Science.gov

Sample records for chloroplast differentiation annual

  1. Nitrogen control of chloroplast differentiation. Annual progress report

    SciTech Connect

    Schmidt, G.W.

    1992-07-01

    This project is directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins functioning in energy transduction and carbon metabolism. Molecular analyses performed with Chlamydomonas reinhardtii grown in a continuous culture system such that ammonium concentration is maintained at a low steady-state concentration so as to limit cell division. As compared to chloroplasts from cells of non-limiting nitrogen provisions, chloroplasts of N-limited cells are profoundly chlorophyll-deficient but still assimilate carbon for deposition of as starch and as storage lipids. Chlorophyll deficiency arises by limiting accumulation of appropriate nuclear-encoded mRNAs of and by depressed rates of translation of chloroplast mRNAs for apoproteins of reaction centers. Chloroplast translational effects can be partially ascribed to diminished rates of chlorophyll biosynthesis in N-limited cells, but pigment levels are not determinants for expression of the nuclear light-harvesting protein genes. Consequently, other signals that are responsive to nitrogen availability mediate transcriptional or post-transcriptional processes for accumulation of the mRNAs for LHC apoproteins and other mRNAs whose abundance is dependent upon high nitrogen levels. Conversely, limited nitrogen availability promotes accumulation of other proteins involved in carbon metabolism and oxidative electron transport in chloroplasts. Hence, thylakoids of N-limited cells exhibit enhanced chlororespiratory activities wherein oxygen serves as the electron acceptor in a pathway that involves plastoquinone and other electron carrier proteins that remain to be thoroughly characterized. Ongoing and future studies are also outlined.

  2. Nitrogen control of chloroplast development and differentiation. Annual progress report

    SciTech Connect

    Schmidt, G.W.

    1991-12-01

    The growth and development of plants and photosynthetic microorganisms is commonly limited by the availability of nitrogen. Our work concerns understanding the mechanisms by which plants and algae that are subjected to nitrogen deprivation alter the composition of photosynthetic membranes and enzymes involved in photosynthetic carbon metabolism. Toward these ends, we study biosynthetic and gene expression processes in the unicellular green alga Chlamydomonas reinhardtii which is grown in an ammonium-limited continuous culture system. We have found that the expression of nuclear genes, including those encoding for light-harvesting proteins, are severely repressed in nitrogen-limited cells whereas, in general, chloroplast protein synthesis is attenuated primarily at the level of mRNA translation. Conversely, nitrogen deprivation appears to lead to enhanced synthesis of enzymes that are involved in starch and storage lipid deposition. In addition, as a possible means by which photosynthetic electron transport activities and ATP synthesis is sustained during chronic periods of nitrogen deprivation, thylakoid membranes become enriched with components for chlororespiration. Characterization of the chlororespiratory electron transport constituents, including cytochrome complexes and NAD(P)H dehydrogenase is a major current effort. Also, we are striving to isolate the genes encoding chlororespiration proteins toward determining how they and others that are strongly responsive to nutrient availability are regulated.

  3. Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize

    PubMed Central

    Chotewutmontri, Prakitchai; Barkan, Alice

    2016-01-01

    Chloroplast genomes in land plants contain approximately 100 genes, the majority of which reside in polycistronic transcription units derived from cyanobacterial operons. The expression of chloroplast genes is integrated into developmental programs underlying the differentiation of photosynthetic cells from non-photosynthetic progenitors. In C4 plants, the partitioning of photosynthesis between two cell types, bundle sheath and mesophyll, adds an additional layer of complexity. We used ribosome profiling and RNA-seq to generate a comprehensive description of chloroplast gene expression at four stages of chloroplast differentiation, as displayed along the maize seedling leaf blade. The rate of protein output of most genes increases early in development and declines once the photosynthetic apparatus is mature. The developmental dynamics of protein output fall into several patterns. Programmed changes in mRNA abundance make a strong contribution to the developmental shifts in protein output, but output is further adjusted by changes in translational efficiency. RNAs with prioritized translation early in development are largely involved in chloroplast gene expression, whereas those with prioritized translation in photosynthetic tissues are generally involved in photosynthesis. Differential gene expression in bundle sheath and mesophyll chloroplasts results primarily from differences in mRNA abundance, but differences in translational efficiency amplify mRNA-level effects in some instances. In most cases, rates of protein output approximate steady-state protein stoichiometries, implying a limited role for proteolysis in eliminating unassembled or damaged proteins under non-stress conditions. Tuned protein output results from gene-specific trade-offs between translational efficiency and mRNA abundance, both of which span a large dynamic range. Analysis of ribosome footprints at sites of RNA editing showed that the chloroplast translation machinery does not generally

  4. Nitrogen control of chloroplast differentiation

    SciTech Connect

    Schmidt, G.W.

    1992-07-01

    This project is directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins functioning in energy transduction and carbon metabolism. Molecular analyses performed with Chlamydomonas reinhardtii grown in a continuous culture system such that ammonium concentration is maintained at a low steady-state concentration so as to limit cell division. As compared to chloroplasts from cells of non-limiting nitrogen provisions, chloroplasts of N-limited cells are profoundly chlorophyll-deficient but still assimilate carbon for deposition of as starch and as storage lipids. Chlorophyll deficiency arises by limiting accumulation of appropriate nuclear-encoded mRNAs of and by depressed rates of translation of chloroplast mRNAs for apoproteins of reaction centers. Chloroplast translational effects can be partially ascribed to diminished rates of chlorophyll biosynthesis in N-limited cells, but pigment levels are not determinants for expression of the nuclear light-harvesting protein genes. Consequently, other signals that are responsive to nitrogen availability mediate transcriptional or post-transcriptional processes for accumulation of the mRNAs for LHC apoproteins and other mRNAs whose abundance is dependent upon high nitrogen levels. Conversely, limited nitrogen availability promotes accumulation of other proteins involved in carbon metabolism and oxidative electron transport in chloroplasts. Hence, thylakoids of N-limited cells exhibit enhanced chlororespiratory activities wherein oxygen serves as the electron acceptor in a pathway that involves plastoquinone and other electron carrier proteins that remain to be thoroughly characterized. Ongoing and future studies are also outlined.

  5. Nitrogen control of chloroplast differentiation. Final report

    SciTech Connect

    Schmidt, G.W.

    1998-05-01

    This project was directed toward understanding at the physiological, biochemical and molecular levels of how photosynthetic organisms adapt to long-term nitrogen-deficiency conditions is quite incomplete even though limitation of this nutrient is the most commonly restricts plant growth and development. For our work on this problem, the unicellular green alga, Chlamydomonas reinhardtii, was grown in continuous cultures in which steady-state levels of nitrogen can be precisely controlled. N-limited cells exhibit the classical symptoms of deficiency of this nutrient, chlorosis and slow growth rates, and respond to nitrogen provision by rapid greening and chloroplast differentiation. We have addressed three aspects of this problem: (1) the regulation of pigment synthesis; (2) control of expression of nuclear genes encoding photosynthetic proteins; (3) changes in metabolic and electron transport pathways that enable sustained CO{sub 2} fixation even though they cannot be readily converted into amino and nucleic acids. For the last, principle components are: (a) enhanced mitochondrial respiratory activity intimately associated with photosynthates, and (b) the occurrence in thylakoids of a supplemental electron transport pathway that facilitates reduction of the plastoquinone pool. Together, these distinguishing features of N-limited cells are likely to enable cell survival, especially under conditions of high irradiance stress.

  6. Nitrogen control of chloroplast development and differentiation

    SciTech Connect

    Schmidt, G.W.

    1991-12-01

    The growth and development of plants and photosynthetic microorganisms is commonly limited by the availability of nitrogen. Our work concerns understanding the mechanisms by which plants and algae that are subjected to nitrogen deprivation alter the composition of photosynthetic membranes and enzymes involved in photosynthetic carbon metabolism. Toward these ends, we study biosynthetic and gene expression processes in the unicellular green alga Chlamydomonas reinhardtii which is grown in an ammonium-limited continuous culture system. We have found that the expression of nuclear genes, including those encoding for light-harvesting proteins, are severely repressed in nitrogen-limited cells whereas, in general, chloroplast protein synthesis is attenuated primarily at the level of mRNA translation. Conversely, nitrogen deprivation appears to lead to enhanced synthesis of enzymes that are involved in starch and storage lipid deposition. In addition, as a possible means by which photosynthetic electron transport activities and ATP synthesis is sustained during chronic periods of nitrogen deprivation, thylakoid membranes become enriched with components for chlororespiration. Characterization of the chlororespiratory electron transport constituents, including cytochrome complexes and NAD(P)H dehydrogenase is a major current effort. Also, we are striving to isolate the genes encoding chlororespiration proteins toward determining how they and others that are strongly responsive to nutrient availability are regulated.

  7. The workflow for quantitative proteome analysis of chloroplast development and differentiation, chloroplast mutants, and protein interactions by spectral counting.

    PubMed

    Friso, Giulia; Olinares, Paul Dominic B; van Wijk, Klaas J

    2011-01-01

    This chapter outlines a quantitative proteomics workflow using a label-free spectral counting technique. The workflow has been tested on different aspects of chloroplast biology in maize and Arabidopsis, including chloroplast mutant analysis, cell-type specific chloroplast differentiation, and the proplastid-to-chloroplast transition. The workflow involves one-dimensional SDS-PAGE of the proteomes of leaves or chloroplast subfractions, tryptic digestions, online LC-MS/MS using a mass spectrometer with high mass accuracy and duty cycle, followed by semiautomatic data processing. The bioinformatics analysis can effectively select best gene models and deals with quantification of closely related proteins; the workflow avoids overidentification of proteins and results in more accurate protein quantification. The final output includes pairwise comparative quantitative analysis, as well as hierarchical clustering for discovery of temporal and spatial patterns of protein accumulation. A brief discussion about potential pitfalls, as well as the advantages and disadvantages of spectral counting, is provided.

  8. The PLASTID DIVISION1 and 2 components of the chloroplast division machinery determine the rate of chloroplast division in land plant cell differentiation.

    PubMed

    Okazaki, Kumiko; Kabeya, Yukihiro; Suzuki, Kenji; Mori, Toshiyuki; Ichikawa, Takanari; Matsui, Minami; Nakanishi, Hiromitsu; Miyagishima, Shin-Ya

    2009-06-01

    In most algae, the chloroplast division rate is held constant to maintain the proper number of chloroplasts per cell. By contrast, land plants evolved cell and chloroplast differentiation systems in which the size and number of chloroplasts change along with their respective cellular function by regulation of the division rate. Here, we show that PLASTID DIVISION (PDV) proteins, land plant-specific components of the division apparatus, determine the rate of chloroplast division. Overexpression of PDV proteins in the angiosperm Arabidopsis thaliana and the moss Physcomitrella patens increased the number but decreased the size of chloroplasts; reduction of PDV levels resulted in the opposite effect. The level of PDV proteins, but not other division components, decreased during leaf development, during which the chloroplast division rate also decreased. Exogenous cytokinins or overexpression of the cytokinin-responsive transcription factor CYTOKININ RESPONSE FACTOR2 increased the chloroplast division rate, where PDV proteins, but not other components of the division apparatus, were upregulated. These results suggest that the integration of PDV proteins into the division machinery enabled land plant cells to change chloroplast size and number in accord with the fate of cell differentiation.

  9. Maintenance of Chloroplast Components during Chromoplast Differentiation in the Tomato Mutant Green Flesh.

    PubMed

    Cheung, A. Y.; McNellis, T.; Piekos, B.

    1993-04-01

    ripened either in the dark or in the light. These results suggest that the lesion in gf may alleviate conditions associated with chloroplast deterioration during the chloroplast-chromoplast transition in tomato ripening but has no direct effect on chromoplast differentiation per se. The ultrastructure of gf provides unequivocal evidence that, in ripening tomato, chromoplasts indeed differentiate from preexisting chloroplasts; on the other hand, chromoplast differentiation in the dark-matured and -ripened tomato fruits indicates that chromoplast development can be a process entirely independent of the chloroplasts.

  10. Differential positioning of C(4) mesophyll and bundle sheath chloroplasts: recovery of chloroplast positioning requires the actomyosin system.

    PubMed

    Kobayashi, Hiroaki; Yamada, Masahiro; Taniguchi, Mitsutaka; Kawasaki, Michio; Sugiyama, Tatsuo; Miyake, Hiroshi

    2009-01-01

    In C(4) plants, bundle sheath (BS) chloroplasts are arranged in the centripetal position or in the centrifugal position, although mesophyll (M) chloroplasts are evenly distributed along cell membranes. To examine the molecular mechanism for the intracellular disposition of these chloroplasts, we observed the distribution of actin filaments in BS and M cells of the C(4) plants finger millet (Eleusine coracana) and maize (Zea mays) using immunofluorescence. Fine actin filaments encircled chloroplasts in both cell types, and an actin network was observed adjacent to plasma membranes. The intracellular disposition of both chloroplasts in finger millet was disrupted by centrifugal force but recovered within 2 h in the dark. Actin filaments remained associated with chloroplasts during recovery. We also examined the effects of inhibitors on the rearrangement of chloroplasts. Inhibitors of actin polymerization, myosin-based activities and cytosolic protein synthesis blocked migration of chloroplasts. In contrast, a microtubule-depolymerizing drug had no effect. These results show that C(4) plants possess a mechanism for keeping chloroplasts in the home position which is dependent on the actomyosin system and cytosolic protein synthesis but not tubulin or light. PMID:19022806

  11. Exploring mechanisms linked to differentiation and function of dimorphic chloroplasts in the single cell C4 species Bienertia sinuspersici

    PubMed Central

    2014-01-01

    Background In the model single-cell C4 plant Bienertia sinuspersici, chloroplast- and nuclear-encoded photosynthetic enzymes, characteristically confined to either bundle sheath or mesophyll cells in Kranz-type C4 leaves, all occur together within individual leaf chlorenchyma cells. Intracellular separation of dimorphic chloroplasts and key enzymes within central and peripheral compartments allow for C4 carbon fixation analogous to NAD-malic enzyme (NAD-ME) Kranz type species. Several methods were used to investigate dimorphic chloroplast differentiation in B. sinuspersici. Results Confocal analysis revealed that Rubisco-containing chloroplasts in the central compartment chloroplasts (CCC) contained more photosystem II proteins than the peripheral compartment chloroplasts (PCC) which contain pyruvate,Pi dikinase (PPDK), a pattern analogous to the cell type-specific chloroplasts of many Kranz type NAD-ME species. Transient expression analysis using GFP fusion constructs containing various lengths of a B. sinuspersici Rubisco small subunit (RbcS) gene and the transit peptide of PPDK revealed that their import was not specific to either chloroplast type. Immunolocalization showed the rbcL-specific mRNA binding protein RLSB to be selectively localized to the CCC in B. sinuspersici, and to Rubisco-containing BS chloroplasts in the closely related Kranz species Suaeda taxifolia. Comparative fluorescence analyses were made using redox-sensitive and insensitive GFP forms, as well comparative staining using the peroxidase indicator 3,3-diaminobenzidine (DAB), which demonstrated differences in stromal redox potential, with the CCC having a more negative potential than the PCC. Conclusions Both CCC RLSB localization and the differential chloroplast redox state are suggested to have a role in post-transcriptional rbcL expression. PMID:24443986

  12. Differential positioning of chloroplasts in C4 mesophyll and bundle sheath cells.

    PubMed

    Maai, Eri; Miyake, Hiroshi; Taniguchi, Mitsutaka

    2011-08-01

    Chloroplast photorelocation movement is extensively studied in C3 but not C4 plants. C4 plants have 2 types of photosynthetic cells: mesophyll and bundle sheath cells. Mesophyll chloroplasts are randomly distributed along cell walls, whereas bundle sheath chloroplasts are located close to the vascular tissues or mesophyll cells depending on the plant species. The cell-specific C 4 chloroplast arrangement is established during cell maturation, and is maintained throughout the life of the cell. However, only mesophyll chloroplasts can change their positions in response to environmental stresses. The migration pattern is unique to C4 plants and differs from that of C3 chloroplasts. In this mini-review, we highlight the cell-specific disposition of chloroplasts in C4 plants and discuss the possible physiological significances.

  13. Separate localization of light signal perception for sun or shade type chloroplast and palisade tissue differentiation in Chenopodium album.

    PubMed

    Yano, S; Terashima, I

    2001-12-01

    Physiological and ecological characteristics of sun and shade leaves have been compared in detail, but their developmental processes, in particular their light sensory mechanisms, are still unknown. This study compares the development of sun and shade leaves of Chenopodium album L., paying special attention to the light sensory site. We hypothesized that mature leaves sense the light environment, and that this information determines anatomy of new leaves. To examine this hypothesis, we shaded plants partially. In the low-light apex treatment (LA), the shoot apex with developing leaves was covered by a cap made of a shading screen and received photosynthetically active photon flux density (PPFD) of 60 micromol m(-2 )s(-1), while the remaining mature leaves were exposed to 360 micromol m(-2 )s(-1). In the high-light apex treatment (HA), the apex was exposed while the mature leaves were covered by a shade screen. After these treatments for 6 d, we analyzed leaf anatomy and chloroplast ultrastructure. The anatomy of LA leaves with a two-layered palisade tissue was similar to that of sun leaves, while their chloroplasts were shade-type with thick grana. The anatomy of HA leaves and shade leaves was similar and both had one-layered palisade tissue, while chloroplasts of HA leaves were sun-type having thin grana. These results clearly demonstrate that new leaves differentiate depending on the light environment of mature leaves, while chloroplasts differentiate depending on the local light environment.

  14. Consequences of C4 Differentiation for Chloroplast Membrane Proteomes in Maize Mesophyll and Bundle Sheath Cells *S⃞

    PubMed Central

    Majeran, Wojciech; Zybailov, Boris; Ytterberg, A. Jimmy; Dunsmore, Jason; Sun, Qi; van Wijk, Klaas J.

    2008-01-01

    Chloroplasts of maize leaves differentiate into specific bundle sheath (BS) and mesophyll (M) types to accommodate C4 photosynthesis. Chloroplasts contain thylakoid and envelope membranes that contain the photosynthetic machineries and transporters but also proteins involved in e.g. protein homeostasis. These chloroplast membranes must be specialized within each cell type to accommodate C4 photosynthesis and regulate metabolic fluxes and activities. This quantitative study determined the differentiated state of BS and M chloroplast thylakoid and envelope membrane proteomes and their oligomeric states using innovative gel-based and mass spectrometry-based protein quantifications. This included native gels, iTRAQ, and label-free quantification using an LTQ-Orbitrap. Subunits of Photosystems I and II, the cytochrome b6f, and ATP synthase complexes showed average BS/M accumulation ratios of 1.6, 0.45, 1.0, and 1.33, respectively, whereas ratios for the light-harvesting complex I and II families were 1.72 and 0.68, respectively. A 1000-kDa BS-specific NAD(P)H dehydrogenase complex with associated proteins of unknown function containing more than 15 proteins was observed; we speculate that this novel complex possibly functions in inorganic carbon concentration when carboxylation rates by ribulose-bisphosphate carboxylase/oxygenase are lower than decarboxylation rates by malic enzyme. Differential accumulation of thylakoid proteases (Egy and DegP), state transition kinases (STN7,8), and Photosystem I and II assembly factors was observed, suggesting that cell-specific photosynthetic electron transport depends on post-translational regulatory mechanisms. BS/M ratios for inner envelope transporters phosphoenolpyruvate/Pi translocator, Dit1, Dit2, and Mex1 were determined and reflect metabolic fluxes in carbon metabolism. A wide variety of hundreds of other proteins showed differential BS/M accumulation. Mass spectral information and functional annotations are available

  15. DAG, a gene required for chloroplast differentiation and palisade development in Antirrhinum majus.

    PubMed

    Chatterjee, M; Sparvoli, S; Edmunds, C; Garosi, P; Findlay, K; Martin, C

    1996-08-15

    We have identified a mutation at the DAG locus of Antirrhinum majus which blocks the development of chloroplasts to give white leaves with green revertant sectors. The green areas contain normal chloroplasts whereas the white areas have small plastids that resemble proplastids. The cotyledons of dark-grown dag mutant seedlings have plastids which also resemble proplastids. The palisade cells in the white areas of dag mutant leaves also lack their characteristic columnar shape. The DAG locus was cloned by transposon tagging: DAG encodes a novel protein with a predicted Mr of 26k, which is targeted to the plastids. Cleavage of its predicted transit peptide gives a mature protein of Mr 20k. Screening of databases and analysis of Southern blots gave evidence that DAG belongs to a protein family with homology to several proteins of unknown function from plants. Expression of DAG is required for expression of nuclear genes affecting the chloroplasts, such as CAB and RBCS, and also for expression of the plastidial gene RPOB encoding the plastidial RNA polymerase beta subunit, indicating that it functions very early in chloroplast development.

  16. DAG, a gene required for chloroplast differentiation and palisade development in Antirrhinum majus.

    PubMed Central

    Chatterjee, M; Sparvoli, S; Edmunds, C; Garosi, P; Findlay, K; Martin, C

    1996-01-01

    We have identified a mutation at the DAG locus of Antirrhinum majus which blocks the development of chloroplasts to give white leaves with green revertant sectors. The green areas contain normal chloroplasts whereas the white areas have small plastids that resemble proplastids. The cotyledons of dark-grown dag mutant seedlings have plastids which also resemble proplastids. The palisade cells in the white areas of dag mutant leaves also lack their characteristic columnar shape. The DAG locus was cloned by transposon tagging: DAG encodes a novel protein with a predicted Mr of 26k, which is targeted to the plastids. Cleavage of its predicted transit peptide gives a mature protein of Mr 20k. Screening of databases and analysis of Southern blots gave evidence that DAG belongs to a protein family with homology to several proteins of unknown function from plants. Expression of DAG is required for expression of nuclear genes affecting the chloroplasts, such as CAB and RBCS, and also for expression of the plastidial gene RPOB encoding the plastidial RNA polymerase beta subunit, indicating that it functions very early in chloroplast development. Images PMID:8861948

  17. Phosphoinositides Play Differential Roles in Regulating Phototropin1- and Phototropin2-Mediated Chloroplast Movements in Arabidopsis

    PubMed Central

    Aggarwal, Chhavi; Łabuz, Justyna; Gabryś, Halina

    2013-01-01

    Phototropins are UVA/blue-light receptors involved in controlling the light-dependent physiological responses which serve to optimize the photosynthetic activity of plants and promote growth. The phototropin-induced phosphoinositide (PI) metabolism has been shown to be essential for stomatal opening and phototropism. However, the role of PIs in phototropin-induced chloroplast movements remains poorly understood. The aim of this work is to determine which PI species are involved in the control of chloroplast movements in Arabidopsis and the nature of their involvement. We present the effects of the inactivation of phospholipase C (PLC), PI3-kinase (PI3K) and PI4-kinase (PI4K) on chloroplast relocations in Arabidopsis. The inhibition of the phosphatidylinositol 4,5-bisphospahte [PI(4,5)P2]-PLC pathway, using neomycin and U73122, suppressed the phot2-mediated chloroplast accumulation and avoidance responses, without affecting movement responses controlled by phot1. On the other hand, PI3K and PI4K activities are more restricted to phot1- and phot2-induced weak-light responses. The inactivation of PI3K and PI4K by wortmannin and LY294002 severely affected the weak blue-light-activated accumulation response but had little effect on the strong blue-light-activated avoidance response. The inhibitory effect observed with PI metabolism inhibitors is, at least partly, due to a disturbance in Ca2+(c) signaling. Using the transgenic aequorin system, we show that the application of these inhibitors suppresses the blue-light-induced transient Ca2+(c) rise. These results demonstrate the importance of PIs in chloroplast movements, with the PI(4,5)P2-PLC pathway involved in phot2 signaling while PI3K and PI4K are required for the phot1- and phot2-induced accumulation response. Our results suggest that these PIs modulate cytosolic Ca2+ signaling during movements. PMID:23405144

  18. The chloroplast min system functions differentially in two specific nongreen plastids in Arabidopsis thaliana.

    PubMed

    Wang, Peng; Zhang, Jie; Su, Jianbin; Wang, Peng; Liu, Jun; Liu, Bing; Feng, Dongru; Wang, Jinfa; Wang, Hongbin

    2013-01-01

    The nongreen plastids, such as etioplasts, chromoplasts, etc., as well as chloroplasts, are all derived from proplastids in the meristem. To date, the Min system members in plants have been identified as regulators of FtsZ-ring placement, which are essential for the symmetrical division of chloroplasts. However, the regulation of FtsZ-ring placement in nongreen plastids is poorly understood. In this study, we investigated the division site placement of nongreen plastids by examining the etioplasts as representative in Arabidopsis Min system mutants. Surprisingly, the shape and number of etioplasts in cotyledons of arc3, arc11 and mcd1 mutants were similar to that observed in wild-type plants, whereas arc12 and parc6 mutants exhibited enlarged etioplasts that were reduced in number. In order to examine nongreen plastids in true leaves, we silenced the ALB3 gene in these Min system mutant backgrounds to produce immature chloroplasts without the thylakoidal network using virus induced gene silencing (VIGS). Interestingly, consistent with our observations in etioplasts, enlarged and fewer nongreen plastids were only detected in leaves of parc6 (VIGS-ALB3) and arc12 (VIGS-ALB3) plants. Further, the FtsZ-ring assembled properly at the midpoint in nongreen plastids of arc3, arc11 and mcd1 (VIGS-ALB3) plants, but organized into multiple rings in parc6 (VIGS-ALB3) and presented fragmented filaments in arc12 (VIGS-ALB3) plants, suggesting that division site placement in nongreen plastids requires fewer components of the plant Min system. Taken together, these results suggest that division site placement in nongreen plastids is different from that in chloroplasts.

  19. The Chloroplast Min System Functions Differentially in Two Specific Nongreen Plastids in Arabidopsis thaliana

    PubMed Central

    Wang, Peng; Zhang, Jie; Su, Jianbin; Wang, Peng; Liu, Jun; Liu, Bing; Feng, Dongru; Wang, Jinfa; Wang, Hongbin

    2013-01-01

    The nongreen plastids, such as etioplasts, chromoplasts, etc., as well as chloroplasts, are all derived from proplastids in the meristem. To date, the Min system members in plants have been identified as regulators of FtsZ-ring placement, which are essential for the symmetrical division of chloroplasts. However, the regulation of FtsZ-ring placement in nongreen plastids is poorly understood. In this study, we investigated the division site placement of nongreen plastids by examining the etioplasts as representative in Arabidopsis Min system mutants. Surprisingly, the shape and number of etioplasts in cotyledons of arc3, arc11 and mcd1 mutants were similar to that observed in wild-type plants, whereas arc12 and parc6 mutants exhibited enlarged etioplasts that were reduced in number. In order to examine nongreen plastids in true leaves, we silenced the ALB3 gene in these Min system mutant backgrounds to produce immature chloroplasts without the thylakoidal network using virus induced gene silencing (VIGS). Interestingly, consistent with our observations in etioplasts, enlarged and fewer nongreen plastids were only detected in leaves of parc6 (VIGS-ALB3) and arc12 (VIGS-ALB3) plants. Further, the FtsZ-ring assembled properly at the midpoint in nongreen plastids of arc3, arc11 and mcd1 (VIGS-ALB3) plants, but organized into multiple rings in parc6 (VIGS-ALB3) and presented fragmented filaments in arc12 (VIGS-ALB3) plants, suggesting that division site placement in nongreen plastids requires fewer components of the plant Min system. Taken together, these results suggest that division site placement in nongreen plastids is different from that in chloroplasts. PMID:23936263

  20. Differential Subplastidial Localization and Turnover of Enzymes Involved in Isoprenoid Biosynthesis in Chloroplasts.

    PubMed

    Perello, Catalina; Llamas, Ernesto; Burlat, Vincent; Ortiz-Alcaide, Miriam; Phillips, Michael A; Pulido, Pablo; Rodriguez-Concepcion, Manuel

    2016-01-01

    Plastidial isoprenoids are a diverse group of metabolites with roles in photosynthesis, growth regulation, and interaction with the environment. The methylerythritol 4-phosphate (MEP) pathway produces the metabolic precursors of all types of plastidial isoprenoids. Proteomics studies in Arabidopsis thaliana have shown that all the enzymes of the MEP pathway are localized in the plastid stroma. However, immunoblot analysis of chloroplast subfractions showed that the first two enzymes of the pathway, deoxyxylulose 5-phosphate synthase (DXS) and reductoisomerase (DXR), can also be found in non-stromal fractions. Both transient and stable expression of GFP-tagged DXS and DXR proteins confirmed the presence of the fusion proteins in distinct subplastidial compartments. In particular, DXR-GFP was found to accumulate in relatively large vesicles that could eventually be released from chloroplasts, presumably to be degraded by an autophagy-independent process. Together, we propose that protein-specific mechanisms control the localization and turnover of the first two enzymes of the MEP pathway in Arabidopsis chloroplasts. PMID:26919668

  1. Differential Subplastidial Localization and Turnover of Enzymes Involved in Isoprenoid Biosynthesis in Chloroplasts

    PubMed Central

    Perello, Catalina; Llamas, Ernesto; Burlat, Vincent; Ortiz-Alcaide, Miriam; Phillips, Michael A.; Pulido, Pablo; Rodriguez-Concepcion, Manuel

    2016-01-01

    Plastidial isoprenoids are a diverse group of metabolites with roles in photosynthesis, growth regulation, and interaction with the environment. The methylerythritol 4-phosphate (MEP) pathway produces the metabolic precursors of all types of plastidial isoprenoids. Proteomics studies in Arabidopsis thaliana have shown that all the enzymes of the MEP pathway are localized in the plastid stroma. However, immunoblot analysis of chloroplast subfractions showed that the first two enzymes of the pathway, deoxyxylulose 5-phosphate synthase (DXS) and reductoisomerase (DXR), can also be found in non-stromal fractions. Both transient and stable expression of GFP-tagged DXS and DXR proteins confirmed the presence of the fusion proteins in distinct subplastidial compartments. In particular, DXR-GFP was found to accumulate in relatively large vesicles that could eventually be released from chloroplasts, presumably to be degraded by an autophagy-independent process. Together, we propose that protein-specific mechanisms control the localization and turnover of the first two enzymes of the MEP pathway in Arabidopsis chloroplasts. PMID:26919668

  2. Differential Subplastidial Localization and Turnover of Enzymes Involved in Isoprenoid Biosynthesis in Chloroplasts.

    PubMed

    Perello, Catalina; Llamas, Ernesto; Burlat, Vincent; Ortiz-Alcaide, Miriam; Phillips, Michael A; Pulido, Pablo; Rodriguez-Concepcion, Manuel

    2016-01-01

    Plastidial isoprenoids are a diverse group of metabolites with roles in photosynthesis, growth regulation, and interaction with the environment. The methylerythritol 4-phosphate (MEP) pathway produces the metabolic precursors of all types of plastidial isoprenoids. Proteomics studies in Arabidopsis thaliana have shown that all the enzymes of the MEP pathway are localized in the plastid stroma. However, immunoblot analysis of chloroplast subfractions showed that the first two enzymes of the pathway, deoxyxylulose 5-phosphate synthase (DXS) and reductoisomerase (DXR), can also be found in non-stromal fractions. Both transient and stable expression of GFP-tagged DXS and DXR proteins confirmed the presence of the fusion proteins in distinct subplastidial compartments. In particular, DXR-GFP was found to accumulate in relatively large vesicles that could eventually be released from chloroplasts, presumably to be degraded by an autophagy-independent process. Together, we propose that protein-specific mechanisms control the localization and turnover of the first two enzymes of the MEP pathway in Arabidopsis chloroplasts.

  3. Chloroplast transformation.

    PubMed

    Lu, Xiao-Mei; Yin, Wei-Bo; Hu, Zan-Min

    2006-01-01

    In this chapter we briefly review the developmental history and current research status of chloroplast transformation and introduce the merits of chloroplast transformation as compared with the nuclear genome transformation. Furthermore, according to the chloroplast transformation achieved in oilseed rape (Brassica napus), we introduce the preparation of explants, transformation methods, system selection, identification methods of the transplastomic plants, and experimental results. The technical points, the bottleneck, and the further research directions of the chloroplast transformation are discussed in the notes.

  4. Transposon-induced nuclear mutations that alter chloroplast gene expression. Annual report, September 1, 1991--August 31, 1992

    SciTech Connect

    Barkan, A.

    1992-12-31

    The goal of this project is to use mutant phenotypes as a guide to nuclear genes that determine the timing and localization of chloroplast development The immediate goals are to identify nuclear mutants with defects in chloroplast gene expression from maize lines harboring active Mu transposons; characterize their phenotypes to determine the precise defect in gene expression; clone several of the most interesting mutations by exploiting the transposon tag; and use the clones to further define the roles of these genes in modulating chloroplast gene expression. Three mutants were described earlier that had global defects in chloroplast gene expression. We have found that two of these mutations are allelic. Both alleles have global defects in chloroplast translation initiation, as revealed by the failure to assemble chloroplast mRNAs into polysomes. We have isolated and characterized three new mutants from Mu lines that have novel defects in chloroplast RNA metabolism. We are now ready to begin the task of cloning several of these genes, by using the Mu transposon tag.

  5. Differential Synthesis of Photosystem Cores and Light-Harvesting Antenna during Proplastid to Chloroplast Development in Spirodela oligorrhiza.

    PubMed

    McCormac, D J; Greenberg, B M

    1992-03-01

    Proplastids and etioplasts are common starting points for monitoring chloroplast development in higher plants. Although proplastids are the primary precursor of chloroplasts, most proplastid to chloroplast systems are cumbersome to study temporally. Conversely, the etioplast to chloroplast transition is initiated by light and is readily examined as a function of time. Etioplasts, however, are found mostly in plants germinated in the dark and are not an obligatory step in chloroplast development. We have chosen to study chloroplast ontogeny in Spirodela oligorrhiza (Kurtz) Hegelm (a C(3)-monocot) because of its unique ability to grow indefinitely in the dark. Ultrastructural, physiological, and molecular evidence is presented in support of a temporal, light-triggered proplastid to chloroplast transition in Spirodela. The dark-grown plants are devoid of chlorophyll, and upon illumination synchronously green over a 3- to 5-day period. Synthesis of chloroplast proteins involved in photosynthesis is coincident with thylakoid assembly, chlorophyll accumulation, and appearance of CO(2) fixation activity. Interestingly, the developmental sequence in Spirodela was slow enough to reveal that biosynthesis of the D1 photosystem II reaction center protein precedes biosynthesis of the major light-harvesting antenna proteins. This, coupled with the high chlorophyll a/b ratio observed early in development, indicated that reaction center assembly occurred prior to accumulation of the light-harvesting complexes. Thus, with Spirodela one can study proplastid to chloroplast conversions temporally in higher plants and follow the process on a time scale that enables a detailed dissection of plastid maturation processes.

  6. Use of the chloroplast gene ycf1 for the genetic differentiation of pine nuts obtained from consumers experiencing dysgeusia.

    PubMed

    Handy, Sara M; Parks, Matthew B; Deeds, Jonathan R; Liston, Aaron; de Jager, Lowri S; Luccioli, Stefano; Kwegyir-Afful, Ernest; Fardin-Kia, Ali R; Begley, Timothy H; Rader, Jeanne I; Diachenko, Gregory W

    2011-10-26

    Pine nuts are a part of traditional cooking in many parts of the world and have seen a significant increase in availability/use in the United States over the past 10 years. The U.S. Food and Drug Administration (US FDA) field offices received 411 complaints from U.S. consumers over the past three years regarding taste disturbances following the consumption of pine nuts. Using analysis of fatty acids by gas chromatography with flame ionization detection, previous reports have implicated nuts from Pinus armandii (Armand Pine) as the causative species for similar taste disturbances. This method was found to provide insufficient species resolution to link FDA consumer complaint samples to a single species of pine, particularly when samples contained species mixtures of pine nuts. Here we describe a DNA based method for differentiating pine nut samples using the ycf1 chloroplast gene. Although the exact cause of pine nut associated dysgeusia is still not known, we found that 15 of 15 samples from consumer complaints contained at least some Pinus armandii, confirming the apparent association of this species with taste disturbances.

  7. Transposon-induced nuclear mutations that alter chloroplast gene expression. Annual report, September 1, 1992--April 15, 1993

    SciTech Connect

    Barkan, A.

    1993-04-20

    The goal of this project is to use mutant phenotypes as a guide to nuclear genes that control the timing and cell-type specificity of chloroplast gene expression. Studies are being conducted with nuclear mutants of maize that are defective in the biogenesis or translation of chloroplast mRNAs. Currently studies are focused on two nuclear mutants with specific and unique lesions in chloroplast RNA processing (crp mutants). Crp1 mutants (formerly called hcf136) fail to accumulate the cytochrome f/b6 complex. The protein loss is due to a defect in the metabolism of transcripts encoding the petB and petD gene products, two subunits of the missing complex. Mutant seedlings lack the monocistronic petB and petD MRNAS, which both arise in nominal plants by endonucleolytic cleavage of the polycistronic primary transcript of the psbB gene cluster. Precursor mRNAs accumulate normally in crp1, indicating that its defect is due either to a failure to cleave the precursors, or a failure to stabilize the fully processed mRNAs. We are interested in both the biochemistry of this site-specific RNA processing and in the role of the processing in generating translatable mRNAs. To address the latter, we are quantifying the rates of synthesis of the petB and petD gene products with the goal of determining whether the missing transcripts are more efficiently translated than their precursors. To address the biochemistry of the defect in RNA metabolism, the crp1 gene is being cloned via the transposon tag. crp2 (formerly called hcf142) lacks the predominant mRNA encoding petA, but appears to be otherwise unimpaired in chloroplast RNA metabolism. The precise role of crp2 in synthesizing or stabilizing the petA mRNA is being investigated through biochemical studies.

  8. Differential Replication of Two Chloroplast Genome Forms in Heteroplasmic Chlamydomonas reinhardtii Gametes Contributes to Alternative Inheritance Patterns

    PubMed Central

    Nishimura, Yoshiki; Stern, David B.

    2010-01-01

    Two mechanisms for chloroplast DNA replication have been revealed through the study of an unusual heteroplasmic strain of the green alga Chlamydomonas reinhardtii. Heteroplasmy is a state in which more than one genome type occurs in a mitochondrion or chloroplast. The Chlamydomonas strain spa19 bears two distinct chloroplast genomes, termed PS+ and PS−. PS+ genomes predominate and are stably maintained in vegetative cells, despite their lack of known replication origins. In sexual crosses with spa19 as the mating type plus parent, however, PS+ genomes are transmitted in only ∼25% of tetrads, whereas the PS− genomes are faithfully inherited in all progeny. In this research, we have explored the mechanism underlying this biased uniparental inheritance. We show that the relative reduction and dilution of PS+ vs. PS− genomes takes place during gametogenesis. Bromodeoxyuridine labeling, followed by immunoprecipitation and PCR, was used to compare replication activities of PS+ and PS− genomes. We found that the replication of PS+ genomes is specifically suppressed during gametogenesis and germination of zygospores, a phenomenon that also was observed when spa19 cells were treated with rifampicin, an inhibitor of the chloroplast RNA polymerase. Furthermore, when bromodeoxyuridine incorporation was compared at 11 sites within the chloroplast genome between vegetative cells, gametes, and rifampicin-treated cells by quantitative PCR, we found that incorporation was often reduced at the same sites in gametes that were also sensitive to rifampicin treatment. We conclude that a transcription-mediated form of DNA replication priming, which may be downregulated during gametogenesis, is indispensable for robust maintenance of PS+ genomes. These results highlight the potential for chloroplast genome copy number regulation through alternative replication strategies. PMID:20519744

  9. ChloroplastDB: the Chloroplast Genome Database.

    PubMed

    Cui, Liying; Veeraraghavan, Narayanan; Richter, Alexander; Wall, Kerr; Jansen, Robert K; Leebens-Mack, Jim; Makalowska, Izabela; dePamphilis, Claude W

    2006-01-01

    The Chloroplast Genome Database (ChloroplastDB) is an interactive, web-based database for fully sequenced plastid genomes, containing genomic, protein, DNA and RNA sequences, gene locations, RNA-editing sites, putative protein families and alignments (http://chloroplast.cbio.psu.edu/). With recent technical advances, the rate of generating new organelle genomes has increased dramatically. However, the established ontology for chloroplast genes and gene features has not been uniformly applied to all chloroplast genomes available in the sequence databases. For example, annotations for some published genome sequences have not evolved with gene naming conventions. ChloroplastDB provides unified annotations, gene name search, BLAST and download functions for chloroplast encoded genes and genomic sequences. A user can retrieve all orthologous sequences with one search regardless of gene names in GenBank. This feature alone greatly facilitates comparative research on sequence evolution including changes in gene content, codon usage, gene structure and post-transcriptional modifications such as RNA editing. Orthologous protein sets are classified by TribeMCL and each set is assigned a standard gene name. Over the next few years, as the number of sequenced chloroplast genomes increases rapidly, the tools available in ChloroplastDB will allow researchers to easily identify and compile target data for comparative analysis of chloroplast genes and genomes.

  10. DNA-based differentiation of the Ecuadorian cocoa types CCN-51 and Arriba based on sequence differences in the chloroplast genome.

    PubMed

    Herrmann, Luise; Haase, Ilka; Blauhut, Maike; Barz, Nadine; Fischer, Markus

    2014-12-17

    Two cocoa types, Arriba and CCN-51, are being cultivated in Ecuador. With regard to the unique aroma, Arriba is considered a fine cocoa type, while CCN-51 is a bulk cocoa because of its weaker aroma. Because it is being assumed that Arriba is mixed with CCN-51, there is an interest in the analytical differentiation of the two types. Two methods to identify CCN-51 adulterations in Arriba cocoa were developed on the basis of differences in the chloroplast DNA. On the one hand, a different repeat of the sequence TAAAG in the inverted repeat region results in a different length of amplicons for the two cocoa types, which can be detected by agarose gel electrophoresis, capillary gel electrophoresis, and denaturing high-performance liquid chromatography. On the other hand, single nucleotide polymorphisms (SNPs) between the CCN-51 and Arriba sequences represent restriction sites, which can be used for restriction fragment length polymorphism analysis. A semi-quantitative analysis based on these SNPs is feasible. A method for an exact quantitation based on these results is not realizable. These sequence variations were confirmed for a comprehensive cultivar collection of Arriba and CCN-51, for both bean and leaf samples.

  11. Circadian regulation of chloroplasts.

    PubMed

    Atkins, Kelly A; Dodd, Antony N

    2014-10-01

    Circadian rhythms produce a biological measure of time that increases plant performance. The mechanisms that underlie this increase in productivity require investigation to provide information that will underpin future crop improvement. There is a growing body of evidence that a sophisticated signalling network interconnects the circadian oscillator and chloroplasts. We consider this in the context of circadian signalling to chloroplasts and the relationship between retrograde signalling and circadian regulation. We place circadian signalling to chloroplasts by sigma factors within an evolutionary context. We describe selected recent developments in the integration of light and circadian signals that control chloroplast gene expression.

  12. Endogenous nitric oxide generation in protoplast chloroplasts.

    PubMed

    Tewari, Rajesh Kumar; Prommer, Judith; Watanabe, Masami

    2013-01-01

    KEY MESSAGE : NO generation is studied in the protoplast chloroplasts. NO, ONOO ( - ) and ROS (O ( 2 ) ( - ) and H ( 2 ) O ( 2 ) ) are generated in chloroplasts. Nitric oxide synthase-like protein appears to be involved in NO generation. Nitric oxide stimulates chlorophyll biosynthesis and chloroplast differentiation. The present study was conducted to better understand the process of NO generation in the leaf chloroplasts and protoplasts. NO, peroxynitrite and superoxide anion were investigated in the protoplasts and isolated chloroplasts using specific dyes, confocal laser scanning and light microscopy. The level of NO was highest after protoplast isolation and subsequently decreased during culture. Suppression of NO signal in the presence of PTIO, suggests that diaminofluorescein-2 diacetate (DAF-2DA) detected NO. Detection of peroxynitrite, a reaction product of NO and superoxide anion, further suggests NO generation. Moreover, generation of NO and peroxynitrite in the chloroplasts of wild-type Arabidopsis and their absence or weak signals in the leaf-derived protoplasts of Atnoa1 mutants confirmed the reactivity of DAF-2DA and aminophenyl fluorescein to NO and peroxynitrite, respectively. Isolated chloroplasts also showed signal of NO. Suppression of NO signal in the presence of 100 μM nitric oxide synthase inhibitors [L-NNA, Nω-nitro-L-arginine and PBIT, S,S'-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea] revealed that nitric oxide synthase-like system is involved in NO synthesis. Suppression of NO signal in the protoplasts isolated in the presence of cycloheximide suggests de novo synthesis of NO generating protein during the process of protoplast isolation. Furthermore, the lack of inhibition of NO production by sodium tungstate (250 μM) and inhibition by L-NNA, and PBIT suggest involvement NOS-like protein, but not nitrate reductase, in NO generation in the leaf chloroplasts and protoplasts.

  13. C4 photosynthetic machinery: insights from maize chloroplast proteomics

    PubMed Central

    Zhao, Qi; Chen, Sixue; Dai, Shaojun

    2013-01-01

    C4 plants exhibit much higher CO2 assimilation rates than C{}3 plants under certain conditions. The specialized differentiation of mesophyll cell and bundle sheath cell type chloroplasts is unique to C4 plants and improves photosynthetic efficiency. Maize (Zea mays) is an important crop and model with C4 photosynthetic machinery. 2DE and high-throughput quantitative proteomics approaches (e.g., isobaric tags for relative and absolute quantitation and shotgun proteomics) have been employed to investigate maize chloroplast structure and function. These proteomics studies have provided valuable information on C4 chloroplast protein components, photosynthesis, and other metabolic mechanisms underlying chloroplast biogenesis, stromal, and membrane differentiation, as well as response to salinity, high/low temperature, and light stress. This review presents an overview of proteomics advances in maize chloroplast biology. PMID:23596450

  14. Auxin and chloroplast movements.

    PubMed

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Waligórski, Piotr; Gabryś, Halina

    2016-03-01

    Auxin is involved in a wide spectrum of physiological processes in plants, including responses controlled by the blue light photoreceptors phototropins: phototropic bending and stomatal movement. However, the role of auxin in phototropin-mediated chloroplast movements has never been studied. To address this question we searched for potential interactions between auxin and the chloroplast movement signaling pathway using different experimental approaches and two model plants, Arabidopsis thaliana and Nicotiana tabacum. We observed that the disturbance of auxin homeostasis by shoot decapitation caused a decrease in chloroplast movement parameters, which could be rescued by exogenous auxin application. In several cases, the impairment of polar auxin transport, by chemical inhibitors or in auxin carrier mutants, had a similar negative effect on chloroplast movements. This inhibition was not correlated with changes in auxin levels. Chloroplast relocations were also affected by the antiauxin p-chlorophenoxyisobutyric acid and mutations in genes encoding some of the elements of the SCF(TIR1)-Aux/IAA auxin receptor complex. The observed changes in chloroplast movement parameters are not prominent, which points to a modulatory role of auxin in this process. Taken together, the obtained results suggest that auxin acts indirectly to regulate chloroplast movements, presumably by regulating gene expression via the SCF(TIR1)-Aux/IAA-ARF pathway. Auxin does not seem to be involved in controlling the expression of phototropins.

  15. Activation of polyphenol oxidase of chloroplasts.

    PubMed

    Tolbert, N E

    1973-02-01

    Polyphenol oxidase of leaves is located mainly in chloroplasts isolated by differential or sucrose density gradient centrifugation. This activity is part of the lamellar structure that is not lost on repeated washing of the plastids. The oxidase activity was stable during prolonged storage of the particles at 4 C or -18 C. The Km (dihydroxyphenylalanine) for spinach leaf polyphenol oxidase was 7 mm by a spectrophotometric assay and 2 mm by the manometric assay. Polyphenol oxidase activity in the leaf peroxisomal fraction, after isopycnic centrifugation on a linear sucrose gradient, did not coincide with the peroxisomal enzymes but was attributed to proplastids at nearly the same specific density.Plants were grouped by the latency properties for polyphenol oxidase in their isolated chloroplasts. In a group including spinach, Swiss chard, and beet leaves the plastids immediately after preparation from fresh leaves required a small amount of light for maximal rates of oxidation of dihydroxyphenylalanine. Polyphenol oxidase activity in the dark or light increased many fold during aging of these chloroplasts for 1 to 5 days. Soluble polyphenol oxidase of the cytoplasm was not so stimulated. Chloroplasts prepared from stored leaves were also much more active than from fresh leaves. Maximum rates of dihydroxyphenylalanine oxidation were 2 to 6 mmoles x mg(-1) chlorophyll x hr(-1). Equal stimulation of latent polyphenol oxidase in fresh or aged chloroplasts in this group was obtained by either light, an aged trypsin digest, 3-(4-chlorophenyl)-1, 1-dimethylurea, or antimycin A. A variety of other treatments did not activate or had little effect on the oxidase, including various peptides, salts, detergents, and other proteolytic enzymes.Activation of latent polyphenol oxidase in spinach chloroplasts by trypsin amounted to as much as 30-fold. The trypsin activation occurred even after the trypsin had been treated with 10% trichloroacetic acid, 1.0 n HCl or boiled for 30

  16. Differential Contribution of Endoplasmic Reticulum and Chloroplast ω-3 Fatty Acid Desaturase Genes to the Linolenic Acid Content of Olive (Olea europaea) Fruit.

    PubMed

    Hernández, M Luisa; Sicardo, M Dolores; Martínez-Rivas, José M

    2016-01-01

    Linolenic acid is a polyunsaturated fatty acid present in plant lipids, which plays key roles in plant metabolism as a structural component of storage and membrane lipids, and as a precursor of signaling molecules. The synthesis of linolenic acid is catalyzed by two different ω-3 fatty acid desaturases, which correspond to microsomal- (FAD3) and chloroplast- (FAD7 and FAD8) localized enzymes. We have investigated the specific contribution of each enzyme to the linolenic acid content in olive fruit. With that aim, we isolated two different cDNA clones encoding two ω-3 fatty acid desaturases from olive (Olea europaea cv. Picual). Sequence analysis indicates that they code for microsomal (OepFAD3B) and chloroplast (OepFAD7-2) ω-3 fatty acid desaturase enzymes, different from the previously characterized OekFAD3A and OekFAD7-1 genes. Functional expression in yeast of the corresponding OepFAD3A and OepFAD3B cDNAs confirmed that they encode microsomal ω-3 fatty acid desaturases. The linolenic acid content and transcript levels of olive FAD3 and FAD7 genes were measured in different tissues of Picual and Arbequina cultivars, including mesocarp and seed during development and ripening of olive fruit. Gene expression and lipid analysis indicate that FAD3A is the gene mainly responsible for the linolenic acid present in the seed, while FAD7-1 and FAD7-2 contribute mostly to the linolenic acid present in the mesocarp and, therefore, in the olive oil. These results also indicate the relevance of lipid trafficking between the endoplasmic reticulum and chloroplast in determining the linolenic acid content of membrane and storage lipids in oil-accumulating photosynthetic tissues.

  17. Cotyledonal chloroplasts in the hypogeal seeds of clementine.

    PubMed

    Casadoro, G; Rascio, N

    1987-03-01

    Clementine (Citrus nobilisxCitrus aurantium amara pumila) is a chloroembryophyte with green quiescent embryos and hypogeal germination. The cotyledonal chloroplasts have been studied during germination in the dark and under two different irradiances 120 and 240 μmol·m(-2)·s(-1) throughout a period of three weeks. The plastids of the outer adaxial and inner regions develop differently. In the light, the former differentiate a photosynthetically active thylakoid system with an ultrastructural organization and a polypeptide composition resembling that of leaf chloroplasts. The "inner" chloroplasts maintain an organization reminiscent of chloroplasts of the quiescent embryo and never get beyond the photosynthesis/respiration compensation point; their differentiation pattern appears essentially the same under the two different irradiances. These observations and the germination in the dark indicate that the above differentiation is not strictly photodependent. The greening ability of the cotyledons provides, on occasion, an additional photosynthetic supply to this plant.

  18. Longevity of guard cell chloroplasts in falling leaves: implication for stomatal function and cellular aging

    SciTech Connect

    Zeiger, E.; Schwartz, A.

    1982-11-12

    Guard cell chloroplasts in senescing leaves from 12 species of perennial trees and three species of annual plants survived considerably longer than their mesophyll counterparts. In Ginkgo biloba, stomata from yellow leaves opened during the day and closed at night; guard cell chloroplasts from these leaves showed fluorescence transients associated with electron transport and photophosphorylation. These findings indicate that guard cell chloroplasts are highly conserved throughout the life-span of the leaf and that leaves retain stomatal control during senescence.

  19. Differential Annual Movement Patterns in a Migratory Species: Effects of Experience and Sexual Maturation

    PubMed Central

    Jorge, Paulo E.; Sowter, David; Marques, Paulo A. M.

    2011-01-01

    Some animals migrate long distances to exploit important seasonal food resources in the northern regions of the northern hemisphere, whilst avoiding winter starvation. Changes in the individual's age and navigational skills are likely to affect migration, which in turn influences the geographic distribution of individuals. Processes such as sexual maturation and navigational abilities are affected by age, and age is thus a key factor in understanding migration patterns and differences in distribution ranges. In the present study, we investigated the effects of age on the geographic distribution of a population of Lesser Black-backed Gulls Larus fuscus throughout its annual cycle, by analyzing a dataset of 19,096 records from 10,000 color-ringed gulls. In contrast to previous assumptions, the results showed that gulls were geographically segregated by age throughout the entire annual cycle, rather than showing a geographic age-related cline only in the wintering areas. This asymmetric distribution results from a reduction in the annual range of sexually mature gulls, and the differential distribution of mature and immature individuals (mature birds remained in more northern areas, compared to immature birds, throughout the annual cycle). Furthermore, although immature gulls travelled longer distances than adults, they initiated their fall migration with short movements, in contrast to adults that migrated using longer movements. The effects identified in this study explain the non-homogenous distribution of populations throughout the annual cycle, with wide implications for the development of effective human health policies and/or wildlife management strategies. PMID:21799853

  20. Chloroplast and Cytoplasmic Enzymes

    PubMed Central

    Anderson, Louise E.; Advani, Vimal R.

    1970-01-01

    Three pea (Pisum sativum) leaf chloroplast enzymes—triose phosphate isomerase, glyceric acid 3-phosphate kinase, and fructose 1,6-diphosphate aldolase—have been separated from the corresponding cytoplasmic enzymes by isoelectric focusing. These three enzymes of the reductive pentose phosphate cycle are therefore distinct proteins, not identical with the analogous enzymes of the Embden-Meyerhof-Parnas pathway. PMID:16657347

  1. Regulation of Brassica rapa chloroplast proliferation in vivo and in cultured leaf disks.

    PubMed

    Yagisawa, F; Mori, T; Higashiyama, T; Kuroiwa, H; Kuroiwa, T

    2003-01-01

    To understand the regulatory mechanisms of chloroplast proliferation, chloroplast replication was studied in cultured leaf disks cut from plants of 25 species. In leaf disks from Brassica rapa var. perviridis, the number of chloroplasts per cell increased remarkably in culture. We examined chloroplast replication in this plant in vivo and in culture media with and without benzyladenine, a cytokinin. In whole plants, leaf cells undergo two phases from leaf emergence to full expansion: an early proliferative stage, in which mitosis occurs, and a differential stage after mitosis has diminished. During the proliferative stage, chloroplast replication keeps pace with cell division. In the differential phase, cell division ceases but chloroplast replication continues for two or three more cycles, with the number of chloroplasts per cell reaching about 60. In the leaf disks, the number of chloroplasts per cell increased from about 18 to 300 without benzyladenine, and to over 600 with benzyladenine, indicating that this cytokinin enhances chloroplast replication in cultured tissue. We also studied changes in ploidy and cell volume between in vivo cells and cells grown in culture with and without benzyladenine. Ploidy and cell volume increased in a manner very similar to that of the number of chloroplasts, suggesting a relationship between these phenomena.

  2. Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis.

    PubMed

    Tejos, Ricardo I; Mercado, Ana V; Meisel, Lee A

    2010-01-01

    The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.

  3. Adaptive differentiation of traits related to resource use in a desert annual along a resource gradient.

    PubMed

    Brouillette, Larry C; Mason, Chase M; Shirk, Rebecca Y; Donovan, Lisa A

    2014-03-01

    • Plant resource-use traits are generally hypothesized to be adaptively differentiated for populations distributed along resource gradients. Although nutrient limitations are expected to select for resource-conservative strategies, water limitations may select for either resource-conservative or -acquisitive strategies. We test whether population differentiation reflects local adaptation for traits associated with resource-use strategies in a desert annual (Helianthus anomalus) distributed along a gradient of positively covarying water and nutrient availability. • We compared quantitative trait variation (Q(ST)) with neutral genetic differentiation (F(ST)), in a common garden glasshouse study, for leaf economics spectrum (LES) and related traits: photosynthesis (A(mass), A(area)), leaf nitrogen (N(mass), N(area)), leaf lifetime (LL), leaf mass per area (LMA), leaf water content (LWC), water-use efficiency (WUE, estimated as δ(13)C) and days to first flower (DFF). • Q(ST)-F(ST) differences support adaptive differentiation for Amass , N(mass), N(area), LWC and DFF. The trait combinations associated with drier and lower fertility sites represent correlated trait evolution consistent with the more resource-acquisitive end of the LES. There was no evidence for adaptive differentiation for A(area), LMA and WUE. • These results demonstrate that hot dry environments can selectively favor correlated evolution of traits contributing to a resource-acquisitive and earlier reproduction 'escape' strategy, despite lower fertility.

  4. Conserved methionines in chloroplasts.

    PubMed

    Sundby, Cecilia; Härndahl, Ulrika; Gustavsson, Niklas; Ahrman, Emma; Murphy, Denis J

    2005-01-17

    Heat shock proteins counteract heat and oxidative stress. In chloroplasts, a small heat shock protein (Hsp21) contains a set of conserved methionines, which date back to early in the emergence of terrestrial plants. Methionines M49, M52, M55, M59, M62, M67 are located on one side of an amphipathic helix, which may fold back over two other conserved methionines (M97 and M101), to form a binding groove lined with methionines, for sequence-independent recognition of peptides with an overall hydrophobic character. The sHsps protect other proteins from aggregation by binding to their hydrophobic surfaces, which become exposed under stress. Data are presented showing that keeping the conserved methionines in Hsp21 in a reduced form is a prerequisite to maintain such binding. The chloroplast generates reactive oxygen species under both stress and unstressed conditions, but this organelle is also a highly reducing cellular compartment. Chloroplasts contain a specialized isoform of the enzyme, peptide methionine sulfoxide reductase, the expression of which is light-induced. Recombinant proteins were used to measure that this reductase can restore Hsp21 methionines after sulfoxidation. This paper also describes how methionine sulfoxidation-reduction can be directly assessed by mass spectrometry, how methionine-to-leucine substitution affects Hsp21, and discusses the possible role for an Hsp21 methionine sulfoxidation-reduction cycle in quenching reactive oxygen species. PMID:15680227

  5. Enclosure of mitochondria by chloroplasts.

    PubMed

    Brown, R H; Rigsby, L L; Akin, D E

    1983-02-01

    In Panicum species of the Laxa group, some of which have characteristics intermediate to C(3) and C(4) photosynthesis species, some mitochondria in leaf bundle sheath cells are surrounded by chloroplasts when viewed in profile. Serial sectioning of leaves of one Laxa species, Panicum schenckii Hack, shows that these mitochondria are enclosed by chloroplasts. Complete enclosure rather than invagination also is indicated by absence of two concentric chloroplast membranes surrounding the mitochondrial profiles.

  6. Viability, ultrastructure and cytokinin metabolism of free and immobilized tobacco chloroplasts.

    PubMed

    Polanská, Lenka; Vicánková, Anna; Dobrev, Petre I; Cková, Ivana Macháv; Vanková, Radomíra

    2004-10-01

    Cytokinins play a decisive role in regulation of plastid development and differentiation, but their metabolism in plastids is not known. Metabolic studies using intact chloroplasts are prevented by their instability once they are isolated from leaf cells. Chloroplasts of Nicotiana tabacum L. cv. Petit Havana SR1 were therefore immobilized into low-viscosity alginate. Their intactness was assessed by a glyceraldehyde-3-phosphate dehydrogenase assay which indicated that free chloroplasts totally disintegrated within 7 h, while more than 50% of immobilized chloroplasts remained intact after 24 h. The immobilization had no marked impact on ultrastructure and postponed final destruction. The metabolite profile was similar in free and immobilized chloroplasts after 4 h incubation with tritiated zeatin. Nevertheless, the yield of conversion products decreased twice in immobilized chloroplasts, which was probably the outcome of mass transfer limitations and/or the sorption to polysaccharide matrix. PMID:15604795

  7. CHLOROPLAST BIOGENESIS genes act cell and noncell autonomously in early chloroplast development.

    PubMed

    Gutiérrez-Nava, María de la Luz; Gillmor, C Stewart; Jiménez, Luis F; Guevara-García, Arturo; León, Patricia

    2004-05-01

    In order to identify nuclear genes required for early chloroplast development, a collection of photosynthetic pigment mutants of Arabidopsis was assembled and screened for lines with extremely low levels of chlorophyll. Nine chloroplast biogenesis (clb) mutants that affect proplastid growth and thylakoid membrane formation and result in an albino seedling phenotype were identified. These mutations identify six new genes as well as a novel allele of cla1. clb mutants have less than 2% of wild-type chlorophyll levels, and little or no expression of nuclear and plastid-encoded genes required for chloroplast development and function. In all but one mutant, proplastids do not differentiate enough to form elongated stroma thylakoid membranes. Analysis of mutants during embryogenesis allows differentiation between CLB genes that act noncell autonomously, where partial maternal complementation of chloroplast development is observed in embryos, and those that act cell autonomously, where complementation during embryogenesis is not observed. Molecular characterization of the noncell autonomous clb4 mutant established that the CLB4 gene encodes for hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (HDS), the next to the last enzyme of the methylerythritol 4-phosphate (MEP) pathway for the synthesis of plastidic isoprenoids. The noncell autonomous nature of the clb4 mutant suggests that products of the MEP pathway can travel between tissues, and provides in vivo evidence that some movement of MEP intermediates exists from the cytoplasm to the plastid. The isolation and characterization of clb mutants represents the first systematic study of genes required for early chloroplast development in Arabidopsis.

  8. Chloroplast ribosomes and protein synthesis.

    PubMed Central

    Harris, E H; Boynton, J E; Gillham, N W

    1994-01-01

    Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival. PMID:7854253

  9. Heme content in developing chloroplasts

    SciTech Connect

    Thomas, J.; Weinstein, J.D. )

    1991-05-01

    Heme regulates tetrapyrrole biosynthesis by inhibition of {delta}-aminolevulinic acid synthesis, product inhibition of heme synthesis, and possibly other mechanisms. Determination of the physiological relevance of this inhibition requires a sensitive measurement which can distinguish regulatory free heme from heme which is an integral part of functional hemoproteins. A preliminary estimate was provided by reconstituting peroxidase activity from apo-peroxidase and the heme contained in broken plastids. However, subsequent experiments have suggested that this initial estimate was too large due to reconstitution of apo-peroxidase with heme from functional hemoproteins (i.e. heme stealing). The authors have now refined the measurement techniques to greatly reduce the extent of this heme stealing. Incubation of broken plastids with apo-peroxidase at 10C resolves the kinetics of reconstitution into two components. A fast component levels off after 100 min, and a slow component increases linearly for up to 6 hours. They believe that the heme which reconstitutes during the fast phase represents free heme, and the linear slow component represents heme stealing. In support of this theory, incubation at 15C increases the rate of both components. However, extrapolation to zero time of the slow components of the 10C and 15C time courses results in equivalent amounts of heme. Based on this kinetic differentiation between free heme and hemoprotein heme, chloroplasts isolated from cucumber cotyledons after 30 h of greening contain substantially greater amounts of free heme than etioplasts.

  10. Genetic Analysis of Chloroplast Translation

    SciTech Connect

    Barkan, Alice

    2005-08-15

    The assembly of the photosynthetic apparatus requires the concerted action of hundreds of genes distributed between the two physically separate genomes in the nucleus and chloroplast. Nuclear genes coordinate this process by controlling the expression of chloroplast genes in response to developmental and environmental cues. However, few regulatory factors have been identified. We used mutant phenotypes to identify nuclear genes in maize that modulate chloroplast translation, a key control point in chloroplast gene expression. This project focused on the nuclear gene crp1, required for the translation of two chloroplast mRNAs. CRP1 is related to fungal proteins involved in the translation of mitochondrial mRNAs, and is the founding member of a large gene family in plants, with {approx}450 members. Members of the CRP1 family are defined by a repeated 35 amino acid motif called a ''PPR'' motif. The PPR motif is closely related to the TPR motif, which mediates protein-protein interactions. We and others have speculated that PPR tracts adopt a structure similar to that of TPR tracts, but with a substrate binding surface adapted to bind RNA instead of protein. To understand how CRP1 influences the translation of specific chloroplast mRNAs, we sought proteins that interact with CRP1, and identified the RNAs associated with CRP1 in vivo. We showed that CRP1 is associated in vivo with the mRNAs whose translation it activates. To explore the functions of PPR proteins more generally, we sought mutations in other PPR-encoding genes: mutations in the maize PPR2 and PPR4 were shown to disrupt chloroplast ribosome biogenesis and chloroplast trans-splicing, respectively. These and other results suggest that the nuclear-encoded PPR family plays a major role in modulating the expression of the chloroplast genome in higher plants.

  11. Controversy on chloroplast origins.

    PubMed

    Lockhart, P J; Penny, D; Hendy, M D; Howe, C J; Beanland, T J; Larkum, A W

    1992-04-20

    Controversy exists over the origins of photosynthetic organelles in that contradictory trees arise from different sequence, biochemical and ultrastructural data sets. We propose a testable hypothesis which explains this inconsistency as a result of the differing GC contents of sequences. We report that current methods of tree reconstruction tend to group sequences with similar GC contents irrespective of whether the similar GC content is due to common ancestry or is independently acquired. Nuclear encoded sequences (high GC) give different trees from chloroplast encoded sequences (low GC). We find that current data is consistent with the hypothesis of multiple origins for photosynthetic organelles and single origins for each type of light harvesting complex. PMID:1568469

  12. BIOSYNTHESIS IN ISOLATED ACETABULARIA CHLOROPLASTS

    PubMed Central

    Shephard, David C.; Levin, Wendy B.

    1972-01-01

    The ability of chloroplasts isolated from Acetabulana mediterranea to synthesize the protein amino acids has been investigated. When this chloroplast isolate was presented with 14CO2 for periods of 6–8 hr, tracer was found in essentially all amino acid species of their hydrolyzed protein Phenylalanine labeling was not detected, probably due to technical problems, and hydroxyproline labeling was not tested for The incorporation of 14CO2 into the amino acids is driven by light and, as indicated by the amount of radioactivity lost during ninhydrin decarboxylation on the chromatograms, the amino acids appear to be uniformly labeled. The amino acid labeling pattern of the isolate is similar to that found in plastids labeled with 14CO2 in vivo. The chloroplast isolate did not utilize detectable amounts of externally supplied amino acids in light or, with added adenosine triphosphate (ATP), in darkness. It is concluded that these chloroplasts are a tight cytoplasmic compartment that is independent in supplying the amino acids used for its own protein synthesis. These results are discussed in terms of the role of contaminants in the observed synthesis, the "normalcy" of Acetabularia chloroplasts, the synthetic pathways for amino acids in plastids, and the implications of these observations for cell compartmentation and chloroplast autonomy. PMID:4557310

  13. Update on chloroplast research: new tools, new topics, and new trends.

    PubMed

    Armbruster, Ute; Pesaresi, Paolo; Pribil, Mathias; Hertle, Alexander; Leister, Dario

    2011-01-01

    Chloroplasts, the green differentiation form of plastids, are the sites of photosynthesis and other important plant functions. Genetic and genomic technologies have greatly boosted the rate of discovery and functional characterization of chloroplast proteins during the past decade. Indeed, data obtained using high-throughput methodologies, in particular proteomics and transcriptomics, are now routinely used to assign functions to chloroplast proteins. Our knowledge of many chloroplast processes, notably photosynthesis and photorespiration, has reached such an advanced state that biotechnological approaches to crop improvement now seem feasible. Meanwhile, efforts to identify the entire complement of chloroplast proteins and their interactions are progressing rapidly, making the organelle a prime target for systems biology research in plants.

  14. Chloroplasts of salt-grown Arabidopsis seedlings are impaired in structure, genome copy number and transcript levels.

    PubMed

    Peharec Štefanić, Petra; Koffler, Tal; Adler, Guy; Bar-Zvi, Dudy

    2013-01-01

    The chloroplast is the most prominent and metabolically active plastid in photosynthetic plants. Chloroplasts differentiate from proplastids in the plant meristem. Plant plastids contain multiple copies of a small circular genome. The numbers of chloroplasts per mesophyll cell and of plastid genome copies are affected by developmental stage and environmental signals. We compared chloroplast structure, gene expression and genome copy number in Arabidopsis seedlings germinated and grown under optimal conditions to those in seedlings germinated and grown in the presence of NaCl. Chloroplasts of the NaCl-grown seedlings were impaired, with less developed thylakoid and granum membranes than control seedlings. In addition, chloroplasts of salt-grown Arabidopsis seedlings accumulated more starch grains than those in the respective control plants. Steady-state transcript levels of chloroplast-encoded genes and of nuclear genes encoding chloroplast proteins were reduced in salt-grown seedlings. This reduction did not result from a global decrease in gene expression, since the expression of other nuclear genes was induced or not affected. Average cellular chloroplast genome copy number was reduced in salt-grown seedlings, suggesting that the reduction in steady-state transcript levels of chloroplast-encoded genes might result from a decrease in template DNA.

  15. Chloroplasts of Salt-Grown Arabidopsis Seedlings Are Impaired in Structure, Genome Copy Number and Transcript Levels

    PubMed Central

    Adler, Guy; Bar-Zvi, Dudy

    2013-01-01

    The chloroplast is the most prominent and metabolically active plastid in photosynthetic plants. Chloroplasts differentiate from proplastids in the plant meristem. Plant plastids contain multiple copies of a small circular genome. The numbers of chloroplasts per mesophyll cell and of plastid genome copies are affected by developmental stage and environmental signals. We compared chloroplast structure, gene expression and genome copy number in Arabidopsis seedlings germinated and grown under optimal conditions to those in seedlings germinated and grown in the presence of NaCl. Chloroplasts of the NaCl-grown seedlings were impaired, with less developed thylakoid and granum membranes than control seedlings. In addition, chloroplasts of salt-grown Arabidopsis seedlings accumulated more starch grains than those in the respective control plants. Steady-state transcript levels of chloroplast-encoded genes and of nuclear genes encoding chloroplast proteins were reduced in salt-grown seedlings. This reduction did not result from a global decrease in gene expression, since the expression of other nuclear genes was induced or not affected. Average cellular chloroplast genome copy number was reduced in salt-grown seedlings, suggesting that the reduction in steady-state transcript levels of chloroplast-encoded genes might result from a decrease in template DNA. PMID:24340039

  16. Disruption of the Rice Plastid Ribosomal Protein S20 Leads to Chloroplast Developmental Defects and Seedling Lethality

    PubMed Central

    Gong, Xiaodi; Jiang, Quan; Xu, Jianlong; Zhang, Jianhui; Teng, Sheng; Lin, Dongzhi; Dong, Yanjun

    2013-01-01

    Plastid ribosomal proteins (PRPs) are essential for ribosome biogenesis, plastid protein biosynthesis, chloroplast differentiation, and early chloroplast development. This study identifies the first rice PRP mutant, asl1 (albino seedling lethality1), which exhibits an albino lethal phenotype at the seedling stage. This albino phenotype was associated with altered chlorophyll (Chl) content and chloroplast development. Map-based cloning revealed that ASL1 encodes PRP S20 (PRPS20), which localizes to the chloroplast. ASL1 showed tissue-specific expression, as it was highly expressed in plumule and young seedlings but expressed at much lower levels in other tissues. In addition, ASL1 expression was regulated by light. The transcript levels of nuclear genes for Chl biosynthesis and chloroplast development were strongly affected in asl1 mutants; transcripts of some plastid genes for photosynthesis were undetectable. Our findings indicate that nuclear-encoded PRPS20 plays an important role in chloroplast development in rice. PMID:23979931

  17. Towards a Synthetic Chloroplast

    PubMed Central

    Agapakis, Christina M.; Niederholtmeyer, Henrike; Noche, Ramil R.; Lieberman, Tami D.; Megason, Sean G.; Way, Jeffrey C.; Silver, Pamela A.

    2011-01-01

    Background The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner. Results We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages. Conclusion Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices. PMID:21533097

  18. Chloroplast in Plant-Virus Interaction

    PubMed Central

    Zhao, Jinping; Zhang, Xian; Hong, Yiguo; Liu, Yule

    2016-01-01

    In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction. PMID:27757106

  19. Transglutaminases and their substrates in kinetin-stimulated etioplast-to-chloroplast transformation in cucumber cotyledons.

    PubMed

    Sobieszczuk-Nowicka, Ewa; Krzesłowska, Magdalena; Legocka, Jolanta

    2008-11-01

    In the light of our previous work, we know that there is a relationship between bound polyamines and the chloroplast differentiation process. This relationship may represent an important component of the process and be part of the mechanism of kinetin action, which stimulates chloroplast differentiation. To clarify the nature of the binding of polyamines to chloroplast structures, the possible involvement of transglutaminases in kinetin-stimulated chloroplast photodevelopment was investigated. Immunodetection of transglutaminases revealed bands at 77, 50 and 30 kDa both in etioplasts and chloroplasts. The data indicated a positive correlation between enzyme level and activity. It also demonstrated the regulation of transglutaminase protein expression by kinetin. The suborganellar location of transglutaminases by electron microscopy showed that the enzyme is peculiarly localised, mainly in pro-thylakoids and appressed grana thylakoids. The data corroborated that spermidine post-translational modification of certain plastid proteins of 58, 29, 26 and 12 kDa occurred. The results we obtained suggest that transglutaminases take part in the formation of the chloroplast structure via a mechanism whereby polyamines bind to their protein substrates. These findings about the effect of kinetin on conjugation provide a new contribution to the understanding of the mechanism of kinetin action on etioplast-to chloroplast transformation.

  20. Spontaneous capture of oilseed rape (Brassica napus) chloroplasts by wild B. rapa: implications for the use of chloroplast transformation for biocontainment.

    PubMed

    Haider, Nadia; Allainguillaume, Joel; Wilkinson, Mike J

    2009-04-01

    Environmental concerns over the cultivation of Genetically Modified (GM) crops largely centre on the ecological consequences following gene flow to wild relatives. One attractive solution is to deploy biocontainment measures that prevent hybridization. Chloroplast transformation is the most advanced biocontainment method but is compromised by chloroplast capture (hybridization through the maternal lineage). To date, however, there is a paucity of information on the frequency of chloroplast capture in the wild. Oilseed rape (Brassica napus, AACC) frequently hybridises with wild Brassica rapa (AA, as paternal parent) and yields B. rapa-like introgressed individuals after only two generations. In this study we used chloroplast CAPS markers that differentiate between the two species to survey wild and weedy populations of B. rapa for the capture of B. napus chloroplasts. A total of 464 B. rapa plants belonging to 14 populations growing either in close proximity to B. napus (i.e. sympatric <5 m) or else were allopatric from the crop (>1 km) were assessed for chloroplast capture using PCR (trnL-F) and CAPS (trnT-L-Xba I) markers. The screen revealed that two sympatric B. rapa populations included 53 plants that possessed the chloroplast of B. napus. In order to discount these B. rapa plants as F(1) crop-wild hybrids, we used a C-genome-specific marker and found that 45 out of 53 plants lacked the C-genome and so were at least second generation introgressants. The most plausible explanation is that these individuals represent multiple cases of chloroplast capture following introgressive hybridisation through the female germ line from the crop. The abundance of such plants in sympatric sites thereby questions whether the use of chloroplast transformation would provide a sufficient biocontainment for GM oilseed rape in the United Kingdom.

  1. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit.

    PubMed

    D'Andrea, Lucio; Amenós, Montse; Rodríguez-Concepción, Manuel

    2014-01-01

    Plant cells are unique among eukaryotic cells because of the presence of plastids, including chloroplasts and chromoplasts. Chloroplasts are found in green tissues and harbor the photosynthetic machinery (including chlorophyll molecules), while chromoplasts are present in non-photosynthetic tissues and accumulate large amounts of carotenoids. During tomato fruit development, chloroplasts are converted into chromoplasts that accumulate high levels of lycopene, a linear carotenoid responsible for the characteristic red color of ripe fruit. Here, we describe a simple and fast method to detect both types of fully differentiated plastids (chloroplasts and chromoplasts), as well as intermediate stages, in fresh tomato fruits. The method is based on the differential autofluorescence of chlorophylls and carotenoids (lycopene) detected by Confocal Laser Scanning Microscopy.

  2. Chloroplast retrograde signal regulates flowering.

    PubMed

    Feng, Peiqiang; Guo, Hailong; Chi, Wei; Chai, Xin; Sun, Xuwu; Xu, Xiumei; Ma, Jinfang; Rochaix, Jean-David; Leister, Dario; Wang, Haiyang; Lu, Congming; Zhang, Lixin

    2016-09-20

    Light is a major environmental factor regulating flowering time, thus ensuring reproductive success of higher plants. In contrast to our detailed understanding of light quality and photoperiod mechanisms involved, the molecular basis underlying high light-promoted flowering remains elusive. Here we show that, in Arabidopsis, a chloroplast-derived signal is critical for high light-regulated flowering mediated by the FLOWERING LOCUS C (FLC). We also demonstrate that PTM, a PHD transcription factor involved in chloroplast retrograde signaling, perceives such a signal and mediates transcriptional repression of FLC through recruitment of FVE, a component of the histone deacetylase complex. Thus, our data suggest that chloroplasts function as essential sensors of high light to regulate flowering and adaptive responses by triggering nuclear transcriptional changes at the chromatin level. PMID:27601637

  3. Isolation of chloroplastic phosphoglycerate kinase

    SciTech Connect

    Macioszek, J.; Anderson, L.E. ); Anderson, J.B. )

    1990-09-01

    We report here a method for the isolation of high specific activity phosphoglycerate kinase (EC 2.7.2.3) from chloroplasts. The enzyme has been purified over 200-fold from pea (Pisum sativum L.) stromal extracts to apparent homogeneity with 23% recovery. Negative cooperativity is observed with the two enzyme phosphoglycerate kinase/glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) couple restored from the purified enzymes when NADPH is the reducing pyridine nucleotide, consistent with earlier results obtained with crude chloroplastic extracts. Michaelis Menten kinetics are observed when 3-phosphoglycerate is held constant and phosphoglycerate kinase is varied, which suggests that phosphoglycerate kinase-bound 1,3-bisphosphoglycerate may be the preferred substrate for glyceraldehyde-3-P dehydrogenase in the chloroplast.

  4. Photomorphogenic Regulation of Chloroplast Replication in Euglena

    PubMed Central

    Srinivas, Usha; Lyman, Harvard

    1980-01-01

    Chloroplast replication in Euglena gracilis is specifically inhibited by ultraviolet light and the effect is photoreactivable. The ability of irradiated cells to be photoreactivated is lost more rapidly if cells are incubated in red light than in darkness. A mutant, Y9ZNa1L, which lacks the red-blue photomorphogenic system regulating chloroplast synthesis does not show the red-light-enhanced loss of photoreactivability. Another mutant, Y11P27ZD which has the red-blue system, but lacks the blue-light system also regulating chloroplast synthesis, shows the red-light effect. The red-light effect is seen in a mutant of photosynthetic electron transport, P4ZUL, which rules out a product of photosynthesis as a mediator of the effect. Inhibitors of protein synthesis on chloroplast ribosomes do not prevent the red-light-enhanced loss of chloroplast DNA. Chloroplast DNA is lost rapidly when UV-irradiated cells are incubated in red light, showing that the loss of photoreactivability is due to the loss of the substrate for photoreactivation, chloroplast DNA. Therefore, the red-blue photomorphogenic system is activating a chloroplast DNA-specific nuclease(s). A model is proposed for a light-mediated mechanism regulating the amount of chloroplast DNA: blue light would promote chloroplast DNA synthesis; red light would promote its degradation. The photomorphogenic systems regulating chloroplast synthesis might work by activating a chloroplast-specific modification-restriction mechanism. PMID:16661425

  5. The kinetic complexity of Acetabularia chloroplast DNA.

    PubMed

    Padmanabhan, U; Green, B R

    1978-11-21

    The kinetic complexity of Acetabularia cliftonii chloroplast DNA is 1.52 +/- 0.26 . 10(9) daltons, compared to 0.2 .10(9) daltons for Chlamydomonas chloroplast DNA. There is an average of three genomes per chloroplast. The unusually large size of the Acetabularia genome may reflect the ancient evolutionary history of this organism.

  6. Chloroplast development in Ochromonas danica.

    PubMed

    GIBBS, S P

    1962-11-01

    When dark-grown cells of Ochromonas danica are placed in the light, the amount of chlorophyll a per cell increases 82-fold; the content of carotenoid pigment, 24-fold. Concomitantly with this increase in chlorophyll and carotenoid pigment, the small proplastid of dark-grown cells develops into a large lamellate chloroplast. During the first 12 hours in the light, vesicles appear within the loose clusters of dense chloroplast granules, enlarge, align themselves into rows (plates in three dimensions), and fuse into discs. Double discs may form from the more or less simultaneous fusion of two adjacent plates of vesicles or by the addition of vesicles to an already formed single disc. Three-disc bands arise by the addition of a disc to an already formed two-disc band through the approach and fusion of more vesicles. After 24 hours in the light, most of the chloroplast bands contain three discs, but the chloroplasts are still small. After 48 hours in the light, almost all the cells contain full-sized chloroplasts with a full complement of three-disc bands. However, at this time the amount of chlorophyll a and carotenoid pigment is only one-half of maximum. During the next 3 days in the light, as the number of chlorophyll and carotenoid molecules per chloroplast approximately doubles, there is a compression of the discs in each band (from 180 to 130 A) and a precise alignment of their membranes. Changes also occur in the nucleus when dark-grown cells are placed in the light. There is an increase in the number of small nucleolar bodies, many of which lie directly against the nuclear envelope, and in a few cells a dense mass of granules is seen between the two membranes of the nuclear envelope.

  7. Evolution of chloroplast vesicle transport.

    PubMed

    Westphal, Sabine; Soll, Jürgen; Vothknecht, Ute C

    2003-02-01

    Vesicle traffic plays a central role in eukaryotic transport. The presence of a vesicle transport system inside chloroplasts of spermatophytes raises the question of its phylogenetic origin. To elucidate the evolution of this transport system we analyzed organisms belonging to different lineages that arose from the first photosynthetic eukaryote, i.e. glaucocystophytes, chlorophytes, rhodophytes, and charophytes/embryophytes. Intriguingly, vesicle transport is not apparent in any group other than embryophytes. The transfer of this eukaryotic-type vesicle transport system from the cytosol into the chloroplast thus seems a late evolutionary development that was acquired by land plants in order to adapt to new environmental challenges.

  8. Protein import into chloroplasts requires a chloroplast ATPase

    SciTech Connect

    Pain, D.; Blobel, G.

    1987-05-01

    The authors have transcribed mRNA from a cDNA clone coding for pea ribulose-1,5-bisphosphate carboxylase, translated the mRNA in a wheat germ cell-free system, and studied the energy requirement for posttranslational import of the (/sup 35/S)methionine-labeled protein into the stroma of pea chloroplasts. They found that import depends on ATP hydrolysis within the stroma. Import is not inhibited when H/sup +/, K/sup +/, Na/sup +/, or divalent cation gradients across the chloroplast membranes are dissipated by ionophores, as long as exogenously added ATP is also present during the import reaction. The data suggest that protein import into the chloroplast stroma requires a chloroplast ATPase that does not function to generate a membrane potential for driving the import reaction but that exerts its effect in another, yet-to-be-determined, mode. They have carried out a preliminary characterization of this ATPase regarding its nucleotide specificity and the effects of various ATPase inhibitors.

  9. Mutational dynamics of aroid chloroplast genomes.

    PubMed

    Ahmed, Ibrar; Biggs, Patrick J; Matthews, Peter J; Collins, Lesley J; Hendy, Michael D; Lockhart, Peter J

    2012-01-01

    A characteristic feature of eukaryote and prokaryote genomes is the co-occurrence of nucleotide substitution and insertion/deletion (indel) mutations. Although similar observations have also been made for chloroplast DNA, genome-wide associations have not been reported. We determined the chloroplast genome sequences for two morphotypes of taro (Colocasia esculenta; family Araceae) and compared these with four publicly available aroid chloroplast genomes. Here, we report the extent of genome-wide association between direct and inverted repeats, indels, and substitutions in these aroid chloroplast genomes. We suggest that alternative but not mutually exclusive hypotheses explain the mutational dynamics of chloroplast genome evolution. PMID:23204304

  10. Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ.

    PubMed Central

    Osteryoung, K W; Stokes, K D; Rutherford, S M; Percival, A L; Lee, W Y

    1998-01-01

    The division of plastids is critical for viability in photosynthetic eukaryotes, but the mechanisms associated with this process are still poorly understood. We previously identified a nuclear gene from Arabidopsis encoding a chloroplast-localized homolog of the bacterial cell division protein FtsZ, an essential cytoskeletal component of the prokaryotic cell division apparatus. Here, we report the identification of a second nuclear-encoded FtsZ-type protein from Arabidopsis that does not contain a chloroplast targeting sequence or other obvious sorting signals and is not imported into isolated chloroplasts, which strongly suggests that it is localized in the cytosol. We further demonstrate using antisense technology that inhibiting expression of either Arabidopsis FtsZ gene (AtFtsZ1-1 or AtFtsZ2-1) in transgenic plants reduces the number of chloroplasts in mature leaf cells from 100 to one, indicating that both genes are essential for division of higher plant chloroplasts but that each plays a distinct role in the process. Analysis of currently available plant FtsZ sequences further suggests that two functionally divergent FtsZ gene families encoding differentially localized products participate in chloroplast division. Our results provide evidence that both chloroplastic and cytosolic forms of FtsZ are involved in chloroplast division in higher plants and imply that important differences exist between chloroplasts and prokaryotes with regard to the roles played by FtsZ proteins in the division process. PMID:9836740

  11. Comparative chromatography of chloroplast pigment

    NASA Technical Reports Server (NTRS)

    Grandolfo, M.; Sherma, J.; Strain, H. H.

    1969-01-01

    Methods for isolation of low concentration pigments of the cocklebur species are described. The methods entail two step chromatography so that the different sorption properties of the various pigments in varying column parameters can be utilized. Columnar and thin layer methods are compared. Many conditions influence separability of the chloroplasts.

  12. Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-07-01

    The thiol-based redox regulation system is believed to adjust chloroplast functions in response to changes in light environments. A redox cascade via the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway has been traditionally considered to serve as a transmitter of light signals to target enzymes. However, emerging data indicate that chloroplasts have a complex redox network composed of diverse redox-mediator proteins and target enzymes. Despite extensive research addressing this system, two fundamental questions are still unresolved: How are redox pathways orchestrated within chloroplasts, and why are chloroplasts endowed with a complicated redox network? In this report, we show that NADPH-Trx reductase C (NTRC) is a key redox-mediator protein responsible for regulatory functions distinct from those of the classically known FTR/Trx system. Target screening and subsequent biochemical assays indicated that NTRC and the Trx family differentially recognize their target proteins. In addition, we found that NTRC is an electron donor to Trx-z, which is a key regulator of gene expression in chloroplasts. We further demonstrate that cooperative control of chloroplast functions via the FTR/Trx and NTRC pathways is essential for plant viability. Arabidopsis double mutants impaired in FTR and NTRC expression displayed lethal phenotypes under autotrophic growth conditions. This severe growth phenotype was related to a drastic loss of photosynthetic performance. These combined results provide an expanded map of the chloroplast redox network and its biological functions. PMID:27335455

  13. Development of a chloroplast DNA marker for monitoring of transgene introgression in Brassica napus L.

    PubMed

    Woo, Hee-Jong; Lim, Myung-Ho; Shin, Kong-Sik; Martins, Bianca; Lee, Bum-Kyu; Cho, Hyun-Suk; Mallory-Smith, Carol A

    2013-09-01

    Chloroplast molecular markers can provide useful information for high-resolution analysis of inter- and intra-specific variation in Brassicaceae and for differentiation between its species. Combining data generated from nuclear and chloroplast markers enables the study of seed and pollen movement, and assists in the assessment of gene-flow from genetically modified (GM) plants through hybridization studies. To develop chloroplast DNA markers for monitoring of transgene introgression in Brassica napus L., we searched for sequence variations in the chloroplast (cp) genome, and developed a simple cpDNA marker that is reliable, time-saving, and easily discriminates among 4 species (B. napus, B. rapa, Raphanus sativus, and Sinapis alba) based on PCR-product length polymorphism. This marker will be useful to identify maternal lineages and to estimate transgene movement of GM canola.

  14. Stable Expression of Basic Fibroblast Growth Factor in Chloroplasts of Tobacco.

    PubMed

    Wang, Yun-Peng; Wei, Zheng-Yi; Zhong, Xiao-Fang; Lin, Chun-Jing; Cai, Yu-Hong; Ma, Jian; Zhang, Yu-Ying; Liu, Yan-Zhi; Xing, Shao-Chen

    2015-12-23

    Basic fibroblast growth factor (bFGF) is a multifunctional factor in acceleration of cell proliferation, differentiation and transference, and therefore widely used in clinical applications. In this study, expression vector pWX-Nt03 harboring a codon-optimized bFGF gene was constructed and introduced into the tobacco chloroplasts by particle bombardment. After four rounds of selection, bFGF was proved to integrate into the chloroplast genome of regenerated plants and two of four transgenic plants were confirmed to be homoplastomic by PCR and Southern hybridization. ELISA assay indicated that bFGF represented approximately 0.1% of total soluble protein in the leaves of transplastomic tobacco plants. This is the first report of bFGF expression via chloroplast transformation in model plant, providing an additional option for the production of chloroplast-produced therapeutic proteins.

  15. Stable Expression of Basic Fibroblast Growth Factor in Chloroplasts of Tobacco

    PubMed Central

    Wang, Yun-Peng; Wei, Zheng-Yi; Zhong, Xiao-Fang; Lin, Chun-Jing; Cai, Yu-Hong; Ma, Jian; Zhang, Yu-Ying; Liu, Yan-Zhi; Xing, Shao-Chen

    2015-01-01

    Basic fibroblast growth factor (bFGF) is a multifunctional factor in acceleration of cell proliferation, differentiation and transference, and therefore widely used in clinical applications. In this study, expression vector pWX-Nt03 harboring a codon-optimized bFGF gene was constructed and introduced into the tobacco chloroplasts by particle bombardment. After four rounds of selection, bFGF was proved to integrate into the chloroplast genome of regenerated plants and two of four transgenic plants were confirmed to be homoplastomic by PCR and Southern hybridization. ELISA assay indicated that bFGF represented approximately 0.1% of total soluble protein in the leaves of transplastomic tobacco plants. This is the first report of bFGF expression via chloroplast transformation in model plant, providing an additional option for the production of chloroplast-produced therapeutic proteins. PMID:26703590

  16. Stable Expression of Basic Fibroblast Growth Factor in Chloroplasts of Tobacco.

    PubMed

    Wang, Yun-Peng; Wei, Zheng-Yi; Zhong, Xiao-Fang; Lin, Chun-Jing; Cai, Yu-Hong; Ma, Jian; Zhang, Yu-Ying; Liu, Yan-Zhi; Xing, Shao-Chen

    2016-01-01

    Basic fibroblast growth factor (bFGF) is a multifunctional factor in acceleration of cell proliferation, differentiation and transference, and therefore widely used in clinical applications. In this study, expression vector pWX-Nt03 harboring a codon-optimized bFGF gene was constructed and introduced into the tobacco chloroplasts by particle bombardment. After four rounds of selection, bFGF was proved to integrate into the chloroplast genome of regenerated plants and two of four transgenic plants were confirmed to be homoplastomic by PCR and Southern hybridization. ELISA assay indicated that bFGF represented approximately 0.1% of total soluble protein in the leaves of transplastomic tobacco plants. This is the first report of bFGF expression via chloroplast transformation in model plant, providing an additional option for the production of chloroplast-produced therapeutic proteins. PMID:26703590

  17. Formation of putative chloroplast cytochromes in isolated developing pea chloroplasts

    SciTech Connect

    Thaver, S.S.; Bhava, D.; Castelfranco, P.A.

    1986-04-01

    In addition to chlorophyll-protein complexes, other proteins were labeled when isolated developing pea chloroplasts were incubated with (/sup 14/C)-5-aminolevulinic acid (/sup 14/C)-ALA. The major labeled band (M/sub r/ = 43 kDa by LDS-PAGE) was labeled even in the presence of chloramphenicol. Heme-dependent peroxidase activity (as detected by the tetramethyl benzidine-H/sub 2/O/sub 2/ stain) was not visibly associated with this band. The radioactive band was stable to heat, 5% HCl in acetone, and was absent if the incubation with (/sup 14/C)-5-aminolevulinic acid was carried out in the presence of N-methyl protoporphyrin IX dimethyl ester (a specific inhibitor of ferrochelatase). Organic solvent extraction procedures for the enrichment of cytochrome f from chloroplast membranes also extracted this unknown labeled product. It was concluded that this labeled product was probably a c-type cytochrome. The effect of exogenous iron, iron chelators, gabaculine (an inhibitor of ALA synthesis) and other incubation conditions upon the in vitro formation of putative chloroplast cytochromes will be discussed.

  18. Isolation of Chloroplasts from Plant Protoplasts.

    PubMed

    Lung, Shiu-Cheung; Smith, Matthew D; Chuong, Simon D X

    2015-10-01

    Chloroplasts can be isolated from higher plants directly following homogenization; however, the resulting yield, purity, and intactness are often low, necessitating a large amount of starting material. This protocol is optimized to produce a high yield of pure chloroplasts from isolated Arabidopsis protoplasts. The two-part method is a simple, scaled-down, and low-cost procedure that readily provides healthy mesophyll protoplasts, which are then ruptured to release intact chloroplasts. Chloroplasts isolated using this method are competent for use in biochemical, cellular, and molecular analyses.

  19. Stability and plasticity during chloroplast development.

    PubMed

    Leech, R M

    1986-01-01

    Chloroplast development occurs during cellular development. In non-limiting conditions chloroplast development is a highly conserved process, it is also complex and involves the continuous interaction of both chloroplast and nuclear genomes. In the first part of the paper the sequential and structural changes characteristic of chloroplast division and development in angiosperms are described. The synthesis of the major chloroplast components including chlorophylls a and b, lipids, nucleic acids and the major soluble and membrane proteins are then described. Chloroplast development in biochemical terms is a quantitative accretion of additional functional units. In development from proplastid to fully mature chloroplast the molecular changes are almost exclusively quantitative and the youngest plastids that can be analysed are already photochemically fully competent. In the second part of the paper the dominant role of the nuclear genome in chloroplast development is discussed. Recent work in the author's laboratory on the synthesis and accumulation of ribulose bisphosphate carboxylase-oxygenase in the developing chloroplasts of young wheat leaves is cited to illustrate the stable genomic and genotypic differences that can be recognized. In comparisons of wheat species of differing ploidy, in hexaploid cultivars and in artificially processed genetic lines, several genomic and genotypic effects have been detected. The possibilities for future investigation are discussed.

  20. Selective retention of chloroplasts by algivorous heliozoa: Fortuitous chloroplast symbiosis?

    PubMed

    Patterson, D J; Dürrschmidt, M

    1987-11-01

    The selective retention of functionally intact chloroplasts by the algivorous centroheliozoa (protists) Acanthocystis serrata, Raphidocystis tubifera and Chlamydaster fimbriatus is documented by ultrastructural accounts of individual cells from natural habitats. The plastids are derived from different algae. The 'plastidoplasm' may be bounded by two or three membranes, in the latter case the outer membrane having been provided by the centroheliozoon. Such symbioses only involve certain species of centroheliozoa, and are short-lived. These appear to be examples of fortuitous symbioses and their study may provide clues as to the mechanisms by which stable symbioses are established.

  1. In vivo effects of NbSiR silencing on chloroplast development in Nicotiana benthamiana.

    PubMed

    Kang, Yong-Won; Lee, Jae-Yong; Jeon, Young; Cheong, Gang-Won; Kim, Moonil; Pai, Hyun-Sook

    2010-04-01

    Sulfite reductase (SiR) performs dual functions, acting as a sulfur assimilation enzyme and as a chloroplast (cp-) nucleoid binding protein. In this study, we examined the in vivo effects of SiR deficiency on chloroplast development in Nicotiana benthamiana. Virus-induced gene silencing of NbSiR resulted in leaf yellowing and growth retardation phenotypes, which were not rescued by cysteine supplementation. NbSiR:GFP fusion protein was targeted to chloroplasts and colocalized with cp-nucleoids. Recombinant full-length NbSiR protein and the C-terminal half of NbSiR possessed cp-DNA compaction activities in vitro, and expression of full-length NbSiR in E. coli caused condensation of genomic DNA. NbSiR silencing differentially affected expression of plastid-encoded genes, inhibiting expression of several genes more severely than others. In the later stages, depletion of NbSiR resulted in chloroplast ablation. In NbSiR-silenced plants, enlarged cp-nucleoids containing an increased amount of cp-DNA were observed in the middle of the abnormal chloroplasts, and the cp-DNAs were predominantly of subgenomic sizes based on pulse field gel electrophoresis. The abnormal chloroplasts developed prolamellar body-like cubic lipid structures in the light without accumulating NADPH:protochlorophyllide oxidoreductase proteins. Our results suggest that NbSiR plays a role in cp-nucleoid metabolism, plastid gene expression, and thylakoid membrane development. PMID:20047069

  2. GROWTH REGULATING FACTOR5 Stimulates Arabidopsis Chloroplast Division, Photosynthesis, and Leaf Longevity1[OPEN

    PubMed Central

    Vercruyssen, Liesbeth; Tognetti, Vanesa B.; Gonzalez, Nathalie; Van Dingenen, Judith; De Milde, Liesbeth; Bielach, Agnieszka; De Rycke, Riet; Van Breusegem, Frank; Inzé, Dirk

    2015-01-01

    Arabidopsis (Arabidopsis thaliana) leaf development relies on subsequent phases of cell proliferation and cell expansion. During the proliferation phase, chloroplasts need to divide extensively, and during the transition from cell proliferation to expansion, they differentiate into photosynthetically active chloroplasts, providing the plant with energy. The transcription factor GROWTH REGULATING FACTOR5 (GRF5) promotes the duration of the cell proliferation period during leaf development. Here, it is shown that GRF5 also stimulates chloroplast division, resulting in a higher chloroplast number per cell with a concomitant increase in chlorophyll levels in 35S:GRF5 leaves, which can sustain higher rates of photosynthesis. Moreover, 35S:GRF5 plants show delayed leaf senescence and are more tolerant for growth on nitrogen-depleted medium. Cytokinins also stimulate leaf growth in part by extending the cell proliferation phase, simultaneously delaying the onset of the cell expansion phase. In addition, cytokinins are known to be involved in chloroplast development, nitrogen signaling, and senescence. Evidence is provided that GRF5 and cytokinins synergistically enhance cell division and chlorophyll retention after dark-induced senescence, which suggests that they also cooperate to stimulate chloroplast division and nitrogen assimilation. Taken together with the increased leaf size, ectopic expression of GRF5 has great potential to improve plant productivity. PMID:25604530

  3. Insights into chloroplast biogenesis and development.

    PubMed

    Pogson, Barry J; Ganguly, Diep; Albrecht-Borth, Verónica

    2015-09-01

    In recent years many advances have been made to obtain insight into chloroplast biogenesis and development. In plants several plastids types exist such as the proplastid (which is the progenitor of all plastids), leucoplasts (group of colourless plastids important for storage including elaioplasts (lipids), amyloplasts (starch) or proteinoplasts (proteins)), chromoplasts (yellow to orange-coloured due to carotenoids, in flowers or in old leaves as gerontoplasts), and the green chloroplasts. Chloroplasts are indispensable for plant development; not only by performing photosynthesis and thus rendering the plant photoautotrophic, but also for biochemical processes (which in some instances can also take place in other plastids types), such as the synthesis of pigments, lipids, and plant hormones and sensing environmental stimuli. Although we understand many aspects of these processes there are gaps in our understanding of the establishment of functional chloroplasts and their regulation. Why is that so? Even though chloroplast function is comparable in all plants and most of the algae, ferns and moss, detailed analyses have revealed many differences, specifically with respect to its biogenesis. As an update to our prior review on the genetic analysis of chloroplast biogenesis and development [1] herein we will focus on recent advances in Angiosperms (monocotyledonous and dicotyledonous plants) that provide novel insights and highlight the challenges and prospects for unravelling the regulation of chloroplast biogenesis specifically during the establishment of the young plants. This article is part of a Special Issue entitled: Chloroplast Biogenesis.

  4. Polarographic Study of Oxaloacetate Reduction by Isolated Pea Chloroplasts

    PubMed Central

    Anderson, John W.; House, Colin M.

    1979-01-01

    Suspensions of pea chloroplasts, prepared by differential centrifugation, catalyzed oxaloacetate-dependent O2 evolution (mean rate of 29 determinations 10.9 micromoles per milligram of chlorophyll per hour, sd 3.2) with the concomitant production of malate. At optimum concentrations of oxaloacetate, both reactions were light-dependent, inhibited by 3-(3,4- dichlorophenyl)-1, 1-dimethylurea and oxalate, and enhanced 2.5- to 4-fold by 10 millimolar NH4Cl. At concentrations of oxaloacetate (<50 micromolar), 10 millimolar NH4Cl was inhibitory. The ratio of O2 evolved to malate produced was 0.39 to 0.58. The ratio of O2 evolved to oxaloacetate supplied was commensurate with the theoretical value of 0.5. Chloroplast suspensions contained both NAD- and NADP-malate dehydrogenase activities. It was concluded from oxalate inhibition studies and the promotion of oxaloacetate-dependent O2 evolution by shocked chloroplasts by NADPH (but not NADH) that the reaction was mediated via the NADP enzyme. PMID:16661092

  5. Genetic engineering of the chloroplast.

    PubMed

    Heifetz, P B

    2000-01-01

    Transformation of the plastid genome has a number of inherent advantages for the engineering of gene expression in plants. These advantages include: 10-50 times higher transgene expression levels; the absence of gene silencing and position effect variation; the ability to express polycistronic messages from a single promoter; uniparental plastid gene inheritance in most crop plants that prevents pollen transmission of foreign DNA; integration via a homologous recombination process that facilitates targeted gene replacement and precise transgene control; and sequestration of foreign proteins in the organelle which prevents adverse interactions with the cytoplasmic environment. It is now 12 years since the first conclusive demonstration of stable introduction of cloned DNA into the Chlamydomonas chloroplast by the Boynton and Gillham laboratory, and 10 years since the laboratory of Pal Maliga successfully extended these approaches to tobacco. Since then, technical developments in plastid transformation and advances in our understanding of the rules of plastid gene expression have facilitated tremendous progress towards the goal of establishing the chloroplast as a feasible platform for genetic modification of plants.

  6. Plastidic Isoprenoid Synthesis during Chloroplast Development 1

    PubMed Central

    Heintze, Adolf; Görlach, Jörn; Leuschner, Carola; Hoppe, Petra; Hagelstein, Petra; Schulze-Siebert, Detlef; Schultz, Gernot

    1990-01-01

    The chloroplast isoprenoid synthesis of very young leaves is supplied by the plastidic CO2 → pyruvate → acetyl-coenzyme A (C3 → C2) metabolism (D Schulze-Siebert, G Schultz [1987] Plant Physiol 84: 1233-1237) and occurs via the plastidic mevalonate pathway. The plastidic C3 → C2 metabolism and/or plastidic mevalonate pathway of barley (Hordeum vulgare L.) seedlings changes from maximal activity at the leaf base (containing developing chloroplasts with incomplete thylakoid stacking but a considerable rate of photosynthetic CO2-fixation) almost to ineffectivity at the leaf tip (containing mature chloroplasts with maximal photosynthetic activity). The ability to import isopentenyl diphosphate from the extraplastidic space gradually increases to substitute for the loss of endogenous intermediate supply for chloroplast isoprenoid synthesis (change from autonomic to division-of-labor stage). Fatty acid synthesis from NaH14CO3 decreases in the same manner as shown for leaf sections and chloroplasts isolated from these. Evidence has been obtained for a drastic decrease of pyruvate decarboxylase-dehydrogenase activity during chloroplast development compared with other anabolic chloroplast pathways (synthesis of aromatic amino acid and branched chain amino acids). The noncompetition of pyruvate and acetate in isotopic dilution studies indicates that both a pyruvate-derived and an acetate-derived compound are simultaneously needed to form introductory intermediates of the mevalonate pathway, presumably acetoacetyl-coenzyme A. PMID:16667567

  7. The DnaJ OsDjA7/8 is essential for chloroplast development in rice (Oryza sativa).

    PubMed

    Zhu, Xiaobo; Liang, Sihui; Yin, Junjie; Yuan, Can; Wang, Jing; Li, Weitao; He, Min; Wang, Jichun; Chen, Weilan; Ma, Bingtian; Wang, Yuping; Qin, Peng; Li, Shigui; Chen, Xuewei

    2015-12-10

    DnaJ proteins belong to chaperones of Hsp40 family that ubiquitously participate in various cellular processes. Previous studies have shown chloroplast-targeted DnaJs are involved in the development of chloroplast in some plant species. However, little is known about the function of DnaJs in rice, one of the main staple crops. In this study, we characterized a type I DnaJ protein OsDjA7/8. We found that the gene OsDjA7/8 was expressed in all collected tissues, with a priority in the vigorous growth leaf. Subcellular localization revealed that the protein OsDjA7/8 was mainly distributed in chloroplast. Reduced expression of OsDjA7/8 in rice led to albino lethal at the seedling stage. Transmission electron microscopy observation showed that the chloroplast structures were abnormally developed in the plants silenced for OsDjA7/8. In addition, the transcriptional expression of the genes tightly associated with the development of chloroplast was deeply reduced in the plants silenced for OsDjA7/8. Collectively, our study reveals that OsDjA7/8 encodes a chloroplast-localized protein and is essential for chloroplast development and differentiation in rice.

  8. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line.

    PubMed

    Xu, Wenjing; Lv, Hongjun; Zhao, Mingming; Li, Yongchao; Qi, Yueying; Peng, Zhenying; Xia, Guangmin; Wang, Mengcheng

    2016-01-01

    We previously bred a salt tolerant wheat cv. SR3 with bread wheat cv. JN177 as the parent via asymmetric somatic hybridization, and found that the tolerance is partially attributed to the superior photosynthesis capacity. Here, we compared the proteomes of two cultivars to unravel the basis of superior photosynthesis capacity. In the maps of two dimensional difference gel electrophoresis (2D-DIGE), there were 26 differentially expressed proteins (DEPs), including 18 cultivar-based and 8 stress-responsive ones. 21 of 26 DEPs were identified and classified into four categories, including photosynthesis, photosynthesis system stability, linolenic acid metabolism, and protein synthesis in chloroplast. The chloroplast localization of some DEPs confirmed that the identified DEPs function in the chloroplast. The overexpression of a DEP enhanced salt tolerance in Arabidopsis thaliana. In line with these data, it is concluded that the contribution of chloroplast to high salinity tolerance of wheat cv. SR3 appears to include higher photosynthesis efficiency by promoting system protection and ROS clearance, stronger production of phytohormone JA by enhancing metabolism activity, and modulating the in chloroplast synthesis of proteins. PMID:27562633

  9. How sugars might coordinate chloroplast and nuclear gene expression during acclimation to high light intensities.

    PubMed

    Häusler, Rainer E; Heinrichs, Luisa; Schmitz, Jessica; Flügge, Ulf-Ingo

    2014-07-01

    The concept of retrograde control of nuclear gene expression assumes the generation of signals inside the chloroplasts, which are either released from or sensed inside of the organelle. In both cases, downstream signaling pathways lead eventually to a differential regulation of nuclear gene expression and the production of proteins required in the chloroplast. This concept appears reasonable as the majority of the over 3000 predicted plastidial proteins are encoded by nuclear genes. Hence, the nucleus needs information on the status of the chloroplasts, such as during acclimation responses, which trigger massive changes in the protein composition of the thylakoid membrane and in the stroma. Here, we propose an additional control mechanism of nuclear- and plastome-encoded photosynthesis genes, taking advantage of pathways involved in sugar- or hormonal signaling. Sugars are major end products of photosynthesis and their contents respond very sensitively to changes in light intensities. Based on recent findings, we ask the question as to whether the carbohydrate status outside the chloroplast can be directly sensed within the chloroplast stroma. Sugars might synchronize the responsiveness of both genomes and thereby help to coordinate the expression of plastome- and nuclear-encoded photosynthesis genes in concert with other, more specific retrograde signals.

  10. Contribution of chloroplast biogenesis to carbon-nitrogen balance during early leaf development in rice.

    PubMed

    Kusumi, Kensuke; Hirotsuka, Shoko; Shimada, Hiroshi; Chono, Yoko; Matsuda, Osamu; Iba, Koh

    2010-07-01

    Chloroplast biogenesis is most significant during the changes in cellular organization associated with leaf development in higher plants. To examine the physiological relationship between developing chloroplasts and host leaf cells during early leaf development, we investigated changes in the carbon and nitrogen contents in leaves at the P4 developmental stage of rice, during which leaf blade structure is established and early events of chloroplast differentiation occur. During the P4 stage, carbon content on a dry mass basis remained constant, whereas the nitrogen content decreased by 30%. Among carbohydrates, sucrose and starch accumulated to high levels early in the P4 stage, and glucose, fructose and cellulose degradation increased during the mid-to-late P4 stage. In the chloroplast-deficient leaves of the virescent-1 mutant of rice, however, the carbon and nitrogen contents, as well as the C/N ratio during the P4 stage, were largely unaffected. These observations suggest that developing rice leaves function as sink organs at the P4 stage, and that chloroplast biogenesis and carbon and nitrogen metabolism in the leaf cell is regulated independently at this stage.

  11. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line

    PubMed Central

    Xu, Wenjing; Lv, Hongjun; Zhao, Mingming; Li, Yongchao; Qi, Yueying; Peng, Zhenying; Xia, Guangmin; Wang, Mengcheng

    2016-01-01

    We previously bred a salt tolerant wheat cv. SR3 with bread wheat cv. JN177 as the parent via asymmetric somatic hybridization, and found that the tolerance is partially attributed to the superior photosynthesis capacity. Here, we compared the proteomes of two cultivars to unravel the basis of superior photosynthesis capacity. In the maps of two dimensional difference gel electrophoresis (2D-DIGE), there were 26 differentially expressed proteins (DEPs), including 18 cultivar-based and 8 stress-responsive ones. 21 of 26 DEPs were identified and classified into four categories, including photosynthesis, photosynthesis system stability, linolenic acid metabolism, and protein synthesis in chloroplast. The chloroplast localization of some DEPs confirmed that the identified DEPs function in the chloroplast. The overexpression of a DEP enhanced salt tolerance in Arabidopsis thaliana. In line with these data, it is concluded that the contribution of chloroplast to high salinity tolerance of wheat cv. SR3 appears to include higher photosynthesis efficiency by promoting system protection and ROS clearance, stronger production of phytohormone JA by enhancing metabolism activity, and modulating the in chloroplast synthesis of proteins. PMID:27562633

  12. Gibberellin indirectly promotes chloroplast biogenesis as a means to maintain the chloroplast population of expanded cells.

    PubMed

    Jiang, Xingshan; Li, Heying; Wang, Ting; Peng, Changlian; Wang, Haiyang; Wu, Hong; Wang, Xiaojing

    2012-12-01

    Chloroplast biogenesis needs to be well coordinated with cell division and cell expansion during plant growth and development to achieve optimal photosynthesis rates. Previous studies showed that gibberellins (GAs) regulate many important plant developmental processes, including cell division and cell expansion. However, the relationship between chloroplast biogenesis with cell division and cell expansion, and how GA coordinately regulates these processes, remains poorly understood. In this study, we showed that chloroplast division was significantly reduced in the GA-deficient mutants of Arabidopsis (ga1-3) and Oryza sativa (d18-AD), accompanied by the reduced expression of several chloroplast division-related genes. However, the chloroplasts of both mutants exhibited increased grana stacking compared with their respective wild-type plants, suggesting that there might be a compensation mechanism linking chloroplast division and grana stacking. A time-course analysis showed that cell expansion-related genes tended to be upregulated earlier and more significantly than the genes related to chloroplast division and cell division in GA-treated ga1-3 leaves, suggesting the possibility that GA may promote chloroplast division indirectly through impacting leaf mesophyll cell expansion. Furthermore, our cellular and molecular analysis of the GA-response signaling mutants suggest that RGA and GAI are the major repressors regulating GA-induced chloroplast division, but other DELLA proteins (RGL1, RGL2 and RGL3) also play a role in repressing chloroplast division in Arabidopsis. Taken together, our data show that GA plays a critical role in controlling and coordinating cell division, cell expansion and chloroplast biogenesis through influencing the DELLA protein family in both dicot and monocot plant species.

  13. Export of carbon from chloroplasts at night

    SciTech Connect

    Schleucher, J.; Vanderveer, P.J.; Sharkey, T.D.

    1998-12-01

    Hexose export from chloroplasts at night has been inferred in previous studies of mutant and transgenic plants. The authors have tested whether hexose export is the normal route of carbon export from chloroplasts at night. The authors used nuclear magnetic resonance to distinguish glucose (Glc) made from hexose export and Glc made from triose export. Glc synthesized in vitro from fructose-6-phosphate in the presence of deuterium-labeled water had deuterium incorporated at C-2, whereas synthesis from triose phosphates caused C-2 through C-5 to become deuterated. In both tomato (Lycopersicon esculentum L.) and bean (phaseolus vulgaris L.), Glc from sucrose made at night in the presence of deuterium-enriched water was deuterated only in the C-2 position, indicating that >75% of carbon is exported as hexoses at night. In darkness the phosphate in the cytosol was 28 mM, whereas that in the chloroplasts was 5 mW, but hexose phosphates were 10-fold higher in the cytosol than in the chloroplasts. Therefore, hexose phosphates would not move out of chloroplasts without the input of energy. The authors conclude that most carbon leaves chloroplasts at night as Glc, maltose, or higher maltodextrins under normal conditions.

  14. Response of Spirogyra chloroplast to local illumination.

    PubMed

    Ohiwa, T

    1977-01-01

    1. The chloroplast of Spirogyra grows diffusively over its entire length even when irradiated only locally. Illumination of a disconnected chloroplast fragment also enhances the growth of other disconnected, non-illuminated fragments in the same cell. -2. When irradiated locally, the chloroplast becomes deformed to bring a greater part of it into the lighted area. Deformation caused by local illumination occurs only in the vicinity of the light-dark boundary. The chloroplast ribbon in this region shifts toward the lighted area not in parallel with the cell axis but obliquely to it. -3. Only light from the blue region induces the deformation. -4. The ability of the chloroplast to be centrifuged decreases in the illuminated region and increases in the shadowed region close to the light-dark boundary. -5. In a cell in which only the longitudinal half is illuminated, the chloroplast helix deforms to allow a greater part of the green ribbon to come into the illuminated half without changing its helical pitch.

  15. A Model of Chloroplast Growth Regulation in Mesophyll Cells.

    PubMed

    Paton, Kelly M; Anderson, Lisa; Flottat, Pauline; Cytrynbaum, Eric N

    2015-09-01

    Chloroplasts regulate their growth to optimize photosynthesis. Quantitative data show that the ratio of total chloroplast area to mesophyll cell area is constant across different cells within a single species and also across species. Wild-type chloroplasts exhibit little scatter around this trend; highly irregularly shaped mutant chloroplasts exhibit more scatter. Here we propose a model motivated by a bacterial quorum-sensing model consisting of a switch-like signaling network that turns off chloroplast growth. We calculated the dependence of the location of the relevant saddle-node bifurcation on the geometry of the chloroplasts. Our model exhibits a linear trend, with linearly growing scatter dependent on chloroplast shape, consistent with the data. When modeled chloroplasts are of a shape that grows with a constant area-to-volume ratio (disks, cylinders), we find a linear trend with minimal scatter. Chloroplasts with area and volume that do not grow proportionally (spheres) exhibit a linear trend with additional scatter.

  16. REDUCED CHLOROPLAST COVERAGE genes from Arabidopsis thaliana help to establish the size of the chloroplast compartment

    PubMed Central

    Larkin, Robert M.; Stefano, Giovanni; Ruckle, Michael E.; Stavoe, Andrea K.; Sinkler, Christopher A.; Brandizzi, Federica; Malmstrom, Carolyn M.; Osteryoung, Katherine W.

    2016-01-01

    Eukaryotic cells require mechanisms to establish the proportion of cellular volume devoted to particular organelles. These mechanisms are poorly understood. From a screen for plastid-to-nucleus signaling mutants in Arabidopsis thaliana, we cloned a mutant allele of a gene that encodes a protein of unknown function that is homologous to two other Arabidopsis genes of unknown function and to FRIENDLY, which was previously shown to promote the normal distribution of mitochondria in Arabidopsis. In contrast to FRIENDLY, these three homologs of FRIENDLY are found only in photosynthetic organisms. Based on these data, we proposed that FRIENDLY expanded into a small gene family to help regulate the energy metabolism of cells that contain both mitochondria and chloroplasts. Indeed, we found that knocking out these genes caused a number of chloroplast phenotypes, including a reduction in the proportion of cellular volume devoted to chloroplasts to 50% of wild type. Thus, we refer to these genes as REDUCED CHLOROPLAST COVERAGE (REC). The size of the chloroplast compartment was reduced most in rec1 mutants. The REC1 protein accumulated in the cytosol and the nucleus. REC1 was excluded from the nucleus when plants were treated with amitrole, which inhibits cell expansion and chloroplast function. We conclude that REC1 is an extraplastidic protein that helps to establish the size of the chloroplast compartment, and that signals derived from cell expansion or chloroplasts may regulate REC1. PMID:26862170

  17. Translational regulation in chloroplasts for development and homeostasis.

    PubMed

    Sun, Yi; Zerges, William

    2015-09-01

    Chloroplast genomes encode 100-200 proteins which function in photosynthesis, the organellar genetic system, and other pathways and processes. These proteins are synthesized by a complete translation system within the chloroplast, with bacterial-type ribosomes and translation factors. Here, we review translational regulation in chloroplasts, focusing on changes in translation rates which occur in response to requirements for proteins encoded by the chloroplast genome for development and homeostasis. In addition, we delineate the developmental and physiological contexts and model organisms in which translational regulation in chloroplasts has been studied. This article is part of a Special Issue entitled: Chloroplast biogenesis.

  18. Three-Dimensional Visualization of the Tubular-Lamellar Transformation of the Internal Plastid Membrane Network during Runner Bean Chloroplast Biogenesis.

    PubMed

    Kowalewska, Łucja; Mazur, Radosław; Suski, Szymon; Garstka, Maciej; Mostowska, Agnieszka

    2016-04-01

    Chloroplast biogenesis is a complex process that is integrated with plant development, leading to fully differentiated and functionally mature plastids. In this work, we used electron tomography and confocal microscopy to reconstruct the process of structural membrane transformation during the etioplast-to-chloroplast transition in runner bean (Phaseolus coccineus). During chloroplast development, the regular tubular network of paracrystalline prolamellar bodies (PLBs) and the flattened porous membranes of prothylakoids develop into the chloroplast thylakoids. Three-dimensional reconstruction is required to provide us with a more complete understanding of this transformation. We provide spatial models of the bean chloroplast biogenesis that allow such reconstruction of the internal membranes of the developing chloroplast and visualize the transformation from the tubular arrangement to the linear system of parallel lamellae. We prove that the tubular structure of the PLB transforms directly to flat slats, without dispersion to vesicles. We demonstrate that the grana/stroma thylakoid connections have a helical character starting from the early stages of appressed membrane formation. Moreover, we point out the importance of particular chlorophyll-protein complex components in the membrane stacking during the biogenesis. The main stages of chloroplast internal membrane biogenesis are presented in a movie that shows the time development of the chloroplast biogenesis as a dynamic model of this process. PMID:27002023

  19. Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding.

    PubMed

    Kersten, Birgit; Faivre Rampant, Patricia; Mader, Malte; Le Paslier, Marie-Christine; Bounon, Rémi; Berard, Aurélie; Vettori, Cristina; Schroeder, Hilke; Leplé, Jean-Charles; Fladung, Matthias

    2016-01-01

    Complete Populus genome sequences are available for the nucleus (P. trichocarpa; section Tacamahaca) and for chloroplasts (seven species), but not for mitochondria. Here, we provide the complete genome sequences of the chloroplast and the mitochondrion for the clones P. tremula W52 and P. tremula x P. alba 717-1B4 (section Populus). The organization of the chloroplast genomes of both Populus clones is described. A phylogenetic tree constructed from all available complete chloroplast DNA sequences of Populus was not congruent with the assignment of the related species to different Populus sections. In total, 3,024 variable nucleotide positions were identified among all compared Populus chloroplast DNA sequences. The 5-prime part of the LSC from trnH to atpA showed the highest frequency of variations. The variable positions included 163 positions with SNPs allowing for differentiating the two clones with P. tremula chloroplast genomes (W52, 717-1B4) from the other seven Populus individuals. These potential P. tremula-specific SNPs were displayed as a whole-plastome barcode on the P. tremula W52 chloroplast DNA sequence. Three of these SNPs and one InDel in the trnH-psbA linker were successfully validated by Sanger sequencing in an extended set of Populus individuals. The complete mitochondrial genome sequence of P. tremula is the first in the family of Salicaceae. The mitochondrial genomes of the two clones are 783,442 bp (W52) and 783,513 bp (717-1B4) in size, structurally very similar and organized as single circles. DNA sequence regions with high similarity to the W52 chloroplast sequence account for about 2% of the W52 mitochondrial genome. The mean SNP frequency was found to be nearly six fold higher in the chloroplast than in the mitochondrial genome when comparing 717-1B4 with W52. The availability of the genomic information of all three DNA-containing cell organelles will allow a holistic approach in poplar molecular breeding in the future.

  20. Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding

    PubMed Central

    Mader, Malte; Le Paslier, Marie-Christine; Bounon, Rémi; Berard, Aurélie; Vettori, Cristina; Schroeder, Hilke; Leplé, Jean-Charles; Fladung, Matthias

    2016-01-01

    Complete Populus genome sequences are available for the nucleus (P. trichocarpa; section Tacamahaca) and for chloroplasts (seven species), but not for mitochondria. Here, we provide the complete genome sequences of the chloroplast and the mitochondrion for the clones P. tremula W52 and P. tremula x P. alba 717-1B4 (section Populus). The organization of the chloroplast genomes of both Populus clones is described. A phylogenetic tree constructed from all available complete chloroplast DNA sequences of Populus was not congruent with the assignment of the related species to different Populus sections. In total, 3,024 variable nucleotide positions were identified among all compared Populus chloroplast DNA sequences. The 5-prime part of the LSC from trnH to atpA showed the highest frequency of variations. The variable positions included 163 positions with SNPs allowing for differentiating the two clones with P. tremula chloroplast genomes (W52, 717-1B4) from the other seven Populus individuals. These potential P. tremula-specific SNPs were displayed as a whole-plastome barcode on the P. tremula W52 chloroplast DNA sequence. Three of these SNPs and one InDel in the trnH-psbA linker were successfully validated by Sanger sequencing in an extended set of Populus individuals. The complete mitochondrial genome sequence of P. tremula is the first in the family of Salicaceae. The mitochondrial genomes of the two clones are 783,442 bp (W52) and 783,513 bp (717-1B4) in size, structurally very similar and organized as single circles. DNA sequence regions with high similarity to the W52 chloroplast sequence account for about 2% of the W52 mitochondrial genome. The mean SNP frequency was found to be nearly six fold higher in the chloroplast than in the mitochondrial genome when comparing 717-1B4 with W52. The availability of the genomic information of all three DNA-containing cell organelles will allow a holistic approach in poplar molecular breeding in the future. PMID:26800039

  1. Chloroplasts Are Central Players in Sugar-Induced Leaf Growth.

    PubMed

    Van Dingenen, Judith; De Milde, Liesbeth; Vermeersch, Mattias; Maleux, Katrien; De Rycke, Riet; De Bruyne, Michiel; Storme, Véronique; Gonzalez, Nathalie; Dhondt, Stijn; Inzé, Dirk

    2016-05-01

    Leaves are the plant's powerhouses, providing energy for all organs through sugar production during photosynthesis. However, sugars serve not only as a metabolic energy source for sink tissues but also as signaling molecules, affecting gene expression through conserved signaling pathways to regulate plant growth and development. Here, we describe an in vitro experimental assay, allowing one to alter the sucrose (Suc) availability during early Arabidopsis (Arabidopsis thaliana) leaf development, with the aim to identify the affected cellular and molecular processes. The transfer of seedlings to Suc-containing medium showed a profound effect on leaf growth by stimulating cell proliferation and postponing the transition to cell expansion. Furthermore, rapidly after transfer to Suc, mesophyll cells contained fewer and smaller plastids, which are irregular in shape and contain fewer starch granules compared with control mesophyll cells. Short-term transcriptional responses after transfer to Suc revealed the repression of well-known sugar-responsive genes and multiple genes encoded by the plastid, on the one hand, and up-regulation of a GLUCOSE-6-PHOSPHATE TRANSPORTER (GPT2), on the other hand. Mutant gpt2 seedlings showed no stimulation of cell proliferation and no repression of chloroplast-encoded transcripts when transferred to Suc, suggesting that GPT2 plays a critical role in the Suc-mediated effects on early leaf growth. Our findings, therefore, suggest that induction of GPT2 expression by Suc increases the import of glucose-6-phosphate into the plastids that would repress chloroplast-encoded transcripts, restricting chloroplast differentiation. Retrograde signaling from the plastids would then delay the transition to cell expansion and stimulate cell proliferation. PMID:26932234

  2. Defining the Core Proteome of the Chloroplast Envelope Membranes

    PubMed Central

    Simm, Stefan; Papasotiriou, Dimitrios G.; Ibrahim, Mohamed; Leisegang, Matthias S.; Müller, Bernd; Schorge, Tobias; Karas, Michael; Mirus, Oliver; Sommer, Maik S.; Schleiff, Enrico

    2013-01-01

    High-throughput protein localization studies require multiple strategies. Mass spectrometric analysis of defined cellular fractions is one of the complementary approaches to a diverse array of cell biological methods. In recent years, the protein content of different cellular (sub-)compartments was approached. Despite of all the efforts made, the analysis of membrane fractions remains difficult, in that the dissection of the proteomes of the envelope membranes of chloroplasts or mitochondria is often not reliable because sample purity is not always warranted. Moreover, proteomic studies are often restricted to single (model) species, and therefore limited in respect to differential individual evolution. In this study we analyzed the chloroplast envelope proteomes of different plant species, namely, the individual proteomes of inner and outer envelope (OE) membrane of Pisum sativum and the mixed envelope proteomes of Arabidopsis thaliana and Medicago sativa. The analysis of all three species yielded 341 identified proteins in total, 247 of them being unique. 39 proteins were genuine envelope proteins found in at least two species. Based on this and previous envelope studies we defined the core envelope proteome of chloroplasts. Comparing the general overlap of the available six independent studies (including ours) revealed only a number of 27 envelope proteins. Depending on the stringency of applied selection criteria we found 231 envelope proteins, while less stringent criteria increases this number to 649 putative envelope proteins. Based on the latter we provide a map of the outer and inner envelope core proteome, which includes many yet uncharacterized proteins predicted to be involved in transport, signaling, and response. Furthermore, a foundation for the functional characterization of yet unidentified functions of the inner and OE for further analyses is provided. PMID:23390424

  3. Origin of a chloroplast protein importer.

    PubMed

    Bölter, B; Soll, J; Schulz, A; Hinnah, S; Wagner, R

    1998-12-22

    During evolution, chloroplasts have relinquished the majority of their genes to the nucleus. The products of transferred genes are imported into the organelle with the help of an import machinery that is distributed across the inner and outer plastid membranes. The evolutionary origin of this machinery is puzzling because, in the putative predecessors, the cyanobacteria, the outer two membranes, the plasma membrane, and the lipopolysaccharide layer lack a functionally similar protein import system. A 75-kDa protein-conducting channel in the outer envelope of pea chloroplasts, Toc75, shares approximately 22% amino acid identity to a similarly sized protein, designated SynToc75, encoded in the Synechocystis PCC6803 genome. Here we show that SynToc75 is located in the outer membrane (lipopolysaccharide layer) of Synechocystis PCC6803 and that SynToc75 forms a voltage-gated, high conductance channel with a high affinity for polyamines and peptides in reconstituted liposomes. These findings suggest that a component of the chloroplast protein import system, Toc75, was recruited from a preexisting channel-forming protein of the cyanobacterial outer membrane. Furthermore, the presence of a protein in the chloroplastic outer envelope homologous to a cyanobacterial protein provides support for the prokaryotic nature of this chloroplastic membrane.

  4. Glycolate transporter of the pea chloroplast envelope

    SciTech Connect

    Howitz, K.T.

    1985-01-01

    The discovery of a glycolate transporter in the pea (Pisum sativum) chloroplast envelope is described. Several novel silicone oil centrifugation methods were developed to resolve the initial rate kinetics of (/sup 14/C)glycolate transport by isolated, intact pea chloroplasts. Chloroplast glycolate transport was found to be carrier mediated. Transport rates saturated with increasing glycolate concentration. N-Ethylmaleimide (NEM) pretreatment of chloroplasts inhibited transport, an inhibition prevented by glycolate. Glycolate distributed across the envelope in a way which equalized stromal and medium glycolic acid concentrations, limiting possible transport mechanisms to facilitated glycolic acid diffusion, proton symport or hydroxyl antiport. The effects of stomal and medium pH's on the K/sub m/ and V/sub max/ fit the predictions of mobile carrier kinetic models of hydroxyl antiport or proton symport (H/sup +/ binds first). The carrier mediated transport was fast enough to be consistent with in vivo rates of photorespiration. The 2-hydroxymonocarboxylates, glycerate, lactate and glyoxylate are competitive inhibitors of chloroplast glycolate uptake. Glyoxylate, D-lactate and D-glycerate cause glycolate counterflow, indicating that they are also substrates of the glycolate carrier. This finding was confirmed for D-glycerate by studies on glycolate effects on (1-/sup 14/C)D-glycerate transport.

  5. Heme content and breakdown in developing chloroplasts

    SciTech Connect

    Thomas, J.; Weinstein, J.D. )

    1990-05-01

    Heme regulates tetrapyrrole biosynthesis in plants by inhibition of {delta}-aminolevulinic acid (ALA) synthesis, product inhibition of heme synthesis, and possibly other mechanisms. Plastid heme levels may be modulated by heme synthesis, breakdown and/or efflux. Heme breakdown may be catalyzed by a chloroplast localized heme oxygenase. Chloroplasts isolated from greening cucumber cotyledons were incubated in the presence or absence of various components thought to modulate heme breakdown. Following the incubations, the chloroplasts were broken (freeze-thaw) and then supplemented with horseradish peroxidase apoenzyme. The reconstituted peroxidase activity was used to determine the amount of free heme remaining (Thomas Weinstein (1989) Plant Physiol. 89S: 74). Chloroplasts, freshly isolated from seedlings greened for 16 hours, contained approximately 37 pmol heme/mg protein. When chloroplasts were incubated with 5 mM NADPH for 30 min, the endogenous heme dropped to unmeasurable levels. Exogenous heme was also broken down when NADPH was included in the incubation. Heme levels could be increased by the inclusion of 50 {mu}M ALA and/or p-hydroxymercuribenzoate. The increase due to exogenous ALA was blocked by levulinic acid, an inhibitor of ALA utilization. NADPH-dependent heme breakdown acid was inhibited by p-hydroxymercuribenzoate.

  6. Vectorial photocurrents and photoconductivity in metalized chloroplasts

    SciTech Connect

    Greenbaum, E. )

    1990-08-09

    A novel photobiophysical phenomenon was observed in isolated spinach chloroplasts that were metalized by precipitating colloidal platinum onto the surface of the thylakoid membranes. A two-point irradiation and detection system was constructed in which a continuous-beam helium-neon laser ({lambda} = 632.8 nm) was used to irradiate the platinized chloroplasts at varying perpendicular distances (Figure 1) from a single linear platinum electrode in pressure contact with the platinized chloroplasts. No external voltage bias was applied to the system. The key objective of the experiments reported in this report was to measure the relative photoconductivity of the chloroplast-metal composite matrix. Unlike conventional photosynthetic electrochemical cells, in which irradiated chloroplasts are in close proximity to an electrode or linked to the electrode by an electrode-active mediator, the flow of photocurrent was through the biocomposite material. A sustained steady-state vectorial flow of current in the plane of the entrapped composite from the point of laser irradiation to the wire electrode was measured.

  7. Proteomic Insight into the Response of Arabidopsis Chloroplasts to Darkness

    PubMed Central

    Wang, Jing; Yu, Qingbo; Xiong, Haibo; Wang, Jun; Chen, Sixue; Yang, Zhongnan; Dai, Shaojun

    2016-01-01

    Chloroplast function in photosynthesis is essential for plant growth and development. It is well-known that chloroplasts respond to various light conditions. However, it remains poorly understood about how chloroplasts respond to darkness. In this study, we found 81 darkness-responsive proteins in Arabidopsis chloroplasts under 8 h darkness treatment. Most of the proteins are nucleus-encoded, indicating that chloroplast darkness response is closely regulated by the nucleus. Among them, 17 ribosome proteins were obviously reduced after darkness treatment. The protein expressional patterns and physiological changes revealed the mechanisms in chloroplasts in response to darkness, e.g., (1) inhibition of photosystem II resulted in preferential cyclic electron flow around PSI; (2) promotion of starch degradation; (3) inhibition of chloroplastic translation; and (4) regulation by redox and jasmonate signaling. The results have improved our understanding of molecular regulatory mechanisms in chloroplasts under darkness. PMID:27137770

  8. Chloroplasts in seeds and dark-grown seedlings of lotus.

    PubMed

    Ushimaru, Takashi; Hasegawa, Takahiro; Amano, Toyoki; Katayama, Masao; Tanaka, Shigeyasu; Tsuji, Hideo

    2003-03-01

    In most higher plants, mature dry seeds have no chloroplasts but etioplasts. Here we show that in a hydrophyte, lotus (Nelumbo nucifera), young chloroplasts already exist in shoots of mature dry seeds and that they give rise to mature chloroplasts during germination, even in darkness. These shoots contain chlorophyll and chlorophyll-binding proteins CP1 and LHCP. The unique features of chloroplast formation in N. nucifera suggest a unique adaptive strategy for seedling development correlated with the plant's habitat.

  9. Apicobasal gradient of chloroplast DNA synthesis and distribution in Acetabularia.

    PubMed

    Hoursiangou-Neubrun, D; Lüttke, A; Arapis, G; Puiseux-Dao, S; Bonotto, S

    1982-01-01

    Autoradiographic and biochemical experiments have revealed the presence, in vegetative cells of Acetabularia, of an apicobasal gradient of penetration and incorporation of labelled DNA precursors into the chloroplasts. Staining of chloroplasts with the DNA-specific fluorochrome DAPI has shown that the number of chloroplasts without DNA increases from the apex towards the base of the cell. All together, our findings support the existence of an apicobasal gradient of chloroplast DNA synthesis and distribution in Acetabularia.

  10. Analyses of Charophyte Chloroplast Genomes Help Characterize the Ancestral Chloroplast Genome of Land Plants

    PubMed Central

    Civáň, Peter; Foster, Peter G.; Embley, Martin T.; Séneca, Ana; Cox, Cymon J.

    2014-01-01

    Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes. PMID:24682153

  11. Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants.

    PubMed

    Civaň, Peter; Foster, Peter G; Embley, Martin T; Séneca, Ana; Cox, Cymon J

    2014-04-01

    Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes. PMID:24682153

  12. Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants.

    PubMed

    Civaň, Peter; Foster, Peter G; Embley, Martin T; Séneca, Ana; Cox, Cymon J

    2014-04-01

    Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes.

  13. The Engineered Chloroplast Genome Just Got Smarter.

    PubMed

    Jin, Shuangxia; Daniell, Henry

    2015-10-01

    Chloroplasts are known to sustain life on earth by providing food, fuel, and oxygen through the process of photosynthesis. However, the chloroplast genome has also been smartly engineered to confer valuable agronomic traits and/or serve as bioreactors for the production of industrial enzymes, biopharmaceuticals, bioproducts, or vaccines. The recent breakthrough in hyperexpression of biopharmaceuticals in edible leaves has facilitated progression to clinical studies by major pharmaceutical companies. This review critically evaluates progress in developing new tools to enhance or simplify expression of targeted genes in chloroplasts. These tools hold the promise to further the development of novel fuels and products, enhance the photosynthetic process, and increase our understanding of retrograde signaling and cellular processes. PMID:26440432

  14. Protein methylation reactions in intact pea chloroplasts

    SciTech Connect

    Niemi, K.J. )

    1989-04-01

    Post-translational protein methylation was investigated in Pisum sativum chloroplasts. Intact pea chloroplasts were incubated with ({sup 3}H-methyl)-S-adenosylmethionine under various conditions. The chloroplasts were then separated into stromal and thylakoid fractions and analyzed for radioactivity transferred to protein. Light enhanced the magnitude of labeling in both fractions. One thylakoid polypeptide with an apparent molecular mass of 43 kDa was labeled only in the light. Several other thylakoid and stromal proteins were labeled in both light and dark-labeling conditions. Both base-labile methylation, carboxy-methylesters and base-stable groups, N-methylations were found. Further characterization of the methyl-transfer reactions will be presented.

  15. The chloroplast genome exists in multimeric forms

    SciTech Connect

    Deng, Xingwang; Wing, R.A.; Gruissem, W. )

    1989-06-01

    Chloroplast DNA conformation was analyzed by pulse-field gel electrophoresis. The authors found that spinach leaf chloroplast DNA molecules exist in at least four distinct forms with the apparent molecular weights of monomer, dimer, trimer, and tetramer. Two-dimensional gel analysis of DNA after UV nicking and in the presence of ethidium bromide indicates that they are not isomers that differ in superhelical density. DNA gyrase decatenation analysis demonstrates that the majority of the DNA molecules are oligomers rather than catenanes. The relative amounts of monomer, dimer, trimer, and tetramer forms, quantitated by molecular hybridization, are 1, 1/3, 1/9, and 1/27, respectively, and do not change during leaf maturation. The possible mechanisms of chloroplast DNA oligomer formation are discussed.

  16. Engineered Chloroplast Genome just got Smarter

    PubMed Central

    Jin, Shuangxia; Daniell, Henry

    2015-01-01

    Chloroplasts are known to sustain life on earth by providing food, fuel and oxygen through the process of photosynthesis. However, the chloroplast genome has also been smartly engineered to confer valuable agronomic traits and/or serve as bioreactors for production of industrial enzymes, biopharmaceuticals, bio-products or vaccines. The recent breakthrough in hyper-expression of biopharmaceuticals in edible leaves has facilitated the advancement to clinical studies by major pharmaceutical companies. This review critically evaluates progress in developing new tools to enhance or simplify expression of targeted genes in chloroplasts. These tools hold the promise to further the development of novel fuels and products, enhance the photosynthetic process, and increase our understanding of retrograde signaling and cellular processes. PMID:26440432

  17. Salinity inhibits post transcriptional processing of chloroplast 16S rRNA in shoot cultures of jojoba (Simmondsia chinesis).

    PubMed

    Mizrahi-Aviv, Ela; Mills, David; Benzioni, Aliza; Bar-Zvi, Dudy

    2005-03-01

    Chloroplast metabolism is rapidly affected by salt stress. Photosynthesis is one of the first processes known to be affected by salinity. Here, we report that salinity inhibits chloroplast post-transcriptional RNA processing. A differentially expressed 680-bp cDNA, containing the 3' sequence of 16S rRNA, transcribed intergenic spacer, exon 1 and intron of tRNA(Ile), was isolated by differential display reverse transcriptase PCR from salt-grown jojoba (Simmondsia chinesis) shoot cultures. Northern blot analysis indicated that although most rRNA appears to be fully processed, partially processed chloroplast 16S rRNA accumulates in salt-grown cultures. Thus, salinity appears to decrease the processing of the rrn transcript. The possible effect of this decreased processing on physiological processes is, as yet, unknown.

  18. Chloroplasts can move in any direction to avoid strong light.

    PubMed

    Tsuboi, Hidenori; Wada, Masamitsu

    2011-01-01

    Chloroplasts migrate in response to different light intensities. Under weak light, chloroplasts gather at an illuminated area to maximize light absorption and photosynthesis rates (the accumulation response). In contrast, chloroplasts escape from strong light to avoid photodamage (the avoidance response). Photoreceptors involved in these phenomena have been identified in Arabidopsis thaliana and Adiantum capillus-veneris. Chloroplast behavior has been studied in detail during the accumulation response, but not for the avoidance response. Hence, we analyzed the chloroplast avoidance response in detail using dark-adapted Adiantum capillus-veneris gametophyte cells and partial cell irradiation with a microbeam of blue light. Chloroplasts escaped from an irradiated spot. Both duration of this response and the distance of the migrated chloroplasts were proportional to the total fluence irradiated. The speed of movement during the avoidance response was dependent on the fluence rate, but the speed of the accumulation response towards the microbeam from cell periphery was constant irrespective of fluence rate. When a chloroplast was only partially irradiated with a strong microbeam, it moved away towards the non-irradiated region within a few minutes. During this avoidance response two additional microbeam irradiations were applied to different locus of the same chloroplast. Under these conditions the chloroplast changed the moving direction after a lag time of a few minutes without rolling. Taken together, these findings indicate that chloroplasts can move in any direction and never have an intrinsic polarity. Similar phenomenon was observed in chloroplasts of Arabidopsis thaliana palisade cells.

  19. Chloroplast signaling within, between and beyond cells

    PubMed Central

    Bobik, Krzysztof; Burch-Smith, Tessa M.

    2015-01-01

    The most conspicuous function of plastids is the oxygenic photosynthesis of chloroplasts, yet plastids are super-factories that produce a plethora of compounds that are indispensable for proper plant physiology and development. Given their origins as free-living prokaryotes, it is not surprising that plastids possess their own genomes whose expression is essential to plastid function. This semi-autonomous character of plastids requires the existence of sophisticated regulatory mechanisms that provide reliable communication between them and other cellular compartments. Such intracellular signaling is necessary for coordinating whole-cell responses to constantly varying environmental cues and cellular metabolic needs. This is achieved by plastids acting as receivers and transmitters of specific signals that coordinate expression of the nuclear and plastid genomes according to particular needs. In this review we will consider the so-called retrograde signaling occurring between plastids and nuclei, and between plastids and other organelles. Another important role of the plastid we will discuss is the involvement of plastid signaling in biotic and abiotic stress that, in addition to influencing retrograde signaling, has direct effects on several cellular compartments including the cell wall. We will also review recent evidence pointing to an intriguing function of chloroplasts in regulating intercellular symplasmic transport. Finally, we consider an intriguing yet less widely known aspect of plant biology, chloroplast signaling from the perspective of the entire plant. Thus, accumulating evidence highlights that chloroplasts, with their complex signaling pathways, provide a mechanism for exquisite regulation of plant development, metabolism and responses to the environment. As chloroplast processes are targeted for engineering for improved productivity the effect of such modifications on chloroplast signaling will have to be carefully considered in order to avoid

  20. Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars

    PubMed Central

    Verma, Dheeraj; Kanagaraj, Anderson; Jin, Shuangxia; Singh, Nameirakpam D.; Kolattukudy, Pappachan E; Daniell, Henry

    2009-01-01

    Summary It is widely recognized that biofuel production from lignocellulosic materials is limited by inadequate technology to efficiently and economically release fermentable sugars from the complex multi-polymeric raw materials. Therefore, endoglucanases, exoglucanase, pectate lyases, cutinase, swollenin, xylanase, acetyl xylan esterase, beta glucosidase and lipase genes from bacteria or fungi were expressed in E. coli or tobacco chloroplasts. A PCR based method was used to clone genes without introns from Trichoderma reesei genomic DNA. Homoplasmic transplastomic lines showed normal phenotype and were fertile. Based on observed expression levels, up to 49, 64 and 10,751 million units of pectate lyases or endoglucanase can be produced annually, per acre of tobacco. Plant production cost of endoglucanase is 3,100-fold and pectate lyase is 1,057 or 1,480 fold lower than the same recombinant enzymes sold commercially, produced via fermentation. Chloroplast-derived enzymes had higher temperature stability and wider pH optima than enzymes expressed in E. coli. Plant crude-extracts showed higher enzyme activity than E. coli with increasing protein concentration, demonstrating their direct utility without purification. Addition of E. coli extracts to the chloroplast-derived enzymes significantly decreased their activity. Chloroplast-derived crude-extract enzyme cocktails yielded more (up to 3,625%) glucose from filter paper, pine wood or citrus peel than commercial cocktails. Furthermore, pectate lyase transplastomic plants showed enhanced resistance to Erwina soft rot. This is the first report of using plant-derived enzyme cocktails for production of fermentable sugars from lignocellulosic biomass. Limitations of higher cost and lower production capacity of fermentation systems are addressed by chloroplast-derived enzyme cocktails. PMID:20070870

  1. Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars.

    PubMed

    Verma, Dheeraj; Kanagaraj, Anderson; Jin, Shuangxia; Singh, Nameirakpam D; Kolattukudy, Pappachan E; Daniell, Henry

    2010-04-01

    It is widely recognized that biofuel production from lignocellulosic materials is limited by inadequate technology to efficiently and economically release fermentable sugars from the complex multi-polymeric raw materials. Therefore, endoglucanases, exoglucanase, pectate lyases, cutinase, swollenin, xylanase, acetyl xylan esterase, beta glucosidase and lipase genes from bacteria or fungi were expressed in Escherichia coli or tobacco chloroplasts. A PCR-based method was used to clone genes without introns from Trichoderma reesei genomic DNA. Homoplasmic transplastomic lines showed normal phenotype and were fertile. Based on observed expression levels, up to 49, 64 and 10, 751 million units of pectate lyases or endoglucanase can be produced annually, per acre of tobacco. Plant production cost of endoglucanase is 3100-fold, and pectate lyase is 1057 or 1480-fold lower than the same recombinant enzymes sold commercially, produced via fermentation. Chloroplast-derived enzymes had higher temperature stability and wider pH optima than enzymes expressed in E. coli. Plant crude-extracts showed higher enzyme activity than E. coli with increasing protein concentration, demonstrating their direct utility without purification. Addition of E. coli extracts to the chloroplast-derived enzymes significantly decreased their activity. Chloroplast-derived crude-extract enzyme cocktails yielded more (up to 3625%) glucose from filter paper, pine wood or citrus peel than commercial cocktails. Furthermore, pectate lyase transplastomic plants showed enhanced resistance to Erwina soft rot. This is the first report of using plant-derived enzyme cocktails for production of fermentable sugars from lignocellulosic biomass. Limitations of higher cost and lower production capacity of fermentation systems are addressed by chloroplast-derived enzyme cocktails.

  2. Pyrroline-5-Carboxylate Reductase Is in Pea (Pisum sativum L.) Leaf Chloroplasts.

    PubMed

    Rayapati, P J; Stewart, C R; Hack, E

    1989-10-01

    Proline accumulation is a well-known response to water deficits in leaves. The primary cause of accumulation is proline synthesis. Delta(1)-Pyrroline-5-carboxylate reductase (PCR) catalyzes the final reaction of proline synthesis. To determine the subcellular location of PCR, protoplasts were made from leaves of Pisum sativum L., lysed, and fractionated by differential and Percoll density gradient centrifugation. PCR activity comigrated on the gradient with the activity of the chloroplast stromal marker NADPH-dependent triose phosphate dehydrogenase. We conclude that PCR is located in chloroplasts, and therefore that chloroplasts can synthesize proline. PCR activities from chloroplasts and etiolated shoots were compared. PCR activity from both extracts is stimulated at least twofold by 100 millimolar KCl or 10 millimolar MgCl(2). The pH profiles of PCR activity from both extracts reveal two separate optima at pH 6.5 and 7.5. Native isoelectric focusing gels of sampies from etiolated tissue reveal a single band of PCR activity with a pl of 7.8.

  3. Choline Oxidation by Intact Spinach Chloroplasts 1

    PubMed Central

    Weigel, Pierre; Lerma, Claudia; Hanson, Andrew D.

    1988-01-01

    Plants synthesize betaine by a two-step oxidation of choline (choline → betaine aldehyde → betaine). Protoplast-derived chloroplasts of spinach (Spinacia oleracea L.) carry out both reactions, more rapidly in light than in darkness (AD Hanson et al. 1985 Proc Natl Acad Sci USA 82: 3678-3682). We investigated the light-stimulated oxidation of choline, using spinach chloroplasts isolated directly from leaves. The rates of choline oxidation obtained (dark and light rates: 10-50 and 100-300 nanomoles per hour per milligram chlorophyll, respectively) were approximately 20-fold higher than for protoplast-derived chloroplasts. Betaine aldehyde was the main product. Choline oxidation in darkness and light was suppressed by hypoxia. Neither uncouplers nor the Calvin cycle inhibitor glyceraldehyde greatly affected choline oxidation in the light, and maximal choline oxidation was attained far below light saturation of CO2 fixation. The light stimulation of choline oxidation was abolished by the PSII inhibitors DCMU and dibromothymoquinone, and was partially restored by adding reduced diaminodurene, an electron donor to PSI. Both methyl viologen and phenazine methosulfate prevented choline oxidation. Adding dihydroxyacetone phosphate, which can generate NADPH in organello, doubled the dark rate of choline oxidation. These results indicate that choline oxidation in chloroplasts requires oxygen, and reducing power generated from PSI. Enzymic reactions consistent with these requirements are discussed. Images Fig. 1 PMID:16665893

  4. Cold-induced responses in annual bluegrass genotypes with differential resistance to pink snow mold (Microdochium nivale).

    PubMed

    Bertrand, Annick; Castonguay, Yves; Azaiez, Aïda; Hsiang, Tom; Dionne, Julie

    2011-01-01

    Greens-type annual bluegrass (Poa annua L.) is susceptible to winter stresses including subfreezing temperatures and pink snow mold (SM). To better understand the mechanisms of SM resistance in annual bluegrass, four SM-resistant and four SM-sensitive genotypes were incubated at low temperature with Microdochium nivale (Fries) Samuels & Hallett, the causal agent of pink snow mold. We assessed the impact of a 6-week incubation period with SM at 2 °C under high humidity (≥ 98%) on the accumulation of cold-induced metabolites and on freezing tolerance. Incubation of annual bluegrass inoculated with SM lead to a major decrease in concentration of cryoprotective sugars such as sucrose and HDP (high degree of polymerization) fructans. Conversely, major amino acids linked to stress resistance such as glutamine and arginine increased in crowns of annual bluegrass in response to SM inoculation. One of the major differences between resistant and sensitive genotypes was found in the concentration of HDP fructans, which remained higher in SM-resistant genotypes throughout the incubation period. HDP fructans were also more abundant in freeze-tolerant genotypes, reinforcing their positive impact on winter survival of annual bluegrass. The identification of genotypes that are resistant to both SM and freezing shows the possibility of being able to improve both traits concomitantly.

  5. Cold-induced responses in annual bluegrass genotypes with differential resistance to pink snow mold (Microdochium nivale).

    PubMed

    Bertrand, Annick; Castonguay, Yves; Azaiez, Aïda; Hsiang, Tom; Dionne, Julie

    2011-01-01

    Greens-type annual bluegrass (Poa annua L.) is susceptible to winter stresses including subfreezing temperatures and pink snow mold (SM). To better understand the mechanisms of SM resistance in annual bluegrass, four SM-resistant and four SM-sensitive genotypes were incubated at low temperature with Microdochium nivale (Fries) Samuels & Hallett, the causal agent of pink snow mold. We assessed the impact of a 6-week incubation period with SM at 2 °C under high humidity (≥ 98%) on the accumulation of cold-induced metabolites and on freezing tolerance. Incubation of annual bluegrass inoculated with SM lead to a major decrease in concentration of cryoprotective sugars such as sucrose and HDP (high degree of polymerization) fructans. Conversely, major amino acids linked to stress resistance such as glutamine and arginine increased in crowns of annual bluegrass in response to SM inoculation. One of the major differences between resistant and sensitive genotypes was found in the concentration of HDP fructans, which remained higher in SM-resistant genotypes throughout the incubation period. HDP fructans were also more abundant in freeze-tolerant genotypes, reinforcing their positive impact on winter survival of annual bluegrass. The identification of genotypes that are resistant to both SM and freezing shows the possibility of being able to improve both traits concomitantly. PMID:21421353

  6. Chloroplast DNA phylogeography of the argan tree of Morocco.

    PubMed

    el Mousadik, A; Petit, R J

    1996-08-01

    Polymorphisms in the chloroplast genome of the argan tree (Sapotaceae), an endemic species of south-western Morocco, have been detected by restriction site studies of PCR-amplified fragments. A total of 12 chloroplast DNA (cpDNA) and two mitochondrial DNA (mtDNA) fragments were amplified and digested with a single restriction enzyme (HinfI). Polymorphisms were identified in six of the cpDNA fragments, whereas no mtDNA polymorphisms were detected in a survey of 95 individuals from 19 populations encompassing most of the natural range of the species. The cpDNA polymorphisms allowed the identification of 11 haplotypes. Two lineages, one in the south-east and the other in the north-west, divide the range of the argan tree into two distinct areas. The level of genetic differentiation measured at the haplotype level (GSTc = 0.60) (i.e. with unordered haplotypes) was smaller than when phylogenetic relationships were taken into account (NSTc = 0.71-0.74) (ordered haplotypes), indicating that population history must be considered in the study of the geographical distribution of cpDNA lineages in this species. If contrasted with the level of nuclear genetic differentiation measured in a previous study with isozymes (GSTn = 0.25), the results indicate a relatively high level of gene flow by seeds, or conversely a relatively low level of gene flow by pollen, as compared with other tree species. Goats and camels could have played an important role in disseminating the fruits of this tree.

  7. Unexpected Diversity of Chloroplast Noncoding RNAs as Revealed by Deep Sequencing of the Arabidopsis Transcriptome.

    PubMed

    Hotto, Amber M; Schmitz, Robert J; Fei, Zhangjun; Ecker, Joseph R; Stern, David B

    2011-12-01

    Noncoding RNAs (ncRNA) are widely expressed in both prokaryotes and eukaryotes. Eukaryotic ncRNAs are commonly micro- and small-interfering RNAs (18-25 nt) involved in posttranscriptional gene silencing, whereas prokaryotic ncRNAs vary in size and are involved in various aspects of gene regulation. Given the prokaryotic origin of organelles, the presence of ncRNAs might be expected; however, the full spectrum of organellar ncRNAs has not been determined systematically. Here, strand-specific RNA-Seq analysis was used to identify 107 candidate ncRNAs from Arabidopsis thaliana chloroplasts, primarily encoded opposite protein-coding and tRNA genes. Forty-eight ncRNAs were shown to accumulate by RNA gel blot as discrete transcripts in wild-type (WT) plants and/or the pnp1-1 mutant, which lacks the chloroplast ribonuclease polynucleotide phosphorylase (cpPNPase). Ninety-eight percent of the ncRNAs detected by RNA gel blot had different transcript patterns between WT and pnp1-1, suggesting cpPNPase has a significant role in chloroplast ncRNA biogenesis and accumulation. Analysis of materials deficient for other major chloroplast ribonucleases, RNase R, RNase E, and RNase J, showed differential effects on ncRNA accumulation and/or form, suggesting specificity in RNase-ncRNA interactions. 5' end mapping demonstrates that some ncRNAs are transcribed from dedicated promoters, whereas others result from transcriptional read-through. Finally, correlations between accumulation of some ncRNAs and the symmetrically transcribed sense RNA are consistent with a role in RNA stability. Overall, our data suggest that this extensive population of ncRNAs has the potential to underpin a previously underappreciated regulatory mode in the chloroplast.

  8. Photorespiration and light act in concert to regulate the expression of the nuclear gene for chloroplast glutamine synthetase.

    PubMed Central

    Edwards, J W; Coruzzi, G M

    1989-01-01

    In Pisum sativum, distinct chloroplast and cytosolic forms of glutamine synthetase (GS) are encoded by homologous nuclear genes that are differentially expressed in vivo (Tingey, S. V., Tsai, F.-Y., Edwards, J. W., Walker, E. L., and Coruzzi, G. M. [1988]. J. Biol. Chem. 263, 9651-9657). In leaves, light selectively affects the expression of the nuclear gene for chloroplast GS2. Differences in the maximal levels of GS2 mRNA in etiolated plants treated with red or white light indicate that only part of the white-light-induced accumulation of GS2 mRNA is due to a phytochrome-mediated response. The kinetics of GS2 mRNA accumulation in response to white-light illumination of etiolated or dark-adapted green plants indicates that GS2 mRNA accumulates more rapidly in plants containing mature, photosynthetically competent chloroplasts. Other evidence that GS2 mRNA levels are affected by the metabolic status of chloroplasts concerns the selective induction of GS2 mRNA in plants grown under conditions that result in the production of photorespiratory ammonia. These results indicate that the light-induced accumulation of GS2 mRNA in leaves results from the action of phytochrome as well as light-induced changes in chloroplast metabolism. PMID:2577725

  9. Direct Chloroplast Sequencing: Comparison of Sequencing Platforms and Analysis Tools for Whole Chloroplast Barcoding

    PubMed Central

    Brozynska, Marta; Furtado, Agnelo; Henry, Robert James

    2014-01-01

    Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina) and Ion Torrent (Life Technology) sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare). Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels) between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis. PMID:25329378

  10. Direct chloroplast sequencing: comparison of sequencing platforms and analysis tools for whole chloroplast barcoding.

    PubMed

    Brozynska, Marta; Furtado, Agnelo; Henry, Robert James

    2014-01-01

    Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina) and Ion Torrent (Life Technology) sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare). Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels) between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis.

  11. Sites of synthesis of chloroplast ribosomal proteins in Chlamydomonas

    PubMed Central

    1983-01-01

    Cells of Chlamydomonas reinhardtii were pulse-labeled in vivo in the presence of inhibitors of cytoplasmic (anisomycin) or chloroplast (lincomycin) protein synthesis to ascertain the sites of synthesis of chloroplast ribosomal proteins. Fluorographs of the labeled proteins, resolved on two-dimensional (2-D) charge/SDS and one-dimensional (1-D) SDS-urea gradient gels, demonstrated that five to six of the large subunit proteins are products of chloroplast protein synthesis while 26 to 27 of the large subunit proteins are synthesized on cytoplasmic ribosomes. Similarly, 14 of 31 small subunit proteins are products of chloroplast protein synthesis, while the remainder are synthesized in the cytoplasm. The 20 ribosomal proteins shown to be made in the chloroplast of Chlamydomonas more than double the number of proteins known to be synthesized in the chloroplast of this alga. PMID:6841455

  12. Protein methylation in pea chloroplasts. [Pisum sativum

    SciTech Connect

    Niemi, K.J.; Adler, J.; Selman, B.R. )

    1990-07-01

    The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with ({sup 3}H-methyl)-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. One methylinkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile ({sup 3}H)methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the ({sup 3}H)methyl group.

  13. A Large Population of Small Chloroplasts in Tobacco Leaf Cells Allows More Effective Chloroplast Movement Than a Few Enlarged Chloroplasts1

    PubMed Central

    Jeong, Won Joong; Park, Youn-Il; Suh, KyeHong; Raven, John A.; Yoo, Ook Joon; Liu, Jang Ryol

    2002-01-01

    We generated transgenic tobacco (Nicotiana tabacum cv Xanthi) plants that contained only one to three enlarged chloroplasts per leaf mesophyll cell by introducing NtFtsZ1-2, a cDNA for plastid division. These plants were used to investigate the advantages of having a large population of small chloroplasts rather than a few enlarged chloroplasts in a leaf mesophyll cell. Despite the similarities in photosynthetic components and ultrastructure of photosynthetic machinery between wild-type and transgenic plants, the overall growth of transgenic plants under low- and high-light conditions was retarded. In wild-type plants, the chloroplasts moved toward the face position under low light and toward the profile position under high-light conditions. However, chloroplast rearrangement in transgenic plants in response to light conditions was not evident. In addition, transgenic plant leaves showed greatly diminished changes in leaf transmittance values under both light conditions, indicating that chloroplast rearrangement was severely retarded. Therefore, under low-light conditions the incomplete face position of the enlarged chloroplasts results in decreased absorbance of light energy. This, in turn, reduces plant growth. Under high-light conditions, the amount of absorbed light exceeds the photosynthetic utilization capacity due to the incomplete profile position of the enlarged chloroplasts, resulting in photodamage to the photosynthetic machinery, and decreased growth. The presence of a large number of small and/or rapidly moving chloroplasts in the cells of higher land plants permits more effective chloroplast phototaxis and, hence, allows more efficient utilization of low-incident photon flux densities. The photosynthetic apparatus is, consequently, protected from damage under high-incident photon flux densities. PMID:12011343

  14. Cadmium accumulation in chloroplasts and its impact on chloroplastic processes in barley and maize.

    PubMed

    Lysenko, Eugene A; Klaus, Alexander A; Pshybytko, Natallia L; Kusnetsov, Victor V

    2015-08-01

    Data on cadmium accumulation in chloroplasts of terrestrial plants are scarce and contradictory. We introduced CdSO4 in hydroponic media to the final concentrations 80 and 250 μM and studied the accumulation of Cd in chloroplasts of Hordeum vulgare and Zea mays. Barley accumulated more Cd in the chloroplasts as compared to maize, whereas in the leaves cadmium accumulation was higher in maize. The cadmium content in the chloroplasts of two species varied from 49 to 171 ng Cd/mg chlorophyll, which corresponds to one Cd atom per 728-2,540 chlorophyll molecules. Therefore, Mg(2+) can be substituted by Cd(2+) in a negligible amount of antenna chlorophylls only. The percentage of chloroplastic cadmium can be estimated as 0.21-1.32 % of all the Cd in a leaf. Photochemistry (F v/F m, ΦPSII, qP) was not influenced by Cd. Non-photochemical quenching of chlorophyll-excited state (NPQ) was greatly reduced in barley but not in maize. The decrease in NPQ was due to its fast relaxing component; the slow relaxing component rose slightly. In chloroplasts, Cd did not affect mRNA levels, but content of some photosynthetic proteins was reduced: slightly in the leaves of barley and heavily in the leaves of maize. In all analyzed C3-species, the effect of Cd on the content of photosynthetic proteins was mild or absent. This is most likely the first evidence of severe reduction of photosynthetic proteins in leaves of a Cd-treated C4-plant.

  15. Complex chloroplast RNA metabolism: just debugging the genetic programme?

    PubMed Central

    Maier, Uwe G; Bozarth, Andrew; Funk, Helena T; Zauner, Stefan; Rensing, Stefan A; Schmitz-Linneweber, Christian; Börner, Thomas; Tillich, Michael

    2008-01-01

    Background The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity. Results We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants. Conclusion Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions. PMID:18755031

  16. Nanophotonics of Chloroplasts for Bio-Inspired Solar Energy Materials

    NASA Astrophysics Data System (ADS)

    Gourley, Paul L.; Gourley, Cheryl R.

    2011-03-01

    In the search for new energy sources, lessons can be learned from chloroplast photonics. The nano-architecture of chloroplasts is remarkably well-adapted to mediate sunlight interactions for efficient energy conversion. We carried out experiments with chloroplasts isolated from spinach and leaf lettuce to elucidate the relationship between nano-architecture, biomolecular composition and photonic properties. We obtained high-resolution microscopic images of single chloroplasts to identify geometries of chloroplasts and interior grana. We performed micro-spectroscopy to identify strengths of absorption and fluorescence transitions and related them to broadband reflectance and transmittance spectra of whole leaf structures. Finally, the nonlinear optical properties were investigated with nanolaser spectroscopy by placing chloroplasts into micro-resonators and optically pumping. These spectra reveal chloroplast photonic modes and allow measurement of single chloroplast light scattering cross section, polarizability, and refractive index. The nanolaser spectra recorded at increasing pump powers enabled us to observe non-linear optics, photon dynamics, and stimulated emission from single chloroplasts. All of these experiments provide insight into plant photonics and inspiration of paradigms for synthetic biomaterials to harness sunlight in new ways.

  17. A simple method for chloroplast transformation in Chlamydomonas reinhardtii.

    PubMed

    Ramesh, Vellupillai M; Bingham, Scott E; Webber, Andrew N

    2011-01-01

    Photosystem I (PSI) is a multisubunit pigment-protein complex that uses light energy to transfer electrons from plastocyanin to ferredoxin. Application of genetic engineering to photosynthetic reaction center proteins has led to a significant advancement in our understanding of primary electron transfer events and the role of the protein environment in modulating these processes. Chlamydomonas reinhardtii provides a system particularly amenable to analyze the structure-function relationship of Photosystem I. C. reinhardtii is also a particularly favorable organism for chloroplast transformation because it contains only a single chloroplast and grows heterotrophically when supplemented with acetate. Chlamydomonas has, therefore, served as a model organism for the development of chloroplast transformation procedures and the study of photosynthetic mutants generated using this method. Exogenous cloned cpDNA can be introduced into the chloroplast by using this biolistic gene gun method. DNA-coated tungsten or gold particles are bombarded onto cells. Upon its entry into chloroplasts, the transforming DNA is released from the particles and integrated into the chloroplast genome through homologous recombination. The most versatile chloroplast selectable marker is aminoglycoside adenyl transferase (aadA), which can be expressed in the chloroplast to confer resistance to spectinomycin or streptomycin. This article describes the procedures for chloroplast transformation.

  18. Fine tuning chloroplast movements through physical interactions between phototropins

    PubMed Central

    Sztatelman, Olga; Łabuz, Justyna; Hermanowicz, Paweł; Banaś, Agnieszka Katarzyna; Bażant, Aneta; Zgłobicki, Piotr; Aggarwal, Chhavi; Nadzieja, Marcin; Krzeszowiec, Weronika; Strzałka, Wojciech; Gabryś, Halina

    2016-01-01

    Phototropins are plant photoreceptors which regulate numerous responses to blue light, including chloroplast relocation. Weak blue light induces chloroplast accumulation, whereas strong light leads to an avoidance response. Two Arabidopsis phototropins are characterized by different light sensitivities. Under continuous light, both can elicit chloroplast accumulation, but the avoidance response is controlled solely by phot2. As well as continuous light, brief light pulses also induce chloroplast displacements. Pulses of 0.1s and 0.2s of fluence rate saturating the avoidance response lead to transient chloroplast accumulation. Longer pulses (up to 20s) trigger a biphasic response, namely transient avoidance followed by transient accumulation. This work presents a detailed study of transient chloroplast responses in Arabidopsis. Phototropin mutants display altered chloroplast movements as compared with the wild type: phot1 is characterized by weaker responses, while phot2 exhibits enhanced chloroplast accumulation, especially after 0.1s and 0.2s pulses. To determine the cause of these differences, the abundance and phosphorylation levels of both phototropins, as well as the interactions between phototropin molecules are examined. The formation of phototropin homo- and heterocomplexes is the most plausible explanation of the observed phenomena. The physiological consequences of this interplay are discussed, suggesting the universal character of this mechanism that fine-tunes plant reactions to blue light. Additionally, responses in mutants of different protein phosphatase 2A subunits are examined to assess the role of protein phosphorylation in signaling of chloroplast movements. PMID:27406783

  19. The complete chloroplast genome of Phalaenopsis "Tiny Star".

    PubMed

    Kim, Goon-Bo; Kwon, Youngeun; Yu, Hee-Ju; Lim, Ki-Byung; Seo, Jae-Hwan; Mun, Jeong-Hwan

    2016-01-01

    We determined the complete chloroplast DNA sequence of Phalaenopsis "Tiny Star" based on Illumina sequencing. The total length of the chloroplast genome is 148,918 bp long with GC content of 36.7%. It contains 70 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Comparative analysis with the reported orchid chloroplast sequences identified unique InDel variations in the "Tiny Star" chloroplast genome that have potential as genetic markers to investigate the maternal lineage of Phalaenopsis and Doritaenopsis cultivars.

  20. Uptake and incorporation of iron in sugar beet chloroplasts.

    PubMed

    Solti, Adám; Kovács, Krisztina; Basa, Brigitta; Vértes, Attila; Sárvári, Eva; Fodor, Ferenc

    2012-03-01

    Chloroplasts contain 80-90% of iron taken up by plant cells. Though some iron transport-related envelope proteins were identified recently, the mechanism of iron uptake into chloroplasts remained unresolved. To shed more light on the process of chloroplast iron uptake, trials were performed with isolated intact chloroplasts of sugar beet (Beta vulgaris). Iron uptake was followed by measuring the iron content of chloroplasts in the form of ferrous-bathophenantroline-disulphonate complex after solubilising the chloroplasts in reducing environment. Ferric citrate was preferred to ferrous citrate as substrate for chloroplasts. Strong dependency of ferric citrate uptake on photosynthetic electron transport activity suggests that ferric chelate reductase uses NADPH, and is localised in the inner envelope membrane. The K(m) for iron uptake from ferric-citrate pool was 14.65 ± 3.13 μM Fe((III))-citrate. The relatively fast incorporation of (57)Fe isotope into Fe-S clusters/heme, detected by Mössbauer spectroscopy, showed the efficiency of the biosynthetic machinery of these cofactors in isolated chloroplasts. The negative correlation between the chloroplast iron concentration and the rate of iron uptake refers to a strong feedback regulation of the uptake.

  1. Copper Delivery to Chloroplast Proteins and its Regulation

    PubMed Central

    Aguirre, Guadalupe; Pilon, Marinus

    2016-01-01

    Copper is required for photosynthesis in chloroplasts of plants because it is a cofactor of plastocyanin, an essential electron carrier in the thylakoid lumen. Other chloroplast copper proteins are copper/zinc superoxide dismutase and polyphenol oxidase, but these proteins seem to be dispensable under conditions of low copper supply when transcripts for these proteins undergo microRNA-mediated down regulation. Two ATP-driven copper transporters function in tandem to deliver copper to chloroplast compartments. This review seeks to summarize the mechanisms of copper delivery to chloroplast proteins and its regulation. We also delineate some of the unanswered questions that still remain in this field. PMID:26793223

  2. Pyruvate Dehydrogenase Complex from Chloroplasts of Pisum sativum L 1

    PubMed Central

    Williams, Michael; Randall, Douglas D.

    1979-01-01

    Pyruvate dehydrogenase complex is associated with intact chloroplasts and mitochondria of 9-day-old Pisum sativum L. seedlings. The ratio of the mitochondrial complex to the chloroplast complex activities is about 3 to 1. Maximal rates observed for chloroplast pyruvate dehydrogenase complex activity ranged from 6 to 9 micromoles of NADH produced per milligram of chlorophyll per hour. Osmotic rupture of pea chloroplasts released 88% of the complex activity, indicating that chloroplast pyruvate dehydrogenase complex is a stromal complex. The pH optimum for chloroplast pyruvate dehydrogenase complex was between 7.8 and 8.2, whereas the mitochondrial pyruvate dehydrogenase complex had a pH optimum between 7.3 and 7.7. Chloroplast pyruvate dehydrogenase complex activity was specific for pyruvate, dependent upon coenzyme A and NAD and partially dependent upon Mg2+ and thiamine pyrophosphate. Chloroplast-associated pyruvate dehydrogenase complex provides a direct link between pyruvate metabolism and chloroplast fatty acid biosynthesis by providing the substrate, acetyl-CoA, necessary for membrane development in young plants. Images PMID:16661100

  3. Characterization of chloroplast division using the Arabidopsis mutant arc5.

    PubMed

    Robertson, E J; Rutherford, S M; Leech, R M

    1996-09-01

    arc5 is a chloroplast division mutant of Arabidopsis thaliana. To identify the role of ARC5 in the chloroplast replication process we have followed the changes in arc5 chloroplasts during their perturbed division. ARC5 does not affect proplastid division but functions at a later stage in chloroplast development. Chloroplasts in developing mesophyll cells of arc5 leaves do not increase in number and all of the chloroplasts in mature leaf cells show a central constriction. Young arc5 chloroplasts are capable of initiating the division process but fail to complete daughter-plastid separation. Wild-type plastids increase in number to a mean of 121 after completing the division process, but in the mutant arc5 the approximately 13 plastids per cell are still centrally constricted but much enlarged. As the arc5 chloroplasts expand and elongate without dividing, the internal thylakoid membrane structure becomes flexed into an undulating ribbon. We conclude that the ARC5 gene is necessary for the completion of the last stage of chloroplast division when the narrow isthmus breaks, causing the separation of the daughter plastids.

  4. Analyses of the Complete Genome and Gene Expression of Chloroplast of Sweet Potato [Ipomoea batata

    PubMed Central

    Yan, Lang; Lai, Xianjun; Li, Xuedan; Wei, Changhe; Tan, Xuemei; Zhang, Yizheng

    2015-01-01

    Sweet potato [Ipomoea batatas (L.) Lam] ranks among the top seven most important food crops cultivated worldwide and is hexaploid plant (2n=6x=90) in the Convolvulaceae family with a genome size between 2,200 to 3,000 Mb. The genomic resources for this crop are deficient due to its complicated genetic structure. Here, we report the complete nucleotide sequence of the chloroplast (cp) genome of sweet potato, which is a circular molecule of 161,303 bp in the typical quadripartite structure with large (LSC) and small (SSC) single-copy regions separated by a pair of inverted repeats (IRs). The chloroplast DNA contains a total of 145 genes, including 94 protein-encoding genes of which there are 72 single-copy and 11 double-copy genes. The organization and structure of the chloroplast genome (gene content and order, IR expansion/contraction, random repeating sequences, structural rearrangement) of sweet potato were compared with those of Ipomoea (L.) species and some basal important angiosperms, respectively. Some boundary gene-flow and gene gain-and-loss events were identified at intra- and inter-species levels. In addition, by comparing with the transcriptome sequences of sweet potato, the RNA editing events and differential expressions of the chloroplast functional-genes were detected. Moreover, phylogenetic analysis was conducted based on 77 protein-coding genes from 33 taxa and the result may contribute to a better understanding of the evolution progress of the genus Ipomoea (L.), including phylogenetic relationships, intraspecific differentiation and interspecific introgression. PMID:25874767

  5. Invasive Chloroplast Population Genetics of Mikania micrantha in China: No Local Adaptation and Negative Correlation between Diversity and Geographic Distance

    PubMed Central

    Wang, Ting; Wang, Zhen; Chen, Guopei; Wang, Chunbo; Su, Yingjuan

    2016-01-01

    Two fundamental questions on how invasive species are able to rapidly colonize novel habitat have emerged. One asks whether a negative correlation exists between the genetic diversity of invasive populations and their geographic distance from the origin of introduction. The other is whether selection on the chloroplast genome is important driver of adaptation to novel soil environments. Here, we addressed these questions in a study of the noxious invasive weed, Mikania micrantha, which has rapidly expanded in to southern China after being introduced to Hong Kong in 1884. Seven chloroplast simple sequence repeats (cpSSRs) were used to investigate population genetics in 28 populations of M. micrantha, which produced 39 loci. The soil compositions for these populations, including Mg abundance, were measured. The results showed that M. micrantha possessed relatively high cpSSR variation and differentiation among populations. Multiple diversity indices were quantified, and none was significantly correlated with distance from the origin of introduction. No evidence for “isolation by distance,” significant spatial structure, bottlenecks, nor linkage disequilibrium was detected. We also were unable to identify loci on the chloroplast genome that exhibited patterns of differentiation that would suggest adaptive evolution in response to soil attributes. Soil Mg had only a genome-wide effect instead of being a selective factor, which highlighted the association between Mg and the successful invasion. This study characterizes the role of the chloroplast genome of M. micrantha during its recent invasion of southern China. PMID:27708663

  6. arc6, an extreme chloroplast division mutant of Arabidopsis also alters proplastid proliferation and morphology in shoot and root apices.

    PubMed

    Robertson, E J; Pyke, K A; Leech, R M

    1995-09-01

    The arc6 (accumulation and replication of chloroplasts) mutant of Arabidopsis has only two greatly enlarged chloroplasts per mature leaf mesophyll cell compared with ninety chloroplasts per cell in the wild type. The mutation is a single nuclear gene and the plant phenotype is normal. Shoot and root apical meristems of arc6 plants have been examined to determine how early during plastid development the mutant arc6 phenotype can be recognised. In the cells of the arc6 apical meristem there are only two proplastids, which are larger than wild type with a highly variable morphology. In the cells of the leaf primordia where differentiation of proplastids to chloroplasts occurs arc6 plastids are larger and at a more advanced developmental stage than wild-type plastids. In arc6 root cells statoliths and other plastids also show grossly abnormal morphology and the statoliths are greatly increased in size. During arc6 stomatal guard cell development the perturbation in proplastid population dynamics affects plastid segregation and 30% of stomata lack plastids in one or both guard cells. Our evidence would suggest that ARC6 is expressed throughout the vegetative cells of the Arabidopsis seedling with major effects on both the proplastid phenotype and the proplastid population. ARC6 is the first gene to be identified in Arabidopsis which has a global effect on plastid development in cells arising from both the shoot and root meristems, and is of major importance in the nuclear control of plastid differentiation in higher plants.

  7. Control of starch granule numbers in Arabidopsis chloroplasts.

    PubMed

    Crumpton-Taylor, Matilda; Grandison, Scott; Png, Kenneth M Y; Bushby, Andrew J; Smith, Alison M

    2012-02-01

    The aim of this work was to investigate starch granule numbers in Arabidopsis (Arabidopsis thaliana) leaves. Lack of quantitative information on the extent of genetic, temporal, developmental, and environmental variation in granule numbers is an important limitation in understanding control of starch degradation and the mechanism of granule initiation. Two methods were developed for reliable estimation of numbers of granules per chloroplast. First, direct measurements were made on large series of consecutive sections of mesophyll tissue obtained by focused ion beam-scanning electron microscopy. Second, average numbers were calculated from the starch contents of leaves and chloroplasts and estimates of granule mass based on granule dimensions. Examination of wild-type plants and accumulation and regulation of chloroplast (arc) mutants with few, large chloroplasts provided the following new insights. There is wide variation in chloroplast volumes in cells of wild-type leaves. Granule numbers per chloroplast are correlated with chloroplast volume, i.e. large chloroplasts have more granules than small chloroplasts. Mature leaves of wild-type plants and arc mutants have approximately the same number of granules per unit volume of stroma, regardless of the size and number of chloroplasts per cell. Granule numbers per unit volume of stroma are also relatively constant in immature leaves but are greater than in mature leaves. Granule initiation occurs as chloroplasts divide in immature leaves, but relatively little initiation occurs in mature leaves. Changes in leaf starch content over the diurnal cycle are largely brought about by changes in the volume of a fixed number of granules.

  8. CLUMPED CHLOROPLASTS 1 is required for plastid separation in Arabidopsis.

    PubMed

    Yang, Yue; Sage, Tammy L; Liu, Yi; Ahmad, Tiara R; Marshall, Wallace F; Shiu, Shin-Han; Froehlich, John E; Imre, Kathleen M; Osteryoung, Katherine W

    2011-11-01

    We identified an Arabidopsis thaliana mutant, clumped chloroplasts 1 (clmp1), in which disruption of a gene of unknown function causes chloroplasts to cluster instead of being distributed throughout the cytoplasm. The phenotype affects chloroplasts and nongreen plastids in multiple organs and cell types, but is detectable only at certain developmental stages. In young leaf petioles of clmp1, where clustering is prevalent, cells lacking chloroplasts are detected, suggesting impaired chloroplast partitioning during mitosis. Although organelle distribution and partitioning are actin-dependent in plants, the actin cytoskeleton in clmp1 is indistinguishable from that in WT, and peroxisomes and mitochondria are distributed normally. A CLMP1-YFP fusion protein that complements clmp1 localizes to discrete foci in the cytoplasm, most of which colocalize with the cell periphery or with chloroplasts. Ultrastructural analysis revealed that chloroplasts within clmp1 clusters are held together by membranous connections, including thin isthmi characteristic of late-stage chloroplast division. This finding suggests that constriction of dividing chloroplasts proceeds normally in clmp1, but separation is impaired. Consistently, chloroplast size and number, as well as positioning of the plastid division proteins FtsZ and ARC5/DRP5B, are unaffected in clmp1, indicating that loss of CLMP1-mediated chloroplast separation does not prevent otherwise normal division. CLMP1-like sequences are unique to green algae and land plants, and the CLMP1 sequence suggests that it functions through protein-protein interactions. Our studies identify a unique class of proteins required for plastid separation after the constriction stage of plastid division and indicate that CLMP1 activity is also required for plastid distribution and partitioning during cell division.

  9. KNOX genes influence a gradient of fruit chloroplast development through regulation of GOLDEN2-LIKE expression in tomato.

    PubMed

    Nadakuduti, Satya Swathi; Holdsworth, William L; Klein, Chelsey L; Barry, Cornelius S

    2014-06-01

    The chlorophyll content of unripe fleshy fruits is positively correlated with the nutrient content and flavor of ripe fruit. In tomato (Solanum lycopersicum) fruit, the uniform ripening (u) locus, which encodes a GOLDEN 2-LIKE transcription factor (SlGLK2), influences a gradient of chloroplast development that extends from the stem end of the fruit surrounding the calyx to the base of the fruit. With the exception of the u locus, the factors that influence the formation of this developmental gradient are unknown. In this study, characterization and positional cloning of the uniform gray-green (ug) locus of tomato reveals a thus far unknown role for the Class I KNOTTED1-LIKE HOMEOBOX (KNOX) gene, TKN4, in specifying the formation of this chloroplast gradient. The involvement of KNOX in fruit chloroplast development was confirmed through characterization of the Curl (Cu) mutant, a dominant gain-of-function mutation of TKN2, which displays ectopic fruit chloroplast development that resembles SlGLK2 over-expression. TKN2 and TKN4 act upstream of SlGLK2 and the related gene ARABIDOPSIS PSEUDO RESPONSE REGULATOR 2-LIKE (SlAPRR2-LIKE) to establish their latitudinal gradient of expression across developing fruit that leads to a gradient of chloroplast development. Class I KNOX genes typically influence plant morphology through maintenance of meristem activity, but this study identifies a role for TKN2 and TKN4 in specifically influencing chloroplast development in fruit but not leaves, suggesting that this fundamental process is differentially regulated in these two organs.

  10. KNOX genes influence a gradient of fruit chloroplast development through regulation of GOLDEN2-LIKE expression in tomato.

    PubMed

    Nadakuduti, Satya Swathi; Holdsworth, William L; Klein, Chelsey L; Barry, Cornelius S

    2014-06-01

    The chlorophyll content of unripe fleshy fruits is positively correlated with the nutrient content and flavor of ripe fruit. In tomato (Solanum lycopersicum) fruit, the uniform ripening (u) locus, which encodes a GOLDEN 2-LIKE transcription factor (SlGLK2), influences a gradient of chloroplast development that extends from the stem end of the fruit surrounding the calyx to the base of the fruit. With the exception of the u locus, the factors that influence the formation of this developmental gradient are unknown. In this study, characterization and positional cloning of the uniform gray-green (ug) locus of tomato reveals a thus far unknown role for the Class I KNOTTED1-LIKE HOMEOBOX (KNOX) gene, TKN4, in specifying the formation of this chloroplast gradient. The involvement of KNOX in fruit chloroplast development was confirmed through characterization of the Curl (Cu) mutant, a dominant gain-of-function mutation of TKN2, which displays ectopic fruit chloroplast development that resembles SlGLK2 over-expression. TKN2 and TKN4 act upstream of SlGLK2 and the related gene ARABIDOPSIS PSEUDO RESPONSE REGULATOR 2-LIKE (SlAPRR2-LIKE) to establish their latitudinal gradient of expression across developing fruit that leads to a gradient of chloroplast development. Class I KNOX genes typically influence plant morphology through maintenance of meristem activity, but this study identifies a role for TKN2 and TKN4 in specifically influencing chloroplast development in fruit but not leaves, suggesting that this fundamental process is differentially regulated in these two organs. PMID:24689783

  11. Origin and evolution of the chloroplast division machinery.

    PubMed

    Miyagishima, Shin-Ya

    2005-10-01

    Chloroplasts were originally established in eukaryotes by the endosymbiosis of a cyanobacterium; they then spread through diversification of the eukaryotic hosts and subsequent engulfment of eukaryotic algae by previously nonphotosynthetic eukaryotes. The continuity of chloroplasts is maintained by division of preexisting chloroplasts. Like their ancestors, chloroplasts use a bacterial division system based on the FtsZ ring and some associated factors, all of which are now encoded in the host nuclear genome. The majority of bacterial division factors are absent from chloroplasts and several new factors have been added by the eukaryotic host. For example, the ftsZ gene has been duplicated and modified, plastid-dividing (PD) rings were most likely added by the eukaryotic host, and a member of the dynamin family of proteins evolved to regulate chloroplast division. The identification of several additional proteins involved in the division process, along with data from diverse lineages of organisms, our current knowledge of mitochondrial division, and the mining of genomic sequence data have enabled us to begin to understand the universality and evolution of the division system. The principal features of the chloroplast division system thus far identified are conserved across several lineages, including those with secondary chloroplasts, and may reflect primeval features of mitochondrial division. PMID:16143878

  12. Tools for regulated gene expression in the chloroplast of Chlamydomonas.

    PubMed

    Rochaix, Jean-David; Surzycki, Raymond; Ramundo, Silvia

    2014-01-01

    The green unicellular alga Chlamydomonas reinhardtii has emerged as a very attractive model system for chloroplast genetic engineering. Algae can be transformed readily at the chloroplast level through bombardment of cells with a gene gun, and transformants can be selected using antibiotic resistance or phototrophic growth. An inducible chloroplast gene expression system could be very useful for several reasons. First, it could be used to elucidate the function of essential chloroplast genes required for cell growth and survival. Second, it could be very helpful for expressing proteins which are toxic to the algal cells. Third, it would allow for the reversible depletion of photosynthetic complexes thus making it possible to study their biogenesis in a controlled fashion. Fourth, it opens promising possibilities for hydrogen production in Chlamydomonas. Here we describe an inducible/repressible chloroplast gene expression system in Chlamydomonas in which the copper-regulated Cyc6 promoter drives the expression of the nuclear Nac2 gene encoding a protein which is targeted to the chloroplast where it acts specifically on the chloroplast psbD 5'-untranslated region and is required for the stable accumulation of the psbD mRNA and photosystem II. The system can be used for any chloroplast gene or transgene by placing it under the control of the psbD 5'-untranslated region. PMID:24599871

  13. Effects of quantum flux density of photosynthesis and chloroplast ultrastructure in tissue-cultured plantlets and seedlings of Liquidambar styraciflua L. towards improved acclimatization and field survival

    SciTech Connect

    Lee, N.; Wetzstein, H.Y.; Sommer, H.E.

    1985-07-01

    Liquidambar styraciflua L. seedlings and tissue-cultured plantlets were grown under high, medium, or low quantum flux densities. Net photosynthesis, chlorophyll content, and chloroplast ultrastructure of leaves differentiated from these conditions were investigated. Seedling photosynthetic rates at light saturation were positively related to light pretreatments. Cultured plantlets under all light conditions had appreciably higher photosynthetic rates than noncultured seedlings. Chlorophyll in seedlings and plantlets was significantly higher in low light-treated plants. Seedling leaves had chloroplasts with abundant starch regardless of light pretreatment. In high light, starch granules were predominant and associated with disrupted granal structure. Low light seedling chloroplasts had smaller starch grains and well-formed grana. In contrast, tissue culture-differentiated leaves were devoid of starch; grana were well organized in higher quantum flux density treatments, but disorganized at low flux densities. 29 references, 7 figures, 1 table.

  14. Expression of eukaryotic polypeptides in chloroplasts

    DOEpatents

    Mayfield, Stephen P.

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  15. Membrane heredity and early chloroplast evolution.

    PubMed

    Cavalier-Smith, T

    2000-04-01

    Membrane heredity was central to the unique symbiogenetic origin from cyanobacteria of chloroplasts in the ancestor of Plantae (green plants, red algae, glaucophytes) and to subsequent lateral transfers of plastids to form even more complex photosynthetic chimeras. Each symbiogenesis integrated disparate genomes and several radically different genetic membranes into a more complex cell. The common ancestor of Plantae evolved transit machinery for plastid protein import. In later secondary symbiogeneses, signal sequences were added to target proteins across host perialgal membranes: independently into green algal plastids (euglenoids, chlorarachneans) and red algal plastids (alveolates, chromists). Conservatism and innovation during early plastid diversification are discussed.

  16. Non-contact intracellular binding of chloroplasts in vivo

    NASA Astrophysics Data System (ADS)

    Li, Yuchao; Xin, Hongbao; Liu, Xiaoshuai; Li, Baojun

    2015-06-01

    Non-contact intracellular binding and controllable manipulation of chloroplasts in vivo was demonstrated using an optical fiber probe. Launching a 980-nm laser beam into a fiber, which was placed about 3 μm above the surface of a living plant (Hydrilla verticillata) leaf, enabled stable binding of different numbers of chloroplasts, as well as their arrangement into one-dimensional chains and two-dimensional arrays inside the leaf without damaging the chloroplasts. Additionally, the formed chloroplast chains were controllably transported inside the living cells. The optical force exerted on the chloroplasts was calculated to explain the experimental results. This method provides a flexible method for studying intracellular organelle interaction with highly organized organelle-organelle contact in vivo in a non-contact manner.

  17. Licensed to Kill: Mitochondria, Chloroplasts, and Cell Death.

    PubMed

    Van Aken, Olivier; Van Breusegem, Frank

    2015-11-01

    Programmed cell death (PCD) is crucial in plant organogenesis and survival. In this review the involvement of mitochondria and chloroplasts in PCD execution is critically assessed. Recent findings support a central role for mitochondria in PCD, with newly identified components of the mitochondrial electron transport chain (mETC), FOF1 ATP synthase, cardiolipins, and ATPase AtOM66. While chloroplasts received less attention, their contribution to PCD is well supported, suggesting that they possibly contribute by producing reactive oxygen species (ROS) in the presence of light or even contribute through cytochrome f release. Finally we discuss two working models where mitochondria and chloroplasts could cooperatively execute PCD: mitochondria initiate the commitment steps and recruit chloroplasts for swift execution or, alternatively, mitochondria and chloroplasts could operate in parallel.

  18. Non-contact intracellular binding of chloroplasts in vivo.

    PubMed

    Li, Yuchao; Xin, Hongbao; Liu, Xiaoshuai; Li, Baojun

    2015-06-04

    Non-contact intracellular binding and controllable manipulation of chloroplasts in vivo was demonstrated using an optical fiber probe. Launching a 980-nm laser beam into a fiber, which was placed about 3 μm above the surface of a living plant (Hydrilla verticillata) leaf, enabled stable binding of different numbers of chloroplasts, as well as their arrangement into one-dimensional chains and two-dimensional arrays inside the leaf without damaging the chloroplasts. Additionally, the formed chloroplast chains were controllably transported inside the living cells. The optical force exerted on the chloroplasts was calculated to explain the experimental results. This method provides a flexible method for studying intracellular organelle interaction with highly organized organelle-organelle contact in vivo in a non-contact manner.

  19. Ultrastructural observation of altered chloroplast morphology in space-grown Brassica rapa cotyledons.

    PubMed

    Jiao, S; Hilaire, E; Paulsen, A Q; Guikema, J A

    1999-07-01

    Photosynthesis will be indispensable in a bioregenerative life-support systems for long space missions. It is critical understand the effects of space on this complex process, especially the loss of gravity. Past has noted changes in plant growth and development; differences about cell size, shape, division, and differentiation; and plastid distribution and structure alterations. The amyloplast-containing columelar cells in root tips were carefully examined since they are likely gravity-sensing sites. Changes on photosynthetic physiology and chloroplast structure have been reported. Both increases and decreases of chlorophyll and carotenoid contents were reported. Structural changes of thylakoid membranes in chloroplasts were observed in pea and Arabidopsis grown in space or clinorotation. Recently, a decrease of CO2 assimilation rate and of electron transport rate of both PSI and PSII on thylakoid membranes were reported in space-grown wheat. These imply an overall decrease of photosynthetic activities, and implicate thylakoid-old structural changes. For example, PSI activity, and its reaction center subunits (PsaA, PsaB, and PsaC) and the LHCIs, were decreased under microgravity. Here, we further examined cellular morphology and ultrastructural features of the chloroplast and its thylakoid membranes by electron microscopy and in situ immunolocalization.

  20. Comparative proteomic analysis of amaranth mesophyll and bundle sheath chloroplasts and their adaptation to salt stress.

    PubMed

    Joaquín-Ramos, Ahuitzolt; Huerta-Ocampo, José Á; Barrera-Pacheco, Alberto; De León-Rodríguez, Antonio; Baginsky, Sacha; Barba de la Rosa, Ana P

    2014-09-15

    The effect of salt stress was analyzed in chloroplasts of Amaranthus cruentus var. Amaranteca, a plant NAD-malic enzyme (NAD-ME) type. Morphology of chloroplasts from bundle sheath (BSC) and mesophyll (MC) was observed by transmission electron microscopy (TEM). BSC and MC from control plants showed similar morphology, however under stress, changes in BSC were observed. The presence of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) was confirmed by immunohistochemical staining in both types of chloroplasts. Proteomic profiles of thylakoid protein complexes from BSC and MC, and their changes induced by salt stress were analyzed by blue-native polyacrylamide gel electrophoresis followed by SDS-PAGE (2-D BN/SDS-PAGE). Differentially accumulated protein spots were analyzed by LC-MS/MS. Although A. cruentus photosynthetic tissue showed the Kranz anatomy, the thylakoid proteins showed some differences at photosystem structure level. Our results suggest that A. cruentus var. Amaranteca could be better classified as a C3-C4 photosynthetic plant.

  1. Differential expression of TLP, ERF1, and R2R3MYB in annual Medicago species under salinity conditions.

    PubMed

    Gharaghani, F; Rafiei, F; Mirakhorli, N; Ebrahimie, E

    2015-08-21

    The present study was conducted to evaluate the responses of three annual Medicago species (M. truncatula, M. laciniata, and M. polymorpha) to salinity. We analyzed publicly available microarray data in NCBI pertaining to salinity-response genes in M. truncatula. Our data search identified Tubby C2 (TLP) and ethylene responsive transcription factor 1 (ERF1) as genes that potentially respond to salinity. We evaluated morpho-physiological traits and the expression of the genes in three Medicago species that had been maintained under control and saline conditions. The analysis of morpho-physiological traits showed that M. polymorpha and M. laciniata were more tolerant to salinity than M. truncatula, as they had lower reductions in biomass and dry root weight and lower increases in anthocyanin concentration. The saline conditions caused a significant increase (P < 0.01) in the expression of TLP in all Medicago species, but caused a significant decrease in the expression of ERF1. Considerable variation in anthocyanin concentrations was found among the three Medicago species. To investigate the cause of this variation, we examined the expression of R2R3MYB, a gene involved in the biosynthesis of anthocyanins. Our analysis showed that saline conditions induced high over-expression of R2R3MYB in all three Medicago spp. The high efficiency of the primer pairs used in qRT-PCR enabled us to compare the expression levels of each gene in the three species. We concluded that the more salt tolerant species showed higher expression of TLP and R2R3MYB under both control and salinity conditions.

  2. The Chloroplast Genome of Pellia endiviifolia: Gene Content, RNA-Editing Pattern, and the Origin of Chloroplast Editing

    PubMed Central

    Grosche, Christopher; Funk, Helena T.; Maier, Uwe G.; Zauner, Stefan

    2012-01-01

    RNA editing is a post-transcriptional process that can act upon transcripts from mitochondrial, nuclear, and chloroplast genomes. In chloroplasts, single-nucleotide conversions in mRNAs via RNA editing occur at different frequencies across the plant kingdom. These range from several hundred edited sites in some mosses and ferns to lower frequencies in seed plants and the complete lack of RNA editing in the liverwort Marchantia polymorpha. Here, we report the sequence and edited sites of the chloroplast genome from the liverwort Pellia endiviifolia. The type and frequency of chloroplast RNA editing display a pattern highly similar to that in seed plants. Analyses of the C to U conversions and the genomic context in which the editing sites are embedded provide evidence in favor of the hypothesis that chloroplast RNA editing evolved to compensate mutations in the first land plants. PMID:23221608

  3. Identification of protein stability determinants in chloroplasts

    PubMed Central

    Apel, Wiebke; Schulze, Waltraud X; Bock, Ralph

    2010-01-01

    Although chloroplast protein stability has long been recognised as a major level of post-translational regulation in photosynthesis and gene expression, the factors determining protein stability in plastids are largely unknown. Here, we have identified stability determinants in vivo by producing plants with transgenic chloroplasts that express a reporter protein whose N- and C-termini were systematically modified. We found that major stability determinants are located in the N-terminus. Moreover, testing of all 20 amino acids in the position after the initiator methionine revealed strong differences in protein stability and indicated an important role of the penultimate N-terminal amino acid residue in determining the protein half life. We propose that the stability of plastid proteins is largely determined by three factors: (i) the action of methionine aminopeptidase (the enzyme that removes the initiator methionine and exposes the penultimate N-terminal amino acid residue), (ii) an N-end rule-like protein degradation pathway, and (iii) additional sequence determinants in the N-terminal region. PMID:20545891

  4. Ferredoxin-linked chloroplast enzymes. Progress report

    SciTech Connect

    1993-12-31

    This report summarizes research on ferredoxin:NADP{sup +} oxidoreductase and ferredoxin:thioredoxin reductase. One of the primary goals of the original proposal was to map the ferredoxin-binding sites on three soluble enzymes that are located in spinach chloroplasts and utilize ferredoxin as an electron donor:Ferredoxin:NADP{sup +} oxidoreductase (FNR); ferredoxin:thioredoxin reductase (FTR) and glutamate synthase. As the availability of amino acid sequences for the enzymes are important in such studies, it was proposed that the amino acid sequence of glutamate synthase be determined. The amino acid sequences of FNR, FTR and ferredoxin are already known. An aim related to elucidating the binding sites on these enzymes for ferredoxin was to determine whether there is a common site on ferredoxin involved in binding to all of these ferredoxin-dependent chloroplast enzymes and, if so, to map it. One additional aim was to characterize thioredoxin binding by FTR and determine whether the same site on FTR is involved in binding both ferredoxin and thioredoxin. Considerable progress has been made on most of these original projects, although work conducted on FTR is still in its preliminary stages.

  5. Arginine Decarboxylase Is Localized in Chloroplasts.

    PubMed Central

    Borrell, A.; Culianez-Macia, F. A.; Altabella, T.; Besford, R. T.; Flores, D.; Tiburcio, A. F.

    1995-01-01

    Plants, unlike animals, can use either ornithine decarboxylase or arginine decarboxylase (ADC) to produce the polyamine precursor putrescine. Lack of knowledge of the exact cellular and subcellular location of these enzymes has been one of the main obstacles to our understanding of the biological role of polyamines in plants. We have generated polyclonal antibodies to oat (Avena sativa L.) ADC to study the spatial distribution and subcellular localization of ADC protein in different oat tissues. By immunoblotting and immunocytochemistry, we show that ADC is organ specific. By cell fractionation and immunoblotting, we show that ADC is localized in chloroplasts associated with the thylakoid membrane. The results also show that increased levels of ADC protein are correlated with high levels of ADC activity and putrescine in osmotically stressed oat leaves. A model of compartmentalization for the arginine pathway and putrescine biosynthesis in active photosynthetic tissues has been proposed. In the context of endosymbiote-driven metabolic evolution in plants, the location of ADC in the chloroplast compartment may have major evolutionary significance, since it explains (a) why plants can use two alternative pathways for putrescine biosynthesis and (b) why animals do not possess ADC. PMID:12228631

  6. Does Chloroplast Size Influence Photosynthetic Nitrogen Use Efficiency?

    PubMed Central

    Li, Yong; Ren, Binbin; Ding, Lei; Shen, Qirong; Peng, Shaobing; Guo, Shiwei

    2013-01-01

    High nitrogen (N) supply frequently results in a decreased photosynthetic N-use efficiency (PNUE), which indicates a less efficient use of accumulated Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Chloroplasts are the location of Rubisco and the endpoint of CO2 diffusion, and they play a vital important role in photosynthesis. However, the effects of chloroplast development on photosynthesis are poorly explored. In the present study, rice seedlings (Oryza sativa L., cv. ‘Shanyou 63’, and ‘Yangdao 6’) were grown hydroponically with three different N levels, morphological characteristics, photosynthetic variables and chloroplast size were measured. In Shanyou 63, a negative relationship between chloroplast size and PNUE was observed across three different N levels. Here, plants with larger chloroplasts had a decreased ratio of mesophyll conductance (gm) to Rubisco content (gm/Rubisco) and a lower Rubisco specific activity. In Yangdao 6, there was no change in chloroplast size and no decline in PNUE or gm/Rubisco ratio under high N supply. It is suggested that large chloroplasts under high N supply is correlated with the decreased Rubisco specific activity and PNUE. PMID:23620801

  7. Transposon-induced nuclear mutations that alter chloroplast gene expression

    SciTech Connect

    Barkan, A.

    1992-01-01

    The goal of this project is to use mutant phenotypes as a guide to nuclear genes that determine the timing and localization of chloroplast development The immediate goals are to identify nuclear mutants with defects in chloroplast gene expression from maize lines harboring active Mu transposons; characterize their phenotypes to determine the precise defect in gene expression; clone several of the most interesting mutations by exploiting the transposon tag; and use the clones to further define the roles of these genes in modulating chloroplast gene expression. Three mutants were described earlier that had global defects in chloroplast gene expression. We have found that two of these mutations are allelic. Both alleles have global defects in chloroplast translation initiation, as revealed by the failure to assemble chloroplast mRNAs into polysomes. We have isolated and characterized three new mutants from Mu lines that have novel defects in chloroplast RNA metabolism. We are now ready to begin the task of cloning several of these genes, by using the Mu transposon tag.

  8. Molecular identification of sequestered diatom chloroplasts and kleptoplastidy in foraminifera.

    PubMed

    Pillet, Loïc; de Vargas, Colomban; Pawlowski, Jan

    2011-07-01

    Kleptoplastidy is the ability of heterotrophic organisms to preserve chloroplasts of algal preys they eat and partially digest. As the sequestered chloroplasts stay functional for months, the "host" becomes photosynthetically active. Although remaining a marginal process, kleptoplastidy was observed in different protist lineages, including foraminifera. Previous studies showed at least eight species of the foraminiferal genera Haynesina and Elphidium grazing on diatoms and husbanding their chloroplasts. In order to characterize more precisely the origin of kleptochloroplasts in these genera, we obtained 1027 chloroplastic 16S rDNA sequences from 13 specimens of two Haynesina and five Elphidium species. We identified the foraminiferal kleptochloroplasts using a reference phylogeny made of 87 chloroplastic sequences of known species of diatoms and brown algae. All the analyzed specimens were performing kleptoplastidy and according to our phylogenetic analyses they seem to retain exclusively chloroplasts of diatom origin. There is no apparent specificity for the type of diatom from which chloroplasts originated, however some foraminiferal species seem to accept a wider range of diatoms than others. Possibly the diversity of kleptochloroplasts depends on the type of diatoms the foraminiferans feed on.

  9. Chloroplasts move towards the nearest anticlinal walls under dark condition.

    PubMed

    Tsuboi, Hidenori; Wada, Masamitsu

    2012-03-01

    Chloroplasts change their intracellular positions in response to their light environment. Under darkness, chloroplasts assume special positions that are different from those under light conditions. Here, we analyzed chloroplast dark positioning using Adiantum capillus-veneris gametophyte cells. When chloroplasts were transferred into darkness, during the first 1-5 h, they moved towards the anticlinal cell walls bordering the adjacent cells rather rapidly. Then, they slowed down and accumulated at the anticlinal walls gradually over the following 24-36 h. The chloroplast movements could be roughly classified into two different categories: initial rapid straight movement and later, slow staggering movement. When the chloroplast accumulation response was induced in dark-adapted cells by partial cell irradiation with a microbeam targeted to the center of the cells, chloroplasts moved towards the beam spot from the anticlinal walls. However, when the microbeam was switched off, they moved to the nearest anticlinal walls and not to their original positions if they were not the closest, indicating that they know the direction of the nearest anticlinal wall and do not have particular areas that they migrate to during dark positioning.

  10. Influence of Sugars on Blue Light-Induced Chloroplast Relocations

    PubMed Central

    Banaś, Agnieszka Katarzyna

    2007-01-01

    The aim of this study was to investigate the influence of sugars on blue light-induced chloroplast movements. Sucrose and glucose inhibited chloroplast responses in the detached leaves of Arabidopsis thaliana and in Lemna trisulca fronds in a concentration and time-dependent manner. The prolonged exposure necessary for inhibition indicates that sugars may act via altered gene expression. Overexpression of phototropin2, a photoreceptor responsible for the strong blue light response of chloroplasts, counteracted the sugar effect. This may suggest that sugars modify some component(s) of the phototropin2-mediated signal transduction pathway. The expression of PHOT2 was not suppressed by sugars in wild type plants, it was even upregulated by glucose. Impaired chloroplast movements were observed only in mature Arabidopsis plants. The mRNA of SAG12, a late senescence marker, was not detectable in the sugar-incubated leaves. The SAG13 mRNA level and its regulation by sugars were similar in wild type and PHOT2 overexpressor. Thus, the sugar insensitivity of 35S:PHOT2 chloroplast responses was not due to delayed senescence. The sugar-induced transduction pathway involved remains unclear. 3-O-methylglucose did not affect chloroplast movements suggesting the participation of a hexokinase-dependent pathway. Only the amplitude of avoidance response was reduced in gin2-1, a hexokinase1 null mutant. Probably other hexokinases, or glycolysis-associated signals play a role in the suppression of chloroplast responses. PMID:19516992

  11. Mining the soluble chloroplast proteome by affinity chromatography

    PubMed Central

    Bayer, Roman G; Stael, Simon; Csaszar, Edina; Teige, Markus

    2011-01-01

    Chloroplasts are fundamental organelles enabling plant photoautotrophy. Besides their outstanding physiological role in fixation of atmospheric CO2, they harbor many important metabolic processes such as biosynthesis of amino acids, vitamins or hormones. Technical advances in MS allowed the recent identification of most chloroplast proteins. However, for a deeper understanding of chloroplast function it is important to obtain a complete list of constituents, which is so far limited by the detection of low-abundant proteins. Therefore, we developed a two-step strategy for the enrichment of low-abundant soluble chloroplast proteins from Pisum sativum and their subsequent identification by MS. First, chloroplast protein extracts were depleted from the most abundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase by SEC or heating. Further purification was carried out by affinity chromatography, using ligands specific for ATP- or metal-binding proteins. By these means, we were able to identify a total of 448 proteins including 43 putative novel chloroplast proteins. Additionally, the chloroplast localization of 13 selected proteins was confirmed using yellow fluorescent protein fusion analyses. The selected proteins included a phosphoglycerate mutase, a cysteine protease, a putative protein kinase and an EF-hand containing substrate carrier protein, which are expected to exhibit important metabolic or regulatory functions. PMID:21365755

  12. Partial Purification of Intact Chloroplasts from Chlamydomonas reinhardtii.

    PubMed

    Belknap, W R

    1983-08-01

    Partially purified intact chloroplasts were prepared from batch cultures of both wild type (Wt) and a mutant strain of Chlamydomonas reinhardtii. Protoplasts were generated from log phase cultures of Wt (137c) and the phosphoribulokinase-deficient mutant F60 by incubation of the cells in autolysine. These protoplasts were suspended in an osmoticum, cooled, and then subjected to a 40 pounds per square inch pressure shock using a Yeda pressure bomb. The resulting preparation was fractionated on a Percoll step gradient which separated the intact chloroplasts from both broken chloroplasts and protoplasts.The chloroplast preparation was not significantly contaminated with the cytoplasmic enzyme activity phosphoenolpyruvate carboxylase (>5%), and contained (100%) stromal enzyme activity ribulose-1,5-bisphosphate carboxylase. The chloroplast preparation is significantly contaminated by mitochondria, as determined by succinate dehydrogenase activity. Chloroplasts prepared from Wt cells retained CO(2)-dependent O(2) photoevolution at rates in excess of 60 micromoles per milligram chlorophyll per hour, an activity which is severely inhibited by the addition of 10 millimolar KH(2)PO(4). The chloroplasts are osmotically sensitive as determined by ferricyanide-dependent O(2) photoevolution.

  13. GLK gene pairs regulate chloroplast development in diverse plant species.

    PubMed

    Fitter, David W; Martin, David J; Copley, Martin J; Scotland, Robert W; Langdale, Jane A

    2002-09-01

    Chloroplast biogenesis is a complex process that requires close co-ordination between two genomes. Many of the proteins that accumulate in the chloroplast are encoded by the nuclear genome, and the developmental transition from proplastid to chloroplast is regulated by nuclear genes. Here we show that a pair of Golden 2-like (GLK) genes regulates chloroplast development in Arabidopsis. The GLK proteins are members of the GARP superfamily of transcription factors, and phylogenetic analysis demonstrates that the maize, rice and Arabidopsis GLK gene pairs comprise a distinct group within the GARP superfamily. Further phylogenetic analysis suggests that the gene pairs arose through separate duplication events in the monocot and dicot lineages. As in rice, AtGLK1 and AtGLK2 are expressed in partially overlapping domains in photosynthetic tissue. Insertion mutants demonstrate that this expression pattern reflects a degree of functional redundancy as single mutants display normal phenotypes in most photosynthetic tissues. However, double mutants are pale green in all photosynthetic tissues and chloroplasts exhibit a reduction in granal thylakoids. Products of several genes involved in light harvesting also accumulate at reduced levels in double mutant chloroplasts. GLK genes therefore regulate chloroplast development in diverse plant species.

  14. Programmed cell death in plants: A chloroplastic connection

    PubMed Central

    Ambastha, Vivek; Tripathy, Baishnab C; Tiwari, Budhi Sagar

    2015-01-01

    Programmed cell death (PCD) is an integral cellular program by which targeted cells culminate to demise under certain developmental and pathological conditions. It is essential for controlling cell number, removing unwanted diseased or damaged cells and maintaining the cellular homeostasis. The details of PCD process has been very well elucidated and characterized in animals but similar understanding of the process in plants has not been achieved rather the field is still in its infancy that sees some sporadic reports every now and then. The plants have 2 energy generating sub-cellular organelles- mitochondria and chloroplasts unlike animals that just have mitochondria. The presence of chloroplast as an additional energy transducing and ROS generating compartment in a plant cell inclines to advocate the involvement of chloroplasts in PCD execution process. As chloroplasts are supposed to be progenies of unicellular photosynthetic organisms that evolved as a result of endosymbiosis, the possibility of retaining some of the components involved in bacterial PCD by chloroplasts cannot be ruled out. Despite several excellent reviews on PCD in plants, there is a void on an update of information at a place on the regulation of PCD by chloroplast. This review has been written to provide an update on the information supporting the involvement of chloroplast in PCD process and the possible future course of the field. PMID:25760871

  15. Chloroplast DNA variation of Quercus rubra L. in North America and comparison with other Fagaceae.

    PubMed

    Magni, C R; Ducousso, A; Caron, H; Petit, R J; Kremer, A

    2005-02-01

    Quercus rubra is one of the most important timber and ornamental tree species from eastern North America. It is a widespread species growing under variable ecological conditions. Chloroplast DNA variation was studied by PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) in 290 individuals from 66 populations sampled throughout the natural range. A total of 12 haplotypes were detected, with one found in 75% of the trees. Population differentiation is relatively low (G(ST) = 0.46), even when similarities between haplotypes are taken into account (N(ST) = 0.50), pointing to a weak phylogeographical structure. Furthermore, no spatial structure of genetic diversity could be detected. The genetic differentiation increased northwards, reflecting the postglacial history of Q. rubra. The unusual aspect of this study was the low level of chloroplast DNA genetic differentiation in Q. rubra compared to that typically observed in other oak species. Palynological evidence indicates that during the last glacial maximum, Q. rubra had one major distribution range with populations located relatively far to the north, resulting in only modest movement northwards when climate improved, whereas European white oaks were largely restricted to the southern European peninsulas and experienced extensive movements during the postglacial period. The contrasted geographical features and levels of tree species richness of both continents might further explain why congeneric species sharing similar life history traits have genetic structures that are so different. PMID:15660942

  16. Deficient Photosystem II in Agranal Bundle Sheath Chloroplasts of C4 Plants

    PubMed Central

    Woo, K. C.; Anderson, Jan M.; Boardman, N. K.; Downton, W. J. S.; Osmond, C. B.; Thorne, S. W.

    1970-01-01

    A method is described for separating mesophyll and bundle sheath chloroplasts from the leaves of C4 plants. The agranal bundle sheath chloroplasts are inactive in the Hill reaction, whereas granal bundle sheath and granal mesophyll chloroplasts exhibit normal photosystem II activity. The agranal bundle sheath chloroplasts are deficient in photosystem II; they lack cytochrome b-559 and the fluorescence bands associated with photosystem II. All the chloroplasts exhibit photosystem I activity. PMID:16591853

  17. Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii.

    PubMed

    Almaraz-Delgado, Alma Lorena; Flores-Uribe, José; Pérez-España, Víctor Hugo; Salgado-Manjarrez, Edgar; Badillo-Corona, Jesús Agustín

    2014-01-01

    Chloroplast transformation in the photosynthetic alga Chlamydomonas reinhardtii has been used to explore the potential to use it as an inexpensive and easily scalable system for the production of therapeutic recombinant proteins. Diverse proteins, such as bacterial and viral antigens, antibodies and, immunotoxins have been successfully expressed in the chloroplast using endogenous and chimeric promoter sequences. In some cases, proteins have accumulated to high level, demonstrating that this technology could compete with current production platforms. This review focuses on the works that have engineered the chloroplast of C. reinhardtii with the aim of producing recombinant proteins intended for therapeutical use in humans or animals.

  18. Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii

    PubMed Central

    2014-01-01

    Chloroplast transformation in the photosynthetic alga Chlamydomonas reinhardtii has been used to explore the potential to use it as an inexpensive and easily scalable system for the production of therapeutic recombinant proteins. Diverse proteins, such as bacterial and viral antigens, antibodies and, immunotoxins have been successfully expressed in the chloroplast using endogenous and chimeric promoter sequences. In some cases, proteins have accumulated to high level, demonstrating that this technology could compete with current production platforms. This review focuses on the works that have engineered the chloroplast of C. reinhardtii with the aim of producing recombinant proteins intended for therapeutical use in humans or animals. PMID:25136510

  19. Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii.

    PubMed

    Almaraz-Delgado, Alma Lorena; Flores-Uribe, José; Pérez-España, Víctor Hugo; Salgado-Manjarrez, Edgar; Badillo-Corona, Jesús Agustín

    2014-01-01

    Chloroplast transformation in the photosynthetic alga Chlamydomonas reinhardtii has been used to explore the potential to use it as an inexpensive and easily scalable system for the production of therapeutic recombinant proteins. Diverse proteins, such as bacterial and viral antigens, antibodies and, immunotoxins have been successfully expressed in the chloroplast using endogenous and chimeric promoter sequences. In some cases, proteins have accumulated to high level, demonstrating that this technology could compete with current production platforms. This review focuses on the works that have engineered the chloroplast of C. reinhardtii with the aim of producing recombinant proteins intended for therapeutical use in humans or animals. PMID:25136510

  20. Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts

    NASA Technical Reports Server (NTRS)

    Schwartz, R. M.; Dayhoff, M. O.

    1978-01-01

    A computer branching model is used to analyze cellular evolution. Attention is given to certain key amino acids and nucleotide residues (ferredoxin, 5s ribosomal RNA, and c-type cytochromes) because of their commonality over a wide variety of cell types. Each amino acid or nucleotide residue is a sequence in an inherited biological trait; and the branching method is employed to align sequences so that changes reflect substitution of one residue for another. Based on the computer analysis, the symbiotic theory of cellular evolution is considered the most probable. This theory holds that organelles, e.g., mitochondria and chloroplasts invaded larger bodies, e.g., bacteria, and combined functions to form eucaryotic cells.

  1. Chloroplast Phylogenomic Inference of Green Algae Relationships

    PubMed Central

    Sun, Linhua; Fang, Ling; Zhang, Zhenhua; Chang, Xin; Penny, David; Zhong, Bojian

    2016-01-01

    The green algal phylum Chlorophyta has six diverse classes, but the phylogenetic relationship of the classes within Chlorophyta remains uncertain. In order to better understand the ancient Chlorophyta evolution, we have applied a site pattern sorting method to study compositional heterogeneity and the model fit in the green algal chloroplast genomic data. We show that the fastest-evolving sites are significantly correlated with among-site compositional heterogeneity, and these sites have a much poorer fit to the evolutionary model. Our phylogenomic analyses suggest that the class Chlorophyceae is a monophyletic group, and the classes Ulvophyceae, Trebouxiophyceae and Prasinophyceae are non-monophyletic groups. Our proposed phylogenetic tree of Chlorophyta will offer new insights to investigate ancient green algae evolution, and our analytical framework will provide a useful approach for evaluating and mitigating the potential errors of phylogenomic inferences. PMID:26846729

  2. Chloroplast Microsatellite Diversity in Phaseolus vulgaris

    PubMed Central

    Desiderio, F.; Bitocchi, E.; Bellucci, E.; Rau, D.; Rodriguez, M.; Attene, G.; Papa, R.; Nanni, L.

    2012-01-01

    Evolutionary studies that are aimed at defining the processes behind the present level and organization of crop genetic diversity represent the fundamental bases for biodiversity conservation and use. A Mesoamerican origin of the common bean Phaseolus vulgaris was recently suggested through analysis of nucleotide polymorphism at the nuclear level. Here, we have used chloroplast microsatellites to investigate the origin of the common bean, on the basis of the specific characteristics of these markers (no recombination, haploid genome, uniparental inheritance), to validate these recent findings. Indeed, comparisons of the results obtained through analysis of nuclear and cytoplasmic DNA should allow the resolution of some of the contrasting information available on the evolutionary processes. The main outcomes of the present study are: (i) confirmation at the chloroplast level of the results obtained through nuclear data, further supporting the Mesoamerican origin of P. vulgaris, with central Mexico representing the cradle of its diversity; (ii) identification of a putative ancestral plastidial genome, which is characteristic of a group of accessions distributed from central Mexico to Peru, but which have not been highlighted beforehand through analyses at the nuclear level. Finally, the present study suggests that when a single species is analyzed, there is the need to take into account the complexity of the relationships between P. vulgaris and its closely related and partially intercrossable species P. coccineus and P. dumosus. Thus, the present study stresses the importance for the investigation of the speciation processes of these taxa through comparisons of both plastidial and nuclear variability. This knowledge will be fundamental not only from an evolutionary point of view, but also to put P. coccineus and P. dumosus germplasm to better use as a source of useful diversity for P. vulgaris breeding. PMID:23346091

  3. Photosynthetic light reactions: integral to chloroplast retrograde signalling.

    PubMed

    Gollan, Peter J; Tikkanen, Mikko; Aro, Eva-Mari

    2015-10-01

    Chloroplast retrograde signalling is ultimately dependent on the function of the photosynthetic light reactions and not only guides the acclimation of the photosynthetic apparatus to changing environmental and metabolic cues, but has a much wider influence on the growth and development of plants. New information generated during the past few years about regulation of photosynthetic light reactions and identification of the underlying regulatory proteins has paved the way towards better understanding of the signalling molecules produced in chloroplasts upon changes in the environment. Likewise, the availability of various mutants lacking regulatory functions has made it possible to address the role of excitation energy distribution and electron flow in the thylakoid membrane in inducing the retrograde signals from chloroplasts to the nucleus. Such signalling molecules also induce and interact with hormonal signalling cascades to provide comprehensive information from chloroplasts to the nucleus.

  4. Endonuclease recognition sites mapped on Zea mays chloroplast DNA

    PubMed Central

    Bedbrook, John R.; Bogorad, Lawrence

    1976-01-01

    The closed-circular DNA molecules of 85 × 106 daltons from Zea mays chloroplasts were isolated, digested with the restriction endonucleases Sal I, Bam I, and EcoRI, and the resulting fragments sized by agarose gel electrophoresis. A map of maize chloroplast DNA showing the relative location of all the Sal I recognition sequences and many of the Bam I and EcoRI recognition sites was determined. A DNA sequence representing approximately 15% of the Zea mays chloroplast genome is repeated. The two copies of this sequence are in an inverted orientation with respect to one another and are separated by a nonhomologous sequence representing approximately 10% of the genome length. The inverted repeats contain the genes for chloroplast ribosomal RNAs. Images PMID:16592373

  5. Separation of Chloroplast Pigments Using Reverse Phase Chromatography.

    ERIC Educational Resources Information Center

    Reese, R. Neil

    1997-01-01

    Presents a protocol that uses reverse phase chromatography for the separation of chloroplast pigments. Provides a simple and relatively safe procedure for use in teaching laboratories. Discusses pigment extraction, chromatography, results, and advantages of the process. (JRH)

  6. Full transcription of the chloroplast genome in photosynthetic eukaryotes

    PubMed Central

    Shi, Chao; Wang, Shuo; Xia, En-Hua; Jiang, Jian-Jun; Zeng, Fan-Chun; Gao, Li-Zhi

    2016-01-01

    Prokaryotes possess a simple genome transcription system that is different from that of eukaryotes. In chloroplasts (plastids), it is believed that the prokaryotic gene transcription features govern genome transcription. However, the polycistronic operon transcription model cannot account for all the chloroplast genome (plastome) transcription products at whole-genome level, especially regarding various RNA isoforms. By systematically analyzing transcriptomes of plastids of algae and higher plants, and cyanobacteria, we find that the entire plastome is transcribed in photosynthetic green plants, and that this pattern originated from prokaryotic cyanobacteria — ancestor of the chloroplast genomes that diverged about 1 billion years ago. We propose a multiple arrangement transcription model that multiple transcription initiations and terminations combine haphazardly to accomplish the genome transcription followed by subsequent RNA processing events, which explains the full chloroplast genome transcription phenomenon and numerous functional and/or aberrant pre-RNAs. Our findings indicate a complex prokaryotic genome regulation when processing primary transcripts. PMID:27456469

  7. Full transcription of the chloroplast genome in photosynthetic eukaryotes.

    PubMed

    Shi, Chao; Wang, Shuo; Xia, En-Hua; Jiang, Jian-Jun; Zeng, Fan-Chun; Gao, Li-Zhi

    2016-01-01

    Prokaryotes possess a simple genome transcription system that is different from that of eukaryotes. In chloroplasts (plastids), it is believed that the prokaryotic gene transcription features govern genome transcription. However, the polycistronic operon transcription model cannot account for all the chloroplast genome (plastome) transcription products at whole-genome level, especially regarding various RNA isoforms. By systematically analyzing transcriptomes of plastids of algae and higher plants, and cyanobacteria, we find that the entire plastome is transcribed in photosynthetic green plants, and that this pattern originated from prokaryotic cyanobacteria - ancestor of the chloroplast genomes that diverged about 1 billion years ago. We propose a multiple arrangement transcription model that multiple transcription initiations and terminations combine haphazardly to accomplish the genome transcription followed by subsequent RNA processing events, which explains the full chloroplast genome transcription phenomenon and numerous functional and/or aberrant pre-RNAs. Our findings indicate a complex prokaryotic genome regulation when processing primary transcripts. PMID:27456469

  8. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    SciTech Connect

    McCarty, R. E.

    2004-06-02

    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied.

  9. The complete chloroplast genome sequence of Zanthoxylum piperitum.

    PubMed

    Lee, Jonghoon; Lee, Hyeon Ju; Kim, Kyunghee; Lee, Sang-Choon; Sung, Sang Hyun; Yang, Tae-Jin

    2016-09-01

    The complete chloroplast genome sequence of Zanthoxylum piperitum, a plant species with useful aromatic oils in family Rutaceae, was generated in this study by de novo assembly with whole-genome sequence data. The chloroplast genome was 158 154 bp in length with a typical quadripartite structure containing a pair of inverted repeats of 27 644 bp, separated by large single copy and small single copy of 85 340 bp and 17 526 bp, respectively. The chloroplast genome harbored 112 genes consisting of 78 protein-coding genes 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis of the complete chloroplast genome sequences with those of known relatives revealed that Z. piperitum is most closely related to the Citrus species. PMID:26260183

  10. Circular Dichroism Spectra of Granal and Agranal Chloroplasts of Maize

    PubMed Central

    Faludi-Dániel, Ágnes; Demeter, S.; Garay, A. S.

    1973-01-01

    Granum-containing chloroplasts from mesophyll cells of maize (Zea mays L. var. MV 861) leaves exhibited circular dichroism spectra with a large double signal; peaks at 696 nm (+) and 680 nm (−). In the circular dichroism spectra obtained with agranal chloroplasts of bundle sheath cells, this large double signal is absent. Separation of grana lamellae, in a medium of low salt concentration and in KSCN solution, resulted only in a slight decrease of the amplitude, while upon treatment with digitonin the large double signal disappeared. A negative signal of the chlorophyll b peak at 654 nm was observed in the case of both granal and agranal chloroplasts, and it was not affected either by low salt or by digitonin treatment. A positive peak at about 515 nm was higher in granal than in agranal chloroplasts. PMID:16658498

  11. A Nucleus-Encoded Chloroplast Protein YL1 Is Involved in Chloroplast Development and Efficient Biogenesis of Chloroplast ATP Synthase in Rice.

    PubMed

    Chen, Fei; Dong, Guojun; Wu, Limin; Wang, Fang; Yang, Xingzheng; Ma, Xiaohui; Wang, Haili; Wu, Jiahuan; Zhang, Yanli; Wang, Huizhong; Qian, Qian; Yu, Yanchun

    2016-01-01

    Chloroplast ATP synthase (cpATPase) is an importance thylakoid membrane-associated photosynthetic complex involved in the light-dependent reactions of photosynthesis. In this study, we isolated and characterized a rice (Oryza sativa) mutant yellow leaf 1 (yl1), which exhibits chlorotic leaves throughout developmental stages. The YL1 mutation showed reduced chlorophyll contents, abnormal chloroplast morphology, and decreased photochemical efficiency. Moreover, YL1 deficiency disrupts the expression of genes associated with chloroplast development and photosynthesis. Molecular and genetic analyses revealed that YL1 is a nucleus-encoded protein with a predicted transmembrane domain in its carboxyl-terminus that is conserved in the higher plant kingdom. YL1 localizes to chloroplasts and is preferentially expressed in green tissues containing chloroplasts. Immunoblot analyses showed that inactivation of YL1 leads to drastically reduced accumulation of AtpA (α) and AtpB (β), two core subunits of CF1αβ subcomplex of cpATPase, meanwhile, a severe decrease (ca. 41.7%) in cpATPase activity was observed in the yl1-1 mutant compared with the wild type. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation assays revealed a specific interaction between YL1 and AtpB subunit of cpATPase. Taken together, our results suggest that YL1 is a plant lineage-specific auxiliary factor involved in the biogenesis of the cpATPase complex, possibly via interacting with the β-subunit. PMID:27585744

  12. A Nucleus-Encoded Chloroplast Protein YL1 Is Involved in Chloroplast Development and Efficient Biogenesis of Chloroplast ATP Synthase in Rice

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Dong, Guojun; Wu, Limin; Wang, Fang; Yang, Xingzheng; Ma, Xiaohui; Wang, Haili; Wu, Jiahuan; Zhang, Yanli; Wang, Huizhong; Qian, Qian; Yu, Yanchun

    2016-09-01

    Chloroplast ATP synthase (cpATPase) is an importance thylakoid membrane-associated photosynthetic complex involved in the light-dependent reactions of photosynthesis. In this study, we isolated and characterized a rice (Oryza sativa) mutant yellow leaf 1 (yl1), which exhibits chlorotic leaves throughout developmental stages. The YL1 mutation showed reduced chlorophyll contents, abnormal chloroplast morphology, and decreased photochemical efficiency. Moreover, YL1 deficiency disrupts the expression of genes associated with chloroplast development and photosynthesis. Molecular and genetic analyses revealed that YL1 is a nucleus-encoded protein with a predicted transmembrane domain in its carboxyl-terminus that is conserved in the higher plant kingdom. YL1 localizes to chloroplasts and is preferentially expressed in green tissues containing chloroplasts. Immunoblot analyses showed that inactivation of YL1 leads to drastically reduced accumulation of AtpA (α) and AtpB (β), two core subunits of CF1αβ subcomplex of cpATPase, meanwhile, a severe decrease (ca. 41.7%) in cpATPase activity was observed in the yl1-1 mutant compared with the wild type. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation assays revealed a specific interaction between YL1 and AtpB subunit of cpATPase. Taken together, our results suggest that YL1 is a plant lineage-specific auxiliary factor involved in the biogenesis of the cpATPase complex, possibly via interacting with the β-subunit.

  13. A Nucleus-Encoded Chloroplast Protein YL1 Is Involved in Chloroplast Development and Efficient Biogenesis of Chloroplast ATP Synthase in Rice

    PubMed Central

    Chen, Fei; Dong, Guojun; Wu, Limin; Wang, Fang; Yang, Xingzheng; Ma, Xiaohui; Wang, Haili; Wu, Jiahuan; Zhang, Yanli; Wang, Huizhong; Qian, Qian; Yu, Yanchun

    2016-01-01

    Chloroplast ATP synthase (cpATPase) is an importance thylakoid membrane-associated photosynthetic complex involved in the light-dependent reactions of photosynthesis. In this study, we isolated and characterized a rice (Oryza sativa) mutant yellow leaf 1 (yl1), which exhibits chlorotic leaves throughout developmental stages. The YL1 mutation showed reduced chlorophyll contents, abnormal chloroplast morphology, and decreased photochemical efficiency. Moreover, YL1 deficiency disrupts the expression of genes associated with chloroplast development and photosynthesis. Molecular and genetic analyses revealed that YL1 is a nucleus-encoded protein with a predicted transmembrane domain in its carboxyl-terminus that is conserved in the higher plant kingdom. YL1 localizes to chloroplasts and is preferentially expressed in green tissues containing chloroplasts. Immunoblot analyses showed that inactivation of YL1 leads to drastically reduced accumulation of AtpA (α) and AtpB (β), two core subunits of CF1αβ subcomplex of cpATPase, meanwhile, a severe decrease (ca. 41.7%) in cpATPase activity was observed in the yl1-1 mutant compared with the wild type. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation assays revealed a specific interaction between YL1 and AtpB subunit of cpATPase. Taken together, our results suggest that YL1 is a plant lineage-specific auxiliary factor involved in the biogenesis of the cpATPase complex, possibly via interacting with the β-subunit. PMID:27585744

  14. Complete Chloroplast Genome of Tanaecium tetragonolobum: The First Bignoniaceae Plastome

    PubMed Central

    Nazareno, Alison Gonçalves; Carlsen, Monica; Lohmann, Lúcia Garcez

    2015-01-01

    Bignoniaceae is a Pantropical plant family that is especially abundant in the Neotropics. Members of the Bignoniaceae are diverse in many ecosystems and represent key components of the Tropical flora. Despite the ecological importance of the Bignoniaceae and all the efforts to reconstruct the phylogeny of this group, whole chloroplast genome information has not yet been reported for any members of the family. Here, we report the complete chloroplast genome sequence of Tanaecium tetragonolobum (Jacq.) L.G. Lohmann, which was reconstructed using de novo and referenced-based assembly of single-end reads generated by shotgun sequencing of total genomic DNA in an Illumina platform. The gene order and organization of the chloroplast genome of T. tetragonolobum exhibits the general structure of flowering plants, and is similar to other Lamiales chloroplast genomes. The chloroplast genome of T. tetragonolobum is a circular molecule of 153,776 base pairs (bp) with a quadripartite structure containing two single copy regions, a large single copy region (LSC, 84,612 bp) and a small single copy region (SSC, 17,586 bp) separated by inverted repeat regions (IRs, 25,789 bp). In addition, the chloroplast genome of T. tetragonolobum has 38.3% GC content and includes 121 genes, of which 86 are protein-coding, 31 are transfer RNA, and four are ribosomal RNA. The chloroplast genome of T. tetragonolobum presents a total of 47 tandem repeats and 347 simple sequence repeats (SSRs) with mononucleotides being the most common and di-, tri-, tetra-, and hexanucleotides occurring with less frequency. The results obtained here were compared to other chloroplast genomes of Lamiales available to date, providing new insight into the evolution of chloroplast genomes within Lamiales. Overall, the evolutionary rates of genes in Lamiales are lineage-, locus-, and region-specific, indicating that the evolutionary pattern of nucleotide substitution in chloroplast genomes of flowering plants is complex

  15. Sequence evidence for the symbiotic origins of chloroplasts and mitochondria

    NASA Technical Reports Server (NTRS)

    George, D. G.; Hunt, L. T.; Dayhoff, M. O.

    1983-01-01

    The origin of mitochondria and chloroplasts is investigated on the basis of prokaryotic and early-eukaryotic evolutionary trees derived from protein and nucleic-acid sequences by the method of Dayhoff (1979). Trees for bacterial ferrodoxins, 5S ribosomal RNA, c-type cytochromes, the lipid-binding subunit of ATPase, and dihydrofolate reductase are presented and discussed. Good agreement among the trees is found, and it is argued that the mitochondria and chloroplasts evolved by multiple symbiotic events.

  16. Expression of the Arabidopsis Gene Akr Coincides with Chloroplast Development.

    PubMed

    Zhang, H.; Wang, J.; Goodman, H. M.

    1994-12-01

    Reduced expression of a nuclear gene of Arabidopsis thaliana, Akr, results in the formation of chlorotic plants due to a block in the proplastid-to-chloroplast development pathway (H. Zhang, D.C. Scheirer, W. Fowle, H.M. Goodman [1992] Plant Cell 4: 1575-1588). In an effort to discern the function of the Akr gene product in chloroplast development, transgenic plants containing an Akr::[beta]-glucuronidase gene fusion were constructed to monitor the spatial and temporal patterns of Akr expression. Akr is expressed only in chloroplast-containing tissues and maximal expression occurs during the seedling stage, coincident with chloroplast development. This result is consistent with the hypothesis that Akr is required at an early stage of chloroplast development. The effects of an AKR deficiency on the expression of nuclear and plastid genes required for photosynthetic activity were also examined. Within chloroplast-deficient leaves of plants in which Akr expression is limited by the presence of Akr antisense transgenes or truncated Akr sense transgenes, mRNAs for the nuclear genes Cab2, Cab4, RbcS, and GapA are present at wild-type levels; similarly, levels of mRNAs for the plastid genes rbcL and psbA are not affected by the AKR deficiency. Thus, although expression of these photosynthetic genes is tightly coordinated with the development and maintenance of chloroplasts in wild-type plants, their expression is unaffected in AKR-deficient chlorotic leaves. Therefore, we propose that Akr functions in a pathway different from the one controlling the expression and regulation of the photosynthetic genes during chloroplast development, and at a specific developmental stage after the putative plastid factor is made.

  17. Role of mitochondria in sulfolipid biosynthesis by Euglena chloroplasts

    SciTech Connect

    Saidha, T.; Schiff, J.A.

    1987-04-01

    Sulfate activation occurs in Euglena mitochondria the authors now find that the sulfate activating enzymes are absent from Euglena chloroplasts. Cells of mutant W/sub 10/BSmL lacking plastids also lack detectable sulfolipid (SL) when grown on /sup 35/SO/sub 4//sup 2 -/ indicating that SL is absent from the mitochondria and is exclusively in the plastids. Plastids alone will convert /sup 35/S-cysteine to /sup 35/SL in the presence of ATP and Mg/sup 2 +/; light is stimulatory. Under similar conditions, chloroplasts and mitochondria incubated together convert /sup 35/SO/sub 4//sup 2 -/ to plastid-localized /sup 35/SL but either organelle incubated alone fails to effect this conversion. Unlabeled cysteine blocks SL labeling from sulfate in the mixed incubation; since cysteine is formed from sulfate by Euglena mitochrondria, cysteine (and other compounds) may move from the mitochondrion to the chloroplast to provide the sulfo group for SL formation. Although mitochondria form labeled protein from /sup 35/SO/sub 4//sup 2 -/ via cysteine, chloroplasts alone do not form labeled protein from /sup 35/SO/sub 4//sup 2 -/, ATP and Mg/sup 2 +/ in light or darkness; incubation of chloroplasts plus mitochondria under these conditions labels chloroplast protein.

  18. Chloroplasts continuously monitor photoreceptor signals during accumulation movement.

    PubMed

    Tsuboi, Hidenori; Wada, Masamitsu

    2013-07-01

    Under low light conditions, chloroplasts gather at a cell surface to maximize light absorption for efficient photosynthesis, which is called the accumulation response. Phototropin1 (phot1) and phototropin2 (phot2) were identified as blue light photoreceptors in the accumulation response that occurs in Arabidopsis thaliana and Adiantum capillus-veneris with neochrome1 (neo1) as a red light photoreceptor in A. capillus-veneris. However, the signal molecule that is emitted from the photoreceptors and transmitted to the chloroplasts is not known. To investigate this topic, the accumulation response was induced by partial cell irradiation with a microbeam of red, blue and far-red light in A. capillus-veneris gametophyte cells. Chloroplasts moved towards the irradiated region and were able to sense the signal as long as its signal flowed. The signal from neo1 had a longer life than the signal that came from phototropins. When two microbeams with the same wavelength and the same fluence rate were placed 20 μm apart from each other and were applied to a dark-adapted cell, chloroplasts at an equidistant position always moved towards the center (midpoint) of the two microbeams, but not towards either one. This result indicates that chloroplasts are detecting the concentration of the signal but not the direction of signal flow. Chloroplasts repeatedly move and stop at roughly 10 s intervals during the accumulation response, suggesting that they monitor the intermittent signal waves from photoreceptors.

  19. Energetic and regulatory role of proton potential in chloroplasts.

    PubMed

    Tikhonov, A N

    2012-09-01

    The review focuses on the energetic and regulatory role of proton potential in the activity of chloroplasts, the light energy-converting organelles of plant cells. Mechanisms of generation of the transmembrane difference of electrochemical potentials of hydrogen ions (Δµ(~)(H+)) in the chloroplast thylakoid membranes are considered. Methods for measuring the intrathylakoid pH in chloroplasts are described. It is shown that under conditions of phosphorylation in chloroplasts, the pH of the intrathylakoid space decreases moderately (pH(in) ≥ 6.0-6.2, at the stroma pH(out) ≈ 7.8-8.0), with a corresponding concentration component of Δµ(~)(H+) equal to ΔpH ≤ 1.6-2.0. On analyzing the energy and structural features of ATP synthase of chloroplasts, we conclude that the energy stored as the concentration component of the proton potential ΔpH is sufficient to sustain ATP synthesis. The mechanisms of pH-dependent regulation of electron transport in chloroplasts (photosynthetic control of electron transport, enhancement of non-photochemical quenching of chlorophyll excitation in the light-harvesting antenna, light-induced activation of the Calvin-Benson cycle reactions, activation of ATP synthase) are considered briefly.

  20. Chloroplast unfolded protein response, a new plastid stress signaling pathway?

    PubMed

    Ramundo, Silvia; Rochaix, Jean-David

    2014-01-01

    A unique feature of the ATP-dependent ClpP protease of eukaryotic photosynthetic organisms is that its catalytic subunit ClpP1 is encoded by the chloroplast genome. Attempts to inactivate this subunit through chloroplast transformation have failed because it is essential for cell survival. To study the function of ClpP we have developed a repressible chloroplast gene expression system in Chlamydomonas reinhardtii. This system is based on the use of a chimeric nuclear gene in which the vitamin-repressible MetE promoter and Thi4 riboswitch have been fused to the coding sequence of Nac2. Upon entry into the chloroplast the Nac2 protein specifically interacts with the psbD 5'UTR and is required for the proper processing/translation of the psbD mRNA. This property can be conveyed to any chloroplast mRNA by replacing its 5'UTR with that of psbD. In this study we have chosen clpP1 as plastid target gene and examined the cellular events induced upon depletion of ClpP through transcriptomic, proteomic, biochemical and electron microscope analysis. Among the most striking features, a massive increase in protein abundance occurs for plastid chaperones, proteases and proteins involved in membrane assembly/disassembly strongly suggesting the existence of a chloroplast unfolded protein response. PMID:25482768

  1. Recent advances in the study of chloroplast gene expression and its evolution

    PubMed Central

    Yagi, Yusuke; Shiina, Takashi

    2014-01-01

    Chloroplasts are semiautonomous organelles which possess their own genome and gene expression system. However, extant chloroplasts contain only limited coding information, and are dependent on a large number of nucleus-encoded proteins. During plant evolution, chloroplasts have lost most of the prokaryotic DNA-binding proteins and transcription regulators that were present in the original endosymbiont. Thus, chloroplasts have a unique hybrid transcription system composed of the remaining prokaryotic components, such as a prokaryotic RNA polymerase as well as nucleus-encoded eukaryotic components. Recent proteomic and transcriptomic analyses have provided insights into chloroplast transcription systems and their evolution. Here, we review chloroplast-specific transcription systems, focusing on the multiple RNA polymerases, eukaryotic transcription regulators in chloroplasts, chloroplast promoters, and the dynamics of chloroplast nucleoids. PMID:24611069

  2. Evidence for chloroplastic succinate dehydrogenase participating in the chloroplastic respiratory and photosynthetic electron transport chains of Chlamydomonas reinhardtii

    SciTech Connect

    Willeford, K.O.; Gombos, Z.; Gibbs, M. )

    1989-07-01

    A method for isolating intact chloroplasts from Chlamydomonas reinhardtii F-60 was developed from the Klein, Chen, Gibbs, Platt-Aloia procedure. Protoplasts, generated by treatment with autolysine, were lysed with a solution of digitonin and fractionated on Percoll step gradients. The chloroplasts were assessed to be 90% intact (ferricyanide assay) and free from cytoplasmic contamination (NADP isocitrate dehydrogenase activity) and to range from 2 to 5% in mitochondrial contamination (cytochrome c oxidase activity). About 25% of the cellular succinate dehydrogenase activity (21.6 micromoles per milligram chlorophyll per hour, as determined enzymically) was placed within the chloroplast. Chloroplastic succinate dehydrogenase had a K{sub m} for succinate of 0.55 millimolar and was associated with the thylakoidal material derived from the intact chloroplasts. This same thylakoidal material, with an enzymic assay of 21.6 micromoles per milligram chlorophyll per hour was able to initiate a light-dependent uptake of oxygen at a rate of 16.4 micromoles per milligram chlorophyll per hour when supplied with succinate and methyl viologen. Malonate was an apparent competitive inhibitor of this reaction. The succinate dehydrogenase activity present in the chloroplast was sufficient to account for the photoanaerobic rate of acetate dissimilation in H{sub 2} adapted Chlamydomonas.

  3. Dimorphic chloroplasts in the epidermis of Podostemoideae, a subfamily of the unique aquatic angiosperm family Podostemaceae.

    PubMed

    Fujinami, Rieko; Yoshihama, Isao; Imaichi, Ryoko

    2011-09-01

    Plants of the Podostemoideae, a subfamily of the unique aquatic angiosperm family Podostemaceae, which are found in rapids and waterfalls of the tropics and subtropics, have two different sizes of chloroplasts in their epidermis. These small and large chloroplasts are located separately in each epidermal cell along its upper and inner tangential walls, respectively. This is the first case of the chloroplast dimorphism in a single epidermal cell of angiosperms. While the large chloroplasts have well developed starch grains, the small chloroplasts have a normal granal ultrastructure but very few starch grains. This suggests that the small chloroplasts mainly function in CO(2) uptake for photosynthesis from torrential water. PMID:21120679

  4. Dimorphic chloroplasts in the epidermis of Podostemoideae, a subfamily of the unique aquatic angiosperm family Podostemaceae.

    PubMed

    Fujinami, Rieko; Yoshihama, Isao; Imaichi, Ryoko

    2011-09-01

    Plants of the Podostemoideae, a subfamily of the unique aquatic angiosperm family Podostemaceae, which are found in rapids and waterfalls of the tropics and subtropics, have two different sizes of chloroplasts in their epidermis. These small and large chloroplasts are located separately in each epidermal cell along its upper and inner tangential walls, respectively. This is the first case of the chloroplast dimorphism in a single epidermal cell of angiosperms. While the large chloroplasts have well developed starch grains, the small chloroplasts have a normal granal ultrastructure but very few starch grains. This suggests that the small chloroplasts mainly function in CO(2) uptake for photosynthesis from torrential water.

  5. Transplastomic integration of a cyanobacterial bicarbonate transporter into tobacco chloroplasts.

    PubMed

    Pengelly, J J L; Förster, B; von Caemmerer, S; Badger, M R; Price, G D; Whitney, S M

    2014-07-01

    Improving global yields of agricultural crops is a complex challenge with evidence indicating benefits in productivity are achieved by enhancing photosynthetic carbon assimilation. Towards improving rates of CO2 capture within leaf chloroplasts, this study shows the versatility of plastome transformation for expressing the Synechococcus PCC7002 BicA bicarbonate transporter within tobacco plastids. Fractionation of chloroplast membranes from transplastomic tob(BicA) lines showed that ~75% of the BicA localized to the thylakoid membranes and ~25% to the chloroplast envelope. BicA levels were highest in young emerging tob(BicA) leaves (0.12 μmol m(-2), ≈7mg m(-2)) accounting for ~0.1% (w/w) of the leaf protein. In these leaves, the molar amount of BicA was 16-fold lower than the abundant thylakoid photosystem II D1 protein (~1.9 μmol m(-2)) which was comparable to the 9:1 molar ratio of D1:BicA measured in air-grown Synechococcus PCC7002 cells. The BicA produced had no discernible effect on chloroplast ultrastructure, photosynthetic CO2-assimilation rates, carbon isotope discrimination, or growth of the tob(BicA) plants, implying that the bicarbonate transporter had little or no activity. These findings demonstrate the utility of plastome transformation for targeting bicarbonate transporter proteins into the chloroplast membranes without impeding growth or plastid ultrastructure. This study establishes the span of experimental measurements required to verify heterologous bicarbonate transporter function and location in chloroplasts and underscores the need for more detailed understanding of BicA structure and function to identify solutions for enabling its activation and operation in leaf chloroplasts.

  6. Transplastomic integration of a cyanobacterial bicarbonate transporter into tobacco chloroplasts

    PubMed Central

    Pengelly, J. J. L.; Förster, B.; von Caemmerer, S.; Badger, M. R.; Price, G. D.; Whitney, S. M.

    2014-01-01

    Improving global yields of agricultural crops is a complex challenge with evidence indicating benefits in productivity are achieved by enhancing photosynthetic carbon assimilation. Towards improving rates of CO2 capture within leaf chloroplasts, this study shows the versatility of plastome transformation for expressing the Synechococcus PCC7002 BicA bicarbonate transporter within tobacco plastids. Fractionation of chloroplast membranes from transplastomic tobBicA lines showed that ~75% of the BicA localized to the thylakoid membranes and ~25% to the chloroplast envelope. BicA levels were highest in young emerging tobBicA leaves (0.12 μmol m–2, ≈7mg m–2) accounting for ~0.1% (w/w) of the leaf protein. In these leaves, the molar amount of BicA was 16-fold lower than the abundant thylakoid photosystem II D1 protein (~1.9 μmol m–2) which was comparable to the 9:1 molar ratio of D1:BicA measured in air-grown Synechococcus PCC7002 cells. The BicA produced had no discernible effect on chloroplast ultrastructure, photosynthetic CO2-assimilation rates, carbon isotope discrimination, or growth of the tobBicA plants, implying that the bicarbonate transporter had little or no activity. These findings demonstrate the utility of plastome transformation for targeting bicarbonate transporter proteins into the chloroplast membranes without impeding growth or plastid ultrastructure. This study establishes the span of experimental measurements required to verify heterologous bicarbonate transporter function and location in chloroplasts and underscores the need for more detailed understanding of BicA structure and function to identify solutions for enabling its activation and operation in leaf chloroplasts. PMID:24965541

  7. Transplastomic integration of a cyanobacterial bicarbonate transporter into tobacco chloroplasts.

    PubMed

    Pengelly, J J L; Förster, B; von Caemmerer, S; Badger, M R; Price, G D; Whitney, S M

    2014-07-01

    Improving global yields of agricultural crops is a complex challenge with evidence indicating benefits in productivity are achieved by enhancing photosynthetic carbon assimilation. Towards improving rates of CO2 capture within leaf chloroplasts, this study shows the versatility of plastome transformation for expressing the Synechococcus PCC7002 BicA bicarbonate transporter within tobacco plastids. Fractionation of chloroplast membranes from transplastomic tob(BicA) lines showed that ~75% of the BicA localized to the thylakoid membranes and ~25% to the chloroplast envelope. BicA levels were highest in young emerging tob(BicA) leaves (0.12 μmol m(-2), ≈7mg m(-2)) accounting for ~0.1% (w/w) of the leaf protein. In these leaves, the molar amount of BicA was 16-fold lower than the abundant thylakoid photosystem II D1 protein (~1.9 μmol m(-2)) which was comparable to the 9:1 molar ratio of D1:BicA measured in air-grown Synechococcus PCC7002 cells. The BicA produced had no discernible effect on chloroplast ultrastructure, photosynthetic CO2-assimilation rates, carbon isotope discrimination, or growth of the tob(BicA) plants, implying that the bicarbonate transporter had little or no activity. These findings demonstrate the utility of plastome transformation for targeting bicarbonate transporter proteins into the chloroplast membranes without impeding growth or plastid ultrastructure. This study establishes the span of experimental measurements required to verify heterologous bicarbonate transporter function and location in chloroplasts and underscores the need for more detailed understanding of BicA structure and function to identify solutions for enabling its activation and operation in leaf chloroplasts. PMID:24965541

  8. Chloroplast genome structure in Ilex (Aquifoliaceae)

    PubMed Central

    Yao, Xin; Tan, Yun-Hong; Liu, Ying-Ying; Song, Yu; Yang, Jun-Bo; Corlett, Richard T.

    2016-01-01

    Aquifoliaceae is the largest family in the campanulid order Aquifoliales. It consists of a single genus, Ilex, the hollies, which is the largest woody dioecious genus in the angiosperms. Most species are in East Asia or South America. The taxonomy and evolutionary history remain unclear due to the lack of a robust species-level phylogeny. We produced the first complete chloroplast genomes in this family, including seven Ilex species, by Illumina sequencing of long-range PCR products and subsequent reference-guided de novo assembly. These genomes have a typical bicyclic structure with a conserved genome arrangement and moderate divergence. The total length is 157,741 bp and there is one large single-copy region (LSC) with 87,109 bp, one small single-copy with 18,436 bp, and a pair of inverted repeat regions (IR) with 52,196 bp. A total of 144 genes were identified, including 96 protein-coding genes, 40 tRNA and 8 rRNA. Thirty-four repetitive sequences were identified in Ilex pubescens, with lengths >14 bp and identity >90%, and 11 divergence hotspot regions that could be targeted for phylogenetic markers. This study will contribute to improved resolution of deep branches of the Ilex phylogeny and facilitate identification of Ilex species. PMID:27378489

  9. Chloroplast genome structure in Ilex (Aquifoliaceae).

    PubMed

    Yao, Xin; Tan, Yun-Hong; Liu, Ying-Ying; Song, Yu; Yang, Jun-Bo; Corlett, Richard T

    2016-01-01

    Aquifoliaceae is the largest family in the campanulid order Aquifoliales. It consists of a single genus, Ilex, the hollies, which is the largest woody dioecious genus in the angiosperms. Most species are in East Asia or South America. The taxonomy and evolutionary history remain unclear due to the lack of a robust species-level phylogeny. We produced the first complete chloroplast genomes in this family, including seven Ilex species, by Illumina sequencing of long-range PCR products and subsequent reference-guided de novo assembly. These genomes have a typical bicyclic structure with a conserved genome arrangement and moderate divergence. The total length is 157,741 bp and there is one large single-copy region (LSC) with 87,109 bp, one small single-copy with 18,436 bp, and a pair of inverted repeat regions (IR) with 52,196 bp. A total of 144 genes were identified, including 96 protein-coding genes, 40 tRNA and 8 rRNA. Thirty-four repetitive sequences were identified in Ilex pubescens, with lengths >14 bp and identity >90%, and 11 divergence hotspot regions that could be targeted for phylogenetic markers. This study will contribute to improved resolution of deep branches of the Ilex phylogeny and facilitate identification of Ilex species. PMID:27378489

  10. Rice chloroplast-localized heat shock protein 70, OsHsp70CP1, is essential for chloroplast development under high-temperature conditions.

    PubMed

    Kim, Sung-Ryul; An, Gynheung

    2013-06-15

    Heat is a primary abiotic stress that reduces crop yields. At the seedling stage, we identified heat-sensitive mutants that carried T-DNA inserted into a heat shock protein 70 gene, OsHsp70CP1. When grown under a constant high temperature (40°C), the seedling leaves developed severe chlorosis whereas plants grown at a constant 27°C showed a normal phenotype. This indicated that OsHsp70CP1 is essential for chloroplast differentiation from the proplastids under high temperatures. Transient expression analyses revealed that OsHsp70CP1 was localized to the stroma. OsHsp70CP1 was dominantly expressed in photosynthetic tissues; transcripts were greatly increased by heat stress. Some transcripts for plastid RNA metabolism were impaired in the mutant while others were not, demonstrating that a subset of nuclear-encoded proteins are substrates of OsHsp70CP1.

  11. Functional remodeling of RNA processing in replacement chloroplasts by pathways retained from their predecessors.

    PubMed

    Dorrell, Richard G; Howe, Christopher J

    2012-11-13

    Chloroplasts originate through the endosymbiotic integration of a host and a photosynthetic symbiont, with processes established within the host for the biogenesis and maintenance of the nascent chloroplast. It is thought that several photosynthetic eukaryotes have replaced their original chloroplasts with others derived from different source organisms in a process termed "serial endosymbiosis of chloroplasts." However, it is not known whether replacement chloroplasts are affected by the biogenesis and maintenance pathways established to support their predecessors. Here, we investigate whether pathways established during a previous chloroplast symbiosis function in the replacement chloroplasts of the dinoflagellate alga Karenia mikimotoi. We show that chloroplast transcripts in K. mikimotoi are subject to 3' polyuridylylation and extensive sequence editing. We confirm that these processes do not occur in free-living relatives of the replacement chloroplast lineage, but are otherwise found only in the ancestral, red algal-derived chloroplasts of dinoflagellates and their closest relatives. This indicates that these unusual RNA-processing pathways have been retained from the original symbiont lineage and made use of by the replacement chloroplast. Our results constitute an addition to current theories of chloroplast evolution in which chloroplast biogenesis may be radically remodeled by pathways remaining from previous symbioses.

  12. Chloroplast ATPase in Acetabularia acetabulum: purification and characterization of chloroplast F1-ATPase.

    PubMed

    Satoh, S; Moritani, C; Ohhashi, T; Konishi, K; Ikeda, M

    1994-03-01

    ATPases were isolated from chloroplasts of the unicellular marine alga Acetabularia acetabulum. Two preparations of ATPase, a chloroplast-enriched fraction and an alpha beta gamma-complex were compared. The alpha beta gamma-complex was released into an EDTA solution and purified by anion-exchange chromatography, hydrophobic chromatography, and gel permeation chromatography. The subunit composition of this enzyme appeared to be 52-53 (alpha), 51 (beta), and 40 (gamma) kDa from SDS-PAGE. ATPase activity was enriched about 260-fold to a specific activity of approximate 4.1 U.mg protein-1. The catalytic properties of the alpha beta gamma-complex were as follows: pH optimum at 7.5; substrate specificity, ATP > ITP, GTP > UTP = CTP (Km for ATP 0.2 mM); divalent cation requirement, Mg2+ = Mn2+ = Co2+ > Zn2+ > Ni2+ > Ca2+; ATPase activity was inhibited by monovalent anions (NO3-, SCN-), while monovalent cations had neither inhibitory nor stimulatory effect. Orthovanadate had no inhibitory effect on the enzyme activity of alpha beta gamma-complex. Azide was the most effective inhibitor of the alpha beta gamma-complex. N-Terminal amino acid sequences of the alpha and beta subunits were not obtained and appeared to be blocked. The gamma subunit gave a sequence of AGLKEMKD-XIGSVXNTKKI, which showed 60% similarity to the gamma subunits of spinach and Chlamydomonas reinhardtii CF1-ATPase and EF1-ATPase.

  13. Chloroplasts Are Central Players in Sugar-Induced Leaf Growth1[OPEN

    PubMed Central

    De Milde, Liesbeth; Maleux, Katrien

    2016-01-01

    Leaves are the plant’s powerhouses, providing energy for all organs through sugar production during photosynthesis. However, sugars serve not only as a metabolic energy source for sink tissues but also as signaling molecules, affecting gene expression through conserved signaling pathways to regulate plant growth and development. Here, we describe an in vitro experimental assay, allowing one to alter the sucrose (Suc) availability during early Arabidopsis (Arabidopsis thaliana) leaf development, with the aim to identify the affected cellular and molecular processes. The transfer of seedlings to Suc-containing medium showed a profound effect on leaf growth by stimulating cell proliferation and postponing the transition to cell expansion. Furthermore, rapidly after transfer to Suc, mesophyll cells contained fewer and smaller plastids, which are irregular in shape and contain fewer starch granules compared with control mesophyll cells. Short-term transcriptional responses after transfer to Suc revealed the repression of well-known sugar-responsive genes and multiple genes encoded by the plastid, on the one hand, and up-regulation of a GLUCOSE-6-PHOSPHATE TRANSPORTER (GPT2), on the other hand. Mutant gpt2 seedlings showed no stimulation of cell proliferation and no repression of chloroplast-encoded transcripts when transferred to Suc, suggesting that GPT2 plays a critical role in the Suc-mediated effects on early leaf growth. Our findings, therefore, suggest that induction of GPT2 expression by Suc increases the import of glucose-6-phosphate into the plastids that would repress chloroplast-encoded transcripts, restricting chloroplast differentiation. Retrograde signaling from the plastids would then delay the transition to cell expansion and stimulate cell proliferation. PMID:26932234

  14. Computer modeling of electron and proton transport in chloroplasts.

    PubMed

    Tikhonov, Alexander N; Vershubskii, Alexey V

    2014-07-01

    Photosynthesis is one of the most important biological processes in biosphere, which provides production of organic substances from atmospheric CO2 and water at expense of solar energy. In this review, we contemplate computer models of oxygenic photosynthesis in the context of feedback regulation of photosynthetic electron transport in chloroplasts, the energy-transducing organelles of the plant cell. We start with a brief overview of electron and proton transport processes in chloroplasts coupled to ATP synthesis and consider basic regulatory mechanisms of oxygenic photosynthesis. General approaches to computer simulation of photosynthetic processes are considered, including the random walk models of plastoquinone diffusion in thylakoid membranes and deterministic approach to modeling electron transport in chloroplasts based on the mass action law. Then we focus on a kinetic model of oxygenic photosynthesis that includes key stages of the linear electron transport, alternative pathways of electron transfer around photosystem I (PSI), transmembrane proton transport and ATP synthesis in chloroplasts. This model includes different regulatory processes: pH-dependent control of the intersystem electron transport, down-regulation of photosystem II (PSII) activity (non-photochemical quenching), the light-induced activation of the Bassham-Benson-Calvin (BBC) cycle. The model correctly describes pH-dependent feedback control of electron transport in chloroplasts and adequately reproduces a variety of experimental data on induction events observed under different experimental conditions in intact chloroplasts (variations of CO2 and O2 concentrations in atmosphere), including a complex kinetics of P700 (primary electron donor in PSI) photooxidation, CO2 consumption in the BBC cycle, and photorespiration. Finally, we describe diffusion-controlled photosynthetic processes in chloroplasts within the framework of the model that takes into account complex architecture of

  15. Red light, Phot1 and JAC1 modulate Phot2-dependent reorganization of chloroplast actin filaments and chloroplast avoidance movement.

    PubMed

    Ichikawa, Satoshi; Yamada, Noboru; Suetsugu, Noriyuki; Wada, Masamitsu; Kadota, Akeo

    2011-08-01

    The phototropin (phot)-dependent intracellular relocation of chloroplasts is a ubiquitous phenomenon in plants. We have previously revealed the involvement of a short cp-actin (chloroplast actin) filament-based mechanism in this movement. Here, the reorganization of cp-actin filaments during the avoidance movement of chloroplasts was analyzed in higher time resolution under blue GFP (green fluorescent protein) excitation light in an actin filament-visualized line of Arabidopsis thaliana. Under standard background red light of 89 μmol m(-2) s(-1), cp-actin filaments transiently disappeared at approximately 30 s and reappeared in a biased configuration on chloroplasts approximately 70 s after blue excitation light irradiation. The timing of biased cp-actin reappearance was delayed under the background of strong red light or in the absence of red light. Consistently, chloroplast movement was delayed under these conditions. In phot1 mutants, acceleration of both the disappearance and reappearance of cp-actin filaments occurred, indicating an inhibitory action of phot1 on reorganization of cp-actin filaments. Avoidance movements began sooner in phot1 than in wild-type plants. No reorganization of cp-actin filaments was seen in phot2 or phot1phot2 mutants lacking phot2, which is responsible for avoidance movements. Surprisingly, jac1 (j-domain protein required for chloroplast accumulation response 1) mutants, lacking the accumulation response, showed no avoidance movements under the whole-cell irradiation condition for GFP observation. Cp-actin filaments in jac1 did not show a biased distribution, with a small or almost no transient decrease in the number. These results indicate a close association between the biased distribution of cp-actin filaments and chloroplast movement. Further, JAC1 is suggested to function in the biased cp-actin filament distribution by regulating their appearance and disappearance.

  16. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads

    PubMed Central

    Jiang, Guo-Feng; Hinsinger, Damien Daniel; Strijk, Joeri Sergej

    2016-01-01

    Cycads are among the most threatened plant species. Increasing the availability of genomic information by adding whole chloroplast data is a fundamental step in supporting phylogenetic studies and conservation efforts. Here, we assemble a dataset encompassing three taxonomic levels in cycads, including ten genera, three species in the genus Cycas and two individuals of C. debaoensis. Repeated sequences, SSRs and variations of the chloroplast were analyzed at the intraspecific, interspecific and intergeneric scale, and using our sequence data, we reconstruct a phylogenomic tree for cycads. The chloroplast was 162,094 bp in length, with 133 genes annotated, including 87 protein-coding, 37 tRNA and 8 rRNA genes. We found 7 repeated sequences and 39 SSRs. Seven loci showed promising levels of variations for application in DNA-barcoding. The chloroplast phylogeny confirmed the division of Cycadales in two suborders, each of them being monophyletic, revealing a contradiction with the current family circumscription and its evolution. Finally, 10 intraspecific SNPs were found. Our results showed that despite the extremely restricted distribution range of C. debaoensis, using complete chloroplast data is useful not only in intraspecific studies, but also to improve our understanding of cycad evolution and in defining conservation strategies for this emblematic group. PMID:27558458

  17. The complete chloroplast genome of Capsicum frutescens (Solanaceae)1

    PubMed Central

    Shim, Donghwan; Raveendar, Sebastin; Lee, Jung-Ro; Lee, Gi-An; Ro, Na-Young; Jeon, Young-Ah; Cho, Gyu-Taek; Lee, Ho-Sun; Ma, Kyung-Ho; Chung, Jong-Wook

    2016-01-01

    Premise of the study: We report the complete sequence of the chloroplast genome of Capsicum frutescens (Solanaceae), a species of chili pepper. Methods and Results: Using an Illumina platform, we sequenced the chloroplast genome of C. frutescens. The total length of the genome is 156,817 bp, and the overall GC content is 37.7%. A pair of 25,792-bp inverted repeats is separated by small (17,853 bp) and large (87,380 bp) single-copy regions. The C. frutescens chloroplast genome encodes 132 unique genes, including 87 protein-coding genes, 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. Of these, seven genes are duplicated in the inverted repeats and 12 genes contain one or two introns. Comparative analysis with the reference chloroplast genome revealed 125 simple sequence repeat motifs and 34 variants, mostly located in the noncoding regions. Conclusions: The complete chloroplast genome sequence of C. frutescens reported here is a valuable genetic resource for Capsicum species. PMID:27213127

  18. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    NASA Technical Reports Server (NTRS)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  19. Ftsz Ring Formation at the Chloroplast Division Site in Plants

    PubMed Central

    Vitha, Stanislav; McAndrew, Rosemary S.; Osteryoung, Katherine W.

    2001-01-01

    Among the events that accompanied the evolution of chloroplasts from their endosymbiotic ancestors was the host cell recruitment of the prokaryotic cell division protein FtsZ to function in chloroplast division. FtsZ, a structural homologue of tubulin, mediates cell division in bacteria by assembling into a ring at the midcell division site. In higher plants, two nuclear-encoded forms of FtsZ, FtsZ1 and FtsZ2, play essential and functionally distinct roles in chloroplast division, but whether this involves ring formation at the division site has not been determined previously. Using immunofluorescence microscopy and expression of green fluorescent protein fusion proteins in Arabidopsis thaliana, we demonstrate here that FtsZ1 and FtsZ2 localize to coaligned rings at the chloroplast midpoint. Antibodies specific for recognition of FtsZ1 or FtsZ2 proteins in Arabidopsis also recognize related polypeptides and detect midplastid rings in pea and tobacco, suggesting that midplastid ring formation by FtsZ1 and FtsZ2 is universal among flowering plants. Perturbation in the level of either protein in transgenic plants is accompanied by plastid division defects and assembly of FtsZ1 and FtsZ2 into filaments and filament networks not observed in wild-type, suggesting that previously described FtsZ-containing cytoskeletal-like networks in chloroplasts may be artifacts of FtsZ overexpression. PMID:11285278

  20. Uptake of l-Ascorbate by Intact Spinach Chloroplasts

    PubMed Central

    Beck, Erwin; Burkert, Anette; Hofmann, Margit

    1983-01-01

    Uptake of l-[1-14C]ascorbate by intact ascorbate-free spinach (Spinacia oleracea L. cv Vitalr) chloroplasts has been investigated using the technique of silicone oil filtering. Rates greater than 100 micromoles per milligram chlorophyll per hour (external concentration, 10 millimolar) of ascorbate transport were observed. Ascorbate uptake into the sorbitol-impermeable space (stroma) followed the Michaelis-Menten-type characteristic for substrate saturation. A Km of 18 to 40 millimolar was determined. Transport of ascorbate across the chloroplast envelope resulted in an equilibrium of the ascorbate concentrations between stroma and medium. A pH optimum of 7.0 to 7.5 and the lack of alkalization of the medium upon ascorbate uptake suggest that only the monovalent ascorbate anion is able to cross the chloroplast envelope. The activation energy of ascorbate uptake was determined to be 65.8 kilojoules (16 kilocalories) per mole (8 to 20°C). Interference of ascorbate transport with substrates of the phosphate or dicarboxylate translocator could not be detected, but didehydroascorbate was a competitive inhibitor. Preloading of chloroplasts with didehydroascorbate resulted in an increase of Vmax but did not change the Km for ascorbate. Millimolar concentrations of the sulfhydryl reagent p-chloromercuriphenyl sulfonate inhibited ascorbate uptake. The data are interpreted in terms of ascorbate uptake into chloroplasts by the mechanism of facilitated diffusion mediated by a specific translocator. PMID:16663182

  1. Inhibition of chloroplastic respiration by osmotic dehydration. [Spinacia oleracea L

    SciTech Connect

    Willeford, K.O.; Ahluwalia, K.J.K.; Gibbs, M. )

    1989-04-01

    The respiratory capacity of isolated spinach (Spinacia oleracea L.) chloroplasts, measured as the rate of {sup 14}CO{sub 2} evolved from the oxidative pentose phosphate cycle in darkened chloroplasts exogenously supplied with ({sup 14}C)glucose, was progressively diminished by escalating osmotic dehydration with betaine or sorbitol. Comparing the inhibitions of CO{sub 2} evolution generated by osmotic dehydration in chloroplasts given C-1 and C-6 labeled glucose, 54% and 84%, respectively, indicates that osmotic dehydration effects to a greater extent the recycling of the oxidative pentose phosphate intermediates, fructose-6P and glyceraldehyde-3P. Respiratory inhibition in the darkened chloroplast could be alleviated by addition of NH{sub 4}Cl (a stromal alkylating agent), iodoacetamide (an inhibitor of glyceraldehyde-3P dehydrogenase), or glycolate-2P (an inhibitor of phosphofructokinase). It is concluded that the site which primarily mediates respiratory inhibition in the darkened chloroplast occurs at the fructose 1,6-bisphosphatase/phosphofructokinase junction.

  2. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads.

    PubMed

    Jiang, Guo-Feng; Hinsinger, Damien Daniel; Strijk, Joeri Sergej

    2016-01-01

    Cycads are among the most threatened plant species. Increasing the availability of genomic information by adding whole chloroplast data is a fundamental step in supporting phylogenetic studies and conservation efforts. Here, we assemble a dataset encompassing three taxonomic levels in cycads, including ten genera, three species in the genus Cycas and two individuals of C. debaoensis. Repeated sequences, SSRs and variations of the chloroplast were analyzed at the intraspecific, interspecific and intergeneric scale, and using our sequence data, we reconstruct a phylogenomic tree for cycads. The chloroplast was 162,094 bp in length, with 133 genes annotated, including 87 protein-coding, 37 tRNA and 8 rRNA genes. We found 7 repeated sequences and 39 SSRs. Seven loci showed promising levels of variations for application in DNA-barcoding. The chloroplast phylogeny confirmed the division of Cycadales in two suborders, each of them being monophyletic, revealing a contradiction with the current family circumscription and its evolution. Finally, 10 intraspecific SNPs were found. Our results showed that despite the extremely restricted distribution range of C. debaoensis, using complete chloroplast data is useful not only in intraspecific studies, but also to improve our understanding of cycad evolution and in defining conservation strategies for this emblematic group. PMID:27558458

  3. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads.

    PubMed

    Jiang, Guo-Feng; Hinsinger, Damien Daniel; Strijk, Joeri Sergej

    2016-08-25

    Cycads are among the most threatened plant species. Increasing the availability of genomic information by adding whole chloroplast data is a fundamental step in supporting phylogenetic studies and conservation efforts. Here, we assemble a dataset encompassing three taxonomic levels in cycads, including ten genera, three species in the genus Cycas and two individuals of C. debaoensis. Repeated sequences, SSRs and variations of the chloroplast were analyzed at the intraspecific, interspecific and intergeneric scale, and using our sequence data, we reconstruct a phylogenomic tree for cycads. The chloroplast was 162,094 bp in length, with 133 genes annotated, including 87 protein-coding, 37 tRNA and 8 rRNA genes. We found 7 repeated sequences and 39 SSRs. Seven loci showed promising levels of variations for application in DNA-barcoding. The chloroplast phylogeny confirmed the division of Cycadales in two suborders, each of them being monophyletic, revealing a contradiction with the current family circumscription and its evolution. Finally, 10 intraspecific SNPs were found. Our results showed that despite the extremely restricted distribution range of C. debaoensis, using complete chloroplast data is useful not only in intraspecific studies, but also to improve our understanding of cycad evolution and in defining conservation strategies for this emblematic group.

  4. Treatment with antibiotics that interfere with peptidoglycan biosynthesis inhibits chloroplast division in the desmid Closterium.

    PubMed

    Matsumoto, Hiroko; Takechi, Katsuaki; Sato, Hiroshi; Takio, Susumu; Takano, Hiroyoshi

    2012-01-01

    Charophytes is a green algal group closely related to land plants. We investigated the effects of antibiotics that interfere with peptidoglycan biosynthesis on chloroplast division in the desmid Closterium peracerosum-strigosum-littorale complex. To detect cells just after division, we used colchicine, which inhibits Closterium cell elongation after division. Although normal Closterium cells had two chloroplasts before and after cell division, cells treated with ampicillin, D-cycloserine, or fosfomycin had only one chloroplast after cell division, suggesting that the cells divided without chloroplast division. The antibiotics bacitracin and vancomycin showed no obvious effect. Electron microscopic observation showed that irregular-shaped chloroplasts existed in ampicillin-treated Closterium cells. Because antibiotic treatments resulted in the appearance of long cells with irregular chloroplasts and cell death, we counted cell types in the culture. The results suggested that cells with one chloroplast appeared first and then a huge chloroplast was generated that inhibited cell division, causing elongation followed by cell death.

  5. Treatment with Antibiotics that Interfere with Peptidoglycan Biosynthesis Inhibits Chloroplast Division in the Desmid Closterium

    PubMed Central

    Matsumoto, Hiroko; Takechi, Katsuaki; Sato, Hiroshi; Takio, Susumu; Takano, Hiroyoshi

    2012-01-01

    Charophytes is a green algal group closely related to land plants. We investigated the effects of antibiotics that interfere with peptidoglycan biosynthesis on chloroplast division in the desmid Closterium peracerosum–strigosum–littorale complex. To detect cells just after division, we used colchicine, which inhibits Closterium cell elongation after division. Although normal Closterium cells had two chloroplasts before and after cell division, cells treated with ampicillin, D-cycloserine, or fosfomycin had only one chloroplast after cell division, suggesting that the cells divided without chloroplast division. The antibiotics bacitracin and vancomycin showed no obvious effect. Electron microscopic observation showed that irregular-shaped chloroplasts existed in ampicillin-treated Closterium cells. Because antibiotic treatments resulted in the appearance of long cells with irregular chloroplasts and cell death, we counted cell types in the culture. The results suggested that cells with one chloroplast appeared first and then a huge chloroplast was generated that inhibited cell division, causing elongation followed by cell death. PMID:22815801

  6. Primary structure of maize chloroplast adenylate kinase.

    PubMed

    Schiltz, E; Burger, S; Grafmüller, R; Deppert, W R; Haehnel, W; Wagner, E

    1994-06-15

    This paper describes the sequence of adenylate kinase (Mg-ATP+AMP<-->Mg-ADP+ADP) from maize chloroplasts. This light-inducible enzyme is important for efficient CO2 fixation in the C4 cycle, by removing and recycling AMP produced in the reversible pyruvate phosphate dikinase reaction. The complete sequence was determined by analyzing peptides from cleavages with trypsin, AspN protease and CNBr and subcleavage of a major CNBr peptide with chymotrypsin. N-terminal Edman degradation and carboxypeptidase digestion established the terminal residues. Electrospray mass spectrometry confirmed the final sequence of 222 residues (M(r) = 24867) including one cysteine and one tryptophan. The sequence shows this enzyme to be a long-variant-type adenylate kinase, the nearest relatives being adenylate kinases from Enterobacteriaceae. Alignment of the sequence with the adenylate kinase from Escherichia coli reveals 44% identical residues. Since the E. coli structure has been published recently at 0.19-nm resolution with the inhibitor adenosine(5')pentaphospho(5')adenosine (Ap5A) [Müller, C. W. & Schulz, G. E. (1992) J. Mol. Biol. 224, 159-177], catalytically essential residues could be compared and were found to be mostly conserved. Surprisingly, in the nucleotide-binding Gly-rich loop Gly-Xaa-Pro-Gly-Xaa-Gly-Lys the middle Gly is replaced by Ala. This is, however, compensated by an Ile-->Val exchange in the nearest spatial neighborhood. A Thr-->Ala exchange explains the unusual tolerance of the enzyme for pyrimidine nucleotides in the acceptor site. PMID:8026505

  7. Development of chloroplast genomic resources for Cynara.

    PubMed

    Curci, Pasquale L; De Paola, Domenico; Sonnante, Gabriella

    2016-03-01

    In this study, new chloroplast (cp) resources were developed for the genus Cynara, using whole cp genomes from 20 genotypes, by means of high-throughput sequencing technologies. Our target species included seven globe artichokes, two cultivated cardoons, eight wild artichokes, and three other wild Cynara species (C. baetica, C. cornigera and C. syriaca). One complete cp genome was isolated using short reads from a whole-genome sequencing project, while the others were obtained by means of long-range PCR, for which primer pairs are provided here. A de novo assembly strategy combined with a reference-based assembly allowed us to reconstruct each cp genome. Comparative analyses among the newly sequenced genotypes and two additional Cynara cp genomes ('Brindisino' artichoke and C. humilis) retrieved from public databases revealed 126 parsimony informative characters and 258 singletons in Cynara, for a total of 384 variable characters. Thirty-nine SSR loci and 34 other INDEL events were detected. After data analysis, 37 primer pairs for SSR amplification were designed, and these molecular markers were subsequently validated in our Cynara genotypes. Phylogenetic analysis based on all cp variable characters provided the best resolution when compared to what was observed using only parsimony informative characters, or only short 'variable' cp regions. The evaluation of the molecular resources obtained from this study led us to support the 'super-barcode' theory and consider the total cp sequence of Cynara as a reliable and valuable molecular marker for exploring species diversity and examining variation below the species level. PMID:26354522

  8. Comparative Chloroplast Genomes of Camellia Species

    PubMed Central

    Li, Hong-Tao; Yang, Jing; Li, De-Zhu

    2013-01-01

    Background Camellia, comprising more than 200 species, is a valuable economic commodity due to its enormously popular commercial products: tea leaves, flowers, and high-quality edible oils. It is the largest and most important genus in the family Theaceae. However, phylogenetic resolution of the species has proven to be difficult. Consequently, the interspecies relationships of the genus Camellia are still hotly debated. Phylogenomics is an attractive avenue that can be used to reconstruct the tree of life, especially at low taxonomic levels. Methodology/Principal Findings Seven complete chloroplast (cp) genomes were sequenced from six species representing different subdivisions of the genus Camellia using Illumina sequencing technology. Four junctions between the single-copy segments and the inverted repeats were confirmed and genome assemblies were validated by PCR-based product sequencing using 123 pairs of primers covering preliminary cp genome assemblies. The length of the Camellia cp genome was found to be about 157kb, which contained 123 unique genes and 23 were duplicated in the IR regions. We determined that the complete Camellia cp genome was relatively well conserved, but contained enough genetic differences to provide useful phylogenetic information. Phylogenetic relationships were analyzed using seven complete cp genomes of six Camellia species. We also identified rapidly evolving regions of the cp genome that have the potential to be used for further species identification and phylogenetic resolution. Conclusions/Significance In this study, we wanted to determine if analyzing completely sequenced cp genomes could help settle these controversies of interspecies relationships in Camellia. The results demonstrate that cp genome data are beneficial in resolving species definition because they indicate that organelle-based “barcodes”, can be established for a species and then used to unmask interspecies phylogenetic relationships. It reveals that

  9. Chloroplast incorporation and long-term photosynthetic performance through the life cycle in laboratory cultures of Elysia timida (Sacoglossa, Heterobranchia)

    PubMed Central

    2014-01-01

    Introduction The Mediterranean sacoglossan Elysia timida is one of the few sea slug species with the ability to sequester chloroplasts from its food algae and to subsequently store them in a functional state in the digestive gland cells for more than a month, during which time the plastids retain high photosynthetic activity (= long-term retention). Adult E. timida have been described to feed on the unicellular alga Acetabularia acetabulum in their natural environment. The suitability of E. timida as a laboratory model culture system including its food source was studied. Results In contrast to the literature reporting that juvenile E. timida feed on Cladophora dalmatica first, and later on switch to the adult diet A. acetabulum, the juveniles in this study fed directly on A. acetabulum (young, non-calcified stalks); they did not feed on the various Cladophora spp. (collected from the sea or laboratory culture) offered. This could possibly hint to cryptic speciation with no clear morphological differences, but incipient ecological differentiation. Transmission electron microscopy of chloroplasts from A. acetabulum after initial intake by juvenile E. timida showed different states of degradation — in conglomerations or singularly — and fragments of phagosome membranes, but differed from kleptoplast images of C. dalmatica in juvenile E. timida from the literature. Based on the finding that the whole life cycle of E. timida can be completed with A. acetabulum as the sole food source, a laboratory culture system was established. An experiment with PAM-fluorometry showed that cultured E. timida are also able to store chloroplasts in long-term retention from Acetabularia peniculus, which stems from the Indo-Pacific and is not abundant in the natural environment of E. timida. Variations between three experiment groups indicated potential influences of temperature on photosynthetic capacities. Conclusions E. timida is a viable laboratory model system to study

  10. Oryza sativa Chloroplast Signal Recognition Particle 43 (OscpSRP43) Is Required for Chloroplast Development and Photosynthesis.

    PubMed

    Lv, Xiang-guang; Shi, Yong-feng; Xu, Xia; Wei, Yan-lin; Wang, Hui-mei; Zhang, Xiao-bo; Wu, Jian-li

    2015-01-01

    A rice chlorophyll-deficient mutant w67 was isolated from an ethyl methane sulfonate (EMS)-induced IR64 (Oryza sativa L. ssp. indica) mutant bank. The mutant exhibited a distinct yellow-green leaf phenotype in the whole plant growth duration with significantly reduced levels of chlorophyll and carotenoid, impaired chloroplast development and lowered capacity of photosynthesis compared with the wild-type IR64. Expression of a number of genes associated with chlorophyll metabolism, chloroplast biogenesis and photosynthesis was significantly altered in the mutant. Genetic analysis indicated that the yellow-green phenotype was controlled by a single recessive nuclear gene located on the short arm of chromosome 3. Using map-based strategy, the mutation was isolated and predicted to encode a chloroplast signal recognition particle 43 KD protein (cpSRP43) with 388 amino acid residuals. A single base substitution from A to T at position 160 resulted in a premature stop codon. OscpSRP43 was constitutively expressed in various organs with the highest level in the leaf. Functional complementation could rescue the mutant phenotype and subcellular localization showed that the cpSRP43:GFP fusion protein was targeted to the chloroplast. The data suggested that Oryza sativa cpSRP43 (OscpSRP43) was required for the normal development of chloroplasts and photosynthesis in rice.

  11. Post-Transcriptional Control of Chloroplast Gene Expression

    PubMed Central

    del Campo, Eva M.

    2009-01-01

    Chloroplasts contain their own genome, organized as operons, which are generally transcribed as polycistronic transcriptional units. These primary transcripts are processed into smaller RNAs, which are further modified to produce functional RNAs. The RNA processing mechanisms remain largely unknown and represent an important step in the control of chloroplast gene expression. Such mechanisms include RNA cleavage of pre-existing RNAs, RNA stabilization, intron splicing, and RNA editing. Recently, several nuclear-encoded proteins that participate in diverse plastid RNA processing events have been characterised. Many of them seem to belong to the pentatricopeptide repeat (PPR) protein family that is implicated in many crucial functions including organelle biogenesis and plant development. This review will provide an overview of current knowledge of the post-transcriptional processing in chloroplasts. PMID:19838333

  12. IM30 triggers membrane fusion in cyanobacteria and chloroplasts.

    PubMed

    Hennig, Raoul; Heidrich, Jennifer; Saur, Michael; Schmüser, Lars; Roeters, Steven J; Hellmann, Nadja; Woutersen, Sander; Bonn, Mischa; Weidner, Tobias; Markl, Jürgen; Schneider, Dirk

    2015-01-01

    The thylakoid membrane of chloroplasts and cyanobacteria is a unique internal membrane system harbouring the complexes of the photosynthetic electron transfer chain. Despite their apparent importance, little is known about the biogenesis and maintenance of thylakoid membranes. Although membrane fusion events are essential for the formation of thylakoid membranes, proteins involved in membrane fusion have yet to be identified in photosynthetic cells or organelles. Here we show that IM30, a conserved chloroplast and cyanobacterial protein of approximately 30 kDa binds as an oligomeric ring in a well-defined geometry specifically to membranes containing anionic lipids. Triggered by Mg(2+), membrane binding causes destabilization and eventually results in membrane fusion. We propose that IM30 establishes contacts between internal membrane sites and promotes fusion to enable regulated exchange of proteins and/or lipids in cyanobacteria and chloroplasts. PMID:25952141

  13. S-sulfocysteine synthase function in sensing chloroplast redox status

    PubMed Central

    Gotor, Cecilia; Romero, Luis C.

    2013-01-01

    The minor chloroplastic O-acetylserine(thiol)lyase isoform encoded by the CS26 gene in Arabidopsis thaliana has been described as an S-sulfocysteine synthase enzyme that plays an important role in chloroplast function. This enzyme is located in the thylakoid lumen, and its S-sulfocysteine activity is essential for the proper photosynthetic performance of the chloroplast under long-day growth conditions. Based on the present knowledge of this enzyme, we suggest that S-sulfocysteine synthase functions as a protein sensor to detect the accumulation of thiosulfate as a result of the inadequate detoxification of reactive oxygen species generated under conditions of excess light to produce the S-sulfocysteine molecule that triggers protection mechanisms of the photosynthetic apparatus. PMID:23333972

  14. Breakthrough in chloroplast genetic engineering of agronomically important crops

    PubMed Central

    Daniell, Henry; Kumar, Shashi; Dufourmantel, Nathalie

    2012-01-01

    Chloroplast genetic engineering offers several unique advantages, including high-level transgene expression, multi-gene engineering in a single transformation event and transgene containment by maternal inheritance, as well as a lack of gene silencing, position and pleiotropic effects and undesirable foreign DNA. More than 40 transgenes have been stably integrated and expressed using the tobacco chloroplast genome to confer desired agronomic traits or express high levels of vaccine antigens and biopharmaceuticals. Despite such significant progress, this technology has not been extended to major crops. However, highly efficient soybean, carrot and cotton plastid transformation has recently been accomplished through somatic embryogenesis using species-specific chloroplast vectors. This review focuses on recent exciting developments in this field and offers directions for further research and development. PMID:15866001

  15. Shredding the signal: targeting peptide degradation in mitochondria and chloroplasts.

    PubMed

    Kmiec, Beata; Teixeira, Pedro F; Glaser, Elzbieta

    2014-12-01

    The biogenesis and functionality of mitochondria and chloroplasts depend on the constant turnover of their proteins. The majority of mitochondrial and chloroplastic proteins are imported as precursors via their N-terminal targeting peptides. After import, the targeting peptides are cleaved off and degraded. Recent work has elucidated a pathway involved in the degradation of targeting peptides in mitochondria and chloroplasts, with two proteolytic components: the presequence protease (PreP) and the organellar oligopeptidase (OOP). PreP and OOP are specialized in degrading peptides of different lengths, with the substrate restriction being dictated by the structure of their proteolytic cavities. The importance of the intraorganellar peptide degradation is highlighted by the fact that elimination of both oligopeptidases affects growth and development of Arabidopsis thaliana.

  16. Kinetic studies of interfacial photocurrents in platinized chloroplasts

    SciTech Connect

    Greenbaum, E.

    1992-12-01

    The present experiments focus on kinetic studies of phototocurrents generated in a photobioelectrochemical cell constructed from platinized chloroplast membranes. These chloroplast membranes although separated from the CO{sub 2}-reducing enzymes of the Calvin-Benson cycle, contain the full complement of photosystem I and II reaction centers along with the electron transport chain linking these two centers. The vectorial model of photosynthesis indicates that the orientation of the reaction centers in the photosynthetic membranes is such that electrons emerge from the membranes into the stroma region of the chloroplasts. Since the flattened saclike vesicles of the thylakoid membranes are topologically equivalent to spheres, it follows that, irrespective of the rotational orientation of the membranes, the photogenerated electrons emerge from the reaction centers in a radial direction away from the intra-thylakoid region.

  17. Kinetic studies of interfacial photocurrents in platinized chloroplasts

    SciTech Connect

    Greenbaum, E.

    1992-01-01

    The present experiments focus on kinetic studies of phototocurrents generated in a photobioelectrochemical cell constructed from platinized chloroplast membranes. These chloroplast membranes although separated from the CO[sub 2]-reducing enzymes of the Calvin-Benson cycle, contain the full complement of photosystem I and II reaction centers along with the electron transport chain linking these two centers. The vectorial model of photosynthesis indicates that the orientation of the reaction centers in the photosynthetic membranes is such that electrons emerge from the membranes into the stroma region of the chloroplasts. Since the flattened saclike vesicles of the thylakoid membranes are topologically equivalent to spheres, it follows that, irrespective of the rotational orientation of the membranes, the photogenerated electrons emerge from the reaction centers in a radial direction away from the intra-thylakoid region.

  18. Effect of antimycin a on photosynthesis of intact spinach chloroplasts.

    PubMed

    Schacter, B Z; Gibbs, M; Champigny, M L

    1971-10-01

    Low concentrations (0.5-10 mum) of antimycin A were shown to increase the rate of CO(2) fixation, O(2) evolution and inorganic phosphate esterification in intact spinach (Spinacia oleracea) chloroplasts. The increase was highest when the light intensity was saturating. Stimulation was independent of the bicarbonate concentration and was accompanied by an enhancement in the synthesis of glycerate 3-phosphate with a decrease in dihydroxyacetone phosphate. The antibiotic decreased the Michaelis constant of the chloroplast but not of ribulose 1,5-diphosphate carboxylase for bicarbonate. It was suggested that antimycin A is affecting that portion (outer envelope) of the intact chloroplast which contains the enzyme mechanism for controlling the pace of CO(2) fixation.

  19. S-sulfocysteine synthase function in sensing chloroplast redox status.

    PubMed

    Gotor, Cecilia; Romero, Luis C

    2013-03-01

    The minor chloroplastic O-acetylserine(thiol)lyase isoform encoded by the CS26 gene in Arabidopsis thaliana has been described as an S-sulfocysteine synthase enzyme that plays an important role in chloroplast function. This enzyme is located in the thylakoid lumen, and its S-sulfocysteine activity is essential for the proper photosynthetic performance of the chloroplast under long-day growth conditions. Based on the present knowledge of this enzyme, we suggest that S-sulfocysteine synthase functions as a protein sensor to detect the accumulation of thiosulfate as a result of the inadequate detoxification of reactive oxygen species generated under conditions of excess light to produce the S-sulfocysteine molecule that triggers protection mechanisms of the photosynthetic apparatus.

  20. Fractionation and Analysis of Polypeptides of Euglena gracilis Chloroplasts.

    PubMed

    Vasconcelos, A C; Mendiola-Morgenthaler, L R; Floyd, G L; Salisbury, J L

    1976-07-01

    Intact Euglena gracilis chloroplasts, purified on gradients of silica sol, were lysed osmotically and fractionated by centrifugation on discontinuous gradients of sucrose into their soluble, envelope membrane, and thylakoid membrane components. The proteins of the different subchloroplast fractions, as well as those of whole chloroplasts, were analyzed by electrophoresis on sodium dodecyl sulfate polyacrylamide gels. The polypeptide profile of each fraction was distinctive and was in general similar to the profile obtained for analogous fractions of the chloroplasts of higher plants.The envelope membranes were separated into two fractions in the gradients according to their banding densities. Electron micrographs showed that the light envelope fraction consisted mostly of single-membrane vesicles, whereas the heavy envelope fraction consisted of multiple layers of folded membranes. Both envelope fractions were ultrastructurally distinct from the thylakoid membranes. PMID:16659627

  1. Mechanisms of protein import into thylakoids of chloroplasts.

    PubMed

    Schünemann, Danja

    2007-09-01

    The thylakoid membrane of chloroplasts contains the major photosynthetic complexes, which consist of several either nuclear or chloroplast encoded subunits. The biogenesis of these thylakoid membrane complexes requires coordinated transport and subsequent assembly of the subunits into functional complexes. Nuclear-encoded thylakoid proteins are first imported into the chloroplast and then directed to the thylakoid using different sorting mechanisms. The cpSec pathway and the cpTat pathway are mainly involved in the transport of lumenal proteins, whereas the spontaneous pathway and the cpSRP pathway are used for the insertion of integral membrane proteins into the thylakoid membrane. While cpSec-, cpTat- and cpSRP-mediated targeting can be classified as 'assisted' mechanisms involving numerous components, 'unassisted' spontaneous insertion does not require additional targeting factors. However, even the assisted pathways differ fundamentally with respect to stromal targeting factors, the composition of the translocase and energy requirements.

  2. Actin-dependence of the chloroplast cold positioning response in the liverwort Marchantia polymorpha L.

    PubMed Central

    Kimura, Shun

    2016-01-01

    The subcellular positioning of chloroplasts can be changed by alterations in the environment such as light and temperature. For example, in leaf mesophyll cells, chloroplasts localize along anticlinal cell walls under high-intensity light, and along periclinal cell walls under low-intensity light. These types of positioning responses are involved in photosynthetic optimization. In light-mediated chloroplast positioning responses, chloroplasts move to the appropriate positions in an actin-dependent manner, although some exceptions also depend on microtubule. Even under low-intensity light, at low temperature (e.g., 5°C), chloroplasts localize along anticlinal cell walls; this phenomenon is termed chloroplast cold positioning. In this study, we analyzed whether chloroplast cold positioning is dependent on actin filaments and/or microtubules in the liverwort Marchantia polymorpha L. When liverwort cells were treated with drugs for the de-polymerization of actin filaments, chloroplast cold positioning was completely inhibited. In contrast, chloroplast cold positioning was not affected by treatment with a drug for the de-polymerization of microtubules. These observations indicate the actin-dependence of chloroplast cold positioning in M. polymorpha. Actin filaments during the chloroplast cold positioning response were visualized by using fluorescent probes based on fluorescent proteins in living liverwort cells, and thus, their behavior during the chloroplast cold positioning response was documented. PMID:27703856

  3. Possible association of actin filaments with chloroplasts of spinach mesophyll cells in vivo and in vitro.

    PubMed

    Kumatani, T; Sakurai-Ozato, N; Miyawaki, N; Yokota, E; Shimmen, T; Terashima, I; Takagi, S

    2006-11-01

    In palisade mesophyll cells of spinach (Spinacia oleracea L.) kept under low-intensity white light, chloroplasts were apparently immobile and seemed to be surrounded by fine bundles of actin filaments. High-intensity blue light induced actin-dependent chloroplast movement concomitant with the appearance of a couple of long, straight bundles of actin filaments in each cell, whereas high-intensity red light was essentially ineffective in inducing these responses. The actin organization observed under low-intensity white light has been postulated to function in anchoring chloroplasts at proper intracellular positions through direct interaction with the chloroplasts. Intact chloroplasts, which retained their outer envelopes, were isolated after homogenization of leaves and Percoll centrifugation. No endogenous actin was detected by immunoblotting in the final intact-chloroplast fraction prepared from the leaves kept under low-intensity white light or in darkness. In cosedimentation assays with exogenously added skeletal muscle filamentous actin, however, actin was detected in the intact-chloroplast fraction precipitated after low-speed centrifugation. The association of actin with chloroplasts was apparently dependent on incubation time and chloroplast density. After partial disruption of the outer envelope of isolated chloroplasts by treatment with trypsin, actin was no longer coprecipitated. The results suggest that chloroplasts in spinach leaves can directly interact with actin, and that this interaction may be involved in the regulation of intracellular positioning of chloroplasts.

  4. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and ...

  5. Manipulating the chloroplast genome of Chlamydomonas: Present realities and future prospects

    SciTech Connect

    Boynton, J.; Gillham, N.; Hauser, C.; Heifetz, P.; Lers, A.; Newman, S.; Osmond, B.

    1992-01-01

    Biotechnology is being applied in vitro modification and stable reintroduction of chloroplast genes in Chlamydomonas reinhardtii and Nicotiana tabacum by homologous recombination. We are attempting the function analyses of plastid encoded proteins involved in photosynthesis, characterization of sequences which regulate expression of plastid genes at the transcriptional and translational levels, targeted disruption of chloroplast genes and molecular analysis of processes involved in chloroplast recombination.

  6. Manipulating the chloroplast genome of Chlamydomonas: Present realities and future prospects

    SciTech Connect

    Boynton, J.; Gillham, N.; Hauser, C.; Heifetz, P.; Lers, A.; Newman, S.; Osmond, B.

    1992-12-31

    Biotechnology is being applied in vitro modification and stable reintroduction of chloroplast genes in Chlamydomonas reinhardtii and Nicotiana tabacum by homologous recombination. We are attempting the function analyses of plastid encoded proteins involved in photosynthesis, characterization of sequences which regulate expression of plastid genes at the transcriptional and translational levels, targeted disruption of chloroplast genes and molecular analysis of processes involved in chloroplast recombination.

  7. Non-reductive modulation of chloroplast fructose-1,6-bisphosphatase by 2-Cys peroxiredoxin.

    PubMed

    Caporaletti, Daniel; D'Alessio, Ana C; Rodriguez-Suarez, Roberto J; Senn, Alejandro M; Duek, Paula D; Wolosiuk, Ricardo A

    2007-04-13

    2-Cys peroxiredoxin (2-Cys Prx) is a large group of proteins that participate in cell proliferation, differentiation, apoptosis, and photosynthesis. In the prevailing view, this ubiquitous peroxidase poises the concentration of H2O2 and, in so doing, regulates signal transduction pathways or protects macromolecules against oxidative damage. Here, we describe the first purification of 2-Cys Prx from higher plants and subsequently we show that the native and the recombinant forms of rapeseed leaves stimulate the activity of chloroplast fructose-1,6-bisphosphatase (CFBPase), a key enzyme of the photosynthetic CO2 assimilation. The absence of reductants, the strict requirement of both fructose 1,6-bisphosphate and Ca2+, and the response of single mutants C174S and C179S CFBPase bring forward clear differences with the well-known stimulation mediated by reduced thioredoxin via the regulatory 170's loop of CFBPase. Taken together, these findings provide an unprecedented insight into chloroplast enzyme regulation wherein both 2-Cys Prx and the 170's loop of CFBPase exhibit novel functions.

  8. Non-reductive modulation of chloroplast fructose-1,6-bisphosphatase by 2-Cys peroxiredoxin

    SciTech Connect

    Caporaletti, Daniel; D'Alessio, Ana C.; Rodriguez-Suarez, Roberto J.; Senn, Alejandro M.; Duek, Paula D.; Wolosiuk, Ricardo A. . E-mail: rwolosiuk@leloir.org.ar

    2007-04-13

    2-Cys peroxiredoxin (2-Cys Prx) is a large group of proteins that participate in cell proliferation, differentiation, apoptosis, and photosynthesis. In the prevailing view, this ubiquitous peroxidase poises the concentration of H{sub 2}O{sub 2} and, in so doing, regulates signal transduction pathways or protects macromolecules against oxidative damage. Here, we describe First purification of 2-Cys Prx from higher plants and subsequently we show that the native and the recombinant forms of rapeseed leaves stimulate the activity of chloroplast fructose-1,6-bisphosphatase (CFBPase), a key enzyme of the photosynthetic CO{sub 2} assimilation. The absence of reductants, the strict requirement of both fructose 1,6-bisphosphate and Ca{sup 2+}, and the response of single mutants C174S and C179S CFBPase bring forward clear differences with the well-known stimulation mediated by reduced thioredoxin via the regulatory 170's loop of CFBPase. Taken together, these findings provide an unprecedented insight into chloroplast enzyme regulation wherein both 2-Cys Prx and the 170's loop of CFBPase exhibit novel functions.

  9. Chloroplast Iron Transport Proteins - Function and Impact on Plant Physiology.

    PubMed

    López-Millán, Ana F; Duy, Daniela; Philippar, Katrin

    2016-01-01

    Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field. PMID:27014281

  10. Localization of reactive oxygen species and change of antioxidant capacities in mesophyll and bundle sheath chloroplasts of maize under salinity.

    PubMed

    Omoto, Eiji; Nagao, Haruto; Taniguchi, Mitsutaka; Miyake, Hiroshi

    2013-09-01

    In maize, the structure of bundle sheath cell (BSC) chloroplasts is less subject to salinity stress than that of mesophyll cell (MC) chloroplasts. To elucidate the difference in sensitivity to salinity, antioxidant capacities and localization of reactive oxygen species were investigated in both chloroplasts. Transmission electron microscopic observation showed that O2 (-) localization was found in both chloroplasts under salinity, but the accumulation was much greater in MC chloroplasts. H2 O2 localization was observed only in MC chloroplasts of salt-treated plants. In isolated chloroplasts, the activities of superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11) and dehydroascorbate reductase (DHAR, EC 1.8.5.1) were increased by salinity. While the enhancement of SOD activity was similar in both chloroplasts, the increase of APX and DHAR activities were more pronounced in BSC chloroplasts than in MC chloroplasts. Monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) and glutathione reductase (GR, EC 1.6.4.2) were undetectable in BSC chloroplasts, while they increased in MC chloroplasts under salinity. Although ascorbate content increased by salinity only in BSC chloroplasts, glutathione content increased significantly in both chloroplasts, and was higher in MC chloroplasts than in BSC chloroplasts. The content of thiobarbituric acid-reactive substances, which is an indicator of lipid peroxidation, was significantly increased by salinity in both chloroplasts. These results suggested O2 (-) -scavenging capacity was comparable between both chloroplasts, whereas H2 O2 -scavenging capacity was lower in MC chloroplasts than in BSC chloroplasts. Moreover, the increased lipid peroxidation under salinity was associated with the structural alteration in MC chloroplasts, while it had less impact on the structure of BSC chloroplasts.

  11. Phenotypic, histological and proteomic analyses reveal multiple differences associated with chloroplast development in yellow and variegated variants from Camellia sinensis

    PubMed Central

    Ma, Chengying; Cao, Junxi; Li, Jianke; Zhou, Bo; Tang, Jinchi; Miao, Aiqing

    2016-01-01

    Leaf colour variation is observed in several plants. We obtained two types of branches with yellow and variegated leaves from Camellia sinensis. To reveal the mechanisms that underlie the leaf colour variations, combined morphological, histological, ionomic and proteomic analyses were performed using leaves from abnormal branches (variants) and normal branches (CKs). The measurement of the CIE-Lab coordinates showed that the brightness and yellowness of the variants were more intense than the CKs. When chloroplast profiles were analysed, HY1 (branch with yellow leaves) and HY2 (branch with variegated leaves) displayed abnormal chloroplast structures and a reduced number and size compared with the CKs, indicating that the abnormal chloroplast development might be tightly linked to the leaf colour variations. Moreover, the concentration of elemental minerals was different between the variants and the CKs. Furthermore, DEPs (differentially expressed proteins) were identified in the variants and the CKs by a quantitative proteomics analysis using the label-free approach. The DEPs were significantly involved in photosynthesis and included PSI, PSII, cytochrome b6/f complex, photosynthetic electron transport, LHC and F-type ATPase. Our results suggested that a decrease in the abundance of photosynthetic proteins might be associated with the changes of leaf colours in tea plants. PMID:27633059

  12. Phenotypic, histological and proteomic analyses reveal multiple differences associated with chloroplast development in yellow and variegated variants from Camellia sinensis.

    PubMed

    Ma, Chengying; Cao, Junxi; Li, Jianke; Zhou, Bo; Tang, Jinchi; Miao, Aiqing

    2016-01-01

    Leaf colour variation is observed in several plants. We obtained two types of branches with yellow and variegated leaves from Camellia sinensis. To reveal the mechanisms that underlie the leaf colour variations, combined morphological, histological, ionomic and proteomic analyses were performed using leaves from abnormal branches (variants) and normal branches (CKs). The measurement of the CIE-Lab coordinates showed that the brightness and yellowness of the variants were more intense than the CKs. When chloroplast profiles were analysed, HY1 (branch with yellow leaves) and HY2 (branch with variegated leaves) displayed abnormal chloroplast structures and a reduced number and size compared with the CKs, indicating that the abnormal chloroplast development might be tightly linked to the leaf colour variations. Moreover, the concentration of elemental minerals was different between the variants and the CKs. Furthermore, DEPs (differentially expressed proteins) were identified in the variants and the CKs by a quantitative proteomics analysis using the label-free approach. The DEPs were significantly involved in photosynthesis and included PSI, PSII, cytochrome b6/f complex, photosynthetic electron transport, LHC and F-type ATPase. Our results suggested that a decrease in the abundance of photosynthetic proteins might be associated with the changes of leaf colours in tea plants. PMID:27633059

  13. Multiple feedbacks between chloroplast and whole plant in the context of plant adaptation and acclimation to the environment

    PubMed Central

    Demmig-Adams, Barbara; Stewart, Jared J.; Adams, William W.

    2014-01-01

    This review focuses on feedback pathways that serve to match plant energy acquisition with plant energy utilization, and thereby aid in the optimization of chloroplast and whole-plant function in a given environment. First, the role of source–sink signalling in adjusting photosynthetic capacity (light harvesting, photochemistry and carbon fixation) to meet whole-plant carbohydrate demand is briefly reviewed. Contrasting overall outcomes, i.e. increased plant growth versus plant growth arrest, are described and related to respective contrasting environments that either do or do not present opportunities for plant growth. Next, new insights into chloroplast-generated oxidative signals, and their modulation by specific components of the chloroplast's photoprotective network, are reviewed with respect to their ability to block foliar phloem-loading complexes, and, thereby, affect both plant growth and plant biotic defences. Lastly, carbon export capacity is described as a newly identified tuning point that has been subjected to the evolution of differential responses in plant varieties (ecotypes) and species from different geographical origins with contrasting environmental challenges. PMID:24591724

  14. Systematic analysis of plant mitochondrial and chloroplast small RNAs suggests organelle-specific mRNA stabilization mechanisms

    PubMed Central

    Ruwe, Hannes; Wang, Gongwei; Gusewski, Sandra; Schmitz-Linneweber, Christian

    2016-01-01

    Land plant organellar genomes encode a small number of genes, many of which are essential for respiration and photosynthesis. Organellar gene expression is characterized by a multitude of RNA processing events that lead to stable, translatable transcripts. RNA binding proteins (RBPs), have been shown to generate and protect transcript termini and eventually induce the accumulation of short RNA footprints. We applied knowledge of such RBP-derived footprints to develop software (sRNA miner) that enables identification of RBP footprints, or other clusters of small RNAs, in organelles. We used this tool to determine mitochondrial and chloroplast cosRNAs (clustered organellar sRNAs) in Arabidopsis. We found that in mitochondria, cosRNAs coincide with transcript 3′-ends, but are largely absent from 5′-ends. In chloroplasts this bias is absent, suggesting a different mode of 5′ processing, possibly owing to different sets of RNases. Furthermore, we identified a large number of cosRNAs that represent silenced insertions of mitochondrial DNA in the nuclear genome of Arabidopsis. Steady-state RNA analyses demonstrate that cosRNAs display differential accumulation during development. Finally, we demonstrate that the chloroplast RBP PPR10 associates in vivo with its cognate cosRNA. A hypothetical role of cosRNAs as competitors of mRNAs for PPR proteins is discussed. PMID:27235415

  15. Systematic analysis of plant mitochondrial and chloroplast small RNAs suggests organelle-specific mRNA stabilization mechanisms.

    PubMed

    Ruwe, Hannes; Wang, Gongwei; Gusewski, Sandra; Schmitz-Linneweber, Christian

    2016-09-01

    Land plant organellar genomes encode a small number of genes, many of which are essential for respiration and photosynthesis. Organellar gene expression is characterized by a multitude of RNA processing events that lead to stable, translatable transcripts. RNA binding proteins (RBPs), have been shown to generate and protect transcript termini and eventually induce the accumulation of short RNA footprints. We applied knowledge of such RBP-derived footprints to develop software (sRNA miner) that enables identification of RBP footprints, or other clusters of small RNAs, in organelles. We used this tool to determine mitochondrial and chloroplast cosRNAs (clustered organellar sRNAs) in Arabidopsis. We found that in mitochondria, cosRNAs coincide with transcript 3'-ends, but are largely absent from 5'-ends. In chloroplasts this bias is absent, suggesting a different mode of 5' processing, possibly owing to different sets of RNases. Furthermore, we identified a large number of cosRNAs that represent silenced insertions of mitochondrial DNA in the nuclear genome of Arabidopsis. Steady-state RNA analyses demonstrate that cosRNAs display differential accumulation during development. Finally, we demonstrate that the chloroplast RBP PPR10 associates in vivo with its cognate cosRNA. A hypothetical role of cosRNAs as competitors of mRNAs for PPR proteins is discussed. PMID:27235415

  16. [Effect of IAA on the photophosphorylation of pea isolated chloroplasts].

    PubMed

    Akulova, E A; Murzaeva, S V; Taukeleva, Sh N; Ruzieva, R Kh

    1975-01-01

    Effect of IAA (10(-10)-10(-3) M) on photophosphorylation, NADP reduction and the oxygen exchange is investigated. It is shown that low concentrations of IAA (10(-10)-10(-7) M) increase the photophosphorylation reaction and the flow of electrones to NADP under the phosphorylation conditions in the chloroplasts, and their effect on the O2 exchange is not the same in different types of photophosphorylation. It is supposed that the effect of IAA on the photophosphorylation is connected with H292 metabolism in chloroplasts and with catalase and peroxidase functions.

  17. Circadian oscillations of cytosolic and chloroplastic free calcium in plants

    NASA Technical Reports Server (NTRS)

    Johnson, C. H.; Knight, M. R.; Kondo, T.; Masson, P.; Sedbrook, J.; Haley, A.; Trewavas, A.

    1995-01-01

    Tobacco and Arabidopsis plants, expressing a transgene for the calcium-sensitive luminescent protein apoaequorin, revealed circadian oscillations in free cytosolic calcium that can be phase-shifted by light-dark signals. When apoaequorin was targeted to the chloroplast, circadian chloroplast calcium rhythms were likewise observed after transfer of the seedlings to constant darkness. Circadian oscillations in free calcium concentrations can be expected to control many calcium-dependent enzymes and processes accounting for circadian outputs. Regulation of calcium flux is therefore fundamental to the organization of circadian systems.

  18. Oxidation versus reductive detoxification of SO sub 2 by chloroplasts

    SciTech Connect

    Ghisi, R.; Dittrich, A.P.M.; Heber, U. )

    1990-03-01

    Intact chloroplasts isolated from spinach (Spinacia oleracea L. cv Yates) both oxidized and reduced added sulfite in the light. Oxidation was fast only when endogenous superoxide dismutase was inhibited by cyanide. It was largely suppressed by scavengers of oxygen radicals. After addition of O-acetylserine, chloroplasts reduced sulfite to cysteine and exhibited sulfite-dependent oxygen evolution. Cysteine synthesis from sulfite was faster than from sulfate. The results are discussed in relation to species-specific differences in the phytotoxicity of SO{sub 2}.

  19. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast

    DOEpatents

    Mayfield, Stephen P

    2015-01-13

    Methods and compositions are disclosed to engineer chloroplast comprising heterologous mammalian genes via a direct replacement of chloroplast Photosystem II (PSII) reaction center protein coding regions to achieve expression of recombinant protein above 5% of total protein. When algae is used, algal expressed protein is produced predominantly as a soluble protein where the functional activity of the peptide is intact. As the host algae is edible, production of biologics in this organism for oral delivery of proteins/peptides, especially gut active proteins, without purification is disclosed.

  20. Robust expression of a bioactive mammalian protein in chlamydomonas chloroplast

    DOEpatents

    Mayfield, Stephen P.

    2010-03-16

    Methods and compositions are disclosed to engineer chloroplast comprising heterologous mammalian genes via a direct replacement of chloroplast Photosystem II (PSII) reaction center protein coding regions to achieve expression of recombinant protein above 5% of total protein. When algae is used, algal expressed protein is produced predominantly as a soluble protein where the functional activity of the peptide is intact. As the host algae is edible, production of biologics in this organism for oral delivery or proteins/peptides, especially gut active proteins, without purification is disclosed.

  1. Changing the light environment: chloroplast signalling and response mechanisms.

    PubMed

    Spetea, Cornelia; Rintamäki, Eevi; Schoefs, Benoît

    2014-04-19

    Light is an essential environmental factor required for photosynthesis, but it also mediates signals to control plant development and growth and induces stress tolerance. The photosynthetic organelle (chloroplast) is a key component in the signalling and response network in plants. This theme issue of Philosophical Transactions of the Royal Society of London B: Biology provides updates, highlights and summaries of the most recent findings on chloroplast-initiated signalling cascades and responses to environmental changes, including light and biotic stress. Besides plant molecular cell biology and physiology, the theme issue includes aspects from the cross-disciplinary fields of environmental adaptation, ecology and agronomy.

  2. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development.

    PubMed

    Naested, Henrik; Holm, Agnethe; Jenkins, Tom; Nielsen, H Bjørn; Harris, Cassandra A; Beale, Michael H; Andersen, Mathias; Mant, Alexandra; Scheller, Henrik; Camara, Bilal; Mattsson, Ole; Mundy, John

    2004-09-15

    The stable, recessive Arabidopsis variegated 3 (var3) mutant exhibits a variegated phenotype due to somatic areas lacking or containing developmentally retarded chloroplasts and greatly reduced numbers of palisade cells. The VAR3 gene, isolated by transposon tagging, encodes the 85.9 kDa VAR3 protein containing novel repeats and zinc fingers described as protein interaction domains. VAR3 interacts specifically in yeast and in vitro with NCED4, a putative polyene chain or carotenoid dioxygenase, and both VAR3 and NCED4 accumulate in the chloroplast stroma. Metabolic profiling demonstrates that pigment profiles are qualitatively similar in wild type and var3, although var3 accumulates lower levels of chlorophylls and carotenoids. These results indicate that VAR3 is a part of a protein complex required for normal chloroplast and palisade cell development.

  3. The chloroplast and cytoplasmic ribosomes of euglena: I. Stability of chloroplast ribosomes prepared by an improved procedure.

    PubMed

    Schwartzbach, S D; Freyssinet, G; Schiff, J A

    1974-04-01

    A new isolation procedure has resulted in an improved yield of stable 68S chloroplast ribosomes from Euglena gracilis var. bacillaris. Chloroplasts are isolated by suspending the cells in buffer I (sorbitol, 250 mm; sucrose, 250 mm; Ficoll, 2.5% [w/v]; magnesium acetate, 1 mm; bovine serum albumin, 0.01% [w/v]; mercaptoethanol, 14 mm; N-2-hydroxyethyl-piperazine-N'-2-ethanesulfonic acid, pH 7.6, 5 mm) and passing through a French press at less than 1500 pounds per square inch. The crude chloroplasts are purified by three washings with buffer II (sorbitol, 150 mm; sucrose, 150 mm; Ficoll, 2.5% [w/v]; magnesium acetate, 1 mm; bovine serum albumin, 0.01% [w/v]; mercaptoethanol, 14 mm; N-2-hydroxyethyl-piperazine-N'-2-ethanesulfonic acid, pH 7.6, 5 mm). Stable 68S chloroplast ribosomes are obtained when the isolated chloroplasts are resuspended in ribosome buffer (tris-HCI, pH 7.6, 10 mm; magnesium acetate, 12 mm; KCI, 60 mm) containing spermidine, 0.5 mm; mercaptoethanol, 14 mm; sucrose, 8% (w/w), passed through a French press at 4000 pounds per square inch and extracted with either 0.1% (w/v) sodium deoxycholate or 1.0% (v/v) Triton X-100. At 0 to 4 C in ribosome buffer, the purified 68S chloroplast monosome forms a 53S particle while the 35S particle, an expected product of monosome dissociation, cannot be detected. Spermidine and mercaptoethanol prevent the formation of 53S particles from 68S monosomes. The purified 53S particles derived from 68S monosomes contain 23S RNA as well as a significant amount of 16S RNA, suggesting that this particle may not be a true ribosomal subunit.

  4. Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts

    PubMed Central

    Woodson, Jesse D.; Joens, Matthew S.; Sinson, Andrew B.; Gilkerson, Jonathan; Salomé, Patrice A.; Weigel, Detlef; Fitzpatrick, James A.; Chory, Joanne

    2016-01-01

    Energy production by chloroplasts and mitochondria causes constant oxidative damage. A functioning photosynthetic cell requires quality-control mechanisms to turn over and degrade chloroplasts damaged by reactive oxygen species (ROS). Here, we generated a conditionally lethal Arabidopsis mutant that accumulated excess protoporphyrin IX in the chloroplast and produced singlet oxygen. Damaged chloroplasts were subsequently ubiquitinated and selectively degraded. A genetic screen identified the plant U-box 4 (PUB4) E3 ubiquitin ligase as being necessary for this process. pub4-6 mutants had defects in stress adaptation and longevity. Thus, we have identified a signal that leads to the targeted removal of ROS-overproducing chloroplasts. PMID:26494759

  5. Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts.

    PubMed

    Woodson, Jesse D; Joens, Matthew S; Sinson, Andrew B; Gilkerson, Jonathan; Salomé, Patrice A; Weigel, Detlef; Fitzpatrick, James A; Chory, Joanne

    2015-10-23

    Energy production by chloroplasts and mitochondria causes constant oxidative damage. A functioning photosynthetic cell requires quality-control mechanisms to turn over and degrade chloroplasts damaged by reactive oxygen species (ROS). Here, we generated a conditionally lethal Arabidopsis mutant that accumulated excess protoporphyrin IX in the chloroplast and produced singlet oxygen. Damaged chloroplasts were subsequently ubiquitinated and selectively degraded. A genetic screen identified the plant U-box 4 (PUB4) E3 ubiquitin ligase as being necessary for this process. pub4-6 mutants had defects in stress adaptation and longevity. Thus, we have identified a signal that leads to the targeted removal of ROS-overproducing chloroplasts.

  6. Isolation of dimorphic chloroplasts from the single-cell C4 species Bienertia sinuspersici

    PubMed Central

    2012-01-01

    Three terrestrial plants are known to perform C4 photosynthesis without the dual-cell system by partitioning two distinct types of chloroplasts in separate cytoplasmic compartments. We report herein a protocol for isolating the dimorphic chloroplasts from Bienertia sinuspersici. Hypo-osmotically lysed protoplasts under our defined conditions released intact compartments containing the central chloroplasts and intact vacuoles with adhering peripheral chloroplasts. Following Percoll step gradient purification both chloroplast preparations demonstrated high homogeneities as evaluated from the relative abundance of respective protein markers. This protocol will open novel research directions toward understanding the mechanism of single-cell C4 photosynthesis. PMID:22394490

  7. Diversity of a ribonucleoprotein family in tobacco chloroplasts: two new chloroplast ribonucleoproteins and a phylogenetic tree of ten chloroplast RNA-binding domains.

    PubMed Central

    Ye, L H; Li, Y Q; Fukami-Kobayashi, K; Go, M; Konishi, T; Watanabe, A; Sugiura, M

    1991-01-01

    Two new ribonucleoproteins (RNPs) have been identified from a tobacco chloroplast lysate. These two proteins (cp29A and cp29B) are nuclear-encoded and have a less affinity to single-stranded DNA as compared with three other chloroplast RNPs (cp28, cp31 and cp33) previously isolated. DNA sequencing revealed that both contain two consensus sequence-type homologous RNA-binding domains (CS-RBDs) and a very acidic amino-terminal domain but shorter than that of cp28, cp31 and cp33. Comparison of cp29A and cp29B showed a 19 amino acid insertion in the region separating the two CS-RBDs in cp29B. This insertion results in three tandem repeats of a glycine-rich sequence of 10 amino acids, which is a novel feature in RNPs. The two proteins are encoded by different single nuclear genes and no alternatively spliced transcripts could be identified. We constructed a phylogenetic tree for the ten chloroplast CS-RBDs. These results suggest that there is a sizable RNP family in chloroplasts and the diversity was mainly generated through a series of gene duplications rather than through alternative pre-mRNA splicing. The gene for cp29B contains three introns. The first and second introns interrupt the first CS-RBD and the third intron does the second CS-RBD. The position of the first intron site is the same as that in the human hnRNP A1 protein gene. Images PMID:1721701

  8. WHITE PANICLE1, a Val-tRNA Synthetase Regulating Chloroplast Ribosome Biogenesis in Rice, Is Essential for Early Chloroplast Development1[OPEN

    PubMed Central

    Wang, Chunming; Zheng, Ming; Lyu, Jia; Xu, Yang; Li, Xiaohui; Niu, Mei; Long, Wuhua; Wang, Di; Wang, Yihua; Wan, Jianmin

    2016-01-01

    Chloroplasts and mitochondria contain their own genomes and transcriptional and translational systems. Establishing these genetic systems is essential for plant growth and development. Here we characterized a mutant form of a Val-tRNA synthetase (OsValRS2) from Oryza sativa that is targeted to both chloroplasts and mitochondria. A single base change in OsValRS2 caused virescent to albino phenotypes in seedlings and white panicles at heading. We therefore named this mutant white panicle 1 (wp1). Chlorophyll autofluorescence observations and transmission electron microscopy analyses indicated that wp1 mutants are defective in early chloroplast development. RNA-seq analysis revealed that expression of nuclear-encoded photosynthetic genes is significantly repressed, while expression of many chloroplast-encoded genes also changed significantly in wp1 mutants. Western-blot analyses of chloroplast-encoded proteins showed that chloroplast protein levels were reduced in wp1 mutants, although mRNA levels of some genes were higher in wp1 than in wild type. We found that wp1 was impaired in chloroplast ribosome biogenesis. Taken together, our results show that OsValRS2 plays an essential role in chloroplast development and regulating chloroplast ribosome biogenesis. PMID:26839129

  9. Chloroplast microsatellite markers for Artocarpus (Moraceae) developed from transcriptome sequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study: Chloroplast microsatellite loci were characterized from transcriptomes of Artocarpus (A.) altilis (breadfruit) and A. camansi (breadnut). They were tested in A. odoratissimus (terap) and A. altilis and evaluated in silico for two congeners. Methods and Results: 15 simple seque...

  10. Chloroplast EF-Tu and thermal aggregation of Rubisco activase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chloroplast protein synthesis elongation factor, EF-Tu, has been implicated in heat tolerance in maize. The recombinant precursor of this protein, pre-EF-Tu, has been found to exhibit chaperone activity and protect heat-labile proteins, such as citrate synthase and malate dehydrogenase, from therma...

  11. Functional characterization of the chloroplast ferric chelate oxidoreductase enzyme.

    PubMed

    Solti, Adám; Müller, Brigitta; Czech, Viktória; Sárvári, Éva; Fodor, Ferenc

    2014-05-01

    Iron (Fe) has an essential role in the biosynthesis of chlorophylls and redox cofactors, and thus chloroplast iron uptake is a process of special importance. The chloroplast ferric chelate oxidoreductase (cFRO) has a crucial role in this process but it is poorly characterized. To study the localization and mechanism of action of cFRO, sugar beet (Beta vulgaris cv Orbis) chloroplast envelope fractions were isolated by gradient ultracentrifugation, and their purity was tested by western blotting against different marker proteins. The ferric chelate reductase (FCR) activity of envelope fractions was studied in the presence of NAD(P)H (reductants) and FAD coenzymes. Reduction of Fe(III)-ethylenediaminetetraacetic acid was monitored spectrophotometrically by the Fe(II)-bathophenanthroline disulfonate complex formation. FCR activity, that is production of free Fe(II) for Fe uptake, showed biphasic saturation kinetics, and was clearly associated only to chloroplast inner envelope (cIE) vesicles. The reaction rate was > 2.5 times higher with NADPH than with NADH, which indicates the natural coenzyme preference of cFRO activity and its dependence on photosynthesis. FCR activity of cIE vesicles isolated from Fe-deficient plants also showed clear biphasic kinetics, where the KM of the low affinity component was elevated, and thus this component was down-regulated.

  12. Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis.

    PubMed

    Lippold, Felix; vom Dorp, Katharina; Abraham, Marion; Hölzl, Georg; Wewer, Vera; Yilmaz, Jenny Lindberg; Lager, Ida; Montandon, Cyrille; Besagni, Céline; Kessler, Felix; Stymne, Sten; Dörmann, Peter

    2012-05-01

    During stress or senescence, thylakoid membranes in chloroplasts are disintegrated, and chlorophyll and galactolipid are broken down, resulting in the accumulation of toxic intermediates, i.e., tetrapyrroles, free phytol, and free fatty acids. Chlorophyll degradation has been studied in detail, but the catabolic pathways for phytol and fatty acids remain unclear. A large proportion of phytol and fatty acids is converted into fatty acid phytyl esters and triacylglycerol during stress or senescence in chloroplasts. We isolated two genes (PHYTYL ESTER SYNTHASE1 [PES1] and PES2) of the esterase/lipase/thioesterase family of acyltransferases from Arabidopsis thaliana that are involved in fatty acid phytyl ester synthesis in chloroplasts. The two proteins are highly expressed during senescence and nitrogen deprivation. Heterologous expression in yeast revealed that PES1 and PES2 have phytyl ester synthesis and diacylglycerol acyltransferase activities. The enzymes show broad substrate specificities and can employ acyl-CoAs, acyl carrier proteins, and galactolipids as acyl donors. Double mutant plants (pes1 pes2) grow normally but show reduced phytyl ester and triacylglycerol accumulation. These results demonstrate that PES1 and PES2 are involved in the deposition of free phytol and free fatty acids in the form of phytyl esters in chloroplasts, a process involved in maintaining the integrity of the photosynthetic membrane during abiotic stress and senescence.

  13. Structure of "Arabidopsis" chloroplastic monothiol glutaredoxin AtGRXcp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monothiol glutaredoxins (Grxs) play important roles in maintaining redox homeostasis in living cells and are conserved across species. "Arabidopsis thaliana" monothiol glutaredoxin AtGRXcp, is critical for protection from oxidative stress in chloroplasts. The crystal structure of AtGRXcp has been de...

  14. Choline oxidation by intact spinach chloroplasts. [Spinacia oleracea L

    SciTech Connect

    Weigel, P.; Lerma, C.; Hanson, A.D.

    1988-01-01

    Plants synthesize betaine by a two-step oxidation of choline (choline ..-->.. betaine aldehyde ..-->.. betaine). Protoplast-derived chloroplasts of spinach (Spinacia oleracea L.) carry out both reactions, more rapidly in light than in darkness. We investigated the light-stimulated oxidation of choline, using spinach chloroplasts isolated directly from leaves. The rates of choline oxidation obtained (dark and light rates: 10-50 and 100-300 nanomoles per hour per milligram chlorophyll, respectively) were approximately 20-fold higher than for protoplast-derived chloroplasts. Betaine aldehyde was the main product. Choline oxidation in darkness and light was suppressed by hypoxia. Neither uncouplers not the Calvin cycle inhibitor glyceraldehyde greatly affected choline oxidation in the light, and maximal choline oxidation was attained far below light saturation of CO/sub 2/ fixation. The light stimulation of choline oxidation was abolished by the PSII inhibitors DCMU and dibromothymoquinone, and was partially restored by adding reduced diaminodurene, an electron donor to PSI. Both methyl viologen and phenazine methosulfate prevented choline oxidation. Adding dihydroxyacetone phosphate, which can generate NADPH in organello, doubled the dark rate of choline oxidation. These results indicate that choline oxidation in chloroplasts requires oxygen, and reducing power generated from PSI. Enzymic reactions consistent with these requirements are discussed.

  15. The complete chloroplast genome sequence of medicinal plant Pinellia ternata.

    PubMed

    Han, Limin; Chen, Chen; Wang, Bin; Wang, Zhe-Zhi

    2016-07-01

    Pinellia ternata is an important medicinal plant used in the treatment of cough, to dispel phlegm, to calm vomiting and to terminate early pregnancy, as an anti-ulcer and anti-tumor medicine. In this study, we found that the complete chloroplast genome of Pinellia ternata was 164 013 bp in length, containing a pair of inverted repeats of 25 625 bp separated by a large single-copy region and a small single-copy region of 89 783 bp and 22 980 bp, respectively. The chloroplast genome encodes 132 predicted functional genes, including 87 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The chloroplast DNA is GC-rich (36.7%). The phylogenetic analysis showed a strong sister relationship with Colocasia esculenta, which also strongly supports the position of Pinellia ternata. The complete chloroplast genome sequence of Pinellia ternata reported here has the potential to advance population and phylogenetic studies of this medicinal plant. PMID:26153849

  16. Protein disorder in plants: a view from the chloroplast

    PubMed Central

    2012-01-01

    Background The intrinsically unstructured state of some proteins, observed in all living organisms, is essential for basic cellular functions. In this field the available information from plants is limited but it has been reached a point where these proteins can be comprehensively classified on the basis of disorder, function and evolution. Results Our analysis of plant genomes confirms that nuclear-encoded proteins follow the same trend than other multi-cellular eukaryotes; however, chloroplast- and mitochondria- encoded proteins conserve the patterns of Archaea and Bacteria, in agreement with their phylogenetic origin. Based on current knowledge about gene transference from the chloroplast to the nucleus, we report a strong correlation between the rate of disorder of transferred and nuclear-encoded proteins, even for polypeptides that play functional roles back in the chloroplast. We further investigate this trend by reviewing the set of chloroplast ribosomal proteins, one of the most representative transferred gene clusters, finding that the ribosomal large subunit, assembled from a majority of nuclear-encoded proteins, is clearly more unstructured than the small one, which integrates mostly plastid-encoded proteins. Conclusions Our observations suggest that the evolutionary dynamics of the plant nucleus adds disordered segments to genes alike, regardless of their origin, with the notable exception of proteins currently encoded in both genomes, probably due to functional constraints. PMID:22970728

  17. Complete Chloroplast Genome Sequence of Dendrobium nobile from Northeastern India

    PubMed Central

    Parameswaran, Sriram; Sundar, Durai

    2016-01-01

    The orchid species Dendrobium nobile belonging to the family Orchidaceae and genus Dendrobium (a vast genus that encompasses nearly 1,200 species) has an herbal medicinal history of about 2000 years in east and south Asian countries. Here, we report the complete chloroplast genome sequence of D. nobile from northeastern India for the first time.

  18. Choline oxidation by intact chloroplasts isolated directly from spinach leaves

    SciTech Connect

    Weigel, P.; Hanson, A.D.

    1986-04-01

    Illuminated chloroplasts derived from spinach leaf protoplasts synthesize betaine from choline via the intermediate betaine aldehyde (BAL) (PNAS 82:3678). Photosynthetically active chloroplasts isolated directly from spinach leaves oxidized (/sup 14/C)choline in the light at rates 10 times higher (25-80 nmol/mg chl b) than protoplast-derived chloroplasts. Up to 20% of the (/sup 14/C)choline supplied during a 30 min incubation was oxidized in the light; the main product was (/sup 14/C)BAL. Rates of (/sup 14/C)choline oxidation in darkness were only 5-30% of rates in light. Light-dependent (/sup 14/C)choline oxidation was abolished by DCMU and 5 mM DTT. Pre-illumination of the chloroplasts did not promote (/sup 14/C)choline oxidation in darkness. The uncouplers nigericin and CCCP at concentrations which eliminated CO/sub 2/-dependent O/sub 2/ evolution did not affect (/sup 14/C)choline oxidation in the light. They hypothesize that (/sup 14/C)choline oxidation is not dependent upon light activation of an enzymatic system or upon the electrochemical proton gradient but requires an oxidant generated in the light.

  19. Complete Chloroplast Genome Sequence of Phagomixotrophic Green Alga Cymbomonas tetramitiformis

    PubMed Central

    Paasch, Amber E.; Graham, Linda E.; Kim, Eunsoo

    2016-01-01

    We report here the complete chloroplast genome sequence of Cymbomonas tetramitiformis strain PLY262, which is a prasinophycean green alga that retains a phagomixotrophic mode of nutrition. The genome is 84,524 bp in length, with a G+C content of 37%, and contains 3 rRNAs, 26 tRNAs, and 76 protein-coding genes. PMID:27313295

  20. Senescence-Associated Vacuoles, a Specific Lytic Compartment for Degradation of Chloroplast Proteins?

    PubMed Central

    Carrión, Cristian A.; Martínez, Dana E.; Costa, M. Lorenza; Guiamet, Juan José

    2014-01-01

    Degradation of chloroplasts and chloroplast components is a distinctive feature of leaf senescence. In spite of its importance in the nutrient economy of plants, knowledge about the mechanism(s) involved in the breakdown of chloroplast proteins is incomplete. A novel class of vacuoles, “senescence-associated vacuoles” (SAVs), characterized by intense proteolytic activity appear during senescence in chloroplast-containing cells of leaves. Since SAVs contain some chloroplast proteins, they are candidate organelles to participate in chloroplast breakdown. In this review we discuss the characteristics of SAVs, and their possible involvement in the degradation of Rubisco, the most abundant chloroplast protein. Finally, SAVs are compared with other extra-plastidial protein degradation pathways operating in senescing leaves. PMID:27135516

  1. The Effect of Light and Inhibitors on Chloroplast and Cytoplasmic RNA Synthesis

    PubMed Central

    Ingle, J.

    1968-01-01

    Chloroplast RNA is synthesized in dark-grown radish cotyledons at about one-third the rate of that in the light. The synthesis, however, continues for longer in the dark and the percentage of chloroplast RNA can approach that in light-grown tissue. Light stimulates the synthesis and accumulation of both cytoplasmic and chloroplast RNA, but shows a 4-fold greater stimulation of the chloroplast RNA. Chloramphenicol, streptomycin and cycloheximide inhibit the synthesis of chloroplast RNA with little effect on cytoplasmic RNA. 5-Fluorouracil inhibits the synthesis of cytoplasmic more than chloroplast RNA. Synthesis of the 0.56 × 106 mol wt chloroplast RNA is inhibited much less than the other ribosomal RNA components by actinomycin D. PMID:5699149

  2. Evolution of the Cp-Actin-based Motility System of Chloroplasts in Green Plants.

    PubMed

    Suetsugu, Noriyuki; Wada, Masamitsu

    2016-01-01

    During the course of green plant evolution, numerous light responses have arisen that optimize their growth under fluctuating light conditions. The blue light receptor phototropin mediates several photomovement responses at the tissue, cellular and organelle levels. Chloroplast photorelocation movement is one such photomovement response, and is found not only in most green plants, but also in some red algae and photosynthetic stramenopiles. In general, chloroplasts move toward weak light to maximally capture photosynthetically active radiation (the chloroplast accumulation response), and they move away from strong light to avoid photodamage (the avoidance response). In land plants, chloroplast movement is dependent on specialized actin filaments, chloroplast-actin filaments (cp-actin filaments). Through molecular genetic analysis using Arabidopsis thaliana, many molecular factors that regulate chloroplast photorelocation were identified. In this Perspective, we discuss the evolutionary history of the molecular mechanism for chloroplast photorelocation movement in green plants in view of cp-actin filaments. PMID:27200035

  3. Evolution of the Cp-Actin-based Motility System of Chloroplasts in Green Plants.

    PubMed

    Suetsugu, Noriyuki; Wada, Masamitsu

    2016-01-01

    During the course of green plant evolution, numerous light responses have arisen that optimize their growth under fluctuating light conditions. The blue light receptor phototropin mediates several photomovement responses at the tissue, cellular and organelle levels. Chloroplast photorelocation movement is one such photomovement response, and is found not only in most green plants, but also in some red algae and photosynthetic stramenopiles. In general, chloroplasts move toward weak light to maximally capture photosynthetically active radiation (the chloroplast accumulation response), and they move away from strong light to avoid photodamage (the avoidance response). In land plants, chloroplast movement is dependent on specialized actin filaments, chloroplast-actin filaments (cp-actin filaments). Through molecular genetic analysis using Arabidopsis thaliana, many molecular factors that regulate chloroplast photorelocation were identified. In this Perspective, we discuss the evolutionary history of the molecular mechanism for chloroplast photorelocation movement in green plants in view of cp-actin filaments.

  4. Evolution of the Cp-Actin-based Motility System of Chloroplasts in Green Plants

    PubMed Central

    Suetsugu, Noriyuki; Wada, Masamitsu

    2016-01-01

    During the course of green plant evolution, numerous light responses have arisen that optimize their growth under fluctuating light conditions. The blue light receptor phototropin mediates several photomovement responses at the tissue, cellular and organelle levels. Chloroplast photorelocation movement is one such photomovement response, and is found not only in most green plants, but also in some red algae and photosynthetic stramenopiles. In general, chloroplasts move toward weak light to maximally capture photosynthetically active radiation (the chloroplast accumulation response), and they move away from strong light to avoid photodamage (the avoidance response). In land plants, chloroplast movement is dependent on specialized actin filaments, chloroplast-actin filaments (cp-actin filaments). Through molecular genetic analysis using Arabidopsis thaliana, many molecular factors that regulate chloroplast photorelocation were identified. In this Perspective, we discuss the evolutionary history of the molecular mechanism for chloroplast photorelocation movement in green plants in view of cp-actin filaments. PMID:27200035

  5. Tandemly repeated nonribosomal DNA sequences in the chloroplast genome of an Acetabularia mediterranea strain.

    PubMed

    Tymms, M J; Schweiger, H G

    1985-03-01

    A purified chloroplast fraction was prepared from caps of the giant unicellular green alga Acetabularia mediterranea (strain 17). High molecular weight DNA obtained from these chloroplasts contains at least five copies of a 10-kilobase-pair (kbp) sequence tandemly arranged. This unique sequence is present in DNA from chloroplasts of all stages of the life cycle examined. A chloroplast rDNA clone from mustard hybridized with some restriction fragments from Acetabularia chloroplast DNA but not with the repeated sequence. An 8-kbp EcoRI-Pst I fragment of the repeated sequence was cloned into pBR322 and used as a hybridization probe. No homology was found between the cloned 8-kbp sequence and chloroplast DNA from related species Acetabularia crenulata or chloroplast DNA from spinach.

  6. Photosynthetic activity of spinach chloroplasts after isopycnic centrifugation in gradients of silica.

    PubMed

    Morgenthaler, J J; Price, C A

    1974-10-01

    Chloroplast suspensions from spinach (Spinacia oleracea L.) were clearly resolved into intact and stripped chloroplasts by isopycnic centrifugation in density gradients of silica sol ("Ludox") and polyethlene glycol. The intact chloroplasts fixed CO(2) and evolved O(2) more rapidly than the crude suspensions; the stripped chloroplasts were inactive. During the photosynthetic fixation of (14)CO(2) in the intact chloroplasts recovered from the gradient, the (14)C label was observed to spread through the photosynthetic intermediate pools, as well as into starch, which indicates that the purified chloroplasts are metabolically competent. This appears to be the first report of the retention of photosynthetic activity following the purification of chloroplasts in density gradients. PMID:16658922

  7. CHLOROPLAST STRUCTURE AND FUNCTION IN ac-20, A MUTANT STRAIN OF CHLAMYDOMONAS REINHARDI

    PubMed Central

    Goodenough, Ursula W.; Levine, R. P.

    1970-01-01

    The fine structure of the ac-20 strain of Chlamydomonas reinhardi is described. Cells grown mixotrophically in the presence of acetate have a highly disordered chloroplast membrane organization and usually lack pyrenoids. Chloroplast ribosome levels are only 5–10% of wild-type levels. Cells grown phototrophically without acetate possess more chloroplast ribosomes and have more normal membrane and pyrenoid organization. Chloroplast ribosome levels rise rapidly when cells are transferred from acetate to minimal medium, whereas membrane reorganization occurs only after a lag. These results, combined with earlier studies of the photosynthetic properties of the mutant strain, suggest that proper membrane organization, Photosystem II activity, and ribulose-1,5-diphosphate carboxylase formation are dependent on the presence of chloroplast ribosomes. Other chloroplast components tested are unaffected by a 10-fold reduction in levels of chloroplast ribosomes. PMID:5415236

  8. Reinvestigation of the triplet-minus-singlet spectrum of chloroplasts.

    PubMed

    Jávorfi, T; Garab, G; Naqvi, K R

    2000-01-01

    A comparison of the triplet-minus-singlet (TmS) absorption spectrum of spinach chloroplasts, recorded some thirty years ago, with the more recently published TmS spectrum of isolated Chla/b LHCII (light-harvesting complexes associated with photosystem II of higher plants) shows that the two spectra are very similar, which is to be expected, since only the carotenoid pigments contribute to each spectrum. Be that as it may, the comparison also reveals a dissimilarity: photoexcitation of the sample does, or does not, affect the absorbance in the Qy region (650-700 nm), depending on whether the sample is a suspension of chloroplasts or of isolated LHCII. The Qy-signal in the TmS spectrum of LHCII decays, it should be noted, at the same rate as the rest of the difference spectrum, and its most prominent feature is a negative peak. As the carotenoids do not absorb in the Qy region, the presence of a signal in this region calls for an explanation: van der Vos, Carbonera and Hoff, the first to find as well as fathom the phenomenon, attributed the Qy-signal to a change, in the absorption spectrum of a chlorophyll a (Chla) molecule, brought about by the presence of triplet excitation on a neighbouring carotenoid (Car). The difference in the behaviours of chloroplasts and LHCII, if reproducible, would imply that the Car triplets which give rise to the TmS spectrum of chloroplasts do not influence the absorption spectra of their Chla neighbours. With a view to reaching a firm conclusion about this vexed issue, spinach chloroplasts and thylakoids have been examined with the aid of the same kinetic spectrometer as that used for investigating LHCII; the TmS spectra of both chloroplasts and thylakoids contain prominent bleaching signals centred at 680 nm, and the triplet decay time in each case is comparable to that of the Chla/b LHCII triplets. Results pertaining to other closely related systems are recalled, and it is concluded that, so far as the overall appearance of the Tm

  9. Wage Equity and Female Faculty Job-Satisfaction: The Role of Wage Differentials in a Job Satisfaction Causal Model. ASHE Annual Meeting Paper.

    ERIC Educational Resources Information Center

    Hagedorn, Linda Serra

    This study examined the role of female/male wage differentials in a model of job satisfaction. It is based on data from 5,021 respondents to the 1989 Carnegie Foundation for the Advancement of Teaching national faculty survey. The model considers the interrelated effects of the calculated wage differential, stress, social perceptions of students,…

  10. Chloroplast DNA phylogeography of the arctic-montane species Saxifraga hirculus (Saxifragaceae).

    PubMed

    Oliver, C; Hollingsworth, P M; Gornall, R J

    2006-03-01

    The genetic structure of populations of an arctic-montane herb, Saxifraga hirculus (Saxifragaceae), was analysed by means of chloroplast restriction fragment-length polymorphism. Sampled populations were distributed across Europe and North America (Alaska and Colorado). There was no evidence for geographically structured genetically divergent lineages, and although no haplotypes were shared between North America and Europe, the haplotypes from different continents were intermixed on a minimum spanning tree. European populations were much more highly differentiated and had much lower levels of haplotype diversity than their Alaskan counterparts. Centres of haplotype diversity were concentrated in those Alaskan populations located outside the limits of the last (Wisconsin) glaciation, suggesting that they may have acted as refugia during the Pleistocene. It was not possible to identify putative migration routes or corresponding refugia in the European genepool. One British population, from the Pentland Hills, was genetically very distant from all the others, for reasons that are as yet unknown.

  11. Photosynthesis and chloroplast genes are involved in water-use efficiency in common bean.

    PubMed

    Ruiz-Nieto, Jorge E; Aguirre-Mancilla, César L; Acosta-Gallegos, Jorge A; Raya-Pérez, Juan C; Piedra-Ibarra, Elías; Vázquez-Medrano, Josefina; Montero-Tavera, Victor

    2015-01-01

    A recent proposal to mitigate the effects of climatic change and reduce water consumption in agriculture is to develop cultivars with high water-use efficiency. The aims of this study were to characterize this trait as a differential response mechanism to water-limitation in two bean cultivars contrasting in their water stress tolerance, to isolate and identify gene fragments related to this response in a model cultivar, as well as to evaluate transcription levels of genes previously identified. Keeping CO2 assimilation through a high photosynthesis rate under limited conditions was the physiological response which allowed the cultivar model to maintain its growth and seed production with less water. Chloroplast genes stood out among identified genetic elements, which confirmed the importance of photosynthesis in such response. ndhK, rpoC2, rps19, rrn16, ycf1 and ycf2 genes were expressed only in response to limited water availability.

  12. Control of leaf and chloroplast development by the Arabidopsis gene pale cress.

    PubMed Central

    Reiter, R S; Coomber, S A; Bourett, T M; Bartley, G E; Scolnik, P A

    1994-01-01

    Leaf plastids of the Arabidopsis pale cress (pac) mutant do not develop beyond the initial stages of differentiation from proplastids or etioplasts and contain only low levels of chlorophylls and carotenoids. Early in development, the epidermis and mesophyll of pac leaves resemble those of wild-type plants. In later stages, mutant leaves have enlarged intercellular spaces, and the palisade layer of the mesophyll can no longer be distinguished. To study the molecular basis of this phenotype, we cloned PAC and determined that this gene is regulated by light and has the capacity to encode an acidic, predominantly alpha-helical protein. The PAC gene appears to be a novel component of a light-induced regulatory network that controls the development of leaves and chloroplasts. PMID:7919990

  13. Population genetic analysis of European Prunus spinosa (Rosaceae) using chloroplast DNA markers.

    PubMed

    Mohanty, Aparajita; Martín, Juan Pedro; Aguinagalde, Itziar

    2002-08-01

    Chloroplast DNA diversity in Prunus spinosa, a common shrub of European deciduous forests, was assessed using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) technique. Thirty-two haplotypes were detected in 25 populations spread across the European continent. Ten haplotypes were shared by two or more populations, and 22 were private. The major proportion of the total cpDNA diversity (H(T) = 0.73) was located within the populations (H(S) = 0.49), and differentiation between populations was low (G(ST) = 0.33) compared with other forest species. Haplotype diversity was higher in southern Europe than in northern Europe, indicating probable localization of glacial refugia in southern Europe. The minimum-length spanning tree of haplotypes showed incongruency between the phylogeny of haplotypes and their geographic locations. This might be the result of intensive seed movements following recolonization, which thereby erased the phylogeographic structure in P. spinosa.

  14. Glucose respiration in the intact chloroplast of Chlamydomonas reinhardtii

    SciTech Connect

    Changguo Chen; Gibbs, M. )

    1991-01-01

    Chloroplastic respiration was monitored by measuring {sup 14}CO{sub 2} from {sup 14}C glucose in the darkened Chlamydomonas reinhardtii F-60 chloroplast, The patterns of {sup 14}CO{sub 2} evolution from labeled glucose in the absence and presence of the inhibitors iodoacetamide, glycolate-2-phosphate, and phosphoenolypyruvate were those expected from the oxidative pentose phosphate cycle and glycolysis. The K{sub m} for glucose was 56 micromolar and for MgATP was 200 micromolar. Release of {sup 14}CO{sub 2} was inhibited by phloretin and inorganic phosphate. Comparing the inhibition of CO{sub 2} evolution generated by pH 7.5 with respect to pH 8.2 (optimum) in chloroplasts given C-1, C-2, and C-6 labeled glucose indicated that a suboptimum pH affects the recycling of the pentose phosphate intermediates to a greater extent than CO{sub 2} evolution from C-1 of glucose. Respiratory inhibition by pH 7.5 in the darkened chloroplast was alleviated by NH{sub 4}Cl and KCl (stromal alkalating agents), iodoacetamide (an inhibitor of glyceraldehyde 3-phosphate dehydrogenase), or phosphoenolypyruvate (an inhibitor of phosphofructokinase). It is concluded that the site which primarily mediates respiration in the darkened Chlamydomonas chloroplast is the fructose-1,6-bisphosphatase/phosphofructokinase junction. The respiratory pathways described here can account for the total oxidation of a hexose to Co{sub 2} and for interactions between carbohydrate metabolism and the oxyhydrogen reaction in algal cells adapted to a hydrogen metabolism.

  15. Chloroplast photooxidation-induced transcriptome reprogramming in Arabidopsis immutans white leaf sectors.

    PubMed

    Aluru, Maneesha R; Zola, Jaroslaw; Foudree, Andrew; Rodermel, Steven R

    2009-06-01

    Arabidopsis (Arabidopsis thaliana) immutans (im) has green and white sectoring due to the action of a nuclear recessive gene, IMMUTANS. The green sectors contain normal-appearing chloroplasts, whereas the white sectors contain abnormal chloroplasts that lack colored carotenoids due to a defect in phytoene desaturase activity. Previous biochemical and molecular characterizations of the green leaf sectors revealed alterations suggestive of a source-sink relationship between the green and white sectors of im. In this study, we use an Affymetrix ATH1 oligoarray to further explore the nature of sink metabolism in im white tissues. We show that lack of colored carotenoids in the im white tissues elicits a differential response from a large number of genes involved in various cellular processes and stress responses. Gene expression patterns correlate with the repression of photosynthesis and photosynthesis-related processes in im white tissues, with an induction of Suc catabolism and transport, and with mitochondrial electron transport and fermentation. These results suggest that energy is derived via aerobic and anaerobic metabolism of imported sugar in im white tissues for growth and development. We also show that oxidative stress responses are largely induced in im white tissues; however, im green sectors develop additional energy-dissipating mechanisms that perhaps allow for the formation of green sectors. Furthermore, a comparison of the transcriptomes of im white and norflurazon-treated white leaf tissues reveals global as well as tissue-specific responses to photooxidation. We conclude that the differences in the mechanism of phytoene desaturase inhibition play an important role in differentiating these two white tissues.

  16. Transcriptional and post-transcriptional regulation of chloroplast gene expression in Petunia hybrida.

    PubMed

    van Grinsven, M Q; Gielen, J J; Zethof, J L; Nijkamp, H J; Kool, A J

    1986-11-01

    To study the control of differential gene expression during plastid biogenesis in Petunia hybrida, we have investigated the in vivo translation and transcription of the rbc L gene, coding for the large subunit of ribulose bisphosphate carboxylase (LSU), and the psa A gene, coding for P700 chlorophyll-a apoprotein (AP700). Differential expression of these plastid-encoded genes was studied in two developmentally different plastid systems, proplastid-like organelles from the green cell suspension AK2401 and mature chloroplasts from green leaves. In vivo translation of rbc L and psa A transcripts was analysed using specific antibodies. Specific transcript levels were analysed using internal fragments of the rbc L and psa A genes. A standardization procedure was used so that a direct correlation could be made between the amount of products and gene copy number. In Petunia hybrida the amount of LSU polypeptides present in both plastid types does not correspond to the amount of specific mRNA for the gene. Although the rbc L transcripts are present in both plastid types, the LSU protein is only present in green leaf plastids and not in cell culture plastids. In vitro translation of isolated rbc L transcripts give similar results, thereby suggesting that differences in the primary structure of the transcripts are responsible for the observed discrepancy. In contrast to this, the amount of AP700 polypeptides does correspond to the amount of the psa A transcripts. Therefore, our results indicate that the expression of chloroplast genes during plastid biogenesis takes place on at least two different levels: expression of the rbc L gene is regulated post-transcriptionally while expression of the psa A gene is regulated at the transcriptional level.

  17. A chloroplast protein homologous to the eubacterial topological specificity factor minE plays a role in chloroplast division.

    PubMed

    Itoh, R; Fujiwara, M; Nagata, N; Yoshida, S

    2001-12-01

    We report the identification of a nucleus-encoded minE gene, designated AtMinE1, of Arabidopsis. The encoded AtMinE1 protein possesses both N- and C-terminal extensions, relative to the eubacterial and algal chloroplast-encoded MinE proteins. The N-terminal extension functioned as a chloroplast-targeting transit peptide, as revealed by a transient expression assay using an N terminus:green fluorescent protein fusion. Histochemical beta-glucuronidase staining of transgenic Arabidopsis lines harboring an AtMinE1 promoter::uidA reporter fusion unveiled specific activation of the promoter in green tissues, especially at the shoot apex, which suggests a requirement for cell division-associated AtMinE1 expression for proplastid division in green tissues. In addition, we generated transgenic plants overexpressing a full-length AtMinE1 cDNA and examined the subcellular structures of those plants. Giant heteromorphic chloroplasts were observed in transgenic plants, with a reduced number per cell, whereas mitochondrial morphology remained similar to that of wild-type plants. Taken together, these observations suggest that MinE is the third conserved component involved in chloroplast division.

  18. Redirecting the Cyanobacterial Bicarbonate Transporters BicA and SbtA to the Chloroplast Envelope: Soluble and Membrane Cargos Need Different Chloroplast Targeting Signals in Plants

    PubMed Central

    Rolland, Vivien; Badger, Murray R.; Price, G. Dean

    2016-01-01

    Most major crops used for human consumption are C3 plants, which yields are limited by photosynthetic inefficiency. To circumvent this, it has been proposed to implement the cyanobacterial CO2-concentrating mechanism (CCM), principally consisting of bicarbonate transporters and carboxysomes, into plant chloroplasts. As it is currently not possible to recover homoplasmic transplastomic monocots, foreign genes must be introduced in these plants via nuclear transformation. Consequently, it is paramount to ensure that resulting proteins reach the appropriate sub-cellular compartment, which for cyanobacterial transporters BicA and SbtA, is the chloroplast inner-envelope membrane (IEM). At present, targeting signals to redirect large transmembrane proteins from non-chloroplastic organisms to plant chloroplast envelopes are unknown. The goal of this study was to identify such signals, using agrobacteria-mediated transient expression and confocal microscopy to determine the sub-cellular localization of ∼37 GFP-tagged chimeras. Initially, fragments of chloroplast proteins known to target soluble cargos to the stroma were tested for their ability to redirect BicA, but they proved ineffective. Next, different N-terminal regions from Arabidopsis IEM transporters were tested. We demonstrated that the N-terminus of AtHP59, AtPLGG1 or AtNTT1 (92–115 amino acids), containing a cleavable chloroplast transit peptide (cTP) and a membrane protein leader (MPL), was sufficient to redirect BicA or SbtA to the chloroplast envelope. This constitutes the first evidence that nuclear-encoded transmembrane proteins from non-chloroplastic organisms can be targeted to the envelope of plant chloroplasts; a finding which represents an important advance in chloroplast engineering by opening up the door to further manipulation of the chloroplastic envelope. PMID:26973659

  19. Redirecting the Cyanobacterial Bicarbonate Transporters BicA and SbtA to the Chloroplast Envelope: Soluble and Membrane Cargos Need Different Chloroplast Targeting Signals in Plants.

    PubMed

    Rolland, Vivien; Badger, Murray R; Price, G Dean

    2016-01-01

    Most major crops used for human consumption are C3 plants, which yields are limited by photosynthetic inefficiency. To circumvent this, it has been proposed to implement the cyanobacterial CO2-concentrating mechanism (CCM), principally consisting of bicarbonate transporters and carboxysomes, into plant chloroplasts. As it is currently not possible to recover homoplasmic transplastomic monocots, foreign genes must be introduced in these plants via nuclear transformation. Consequently, it is paramount to ensure that resulting proteins reach the appropriate sub-cellular compartment, which for cyanobacterial transporters BicA and SbtA, is the chloroplast inner-envelope membrane (IEM). At present, targeting signals to redirect large transmembrane proteins from non-chloroplastic organisms to plant chloroplast envelopes are unknown. The goal of this study was to identify such signals, using agrobacteria-mediated transient expression and confocal microscopy to determine the sub-cellular localization of ∼37 GFP-tagged chimeras. Initially, fragments of chloroplast proteins known to target soluble cargos to the stroma were tested for their ability to redirect BicA, but they proved ineffective. Next, different N-terminal regions from Arabidopsis IEM transporters were tested. We demonstrated that the N-terminus of AtHP59, AtPLGG1 or AtNTT1 (92-115 amino acids), containing a cleavable chloroplast transit peptide (cTP) and a membrane protein leader (MPL), was sufficient to redirect BicA or SbtA to the chloroplast envelope. This constitutes the first evidence that nuclear-encoded transmembrane proteins from non-chloroplastic organisms can be targeted to the envelope of plant chloroplasts; a finding which represents an important advance in chloroplast engineering by opening up the door to further manipulation of the chloroplastic envelope. PMID:26973659

  20. Chromoplast differentiation: current status and perspectives.

    PubMed

    Egea, Isabel; Barsan, Cristina; Bian, Wanping; Purgatto, Eduardo; Latché, Alain; Chervin, Christian; Bouzayen, Mondher; Pech, Jean-Claude

    2010-10-01

    Chromoplasts are carotenoid-accumulating plastids conferring color to many flowers and fruits as well as to some tubers and roots. Chromoplast differentiation proceeds from preexisting plastids, most often chloroplasts. One of the most prominent changes is remodeling of the internal membrane system associated with the formation of carotenoid-accumulating structures. During the differentiation process the plastid genome is essentially stable and transcriptional activity is restricted. The buildup of the chromoplast for specific metabolic characteristics is essentially dependent upon the transcriptional activity of the nucleus. Important progress has been made in terms of mediation of the chloroplast-to-chromoplast transition with the discovery of the crucial role of the Or gene. In this article we review recent developments in the structural, biochemical and molecular aspects of chromoplast differentiation and also consider the reverse differentiation of chromoplasts into chloroplast-like structures during the regreening process occurring in some fruit. Future perspectives toward a full understanding of chromoplast differentiation include in-depth knowledge of the changes occurring in the plastidial proteome during chromoplastogenesis, elucidation of the role of hormones and the search for signals that govern the dialog between the nuclear and the chromoplastic genome.

  1. Chloroplast phosphoglycerate kinase is involved in the targeting of Bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants.

    PubMed

    Cheng, Shun-Fang; Huang, Ying-Ping; Chen, Li-Hung; Hsu, Yau-Heiu; Tsai, Ching-Hsiu

    2013-12-01

    The Bamboo mosaic virus (BaMV) is a positive-sense, single-stranded RNA virus. Previously, we identified that the chloroplast phosphoglycerate kinase (chl-PGK) from Nicotiana benthamiana is one of the viral RNA binding proteins involved in the BaMV infection cycle. Because chl-PGK is transported to the chloroplast, we hypothesized that chl-PGK might be involved in viral RNA localization in the chloroplasts. To test this hypothesis, we constructed two green fluorescent protein (GFP)-fused mislocalized PGK mutants, the transit peptide deletion mutant (NO TRANSIT PEPTIDE [NOTP]-PGK-GFP) and the nucleus location mutant (nuclear location signal [NLS]-PGK-GFP). Using confocal microscopy, we demonstrated that NOTP-PGK-GFP and NLS-PGK-GFP are localized in the cytoplasm and nucleus, respectively, in N. benthamiana plants. When NOTP-PGK-GFP and NLS-PGK-GFP are transiently expressed, we observed a reduction in BaMV coat protein accumulation to 47% and 27% that of the wild-type PGK-GFP, respectively. To localize viral RNA in infected cells, we employed the interaction of NLS-GFP-MS2 (phage MS2 coat protein) with the modified BaMV RNA containing the MS2 coat protein binding sequence. Using confocal microscopy, we observed that BaMV viral RNA localizes to chloroplasts. Furthermore, elongation factor1a fused with the transit peptide derived from chl-PGK or with a Rubisco small subunit can partially restore BaMV accumulation in NbPGK1-knockdown plants by helping BaMV target chloroplasts.

  2. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    PubMed

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent. PMID:27278067

  3. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    PubMed

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.

  4. Pb-induced avoidance-like chloroplast movements in fronds of Lemna trisulca L.

    PubMed

    Samardakiewicz, Sławomir; Krzeszowiec-Jeleń, Weronika; Bednarski, Waldemar; Jankowski, Artur; Suski, Szymon; Gabryś, Halina; Woźny, Adam

    2015-01-01

    Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed). An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h) in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2). In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete) of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the mechanisms of the toxic

  5. Pb-Induced Avoidance-Like Chloroplast Movements in Fronds of Lemna trisulca L.

    PubMed Central

    Samardakiewicz, Sławomir; Krzeszowiec-Jeleń, Weronika; Bednarski, Waldemar; Jankowski, Artur; Suski, Szymon; Gabryś, Halina; Woźny, Adam

    2015-01-01

    Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed). An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h) in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2). In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete) of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the mechanisms of the toxic

  6. Giant chloroplast development in ethylene response1-1 is caused by a second mutation in ACCUMULATION AND REPLICATION OF CHLOROPLAST3 in Arabidopsis.

    PubMed

    Cho, Young-Hee; Kim, Geun-Don; Yoo, Sang-Dong

    2012-01-01

    The higher plants of today array a large number of small chloroplasts in their photosynthetic cells. This array of small chloroplasts results from organelle division via prokaryotic binary fission in a eukaryotic plant cell environment. Functional abnormalities of the tightly coordinated biochemical event of chloroplast division lead to abnormal chloroplast development in plants. Here, we described an abnormal chloroplast phenotype in an ethylene insensitive ethylene response1-1 (etr1-1) of Arabidopsis thaliana. Extensive transgenic and genetic analyses revealed that this organelle abnormality was not linked to etr1-1 or ethylene signaling, but linked to a second mutation in ACCUMULATION AND REPLICATION3 (ARC3), which was further verified by genetic complementation analysis. Despite the normal expression of other plastid division-related genes, the loss of ARC3 caused the enlargement of chloroplasts as well as the diminution of a photosynthetic protein Rubisco in etr1-1. Our study has suggested that the increased size of the abnormal chloroplasts may not be able to fully compensate for the loss of a greater array of small chloroplasts in higher plants. PMID:22228186

  7. Myrionecta Rubra Population Genetic Diversity and Its Cryptophyte Chloroplast Specificity in Recurrent Red Tides in the Columbia River Estuary

    SciTech Connect

    Herfort, Lydie; Peterson, Tawnya D.; McCue, Lee Ann; Crump, Byron C.; Prahl, Fredrick G.; Baptista, Antonio M.; Campbell, Victoria; Warnick, Rachel; Selby, Mikaela; Roegner, G. Curtis; Zuber, Peter A.

    2011-01-04

    For at least a decade, annually recurring blooms of the photosynthetic ciliate, Myrionecta rubra have been observed in the Columbia River estuary in late summer. In an effort to understand the dynamics of these blooms, we investigated the genetic variability of M. rubra and its cryptophyte plastids within three large estuarine blooms formed in consecutive years (2007-2009), and conducted a broader spatial survey along the coasts of Oregon/Washington. Analysis of the ‘18S-28S’ sequences specific for Mesodiniidae uncovered at least 7 variants of M. rubra within the Columbia River coastal margin in spring and summer, but only one of these M. rubra variants was implicated in estuary bloom formation. Using a multigene approach, we show that the bloom-forming variant of M. rubra appears to harbor the same cryptophyte chloroplast in recurring blooms. Analyses of chloroplast 16S rRNA, cryptophyte RuBisCO and Photosystem II D2 genes together suggest that the plastid is derived from Teleaulax amphioxeia. Free-living cells of this species and of other cryptophytes were practically absent from the bloom patches in the estuary main channels based on 18S rDNA sequence analyses. The respectively low and high proportions of T. amphioxeia nuclei and chloroplasts signals found in the M. rubra bloom of the Columbia River estuary in successive years supports the notion of a transient association between T. amphioxeia and the bloom-forming M. rubra variant, with loss of cryptophyte nuclei. The genetic variability of M. rubra uncovered here is relevant to the controversy in the literature regarding the cryptophyte /M. rubra association.

  8. Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress.

    PubMed

    Bejaoui, Fatma; Salas, Joaquín J; Nouairi, Issam; Smaoui, Abderrazak; Abdelly, Chedly; Martínez-Force, Enrique; Youssef, Nabil Ben

    2016-07-01

    The possible involvement of chloroplast lipids in the mechanisms of NaCl tolerance was studied in leaves of two varieties of Fabaceae: Sulla carnosa and Sulla coronaria, which were subjected to 200mM NaCl over 20days. Changes in membrane lipid peroxidation, chloroplast lipids content, fatty acids (FA) composition and the ultrastructure of chloroplasts under salt stress were investigated. Chloroplast lipids were separated and quantified by high performance liquid chromatography coupled to evaporative light scattering detection (HPLC/ELSD). The results showed that salinity induced a significant decrease in digalactosyldiacylglycerol (DGDG), phosphatidylglycerol (PG) and sulfoquinovosylglycerol (SQDG) content in both S. carnosa and S. coronaria leaves, whereas monogalactosyldiacylglycerol (MGDG) content did not change significantly in S. carnosa leaves. The MGDG/DGDG ratio remained stable in S. coronaria leaves but increased in those of S. carnosa. In addition, the unsaturated-to-saturated fatty acids ratio (UFAs:SFAs) did not change under salt stress in S. coronaria leaves, while it decreased significantly in S. carnosa leaves. Moreover, salinity did not induce significant changes in MGDG and DGDG unsaturation level in S. carnosa leaves, in contrast to S. coronaria, in which salinity seems to enhance the unsaturation level in MGDG, DGDG and PG. Furthermore, the level of membrane lipid peroxidation, as expressed by malondialdehyde (MDA) levels, increased at 200mM in S. carnosa leaves, while it did not change significantly in those of S. coronaria. With respect to the ultrastructure of chloroplasts at 200mM NaCl, investigated by transmission electron microscopy (TEM), salt-stress caused the swelling of thylakoids in S. carnosa mesophyll. These ultrastructural changes were observed especially in the spongy tissue in S. coronaria. Taken together, these findings suggest that the stability of MGDG/DGDG ratio, the unchanged unsaturation level, and increasing unsaturation

  9. The complete chloroplast genome of North American ginseng, Panax quinquefolius.

    PubMed

    Han, Zeng-Jie; Li, Wei; Liu, Yuan; Gao, Li-Zhi

    2016-09-01

    We report complete nucleotide sequence of the Panax quinquefolius chloroplast genome using next-generation sequencing technology. The genome size is 156 359 bp, including two inverted repeats (IRs) of 52 153 bp, separated by the large single-copy (LSC 86 184 bp) and small single-copy (SSC 18 081 bp) regions. This cp genome encodes 114 unigenes (80 protein-coding genes, four rRNA genes, and 30 tRNA genes), in which 18 are duplicated in the IR regions. Overall GC content of the genome is 38.08%. A phylogenomic analysis of the 10 complete chloroplast genomes from Araliaceae using Daucus carota from Apiaceae as outgroup showed that P. quinquefolius is closely related to the other two members of the genus Panax, P. ginseng and P. notoginseng. PMID:27158867

  10. Synthesis and Stability of Chloroplast Ribosomal—RNA's

    PubMed Central

    Ingle, J.

    1968-01-01

    The chloroplast ribosomal-RNAs (1.1 × 106 and 0.56 × 106 mol wt) are synthesized in the normal ratio of 2:1. The non-ribosomal distribution observed after extraction and fractionation results from the lability of the 1.1 × 106 component, and a correction for this breakdown can be applied in certain cases. Newly synthesized 1.1 × 106 RNA is more stable than the older accumulated 1.1 × 106 RNA. Accumulation of the chloroplast RNA during growth of radish cotyledons occurs at a later time than the accumulation of cytoplasmic RNA, and its turnover is much less than that of the cytoplasmic ribosomal-RNA. PMID:16656936

  11. Stable chloroplast transformation of the unicellular red alga Porphyridium species.

    PubMed

    Lapidot, Miri; Raveh, Dina; Sivan, Alex; Arad, Shoshana Malis; Shapira, Michal

    2002-05-01

    Red algae are extremely attractive for biotechnology because they synthesize accessory photosynthetic pigments (phycobilins and carotenoids), unsaturated fatty acids, and unique cell wall sulfated polysaccharides. We report a high-efficiency chloroplast transformation system for the unicellular red microalga Porphyridium sp. This is the first genetic transformation system for Rhodophytes and is based on use of a mutant form of the gene encoding acetohydroxyacid synthase [AHAS(W492S)] as a dominant selectable marker. AHAS is the target enzyme of the herbicide sulfometuron methyl, which effectively inhibits growth of bacteria, fungi, plants, and algae. Biolistic transformation of synchronized Porphyridium sp. cells with the mutant AHAS(W492S) gene that confers herbicide resistance gave a high frequency of sulfomethuron methyl-resistant colonies. The mutant AHAS gene integrated into the chloroplast genome by homologous recombination. This system paves the way for expression of foreign genes in red algae and has important biotechnological implications.

  12. The complete chloroplast genome sequence of Safflower (Carthamus tinctorius L.).

    PubMed

    Lu, Chaolong; Shen, Qi; Yang, Jun; Wang, Bo; Song, Chi

    2016-09-01

    Safflower (Carthamus tinctorius L.) is a traditional medical plants of Asia. In this study, the complete chloroplast genome of safflower was presented. The total genome size was 153,675 bp in length, containing a pair of inverted repeats (IRs) of 25,407 bp, separated by large single copy (LSC) and small single copy (SSC) of 83,606 bp and 19,156 bp, respectively. Overall GC content of the genome was 37.4%. The chloroplast genome harbored 127 annotated genes, including 89 protein coding genes, 30 tRNA genes and 8 rRNA genes. A total of 7 of these genes were duplicated in the inverted repeat regions. Twelve genes contained one intron.

  13. Signal integration by chloroplast phosphorylation networks: an update

    PubMed Central

    Schönberg, Anna; Baginsky, Sacha

    2012-01-01

    Forty years after the initial discovery of light-dependent protein phosphorylation at the thylakoid membrane system, we are now beginning to understand the roles of chloroplast phosphorylation networks in their function to decode and mediate information on the metabolic status of the organelle to long-term adaptations in plastid and nuclear gene expression. With the help of genetics and functional genomics tools, chloroplast kinases and several hundred phosphoproteins were identified that now await detailed functional characterization. The regulation and the target protein spectrum of some kinases are understood, but this information is fragmentary with respect to kinase and target protein crosstalk in a changing environment. In this review, we will highlight the most recent advances in the field and discuss approaches that might lead to a comprehensive understanding of plastid signal integration by protein phosphorylation. PMID:23181067

  14. Toxic effects of copper on photosystem II of spinach chloroplasts

    SciTech Connect

    Hsu, Bandar; Lee, Jeeyau )

    1988-05-01

    The room temperature fluorescence induction of chloroplasts was utilized as a probe to locate the site of inhibition on PSII by copper. It was found that, while the initial fluorescence yield was hardly affected, the variable fluorescence yield was lowered without significant change in its kinetics. Addition of DCMU, or abolishing oxygen evolution capability by Tris treatment, did not alter this basic inhibition pattern. Copper was also found to lower the fluorescence yield of chloroplasts treated with linolenic acid which inhibited the secondary electron transport on both oxidizing and reducing sides of PSII. The data indicate that copper adversely affects the primary change separation at the PSII reaction center. We suggest that the inhibition is due to creation of a lesion close to the reaction center, leading to increased dissipation of incoming excitation energy to heat.

  15. Regulation of chloroplast biogenesis: the immutans mutant of Arabidopsis

    SciTech Connect

    Rodermel, Steven

    2015-11-16

    The immutans (im) variegation mutant of Arabidopsis is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GIGANTEA (GI), a central component of the circadian clock that plays a poorly-understood role in diverse plant developmental processes. imgi2 mutants are late-flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a developmental-specific de-repression of cytokinin signaling that involves crosstalk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, sex1, perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GIGANTEA and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis.

  16. The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features.

    PubMed

    Terashima, Mia; Specht, Michael; Hippler, Michael

    2011-06-01

    The unicellular green alga Chlamydomonas reinhardtii has emerged to be an important model organism for the study of oxygenic eukaryotic photosynthesis as well as other processes occurring in the chloroplast. However, the chloroplast proteome in C. reinhardtii has only recently been comprehensively characterized, made possible by proteomics emerging as an accessible and powerful tool over the last decade. In this review, we introduce a compiled list of 996 experimentally chloroplast-localized proteins for C. reinhardtii, stemming largely from our previous proteomic dataset comparing chloroplasts and mitochondria samples to localize proteins. In order to get a taste of some cellular functions taking place in the C. reinhardtii chloroplast, we will focus this review particularly on metabolic differences between chloroplasts of C. reinhardtii and higher plants. Areas that will be covered are photosynthesis, chlorophyll biosynthesis, carbon metabolism, fermentative metabolism, ferredoxins and ferredoxin-interacting proteins.

  17. Oxygen Evolution and the Permeability of the Outer Envelope of Isolated Whole Chloroplasts 1

    PubMed Central

    Robinson, J. Michael; Stocking, C. R.

    1968-01-01

    A rapid oxygraph method of studying the permeability of the envelope of isolated chloroplasts was used. The outer envelope of aqueously isolated whole spinach (Spinacia oleracea L.) chloroplasts in buffer is readily permeable to 3-phosphoglyceric acid, which induces an immediate light dependent oxygen evolution. This light dependent oxygen evolution was completely eliminated by swelling these plastids in an osmotically dilute solution. Exogenous adenosine diphosphate, but not inorganic phosphate, strongly stimulated this oxygen evolution. This indicated that the chloroplast envelope is relatively permeable to adenosine diphosphate. Oxygen evolution and swelling studies indicated that the chloroplast envelope is relatively impermeable to NADP and to ferredoxin. A method is described whereby the percent of whole chloroplasts present in a chloroplast preparation may be rapidly estimated. PMID:16656943

  18. Posttranslational modifications of FERREDOXIN-NADP+ OXIDOREDUCTASE in Arabidopsis chloroplasts.

    PubMed

    Lehtimäki, Nina; Koskela, Minna M; Dahlström, Käthe M; Pakula, Eveliina; Lintala, Minna; Scholz, Martin; Hippler, Michael; Hanke, Guy T; Rokka, Anne; Battchikova, Natalia; Salminen, Tiina A; Mulo, Paula

    2014-12-01

    Rapid responses of chloroplast metabolism and adjustments to photosynthetic machinery are of utmost importance for plants' survival in a fluctuating environment. These changes may be achieved through posttranslational modifications of proteins, which are known to affect the activity, interactions, and localization of proteins. Recent studies have accumulated evidence about the crucial role of a multitude of modifications, including acetylation, methylation, and glycosylation, in the regulation of chloroplast proteins. Both of the Arabidopsis (Arabidopsis thaliana) leaf-type FERREDOXIN-NADP(+) OXIDOREDUCTASE (FNR) isoforms, the key enzymes linking the light reactions of photosynthesis to carbon assimilation, exist as two distinct forms with different isoelectric points. We show that both AtFNR isoforms contain multiple alternative amino termini and undergo light-responsive addition of an acetyl group to the α-amino group of the amino-terminal amino acid of proteins, which causes the change in isoelectric point. Both isoforms were also found to contain acetylation of a conserved lysine residue near the active site, while no evidence for in vivo phosphorylation or glycosylation was detected. The dynamic, multilayer regulation of AtFNR exemplifies the complex regulatory network systems controlling chloroplast proteins by a range of posttranslational modifications, which continues to emerge as a novel area within photosynthesis research.

  19. [Antenna replacement in the evolutionary origin of chloroplasts].

    PubMed

    Stadnichuk, I N; Tropin, I V

    2014-01-01

    Endosymbiotic origin of chloroplasts from unicellular cyanobacteria is presently beyond doubt. Oxygenic photosynthesis is based on coordinated action of two photosystems (PS), PS I and PS II, cooperating with several variants of the pigment antenna. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) act as antennae, while in terrestrial plants, as well as most macro- and microalgae antennae are formed by chlorophyll a/b- and chlorophyll a/c-containing proteins. Advantages and disadvantages of the PBS antenna compared to other light-gathering complexes form the basis for adaptive variations of the antenna in the course of development of eukaryotic photosynthesis. During the evolution of the "green" and "chromophyte" lineages of the chloroplasts, PBS, in spite of their optimal features of light absorption,were replaced by chlorophyll a/b- and chlorophyll a/c-containing light-gathering complexes. Development of the cell wall associated with limited motility and with tissue formation in photosynthetic eukaryotes were the factors responsible for the antenna shift. The subsequent redistribution of cell resources in favor of cellulose biosynthesis required increased for CO2 consumption, higher PS II levels, and greater number and density of the thylakoids in the chloroplasts, got incompatible with the energy-consuming and overly large PBS antenna.

  20. Photoinduction of cyclosis-mediated interactions between distant chloroplasts.

    PubMed

    Bulychev, Alexander A; Komarova, Anna V

    2015-01-01

    Communications between chloroplasts and other organelles based on the exchange of metabolites, including redox active substances, are recognized as a part of intracellular regulation, chlororespiration, and defense against oxidative stress. Similar communications may operate between spatially distant chloroplasts in large cells where photosynthetic and respiratory activities are distributed unevenly under fluctuating patterned illumination. Microfluorometry of chlorophyll fluorescence in vivo in internodal cells of the alga Chara corallina revealed that a 30-s pulse of localized light induces a transient increase (~25%) in F' fluorescence of remote cell parts exposed to dim background light at a 1.5-mm distance on the downstream side from the illuminated spot in the plane of unilateral cytoplasmic streaming but has no effect on F' at equal distance on the upstream side. An abrupt arrest of cytoplasmic streaming for about 30s by triggering the action potential extended either the ascending or descending fronts of the F' fluorescence response, depending on the exact moment of streaming cessation. The response of F' fluorescence to localized illumination of a distant cell region was absent in dark-adapted internodes, when the localized light was applied within the first minute after switching on continuous background illumination of the whole cell, but it appeared in full after longer exposures to continuous background light. These results and the elimination of the F' response by methyl viologen known to redirect electron transport pathways beyond photosystem I indicate the importance of photosynthetic induction and the stromal redox state for long-distance communications of chloroplasts in vivo.

  1. Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis.

    PubMed

    Nikkanen, Lauri; Toivola, Jouni; Rintamäki, Eevi

    2016-08-01

    Thioredoxins (TRXs) mediate light-dependent activation of primary photosynthetic reactions in plant chloroplasts by reducing disulphide bridges in redox-regulated enzymes. Of the two plastid TRX systems, the ferredoxin-TRX system consists of ferredoxin-thioredoxin reductase (FTR) and multiple TRXs, while the NADPH-dependent thioredoxin reductase (NTRC) contains a complete TRX system in a single polypeptide. Using Arabidopsis plants overexpressing or lacking a functional NTRC, we have investigated the redundancy and interaction between the NTRC and Fd-TRX systems in regulation of photosynthesis in vivo. Overexpression of NTRC raised the CO2 fixation rate and lowered non-photochemical quenching and acceptor side limitation of PSI in low light conditions by enhancing the activation of chloroplast ATP synthase and TRX-regulated enzymes in Calvin-Benson cycle (CBC). Overexpression of NTRC with an inactivated NTR or TRX domain partly recovered the phenotype of knockout plants, suggesting crosstalk between the plastid TRX systems. NTRC interacted in planta with fructose-1,6-bisphosphatase, phosphoribulokinase and CF1 γ subunit of the ATP synthase and with several chloroplast TRXs. These findings indicate that NTRC-mediated regulation of the CBC and ATP synthesis occurs both directly and through interaction with the ferredoxin-TRX system and is crucial when availability of light is limiting photosynthesis.

  2. Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis.

    PubMed

    Nikkanen, Lauri; Toivola, Jouni; Rintamäki, Eevi

    2016-08-01

    Thioredoxins (TRXs) mediate light-dependent activation of primary photosynthetic reactions in plant chloroplasts by reducing disulphide bridges in redox-regulated enzymes. Of the two plastid TRX systems, the ferredoxin-TRX system consists of ferredoxin-thioredoxin reductase (FTR) and multiple TRXs, while the NADPH-dependent thioredoxin reductase (NTRC) contains a complete TRX system in a single polypeptide. Using Arabidopsis plants overexpressing or lacking a functional NTRC, we have investigated the redundancy and interaction between the NTRC and Fd-TRX systems in regulation of photosynthesis in vivo. Overexpression of NTRC raised the CO2 fixation rate and lowered non-photochemical quenching and acceptor side limitation of PSI in low light conditions by enhancing the activation of chloroplast ATP synthase and TRX-regulated enzymes in Calvin-Benson cycle (CBC). Overexpression of NTRC with an inactivated NTR or TRX domain partly recovered the phenotype of knockout plants, suggesting crosstalk between the plastid TRX systems. NTRC interacted in planta with fructose-1,6-bisphosphatase, phosphoribulokinase and CF1 γ subunit of the ATP synthase and with several chloroplast TRXs. These findings indicate that NTRC-mediated regulation of the CBC and ATP synthesis occurs both directly and through interaction with the ferredoxin-TRX system and is crucial when availability of light is limiting photosynthesis. PMID:26831830

  3. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants.

    PubMed

    Sun, Ai-Zhen; Guo, Fang-Qing

    2016-01-01

    It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants. PMID:27066042

  4. Synthesis of Mono- and Digalactosyldiacylglycerol in Isolated Spinach Chloroplasts 1

    PubMed Central

    Heemskerk, Johan W. M.; Bögemann, Gerard; Helsper, Johannes P. F. G.; Wintermans, Jef F. G. M.

    1988-01-01

    Purified, intact chloroplasts of Spinacia oleracea L. synthesize galactose-labeled mono- and digalactosyldiacylglycerol (MGDG and DGDG) from UDP-[U-14C]galactose. In the presence of high concentrations of unchelated divalent cations they also synthesize tri- and tetra-galactosyldiacylglycerol. The acyl chains of galactose-labeled MGDG are strongly desaturated and such MGDG is a good precursor for DGDG and higher oligogalactolipids. The synthesis of MGDG is catalyzed by UDP-Gal:sn-1,2-diacylglycerol galactosyltransferase, and synthesis of DGDG and the oligogalactolipids is exclusively catalyzed by galactolipid:galactolipid galactosyltransferase. The content of diacylglycerol in chloroplasts remains low during UDP-Gal incorporation. This indicates that formation of diacylglycerol by galactolipid:galactolipid galactosyltransferase is balanced with diacylglycerol consumption by UDP-Gal:diacylglycerol galactosyltransferase for MGDG synthesis. Incubation of intact spinach chloroplasts with [2-14C]acetate or sn-[U-14C]glycerol-3-P in the presence of Mg2+ and unlabeled UDP-Gal resulted in high 14C incorporation into MGDG, while DGDG labeling was low. This de novo made MGDG is mainly oligoene. Its conversion into DGDG is also catalyzed, at least in part, by galactolipid:galactolipid galactosyltransferase. Images Fig. 1 PMID:16666019

  5. Pea amyloplast DNA is qualitatively similar to pea chloroplast DNA

    NASA Technical Reports Server (NTRS)

    Gaynor, J. J.

    1984-01-01

    Amyloplast DNA (apDNA), when subjected to digestion with restriction endonucleases, yields patterns nearly identical to that of DNA from mature pea chloroplasts (ctDNA). Southern transfers of apDNA and ctDNA, probed with the large subunit (LS) gene of ribulose-1,5-bisphosphate carboxylase (Rubisco), shows hybridization to the expected restriction fragments for both apDNA and ctDNA. However, Northern transfers of total RNA from chloroplasts and amyloplasts, probed again with the LS gene of Rubisco, shows that no detectable LS meggage is found in amyloplasts although LS expression in mature chloroplasts is high. Likewise, two dimensional polyacrylamide gel electrophoresis of etiolated gravisensitive pea tissue shows that both large and small subunits of Rubisco are conspicuously absent; however, in greening tissue these two constitute the major soluble proteins. These findings suggest that although the informational content of these two organelle types is equivalent, gene expression is quite different and is presumably under nuclear control.

  6. Chloroplast quality control - balancing energy production and stress.

    PubMed

    Woodson, Jesse D

    2016-10-01

    Contents 36 I. 36 II. 37 III. 37 IV. 38 V. 39 VI. 40 VII. 40 40 References 40 SUMMARY: All organisms require the ability to sense their surroundings and adapt. Such capabilities allow them to thrive in a wide range of habitats. This is especially true for plants, which are sessile and have to be genetically equipped to withstand every change in their environment. Plants and other eukaryotes use their energy-producing organelles (i.e. mitochondria and chloroplasts) as such sensors. In response to a changing cellular or external environment, these organelles can emit 'retrograde' signals that alter gene expression and/or cell physiology. This signaling is important in plants, fungi, and animals and impacts diverse cellular functions including photosynthesis, energy production/storage, stress responses, growth, cell death, ageing, and tumor progression. Originally, chloroplast retrograde signals in plants were known to lead to the reprogramming of nuclear transcription. New research, however, has pointed to additional posttranslational mechanisms that lead to chloroplast regulation and turnover in response to stress. Such mechanisms involve singlet oxygen, ubiquitination, the 26S proteasome, and cellular degradation machinery. PMID:27533783

  7. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants

    PubMed Central

    Sun, Ai-Zhen; Guo, Fang-Qing

    2016-01-01

    It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants. PMID:27066042

  8. Chloroplast Dedifferentiation in Mechanically Isolated Asparagus Cells during Culture Initiation.

    PubMed

    Harikrishna, K; Darby, R; Draper, J

    1992-11-01

    Mechanically isolated asparagus (Asparagus officinalis) mesophyll cells dedifferentiate and divide when cultured in the dark in a medium containing sucrose. A strong correlation was observed between the onset of cell division and a loss of photosynthetic capacity. For the first 8 to 9 d of culture, there was no change in chloroplast size or morphology. However, following this period, the chloroplasts divided to form smaller proplastid-like structures. The gross chlorophyll content of the cell population did not change, suggesting that the loss of photosynthetic potential was not by senescence. Northern analysis showed that mRNA of the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase was undetectable within 1 d postisolation, which was quicker than in dark-treated plants. The mRNA of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase decreased to low levels within 2 d of cell isolation. Both the large and small subunits of ribulose 1,5-bisphosphate carboxylase/oxygenase protein showed a gradual reduction in abundance, falling to basal levels by days 6 to 7, which coincided with the onset of rapid cell division. A similar trend was observed with chloroplast rRNA molecules, which decreased to basal levels by day 6 in culture.

  9. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs.

    PubMed

    Yang, Jun-Bo; Li, De-Zhu; Li, Hong-Tao

    2014-09-01

    Chloroplast genomes supply indispensable information that helps improve the phylogenetic resolution and even as organelle-scale barcodes. Next-generation sequencing technologies have helped promote sequencing of complete chloroplast genomes, but compared with the number of angiosperms, relatively few chloroplast genomes have been sequenced. There are two major reasons for the paucity of completely sequenced chloroplast genomes: (i) massive amounts of fresh leaves are needed for chloroplast sequencing and (ii) there are considerable gaps in the sequenced chloroplast genomes of many plants because of the difficulty of isolating high-quality chloroplast DNA, preventing complete chloroplast genomes from being assembled. To overcome these obstacles, all known angiosperm chloroplast genomes available to date were analysed, and then we designed nine universal primer pairs corresponding to the highly conserved regions. Using these primers, angiosperm whole chloroplast genomes can be amplified using long-range PCR and sequenced using next-generation sequencing methods. The primers showed high universality, which was tested using 24 species representing major clades of angiosperms. To validate the functionality of the primers, eight species representing major groups of angiosperms, that is, early-diverging angiosperms, magnoliids, monocots, Saxifragales, fabids, malvids and asterids, were sequenced and assembled their complete chloroplast genomes. In our trials, only 100 mg of fresh leaves was used. The results show that the universal primer set provided an easy, effective and feasible approach for sequencing whole chloroplast genomes in angiosperms. The designed universal primer pairs provide a possibility to accelerate genome-scale data acquisition and will therefore magnify the phylogenetic resolution and species identification in angiosperms.

  10. Method of producing metallized chloroplasts and use thereof in the photochemical production of hydrogen and oxygen

    DOEpatents

    Greenbaum, Elias

    1987-01-01

    The invention is primarily a metallized chloroplast composition for use in a photosynthetic reaction. A catalytic metal is precipitated on a chloroplast membrane at the location where a catalyzed reduction reaction occurs. This metallized chloroplast is stabilized by depositing it on a support medium such as fiber so that it can be easily handled. A possible application of this invention is the splitting of water to form hydrogen and oxygen that can be used as a renewable energy source.

  11. Production of Recombinant Proteins in the Chloroplast of the Green Alga Chlamydomonas reinhardtii.

    PubMed

    Guzmán-Zapata, Daniel; Macedo-Osorio, Karla Soledad; Almaraz-Delgado, Alma Lorena; Durán-Figueroa, Noé; Badillo-Corona, Jesus Agustín

    2016-01-01

    Chloroplast transformation in the green algae Chlamydomonas reinhardtii can be used for the production of valuable recombinant proteins. Here, we describe chloroplast transformation of C. reinhardtii followed by protein detection. Genes of interest integrate stably by homologous recombination into the chloroplast genome following introduction by particle bombardment. Genes are inherited and expressed in lines recovered after selection in the presence of an antibiotic. Recombinant proteins can be detected by conventional techniques like immunoblotting and purified from liquid cultures.

  12. Production of Recombinant Proteins in the Chloroplast of the Green Alga Chlamydomonas reinhardtii.

    PubMed

    Guzmán-Zapata, Daniel; Macedo-Osorio, Karla Soledad; Almaraz-Delgado, Alma Lorena; Durán-Figueroa, Noé; Badillo-Corona, Jesus Agustín

    2016-01-01

    Chloroplast transformation in the green algae Chlamydomonas reinhardtii can be used for the production of valuable recombinant proteins. Here, we describe chloroplast transformation of C. reinhardtii followed by protein detection. Genes of interest integrate stably by homologous recombination into the chloroplast genome following introduction by particle bombardment. Genes are inherited and expressed in lines recovered after selection in the presence of an antibiotic. Recombinant proteins can be detected by conventional techniques like immunoblotting and purified from liquid cultures. PMID:26614282

  13. CDP1, a novel component of chloroplast division site positioning system in Arabidopsis.

    PubMed

    Zhang, Min; Hu, Yong; Jia, Jingjing; Li, Dapeng; Zhang, Runjie; Gao, Hongbo; He, Yikun

    2009-07-01

    Chloroplasts are plant-specific organelles that evolved from endosymbiotic cyanobacteria. They divide through binary fission. Selection of the chloroplast division site is pivotal for the symmetric chloroplast division. In E. coli, positioning of the division site at the midpoint of the cell is regulated by dynamic oscillation of the Min system, which includes MinC, MinD and MinE. Homologs of MinD and MinE in plants are involved in chloroplast division. The homolog of MinC still has not been identified in higher plants. However, an FtsZ-like protein, ARC3, was found to be involved in chloroplast division site positioning. Here, we report that chloroplast division site positioning 1 (AtCDP1) is a novel chloroplast division protein involved in chloroplast division site placement in Arabidopsis. AtCDP1 was discovered by screening an Arabidopsis cDNA expression library in bacteria for colonies with a cell division phenotype. AtCDP1 is exclusively expressed in young green tissues in Arabidopsis. Elongated chloroplasts with multiple division sites were observed in the loss-of-function cdp1 mutant. Overexpression of AtCDP1 caused a chloroplast division phenotype too. Protein interaction assays suggested that AtCDP1 may mediate the chloroplast division site positioning through the interaction with ARC3. Overall, our results indicate that AtCDP1 is a novel component of the chloroplast division site positioning system, and the working mechanism of this system is different from that of the traditional MinCDE system in prokaryotic cells. PMID:19564892

  14. Sonication-based isolation and enrichment of Chlorella protothecoides chloroplasts for illumina genome sequencing

    SciTech Connect

    Angelova, Angelina; Park, Sang-Hycuk; Kyndt, John; Fitzsimmons, Kevin; Brown, Judith K

    2013-09-01

    With the increasing world demand for biofuel, a number of oleaginous algal species are being considered as renewable sources of oil. Chlorella protothecoides Krüger synthesizes triacylglycerols (TAGs) as storage compounds that can be converted into renewable fuel utilizing an anabolic pathway that is poorly understood. The paucity of algal chloroplast genome sequences has been an important constraint to chloroplast transformation and for studying gene expression in TAGs pathways. In this study, the intact chloroplasts were released from algal cells using sonication followed by sucrose gradient centrifugation, resulting in a 2.36-fold enrichment of chloroplasts from C. protothecoides, based on qPCR analysis. The C. protothecoides chloroplast genome (cpDNA) was determined using the Illumina HiSeq 2000 sequencing platform and found to be 84,576 Kb in size (8.57 Kb) in size, with a GC content of 30.8 %. This is the first report of an optimized protocol that uses a sonication step, followed by sucrose gradient centrifugation, to release and enrich intact chloroplasts from a microalga (C. prototheocoides) of sufficient quality to permit chloroplast genome sequencing with high coverage, while minimizing nuclear genome contamination. The approach is expected to guide chloroplast isolation from other oleaginous algal species for a variety of uses that benefit from enrichment of chloroplasts, ranging from biochemical analysis to genomics studies.

  15. Arabidopsis FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel.

    PubMed

    Chang, Ning; Gao, Yuefang; Zhao, Lin; Liu, Xiaomin; Gao, Hongbo

    2015-01-01

    CPD45 (chloroplast division45),which is also known as FHY3 (far-red elongated hypocotyl3), is a key factor in the far-red light signaling pathway in Arabidopsis. We previously showed that FHY3/CPD45 also regulates chloroplast division. Because light is also a regulator of chloroplast development and division, we sought to clarify the relationship between far-red light signaling and chloroplast division pathways. We found that the chloroplast division mutant arc5-3 had no defect in far-red light sensing, and that constitutive overexpression of ARC5 rescued the chloroplast division defect, but not the defect in far-red light signaling, of cpd45. fhy1, which is defective in far-red light signaling, exhibited normal chloroplast division. Constitutive overexpression of FHY1 rescued the far-red light signaling defect, but not the chloroplast division defect, of cpd45. Moreover, ARC5 and FHY1 expression were not affected in fhy1 and arc5-3, respectively. Based on these results, we propose that FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel by activating the expression of FHY1 and ARC5 independently. This work demonstrates how relationships between different pathways in a gene regulatory network can be explored. PMID:25872642

  16. An Ancient Bacterial Signaling Pathway Regulates Chloroplast Function to Influence Growth and Development in Arabidopsis.

    PubMed

    Sugliani, Matteo; Abdelkefi, Hela; Ke, Hang; Bouveret, Emmanuelle; Robaglia, Christophe; Caffarri, Stefano; Field, Ben

    2016-03-01

    The chloroplast originated from the endosymbiosis of an ancient photosynthetic bacterium by a eukaryotic cell. Remarkably, the chloroplast has retained elements of a bacterial stress response pathway that is mediated by the signaling nucleotides guanosine penta- and tetraphosphate (ppGpp). However, an understanding of the mechanism and outcomes of ppGpp signaling in the photosynthetic eukaryotes has remained elusive. Using the model plant Arabidopsis thaliana, we show that ppGpp is a potent regulator of chloroplast gene expression in vivo that directly reduces the quantity of chloroplast transcripts and chloroplast-encoded proteins. We then go on to demonstrate that the antagonistic functions of different plant RelA SpoT homologs together modulate ppGpp levels to regulate chloroplast function and show that they are required for optimal plant growth, chloroplast volume, and chloroplast breakdown during dark-induced and developmental senescence. Therefore, our results show that ppGpp signaling is not only linked to stress responses in plants but is also an important mediator of cooperation between the chloroplast and the nucleocytoplasmic compartment during plant growth and development.

  17. Different effects of eubacterial and eukaryotic DNA topoisomerase II inhibitors on chloroplasts ofEuglena gracilis

    NASA Astrophysics Data System (ADS)

    Krajčovič, Juraj; Ebringer, Libor

    1990-03-01

    Inhibitors of eubacterial and eukaryotic DNA topoisomerases type II exhibited different effects on chloroplasts of the flagellateEuglena gracilis. Antibacterial agents (cinoxacin, nalidixic and oxolinic acids, ciprofloxacin, enoxacin, norfloxacin and ofloxacin) from the group of quinolones and coumarins (coumermycin A1, clorobiocin and novobiocin) — all inhibitors of prokaryotic DNA topoisomerase II — were very potent eliminators of chloroplasts fromE. gracilis. In contrast, antitumor drugs (adriamycin, etoposide, teniposide and mitoxantrone) — antagonists of the eukaryotic counterpart — did not affect these semiautonomous photosynthetic organelles. These findings point out again the close evolutionary relationships between eubacteria and chloroplasts and are in agreement with the hypothesis of an endosymbiotic origin of chloroplasts.

  18. Arabidopsis FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel

    PubMed Central

    Chang, Ning; Gao, Yuefang; Zhao, Lin; Liu, Xiaomin; Gao, Hongbo

    2015-01-01

    CPD45 (chloroplast division45),which is also known as FHY3 (far-red elongated hypocotyl3), is a key factor in the far-red light signaling pathway in Arabidopsis. We previously showed that FHY3/CPD45 also regulates chloroplast division. Because light is also a regulator of chloroplast development and division, we sought to clarify the relationship between far-red light signaling and chloroplast division pathways. We found that the chloroplast division mutant arc5-3 had no defect in far-red light sensing, and that constitutive overexpression of ARC5 rescued the chloroplast division defect, but not the defect in far-red light signaling, of cpd45. fhy1, which is defective in far-red light signaling, exhibited normal chloroplast division. Constitutive overexpression of FHY1 rescued the far-red light signaling defect, but not the chloroplast division defect, of cpd45. Moreover, ARC5 and FHY1 expression were not affected in fhy1 and arc5-3, respectively. Based on these results, we propose that FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel by activating the expression of FHY1 and ARC5 independently. This work demonstrates how relationships between different pathways in a gene regulatory network can be explored. PMID:25872642

  19. ppGpp inhibits peptide elongation cycle of chloroplast translation system in vitro.

    PubMed

    Nomura, Yuhta; Takabayashi, Taito; Kuroda, Hiroshi; Yukawa, Yasushi; Sattasuk, Kwanchanok; Akita, Mitsuru; Nozawa, Akira; Tozawa, Yuzuru

    2012-01-01

    Chloroplasts possess common biosynthetic pathways for generating guanosine 3',5'-(bis)pyrophosphate (ppGpp) from GDP and ATP by RelA-SpoT homolog enzymes. To date, several hypothetical targets of ppGpp in chloroplasts have been suggested, but they remain largely unverified. In this study, we have investigated effects of ppGpp on translation apparatus in chloroplasts by developing in vitro protein synthesis system based on an extract of chloroplasts isolated from pea (Pisum sativum). The chloroplast extracts showed stable protein synthesis activity in vitro, and the activity was sensitive to various types of antibiotics. We have demonstrated that ppGpp inhibits the activity of chloroplast translation in dose-effective manner, as does the toxic nonhydrolyzable GTP analog guanosine 5'-(β,γ-imido)triphosphate (GDPNP). We further examined polyuridylic acid-directed polyphenylalanine synthesis as a measure of peptide elongation activity in the pea chloroplast extract. Both ppGpp and GDPNP as well as antibiotics, fusidic acid and thiostrepton, inhibited the peptide elongation cycle of the translation system, but GDP in the similar range of the tested ppGpp concentration did not affect the activity. Our results thus show that ppGpp directly affect the translation system of chloroplasts, as they do that of bacteria. We suggest that the role of the ppGpp signaling system in translation in bacteria is conserved in the translation system of chloroplasts.

  20. Purification and cDNA isolation of chloroplastic phosphoglycerate kinase from Chlamydomonas reinhardtii.

    PubMed Central

    Kitayama, M; Togasaki, R K

    1995-01-01

    Chloroplastic phosphoglycerate kinase (PGK) was purified to homogeneity from a soluble fraction of chloroplasts of a cell-wall-deficient mutant strain of Chlamydomonas reinhardtii (cw-15) using ammonium sulfate fractionation, Reactive Blue-72 column chromatography, and native polyacrylamide gel electrophoresis. PGK activity was attributed to a single polypeptide with a molecular mass of 42 kD. Relative purity and identity of the isolated enzyme was confirmed by N-terminal amino acid sequence determination. Antiserum against this enzyme was raised and a western blot analysis of whole-cell lysate from cw-15 cells using this anti-chloroplastic PGK serum detected a single polypeptide with a molecular mass of 42 kD. The cDNA clone corresponding to the Chlamydomonas chloroplastic PGK was isolated from a Chlamydomonas cDNA expression library using the anti-PGK serum. The cDNA sequence was determined and apparently codes for the entire precursor peptide, which consists of 461 codons. The results from Southern and northern blot analyses suggest that the chloroplastic PGK gene exists as a single copy in the nuclear genome of C. reinhardtii and is expressed as a 1.8-kb transcript. The C. reinhardtii chloroplastic PGK cDNA has 71 and 66% homology with wheat chloroplastic PGK and spinach chloroplastic PGK, respectively. Based on the deduced amino acid sequence, the chloroplastic PGK of C. reinhardtii has more similarity to plant PGKs than to other PGKs, having both prokaryotic and eukaryotic features. PMID:7724671

  1. Arabidopsis FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel.

    PubMed

    Chang, Ning; Gao, Yuefang; Zhao, Lin; Liu, Xiaomin; Gao, Hongbo

    2015-04-15

    CPD45 (chloroplast division45),which is also known as FHY3 (far-red elongated hypocotyl3), is a key factor in the far-red light signaling pathway in Arabidopsis. We previously showed that FHY3/CPD45 also regulates chloroplast division. Because light is also a regulator of chloroplast development and division, we sought to clarify the relationship between far-red light signaling and chloroplast division pathways. We found that the chloroplast division mutant arc5-3 had no defect in far-red light sensing, and that constitutive overexpression of ARC5 rescued the chloroplast division defect, but not the defect in far-red light signaling, of cpd45. fhy1, which is defective in far-red light signaling, exhibited normal chloroplast division. Constitutive overexpression of FHY1 rescued the far-red light signaling defect, but not the chloroplast division defect, of cpd45. Moreover, ARC5 and FHY1 expression were not affected in fhy1 and arc5-3, respectively. Based on these results, we propose that FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel by activating the expression of FHY1 and ARC5 independently. This work demonstrates how relationships between different pathways in a gene regulatory network can be explored.

  2. [ On the absence of high-molecular polyphosphates in chloroplasts of Acetabularia mediterranea].

    PubMed

    Rubtsov, P M; Efremovich, N V; Kulaev, I S

    1977-05-01

    High-molecular polyphosphates have been identified in a crude fraction of chloroplasts of Acetabularia mediterranea. However, after a short-term treatment of the fraction with a hypotonic salt solution and centrifugation in a sucrose density gradient it was found possible to completely separate high-molecular polyphosphates from intact chloroplasts. Consequently the chloroplasts themselves contain no high-molecular polyphosphates. It is assumed that the high-molecular polysphates found in a crude fraction of chloroplasts are constitutents of the "metachromatic" granules which can be revealed in the A. mediterranea cytoplasm by cytochemical methods.

  3. Use of Silica Sol Step Gradients to Prepare Bundle Sheath and Mesophyll Chloroplasts from Panicum maximum.

    PubMed

    Walbot, V

    1977-07-01

    The first method for the direct separation of mesophyll and bundle sheath chloroplasts from whole tissue homogenates of a C(4) plant is described. Centrifugation of mixed chloroplast preparations from Panicum maximum through low viscosity silica sol gradients effectively separates large, starch-containing chloroplasts from smaller plastids. The large chloroplasts are judged to be bundle sheath chloroplasts on the basis of microscopic appearance, the presence of starch grains, the protein complement displayed on sodium dodecyl sulfate acrylamide gels, and the exclusive localization of ribulose bisphosphate carboxylase activity in these plastids. As a measure of intactness both the large (bundle sheath) and small (mesophyll) chloroplasts contain glyceralde-hyde-3-phosphate NADP-dependent dehydrogenase activity that is greatly enhanced by plastid lysis and both chloroplast preparations are impermeable to deoxyribonuclease. Chloroplast enzyme activities are inhibited by silica sol due to the Mg(2+) chelating activity of this reagent. However, well washed chloroplasts separated on silica gradients had enzyme activities similar to reported values in which silica sol gradients were not used. PMID:16660019

  4. The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes.

    PubMed

    Turmel, M; Otis, C; Lemieux, C

    1999-08-31

    Green plants seem to form two sister lineages: Chlorophyta, comprising the green algal classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae, and Chlorophyceae, and Streptophyta, comprising the Charophyceae and land plants. We have determined the complete chloroplast DNA (cpDNA) sequence (200,799 bp) of Nephroselmis olivacea, a member of the class (Prasinophyceae) thought to include descendants of the earliest-diverging green algae. The 127 genes identified in this genome represent the largest gene repertoire among the green algal and land plant cpDNAs completely sequenced to date. Of the Nephroselmis genes, 2 (ycf81 and ftsI, a gene involved in peptidoglycan synthesis) have not been identified in any previously investigated cpDNA; 5 genes [ftsW, rnE, ycf62, rnpB, and trnS(cga)] have been found only in cpDNAs of nongreen algae; and 10 others (ndh genes) have been described only in land plant cpDNAs. Nephroselmis and land plant cpDNAs share the same quadripartite structure-which is characterized by the presence of a large rRNA-encoding inverted repeat and two unequal single-copy regions-and very similar sets of genes in corresponding genomic regions. Given that our phylogenetic analyses place Nephroselmis within the Chlorophyta, these structural characteristics were most likely present in the cpDNA of the common ancestor of chlorophytes and streptophytes. Comparative analyses of chloroplast genomes indicate that the typical quadripartite architecture and gene-partitioning pattern of land plant cpDNAs are ancient features that may have been derived from the genome of the cyanobacterial progenitor of chloroplasts. Our phylogenetic data also offer insight into the chlorophyte ancestor of euglenophyte chloroplasts.

  5. Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts.

    PubMed

    Byeon, Yeong; Yool Lee, Hyoung; Choi, Dong-Woog; Back, Kyoungwhan

    2015-02-01

    Melatonin biosynthesis involves the N-acetylation of arylalkylamines such as serotonin, which is catalysed by serotonin N-acetyltransferase (SNAT), the penultimate enzyme of melatonin biosynthesis in both animals and plants. Here, we report the functional characterization of a putative N-acetyltransferase gene in the chloroplast genome of the alga laver (Pyropia yezoensis, formerly known as Porphyra yezoensis) with homology to the rice SNAT gene. To confirm that the putative Pyropia yezoensis SNAT (PySNAT) gene encodes an SNAT, we cloned the full-length chloroplastidic PySNAT gene by PCR and purified the recombinant PySNAT protein from Escherichia coli. PySNAT was 174 aa and had 50% amino acid identity with cyanobacteria SNAT. Purified recombinant PySNAT showed a peak activity at 55 °C with a K m of 467 µM and V max of 28 nmol min-1 mg(-1) of protein. Unlike other plant SNATs, PySNAT localized to the cytoplasm due to a lack of N-terminal chloroplast transit peptides. Melatonin was present at 0.16ng g(-1) of fresh mass but increased during heat stress. Phylogenetic analysis of the sequence suggested that PySNAT has evolved from the cyanobacteria SNAT gene via endosymbiotic gene transfer. Additionally, the chloroplast transit peptides of plant SNATs were acquired 1500 million years ago, concurrent with the appearance of green algae.

  6. Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts

    PubMed Central

    Byeon, Yeong; Yool Lee, Hyoung; Choi, Dong-Woog; Back, Kyoungwhan

    2015-01-01

    Melatonin biosynthesis involves the N-acetylation of arylalkylamines such as serotonin, which is catalysed by serotonin N-acetyltransferase (SNAT), the penultimate enzyme of melatonin biosynthesis in both animals and plants. Here, we report the functional characterization of a putative N-acetyltransferase gene in the chloroplast genome of the alga laver (Pyropia yezoensis, formerly known as Porphyra yezoensis) with homology to the rice SNAT gene. To confirm that the putative Pyropia yezoensis SNAT (PySNAT) gene encodes an SNAT, we cloned the full-length chloroplastidic PySNAT gene by PCR and purified the recombinant PySNAT protein from Escherichia coli. PySNAT was 174 aa and had 50% amino acid identity with cyanobacteria SNAT. Purified recombinant PySNAT showed a peak activity at 55 °C with a K m of 467 µM and V max of 28 nmol min–1 mg–1 of protein. Unlike other plant SNATs, PySNAT localized to the cytoplasm due to a lack of N-terminal chloroplast transit peptides. Melatonin was present at 0.16ng g–1 of fresh mass but increased during heat stress. Phylogenetic analysis of the sequence suggested that PySNAT has evolved from the cyanobacteria SNAT gene via endosymbiotic gene transfer. Additionally, the chloroplast transit peptides of plant SNATs were acquired 1500 million years ago, concurrent with the appearance of green algae. PMID:25183745

  7. Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus1

    PubMed Central

    Green, Brian J.; Li, Wei-Ye; Manhart, James R.; Fox, Theodore C.; Summer, Elizabeth J.; Kennedy, Robert A.; Pierce, Sidney K.; Rumpho, Mary E.

    2000-01-01

    Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at least 9 months if provided with only light and a source of CO2. Here we demonstrate that the sea slug symbiont chloroplasts maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes. PMID:10982447

  8. Whole genome sequencing of enriched chloroplast DNA using the Illumina GAII platform

    PubMed Central

    2010-01-01

    Background Complete chloroplast genome sequences provide a valuable source of molecular markers for studies in molecular ecology and evolution of plants. To obtain complete genome sequences, recent studies have made use of the polymerase chain reaction to amplify overlapping fragments from conserved gene loci. However, this approach is time consuming and can be more difficult to implement where gene organisation differs among plants. An alternative approach is to first isolate chloroplasts and then use the capacity of high-throughput sequencing to obtain complete genome sequences. We report our findings from studies of the latter approach, which used a simple chloroplast isolation procedure, multiply-primed rolling circle amplification of chloroplast DNA, Illumina Genome Analyzer II sequencing, and de novo assembly of paired-end sequence reads. Results A modified rapid chloroplast isolation protocol was used to obtain plant DNA that was enriched for chloroplast DNA, but nevertheless contained nuclear and mitochondrial DNA. Multiply-primed rolling circle amplification of this mixed template produced sufficient quantities of chloroplast DNA, even when the amount of starting material was small, and improved the template quality for Illumina Genome Analyzer II (hereafter Illumina GAII) sequencing. We demonstrate, using independent samples of karaka (Corynocarpus laevigatus), that there is high fidelity in the sequence obtained from this template. Although less than 20% of our sequenced reads could be mapped to chloroplast genome, it was relatively easy to assemble complete chloroplast genome sequences from the mixture of nuclear, mitochondrial and chloroplast reads. Conclusions We report successful whole genome sequencing of chloroplast DNA from karaka, obtained efficiently and with high fidelity. PMID:20920211

  9. Reference-Free Comparative Genomics of 174 Chloroplasts

    PubMed Central

    Kua, Chai-Shian; Ruan, Jue; Harting, John; Ye, Cheng-Xi; Helmus, Matthew R.; Yu, Jun; Cannon, Charles H.

    2012-01-01

    Direct analysis of unassembled genomic data could greatly increase the power of short read DNA sequencing technologies and allow comparative genomics of organisms without a completed reference available. Here, we compare 174 chloroplasts by analyzing the taxanomic distribution of short kmers across genomes [1]. We then assemble de novo contigs centered on informative variation. The localized de novo contigs can be separated into two major classes: tip = unique to a single genome and group = shared by a subset of genomes. Prior to assembly, we found that ∼18% of the chloroplast was duplicated in the inverted repeat (IR) region across a four-fold difference in genome sizes, from a highly reduced parasitic orchid [2] to a massive algal chloroplast [3], including gnetophytes [4] and cycads [5]. The conservation of this ratio between single copy and duplicated sequence was basal among green plants, independent of photosynthesis and mechanism of genome size change, and different in gymnosperms and lower plants. Major lineages in the angiosperm clade differed in the pattern of shared kmers and de novo contigs. For example, parasitic plants demonstrated an expected accelerated overall rate of evolution, while the hemi-parasitic genomes contained a great deal more novel sequence than holo-parasitic plants, suggesting different mechanisms at different stages of genomic contraction. Additionally, the legumes are diverging more quickly and in different ways than other major families. Small duplicated fragments of the rrn23 genes were deeply conserved among seed plants, including among several species without the IR regions, indicating a crucial functional role of this duplication. Localized de novo assembly of informative kmers greatly reduces the complexity of large comparative analyses by confining the analysis to a small partition of data and genomes relevant to the specific question, allowing direct analysis of next-gen sequence data from previously unstudied

  10. A comparative approach to elucidate chloroplast genome replication

    PubMed Central

    Krishnan, Neeraja M; Rao, Basuthkar J

    2009-01-01

    Background Electron microscopy analyses of replicating chloroplast molecules earlier predicted bidirectional Cairns replication as the prevalent mechanism, perhaps followed by rounds of a rolling circle mechanism. This standard model is being challenged by the recent proposition of homologous recombination-mediated replication in chloroplasts. Results We address this issue in our current study by analyzing nucleotide composition in genome regions between known replication origins, with an aim to reveal any adenine to guanine deamination gradients. These gradual linear gradients typically result from the accumulation of deaminations over the time spent single-stranded by one of the strands of the circular molecule during replication and can, therefore, be used to model the course of replication. Our linear regression analyses on the nucleotide compositions of the non-coding regions and the synonymous third codon position of coding regions, between pairs of replication origins, reveal the existence of significant adenine to guanine deamination gradients in portions overlapping the Small Single Copy (SSC) and the Large Single Copy (LSC) regions between inverted repeats. These gradients increase bi-directionally from the center of each region towards the respective ends, suggesting that both the strands were left single-stranded during replication. Conclusion Single-stranded regions of the genome and gradients in time that these regions are left single-stranded, as revealed by our nucleotide composition analyses, appear to converge with the original bi-directional dual displacement loop model and restore evidence for its existence as the primary mechanism. Other proposed faster modes such as homologous recombination and rolling circle initiation could exist in addition to this primary mechanism to facilitate homoplasmy among the intra-cellular chloroplast population PMID:19457260

  11. Photoinduction of cyclosis-mediated interactions between distant chloroplasts.

    PubMed

    Bulychev, Alexander A; Komarova, Anna V

    2015-01-01

    Communications between chloroplasts and other organelles based on the exchange of metabolites, including redox active substances, are recognized as a part of intracellular regulation, chlororespiration, and defense against oxidative stress. Similar communications may operate between spatially distant chloroplasts in large cells where photosynthetic and respiratory activities are distributed unevenly under fluctuating patterned illumination. Microfluorometry of chlorophyll fluorescence in vivo in internodal cells of the alga Chara corallina revealed that a 30-s pulse of localized light induces a transient increase (~25%) in F' fluorescence of remote cell parts exposed to dim background light at a 1.5-mm distance on the downstream side from the illuminated spot in the plane of unilateral cytoplasmic streaming but has no effect on F' at equal distance on the upstream side. An abrupt arrest of cytoplasmic streaming for about 30s by triggering the action potential extended either the ascending or descending fronts of the F' fluorescence response, depending on the exact moment of streaming cessation. The response of F' fluorescence to localized illumination of a distant cell region was absent in dark-adapted internodes, when the localized light was applied within the first minute after switching on continuous background illumination of the whole cell, but it appeared in full after longer exposures to continuous background light. These results and the elimination of the F' response by methyl viologen known to redirect electron transport pathways beyond photosystem I indicate the importance of photosynthetic induction and the stromal redox state for long-distance communications of chloroplasts in vivo. PMID:25615586

  12. Analysis of Acorus calamus chloroplast genome and its phylogenetic implications.

    PubMed

    Goremykin, Vadim V; Holland, Barbara; Hirsch-Ernst, Karen I; Hellwig, Frank H

    2005-09-01

    Determining the phylogenetic relationships among the major lines of angiosperms is a long-standing problem, yet the uncertainty as to the phylogenetic affinity of these lines persists. While a number of studies have suggested that the ANITA (Amborella-Nymphaeales-Illiciales-Trimeniales-Aristolochiales) grade is basal within angiosperms, studies of complete chloroplast genome sequences also suggested an alternative tree, wherein the line leading to the grasses branches first among the angiosperms. To improve taxon sampling in the existing chloroplast genome data, we sequenced the chloroplast genome of the monocot Acorus calamus. We generated a concatenated alignment (89,436 positions for 15 taxa), encompassing almost all sequences usable for phylogeny reconstruction within spermatophytes. The data still contain support for both the ANITA-basal and grasses-basal hypotheses. Using simulations we can show that were the ANITA-basal hypothesis true, parsimony (and distance-based methods with many models) would be expected to fail to recover it. The self-evident explanation for this failure appears to be a long-branch attraction (LBA) between the clade of grasses and the out-group. However, this LBA cannot explain the discrepancies observed between tree topology recovered using the maximum likelihood (ML) method and the topologies recovered using the parsimony and distance-based methods when grasses are deleted. Furthermore, the fact that neither maximum parsimony nor distance methods consistently recover the ML tree, when according to the simulations they would be expected to, when the out-group (Pinus) is deleted, suggests that either the generating tree is not correct or the best symmetric model is misspecified (or both). We demonstrate that the tree recovered under ML is extremely sensitive to model specification and that the best symmetric model is misspecified. Hence, we remain agnostic regarding phylogenetic relationships among basal angiosperm lineages.

  13. Reference-free comparative genomics of 174 chloroplasts.

    PubMed

    Kua, Chai-Shian; Ruan, Jue; Harting, John; Ye, Cheng-Xi; Helmus, Matthew R; Yu, Jun; Cannon, Charles H

    2012-01-01

    Direct analysis of unassembled genomic data could greatly increase the power of short read DNA sequencing technologies and allow comparative genomics of organisms without a completed reference available. Here, we compare 174 chloroplasts by analyzing the taxanomic distribution of short kmers across genomes [1]. We then assemble de novo contigs centered on informative variation. The localized de novo contigs can be separated into two major classes: tip = unique to a single genome and group = shared by a subset of genomes. Prior to assembly, we found that ~18% of the chloroplast was duplicated in the inverted repeat (IR) region across a four-fold difference in genome sizes, from a highly reduced parasitic orchid [2] to a massive algal chloroplast [3], including gnetophytes [4] and cycads [5]. The conservation of this ratio between single copy and duplicated sequence was basal among green plants, independent of photosynthesis and mechanism of genome size change, and different in gymnosperms and lower plants. Major lineages in the angiosperm clade differed in the pattern of shared kmers and de novo contigs. For example, parasitic plants demonstrated an expected accelerated overall rate of evolution, while the hemi-parasitic genomes contained a great deal more novel sequence than holo-parasitic plants, suggesting different mechanisms at different stages of genomic contraction. Additionally, the legumes are diverging more quickly and in different ways than other major families. Small duplicated fragments of the rrn23 genes were deeply conserved among seed plants, including among several species without the IR regions, indicating a crucial functional role of this duplication. Localized de novo assembly of informative kmers greatly reduces the complexity of large comparative analyses by confining the analysis to a small partition of data and genomes relevant to the specific question, allowing direct analysis of next-gen sequence data from previously unstudied genomes and

  14. Carbonic anhydrase activity in isolated chloroplasts of chlamydomonas reinhardtii

    SciTech Connect

    Katzman, G.; Togasaki, R.K. ); Marcus, Y. ); Moroney, J.V. )

    1989-04-01

    In a new assay of carbonic anhydrase, NaH{sup 14}CO{sub 3} solution at the bottom of a sealed vessel releases {sup 14}CO{sub 3} which diffuses to the top of the vessel to be assimilated by actively photosynthesizing Chlamydomonas cells. The assay is initiated by illuminating cells and stopped by turning the light off and killing the cells with acid. Enzyme activity was estimated from acid stable radioactivity above the uncatalyzed background level. With bovine carbonic anhydrase, 1.5 Wilbur Anderson Unit (WAU) can be consistantly measured at 5-6 fold above background. Sonicated whole cells of air adapted wild type (+)gave 741.1 {plus minus} 12.4 WAU/mg chl. Intact washed cells of mixotrophically grown wall-less mutant CWD(-) and a high CO2 requiring wall-less double mutant CIA-3/CW15 (-) gave 7.1 {plus minus} 1.9 and 2.8 {plus minus} 7.8 WAU/mg chl respectively. Chloroplasts isolated from CWD and CIA-3/CW15 and subsequently disrupted gave 64.0 {plus minus} 14.7 and 2.8 {plus minus} 3.2 WAU/mg chl respectively. Chloroplast sonicate from another wall-less mutant CW15(-) gave activity comparable to CWD. Thus on a chlorophyll basis, enzyme activity in chloroplasts from mixotrophically grown cells is about 1/10th of the level found in air adapted wild type cells. CIA-3 seems to lack this activity.

  15. Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome.

    PubMed

    Azim, M Kamran; Khan, Ishtaiq A; Zhang, Yong

    2014-05-01

    We characterized mango leaf transcriptome and chloroplast genome using next generation DNA sequencing. The RNA-seq output of mango transcriptome generated >12 million reads (total nucleotides sequenced >1 Gb). De novo transcriptome assembly generated 30,509 unigenes with lengths in the range of 300 to ≥3,000 nt and 67× depth of coverage. Blast searching against nonredundant nucleotide databases and several Viridiplantae genomic datasets annotated 24,593 mango unigenes (80% of total) and identified Citrus sinensis as closest neighbor of mango with 9,141 (37%) matched sequences. The annotation with gene ontology and Clusters of Orthologous Group terms categorized unigene sequences into 57 and 25 classes, respectively. More than 13,500 unigenes were assigned to 293 KEGG pathways. Besides major plant biology related pathways, KEGG based gene annotation pointed out active presence of an array of biochemical pathways involved in (a) biosynthesis of bioactive flavonoids, flavones and flavonols, (b) biosynthesis of terpenoids and lignins and (c) plant hormone signal transduction. The mango transcriptome sequences revealed 235 proteases belonging to five catalytic classes of proteolytic enzymes. The draft genome of mango chloroplast (cp) was obtained by a combination of Sanger and next generation sequencing. The draft mango cp genome size is 151,173 bp with a pair of inverted repeats of 27,093 bp separated by small and large single copy regions, respectively. Out of 139 genes in mango cp genome, 91 found to be protein coding. Sequence analysis revealed cp genome of C. sinensis as closest neighbor of mango. We found 51 short repeats in mango cp genome supposed to be associated with extensive rearrangements. This is the first report of transcriptome and chloroplast genome analysis of any Anacardiaceae family member.

  16. The Unicellular Green Alga Chlamydomonas reinhardtii as an Experimental System to Study Chloroplast RNA Metabolism

    NASA Astrophysics Data System (ADS)

    Nickelsen, J.; Kück, U.

    Chloroplasts are typical organelles of photoautotrophic eukaryotic cells which drive a variety of functions, including photosynthesis. For many years the unicellular green alga Chlamydomonas reinhardtii has served as an experimental organism for studying photosynthetic processes. The recent development of molecular tools for this organism together with efficient methods of genetic analysis and the availability of many photosynthesis mutants has now made this alga a powerful model system for the analysis of chloroplast biogenesis. For example, techniques have been developed to transfer recombinant DNA into both the nuclear and the chloroplast genome. This allows both complementation tests and analyses of gene functions in vivo. Moreover, site-specific DNA recombinations in the chloroplast allow targeted gene disruption experiments which enable a "reverse genetics" to be performed. The potential of the algal system for the study of chloroplast biogenesis is illustrated in this review by the description of regulatory systems of gene expression involved in organelle biogenesis. One example concerns the regulation of trans-splicing of chloroplast mRNAs, a process which is controlled by both multiple nuclear- and chloroplast-encoded factors. The second example involves the stabilization of chloroplast mRNAs. The available data lead us predict distinct RNA elements, which interact with trans-acting factors to protect the RNA against nucleolytic attacks.

  17. Chloroplast Proteases: Updates on Proteolysis within and across Suborganellar Compartments1[OPEN

    PubMed Central

    Nishimura, Kenji

    2016-01-01

    Chloroplasts originated from the endosymbiosis of ancestral cyanobacteria and maintain transcription and translation machineries for around 100 proteins. Most endosymbiont genes, however, have been transferred to the host nucleus, and the majority of the chloroplast proteome is composed of nucleus-encoded proteins that are biosynthesized in the cytosol and then imported into chloroplasts. How chloroplasts and the nucleus communicate to control the plastid proteome remains an important question. Protein-degrading machineries play key roles in chloroplast proteome biogenesis, remodeling, and maintenance. Research in the past few decades has revealed more than 20 chloroplast proteases, which are localized to specific suborganellar locations. In particular, two energy-dependent processive proteases of bacterial origin, Clp and FtsH, are central to protein homeostasis. Processing endopeptidases such as stromal processing peptidase and thylakoidal processing peptidase are involved in the maturation of precursor proteins imported into chloroplasts by cleaving off the amino-terminal transit peptides. Presequence peptidases and organellar oligopeptidase subsequently degrade the cleaved targeting peptides. Recent findings have indicated that not only intraplastidic but also extraplastidic processive protein-degrading systems participate in the regulation and quality control of protein translocation across the envelopes. In this review, we summarize current knowledge of the major chloroplast proteases in terms of type, suborganellar localization, and diversification. We present details of these degradation processes as case studies according to suborganellar compartment (envelope, stroma, and thylakoids). Key questions and future directions in this field are discussed. PMID:27288365

  18. Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions.

    PubMed

    Nikkanen, Lauri; Rintamäki, Eevi

    2014-04-19

    Plants have adopted a number of mechanisms to restore redox homeostasis in the chloroplast under fluctuating light conditions in nature. Chloroplast thioredoxin systems are crucial components of this redox network, mediating environmental signals to chloroplast proteins. In the reduced state, thioredoxins control the structure and function of proteins by reducing disulfide bridges in the redox active site of a protein. Subsequently, an oxidized thioredoxin is reduced by a thioredoxin reductase, the two enzymes together forming a thioredoxin system. Plant chloroplasts have versatile thioredoxin systems, including two reductases dependent on ferredoxin and NADPH as reducing power, respectively, several types of thioredoxins, and the system to deliver thiol redox signals to the thylakoid membrane and lumen. Light controls the activity of chloroplast thioredoxin systems in two ways. First, light reactions activate the thioredoxin systems via donation of electrons to oxidized ferredoxin and NADP(+), and second, light induces production of reactive oxygen species in chloroplasts which deactivate the components of the thiol redox network. The diversity and partial redundancy of chloroplast thioredoxin systems enable chloroplast metabolism to rapidly respond to ever-changing environmental conditions and to raise plant fitness in natural growth conditions.

  19. Diversity in Biosynthetic Pathways of Galactolipids in the Light of Endosymbiotic Origin of Chloroplasts.

    PubMed

    Sato, Naoki; Awai, Koichiro

    2016-01-01

    Cyanobacteria and chloroplasts perform oxygenic photosynthesis, and share a common origin. Galactolipids are present in the photosynthetic membranes of both cyanobacteria and chloroplasts, but the biosynthetic pathways of the galactolipids are significantly different in the two systems. In this minireview, we explain the history of the discovery of the cyanobacterial pathway, and present a probable scenario of the evolution of the two pathways.

  20. Chloroplast photorelocation movement mediated by phototropin family proteins in green plants.

    PubMed

    Suetsugu, Noriyuki; Wada, Masamitsu

    2007-09-01

    Chloroplasts gather in areas irradiated with weak light to maximize photosynthesis (the accumulation response). They move away from areas irradiated with strong light to minimize damage of the photosynthetic apparatus (the avoidance response). The processes underlying these chloroplast movements can be divided into three parts: photoperception, signal transduction, and chloroplast movement. Photoreceptors for chloroplast movement have been identified recently in various plant species. A blue light receptor phototropin (phot) mediates chloroplast photorelocation movement in the seed plant Arabidopsis thaliana, the fern Adiantum capillus-veneris, the moss Physcomitrella patens and possibly the green alga Mougeotia scalaris. A chimeric photoreceptor between phytochrome and phototropin, neochrome (neo), was found in some advanced ferns and in the green alga M. scalaris. While the mechanism of chloroplast movement is not well understood, it is known that actin filaments play an important role in this process. To understand the molecular mechanisms associated with chloroplast movement, several mutants were isolated in A. thaliana (jac1 and chup1) and the corresponding genes were cloned. In this review, recent progress in photoreceptor research into chloroplast movement in various plant species and the possible factors functioning in signal transduction or the regulation of actin filaments identified in A. thaliana is discussed.

  1. Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis

    PubMed Central

    Kadota, Akeo; Yamada, Noboru; Suetsugu, Noriyuki; Hirose, Mana; Saito, Chieko; Shoda, Keiko; Ichikawa, Satoshi; Kagawa, Takatoshi; Nakano, Akihiko; Wada, Masamitsu

    2009-01-01

    Organelle movement is essential for proper function of living cells. In plants, these movements generally depend on actin filaments, but the underlying mechanism is unknown. Here, in Arabidopsis, we identify associations of short actin filaments along the chloroplast periphery on the plasma membrane side associated with chloroplast photorelocation and anchoring to the plasma membrane. We have termed these chloroplast-actin filaments (cp-actin filaments). Cp-actin filaments emerge from the chloroplast edge and exhibit rapid turnover. The presence of cp-actin filaments depends on an actin-binding protein, chloroplast unusual positioning1 (CHUP1), localized on the chloroplast envelope. chup1 mutant lacked cp-actin filaments but showed normal cytoplasmic actin filaments. When irradiated with blue light to induce chloroplast movement, cp-actin filaments relocalize to the leading edge of chloroplasts before and during photorelocation and are regulated by 2 phototropins, phot1 and phot2. Our findings suggest that plants evolved a unique actin-based mechanism for organelle movement. PMID:19620714

  2. Heat-induced Accumulation of Chloroplast Protein Synthesis Elongation Factor, EF-TU, in Winter Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chloroplast protein synthesis elongation factor, EF-Tu, has been implicated in heat tolerance in maize (Zea mays L.). Chloroplast EF-Tu is highly conserved, and it is possible that this protein may be of importance to heat tolerance in other species including wheat (Triticum aestivum L.). In this ...

  3. The Arabidopsis YELLOW STRIPE LIKE4 and 6 transporters control iron release from the chloroplast.

    PubMed

    Divol, Fanchon; Couch, Daniel; Conéjéro, Geneviève; Roschzttardtz, Hannetz; Mari, Stéphane; Curie, Catherine

    2013-03-01

    In most plant cell types, the chloroplast represents the largest sink for iron, which is both essential for chloroplast metabolism and prone to cause oxidative damage. Here, we show that to buffer the potentially harmful effects of iron, besides ferritins for storage, the chloroplast is equipped with specific iron transporters that respond to iron toxicity by removing iron from the chloroplast. We describe two transporters of the YELLOW STRIPE1-LIKE family from Arabidopsis thaliana, YSL4 and YSL6, which are likely to fulfill this function. Knocking out both YSL4 and YSL6 greatly reduces the plant's ability to cope with excess iron. Biochemical and immunolocalization analyses showed that YSL6 resides in the chloroplast envelope. Elemental analysis and histochemical staining indicate that iron is trapped in the chloroplasts of the ysl4 ysl6 double mutants, which also accumulate ferritins. Also, vacuolar iron remobilization and NRAMP3/4 expression are inhibited. Furthermore, ubiquitous expression of YSL4 or YSL6 dramatically reduces plant tolerance to iron deficiency and decreases chloroplastic iron content. These data demonstrate a fundamental role for YSL4 and YSL6 in managing chloroplastic iron. YSL4 and YSL6 expression patterns support their physiological role in detoxifying iron during plastid dedifferentiation occurring in embryogenesis and senescence.

  4. The distinctive roles of five different ARC genes in the chloroplast division process in Arabidopsis.

    PubMed

    Marrison, J L; Rutherford, S M; Robertson, E J; Lister, C; Dean, C; Leech, R M

    1999-06-01

    ARC (accumulation and replication of chloroplasts) genes control different aspects of the chloroplast division process in higher plants. In order to establish the hierarchy of the ARC genes in the chloroplast division process and to provide evidence for their specific roles, double mutants were constructed between arc11, arc6, arc5, arc3 and arc1 in all combinations and phenotypically analysed. arc11 is a new nuclear recessive mutant with 29 chloroplasts compared with 120 in wild type. All the phenotypes of the double mutants are unambiguous. ARC1 down-regulates proplastid division but is on a separate pathway from ARC3, ARC5, ARC6 and ARC11. ARC6 initiates both proplastid and chloroplast division. ARC3 controls the rate of chloroplast expansion and ARC11 the central positioning of the final division plane in chloroplast division. ARC5 facilitates separation of the two daughter chloroplasts. ARC5 maps to chromosome 3 and ARC11 and ARC6 map approximately 60 cM apart on chromosome 5.

  5. The complete chloroplast genome sequence of Hibiscus syriacus.

    PubMed

    Kwon, Hae-Yun; Kim, Joon-Hyeok; Kim, Sea-Hyun; Park, Ji-Min; Lee, Hyoshin

    2016-09-01

    The complete chloroplast genome sequence of Hibiscus syriacus L. is presented in this study. The genome is composed of 161 019 bp in length, with a typical circular structure containing a pair of inverted repeats of 25 745 bp of length separated by a large single-copy region and a small single-copy region of 89 698 bp and 19 831 bp of length, respectively. The overall GC content is 36.8%. One hundred and fourteen genes were annotated, including 81 protein-coding genes, 4 ribosomal RNA genes and 29 transfer RNA genes. PMID:26357910

  6. Mass spectrometric studies of hydrazine photooxidation by illuminated chloroplasts

    SciTech Connect

    Radmer, R.; Ollinger, O.

    1980-01-01

    Mass spectrometric techniques were used to directly monitor the products evolved during the course of hydrazine (NH/sub 2/NH/sub 2/) photooxidation by chloroplasts exposed to short saturating flashes or continuous high light. Our results indicate that hydrazine can be used as a reliable probe of Photosystem II provided that (a) N/sub 2/ evolution (rather than O/sub 2/ uptake) is monitored, and (b) precautions are taken to minimize spurious side reactions. Under conditions in which the participation of superoxide is minimized, N/sub 2/ evolution accurately reflects the photooxidation of hydrazine by Photosystem II.

  7. [Identification and localization of virus RNA in pepper (Capsicum anuum L.) chloroplasts by means of the PCR method].

    PubMed

    Mel'nichuk, M D; Dubin, A V; Sytnik, S K; Kozhukalo, B E; Alekseenko, I P; D'iachkova, O A

    2003-01-01

    Localization of virus RNA in stroma of Capsicum anuum L. chloroplasts was determined by the PCR method. Accumulation of virus protein in the membranes and stroma of infected pepper chloroplasts has been studied. It is concluded that the virus protein synthesis takes place in the pepper chloroplasts.

  8. Genetic structure based on nuclear and chloroplast microsatellite loci of Solanum lycocarpum A. St. Hil. (Solanaceae) in Central Brazil.

    PubMed

    Martins, K; Chaves, L J; Vencovsky, R; Kageyama, P Y

    2011-04-19

    Solanum lycocarpum (Solanaceae) is a woody species found in the Brazilian Cerrado. The flowers are pollinated by Xylocopa spp bees, and seeds are dispersed by mammals with distinct home range sizes. As a consequence, relative contributions of pollen and seeds to overall gene flow can vary according to different spatial scales. We studied the genetic structure of four natural populations of S. lycocarpum separated by 19 to 128 km, including individuals located along dirt roads that interlink three of the populations. A total of 294 individuals were genotyped with five nuclear and six chloroplast microsatellite markers. Significant spatial genetic structure was found in the total set of individuals; the Sp statistic was 0.0086. Population differentiation based on the six chloroplast microsatellite markers (θ(pC) = 0.042) was small and similar to that based on the five nuclear microsatellite markers (θ(p) = 0.054). For this set of populations, pollen and seed flow did not differ significantly from one another (pollen-to-seed flow ratio = 1.22). Capability for long distance seed dispersion and colonization of anthropogenic sites contributes to the ability of S. lycocarpum to maintain genetic diversity. Seed dispersion along dirt roads may be critical in preserving S. lycocarpum genetic diversity in fragmented landscapes.

  9. Exogenous ascorbic acid and glutathione alleviate oxidative stress induced by salt stress in the chloroplasts of Oryza sativa L.

    PubMed

    Wang, Renlei; Liu, Shaohua; Zhou, Feng; Ding, Chunxia; Hua, Chun

    2014-01-01

    The effects of exogenous ascorbic acid (AsA) and reduced glutathione (GSH) on antioxidant enzyme activities [superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR)] and the contents of malondialdehyde (MDA) and H2O2, as well as of endogenous AsA and GSH, in the chloroplasts of two rice cultivars, the salt-tolerant cultivar Pokkali and the salt-sensitive cultivar Peta, were investigated. Exogenous AsA and GSH enhanced SOD, APX, and GR activities, increased endogenous AsA and GSH contents, and reduced those of H2O2 and MDA in the chloroplasts of both cultivars under salt stress (200 mM NaCl), but the effects were significantly more pronounced in cv. Pokkali. GSH acted more strongly than AsA on the plastidial reactive oxygen scavenging systems. These results indicated that exogenous AsA and GSH differentially enhanced salinity tolerance and alleviated salinity-induced damage in the two rice cultivars.

  10. The evolution of blue-greens and the origins of chloroplasts

    NASA Technical Reports Server (NTRS)

    Schwartz, R. M.; Dayhoff, M. O.

    1981-01-01

    All of the available molecular data support the theory that the chloroplasts of eukaryote cells were originally free-living blue-greens. Of great interest is what the relationships are between contemporary types of blue-greens and eukaryote chloroplasts and whether the chloroplasts of the various eukaryotes are the result of one or more than one symbiosis. By combining information from phylogenetic trees based on cytochrome c6 and 2Fe-2S ferredoxin sequences, it is shown that the chloroplasts of a number of eukaryote algae as well as the protist Euglena are polyphyletic; the chloroplasts of green algae and the higher plants may be the result of a single symbiosis.

  11. Uptake of Inorganic Carbon by Isolated Chloroplasts of the Unicellular Green Alga Chlorella ellipsoidea1

    PubMed Central

    Rotatore, Caterina; Colman, Brian

    1990-01-01

    Chloroplasts, isolated from protoplasts of the green alga, Chlorella ellipsoidea, were estimated to be 99% intact by the ferricyanide-reduction assay, and gave CO2 and PGA-dependent rates of O2 evolution of 64.5 to 150 micromoles per milligram of chlorophyll per hour, that is 30 to 70% of the photosynthetic activity of the parent cells. Intact chloroplasts showed no carbonic anhydrase activity, but it was detected in preparations of ruptured organelles. Rates of photosynthesis, measured in a closed system at pH 7.5, were twice the calculated rate of CO2 supply from the uncatalyzed dehydration of HCO3− indicating a direct uptake of bicarbonate by the intact chloroplasts. Mass spectrometric measurements of CO2 depletion from the medium on the illumination of chloroplasts indicate the lack of an active CO2 transport across the chloroplast envelope. PMID:16667662

  12. Chloroplast transformation of Platymonas (Tetraselmis) subcordiformis with the bar gene as selectable marker.

    PubMed

    Cui, Yulin; Qin, Song; Jiang, Peng

    2014-01-01

    The objective of this research was to establish a chloroplast transformation technique for Platymonas (Tetraselmis) subcordiformis. Employing the gfp gene as a reporter and the bar gene as a selectable marker, transformation vectors of P. subcordiformis chloroplast were constructed with endogenous fragments rrn16S-trnI (left) and trnA-rrn23S (right) as a recombination site of the chloroplast genome. The plasmids were transferred into P. subcordiformis via particle bombardment. Confocal laser scanning microscopy indicated that the green fluorescence protein was localized in the chloroplast of P. subcordiformis, confirming the activity of the Chlamydomonas reinhardtii promoter. Cells transformed with the bar gene were selected using the herbicide Basta. Resistant colonies were analyzed by PCR and Southern blotting, and the results indicated that the bar gene was successfully integrated into the chloroplast genome via homologous recombination. The technique will improve genetic engineering of this alga. PMID:24911932

  13. CHLOROPLAST DEVELOPMENT AND ULTRESTRUCTURE IN THE FRESHWATER RED ALGA BATRACHOSPERMUM(1).

    PubMed

    Brown, D L; Weier, T E

    1968-09-01

    Chloroplast development and ultrastructure of the freshwater red alga Batrachospermum moniliforme are described. Chloroplasts develop from proplastids which have a double-membraned chloroplast envelope and a parallel double-membraned outer photo-synthetic lamella. Of these 2 double-membraned structures of the proplastid, only the outermost pho-tosynthetic lamella functions in production of further lamellae. The mature chloroplast consists of 2 or more concentric lamellae and a variable number of nonconcentric lamellae. These lamellae are not dense, uninterrupted sheets as described for other red algae, but are largely constructed of tubules, lying side by side, that form interrupted lamellar sheets. The possible physiological significance of lamellar interruptions in providing path-ways for movement of materials in the chloroplast stroma is discussed.

  14. Copper-Deficiency in Brassica napus Induces Copper Remobilization, Molybdenum Accumulation and Modification of the Expression of Chloroplastic Proteins

    PubMed Central

    Billard, Vincent; Ourry, Alain; Maillard, Anne; Garnica, Maria; Coquet, Laurent; Jouenne, Thierry; Cruz, Florence; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Etienne, Philippe

    2014-01-01

    During the last 40 years, crop breeding has strongly increased yields but has had adverse effects on the content of micronutrients, such as Fe, Mg, Zn and Cu, in edible products despite their sufficient supply in most soils. This suggests that micronutrient remobilization to edible tissues has been negatively selected. As a consequence, the aim of this work was to quantify the remobilization of Cu in leaves of Brassica napus L. during Cu deficiency and to identify the main metabolic processes that were affected so that improvements can be achieved in the future. While Cu deficiency reduced oilseed rape growth by less than 19% compared to control plants, Cu content in old leaves decreased by 61.4%, thus demonstrating a remobilization process between leaves. Cu deficiency also triggered an increase in Cu transporter expression in roots (COPT2) and leaves (HMA1), and more surprisingly, the induction of the MOT1 gene encoding a molybdenum transporter associated with a strong increase in molybdenum (Mo) uptake. Proteomic analysis of leaves revealed 33 proteins differentially regulated by Cu deficiency, among which more than half were located in chloroplasts. Eleven differentially expressed proteins are known to require Cu for their synthesis and/or activity. Enzymes that were located directly upstream or downstream of Cu-dependent enzymes were also differentially expressed. The overall results are then discussed in relation to remobilization of Cu, the interaction between Mo and Cu that occurs through the synthesis pathway of Mo cofactor, and finally their putative regulation within the Calvin cycle and the chloroplastic electron transport chain. PMID:25333918

  15. Copper-deficiency in Brassica napus induces copper remobilization, molybdenum accumulation and modification of the expression of chloroplastic proteins.

    PubMed

    Billard, Vincent; Ourry, Alain; Maillard, Anne; Garnica, Maria; Coquet, Laurent; Jouenne, Thierry; Cruz, Florence; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Etienne, Philippe

    2014-01-01

    During the last 40 years, crop breeding has strongly increased yields but has had adverse effects on the content of micronutrients, such as Fe, Mg, Zn and Cu, in edible products despite their sufficient supply in most soils. This suggests that micronutrient remobilization to edible tissues has been negatively selected. As a consequence, the aim of this work was to quantify the remobilization of Cu in leaves of Brassica napus L. during Cu deficiency and to identify the main metabolic processes that were affected so that improvements can be achieved in the future. While Cu deficiency reduced oilseed rape growth by less than 19% compared to control plants, Cu content in old leaves decreased by 61.4%, thus demonstrating a remobilization process between leaves. Cu deficiency also triggered an increase in Cu transporter expression in roots (COPT2) and leaves (HMA1), and more surprisingly, the induction of the MOT1 gene encoding a molybdenum transporter associated with a strong increase in molybdenum (Mo) uptake. Proteomic analysis of leaves revealed 33 proteins differentially regulated by Cu deficiency, among which more than half were located in chloroplasts. Eleven differentially expressed proteins are known to require Cu for their synthesis and/or activity. Enzymes that were located directly upstream or downstream of Cu-dependent enzymes were also differentially expressed. The overall results are then discussed in relation to remobilization of Cu, the interaction between Mo and Cu that occurs through the synthesis pathway of Mo cofactor, and finally their putative regulation within the Calvin cycle and the chloroplastic electron transport chain. PMID:25333918

  16. The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng

    PubMed Central

    Zhao, Yongbing; Yin, Jinlong; Guo, Haiyan; Zhang, Yuyu; Xiao, Wen; Sun, Chen; Wu, Jiayan; Qu, Xiaobo; Yu, Jun; Wang, Xumin; Xiao, Jingfa

    2015-01-01

    Panax ginseng C.A. Meyer (P. ginseng) is an important medicinal plant and is often used in traditional Chinese medicine. With next generation sequencing (NGS) technology, we determined the complete chloroplast genome sequences for four Chinese P. ginseng strains, which are Damaya (DMY), Ermaya (EMY), Gaolishen (GLS), and Yeshanshen (YSS). The total chloroplast genome sequence length for DMY, EMY, and GLS was 156,354 bp, while that for YSS was 156,355 bp. Comparative genomic analysis of the chloroplast genome sequences indicate that gene content, GC content, and gene order in DMY are quite similar to its relative species, and nucleotide sequence diversity of inverted repeat region (IR) is lower than that of its counterparts, large single copy region (LSC) and small single copy region (SSC). A comparison among these four P. ginseng strains revealed that the chloroplast genome sequences of DMY, EMY, and GLS were identical and YSS had a 1-bp insertion at base 5472. To further study the heterogeneity in chloroplast genome during domestication, high-resolution reads were mapped to the genome sequences to investigate the differences at the minor allele level; 208 minor allele sites with minor allele frequencies (MAF) of ≥0.05 were identified. The polymorphism site numbers per kb of chloroplast genome sequence for DMY, EMY, GLS, and YSS were 0.74, 0.59, 0.97, and 1.23, respectively. All the minor allele sites located in LSC and IR regions, and the four strains showed the same variation types (substitution base or indel) at all identified polymorphism sites. Comparison results of heterogeneity in the chloroplast genome sequences showed that the minor allele sites on the chloroplast genome were undergoing purifying selection to adapt to changing environment during domestication process. A study of P. ginseng chloroplast genome with particular focus on minor allele sites would aid in investigating the dynamics on the chloroplast genomes and different P. ginseng strains

  17. Mesophyll Chloroplast Investment in C3, C4 and C2 Species of the Genus Flaveria.

    PubMed

    Stata, Matt; Sage, Tammy L; Hoffmann, Natalie; Covshoff, Sarah; Ka-Shu Wong, Gane; Sage, Rowan F

    2016-05-01

    The mesophyll (M) cells of C4 plants contain fewer chloroplasts than observed in related C3 plants; however, it is uncertain where along the evolutionary transition from C3 to C4 that the reduction in M chloroplast number occurs. Using 18 species in the genus Flaveria, which contains C3, C4 and a range of C3-C4 intermediate species, we examined changes in chloroplast number and size per M cell, and positioning of chloroplasts relative to the M cell periphery. Chloroplast number and coverage of the M cell periphery declined in proportion to increasing strength of C4 metabolism in Flaveria, while chloroplast size increased with increasing C4 cycle strength. These changes increase cytosolic exposure to the cell periphery which could enhance diffusion of inorganic carbon to phosphenolpyruvate carboxylase (PEPC), a cytosolic enzyme. Analysis of the transcriptome from juvenile leaves of nine Flaveria species showed that the transcript abundance of four genes involved in plastid biogenesis-FtsZ1, FtsZ2, DRP5B and PARC6-was negatively correlated with variation in C4 cycle strength and positively correlated with M chloroplast number per planar cell area. Chloroplast size was negatively correlated with abundance of FtsZ1, FtsZ2 and PARC6 transcripts. These results indicate that natural selection targeted the proteins of the contractile ring assembly to effect the reduction in chloroplast numbers in the M cells of C4 Flaveria species. If so, efforts to engineer the C4 pathway into C3 plants might evaluate whether inducing transcriptome changes similar to those observed in Flaveria could reduce M chloroplast numbers, and thus introduce a trait that appears essential for efficient C4 function. PMID:26985020

  18. Chloroplasts extend stromules independently and in response to internal redox signals.

    PubMed

    Brunkard, Jacob O; Runkel, Anne M; Zambryski, Patricia C

    2015-08-11

    A fundamental mystery of plant cell biology is the occurrence of "stromules," stroma-filled tubular extensions from plastids (such as chloroplasts) that are universally observed in plants but whose functions are, in effect, completely unknown. One prevalent hypothesis is that stromules exchange signals or metabolites between plastids and other subcellular compartments, and that stromules are induced during stress. Until now, no signaling mechanisms originating within the plastid have been identified that regulate stromule activity, a critical missing link in this hypothesis. Using confocal and superresolution 3D microscopy, we have shown that stromules form in response to light-sensitive redox signals within the chloroplast. Stromule frequency increased during the day or after treatment with chemicals that produce reactive oxygen species specifically in the chloroplast. Silencing expression of the chloroplast NADPH-dependent thioredoxin reductase, a central hub in chloroplast redox signaling pathways, increased chloroplast stromule frequency, whereas silencing expression of nuclear genes related to plastid genome expression and tetrapyrrole biosynthesis had no impact on stromules. Leucoplasts, which are not photosynthetic, also made more stromules in the daytime. Leucoplasts did not respond to the same redox signaling pathway but instead increased stromule formation when exposed to sucrose, a major product of photosynthesis, although sucrose has no impact on chloroplast stromule frequency. Thus, different types of plastids make stromules in response to distinct signals. Finally, isolated chloroplasts could make stromules independently after extraction from the cytoplasm, suggesting that chloroplast-associated factors are sufficient to generate stromules. These discoveries demonstrate that chloroplasts are remarkably autonomous organelles that alter their stromule frequency in reaction to internal signal transduction pathways.

  19. Chloroplasts extend stromules independently and in response to internal redox signals

    PubMed Central

    Brunkard, Jacob O.; Runkel, Anne M.; Zambryski, Patricia C.

    2015-01-01

    A fundamental mystery of plant cell biology is the occurrence of “stromules,” stroma-filled tubular extensions from plastids (such as chloroplasts) that are universally observed in plants but whose functions are, in effect, completely unknown. One prevalent hypothesis is that stromules exchange signals or metabolites between plastids and other subcellular compartments, and that stromules are induced during stress. Until now, no signaling mechanisms originating within the plastid have been identified that regulate stromule activity, a critical missing link in this hypothesis. Using confocal and superresolution 3D microscopy, we have shown that stromules form in response to light-sensitive redox signals within the chloroplast. Stromule frequency increased during the day or after treatment with chemicals that produce reactive oxygen species specifically in the chloroplast. Silencing expression of the chloroplast NADPH-dependent thioredoxin reductase, a central hub in chloroplast redox signaling pathways, increased chloroplast stromule frequency, whereas silencing expression of nuclear genes related to plastid genome expression and tetrapyrrole biosynthesis had no impact on stromules. Leucoplasts, which are not photosynthetic, also made more stromules in the daytime. Leucoplasts did not respond to the same redox signaling pathway but instead increased stromule formation when exposed to sucrose, a major product of photosynthesis, although sucrose has no impact on chloroplast stromule frequency. Thus, different types of plastids make stromules in response to distinct signals. Finally, isolated chloroplasts could make stromules independently after extraction from the cytoplasm, suggesting that chloroplast-associated factors are sufficient to generate stromules. These discoveries demonstrate that chloroplasts are remarkably autonomous organelles that alter their stromule frequency in reaction to internal signal transduction pathways. PMID:26150490

  20. Mesophyll Chloroplast Investment in C3, C4 and C2 Species of the Genus Flaveria.

    PubMed

    Stata, Matt; Sage, Tammy L; Hoffmann, Natalie; Covshoff, Sarah; Ka-Shu Wong, Gane; Sage, Rowan F

    2016-05-01

    The mesophyll (M) cells of C4 plants contain fewer chloroplasts than observed in related C3 plants; however, it is uncertain where along the evolutionary transition from C3 to C4 that the reduction in M chloroplast number occurs. Using 18 species in the genus Flaveria, which contains C3, C4 and a range of C3-C4 intermediate species, we examined changes in chloroplast number and size per M cell, and positioning of chloroplasts relative to the M cell periphery. Chloroplast number and coverage of the M cell periphery declined in proportion to increasing strength of C4 metabolism in Flaveria, while chloroplast size increased with increasing C4 cycle strength. These changes increase cytosolic exposure to the cell periphery which could enhance diffusion of inorganic carbon to phosphenolpyruvate carboxylase (PEPC), a cytosolic enzyme. Analysis of the transcriptome from juvenile leaves of nine Flaveria species showed that the transcript abundance of four genes involved in plastid biogenesis-FtsZ1, FtsZ2, DRP5B and PARC6-was negatively correlated with variation in C4 cycle strength and positively correlated with M chloroplast number per planar cell area. Chloroplast size was negatively correlated with abundance of FtsZ1, FtsZ2 and PARC6 transcripts. These results indicate that natural selection targeted the proteins of the contractile ring assembly to effect the reduction in chloroplast numbers in the M cells of C4 Flaveria species. If so, efforts to engineer the C4 pathway into C3 plants might evaluate whether inducing transcriptome changes similar to those observed in Flaveria could reduce M chloroplast numbers, and thus introduce a trait that appears essential for efficient C4 function.

  1. Chloroplast redox homeostasis is essential for lateral root formation in Arabidopsis

    PubMed Central

    Ferrández, Julia; González, Maricruz; Cejudo, Francisco Javier

    2012-01-01

    Redox regulation based on dithiol-disulphide interchange is an essential component of the control of chloroplast metabolism. In contrast to heterotrophic organisms, and non-photosynthetic plant tissues, chloroplast redox regulation relies on ferredoxin (Fd) reduced by the photosynthetic electron transport chain, thus being highly dependent on light. The finding of the NADPH-dependent thioredoxin reductase C (NTRC), a chloroplast-localized NTR with a joint thioredoxin domain, showed that NADPH is also used as source of reducing power for chloroplast redox homeostasis. Recently we have found that NTRC is also in plastids of non-photosynthetic tissues. Because these non-green plastids lack photochemical reactions, their redox homeostasis depends exclusively on NADPH produced from sugars and, thus, NTRC may play an essential role maintaining the redox homeostasis in these plastids. The fact that redox regulation occurs in any type of plastids raises the possibility that the functions of chloroplasts and non-green plastids, such as amyloplasts, are integrated to harmonize the growth of the different organs of the plant. To address this question, we generated Arabidopsis plants the redox homeostasis of which is recovered exclusively in chloroplasts, by leaf-specific expression of NTRC in the ntrc mutant, or exclusively in amyloplasts, by root-specific expression of NTRC. The analysis of these plants suggests that chloroplasts exert a pivotal role on plant growth, as expected because chloroplasts constitute the major source of nutrients and energy, derived from photosynthesis, for growth of heterotrophic tissues. However, NTRC deficiency causes impairment of auxin synthesis and lateral root formation. Interestingly, recovery of redox homeostasis of chloroplasts, but not of amyloplasts, was sufficient to restore wild type levels of lateral roots, showing the important signaling function of chloroplasts for the development of heterotrophic organs. PMID:22899086

  2. Protein synthesis in chloroplasts. Characteristics and products of protein synthesis in vitro in etioplasts and developing chloroplasts from pea leaves.

    PubMed Central

    Siddell, S G; Ellis, R J

    1975-01-01

    The function of plastid ribosomes in pea (Pisum sativum L.) was investigated by characterizing the products of protein synthesis in vitro in plastids isolated at different stages during the transition from etioplast to chloroplast. Etioplasts and plastids isolated after 24, 48 and 96h of greening in continuous white light, use added ATP to incorporate labelled amino acids into protein. Plastids isolated from greening leaves can also use light as the source of energy for protein synthesis. The labelled polypeptides synthesized in isolated plastids were analysed by electrophoresis in sodium dodecyl sulphate-ureapolyacrylamide gels. Six polypeptides are synthesized in etioplasts with ATP as energy source. Only one of these polypeptides is present in a 150 000g supernatant fraction. This polypeptide has been identified as the large subunit of Fraction I protein (3-phospho-D-glycerate carboxylyase EC 4.1.1.39) by comparing the tryptic 'map' of its L-(35S)methionine-labelled peptides with the tryptic 'map' of large subunit peptides from Fraction I labelled with L-(35S)methionine in vivo. The same gel pattern of six polypeptides is seen when plastids isolated from greening leaves are incubated with either added ATP or light as the energy source. However, the rates of synthesis of particular polypeptides are different in plastids isolated at different stages of the etioplast to chloroplast transition. The results support the idea that plastid ribosomes synthesize only a small number of proteins, and that the number and molecular weight of these proteins does not alter during the formation of chloroplasts from etioplasts. Images PLATE 1 PMID:1147911

  3. Chloroplast SRP54 Was Recruited for Posttranslational Protein Transport via Complex Formation with Chloroplast SRP43 during Land Plant Evolution*

    PubMed Central

    Dünschede, Beatrix; Träger, Chantal; Schröder, Christine Vera; Ziehe, Dominik; Walter, Björn; Funke, Silke; Hofmann, Eckhard; Schünemann, Danja

    2015-01-01

    In bacteria, membrane proteins are targeted cotranslationally via a signal recognition particle (SRP). During the evolution of higher plant chloroplasts from cyanobacteria, the SRP pathway underwent striking adaptations that enable the posttranslational transport of the abundant light-harvesting chlorophyll-a/b-binding proteins (LHCPs). The conserved 54-kDa SRP subunit in higher plant chloroplasts (cpSRP54) is not bound to an SRP RNA, an essential SRP component in bacteria, but forms a stable heterodimer with the chloroplast-specific cpSRP43. This heterodimeric cpSRP recognizes LHCP and delivers it to the thylakoid membrane whereby cpSRP43 plays a central role. This study shows that the cpSRP system in the green alga Chlamydomonas reinhardtii differs significantly from that of higher plants as cpSRP43 is not complexed to cpSRP54 in Chlamydomonas and cpSRP54 is not involved in LHCP recognition. This divergence is attributed to altered residues within the cpSRP54 tail and the second chromodomain of cpSRP43 that are crucial for the formation of the binding interface in Arabidopsis. These changes are highly conserved among chlorophytes, whereas all land plants contain cpSRP proteins with typical interaction motifs. These data demonstrate that the coevolution of LHCPs and cpSRP43 occurred independently of complex formation with cpSRP54 and that the interaction between cpSRP54 and cpSRP43 evolved later during the transition from chlorophytes to land plants. Furthermore, our data show that in higher plants a heterodimeric form of cpSRP is required for the formation of a low molecular weight transit complex with LHCP. PMID:25833951

  4. The nucleotide sequence of spinach chloroplast tryptophan transfer RNA.

    PubMed Central

    Canaday, J; Guillemaut, P; Gloeckler, R; Weil, J H

    1981-01-01

    Spinach chloroplast tRNATrp, purified by column chromatography and two-dimensional gel electrophoresis, has been sequenced using in vitro labeling techniques. The sequence is : pG-C-G-C-U-C-U-U-A-G-U-U-C-A-G-U-U-C-Gm-G-D-A-G-A-A-C-m2G-psi-G-G-G-psi-C-U-C-A-A*-A-A-C-C-C-G-A-U-G-N-C-G-U-A-G-G-T-psi-C-A-A-G-U-C-C-U-A-C-A-G-A-G-C-G-U-G -C-C-AOH. Like the E. coli suppressor tRNA psu+UGA which translates both the opal terminator codon U-G-A and the tryptophan codon U-G-G, spinach chloroplast tRNATrp has C-C-A as an anticodon and contains an A-U pair in the D-stem. Images PMID:6907845

  5. Ion Homeostasis in Chloroplasts under Salinity and Mineral Deficiency 1

    PubMed Central

    Schröppel-Meier, Gabriele; Kaiser, Werner M.

    1988-01-01

    Spinach (Spinacia oleracea var “Yates”) plants in hydroponic culture were exposed to stepwise increased concentrations of NaCl or NaNO3 up to a final concentration of 300 millimoles per liter, at constant Ca2+-concentration. Leaf cell sap and extracts from aqueously isolated spinach chloroplasts were analyzed for mineral cations, anions, amino acids, sugars, and quarternary ammonium compounds. Total osmolality of leaf sap and photosynthetic capacity of leaves were also measured. For comparison, leaf sap from salt-treated pea plants was also analyzed. Spinach plants under NaCl or NaNO3 salinity took up large amounts of sodium (up to 400 millimoles per liter); nitrate as the accompanying anion was taken up less (up to 90 millimoles per liter) than chloride (up to 450 millimoles per liter). Under chloride salinity, nitrate content in leaves decreased drastically, but total amino acid concentrations remained constant. This response was much more pronounced (and occurred at lower salt concentrations) in leaves from the glycophyte (pea, Pisum sativum var “Kleine Rheinländerin”) than from moderately salt-tolerant spinach. In spinach, sodium chloride or nitrate taken up into leaves was largely sequestered in the vacuoles; both salts induced synthesis of quarternary ammonium compounds, which were accumulated mainly in chloroplasts (and cytosol). This prevented impairment of metabolism, as indicated by an unchanged photosynthetic capacity of leaves. PMID:16666232

  6. Chloroplast protein synthesis: thylakoid bound polysomes synthesize thylakoid proteins

    SciTech Connect

    Hurewitz, J.; Jagendorf, A.T.

    1986-04-01

    Previous work indicated more polysomes bound to pea thylakoids in light than in the dark, in vivo. With isolated intact chloroplasts incubated in darkness, 24 to 74% more RNA was thylakoid-bound at pH 8.3 than at pH 7. Thus the major effect of light in vivo may be due to higher stroma pH. In isolated pea chloroplasts, initiation inhibitors (pactamycin and kanamycin) decreased the extent of RNA binding, and elongation inhibitors (lincomycin and streptomycin) increased it. Thus translation initiation and termination probably control the cycling of bound ribosomes. While only 3 to 6% of total RNA is in bound polysomes the incorporation of /sup 3/H-Leu into thylakoids was proportional to the amount of this bound RNA. When Micrococcal nuclease-treated thylakoids were added to labeled runoff translation products of stroma ribosomes, less than 1% of the label adhered to the added membranes; but 37% of the labeled products made by thylakoid polysomes were bound. These data support the concept that stroma ribosomes are recruited into thylakoid proteins.

  7. Euglena mitochondria and chloroplasts form tyrosine-O-sulfate

    SciTech Connect

    Saidha, T.; Hanfstingl, U.; Schiff, J.A. )

    1989-04-01

    Mitochondria from light-grown wild-type Euglena gracilis var. bacillaris Cori or dark-grown mutant W{sub 10}BSmL incubated with {sup 35}SO{sub 4}{sup 2{minus}} and ATP, or with {sup 14}C-tyrosine, non-radioactive sulfate and ATP accumulate a labeled compound in the medium. Since this compound shows exact coelectrophoresis with tyrosine-O-sulfate (TOS) at pH 2.0, 5.8 or 8.0., yields sulfate and tyrosine on acid hydrolysis, and treatment with aryl sulfatase from Aerobacter aerogenes yields sulfate and tyrosine but no tyrosine methyl ester, it is identified as TOS. No TOS is found outside purified developing chloroplasts incubated with {sup 35}SO{sub 4}{sup 2{minus}} and ATP, but both chloroplasts and mitochondria form to {sup 35}S externally when incubated with adenosine 3{prime} phosphate 5{prime}phospho({sup 35}S) sulfate (PAP{sup 35}S). Since no tyrosine need be added, tyrosine is provided from endogenous sources. Although TOS is found in the free pool of Euglena cells it cannot be detected in proteins of cells or mucus ruling our sulfation of tyrosine of protein or incorporation of TOS into proteins. The system forming TOS is membrane-bound and may be involved in tyrosine transport.

  8. Chloroplast transit peptide prediction: a peek inside the black box

    PubMed Central

    Schein, Andrew I.; Kissinger, Jessica C.; Ungar, Lyle H.

    2001-01-01

    Previous work in predicting protein localization to the chloroplast organelle in plants led to the development of an artificial neural network-based approach capable of remarkable accuracy in its prediction (ChloroP). A common criticism against such neural network models is that it is difficult to interpret the criteria that are used in making predictions. We address this concern with several new prediction methods that base predictions explicitly on the abundance of different amino acid types in the N-terminal region of the protein. Our successful prediction accuracy suggests that ChloroP uses little positional information in its decision-making; an unexpected result given the elaborate ChloroP input scheme. By removing positional information, our simpler methods allow us to identify those amino acids that are useful for successful prediction. The identification of important sequence features, such as amino acid content, is advantageous if one of the goals of localization predictors is to gain an understanding of the biological process of chloroplast localization. Our most accurate predictor combines principal component analysis and logistic regression. Web-based prediction using this method is available online at http://apicoplast.cis.upenn.edu/pclr/. PMID:11504890

  9. [Bioinformatics studies on photosynthetic system genes in cyanobacteria and chloroplasts].

    PubMed

    Shi, Ding-Ji; Zhang, Chao; Li, Shi-Ming; Li, Ci-Shan; Zhang, Peng-Peng; Yang, Ming-Li

    2004-06-01

    This study compared homology of base sequences in genes encoding photosynthetic system proteins of cyanobacteria (Synechocystics sp. PCC6803, Nostoc sp. PCC7120) with these of chloroplasts (from Marchantia Polymorpha, Nicotiana tobacum, Oryza sativ, Euglena gracilis, Pinus thunbergii, Zea mays, Odentella sinesis, Cyanophora paradoxa, Porphyra purpurea and Arabidopsis thaliana) by BLAST method. While the gene sequence of Synechocystics sp. PCC6803 was considered as the criterion (100%) the homology of others were compared with it. Among the genes for photosystem I, psaC homology was the highest (90.14%) and the lowest was psaJ (52.24%). The highest ones were psbD (83.71%) for photosystem II, atpB (79.58%) for ATP synthase and petB (81.66%) for cytochrome b6/f complex. The lowest ones were psbN (49.70%) for photosystem II, atpF (26.69%) for ATP synthase and petA (55.27%) for cytochrome b6/f complex. Also, this paper discussed why the homology of gene sequences was the highest or the lowest. No report has been published and this bioinformatics research may provide some evidences for the origin and evolution of chloroplasts.

  10. Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol.

    PubMed

    Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H

    2009-07-01

    Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best-characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild-type poplar hybrid Populus tremula x P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding gamma-glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild-type plants; soil contamination significantly decreased biomass accumulation in both wild-type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two-dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast

  11. [Effects of exogenous silicon on active oxygen scavenging systems in chloroplasts of cucumber (Cucumis sativus L.) seedlings under salt stress].

    PubMed

    Qian, Qiong-Qiu; Zai, Wen-San; Zhu, Zhu-Jun; Yu, Jing-Quan

    2006-02-01

    With K(2)SiO(4) (1.0 mmol/L) treatment, the effects of Si on the distribution of Na(+), K(+) to chloroplasts and antioxidant system of cucumber leaves under 50 mmol/L NaCl stress were studied. The results showed that there was a selective transport of K(+) into the chloroplasts so that Na(+) content of chloroplasts was lower under Si treatment (Table 1); H(2)O(2) and MDA contents in chloroplasts were significantly decreased (Fig.1), and the activities of SOD, APX, GR and DHAR were increased simultaneity (Fig.2), and AsA, GSH contents were also increased in chloroplasts of salt-stressed cucumber by additional Si treatment (Fig.3). It may be concluded that Si could decrease absorption of Na(+) and increase ability of active oxygen scavenging in chloroplasts, therefore the injury of chloroplast membrane under salinity stress in cucumber was alleviated. PMID:16477139

  12. Repression of Essential Chloroplast Genes Reveals New Signaling Pathways and Regulatory Feedback Loops in Chlamydomonas[W

    PubMed Central

    Ramundo, Silvia; Rahire, Michèle; Schaad, Olivier; Rochaix, Jean-David

    2013-01-01

    Although reverse genetics has been used to elucidate the function of numerous chloroplast proteins, the characterization of essential plastid genes and their role in chloroplast biogenesis and cell survival has not yet been achieved. Therefore, we developed a robust repressible chloroplast gene expression system in the unicellular alga Chlamydomonas reinhardtii based mainly on a vitamin-repressible riboswitch, and we used this system to study the role of two essential chloroplast genes: ribosomal protein S12 (rps12), encoding a plastid ribosomal protein, and rpoA, encoding the α-subunit of chloroplast bacterial-like RNA polymerase. Repression of either of these two genes leads to the arrest of cell growth, and it induces a response that involves changes in expression of nuclear genes implicated in chloroplast biogenesis, protein turnover, and stress. This response also leads to the overaccumulation of several plastid transcripts and reveals the existence of multiple negative regulatory feedback loops in the chloroplast gene circuitry. PMID:23292734

  13. Is chloroplast movement in tobacco plants influenced systemically after local illumination or burning stress?

    PubMed

    Naus, Jan; Rolencová, Monika; Hlavácková, Vladimíra

    2008-10-01

    Chloroplast movement has been studied in many plants mainly in relation to the local light, mechanical or stress effects. Here we investigated possible systemic responses of chloroplast movement to local light or burning stress in tobacco plants (Nicotiana tabacum cv. Samsun). Chloroplast movement was measured using two independent methods: one with a SPAD 502 Chlorophyll meter and another by collimated transmittance at a selected wavelength (676 nm). A sensitive periodic movement of chloroplasts was used in high or low (2 000 or 50 micromol/m(2) per s photosynthetically active radiation, respectively) cold white light with periods of 50 or 130 min. Measurements were carried out in the irradiated area, in the non-irradiated area of the same leaf or in the leaf located on the stem below the irradiated or burned one. No significant changes in systemic chloroplast movement in non-irradiated parts of the leaf and in the non-treated leaf were detected. Our data indicate that chloroplast movement in tobacco is dependent dominantly on the intensity and spectral composition of the incident light and on the local stimulation and state of the target tissue. No systemic signal was strong enough to evoke a detectable systemic response in chloroplast movement in distant untreated tissues of tobacco plants.

  14. Chloroplast avoidance movement is not functional in plants grown under strong sunlight.

    PubMed

    Higa, Takeshi; Wada, Masamitsu

    2016-04-01

    Chloroplast movement in nine climbing plant species was investigated. It is thought that chloroplasts generally escape from strong light to avoid photodamage but accumulate towards weak light to perform photosynthesis effectively. Unexpectedly, however, the leaves of climbing plants grown under strong sunlight showed very low or no chloroplast photorelocation responses to either weak or strong blue light when detected by red light transmittance through leaves. Direct observations of Cayratia japonica leaves, for example, revealed that the average number of chloroplasts in upper periclinal walls of palisade tissue cells was only 1.2 after weak blue-light irradiation and almost all of the chloroplasts remained at the anticlinal wall, the state of chloroplast avoidance response. The leaves grown under strong light have thin and columnar palisade tissue cells comparing with the leaves grown under low light. Depending on our analyses and our schematic model, the thinner cells in a unit leaf area have a wider total plasma membrane area, such that more chloroplasts can exist on the plasma membrane in the thinner cells than in the thicker cells in a unit leaf-area basis. The same strategy might be used in other plant leaves grown under direct sunlight.

  15. Comparative Analysis of the Complete Chloroplast Genomes of Five Quercus Species

    PubMed Central

    Yang, Yanci; Zhou, Tao; Duan, Dong; Yang, Jia; Feng, Li; Zhao, Guifang

    2016-01-01

    Quercus is considered economically and ecologically one of the most important genera in the Northern Hemisphere. Oaks are taxonomically perplexing because of shared interspecific morphological traits and intraspecific morphological variation, which are mainly attributed to hybridization. Universal plastid markers cannot provide a sufficient number of variable sites to explore the phylogeny of this genus, and chloroplast genome-scale data have proven to be useful in resolving intractable phylogenetic relationships. In this study, the complete chloroplast genomes of four Quercus species were sequenced, and one published chloroplast genome of Quercus baronii was retrieved for comparative analyses. The five chloroplast genomes ranged from 161,072 bp (Q. baronii) to 161,237 bp (Q. dolicholepis) in length, and their gene organization and order, and GC content, were similar to those of other Fagaceae species. We analyzed nucleotide substitutions, indels, and repeats in the chloroplast genomes, and found 19 relatively highly variable regions that will potentially provide plastid markers for further taxonomic and phylogenetic studies within Quercus. We observed that four genes (ndhA, ndhK, petA, and ycf1) were subject to positive selection. The phylogenetic relationships of the Quercus species inferred from the chloroplast genomes obtained moderate-to-high support, indicating that chloroplast genome data may be useful in resolving relationships in this genus. PMID:27446185

  16. Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants.

    PubMed

    George, Biju; Bhatt, Bhavin S; Awasthi, Mayur; George, Binu; Singh, Achuit K

    2015-11-01

    Microsatellites, or simple sequence repeats (SSRs), contain repetitive DNA sequence where tandem repeats of one to six base pairs are present number of times. Chloroplast genome sequences have been  shown to possess extensive variations in the length, number and distribution of SSRs. However, a comparative analysis of chloroplast microsatellites is not available. Considering their potential importance in generating genomic diversity, we have systematically analysed the abundance and distribution of simple and compound microsatellites in 164 sequenced chloroplast genomes from wide range of plants. The key findings of these studies are (1) a large number of mononucleotide repeats as compared to SSR(2-6)(di-, tri-, tetra-, penta-, hexanucleotide repeats) are present in all chloroplast genomes investigated, (2) lower plants such as algae show wide variation in relative abundance, density and distribution of microsatellite repeats as compared to flowering plants, (3) longer SSRs are excluded from coding regions of most chloroplast genomes, (4) GC content has a weak influence on number, relative abundance and relative density of mononucleotide as well as SSR(2-6). However, GC content strongly showed negative correlation with relative density (R (2) = 0.5, P < 0.05) and relative abundance (R (2) = 0.6, P < 0.05) of cSSRs. In summary, our comparative studies of chloroplast genomes illustrate the variable distribution of microsatellites and revealed that chloroplast genome of smaller plants possesses relatively more genomic diversity compared to higher plants.

  17. The arc mutants of Arabidopsis with fewer large chloroplasts have a lower mesophyll conductance.

    PubMed

    Weise, Sean E; Carr, David J; Bourke, Ashley M; Hanson, David T; Swarthout, Debbie; Sharkey, Thomas D

    2015-04-01

    Photosynthetic cells of most land plant lineages have numerous small chloroplasts even though most algae, and even the early diverging land plant group the hornworts, tend to have one or a few large chloroplasts. One constraint that small chloroplasts could improve is the resistance to CO2 diffusion from the atmosphere to the chloroplast stroma. We examined the mesophyll conductance (inverse of the diffusion resistance) of mutant Arabidopsis thaliana plants with one or only a few large chloroplasts per cell. The accumulation and replication of chloroplasts (arc) mutants of A. thaliana were studied by model fitting to gas exchange data and (13)CO2 discrimination during carbon fixation. The two methods generally agreed, but the value of the CO2 compensation point of Rubisco (Γ *) used in the model had a large impact on the estimated photosynthetic parameters, including mesophyll conductance. We found that having only a few large chloroplasts per cell resulted in a 25-50 % reduction in the mesophyll conductance at ambient CO2.

  18. Protection of Chloroplast Membranes by VIPP1 Rescues Aberrant Seedling Development in Arabidopsis nyc1 Mutant

    PubMed Central

    Zhang, Lingang; Kusaba, Makoto; Tanaka, Ayumi; Sakamoto, Wataru

    2016-01-01

    Chlorophylls (Chl) in photosynthetic apparatuses, along with other macromolecules in chloroplasts, are known to undergo degradation during leaf senescence. Several enzymes involved in Chl degradation, by which detoxification of Chl is safely implemented, have been identified. Chl degradation also occurs during embryogenesis and seedling development. Some genes encoding Chl degradation enzymes such as Chl b reductase (CBR) function during these developmental stages. Arabidopsis mutants lacking CBR (NYC1 and NOL) have been reported to exhibit reduced seed storability, compromised germination, and cotyledon development. In this study, we examined aberrant cotyledon development and found that NYC1 is solely responsible for this phenotype. We inferred that oxidative damage of chloroplast membranes caused the aberrant cotyledon. To test the inference, we attempted to trans-complement nyc1 mutant with overexpressing VIPP1 protein that is unrelated to Chl degradation but which supports chloroplast membrane integrity. VIPP1 expression actually complemented the aberrant cotyledon of nyc1, whereas stay-green phenotype during leaf senescence remained. The swollen chloroplasts observed in unfixed cotyledons of nyc1, which are characteristics of chloroplasts receiving envelope membrane damage, were recovered by overexpressing VIPP1. These results suggest that chloroplast membranes are a target for oxidative damage caused by the impairment in Chl degradation. Trans-complementation of nyc1 with VIPP1 also suggests that VIPP1 is useful for protecting chloroplasts against oxidative stress. PMID:27200011

  19. Studies on ferrochelatase. The enzymic formation of haem in proplastids, chloroplasts and plant mitochondria

    PubMed Central

    Porra, R. J.; Lascelles, June

    1968-01-01

    1. Ferrochelatase was demonstrated in the chloroplasts and proplastids isolated from the primary leaves of beans (a dicotyledon) and oats (a monocotyledon). It was also detected in chloroplasts from etiolated bean seedlings made green by illumination before being harvested. The specific activities of the three types of bean organelles are similar, as are the specific activities of the oat proplastids and chloroplasts. 2. Chloroplasts from young spinach leaves also contain ferrochelatase; these chloroplasts were tested for their ability to form magnesium tetrapyrroles and found unable to catalyse the insertion of Mg2+ into mesoporphyrin IX. 3. Ferrochelatase was also detected in potato tuber mitochondria. 4. Ferrochelatase activity in these plant preparations is much less stable on storage than similar preparations from bacteria and animal tissues. 5. Temperature affects the activities of spinach chloroplast ferrochelatase and rat liver ferrochelatase differently. Activity of the chloroplast enzyme increases as the temperature rises from 20·6° to 26°, but becomes increasingly inactivated as the temperature rises further to 38°. The initial velocity of the mammalian enzyme, however, increases as the temperature rises from 25·8° to 65°, but the enzyme is inactivated after several minutes at 65°. PMID:4298995

  20. Abscisic acid and blue light signaling pathways in chloroplast movements in Arabidopsis mesophyll.

    PubMed

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Banaś, Agnieszka Katarzyna; Janowiak, Franciszek; Gabryś, Halina

    2016-01-01

    Abscisic acid (ABA) and phototropins act antagonistically to control stomatal movements. Here, we investigated the role of ABA in phototropin-directed chloroplast movements in mesophyll cells of Arabidopsis thaliana. We analyzed the expression of phototropins at mRNA and protein level under the influence of ABA. PHOT1 mRNA level was decreased by ABA in the dark while it was insensitive to ABA in light. PHOT2 mRNA level was independent of the hormone treatment. The levels of phototropin proteins were down-regulated by ABA, both in darkness and light. No impact of exogenous ABA on amplitudes and kinetics of chloroplast movements was detected. Chloroplast responses in wild type Arabidopsis and three mutants, abi4, abi2 (abscisic acid insensitive4, 2) and aba1 (abscisic acid1), were measured to account for endogenous ABA signaling. The chloroplast responses were slightly reduced in abi2 and aba1 mutants in strong light. To further investigate the effect, abi2 and aba1 mutants were supplemented with exogenous ABA. In the aba1 mutant, the reaction was rescued but in abi2 it was unaffected. Our results show that ABA is not directly involved in phototropin-controlled chloroplast responses in mature leaves of Arabidopsis. However, the disturbance of ABA biosynthesis and signaling in mutants affects some elements of the chloroplast movement mechanism. In line with its role as a stress hormone, ABA appears to enhance plant sensitivity to light and promote the chloroplast avoidance response.

  1. A high-throughput method for detection of DNA in chloroplasts using flow cytometry

    PubMed Central

    Rowan, Beth A; Oldenburg, Delene J; Bendich, Arnold J

    2007-01-01

    Background The amount of DNA in the chloroplasts of some plant species has been shown recently to decline dramatically during leaf development. A high-throughput method of DNA detection in chloroplasts is now needed in order to facilitate the further investigation of this process using large numbers of tissue samples. Results The DNA-binding fluorophores 4',6-diamidino-2-phenylindole (DAPI), SYBR Green I (SG), SYTO 42, and SYTO 45 were assessed for their utility in flow cytometric analysis of DNA in Arabidopsis chloroplasts. Fluorescence microscopy and real-time quantitative PCR (qPCR) were used to validate flow cytometry data. We found neither DAPI nor SYTO 45 suitable for flow cytometric analysis of chloroplast DNA (cpDNA) content, but did find changes in cpDNA content during development by flow cytometry using SG and SYTO 42. The latter dye provided more sensitive detection, and the results were similar to those from the fluorescence microscopic analysis. Differences in SYTO 42 fluorescence were found to correlate with differences in cpDNA content as determined by qPCR using three primer sets widely spaced across the chloroplast genome, suggesting that the whole genome undergoes copy number reduction during development, rather than selective reduction/degradation of subgenomic regions. Conclusion Flow cytometric analysis of chloroplasts stained with SYTO 42 is a high-throughput method suitable for determining changes in cpDNA content during development and for sorting chloroplasts on the basis of DNA content. PMID:17381841

  2. Low-molecular-weight (4.5S) ribonucleic acid in higher-plant chloroplast ribosomes.

    PubMed Central

    Whitfeld, P R; Leaver, C J; Bottomley, W; Atchison, B

    1978-01-01

    A species of RNA that migrates on 10% (w/v) polyacrylamide gels between 5S and 4S RNA was detected in spinach chloroplasts. This RNA (referred to as 4.5 S RNA) was present in amounts equimolar to the 5S RNA and its molecular weight was estimated to be approx. 33 000. Fractionation of the chloroplast components showed that the 4.5S RNA was associated with the 50 S ribosomal subunit and that it could be removed by washing the ribosomes with a buffer containing 0.01 M-EDTA and 0.5 M-KCl. It did not appear to be a cleavage product of the labile 23 S RNA of spinach chloroplast ribosomes. When 125I-labelled 4.5 S RNA was hybridized to fragments of spinach chloroplast DNA produced by SmaI restriction endonuclease, a single fragment (mol.wt. 1.15 times 10(6)) became labelled. The same DNA fragment also hybridized to chloroplast 5 S RNA and part of the 23 S RNA. It was concluded that the coding sequence for 4.5 S RNA was part of, or immediately adjacent to, the rRNA-gene region in chloroplast DNA . A comparable RNA species was observed in chloroplasts of tobacco and pea leaves. Images Fig. 8. PMID:743229

  3. Photoregulation of Chloroplast Gene Transcription in the Chromophytic Alga Heterosigma carterae.

    PubMed Central

    Doran, E.; Cattolico, R. A.

    1997-01-01

    Light acts as a complex regulator of cellular development and gene expression in photoautotrophs. Although light signals are highly effective in controlling cellular division and chloroplast biogenesis in the toxic marine alga Heterosigma carterae, their influence on gene expression has not been well characterized. To address this need cultures of H. carterae synchronized by an alternating light-dark regime were sampled through 12 h of light and 12 h of dark to characterize cell division, chloroplast complement, and chloroplast RNA abundance. These studies have identified a unimodal pattern of chloroplast transcriptional activity for a suite of cellular and photosynthetic genes. To determine the alga's response to a change in photoperiod, 12-h light/12-h dark-synchronized cultures were transferred to constant light and then periodically sampled. Although cellular and chloroplast division cycles remained synchronized in constant conditions for 24 h, the transcriptional apparatus responded by increasing ctRNA abundance within 45 min of the change in photoperiod. However, the ability of the alga to mount this rapid transcriptional response was limited to the first 2 h of the putative dark period. Thus, the chloroplast transcriptional apparatus of H. carterae may initiate a rapid, temporally gated response to a change in photoperiod that is independent of ongoing light-entrained cellular and chloroplast division cycles. PMID:12223843

  4. A plant mitochondrial sequence transcribed in transgenic tobacco chloroplasts is not edited

    SciTech Connect

    Sutton, C.A.; Hanson, M.R.; Zoubenko, O.V.; Maliga, P.

    1995-03-01

    RNA editing occurs in two higher-plant organelles, chloroplasts, and mitochondria. Because chloroplasts and mitochondria exhibit some similarity in editing site selection, we investigated whether mitochondrial RNA sequences could be edited in chloroplasts. We produced transgenic tobacco plants that contained chimeric genes in which the second exon of a Petunia hybrida mitochondrial coxII gene was under the control of chloroplast gene regulatory sequences. coxII transcripts accumulated to low or high levels in transgenic chloroplasts containing chimeric genes with the plastid ribosomal protein gene rps16 or the rRNA operon promoter, respectively. Exon 2 of coxII was chosen because it carries seven editing sites and is edited in petunia mitochondria even when located in an abnormal context in an aberrant recombined gene. When editing of the coxII transcripts in transgenic chloroplasts was examined, no RNA editing at any of the usual sites was detected, nor was there any novel editing at any other sites. These results indicate that the RNA editing mechanisms of chloroplasts and mitochondria are not identical but must have at least some organelle-specific components. 33 refs., 5 figs.

  5. Abscisic acid and blue light signaling pathways in chloroplast movements in Arabidopsis mesophyll.

    PubMed

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Banaś, Agnieszka Katarzyna; Janowiak, Franciszek; Gabryś, Halina

    2016-01-01

    Abscisic acid (ABA) and phototropins act antagonistically to control stomatal movements. Here, we investigated the role of ABA in phototropin-directed chloroplast movements in mesophyll cells of Arabidopsis thaliana. We analyzed the expression of phototropins at mRNA and protein level under the influence of ABA. PHOT1 mRNA level was decreased by ABA in the dark while it was insensitive to ABA in light. PHOT2 mRNA level was independent of the hormone treatment. The levels of phototropin proteins were down-regulated by ABA, both in darkness and light. No impact of exogenous ABA on amplitudes and kinetics of chloroplast movements was detected. Chloroplast responses in wild type Arabidopsis and three mutants, abi4, abi2 (abscisic acid insensitive4, 2) and aba1 (abscisic acid1), were measured to account for endogenous ABA signaling. The chloroplast responses were slightly reduced in abi2 and aba1 mutants in strong light. To further investigate the effect, abi2 and aba1 mutants were supplemented with exogenous ABA. In the aba1 mutant, the reaction was rescued but in abi2 it was unaffected. Our results show that ABA is not directly involved in phototropin-controlled chloroplast responses in mature leaves of Arabidopsis. However, the disturbance of ABA biosynthesis and signaling in mutants affects some elements of the chloroplast movement mechanism. In line with its role as a stress hormone, ABA appears to enhance plant sensitivity to light and promote the chloroplast avoidance response. PMID:27486921

  6. Silene patula (Siphonomorpha, Caryophyllaceae) in North Africa: a test of colonisation routes using chloroplast markers.

    PubMed

    Naciri, Yamama; Cavat, Fanny; Jeanmonod, Daniel

    2010-03-01

    Based on morphological characters, the North African Silene patula has been divided into two subspecies, ssp. patula found North of Kabylies and Atlas Mountains, and ssp. amurensis found south of these regions. In order to test the hypothesis that S. patula could have derived from S. italica through the Sicilian Channel during the Messinian, we sequenced three chloroplast loci, trnH-psbA, trnS-trnG and rpl12-rps20. Fifteen haplotypes were found on 211 herbarium specimens, associated with a huge differentiation within species. The hypothesis that S. patula had independently evolved as two different subspecies North and South of the mountains is refuted and a morphological adaptation to different pollinators is suggested to explain the differences between the two taxa. The Kabylies-Numidie-Kroumirie gathers a large proportion of haplotypes, which points to this region as a probable refugium or place of origin from which spatial expansions have subsequently occurred towards Morocco and the Aurès Mountains.

  7. Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited

    PubMed Central

    Hüner, Norman P. A.; Bode, Rainer; Dahal, Keshav; Hollis, Lauren; Rosso, Dominic; Krol, Marianna; Ivanov, Alexander G.

    2012-01-01

    Sunlight, the ultimate energy source for life on our planet, enters the biosphere as a direct consequence of the evolution of photoautotrophy. Photoautotrophs must balance the light energy absorbed and trapped through extremely fast, temperature-insensitive photochemistry with energy consumed through much slower, temperature-dependent biochemistry and metabolism. The attainment of such a balance in cellular energy flow between chloroplasts, mitochondria and the cytosol is called photostasis. Photoautotrophs sense cellular energy imbalances through modulation of excitation pressure which is a measure of the relative redox state of QA, the first stable quinone electron acceptor of photosystem II reaction centers. High excitation pressure constitutes a potential stress condition that can be caused either by exposure to an irradiance that exceeds the capacity of C, N, and S assimilation to utilize the electrons generated from the absorbed energy or by low temperature or any stress that decreases the capacity of the metabolic pathways downstream of photochemistry to utilize photosynthetically generated reductants. The similarities and differences in the phenotypic responses between cyanobacteria, green algae, crop plants, and variegation mutants of Arabidopsis thaliana as a function of cold acclimation and photoacclimation are reconciled in terms of differential responses to excitation pressure and the predisposition of photoautotrophs to maintain photostasis. The various acclimation strategies associated with green algae and cyanobacteria versus winter cereals and A. thaliana are discussed in terms of retrograde regulation and the “grand design of photosynthesis” originally proposed by Arnon (1982). PMID:23230444

  8. Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences

    PubMed Central

    Wambugu, Peterson W.; Brozynska, Marta; Furtado, Agnelo; Waters, Daniel L.; Henry, Robert J.

    2015-01-01

    Rice is the most important crop in the world, acting as the staple food for over half of the world’s population. The evolutionary relationships of cultivated rice and its wild relatives have remained contentious and inconclusive. Here we report on the use of whole chloroplast sequences to elucidate the evolutionary and phylogenetic relationships in the AA genome Oryza species, representing the primary gene pool of rice. This is the first study that has produced a well resolved and strongly supported phylogeny of the AA genome species. The pan tropical distribution of these rice relatives was found to be explained by long distance dispersal within the last million years. The analysis resulted in a clustering pattern that showed strong geographical differentiation. The species were defined in two primary clades with a South American/African clade with two species, O glumaepatula and O longistaminata, distinguished from all other species. The largest clade was comprised of an Australian clade including newly identified taxa and the African and Asian clades. This refined knowledge of the relationships between cultivated rice and the related wild species provides a strong foundation for more targeted use of wild genetic resources in rice improvement and efforts to ensure their conservation. PMID:26355750

  9. Diversification, Biogeographic Pattern, and Demographic History of Taiwanese Scutellaria Species Inferred from Nuclear and Chloroplast DNA

    PubMed Central

    Liao, Pei-Chun

    2012-01-01

    The ragged topography created by orogenesis generates diversified habitats for plants in Taiwan. In addition to colonization from nearby mainland China, high species diversity and endemism of plants is also present in Taiwan. Five of the seven Scutellaria species (Lamiaceae) in Taiwan, for example, are endemic to the island. Hypotheses of multiple sources or in situ radiation have arisen to explain the high endemism of Taiwanese species. In this study, phylogenetic analyses using both nuclear and chloroplast markers revealed the multiple sources of Taiwanese Scutellaria species and confirmed the rapid and recent speciation of endemic species, especially those of the “indica group” composed of S. indica, S. austrotaiwanensis, S. tashiroi, and S. playfairii. The common ancestors of the indica group colonized first in northern Taiwan and dispersed regionally southward and eastward. Climate changes during glacial/interglacial cycles led to gradual colonization and variance events in the ancestors of these species, resulting in the present distribution and genetic differentiation of extant populations. Population decline was also detected in S. indica, which might reflect a bottleneck effect from the glacials. In contrast, the recently speciated endemic members of the indica group have not had enough time to accumulate much genetic variation and are thus genetically insensitive to demographic fluctuations, but the extant lineages were spatially expanded in the coalescent process. This study integrated phylogenetic and population genetic analyses to illustrate the evolutionary history of Taiwanese Scutellaria of high endemism and may be indicative of the diversification mechanism of plants on continental islands. PMID:23226402

  10. A Brassica napus Lipase Locates at the Membrane Contact Sites Involved in Chloroplast Development

    PubMed Central

    Tan, Xiaoli; Wang, Qiuye; Tian, Baoxia; Zhang, Henan; Lu, Daoli; Zhou, Jia

    2011-01-01

    Background Fatty acids synthesized in chloroplast are transported to endoplasmic reticulum (ER) for triacylglycerols (TAGs) resembling. The development of chloroplast also requires lipids trafficking from ER to chloroplast. The membrane contact sites (MCSs) between ER and chloroplast has been demonstrated to be involved for the trafficking of lipids and proteins. Lipids trafficking between ER and chloroplast is often accompanied by lipids interconversion. However, it is rarely known how lipids interconversion happens during their trafficking. Methodology/Principal Findings We cloned a lipase gene from Brassica napus L., designated as BnCLIP1. Green fluorescence protein (GFP)-tagged BnCLIP1 was shown to locate at the MCSs between ER and chloroplasts in tobacco leaves. Heterogeneous expression of BnCLIP1 in Saccharomyces cerevisiae (pep4) reduced the total amount of fatty acid. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the truncated BnCLIP1 had a substrate preference for C16:0 lipids in Saccharomyces cerevisiae (pep4). To probe the physiological function of BnCLIP1, two Brassica napus lines with different oil-content were introduced to investigate the transcript patterns of BnCLIP1 during seed development. Intriguingly, the transcript level of BnCLIP1 was found to be immediately up-regulated during the natural seed senescence of both lines; the transcription response of BnCLIP1 in the high oil-content seeds was faster than the lower ones, suggesting a potential role of BnCLIP1 in affecting seed oil synthesis via regulating chloroplast integrity. Further researches showed that chemical disruption of leaf chloroplast also activated the transcription of BnCLIP1. Conclusions/Significance The findings of this study show that BnCLIP1 encodes a lipase, localizes at the MCSs and involves in chloroplast development. PMID:22046373

  11. Investigating cytoskeletal function in chloroplast protrusion formation in the arctic-alpine plant Oxyria digyna.

    PubMed

    Holzinger, A; Wasteneys, G O; Lütz, C

    2007-05-01

    Arctic and alpine plants like Oxyria digyna have to face enhanced environmental stress. This study compared leaves from Oxyria digyna collected in the Arctic at Svalbard (78 degrees N) and in the Austrian Alps (47 degrees N) at cellular, subcellular, and ultrastructural levels. Oxyria digyna plants collected in Svalbard had significantly thicker leaves than the samples collected in the Austrian Alps. This difference was generated by increased thickness of the palisade and spongy mesophyll layers in the arctic plants, while epidermal cells had no significant size differences between the two habitats. A characteristic feature of arctic, alpine, and cultivated samples was the occurrence of broad stroma-filled chloroplast protrusions, 2 - 5 microm broad and up to 5 microm long. Chloroplast protrusions were in close spatial contact with other organelles including mitochondria and microbodies. Mitochondria were also present in invaginations of the chloroplasts. A dense network of cortical microtubules found in the mesophyll cells suggested a potential role for microtubules in the formation and function of chloroplast protrusions. No direct interactions between microtubules and chloroplasts, however, were observed and disruption of the microtubule arrays with the anti-microtubule agent oryzalin at 5 - 10 microM did not alter the appearance or dynamics of chloroplast protrusions. These observations suggest that, in contrast to studies on stromule formation in Nicotiana, microtubules are not involved in the formation and morphology of chloroplast protrusions in Oxyria digyna. The actin microfilament-disrupting drug latrunculin B (5 - 10 microM for 2 h) arrested cytoplasmic streaming and altered the cytoplasmic integrity of mesophyll cells. However, at the ultrastructural level, stroma-containing, thylakoid-free areas were still visible, mostly at the concave sides of the chloroplasts. As chloroplast protrusions were frequently found to be mitochondria-associated in Oxyria

  12. Comparative analysis of dinoflagellate chloroplast genomes reveals rRNA and tRNA genes

    PubMed Central

    Barbrook, Adrian C; Santucci, Nicole; Plenderleith, Lindsey J; Hiller, Roger G; Howe, Christopher J

    2006-01-01

    Background Peridinin-containing dinoflagellates have a highly reduced chloroplast genome, which is unlike that found in other chloroplast containing organisms. Genome reduction appears to be the result of extensive transfer of genes to the nuclear genome. Unusually the genes believed to be remaining in the chloroplast genome are found on small DNA 'minicircles'. In this study we present a comparison of sets of minicircle sequences from three dinoflagellate species. Results PCR was used to amplify several minicircles from Amphidinium carterae so that a homologous set of gene-containing minicircles was available for Amphidinium carterae and Amphidinium operculatum, two apparently closely related peridinin-containing dinoflagellates. We compared the sequences of these minicircles to determine the content and characteristics of their chloroplast genomes. We also made comparisons with minicircles which had been obtained from Heterocapsa triquetra, another peridinin-containing dinoflagellate. These in silico comparisons have revealed several genetic features which were not apparent in single species analyses. The features include further protein coding genes, unusual rRNA genes, which we show are transcribed, and the first examples of tRNA genes from peridinin-containing dinoflagellate chloroplast genomes. Conclusion Comparative analysis of minicircle sequences has allowed us to identify previously unrecognised features of dinoflagellate chloroplast genomes, including additional protein and RNA genes. The chloroplast rRNA gene sequences are radically different from those in other organisms, and in many ways resemble the rRNA genes found in some highly reduced mitochondrial genomes. The retention of certain tRNA genes in the dinoflagellate chloroplast genome has important implications for models of chloroplast-mitochondrion interaction. PMID:17123435

  13. Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors.

    PubMed

    Kobayashi, Koichi; Sasaki, Daichi; Noguchi, Ko; Fujinuma, Daiki; Komatsu, Hirohisa; Kobayashi, Masami; Sato, Mayuko; Toyooka, Kiminori; Sugimoto, Keiko; Niyogi, Krishna K; Wada, Hajime; Masuda, Tatsuru

    2013-08-01

    In plants, genes involved in photosynthesis are encoded separately in nuclei and plastids, and tight cooperation between these two genomes is therefore required for the development of functional chloroplasts. Golden2-like (GLK) transcription factors are involved in chloroplast development, directly targeting photosynthesis-associated nuclear genes for up-regulation. Although overexpression of GLKs leads to chloroplast development in non-photosynthetic organs, the mechanisms of coordination between the nuclear gene expression influenced by GLKs and the photosynthetic processes inside chloroplasts are largely unknown. To elucidate the impact of GLK-induced expression of photosynthesis-associated nuclear genes on the construction of photosynthetic systems, chloroplast morphology and photosynthetic characteristics in greenish roots of Arabidopsis thaliana lines overexpressing GLKs were compared with those in wild-type roots and leaves. Overexpression of GLKs caused up-regulation of not only their direct targets but also non-target nuclear and plastid genes, leading to global induction of chloroplast biogenesis in the root. Large antennae relative to reaction centers were observed in wild-type roots and were further enhanced by GLK overexpression due to the increased expression of target genes associated with peripheral light-harvesting antennae. Photochemical efficiency was lower in the root chloroplasts than in leaf chloroplasts, suggesting that the imbalance in the photosynthetic machinery decreases the efficiency of light utilization in root chloroplasts. Despite the low photochemical efficiency, root photosynthesis contributed to carbon assimilation in Arabidopsis. Moreover, GLK overexpression increased CO₂ fixation and promoted phototrophic performance of the root, showing the potential of root photosynthesis to improve effective carbon utilization in plants.

  14. Unbiased estimation of chloroplast number in mesophyll cells: advantage of a genuine three-dimensional approach

    PubMed Central

    Kubínová, Zuzana

    2014-01-01

    Chloroplast number per cell is a frequently examined quantitative anatomical parameter, often estimated by counting chloroplast profiles in two-dimensional (2D) sections of mesophyll cells. However, a mesophyll cell is a three-dimensional (3D) structure and this has to be taken into account when quantifying its internal structure. We compared 2D and 3D approaches to chloroplast counting from different points of view: (i) in practical measurements of mesophyll cells of Norway spruce needles, (ii) in a 3D model of a mesophyll cell with chloroplasts, and (iii) using a theoretical analysis. We applied, for the first time, the stereological method of an optical disector based on counting chloroplasts in stacks of spruce needle optical cross-sections acquired by confocal laser-scanning microscopy. This estimate was compared with counting chloroplast profiles in 2D sections from the same stacks of sections. Comparing practical measurements of mesophyll cells, calculations performed in a 3D model of a cell with chloroplasts as well as a theoretical analysis showed that the 2D approach yielded biased results, while the underestimation could be up to 10-fold. We proved that the frequently used method for counting chloroplasts in a mesophyll cell by counting their profiles in 2D sections did not give correct results. We concluded that the present disector method can be efficiently used for unbiased estimation of chloroplast number per mesophyll cell. This should be the method of choice, especially in coniferous needles and leaves with mesophyll cells with lignified cell walls where maceration methods are difficult or impossible to use. PMID:24336344

  15. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis)

    PubMed Central

    2011-01-01

    Background Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Results Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5) was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. Conclusions The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant. PMID:22112144

  16. Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword?

    PubMed

    Cocaliadis, Maria Florencia; Fernández-Muñoz, Rafael; Pons, Clara; Orzaez, Diego; Granell, Antonio

    2014-08-01

    Fruits are generally regarded as photosynthate sinks as they rely on energy provided by sugars transported from leaves to carry out the highly demanding processes of development and ripening; eventually these imported photosynthates also contribute to the fruit organoleptic properties. Three recent reports have revealed, however, that transcriptional factors enhancing chloroplast development in fruit may result in higher contents not only of tomato fruit-specialized metabolites but also of sugars. In addition to suggesting new ways to improve fruit quality by fortifying fruit chloroplasts and plastids, these results prompted us to re-evaluate the importance of the contribution of chloroplasts/photosynthesis to fruit development and ripening.

  17. Identification of a pentatricopeptide repeat RNA editing factor in Physcomitrella patens chloroplasts.

    PubMed

    Ichinose, Mizuho; Uchida, Masato; Sugita, Mamoru

    2014-11-01

    The moss Physcomitrella patens has two RNA editing sites in the chloroplasts. Here we identified a novel DYW-subclass pentatricopeptide repeat (PPR) protein, PpPPR_45, as a chloroplast RNA editing factor in P. patens. Knockdown of the PpPPR_45 gene reduced the extent of RNA editing at the chloroplast rps14-C2 site, whereas over-expression of PpPPR_45 increased the levels of RNA editing at both the rps14-C2 site and its neighboring C site. This indicates that the expression level of PpPPR_45 affects the extent of RNA editing at the two neighboring sites.

  18. [Genetic mapping of rice gene OsALB23 regulating chloroplast development].

    PubMed

    Kong, Meng-Meng; Yu, Qing-Bo; Zhang, Hui-Qi; Sheng, Chun; Zhou, Gen-Yu; Yang, Zhong-Nan

    2006-08-01

    The biogenesis of chloroplast from proplastid is the prerequisite of photosynthesis. Using electron microscope, we found that rice albino mutant Osalb23 had no thylakoid inside the chloroplast, only some empty vesicles could be observed (Fig. 2). Genetics analysis showed that albino phenotype was controlled by a single recessive locus. Using map-based cloning technique, OsALB23 has been mapped to a region of 280 kb between molecular markers R2M501 and R2M502 on chromosome 2 (Fig. 4). Homologous analysis indicated that this region contained six chloroplast protein genes.

  19. Protein phosphorylation in chloroplasts - a survey of phosphorylation targets.

    PubMed

    Baginsky, Sacha

    2016-06-01

    The development of new software tools, improved mass spectrometry equipment, a suite of optimized scan types, and better-quality phosphopeptide affinity capture have paved the way for an explosion of mass spectrometry data on phosphopeptides. Because phosphoproteomics achieves good sensitivity, most studies use complete cell extracts for phosphopeptide enrichment and identification without prior enrichment of proteins or subcellular compartments. As a consequence, the phosphoproteome of cell organelles often comes as a by-product from large-scale studies and is commonly assembled from these in meta-analyses. This review aims at providing some guidance on the limitations of meta-analyses that combine data from analyses with different scopes, reports on the current status of knowledge on chloroplast phosphorylation targets, provides initial insights into phosphorylation site conservation in different plant species, and highlights emerging information on the integration of gene expression with metabolism and photosynthesis by means of protein phosphorylation. PMID:26969742

  20. The complete chloroplast genome sequence of Dianthus superbus var. longicalycinus.

    PubMed

    Gurusamy, Raman; Lee, Do-Hyung; Park, SeonJoo

    2016-05-01

    The complete chloroplast genome (cpDNA) sequence of Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicine was reported and characterized. The cpDNA of Dianthus superbus var. longicalycinus is 149,539 bp, with 36.3% GC content. A pair of inverted repeats (IRs) of 24,803 bp is separated by a large single-copy region (LSC, 82,805 bp) and a small single-copy region (SSC, 17,128 bp). It encodes 85 protein-coding genes, 36 tRNA genes and 8 rRNA genes. Of 129 individual genes, 13 genes encoded one intron and three genes have two introns.

  1. [Study of Chloroplast DNA Polymorphism in the Sunflower (Helianthus L.)].

    PubMed

    Markina, N V; Usatov, A V; Logacheva, M D; Azarin, K V; Gorbachenko, C F; Kornienko, I V; Gavrilova, V A; Tihobaeva, V E

    2015-08-01

    The polymorphism of microsatellite loci of chloroplast genome in six Helianthus species and 46 lines of cultivated sunflower H. annuus (17 CMS lines and 29 Rf-lines) were studied. The differences between species are confined to four SSR loci. Within cultivated forms of the sunflower H. annuus, the polymorphism is absent. A comparative analysis was performed on sequences of the cpDNA inbred line 3629, line 398941 of the wild sunflower, and the American line HA383 H. annuus. As a result, 52 polymorphic loci represented by 27 SSR and 25 SNP were found; they can be used for genotyping of H. annuus samples, including cultural varieties: twelve polymorphic positions, of which eight are SSR and four are SNP. PMID:26601486

  2. The evolution of chloroplast genes and genomes in ferns.

    PubMed

    Wolf, Paul G; Der, Joshua P; Duffy, Aaron M; Davidson, Jacob B; Grusz, Amanda L; Pryer, Kathleen M

    2011-07-01

    Most of the publicly available data on chloroplast (plastid) genes and genomes come from seed plants, with relatively little information from their sister group, the ferns. Here we describe several broad evolutionary patterns and processes in fern plastid genomes (plastomes), and we include some new plastome sequence data. We review what we know about the evolutionary history of plastome structure across the fern phylogeny and we compare plastome organization and patterns of evolution in ferns to those in seed plants. A large clade of ferns is characterized by a plastome that has been reorganized with respect to the ancestral gene order (a similar order that is ancestral in seed plants). We review the sequence of inversions that gave rise to this organization. We also explore global nucleotide substitution patterns in ferns versus those found in seed plants across plastid genes, and we review the high levels of RNA editing observed in fern plastomes.

  3. Development of novel chloroplast microsatellite markers for Ginkgo biloba.

    PubMed

    Xu, M; Xu, L A; Cao, F L; Zhang, H J; Yu, F X

    2015-07-13

    Ginkgo biloba is considered to be a living fossil that can be used to understand the ancient evolutionary history of gymnosperms, but little attention has been given to the study of its population genetics, molecular phylogeography, and genetic resources assessment. Chloroplast simple sequence repeat (cpSSR) markers are powerful tools for genetic studies of plants. In this study, a total of 30 perfect cpSSRs of Ginkgo were identified and characterized, including di-, tri, tetra-, penta-, and hexanucleotide repeats. Fifteen of 21 designed primer pairs were successfully amplified to yield specific polymerase chain reaction products from 16 Ginkgo cultivars. Polymorphic cpSSRs were further applied to determine the genetic variation of 116 individuals in 5 populations of G. biloba. The results showed that 24 and 76% genetic variation existed within and among populations of this species, respectively. These polymorphic and monomorphic cpSSR markers can be used to trace the origin and evolutionary history of Ginkgo.

  4. [Study of Chloroplast DNA Polymorphism in the Sunflower (Helianthus L.)].

    PubMed

    Markina, N V; Usatov, A V; Logacheva, M D; Azarin, K V; Gorbachenko, C F; Kornienko, I V; Gavrilova, V A; Tihobaeva, V E

    2015-08-01

    The polymorphism of microsatellite loci of chloroplast genome in six Helianthus species and 46 lines of cultivated sunflower H. annuus (17 CMS lines and 29 Rf-lines) were studied. The differences between species are confined to four SSR loci. Within cultivated forms of the sunflower H. annuus, the polymorphism is absent. A comparative analysis was performed on sequences of the cpDNA inbred line 3629, line 398941 of the wild sunflower, and the American line HA383 H. annuus. As a result, 52 polymorphic loci represented by 27 SSR and 25 SNP were found; they can be used for genotyping of H. annuus samples, including cultural varieties: twelve polymorphic positions, of which eight are SSR and four are SNP.

  5. Photoinhibition of Chloroplast Reactions. II. Multiple Effects 1

    PubMed Central

    Jones, L. W.; Kok, B.

    1966-01-01

    Ultraviolet light inhibits the photoreduction of 2,6-dichlorophenolindo-phenol or nicotinamide adenine dinucleotide phosphate with water as the electron donor (evolution of oxygen) but not the photoreduction of nicotinamide adenine dinucleotide phosphate with ascorbate as the electron donor. It inhibits photophosphorylation associated with either system. Experiments undertaken to test whether plastoquinone is the site of UV inhibition yielded inconclusive results. Visible light (> 420 mμ) causes the loss of all chloroplast activities, photosystem I being more sensitive than system II. The data suggests 2 modes of action for visible light. The one sensitized by system II results in damage resembling that of UV light. The other, sensitized by system I, results in the destruction of the reaction center of this system. PMID:16656346

  6. The complete chloroplast genomes of Cannabis sativa and Humulus lupulus.

    PubMed

    Vergara, Daniela; White, Kristin H; Keepers, Kyle G; Kane, Nolan C

    2016-09-01

    Cannabis and Humulus are sister genera comprising the entirety of the Cannabaceae sensu stricto, including C. sativa L. (marijuana, hemp), and H. lupulus L. (hops) as two economically important crops. These two plants have been used by humans for many purposes including as a fiber, food, medicine, or inebriant in the case of C. sativa, and as a flavoring component in beer brewing in the case of H. lupulus. In this study, we report the complete chloroplast genomes for two distinct hemp varieties of C. sativa, Italian "Carmagnola" and Russian "Dagestani", and one Czech variety of H. lupulus "Saazer". Both C. sativa genomes are 153 871 bp in length, while the H. lupulus genome is 153 751 bp. The genomes from the two C. sativa varieties differ in 16 single nucleotide polymorphisms (SNPs), while the H. lupulus genome differs in 1722 SNPs from both C. sativa cultivars.

  7. The whole chloroplast genome of wild rice (Oryza australiensis).

    PubMed

    Wu, Zhiqiang; Ge, Song

    2016-01-01

    The whole chloroplast genome of wild rice (Oryza australiensis) is characterized in this study. The genome size is 135,224  bp, exhibiting a typical circular structure including a pair of 25,776  bp inverted repeats (IRa,b) separated by a large single-copy region (LSC) of 82,212  bp and a small single-copy region (SSC) of 12,470  bp. The overall GC content of the genome is 38.95%. 110 unique genes were annotated, including 76 protein-coding genes, 4 ribosomal RNA genes, and 30t RNA genes. Among these, 18 are duplicated in the inverted repeat regions, 13 genes contain one intron, and 2 genes (rps12 and ycf3) have two introns.

  8. The complete chloroplast genomes of Cannabis sativa and Humulus lupulus.

    PubMed

    Vergara, Daniela; White, Kristin H; Keepers, Kyle G; Kane, Nolan C

    2016-09-01

    Cannabis and Humulus are sister genera comprising the entirety of the Cannabaceae sensu stricto, including C. sativa L. (marijuana, hemp), and H. lupulus L. (hops) as two economically important crops. These two plants have been used by humans for many purposes including as a fiber, food, medicine, or inebriant in the case of C. sativa, and as a flavoring component in beer brewing in the case of H. lupulus. In this study, we report the complete chloroplast genomes for two distinct hemp varieties of C. sativa, Italian "Carmagnola" and Russian "Dagestani", and one Czech variety of H. lupulus "Saazer". Both C. sativa genomes are 153 871 bp in length, while the H. lupulus genome is 153 751 bp. The genomes from the two C. sativa varieties differ in 16 single nucleotide polymorphisms (SNPs), while the H. lupulus genome differs in 1722 SNPs from both C. sativa cultivars. PMID:26329384

  9. Functional analysis of chloroplast early light inducible proteins (ELIPs)

    SciTech Connect

    Wetzel, Carolyn M

    2005-02-22

    The objectives of this project were to characterize gene expression patterns of early light inducible protein (ELIP) genes in Arabidopsis thaliana and in Lycopersicon esculentum, to identify knock mutants of the 2 ELIP genes in Arabidopsis, and to characterize the effects of the knockouts. Expression in Arabidopsis was studied in response to thylakoid electron transport chain (PETC) capacity, where it was found that there is a signal for expression associated with reduction of the PETC. Expression in response to salt was also studied, with different responses of the two gene copies. Knockout lines for ELIP1 and ELIP2 have been identified and are being characterized. In tomato, it was found that the single-copy ELIP gene is highly expressed in ripening fruit during the chloroplast-to-chromoplast transition. Studies of expression in tomato ripening mutants are ongoing.

  10. Chloroplast RNA editing going extreme: more than 3400 events of C-to-U editing in the chloroplast transcriptome of the lycophyte Selaginella uncinata.

    PubMed

    Oldenkott, Bastian; Yamaguchi, Kazuo; Tsuji-Tsukinoki, Sumika; Knie, Nils; Knoop, Volker

    2014-10-01

    RNA editing in chloroplasts and mitochondria of land plants differs significantly in abundance. For example, some 200-500 sites of cytidine-to-uridine RNA editing exist in flowering plant mitochondria as opposed to only 30-50 such C-to-U editing events in their chloroplasts. In contrast, we predicted significantly more chloroplast RNA editing for the protein-coding genes in the available complete plastome sequences of two species of the spike moss genus Selaginella (Lycopodiophyta). To evaluate these predictions we investigated the Selaginella uncinata chloroplast transcriptome. Our exhaustive cDNA studies identified the extraordinary number of 3415 RNA-editing events, exclusively of the C-to-U type, in the 74 mRNAs encoding intact reading frames in the S. uncinata chloroplast. We find the overwhelming majority (61%) of the 428 silent editing events leaving codon meanings unaltered directly neighboring other editing events, possibly suggesting a sterically more flexible RNA-editing deaminase activity in Selaginella. No evidence of RNA editing was found for tRNAs or rRNAs but we identified a total of 74 editing sites in cDNA sequences of four group II introns (petBi6g2, petDi8g2, ycf3i124g2, and ycf3i354g2) retained in partially matured transcripts, which strongly contribute to improved base-pairing in the intron secondary structures as a likely prerequisite for their splicing.

  11. Polarographic Study of Ammonia Assimilation by Isolated Chloroplasts 1

    PubMed Central

    Anderson, John W.; Done, James

    1977-01-01

    Illuminated pea (Pisum sativum) chloroplasts catalyze (ammonia plus α-ketoglutarate [α-KG])-dependent O2 evolution at rates which are commensurate with other estimates of the flux of assimilated nitrogen (mean of eight determinations, 8.3 μmole per mg chlorophyll per hour, sd 2.4). The reaction was usually initiated with 1 mm ammonia after preincubating chloroplasts in the presence of α-KG, ADP, pyrophosphate, and MgCl2. Progressive increases in ammonia concentration gave Vmax/2 at 0.2 mm (approximately) and Vmax at about 1 mm. Higher concentrations were inhibitory; at 7 mm the rate was again about Vmax/2. The highest ratio of O2 evolved per mol of ammonia supplied was 0.36. The (ammonia plus α-KG)-dependent reaction was inhibited by methionine sulfoximine, azaserine, and aspartate in the presence of amino-oxyacetate but not by amino-oxyacetate alone and not by l-glutamate. The rate of O2 evolution in the presence of 1 mm ammonia and 2.5 mm α-KG was increased only slightly by addition of 5 mm glutamine. Similarly, the rate of O2 evolution in the presence of 5 mm glutamine and 2.5 mm α-KG was increased only slightly by addition of 1 mm ammonia. The results are attributed to the incorporation of ammonia via glutamine synthetase and reductive transamination of the glutamine formed by photosynthetically coupled glutamate synthase using α-KG as the amino acceptor. Several lines of evidence rule out the possibility that photosynthetically coupled glutamate dehydrogenase is involved. PMID:16660125

  12. Energetic factors affecting carbon dioxide fixation in isolated chloroplasts

    SciTech Connect

    Slovacek, R.E.; Hind, G.

    1980-03-01

    Light- and HCO/sub 3/-saturated (10 millimolar) rates of O/sub 2/ evolution (120 to 220 micromoles O/sub 2/ per milligram chlorophyll per hour), obtained with intact spinach chloroplasts, are decreased up to 3-fold by changes in assay conditions such as omission of catalase from the medium, the use of high (greater than or equal to 1 millimolar) inorganic phosphate, inclusion of NO/sub 2/- as an electron acceptor, or bright illumination at low partial pressures of O/sub 2/. These inhibitions may be reversed by addition of uncoupling levels of NH/sub 4/Cl or of antimycin concentrations that partially block cyclic electron transfer between cytochrome b/sub 6/ and cytochrome f. Measurements of the pH gradient across the thylakoid membrane with the fluorescent probe, 9-aminoacridine, indicate that changes in ..delta..pH are sufficient to account for both the inhibited and restored rates of electron transport. It follows that the rate of HCO/sub 3/-saturated photosynthesis may be restricted by a proton gradient back pressure under these conditions. The rate of O/sub 2/ evolution is also decreased 3-fold when ambient CO/sub 2/ (0.63 millimolar HCO/sub 3/- at pH 8.1) is used in place of saturating HCO/sub 3/- and chloroplasts are illuminated aerobically with catalase and a low level (0.25 millimolar) of K/sub 2/HPO/sub 4/. Only inhibitory effects are observed with additions of antimycin or NH/sub 4/Cl. Under these conditions, excessive photophosphorylation or a large pH gradient does not limit the rate of photosynthesis.

  13. Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria

    PubMed Central

    Wall, Melisa K.; Mitchenall, Lesley A.; Maxwell, Anthony

    2004-01-01

    DNA gyrase is the bacterial DNA topoisomerase (topo) that supercoils DNA by using the free energy of ATP hydrolysis. The enzyme, an A2B2 tetramer encoded by the gyrA and gyrB genes, catalyses topological changes in DNA during replication and transcription, and is the only topo that is able to introduce negative supercoils. Gyrase is essential in bacteria and apparently absent from eukaryotes and is, consequently, an important target for antibacterial agents (e.g., quinolones and coumarins). We have identified four putative gyrase genes in the model plant Arabidopsis thaliana; one gyrA and three gyrB homologues. DNA gyrase protein A (GyrA) has a dual translational initiation site targeting the mature protein to both chloroplasts and mitochondria, and there are individual targeting sequences for two of the DNA gyrase protein B (GyrB) homologues. N-terminal fusions of the organellar targeting sequences to GFPs support the hypothesis that one enzyme is targeted to the chloroplast and another to the mitochondrion, which correlates with supercoiling activity in isolated organelles. Treatment of seedlings and cultured cells with gyrase-specific drugs leads to growth inhibition. Knockout of A. thaliana gyrA is embryo-lethal whereas knockouts in the gyrB genes lead to seedling-lethal phenotypes or severely stunted growth and development. The A. thaliana genes have been cloned in Escherichia coli and found to complement gyrase temperature-sensitive strains. This report confirms the existence of DNA gyrase in eukaryotes and has important implications for drug targeting, organelle replication, and the evolution of topos in plants. PMID:15136745

  14. Events Surrounding the Early Development of Euglena Chloroplasts

    PubMed Central

    Vaisberg, Abraham J.; Schiff, Jerome A.; Li, Lynn; Freedman, Zachary

    1976-01-01

    d(−)threo-Chloramphenicol blocks chlorophyll and plastid protein synthesis in Euglena. During chloroplast development in white light, but not in red, the cells escape from chloramphenicol inhibition and chlorophyll formation is restored. Concomitantly, chloramphenicol is reduced. Reduction of chloramphenicol in an enzyme extract from Euglena requires NADPH and ferredoxin for maximal activity. Methyl viologen replaces ferredoxin, and when chemically reduced, ferredoxin or methyl viologen reduces chloramphenicol directly. This suggests that the enzyme involved is ferredoxin-NADP reductase. In agreement, crude extracts from wild type and W3BUL, a mutant lacking detectable plastids and plastid DNA, when separated on acrylamide gels, show a single band which reduces methyl viologen with NADPH, and its mobility is similar in wild type and in mutant W3BUL. The reductase is inducible by light and increases 3-fold in wild type in white or red light and 1.5-fold in W3BUL in white light. DCMU does not block chloramphenicol reduction in vivo indicating that electrons originate from sources other than photosynthetic electron transport. We infer that chloramphenicol is reduced by ferredoxin which receives electrons via ferredoxin-NADP reductase. The limiting step is not the enzyme but the source of reducing power which can be supplied from the cytoplasm, probably under control of the blue light receptor. Ferredoxin and ferredoxin NADP reductase appear to be coded in the nuclear genome, synthesized on cytoplasmic ribosomes, and join a group of enzymes which cannot be precisely localized, since they may be active anywhere from their site of synthesis in the cytoplasm to their place of deposition in the chloroplast. PMID:16659534

  15. The complete chloroplast genome of Origanum vulgare L. (Lamiaceae).

    PubMed

    Lukas, Brigitte; Novak, Johannes

    2013-10-10

    Oregano (Origanum vulgare L., Lamiaceae) is a medicinal and aromatic plant maybe best known for flavouring pizza. New applications e.g. as natural antioxidants for food are emerging due to the plants' high antibacterial and antioxidant activity. The complete chloroplast (cp) genome of Origanum vulgare (GenBank/EBML/DDBJ accession number: JX880022) consists of 151,935 bp and includes a pair of inverted repeats (IR) of 25,527 bp separated by one small and one large single copy region (SSC and LSC) of 17,745 and 83,136 bp, respectively. The genome with an overall GC content of 38% hosts 114 genes that covering 63% of the genome of which 8% were introns. The comparison of the Origanum cp genome with the cp genomes of two other core lamiales (Salvia miltiorrhiza Bunge and Sesamum indicum L.) revealed completely conserved protein-coding regions in the IR region but also in the LSC and SSC regions. Phylogenetic analysis of the lamiids based on 56 protein-coding genes give a hint at the basic structure of the Lamiales. However, further genomes will be necessary to clarify this taxonomically complicated order. The variability of the cp within the genus Origanum, studied exemplarily on 16 different chloroplast DNA regions, demonstrated that in 14 regions analyzed, the variability was extremely low (max. 0.7%), while only two regions showed a moderate variability of up to 2.3%. The cp genome of Origanum vulgare contains 27 perfect mononucleotide repeats (number of repeats>9) consisting exclusively of the nucleotides A or T. 34 perfect repeats (repeat lengths>1 and number of repeats>3) were found, of which 32 were di-, and 2 were trinucleotide repeats.

  16. Small effect of fragmentation on the genetic diversity of Dalbergia monticola, an endangered tree species of the eastern forest of Madagascar, detected by chloroplast and nuclear microsatellites

    PubMed Central

    Andrianoelina, O.; Favreau, B.; Ramamonjisoa, L.; Bouvet, J.-M.

    2009-01-01

    Background and Aims The oriental forest ecosystem in Madagascar has been seriously impacted by fragmentation. The pattern of genetic diversity was analysed on a tree species, Dalbergia monticola, which plays an important economic role in Madagascar and is one of the many endangered tree species in the eastern forest. Methods Leaves from 546 individuals belonging to 18 small populations affected by different levels of fragmentation were genotyped using eight nuclear (nuc) and three chloroplast (cp) microsatellite markers. Key Results For nuclear microsatellites, allelic richness (R) and heterozygosity (He,nuc) differed between types of forest: R = 7·36 and R = 9·55, He,nuc = 0·64 and He,nuc = 0·80 in fragmented and non-fragmented forest, respectively, but the differences were not significant. Only the mean number of alleles (Na,nuc) and the fixation index FIS differed significantly: Na,nuc = 9·41 and Na,nuc = 13·18, FIS = 0·06 and FIS = 0·15 in fragmented and non-fragmented forests, respectively. For chloroplast microsatellites, estimated genetic diversity was higher in non-fragmented forest, but the difference was not significant. No recent bottleneck effect was detected for either population. Overall differentiation was low for nuclear microsatellites (FST,nuc = 0·08) and moderate for chloroplast microsatellites (FST,cp = 0·49). A clear relationship was observed between genetic and geographic distance (r = 0·42 P < 0·01 and r = 0·42 P = 0·03 for nuclear and chloroplast microsatellites, respectively), suggesting a pattern of isolation by distance. Analysis of population structure using the neighbor-joining method or Bayesian models separated southern populations from central and northern populations with nuclear microsatellites, and grouped the population according to regions with chloroplast microsatellites, but did not separate the fragmented populations. Conclusions Residual diversity and genetic structure of populations of D. monticola in

  17. The avoidance and aggregative movements of mesophyll chloroplasts in C(4) monocots in response to blue light and abscisic acid.

    PubMed

    Maai, Eri; Shimada, Shouu; Yamada, Masahiro; Sugiyama, Tatsuo; Miyake, Hiroshi; Taniguchi, Mitsutaka

    2011-05-01

    In C(4) plants, mesophyll (M) chloroplasts are randomly distributed along the cell walls, whereas bundle sheath chloroplasts are located in either a centripetal or centrifugal position. It was reported previously that only M chloroplasts aggregatively redistribute to the bundle sheath side in response to extremely strong light or environmental stresses. The aggregative movement of M chloroplasts is also induced in a light-dependent fashion upon incubation with abscisic acid (ABA). The involvement of reactive oxygen species (ROS) and red/blue light in the aggregative movement of M chloroplasts are examined here in two distinct subtypes of C(4) plants, finger millet and maize. Exogenously applied hydrogen peroxide or ROS scavengers could not change the response patterns of M chloroplast movement to light and ABA. Blue light irradiation essentially induced the rearrangement of M chloroplasts along the sides of anticlinal walls, parallel to the direction of the incident light, which is analogous to the avoidance movement of C(3) chloroplasts. In the presence of ABA, most of the M chloroplasts showed the aggregative movement in response to blue light but not red light. Together these results suggest that ROS are not involved in signal transduction for the aggregative movement, and ABA can shift the blue light-induced avoidance movement of C(4)-M chloroplasts to the aggregative movement.

  18. Sequence analysis and protein import studies of an outer chloroplast envelope polypeptide.

    PubMed Central

    Salomon, M; Fischer, K; Flügge, U I; Soll, J

    1990-01-01

    A chloroplast outer envelope membrane protein was cloned and sequenced and from the sequence it was possible to deduce a polypeptide of 6.7 kDa. It has only one membrane-spanning region; the C terminus extends into the cytosol, whereas the N terminus is exposed to the space between the two envelope membranes. The protein was synthesized in an in vitro transcription-translation system to study its routing into isolated chloroplasts. The import studies revealed that the 6.7-kDa protein followed a different and heretofore undescribed translocation pathway in the respect that (i) it does not have a cleavable transit sequence, (ii) it does not require ATP hydrolysis for import, and (iii) protease-sensitive components that are responsible for recognition of precursor proteins destined for the inside of the chloroplasts are not involved in routing the 6.7-kDa polypeptide to the outer chloroplast envelope. Images PMID:2377616

  19. In Vivo Quantification of Peroxisome Tethering to Chloroplasts in Tobacco Epidermal Cells Using Optical Tweezers.

    PubMed

    Gao, Hongbo; Metz, Jeremy; Teanby, Nick A; Ward, Andy D; Botchway, Stanley W; Coles, Benjamin; Pollard, Mark R; Sparkes, Imogen

    2016-01-01

    Peroxisomes are highly motile organelles that display a range of motions within a short time frame. In static snapshots, they can be juxtaposed to chloroplasts, which has led to the hypothesis that they are physically interacting. Here, using optical tweezers, we tested the dynamic physical interaction in vivo. Using near-infrared optical tweezers combined with TIRF microscopy, we were able to trap peroxisomes and approximate the forces involved in chloroplast association in vivo in tobacco (Nicotiana tabacum) and observed weaker tethering to additional unknown structures within the cell. We show that chloroplasts and peroxisomes are physically tethered through peroxules, a poorly described structure in plant cells. We suggest that peroxules have a novel role in maintaining peroxisome-organelle interactions in the dynamic environment. This could be important for fatty acid mobilization and photorespiration through the interaction with oil bodies and chloroplasts, highlighting a fundamentally important role for organelle interactions for essential biochemistry and physiological processes.

  20. The complete chloroplast genome of Eleutherococcus gracilistylus (W.W.Sm.) S.Y.Hu (Araliaceae).

    PubMed

    Kim, Kyunghee; Lee, Junki; Lee, Sang-Choon; Kim, Nam-Hoon; Jang, Woojong; Kim, Soonok; Sung, Sangmin; Lee, Jungho; Yang, Tae-Jin

    2016-09-01

    Eleutherococcus gracilistylus is a plant species that is close to E. senticosus, a famous medicinal plant called Siberian ginseng. The complete chloroplast genome sequence of the E. gracilistylus was determined by de novo assembly using whole genome next generation sequences. The chloroplast genome of E. gracilistylus was 156 770 bp long and showed distinct four partite structures such as a large single copy region of 86 729 bp, a small single copy region of 18 175 bp, and a pair of inverted repeat regions of 25 933 bp. The overall GC contents of the genome sequence were 36.8%. The chloroplast genome of E. gracilistylus contains 79 protein-coding sequences, 30 tRNA genes, and four rRNA genes. The phylogenetic analysis with the reported chloroplast genomes confirmed close taxonomical relationship of E. gracilistylus with E. senticosus. PMID:26358682

  1. Comparative analyses of chloroplast genome data representing nine green algae in Sphaeropleales (Chlorophyceae, Chlorophyta).

    PubMed

    Fučíková, Karolina; Lewis, Louise A; Lewis, Paul O

    2016-06-01

    The chloroplast genomes of green algae are highly variable in their architecture. In this article we summarize gene content across newly obtained and published chloroplast genomes in Chlorophyceae, including new data from nine of species in Sphaeropleales (Chlorophyceae, Chlorophyta). We present genome architecture information, including genome synteny analysis across two groups of species. Also, we provide a phylogenetic tree obtained from analysis of gene order data for species in Chlorophyceae with fully sequenced chloroplast genomes. Further analyses and interpretation of the data can be found in "Chloroplast phylogenomic data from the green algal order Sphaeropleales (Chlorophyceae, Chlorophyta) reveal complex patterns of sequence evolution" (Fučíková et al., In review) [1]. PMID:27054159

  2. Programmed chloroplast destruction during leaf senescence involves 13-lipoxygenase (13-LOX).

    PubMed

    Springer, Armin; Kang, ChulHee; Rustgi, Sachin; von Wettstein, Diter; Reinbothe, Christiane; Pollmann, Stephan; Reinbothe, Steffen

    2016-03-22

    Leaf senescence is the terminal stage in the development of perennial plants. Massive physiological changes occur that lead to the shut down of photosynthesis and a cessation of growth. Leaf senescence involves the selective destruction of the chloroplast as the site of photosynthesis. Here, we show that 13-lipoxygenase (13-LOX) accomplishes a key role in the destruction of chloroplasts in senescing plants and propose a critical role of its NH2-terminal chloroplast transit peptide. The 13-LOX enzyme identified here accumulated in the plastid envelope and catalyzed the dioxygenation of unsaturated membrane fatty acids, leading to a selective destruction of the chloroplast and the release of stromal constituents. Because 13-LOX pathway products comprise compounds involved in insect deterrence and pathogen defense (volatile aldehydes and oxylipins), a mechanism of unmolested nitrogen and carbon relocation is suggested that occurs from leaves to seeds and roots during fall. PMID:26969728

  3. Comparative analyses of chloroplast genome data representing nine green algae in Sphaeropleales (Chlorophyceae, Chlorophyta)

    PubMed Central

    Fučíková, Karolina; Lewis, Louise A.; Lewis, Paul O.

    2016-01-01

    The chloroplast genomes of green algae are highly variable in their architecture. In this article we summarize gene content across newly obtained and published chloroplast genomes in Chlorophyceae, including new data from nine of species in Sphaeropleales (Chlorophyceae, Chlorophyta). We present genome architecture information, including genome synteny analysis across two groups of species. Also, we provide a phylogenetic tree obtained from analysis of gene order data for species in Chlorophyceae with fully sequenced chloroplast genomes. Further analyses and interpretation of the data can be found in “Chloroplast phylogenomic data from the green algal order Sphaeropleales (Chlorophyceae, Chlorophyta) reveal complex patterns of sequence evolution” (Fučíková et al., In review) [1]. PMID:27054159

  4. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    SciTech Connect

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailing description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  5. Programmed chloroplast destruction during leaf senescence involves 13-lipoxygenase (13-LOX).

    PubMed

    Springer, Armin; Kang, ChulHee; Rustgi, Sachin; von Wettstein, Diter; Reinbothe, Christiane; Pollmann, Stephan; Reinbothe, Steffen

    2016-03-22

    Leaf senescence is the terminal stage in the development of perennial plants. Massive physiological changes occur that lead to the shut down of photosynthesis and a cessation of growth. Leaf senescence involves the selective destruction of the chloroplast as the site of photosynthesis. Here, we show that 13-lipoxygenase (13-LOX) accomplishes a key role in the destruction of chloroplasts in senescing plants and propose a critical role of its NH2-terminal chloroplast transit peptide. The 13-LOX enzyme identified here accumulated in the plastid envelope and catalyzed the dioxygenation of unsaturated membrane fatty acids, leading to a selective destruction of the chloroplast and the release of stromal constituents. Because 13-LOX pathway products comprise compounds involved in insect deterrence and pathogen defense (volatile aldehydes and oxylipins), a mechanism of unmolested nitrogen and carbon relocation is suggested that occurs from leaves to seeds and roots during fall.

  6. In Vivo Quantification of Peroxisome Tethering to Chloroplasts in Tobacco Epidermal Cells Using Optical Tweezers.

    PubMed

    Gao, Hongbo; Metz, Jeremy; Teanby, Nick A; Ward, Andy D; Botchway, Stanley W; Coles, Benjamin; Pollard, Mark R; Sparkes, Imogen

    2016-01-01

    Peroxisomes are highly motile organelles that display a range of motions within a short time frame. In static snapshots, they can be juxtaposed to chloroplasts, which has led to the hypothesis that they are physically interacting. Here, using optical tweezers, we tested the dynamic physical interaction in vivo. Using near-infrared optical tweezers combined with TIRF microscopy, we were able to trap peroxisomes and approximate the forces involved in chloroplast association in vivo in tobacco (Nicotiana tabacum) and observed weaker tethering to additional unknown structures within the cell. We show that chloroplasts and peroxisomes are physically tethered through peroxules, a poorly described structure in plant cells. We suggest that peroxules have a novel role in maintaining peroxisome-organelle interactions in the dynamic environment. This could be important for fatty acid mobilization and photorespiration through the interaction with oil bodies and chloroplasts, highlighting a fundamentally important role for organelle interactions for essential biochemistry and physiological processes. PMID:26518344

  7. The complete chloroplast genome sequence of an important medicinal plant Cynanchum wilfordii (Maxim.) Hemsl. (Apocynaceae).

    PubMed

    Park, Hyun-Seung; Kim, Kyu-Yeob; Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Seong, Rack Seon; Shim, Young Hun; Sung, Sang Hyun; Yang, Tae-Jin

    2016-09-01

    Cynanchum wilfordii (Maxim.) Hemsl. is a traditional medicinal herb belonging to the Asclepiadoideae subfamily, whose dried roots have been used as traditional medicine in Asia. The complete chloroplast genome of C. wilfordii was generated by de novo assembly using the small amount of whole genome sequencing data. The chloroplast genome of C. wilfordii was 161 241 bp long, composed of large single copy region (91 995 bp), small single copy region (19 930 bp) and a pair of inverted repeat regions (24 658 bp). The overall GC contents of the chloroplast genome was 37.8%. A total of 114 genes were annotated, which included 80 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that C. wilfordii is most closely related to Asclepias nivea (Caribbean milkweed) and Asclepias syriaca (common milkweed) within the Asclepiadoideae subfamily. PMID:26358391

  8. The Coupling of Electron Flow to ATP Synthesis in Pea and Maize Mesophyll Chloroplasts 12

    PubMed Central

    Cole, Richard M.; Macpeek, Wendy A.; Cohen, William S.

    1981-01-01

    The rate of nonphosphorylating electron transport (in the absence of ADP and inorganic phosphate) in well-coupled (ATP/2e− = 0.9-1.1) maize mesophyll chloroplasts is not modulated by external pH (6.5-8.5), low levels of ADP or ATP, or energy transfer inhibitors, e.g. triphenyltin and Hg2+ ions. In contrast nonphosphorylating electron flow in pea chloroplasts is sensitive to alterations in medium pH, and to the presence of adenine nucleotides and energy transfer inhibitors in the assay medium. Although ATP is without effect on the rate of basal electron transport in maize chloroplasts, steady-state proton uptake is stimulated 3- to 5-fold by low levels of ATP. These results suggest that differences may exist in the manner in which the coupling factor complex controls proton efflux from the intrathylakoid space in C3 and C4 mesophyll chloroplasts. PMID:16661966

  9. Photoreduction of α-Ketoglutarate to Glutamate by Vicia faba Chloroplasts 1

    PubMed Central

    Givan, Curtis V.; Givan, Alice L.; Leech, Rachel M.

    1970-01-01

    Intact chloroplasts isolated from leaves of Vicia faba L. var. the Sutton show a decline in the endogenous level of α-ketoglutarate upon illumination. α-Ketoglutarate supplied to the chloroplasts is similarly utilized in this light-dependent reaction, and its consumption is paralleled by a concomitant increase in the level of glutamate. There is no photostimulation of glutamate synthesis in chloroplasts broken by osmotic shock, but it can be somewhat restored by addition of ferredoxin and NADP. These results suggest that in the isolated chloroplast the synthesis of glutamate from α-ketoglutarate is regulated by the availability of reduced pyridine nucleotide generated by photosynthetic electron transport. This conclusion is supported by the finding of an apparent competition between the photoreduction of phosphoglycerate to triose phosphate and the photoutilization of α-ketoglutarate. PMID:16657357

  10. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    SciTech Connect

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  11. Programmed chloroplast destruction during leaf senescence involves 13-lipoxygenase (13-LOX)

    PubMed Central

    Springer, Armin; Kang, ChulHee; Rustgi, Sachin; von Wettstein, Diter; Reinbothe, Christiane; Pollmann, Stephan; Reinbothe, Steffen

    2016-01-01

    Leaf senescence is the terminal stage in the development of perennial plants. Massive physiological changes occur that lead to the shut down of photosynthesis and a cessation of growth. Leaf senescence involves the selective destruction of the chloroplast as the site of photosynthesis. Here, we show that 13-lipoxygenase (13-LOX) accomplishes a key role in the destruction of chloroplasts in senescing plants and propose a critical role of its NH2-terminal chloroplast transit peptide. The 13-LOX enzyme identified here accumulated in the plastid envelope and catalyzed the dioxygenation of unsaturated membrane fatty acids, leading to a selective destruction of the chloroplast and the release of stromal constituents. Because 13-LOX pathway products comprise compounds involved in insect deterrence and pathogen defense (volatile aldehydes and oxylipins), a mechanism of unmolested nitrogen and carbon relocation is suggested that occurs from leaves to seeds and roots during fall. PMID:26969728

  12. Reconstruction of Metabolic Pathways, Protein Expression, and Homeostasis Machineries across Maize Bundle Sheath and Mesophyll Chloroplasts: Large-Scale Quantitative Proteomics Using the First Maize Genome Assembly1[W][OA

    PubMed Central

    Friso, Giulia; Majeran, Wojciech; Huang, Mingshu; Sun, Qi; van Wijk, Klaas J.

    2010-01-01

    Chloroplasts in differentiated bundle sheath (BS) and mesophyll (M) cells of maize (Zea mays) leaves are specialized to accommodate C4 photosynthesis. This study provides a reconstruction of how metabolic pathways, protein expression, and homeostasis functions are quantitatively distributed across BS and M chloroplasts. This yielded new insights into cellular specialization. The experimental analysis was based on high-accuracy mass spectrometry, protein quantification by spectral counting, and the first maize genome assembly. A bioinformatics workflow was developed to deal with gene models, protein families, and gene duplications related to the polyploidy of maize; this avoided overidentification of proteins and resulted in more accurate protein quantification. A total of 1,105 proteins were assigned as potential chloroplast proteins, annotated for function, and quantified. Nearly complete coverage of primary carbon, starch, and tetrapyrole metabolism, as well as excellent coverage for fatty acid synthesis, isoprenoid, sulfur, nitrogen, and amino acid metabolism, was obtained. This showed, for example, quantitative and qualitative cell type-specific specialization in starch biosynthesis, arginine synthesis, nitrogen assimilation, and initial steps in sulfur assimilation. An extensive overview of BS and M chloroplast protein expression and homeostasis machineries (more than 200 proteins) demonstrated qualitative and quantitative differences between M and BS chloroplasts and BS-enhanced levels of the specialized chaperones ClpB3 and HSP90 that suggest active remodeling of the BS proteome. The reconstructed pathways are presented as detailed flow diagrams including annotation, relative protein abundance, and cell-specific expression pattern. Protein annotation and identification data, and projection of matched peptides on the protein models, are available online through the Plant Proteome Database. PMID:20089766

  13. Synthetic antisense oligodeoxynucleotides to transiently suppress different nucleus- and chloroplast-encoded proteins of higher plant chloroplasts.

    PubMed

    Dinç, Emine; Tóth, Szilvia Z; Schansker, Gert; Ayaydin, Ferhan; Kovács, László; Dudits, Dénes; Garab, Gyozo; Bottka, Sándor

    2011-12-01

    Selective inhibition of gene expression by antisense oligodeoxynucleotides (ODNs) is widely applied in gene function analyses; however, experiments with ODNs in plants are scarce. In this work, we extend the use of ODNs in different plant species, optimizing the uptake, stability, and efficiency of ODNs with a combination of molecular biological and biophysical techniques to transiently inhibit the gene expression of different chloroplast proteins. We targeted the nucleus-encoded phytoene desaturase (pds) gene, encoding a key enzyme in carotenoid biosynthesis, the chlorophyll a/b-binding (cab) protein genes, and the chloroplast-encoded psbA gene, encoding the D1 protein. For pds and psbA, the in vivo stability of ODNs was increased by phosphorothioate modifications. After infiltration of ODNs into juvenile tobacco (Nicotiana benthamiana) leaves, we detected a 25% to 35% reduction in mRNA level and an approximately 5% decrease in both carotenoid content and the variable fluorescence of photosystem II. In detached etiolated wheat (Triticum aestivum) leaves, after 8 h of greening, the mRNA level, carotenoid content, and variable fluorescence were inhibited up to 75%, 25%, and 20%, respectively. Regarding cab, ODN treatments of etiolated wheat leaves resulted in an up to 59% decrease in the amount of chlorophyll b, a 41% decrease of the maximum chlorophyll fluorescence intensity, the cab mRNA level was reduced to 66%, and the protein level was suppressed up to 85% compared with the control. The psbA mRNA and protein levels in Arabidopsis (Arabidopsis thaliana) leaves were inhibited by up to 85% and 72%, respectively. To exploit the potential of ODNs for photosynthetic genes, we propose molecular design combined with fast, noninvasive techniques to test their functional effects.

  14. Frataxin Is Localized to Both the Chloroplast and Mitochondrion and Is Involved in Chloroplast Fe-S Protein Function in Arabidopsis.

    PubMed

    Turowski, Valeria R; Aknin, Cindy; Maliandi, Maria V; Buchensky, Celeste; Leaden, Laura; Peralta, Diego A; Busi, Maria V; Araya, Alejandro; Gomez-Casati, Diego F

    2015-01-01

    Frataxin plays a key role in eukaryotic cellular iron metabolism, particularly in mitochondrial heme and iron-sulfur (Fe-S) cluster biosynthesis. However, its precise role has yet to be elucidated. In this work, we studied the subcellular localization of Arabidopsis frataxin, AtFH, using confocal microscopy, and found a novel dual localization for this protein. We demonstrate that plant frataxin is targeted to both the mitochondria and the chloroplast, where it may play a role in Fe-S cluster metabolism as suggested by functional studies on nitrite reductase (NIR) and ferredoxin (Fd), two Fe-S containing chloroplast proteins, in AtFH deficient plants. Our results indicate that frataxin deficiency alters the normal functioning of chloroplasts by affecting the levels of Fe, chlorophyll, and the photosynthetic electron transport chain in this organelle.

  15. Frataxin Is Localized to Both the Chloroplast and Mitochondrion and Is Involved in Chloroplast Fe-S Protein Function in Arabidopsis

    PubMed Central

    Turowski, Valeria R.; Aknin, Cindy; Maliandi, Maria V.; Buchensky, Celeste; Leaden, Laura; Peralta, Diego A.; Busi, Maria V.; Araya, Alejandro; Gomez-Casati, Diego F.

    2015-01-01

    Frataxin plays a key role in eukaryotic cellular iron metabolism, particularly in mitochondrial heme and iron-sulfur (Fe-S) cluster biosynthesis. However, its precise role has yet to be elucidated. In this work, we studied the subcellular localization of Arabidopsis frataxin, AtFH, using confocal microscopy, and found a novel dual localization for this protein. We demonstrate that plant frataxin is targeted to both the mitochondria and the chloroplast, where it may play a role in Fe-S cluster metabolism as suggested by functional studies on nitrite reductase (NIR) and ferredoxin (Fd), two Fe-S containing chloroplast proteins, in AtFH deficient plants. Our results indicate that frataxin deficiency alters the normal functioning of chloroplasts by affecting the levels of Fe, chlorophyll, and the photosynthetic electron transport chain in this organelle. PMID:26517126

  16. Structural relationship in chloroplast membranes. Final report, August 1, 1977-August 31, 1980

    SciTech Connect

    1980-09-01

    Methodology has been developed for the isolation and characterization of pigment-proteins from chloroplast membranes. Characterization of these pigment-proteins has increased our understanding of mechanisms regulating the efficiency of photosynthetic light harvesting during photosynthesis. Incorporation of isolated pigment-protein complexes into model membranes has allowed simulation of grana stacks; these structural features of chloroplasts play a key role in maintaining appropriate interactions among light-harvesting assembles to regulate photosynthetic solar energy conversion.

  17. Diversity in Biosynthetic Pathways of Galactolipids in the Light of Endosymbiotic Origin of Chloroplasts

    PubMed Central

    Sato, Naoki; Awai, Koichiro

    2016-01-01

    Cyanobacteria and chloroplasts perform oxygenic photosynthesis, and share a common origin. Galactolipids are present in the photosynthetic membranes of both cyanobacteria and chloroplasts, but the biosynthetic pathways of the galactolipids are significantly different in the two systems. In this minireview, we explain the history of the discovery of the cyanobacterial pathway, and present a probable scenario of the evolution of the two pathways. PMID:26904079

  18. The conserved endoribonuclease YbeY is required for chloroplast ribosomal RNA processing in Arabidopsis.

    PubMed

    Liu, Jinwen; Zhou, Wenbin; Liu, Guifeng; Yang, Chuanping; Sun, Yi; Wu, Wenjuan; Cao, Shenquan; Wang, Chong; Hai, Guanghui; Wang, Zhifeng; Bock, Ralph; Huang, Jirong; Cheng, Yuxiang

    2015-05-01

    Maturation of chloroplast ribosomal RNAs (rRNAs) comprises several endoribonucleolytic and exoribonucleolytic processing steps. However, little is known about the specific enzymes involved and the cleavage steps they catalyze. Here, we report the functional characterization of the single Arabidopsis (Arabidopsis thaliana) gene encoding a putative YbeY endoribonuclease. AtYbeY null mutants are seedling lethal, indicating that AtYbeY function is essential for plant growth. Knockdown plants display slow growth and show pale-green leaves. Physiological and ultrastructural analyses of atybeY mutants revealed impaired photosynthesis and defective chloroplast development. Fluorescent microcopy analysis showed that, when fused with the green fluorescence protein, AtYbeY is localized in chloroplasts. Immunoblot and RNA gel-blot assays revealed that the levels of chloroplast-encoded subunits of photosynthetic complexes are reduced in atybeY mutants, but the corresponding transcripts accumulate normally. In addition, atybeY mutants display defective maturation of both the 5' and 3' ends of 16S, 23S, and 4.5S rRNAs as well as decreased accumulation of mature transcripts from the transfer RNA genes contained in the chloroplast rRNA operon. Consequently, mutant plants show a severe deficiency in ribosome biogenesis, which, in turn, results in impaired plastid translational activity. Furthermore, biochemical assays show that recombinant AtYbeY is able to cleave chloroplast rRNAs as well as messenger RNAs and transfer RNAs in vitro. Taken together, our findings indicate that AtYbeY is a chloroplast-localized endoribonuclease that is required for chloroplast rRNA processing and thus for normal growth and development.

  19. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    PubMed

    Kwon, Kwang-Chul; Verma, Dheeraj; Jin, Shuangxia; Singh, Nameirakpam D; Daniell, Henry

    2013-01-01

    Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These results suggest a

  20. A Zinc Finger Motif-Containing Protein Is Essential for Chloroplast RNA Editing

    PubMed Central

    Sun, Tao; Shi, Xiaowen; Friso, Giulia; Van Wijk, Klaas; Bentolila, Stephane; Hanson, Maureen R.

    2015-01-01

    C-to-U editing of transcripts in plant organelles is carried out by small (<400 kD) protein complexes called editosomes. Recognition of the proper C target for editing is mediated by pentatricopeptide repeat (PPR) containing proteins that recognize cis-elements. Members of two additional gene families, the RIP/MORF and ORRM families, have each been found to be required for editing of particular sets of Cs in mitochondria and/or chloroplasts. By co-immunoprecipitation of the chloroplast editing factor ORRM1, followed by mass spectrometry, we have now identified a member of the RanBP2 type zinc fingers (pFAM00641) protein family that is required for editing of 14 sites in chloroplasts and affects editing efficiency of another 16 chloroplast C targets. In yeast two-hybrid assays, OZ1 (Organelle Zinc finger 1) interacts with PPR site recognition factors whose cognate sites are affected when OZ1 is mutated. No interaction of OZ1 with the chloroplast editing factors RIP2 and RIP9 was detected; however, OZ1 interacts with ORRM1, which binds to RIP proteins, allowing us to build a model for the chloroplast RNA editosome. The RNA editosomes that act upon most chloroplast C targets are likely to contain a PPR protein recognition factor, either RIP2 or RIP9, ORRM1, and OZ1. The organelle zinc finger editing factor family (OZ) contains 4 members in Arabidopsis, three that are predicted to be targeted to chloroplasts and one to mitochondria. With the identification of OZ1, there are now 4 nuclear-encoded protein families known to be essential for plant organelle RNA editing. PMID:25768119

  1. Time Gating of Chloroplast Autofluorescence Allows Clearer Fluorescence Imaging In Planta.

    PubMed

    Kodama, Yutaka

    2016-01-01

    Chloroplast, an organelle facilitating photosynthesis, exhibits strong autofluorescence, which is an undesired background signal that restricts imaging experiments with exogenous fluorophore in plants. In this study, the autofluorescence was characterized in planta under confocal laser microscopy, and it was found that the time-gated imaging technique completely eliminates the autofluorescence. As a demonstration of the technique, a clearer signal of fluorescent protein-tagged phototropin, a blue-light photoreceptor localized at the chloroplast periphery, was visualized in planta. PMID:27027881

  2. Time Gating of Chloroplast Autofluorescence Allows Clearer Fluorescence Imaging In Planta

    PubMed Central

    Kodama, Yutaka

    2016-01-01

    Chloroplast, an organelle facilitating photosynthesis, exhibits strong autofluorescence, which is an undesired background signal that restricts imaging experiments with exogenous fluorophore in plants. In this study, the autofluorescence was characterized in planta under confocal laser microscopy, and it was found that the time-gated imaging technique completely eliminates the autofluorescence. As a demonstration of the technique, a clearer signal of fluorescent protein-tagged phototropin, a blue-light photoreceptor localized at the chloroplast periphery, was visualized in planta. PMID:27027881

  3. Localization of the Enzymes of Quinolizidine Alkaloid Biosynthesis in Leaf Chloroplasts of Lupinus polyphyllus1

    PubMed Central

    Wink, Michael; Hartmann, Thomas

    1982-01-01

    Studies with purified chloroplasts of Lupinus polyphyllus LINDL. leaflets indicate that the first two enzymes of quinolizidine alkaloid biosynthesis, lysine decarboxylase and 17-oxosparteine synthase, are localized in the chloroplast stroma. Thus, both enzymes share the same subcellular compartment as the biosynthetic pathway of lysine, the precursor of quinolizidine alkaloids. The activity of diaminopimelate decarboxylase, the final enzyme in lysine biosynthesis, is about two to three orders of magnitude higher than that of the enzymes of alkaloid formation. PMID:16662483

  4. The Chloroplast Function Database II: a comprehensive collection of homozygous mutants and their phenotypic/genotypic traits for nuclear-encoded chloroplast proteins.

    PubMed

    Myouga, Fumiyoshi; Akiyama, Kenji; Tomonaga, Yumi; Kato, Aya; Sato, Yuka; Kobayashi, Megumi; Nagata, Noriko; Sakurai, Tetsuya; Shinozaki, Kazuo

    2013-02-01

    The Chloroplast Function Database has so far offered phenotype information on mutants of the nuclear-encoded chloroplast proteins in Arabidopsis that pertains to >200 phenotypic data sets that were obtained from 1,722 transposon- or T-DNA-tagged lines. Here, we present the development of the second version of the database, which is named the Chloroplast Function Database II and was redesigned to increase the number of mutant characters and new user-friendly tools for data mining and integration. The upgraded database offers information on genome-wide mutant screens for any visible phenotype against 2,495 tagged lines to create a comprehensive homozygous mutant collection. The collection consists of 147 lines with seedling phenotypes and 185 lines for which we could not obtain homozygotes, as well as 1,740 homozygotes with wild-type phenotypes. Besides providing basic information about primer lists that were used for the PCR genotyping of T-DNA-tagged lines and explanations about the preparation of homozygous mutants and phenotype screening, the database includes access to a link between the gene locus and existing publicly available databases. This gives users access to a combined pool of data, enabling them to gain valuable insights into biological processes. In addition, high-resolution images of plastid morphologies of mutants with seedling-specific chloroplast defects as observed with transmission electron microscopy (TEM) are available in the current database. This database is used to compare the phenotypes of visually identifiable mutants with their plastid ultrastructures and to evaluate their potential significance from characteristic patterns of plastid morphology in vivo. Thus, the Chloroplast Function Database II is a useful and comprehensive information resource that can help researchers to connect individual Arabidopsis genes to plastid functions on the basis of phenotype analysis of our tagged mutant collection. It can be freely accessed at http://rarge.psc.riken.jp/chloroplast/.

  5. Chloroplast Activity and 3'phosphadenosine 5'phosphate Signaling Regulate Programmed Cell Death in Arabidopsis.

    PubMed

    Bruggeman, Quentin; Mazubert, Christelle; Prunier, Florence; Lugan, Raphaël; Chan, Kai Xun; Phua, Su Yin; Pogson, Barry James; Krieger-Liszkay, Anja; Delarue, Marianne; Benhamed, Moussa; Bergounioux, Catherine; Raynaud, Cécile

    2016-03-01

    Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3'-phosphoadenosine 5'-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5'-3' exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response. PMID:26747283

  6. Blue-light-induced rapid chloroplast de-anchoring in Vallisneria epidermal cells.

    PubMed

    Sakai, Yuuki; Inoue, Shin-ichiro; Harada, Akiko; Shimazaki, Ken-Ichiro; Takagi, Shingo

    2015-01-01

    In the outer periclinal cytoplasm of leaf epidermal cells of an aquatic angiosperm Vallisneria, blue light induces "chloroplast de-anchoring", a rapid decline in the resistance of chloroplasts against centrifugal force. Chloroplast de-anchoring is known induced within 1 min of irradiation with high-fluence-rate blue light specifically, preceding the commencement of chloroplasts migration toward the anticlinal cytoplasm. However, its regulatory mechanism has remained elusive, although pharmacological analysis suggested that a calcium release from intracellular calcium stores is necessary for the response. In search of the responsible photoreceptors, immunoblotting analysis using antibodies against phototropins demonstrated that cross-reactive polypeptides of 120-kDa exist in the plasma-membrane fraction prepared from the leaves. In vitro phosphorylation analysis revealed that 120-kDa polypeptides were phosphorylated by exposure to blue light in a fluence-dependent manner. The blue-light-induced phosphorylation activity was sensitive to a Ser/Thr kinase inhibitor, staurosporine, and unusually was retained at a high level for a long time in darkness. Furthermore, phototropin gene homologs (Vallisneria PHOTOTROPIN1 and PHOTOTROPIN2) expressed in leaves were isolated. We propose that calcium-regulated chloroplast de-anchoring, possibly mediated by phototropins, is an initial process of the blue-light-induced avoidance response of chloroplasts in Vallisneria.

  7. Ribonuclease J is required for chloroplast and embryo development in Arabidopsis

    PubMed Central

    Chen, Hongyu; Zou, Wenxuan; Zhao, Jie

    2015-01-01

    Chloroplasts perform many essential metabolic functions and their proper development is critically important in embryogenesis. However, little is known about how chloroplasts function in embryogenesis and more relevant components need to be characterized. In this study, we show that Arabidopsis Ribonuclease J (RNase J) is required for chloroplast and embryo development. Mutation of AtRNJ led to albino ovules containing aborted embryos; the morphological development of rnj embryos was disturbed after the globular stage. Observation of ultrastructures indicated that these aborted embryos may result from impaired chloroplast development. Furthermore, by analyzing the molecular markers of cell fate decisions (STM, FIL, ML1, SCR, and WOX5) in rnj embryos, we found that this impairment of chloroplast development may lead to aberrant embryo patterning along the apical-basal axis, indicating that AtRNJ is important in initiating and maintaining the organization of shoot apical meristems (SAMs), cotyledons, and hypocotyls. Moreover, the transport and response of auxin in rnj embryos was found to be disrupted, suggesting that AtRNJ may be involved in auxin-mediated pathways during embryogenesis. Therefore, we speculate that RNJ plays a vital role in embryo morphogenesis and apical-basal pattern formation by regulating chloroplast development. PMID:25871650

  8. Blue-light-induced rapid chloroplast de-anchoring in Vallisneria epidermal cells.

    PubMed

    Sakai, Yuuki; Inoue, Shin-ichiro; Harada, Akiko; Shimazaki, Ken-Ichiro; Takagi, Shingo

    2015-01-01

    In the outer periclinal cytoplasm of leaf epidermal cells of an aquatic angiosperm Vallisneria, blue light induces "chloroplast de-anchoring", a rapid decline in the resistance of chloroplasts against centrifugal force. Chloroplast de-anchoring is known induced within 1 min of irradiation with high-fluence-rate blue light specifically, preceding the commencement of chloroplasts migration toward the anticlinal cytoplasm. However, its regulatory mechanism has remained elusive, although pharmacological analysis suggested that a calcium release from intracellular calcium stores is necessary for the response. In search of the responsible photoreceptors, immunoblotting analysis using antibodies against phototropins demonstrated that cross-reactive polypeptides of 120-kDa exist in the plasma-membrane fraction prepared from the leaves. In vitro phosphorylation analysis revealed that 120-kDa polypeptides were phosphorylated by exposure to blue light in a fluence-dependent manner. The blue-light-induced phosphorylation activity was sensitive to a Ser/Thr kinase inhibitor, staurosporine, and unusually was retained at a high level for a long time in darkness. Furthermore, phototropin gene homologs (Vallisneria PHOTOTROPIN1 and PHOTOTROPIN2) expressed in leaves were isolated. We propose that calcium-regulated chloroplast de-anchoring, possibly mediated by phototropins, is an initial process of the blue-light-induced avoidance response of chloroplasts in Vallisneria. PMID:25231366

  9. The DCL gene of tomato is required for chloroplast development and palisade cell morphogenesis in leaves.

    PubMed

    Keddie, J S; Carroll, B; Jones, J D; Gruissem, W

    1996-08-15

    The defective chloroplasts and leaves-mutable (dcl-m) mutation of tomato was identified in a Ds mutagenesis screen. This unstable mutation affects both chloroplast development and palisade cell morphogenesis in leaves. Mutant plants are clonally variegated as a result of somatic excision of Ds and have albino leaves with green sectors. Leaf midribs and stems are light green with sectors of dark green tissue but fruit and petals are wild-type in appearance. Within dark green sectors of dcl-m leaves, palisade cells are normal, whereas in albino areas of dcl-m leaves, palisade cells do not expand to become their characteristic columnar shape. The development of chloroplasts from proplastids in albino areas is apparently blocked at an early stage. DCL was cloned using Ds as a tag and encodes a novel protein of approximately 25 kDa, containing a chloroplast transit peptide and an acidic alpha-helical region. DCL protein was imported into chloroplasts in vitro and processed to a mature form. Because of the ubiquitous expression of DCL and the proplastid-like appearance of dcl-affected plastids, the DCL protein may regulate a basic and universal function of the plastid. The novel dcl-m phenotype suggests that chloroplast development is required for correct palisade cell morphogenesis during leaf development.

  10. The cleavable pre-sequence of an imported chloroplast protein directs attached polypeptides into yeast mitochondria

    PubMed Central

    Hurt, Eduard C.; Soltanifar, Nouchine; Goldschmidt-Clermont, Michel; Rochaix, Jean-David; Schatz, Gottfried

    1986-01-01

    The cleavable pre-sequences of imported chloroplast and mitochondrial proteins have several features in common. This structural similarity prompted us to test whether a chloroplast pre-sequence (`transit peptide') can also be decoded by the mitochondrial import machinery. In the green alga, Chlamydomonas reinhardtii, the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (a chloroplast protein) is nuclear-encoded and synthesized in the cytosol with a transient pre-sequence of 45 residues. The 31 amino-terminal residues of this chloroplast pre-sequence were fused to mouse dihydrofolate reductase (a cytosolic protein) and to yeast cytochrome oxidase subunit IV (an imported mitochondrial protein) from which the authentic pre-sequence had been removed. The chloroplast pre-sequence transported both attached proteins into the yeast mitochondrial matrix or inner membrane, although it functioned less efficiently than an authentic mitochondrial pre-sequence. We conclude that mitochondrial and chloroplast pre-sequences perform their function by a similar mechanism. ImagesFig. 3.Fig. 4.Fig. 5.Fig. 6. PMID:16453686

  11. Tic21 Is an Essential Translocon Component for Protein Translocation across the Chloroplast Inner Envelope Membrane

    PubMed Central

    Teng, Yi-Shan; Su, Yi-shin; Chen, Lih-Jen; Lee, Yong Jik; Hwang, Inhwan; Li, Hsou-min

    2006-01-01

    An Arabidopsis thaliana mutant defective in chloroplast protein import was isolated and the mutant locus, cia5, identified by map-based cloning. CIA5 is a 21-kD integral membrane protein in the chloroplast inner envelope membrane with four predicted transmembrane domains, similar to another potential chloroplast inner membrane protein-conducting channel, At Tic20, and the mitochondrial inner membrane counterparts Tim17, Tim22, and Tim23. cia5 null mutants were albino and accumulated unprocessed precursor proteins. cia5 mutant chloroplasts were normal in targeting and binding of precursors to the chloroplast surface but were defective in protein translocation across the inner envelope membrane. Expression levels of CIA5 were comparable to those of major translocon components, such as At Tic110 and At Toc75, except during germination, at which stage At Tic20 was expressed at its highest level. A double mutant of cia5 At tic20-I had the same phenotype as the At tic20-I single mutant, suggesting that CIA5 and At Tic20 function similarly in chloroplast biogenesis, with At Tic20 functioning earlier in development. We renamed CIA5 as Arabidopsis Tic21 (At Tic21) and propose that it functions as part of the inner membrane protein-conducting channel and may be more important for later stages of leaf development. PMID:16891400

  12. Influences of nano-TiO2 on the chloroplast aging of spinach under light.

    PubMed

    Hong, Fashui; Yang, Fan; Liu, Chao; Gao, Qing; Wan, Zhigang; Gu, Fugen; Wu, Cheng; Ma, Zhenni; Zhou, Juan; Yang, Ping

    2005-06-01

    The effects of nano-TiO2 (rutile) on the chloroplast aging of spinach under light were studied. The results showed that when the chloroplasts were illuminated for 1, 5, and 10 min with 500 micromol/cm2/min light intensity, respectively, the evolution oxygen rate was rapidly increased; when the chloroplasts were treated for 20, 30, and 40 min with 500 micromol/cm2/min light intensity, respectively, the evolution oxygen rate was gradually decreased. While spinach was treated with 0.25% nano-TiO2, the rate of evolution oxygen of chloroplasts in different illumination times (1, 5, 10, 20, 30, and 40 min) was higher than that of control, and when the illumination time was over 10 min, the reduction of the evolution oxygen rate was lower than that of control. It suggested that nano-TiO2 treatment could protect chloroplasts from aging for long-time illumination. The mechanism researches indicated that nano-TiO2 treatment could significantly increase the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), decrease accumulation of reactive oxygen free radicals and the level of malondialdehyde (MDA), and maintain stability of membrane structure of chloroplast under light.

  13. Chloroplasts play a central role in plant defence and are targeted by pathogen effectors.

    PubMed

    de Torres Zabala, Marta; Littlejohn, George; Jayaraman, Siddharth; Studholme, David; Bailey, Trevor; Lawson, Tracy; Tillich, Michael; Licht, Dirk; Bölter, Bettina; Delfino, Laura; Truman, William; Mansfield, John; Smirnoff, Nicholas; Grant, Murray

    2015-01-01

    Microbe associated molecular pattern (MAMP) receptors in plants recognize MAMPs and activate basal defences; however a complete understanding of the molecular and physiological mechanisms conferring immunity remains elusive. Pathogens suppress active defence in plants through the combined action of effector proteins. Here we show that the chloroplast is a key component of early immune responses. MAMP perception triggers the rapid, large-scale suppression of nuclear encoded chloroplast-targeted genes (NECGs). Virulent Pseudomonas syringae effectors reprogramme NECG expression in Arabidopsis, target the chloroplast and inhibit photosynthetic CO2 assimilation through disruption of photosystem II. This activity prevents a chloroplastic reactive oxygen burst. These physiological changes precede bacterial multiplication and coincide with pathogen-induced abscisic acid (ABA) accumulation. MAMP pretreatment protects chloroplasts from effector manipulation, whereas application of ABA or the inhibitor of photosynthetic electron transport, DCMU, abolishes the MAMP-induced chloroplastic reactive oxygen burst, and enhances growth of a P. syringae hrpA mutant that fails to secrete effectors. PMID:27250009

  14. Rapid Mass Movement of Chloroplasts during Segment Formation of the Calcifying Siphonalean Green Alga, Halimeda macroloba

    PubMed Central

    Larkum, Anthony W. D.; Salih, Anya; Kühl, Michael

    2011-01-01

    Background The calcifying siphonalean green alga, Halimeda macroloba is abundant on coral reefs and is important in the production of calcium carbonate sediments. The process by which new green segments are formed over-night is revealed here for the first time. Methodology/Principal Findings Growth of new segments was visualised by epifluorescence and confocal microscopy and by pulse amplitude modulation (PAM) fluorimetry. Apical colourless proto-segments were initiated on day 1, and formed a loose network of non-calcified, non-septate filaments, containing no chloroplasts. Rapid greening was initiated at dusk by i) the mass movement of chloroplasts into these filaments from the parent segment and ii) the growth of new filaments containing chloroplasts. Greening was usually complete in 3–5 h and certainly before dawn on day 2 when the first signs of calcification were apparent. Mass chloroplast movement took place at a rate of ∼0.65 µm/s. Photosynthetic yield and rate remained low for a period of 1 to several hours, indicating that the chloroplasts were made de novo. Use of the inhibitors colchicine and cytochalasin d indicated that the movement process is dependent on both microtubules and microfilaments. Significance This unusual process involves the mass movement of chloroplasts at a high rate into new segments during the night and rapid calcification on the following day and may be an adaptation to minimise the impact of herbivorous activity. PMID:21750703

  15. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts.

    PubMed Central

    Van Camp, W; Capiau, K; Van Montagu, M; Inzé, D; Slooten, L

    1996-01-01

    A chimeric gene consisting of the coding sequence for chloroplastic Fe superoxide dismutase (FeSOD) from Arabidopsis thaliana, coupled to the chloroplast targeting sequence from the pea ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit, was expressed in Nicotiana tabacum cv Petit Havana SR1. Expression of the transgenic FeSOD protected both the plasmalemma and photosystem II against superoxide generated during illumination of leaf discs impregnated with methyl viologen. By contrast, overproduction of a mitochondrial MnSOD from Nicotiana plumbaginifolia in the chloroplasts of cv SR1 protected only the plasmalemma, but not photosystem II, against methyl viologen (L. Slooten, K. Capiau, W. Van Camp, M. Van Montagu, C. Sybesma, D. Inzé [1995] Plant Physiol 107: 737-750). The difference in effectiveness correlates with different membrane affinities of the transgenic FeSOD and MnSOD. Overproduction of FeSOD does not confer tolerance to H2O2, singlet oxygen, chilling-induced photoinhibition in leaf disc assays, or to salt stress at the whole plant level. In nontransgenic plants, salt stress led to a 2- to 3-fold increase in activity, on a protein basis, of FeSOD, cytosolic and chloroplastic Cu/ZnSOD, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. In FeSOD-overproducing plants under salt stress, the induction of cytosolic and chloroplastic Cu/ZnSOD was suppressed, whereas induction of a water-soluble chloroplastic ascorbate peroxidase isozyme was promoted. PMID:8972606

  16. SOME PROPERTIES OF PROTOPLASMIC GELS : I. TENSION IN THE CHLOROPLAST OF SPIROGYRA.

    PubMed

    Osterhout, W J

    1946-01-20

    The chloroplast of Spirogyra is a long, spirally coiled ribbon which may contract to form a short, nearly straight rod. This happens under natural conditions and it can also be produced by a variety of inorganic salts and by some organic substances. It also occurs when the chloroplast is freed by centrifugal force from the clear peripheral protoplasm which is in contact with the cellulose wall. It would therefore seem that the chloroplast may be passively stretched by the action of the clear protoplasm and hence it contracts as soon as it is set free. This contraction happens in dead as well as in living cells. It would be of much interest to know how the protoplasm brings about the coiling of the chloroplast and how the chloroplast is set free by various reagents. Presumably they must penetrate the living protoplasm to produce the effects described. In one species partial contraction without detachment from the peripheral protoplasm can be brought about by lead acetate. This is reversible. Lead nitrate does not produce this result. The attack upon the problem is greatly facilitated by the study of dead cells. Thereby we reduce the number of variables but the chloroplast continues to react to certain chemical and physical agents in much the same manner as in the living cell and the solution surrounding it can be controlled as is not possible in the living cell. We must await further investigation to learn what plant and animal cells contain gels under tension and what functions they perform.

  17. Binding of 16S rRNA to chloroplast 30S ribosomal proteins blotted on nitrocellulose.

    PubMed

    Rozier, C; Mache, R

    1984-10-11

    Protein-RNA associations were studied by a method using proteins blotted on a nitrocellulose sheet. This method was assayed with Escherichia Coli 30S ribosomal components. In stringent conditions (300 mM NaCl or 20 degrees C) only 9 E. coli ribosomal proteins strongly bound to the 16S rRNA: S4, S5, S7, S9, S12, S13, S14, S19, S20. 8 of these proteins have been previously found to bind independently to the 16S rRNA. The same method was applied to determine protein-RNA interactions in spinach chloroplast 30S ribosomal subunits. A set of only 7 proteins was bound to chloroplast rRNA in stringent conditions: chloroplast S6, S10, S11, S14, S15, S17 and S22. They also bound to E. coli 16S rRNA. This set includes 4 chloroplast-synthesized proteins: S6, S11, S15 and S22. The core particles obtained after treatment by LiCl of chloroplast 30S ribosomal subunit contained 3 proteins (S6, S10 and S14) which are included in the set of 7 binding proteins. This set of proteins probably play a part in the early steps of the assembly of the chloroplast 30S ribosomal subunit.

  18. Photosynthesis and Ribulose 1,5-Bisphosphate Levels in Intact Chloroplasts 1

    PubMed Central

    Sicher, Richard C.; Jensen, Richard G.

    1979-01-01

    The response of ribulose 1,5-bisphosphate levels and CO2 fixation rates in isolated, intact spinach chloroplasts to pyrophosphate, triose phosphates, dl-glyceraldehyde, O2, catalase, and irradiance during photosynthesis has been studied. Within 1 minute in the light, a rapid accumulation of ribulose bisphosphate was measured in most preparations of intact chloroplasts, and this subsequently dropped as CO2 fixation increased. Pyrophosphate, triose phosphates, and catalase increased CO2 fixation and also the levels of ribulose bisphosphate. CO2 fixation was inhibited by dl-glyceraldehyde and O2 with corresponding decreases in ribulose bisphosphate. When the rate of photosynthesis decreased at limiting irradiances (low light), the level of ribulose bisphosphate in the chloroplast did not always decrease, suggesting that ribulose bisphosphate was not limiting CO2 fixation under these conditions. When triose phosphates (fructose bisphosphate plus aldolase) were added to suspensions of chloroplasts at low irradiances, ribulose bisphosphate increased while CO2 fixation decreased. These observations provide considerable evidence that high ribulose bisphosphate levels clearly are not solely sufficient to permit rapid rates of CO2 fixation, but that factors other than ribulose bisphosphate concentration are overriding the control of photosynthesis. Isolated chloroplasts are capable of using carbon reserves to produce considerable ribulose bisphosphate. Upon illumination in the absence of CO2 and O2, intact chloroplasts produced up to 13 millimolar ribulose bisphosphate. PMID:16661074

  19. RECA plays a dual role in the maintenance of chloroplast genome stability in Physcomitrella patens.

    PubMed

    Odahara, Masaki; Inouye, Takayuki; Nishimura, Yoshiki; Sekine, Yasuhiko

    2015-11-01

    Chloroplast DNA (cpDNA) encodes essential genes for chloroplast functions, including photosynthesis. Homologous recombination occurs frequently in cpDNA; however, its significance and underlying mechanism remain poorly understood. In this study, we analyzed the role of a nuclear-encoded chloroplast-localized homolog of RecA recombinase, which is a key factor in homologous recombination in bacteria, in the moss Physcomitrella patens. Complete knockout (KO) of the P. patens chloroplast RecA homolog RECA2 caused a modest growth defect and conferred sensitivity to methyl methanesulfonate and UV. The KO mutant exhibited low recovery of cpDNA from methyl methanesulfonate damage, suggesting that RECA2 knockout impairs repair of damaged cpDNA. The RECA2 KO mutant also exhibited reduced cpDNA copy number and an elevated level of cpDNA molecule resulting from aberrant recombination between short dispersed repeats (13-63 bp), indicating that the RECA2 KO chloroplast genome was destabilized. Taken together, these data suggest a dual role for RECA2 in the maintenance of chloroplast genome stability: RECA2 suppresses aberrant recombination between short dispersed repeats and promotes repair of damaged DNA.

  20. Synthesis and Turnover of Proteins in Proplastids and Chloroplasts of Euglena gracilis.

    PubMed

    Cushman, J C; Price, C A

    1986-12-01

    Intact chloroplasts isolated from Euglena gracilis exhibit high rates of light-driven protein synthesis, whereas protein synthesis by isolated proplastids is absolutely dependent upon the addition of an exogenous energy source in the form of equimolar ATP and Mg(2+). ATP and Mg(2+) also stimulate translation by chloroplasts. The greatly increased rates of protein synthesis obtained by supplementing proplastids with ATP and Mg(2+) have allowed the first clear characterization of proplastid translation products. Two-dimensional polyacrylamide gel electrophoretic analysis of proteins synthesized in organello shows that, while many translation products are common to both plastid types, most are unique to either the proplastid or the chloroplast. Pulse-chase experiments using both proplastids and chloroplasts indicate similar rates of turnover of newly synthesized proteins in both types of plastids. Thus, the differences seen between proplastid and chloroplast translation products are apparently not due to turnover. Immunoprecipitation of large subunit of ribulose-1,5-bisphosphate carboxylase (LS) from pulse-chase experiments indicates that LS is made in both proplastids and in chloroplasts and that the rate of LS turnover is similar in both types of plastids.

  1. Effects of Abscisic Acid Treatment on the Thermostability of the Photosynthetic Apparatus in Barley Chloroplasts 1

    PubMed Central

    Ivanov, Alexander G.; Kitcheva, Maia I.; Christov, Alexander M.; Popova, Losanka P.

    1992-01-01

    Thermostability of the photosynthetic apparatus of abscisic acid (ABA)-treated seedlings of barley (Hordeum vulgare) was studied by light-scattering and by fluorescence measurements of isolated chloroplasts. ABA treatment markedly decreased heat damage of the chloroplast ultrastructure; an exogenous ABA concentration of 10−5 molar was most effective. Heat-induced increase of the 77 kilodalton fluorescence ratio F740/F685 was also smaller at this ABA concentration. The heat-induced increase of the initial chlorophyll fluorescence level (Fo) was virtually eliminated in ABA-treated (10−5 molar) chloroplasts up to 45°C and slightly increased at 50°C, relative to control chloroplasts where Fo increased even at 35°C and reached its maximal value at 45°C. In control chloroplasts, Fo increased with a 5-minute pretreatment temperature, an effect observed as low as 35°C. Fo was maximal at 45°C. In contrast, chloroplasts treated with 10−5 molar ABA did not exhibit a heat-induced increase in Fo until 50°C. PMID:16668780

  2. Comparison of genetic diversity estimates within and among populations of maritime pine using chloroplast simple-sequence repeat and amplified fragment length polymorphism data.

    PubMed

    Ribeiro, M M; Mariette, S; Vendramin, G G; Szmidt, A E; Plomion, C; Kremer, A

    2002-05-01

    We compared the genetic variation of Pinus pinaster populations using amplified fragment length polymorphism (AFLP) and chloroplast simple-sequence repeat (cpSSR) loci. Populations' levels of diversity within groups were found to be similar with AFLPs, but not with cpSSRs. The high interlocus variance associated with the AFLP loci could account for the lack of differences in the former. Although AFLPs revealed much lower genetic diversity than cpSSRs, the levels of among-population differentiation found with the two types of marker were similar, provided that loci showing fewer than four null-homozygotes, in any population, were pruned from the AFLP data. Moreover, the French and Portuguese populations were clearly differentiated from each other, with both markers. The Mantel test showed that the genetic distance matrix calculated using the AFLP data was correlated with the matrix derived from the cpSSRs. Because of the concordance found between markers we conclude that gene flow was indeed the predominant force shaping nuclear and chloroplastic genetic variation of the populations within regions, at the geographical scale studied. PMID:11975703

  3. Inferring Phylogenetic Relationships of Indian Citron (Citrus medica L.) based on rbcL and matK Sequences of Chloroplast DNA.

    PubMed

    Uchoi, Ajit; Malik, Surendra Kumar; Choudhary, Ravish; Kumar, Susheel; Rohini, M R; Pal, Digvender; Ercisli, Sezai; Chaudhury, Rekha

    2016-06-01

    Phylogenetic relationships of Indian Citron (Citrus medica L.) with other important Citrus species have been inferred through sequence analyses of rbcL and matK gene region of chloroplast DNA. The study was based on 23 accessions of Citrus genotypes representing 15 taxa of Indian Citrus, collected from wild, semi-wild, and domesticated stocks. The phylogeny was inferred using the maximum parsimony (MP) and neighbor-joining (NJ) methods. Both MP and NJ trees separated all the 23 accessions of Citrus into five distinct clusters. The chloroplast DNA (cpDNA) analysis based on rbcL and matK sequence data carried out in Indian taxa of Citrus was useful in differentiating all the true species and species/varieties of probable hybrid origin in distinct clusters or groups. Sequence analysis based on rbcL and matK gene provided unambiguous identification and disposition of true species like C. maxima, C. medica, C. reticulata, and related hybrids/cultivars. The separation of C. maxima, C. medica, and C. reticulata in distinct clusters or sub-clusters supports their distinctiveness as the basic species of edible Citrus. However, the cpDNA sequence analysis of rbcL and matK gene could not find any clear cut differentiation between subgenera Citrus and Papeda as proposed in Swingle's system of classification. PMID:26956119

  4. [Fluorescence used to investigate the sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation].

    PubMed

    Xi, Gang; Yang, Yun-Jing; Lu, Hong

    2009-07-01

    A system for studying biological effect of radio frequency electromagnetic field was developed. The system can form an area where electromagnetic wave with large frequency range is well distributed. The strength of electromagnetic wave was measured easily. Electromagnetic wave in the system did not have effect on environment. The sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation of 300 MHz under power density of 5 mW x cm(-2) was studied by the spectral analysis method of fluorescence of 8-anilino-1-naphthalene-sulfonic acid (ANS) and the changes in chlorophyll a (Chla) fluorescence parameters of spinach chloroplast membrane. The result showed that the position of spectrum of ANS fluorescence of spinach chloroplast membrane did not change, but the intensity of ANS fluorescence was obviously increased under the action of electromagnetic radiation with power density of 1-5 mW x cm(-2). There was an increase in the intensity of ANS fluorescence with the increase in electromagnetic radiation. The increase of ANS fluorescence of spinach chloroplast membrane showed that low level electromagnetic field induced the decrease in fluidity of chloroplast membrane compared with control experiment. The cause of the change in the fluidity could be related to the polarization of chloroplast membrane under the electromagnetic field. The analysis of Chla fluorescence parameters of spinach chloroplast membrane indicated that low level electromagnetic field of 300 MHz made the fluorescence parameters F0 and F(VI/)F(V) decrease, and F(V)/Fo, Fv/F(m) and deltaF(V)/T increase. It was showed that low level electromagnetic field caused the change of non-active center of photosystem II of spinach chloroplast membrane to active center and the increase in potential active and photochemical efficiency of PSII, and promoted the transmit process of electron in photosynthesis of chloroplast membrane of photosynthesis cell in spinach leaf. The study confirmed

  5. Habitat Loss other than Fragmentation per se Decreased Nuclear and Chloroplast Genetic Diversity in a Monoecious Tree

    PubMed Central

    Shen, Dong-Wei; Chen, Xiao-Yong

    2012-01-01

    Generally, effect of fragmentation per se on biodiversity has not been separated from the effect of habitat loss. In this paper, using nDNA and cpDNA SSRs, we studied genetic diversity of Castanopsis sclerophylla (Lindl. & Paxton) Schotty populations and decoupled the effects of habitat loss and fragmentation per se. We selected seven nuclear and six cpDNA microsatellite loci and genotyped 460 individuals from mainland and island populations, which were located in the impoundment created in 1959. Number of alleles per locus of populations in larger habitats was significantly higher than that in smaller habitats. There was a significant relationship between the number of alleles per locus and habitat size. Based on this relationship, the predicted genetic diversity of an imaginary population of size equaling the total area of the islands was lower than that of the global population on the islands. Re-sampling demonstrated that low genetic diversity of populations in small habitats was caused by unevenness in sample size. Fisher's α index was similar among habitat types. These results indicate that the decreased nuclear and chloroplast genetic diversity of populations in smaller habitats was mainly caused by habitat loss. For nuclear and chloroplast microsatellite loci, values of FST were 0.066 and 0.893, respectively, and the calculated pollen/seed dispersal ratio was 162.2. When separated into pre-and post-fragmentation cohorts, pollen/seed ratios were 121.2 and 189.5, respectively. Our results suggest that habitat loss explains the early decrease in genetic diversity, while fragmentation per se may play a major role in inbreeding and differentiation among fragmented populations and later loss of genetic diversity. PMID:22723951

  6. Habitat loss other than fragmentation per se decreased nuclear and chloroplast genetic diversity in a monoecious tree.

    PubMed

    Zhang, Xin; Shi, Miao-Miao; Shen, Dong-Wei; Chen, Xiao-Yong

    2012-01-01

    Generally, effect of fragmentation per se on biodiversity has not been separated from the effect of habitat loss. In this paper, using nDNA and cpDNA SSRs, we studied genetic diversity of Castanopsis sclerophylla (Lindl. & Paxton) Schotty populations and decoupled the effects of habitat loss and fragmentation per se. We selected seven nuclear and six cpDNA microsatellite loci and genotyped 460 individuals from mainland and island populations, which were located in the impoundment created in 1959. Number of alleles per locus of populations in larger habitats was significantly higher than that in smaller habitats. There was a significant relationship between the number of alleles per locus and habitat size. Based on this relationship, the predicted genetic diversity of an imaginary population of size equaling the total area of the islands was lower than that of the global population on the islands. Re-sampling demonstrated that low genetic diversity of populations in small habitats was caused by unevenness in sample size. Fisher's α index was similar among habitat types. These results indicate that the decreased nuclear and chloroplast genetic diversity of populations in smaller habitats was mainly caused by habitat loss. For nuclear and chloroplast microsatellite loci, values of F(ST) were 0.066 and 0.893, respectively, and the calculated pollen/seed dispersal ratio was 162.2. When separated into pre-and post-fragmentation cohorts, pollen/seed ratios were 121.2 and 189.5, respectively. Our results suggest that habitat loss explains the early decrease in genetic diversity, while fragmentation per se may play a major role in inbreeding and differentiation among fragmented populations and later loss of genetic diversity. PMID:22723951

  7. Habitat loss other than fragmentation per se decreased nuclear and chloroplast genetic diversity in a monoecious tree.

    PubMed

    Zhang, Xin; Shi, Miao-Miao; Shen, Dong-Wei; Chen, Xiao-Yong

    2012-01-01

    Generally, effect of fragmentation per se on biodiversity has not been separated from the effect of habitat loss. In this paper, using nDNA and cpDNA SSRs, we studied genetic diversity of Castanopsis sclerophylla (Lindl. & Paxton) Schotty populations and decoupled the effects of habitat loss and fragmentation per se. We selected seven nuclear and six cpDNA microsatellite loci and genotyped 460 individuals from mainland and island populations, which were located in the impoundment created in 1959. Number of alleles per locus of populations in larger habitats was significantly higher than that in smaller habitats. There was a significant relationship between the number of alleles per locus and habitat size. Based on this relationship, the predicted genetic diversity of an imaginary population of size equaling the total area of the islands was lower than that of the global population on the islands. Re-sampling demonstrated that low genetic diversity of populations in small habitats was caused by unevenness in sample size. Fisher's α index was similar among habitat types. These results indicate that the decreased nuclear and chloroplast genetic diversity of populations in smaller habitats was mainly caused by habitat loss. For nuclear and chloroplast microsatellite loci, values of F(ST) were 0.066 and 0.893, respectively, and the calculated pollen/seed dispersal ratio was 162.2. When separated into pre-and post-fragmentation cohorts, pollen/seed ratios were 121.2 and 189.5, respectively. Our results suggest that habitat loss explains the early decrease in genetic diversity, while fragmentation per se may play a major role in inbreeding and differentiation among fragmented populations and later loss of genetic diversity.

  8. Genetic interactions reveal that specific defects of chloroplast translation are associated with the suppression of var2-mediated leaf variegation.

    PubMed

    Liu, Xiayan; Zheng, Mengdi; Wang, Rui; Wang, Ruijuan; An, Lijun; Rodermel, Steve R; Yu, Fei

    2013-10-01

    Arabidopsis thaliana L. yellow variegated (var2) mutant is defective in a chloroplast FtsH family metalloprotease, AtFtsH2/VAR2, and displays an intriguing green and white leaf variegation. This unique var2-mediated leaf variegation offers a simple yet powerful tool for dissecting the genetic regulation of chloroplast development. Here, we report the isolation and characterization of a new var2 suppressor gene, SUPPRESSOR OF VARIEGATION8 (SVR8), which encodes a putative chloroplast ribosomal large subunit protein, L24. Mutations in SVR8 suppress var2 leaf variegation at ambient temperature and partially suppress the cold-induced chlorosis phenotype of var2. Loss of SVR8 causes unique chloroplast rRNA processing defects, particularly the 23S-4.5S dicistronic precursor. The recovery of the major abnormal processing site in svr8 23S-4.5S precursor indicate that it does not lie in the same position where SVR8/L24 binds on the ribosome. Surprisingly, we found that the loss of a chloroplast ribosomal small subunit protein, S21, results in aberrant chloroplast rRNA processing but not suppression of var2 variegation. These findings suggest that the disruption of specific aspects of chloroplast translation, rather than a general impairment in chloroplast translation, suppress var2 variegation and the existence of complex genetic interactions in chloroplast development. PMID:23721655

  9. Mesophyll cells of C4 plants have fewer chloroplasts than those of closely related C3 plants.

    PubMed

    Stata, Matt; Sage, Tammy L; Rennie, Troy D; Khoshravesh, Roxana; Sultmanis, Stefanie; Khaikin, Yannay; Ludwig, Martha; Sage, Rowan F

    2014-11-01

    The evolution of C(4) photosynthesis from C(3) ancestors eliminates ribulose bisphosphate carboxylation in the mesophyll (M) cell chloroplast while activating phosphoenolpyruvate (PEP) carboxylation in the cytosol. These changes may lead to fewer chloroplasts and different chloroplast positioning within M cells. To evaluate these possibilities, we compared chloroplast number, size and position in M cells of closely related C(3), C(3) -C(4) intermediate and C(4) species from 12 lineages of C(4) evolution. All C(3) species had more chloroplasts per M cell area than their C(4) relatives in high-light growth conditions. C(3) species also had higher chloroplast coverage of the M cell periphery than C(4) species, particularly opposite intercellular air spaces. In M cells from 10 of the 12 C(4) lineages, a greater fraction of the chloroplast envelope was pulled away from the plasmalemma in the C(4) species than their C(3) relatives. C(3) -C(4) intermediate species generally exhibited similar patterns as their C(3) relatives. We interpret these results to reflect adaptive shifts that facilitate efficient C(4) function by enhancing diffusive access to the site of primary carbon fixation in the cytosol. Fewer chloroplasts in C(4) M cells would also reduce shading of the bundle sheath chloroplasts, which also generate energy required by C(4) photosynthesis.

  10. Phototropin encoded by a single-copy gene mediates chloroplast photorelocation movements in the liverwort Marchantia polymorpha.

    PubMed

    Komatsu, Aino; Terai, Mika; Ishizaki, Kimitsune; Suetsugu, Noriyuki; Tsuboi, Hidenori; Nishihama, Ryuichi; Yamato, Katsuyuki T; Wada, Masamitsu; Kohchi, Takayuki

    2014-09-01

    Blue-light-induced chloroplast photorelocation movement is observed in most land plants. Chloroplasts move toward weak-light-irradiated areas to efficiently absorb light (the accumulation response) and escape from strong-light-irradiated areas to avoid photodamage (the avoidance response). The plant-specific kinase phototropin (phot) is the blue-light receptor for chloroplast movements. Although the molecular mechanisms for chloroplast photorelocation movement have been analyzed, the overall aspects of signal transduction common to land plants are still unknown. Here, we show that the liverwort Marchantia polymorpha exhibits the accumulation and avoidance responses exclusively induced by blue light as well as specific chloroplast positioning in the dark. Moreover, in silico and Southern-blot analyses revealed that the M. polymorpha genome encodes a single PHOT gene, MpPHOT, and its knockout line displayed none of the chloroplast photorelocation movements, indicating that the sole MpPHOT gene mediates all types of movement. Mpphot was localized on the plasma membrane and exhibited blue-light-dependent autophosphorylation both in vitro and in vivo. Heterologous expression of MpPHOT rescued the defects in chloroplast movement of phot mutants in the fern Adiantum capillus-veneris and the seed plant Arabidopsis (Arabidopsis thaliana). These results indicate that Mpphot possesses evolutionarily conserved regulatory activities for chloroplast photorelocation movement. M. polymorpha offers a simple and versatile platform for analyzing the fundamental processes of phototropin-mediated chloroplast photorelocation movement common to land plants. PMID:25096976

  11. An Ancient Bacterial Signaling Pathway Regulates Chloroplast Function to Influence Growth and Development in Arabidopsis[OPEN

    PubMed Central

    Sugliani, Matteo; Ke, Hang; Bouveret, Emmanuelle; Robaglia, Christophe; Caffarri, Stefano

    2016-01-01

    The chloroplast originated from the endosymbiosis of an ancient photosynthetic bacterium by a eukaryotic cell. Remarkably, the chloroplast has retained elements of a bacterial stress response pathway that is mediated by the signaling nucleotides guanosine penta- and tetraphosphate (ppGpp). However, an understanding of the mechanism and outcomes of ppGpp signaling in the photosynthetic eukaryotes has remained elusive. Using the model plant Arabidopsis thaliana, we show that ppGpp is a potent regulator of chloroplast gene expression in vivo that directly reduces the quantity of chloroplast transcripts and chloroplast-encoded proteins. We then go on to demonstrate that the antagonistic functions of different plant RelA SpoT homologs together modulate ppGpp levels to regulate chloroplast function and show that they are required for optimal plant growth, chloroplast volume, and chloroplast breakdown during dark-induced and developmental senescence. Therefore, our results show that ppGpp signaling is not only linked to stress responses in plants but is also an important mediator of cooperation between the chloroplast and the nucleocytoplasmic compartment during plant growth and development. PMID:26908759

  12. The novel protein DELAYED PALE-GREENING1 is required for early chloroplast biogenesis in Arabidopsis thaliana

    PubMed Central

    Liu, Dong; Li, Weichun; Cheng, Jianfeng

    2016-01-01

    Chloroplast biogenesis is one of the most important subjects in plant biology. In this study, an Arabidopsis early chloroplast biogenesis mutant with a delayed pale-greening phenotype (dpg1) was isolated from a T-DNA insertion mutant collection. Both cotyledons and true leaves of dpg1 mutants were initially albino but gradually became pale green as the plant matured. Transmission electron microscopic observations revealed that the mutant displayed a delayed proplastid-to-chloroplast transition. Sequence and transcription analyses showed that AtDPG1 encodes a putatively chloroplast-localized protein containing three predicted transmembrane helices and that its expression depends on both light and developmental status. GUS staining for AtDPG1::GUS transgenic lines showed that this gene was widely expressed throughout the plant and that higher expression levels were predominantly found in green tissues during the early stages of Arabidopsis seedling development. Furthermore, quantitative real-time RT-PCR analyses revealed that a number of chloroplast- and nuclear-encoded genes involved in chlorophyll biosynthesis, photosynthesis and chloroplast development were substantially down-regulated in the dpg1 mutant. These data indicate that AtDPG1 plays an essential role in early chloroplast biogenesis, and its absence triggers chloroplast-to-nucleus retrograde signalling, which ultimately down-regulates the expression of nuclear genes encoding chloroplast-localized proteins. PMID:27160321

  13. The Cytoskeleton and the Peroxisomal-Targeted SNOWY COTYLEDON3 Protein Are Required for Chloroplast Development in Arabidopsis[W

    PubMed Central

    Albrecht, Verónica; Šimková, Klára; Carrie, Chris; Delannoy, Etienne; Giraud, Estelle; Whelan, Jim; Small, Ian David; Apel, Klaus; Badger, Murray R.; Pogson, Barry James

    2010-01-01

    Here, we describe the snowy cotyledon3 (sco3-1) mutation, which impairs chloroplast and etioplast development in Arabidopsis thaliana seedlings. SCO3 is a member of a largely uncharacterized protein family unique to the plant kingdom. The sco3-1 mutation alters chloroplast morphology and development, reduces chlorophyll accumulation, impairs thylakoid formation and photosynthesis in seedlings, and results in photoinhibition under extreme CO2 concentrations in mature leaves. There are no readily apparent changes to chloroplast biology, such as transcription or assembly that explain the disruption to chloroplast biogenesis. Indeed, SCO3 is actually targeted to another organelle, specifically to the periphery of peroxisomes. However, impaired chloroplast development cannot be attributed to perturbed peroxisomal metabolic processes involving germination, fatty acid β-oxidation or photorespiration, though there are so far undescribed changes in low and high CO2 sensitivity in seedlings and young true leaves. Many of the chloroplasts are bilobed, and some have persistent membranous extensions that encircle other cellular components. Significantly, there are changes to the cytoskeleton in sco3-1, and microtubule inhibitors have similar effects on chloroplast biogenesis as sco3-1 does. The localization of SCO3 to the periphery of the peroxisomes was shown to be dependent on a functional microtubule cytoskeleton. Therefore, the microtubule and peroxisome-associated SCO3 protein is required for chloroplast development, and sco3-1, along with microtubule inhibitors, demonstrates an unexpected role for the cytoskeleton and peroxisomes in chloroplast biogenesis. PMID:20978221

  14. The novel protein DELAYED PALE-GREENING1 is required for early chloroplast biogenesis in Arabidopsis thaliana.

    PubMed

    Liu, Dong; Li, Weichun; Cheng, Jianfeng

    2016-01-01

    Chloroplast biogenesis is one of the most important subjects in plant biology. In this study, an Arabidopsis early chloroplast biogenesis mutant with a delayed pale-greening phenotype (dpg1) was isolated from a T-DNA insertion mutant collection. Both cotyledons and true leaves of dpg1 mutants were initially albino but gradually became pale green as the plant matured. Transmission electron microscopic observations revealed that the mutant displayed a delayed proplastid-to-chloroplast transition. Sequence and transcription analyses showed that AtDPG1 encodes a putatively chloroplast-localized protein containing three predicted transmembrane helices and that its expression depends on both light and developmental status. GUS staining for AtDPG1::GUS transgenic lines showed that this gene was widely expressed throughout the plant and that higher expression levels were predominantly found in green tissues during the early stages of Arabidopsis seedling development. Furthermore, quantitative real-time RT-PCR analyses revealed that a number of chloroplast- and nuclear-encoded genes involved in chlorophyll biosynthesis, photosynthesis and chloroplast development were substantially down-regulated in the dpg1 mutant. These data indicate that AtDPG1 plays an essential role in early chloroplast biogenesis, and its absence triggers chloroplast-to-nucleus retrograde signalling, which ultimately down-regulates the expression of nuclear genes encoding chloroplast-localized proteins.

  15. A simple low-cost microcontroller-based photometric instrument for monitoring chloroplast movement.

    PubMed

    Berg, Robert; Königer, Martina; Schjeide, Brit-Maren; Dikmak, George; Kohler, Susan; Harris, Gary C

    2006-03-01

    A new microcontroller-based photometric instrument for monitoring blue light dependent changes in leaf transmission (chloroplast movement) was developed based on a modification of the double-beam technique developed by Walzcak and Gabrys [(1980) Photosynthetica 14: 65-72]. A blue and red bicolor light emitting diode (LED) provided both a variable intensity blue actinic light and a low intensity red measuring beam. A phototransistor detected the intensity of the transmitted measuring light. An inexpensive microcontroller independently and precisely controlled the light emission of the bicolor LED. A typical measurement event involved turning off the blue actinic light for 100 mus to create a narrow temporal window for turning on and measuring the transmittance of the red light. The microcontroller was programmed using LogoChip Logo (http://www.wellesley.edu/Physics/Rberg/logochip/) to record fluence rate response curves. Laser scanning confocal microscopy was utilized to correlate the changes in leaf transmission with intercellular chloroplast position. In the dark, the chloroplasts in the spongy mesophyll exhibited no evident asymmetries in their distribution, however, in the palisade layer the cell surface in contact with the overlying epidermis was devoid of chloroplasts. The low light dependent decrease in leaf transmittance in dark acclimated leaves was correlated with the movement of chloroplasts within the palisade layer into the regions previously devoid of chloroplasts. Changes in leaf transmittance were evident within one minute following the onset of illumination. Minimal leaf transmittance was correlated with chloroplasts having retreated from cell surfaces perpendicular to the incident light (avoidance reaction) in both spongy and palisade layers.

  16. Insights from the complete chloroplast genome into the evolution of Sesamum indicum L.

    PubMed

    Zhang, Haiyang; Li, Chun; Miao, Hongmei; Xiong, Songjin

    2013-01-01

    Sesame (Sesamum indicum L.) is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded) using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603). The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC) regions and inverted repeats (IR) in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1-585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17) were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants.

  17. Complete Chloroplast Genome Sequences of Mongolia Medicine Artemisia frigida and Phylogenetic Relationships with Other Plants

    PubMed Central

    Liu, Yue; Huo, Naxin; Dong, Lingli; Wang, Yi; Zhang, Shuixian; Young, Hugh A.; Feng, Xiaoxiao; Gu, Yong Qiang

    2013-01-01

    Background Artemisia frigida Willd. is an important Mongolian traditional medicinal plant with pharmacological functions of stanch and detumescence. However, there is little sequence and genomic information available for Artemisia frigida, which makes phylogenetic identification, evolutionary studies, and genetic improvement of its value very difficult. We report the complete chloroplast genome sequence of Artemisia frigida based on 454 pyrosequencing. Methodology/Principal Findings The complete chloroplast genome of Artemisia frigida is 151,076 bp including a large single copy (LSC) region of 82,740 bp, a small single copy (SSC) region of 18,394 bp and a pair of inverted repeats (IRs) of 24,971 bp. The genome contains 114 unique genes and 18 duplicated genes. The chloroplast genome of Artemisia frigida contains a small 3.4 kb inversion within a large 23 kb inversion in the LSC region, a unique feature in Asteraceae. The gene order in the SSC region of Artemisia frigida is inverted compared with the other 6 Asteraceae species with the chloroplast genomes sequenced. This inversion is likely caused by an intramolecular recombination event only occurred in Artemisia frigida. The existence of rich SSR loci in the Artemisia frigida chloroplast genome provides a rare opportunity to study population genetics of this Mongolian medicinal plant. Phylogenetic analysis demonstrates a sister relationship between Artemisia frigida and four other species in Asteraceae, including Ageratina adenophora, Helianthus annuus, Guizotia abyssinica and Lactuca sativa, based on 61 protein-coding sequences. Furthermore, Artemisia frigida was placed in the tribe Anthemideae in the subfamily Asteroideae (Asteraceae) based on ndhF and trnL-F sequence comparisons. Conclusion The chloroplast genome sequence of Artemisia frigida was assembled and analyzed in this study, representing the first plastid genome sequenced in the Anthemideae tribe. This complete chloroplast genome sequence will be

  18. Protein- and energy-mediated targeting of chloroplast outer envelope membrane proteins.

    PubMed

    Hofmann, Nancy R; Theg, Steven M

    2005-12-01

    While the import of nuclear-encoded chloroplast proteins is relatively well studied, the targeting of proteins to the outer membrane of the chloroplast envelope is not. The insertion of most outer membrane proteins (OMP) is generally considered to occur without the utilization of energy or proteinaceous components. Recently, however, proteins have been shown to be involved in the integration of outer envelope protein 14 (OEP14), whose outer membrane insertion was previously thought to be spontaneous. Here we investigate the insertion of two proteins from Physcomitrella patens, PpOEP64-1 and PpOEP64-2 (formerly known as PpToc64-1 and PpToc64-2), into the outer membrane of chloroplasts. The association of PpOEP64-1 with chloroplasts was not affected by chloroplast pre-treatments. Its insertion into the membrane was affected, however, demonstrating the importance of measuring insertion specifically in these types of assays. We found that the insertion of PpOEP64-1, PpOEP64-2 and two other OMPs, OEP14 and digalactosyldiacylglycerol synthase 1 (DGD1), was reduced by either nucleotide depletion or proteolysis of the chloroplasts. Integration was also inhibited in the presence of an excess of an imported precursor protein. In addition, OEP14 competed with the insertion of the OEP64s and DGD1. These data demonstrate that the targeting of several OMPs involves proteins present in chloroplasts and requires nucleotides. Together with previous reports, our data suggest that OMPs in general do not insert spontaneously.

  19. Plastome Mutations and Recom