of 4 treatments: control (C, no marker), Zn chlorophyllin, Mg chlorophyllin, or Fe chlorophyllin. All markers were incorporated into mash before pelleting at a rate of 1 g/kg of DM. The experiment consisted of two 4 × 4 Latin squares with each period consisting of 2 wk. Feces were collected and extracted in acetone:water (50:50; vol/vol) with fecal fluorescence emission spectra determined using a Jasco FP-6200 Spectrofluorometer with excitation at 382 nm. A main peak evolved at wavelength 670 nm with the total area under the peak used as fluorescence intensity. Following 7 d of marker supplementation, the 3 markers improved the fluorescence intensity by ×14.8, 12.8, and 6.9 for Fe, Mg, and Zn chlorophyllin, respectively, compared with the control. The addition of feces containing Mg chlorophyllin to chicken carcass increased detection of the feces compared with feces with no marker. Also, due to the plain background of chicken skin, a simple image at 675 nm with appropriate thresholds would allow detection of contaminated carcasses at the current slaughter line speed

  15. Effect of high temperature on photosynthesis in beans. I. Oxygen evolution and chlorophyll fluorescence

    SciTech Connect

    Pastenes, C.; Horton, P.

    1996-11-01

    We studied the effect of increasing temperature on photosynthesis in two bean (Phaseolus vulgaris L.) varieties known to differ in their resistance to extreme high temperatures, Blue Lake (BL), commercially available in the United Kingdom, and Barbucho (BA), noncommercially bred in Chile. We paid particular attention to the energy-transducing mechanisms and structural responses inferred from fluorescence kinetics. The study was conducted in non-photorespiratory conditions. Increases in temperature resulted in changes in the fluorescence parameters nonphotochemical quenching (qN) and photochemical quenching (qP) in both varieties, but to a different extent. In BL and BA the increase in qP and the decrease in qN were either completed at 30{degrees}C. No indication of photoinhibition was detected at any temperature, and the ratio of the quantum efficiencies of photosystem II (PSII) and O{sub 2} evolution remained constant from 20 to 35{degrees}C. Measurements of 77-K fluorescence showed an increase in the photosystem I (PSI)/PSII ratio with temperature, suggesting an increase in the state transitions. In addition, measurements of fast-induction fluorescence revealed that the proportion of PSII{sub {beta}} centers increased with increasing temperatures. The extent of both changes were maximum at 30 to 35{degrees}C, coinciding with the ratio of rates at temperatures differing by 10{degrees}C for oxygen evolution. 40 refs., 4 figs.

  16. Effect of High Temperature on Photosynthesis in Beans (I. Oxygen Evolution and Chlorophyll Fluorescence).

    PubMed Central

    Pastenes, C.; Horton, P.

    1996-01-01

    We studied the effect of increasing temperature on photosynthesis in two bean (Phaseolus vulgaris L.) varieties known to differ in their resistance to extreme high temperatures, Blue Lake (BL), commercially available in the United Kingdom, and Barbucho (BA), noncommercially bred in Chile. We paid particular attention to the energy-transducing mechanisms and structural responses inferred from fluorescence kinetics. The study was conducted in non-photorespiratory conditions. Increases in temperature resulted in changes in the fluorescence parameters nonphotochemical quenching (qN) and photochemical quenching (qP) in both varieties, but to a different extent. In BL and BA the increase in qP and the decrease in qN were either completed at 30[deg]C or slightly changed following increases from 30 to 35[deg]C. No indication of photoinhibition was detected at any temperature, and the ratio of the quantum efficiencies of photosystem II (PSII) and O2 evolution remained constant from 20 to 35[deg]C. Measurements of 77-K fluorescence showed an increase in the photosystem I (PSI)/PSII ratio with temperature, suggesting an increase in the state transitions. In addition, measurements of fast-induction fluorescence revealed that the proportion of PSII[beta] centers increased with increasing temperatures. The extent of both changes were maximum at 30 to 35[deg]C, coinciding with the ratio of rates at temperatures differing by 10[deg]C for oxygen evolution. PMID:12226442

  17. Estimation Of Chlorophyll-A Concentration Using Three-Band Algorithm On Worldview-2 Images

    NASA Astrophysics Data System (ADS)

    Karaman, Muhittin; Damla Uça Avcı, Z.; Budakoglu, Murat; Geredeli (Yilmaz), Serpil; Kumral, Mustafa

    2014-05-01

    The objective of the study is performing an estimation of chlorophyll-a (chl-a) concentration for an inland turbid salty lake. The study area is selected as Acigol (Turkey). To retrieve chl-a concentrations, a field study was conducted on July 09th, 2013 to collect water samples at 18 points. Concentrations over the area were between 0.87-8.72 mg/m3. Due to the average chl-a content which was 6.27 mg/m3, the lake is categorized as mezotrophic. As satellite data, a high resolution image acquired by WorldView-2 was used. The data consists of 8 bands that were defined as water bands according to the EM ranges sensitive to water. Radiometric and ATCOR atmospheric corrections were executed as preprocessing. Then, for each sampling point in the image, mean reflectance values in 1*1, 3*3, 5*5, 7*7, 9*9, 11*11, 13*13, 15*15, 17*17, 19*19, 21*21, 51*51 neighborhoods were calculated. As the method, three-band model was applied to the data in all neighborhoods, in order to determine the highest correlations between spectral values and chl-a content. Three-band reflectance model, which was first developed for estimating pigment contents in terrestrial vegetation, could also be evaluated as a method to assess chl-a in turbid productive waters as mentioned in the literature. Three-band model was tested with variable optical properties and it was shown that Λ1 should be around 670 nm, Λ2 around 710 nm, and Λ3 around 750 nm. Although correlations were investigated for all neighborhing windows, results were mainly evaluated for 51*51. Using three-band model for 51*51, Λ1= 546 nm (green), Λ2= 608 nm (red), Λ3= 659 nm (yellow) wavelengths found to give correlation as 0.9494. The results of this study show that a strong linear relationship is found between the chl-a concentration and remotely sensed spectral data, and three-band model is an effective way to detect the correlations between spectra and chlorophyll-a content.

  18. Effects of nitrogen form on growth, CO2 assimilation, chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice plants*

    PubMed Central

    Zhou, Yan-hong; Zhang, Yi-li; Wang, Xue-min; Cui, Jin-xia; Xia, Xiao-jian; Shi, Kai; Yu, Jing-quan

    2011-01-01

    Cucumber and rice plants with varying ammonium (NH4 +) sensitivities were used to examine the effects of different nitrogen (N) sources on gas exchange, chlorophyll (Chl) fluorescence quenching, and photosynthetic electron allocation. Compared to nitrate (NO3 −)-grown plants, cucumber plants grown under NH4 +-nutrition showed decreased plant growth, net photosynthetic rate, stomatal conductance, intercellular carbon dioxide (CO2) level, transpiration rate, maximum photochemical efficiency of photosystem II, and O2-independent alternative electron flux, and increased O2-dependent alternative electron flux. However, the N source had little effect on gas exchange, Chl a fluorescence parameters, and photosynthetic electron allocation in rice plants, except that NH4 +-grown plants had a higher O2-independent alternative electron flux than NO3 −-grown plants. NO3 − reduction activity was rarely detected in leaves of NH4 +-grown cucumber plants, but was high in NH4 +-grown rice plants. These results demonstrate that significant amounts of photosynthetic electron transport were coupled to NO3 − assimilation, an effect more significant in NO3 −-grown plants than in NH4 +-grown plants. Meanwhile, NH4 +-tolerant plants exhibited a higher demand for the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) for NO3 − reduction, regardless of the N form supplied, while NH4 +-sensitive plants had a high water-water cycle activity when NH4 + was supplied as the sole N source. PMID:21265044

  19. Aggregation and fluorescence quenching of chlorophyll a of the light-harvesting complex II from spinach in vitro.

    PubMed

    Kirchhoff, Helmut; Hinz, Hans-Jürgen; Rösgen, Jörg

    2003-09-30

    The salt-induced aggregation of the light-harvesting complex (LHC) II isolated from spinach and its correlation with fluorescence quenching of chlorophyll a is reported. Two transitions with distinctly different properties were observed. One transition related to salt-induced fluorescence quenching takes place at low salt concentration and is dependent both on temperature and detergent concentration. This transition seems to be related to a change in the lateral microorganization of LHCII. The second transition occurs at higher salt concentration and involves aggregation. It is independent of temperature and of detergent at sub-cmc concentrations. During the latter transition the small LHCII sheets (approximately 100 nm in diameter) are stacked to form larger aggregates of approximately 3 microm diameter. Based on the comparison between the physical properties of the transition and theoretical models, direct and specific binding of cations can practically be ruled out as driving force for the aggregation. It seems that in vitro aggregation of LHCII is caused by a complex mixture of different effects such as dielectric and electrostatic properties of the solution and surface charges.

  20. Detection of the onset of glyphosate-induced soybean plant injury through chlorophyll fluorescence signal extraction and measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Guo, Yiqing; Huang, Yanbo; Reddy, Krishna N.; Zhao, Yanhua; Molin, William T.

    2015-01-01

    In this study, chlorophyll fluorescence (ChlF) was used to detect the onset of soybean plant injury from treatment of glyphosate, the most widely used herbicide. Thirty-six pots of nonglyphosate-resistant soybean were randomly divided into three groups and treated with different doses of glyphosate solutions. The three treatment groups were control (CTRL) group (with no glyphosate treatment), 0.25X group (treated with 0.217 kg.ae/ha solution of glyphosate), and 0.5X group (treated with 0.433 kg.ae/ha solution of glyphosate). Three kinds of fluorescence measurements, steady-state fluorescence spectra, Kautsky effect parameters, and ChlF-related spectral indices were extracted and generated from the measurements in the glyphosate treatment experiment. The mean values of these fluorescence measurements for each of the CTRL group, the 0.25X group, and the 0.5X group were calculated. Glyphosate-induced leaf injury was then analyzed by examining the separability of these mean values at 6, 24, 48, and 72 hours after the treatment (HAT). Results indicate that the peak position of far-red ChlF shows an obvious blue shift for glyphosate-treated soybean, and peak values of steady-state fluorescence spectra for the three groups can be significantly distinguished from each other at 48 HAT and later. Four Kautsky effect parameters, Fv, Fv/Fm, Area, and PI, are parameters sensitive to glyphosate treatment, showing some differences between the CTRL group and treated groups at 24 HAT, and significant differences among the three groups at and beyond 48 HAT. Moreover, ChlF-related spectral indices, R6832/(R675.R690) and R690/R655, are also shown to be useful in detection of the glyphosate injury, though they are less effective than the steady-state fluorescence spectra and the Kautsky effect parameters. Based on the presented results, it can be concluded that glyphosate-induced soybean injury can be detected in a timely manner by the ChlF measurements, and this method has the

  1. Vegetation stress from soil moisture and chlorophyll fluorescence: synergy between SMAP and FLEX approaches

    NASA Astrophysics Data System (ADS)

    Moreno, Jose; Moran, Susan

    2014-05-01

    Vegetation stress detection continues being a focal objective for remote sensing techniques. It has implications not only for practical applications such as irrigation optimization or precision agriculture, but also for global climate models, providing data to better link water and carbon exchanges between the surface and the atmospheric and improved parameterization of the role of terrestrial vegetation in the coupling of water and carbon cycles. Traditional approaches to map vegetation stress using remote sensing techniques have been based on measurements of soil moisture status, canopy (radiometric) temperature and, to a lesser extent, canopy water content, but new techniques such as the dynamics of vegetation fluorescence emission, are also now available. Within the context of the preparatory activities for the SMAP and FLEX missions, a number of initiatives have been put in place to combine modelling activities and field experiments in order to look for alternative and more efficient ways of detecting vegetation stress, with emphasis on synergistic remote sensing approaches. The potential of solar-induced vegetation fluorescence as an early indicator of stress has been widely demonstrated, for different type of stress conditions: light amount (excess illumination) and conditions (direct/diffuse), temperature extremes (low and high), soil water availability (soil moisture), soil nutrients (nitrogen), atmospheric water vapour and atmospheric CO2 concentration. The effects caused by different stress conditions are sometimes difficult to be decoupled, also because different causes are often combined, but in general they then to change the overall fluorescence emission (modulating amplitude) or changing the relative contributions of photosystems PSI and PSII or the relative fluorescence re-absorption effects caused by modifications in the structure of pigment bed responsible for light absorption, in particular for acclimation for persistent stress conditions. While

  2. Estimation of Chlorophyll-a Concentration in Turbid Lake Using Spectral Smoothing and Derivative Analysis

    PubMed Central

    Cheng, Chunmei; Wei, Yuchun; Sun, Xiaopeng; Zhou, Yu

    2013-01-01

    As a major indicator of lake eutrophication that is harmful to human health, the chlorophyll-a concentration (Chl-a) is often estimated using remote sensing, and one method often used is the spectral derivative algorithm. Direct derivative processing may magnify the noise, thus making spectral smoothing necessary. This study aims to use spectral smoothing as a pretreatment and to test the applicability of the spectral derivative algorithm for Chl-a estimation in Taihu Lake, China, based on the in situ hyperspectral reflectance. Data from July–August of 2004 were used to build the model, and data from July–August of 2005 and March of 2011 were used to validate the model, with Chl-a ranges of 5.0–156.0 mg/m3, 4.0–98.0 mg/m3 and 11.4–35.8 mg/m3, respectively. The derivative model was first used and then compared with the band ratio, three-band and four-band models. The results show that the first-order derivative model at 699 nm had satisfactory accuracy (R2 = 0.75) after kernel regression smoothing and had smaller validation root mean square errors of 15.21 mg/m3 in 2005 and 5.85 mg/m3 in 2011. The distribution map of Chl-a in Taihu Lake based on the HJ1/HSI image showed the actualdistribution trend, indicating that the first-order derivative model after spectral smoothing can be used for Chl-a estimation in turbid lake. PMID:23880727

  3. Estimation of chlorophyll-a concentration in Turbid Lake using spectral smoothing and derivative analysis.

    PubMed

    Cheng, Chunmei; Wei, Yuchun; Sun, Xiaopeng; Zhou, Yu

    2013-07-16

    As a major indicator of lake eutrophication that is harmful to human health, the chlorophyll-a concentration (Chl-a) is often estimated using remote sensing, and one method often used is the spectral derivative algorithm. Direct derivative processing may magnify the noise, thus making spectral smoothing necessary. This study aims to use spectral smoothing as a pretreatment and to test the applicability of the spectral derivative algorithm for Chl-a estimation in Taihu Lake, China, based on the in situ hyperspectral reflectance. Data from July-August of 2004 were used to build the model, and data from July-August of 2005 and March of 2011 were used to validate the model, with Chl-a ranges of 5.0-156.0 mg/m3, 4.0-98.0 mg/m3 and 11.4-35.8 mg/m3, respectively. The derivative model was first used and then compared with the band ratio, three-band and four-band models. The results show that the first-order derivative model at 699 nm had satisfactory accuracy (R2 = 0.75) after kernel regression smoothing and had smaller validation root mean square errors of 15.21 mg/m3 in 2005 and 5.85 mg/m3 in 2011. The distribution map of Chl-a in Taihu Lake based on the HJ1/HSI image showed the actual distribution trend, indicating that the first-order derivative model after spectral smoothing can be used for Chl-a estimation in turbid lake.

  4. The interrelationship between the lower oxygen limit, chlorophyll fluorescence and the xanthophyll cycle in plants.

    PubMed

    Wright, A Harrison; DeLong, John M; Gunawardena, Arunika H L A N; Prange, Robert K

    2011-03-01

    The lower oxygen limit (LOL) in plants may be identified through the measure of respiratory gases [i.e. the anaerobic compensation point (ACP) or the respiratory quotient breakpoint (RQB)], but recent work shows it may also be identified by a sudden rise in dark minimum fluorescence (F(o)). The interrelationship between aerobic respiration and fermentative metabolism, which occur in the mitochondria and cytosol, respectively, and fluorescence, which emanates from the chloroplasts, is not well documented in the literature. Using spinach (Spinacia oleracea), this study showed that F(o) and photochemical quenching (q(P)) remained relatively unchanged until O(2) levels dropped below the LOL. An over-reduction of the plastoquinone (PQ) pool is believed to increase F(o) under dark + anoxic conditions. It is proposed that excess cytosolic reductant due to inhibition of the mitochondria's cytochrome oxidase under low-O(2), may be the primary reductant source. The maximum fluorescence (F(m)) is largely unaffected by low-O(2) in the dark, but was severely quenched, mirroring changes to the xanthophyll de-epoxidation state (DEPS), under even low-intensity light (≈4 μmol m(-2) s(-1)). In low light, the low-O(2)-induced increase in F(o) was also quenched, likely by non-photochemical and photochemical means. The degree of quenching in the light was negatively correlated with the level of ethanol fermentation in the dark. A discussion detailing the possible roles of cyclic electron flow, the xanthophyll cycle, chlororespiration and a pathway we termed 'chlorofermentation' were used to interpret fluorescence phenomena of both spinach and apple (Malus domestica) over a range of atmospheric conditions under both dark and low-light.

  5. Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress.

    PubMed

    Shu, Sheng; Yuan, Ling-Yun; Guo, Shi-Rong; Sun, Jin; Yuan, Ying-Hui

    2013-02-01

    The effects of exogenous spermine (Spm) on plant growth, chlorophyll fluorescence, ultrastructure and anti-oxidative metabolism of chloroplasts were investigated in Cucumis sativus L. under NaCl stress. Salt stress significantly reduced plant growth, chlorophylls content and F(v)/F(m). These changes could be alleviated by foliar spraying with Spm. Salt stress caused an increase in malondialdehyde (MDA) content and superoxide anion [Formula: see text] generation rate in chloroplasts. Application of Spm significantly increased activities of superoxidase dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7), and ascorbate peroxidase (APX, EC 1.11.1.11) which decreased the levels of [Formula: see text] and MDA in the salt-stressed chloroplasts. Salt stress decreased the activities of dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) in the chloroplasts and reduced the contents of dehydroascorbate (DAsA) and glutathione (GSH), but increased monodehydroascorbate reductase (MDAR, EC 1.6.5.4) activity. On the other hand, Spm significantly increased the activities of antioxidant enzymes and levels of antioxidants in the salt-stressed chloroplasts. Further analysis of the ultrastructure of chloroplasts indicated that salinity induced destruction of the chloroplast envelope and increased the number of plastoglobuli with aberrations in thylakoid membranes. However, Spm application to salt-stressed plant leaves counteracted the adverse effects of salinity on the structure of the photosynthetic apparatus. These results suggest that Spm alleviates salt-induced oxidative stress through regulating antioxidant systems in chloroplasts of cucumber seedlings, which is associated with an improvement of the photochemical efficiency of PSII.

  6. [Influence of different concentration Ni and Cu on the photosynthesis and chlorophyll fluorescence characteristics of Peganum harmala].

    PubMed

    Lu, Yan; Li, Xin-rong; He, Ming-zhu; Su, Yan-gui; Zeng, Fan-jiang

    2011-04-01

    A pot experiment was conducted to study the influence of different concentration (0, 50, 100, 200, and 400 mg kg(-1)) Ni and Cu on the growth, photosynthesis, and chlorophyll fluorescence characteristics of Peganum harmala seedlings. With increasing concentration Ni in the medium, the seedlings growth parameters, photosynthetic pigment content, net photosynthetic rate (P(n)), stomatal conductance (G(s)), transpiration rate (T(r)), maximal photochemical efficiency of PS II (F(v)/F(m)), quantum efficiency of electric transport of PS II (phi (PS II)), and coefficient of photochemical quenching (q(P)) of P. harmala decreased significantly, while the intercellular CO2 concentration (C(i)) and the coefficient of non-photochemical quenching (q(N)) were in adverse. The decrease of P(n) under Ni stress was mainly caused by non-stomatal limitation. At 50 mg kg(-1) Cu, the growth parameters, photosynthetic pigment content, P(n), G(s), T(r), C(i), F(v)/F(m), phi(PS II), and q(P) reached their peak values; at 100 mg kg(-1) Cu, the growth parameters, chlorophyll a and b contents, P(n), G(s), T(r), C(i), and F(v)/F(m) were still slightly higher than the control; while with the further increasing Cu concentration in the medium, all the test indices except q(N) tended to decrease. The decrease of P(n) under Cu stress was mainly caused by stomatal limitation.

  7. Winter wheat GPC estimation with fluorescence-based sensor measurements of canopy

    NASA Astrophysics Data System (ADS)

    Song, Xiaoyu; Wang, Jihua; Gu, Xiaohe; Xu, Xingang

    2015-10-01

    This study focused on the wheat grain protein content (GPC) estimation based on wheat canopy chlorophyll parameters which acquired by hand-held instrument, Multiplex 3. Nine fluorescence spectral indices from Multiplex sensor were used in this study. The wheat GPC estimation experiment was conducted in 2012 at the National Experiment Station for Precision Agriculture in Changping district, Beijing. A square with area of 1.1 ha was selected and divided to 110 small plots by 10×10m in this study. In each plot, four 1-m2 area distributed in the square were selected for canopy fluorescence spectral measurements, physiological and biochemical analyses. Measurements were performed five times at wheat raising, jointing, heading stage, milking and ripening stage, respectively. The wheat plant samples for each plot were then collected after the measurement and sent to Lab for leaf N concentration (LNC) and canopy nitrogen density (CND) analyzed. GPC sampling for each plot was collected manually during the harvested season. Then, statistical analysis were performed to detect the correlation between fluorescence spectral indices and wheat CND for each growth stage, as well as GPC. The results indicate that two Nitrogen Balance Indices, NBI_G and NBI_R were more sensitive to wheat GPC than other fluorescence spectral indices at milking stage and ripening stage. Five linear regression models with GPC and fluorescence indices at different winter wheat growth stages were then established. The R2 of GPC estimated model increased form 0.312 at raising stage to 0.686 at ripening stage. The study reveals that canopy-level fluorescence spectral parameters were better indicators for the wheat group activity and could be demonstrated to be good indicators for winter wheat GPC estimation.

  8. Effects of exogenous putrescine on gas-exchange characteristics and chlorophyll fluorescence of NaCl-stressed cucumber seedlings.

    PubMed

    Zhang, Run Hua; Li, Jun; Guo, Shi Rong; Tezuka, Takafumi

    2009-06-01

    The effects of 10 mM putrescine (Put) treated by spraying on leaves on growth, chlorophyll content, photosynthetic gas-exchange characteristics, and chlorophyll fluorescence were investigated by growing cucumber plants (Cucumis sativus L. cv. ChangChun mici) using hydroponics with or without 65 mM NaCl as a salt stress. Salt stress caused the reduction of growth such as leaf area, root volume, plant height, and fresh and dry weights. Furthermore, net photosynthesis rate (P(n)), stomatal conductance (g(s)), intercellular CO(2) concentration (C(i)), and transpiration rate (T(r)) were also reduced by NaCl, but water use efficiency (WUE; P(n)/T(r)) showed a tendency to be enhanced rather than reduced by NaCl. However, Put alleviated the reduction of P (n) by NaCl, and showed a further reduction of C (i) by NaCl. The reduction of g(s) and T(r) by NaCl was not alleviated at all. The enhancement of WUE by NaCl was shown to have no alleviation at day 1 after starting the treatment, but after that, the enhancement was gradually reduced till the control level. Maximum quantum efficiency of PSII (F(v)/F(m)) showed no effects by any conditions based on the combination of NaCl and Put, and in addition, kept constant values in plants grown in each nutrient solution during this experimental period. The efficiency of excitation energy capture by open photosystem II (PSII) (F(v)'/F(m)'), actual efficiency of PSII (Phi(PSII)), and the coefficient on photochemical quenching (qP) of plants with NaCl were reduced with time, and the reduction was alleviated till the control level by treatment with Put. The F(v)'/F(m)', Phi(PSII), and qP of plants without NaCl and/or with Put showed no variation during the experiment. Non-photochemical quenching of the singlet excited state of chlorophyll a (NPQ) showed quite different manner from the others as mentioned above, namely, continued to enhance during the experiment.

  9. Estimation of chlorophyll content of Phragmites australis based on PROSPECT and DART models in the saltmarsh of Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Zeng, Yuyan; Shi, Runhe; Liu, Pudong; Zhang, Chao; Wang, Jiapeng; Liu, Chaoshun; Chen, Maosi

    2016-09-01

    Phragmites australis is a native dominant specie in the Yangtze Estuary, which plays a key role in the structure and function of wetland ecosystem. One key question is how to estimate the Chlorophyll content quickly and effectively at large scales, which could be used to reflect the growth condition and calculate the vegetation productivity. The aim of this work was to estimate Chlorophyll content of P. australis based on the PROSPECT and DART (Discrete Anisotropic Radiative Transfer) model. A total of 6 widely used Vegetation indices (VIs) were chosen (i.e., Normalized Difference Vegetation Index (NDVI), Structure Insensitive Pigment Index (SIPI), Colouration Index (COI), Simple Ratio Index (SR), Cater Index (CAI), and Red-edge Position Linear Interpolation (REP_Li)) and calculated, and then the relationship between VIs and Cab were analyzed. Results showed that COI and SIPI were sensitive to the leaf chlorophyll content as the chlorophyll content changes at the leaf scale. Meanwhile, no obvious saturation phenomenon was observed for these two indices compared to other indices.

  10. Assessing boreal forest photosynthetic dynamics through space-borne measurements of greenness, chlorophyll fluorescence and model GPP

    NASA Astrophysics Data System (ADS)

    Walther, Sophia; Guanter, Luis; Voigt, Maximilian; Köhler, Philipp; Jung, Martin; Joiner, Joanna

    2015-04-01

    sophia.walther@gfz-potsdam.de The seasonality of photosynthesis of boreal forests is an essential driver of the terrestrial carbon, water and energy cycles. However, current carbon cycle model results only poorly represent interannual variability and predict very different magnitudes and timings of carbon fluxes between the atmosphere and the land surface (e.g. Jung et al. 2011, Richardson et al. 2012). Reflectance-based satellite measurements, which give an indication of the amount of green biomass on the Earth's surface, have so far been used as input to global carbon cycle simulations, but they have limitations as they are not directly linked to instantaneous photosynthesis. As an alternative, space-borne retrievals of sun-induced chlorophyll fluorescence (SIF) boast the potential to provide a direct indication of the seasonality of boreal forest photosynthetic activity and thus to improve carbon model performances. SIF is a small electromagnetic signal that is re-emitted from the photosystems in the chloroplasts, which results in a direct relationship to photosynthetic efficiency. In this contribution we examine the seasonality of the boreal forests with three different vegetation parameters, namely greenness, SIF and model simulations of gross primary production (gross carbon flux into the plants by photosynthesis, GPP). We use the enhanced vegetation index (EVI) to represent green biomass. EVI is calculated from NBAR MODIS reflectance measurements (0.05deg, 16 days temporal resolution) for the time from January 2007-May 2013. SIF data originate from GOME-2 measurements on board the MetOp-A satellite in a spatial resolution of 0.5deg for the time from 2007-2011 (Joiner et al. (2013), Köhler et al. (2014)). As a third data source, data-driven GPP model results are used for the time from 2006-2012 with 0.5deg spatial resolution. The method to quantify phenology developed by Gonsamo et al. (2013) is applied to infer the main phenological phases (greenup/onset of

  11. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise.

    PubMed

    Stirbet, Alexandrina; Govindjee

    2012-09-01

    The fast (up to 1 s) chlorophyll (Chl) a fluorescence induction (FI) curve, measured under saturating continuous light, has a photochemical phase, the O-J rise, related mainly to the reduction of Q(A), the primary electron acceptor plastoquinone of Photosystem II (PSII); here, the fluorescence rise depends strongly on the number of photons absorbed. This is followed by a thermal phase, the J-I-P rise, which disappears at subfreezing temperatures. According to the mainstream interpretation of the fast FI, the variable fluorescence originates from PSII antenna, and the oxidized Q(A) is the most important quencher influencing the O-J-I-P curve. As the reaction centers of PSII are gradually closed by the photochemical reduction of Q(A), Chl fluorescence, F, rises from the O level (the minimal level) to the P level (the peak); yet, the relationship between F and [Q(A) (-)] is not linear, due to the presence of other quenchers and modifiers. Several alternative theories have been proposed, which give different interpretations of the O-J-I-P transient. The main idea in these alternative theories is that in saturating light, Q(A) is almost completely reduced already at the end of the photochemical phase O-J, but the fluorescence yield is lower than its maximum value due to the presence of either a second quencher besides Q(A), or there is an another process quenching the fluorescence; in the second quencher hypothesis, this quencher is consumed (or the process of quenching the fluorescence is reversed) during the thermal phase J-I-P. In this review, we discuss these theories. Based on our critical examination, that includes pros and cons of each theory, as well mathematical modeling, we conclude that the mainstream interpretation of the O-J-I-P transient is the most credible one, as none of the alternative ideas provide adequate explanation or experimental proof for the almost complete reduction of Q(A) at the end of the O-J phase, and for the origin of the fluorescence

  12. Estimation of chlorophyll-a concentration of different seasons in outdoor ponds using hyperspectral imaging.

    PubMed

    Wang, Lu; Pu, Hongbin; Sun, Da-Wen

    2016-01-15

    Chlorophyll a (Chl-a) is regarded as one of the important components to estimate water quality and sustainability of freshwater aquaculture operations. In the current study, a hyperspectral imaging (HSI) system was used to determine the effect of season models on the accuracy of Chl-a estimation in outdoor aquaculture ponds. A visible and near infrared hyperspectral imaging system (400-1000nm) was used to measure surface spectral reflectance (R) of water collected from outdoor ponds in four different seasons. Firstly, values of surface spectral reflectance (R) were amplified by a baseline correction (740nm). Two-band, three-band and four-band spectral reflectance were used to compute Chl-a concentration and a new cross band ratio algorithm with six wavelengths was proposed in the study. Results indicated that two-band model established based on reflectance ratio (R702/R666) had better performances for Chl-a prediction with determination coefficients (r(2)) of 0.908 than those by (R675(-1)-R691(-1))*R743 and (R675(-1)-R691(-1))/(R743(-1)-R691(-1)) models with r(2) of 0.902 and 0.896, respectively. Six optimal wavelengths (410, 682, 691, 966, 972, and 997) were identified using successive projections algorithm (SPA). The optimized regression model (R410(-1)-R966(-1))/(R682(-1)-R972(-1))/(R691(-1)-R997(-1)) showed best result with r(2) of 0.961 for Chl-a prediction. Model of cross band ratio algorithm with six wavelengths was mapped to each pixel in the image to display Chl-a component in outdoor ponds under four different seasons. The current study showed that it was feasible to use the HSI system for monitoring the influence of seasons for outdoor aquaculture water quality.

  13. [Diurnal variation of gas exchange and chlorophyll fluorescence parameters of cotton functional leaves under effects of soil salinity].

    PubMed

    Zhang, Guo-wei; Zhang, Lei; Tang, Ming-xing; Zhou, Ling-ling; Chen, Bing-lin; Zhou, Zhi-guo

    2011-07-01

    A two-year (2007-2008) pot experiment with cotton varieties Sumian 12 (salinity-sensitive) and Zhongmiansuo 44 (salinity-tolerance) was conducted at the Pailou experimental station of Nanjing Agricultural University to study the diurnal variation of the gas exchange and chlorophyll fluorescence parameters of cotton functional leaves under five levels (0, 0.35%, 0.60% , 0.85%, and 1.00%) of soil salinity. With the increase of soil salinity, the concentrations of Na+, Cl-, and Mg2+ in functional leaves increased, whereas the concentrations of K+ and Ca2+ decreased. The salinity level <0. 35% had little effects on the gas exchange and chlorophyll fluorescence parameters, but that >0.35% depressed the net photosynthetic rate (Pn) dramatically. At the salinity level >0.35%, the sensitivity of functional leaves to daytime photon flux density (PFD) and air temperature (Ta) enhanced, which in turn resulted in more severe photo- and temperature inhibition, and changed the diurnal variation patterns of Pn and stomatal conductance (Gs) from a one-peak curve to a constantly decreasing one. Along with the variations of daytime PED and Ta, the diurnal variation patterns of the maximum photochemical efficiency (F(v)/F(m)), quantum yield of electron transport (phi(PS II), and photochemical quenching coefficient (q(P)) of functional leaves presented a V-shaped curve, with the minimum value appeared at 12:00-13:00, while the non-photochemical quenching coefficient (q(N)) showed a single-peak curve. Soil salinity decreased the F(v)/F(m), phi(PS II), and q(P) significantly, but increased the q(N) and enlarged its change trend. The comparatively low concentrations of Na+ and Cl- and the relatively high concentrations of K+ and Ca2+ in salt-tolerant Zhongmiansuo 44 functional leaves benefited the relative stability of PS II, and the maintenance of a relatively high thermal dissipation capacity could be one of the reasons for a high level of Pn at high salinity level.

  14. New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Joiner, Joanna; Yoshida, Yasuko; Guanter, Luis; Middleton, Elizabeth M.

    2016-08-01

    Global satellite measurements of solar-induced fluorescence (SIF) from chlorophyll over land and ocean have proven useful for a number of different applications related to physiology, phenology, and productivity of plants and phytoplankton. Terrestrial chlorophyll fluorescence is emitted throughout the red and far-red spectrum, producing two broad peaks near 683 and 736 nm. From ocean surfaces, phytoplankton fluorescence emissions are entirely from the red region (683 nm peak). Studies using satellite-derived SIF over land have focused almost exclusively on measurements in the far red (wavelengths > 712 nm), since those are the most easily obtained with existing instrumentation. Here, we examine new ways to use existing hyperspectral satellite data sets to retrieve red SIF (wavelengths < 712 nm) over both land and ocean. Red SIF is thought to provide complementary information to that from the far red for terrestrial vegetation. The satellite instruments that we use were designed to make atmospheric trace-gas measurements and are therefore not optimal for observing SIF; they have coarse spatial resolution and only moderate spectral resolution (0.5 nm). Nevertheless, these instruments, the Global Ozone Monitoring Instrument 2 (GOME-2) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), offer a unique opportunity to compare red and far-red terrestrial SIF at regional spatial scales. Terrestrial SIF has been estimated with ground-, aircraft-, or satellite-based instruments by measuring the filling-in of atmospheric and/or solar absorption spectral features by SIF. Our approach makes use of the oxygen (O2) γ band that is not affected by SIF. The SIF-free O2 γ band helps to estimate absorption within the spectrally variable O2 B band, which is filled in by red SIF. SIF also fills in the spectrally stable solar Fraunhofer lines (SFLs) at wavelengths both inside and just outside the O2 B band, which further helps to estimate red SIF

  15. Satellite-based estimation of chlorophyll-a concentration in turbid productive waters

    NASA Astrophysics Data System (ADS)

    Moses, Wesley Jeremiah

    Inland, coastal, and estuarine waters, which are often turbid and biologically productive, play a crucial role in maintaining global bio-diversity and are of immense value to aquatic life as well as human-beings. Concentration of chlorophyll-a (chl-a) is a key indicator of the trophic status of these waters, which should be regularly monitored to ensure that their ecological balance is not disturbed. Remote sensing is a powerful tool for this. Due to the optical complexity of turbid productive waters, standard algorithms that use blue and green reflectances are unreliable for estimating chl- a concentration. Algorithms based on red and near-infrared (NIR) reflectances are preferable. Three-band and two-band NIR-red models based on the spectral channels of MODIS and MERIS satellites have been tested for numerous datasets collected with field spectrometers from inland, coastal, and estuarine waters. The NIR-red models, especially the two-band model with MERIS wavebands, gave consistently highly accurate estimates of chl- a concentration in waters from different geographic locations with widely varying biophysical characteristics, without the need to re-parameterize the algorithms for each different water body. The MODIS NIR-red model can be used to estimate moderate-to-high chl-a concentrations. The NIR-red models were applied to airborne AISA data acquired over several lakes in Nebraska on different days with non-uniform atmospheric conditions. Without atmospheric correction, the NIR-red models showed a close correlation with chl-a concentration for each image. With an effective relative correction for the non-uniform atmospheric effects on the multi-temporal images, the NIR-red models were shown to have a close correlation with chl- a concentration, with uniform slope and offset, for the whole dataset. The models were also applied to MODIS and MERIS images. Reliable results were obtained from the MERIS NIR-red models. Calibrated MERIS NIR-red algorithms were

  16. Use of High-Resolution Multispectral Imagery to Estimate Chlorophyll and Plant Nitrogen in Oats (Avena sativa)

    NASA Astrophysics Data System (ADS)

    ELarab, M.; Ticlavilca, A. M.; Torres-Rua, A. F.; Maslova, I.; McKee, M.

    2013-12-01

    Precision agriculture requires high spatial resolution in the application of the inputs to agricultural production. This requires that actionable information about crop and field status be acquired at the same high spatial resolution and at a temporal frequency appropriate for timely responses. In this study, high-resolution imagery was obtained through the use of a small, unmanned aerial vehicle, called AggieAirTM, that provides spatial resolution as fine as 6 cm. Simultaneously with AggieAir flights, intensive ground sampling was conducted at precisely determined locations for plant chlorophyll, plant nitrogen, and other parameters. This study investigated the spectral signature of a crop of oats (Avena sativa) and formulated machine learning regression models of reflectance response between the multi-spectral bands available from AggieAir (red, green, blue, near infrared, and thermal), plant chlorophyll and plant nitrogen. We tested two, separate relevance vector machines (RVM) and a single multivariate relevance vector machine (MVRVM) to develop the linkages between the remotely sensed data and plant chlorophyll and nitrogen at approximately 15-cm resolution. The results of this study are presented, including a statistical evaluation of the performance of the different models and a comparison of the RVM modeling methods against more traditional approaches that have been used for estimation of plant chlorophyll and nitrogen.

  17. Estimating phytoplankton photosynthesis by active fluorescence

    SciTech Connect

    Falkowski, P.G.; Kolber, Z.

    1992-01-01

    Photosynthesis can be described by target theory, At low photon flux densities, photosynthesis is a linear function of irradiance (I), The number of reaction centers (n), their effective absorption capture cross section {sigma}, and a quantum yield {phi}. As photosynthesis becomes increasingly light saturated, an increased fraction of reaction centers close. At light saturation the maximum photosynthetic rate is given as the product of the number of reaction centers (n) and their maximum electron transport rate (I/{tau}). Using active fluorometry it is possible to measure non-destructively and in real time the fraction of open or closed reaction centers under ambient irradiance conditions in situ, as well as {sigma} and {phi} {tau} can be readily, calculated from knowledge of the light saturation parameter, I{sub k} (which can be deduced by in situ by active fluorescence measurements) and {sigma}. We built a pump and probe fluorometer, which is interfaced with a CTD. The instrument measures the fluorescence yield of a weak probe flash preceding (f{sub 0}) and succeeding (f{sub 0}) a saturating pump flash. Profiles of the these fluorescence yields are used to derive the instantaneous rate of gross photosynthesis in natural phytoplankton communities without any incubation. Correlations with short-term simulated in situ radiocarbon measurements are extremely high. The average slope between photosynthesis derived from fluorescence and that measured by radiocarbon is 1.15 and corresponds to the average photosynthetic quotient. The intercept is about 15% of the maximum radiocarbon uptake and corresponds to the average net community respiration. Profiles of photosynthesis and sections showing the variability in its composite parameters reveal a significant effect of nutrient availability on biomass specific rates of photosynthesis in the ocean.

  18. Estimating phytoplankton photosynthesis by active fluorescence

    SciTech Connect

    Falkowski, P.G.; Kolber, Z.

    1992-10-01

    Photosynthesis can be described by target theory, At low photon flux densities, photosynthesis is a linear function of irradiance (I), The number of reaction centers (n), their effective absorption capture cross section {sigma}, and a quantum yield {phi}. As photosynthesis becomes increasingly light saturated, an increased fraction of reaction centers close. At light saturation the maximum photosynthetic rate is given as the product of the number of reaction centers (n) and their maximum electron transport rate (I/{tau}). Using active fluorometry it is possible to measure non-destructively and in real time the fraction of open or closed reaction centers under ambient irradiance conditions in situ, as well as {sigma} and {phi} {tau} can be readily, calculated from knowledge of the light saturation parameter, I{sub k} (which can be deduced by in situ by active fluorescence measurements) and {sigma}. We built a pump and probe fluorometer, which is interfaced with a CTD. The instrument measures the fluorescence yield of a weak probe flash preceding (f{sub 0}) and succeeding (f{sub 0}) a saturating pump flash. Profiles of the these fluorescence yields are used to derive the instantaneous rate of gross photosynthesis in natural phytoplankton communities without any incubation. Correlations with short-term simulated in situ radiocarbon measurements are extremely high. The average slope between photosynthesis derived from fluorescence and that measured by radiocarbon is 1.15 and corresponds to the average photosynthetic quotient. The intercept is about 15% of the maximum radiocarbon uptake and corresponds to the average net community respiration. Profiles of photosynthesis and sections showing the variability in its composite parameters reveal a significant effect of nutrient availability on biomass specific rates of photosynthesis in the ocean.

  19. High-Throughput Growth Prediction for Lactuca sativa L. Seedlings Using Chlorophyll Fluorescence in a Plant Factory with Artificial Lighting

    PubMed Central

    Moriyuki, Shogo; Fukuda, Hirokazu

    2016-01-01

    Poorly grown plants that result from differences in individuals lead to large profit losses for plant factories that use large electric power sources for cultivation. Thus, identifying and culling the low-grade plants at an early stage, using so-called seedlings diagnosis technology, plays an important role in avoiding large losses in plant factories. In this study, we developed a high-throughput diagnosis system using the measurement of chlorophyll fluorescence (CF) in a commercial large-scale plant factory, which produces about 5000 lettuce plants every day. At an early stage (6 days after sowing), a CF image of 7200 seedlings was captured every 4 h on the final greening day by a high-sensitivity CCD camera and an automatic transferring machine, and biological indices were extracted. Using machine learning, plant growth can be predicted with a high degree of accuracy based on biological indices including leaf size, amount of CF, and circadian rhythms in CF. Growth prediction was improved by addition of temporal information on CF. The present data also provide new insights into the relationships between growth and temporal information regulated by the inherent biological clock. PMID:27242805

  20. High-Throughput Growth Prediction for Lactuca sativa L. Seedlings Using Chlorophyll Fluorescence in a Plant Factory with Artificial Lighting.

    PubMed

    Moriyuki, Shogo; Fukuda, Hirokazu

    2016-01-01

    Poorly grown plants that result from differences in individuals lead to large profit losses for plant factories that use large electric power sources for cultivation. Thus, identifying and culling the low-grade plants at an early stage, using so-called seedlings diagnosis technology, plays an important role in avoiding large losses in plant factories. In this study, we developed a high-throughput diagnosis system using the measurement of chlorophyll fluorescence (CF) in a commercial large-scale plant factory, which produces about 5000 lettuce plants every day. At an early stage (6 days after sowing), a CF image of 7200 seedlings was captured every 4 h on the final greening day by a high-sensitivity CCD camera and an automatic transferring machine, and biological indices were extracted. Using machine learning, plant growth can be predicted with a high degree of accuracy based on biological indices including leaf size, amount of CF, and circadian rhythms in CF. Growth prediction was improved by addition of temporal information on CF. The present data also provide new insights into the relationships between growth and temporal information regulated by the inherent biological clock.

  1. A model of chlorophyll a fluorescence induction kinetics with explicit description of structural constraints of individual photosystem II units.

    PubMed

    Xin, Chang-Peng; Yang, Jin; Zhu, Xin-Guang

    2013-11-01

    Chlorophyll a fluorescence induction (FI) kinetics, in the microseconds to the second range, reflects the overall performance of the photosynthetic apparatus. In this paper, we have developed a novel FI model, using a rule-based kinetic Monte Carlo method, which incorporates not only structural and kinetic information on PSII, but also a simplified photosystem I. This model has allowed us to successfully simulate the FI under normal or different treatment conditions, i.e., with different levels of measuring light, under 3-(3',4'-dichlorophenyl)-1,1-dimethylurea treatment, under 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone treatment, and under methyl viologen treatment. Further, using this model, we have systematically studied the mechanistic basis and factors influencing the FI kinetics. The results of our simulations suggest that (1) the J step is caused by the two-electron gate at the Q B site; (2) the I step is caused by the rate limitation of the plastoquinol re-oxidation in the plastoquinone pool. This new model provides a framework for exploring impacts of modifying not only kinetic but also structural parameters on the FI kinetics.

  2. Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Guanter, L.; Aben, I.; Tol, P.; Krijger, J. M.; Hollstein, A.; Köhler, P.; Damm, A.; Joiner, J.; Frankenberg, C.; Landgraf, J.

    2015-03-01

    Global monitoring of sun-induced chlorophyll fluorescence (SIF) is improving our knowledge about the photosynthetic functioning of terrestrial ecosystems. The feasibility of SIF retrievals from spaceborne atmospheric spectrometers has been demonstrated by a number of studies in the last years. In this work, we investigate the potential of the upcoming TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite mission for SIF retrieval. TROPOMI will sample the 675-775 nm spectral window with a spectral resolution of 0.5 nm and a pixel size of 7 km × 7 km. We use an extensive set of simulated TROPOMI data in order to assess the uncertainty of single SIF retrievals and subsequent spatio-temporal composites. Our results illustrate the enormous improvement in SIF monitoring achievable with TROPOMI with respect to comparable spectrometers currently in-flight, such as the Global Ozone Monitoring Experiment-2 (GOME-2) instrument. We find that TROPOMI can reduce global uncertainties in SIF mapping by more than a factor of 2 with respect to GOME-2, which comes together with an approximately 5-fold improvement in spatial sampling. Finally, we discuss the potential of TROPOMI to map other important vegetation parameters at a global scale with moderate spatial resolution and short revisit time. Those include leaf photosynthetic pigments and proxies for canopy structure, which will complement SIF retrievals for a self-contained description of vegetation condition and functioning.

  3. Herbicidal effects of harmaline from Peganum harmala on photosynthesis of Chlorella pyrenoidosa: probed by chlorophyll fluorescence and thermoluminescence.

    PubMed

    Deng, Chunnuan; Shao, Hua; Pan, Xiangliang; Wang, Shuzhi; Zhang, Daoyong

    2014-10-01

    The herbicidal effects of harmaline extracted from Peganum harmala seed on cell growth and photosynthesis of green algae Chlorella pyrenoidosa were investigated using chlorophyll a fluorescence and thermoluminescence techniques. Exposure to harmaline inhibited cell growth, pigments contents and oxygen evolution of C. pyrenoidosa. Oxygen evolution was more sensitive to harmaline toxicity than cell growth or the whole photosystem II (PSII) activity, maybe it was the first target site of harmaline. The JIP-test parameters showed that harmaline inhibited the donor side of PSII. Harmaline decreased photochemical efficiency and electron transport flow of PSII but increased the energy dissipation. The charge recombination was also affected by harmaline. Amplitude of the fast phase decreased and the slow phase increased at the highest level of harmaline. Electron transfer from QA(-) to QB was inhibited and backward electron transport flow from QA(-) to oxygen evolution complex was enhanced at 10 μg mL(-1) harmaline. Exposure to 10 μg mL(-1) harmaline caused appearance of C band in thermoluminescence. Exposure to 5 μg mL(-1) harmaline inhibited the formation of proton gradient. The highest concentration of harmaline treatment inhibited S3QB(-) charge recombination but promoted formation of QA(-)YD(+) charge pairs. P. harmala harmaline may be a promising herbicide because of its inhibition of cell growth, pigments synthesis, oxygen evolution and PSII activities.

  4. Relation of Chlorophyll Fluorescence Sensitive Reflectance Ratios to Carbon Flux Measurements of Montanne Grassland and Norway Spruce Forest Ecosystems in the Temperate Zone

    PubMed Central

    Ač, Alexander; Malenovský, Zbyněk; Urban, Otmar; Hanuš, Jan; Zitová, Martina; Navrátil, Martin; Vráblová, Martina; Olejníčková, Julie; Špunda, Vladimír; Marek, Michal

    2012-01-01

    We explored ability of reflectance vegetation indexes (VIs) related to chlorophyll fluorescence emission (R686/R630, R740/R800) and de-epoxidation state of xanthophyll cycle pigments (PRI, calculated as (R531 − R570)/(R531 − R570)) to track changes in the CO2 assimilation rate and Light Use Efficiency (LUE) in montane grassland and Norway spruce forest ecosystems, both at leaf and also canopy level. VIs were measured at two research plots using a ground-based high spatial/spectral resolution imaging spectroscopy technique. No significant relationship between VIs and leaf light-saturated CO2 assimilation (AMAX) was detected in instantaneous measurements of grassland under steady-state irradiance conditions. Once the temporal dimension and daily irradiance variation were included into the experimental setup, statistically significant changes in VIs related to tested physiological parameters were revealed. ΔPRI and Δ(R686/R630) of grassland plant leaves under dark-to-full sunlight transition in the scale of minutes were significantly related to AMAX (R2 = 0.51). In the daily course, the variation of VIs measured in one-hour intervals correlated well with the variation of Gross Primary Production (GPP), Net Ecosystem Exchange (NEE), and LUE estimated via the eddy-covariance flux tower. Statistical results were weaker in the case of the grassland ecosystem, with the strongest statistical relation of the index R686/R630 with NEE and GPP. PMID:22701368

  5. Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress.

    PubMed

    Sayyad-Amin, Parvaneh; Jahansooz, Mohammad-Reza; Borzouei, Azam; Ajili, Fatemeh

    2016-10-01

    Water shortage leads to a low quality of water, especially saline water in most parts of agricultural regions. This experiment was designed to determine the effects of saline irrigation on sorghum as a moderately salt-tolerant crop. To study salinity effects on photosynthetic pigment attributes including the chlorophyll content and chlorophyll fluorescence, an experiment was performed in a climate-controlled greenhouse at two vegetative and reproductive stages. The experimental design was factorial based on a completely randomized design with five NaCl concentrations (control, 50, 100, 150, and 200 mM), two grain and sweet-forage sorghum cultivars (Kimia and Pegah, respectively) and four replications. According to the experimental data, there were no significant differences between two grain and sweet-forage cultivars. Except for 100 and 150 mM NaCl, salinity significantly decreased the chlorophyll index and pigment contents of the leaf, while it increased the chlorophyll-a fluorescence characteristics. Although salinity reduced photosynthetic pigments and the crop yield, either grain or sweet-forage cultivars could significantly control the effect of salinity between 100 and 150 mM NaCl at both developmental stages, showing the possibility of using saline water in sorghum cultivation up to 150 mM NaCl.

  6. Imaging of fast chlorophyll fluorescence induction curve (OJIP) parameters, applied in a screening study with wild barley (Hordeum spontaneum) genotypes under heat stress.

    PubMed

    Jedmowski, Christoph; Brüggemann, Wolfgang

    2015-10-01

    We quantified the influence of heat stress (HS) on PSII by imaging of parameters of the fast chlorophyll fluorescence (CF) induction (OJIP) kinetic of 20 genotypes of wild barley (Hordeum spontaneum) covering a broad geographical spectrum. We developed a standardised screening procedure, allowing a repetitive fluorescence measurement of leaf segments. The impact of HS was quantified by calculating a Heat Resistance Index (HRI), derived from the decrease of the Performance Index (PI) caused by HS treatment and following recovery. For the genotype showing the lowest HRI, reduced maximum quantum yield (φP0) and increased relative variable fluorescence of the O-J phase (K-Peak) were detected after HS, whereas the basal fluorescence (F0) remained stable. An additional feature was a lowered fraction of active (QA-reducing) reaction centres (RCs). The disturbances disappeared after one day of recovery. Spatial heterogeneities of fluorescence parameters were detected, as the negative effect of HS was stronger in the leaf areas close to the leaf tip. The results of this study prove that chlorophyll fluorescence imaging (CFI) is suitable for the detection of HS symptoms and that imaging of JIP-Test parameters should be considered in future screening and phenotyping studies aiming for the characterisation of plant genotypes.

  7. Estimating Oceanic Primary Production Using Vertical Irradiance and Chlorophyll Profiles from Ocean Gliders in the North Atlantic.

    PubMed

    Hemsley, Victoria S; Smyth, Timothy J; Martin, Adrian P; Frajka-Williams, Eleanor; Thompson, Andrew F; Damerell, Gillian; Painter, Stuart C

    2015-10-06

    An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope ((13)C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements.

  8. Spatial variability in near-surface chlorophyll a fluorescence measured by the Airborne Oceanographic Lidar (AOL)

    NASA Astrophysics Data System (ADS)

    Yoder, James A.; Aiken, James; Swift, Robert N.; Hoge, Frank E.; Stegmann, Petra M.

    The primary purpose of the aircraft remote sensing component of the North Atlantic Bloom Experiment (NABE) was to: (1) quantify spatial patterns of surface Chl a variability and co-variability with temperature ( T) within the NABE study regions along the 20°W meridian near 48 and 60°N; and (2) determine if the major NABE ship and mooring locations were representative of surrounding ocean waters with respect to large-scale distributions of surface Chl a and T. The sampling platform was a NASA P-3 aircraft equipped with the Airborne Oceanographic Lidar (AOL) system, which measures laser-induced Chl a fluorescence (LICF), upwelling spectral radiance and surface temperature ( T). Results collected during nine AOL missions conducted between 26 April and 3 June show considerable mesoscale variability in LICF and T. Spatial statistics (structure functions) showed that the dominant scales of LICF and T were significantly correlated in the range 10-290 km. Spectral analysis of the results of long flight lines showed spectral slopes averaging -2 for both LICF and T for spatial scales in the range 1.2-50 km. As for previous investigations of this type, we interpret the correlation between LICF and T as evidence that physical processes such as upwelling and mixing are dominant processes affecting spatial variations in Chl a distributions in the North Atlantic during the period of our sampling. The minimum dominant T and LICF spatial scales (ca 10 km) we determined from structure functions are similar to minimum scales predicted from models ( WOODS, 1988, In: Toward a theory on biological-physical interactions in the world ocean, Kluwer Academic, Boston, pp. 7-30) of upwelling induced by vortex contraction on the anticyclonic side of mesoscale jets. The NABE experiment was planned with the explicit assumption that major biological and chemical gradients are in the north-south direction in the northeast Atlantic. Our results support this assumption, and we observed no large

  9. Photosynthetic activity, photoprotection and photoinhibition in intertidal microphytobenthos as studied in situ using variable chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Serôdio, João; Vieira, Sónia; Cruz, Sónia

    2008-06-01

    The photosynthetic activity of microphytobenthos biofilms was studied in situ on an intertidal mudflat of the Ria de Aveiro, Portugal. Time series of physical variables characterizing the microenvironment at the sediment photic zone (incident solar irradiance, temperature, salinity), photophysiological parameters and productive biomass of undisturbed microalgal assemblages were measured during daytime low-tide periods along one spring-neap tidal cycle, with the objective of (1) characterizing the short-term variability in photosynthetic activity in situ, (2) relating it with the changing environmental conditions and (3) with the operation of physiologically (xanthophyll cycle) and behaviorally (vertical migration) based photoprotective processes, and (4) assessing the occurrence of photoinhibition. Pulse Amplitude Modulated (PAM) fluorometry was applied to measure photosynthetic activity (the effective and maximum quantum yield of photosystem II, Δ F/ Fm' and Fv/ Fm; the photosynthesis index EFY; rapid light-response curves (RLC)), the photoprotective operation of the xanthophyll cycle and photoinhibition (non-photochemical quenching, NPQ; quantum efficiency of open RCs, Fv'/ Fm'), and vertical migration (productive biomass, Fo). The photosynthetic activity was found to be strongly affected by the cumulative light dose received during the morning low-tide periods. The fluorescence indices Δ F/ Fm', EFY, Fv'/ Fm' and RLC parameters were more depressed under high irradiances when clear sky was present during the morning low tide than when foggy conditions reduced the light dose received during a comparable period. Productive biomass exhibited maximum values in the first hours of the morning, followed by a steep decrease when irradiance reached moderate levels, due to the downward migration of the microalgae. This photophobic migratory response appeared to display a photoprotective role, allowing Δ F/ Fm' to remain near optimum values until irradiance reached

  10. Fluorescence LiDAR UFL-9 investigations of chlorophyll a, CDOM and TSM spatial distribution on the Lake Issyk-Kul

    NASA Astrophysics Data System (ADS)

    Pelevin, Vadim; Zavialov, Peter; Kremenetskiy, Vyacheslav; Osokina, Varya

    2016-04-01

    Results of two field surveys on the Lake Issyk-Kul made by Shirshov scientific group in 2014, 2015 are presented, obtained with the help of fluorescence LiDAR UFL-9. High resolution maps of spatial distribution of chlorophyll a, colored dissolved organic material (CDOM) and total suspended matter (TSM) concentrations in the upper water layer are shown and discussed. Issyk-Kul Lake is the ultra oligotrophic water body in which the concentrations of the conctituents mentioned above are fairly low, but well distinguishable by fluorescence lidar. Explorations were conducted onbord the moving medium-size research vessels in various weather and daytime conditions in continuous mode.

  11. PsbS is required for systemic acquired acclimation and post-excess-light-stress optimization of chlorophyll fluorescence decay times in Arabidopsis.

    PubMed

    Ciszak, Kamil; Kulasek, Milena; Barczak, Anna; Grzelak, Justyna; Maćkowski, Sebastian; Karpiński, Stanisław

    2015-01-01

    Systemic acquired acclimation (SAA) is an important light acclimatory mechanism that depends on the global adjustments of non-photochemical quenching and chloroplast retrograde signaling. As the exact regulation of these processes is not known, we measured time-resolved fluorescence of chlorophyll a in Arabidopsis thaliana leaves exposed to excess light, in leaves undergoing SAA, and in leaves after excess light episode. We compare the behavior induced in wild-type plants with null mutant of non-photochemical quenching (npq4-1). The wild type rosettes exhibit a small reduction of fluorescence decay times in leaves directly exposed to excess light and in leaves undergoing SAA in ambient low light. However in npq4-1 exposition to excess light results in much faster fluorescence decay, which is insensitive to excitation power. At the same time npq4-1 leaves undergoing SAA displayed intermediate fluorescence decay. The npq4-1 plants also lost the ability to optimize florescence decay, and thus chlorophyll a dynamics up to 2 h after excess light episode. The fluorescence decay dynamics in both WT and npq4-1 can be described by a set of 3 maximum decay times. Based on the results, we concluded that functional PsbS is required for optimization of absorbed photon fate and optimal light acclimatory responses such as SAA or after excess light stress.

  12. PsbS is required for systemic acquired acclimation and post-excess-light-stress optimization of chlorophyll fluorescence decay times in Arabidopsis

    PubMed Central

    Ciszak, Kamil; Kulasek, Milena; Barczak, Anna; Grzelak, Justyna; Maćkowski, Sebastian; Karpiński, Stanisław

    2015-01-01

    Systemic acquired acclimation (SAA) is an important light acclimatory mechanism that depends on the global adjustments of non-photochemical quenching and chloroplast retrograde signaling. As the exact regulation of these processes is not known, we measured time-resolved fluorescence of chlorophyll a in Arabidopsis thaliana leaves exposed to excess light, in leaves undergoing SAA, and in leaves after excess light episode. We compare the behavior induced in wild-type plants with null mutant of non-photochemical quenching (npq4–1). The wild type rosettes exhibit a small reduction of fluorescence decay times in leaves directly exposed to excess light and in leaves undergoing SAA in ambient low light. However in npq4–1 exposition to excess light results in much faster fluorescence decay, which is insensitive to excitation power. At the same time npq4–1 leaves undergoing SAA displayed intermediate fluorescence decay. The npq4–1 plants also lost the ability to optimize florescence decay, and thus chlorophyll a dynamics up to 2 h after excess light episode. The fluorescence decay dynamics in both WT and npq4–1 can be described by a set of 3 maximum decay times. Based on the results, we concluded that functional PsbS is required for optimization of absorbed photon fate and optimal light acclimatory responses such as SAA or after excess light stress. PMID:25654166

  13. Estimating Chlorophyll Conditions in Southern New England Coastal Waters from Hyperspectral Aircraft Remote Sensing

    EPA Science Inventory

    Chlorophyll a (chl a) is commonly measured in water quality monitoring programs for coastal and freshwater systems. The concentration of chl a, when evaluated with other condition indicators such as water clarity and dissolved oxygen concentrations, provides information on the en...

  14. Application of Satellite Solar-Induced Chlorophyll Fluorescence to Understanding Large-Scale Variations in Vegetation Phenology and Function Over Northern High Latitude Forests

    NASA Technical Reports Server (NTRS)

    Jeong, Su-Jong; Schimel, David; Frankenberg, Christian; Drewry, Darren T.; Fisher, Joshua B.; Verma, Manish; Berry, Joseph A.; Lee, Jung-Eun; Joiner, Joanna

    2016-01-01

    This study evaluates the large-scale seasonal phenology and physiology of vegetation over northern high latitude forests (40 deg - 55 deg N) during spring and fall by using remote sensing of solar-induced chlorophyll fluorescence (SIF), normalized difference vegetation index (NDVI) and observation-based estimate of gross primary productivity (GPP) from 2009 to 2011. Based on GPP phenology estimation in GPP, the growing season determined by SIF time-series is shorter in length than the growing season length determined solely using NDVI. This is mainly due to the extended period of high NDVI values, as compared to SIF, by about 46 days (+/-11 days), indicating a large-scale seasonal decoupling of physiological activity and changes in greenness in the fall. In addition to phenological timing, mean seasonal NDVI and SIF have different responses to temperature changes throughout the growing season. We observed that both NDVI and SIF linearly increased with temperature increases throughout the spring. However, in the fall, although NDVI linearly responded to temperature increases, SIF and GPP did not linearly increase with temperature increases, implying a seasonal hysteresis of SIF and GPP in response to temperature changes across boreal ecosystems throughout their growing season. Seasonal hysteresis of vegetation at large-scales is consistent with the known phenomena that light limits boreal forest ecosystem productivity in the fall. Our results suggest that continuing measurements from satellite remote sensing of both SIF and NDVI can help to understand the differences between, and information carried by, seasonal variations vegetation structure and greenness and physiology at large-scales across the critical boreal regions.

  15. Chlorophyll fluorescence induction kinetics and yield responses in rainfed crops with variable potassium nutrition in K deficient semi-arid alfisols.

    PubMed

    Srinivasarao, Ch; Shanker, Arun K; Kundu, Sumanta; Reddy, Sharanbhoopal

    2016-07-01

    Optimum potassium (K) nutrition in semi-arid regions may help crop plants to overcome constraints in their growth and development such as moisture stress, leading to higher productivity of rainfed crops, thus judicious K management is essential. A study was conducted to evaluate the importance of K nutrition on physiological processes like photosynthesis through chlorophyll a fluorescence and chlorophyll fluorescence induction kinetics (OJIP) of rainfed crops viz., maize (Zea mays L.), pearl millet (Pennisetum glaucum), groundnut (Arachis hypogaea), sunflower (Helianthus annuus), castor (Ricinus communis L.) and cotton (Gossypium hirsutum) under water stress conditions by studying their growth attributes, water relations, yield, K uptake and use efficiency under varied K levels. Highest chlorophyll content was observed under K60 in maize and pearl millet. Narrow and wide Chl a:b ratio was observed in castor and groundnut respectively. The fluorescence yield decreased in the crops as K dosage increased, evidenced by increasing of all points (O, J, I and P) of the OJIP curves. The fluorescence transient curve for K60 was lower than K0 and K40 for all the crops. Potassium levels altered the fluorescence induction and impaired photosynthetic systems in all the crops studied. There was no distinct trend observed in leaf water potential of crops under study. Uptake of K was high in sunflower with increased rate of K application. Quantitatively, K uptake by castor crop was lesser compared to all other crops. Our results indicate that the yield reduction under low K was due to the low capacity of the crops to translocate K from non-photosynthetic organs such as stems and petioles to upper leaves and harvested organs and this in turn influenced the capacity of the crops to produce a high economic yield per unit of K taken up thus reducing utilization efficiency of K.

  16. Tree diversity affects chlorophyll a fluorescence and other leaf traits of tree species in a boreal forest.

    PubMed

    Pollastrini, Martina; Nogales, Ana Garcia; Benavides, Raquel; Bonal, Damien; Finer, Leena; Fotelli, Mariangela; Gessler, Arthur; Grossiord, Charlotte; Radoglou, Kalliopi; Strasser, Reto J; Bussotti, Filippo

    2017-01-18

    An assemblage of tree species with different crown properties creates heterogeneous environments at the canopy level. Changes of functional leaf traits are expected, especially those related to light interception and photosynthesis. Chlorophyll a fluorescence (ChlF) properties in dark-adapted leaves, specific leaf area, leaf nitrogen content (N) and carbon isotope composition (δ(13)C) were measured on Picea abies (L.) H.Karst., Pinus sylvestris L. and Betula pendula Roth. in monospecific and mixed boreal forests in Europe, in order to test whether they were affected by stand species richness and composition. Photosynthetic efficiency, assessed by induced emission of leaf ChlF, was positively influenced in B. pendula by species richness, whereas P. abies showed higher photosynthetic efficiency in monospecific stands. Pinus sylvestris had different responses when it coexisted with P. abies or B. pendula The presence of B. pendula, but not of P. abies, in the forest had a positive effect on the efficiency of photosynthetic electron transport and N in P. sylvestris needles, and the photosynthetic responses were positively correlated with an increase of leaf δ(13)C. These effects on P. sylvestris may be related to high light availability at the canopy level due to the less dense canopy of B. pendula The different light requirements of coexisting species was the most important factor affecting the distribution of foliage in the canopy, driving the physiological responses of the mixed species. Future research directions claim to enhance the informative potential of the methods to analyse the responses of pure and mixed forests to environmental factors, including a broader set of plant species' functional traits and physiological responses.

  17. [Effects of tillage patterns on photosynthetic and chlorophyll fluorescence characteristics of maize in rainfed area of Northeast China].

    PubMed

    Song, Zhen-Wei; Guo, Jin-Rui; Ren, Jun; Yan, Xiao-Gong; Zheng, Cheng-Yan; Deng, Ai-Xing; Zhang, Wei-Jian

    2013-07-01

    In 2010-2011, a field experiment was conducted in Northeast China to evaluate the effects of different tillage patterns on the temperature and moisture in topsoil layer and the leaf photosynthesis and chlorophyll fluorescence of maize. The effects of tillage patterns on the soil temperature and moisture mainly manifested at sowing-jointing stage. In treatments flat planting with ridging at early jointing stage (PL) and flat planting without ridging (PP), the soil moisture content at the depth of 0-40 cm was significantly higher than that in treatment ridge planting (LL), with the increment being 5.6% and 5.2%, 4.6% and 7.3%, and 3.9% and 4.8% at emergency, seedling, and jointing stages, respectively. The minimum temperature at the soil depth 5 cm at seedling stage in PL and PP was 1.4 and 1.3 degrees C higher than that in LL, respectively. Due to the improvement of soil water and thermal conditions, the leaf photosynthetic rate (Pn) and transpiration rate (Tr) at jointing stage in PL and PP were significantly higher than those in LL, whereas the PS II potential activity (Fv/Fo) and PS II maximal photochemical efficiency (Fv/Fm) had no significant differences among the treatments, indicating that the stomatal factors such as stomata conductivity and stomata limitation were the main factors inducing the photosynthesis differences among the treatments. Furthermore, the Pn and Tr at grain filling stage in LL and PL were higher than those in PP, mainly due to the high water-logging risk in PP in strong rainfall season. Consequently, treatment PL could promote maize photosynthesis through improving soil water and thermal conditions, and further, increase maize grain yield.

  18. Chlorophyll fluorescence and the polarized underwater light field: comparison of vector radiative transfer simulations and multi-angular hyperspectral polarization field measurements

    NASA Astrophysics Data System (ADS)

    El-habashi, Ahmed; Ahmed, Samir

    2016-05-01

    Previous partial simulations and field measurements by us, had demonstrated the impact of the un-polarized nature of algal chlorophyll fluorescence to reduce the observed degree of polarization of the underwater light field in the spectral vicinity of fluorescence. (Polarization otherwise existing as a result of non-algal particulate (NAP) and molecular elastic scattering). The magnitude of this fluorescence driven dip in the observed degree of polarization was also seen to be theoretically related to the fluorescence magnitude. The recent availability to us of the RayXP vector radiative transfer code (VRTE) for the coupled atmosphere ocean system now permits us to make complete simulations of the underwater polarized light field, using measured inherent optical properties (IOPs) as inputs. Based on these simulations, a much more comprehensive analysis of the fluorescence impact is now possible. Combining the results of these new simulations with underwater field measurements in eutrophic waters using our hyperspectral multi angle polarimeter, we verified the theoretical relationship. In addition, comparisons of VRTE simulations and hyperspectral polarized field measurements for various coastal water conditions permit retrieval of fluorescence magnitudes. Comparisons of these polarization based fluorescence retrievals with retrievals obtained using fluorescence height over baseline or Hydrolight scalar simulations, together with total unpolarized radiance measurements, show good agreement.

  19. Calibration procedures and first dataset of Southern Ocean chlorophyll a profiles collected by elephant seals equipped with a newly developed CTD-fluorescence tags

    NASA Astrophysics Data System (ADS)

    Guinet, C.; Xing, X.; Walker, E.; Monestiez, P.; Marchand, S.; Picard, B.; Jaud, T.; Authier, M.; Cotté, C.; Dragon, A. C.; Diamond, E.; Antoine, D.; Lovell, P.; Blain, S.; D'Ortenzio, F.; Claustre, H.

    2013-02-01

    , we are able to assess the 3-dimension distribution of phytoplankton concentration by foraging southern elephant seals. This approach reveals that for the Indian sector of the SO, the surface chlorophyll a (chl a) concentrations provided by MODIS were underestimated by a factor 2 compared to chl a concentrations estimated from HPLC corrected in situ fluorescence measurements. The scientific outcomes of this programme include an improved understanding of both the present state and variability in ocean biology, and the accompanying biogeochemistry, as well as the delivery of real-time and open-access data to scientists (doi:10.7491/MEMO.1).

  20. Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?

    PubMed

    Bukhov, N G; Heber, U; Wiese, C; Shuvalov, V A

    2001-04-01

    Dissipation of light energy was studied in the moss Rhytidiadelphus squarrosus (Hedw.) Warnst., and in leaves of Spinacia oleracea L. and Arabidopsis thaliana (L.) Heynh., using chlorophyll fluorescence as an indicator reaction. Maximum chlorophyll fluorescence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated spinach leaves, as produced by saturating light and studied between and -20 degrees C, revealed an activation energy delta E of 0.11 eV. As this suggested recombination fluorescence produced by charge recombination between the oxidized primary donor of photosystem II and reduced pheophytin, a mathematical model explaining fluorescence, and based in part on known characteristics of primary electron-transport reactions, was developed. The model permitted analysis of different modes of fluorescence quenching, two localized in the reaction center of photosystem II and one in the light-harvesting system of the antenna complexes. It predicted differences in the relationship between quenching of variable fluorescence Fv and quenching of basal, so-called F0 fluorescence depending on whether quenching originated from antenna complexes or from reaction centers. Such differences were found experimentally, suggesting antenna quenching as the predominant mechanism of dissipation of light energy in the moss Rhytidiadelphus, whereas reaction-center quenching appeared to be important in spinach and Arabidopsis. Both reaction-center and antenna quenching required activation by thylakoid protonation but only antenna quenching depended on or was strongly enhanced by zeaxanthin. De-protonation permitted relaxation of this quenching with half-times below 1 min. More slowly reversible quenching, tentatively identified as so-called qI or photoinhibitory quenching, required protonation but persisted for prolonged times after de-protonation. It appeared to originate in reaction centers.

  1. Assessment of six Indian cultivars of mung bean against ozone by using foliar injury index and changes in carbon assimilation, gas exchange, chlorophyll fluorescence and photosynthetic pigments.

    PubMed

    Chaudhary, Nivedita; Singh, Suruchi; Agrawal, S B; Agrawal, Madhoolika

    2013-09-01

    Six Indian cultivars of Vigna radiata L. (HUM-1, HUM-2, HUM-6, HUM-23, HUM-24 and HUM-26) were exposed with ambient and elevated (ambient + 10 ppb ozone (O3) for 6 h day(-1)) level of O3 in open top chambers. Ozone sensitivity was assessed by recording the magnitude of foliar visible injury and changes in various physiological parameters. All the six cultivars showed visible foliar symptoms due to O3, ranging 7.4 to 55.7 % injured leaf area. O3 significantly depressed total chlorophyll, photosynthetic rate (Ps), quantum yield (F(v)/F(m)) and total biomass although the extent of variation was cultivar specific. Cultivar HUM-1 showed maximum reduction in Ps and stomatal conductance. The fluorescence parameters also indicated maximum damage to PSII reaction centres of HUM-1. Injury percentage, chlorophyll loss, Ps, F(v)/F(m) and total biomass reduced least in HUM-23 depicting highest O3 resistance (R%).

  2. [The effect of phenols on the parameters of chlorophyll fluorescence and reaction of P700 in the green algae Scenedesmus quadricauda].

    PubMed

    Matorin, D N; Plekhanov, S E; Bratkovskaia, L B; Iakovleva, O V; Alekseev, A A

    2014-01-01

    The effect of phenols, present in drains of the tsellyulozo-paper industry, on photosynthesis of the microalgae Scenedesmus quadricauda has been studied. The analysis of induction curves of the slowed-down fluorescence and light curves of non-photochemical quenching of chlorophyll fluorescence of microalgae Scenedesmus quadricauda is carried out. It was observed that energization of photosynthetic membranes was inhibited at low concentration of phenol and pyrocatechin (0.1 mM). At higher concentrations phenol and pyrocatechin inhibited electron transport in FSII and increased a share of QB not restoring centers. As a result of it the rate of P700 pigment regeneration slowed down. The results obtained indicate that parameters of induction curves of the fast and slowed-down fluorescence can be used for detecting phenol and pyrocatechin in the environment at early stages of toxic effects.

  3. Chlorophyll fluorescence imaging of photosynthetic activity and pigment contents of the resurrection plants Ramonda serbica and Ramonda nathaliae during dehydration and rehydration.

    PubMed

    Gashi, Bekim; Babani, Fatbardha; Kongjika, Efigjeni

    2013-07-01

    The desiccation-tolerant plants of the R. serbica and R. nathaliae are resurrection plants which are able to fully recover their physiological function after anabiosis. A comparison of chlorophyll fluorescence imaging and photosynthetic pigment contents responses of R. serbica and, for the first time, R. nathaliae to dehydration and rehydration were investigated. For this purpose, plants after collection from their natural habitats were kept fully watered for 14 days at natural condition. The experiment was conducted with mature leaves of both species. R. serbica and R. nathaliae plants were dehydrated to 5.88 % and 7.87 % relative water content (RWC) by withholding water for 15 days, afterwards the plants were rehydrated for 72 hours to 94.67 % and 97.02 % RWC. During desiccation, R. serbica plants preserved the chlorophyll content about 84 %, while R. nathaliae about 90 %. During dehydration when RWC were more than 40 %, photochemical efficiency of PSII for photochemistry, the Fv/Fm ratio, decreased about 40 % in R. nathaliae plants, but a strong reduction with 60 % was recorded for R. serbica. Following rehydration, the Fv/Fm ratio recovered more rapidly in R. nathaliae. The higher photosynthetic rates could also be detected via imaging the chlorophyll fluorescence decrease ratio Rfd, which possessed higher values after rehydration leaves of R. nathaliae as compared to R. serbica. The results showed that the photosynthetic activity and chlorophyll contents after rehydration are recovered more rapidly in R. nathaliae in comparison to R. serbica.

  4. [Research on maize multispectral image accurate segmentation and chlorophyll index estimation].

    PubMed

    Wu, Qian; Sun, Hong; Li, Min-zan; Song, Yuan-yuan; Zhang, Yan-e

    2015-01-01

    In order to rapidly acquire maize growing information in the field, a non-destructive method of maize chlorophyll content index measurement was conducted based on multi-spectral imaging technique and imaging processing technology. The experiment was conducted at Yangling in Shaanxi province of China and the crop was Zheng-dan 958 planted in about 1 000 m X 600 m experiment field. Firstly, a 2-CCD multi-spectral image monitoring system was available to acquire the canopy images. The system was based on a dichroic prism, allowing precise separation of the visible (Blue (B), Green (G), Red (R): 400-700 nm) and near-infrared (NIR, 760-1 000 nm) band. The multispectral images were output as RGB and NIR images via the system vertically fixed to the ground with vertical distance of 2 m and angular field of 50°. SPAD index of each sample was'measured synchronously to show the chlorophyll content index. Secondly, after the image smoothing using adaptive smooth filtering algorithm, the NIR maize image was selected to segment the maize leaves from background, because there was a big difference showed in gray histogram between plant and soil background. The NIR image segmentation algorithm was conducted following steps of preliminary and accuracy segmentation: (1) The results of OTSU image segmentation method and the variable threshold algorithm were discussed. It was revealed that the latter was better one in corn plant and weed segmentation. As a result, the variable threshold algorithm based on local statistics was selected for the preliminary image segmentation. The expansion and corrosion were used to optimize the segmented image. (2) The region labeling algorithm was used to segment corn plants from soil and weed background with an accuracy of 95. 59 %. And then, the multi-spectral image of maize canopy was accurately segmented in R, G and B band separately. Thirdly, the image parameters were abstracted based on the segmented visible and NIR images. The average gray

  5. A field study on solar-induced chlorophyll fluorescence and pigment parameters along a vertical canopy gradient of four tree species in an urban environment.

    PubMed

    Van Wittenberghe, Shari; Alonso, Luis; Verrelst, Jochem; Hermans, Inge; Valcke, Roland; Veroustraete, Frank; Moreno, José; Samson, Roeland

    2014-01-01

    To better understand the potential uses of vegetation indices based on the sun-induced upward and downward chlorophyll fluorescence at leaf and at canopy scales, a field study was carried out in the city of Valencia (Spain). Fluorescence yield (FY) indices were derived for trees at different traffic intensity locations and at three canopy heights. This allowed investigating within-tree and between-tree variations of FY indices for four tree species. Several FY indices showed a significant (p < 0.05) and important effect of tree location for the species Morus alba (white mulberry) and Phoenix canariensis (Canary Island date palm). The upward FY parameters of M. alba, and the upward to downward ratios at 687 and 741 nm for both species, were significantly related to tree location. It was found that not the total chlorophyll (Chl) content, but rather the Chl a/b ratio showed the strongest correlations with several of the indices applied. Chl a/b was lowest at the bottom level of the highest traffic intensity location for both species due to an increased Chl b, indicating a larger light harvesting complex related to Photosystem II (LHCII) as a response to limiting light. The leaf deposits from traffic observed at this sampling location possibly led to a shading effect, resulting further in an adaptive response of the photosynthetic system and subsequent difference of FY indices. This study therefore indicated the importance of the size of LHCII on the fluorescence emission, observed under different traffic generated pollution conditions.

  6. Can the chlorophyll-a fluorescence be useful in identifying acclimated young plants from two populations of Cecropia pachystachya Trec. (Urticaceae), under elevated CO2 concentrations?

    PubMed

    Santiago, E F; Larentis, T C; Barbosa, V M; Caires, A R L; Morais, G A; Súarez, Y R

    2015-01-01

    The physiological behavior of PSII measured by chlorophyll a fluorescence explains stress responses; wonders if it can differentiate plants from different populations. For this purpose, acclimated young plants of two C. pachystachya populations were cultivated from seeds. Chlorophyll-a fluorescence was measured after fertilization and [CO(2)](e). In the first 48 h after fertilization there was a reduction in the maximum quantum yield of PSII, while the means obtained under [CO(2)](e) were significantly higher than in other treatments (0.8 and 0.81). The variable PI best expressed the different conditions tested. Compared to their respective controls, the reduction of DIo/CS was 35.89 % in population (P) and 41.89 % in population (I), while the polyphasic fluorescence kinetics differed between treatments, but not necessarily between populations, except for post-fertilization at I-P steps. The analysis of kinetics between Fo and Fj (Wt) showed no K band during the O-J phase. The interferences found in PSII reinforces the idea of reversible damage to PSII. This effect is directly related to the reduced electron transport rate and increased non-photochemical dissipation and may be similar to those observed under field conditions after planting; adjustment time depends, among other factors, on the genetic potential of the species.

  7. Diurnal Variability in Chlorophyll-a, Carotenoids, CDOM and SO42− Intensity of Offshore Seawater Detected by an Underwater Fluorescence-Raman Spectral System

    PubMed Central

    Chen, Jing; Ye, Wangquan; Guo, Jinjia; Luo, Zhao; Li, Ying

    2016-01-01

    A newly developed integrated fluorescence-Raman spectral system (λex = 532 nm) for detecting Chlorophyll-a (chl-a), Chromophoric Dissolved Organic Matter (CDOM), carotenoids and SO42− in situ was used to successfully investigate the diurnal variability of all above. Simultaneously using the integration of fluorescence spectroscopy and Raman spectroscopy techniques provided comprehensive marine information due to the complementarity between the different excitation mechanisms and different selection rules. The investigation took place in offshore seawater of the Yellow Sea (36°05′40′′ N, 120°31′32′′ E) in October 2014. To detect chl-a, CDOM, carotenoids and SO42−, the fluorescence-Raman spectral system was deployed. It was found that troughs of chl-a and CDOM fluorescence signal intensity were observed during high tides, while the signal intensity showed high values with larger fluctuations during ebb-tide. Chl-a and carotenoids were influenced by solar radiation within a day cycle by different detection techniques, as well as displaying similar and synchronous tendency. CDOM fluorescence cause interference to the measurement of SO42−. To avoid such interference, the backup Raman spectroscopy system with λex = 785 nm was employed to detect SO42− concentration on the following day. The results demonstrated that the fluorescence-Raman spectral system has great potential in detection of chl-a, carotenoids, CDOM and SO42− in the ocean. PMID:27420071

  8. In situ hyperspectral data analysis for canopy chlorophyll content estimation of an invasive species spartina alterniflora based on PROSAIL canopy radiative transfer model

    NASA Astrophysics Data System (ADS)

    Ai, Jinquan; Gao, Wei; Shi, Runhe; Zhang, Chao; Sun, Zhibin; Chen, Wenhui; Liu, Chaoshun; Zeng, Yuyan

    2015-09-01

    Spartina alterniflora is one of the most serious invasive species in the coastal saltmarshes of China. An accurate quantitative estimation of its canopy leaf chlorophyll content is of great importance for monitoring plant physiological state and vegetation productivity. Hyperspectral reflectance data representing a range of canopy chlorophyll content were simulated by using the PROSAIL radiative transfer model at a 1nm sampling interval, which was based on prior knowledge of S.alterniflora. A set of indices was tested for estimating canopy chlorophyll content. Subsequently, validation were performed for testing the performance of indices, based on the PROSAIL model using in situ data measured by a Spectroradiometer with spectral range of 350-2500nm in a late autumn in a sub-tropical estuarine marsh. PROSAIL simulations showed that the most readily available indices were not good to be directly used in canopy chlorophyll estimation of S.alterniflora. The modified Chlorophyll Absorption in Reflectance Index MCARI[705,750] was linear related to the canopy chlorophyll content (R2=0.94) , but did not achieve a satisfactory estimation results with a high RMSE (RMSE=0.95 g.m-2). We optimized the index MCARI[705,750] by introducing a scale conversion coefficient to the formula to solve data units inconsistent, which is between the practical application unit and the unit used in the process of establishing the index, and balance scale transformation through radiative transfer models and examing corresponding canopy reflectance index values. We proposed index Optimized modified Chlorophyll Absorption in Reflectance Index OMCARI[705, 750]. The results showed that the index OMCARI[705, 750] had higher precision of prediction of chlorophyll for S.alterniflora (R2=0.94,RMSE=0.41 g.m-2 ).

  9. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-Spectral-Resolution Near-Infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 0.5. We also show

  10. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-spectral-resolution Near-infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Gaunter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 deg × 0.5 deg

  11. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf.

    PubMed

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  12. [Effects of different water potentials on leaf gas exchange and chlorophyll fluorescence parameters of cucumber during post-flowering growth stage].

    PubMed

    Lin, Lu; Tang, Yun; Zhang, Ji-tao; Yan, Wan-li; Xiao, Jian-hong; Ding, Chao; Dong, Chuan; Ji, Zeng-shun

    2015-07-01

    Impacts of different substrate water potentials (SWP) on leaf gas exchange and chlorophyll fluorescence parameters of greenhouse cucumber during its post-flowering growth stage were analyzed in this study. The results demonstrated that -10 and -30 kPa were the critical values for initiating stomatal and non-stomatal limitation of drought stress, respectively. During the stage of no drought stress (-10 kPa < SWP ≤ 0 kPa), gas exchange parameters and chlorophyll fluorescence parameters were not different significantly among treatments. During the stage of stomatal limitation of drought stress (-30 kPachlorophyll fluorescence parameters and differed significantly among treatments. During the stage of non-stomatal limitation of drought stress (-45 kPa≤SWP ≤ -30 kPa), with the decrease of SWP, light saturation point (LSP), Rd, CE, Vcmax, VTPU, LS, WUEi, ΦpPSII, Fv/Fm and qp decreased, while CCP, Ci and qN increased. In this stage, chlorophyll fluorescence parameters changed faster than gas exchange parameters and differed significantly among treatments. In production of greenhouse cucumber, -10 and -5 kPa should be the lower and upper limit value of irrigation, respectively. The stomatal

  13. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  14. Blind deconvolution estimation of fluorescence measurements through quadratic programming

    NASA Astrophysics Data System (ADS)

    Campos-Delgado, Daniel U.; Gutierrez-Navarro, Omar; Arce-Santana, Edgar R.; Skala, Melissa C.; Walsh, Alex J.; Jo, Javier A.

    2015-07-01

    Time-deconvolution of the instrument response from fluorescence lifetime imaging microscopy (FLIM) data is usually necessary for accurate fluorescence lifetime estimation. In many applications, however, the instrument response is not available. In such cases, a blind deconvolution approach is required. An iterative methodology is proposed to address the blind deconvolution problem departing from a dataset of FLIM measurements. A linear combination of a base conformed by Laguerre functions models the fluorescence impulse response of the sample at each spatial point in our formulation. Our blind deconvolution estimation (BDE) algorithm is formulated as a quadratic approximation problem, where the decision variables are the samples of the instrument response and the scaling coefficients of the basis functions. In the approximation cost function, there is a bilinear dependence on the decision variables. Hence, due to the nonlinear nature of the estimation process, an alternating least-squares scheme iteratively solves the approximation problem. Our proposal searches for the samples of the instrument response with a global perspective, and the scaling coefficients of the basis functions locally at each spatial point. First, the iterative methodology relies on a least-squares solution for the instrument response, and quadratic programming for the scaling coefficients applied just to a subset of the measured fluorescence decays to initially estimate the instrument response to speed up the convergence. After convergence, the final stage computes the fluorescence impulse response at all spatial points. A comprehensive validation stage considers synthetic and experimental FLIM datasets of ex vivo atherosclerotic plaques and human breast cancer cell samples that highlight the advantages of the proposed BDE algorithm under different noise and initial conditions in the iterative scheme and parameters of the proposal.

  15. Global monthly sea surface nitrate fields estimated from remotely sensed sea surface temperature, chlorophyll, and modeled mixed layer depth

    NASA Astrophysics Data System (ADS)

    Arteaga, Lionel; Pahlow, Markus; Oschlies, Andreas

    2015-02-01

    Information about oceanic nitrate is crucial for making inferences about marine biological production and the efficiency of the biological carbon pump. While there are no optical properties that allow direct estimation of inorganic nitrogen, its correlation with other biogeochemical variables may permit its inference from satellite data. Here we report a new method for estimating monthly mean surface nitrate concentrations employing local multiple linear regressions on a global 1° by 1° resolution grid, using satellite-derived sea surface temperature, chlorophyll, and modeled mixed layer depth. Our method is able to reproduce the interannual variability of independent in situ nitrate observations at the Bermuda Atlantic Time Series, the Hawaii Ocean Time series, the California coast, and the southern New Zealand region. Our new method is shown to be more accurate than previous algorithms and thus can provide improved information on temporal and spatial nutrient variations beyond the climatological mean at regional and global scales.

  16. Energy transfer between surface-immobilized light-harvesting chlorophyll a/b complex (LHCII) studied by surface plasmon field-enhanced fluorescence spectroscopy (SPFS).

    PubMed

    Lauterbach, Rolf; Liu, Jing; Knoll, Wolfgang; Paulsen, Harald

    2010-11-16

    The major light-harvesting chlorophyll a/b complex (LHCII) of the photosynthetic apparatus in green plants can be viewed as a protein scaffold binding and positioning a large number of pigment molecules that combines rapid and efficient excitation energy transfer with effective protection of its pigments from photobleaching. These properties make LHCII potentially interesting as a light harvester (or a model thereof) in photoelectronic applications. Most of such applications would require the LHCII to be immobilized on a solid surface. In a previous study we showed the immobilization of recombinant LHCII on functionalized gold surfaces via a 6-histidine tag (His tag) in the protein moiety. In this work the occurrence and efficiency of Förster energy transfer between immobilized LHCII on a functionalized surface have been analyzed by surface plasmon field-enhanced fluorescence spectroscopy (SPFS). A near-infrared dye was attached to some but not all of the LHC complexes, serving as an energy acceptor to chlorophylls. Analysis of the energy transfer from chlorophylls to this acceptor dye yielded information about the extent of intercomplex energy transfer between immobilized LHCII.

  17. Estimating and mapping chlorophyll content for a heterogeneous grassland: Comparing prediction power of a suite of vegetation indices across scales between years

    NASA Astrophysics Data System (ADS)

    Tong, Alexander; He, Yuhong

    2017-04-01

    This study investigates the performance of existing vegetation indices for retrieving chlorophyll content for a semi-arid mixed grass prairie ecosystem across scales using in situ data collected in 2012 and 2013. A 144 published broadband (21) and narrowband (123) vegetation indices are evaluated to estimate chlorophyll content. Results indicate that narrowband indices utilize reflectance data from one or more wavelengths in the red-edge region (∼690-750 nm) perform better. Broadband indices are found to be as effective as narrowband indices for chlorophyll content estimation at both leaf and canopy scales. The empirical relationships are generally stronger at the canopy than the leaf scale, attributable to the fact that leaf samples are collected during the peak growing season when chlorophyll in plant species are uniform. SPOT-5 and CASI-550 derived chlorophyll maps result in map accuracies of 63.56% and 78.88% respectively. The assessment of vegetation chlorophylls at the canopy level, especially using remote sensing imagery is important for providing information pertaining to ecosystem health such as the physiological status, productivity, or phenology of vegetation.

  18. Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1981-01-01

    The airborne laser-induced spectral emission bands obtained simultaneously from water Raman backscatter and the fluorescence of chlorophyll and other naturally occurring waterborne pigments are reported here for the first time. The importance of this type data lies not only in its single-shot multispectral character but also in the application of the Raman line for correction or calibration of the spatial variation of the laser penetration depth without the need for in situ water attenuation measurements. The entire laser-induced fluorescence and Raman scatter emissions resulting from each separate 532-nm 10-nsec laser pulse are collected and spectrally dispersed in a diffraction grating spectrometer having forty photomultiplier tube detectors. Results from field experiments conducted in the North Sea and the Chesapeake Bay/Potomac River are presented. Difficulties involving the multispectral resolution of the induced emissions are addressed, and feasible solutions are suggested together with new instrument configurations and future research directions.

  19. Spring and fall bloom evolutions estimated from 8 day composite satellite chlorophyll data in the East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Kim, B.; Cho, Y.; Kim, S.; Kim, K.

    2012-12-01

    Bong-Guk Kim1, Yang-Ki Cho1, Sangil Kim2, Kwang-Yul, Kim1 1 School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea 2 College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA To understand the ocean carbon cycle, estimating the ocean biomass is necessary and it has been done by various methods. Satellite observation is one of beneficial methods to investigate ocean biomass. Satellite data enable us to monitor chlorophyll-a for wide area with high resolution and frequency. The East/Japan Sea, which called as 'miniature ocean' due to its rapid turnover circulation, is one of the most productive ocean. With the concerning global warming, a number of studies on temporal and spatial distribution of satellite chlorophyll in the East/Japan Sea have been processed. However, most of these studies have used monthly data set which can not resolve detail evolution of chlorophyll-a. In this study, detail evolutions of spring and fall bloom are investigated by the CSEOF (Cyclo-Stationary EOF) analysis of 8-day composite MODIS chlorophyll data from July 2002 to February 2012. For the CSEOF analysis, optimal interpolation (OI) method was applied to fill the blank data which is critical problem in satellite data. Spring bloom started at western Japanese coast on 57th day of the year. And it gradually moves eastern coast of Korean and then moves to northern Primorye coast. Spring bloom spreads entire the East/Japan Sea on 113th day of the year and then, it disappears from the southern East/Japan Sea. Spring bloom ends in the northern East/Japan Sea. In the case of fall bloom, it starts at Korean coast on 265th day of the year, and it moves to the north along the Korean coast by 329th day of the year. After that day, fall bloom ends near the northern coast of Korea on 353rd day of the year.

  20. [Effects of long-term ozone exposure on chlorophyll a fluorescence and gas exchange of winter-wheat leaves].

    PubMed

    Zheng, You-fei; Zhao, Ze; Wu, Rong-jun; Hu, Cheng-da; Liu, Hong-ju

    2010-02-01

    In order to provide basis for evaluating the effects of air pollutant such as O3 on crops yield and food security, the effects of O3 fumigation (ambient air, CK; 100 nL x L(-1), T1; 150 nL x L(-1), T2) on chlorophyll a fluorescence and gas exchange of a field-grown winter-wheat (Triticum aestivum L. Yang Mai 13) in different growing period were conducted via open-top chamber technique in conjunction with Diving-PAM fluorometer and LC pro + photosynthesis system. Results indicated that Fv/Fm caused by T1 was higher than 0.8, while the Pm, qP, (1-qP)/NPQ and Y(NO) were similar to those of CK, the NPQ and Y(NPQ) were increased by 13.5%-29.0% and 13.3%-22.7% respectively due to O3 stress. Under nature light (rapid light curve, RLC) and after dark adaptation (induction curve in steady-state, IC) the Yield of T1 was decreased by 4.6%-7.6% and 11.3%-19.3% respectively, with 8.0%-9.8% and 11.0%-23.1% reductions in Pn, and Gs compared to CK, respectively. In heading stage and blooming stage, the Ls of T, was greater than CK, but in filling stage and mature stage, it became lower compared to CK. The Fv/Fm was slightly lower than 0.8 under T2 treatment, with the Y(NO), (1-qP)/NPQ and c(i) were increased by 37.9%-75.6%, 157.1%-325.8% and 3.4%-18.1% relative to CK. Under RLC and IC condition, the Yield of T2 was respectively decreased by 10.2%-13.6% and 21.4%-29.1%, and the Pn, Ls, qP, Pm, NPQ and Y(NPQ) were decreased by 28.1%-39.9%, 5.2%-21.3%, 15.8%-30.4%, 27.6%-45.6%, 3.3%-52.9% and 5.7%-17.9% in comparison, respectively. Obviously the enhanced O3 causes a significant decrease in the capacity of photosynthesis of winter wheat, and the influence mechanism presents a series of dynamic changes according to growing seasons. The reduction of Fv/Fm under T1 treatment is a response of PS II reaction center to the increase of NPQ, and the decrease in Pn and Yield is a consequence of protective adjustment, by this approach, the antioxidant system and energy dissipation mechanism can

  1. Spectroscopic properties of chlorophyll f.

    PubMed

    Li, Yaqiong; Cai, Zheng-Li; Chen, Min

    2013-09-26

    The absorption and fluorescence spectra of chlorophyll f (newly discovered in 2010) have been measured in acetone and methanol at different temperatures. The spectral analysis and assignment are compared with the spectra of chlorophyll a and d under the same experimental conditions. The spectroscopic properties of these chlorophylls have further been studied by the aid of density functional CAM-B3LYP and high-level symmetric adapted coupled-cluster configuration interaction calculations. The main Q and Soret bands and possible sidebands of chlorophylls have been determined. The photophysical properties of chlorophyll f are discussed.

  2. Small-scale variability of chlorophyll, CDOM, and suspended matter in the Lake Balaton as obtained by shipborne UV fluorescent lidar

    NASA Astrophysics Data System (ADS)

    Pelevin, Vadim; Palmer, Stephanie; Khymchenko, Lisa

    2015-04-01

    Despite a long history in oceanography, few attempts have been made to use fluorescent lidars to evaluate water quality in lakes. We report lidar measurements taken on the Lake Balaton over the period of five days in August, 2012. Lake Balaton, the largest lake in Central Europe in area (597 km2), is very shallow (average depth of 3.5m). The lake is mesotrophic exhibiting a strong trophic gradient from SW to NE. The UV fluorescent lidar UFL-9 used in this study was developed at the Shirshov Institute of Oceanology. It can be used for CDOM, organic pollutants, chlorophyll, and suspended matter concentrations measurements at very high spatial resolution (up to ~1 m). The data were collected continuously during daytime while the boat was travelling. The entire area of the lake was covered by the measurement. The lidar data were calibrated against those obtained in situ through water sampling and then converted from the optical units into the mass concentrations of the above mentioned constituents. Based on this data set, we mapped and investigated in detail the small-scale spatial variability of CDOM, chlorophyll-a, and suspended matter concentrations. In particular, the characteristics of patchiness for the selected parameters were quantified and inter-compared, and their relations with the background forcing conditions were analyzed. We also discuss the applicability of lidar techniques for assessing the hydrological and ecological conditions in shallow inland water bodies. The study was partly supported by the Russian Science Foundation, Grant 14-50-00095.

  3. A bio-optical algorithm for the remote estimation of the chlorophyll-a concentration in case 2 waters

    NASA Astrophysics Data System (ADS)

    Gitelson, Anatoly A.; Gurlin, Daniela; Moses, Wesley J.; Barrow, Tadd

    2009-10-01

    The objective of this work was to test the performance of a recently developed three-band model and its special case, a two-band model, for the remote estimation of the chlorophyll- a (chl-a) concentration in turbid productive case 2 waters. We specifically focused on (a) determining the ability of the models to estimate chl- a <20 mg m-3, typical for coastal and estuarine waters, and (b) assessing the potential of MODIS and MERIS to estimate chl-a concentrations in turbid productive waters, using red and near-infrared (NIR) bands. Reflectance spectra and water samples were collected in 89 stations over lakes in the United States with a wide variability in optical parameters (i.e. 2.1estimate chlorophyll-a concentrations with a root mean square error (RMSE) of <1.65 mg m-3. MODIS (bands 13 and 15) and MERIS (bands 7, 9, and 10) red and NIR reflectances were simulated from the collected reflectance spectra and potential estimation errors were assessed. The MODIS two-band model is able to estimate chl- a concentrations with a RMSE of<7.5 mg m-3 for chl-a ranging from 2 to 50 mg m-3 however, the model loses its sensitivity for chl- a<20 mg m-3. Benefiting from the higher spectral resolution of the MERIS data, the MERIS three-band model accounts for 93% of chl- a variation and is able to estimate chl-a concentrations with a RMSE of<5.1 mg m-3 for chl-a ranging from 2 to 50 mg m-3, and a RMSE of<1.7 mg m-3 for chl-a ranging from 2 to 20 mg m-3. These findings imply that, provided that an atmospheric correction scheme specific to the red and NIR spectral region is available, the extensive database of MODIS and MERIS images could be used to quantitatively monitor chl- a in case 2 waters.

  4. Evaluation of hyperspectral indices for chlorophyll-a concentration estimation in Tangxun Lake (Wuhan, China).

    PubMed

    Huang, Yaohuan; Jiang, Dong; Zhuang, Dafang; Fu, Jingying

    2010-06-01

    Chlorophyll-a (Chl-a) concentration is a major indicator of water quality which is harmful to human health. A growing number of studies have focused on the derivation of Chl-a concentration information from hyperspectral sensor data and the identification of best indices for Chl-a monitoring. The objective of this study is to assess the potential of hyperspectral indices to detect Chl-a concentrations in Tangxun Lake, which is the second largest lake in Wuhan, Central China. Hyperspectral reflectance and Chl-a concentration were measured at ten sample sites in Tangxun Lake. Three types of hyperspectral methods, including single-band reflectance, first derivative of reflectance, and reflectance ratio, were extracted from the spectral profiles of all bands of the hyperspectral sensor. The most appropriate bands for algorithms mentioned above were selected based on the correlation analysis. Evaluation results indicated that two methods, the first derivative of reflectance and reflectance ratio, were highly correlated (R(2) > 0.8) with the measured Chl-a concentrations. Thus, the spatial and temporal variations of Chl-a concentration could be conveniently monitored with these hyperspectral methods.

  5. Use of chlorophyll a fluorescence to detect the effect of microcystins on photosynthesis and photosystem II energy fluxes of green algae.

    PubMed

    Perron, Marie-Claude; Qiu, Baosheng; Boucher, Nathalie; Bellemare, François; Juneau, Philippe

    2012-04-01

    The phenomenon of cyanobacteria bloom occurs widely in lakes, reservoirs, ponds and slow flowing rivers. Those blooms can have important repercussions, at once on recreational and commercial activities but also on the health of animals and human beings. Indeed, many species are known to produce toxins which are released in water mainly at cellular death. The cyanotoxin most frequently encountered is the microcystin (MC), a hepatotoxin which counts more than 70 variants. The use of fast tests for the detection of this toxin is thus a necessity for the protection of the ecosystems and the human health. A promising method for their detection is a bioassay based on the chlorophyll a fluorescence of algae. Many studies have shown that algae are sensible to diverse pollutants, but were almost never used for cyanotoxins. Therefore, our goals were to evaluate the effect of microcystin on the fluorescence of different species of algae and how it can affect the flow of energy through photosystem II. To reach these objectives, we exposed four green algae (Scenedesmus obliquus CPCC5, Chlamydomonas reinhardtii CC125, Pseudokirchneriella subcapitata CPCC37 and Chlorella vulgaris CPCC111) to microcystin standards (variants MC-LF, LR, RR, YR) and to microcystin extracted from Microcystis aeruginosa (CPCC299), which is known to produce mainly MC-LR. Chlorophyll a fluorescence was measured by PEA (Plant Efficiency Analyzer) and LuminoTox. The results of our experiment showed that microcystins affect the photosynthetic efficiency and the flow of energy through photosystem II from 0.01 μg/mL, within only 15 min. From exposure to standard of microcystin, we showed that MC-LF was the most potent variant, followed by MC-YR, LR and RR. Moreover, green algae used in this study demonstrated different sensitivity to MCs, S. obliquus being the more sensitive. We finally demonstrated that LuminoTox was more sensitive to MCs than parameters measured with PEA, although the latter brings

  6. Comparison of Measurements and FluorMOD Simulations for Solar Induced Chlorophyll Fluorescence and Reflectance of a Corn Crop under Nitrogen Treatments [SIF and Reflectance for Corn

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Corp, Lawrence A.; Campbell, Petya K. E.

    2007-01-01

    The FLuorescence Explorer (FLEX) satellite concept is one of six semifinalist mission proposals selected in 2006 for pre-Phase studies by the European Space Agency (ESA). The FLEX concept proposes to measure passive solar induced chlorophyll fluorescence (SIF) of terrestrial ecosystems. A new spectral vegetation Fluorescence Model (FluorMOD) was developed to include the effects of steady state SIF on canopy reflectance. We used our laboratory and field measurements previously acquired from foliage and canopies of corn (Zea mays L.) under controlled nitrogen (N) fertilization to parameterize and evaluate FluorMOD. Our data included biophysical properties, fluorescence (F) and reflectance spectra for leaves; reflectance spectra of canopies and soil; solar irradiance; plot-level leaf area index; and canopy SIF emissions determined using the Fraunhofer Line Depth principal for the atmospheric telluric oxygen absorption features at 688 nm (O2-beta) and 760 nm (O2-alpha). FluorMOD simulations implemented in the default "look-up-table" mode did not reproduce the observed magnitudes of leaf F, canopy SIF, or canopy reflectance. However, simulations for all of these parameters agreed with observations when the default FluorMOD information was replaced with measurements, although N treatment responses were underestimated. Recommendations were provided to enhance FluorMOD's potential utility in support of SIF field experiments and studies of agriculture and ecosystems.

  7. Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta).

    PubMed

    Wu, Huanyang

    2016-01-01

    Spectral light changes evoke different morphogenetic and photosynthetic responses that can vary among different algae species. The aim of this study is to investigate the photosynthetic characteristics of the red macroalgae grown under different spectrum environments. In this study, Pyropia haitanensis were cultured under blue, red, and green LED and fluorescent tubes light. The growth rate, photopigment composition, chlorophyll fluorescence, and antioxidative enzymes activities in different light spectrums were investigated. The results revealed that growth rate was significantly higher in the thalli grown under blue, green, and fluorescent tubes light. Contents of Chl a and phycobiliprotein in red light were lower among all the growth conditions. Furthermore, a striking increase in SOD and CAT activity was observed in red light treatment along with the NPQ increase. The results revealed that the photosynthetic efficiency and increased growth rate of P. haitanensis benefitted from light spectrums such as blue, green, and fluorescent tubes light by pigment composition and photochemical efficiency manipulation, whereas red light has disadvantageous effects. Accordingly, the results for improving quality and the economic yield of algae species in some extent and the combination of different wavelengths could allow better economic resource exploitation.

  8. Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta)

    PubMed Central

    2016-01-01

    Spectral light changes evoke different morphogenetic and photosynthetic responses that can vary among different algae species. The aim of this study is to investigate the photosynthetic characteristics of the red macroalgae grown under different spectrum environments. In this study, Pyropia haitanensis were cultured under blue, red, and green LED and fluorescent tubes light. The growth rate, photopigment composition, chlorophyll fluorescence, and antioxidative enzymes activities in different light spectrums were investigated. The results revealed that growth rate was significantly higher in the thalli grown under blue, green, and fluorescent tubes light. Contents of Chl a and phycobiliprotein in red light were lower among all the growth conditions. Furthermore, a striking increase in SOD and CAT activity was observed in red light treatment along with the NPQ increase. The results revealed that the photosynthetic efficiency and increased growth rate of P. haitanensis benefitted from light spectrums such as blue, green, and fluorescent tubes light by pigment composition and photochemical efficiency manipulation, whereas red light has disadvantageous effects. Accordingly, the results for improving quality and the economic yield of algae species in some extent and the combination of different wavelengths could allow better economic resource exploitation. PMID:27642603

  9. Nonphotochemical quenching of excitation energy in photosystem II. A picosecond time-resolved study of the low yield of chlorophyll a fluorescence induced by single-turnover flash in isolated spinach thylakoids.

    PubMed

    Vasil'ev, S; Bruce, D

    1998-08-04

    Chlorophyll a fluorescence emission is widely used as a noninvasive measure of a number of parameters related to photosynthetic efficiency in oxygenic photosynthetic organisms. The most important component for the estimation of photochemistry is the relative increase in fluorescence yield between dark-adapted samples which have a maximal capacity for photochemistry and a minimal fluorescence yield (F0) and light-saturated samples where photochemistry is saturated and fluorescence yield is maximal (Fm). However, when photosynthesis is saturated with a short (less than 50 micro(s)) flash of light, which induces only one photochemical turnover of photosystem II, the maximal fluorescence yield is significantly lower (Fsat) than when saturation is achieved with a millisecond duration multiturnover flash (Fm). To investigate the origins of the difference in fluorescence yield between these two conditions, our time-resolved fluorescence apparatus was modified to allow collection of picosecond time-resolved decay kinetics over a short time window immediately following a saturating single-turnover flash (Fsat) as well as after a multiturnover saturating pulse (Fm). Our data were analyzed with a global kinetic model based on an exciton radical pair equilibrium model for photosystem II. The difference between Fm and Fsat was modeled well by changing only the rate constant for quenching of excitation energy in the antenna of photosystem II. An antenna-based origin for the quenching was verified experimentally by the observation that addition of the antenna quencher 5-hydroxy-1,4-naphthoquinone to thylakoids under Fm conditions resulted in decay kinetics and modeled kinetic parameters very similar to those observed under Fsat conditions in the absence of added quinone. Our data strongly support the origin of low fluorescence yield at Fsat to be an antenna-based nonphotochemical quenching of excitation energy in photosystem II which has not usually been considered explicitly in

  10. [Effects of plastic film mulching and rain harvesting modes on chlorophyll fluorescence characteristics, yield and water use efficiency of dryland maize].

    PubMed

    Li, Shang-Zhong; Fan, Ting-Lu; Wang, Yong; Zhao, Gang; Wang, Lei; Tang, Xiao-Ming; Dang, Yi; Zhao, Hui

    2014-02-01

    The differences on chlorophyll fluorescence parameters, yield and water use efficiency of dryland maize were compared among full plastic film mulching on double ridges and planting in catchment furrows (FFDRF), half plastic film mulching on double ridges and planting in catchment furrows (HFDRF), plastic film mulching on ridge and planting in film-side (FS), and flat planting with no plastic film mulching (NM) under field conditions in dry highland of Loess Plateau in 2007-2012. The results showed that fluorescence yield (Fo), the maximum fluorescence yield (Fm), light-adapted fluorescence yield when PS II reaction centers were totally open (F), light-adapted fluorescence yield when PS II reaction centers closed (Fm'), the maximal photochemical efficiency of PS II (Fv/Fm), the actual photochemical efficiency of PS II in the light (Phi PS II), the relative electron transport rate (ETR), photochemical quenching (qP) and non-photochemical quenching (qN) in maize leaves of FFDRF were higher than that of control (NM), and the value of 1-qP was lower than that of control, at 13:00, chlorophyll fluorescence parameters values of FFDRF was significantly higher than control, which were increased by 5.3%, 56.8%, 10.7%, 36.3%, 23.6%, 56.7%, 64.4%, 45.5%, 23.6% and -55.6%, respectively, compared with the control. Yield and water use efficiency of FFDRF were the highest in every year no matter dry year, normal year, humid year and hail disaster year. Average yield and water use efficiency of FFDRF were 12,650 kg x hm(-2) and 40.4 kg x mm(-1) x hm(-2) during 2007-2012, increased by 57.8% and 61.6% compared with the control, respectively, and also significantly higher compared with HFDRF and PS. Therefore, it was concluded that FFDRF had significantly increased the efficiency of light energy conversion and improved the production capacity of dryland maize.

  11. The action of oxygen on chlorophyll fluorescence quenching and absorption spectra in pea thylakoid membranes under the steady-state conditions.

    PubMed

    Garstka, Maciej; Nejman, Patrycja; Rosiak, Małgorzata

    2004-12-02

    The effect of oxygen concentration on both absorption and chlorophyll fluorescence spectra was investigated in isolated pea thylakoids at weak actinic light under the steady-state conditions. Upon the rise of oxygen concentration from anaerobiosis up to 412 microM a gradual absorbance increase around both 437 and 670 nm was observed, suggesting the disaggregation of LHCII and destacking of thylakoids. Simultaneously, an increase in oxygen concentration resulted in a decline in the Chl fluorescence at 680 nm to about 60% of the initial value. The plot of normalized Chl fluorescence quenching, F(-O(2))/F(+O(2)), showed discontinuity above 275 microM O(2), revealing two phases of quenching, at both lower and higher oxygen concentrations. The inhibition of photosystem II by DCMU or atrazine as well as that of cyt b(6)f by myxothiazol attenuated the oxygen-induced quenching events observed above 275 microM O(2), but did not modify the first phase of oxygen action. These data imply that the oxygen mediated Chl fluorescence quenching is partially independent on non-cyclic electron flow. The second phase of oxygen-induced decline in Chl fluorescence is diminished in thylakoids with poisoned PSII and cyt b(6)f activities and treated with rotenone or N-ethylmaleimide to inhibit NAD(P)H-plastoquinone dehydrogenase. The data suggest that under weak light and high oxygen concentration the Chl fluorescence quenching results from interactions between oxygen and PSI, cyt b(6)f and Ndh. On the contrary, inhibition of non-cyclic electron flow by antimycin A or uncoupling of thylakoids by carbonyl cyanide m-chlorophenyl hydrazone did not modify the steady-state oxygen effect on Chl fluorescence quenching. The addition of NADH protected thylakoids against oxygen-induced Chl fluorescence quenching, whereas in the presence of exogenic duroquinone the decrease in Chl fluorescence to one half of the initial level did not result from the oxygen effect, probably due to oxygen action as a

  12. Estimation of leaf chlorophyll content in winter wheat using variable importance for projection (VIP) with hyperspectral data

    NASA Astrophysics Data System (ADS)

    He, Peng; Xu, Xingang; Zhang, Baolei; Li, Zhenhai; Feng, Haikuan; Yang, Guijun; Zhang, Yongfeng

    2015-10-01

    Accurate estimation of leaf chlorophyll content (LCC) has great significance in study of the winter wheat, which is important for indicating nutrition status and photosynthetic. Selecting the closed related variable is the key to LCC monitoring. The variable importance for projection (VIP), applied to little samples and strong correlation data, is one of variable selection methods. In this study, VIP was used to select spectral variables, which includes reflectance spectra, first derivative spectra, vegetation indices and absorption or reflectance position features. The grey relational analysis (GRA) was used as a comparison. The results showed that (1) the VIP technology could be used to variable selection and had a strong correlation. (2) Reflectance spectra with the VIP method displayed the best accuracy, with R2 and RMSE of 0.42 and 0.663mg/g, respectively. (3) Vegetation indices using GRA had higher estimation than VIP method, with R2 and RMSE of 0.52 and 0.607 mg/g, respectively. (4) The VIP had more superiority and higher accuracy than the GRA in all kinds of hyperspectral features except vegetation indices. Therefore, the VIP technology could be used to the estimation of LCC and had a relatively good accuracy.

  13. Changes in polyphasic chlorophyll a fluorescence induction curve upon inhibition of donor or acceptor side of photosystem II in isolated thylakoids.

    PubMed

    Bukhov, Nikolai G; Egorova, Elena A; Govindachary, Sridharan; Carpentier, Robert

    2004-07-09

    The action of various inhibitors affecting the donor and acceptor sides of photosystem II (PSII) on the polyphasic rise of chlorophyll (Chl) fluorescence was studied in thylakoids isolated from pea leaves. Low concentrations of diuron and stigmatellin increased the magnitude of J-level of the Chl fluorescence rise. These concentrations barely affected electron transfer from PSII to PSI as revealed by the unchanged magnitude of the fast component (t(1/2) = 24 ms) of P700+ dark reduction. Higher concentrations of diuron and stigmatellin suppressed electron transport from PSII to PSI, which corresponded to the loss of thermal phase, the Chl fluorescence rise from J-level to the maximal, P-level. The effect of various concentrations of carbonylcyanide m-chlorophenylhydrazone (CCCP), which abolishes S-state cycle and binds at the plastoquinone site on QB, the secondary quinone acceptor PSII, on the Chl fluorescence rise was very similar to that of diuron and stigmatellin. Low concentrations of diuron, stigmatellin, or CCCP given on the background of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), which is shown to initiate the appearance of a distinct I-peak in the kinetics of Chl fluorescence rise measured in isolated thylakoids [BBA 1607 (2003) 91], increased J-step yield to I-step level and retarded Chl fluorescence rise from I-step to P-step. The increased J-step fluorescence rise caused by these three types of inhibitors is attributed to the suppression of the non-photochemical quenching of Chl fluorescence by [S2+ S3] states of the oxygen-evolving complex and oxidized P680, the primary donor of PSII reaction centers. In the contrary, the decreased fluorescence yield at P step (J-P, passing through I) is related to the persistence of a "plastoquinone"-type quenching owing to the limited availability of photochemically generated electron equivalents to reduce PQ pool in PSII centers where the S-state cycle of the donor side is modified by the inhibitor treatments.

  14. Estimation of chlorophyll-a concentration in estuarine waters: case study of the Pearl River estuary, South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanzhi; Lin, Hui; Chen, Chuqun; Chen, Liding; Zhang, Bing; Gitelson, Anatoly A.

    2011-04-01

    The objective of this work is to estimate chlorophyll-a (chl-a) concentration in the Pearl River estuary in China. To test the performance of algorithms for the estimation of the chl-a concentration in these productive turbid waters, the maximum band ratio (MBR) and near-infrared-red (NIR-red) models are used in this study. Specific focus is placed on (a) comparing the ability of the models to estimate chl-a in the range 1-12 mg m - 3, which is typical for coastal and estuarine waters, and (b) assessing the potential of the Moderate Resolution Imaging Spectrometer (MODIS) and Medium Resolution Imaging Spectrometer (MERIS) to estimate chl-a concentrations. Reflectance spectra and water samples were collected at 13 stations with chl-a ranging from 0.83 to 11.8 mg m - 3 and total suspended matter from 9.9 to 21.5 g m - 3. A close relationship was found between chl-a concentration and total suspended matter concentration with the determining coefficient (R2) above 0.89. The MBR calculated in the spectral bands of MODIS proved to be a good proxy for chl-a concentration (R2 > 0.93). On the other hand, both the NIR-red three-band model, with wavebands around 665, 700, and 730 nm, and the NIR-red two-band model (with bands around 665 and 700 nm) explained more than 95% of the chl-a variation, and we were able to estimate chl-a concentrations with a root mean square error below 1 mg m - 3. The two- and three-band NIR-red models with MERIS spectral bands accounted for 93% of the chl-a variation. These findings imply that the extensive database of MODIS and MERIS images could be used to quantitatively monitor chl-a in the Pearl River estuary.

  15. Chlorophyll-a concentration estimation with three bio-optical algorithms: correction for the low concentration range for the Yiam Reservoir, Korea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bio-optical algorithms have been applied to monitor water quality in surface water systems. Empirical algorithms, such as Ritchie (2008), Gons (2008), and Gilerson (2010), have been applied to estimate the chlorophyll-a (chl-a) concentrations. However, the performance of each algorithm severely degr...

  16. Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations

    EPA Science Inventory

    We analyzed 10 established and 4 new satellite reflectance algorithms for estimating chlorophyll-a (Chl-a) in a temperate reservoir in southwest Ohio using coincident hyperspectral aircraft imagery and dense water truth collected within one hour of image acquisition to develop si...

  17. The slow S to M rise of chlorophyll a fluorescence reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii.

    PubMed

    Kodru, Sireesha; Malavath, Tirupathi; Devadasu, Elsinraju; Nellaepalli, Sreedhar; Stirbet, Alexandrina; Subramanyam, Rajagopal; Govindjee

    2015-08-01

    The green alga Chlamydomonas (C.) reinhardtii is a model organism for photosynthesis research. State transitions regulate redistribution of excitation energy between photosystem I (PS I) and photosystem II (PS II) to provide balanced photosynthesis. Chlorophyll (Chl) a fluorescence induction (the so-called OJIPSMT transient) is a signature of several photosynthetic reactions. Here, we show that the slow (seconds to minutes) S to M fluorescence rise is reduced or absent in the stt7 mutant (which is locked in state 1) in C. reinhardtii. This suggests that the SM rise in wild type C. reinhardtii may be due to state 2 (low fluorescence state; larger antenna in PS I) to state 1 (high fluorescence state; larger antenna in PS II) transition, and thus, it can be used as an efficient and quick method to monitor state transitions in algae, as has already been shown in cyanobacteria (Papageorgiou et al. 1999, 2007; Kaňa et al. 2012). We also discuss our results on the effects of (1) 3-(3,4-dichlorophenyl)-1,4-dimethyl urea, an inhibitor of electron transport; (2) n-propyl gallate, an inhibitor of alternative oxidase (AOX) in mitochondria and of plastid terminal oxidase in chloroplasts; (3) salicylhydroxamic acid, an inhibitor of AOX in mitochondria; and (4) carbonyl cyanide p-trifluoromethoxyphenylhydrazone, an uncoupler of phosphorylation, which dissipates proton gradient across membranes. Based on the data presented in this paper, we conclude that the slow PSMT fluorescence transient in C. reinhardtii is due to the superimposition of, at least, two phenomena: qE dependent non-photochemical quenching of the excited state of Chl, and state transitions.

  18. Variations between the photosynthetic properties of elite and landrace Chinese rice cultivars revealed by simultaneous measurements of 820 nm transmission signal and chlorophyll a fluorescence induction.

    PubMed

    Hamdani, Saber; Qu, Mingnan; Xin, Chang-Peng; Li, Ming; Chu, Chengcai; Govindjee; Zhu, Xin-Guang

    2015-04-01

    The difference between the photosynthetic properties of elite and landrace Chinese rice cultivars was studied, using chlorophyll a fluorescence induction (mostly a monitor of Photosystem II activity) and I820 transmission signal (mostly a monitor of Photosystem I activity) to identify potential photosynthetic features differentiating these two groups, which show different degrees of artificial selection and grain yields. A higher fluorescence (related to PSII) IP rise phase and a lower P700(+) (related to PSI) accumulation were observed in the elite cultivars as compared to the landraces. Using these data, together with simulation data from a kinetic model of fluorescence induction, we show that the high IP rise phase and the low P700(+) accumulation can be a result of transient block on electron transfer and traffic jam on the electron acceptor side of PSI under a high [NADPH]/[NADP(+)] ratio. Considering that the ferredoxin NADP(+) reductase (FNR) transcript levels of XS134 (a representative elite cultivars) remains unaffected during the first few minutes of light/dark transition compared to Q4145 (a representative landrace cultivars), which shows a strong decline during the same time range, we propose that the FNR of elite cultivars may take more time to be inactivated in darkness. During this time the FNR enzyme can continue to reduce NADP(+) molecules, leading to initially high [NADPH]/[NADP(+)] ratio during OJIP transient. These data suggested a potential artificial selection of FNR during the breeding process of these examined elite rice cultivars.

  19. Estimating leaf chlorophyll of barley at different growth stages using spectral indices to reduce soil background and canopy structure effects

    NASA Astrophysics Data System (ADS)

    Yu, Kang; Lenz-Wiedemann, Victoria; Chen, Xinping; Bareth, Georg

    2014-11-01

    Monitoring in situ chlorophyll (Chl) content in agricultural crop leaves is of great importance for stress detection, nutritional state diagnosis, yield prediction and studying the mechanisms of plant and environment interaction. Numerous spectral indices have been developed for chlorophyll estimation from leaf- and canopy-level reflectance. However, in most cases, these indices are negatively affected by variations in canopy structure and soil background. The objective of this study was to develop spectral indices that can reduce the effects of varied canopy structure and growth stages for the estimation of leaf Chl. Hyperspectral reflectance data was obtained through simulation by a radiative transfer model, PROSAIL, and measurements from canopies of barley comprising different cultivars across growth stages using spectroradiometers. We applied a comprehensive band-optimization algorithm to explore five types of spectral indices: reflectance difference (RD), reflectance ratio (RR), normalized reflectance difference (NRD), difference of reflectance ratio (DRR) and ratio of reflectance difference (RRD). Indirectly using the multiple scatter correction (MSC) theory, we hypothesized that RRD can eliminate adverse effects of soil background, canopy structure and multiple scattering. Published indices and multivariate models such as optimum multiple band regression (OMBR), partial least squares regression (PLSR) and support vector machines for regression (SVR) were also employed. Results showed that the ratio of reflectance difference index (RRDI) optimized for simulated data significantly improved the correlation with Chl (R2 = 0.98, p < 0.0001) and was insensitive to LAI variations (1-8), compared to widely used indices such as MCARI/OSAVI (R2 = 0.64, p < 0.0001) and TCARI/OSAVI (R2 = 0.74, p < 0.0001). The RRDI optimized for barley explained 76% of the variation in Chl and outperformed multivariate models. However, the accuracy decreased when employing the indices

  20. PSII photochemistry in vegetative buds and needles of Norway spruce (Picea abies L. Karst.) probed by OJIP chlorophyll a fluorescence measurement.

    PubMed

    Katanić, Zorana; Atić, Lejla; Ferhatović, Dž; Cesar, Vera; Lepeduš, H

    2012-06-01

    Vegetative buds represent developmental stage of Norway spruce (Picea abies L. Karst.) needles where chloroplast biogenesis and photosynthetic activity begin. We used the analyses of polyphasic chlorophyll a fluorescence rise (OJIP) to compare photosystem II (PSII) functioning in vegetative buds and fully photosynthetically active mature current-year needles. Considerably decreased performance index (PIABS) in vegetative buds compared to needles pointed to their low photosynthetic efficiency. Maximum quantum yield of PSII (Fv/Fm) in buds was slightly decreased but above limited value for functionality indicating that primary photochemistry of PSII is not holdback of vegetative buds photosynthetic activity. The most significant difference observed between investigated developmental stages was accumulation of reduced primary quinine acceptor of PSII (QA-) in vegetative buds, as a result of its limited re-oxidation by passing electrons to secondary quinone acceptor, QB. We suggest that reduced electron transfer from QA- to QB could be the major limiting factor of photosynthesis in vegetative buds.

  1. Indication of transthylakoid proton-fluxes in Aegopodium podagraria L. by light-induced changes of plasmalemma potential, chlorophyll fluorescence and light-scattering.

    PubMed

    Vanselow, K H; Dau, H; Hansen, U P

    1988-12-01

    The time course of the responses of chlorophyll fluorescence in leaves of Aegopodium podagraria to changes in irradiance does not necessarily show the time constant of thylakoid energization at energy fluence rates below 10-25 W·m(-2). In addition, other measures of thylakoid energization, such as lightscattering at 532 nm and the responses to saturating flashes, show that the related component disappears from these signals at low fluence rates, but not necessarily all together at the same fluence rate. However, this time constant still appears in the light-induced responses of the plasmalemma potential. This implies that the effect on the electrogenic proton pump in the plasmalemma is the most sensitive indicator of proton fluxes into the inner thylakoid space. These results are a further indication that energy-quenching is coupled ther indication that energy-quenching is coupled to transthylakoid proton fluxes via an intermediate, which is not active in Aegopodium podagraria at low irradiances.

  2. Near infrared-red models for the remote estimation of chlorophyll- a concentration in optically complex turbid productive waters: From in situ measurements to aerial imagery

    NASA Astrophysics Data System (ADS)

    Gurlin, Daniela

    Today the water quality of many inland and coastal waters is compromised by cultural eutrophication in consequence of increased human agricultural and industrial activities and remote sensing is widely applied to monitor the trophic state of these waters. This study explores near infrared-red models for the remote estimation of chlorophyll-a concentration in turbid productive waters and compares several near infrared-red models developed within the last 35 years. Three of these near infrared-red models were calibrated for a dataset with chlorophyll-a concentrations from 2.3 to 81.2 mg m -3 and validated for independent and statistically significantly different datasets with chlorophyll-a concentrations from 4.0 to 95.5 mg m-3 and 4.0 to 24.2 mg m-3 for the spectral bands of the MEdium Resolution Imaging Spectrometer (MERIS) and Moderate-resolution Imaging Spectroradiometer (MODIS). The developed MERIS two-band algorithm estimated chlorophyll-a concentrations from 4.0 to 24.2 mg m-3, which are typical for many inland and coastal waters, very accurately with a mean absolute error 1.2 mg m-3. These results indicate a high potential of the simple MERIS two-band algorithm for the reliable estimation of chlorophyll-a concentration without any reduction in accuracy compared to more complex algorithms, even though more research seems required to analyze the sensitivity of this algorithm to differences in the chlorophyll-a specific absorption coefficient of phytoplankton. Three near infrared-red models were calibrated and validated for a smaller dataset of atmospherically corrected multi-temporal aerial imagery collected by the hyperspectral airborne imaging spectrometer for applications (AisaEAGLE). The developed algorithms successfully captured the spatial and temporal variability of the chlorophyll-a concentrations and estimated chlorophyll- a concentrations from 2.3 to 81.2 mg m-3 with mean absolute errors from 4.4 mg m-3 for the AISA two band algorithm to 5.2 mg m-3

  3. Photobiology of sea ice algae during initial spring growth in Kangerlussuaq, West Greenland: insights from imaging variable chlorophyll fluorescence of ice cores.

    PubMed

    Hawes, Ian; Lund-Hansen, Lars Chresten; Sorrell, Brian K; Nielsen, Morten Holtegaard; Borzák, Réka; Buss, Inge

    2012-06-01

    We undertook a series of measurements of photophysiological parameters of sea ice algae over 12 days of early spring growth in a West Greenland Fjord, by variable chlorophyll fluorescence imaging. Imaging of the ice-water interface showed the development of ice algae in 0.3-0.4 mm wide brine channels between laminar ice crystals in the lower 4-6 mm of the ice, with a several-fold spatial variation in inferred biomass on cm scales. The maximum quantum yield of photosynthesis, F(v) /F(m), was initially low (~0.1), though this increased rapidly to ~0.5 by day 6. Day 6 also saw the onset of biomass increase, the cessation of ice growth and the time at which brine had reached <50 psu and >-2 °C. We interpret this as indicating that the establishment of stable brine channels at close to ambient salinity was required to trigger photosynthetically active populations. Maximum relative electron transport rate (rETR(max)), saturation irradiance (E(k)) and photosynthetic efficiency (α) had also stabilised by day 6 at 5-6 relative units, ~30 μmol photons m⁻² s⁻¹ and 0.4-0.5 μmol photons m⁻²s⁻¹, respectively. E(k) was consistent with under-ice irradiance, which peaked at a similar value, confirming that daytime irradiance was adequate to facilitate photosynthetic activity throughout the study period. Photosynthetic parameters showed no substantial differences with depth within the ice, nor variation between cores or brine channels suggesting that during this early phase of ice algal growth cells were unaffected by gradients of environmental conditions within the ice. Variable chlorophyll fluorescence imaging offers a tool to determine how this situation may change over time and as brine channels and algal populations evolve.

  4. Excitation relaxation dynamics and energy transfer in fucoxanthin-chlorophyll a/c-protein complexes, probed by time-resolved fluorescence.

    PubMed

    Akimoto, Seiji; Teshigahara, Ayaka; Yokono, Makio; Mimuro, Mamoru; Nagao, Ryo; Tomo, Tatsuya

    2014-09-01

    In algae, light-harvesting complexes contain specific chlorophylls (Chls) and keto-carotenoids; Chl a, Chl c, and fucoxanthin (Fx) in diatoms and brown algae; Chl a, Chl c, and peridinin in photosynthetic dinoflagellates; and Chl a, Chl b, and siphonaxanthin in green algae. The Fx-Chl a/c-protein (FCP) complex from the diatom Chaetoceros gracilis contains Chl c1, Chl c2, and the keto-carotenoid, Fx, as antenna pigments, in addition to Chl a. In the present study, we investigated energy transfer in the FCP complex associated with photosystem II (FCPII) of C. gracilis. For these investigations, we analyzed time-resolved fluorescence spectra, fluorescence rise and decay curves, and time-resolved fluorescence anisotropy data. Chl a exhibited different energy forms with fluorescence peaks ranging from 677 nm to 688 nm. Fx transferred excitation energy to lower-energy Chl a with a time constant of 300fs. Chl c transferred excitation energy to Chl a with time constants of 500-600fs (intra-complex transfer), 600-700fs (intra-complex transfer), and 4-6ps (inter-complex transfer). The latter process made a greater contribution to total Chl c-to-Chl a transfer in intact cells of C. gracilis than in the isolated FCPII complexes. The lower-energy Chl a received excitation energy from Fx and transferred the energy to higher-energy Chl a. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.

  5. Estimating chlorophyll-a concentration in inland, estuarine and coastal waters: from close range to satellite observations

    NASA Astrophysics Data System (ADS)

    Gitelson, A. A.; Gurlin, D.; Moses, W. J.; Rundquist, D. C.

    2009-12-01

    The objective of this work was to test the performance of a recently developed three-band model and its special case, a two-band model, for the remote estimation of the chlorophyll-a (chl-a) concentration in turbid productive case 2 waters. We specifically focused on (a) determining the ability of the models to estimate chl-a concentration below 20 mg m-3, typical for estuarine and coastal waters, and (b) assessing the potential of MODIS and MERIS to estimate chl-a concentrations, using red and near-infrared (NIR) bands. Reflectance data were collected in inland, estuarine, and coastal waters by hyperspectral radiometers just beneath the water surface, hyperspectral imaging sensor AISA on board an aircraft, and satellite sensors MODIS and MERIS. Algorithms established using proximal sensing were applied to aircraft and satellite data. The algorithms yielded high accuracy in estimating chl-a concentrations from AISA and MERIS data. The results illustrated the potential of the NIR-Red models to estimate chl-a concentration in turbid productive waters with a high accuracy. Nevertheless, challenges still remain in calibrating the models for their universal application to satellite data. The in situ data collection technique needs to be adapted to maximize the number of stations that can be assessed with a single satellite image. The spatial heterogeneity of the water within a satellite pixel area around each station needs to be accounted for. So are any changes in the bio-physical and bio-optical characteristics of the water at each station during the time elapsed between the satellite overpass and the in situ data collection. Accurate and reliable atmospheric correction of the satellite data is still a major challenge for turbid productive waters. Provided these factors can be effectively accounted for, robustly calibrated algorithms can be developed for real-time estimation of chl-a concentration, which will greatly benefit scientists and natural resource managers in

  6. Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data—successes and challenges

    NASA Astrophysics Data System (ADS)

    Moses, W. J.; Gitelson, A. A.; Berdnikov, S.; Povazhnyy, V.

    2009-10-01

    We present and discuss here the results of our work using MODIS (moderate resolution imaging spectroradiometer) and MERIS (medium resolution imaging spectrometer) satellite data to estimate the concentration of chlorophyll- a (chl-a) in reservoirs of the Dnieper River and the Sea of Azov, which are typical case II waters, i.e., turbid and productive. Our objective was to test the potential of satellite remote sensing as a tool for near-real-time monitoring of chl- a distribution in these water bodies. We tested the performance of a recently developed three-band model, and its special case, a two-band model, which use the reflectance at red and near-infrared wavelengths for the retrieval of chl- a concentration. The higher spatial resolution and the availability of a spectral band at around 708 nm with the MERIS data offered great promise for these models. We compared results from several different atmospheric correction procedures available for MODIS and MERIS data. No one particular procedure was consistently and systematically better than the rest. Nevertheless, even in the absence of a perfect atmospheric correction procedure, both the three-band and the two-band models showed promising results when compared with in situ chl- a measurements. The challenges and limitations involved in satellite remote monitoring of the chl- a distribution in turbid productive waters are discussed.

  7. Diurnal and seasonal dynamics of canopy-level solar-induced chlorophyll fluorescence and spectral reflectance indices in a cornfield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A collaborative field campaign was undertaken to examine the temporal dynamics of canopy-level solar-induced fluorescence (SIF) and the Photochemical Reflectance Index (PRI) in conjunction with photosynthetic light use efficiency (LUE) obtained from fluxes measured at an instrumented tower. We condu...

  8. A User’s View of the Parameters Derived from the Induction Curves of Maximal Chlorophyll a Fluorescence: Perspectives for Analyzing Stress

    PubMed Central

    Ripoll, Julie; Bertin, Nadia; Bidel, Luc P. R.; Urban, Laurent

    2016-01-01

    Analysis of the fast kinetics of the induction curve of maximal fluorescence represents a relatively recent development for chlorophyll a fluorescence measurements. The parameters of the so-called JIP-test are exploited by an increasingly large community of users to assess plant stress and its consequences. We provide here evidence that these parameters are capable to distinguish between stresses of different natures or intensities, and between stressed plants of different genetic background or at different developmental stages at the time of stress. It is, however, important to keep in mind that the JIP-test is inherently limited in scope, that it is based on assumptions which are not fully validated and that precautions must be taken to ensure that measurements are meaningful. Recent advances suggest that some improvements could be implemented to increase the reliability of measurements and the pertinence of the parameters calculated. We moreover advocate for using the JIP-test in combination with other techniques to build comprehensive pictures of plant responses to stress. PMID:27891137

  9. Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical concentration.

    PubMed

    Singh, Shardendu K; Reddy, Vangimalla R

    2015-10-01

    To evaluate the response of CO2 assimilation rate (PN) and various chlorophyll fluorescence (CF) parameters to phosphorus (P) nutrition, soybean plants were grown in controlled environment with sufficient (0.50mM) and deficient (0.10 and 0.01 mM) phosphate (P) supply under ambient and elevated CO2 (aCO2, 400 and eCO2, 800 μmol mol(-1), respectively). Measurements were made at ambient (21%) and low (2%) O2 concentrations. Results showed strong correlation of leaf P concentration with PN and CF parameters. The P deficiency showed parallel decreases in PN, and CF parameters including quantum efficiency (Fv'/Fm'), quantum yield of photosystem II (ΦPSII), electron transport rate (JF), and photochemical quenching (qP). The Fv'/Fm' decreased as a result of greater decline in maximal (Fm') than minimal (Fo') fluorescence. The eCO2 stimulated PN especially under higher leaf P concentrations. Low O2 also stimulated PN but only at aCO2. The photosynthetic carbon reduction (PCR, signified by PN) and photorespiratory carbon oxidation cycles (PCO, signified photorespiration as indicated by ratio of JF to gross PN and % increase in PN at 2% O2) was the major electron sinks. However, the presence of alternative electron sink was also evident as determined by the difference between the electron transport calculated from chlorophyll fluorescence and gas exchange measurements. Alternative electron sink declined at lower leaf P concentration suggesting its minor role in photochemical energy consumption, thus dissipation of the excess excitation pressure of PSII reaction center under P deficiency. The JF/PG and % increase in PN at 2 versus 21% O2 remained consistent across leaf P concentration suggesting PCO cycle as an important mechanism to dissipate excess excitation energy in P deficient leaves. The severe decline of Fv'/Fm', ΦPSII, JF and qP under P deficiency also suggested the occurrences of excess radiant energy dissipation by non-photochemical quenching mechanisms. Critical

  10. Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content.

    PubMed

    Delegido, Jesús; Verrelst, Jochem; Alonso, Luis; Moreno, José

    2011-01-01

    ESA's upcoming satellite Sentinel-2 will provide Earth images of high spatial, spectral and temporal resolution and aims to ensure continuity for Landsat and SPOT observations. In comparison to the latter sensors, Sentinel-2 incorporates three new spectral bands in the red-edge region, which are centered at 705, 740 and 783 nm. This study addresses the importance of these new bands for the retrieval and monitoring of two important biophysical parameters: green leaf area index (LAI) and chlorophyll content (Ch). With data from several ESA field campaigns over agricultural sites (SPARC, AgriSAR, CEFLES2) we have evaluated the efficacy of two empirical methods that specifically make use of the new Sentinel-2 bands. First, it was shown that LAI can be derived from a generic normalized difference index (NDI) using hyperspectral data, with 674 nm with 712 nm as best performing bands. These bands are positioned closely to the Sentinel-2 B4 (665 nm) and the new red-edge B5 (705 nm) band. The method has been applied to simulated Sentinel-2 data. The resulting green LAI map was validated against field data of various crop types, thereby spanning a LAI between 0 and 6, and yielded a RMSE of 0.6. Second, the recently developed "Normalized Area Over reflectance Curve" (NAOC), an index that derives Ch from hyperspectral data, was studied on its compatibility with simulated Sentinel-2 data. This index integrates the reflectance curve between 643 and 795 nm, thereby including the new Sentinel-2 bands in the red-edge region. We found that these new bands significantly improve the accuracy of Ch estimation. Both methods emphasize the importance of red-edge bands for operational estimation of biophysical parameters from Sentinel-2.

  11. Lhcb Transcription Is Coordinated with Cell Size and Chlorophyll Accumulation (Studies on Fluorescence-Activated, Cell-Sorter-Purified Single Cells from Wild-Type and immutans Arabidopsis thaliana).

    PubMed Central

    Meehan, L.; Harkins, K.; Chory, J.; Rodermel, S.

    1996-01-01

    To study the mechanisms that integrate pigment and chlorophyll a/b-binding apoprotein biosynthesis during light-harvesting complex II assembly, we have examined [beta]-glucuronidase (GUS) enzyme activities, chlorophyll contents, and cell sizes in fluorescence-activated, cell-sorting-separated single cells from transgenic Arabidopsis thaliana wild-type and immutans variegation mutant plants that express an Lhcb (photosystem II chlorophyll a/b-binding polypeptide gene)/GUS promoter fusion. We found that GUS activities are positively correlated with chlorophyll content and cell size in green cells from the control and immutans plants, indicating that Lhcb gene transcription is coordinated with cell size in this species. Compared with the control plants, however, chlorophyll production is enhanced in the green cells of immutans; this may represent part of a strategy to maximize photosynthesis in the green sectors to compensate for a lack of photosynthesis in the white sectors of the mutant. Lhcb transcription is significantly higher in pure-white cells of the transgenic immutans plants than in pure-white cells from norflurazon-treated, photooxidized A. thaliana leaves. This suggests that immutans partially uncouples Lhcb transcription from its normal dependence on chlorophyll accumulation and chloroplast development. We conclude that immutans may play a role in regulating Lhcb transcription, and may be a key component in the signal transduction pathways that control chloroplast biogenesis. PMID:12226428

  12. Species-specific and seasonal differences in chlorophyll fluorescence and photosynthetic light response among three evergreen species in a Madrean sky island mixed conifer forest

    NASA Astrophysics Data System (ADS)

    Potts, D. L.; Minor, R. L.; Braun, Z.; Barron-Gafford, G. A.

    2012-12-01

    Unlike the snowmelt-dominated hydroclimate of more northern mountainous regions, the hydroclimate of the Madrean sky islands is characterized by snowmelt and convective storms associated with the North American Monsoon. These mid-summer storms trigger biological activity and are important drivers of primary productivity. For example, at the highest elevations where mixed conifer forests occur, ecosystem carbon balance is influenced by monsoon rains. Whereas these storms' significance is increasingly recognized at the ecosystem scale, species-specific physiological responses to the monsoon are poorly known. Prior to and following monsoon onset, we measured pre-dawn and light-adapted chlorophyll fluorescence as well as photosynthetic light response in southwestern white pine (Pinus strobiformis), ponderosa pine (Pinus ponderosa), and Douglas fir (Pseudotsuga menziesii) in a Madrean sky island mixed conifer forest near Tucson, Arizona. Photochemical quenching (qp), an indicator of the proportion of open PSII reaction centers, was greatest in P. strobiformis and least in P. menziesii and increased in response to monsoon rains (repeated-measures ANOVA; species, F2,14 = 6.17, P = 0.012; time, F2,14= 8.17, P = 0.013). In contrast, non-photochemical quenching (qN), an indicator of heat dissipation ability, was greatest in P. ponderosa and least in P. menziesii, but was not influenced by monsoon onset (repeated-measures ANOVA; species, F2,12 = 4.18, P = 0.042). Estimated from leaf area-adjusted photosynthetic light response curves, maximum photosynthetic rate (Amax) was greatest in P. ponderosa and least in P. menziesii (repeated-measures ANOVA; species, F2,8= 40.8, P = 0.001). Surprisingly, while the monsoon positively influenced Amax among P. ponderosa and P. strobiformis, Amax of P. menziesii declined with monsoon onset (repeated-measures ANOVA; species x time, F2,8 = 13.8, P = 0.002). Calculated as the initial slope of the photosynthetic light response curve, light

  13. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance

    PubMed Central

    Zeng, Chen; Xu, Huiping; Fischer, Andrew M.

    2016-01-01

    Ocean color remote sensing significantly contributes to our understanding of phytoplankton distribution and abundance and primary productivity in the Southern Ocean (SO). However, the current SO in situ optical database is still insufficient and unevenly distributed. This limits the ability to produce robust and accurate measurements of satellite-based chlorophyll. Based on data collected on cruises around the Antarctica Peninsula (AP) on January 2014 and 2016, this research intends to enhance our knowledge of SO water and atmospheric optical characteristics and address satellite algorithm deficiency of ocean color products. We collected high resolution in situ water leaving reflectance (±1 nm band resolution), simultaneous in situ chlorophyll-a concentrations and satellite (MODIS and VIIRS) water leaving reflectance. Field samples show that clouds have a great impact on the visible green bands and are difficult to detect because NASA protocols apply the NIR band as a cloud contamination threshold. When compared to global case I water, water around the AP has lower water leaving reflectance and a narrower blue-green band ratio, which explains chlorophyll-a underestimation in high chlorophyll-a regions and overestimation in low chlorophyll-a regions. VIIRS shows higher spatial coverage and detection accuracy than MODIS. After coefficient improvement, VIIRS is able to predict chlorophyll a with 53% accuracy. PMID:27941596

  14. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance.

    PubMed

    Zeng, Chen; Xu, Huiping; Fischer, Andrew M

    2016-12-07

    Ocean color remote sensing significantly contributes to our understanding of phytoplankton distribution and abundance and primary productivity in the Southern Ocean (SO). However, the current SO in situ optical database is still insufficient and unevenly distributed. This limits the ability to produce robust and accurate measurements of satellite-based chlorophyll. Based on data collected on cruises around the Antarctica Peninsula (AP) on January 2014 and 2016, this research intends to enhance our knowledge of SO water and atmospheric optical characteristics and address satellite algorithm deficiency of ocean color products. We collected high resolution in situ water leaving reflectance (±1 nm band resolution), simultaneous in situ chlorophyll-a concentrations and satellite (MODIS and VIIRS) water leaving reflectance. Field samples show that clouds have a great impact on the visible green bands and are difficult to detect because NASA protocols apply the NIR band as a cloud contamination threshold. When compared to global case I water, water around the AP has lower water leaving reflectance and a narrower blue-green band ratio, which explains chlorophyll-a underestimation in high chlorophyll-a regions and overestimation in low chlorophyll-a regions. VIIRS shows higher spatial coverage and detection accuracy than MODIS. After coefficient improvement, VIIRS is able to predict chlorophyll a with 53% accuracy.

  15. Gas exchange and chlorophyll fluorescence of pea (Pisum sativum L.) plants in response to ambient ozone at a rural site in Egypt.

    PubMed

    Ismail, I M; Basahi, J M; Hassan, I A

    2014-11-01

    Egyptian pea cultivars (Pisum sativum L. cultivars Little Marvel, Perfection and Victory) grown in open-top chambers were exposed to either charcoal-filtered (FA) or non-filtered air (NF) for five consecutive years (2009-2013) at a rural site in northern Egypt. Net photosynthetic rates (PN), stomatal conductance (gs), intercellular CO2 (Ci) and chlorophyll fluorescence were measured. Ozone (O3) was found to be the most prevalent pollutant common at the rural site and is suspected to be involved in the alteration of the physiological parameters measured in the present investigation. PN of different cultivars were found to respond similarly; decreases of 23, 29 and 39% were observed in the cultivars Perfection, Little Marvel and Victory, respectively (averaged over the five years) due to ambient O3. The maximum impairment in PN was recorded in the cultivar Victory (46%) in 2013 when the highest O3 levels were recorded (90 nL L(-1)). The average stomatal conductance decreased by 20 and 18% in the cultivars Little Marvel and Perfection, respectively, while the average stomatal conductance increased on average by 27% in the cultivar Victory. A significant correlation was found between PN and Ci, indicating the importance of non-stomatal limitations of photosynthesis, especially in the cultivar Victory. The PN vs. Ci curves were fitted to a non-rectangular hyperbolic model. The actual quantum yield (ΦPSII) and photochemical quenching coefficient (qP) were significantly decreased in the leaves of plants exposed to NF air. Non-photochemical quenching (NPQ) was increased in all cultivars. Exposure to NF air caused reductions in chlorophyll (Chl a) of 19, 16 and 30% in the Little Marvel, Perfection and Victory cultivars, respectively.

  16. Effects of exogenous β-carotene, a chemical scavenger of singlet oxygen, on the millisecond rise of chlorophyll a fluorescence of cyanobacterium Synechococcus sp. PCC 7942.

    PubMed

    Stamatakis, Kostas; Papageorgiou, George C; Govindjee

    2016-12-01

    Singlet-excited oxygen ((1)O 2(*) ) has been recognized as the most destructive member of the reactive oxygen species (ROS) which are formed during oxygenic photosynthesis by plants, algae, and cyanobacteria. ROS and (1)O 2(*) are known to damage protein and phospholipid structures and to impair photosynthetic electron transport and de novo protein synthesis. Partial protection is afforded to photosynthetic organism by the β-carotene (β-Car) molecules which accompany chlorophyll (Chl) a in the pigment-protein complexes of Photosystem II (PS II). In this paper, we studied the effects of exogenously added β-Car on the initial kinetic rise of Chl a fluorescence (10-1000 μs, the OJ segment) from the unicellular cyanobacterium Synechococcus sp. PCC7942. We show that the added β-Car enhances Chl a fluorescence when it is excited at an intensity of 3000 μmol photons m(-2) s(-1) but not when excited at 1000 μmol photons m(-2) s(-1). Since β-Car is an efficient scavenger of (1)O 2(*) , as well as a quencher of (3)Chl a (*) (precursor of (1)O 2(*) ), both of which are more abundant at higher excitations, we assume that the higher Chl a fluorescence in its presence signifies a protective effect against photo-oxidative damages of Chl proteins. The protective effect of added β-Car is not observed in O2-depleted cell suspensions. Lastly, in contrast to β-Car, a water-insoluble molecule, a water-soluble scavenger of (1)O 2(*) , histidine, provides no protection to Chl proteins during the same time period (10-1000 μs).

  17. Acclimation of shade-tolerant and light-resistant Tradescantia species to growth light: chlorophyll a fluorescence, electron transport, and xanthophyll content.

    PubMed

    Mishanin, Vladimir I; Trubitsin, Boris V; Patsaeva, Svetlana V; Ptushenko, Vasily V; Solovchenko, Alexei E; Tikhonov, Alexander N

    2017-02-08

    In this study, we have compared the photosynthetic characteristics of two contrasting species of Tradescantia plants, T. fluminensis (shade-tolerant species), and T. sillamontana (light-resistant species), grown under the low light (LL, 50-125 µmol photons m(-2) s(-1)) or high light (HL, 875-1000 µmol photons m(-2) s(-1)) conditions during their entire growth period. For monitoring the functional state of photosynthetic apparatus (PSA), we measured chlorophyll (Chl) a emission fluorescence spectra and kinetics of light-induced changes in the heights of fluorescence peaks at 685 and 740 nm (F 685 and F 740). We also compared the light-induced oxidation of P700 and assayed the composition of carotenoids in Tradescantia leaves grown under the LL and HL conditions. The analyses of slow induction of Chl a fluorescence (SIF) uncovered different traits in the LL- and HL-grown plants of ecologically contrasting Tradescantia species, which may have potential ecophysiological significance with respect to their tolerance to HL stress. The fluorometry and EPR studies of induction events in chloroplasts in situ demonstrated that acclimation of both Tradescantia species to HL conditions promoted faster responses of their PSA as compared to LL-grown plants. Acclimation of both species to HL also caused marked changes in the leaf anatomy and carotenoid composition (an increase in Violaxanthin + Antheraxantin + Zeaxanthin and Lutein pools), suggesting enhanced photoprotective capacity of the carotenoids in the plants grown in nature under high irradiance. Collectively, the results of the present work suggest that the mechanisms of long-term PSA photoprotection in Tradescantia are based predominantly on the light-induced remodeling of pigment-protein complexes in chloroplasts.

  18. Fluorescence encoded super resolution imaging based on a location estimation algorithm for high-density fluorescence probes

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Kimura, Hitoshi; Ogura, Yusuke; Tanida, Jun

    2016-11-01

    In this paper, we propose a fluorescence encoded super resolution technique based on an estimation algorithm to determine locations of high-density fluorescence emitters. In our method, several types of fluorescence coded probes are employed to reduce densities of target molecules labeled with individual codes. By applying an estimation algorithm to each coded image, the locations of the high density probes can be determined. Due to multiplexed fluorescence imaging, this approach will provide fast super resolution microscopy. In experiments, we evaluated the performance of the method using probes with different fluorescence wavelengths. Numerical simulation results show that the locations of probes with the density of 200 μ m^{-2} , which is a typical membrane-receptor expression level, are determined with acquisition of 16 different coded images.

  19. Chlorophyll fluorescence kinetics, photosynthetic activity, and pigment composition of blue-shade and half-shade leaves as compared to sun and shade leaves of different trees.

    PubMed

    Lichtenthaler, Hartmut K; Babani, Fatbardha; Navrátil, Martin; Buschmann, Claus

    2013-11-01

    The chlorophyll (Chl) fluorescence induction kinetics, net photosynthetic CO2 fixation rates P N, and composition of photosynthetic pigments of differently light exposed leaves of several trees were comparatively measured to determine the differences in photosynthetic activity and pigment adaptation of leaves. The functional measurements were carried out with sun, half-shade and shade leaves of seven different trees species. These were: Acer platanoides L., Ginkgo biloba L., Fagus sylvatica L., Platanus x acerifolia Willd., Populus nigra L., Quercus robur L., Tilia cordata Mill. In three cases (beech, ginkgo, and oak), we compared the Chl fluorescence kinetics and photosynthetic rates of blue-shade leaves of the north tree crown receiving only blue sky light but no direct sunlight with that of sun leaves. In these cases, we also determined in detail the pigment composition of all four leaf types. In addition, we determined the quantum irradiance and spectral irradiance of direct sunlight, blue skylight as well as the irradiance in half shade and full shade. The results indicate that sun leaves possess significantly higher mean values for the net CO2 fixation rates P N (7.8-10.7 μmol CO2 m(-2) s(-1) leaf area) and the Chl fluorescence ratio R Fd (3.85-4.46) as compared to shade leaves (mean P N of 2.6-3.8 μmol CO2 m(-2) s(-1) leaf area.; mean R Fd of 1.94-2.56). Sun leaves also exhibit higher mean values for the pigment ratio Chl a/b (3.14-3.31) and considerably lower values for the weight ratio total chlorophylls to total carotenoids, (a + b)/(x + c), (4.07-4.25) as compared to shade leaves (Chl a/b 2.62-2.72) and (a + b)/(x + c) of 5.18-5.54. Blue-shade and half-shade leaves have an intermediate position between sun and shade leaves in all investigated parameters including the ratio F v/F o (maximum quantum yield of PS2 photochemistry) and are significantly different from sun and shade leaves but could not be differentiated from each other. The

  20. A multi-band semi-analytical algorithm for estimating chlorophyll-a concentration in the Yellow River Estuary, China.

    PubMed

    Chen, Jun; Quan, Wenting; Cui, Tingwei

    2015-01-01

    In this study, two sample semi-analytical algorithms and one new unified multi-band semi-analytical algorithm (UMSA) for estimating chlorophyll-a (Chla) concentration were constructed by specifying optimal wavelengths. The three sample semi-analytical algorithms, including the three-band semi-analytical algorithm (TSA), four-band semi-analytical algorithm (FSA), and UMSA algorithm, were calibrated and validated by the dataset collected in the Yellow River Estuary between September 1 and 10, 2009. By comparing of the accuracy of assessment of TSA, FSA, and UMSA algorithms, it was found that the UMSA algorithm had a superior performance in comparison with the two other algorithms, TSA and FSA. Using the UMSA algorithm in retrieving Chla concentration in the Yellow River Estuary decreased by 25.54% NRMSE (normalized root mean square error) when compared with the FSA algorithm, and 29.66% NRMSE in comparison with the TSA algorithm. These are very significant improvements upon previous methods. Additionally, the study revealed that the TSA and FSA algorithms are merely more specific forms of the UMSA algorithm. Owing to the special form of the UMSA algorithm, if the same bands were used for both the TSA and UMSA algorithms or FSA and UMSA algorithms, the UMSA algorithm would theoretically produce superior results in comparison with the TSA and FSA algorithms. Thus, good results may also be produced if the UMSA algorithm were to be applied for predicting Chla concentration for datasets of Gitelson et al. (2008) and Le et al. (2009).

  1. Radiance-ratio algorithm wavelengths for remote oceanic chlorophyll determination.

    PubMed

    Hoge, F E; Wright, C W; Swift, R N

    1987-06-01

    Two-band radiance-ratio in-water algorithms in the visible spectrum have been evaluated for remote oceanic chlorophyll determination. Airborne active-passive (laser-solar) data from coastal, shelf-slope, and bluewater regions were used to generate 2-D chlorophyll-fluorescence and radiance-ratio statistical correlation matrices containing all possible two-band ratio combinations from the thirty-two available contiguous 11.25-nm passive bands. The principal finding was that closely spaced radiance-ratio bands yield chlorophyll estimates which are highly correlated with laser-induced chlorophyll fluorescence within several distinct regions of the ocean color spectrum. Band combinations in the yellow (~565/575-nm), orange-red (~675/685-nm), and red (~695/705-nm) spectral regions showed considerable promise for satisfactory chlorophyll pigment estimation in near-coastal Case II waters. Based on very limited data, pigment recovery in Case I waters was best accomplished using blue-green radiance ratios in the ~490/500-nm region.

  2. Photoelectric effects on chlorophyll fluorescence of photosystem II in vivo. Kinetics in the absence and presence of valinomycin.

    PubMed

    Vredenberg, Wim J; Bulychev, Alexander

    2003-08-01

    Fluorescence induction curves (F(t)) in low intensity 1s light pulses have been measured in leaf discs in the presence and absence of valinomycin (VMC). Addition of VMC causes: (i) no effect on the initial fluorescence level Fo and the initial (O-J) phase of F(t) in the 0.01-1 ms time range. (ii) An approximately 10% decrease in the maximal fluorescence Fm in the light reached at the P level in the O-J-I-P induction curve. (iii) Nearly twofold increase in the rate and extent of the F(t) rise in the J-I phase in the 1-50 ms time range. (iv) A 60-70% decrease in the rise (I-P phase) in the 50-1000 ms time range with no appreciable effect, if at all, on the rate. System analysis of F(t) in terms of rate constants of electron transfer at donor and acceptor sides have been done using the Three State Trapping Model (TSTM). This reveals that VMC causes: (i) no, or very little effect on rate constants of e-transfer reactions powered by PSII. (ii) A manifold lower rate constant of radical pair recombination (k(-1)) in the light as compared to that in the control. The low rate constant of radical pair recombination in the reaction center (RC) in the presence of VMC is reflected by a substantial increase in the nonzero trapping efficiency in RCs in which the primary quinone acceptor (Q(A)) is reduced (semi-open centers). This causes an increase in their rate of closure and in the overall trapping efficiency. Data suggest evidence that membrane chaotropic agents like VMC abolish the stimulation of the rate constant of radical pair recombination by light. This light stimulation that becomes apparent as an increase in Fo has been documented before [Biophys. J. 79 (2000) 26]. It has been ascribed to effects of (changes in) local electric fields in the vicinity of the RC. The decrease of the I-P phase is attributed to a decrease in the photoelectric trans-thylakoid potential in the presence of VMC. Such effects have been hypothesized and illustrated.

  3. Development of FT-NIR models for the simultaneous estimation of chlorophyll and nitrogen content in fresh apple (Malus domestica) leaves.

    PubMed

    Tamburini, Elena; Ferrari, Giuseppe; Marchetti, Maria Gabriella; Pedrini, Paola; Ferro, Sergio

    2015-01-26

    Agricultural practices determine the level of food production and, to great extent, the state of the global environment. During the last decades, the indiscriminate recourse to fertilizers as well as the nitrogen losses from land application have been recognized as serious issues of modern agriculture, globally contributing to nitrate pollution. The development of a reliable Near-Infra-Red Spectroscopy (NIRS)-based method, for the simultaneous monitoring of nitrogen and chlorophyll in fresh apple (Malus domestica) leaves, was investigated on a set of 133 samples, with the aim of estimating the nutritional and physiological status of trees, in real time, cheaply and non-destructively. By means of a FT (Fourier Transform)-NIR instrument, Partial Least Squares (PLS) regression models were developed, spanning a concentration range of 0.577%-0.817% for the total Kjeldahl nitrogen (TKN) content (R2 = 0.983; SEC = 0.012; SEP = 0.028), and of 1.534-2.372 mg/g for the total chlorophyll content (R2 = 0.941; SEC = 0.132; SEP = 0.162). Chlorophyll-a and chlorophyll-b contents were also evaluated (R2 = 0.913; SEC = 0.076; SEP = 0.101 and R2 = 0.899; SEC = 0.059; SEP = 0.101, respectively). All calibration models were validated by means of 47 independent samples. The NIR approach allows a rapid evaluation of the nitrogen and chlorophyll contents, and may represent a useful tool for determining nutritional and physiological status of plants, in order to allow a correction of nutrition programs during the season.

  4. Development of FT-NIR Models for the Simultaneous Estimation of Chlorophyll and Nitrogen Content in Fresh Apple (Malus Domestica) Leaves

    PubMed Central

    Tamburini, Elena; Ferrari, Giuseppe; Marchetti, Maria Gabriella; Pedrini, Paola; Ferro, Sergio

    2015-01-01

    Agricultural practices determine the level of food production and, to great extent, the state of the global environment. During the last decades, the indiscriminate recourse to fertilizers as well as the nitrogen losses from land application have been recognized as serious issues of modern agriculture, globally contributing to nitrate pollution. The development of a reliable Near-Infra-Red Spectroscopy (NIRS)-based method, for the simultaneous monitoring of nitrogen and chlorophyll in fresh apple (Malus domestica) leaves, was investigated on a set of 133 samples, with the aim of estimating the nutritional and physiological status of trees, in real time, cheaply and non-destructively. By means of a FT (Fourier Transform)-NIR instrument, Partial Least Squares (PLS) regression models were developed, spanning a concentration range of 0.577%–0.817% for the total Kjeldahl nitrogen (TKN) content (R2 = 0.983; SEC = 0.012; SEP = 0.028), and of 1.534–2.372 mg/g for the total chlorophyll content (R2 = 0.941; SEC = 0.132; SEP = 0.162). Chlorophyll-a and chlorophyll-b contents were also evaluated (R2 = 0.913; SEC = 0.076; SEP = 0.101 and R2 = 0.899; SEC = 0.059; SEP = 0.101, respectively). All calibration models were validated by means of 47 independent samples. The NIR approach allows a rapid evaluation of the nitrogen and chlorophyll contents, and may represent a useful tool for determining nutritional and physiological status of plants, in order to allow a correction of nutrition programs during the season. PMID:25629703

  5. Non-invasive, whole-plant imaging of chloroplast movement and chlorophyll fluorescence reveals photosynthetic phenotypes independent of chloroplast photorelocation defects in chloroplast division mutants.

    PubMed

    Dutta, Siddhartha; Cruz, Jeffrey A; Jiao, Yuhua; Chen, Jin; Kramer, David M; Osteryoung, Katherine W

    2015-10-01

    Leaf chloroplast movement is thought to optimize light capture and to minimize photodamage. To better understand the impact of chloroplast movement on photosynthesis, we developed a technique based on the imaging of reflectance from leaf surfaces that enables continuous, high-sensitivity, non-invasive measurements of chloroplast movement in multiple intact plants under white actinic light. We validated the method by measuring photorelocation responses in Arabidopsis chloroplast division mutants with drastically enlarged chloroplasts, and in phototropin mutants with impaired photorelocation but normal chloroplast morphology, under different light regimes. Additionally, we expanded our platform to permit simultaneous image-based measurements of chlorophyll fluorescence and chloroplast movement. We show that chloroplast division mutants with enlarged, less-mobile chloroplasts exhibit greater photosystem II photodamage than is observed in the wild type, particularly under fluctuating high levels of light. Comparison between division mutants and the severe photorelocation mutant phot1-5 phot2-1 showed that these effects are not entirely attributable to diminished photorelocation responses, as previously hypothesized, implying that altered chloroplast morphology affects other photosynthetic processes. Our dual-imaging platform also allowed us to develop a straightforward approach to correct non-photochemical quenching (NPQ) calculations for interference from chloroplast movement. This correction method should be generally useful when fluorescence and reflectance are measured in the same experiments. The corrected data indicate that the energy-dependent (qE) and photoinhibitory (qI) components of NPQ contribute differentially to the NPQ phenotypes of the chloroplast division and photorelocation mutants. This imaging technology thus provides a platform for analyzing the contributions of chloroplast movement, chloroplast morphology and other phenotypic attributes to the

  6. Photochemical properties in flag leaves of a super-high-yielding hybrid rice and a traditional hybrid rice (Oryza sativa L.) probed by chlorophyll a fluorescence transient.

    PubMed

    Zhang, Meiping; Shan, YongJie; Kochian, Leon; Strasser, Reto J; Chen, GuoXiang

    2015-12-01

    Chlorophyll a fluorescence of flag leaves in a super-high-yielding hybrid rice (Oryza sativa L.) LYPJ, and a traditional hybrid rice SY63 cultivar with lower grain yield, which were grown in the field, were investigated from emergence through senescence of flag leaves. As the flag leaf matured, there was an increasing trend in photosynthetic parameters such as quantum efficiency of primary photochemistry ([Formula: see text] Po) and efficiency of electron transport from PS II to PS I (Ψ Eo). The overall photosynthetic performance index (PIABS) was significantly higher in the high-yielding LYPJ compared to SY63 during the entire reproductive stage of the plant, the same to MDA content. However, [Formula: see text] Po(=F V/F M), an indicator of the primary photochemistry of the flag leaf, did not display significant changes with leaf age and was not significantly different between the two cultivars, suggesting that PIABS is a more sensitive parameter than [Formula: see text] Po (=F V/F M) during leaf age for distinguishing between cultivars differing in yield.

  7. SEEP II, Shelf Edge Exchange Processes-II: Chlorophyll a fluorescence, temperature, and beam attenuation measurements from moored fluorometers

    SciTech Connect

    Medeiros, W.H.; Wirick, C.D.

    1992-02-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. The first SEEP experiment (SEEP I) was across the outer continental shelf of New England during 1983--1984 and consisted of a series of nine cruises and a mooring array. The second experiment (SEEP II) focused specifically of the shelf/slope frontal region of the mid-Atlantic Bight off the Delmarva peninsula. This report presents data collected during SEEP II. The SEEP II experiment consisted of a series of ten cruises and mooring arrays as well as over-flights by NASA aircraft. The cruises were consecutively designated SEEP2-01 to SEEP2-10. Hydrographic data were collected on all cruises except SEEP2-04 and SEEP2-07 during which benthic processes were investigated. Mooring arrays were deployed during three cruises in the Spring, Summer and Winter of 1988. Brookhaven National Laboratory deployed sixteen fluorometer instrument packages on their moorings with sensors to measure: the in vivo fluorescence of phytoplankton, temperature, subsurface light, dissolved oxygen, and water transparency. Data from the fluorometer, temperature, and transmissometer sensors are reported herein.

  8. An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice.

    PubMed

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    Combined photosynthetic gas exchange and modulated fluorometres are widely used to evaluate physiological characteristics associated with phenotypic and genotypic variation, whether in response to genetic manipulation or resource limitation in natural vegetation or crops. After describing relatively simple experimental procedures, we present the theoretical background to the derivation of photosynthetic parameters, and provide a freely available Excel-based fitting tool (EFT) that will be of use to specialists and non-specialists alike. We use data acquired in concurrent variable fluorescence-gas exchange experiments, where A/Ci and light-response curves have been measured under ambient and low oxygen. From these data, the EFT derives light respiration, initial PSII (photosystem II) photochemical yield, initial quantum yield for CO2 fixation, fraction of incident light harvested by PSII, initial quantum yield for electron transport, electron transport rate, rate of photorespiration, stomatal limitation, Rubisco (ribulose 1·5-bisphosphate carboxylase/oxygenase) rate of carboxylation and oxygenation, Rubisco specificity factor, mesophyll conductance to CO2 diffusion, light and CO2 compensation point, Rubisco apparent Michaelis-Menten constant, and Rubisco CO2 -saturated carboxylation rate. As an example, a complete analysis of gas exchange data on tobacco plants is provided. We also discuss potential measurement problems and pitfalls, and suggest how such empirical data could subsequently be used to parameterize predictive photosynthetic models.

  9. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice.

    PubMed

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    The higher photosynthetic potential of C4 plants has led to extensive research over the past 50 years, including C4 -dominated natural biomes, crops such as maize, or for evaluating the transfer of C4 traits into C3 lineages. Photosynthetic gas exchange can be measured in air or in a 2% Oxygen mixture using readily available commercial gas exchange and modulated PSII fluorescence systems. Interpretation of these data, however, requires an understanding (or the development) of various modelling approaches, which limit the use by non-specialists. In this paper we present an accessible summary of the theory behind the analysis and derivation of C4 photosynthetic parameters, and provide a freely available Excel Fitting Tool (EFT), making rigorous C4 data analysis accessible to a broader audience. Outputs include those defining C4 photochemical and biochemical efficiency, the rate of photorespiration, bundle sheath conductance to CO2 diffusion and the in vivo biochemical constants for PEP carboxylase. The EFT compares several methodological variants proposed by different investigators, allowing users to choose the level of complexity required to interpret data. We provide a complete analysis of gas exchange data on maize (as a model C4 organism and key global crop) to illustrate the approaches, their analysis and interpretation. © 2015 John Wiley & Sons Ltd.

  10. A framework to quantify the determinants of canopy photosynthesis and carbon uptake using time series of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Kellner, J. R.; Cushman, K. C.; Kendrick, J. A.; Silva, C. E.; Wiseman, S. M.; Yang, X.

    2015-12-01

    Uncertainty over the sign and magnitude of environmental forcing agents on fluxes of tropical forest carbon could be reduced with measurements of canopy photosynthesis. But no existing method can quantify photosynthesis within individual plants at scales larger than a few cm. Portable leaf chambers can determine leaf-level gas exchange, and eddy-covariance instruments infer the net ecosystem-atmosphere carbon flux. These endpoints represent an axis of granularity and extent. Single leaf measurements are finely grained, but necessarily limited in extent, and gas exchange for whole landscapes cannot resolve the performance or contributions of individual plants. This limits the ability of scientists to test mechanistic demographic and physiological hypotheses about the drivers of photosynthesis in ecosystems, and therefore to understand the determinants of carbon fluxes between tropical ecosystems and the atmosphere. Here I describe a framework to overcome these challenges using a program of drone-enabled remote sensing measurements of solar-induced fluorescence (SIF) coupled with ground-based physiological studies to understand the determinants of photosynthesis within leaves, individual organisms and large landscapes. The Brown Platform for Autonomous Remote Sensing (BPAR) is a suite of sensors carried by a gas-powered helicopter drone. By conducting frequent, low-altitude flights BPAR can produce VNIR imaging spectroscopy time series with measurements separated by minutes to hours at ground sample distances of 1 cm. The talk will focus on how measurements of SIF at these spatial and temporal scales can be coupled with models to infer the rate of electron transport and carbon assimilation.

  11. Orientation of emitting dipoles of chlorophyll A in thylakoids: considerations on the orientation factor in vivo.

    PubMed Central

    Garab, G I; Kiss, J G; Mustárdy, L A; Michel-Villaz, M

    1981-01-01

    Orientation angles of five emitting dipoles of chlorophyll a in thylakoids were estimated from low temperature fluorescence polarization ratio spectra of magnetically oriented chloroplasts. A simple expression is given also for the evaluation of data from linear dichroism measurements. It is shown that the Qy dipoles of chlorophylls lie more in the plane of the membranes and span a larger angular interval than was previously thought. Values for the orientation factor are calculated using various models corresponding to different degrees of local order of the Qy dipoles of chlorophylls in the thylakoid. We show that the characteristic orientation pattern of the Qy dipoles of chlorophylls in the membrane, i.e., increasing dichroism toward longer wavelengths, may favour energy transfer between the antenna chlorophylls as well as funnel the excitation energy into the reaction centers. Images FIGURE 1 FIGURE 4 PMID:7248470

  12. Operational NIR-red Algorithms for Estimating Chlorophyll-a Concentration in Coastal Waters - The Azov Sea Case Study

    NASA Astrophysics Data System (ADS)

    Moses, W.; Gitelson, A. A.; Berdnikov, S.; Saprygin, V.; Bowles, J. H.; Povazhnyi, V.

    2012-12-01

    We present here results that strongly support the use of MERIS-based NIR-red algorithms as standard tools for estimating chlorophyll-a (chl-a) concentration in turbid productive waters. The study was carried out as one of the steps in testing the potential of the universal applicability of previously developed NIR-red algorithms, which were originally calibrated using a limited set of MERIS imagery and in situ data from the Azov Sea and the Taganrog Bay, Russia, and data that were synthetically generated using a radiative transfer model. We used an extensive set of MERIS imagery and in situ data collected over a period of three years in the Azov Sea and the Taganrog Bay for this validation task. We found that the NIR-red algorithms gave consistently highly accurate estimates of chl-a concentration, with the root mean square error as low as 5.92 mg m-3 for the two-band algorithm and 5.91 mg m-3 for the three-band algorithm for the dataset with chl-a concentrations ranging from 1.09 mg m-3 to 107.82 mg m-3. This obviates the need for case-specific reparameterization of the algorithms, as long as the specific absorption coefficient of phytoplankton in the water does not change drastically, and presents a strong case for the use of NIR-red algorithms as standard algorithms that can be routinely applied for near-real-time quantitative monitoring of chl-a concentration in the Azov Sea and the Taganrog Bay, and potentially elsewhere, which will be a real boon to ecologists, natural resource managers and environmental decision-makers. We also present a temporal series of chl-a maps generated using the NIR-red algorithms from images acquired by the space-borne hyperspectral sensor HICO over the Taganrog Bay. The fine spatial resolution (96 m) of HICO images allows for a detailed analysis of the spatial distribution pattern of chl-a, and the fine spectral resolution (5.7 nm) offers a great potential for phytoplankton species discrimination. With the recent demise of MERIS

  13. Estimation of kinetic model parameters in fluorescence optical diffusion tomography.

    PubMed

    Milstein, Adam B; Webb, Kevin J; Bouman, Charles A

    2005-07-01

    We present a technique for reconstructing the spatially dependent dynamics of a fluorescent contrast agent in turbid media. The dynamic behavior is described by linear and nonlinear parameters of a compartmental model or some other model with a deterministic functional form. The method extends our previous work in fluorescence optical diffusion tomography by parametrically reconstructing the time-dependent fluorescent yield. The reconstruction uses a Bayesian framework and parametric iterative coordinate descent optimization, which is closely related to Gauss-Seidel methods. We demonstrate the method with a simulation study.

  14. Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global-scale applications

    NASA Astrophysics Data System (ADS)

    Sauzède, R.; Claustre, H.; Jamet, C.; Uitz, J.; Ras, J.; Mignot, A.; D'Ortenzio, F.

    2015-01-01

    neural network-based method is developed to assess the vertical distribution of (1) chlorophyll a concentration ([Chl]) and (2) phytoplankton community size indices (i.e., microphytoplankton, nanophytoplankton, and picophytoplankton) from in situ vertical profiles of chlorophyll fluorescence. This method (FLAVOR for Fluorescence to Algal communities Vertical distribution in the Oceanic Realm) uses as input only the shape of the fluorescence profile associated with its acquisition date and geo-location. The neural network is trained and validated using a large database including 896 concomitant in situ vertical profiles of High-Performance Liquid Chromatography (HPLC) pigments and fluorescence. These profiles were collected during 22 oceanographic cruises representative of the global ocean in terms of trophic and oceanographic conditions, making our method applicable to most oceanic waters. FLAVOR is validated with respect to the retrieval of both [Chl] and phytoplankton size indices using an independent in situ data set and appears to be relatively robust spatially and temporally. To illustrate the potential of the method, we applied it to in situ measurements of the BATS (Bermuda Atlantic Time Series Study) site and produce monthly climatologies of [Chl] and associated phytoplankton size indices. The resulting climatologies appear very promising compared to climatologies based on available in situ HPLC data. With the increasing availability of spatially and temporally well-resolved data sets of chlorophyll fluorescence, one possible global-scale application of FLAVOR could be to develop 3-D and even 4-D climatologies of [Chl] and associated composition of phytoplankton communities. The Matlab and R codes of the proposed algorithm are provided as supporting information.

  15. Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo).

    PubMed

    Bonnet, M; Camares, O; Veisseire, P

    2000-05-01

    The effects of zinc on growth, mineral content, chlorophyll a fluorescence, and detoxifying enzyme activity (ascorbate peroxidase (APX), EC 1.11.1.11; superoxide dismutase (SOD), EC 1.15.1.1) of ryegrass infected or not by Acremonium lolii, and treated with nutrient solution containing 0-50 mM ZnSO(4) were studied. The introduction of zinc induces stress with a decrease in growth at 1, 5 and 10 mM ZnSO(4) and a cessation of growth at 50 mM ZnSO(4), in ryegrass plants infected by A. lolii or not. This decrease in growth may be due to an accumulation of zinc in leaves. Nevertheless, symbiotic plants showed higher values in tiller number, an advantage conferred by the fungus. After 24 d of Zn exposure, leaf fresh weights and leaf water content were lower in plants growing with Zn in the culture medium and no advantage was conferred by the fungus to its host. An increase in Zn supply resulted in a decrease of the Ca, K, Mg, and Cu content of the leaves, a reduction in the quantum yield of electron flow throughout photosystem II (DeltaF/F(1)(m))and a lowering of the efficiency of photosynthetic energy conversion (F(v)/F(m)), compared to control plants. To counter this zinc stress, detoxifying enzymes APX and SOD increased (100%) when Zn reached the value of 50 mM in the nutrient solution. At 10 mM ZnSO(4), the presence of the fungus in the plant led to an increase in the threshold toxicity of plants to zinc by a diminution of APX activity.

  16. Does free-air carbon dioxide enrichment affect photochemical energy use by evergreen trees in different seasons? A chlorophyll fluorescence study of mature loblolly pine

    SciTech Connect

    Hymus, G.J.; Ellsworth, D.S.; Baker, N.R.; Long, S.P.

    1999-08-01

    Previous studies of the effects of growth at elevated CO{sup 2} on energy partitioning in the photosynthetic apparatus have produced conflicting results. The hypothesis was developed and tested that elevated CO{sub 2} increases photochemical energy use when there is a high demand for assimilates and decreases usage when demand is low. Modulated chlorophyll a fluorescence and leaf gas exchange were measured on needles at the tope of a mature, 12-m loblolly pine (Pinus taeda L.l) forest. Trees were exposed to ambient CO{sub 2} or ambient plus 20 Pa CO{sub 2} using free-air CO{sub 2} enrichment. During April and August, periods of shoot growth, light-saturated photo-synthesis and linear electron transport were increased by elevated CO{sub 2}. In November, when growth had ceased but temperatures were still moderate, CO{sub 2} treatment had no significant effect on linear electron transport. In February, when low temperatures were likely to inhibit translocation, CO{sub 2} treatment caused a significant decrease in linear electron transport. This coincided with a slower recovery of the maximum photosystem II efficiency on transfer of needles to the shade, indicating that growth in elevated CO{sub 2} induced a more persistent photoinhibition. Both the summer increase and the winter decrease in linear electron transport in elevated CO{sub 2} resulted from a change in photochemical quenching, not in the efficiency of energy transfer within the photosystem II antenna. There was no evidence of any effect of CO{sub 2} on photochemical energy sinks other than carbon metabolism. Their results suggest that elevated CO{sub 2} may increase the effects of winter stress on evergreen foliage.

  17. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light.

    PubMed

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m(-2)⋅s(-1) irradiance for a 16 h⋅d(-1) photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (A max) and photosynthetic rate (P n) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. P n and A max under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between P n and shoot dry weight accumulation.

  18. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light

    PubMed Central

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m−2⋅s−1 irradiance for a 16 h⋅d−1 photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (Amax) and photosynthetic rate (Pn) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. Pn and Amax under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between Pn and shoot dry weight accumulation. PMID:27014285

  19. Natural leaf senescence: probed by chlorophyll fluorescence, CO2 photosynthetic rate and antioxidant enzyme activities during grain filling in different rice cultivars.

    PubMed

    Panda, Debabrata; Sarkar, Ramani Kumar

    2013-01-01

    Natural leaf senescence was investigated in four rainfed lowland rice cultivars, FR 13A (tolerant to submergence), Sabita and Sarala (adapted to medium depth, 0-50 cm stagnant flooding) and Dengi (conventional farmers' cultivar). Changes in the levels of pigment content, CO2 photosynthetic rate, photosystem II photochemistry and anti-oxidant enzyme activities of flag leaves during grain-filling stage were investigated. Chlorophyll content, photochemical efficiency of photosystem II and CO2 photosynthetic rate decreased significantly with the progress of grain-filling. Likely, the activities of antioxidant enzymes namely, superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase decreased with progress of grain-filling. A substantial difference was observed among the four cultivars for the sustainability index (SI) of different photosynthetic parameters and antioxidant enzyme activities; SIs of those parameters, in general, were lower in low yielding cultivar FR 13A compared to the other three cultivars. Among the four cultivars Sabita gave maximum grain yield. Yet, SI of Pn was greater in Sarala and Dengi compared to the Sabita. SIs of electron transport (ETo/CS), maximal photochemical efficiency (Fv/Fm), area above Fo and Fm, catalase and ascorbate peroxidase were also greater in Sarala and Dengi. The data showed that among the different Chl a fluorescence parameters, PI could be used with greater accuracy to distinguish slow and fast senescence rice cultivars during grain-filling period. It was concluded that maintaining the vitality of rice plants during grain-filling gave guarantee to synthesize carbohydrate, however greater yield could be realized provided superior yield attributing parameters are present.

  20. Lutein from Deepoxidation of Lutein Epoxide Replaces Zeaxanthin to Sustain an Enhanced Capacity for Nonphotochemical Chlorophyll Fluorescence Quenching in Avocado Shade Leaves in the Dark1

    PubMed Central

    Förster, Britta; Pogson, Barry James; Osmond, Charles Barry

    2011-01-01

    Leaves of avocado (Persea americana) that develop and persist in deep shade canopies have very low rates of photosynthesis but contain high concentrations of lutein epoxide (Lx) that are partially deepoxidized to lutein (L) after 1 h of exposure to 120 to 350 μmol photons m−2 s−1, increasing the total L pool by 5% to 10% (ΔL). Deepoxidation of Lx to L was near stoichiometric and similar in kinetics to deepoxidation of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z). Although the V pool was restored by epoxidation of A and Z overnight, the Lx pool was not. Depending on leaf age and pretreatment, the pool of ΔL persisted for up to 72 h in the dark. Metabolism of ΔL did not involve epoxidation to Lx. These contrasting kinetics enabled us to differentiate three states of the capacity for nonphotochemical chlorophyll fluorescence quenching (NPQ) in attached and detached leaves: ΔpH dependent (NPQΔpH) before deepoxidation; after deepoxidation in the presence of ΔL, A, and Z (NPQΔLAZ); and after epoxidation of A+Z but with residual ΔL (NPQΔL). The capacity of both NPQΔLAZ and NPQΔL was similar and 45% larger than NPQΔpH, but dark relaxation of NPQΔLAZ was slower. The enhanced capacity for NPQ was lost after metabolism of ΔL. The near equivalence of NPQΔLAZ and NPQΔL provides compelling evidence that the small dynamic pool ΔL replaces A+Z in avocado to “lock in” enhanced NPQ. The results are discussed in relation to data obtained with other Lx-rich species and in mutants of Arabidopsis (Arabidopsis thaliana) with increased L pools. PMID:21427278

  1. [Effects of soil progressive drought during the flowering and boll-forming stage on gas exchange parameters and chlorophyll fluorescence characteristics of the subtending leaf to cotton boll].

    PubMed

    Liu, Zhao-wei; Zhang, Pan; Wang, Rui; Kuai, Jie; Li, Lei; Wang, You-hua; Zhou, Zhi-guo

    2014-12-01

    To investigate the dynamic changes and response mechanisms of gas exchange parameters and fluorescence indices of the subtending leaf to cotton boll under soil progressive drought stress, pot experiments of the hybrid cotton No. 3 were conducted with soil relative water content (SRWC) (75 +/- 5)% as control group, SRWC (60 +/- 5)% and SRWC (45 +/- 5)% as experimental groups dealt with progressive drought for 50 days. Results showed that, the net photosynthetic rate (Pn), stomatal conductance (g(s)) and leaf intercellular CO2 concentration (Ci) decreased while Ls increased under SRWC (60 +/- 5)% for 0-21 days. Furthermore, there was no significant change in chlorophyll fluorescence indices. This indicated that stomatal limitation was the main reason for the reduction of photosynthesis of cotton. In addition, when drought for 21-49 days under SRWC (60 +/- 5)%, Pn kept decreasing, while Ci began to increase and Ls began to decrease. Potential photochemical efficiency (Fv/Fm), quantum yield of photo system II (phi(PSI)) and photochemical quenching coefficient (q(P)) reduced significantly, but non-photochemical quenching coefficient (NPQ) first rose then decreased. Thus, nonstomatal limitation was the main reason why the photosynthesis of cotton reduced. Photosynthetic organization and photosynthetic enzyme system were destroyed, boll setting intensity reduced and the number of boll and yield reduced significantly. Drought for 0-14 days under SRWC (45 +/- 5)% treatment led to sharp decrease in Pn, g(s) and Ci, whereas Ls obviously increased. There was no significant change in Fv/Fm, phi(PSII), q(P), indicating stomatal limitation was the main reason why the photosynthesis of cotton reduced. Pn decreased slowly, while Ci began to rise and Ls began to decline under SRWC (45 +/- 5)% treatment for 14-49 days. Fv/Fm, phi(PSII), q(P) decreased while NPQ rose first then declined, which indicated that nonstomatal limitation worked to reduce the cotton photosynthetic performance

  2. Calibration procedures and first data set of Southern Ocean chlorophyll a profiles collected by elephant seal equipped with a newly developed CTD-fluorescence tags

    NASA Astrophysics Data System (ADS)

    Guinet, C.; Xing, X.; Walker, E.; Monestiez, P.; Marchand, S.; Picard, B.; Jaud, T.; Authier, M.; `Cotté, C.; Dragon, A. C.; Diamond, E.; Antoine, D.; Lovell, P.; Blain, S.; D'Ortenzio, F.; Claustre, H.

    2012-08-01

    In-situ observation of the marine environment has traditionally relied on ship-based platforms. The obvious consequence is that physical and biogeochemical properties have been dramatically undersampled, especially in the remote Southern Ocean (SO). The difficulty in obtaining in situ data represents the major limitations to our understanding, and interpretation of the coupling between physical forcing and the biogeochemical response. Southern elephant seals (Mirounga leonina) equipped with a new generation of oceanographic sensors can measure ocean structure in regions and seasons rarely observed with traditional oceanographic platforms. Over the last few years, seals have allowed for a considerable increase in temperature and salinity profiles from the SO. However we were still lacking information on the spatio-temporal variation of phytoplankton concentration. This information is critical to assess how the biological productivity of the SO, with direct consequences on the amount of CO2 "fixed" by the biological pump, will respond to global warming. In this research program, we use an innovative sampling fluorescence approach to quantify phytoplankton concentration at sea. For the first time, a low energy consumption fluorometer was added to Argos CTD-SRDL tags, and these novel instruments were deployed on 27 southern elephant seals between 25 December 2007 and the 4 February 2011. As many as 3388 fluorescence profiles associated with temperature and salinity measurements were thereby collected from a vast sector of the Southern Indian Ocean. This paper address the calibration issue of the fluorometer before being deployed on elephant seals and present the first results obtained for the Indian Sector of the Southern Ocean. This in situ system is implemented in synergy with satellite ocean colour radiometry. Satellite-derived data is limited to the surface layer and is restricted over the SO by extensive cloud cover. However, with the addition of these new tags

  3. Quantification of Plant Chlorophyll Content Using Google Glass

    PubMed Central

    Cortazar, Bingen; Koydemir, Hatice Ceylan; Tseng, Derek; Feng, Steve; Ozcan, Aydogan

    2015-01-01

    Measuring plant chlorophyll concentration is a well-known and commonly used method in agriculture and environmental applications for monitoring plant health, which also correlates with many other plant parameters including, e.g., carotenoids, nitrogen, maximum green fluorescence, etc. Direct chlorophyll measurement using chemical extraction is destructive, complex and time-consuming, which has led to the development of mobile optical readers, providing non-destructive but at the same time relatively expensive tools for evaluation of plant chlorophyll levels. Here we demonstrate accurate measurement of chlorophyll concentration in plant leaves using Google Glass and a custom-developed software application together with a cost-effective leaf holder and multi-spectral illuminator device. Two images, taken using Google Glass, of a leaf placed in our portable illuminator device under red and white (i.e., broadband) light-emitting-diode (LED) illumination are uploaded to our servers for remote digital processing and chlorophyll quantification, with results returned to the user in less than 10 seconds. Intensity measurements extracted from the uploaded images are mapped against gold-standard colorimetric measurements made through a commercially available reader to generate calibration curves for plant leaf chlorophyll concentration. Using five plant species to calibrate our system, we demonstrate that our approach can accurately and rapidly estimate chlorophyll concentration of fifteen different plant species under both indoor and outdoor lighting conditions. This Google Glass based chlorophyll measurement platform can display the results in spatiotemporal and tabular forms and would be highly useful for monitoring of plant health in environmental and agriculture related applications, including e.g., urban plant monitoring, indirect measurements of the effects of climate change, and as an early indicator for water, soil, and air quality degradation. PMID:25669673

  4. Quantification of plant chlorophyll content using Google Glass.

    PubMed

    Cortazar, Bingen; Koydemir, Hatice Ceylan; Tseng, Derek; Feng, Steve; Ozcan, Aydogan

    2015-04-07

    Measuring plant chlorophyll concentration is a well-known and commonly used method in agriculture and environmental applications for monitoring plant health, which also correlates with many other plant parameters including, e.g., carotenoids, nitrogen, maximum green fluorescence, etc. Direct chlorophyll measurement using chemical extraction is destructive, complex and time-consuming, which has led to the development of mobile optical readers, providing non-destructive but at the same time relatively expensive tools for evaluation of plant chlorophyll levels. Here we demonstrate accurate measurement of chlorophyll concentration in plant leaves using Google Glass and a custom-developed software application together with a cost-effective leaf holder and multi-spectral illuminator device. Two images, taken using Google Glass, of a leaf placed in our portable illuminator device under red and white (i.e., broadband) light-emitting-diode (LED) illumination are uploaded to our servers for remote digital processing and chlorophyll quantification, with results returned to the user in less than 10 seconds. Intensity measurements extracted from the uploaded images are mapped against gold-standard colorimetric measurements made through a commercially available reader to generate calibration curves for plant leaf chlorophyll concentration. Using five plant species to calibrate our system, we demonstrate that our approach can accurately and rapidly estimate chlorophyll concentration of fifteen different plant species under both indoor and outdoor lighting conditions. This Google Glass based chlorophyll measurement platform can display the results in spatiotemporal and tabular forms and would be highly useful for monitoring of plant health in environmental and agriculture related applications, including e.g., urban plant monitoring, indirect measurements of the effects of climate change, and as an early indicator for water, soil, and air quality degradation.

  5. Remote estimation of phycocyanin (PC) for inland waters coupled with YSI PC fluorescence probe.

    PubMed

    Song, Kaishan; Li, Lin; Tedesco, Lenore; Clercin, Nicole; Hall, Bob; Li, Shuai; Shi, Kun; Liu, Dawei; Sun, Ying

    2013-08-01

    Nuisance cyanobacterial blooms degrade water resources through accelerated eutrophication, odor generation, and production of toxins that cause adverse effects on human health. Quick and effective methods for detecting cyanobacterial abundance in drinking water supplies are urgently needed to compliment conventional laboratory methods, which are costly and time consuming. Hyperspectral remote sensing can be an effective approach for rapid assessment of cyanobacterial blooms. Samples (n=250) were collected from five drinking water sources in central Indiana (CIN), USA, and South Australia (SA), which experience nuisance cyanobacterial blooms. In situ hyperspectral data were used to develop models by relating spectral signal with handheld fluorescence probe (YSI 6600 XLM-SV) measured phycocyanin (PC in cell/ml), a proxy pigment unique for indicating the presence of cyanobacteria. Three-band model (TBM), which is effective for chlorophyll-a estimates, was tuned to quantify cyanobacteria coupled with the PC probe measured cyanobacteria. As a comparison, two band model proposed by Simis et al. (Limnol Oceanogr, 50(11): 237-245, 2005; denoted as SM05) was paralleled to evaluate TBM model performance. Our observation revealed a high correlation between measured and estimated PC for SA dataset (R (2) =0.96; range: 534-20,200 cell/ml) and CIN dataset (R (2) =0.88; range: 1,300-44,500 cell/ml). The potential of this modeling approach for imagery data were assessed by simulated ESA/Centinel3/OLCI spectra, which also resulted in satisfactory performance with the TBM for both SA dataset (RMSE % =26.12) and CIN dataset (RMSE % =34.49). Close relationship between probe-measured PC and laboratory measured cyanobacteria biovolume was observed (R (2) =0.93, p<0.0001) for the CIN dataset, indicating a stable performance for PC probe. Based on our observation, field spectroscopic measurement coupled with PC probe measurements can provide quantitative cyanobacterial bloom

  6. [Remote Sensing Estimation of Chlorophyll-a Concentration in Inland Lakes Based on GOCI Image and Optical Classification of Water Body].

    PubMed

    Feng, Chi; Jin, Qi; Wang, Yan-nan; Zhao, Li-na; Lu, Heng; Li, Yun-mei

    2015-05-01

    Chlorophyll-a as one of the important water quality parameters is often used as a measure of the level of water eutrophication. The 326 measured data collected from Lake Taihu and Lake Dongting were classified based on their measured values of remote sensing reflectance spectra using an automatic clustering algorithm-two-step method, and three water types were finally classified. According to the location and width of GOCI satellite bands, the specific algorithm to estimate chlorophyll-a concentration for different water body types was developed. The bands at 490 nm and 555 nm were used for water body type I , while bands at 660 nm and 443 nm were selected for water body type II and bands at 745 nm and 680 nm were applied for water body type III. The accuracy assessment showed that the mean relative error decreased from 49. 78% to 38. 91% , 24. 19% and 22. 90% for water body type I , II and III, respectively, while the root mean square error decreased from 14.10 µg · L(-1) to 4.87 µg · L(-1), 8.13 µg · L(-1) and 11.66 µg · L(-1) for water body type I, II and III, respectively. The overall mean relative error decreased from 49. 78% to 29. 59% after classification, while the overall root mean square error was reduced from 14.10 µg · L(-1) to 9.29 µg · L(-1) after classification. The retrieval accuracy was significantly improved after classification. The chlorophyll-a concentration in Lake Taihu was retrieved using the GOCI image on May 13, 2013. The results showed that there was a significantly diurnal variation in the concentration of chllorophyll-a on May 13, 2013, and the regions with higher chlorophyll-a concentration were mainly distributed in the Zhushan Bay, Meiliang Bay and Gonghu Bay, while the regions with lower values were mainly located in the centre of the lake and the southern region. The chlorophyll-a concentration reduced significantly after 10:00 in the southwestern region of Lake Taihu. This method of retrieving, after classification

  7. Integrating Solar Induced Fluorescence and the Photochemical Reflectance Index for Estimating Gross Primary Production in a Cornfield

    NASA Technical Reports Server (NTRS)

    Cheng, Yen-Ben; Middleton, Elizabeth M.; Zhang, Qingyuan; Huemmrich, Karl F.; Campbell, Petya K. E.; Corp, Lawrence A.; Cook, Bruce D.; Kustas, William P.; Daughtry, Criag S.

    2013-01-01

    The utilization of remotely sensed observations for light use efficiency (LUE) and tower-based gross primary production (GPP) estimates was studied in a USDA cornfield. Nadir hyperspectral reflectance measurements were acquired at canopy level during a collaborative field campaign conducted in four growing seasons. The Photochemical Reflectance Index (PRI) and solar induced chlorophyll fluorescence (SIF), were derived. SIF retrievals were accomplished in the two telluric atmospheric oxygen absorption features centered at 688 nm (O2-B) and 760 nm (O2-A). The PRI and SIF were examined in conjunction with GPP and LUE determined by flux tower-based measurements. All of these fluxes, environmental variables, and the PRI and SIF exhibited diurnal as well as day-to-day dynamics across the four growing seasons. Consistent with previous studies, the PRI was shown to be related to LUE (r2 = 0.54 with a logarithm fit), but the relationship varied each year. By combining the PRI and SIF in a linear regression model, stronger performances for GPP estimation were obtained. The strongest relationship (r2 = 0.80, RMSE = 0.186 mg CO2/m2/s) was achieved when using the PRI and SIF retrievals at 688 nm. Cross-validation approaches were utilized to demonstrate the robustness and consistency of the performance. This study highlights a GPP retrieval method based entirely on hyperspectral remote sensing observations.