Science.gov

Sample records for chloroplast microsatellites reveal

  1. Chloroplast microsatellites reveal colonization and metapopulation dynamics in the Canary Island pine

    PubMed Central

    Navascués, Miguel; Vaxevanidou, Zafeiro; González-Martínez, Santiago C; Climent, José; Gil, Luis; Emerson, Brent C

    2006-01-01

    Chloroplast microsatellites are becoming increasingly popular markers for population genetic studies in plants, but there has been little focus on their potential for demographic inference. In this work the utility of chloroplast microsatellites for the study of population expansions was explored. First, we investigated the power of mismatch distribution analysis and the FS test with coalescent simulations of different demographic scenarios. We then applied those methods to empirical data obtained for the Canary Island pine (Pinus canariensis). The results of the simulations showed that chloroplast microsatellites are sensitive to sudden population growth. The power of the FS test and accuracy of demographic parameter estimates, such as the time of expansion, were reduced proportionally to the level of homoplasy within the data. The analysis of Canary Island pine chloroplast microsatellite data indicated population expansions for almost all sample localities. Demographic expansions at the island level can be explained by the colonisation of the archipelago by the pine, while population expansions of different ages in different localities within an island appear to be the result of local extinctions and recolonisation dynamics. Comparable mitochondrial DNA sequence data from a parasite of P. canariensis, the weevil Brachyderes rugatus, supports this scenario, suggesting a key role for volcanism in the evolution of pine forest communities in the Canary Islands. PMID:16911194

  2. Genepool Variation in Genus Glycine Subgenus Soja Revealed by Polymorphic Nuclear and Chloroplast Microsatellites

    PubMed Central

    Powell, W.; Morgante, M.; Doyle, J. J.; McNicol, J. W.; Tingey, S. V.; Rafalski, A. J.

    1996-01-01

    A combination of nuclear and chloroplast simple sequence repeats (SSRs) have been used to investigate the levels and pattern of variability detected in Glycine max and G. soja genotypes. Based on the analysis of 700 soybean genotypes with 115 restriction fragment length polymorphism (RFLP) probes, 12 accessions were identified that represent 92% of the allelic variability detected in this genepool. These 12 core genotypes together with a sample of G. max and G. soja accessions were evaluated with 11 nuclear SSRs that detected 129 alleles. Compared with the other G. max and G. soja genotypes sampled, the core genotypes represent 40% of the allelic variability detected with SSRs. Despite the multi-allelic nature of soybean SSRs, dendrograms representing phenetic relationships between accessions clustered according to their subspecies origin. In addition to biparentally inherited nuclear SSRs, two uniparentally (maternally) transmitted chloroplast SSRs were also studied. A total of seven haplotypes were identified, and diversity indices of 0.405 +/- 0.088 and 0.159 +/- 0.071 were obtained for the two chloroplast SSRs. The availability of polymorphic SSR loci in the chloroplast genome provides new opportunities to investigate cytonuclear interactions in plants. PMID:8889540

  3. Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants.

    PubMed

    George, Biju; Bhatt, Bhavin S; Awasthi, Mayur; George, Binu; Singh, Achuit K

    2015-11-01

    Microsatellites, or simple sequence repeats (SSRs), contain repetitive DNA sequence where tandem repeats of one to six base pairs are present number of times. Chloroplast genome sequences have been  shown to possess extensive variations in the length, number and distribution of SSRs. However, a comparative analysis of chloroplast microsatellites is not available. Considering their potential importance in generating genomic diversity, we have systematically analysed the abundance and distribution of simple and compound microsatellites in 164 sequenced chloroplast genomes from wide range of plants. The key findings of these studies are (1) a large number of mononucleotide repeats as compared to SSR(2-6)(di-, tri-, tetra-, penta-, hexanucleotide repeats) are present in all chloroplast genomes investigated, (2) lower plants such as algae show wide variation in relative abundance, density and distribution of microsatellite repeats as compared to flowering plants, (3) longer SSRs are excluded from coding regions of most chloroplast genomes, (4) GC content has a weak influence on number, relative abundance and relative density of mononucleotide as well as SSR(2-6). However, GC content strongly showed negative correlation with relative density (R (2) = 0.5, P < 0.05) and relative abundance (R (2) = 0.6, P < 0.05) of cSSRs. In summary, our comparative studies of chloroplast genomes illustrate the variable distribution of microsatellites and revealed that chloroplast genome of smaller plants possesses relatively more genomic diversity compared to higher plants.

  4. Chloroplast microsatellite markers for Artocarpus (Moraceae) developed from transcriptome sequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study: Chloroplast microsatellite loci were characterized from transcriptomes of Artocarpus (A.) altilis (breadfruit) and A. camansi (breadnut). They were tested in A. odoratissimus (terap) and A. altilis and evaluated in silico for two congeners. Methods and Results: 15 simple seque...

  5. Chloroplast and nuclear microsatellite analysis of Aegilops cylindrica.

    PubMed

    Gandhi, Harish T; Vales, M Isabel; Watson, Christy J W; Mallory-Smith, Carol A; Mori, Naoki; Rehman, Maqsood; Zemetra, Robert S; Riera-Lizarazu, Oscar

    2005-08-01

    Aegilops cylindrica Host (2n = 4x = 28, genome CCDD) is an allotetraploid formed by hybridization between the diploid species Ae. tauschii Coss. (2n = 2x = 14, genome DD) and Ae. markgrafii (Greuter) Hammer (2n = 2x = 14, genome CC). Previous research has shown that Ae. tauschii contributed its cytoplasm to Ae. cylindrica. However, our analysis with chloroplast microsatellite markers showed that 1 of the 36 Ae. cylindrica accessions studied, TK 116 (PI 486249), had a plastome derived from Ae. markgrafii rather than Ae. tauschii. Thus, Ae. markgrafii has also contributed its cytoplasm to Ae. cylindrica. Our analysis of chloroplast and nuclear microsatellite markers also suggests that D-type plastome and the D genome in Ae. cylindrica were closely related to, and were probably derived from, the tauschii gene pool of Ae. tauschii. A determination of the likely source of the C genome and the C-type plastome in Ae. cylindrica was not possible.

  6. Chloroplast microsatellite markers for Pseudotaxus chienii developed from the whole chloroplast genome of Taxus chinensis var. mairei (Taxaceae)1

    PubMed Central

    Deng, Qi; Zhang, Hanrui; He, Yipeng; Wang, Ting; Su, Yingjuan

    2017-01-01

    Premise of the study: Pseudotaxus chienii (Taxaceae) is an old rare species endemic to China that has adapted well to ecological heterogeneity with high genetic diversity in its nuclear genome. However, the genetic variation in its chloroplast genome is unknown. Methods and Results: Eighteen chloroplast microsatellite markers (cpSSRs) were developed from the whole chloroplast genome of Taxus chinensis var. mairei and successfully amplified in four P. chienii populations and one T. chinensis var. mairei population. Of these loci, 10 were polymorphic in P. chienii, whereas six were polymorphic in T. chinensis var. mairei. The unbiased haploid diversity per locus ranged from 0.000 to 0.641 and 0.000 to 0.545 for P. chienii and T. chinensis var. mairei, respectively. Conclusions: The 18 cpSSRs will be used to further investigate the chloroplast genetic structure and adaptive evolution in P. chienii populations. PMID:28337394

  7. Characterization and development of chloroplast microsatellite markers for Gossypium hirsutum, and cross-species amplification in other Gossypium species.

    PubMed

    Cai, X Y; Liu, F; Zhou, Z L; Wang, X X; Wang, C Y; Wang, Y H; Wang, K B

    2015-10-05

    Cotton is an important economic crop worldwide; its fiber, commonly known as cotton lint, is the main natural source for the textile industry. Sixty chloroplast microsatellites were identified and characterized from the complete sequence of the Gossypium hirsutum chloroplast genome using a bioinformatic approach. Twenty chloroplast microsatellite loci were polymorphic in the 66 Gossypium germplasm accessions. A total of 85 alleles were detected, with allele numbers varying from 2-7 per locus. Polymorphism information content varied from 0.02-0.66, with a mean of 0.48. Additionally, transferability of the 20 polymorphic chloroplast microsatellite primers was evaluated in other 31 Gossypium species. Sixteen markers were successfully amplified across all species tested, while the remaining 4 markers cross-amplified in most species tested. These polymorphic chloroplast microsatellite markers may be useful tool for studies of individual identification, genetic diversity, evolution, conservation genetics, and molecular breeding in Gossypium.

  8. The complete chloroplast genome sequence of an endemic monotypic genus Hagenia (Rosaceae): structural comparative analysis, gene content and microsatellite detection.

    PubMed

    Gichira, Andrew W; Li, Zhizhong; Saina, Josphat K; Long, Zhicheng; Hu, Guangwan; Gituru, Robert W; Wang, Qingfeng; Chen, Jinming

    2017-01-01

    Hagenia is an endangered monotypic genus endemic to the topical mountains of Africa. The only species, Hagenia abyssinica (Bruce) J.F. Gmel, is an important medicinal plant producing bioactive compounds that have been traditionally used by African communities as a remedy for gastrointestinal ailments in both humans and animals. Complete chloroplast genomes have been applied in resolving phylogenetic relationships within plant families. We employed high-throughput sequencing technologies to determine the complete chloroplast genome sequence of H. abyssinica. The genome is a circular molecule of 154,961 base pairs (bp), with a pair of Inverted Repeats (IR) 25,971 bp each, separated by two single copies; a large (LSC, 84,320 bp) and a small single copy (SSC, 18,696). H. abyssinica's chloroplast genome has a 37.1% GC content and encodes 112 unique genes, 78 of which code for proteins, 30 are tRNA genes and four are rRNA genes. A comparative analysis with twenty other species, sequenced to-date from the family Rosaceae, revealed similarities in structural organization, gene content and arrangement. The observed size differences are attributed to the contraction/expansion of the inverted repeats. The translational initiation factor gene (infA) which had been previously reported in other chloroplast genomes was conspicuously missing in H. abyssinica. A total of 172 microsatellites and 49 large repeat sequences were detected in the chloroplast genome. A Maximum Likelihood analyses of 71 protein-coding genes placed Hagenia in Rosoideae. The availability of a complete chloroplast genome, the first in the Sanguisorbeae tribe, is beneficial for further molecular studies on taxonomic and phylogenomic resolution within the Rosaceae family.

  9. The complete chloroplast genome sequence of an endemic monotypic genus Hagenia (Rosaceae): structural comparative analysis, gene content and microsatellite detection

    PubMed Central

    Saina, Josphat K.; Long, Zhicheng; Hu, Guangwan; Gituru, Robert W.

    2017-01-01

    Hagenia is an endangered monotypic genus endemic to the topical mountains of Africa. The only species, Hagenia abyssinica (Bruce) J.F. Gmel, is an important medicinal plant producing bioactive compounds that have been traditionally used by African communities as a remedy for gastrointestinal ailments in both humans and animals. Complete chloroplast genomes have been applied in resolving phylogenetic relationships within plant families. We employed high-throughput sequencing technologies to determine the complete chloroplast genome sequence of H. abyssinica. The genome is a circular molecule of 154,961 base pairs (bp), with a pair of Inverted Repeats (IR) 25,971 bp each, separated by two single copies; a large (LSC, 84,320 bp) and a small single copy (SSC, 18,696). H. abyssinica’s chloroplast genome has a 37.1% GC content and encodes 112 unique genes, 78 of which code for proteins, 30 are tRNA genes and four are rRNA genes. A comparative analysis with twenty other species, sequenced to-date from the family Rosaceae, revealed similarities in structural organization, gene content and arrangement. The observed size differences are attributed to the contraction/expansion of the inverted repeats. The translational initiation factor gene (infA) which had been previously reported in other chloroplast genomes was conspicuously missing in H. abyssinica. A total of 172 microsatellites and 49 large repeat sequences were detected in the chloroplast genome. A Maximum Likelihood analyses of 71 protein-coding genes placed Hagenia in Rosoideae. The availability of a complete chloroplast genome, the first in the Sanguisorbeae tribe, is beneficial for further molecular studies on taxonomic and phylogenomic resolution within the Rosaceae family. PMID:28097059

  10. Development of nuclear and chloroplast microsatellite markers for the endangered conifer Callitris sulcata (Cupressaceae)1

    PubMed Central

    Sakaguchi, Shota; Lannuzel, Guillaume; Fogliani, Bruno; Wulff, Adrien S.; L’Huillier, Laurent; Kurata, Seikan; Ueno, Saneyoshi; Isagi, Yuji; Tsumura, Yoshihiko; Ito, Motomi

    2015-01-01

    Premise of the study: Microsatellite markers were developed for Callitris sulcata (Cupressaceae), an endangered conifer species in New Caledonia. Methods and Results: Using sequencing by synthesis (SBS) of an RNA-Seq library, 15 polymorphic nuclear and chloroplast microsatellite markers were developed. When evaluated with 48 individuals, these markers showed genetic variations ranging from two to 15 alleles and expected heterozygosity ranging from 0 to 0.881. Conclusions: These markers will be useful for examining the genetic diversity and structure of remaining wild populations and improving the genetic status of ex situ populations. PMID:26312198

  11. A genomic approach for isolating chloroplast microsatellite markers for Pachyptera kerere (Bignoniaceae)1

    PubMed Central

    Francisco, Jessica N. C.; Nazareno, Alison G.; Lohmann, Lúcia G.

    2016-01-01

    Premise of the study: In this study, we developed chloroplast microsatellite markers (cpSSRs) for Pachyptera kerere (Bignoniaceae) to investigate the population structure and genetic diversity of this species. Methods and Results: We used Illumina HiSeq data to reconstruct the chloroplast genome of P. kerere by a combination of de novo and reference-guided assembly. We then used the chloroplast genome to develop a set of cpSSRs from intergenic regions. Overall, 24 primer pairs were designed, 21 of which amplified successfully and were polymorphic, presenting three to nine alleles per locus. The unbiased haploid diversity per locus varied from 0.207 (Pac28) to 0.817 (Pac04). All but one locus amplified for all other taxa of Pachyptera. Conclusions: The markers reported here will serve as a basis for studies to assess the genetic structure and phylogeographic history of Pachyptera. PMID:27672522

  12. Development of novel chloroplast microsatellite markers for Ginkgo biloba.

    PubMed

    Xu, M; Xu, L A; Cao, F L; Zhang, H J; Yu, F X

    2015-07-13

    Ginkgo biloba is considered to be a living fossil that can be used to understand the ancient evolutionary history of gymnosperms, but little attention has been given to the study of its population genetics, molecular phylogeography, and genetic resources assessment. Chloroplast simple sequence repeat (cpSSR) markers are powerful tools for genetic studies of plants. In this study, a total of 30 perfect cpSSRs of Ginkgo were identified and characterized, including di-, tri, tetra-, penta-, and hexanucleotide repeats. Fifteen of 21 designed primer pairs were successfully amplified to yield specific polymerase chain reaction products from 16 Ginkgo cultivars. Polymorphic cpSSRs were further applied to determine the genetic variation of 116 individuals in 5 populations of G. biloba. The results showed that 24 and 76% genetic variation existed within and among populations of this species, respectively. These polymorphic and monomorphic cpSSR markers can be used to trace the origin and evolutionary history of Ginkgo.

  13. Development of novel chloroplast microsatellite markers to identify species in the Agrostis complex (Poaceae) and related genera.

    PubMed

    Zapiola, Maria L; Cronn, Richard C; Mallory-Smith, Carol A

    2010-07-01

    We needed a reliable way to identify species and confirm potential interspecific and intergeneric hybrids in a landscape level study of gene flow from transgenic glyphosate-resistant Agrostis stolonifera (Poaceae) to compatible relatives. We developed 12 new polymorphic chloroplast microsatellite markers to aid in identifying species recipient of transgenic pollen both within the Agrostis complex and the related genera Polypogon.

  14. [Analysis of microsatellite loci of the chloroplast genome in the genus Capsicum (Pepper)].

    PubMed

    Ryzhova, N N; Kochieva, E Z

    2004-08-01

    Six plastome microsatellites were examined in 43 accessions of the genus Capsicum. In total, 33 allelic variants were detected. A specific haplotype of chloroplast DNA was identified for each Capsicum species. Species-specific allelic variants were found for most wild Capsicum species. The highest intraspecific variation was observed for the C. baccatum plastome. Low cpDNA polymorphism was characteristic of C. annuum: the cpSSRs were either monomorphic or dimorphic. The vast majority of C. annuum accessions each had alleles of one type. Another allele type was rare and occurred only in wild accessions. The results testified again to genetic conservation of C. annuum and especially its cultivated forms. The phylogenetic relationships established for the Capsicum species on the basis of plastome analysis were similar to those inferred from the morphological traits, isozyme patterns, and molecular analysis of the nuclear genome.

  15. Microsatellite genotyping reveals a signature in breast cancer exomes.

    PubMed

    McIver, L J; Fonville, N C; Karunasena, E; Garner, H R

    2014-06-01

    Genomic instability at microsatellite loci is a hallmark of many cancers, including breast cancer. However, much of the genomic variation and many of the hereditary components responsible for breast cancer remain undetected. We hypothesized that variation at microsatellites could provide additional genomic markers for breast cancer risk assessment. A total of 1,345 germline and tumor DNA samples from individuals diagnosed with breast cancer, exome sequenced as part of The Cancer Genome Atlas, were analyzed for microsatellite variation. The comparison group for our analysis, representing healthy individuals, consisted of 249 females which were exome sequenced as part of the 1,000 Genomes Project. We applied our microsatellite-based genotyping pipeline to identify 55 microsatellite loci that can distinguish between the germline of individuals diagnosed with breast cancer and healthy individuals with a sensitivity of 88.4 % and a specificity of 77.1 %. Further, we identified additional microsatellite loci that are potentially useful for distinguishing between breast cancer subtypes, revealing a possible fifth subtype. These findings are of clinical interest as possible risk diagnostics and reveal genes that may be of potential therapeutic value, including genes previously not associated with breast cancer.

  16. Genetic structure based on nuclear and chloroplast microsatellite loci of Solanum lycocarpum A. St. Hil. (Solanaceae) in Central Brazil.

    PubMed

    Martins, K; Chaves, L J; Vencovsky, R; Kageyama, P Y

    2011-04-19

    Solanum lycocarpum (Solanaceae) is a woody species found in the Brazilian Cerrado. The flowers are pollinated by Xylocopa spp bees, and seeds are dispersed by mammals with distinct home range sizes. As a consequence, relative contributions of pollen and seeds to overall gene flow can vary according to different spatial scales. We studied the genetic structure of four natural populations of S. lycocarpum separated by 19 to 128 km, including individuals located along dirt roads that interlink three of the populations. A total of 294 individuals were genotyped with five nuclear and six chloroplast microsatellite markers. Significant spatial genetic structure was found in the total set of individuals; the Sp statistic was 0.0086. Population differentiation based on the six chloroplast microsatellite markers (θ(pC) = 0.042) was small and similar to that based on the five nuclear microsatellite markers (θ(p) = 0.054). For this set of populations, pollen and seed flow did not differ significantly from one another (pollen-to-seed flow ratio = 1.22). Capability for long distance seed dispersion and colonization of anthropogenic sites contributes to the ability of S. lycocarpum to maintain genetic diversity. Seed dispersion along dirt roads may be critical in preserving S. lycocarpum genetic diversity in fragmented landscapes.

  17. Development of Chloroplast Microsatellite Markers and Analysis of Chloroplast Diversity in Chinese Jujube (Ziziphus jujuba Mill.) and Wild Jujube (Ziziphus acidojujuba Mill.)

    PubMed Central

    Huang, Jian; Yang, Xiaoting; Zhang, Chunmei; Yin, Xiao; Liu, Shipeng; Li, Xingang

    2015-01-01

    Ziziphus is an important genus within the family Rhamnaceae. This genus includes several important fruit tree species that are widely planted in China and India, such as the Chinese jujube (Ziziphus jujuba Mill.), the wild jujube (Z. acidojujuba), and the Indian jujube (Z. mauritiana). However, information about their domestication based on the chlorotype diversity of Chinese jujube population is lacking. In this study, chloroplast microsatellite (cpSSR) markers were developed and used to investigate the genetic relationships between and domestication of jujube cultivars and wild jujube populations. Primer sets flanking each of the 46 cpSSR loci in non-coding regions of the chloroplast genome sequence of Z. jujuba Mill. cv. ‘Junzao’ were designed. In total, 10 markers showed polymorphisms from 15 samples (9 jujube cultivars and 6 wild jujube individuals), of which 8 loci were due to variations in the number of mononucleotide (A/T) repeats and 2 were due to indels. Six cpSSR markers were used in further analyses of 81 additional samples (63 jujube cultivars, 17 wild jujube samples, and 1 Indian jujube). Using these cpSSR markers, the number of alleles per locus ranged from two to four. In general, the Shannon Index (I) for each cpSSR ranged from 0.159 to 0.1747, and the diversity indices (h) and uh were 0.061 to 0.435 and 0.062 to 0.439, respectively. Seven chlorotypes were found; the Indian jujube showed distinct chlorotypes, and both the Chinese and wild jujube had four chlorotypes and shared two chlorotypes. A dominant chlorotype (G) accounted for 53 of 72 jujube cultivars and 13 of 23 wild jujube individuals. All chlorotypes were highly localized along the Yellow River, from the mid- to the lower reaches, suggesting a wide origin of jujube. These cpSSR markers can be applied to population and evolution studies of Chinese jujube and wild jujube. PMID:26406601

  18. Population Structure in Naegleria fowleri as Revealed by Microsatellite Markers

    PubMed Central

    Coupat-Goutaland, Bénédicte; Régoudis, Estelle; Besseyrias, Matthieu; Mularoni, Angélique; Binet, Marie; Herbelin, Pascaline; Pélandakis, Michel

    2016-01-01

    Naegleria sp. is a free living amoeba belonging to the Heterolobosea class. Over 40 species of Naegleria were identified and recovered worldwide in different habitats such as swimming pools, freshwater lakes, soil or dust. Among them, N. fowleri, is a human pathogen responsible for primary amoeboic meningoencephalitis (PAM). Around 300 cases were reported in 40 years worldwide but PAM is a fatal disease of the central nervous system with only 5% survival of infected patients. Since both pathogenic and non pathogenic species were encountered in the environment, detection and dispersal mode are crucial points in the fight against this pathogenic agent. Previous studies on identification and genotyping of N. fowleri strains were focused on RAPD analysis and on ITS sequencing and identified 5 variants: euro-american, south pacific, widespread, cattenom and chooz. Microsatellites are powerful markers in population genetics with broad spectrum of applications (such as paternity test, fingerprinting, genetic mapping or genetic structure analysis). They are characterized by a high degree of length polymorphism. The aim of this study was to genotype N. fowleri strains using microsatellites markers in order to track this population and to better understand its evolution. Six microsatellite loci and 47 strains from different geographical origins were used for this analysis. The microsatellite markers revealed a level of discrimination higher than any other marker used until now, enabling the identification of seven genetic groups, included in the five main genetic groups based on the previous RAPD and ITS analyses. This analysis also allowed us to go further in identifying private alleles highlighting intra-group variability. A better identification of the N. fowleri isolates could be done with this type of analysis and could allow a better tracking of the clinical and environmental N. fowleri strains. PMID:27035434

  19. Population Structure in Naegleria fowleri as Revealed by Microsatellite Markers.

    PubMed

    Coupat-Goutaland, Bénédicte; Régoudis, Estelle; Besseyrias, Matthieu; Mularoni, Angélique; Binet, Marie; Herbelin, Pascaline; Pélandakis, Michel

    2016-01-01

    Naegleria sp. is a free living amoeba belonging to the Heterolobosea class. Over 40 species of Naegleria were identified and recovered worldwide in different habitats such as swimming pools, freshwater lakes, soil or dust. Among them, N. fowleri, is a human pathogen responsible for primary amoeboic meningoencephalitis (PAM). Around 300 cases were reported in 40 years worldwide but PAM is a fatal disease of the central nervous system with only 5% survival of infected patients. Since both pathogenic and non pathogenic species were encountered in the environment, detection and dispersal mode are crucial points in the fight against this pathogenic agent. Previous studies on identification and genotyping of N. fowleri strains were focused on RAPD analysis and on ITS sequencing and identified 5 variants: euro-american, south pacific, widespread, cattenom and chooz. Microsatellites are powerful markers in population genetics with broad spectrum of applications (such as paternity test, fingerprinting, genetic mapping or genetic structure analysis). They are characterized by a high degree of length polymorphism. The aim of this study was to genotype N. fowleri strains using microsatellites markers in order to track this population and to better understand its evolution. Six microsatellite loci and 47 strains from different geographical origins were used for this analysis. The microsatellite markers revealed a level of discrimination higher than any other marker used until now, enabling the identification of seven genetic groups, included in the five main genetic groups based on the previous RAPD and ITS analyses. This analysis also allowed us to go further in identifying private alleles highlighting intra-group variability. A better identification of the N. fowleri isolates could be done with this type of analysis and could allow a better tracking of the clinical and environmental N. fowleri strains.

  20. Optimization of chloroplast microsatellite PCR conditions and primer screening for endangered Rheum officinale, Rheum palmatum, and Rheum tanguticum.

    PubMed

    Zhou, Y; Guo, Z J; Han, L; Li, Y; Wang, X M

    2014-07-29

    Chloroplast microsatellite primers were developed in order to provide more population genetic information of endangered Rheum officinale, R. palmatum, and R. tanguticum for conservation. The dried roots and rhizomes of these plants are important in traditional Chinese medicine. The results showed that the optimum concentrations of Mg(2+), Taq DNA polymerase, dNTPs, template DNA, and primers in a 25-μL reaction system were 2.0 mM, 1.0 U, 0.10 mM, 20 ng, and 0.8 μM, respectively. Fourteen of 53 primer combinations were chosen for their high clarity and repetition in three species, and their annealing temperatures ranged from 56 to 58°C. These primers and the optimized polymerase chain reaction system may provide a tool for understanding the demography and genetic variation of these endangered plants.

  1. Small effect of fragmentation on the genetic diversity of Dalbergia monticola, an endangered tree species of the eastern forest of Madagascar, detected by chloroplast and nuclear microsatellites

    PubMed Central

    Andrianoelina, O.; Favreau, B.; Ramamonjisoa, L.; Bouvet, J.-M.

    2009-01-01

    Background and Aims The oriental forest ecosystem in Madagascar has been seriously impacted by fragmentation. The pattern of genetic diversity was analysed on a tree species, Dalbergia monticola, which plays an important economic role in Madagascar and is one of the many endangered tree species in the eastern forest. Methods Leaves from 546 individuals belonging to 18 small populations affected by different levels of fragmentation were genotyped using eight nuclear (nuc) and three chloroplast (cp) microsatellite markers. Key Results For nuclear microsatellites, allelic richness (R) and heterozygosity (He,nuc) differed between types of forest: R = 7·36 and R = 9·55, He,nuc = 0·64 and He,nuc = 0·80 in fragmented and non-fragmented forest, respectively, but the differences were not significant. Only the mean number of alleles (Na,nuc) and the fixation index FIS differed significantly: Na,nuc = 9·41 and Na,nuc = 13·18, FIS = 0·06 and FIS = 0·15 in fragmented and non-fragmented forests, respectively. For chloroplast microsatellites, estimated genetic diversity was higher in non-fragmented forest, but the difference was not significant. No recent bottleneck effect was detected for either population. Overall differentiation was low for nuclear microsatellites (FST,nuc = 0·08) and moderate for chloroplast microsatellites (FST,cp = 0·49). A clear relationship was observed between genetic and geographic distance (r = 0·42 P < 0·01 and r = 0·42 P = 0·03 for nuclear and chloroplast microsatellites, respectively), suggesting a pattern of isolation by distance. Analysis of population structure using the neighbor-joining method or Bayesian models separated southern populations from central and northern populations with nuclear microsatellites, and grouped the population according to regions with chloroplast microsatellites, but did not separate the fragmented populations. Conclusions Residual diversity and genetic structure of populations of D. monticola in

  2. Genetic diversity and population structure: implications for conservation of wild soybean (Glycine soja Sieb. et Zucc) based on nuclear and chloroplast microsatellite variation.

    PubMed

    He, Shuilian; Wang, Yunsheng; Volis, Sergei; Li, Dezhu; Yi, Tingshuang

    2012-10-03

    Wild soybean (Glycine soja Sieb. et Zucc) is the most important germplasm resource for soybean breeding, and is currently subject to habitat loss, fragmentation and population decline. In order to develop successful conservation strategies, a total of 604 wild soybean accessions from 43 locations sampled across its range in China, Japan and Korea were analyzed using 20 nuclear (nSSRs) and five chloroplast microsatellite markers (cpSSRs) to reveal its genetic diversity and population structure. Relatively high nSSR diversity was found in wild soybean compared with other self-pollinated species, and the region of middle and lower reaches of Yangtze River (MDRY) was revealed to have the highest genetic diversity. However, cpSSRs suggested that Korea is a center of diversity. High genetic differentiation and low gene flow among populations were detected, which is consistent with the predominant self-pollination of wild soybean. Two main clusters were revealed by MCMC structure reconstruction and phylogenetic dendrogram, one formed by a group of populations from northwestern China (NWC) and north China (NC), and the other including northeastern China (NEC), Japan, Korea, MDRY, south China (SC) and southwestern China (SWC). Contrib analyses showed that southwestern China makes the greatest contribution to the total diversity and allelic richness, and is worthy of being given conservation priority.

  3. The Complete Chloroplast Genome of 17 Individuals of Pest Species Jacobaea vulgaris: SNPs, Microsatellites and Barcoding Markers for Population and Phylogenetic Studies

    PubMed Central

    Doorduin, Leonie; Gravendeel, Barbara; Lammers, Youri; Ariyurek, Yavuz; Chin-A-Woeng, Thomas; Vrieling, Klaas

    2011-01-01

    Invasive individuals from the pest species Jacobaea vulgaris show different allocation patterns in defence and growth compared with native individuals. To examine if these changes are caused by fast evolution, it is necessary to identify native source populations and compare these with invasive populations. For this purpose, we are in need of intraspecific polymorphic markers. We therefore sequenced the complete chloroplast genomes of 12 native and 5 invasive individuals of J. vulgaris with next generation sequencing and discovered single-nucleotide polymorphisms (SNPs) and microsatellites. This is the first study in which the chloroplast genome of that many individuals within a single species was sequenced. Thirty-two SNPs and 34 microsatellite regions were found. For none of the individuals, differences were found between the inverted repeats. Furthermore, being the first chloroplast genome sequenced in the Senecioneae clade, we compared it with four other members of the Asteraceae family to identify new regions for phylogentic inference within this clade and also within the Asteraceae family. Five markers (ndhC-trnV, ndhC-atpE, rps18-rpl20, clpP and psbM-trnD) contained parsimony-informative characters higher than 2%. Finally, we compared two procedures of preparing chloroplast DNA for next generation sequencing. PMID:21444340

  4. Genetic variation and phylogeography of Stauracanthus (Fabaceae, Genisteae) from the Iberian Peninsula and northern Morocco assessed by chloroplast microsatellite (cpSSR) markers.

    PubMed

    Pardo, Cristina; Cubas, Paloma; Tahiri, Hikmat

    2008-01-01

    The tribe Genisteae includes genera of great ecological importance in Mediterranean countries because they are dominant elements of many plant communities. Genetic variation and diversification patterns in Stauracanthus (Genisteae) provide information relevant for the study of the processes of diversification in relation to the environmental history of the western Mediterranean. Nineteen populations of S. boivinii and S. genistoides were assessed by 11 chloroplast microsatellite markers, revealing 44 haplotypes. Both species had different haplotypes and contrasting patterns of karyological, morphological, and genetic variation. In the minimum spanning tree of the haplotypes, AMOVA analysis, and nested clade analysis, S. boivinii had high levels of differentiation and restricted gene flow among populations. Allopatric differentiation occurred between the Moroccan and Iberian populations of S. genistoides, although S. genistoides subsp. spectabilis and subsp. vicentinus had high levels of differentiation among populations (F(ST)), whereas S. genistoides subsp. genistoides had a low F(ST). Genetic patterns are discussed in relation to the Messinian salinity crisis (MSC): hard conditions drove plants to refuge habitats along the Atlantic coast and higher altitude areas in the Moroccan mountains (S. genistoides subsp. spectabilis and S. boivinii). After the MSC, S. boivinii underwent polyploidization and expansion, whereas S. genistoides expanded and continued diversifying into S. genistoides subspp. genistoides and vicentinus.

  5. Repression of Essential Chloroplast Genes Reveals New Signaling Pathways and Regulatory Feedback Loops in Chlamydomonas[W

    PubMed Central

    Ramundo, Silvia; Rahire, Michèle; Schaad, Olivier; Rochaix, Jean-David

    2013-01-01

    Although reverse genetics has been used to elucidate the function of numerous chloroplast proteins, the characterization of essential plastid genes and their role in chloroplast biogenesis and cell survival has not yet been achieved. Therefore, we developed a robust repressible chloroplast gene expression system in the unicellular alga Chlamydomonas reinhardtii based mainly on a vitamin-repressible riboswitch, and we used this system to study the role of two essential chloroplast genes: ribosomal protein S12 (rps12), encoding a plastid ribosomal protein, and rpoA, encoding the α-subunit of chloroplast bacterial-like RNA polymerase. Repression of either of these two genes leads to the arrest of cell growth, and it induces a response that involves changes in expression of nuclear genes implicated in chloroplast biogenesis, protein turnover, and stress. This response also leads to the overaccumulation of several plastid transcripts and reveals the existence of multiple negative regulatory feedback loops in the chloroplast gene circuitry. PMID:23292734

  6. Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia.

    PubMed

    Bai, Wei-Ning; Liao, Wan-Jin; Zhang, Da-Yong

    2010-11-01

    • Recently, there has been a debate about whether the temperate forests of East Asia merged or fragmented during glacial periods in the Pleistocene. Here, we tested these two opposing views through phylogeographical studies of the temperate-deciduous walnut tree, Juglans mandshurica (Juglandaceae) in northern and northeastern China, as well as Japan and Korea. • We assessed the genetic structure of 33 natural populations using 10 nuclear microsatellite loci and seven chloroplast DNA (cpDNA) fragments. • The cpDNA data showed the complete fixation of two different haplotype lineages in northeastern vs northern populations. This pronounced phylogeographic break was also indicated by nuclear microsatellite data, but there were disparities regarding individual populations. Among those populations fixed for haplotype A (the northeastern group), three were clustered in the northern group and four showed evidence of mixed ancestry based on microsatellite data. • Our results support the hypothesis that two independent refugia were maintained across the range of J. mandshurica in the north of China during the last glacial maximum, contrary to the inference that all temperate forests migrated to the south (25-30°N). The discordance between the patterns revealed by cpDNA and microsatellite data indicate that asymmetrical gene flow has occurred between the two refugia.

  7. Non-invasive, whole-plant imaging of chloroplast movement and chlorophyll fluorescence reveals photosynthetic phenotypes independent of chloroplast photorelocation defects in chloroplast division mutants.

    PubMed

    Dutta, Siddhartha; Cruz, Jeffrey A; Jiao, Yuhua; Chen, Jin; Kramer, David M; Osteryoung, Katherine W

    2015-10-01

    Leaf chloroplast movement is thought to optimize light capture and to minimize photodamage. To better understand the impact of chloroplast movement on photosynthesis, we developed a technique based on the imaging of reflectance from leaf surfaces that enables continuous, high-sensitivity, non-invasive measurements of chloroplast movement in multiple intact plants under white actinic light. We validated the method by measuring photorelocation responses in Arabidopsis chloroplast division mutants with drastically enlarged chloroplasts, and in phototropin mutants with impaired photorelocation but normal chloroplast morphology, under different light regimes. Additionally, we expanded our platform to permit simultaneous image-based measurements of chlorophyll fluorescence and chloroplast movement. We show that chloroplast division mutants with enlarged, less-mobile chloroplasts exhibit greater photosystem II photodamage than is observed in the wild type, particularly under fluctuating high levels of light. Comparison between division mutants and the severe photorelocation mutant phot1-5 phot2-1 showed that these effects are not entirely attributable to diminished photorelocation responses, as previously hypothesized, implying that altered chloroplast morphology affects other photosynthetic processes. Our dual-imaging platform also allowed us to develop a straightforward approach to correct non-photochemical quenching (NPQ) calculations for interference from chloroplast movement. This correction method should be generally useful when fluorescence and reflectance are measured in the same experiments. The corrected data indicate that the energy-dependent (qE) and photoinhibitory (qI) components of NPQ contribute differentially to the NPQ phenotypes of the chloroplast division and photorelocation mutants. This imaging technology thus provides a platform for analyzing the contributions of chloroplast movement, chloroplast morphology and other phenotypic attributes to the

  8. Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography

    PubMed Central

    Engel, Benjamin D; Schaffer, Miroslava; Kuhn Cuellar, Luis; Villa, Elizabeth; Plitzko, Jürgen M; Baumeister, Wolfgang

    2015-01-01

    Chloroplast function is orchestrated by the organelle's intricate architecture. By combining cryo-focused ion beam milling of vitreous Chlamydomonas cells with cryo-electron tomography, we acquired three-dimensional structures of the chloroplast in its native state within the cell. Chloroplast envelope inner membrane invaginations were frequently found in close association with thylakoid tips, and the tips of multiple thylakoid stacks converged at dynamic sites on the chloroplast envelope, implicating lipid transport in thylakoid biogenesis. Subtomogram averaging and nearest neighbor analysis revealed that RuBisCO complexes were hexagonally packed within the pyrenoid, with ∼15 nm between their centers. Thylakoid stacks and the pyrenoid were connected by cylindrical pyrenoid tubules, physically bridging the sites of light-dependent photosynthesis and light-independent carbon fixation. Multiple parallel minitubules were bundled within each pyrenoid tubule, possibly serving as conduits for the targeted one-dimensional diffusion of small molecules such as ATP and sugars between the chloroplast stroma and the pyrenoid matrix. DOI: http://dx.doi.org/10.7554/eLife.04889.001 PMID:25584625

  9. Phaseolin expression in tobacco chloroplast reveals an autoregulatory mechanism in heterologous protein translation.

    PubMed

    De Marchis, Francesca; Bellucci, Michele; Pompa, Andrea

    2016-02-01

    Plastid DNA engineering is a well-established research area of plant biotechnology, and plastid transgenes often give high expression levels. However, it is still almost impossible to predict the accumulation rate of heterologous protein in transplastomic plants, and there are many cases of unsuccessful transgene expression. Chloroplasts regulate their proteome at the post-transcriptional level, mainly through translation control. One of the mechanisms to modulate the translation has been described in plant chloroplasts for the chloroplast-encoded subunits of multiprotein complexes, and the autoregulation of the translation initiation of these subunits depends on the availability of their assembly partners [control by epistasy of synthesis (CES)]. In Chlamydomonas reinhardtii, autoregulation of endogenous proteins recruited in the assembly of functional complexes has also been reported. In this study, we revealed a self-regulation mechanism triggered by the accumulation of a soluble recombinant protein, phaseolin, in the stroma of chloroplast-transformed tobacco plants. Immunoblotting experiments showed that phaseolin could avoid this self-regulation mechanism when targeted to the thylakoids in transplastomic plants. To inhibit the thylakoid-targeted phaseolin translation as well, this protein was expressed in the presence of a nuclear version of the phaseolin gene with a transit peptide. Pulse-chase and polysome analysis revealed that phaseolin mRNA translation on plastid ribosomes was repressed due to the accumulation in the stroma of the same soluble polypeptide imported from the cytosol. We suggest that translation autoregulation in chloroplast is not limited to heteromeric protein subunits but also involves at least some of the foreign soluble recombinant proteins, leading to the inhibition of plastome-encoded transgene expression in chloroplast.

  10. Crystallization of the c14-rotor of the chloroplast ATP synthase reveals that it contains pigments

    PubMed Central

    Varco-Merth, Benjamin; Fromme, Raimund; Wang, Meitian; Fromme, Petra

    2012-01-01

    The ATP synthase is one of the most important enzymes on earth as it couples the transmembrane electrochemical potential of protons to the synthesis of ATP from ADP and inorganic phosphate, providing the main ATP source of almost all higher life on earth. During ATP synthesis, stepwise protonation of a conserved carboxylate on each protein subunit of an oligomeric ring of 10–15 c-subunits is commonly thought to drive rotation of the rotor moiety (c10–14γε) relative to stator moiety (α3β3δab2). Here we report the isolation and crystallization of the c14-ring of subunit c from the spinach chloroplast enzyme diffracting as far as 2.8 Å. Though ATP synthase was not previously known to contain any pigments, the crystals of the c-subunit possessed a strong yellow color. The pigment analysis revealed that they contain 1 chlorophyll and 2 carotenoids, thereby showing for the first time that the chloroplast ATP synthase contains cofactors, leading to the question of the possible roles of the functions of the pigments in the chloroplast ATP synthase. PMID:18515064

  11. The Historical Demography and Genetic Variation of the Endangered Cycas multipinnata (Cycadaceae) in the Red River Region, Examined by Chloroplast DNA Sequences and Microsatellite Markers

    PubMed Central

    Gong, Yi-Qing; Zhan, Qing-Qing; Nguyen, Khang Sinh; Nguyen, Hiep Tien; Wang, Yue-Hua; Gong, Xun

    2015-01-01

    Cycas multipinnata C.J. Chen & S.Y. Yang is a cycad endemic to the Red River drainage region that occurs under evergreen forest on steep limestone slopes in Southwest China and northern Vietnam. It is listed as endangered due to habitat loss and over-collecting for the ornamental plant trade, and only several populations remain. In this study, we assess the genetic variation, population structure, and phylogeography of C. multipinnata populations to help develop strategies for the conservation of the species. 60 individuals from six populations were used for chloroplast DNA (cpDNA) sequencing and 100 individuals from five populations were genotyped using 17 nuclear microsatellites. High genetic differentiation among populations was detected, suggesting that pollen or seed dispersal was restricted within populations. Two main genetic clusters were observed in both the cpDNA and microsatellite loci, corresponding to Yunnan China and northern Vietnam. These clusters indicated low levels of gene flow between the regions since their divergence in the late Pleistocene, which was inferred from both Bayesian and coalescent analysis. In addition, the result of a Bayesian skyline plot based on cpDNA portrayed a long history of constant population size followed by a decline in the last 50,000 years of C. multipinnata that was perhaps affected by the Quaternary glaciations, a finding that was also supported by the Garza-Williamson index calculated from the microsatellite data. The genetic consequences produced by climatic oscillations and anthropogenic disturbances are considered key pressures on C. multipinnata. To establish a conservation management plan, each population of C. multipinnata should be recognized as a Management Unit (MU). In situ and ex situ actions, such as controlling overexploitation and creating a germplasm bank with high genetic diversity, should be urgently implemented to preserve this species. PMID:25689828

  12. Microsatellite markers reveal multiple origins for Italian weedy rice

    PubMed Central

    Grimm, Annabelle; Fogliatto, Silvia; Nick, Peter; Ferrero, Aldo; Vidotto, Francesco

    2013-01-01

    Weedy rice (Oryza sativa L.) is one of the major issues of rice cultivation worldwide. In Italy, it infests about 70% of the total rice area. Different Weedy Rice populations can be distinguished based on variable morphological and physiological traits; however, little is known about genetic differentiation and origin of Italian weedy rice populations. The objective of this study was to genetically and morphologically characterize and compare different Italian weedy rice populations selected on the basis of different phenotypes. The main Italian rice territory was divided into 10 geographical areas in which 40 weedy rice populations were collected and grouped according to the awn traits. All the individuals of the populations were morphologically characterized according to plant and seed traits. Genetic characterization was performed using 19 SSR markers on all the collected accessions, and several rice cultivars, including some very old (late 19th century), nowadays are no longer cultivated. ANOVA showed that morphological plant and seed traits were significantly affected by the collection area and awnedness group. The importance of the awn morphology was also reflected in the Bayesian clustering where, despite a relatively low genetic diversity, the clusters displayed different awn types. An UPGMA dendrogram confirmed the clusters detected in STRUCTURE analysis and also revealed a grouping of certain old cultivars with the weedy rice, suggesting a common origin. PMID:24363904

  13. Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov.

    PubMed Central

    Leliaert, Frederik; Tronholm, Ana; Lemieux, Claude; Turmel, Monique; DePriest, Michael S.; Bhattacharya, Debashish; Karol, Kenneth G.; Fredericq, Suzanne; Zechman, Frederick W.; Lopez-Bautista, Juan M.

    2016-01-01

    The green plants (Viridiplantae) are an ancient group of eukaryotes comprising two main clades: the Chlorophyta, which includes a wide diversity of green algae, and the Streptophyta, which consists of freshwater green algae and the land plants. The early-diverging lineages of the Viridiplantae comprise unicellular algae, and multicellularity has evolved independently in the two clades. Recent molecular data have revealed an unrecognized early-diverging lineage of green plants, the Palmophyllales, with a unique form of multicellularity, and typically found in deep water. The phylogenetic position of this enigmatic group, however, remained uncertain. Here we elucidate the evolutionary affinity of the Palmophyllales using chloroplast genomic, and nuclear rDNA data. Phylogenetic analyses firmly place the palmophyllalean Verdigellas peltata along with species of Prasinococcales (prasinophyte clade VI) in the deepest-branching clade of the Chlorophyta. The small, compact and intronless chloroplast genome (cpDNA) of V. peltata shows striking similarities in gene content and organization with the cpDNAs of Prasinococcales and the streptophyte Mesostigma viride, indicating that cpDNA architecture has been extremely well conserved in these deep-branching lineages of green plants. The phylogenetic distinctness of the Palmophyllales-Prasinococcales clade, characterized by unique ultrastructural features, warrants recognition of a new class of green plants, Palmophyllophyceae class. nov. PMID:27157793

  14. Chloroplast DNA polymorphism reveals little geographical structure in Castanea sativa Mill. (Fagaceae) throughout southern European countries.

    PubMed

    Fineschi, S; Taurchini, D; Villani, F; Vendramin, G G

    2000-10-01

    The distribution of haplotypic diversity of 38 European chestnut (Castanea sativa Mill.) populations was investigated by PCR/RFLP analysis of regions of the chloroplast and mitochondrial genomes in order to shed light on the history of this heavily managed species. The rapid expansion of chestnut starting from 3000 years ago is strongly related to human activities such as agricultural practice. This demonstrates the importance of human impact, which lasted some thousands of years, on the present-day distribution of the species. No polymorphism was detected for the single mitochondrial analysed region, while a total of 11 different chloroplast (cp) haplotypes were scored. The distribution of the cpDNA haplotypes revealed low geographical structure of the genetic diversity. The value of population subdivision, as measured by GSTc, is strikingly lower than in the other species of the family Fagaceae investigated. The actual distribution of haplotypic diversity may be explained by the strong human impact on this species, particularly during the Roman civilization of the continent, and to the long period of cultivation experienced during the last thousand years.

  15. Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov.

    PubMed

    Leliaert, Frederik; Tronholm, Ana; Lemieux, Claude; Turmel, Monique; DePriest, Michael S; Bhattacharya, Debashish; Karol, Kenneth G; Fredericq, Suzanne; Zechman, Frederick W; Lopez-Bautista, Juan M

    2016-05-09

    The green plants (Viridiplantae) are an ancient group of eukaryotes comprising two main clades: the Chlorophyta, which includes a wide diversity of green algae, and the Streptophyta, which consists of freshwater green algae and the land plants. The early-diverging lineages of the Viridiplantae comprise unicellular algae, and multicellularity has evolved independently in the two clades. Recent molecular data have revealed an unrecognized early-diverging lineage of green plants, the Palmophyllales, with a unique form of multicellularity, and typically found in deep water. The phylogenetic position of this enigmatic group, however, remained uncertain. Here we elucidate the evolutionary affinity of the Palmophyllales using chloroplast genomic, and nuclear rDNA data. Phylogenetic analyses firmly place the palmophyllalean Verdigellas peltata along with species of Prasinococcales (prasinophyte clade VI) in the deepest-branching clade of the Chlorophyta. The small, compact and intronless chloroplast genome (cpDNA) of V. peltata shows striking similarities in gene content and organization with the cpDNAs of Prasinococcales and the streptophyte Mesostigma viride, indicating that cpDNA architecture has been extremely well conserved in these deep-branching lineages of green plants. The phylogenetic distinctness of the Palmophyllales-Prasinococcales clade, characterized by unique ultrastructural features, warrants recognition of a new class of green plants, Palmophyllophyceae class. nov.

  16. Nuclear microsatellite variation in Malagasy baobabs (Adansonia, Bombacoideae, Malvaceae) reveals past hybridization and introgression

    PubMed Central

    Leong Pock Tsy, Jean-Michel; Lumaret, Roselyne; Flaven-Noguier, Elodie; Sauve, Mathieu; Dubois, Marie-Pierre; Danthu, Pascal

    2013-01-01

    Background and Aims Adansonia comprises nine species, six of which are endemic to Madagascar. Genetic relationships between the Malagasy species remain unresolved due to conflicting results between nuclear and plastid DNA variation. Morphologically intermediate individuals between distinct species have been identified, indicative of interspecific hybridization. In this paper, microsatellite data are used to identify potential cases of hybridization and to provide insights into the evolutionary history of the genus on Madagascar. Methods Eleven microsatellites amplified with new primers developed for Adansonia rubrostipa were used to analyse 672 individuals collected at 27 sites for the six Malagasy species and morphologically intermediate individuals. Rates of individual admixture were examined using three Bayesian clustering programs, STRUCTURE, BAPS and NewHybrids, with no a priori species assignment. Key Results Population differentiation was coherent, with recognized species boundaries. In the four Malagasy species of section Longitubae, 8·0, 9·0 and 9·5 % of individuals with mixed genotypes were identified by BAPS, NewHybrids and STRUCTURE, respectively. At sites with sympatric populations of A. rubrostipa and A. za, NewHybrids indicated these individuals to be F2 and, predominantly, backcrosses with both parental species. In northern Madagascar, two populations of trees combining A. za and A. perrieri morphology and microsatellite alleles were identified in the current absence of the parental species. Conclusions The clear genetic differentiation observed between the six species may reflect their adaptation to different assortments of climate regimes and habitats during the colonization of the island. Microsatellite variation reveals that hybridization probably occurred in secondary contact between species of section Longitubae. This type of hybridization may also have been involved in the differentiation of a local new stabilized entity showing specific

  17. Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo

    PubMed Central

    Nagy, Gergely; Ünnep, Renáta; Zsiros, Ottó; Tokutsu, Ryutaro; Takizawa, Kenji; Porcar, Lionel; Moyet, Lucas; Petroutsos, Dimitris; Garab, Győző; Finazzi, Giovanni; Minagawa, Jun

    2014-01-01

    Plants respond to changes in light quality by regulating the absorption capacity of their photosystems. These short-term adaptations use redox-controlled, reversible phosphorylation of the light-harvesting complexes (LHCIIs) to regulate the relative absorption cross-section of the two photosystems (PSs), commonly referred to as state transitions. It is acknowledged that state transitions induce substantial reorganizations of the PSs. However, their consequences on the chloroplast structure are more controversial. Here, we investigate how state transitions affect the chloroplast structure and function using complementary approaches for the living cells of Chlamydomonas reinhardtii. Using small-angle neutron scattering, we found a strong periodicity of the thylakoids in state 1, with characteristic repeat distances of ∼200 Å, which was almost completely lost in state 2. As revealed by circular dichroism, changes in the thylakoid periodicity were paralleled by modifications in the long-range order arrangement of the photosynthetic complexes, which was reduced by ∼20% in state 2 compared with state 1, but was not abolished. Furthermore, absorption spectroscopy reveals that the enhancement of PSI antenna size during state 1 to state 2 transition (∼20%) is not commensurate to the decrease in PSII antenna size (∼70%), leading to the possibility that a large part of the phosphorylated LHCIIs do not bind to PSI, but instead form energetically quenched complexes, which were shown to be either associated with PSII supercomplexes or in a free form. Altogether these noninvasive in vivo approaches allow us to present a more likely scenario for state transitions that explains their molecular mechanism and physiological consequences. PMID:24639515

  18. Comparative chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies.

    PubMed

    Lin, Ching-Ping; Huang, Jen-Pan; Wu, Chung-Shien; Hsu, Chih-Yao; Chaw, Shu-Miaw

    2010-01-01

    As the largest and the basal-most family of conifers, Pinaceae provides key insights into the evolutionary history of conifers. We present comparative chloroplast genomics and analysis of concatenated 49 chloroplast protein-coding genes common to 19 gymnosperms, including 15 species from 8 Pinaceous genera, to address the long-standing controversy about Pinaceae phylogeny. The complete cpDNAs of Cathaya argyrophylla and Cedrus deodara (Abitoideae) and draft cpDNAs of Larix decidua, Picea morrisonicola, and Pseudotsuga wilsoniana are reported. We found 21- and 42-kb inversions in congeneric species and different populations of Pinaceous species, which indicates that structural polymorphics may be common and ancient in Pinaceae. Our phylogenetic analyses reveal that Cedrus is clustered with Abies-Keteleeria rather than the basal-most genus of Pinaceae and that Cathaya is closer to Pinus than to Picea or Larix-Pseudotsuga. Topology and structural change tests and indel-distribution comparisons lend further evidence to our phylogenetic finding. Our molecular datings suggest that Pinaceae first evolved during Early Jurassic, and diversification of Pinaceous subfamilies and genera took place during Mid-Jurassic and Lower Cretaceous, respectively. Using different maximum-likelihood divergences as thresholds, we conclude that 2 (Abietoideae and Larix-Pseudotsuga-Piceae-Cathaya-Pinus), 4 (Cedrus, non-Cedrus Abietoideae, Larix-Pseudotsuga, and Piceae-Cathaya-Pinus), or 5 (Cedrus, non-Cedrus Abietoideae, Larix-Pseudotsuga, Picea, and Cathaya-Pinus) groups/subfamilies are more reasonable delimitations for Pinaceae. Specifically, our views on subfamilial classifications differ from previous studies in terms of the rank of Cedrus and with recognition of more than two subfamilies.

  19. Comparative Chloroplast Genomics Reveals the Evolution of Pinaceae Genera and Subfamilies

    PubMed Central

    Lin, Ching-Ping; Huang, Jen-Pan; Wu, Chung-Shien; Hsu, Chih-Yao; Chaw, Shu-Miaw

    2010-01-01

    As the largest and the basal-most family of conifers, Pinaceae provides key insights into the evolutionary history of conifers. We present comparative chloroplast genomics and analysis of concatenated 49 chloroplast protein-coding genes common to 19 gymnosperms, including 15 species from 8 Pinaceous genera, to address the long-standing controversy about Pinaceae phylogeny. The complete cpDNAs of Cathaya argyrophylla and Cedrus deodara (Abitoideae) and draft cpDNAs of Larix decidua, Picea morrisonicola, and Pseudotsuga wilsoniana are reported. We found 21- and 42-kb inversions in congeneric species and different populations of Pinaceous species, which indicates that structural polymorphics may be common and ancient in Pinaceae. Our phylogenetic analyses reveal that Cedrus is clustered with Abies–Keteleeria rather than the basal-most genus of Pinaceae and that Cathaya is closer to Pinus than to Picea or Larix–Pseudotsuga. Topology and structural change tests and indel-distribution comparisons lend further evidence to our phylogenetic finding. Our molecular datings suggest that Pinaceae first evolved during Early Jurassic, and diversification of Pinaceous subfamilies and genera took place during Mid-Jurassic and Lower Cretaceous, respectively. Using different maximum-likelihood divergences as thresholds, we conclude that 2 (Abietoideae and Larix–Pseudotsuga–Piceae–Cathaya–Pinus), 4 (Cedrus, non-Cedrus Abietoideae, Larix–Pseudotsuga, and Piceae–Cathaya–Pinus), or 5 (Cedrus, non-Cedrus Abietoideae, Larix–Pseudotsuga, Picea, and Cathaya–Pinus) groups/subfamilies are more reasonable delimitations for Pinaceae. Specifically, our views on subfamilial classifications differ from previous studies in terms of the rank of Cedrus and with recognition of more than two subfamilies. PMID:20651328

  20. Hierarchical structure of the Sicilian goats revealed by Bayesian analyses of microsatellite information.

    PubMed

    Siwek, M; Finocchiaro, R; Curik, I; Portolano, B

    2011-02-01

    Genetic structure and relationship amongst the main goat populations in Sicily (Girgentana, Derivata di Siria, Maltese and Messinese) were analysed using information from 19 microsatellite markers genotyped on 173 individuals. A posterior Bayesian approach implemented in the program STRUCTURE revealed a hierarchical structure with two clusters at the first level (Girgentana vs. Messinese, Derivata di Siria and Maltese), explaining 4.8% of variation (amovaФ(ST) estimate). Seven clusters nested within these first two clusters (further differentiations of Girgentana, Derivata di Siria and Maltese), explaining 8.5% of variation (amovaФ(SC) estimate). The analyses and methods applied in this study indicate their power to detect subtle population structure.

  1. A chloroplast genealogy of myrmecophytic Macaranga species (Euphorbiaceae) in Southeast Asia reveals hybridization, vicariance and long-distance dispersals.

    PubMed

    Bänfer, Gudrun; Moog, Ute; Fiala, Brigitte; Mohamed, Maryati; Weising, Kurt; Blattner, Frank R

    2006-12-01

    Macaranga (Euphorbiaceae) includes about 280 species with a palaeotropic distribution. The genus not only comprises some of the most prominent pioneer tree species in Southeast Asian lowland dipterocarp forests, it also exhibits a substantial radiation of ant-plants (myrmecophytes). Obligate ant-plant mutualisms are formed by about 30 Macaranga species and 13 ant species of the genera Crematogaster or Camponotus. To improve our understanding of the co-evolution of the ants and their host plants, we aim at reconstructing comparative organellar phylogeographies of both partners across their distributional range. Preliminary evidence indicated that chloroplast DNA introgression among closely related Macaranga species might occur. We therefore constructed a comprehensive chloroplast genealogy based on DNA sequence data from the noncoding ccmp2, ccmp6, and atpB-rbcL regions for 144 individuals from 41 Macaranga species, covering all major evolutionary lineages within the three sections that contain myrmecophytes. A total of 88 chloroplast haplotypes were identified, and grouped into a statistical parsimony network that clearly distinguished sections and well-defined subsectional groups. Within these groups, the arrangement of haplotypes followed geographical rather than taxonomical criteria. Thus, up to six chloroplast haplotypes were found within single species, and up to seven species shared a single haplotype. The spatial distribution of the chloroplast types revealed several dispersals between the Malay Peninsula and Borneo, and a deep split between Sabah and the remainder of Borneo. Our large-scale chloroplast genealogy highlights the complex history of migration, hybridization, and speciation in the myrmecophytes of the genus Macaranga. It will serve as a guideline for adequate sampling and data interpretation in phylogeographic studies of individual Macaranga species and species groups.

  2. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus

    PubMed Central

    Martin, William; Rujan, Tamas; Richly, Erik; Hansen, Andrea; Cornelsen, Sabine; Lins, Thomas; Leister, Dario; Stoebe, Bettina; Hasegawa, Masami; Penny, David

    2002-01-01

    Chloroplasts were once free-living cyanobacteria that became endosymbionts, but the genomes of contemporary plastids encode only ≈5–10% as many genes as those of their free-living cousins, indicating that many genes were either lost from plastids or transferred to the nucleus during the course of plant evolution. Previous estimates have suggested that between 800 and perhaps as many as 2,000 genes in the Arabidopsis genome might come from cyanobacteria, but genome-wide phylogenetic surveys that could provide direct estimates of this number are lacking. We compared 24,990 proteins encoded in the Arabidopsis genome to the proteins from three cyanobacterial genomes, 16 other prokaryotic reference genomes, and yeast. Of 9,368 Arabidopsis proteins sufficiently conserved for primary sequence comparison, 866 detected homologues only among cyanobacteria and 834 other branched with cyanobacterial homologues in phylogenetic trees. Extrapolating from these conserved proteins to the whole genome, the data suggest that ≈4,500 of Arabidopsis protein-coding genes (≈18% of the total) were acquired from the cyanobacterial ancestor of plastids. These proteins encompass all functional classes, and the majority of them are targeted to cell compartments other than the chloroplast. Analysis of 15 sequenced chloroplast genomes revealed 117 nuclear-encoded proteins that are also still present in at least one chloroplast genome. A phylogeny of chloroplast genomes inferred from 41 proteins and 8,303 amino acids sites indicates that at least two independent secondary endosymbiotic events have occurred involving red algae and that amino acid composition bias in chloroplast proteins strongly affects plastid genome phylogeny. PMID:12218172

  3. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus.

    PubMed

    Martin, William; Rujan, Tamas; Richly, Erik; Hansen, Andrea; Cornelsen, Sabine; Lins, Thomas; Leister, Dario; Stoebe, Bettina; Hasegawa, Masami; Penny, David

    2002-09-17

    Chloroplasts were once free-living cyanobacteria that became endosymbionts, but the genomes of contemporary plastids encode only approximately 5-10% as many genes as those of their free-living cousins, indicating that many genes were either lost from plastids or transferred to the nucleus during the course of plant evolution. Previous estimates have suggested that between 800 and perhaps as many as 2,000 genes in the Arabidopsis genome might come from cyanobacteria, but genome-wide phylogenetic surveys that could provide direct estimates of this number are lacking. We compared 24,990 proteins encoded in the Arabidopsis genome to the proteins from three cyanobacterial genomes, 16 other prokaryotic reference genomes, and yeast. Of 9,368 Arabidopsis proteins sufficiently conserved for primary sequence comparison, 866 detected homologues only among cyanobacteria and 834 other branched with cyanobacterial homologues in phylogenetic trees. Extrapolating from these conserved proteins to the whole genome, the data suggest that approximately 4,500 of Arabidopsis protein-coding genes ( approximately 18% of the total) were acquired from the cyanobacterial ancestor of plastids. These proteins encompass all functional classes, and the majority of them are targeted to cell compartments other than the chloroplast. Analysis of 15 sequenced chloroplast genomes revealed 117 nuclear-encoded proteins that are also still present in at least one chloroplast genome. A phylogeny of chloroplast genomes inferred from 41 proteins and 8,303 amino acids sites indicates that at least two independent secondary endosymbiotic events have occurred involving red algae and that amino acid composition bias in chloroplast proteins strongly affects plastid genome phylogeny.

  4. Genetic diversity and structure of natural fragmented Chamaecyparis obtusa populations as revealed by microsatellite markers.

    PubMed

    Matsumoto, Asako; Uchida, Kohji; Taguchi, Yuriko; Tani, Naoki; Tsumura, Yoshihiko

    2010-09-01

    The genetic diversity and population structure of hinoki (Chamaecyparis obtusa) in Japan were investigated by examining the distribution of alleles at 13 microsatellite loci in 25 natural populations from Iwaki in northern Japan to Yakushima Island in southern Japan. On average, 26.9 alleles per locus were identified across all populations and 4.0% of the genetic variation was retained among populations (G(ST) = 0.040). According to linkage disequilibrium analysis, estimates of effective population size and detected evidence of bottleneck events, the genetic diversity of some populations may have declined as a result of fragmentation and/or over-exploitation. The central populations located in the Chubu district appear to have relatively large effective population sizes, while marginal populations, such as the Yakushima, Kobayashi and Iwaki populations, have smaller effective population sizes and are isolated from the other populations. Microsatellite analysis revealed the genetic uniqueness of the Yakushima population. Although genetic differentiation between populations was low, we detected a gradual cline in the genetic structure and found that locus Cos2619 may be non-neutral with respect to natural selection.

  5. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line

    PubMed Central

    Xu, Wenjing; Lv, Hongjun; Zhao, Mingming; Li, Yongchao; Qi, Yueying; Peng, Zhenying; Xia, Guangmin; Wang, Mengcheng

    2016-01-01

    We previously bred a salt tolerant wheat cv. SR3 with bread wheat cv. JN177 as the parent via asymmetric somatic hybridization, and found that the tolerance is partially attributed to the superior photosynthesis capacity. Here, we compared the proteomes of two cultivars to unravel the basis of superior photosynthesis capacity. In the maps of two dimensional difference gel electrophoresis (2D-DIGE), there were 26 differentially expressed proteins (DEPs), including 18 cultivar-based and 8 stress-responsive ones. 21 of 26 DEPs were identified and classified into four categories, including photosynthesis, photosynthesis system stability, linolenic acid metabolism, and protein synthesis in chloroplast. The chloroplast localization of some DEPs confirmed that the identified DEPs function in the chloroplast. The overexpression of a DEP enhanced salt tolerance in Arabidopsis thaliana. In line with these data, it is concluded that the contribution of chloroplast to high salinity tolerance of wheat cv. SR3 appears to include higher photosynthesis efficiency by promoting system protection and ROS clearance, stronger production of phytohormone JA by enhancing metabolism activity, and modulating the in chloroplast synthesis of proteins. PMID:27562633

  6. Proteomic analysis of changes in the Kandelia candel chloroplast proteins reveals pathways associated with salt tolerance.

    PubMed

    Wang, Lingxia; Pan, Dezhuo; Li, Jian; Tan, Fanglin; Hoffmann-Benning, Susanne; Liang, Wenyu; Chen, Wei

    2015-02-01

    The plant chloroplast is one of the most sensitive organelles in response to salt stress. Chloroplast proteins extracted from seedling leaves were separated by two-dimensional gel electrophoresis (2-DE). More than 600 protein spots could be distinguished on each gel. Fifty-eight differentially expressed protein spots were detected, of which 46 could be identified through matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). These proteins were found to be involved in multiple aspects of chloroplast metabolism pathways such as photosynthesis, ATP synthesis, detoxification and antioxidation processes, nitrogen assimilation and fixation, protein metabolism, and tetrapyrrole biosynthesis. The results indicated that K. candel could withstand up to 500 mM NaCl stress for a measured period of 3 days, by maintaining normal or high photosynthetic electron transfer efficiency and an only slightly stimulated Calvin cycle. Meanwhile, we found that ROS scavenging, nitrogen assimilation, protein degradation and chaperone function in chloroplasts were also of importance for salt tolerance of K. candel. The ultrastructural and physiological data agree with chloroplast proteome results. These findings allow further exploration of our knowledge on salt adaptation in woody halophytes and may contribute to the development of more salt-tolerant plants in the future.

  7. POLYMORPHIC CHLOROPLAST MICROSATELLITE MARKERS IN THE OCTOPLOID LEPIDIUM MEYENII (BRASSICACEAE) AND CROSS-SPECIES AMPLIFICATION IN LEPIDIUM

    PubMed Central

    Hasan, Nabeeh A.; Mummenhoff, Klaus; Quiros, Carlos F.; Tay, C. David; Bailey, C. Donovan

    2013-01-01

    Premise of the study As a crop and medicinal plant, the octoploid Andean endemic Lepidium meyenii suffers from taxonomic uncertainty. Few molecular markers are available to genotype individuals or track gene flow in wild and cultivated material. Methods and Results Using available sequence data, eight cpSSR primer pairs were developed for L. meyenii. Levels of polymorphism checked in 56 individual L. meyenii, including cultivated and wild material, revealed that the number of alleles per locus ranged from three to five, and intrapopulation allele frequencies ranged from 0.071 to 1.0. Polymerase-chain-reaction screens using our cpSSR primers in 27 other Lepidium species and three Coronopus species suggested a high degree of interspecific amplification. Conclusions These polymorphic cpSSR markers should prove useful in characterizing genetic variation among cultivated and wild L. meyenii. Additionally, interspecific amplifications suggest that these markers will be useful for the study of related taxa. PMID:21616787

  8. Microsatellite development for the genus Guibourtia (Fabaceae, Caesalpinioideae) reveals diploid and polyploid species1

    PubMed Central

    Tosso, Felicien; Doucet, Jean-Louis; Kaymak, Esra; Daïnou, Kasso; Duminil, Jérôme; Hardy, Olivier J.

    2016-01-01

    Premise of the study: Nuclear microsatellites (nSSRs) were designed for Guibourtia tessmannii (Fabaceae, Caesalpinioideae), a highly exploited African timber tree, to study population genetic structure and gene flow. Methods and Results: We developed 16 polymorphic nSSRs from a genomic library tested in three populations of G. tessmannii and two populations of G. coleosperma. These nSSRs display three to 14 alleles per locus (mean 8.94) in G. tessmannii. Cross-amplification tests in nine congeneric species demonstrated that the genus Guibourtia contains diploid and polyploid species. Flow cytometry results combined with nSSR profiles suggest that G. tessmannii is octoploid. Conclusions: nSSRs revealed that African Guibourtia species include both diploid and polyploid species. These markers will provide information on the mating system, patterns of gene flow, and genetic structure of African Guibourtia species. PMID:27437170

  9. The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction.

    PubMed

    Lin, Ching-Ping; Wu, Chung-Shien; Huang, Ya-Yi; Chaw, Shu-Miaw

    2012-01-01

    We determined the complete chloroplast genome (cpDNA) of Ginkgo biloba (common name: ginkgo), the only relict of ginkgophytes from the Triassic Period. The cpDNA molecule of ginkgo is quadripartite and circular, with a length of 156,945 bp, which is 6,458 bp shorter than that of Cycas taitungensis. In ginkgo cpDNA, rpl23 becomes pseudo, only one copy of ycf2 is retained, and there are at least five editing sites. We propose that the retained ycf2 is a duplicate of the ancestral ycf2, and the ancestral one has been lost from the inverted repeat A (IR(A)). This loss event should have occurred and led to the contraction of IRs after ginkgos diverged from other gymnosperms. A novel cluster of three transfer RNA (tRNA) genes, trnY-AUA, trnC-ACA, and trnSeC-UCA, was predicted to be located between trnC-GCA and rpoB of the large single-copy region. Our phylogenetic analysis strongly suggests that the three predicted tRNA genes are duplicates of trnC-GCA. Interestingly, in ginkgo cpDNA, the loss of one ycf2 copy does not significantly elevate the synonymous rate (Ks) of the retained copy, which disagrees with the view of Perry and Wolfe (2002) that one of the two-copy genes is subjected to elevated Ks when its counterpart has been lost. We hypothesize that the loss of one ycf2 is likely recent, and therefore, the acquired Ks of the retained copy is low. Our data reveal that ginkgo possesses several unique features that contribute to our understanding of the cpDNA evolution in seed plants.

  10. [Differentiation of chum salmon Oncorhynchus keta Walbaum populations as revealed with microsatellite and allozyme markers: a comparison].

    PubMed

    Rubtsoba, G A; Afanas'ev, K I; Malinina, T V; Shitova, M V; Rakitskaia, T A; Prokhorovskaia, V D; Zhivotovskiĭ, L A

    2008-07-01

    The character and extent of population differentiation in chum salmon Oncorhynchus keta from Sakhalin and Iturup were comparatively studied with 10 microsatellite and 12 allozyme markers. It was demonstrated with the example of allozyme polymorphism at the EstD locus that the effect of an individual locus with one major allele is capable of distorting the total picture of population differentiation. Multiallelic microsatellites were more efficient in revealing the genetic structure of chum salmon populations at the levels of differences between regional populations and between the stocks of individual rivers of the same region.

  11. Phenotypic, histological and proteomic analyses reveal multiple differences associated with chloroplast development in yellow and variegated variants from Camellia sinensis

    PubMed Central

    Ma, Chengying; Cao, Junxi; Li, Jianke; Zhou, Bo; Tang, Jinchi; Miao, Aiqing

    2016-01-01

    Leaf colour variation is observed in several plants. We obtained two types of branches with yellow and variegated leaves from Camellia sinensis. To reveal the mechanisms that underlie the leaf colour variations, combined morphological, histological, ionomic and proteomic analyses were performed using leaves from abnormal branches (variants) and normal branches (CKs). The measurement of the CIE-Lab coordinates showed that the brightness and yellowness of the variants were more intense than the CKs. When chloroplast profiles were analysed, HY1 (branch with yellow leaves) and HY2 (branch with variegated leaves) displayed abnormal chloroplast structures and a reduced number and size compared with the CKs, indicating that the abnormal chloroplast development might be tightly linked to the leaf colour variations. Moreover, the concentration of elemental minerals was different between the variants and the CKs. Furthermore, DEPs (differentially expressed proteins) were identified in the variants and the CKs by a quantitative proteomics analysis using the label-free approach. The DEPs were significantly involved in photosynthesis and included PSI, PSII, cytochrome b6/f complex, photosynthetic electron transport, LHC and F-type ATPase. Our results suggested that a decrease in the abundance of photosynthetic proteins might be associated with the changes of leaf colours in tea plants. PMID:27633059

  12. Cryo-EM structure of the spinach chloroplast ribosome reveals the location of plastid-specific ribosomal proteins and extensions.

    PubMed

    Graf, Michael; Arenz, Stefan; Huter, Paul; Dönhöfer, Alexandra; Nováček, Jiří; Wilson, Daniel N

    2016-12-15

    Ribosomes are the protein synthesizing machines of the cell. Recent advances in cryo-EM have led to the determination of structures from a variety of species, including bacterial 70S and eukaryotic 80S ribosomes as well as mitoribosomes from eukaryotic mitochondria, however, to date high resolution structures of plastid 70S ribosomes have been lacking. Here we present a cryo-EM structure of the spinach chloroplast 70S ribosome, with an average resolution of 5.4 Å for the small 30S subunit and 3.6 Å for the large 50S ribosomal subunit. The structure reveals the location of the plastid-specific ribosomal proteins (RPs) PSRP1, PSRP4, PSRP5 and PSRP6 as well as the numerous plastid-specific extensions of the RPs. We discover many features by which the plastid-specific extensions stabilize the ribosome via establishing additional interactions with surrounding ribosomal RNA and RPs. Moreover, we identify a large conglomerate of plastid-specific protein mass adjacent to the tunnel exit site that could facilitate interaction of the chloroplast ribosome with the thylakoid membrane and the protein-targeting machinery. Comparing the Escherichia coli 70S ribosome with that of the spinach chloroplast ribosome provides detailed insight into the co-evolution of RP and rRNA.

  13. DEEP DIVISION IN THE CHLOROPHYCEAE (CHLOROPHYTA) REVEALED BY CHLOROPLAST PHYLOGENOMIC ANALYSES(1).

    PubMed

    Turmel, Monique; Brouard, Jean-Simon; Gagnon, Cédric; Otis, Christian; Lemieux, Claude

    2008-06-01

    The Chlorophyceae (sensu Mattox and Stewart) is a morphologically diverse class of the Chlorophyta displaying biflagellate and quadriflagellate motile cells with varying configurations of the flagellar apparatus. Phylogenetic analyses of 18S rDNA data and combined 18S and 26S rDNA data from a broad range of chlorophycean taxa uncovered five major monophyletic groups (Chlamydomonadales, Sphaeropleales, Oedogoniales, Chaetophorales, and Chaetopeltidales) but could not resolve their branching order. To gain insight into the interrelationships of these groups, we analyzed multiple genes encoded by the chloroplast genomes of Chlamydomonas reinhardtii P. A. Dang. and Chlamydomonas moewusii Gerloff (Chlamydomonadales), Scenedesmus obliquus (Turpin) Kütz. (Sphaeropleales), Oedogonium cardiacum Wittr. (Oedogoniales), Stigeoclonium helveticum Vischer (Chaetophorales), and Floydiella terrestris (Groover et Hofstetter) Friedl et O'Kelly (Chaetopeltidales). The C. moewusii, Oedogonium, and Floydiella chloroplast DNAs were partly sequenced using a random strategy. Trees were reconstructed from nucleotide and amino acid data sets derived from 44 protein-coding genes of 11 chlorophytes and nine streptophytes as well as from 57 protein-coding genes of the six chlorophycean taxa. All best trees identified two robustly supported major lineages within the Chlorophyceae: a clade uniting the Chlamydomonadales and Sphaeropleales, and a clade uniting the Oedogoniales, Chaetophorales, and Chaetopeltidales (OCC clade). This dichotomy is independently supported by molecular signatures in chloroplast genes, such as insertions/deletions and the distribution of trans-spliced group II introns. Within the OCC clade, the sister relationship observed for the Chaetophorales and Chaetopeltidales is also strengthened by independent data. Character state reconstruction of basal body orientation allowed us to refine hypotheses regarding the evolution of the flagellar apparatus.

  14. Comparative proteomics of chloroplasts envelopes from bundle sheath and mesophyll chloroplasts reveals novel membrane proteins with a possible role in c4-related metabolite fluxes and development.

    PubMed

    Manandhar-Shrestha, K; Tamot, B; Pratt, E P S; Saitie, S; Bräutigam, A; Weber, A P M; Hoffmann-Benning, Susanne

    2013-01-01

    As the world population grows, our need for food increases drastically. Limited amounts of arable land lead to a competition between food and fuel crops, while changes in the global climate may impact future crop yields. Thus, a second "green revolution" will need a better understanding of the processes essential for plant growth and development. One approach toward the solution of this problem is to better understand regulatory and transport processes in C4 plants. C4 plants display an up to 10-fold higher apparent CO2 assimilation and higher yields while maintaining high water use efficiency. This requires differential regulation of mesophyll (M) and bundle sheath (BS) chloroplast development as well as higher metabolic fluxes of photosynthetic intermediates between cells and particularly across chloroplast envelopes. While previous analyses of overall chloroplast membranes have yielded significant insight, our comparative proteomics approach using enriched BS and M chloroplast envelopes of Zea mays allowed us to identify 37 proteins of unknown function that have not been seen in these earlier studies. We identified 280 proteins, 84% of which are known/predicted to be present in chloroplasts. Seventy-four percent have a known or predicted membrane association. Twenty-one membrane proteins were 2-15 times more abundant in BS cells, while 36 of the proteins were more abundant in M chloroplast envelopes. These proteins could represent additional candidates of proteins essential for development or metabolite transport processes in C4 plants. RT-PCR confirmed differential expression of 13 candidate genes. Chloroplast association for seven proteins was confirmed using YFP/GFP labeling. Gene expression of four putative transporters was examined throughout the leaf and during the greening of leaves. Genes for a PIC-like protein and an ER-AP-like protein show an early transient increase in gene expression during the transition to light. In addition, PIC gene expression is

  15. What phylogeny and gene genealogy analyses reveal about homoplasy in citrus microsatellite alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sixty-five microsatellite alleles from three Simple Sequence Repeat (SSR) loci (cAGG9, CCT01 and GT03) of various Citrus, Fortunella or Poncirus accessions were cloned and sequenced to determine their mode of evolution. This data was used to assess sequence variation by calculating the average numb...

  16. Fine spatial structure of Atlantic hake (Merluccius merluccius) stocks revealed by variation at microsatellite loci.

    PubMed

    Castillo, Ana G F; Martinez, Jose L; Garcia-Vazquez, Eva

    2004-01-01

    Genetic variation at 5 microsatellite loci was analyzed for European hake Merluccius merluccius sampled from 9 different regions in the Atlantic Ocean and the Mediterranean Sea. Significant genetic differentiation was found between samples, suggesting a fine subdivision of Atlantic and Mediterranean hake stocks. These results are discussed in the context of the decline of demersal fish species, probably due to overfishing.

  17. Variations in a hotspot region of chloroplast DNAs among common wheat and Aegilops revealed by nucleotide sequence analysis.

    PubMed

    Guo, Chang-Hong; Terachi, Toru

    2005-08-01

    The second largest BamHI fragment (B2) of the chloroplast DNA in Triticum (wheat) and Aegilops contains a highly variable region (a hotspot), resulting in four types of B2 of different size, i.e. B2l (10.5kb), B2m (10.2kb), B2 (9.6kb) and B2s (9.4kb). In order to gain a better understanding of the molecular nature of the variations in length and explain unexpected identity among B2 of Ae. ovata, Ae. speltoides and common wheat (T. aestivum), the nucleotide sequence between a stop codon of rbcL and a HindIII site in cemA in the hotspot was determined for Ae. ovata, Ae. speltoides, Ae. caudata and Ae. mutica. The total number of nucleotides in the region was 2808, 2810, 3302, and 3594 bp, for Ae. speltoides, Ae. ovata, Ae. caudata and Ae. mutica, respectively, and the sequences were compared with the corresponding ones of Ae. crassa 4x, T. aestivum and Ae. squarrosa. Compared with the largest B2l fragment of Ae. mutica, a 791bp and a 793 bp deletion were found in Ae. speltoides and Ae. ovata, respectively, and the possible site of deletion in the two species is the same as that of T. aestivum. However, a deleted segment in Ae. ovata is 2 bp longer than that of Ae. speltoides (and T. aestivum), demonstrating that recurrent deletions had occurred in the chloroplast genomes of both species. Comparison of the sequences from Ae. caudata and Ae. crassa 4x with that of Ae. mutica revealed a 289 bp and a 61 bp deletion at the same site in Ae. caudata and Ae. crassa 4x, respectively. Sequence comparison using wild Aegilops plants showed that the large length variations in a hotspot are fixed to each species. A considerable number of polymorphisms are observed in a loop in the 3' of rbcL. The study reveals the relative importance of the large and small indels and minute inversions to account for variations in the chloroplast genomes among closely related species.

  18. Unique haplotypes of cacao trees as revealed by trnH-psbA chloroplast DNA.

    PubMed

    Gutiérrez-López, Nidia; Ovando-Medina, Isidro; Salvador-Figueroa, Miguel; Molina-Freaner, Francisco; Avendaño-Arrazate, Carlos H; Vázquez-Ovando, Alfredo

    2016-01-01

    Cacao trees have been cultivated in Mesoamerica for at least 4,000 years. In this study, we analyzed sequence variation in the chloroplast DNA trnH-psbA intergenic spacer from 28 cacao trees from different farms in the Soconusco region in southern Mexico. Genetic relationships were established by two analysis approaches based on geographic origin (five populations) and genetic origin (based on a previous study). We identified six polymorphic sites, including five insertion/deletion (indels) types and one transversion. The overall nucleotide diversity was low for both approaches (geographic = 0.0032 and genetic = 0.0038). Conversely, we obtained moderate to high haplotype diversity (0.66 and 0.80) with 10 and 12 haplotypes, respectively. The common haplotype (H1) for both networks included cacao trees from all geographic locations (geographic approach) and four genetic groups (genetic approach). This common haplotype (ancient) derived a set of intermediate haplotypes and singletons interconnected by one or two mutational steps, which suggested directional selection and event purification from the expansion of narrow populations. Cacao trees from Soconusco region were grouped into one cluster without any evidence of subclustering based on AMOVA (F ST = 0) and SAMOVA (F ST = 0.04393) results. One population (Mazatán) showed a high haplotype frequency; thus, this population could be considered an important reservoir of genetic material. The indels located in the trnH-psbA intergenic spacer of cacao trees could be useful as markers for the development of DNA barcoding.

  19. Unique haplotypes of cacao trees as revealed by trnH-psbA chloroplast DNA

    PubMed Central

    Gutiérrez-López, Nidia; Ovando-Medina, Isidro; Salvador-Figueroa, Miguel; Molina-Freaner, Francisco; Avendaño-Arrazate, Carlos H.

    2016-01-01

    Cacao trees have been cultivated in Mesoamerica for at least 4,000 years. In this study, we analyzed sequence variation in the chloroplast DNA trnH-psbA intergenic spacer from 28 cacao trees from different farms in the Soconusco region in southern Mexico. Genetic relationships were established by two analysis approaches based on geographic origin (five populations) and genetic origin (based on a previous study). We identified six polymorphic sites, including five insertion/deletion (indels) types and one transversion. The overall nucleotide diversity was low for both approaches (geographic = 0.0032 and genetic = 0.0038). Conversely, we obtained moderate to high haplotype diversity (0.66 and 0.80) with 10 and 12 haplotypes, respectively. The common haplotype (H1) for both networks included cacao trees from all geographic locations (geographic approach) and four genetic groups (genetic approach). This common haplotype (ancient) derived a set of intermediate haplotypes and singletons interconnected by one or two mutational steps, which suggested directional selection and event purification from the expansion of narrow populations. Cacao trees from Soconusco region were grouped into one cluster without any evidence of subclustering based on AMOVA (FST = 0) and SAMOVA (FST = 0.04393) results. One population (Mazatán) showed a high haplotype frequency; thus, this population could be considered an important reservoir of genetic material. The indels located in the trnH-psbA intergenic spacer of cacao trees could be useful as markers for the development of DNA barcoding. PMID:27076998

  20. Chloroplast DNA phylogeography reveals colonization history of a Neotropical tree, Cedrela odorata L., in Mesoamerica.

    PubMed

    Cavers, S; Navarro, C; Lowe, A J

    2003-06-01

    Spanish Cedar (Cedrela odorata L.) is a globally important timber species which has been severely exploited in Mesoamerica for over 200 years. Using polymerase chain reaction-restriction fragment length polymorphisms, its chloroplast (cp) DNA phylogeography was studied in Mesoamerica with samples from 29 populations in six countries. Five haplotypes were characterized, phylogenetically grouped into three lineages (Northern, Central and Southern). Spatial analysis of ordered genetic distance confirmed deviation from a pattern of isolation by distance. The geographically proximate Northern and Central cpDNA lineages were genetically the most differentiated, with the Southern lineage appearing between them on a minimum spanning tree. However, populations possessing Southern lineage haplotypes occupy distinct moist habitats, in contrast to populations possessing Northern and Central lineage haplotypes which occupy drier and more seasonal habitats. Given the known colonization of the proto-Mesoamerican peninsula by South American flora and fauna prior to the formation of the Isthmus of Panama, it seems most likely that the observed population structure in C. odorata results from repeated colonization of Mesoamerica from South American source populations. Such a model would imply an ancient, pre-Isthmian colonization of a dry-adapted type (possessing the Northern lineage or a prototype thereof), with a secondary colonization via the land bridge. Following this, a more recent (possibly post-Pleistocene) expansion of moist-adapted types possessing the Southern lineage from the south fits the known vegetation history of the region.

  1. A microsatellite linkage map of striped bass (Morone saxatilis) reveals conserved synteny with the three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    Liu, Sixin; Rexroad, Caird E; Couch, Charlene R; Cordes, Jan F; Reece, Kimberly S; Sullivan, Craig V

    2012-04-01

    The striped bass (Morone saxatilis) and its relatives (genus Morone) are of great importance to fisheries and aquaculture in North America. As part of a collaborative effort to employ molecular genetics technologies in striped bass breeding programs, we previously developed nearly 500 microsatellite markers. The objectives of this study were to construct a microsatellite linkage map of striped bass and to examine conserved synteny between striped bass and three-spined stickleback (Gasterosteus aculeatus). Of 480 microsatellite markers screened for polymorphism, 289 informative markers were identified and used to genotype two half-sib mapping families. Twenty-six linkage groups were assembled, and only two markers remain unlinked. The sex-averaged map spans 1,623.8 cM with an average marker density of 5.78 cM per marker. Among 287 striped bass microsatellite markers assigned to linkage groups, 169 (58.9%) showed homology to sequences on stickleback chromosomes or scaffolds. Comparison between the stickleback genome and the striped bass linkage map revealed conserved synteny between these two species. This is the first linkage map for any of the Morone species. This map will be useful for molecular mapping and marker-assisted selection of genes of interest in striped bass breeding programs. The conserved synteny between striped bass and stickleback will facilitate fine mapping of genome regions of interest and will serve as a new resource for comparative mapping with other Perciform fishes such as European sea bass (Dicentrarchus labrax), gilthead sea bream (Sparus aurata), and tilapia (Oreochromis ssp.).

  2. Microsatellite analysis reveals remating by wild Mediterranean fruit fly females, Ceratitis capitata.

    PubMed

    Bonizzoni, M; Katsoyannos, B I; Marguerie, R; Guglielmino, C R; Gasperi, G; Malacrida, A; Chapman, T

    2002-10-01

    Accurate estimates of remating in wild female insects are required for an understanding of the causes of variation in remating between individuals, populations and species. Such estimates are also of profound importance for major economic fruit pests such as the Mediterranean fruit fly (Ceratitis capitata). A major method for the suppression of this pest is the sterile insect technique (SIT), which relies on matings between mass-reared, sterilized males and wild females. Remating by wild females will thus impact negatively on the success of SIT. We used microsatellite markers to determine the level of remating in wild (field-collected) Mediterranean fruit fly females from the Greek Island of Chios. We compared the four locus microsatellite genotypes of these females and their offspring. Our data showed 7.1% of wild females remated. Skewed paternity among progeny arrays provided further evidence for double matings. Our lowest estimate of remating was 3.8% and the highest was 21%.

  3. Microsatellite analysis of Rosa damascena Mill. accessions reveals genetic similarity between genotypes used for rose oil production and old Damask rose varieties.

    PubMed

    Rusanov, K; Kovacheva, N; Vosman, B; Zhang, L; Rajapakse, S; Atanassov, A; Atanassov, I

    2005-08-01

    Damask roses are grown in several European and Asiatic countries for rose oil production. Twenty-six oil-bearing Rosa damascena Mill. accessions and 13 garden Damask roses were assayed by molecular markers. Microsatellite genotyping demonstrated that R. damascena Mill. accessions from Bulgaria, Iran, and India and old European Damask rose varieties possess identical microsatellite profiles, suggesting a common origin. At the same time, the data indicated that modern industrial oil rose cultivation is based on a very narrow genepool and that oil rose collections contain many genetically identical accessions. The study of long-term vegetative propagation of the Damask roses also reveals high somatic stability for the microsatellite loci analyzed.

  4. Isolation of novel microsatellites using FIASCO by dual probe enrichment from Jatropha curcas L. and study on genetic equilibrium and diversity of Indian population revealed by isolated microsatellites.

    PubMed

    Sudheer, Pamidimarri D V N; Rahman, Hifzur; Mastan, Shaik G; Reddy, Muppala P

    2010-12-01

    Jatropha curcas L. belongs to family Euphorbiaceae, native to South America attained significant importance for its seed oil which can be converted to biodiesel, a renewable energy source alternative to conventional petrodiesel. Very few attempts were made to isolate novel microsatellite markers and assessment of the extent of genetic equilibrium and diversity that exists in J. curcas. Therefore, the present investigation was undertaken to isolate the novel microsatellites and access genetic equilibrium, diversity that exists among 44 diverse germplasm collected from distinct geographical areas in India using isolated microsatellites. The overall efficiency of the enrichment of microsatellite by dual probe in the present study found to be 54% and among the sequences obtained the percentage of sequences having suitable flanking regions for the primer designing was found to be 89.58%. The mean co-efficient of genetic similarity (CGS) was found to be 0.97. The overall diversity obtained by microsatellites was found to be low in comparison with the diversity reported by multilocus markers systems observed in earlier studies; however, the good allele polymorphism was observed. The overall dendrogram of microsatellite analysis resulted in random clustering of germplasm and not in accordance to geographical area of collection. The present study, diversity analysis using microsatellite markers concludes the low genetic diversity and genetic disequlibrium of J. curcas in India and will provide pavement for further intra-population studies on narrow geographical areas to understand the population genetic structure, phylogeography and molecular ecological studies. The germplasm characterized, and the microsatellite markers isolated and characterized in the present study can be employed efficiently in breeding programs for genetic improvement of the species through marker assisted selection and QTL analysis, for further genetic resource management and help in making the J

  5. Clinal variation at microsatellite loci reveals historical secondary intergradation between glacial races of Coregonus artedi (Teleostei: Coregoninae).

    PubMed

    Turgeon, J; Bernatchez, L

    2001-11-11

    Classical models of the spatial structure of population genetics rely on the assumption of migration-drift equilibrium, which is seldom met in natural populations having only recently colonized their current range (e.g., postglacial). Population structure then depicts historical events, and counfounding effects due to recent secondary contact between recently differentiated lineages can further counfound analyses of association between geographic and genetic distances. Mitochondrial polymorphisms have revealed the existence of two closely related lineages of the lake cisco, Coregonus artedi, whose significantly different but overlaping geographical distributions provided a weak signal of past range fragmentation blurred by putative subsequent extensive secondary contacts. In this study, we analyzed geographical patterns of genetic variation at seven microsatellite loci among 22 populations of lake cisco located along the axis of an area covered by proglacial lakes 12,000-8,000 years ago in North America. The results clearly confirmed the existence of two genetically distinct races characterized by different sets of microsatellite alleles whose frequencies varied clinally across some 3000 km. Equilibrium and nonequilibrium analyses of isolation by distance revealed historical signal of gene flow resulting from the nearly complete admixture of these races following neutral secondary contacts in their historical habitat and indicated that the colonization process occurred by a stepwise expansion of an eastern (Atlantic) race into a previously established Mississippian race. This historical signal of equilibrium contrasted with the current migration-drift disequilibrium within major extant watersheds and was apparently maintained by high effective population sizes and low migration regimes.

  6. Chloroplast phylogenomic data from the green algal order Sphaeropleales (Chlorophyceae, Chlorophyta) reveal complex patterns of sequence evolution.

    PubMed

    Fučíková, Karolina; Lewis, Paul O; Lewis, Louise A

    2016-05-01

    Chloroplast sequence data are widely used to infer phylogenies of plants and algae. With the increasing availability of complete chloroplast genome sequences, the opportunity arises to resolve ancient divergences that were heretofore problematic. On the flip side, properly analyzing large multi-gene data sets can be a major challenge, as these data may be riddled with systematic biases and conflicting signals. Our study contributes new data from nine complete and four fragmentary chloroplast genome sequences across the green algal order Sphaeropleales. Our phylogenetic analyses of a 56-gene data set show that analyzing these data on a nucleotide level yields a well-supported phylogeny - yet one that is quite different from a corresponding amino acid analysis. We offer some possible explanations for this conflict through a range of analyses of modified data sets. In addition, we characterize the newly sequenced genomes in terms of their structure and content, thereby further contributing to the knowledge of chloroplast genome evolution.

  7. Expression of Fungal Cutinase and Swollenin in Tobacco Chloroplasts Reveals Novel Enzyme Functions and/or Substrates

    PubMed Central

    Verma, Dheeraj; Jin, Shuangxia; Kanagaraj, Anderson; Singh, Nameirakpam D.; Daniel, Jaiyanth; Kolattukudy, Pappachan E.; Miller, Michael; Daniell, Henry

    2013-01-01

    In order to produce low-cost biomass hydrolyzing enzymes, transplastomic lines were generated that expressed cutinase or swollenin within chloroplasts. While swollenin expressing plants were homoplasmic, cutinase transplastomic lines remained heteroplasmic. Both transplastomic lines showed interesting modifications in their phenotype, chloroplast structure, and functions. Ultrastructural analysis of chloroplasts from cutinase- and swollenin-expressing plants did not show typical lens shape and granal stacks. But, their thylakoid membranes showed unique scroll like structures and chloroplast envelope displayed protrusions, stretching into the cytoplasm. Unusual honeycomb structures typically observed in etioplasts were observed in mature chloroplasts expressing swollenin. Treatment of cotton fiber with chloroplast-derived swollenin showed enlarged segments and the intertwined inner fibers were irreversibly unwound and fully opened up due to expansin activity of swollenin, causing disruption of hydrogen bonds in cellulose fibers. Cutinase transplastomic plants showed esterase and lipase activity, while swollenin transplastomic lines lacked such enzyme activities. Higher plants contain two major galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), in their chloroplast thylakoid membranes that play distinct roles in their structural organization. Surprisingly, purified cutinase effectively hydrolyzed DGDG to MGDG, showing alpha galactosidase activity. Such hydrolysis resulted in unstacking of granal thylakoids in chloroplasts and other structural changes. These results demonstrate DGDG as novel substrate and function for cutinase. Both MGDG and DGDG were reduced up to 47.7% and 39.7% in cutinase and 68.5% and 67.5% in swollenin expressing plants. Novel properties and functions of both enzymes reported here for the first time should lead to better understanding and enhanced biomass hydrolysis. PMID:23451186

  8. Chloroplast and nuclear photorelocation movements

    PubMed Central

    WADA, Masamitsu

    2016-01-01

    Chloroplasts move toward weak light to increase photosynthetic efficiency, and migrate away from strong light to protect chloroplasts from photodamage and eventual cell death. These chloroplast behaviors were first observed more than 100 years ago, but the underlying mechanism has only recently been identified. Ideal plant materials, such as fern gametophytes for photobiological and cell biological approaches, and Arabidopsis thaliana for genetic analyses, have been used along with sophisticated methods, such as partial cell irradiation and time-lapse video recording under infrared light to study chloroplast movement. These studies have revealed precise chloroplast behavior, and identified photoreceptors, other relevant protein components, and novel actin filament structures required for chloroplast movement. In this review, our findings regarding chloroplast and nuclear movements are described. PMID:27840388

  9. Bayesian inference of a complex invasion history revealed by nuclear and chloroplast genetic diversity in the colonizing plant, Silene latifolia.

    PubMed

    Keller, Stephen R; Gilbert, Kimberly J; Fields, Peter D; Taylor, Douglas R

    2012-10-01

    Species invading new ranges are subject to a series of demographic events that can strongly shape genetic diversity. Describing this demographic history is important for understanding where invasive species come from and how they spread, and is critical to testing hypotheses of postinvasion adaptation. Here, we analyse nuclear and chloroplast genetic diversity to study the invasion history of the widespread colonizing weed, Silene latifolia (Caryophyllaceae). Bayesian clustering and PCA revealed strong population structure in the native range of Europe, and although genotypes from multiple native sources were present in the introduced range of North America, the spatial distribution of genetic variance was dramatically reorganized. Using approximate Bayesian computation (ABC), we compared support for different invasion scenarios, including the number and size of independent introduction events and the amount of admixture occurring between sources of introduced genotypes. Our results supported independent introductions into eastern and western North America, with the latter forming a bridgehead for a secondary invasion into the Great Lakes region of central North America. Despite small estimated founder population sizes, the duration of the demographic bottleneck after the initial introduction appeared extremely short-lived. This pattern of repeated colonization and rapid expansion has effectively eroded the strong population structure and cytonuclear associations present in Europe, but has retained overall high genetic diversity since invasion. Our results highlight the flexibility of the ABC approach for constructing a narrative of the demographic history of species invasions and provide baseline for future studies of evolutionary changes in introduced S. latifolia populations.

  10. ChloroSeq, an Optimized Chloroplast RNA-Seq Bioinformatic Pipeline, Reveals Remodeling of the Organellar Transcriptome Under Heat Stress

    PubMed Central

    Castandet, Benoît; Hotto, Amber M.; Strickler, Susan R.; Stern, David B.

    2016-01-01

    Although RNA-Seq has revolutionized transcript analysis, organellar transcriptomes are rarely assessed even when present in published datasets. Here, we describe the development and application of a rapid and convenient method, ChloroSeq, to delineate qualitative and quantitative features of chloroplast RNA metabolism from strand-specific RNA-Seq datasets, including processing, editing, splicing, and relative transcript abundance. The use of a single experiment to analyze systematically chloroplast transcript maturation and abundance is of particular interest due to frequent pleiotropic effects observed in mutants that affect chloroplast gene expression and/or photosynthesis. To illustrate its utility, ChloroSeq was applied to published RNA-Seq datasets derived from Arabidopsis thaliana grown under control and abiotic stress conditions, where the organellar transcriptome had not been examined. The most appreciable effects were found for heat stress, which induces a global reduction in splicing and editing efficiency, and leads to increased abundance of chloroplast transcripts, including genic, intergenic, and antisense transcripts. Moreover, by concomitantly analyzing nuclear transcripts that encode chloroplast gene expression regulators from the same libraries, we demonstrate the possibility of achieving a holistic understanding of the nucleus-organelle system. ChloroSeq thus represents a unique method for streamlining RNA-Seq data interpretation of the chloroplast transcriptome and its regulators. PMID:27402360

  11. Genetic diversity and conservation implications of four Cupressus species in China as revealed by microsatellite markers.

    PubMed

    Lu, Xu; Xu, Haiyan; Li, Zhonghu; Shang, Huiying; Adams, Robert P; Mao, Kangshan

    2014-04-01

    Understanding the extent and distribution of genetic diversity is crucial for the conservation and management of endangered species. Cupressus chengiana, C. duclouxiana, C. gigantea, and C. funebris are four ecologically and economically important species in China. We investigated their genetic diversity, population structure, and extant effective population size (35 populations, 484 individuals) employing six pairs of nuclear microsatellite markers (selected from 53). Their genetic diversity is moderate among conifers, and genetic differentiation among populations is much lower in C. gigantea than in the other three species; the estimated effective population size was largest for C. chengiana, at 1.70, 2.91, and 3.91 times the estimates for C. duclouxiana, C. funebris, and C. gigantea, respectively. According to Bayesian clustering analysis, the most plausible population subdivision scheme within species is two groups in C. chengiana, three groups in C. duclouxiana, and a single group for both C. funebris and C. gigantea. We propose a conservation strategy for these cypress species.

  12. Chloroplast movement.

    PubMed

    Wada, Masamitsu

    2013-09-01

    Chloroplast movement is important for plant survival under high light and for efficient photosynthesis under low light. This review introduces recent knowledge on chloroplast movement and shows how to analyze the responses and the moving mechanisms, potentially inspiring research in this field. Avoidance from the strong light is mediated by blue light receptor phototropin 2 (phot2) plausibly localized on the chloroplast envelop and accumulation at the week light-irradiated area is mediated by phot1 and phot2 localized on the plasma membrane. Chloroplasts move by chloroplast actin (cp-actin) filaments that must be polymerized by Chloroplast Unusual Positioning1 (CHUP1) at the front side of moving chloroplast. To understand the signal transduction pathways and the mechanism of chloroplast movement, that is, from light capture to motive force-generating mechanism, various methods should be employed based on the various aspects. Observation of chloroplast distribution pattern under different light condition by fixed cell sectioning is somewhat an old-fashioned technique but the most basic and important way. However, most importantly, precise chloroplast behavior during and just after the induction of chloroplast movement by partial cell irradiation using an irradiator with either low light or strong light microbeam should be recorded by time lapse photographs under infrared light and analyzed. Recently various factors involved in chloroplast movement, such as cp-actin filaments and CHUP1, could be traced in Arabidopsis transgenic lines with fluorescent protein tags under a confocal laser scanning microscope (CLSM) and/or a total internal reflection fluorescence microscope (TIRFM). These methods are listed and their advantages and disadvantages are evaluated.

  13. The Complete Sequence of the Acacia ligulata Chloroplast Genome Reveals a Highly Divergent clpP1 Gene.

    PubMed

    Williams, Anna V; Boykin, Laura M; Howell, Katharine A; Nevill, Paul G; Small, Ian

    2015-01-01

    Legumes are a highly diverse angiosperm family that include many agriculturally important species. To date, 21 complete chloroplast genomes have been sequenced from legume crops confined to the Papilionoideae subfamily. Here we report the first chloroplast genome from the Mimosoideae, Acacia ligulata, and compare it to the previously sequenced legume genomes. The A. ligulata chloroplast genome is 174,233 bp in size, comprising inverted repeats of 38,225 bp and single-copy regions of 92,798 bp and 4,985 bp [corrected]. Acacia ligulata lacks the inversion present in many of the Papilionoideae, but is not otherwise significantly different in terms of gene and repeat content. The key feature is its highly divergent clpP1 gene, normally considered essential in chloroplast genomes. In A. ligulata, although transcribed and spliced, it probably encodes a catalytically inactive protein. This study provides a significant resource for further genetic research into Acacia and the Mimosoideae. The divergent clpP1 gene suggests that Acacia will provide an interesting source of information on the evolution and functional diversity of the chloroplast Clp protease complex.

  14. The Complete Sequence of the Acacia ligulata Chloroplast Genome Reveals a Highly Divergent clpP1 Gene

    PubMed Central

    Williams, Anna V.; Boykin, Laura M.; Howell, Katharine A.; Nevill, Paul G.; Small, Ian

    2015-01-01

    Legumes are a highly diverse angiosperm family that include many agriculturally important species. To date, 21 complete chloroplast genomes have been sequenced from legume crops confined to the Papilionoideae subfamily. Here we report the first chloroplast genome from the Mimosoideae, Acacia ligulata, and compare it to the previously sequenced legume genomes. The A. ligulata chloroplast genome is 158,724 bp in size, comprising inverted repeats of 25,925 bp and single-copy regions of 88,576 bp and 18,298 bp. Acacia ligulata lacks the inversion present in many of the Papilionoideae, but is not otherwise significantly different in terms of gene and repeat content. The key feature is its highly divergent clpP1 gene, normally considered essential in chloroplast genomes. In A. ligulata, although transcribed and spliced, it probably encodes a catalytically inactive protein. This study provides a significant resource for further genetic research into Acacia and the Mimosoideae. The divergent clpP1 gene suggests that Acacia will provide an interesting source of information on the evolution and functional diversity of the chloroplast Clp protease complex. PMID:25955637

  15. Genetic Analysis of Arabidopsis Mutants Impaired in Plastid Lipid Import Reveals a Role of Membrane Lipids in Chloroplast Division

    SciTech Connect

    Fan, J.; Xu, C.

    2011-03-01

    The biogenesis of photosynthetic membranes in plants relies largely on lipid import from the endoplasmic reticulum (ER) and this lipid transport process is mediated by TGD proteins in Arabidopsis. Such a dependency of chloroplast biogenesis on ER-to-plastid lipid transport was recently exemplified by analyzing double mutants between tgd1-1 or tgd4-3 and fad6 mutants. The fad6 mutants are defective in the desaturation of membrane lipids in chloroplasts and therefore dependent on import of polyunsaturated lipid precursors from the ER for constructing a competent thylakoid membrane system. In support of a critical role of TGD proteins in ER-to-plastid lipid trafficking, we showed that the introduction of the tgd mutations into fad6 mutant backgrounds led to drastic reductions in relative amounts of thylakoid lipids. Moreover, the tgd1-1 fad6 and tgd4-3 fad6 double mutants were deficient in polyunsaturated fatty acids in chloroplast membrane lipids, and severely compromised in the biogenesis of photosynthetic membrane systems. Here we report that these double mutants are severely impaired in chloroplast division. The possible role of membrane lipids in chloroplast division is discussed.

  16. RAPID-COMMUNICATION Genetic diversity and differentiation in natural populations of Arapaima gigas from lower Amazon revealed by microsatellites.

    PubMed

    Fazzi-Gomes, P F; Melo, N; Palheta, G; Guerreiro, S; Amador, M; Ribeiro-Dos-Santos, A K; Santos, S; Hamoy, I

    2017-02-08

    Genetic variability is one of the important criteria for species conservation decisions. This study aimed to analyze the genetic diversity and the population differentiation of two natural populations of Arapaima gigas, a species with a long history of being commercially exploited. We collected 87 samples of A. gigas from Grande Curuai Lake and Paru Lake, located in the Lower Amazon region of Amazônia, Brazil, and genotyped these samples using a multiplex panel of microsatellite markers. Our results showed that the populations of A. gigas analyzed had high levels of genetic variability, which were similar to those described in previous studies. These two populations had a significant population differentiation supported by the estimates of FST and RST (0.06), by Bayesian analysis (K = 2), and by population assignment tests, which revealed a moderate genetic distance.

  17. Microsatellite markers reveal the potential for kin selection on black grouse leks

    PubMed Central

    glund, J. H; Alatalo, R. V.; Lundberg, A.; ki, P. T. Rintam; Lindell, J.

    1999-01-01

    The evolution of social behaviour has puzzled biologists since Darwin. Since Hamilton's theoretical work in the 1960s it has been realized that social behaviour may evolve through the effects of kinship. By helping relatives, an individual may pass on its genes despite negative effects on its own reproduction. Leks are groups of males that females visit primarily to mate. The selective advantage for males to join such social groups has been given much recent attention, but no clear picture has yet emerged. Here we show, using microsatellite analysis, that males but not females of a lekking bird (the black grouse, Tetrao tetrix) are genetically structured at the lek level. We interpret this structuring to be the effects of strong natal philopatry in males. This has the consequence that males on any specific lek should be more related than expected by chance as indicated by our genetic data. Our results thus suggest that kin selection is a factor that needs to be considered in the evolution and maintenance of the lek mating system in black grouse and sheds new light on models of lek evolution.

  18. Microsatellite genotyping reveals end-Pleistocene decline in mammoth autosomal genetic variation.

    PubMed

    Nyström, Veronica; Humphrey, Joanne; Skoglund, Pontus; McKeown, Niall J; Vartanyan, Sergey; Shaw, Paul W; Lidén, Kerstin; Jakobsson, Mattias; Barnes, Ian; Angerbjörn, Anders; Lister, Adrian; Dalén, Love

    2012-07-01

    The last glaciation was a dynamic period with strong impact on the demography of many species and populations. In recent years, mitochondrial DNA sequences retrieved from radiocarbon-dated remains have provided novel insights into the history of Late Pleistocene populations. However, genotyping of loci from the nuclear genome may provide enhanced resolution of population-level changes. Here, we use four autosomal microsatellite DNA markers to investigate the demographic history of woolly mammoths (Mammuthus primigenius) in north-eastern Siberia from before 60 000 years ago up until the species' final disappearance c.4000 years ago. We identified two genetic groups, implying a marked temporal genetic differentiation between samples with radiocarbon ages older than 12 thousand radiocarbon years before present (ka) and those younger than 9ka. Simulation-based analysis indicates that this dramatic change in genetic composition, which included a decrease in individual heterozygosity of approximately 30%, was due to a multifold reduction in effective population size. A corresponding reduction in genetic variation was also detected in the mitochondrial DNA, where about 65% of the diversity was lost. We observed no further loss in genetic variation during the Holocene, which suggests a rapid final extinction event.

  19. Reconstruction of parental microsatellite genotypes reveals female polyandry and philopatry in the lemon shark, Negaprion brevirostris.

    PubMed

    Feldheim, Kevin A; Gruber, Samuel H; Ashley, Mary V

    2004-10-01

    Because sharks possess an unusual suite of reproductive characteristics, including internal fertilization, sperm storage, relatively low fecundity, and reproductive modes that range from oviparity to viviparity, they can provide important insight into the evolution of mating systems and sexual selection. Yet, to date, few studies have characterized behavioral and genetic mating systems in natural populations of sharks or other elasmobranchs. In this study, highly polymorphic microsatellite loci were used to examine breeding biology of a large coastal shark, the lemon shark, Negaprion brevirostris, at a tropical lagoon nursery. Over six years, 910 lemon sharks were sampled and genotyped. Young were assigned into sibling groups that were then used to reconstruct genotypes of unsampled adults. We assigned 707 of 735 young sharks to one of 45 female genotypes (96.2%), and 485 (66.0%) were assigned to a male genotype. Adult female sharks consistently returned to Bimini on a biennial cycle to give birth. Over 86% of litters had multiple sires. Such high levels of polyandry raise the possibility that polyandry evolved in viviparous sharks to reduce genetic incompatibilities between mother and embryos. We did not find a relationship between relatedness of mates and the number of offspring produced, indicating that inbreeding avoidance was probably not driving pre- or postcopulatory mate choice. Adult male sharks rarely sired more than one litter at Bimini and may mate over a broader geographic area.

  20. High genetic diversity and connectivity in Colossoma macropomum in the Amazon basin revealed by microsatellite markers.

    PubMed

    Fazzi-Gomes, Paola; Guerreiro, Sávio; Palheta, Glauber David Almeida; Melo, Nuno Filipe Alves Correa de; Santos, Sidney; Hamoy, Igor

    2017-02-06

    Colossoma macropomum is the second largest scaled fish of the Amazon. It is economically important for commercial fisheries and for aquaculture, but few studies have examined the diversity and genetic structure of natural populations of this species. The aim of this study was to investigate the levels of genetic variability and connectivity that exist between three natural populations of C. macropomum from the Amazon basin. In total, 247 samples were collected from the municipalities of Tefé, Manaus, and Santarém. The populations were genotyped using a panel of 12 multiplex microsatellite markers. The genetic diversity found in these populations was high and similar to other populations described in the literature. These populations showed a pattern of high gene flow associated with the lack of a genetic structure pattern, indicating that the number of migrants per generation and recent migration rates are high. The values of the FST, RST, and exact test of differentiation were not significant for pairwise comparisons between populations. The Bayesian population clustering analysis indicated a single population. Thus, the data provide evidence for high genetic diversity and high gene flow among C. macropomum populations in the investigated region of the Amazon basin. This information is important for programs aiming at the conservation of natural populations.

  1. Gene flow of Acanthaster planci (L.) in relation to ocean currents revealed by microsatellite analysis.

    PubMed

    Yasuda, Nina; Nagai, Satoshi; Hamaguchi, Masami; Okaji, Ken; Gérard, Karin; Nadaoka, Kazuo

    2009-04-01

    Population outbreaks of the coral-eating starfish, Acanthaster planci, are hypothesized to spread to many localities in the Indo-Pacific Ocean through dispersal of planktonic larvae. To elucidate the gene flow of A. planci across the Indo-Pacific in relation to ocean currents and to test the larval dispersal hypothesis, the genetic structure among 23 samples over the Indo-Pacific was analysed using seven highly polymorphic microsatellite loci. The F-statistics and genetic admixture analysis detected genetically distinct groups in accordance with ocean current systems, that is, the Southeast African group (Kenya and Mayotte), the Northwestern Pacific group (the Philippines and Japan), Palau, the North Central Pacific group (Majuro and Pohnpei), the Great Barrier Reef, Fiji, and French Polynesia, with a large genetic break between the Indian and Pacific Oceans. A pattern of significant isolation by distance was observed among all samples (P = 0.001, r = 0.88, n = 253, Mantel test), indicating restricted gene flow among the samples in accordance with geographical distances. The data also indicated strong gene flow within the Southeast African, Northwestern Pacific, and Great Barrier Reef groups. These results suggest that the western boundary currents have strong influence on gene flow of this species and may trigger secondary outbreaks.

  2. Fragmentation of sea bass populations in the western and eastern Mediterranean as revealed by microsatellite polymorphism.

    PubMed Central

    Bahri-Sfar, L; Lemaire, C; Ben Hassine, O K; Bonhomme, F

    2000-01-01

    We studied the genetic structure at six microsatellite loci of the Mediterranean sea bass (Dicentrarchus labrax) on 19 samples collected from different localities in the western and eastern Mediterranean basins. Significant divergence was found between the two basins. The distance tree showed two separate clusters of populations which matched well with geography, with the noticeable exception of one Egyptian sample which grouped within the western clade, a fact attributable to the introduction of aquaculture broodstock. No heterogeneity was observed within the western basin (theta = 0.0014 and n.s.). However, a significant level of differentiation was found among samples of the eastern Mediterranean (theta = 0.026 and p < 0.001). These results match with water currents but probably not with the dispersal abilities of this fish species. We thus hypothesize that selective forces are at play which limit long-range dispersal, a fact to be taken into account in the debate about speciation processes in the marine environment. PMID:10853737

  3. Microsatellite analysis reveals strong but differential impact of a social parasite on its two host species.

    PubMed

    Fischer-Blass, Birgit; Heinze, Jürgen; Foitzik, Susanne

    2006-03-01

    The speed and the dynamics of the co-evolutionary process strongly depend on the relative strengths of reciprocal selection pressures exerted by the interacting species. Here, we investigate the influence of an obligate social parasite, the slave-making ant Harpagoxenus sublaevis, on populations of the two main host species Leptothorax acervorum and Leptothorax muscorum from a German ant community. A combination of genetic and demographic data allowed us to analyse the consequences of raiding pressure on the hosts' life history and possible host preferences of the parasite. We can demonstrate that slave raids during which the social parasite pillages brood from neighbouring host colonies are both frequent and extremely destructive for both host species. Microsatellite analysis showed that, on average, a single slave-maker colony conducts more than three raids per year and that host colonies mostly perish in the aftermath of these parasite attacks. Only in few cases, surviving nests of previously raided host colonies were found in the surroundings of slave-maker colonies. As a consequence of the high prevalence of parasites and their recurrent and devastating slave raids on host colonies, the life expectancy of host colonies was severely reduced. Combining our results on host-specific parasitic colony founding and raiding frequencies with the post-raid survival rate, we can demonstrate an overall higher mortality rate for the smaller host species L. muscorum. This might be caused by a preference of H. sublaevis for this secondary host species as demographic data on host species usage indicate.

  4. Microsatellite Loci Analysis Reveals Post-bottleneck Recovery of Genetic Diversity in the Tibetan Antelope

    PubMed Central

    Du, Yurong; Zou, Xiaoyan; Xu, Yongtao; Guo, Xinyi; Li, Shuang; Zhang, Xuze; Su, Mengyu; Ma, Jianbin; Guo, Songchang

    2016-01-01

    The Tibetan antelope (chiru, Pantholops hodgsoni) is one of the most endangered mammals native to the Qinghai-Tibetan Plateau. The population size has rapidly declined over the last century due to illegal hunting and habitat damage. In the past 10 years, the population has reportedly been expanding due to conservation efforts. Several lines of evidence suggest that the Tibetan antelope has undergone a demographic bottleneck. However, the consequences of the bottleneck on genetic diversity and the post-bottleneck genetic recovery remain unknown. In this study, we investigate the genetic variation of 15 microsatellite loci from two Tibetan antelope populations sampled in 2003 (Pop2003) and 2013 (Pop2013). A higher level of genetic diversity (NA, 13.286; He, 0.840; PIC, 0.813; I, 2.114) was detected in Pop2013, compared to Pop2003 (NA, 12.929; He, 0.818; PIC, 0.789; I, 2.033). We observe that despite passing through the bottleneck, the Tibetan antelope retains high levels of genetic diversity. Furthermore, our results show significant or near significant increases in genetic diversity (He, PIC and I) in Pop2013 compared with Pop2003, which suggests that protection efforts did not arrive too late for the Tibetan antelope. PMID:27739522

  5. Microsatellites loci reveal heterozygosis and population structure in vampire bats (Desmodus rotundus) (Chiroptera: Phyllostomidae) of Mexico.

    PubMed

    Romero-Nava, Claudia; León-Paniagua, Livia; Ortega, Jorge

    2014-06-01

    A limited number of studies have focused on the population genetic structure of vampire bats (Desmous rotundus) in America. This medium-sized bat is distributed in tropical areas of the continent with high prevalence in forested livestock areas. The aim of this work was to characterize the vampire population structure and their genetic differentiation. For this, we followed standard methods by which live vampires (caught by mist-netting) and preserved material from scientific collections, were obtained for a total of 15 different locations, ranging from Chihuahua (North) to Quintana Roo (Southeast). Tissue samples were obtained from both live and collected animals, and the genetic differentiation, within and among localities, was assessed by the use of seven microsatellite loci. Our results showed that all loci were polymorphic and no private alleles were detected. High levels of heterozygosis were detected when the proportion of alleles in each locus were compared. Pairwise (ST) and R(ST) detected significant genetic differentiation among individuals from different localities. Our population structure results indicate the presence of eleven clusters, with a high percentage of assigned individuals to some specific collecting site.

  6. Microsatellite Marker Analysis Reveals the Complex Phylogeographic History of Rhododendron ferrugineum (Ericaceae) in the Pyrenees

    PubMed Central

    Charrier, Olivia; Dupont, Pierre; Pornon, André; Escaravage, Nathalie

    2014-01-01

    Genetic variation within plant species is determined by a number of factors such as reproductive mode, breeding system, life history traits and climatic events. In alpine regions, plants experience heterogenic abiotic conditions that influence the population's genetic structure. The aim of this study was to investigate the genetic structure and phylogeographic history of the subalpine shrub Rhododendron ferrugineum across the Pyrenees and the links between the populations in the Pyrenees, the Alps and Jura Mountains. We used 27 microsatellite markers to genotype 645 samples from 29 Pyrenean populations, three from the Alps and one from the Jura Mountains. These data were used to estimate population genetics statistics such as allelic richness, observed heterozygosity, expected heterozygosity, fixation index, inbreeding coefficient and number of migrants. Genetic diversity was found to be higher in the Alps than in the Pyrenees suggesting colonization waves from the Alps to the Pyrenees. Two separate genetic lineages were found in both the Alps and Pyrenees, with a substructure of five genetic clusters in the Pyrenees where a loss of genetic diversity was noted. The strong differentiation among clusters is maintained by low gene flow across populations. Moreover, some populations showed higher genetic diversity than others and presented rare alleles that may indicate the presence of alpine refugia. Two lineages of R. ferrugineum have colonized the Pyrenees from the Alps. Then, during glaciation events R. ferrugineum survived in the Pyrenees in different refugia such as lowland refugia at the eastern part of the chain and nunataks at high elevations leading to a clustered genetic pattern. PMID:24667824

  7. Microsatellite markers reveal strong genetic structure in the endemic Chilean dolphin.

    PubMed

    Pérez-Alvarez, María José; Olavarría, Carlos; Moraga, Rodrigo; Baker, C Scott; Hamner, Rebecca M; Poulin, Elie

    2015-01-01

    Understanding genetic differentiation and speciation processes in marine species with high dispersal capabilities is challenging. The Chilean dolphin, Cephalorhynchus eutropia, is the only endemic cetacean of Chile and is found in two different coastal habitats: a northern habitat with exposed coastlines, bays and estuaries from Valparaíso (33°02'S) to Chiloé (42°00'S), and a southern habitat with highly fragmented inshore coastline, channels and fjords between Chiloé and Navarino Island (55°14'S). With the aim of evaluating the potential existence of conservation units for this species, we analyzed the genetic diversity and population structure of the Chilean dolphin along its entire range. We genotyped 21 dinucleotide microsatellites for 53 skin samples collected between 1998 and 2012 (swab: n = 8, biopsy: n = 38, entanglement n = 7). Bayesian clustering and spatial model analyses identified two genetically distinct populations corresponding to the northern and southern habitats. Genetic diversity levels were similar in the two populations (He: 0.42 v/s 0.45 for southern and northern populations, respectively), while effective size population was higher in the southern area (Ne: 101 v/s 39). Genetic differentiation between these two populations was high and significant (FST = 0.15 and RST = 0.19), indicating little or no current gene flow. Because of the absence of evident geographical barriers between the northern and southern populations, we propose that genetic differentiation may reflect ecological adaptation to the different habitat conditions and resource uses. Therefore, the two genetic populations of this endemic and Near Threatened species should be considered as different conservation units with independent management strategies.

  8. Microsatellite Markers Reveal Strong Genetic Structure in the Endemic Chilean Dolphin

    PubMed Central

    Pérez-Alvarez, María José; Olavarría, Carlos; Moraga, Rodrigo; Baker, C. Scott; Hamner, Rebecca M.; Poulin, Elie

    2015-01-01

    Understanding genetic differentiation and speciation processes in marine species with high dispersal capabilities is challenging. The Chilean dolphin, Cephalorhynchus eutropia, is the only endemic cetacean of Chile and is found in two different coastal habitats: a northern habitat with exposed coastlines, bays and estuaries from Valparaíso (33°02′S) to Chiloé (42°00′S), and a southern habitat with highly fragmented inshore coastline, channels and fjords between Chiloé and Navarino Island (55°14′S). With the aim of evaluating the potential existence of conservation units for this species, we analyzed the genetic diversity and population structure of the Chilean dolphin along its entire range. We genotyped 21 dinucleotide microsatellites for 53 skin samples collected between 1998 and 2012 (swab: n = 8, biopsy: n = 38, entanglement n = 7). Bayesian clustering and spatial model analyses identified two genetically distinct populations corresponding to the northern and southern habitats. Genetic diversity levels were similar in the two populations (He: 0.42 v/s 0.45 for southern and northern populations, respectively), while effective size population was higher in the southern area (Ne: 101 v/s 39). Genetic differentiation between these two populations was high and significant (FST = 0.15 and RST = 0.19), indicating little or no current gene flow. Because of the absence of evident geographical barriers between the northern and southern populations, we propose that genetic differentiation may reflect ecological adaptation to the different habitat conditions and resource uses. Therefore, the two genetic populations of this endemic and Near Threatened species should be considered as different conservation units with independent management strategies. PMID:25898340

  9. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers

    PubMed Central

    2014-01-01

    Background Tea is one of the most popular beverages in the world. Many species in the Thea section of the Camellia genus can be processed for drinking and have been domesticated. However, few investigations have focused on the genetic consequence of domestication and geographic origin of landraces on tea plants using credible wild and planted populations of a single species. Here, C. taliensis provides us with a unique opportunity to explore these issues. Results Fourteen nuclear microsatellite loci were employed to determine the genetic diversity and domestication origin of C. taliensis, which were represented by 587 individuals from 25 wild, planted and recently domesticated populations. C. taliensis showed a moderate high level of overall genetic diversity. The greater reduction of genetic diversity and stronger genetic drift were detected in the wild group than in the recently domesticated group, indicating the loss of genetic diversity of wild populations due to overexploitation and habitat fragmentation. Instead of the endangered wild trees, recently domesticated individuals were used to compare with the planted trees for detecting the genetic consequence of domestication. A little and non-significant reduction in genetic diversity was found during domestication. The long life cycle, selection for leaf traits and gene flow between populations will delay the emergence of bottleneck in planted trees. Both phylogenetic and assignment analyses suggested that planted trees may have been domesticated from the adjacent central forest of western Yunnan and dispersed artificially to distant places. Conclusions This study contributes to the knowledge about levels and distribution of genetic diversity of C. taliensis and provides new insights into genetic consequence of domestication and geographic origin of planted trees of this species. As an endemic tea source plant, wild, planted and recently domesticated C. taliensis trees should all be protected for their unique

  10. Chloroplast movement.

    PubMed

    Wada, Masamitsu; Kagawa, Takatoshi; Sato, Yoshikatsu

    2003-01-01

    The study of chloroplast movement made a quantum leap at the beginning of the twenty-first century. Research based on reverse-genetic approaches using targeted mutants has brought new concepts to this field. One of the most exciting findings has been the discovery of photoreceptors for both accumulation and avoidance responses in Arabidopsis and in the fern Adiantum. Evidence for the adaptive advantage of chloroplast avoidance movements in plant survival has also been found. Additional discoveries include mechano-stress-induced chloroplast movement in ferns and mosses, and microtubule-mediated chloroplast movement in the moss Physcomitrella. The possible ecological significance of chloroplast movement is discussed in the final part of this review.

  11. 5-aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast.

    PubMed

    Naeem, Muhammad S; Warusawitharana, Hasitha; Liu, Hongbo; Liu, Dan; Ahmad, Rashid; Waraich, Ejaz Ahmad; Xu, Ling; Zhou, Weijun

    2012-08-01

    5-Aminolevulinic acid (ALA) is an important plant growth regulator which is derived from 5-carbon aliphatic amino acid. The present study investigates the interaction of increasing NaCl-salinity and ALA on plant growth, leaf pigment composition, leaf and root Na(+)/K(+) ratio and chloroplast ultrastructure in mesophyll cells of oilseed rape (Brassica napus) leaves. The plants were treated hydroponically with three different salinity levels (0, 100, 200 mM) and foliar application of ALA (30 mg l(-1)) simultaneously. Ten days after treatment, higher NaCl-salinity significantly reduced the plant biomass and height. However, ALA application restored the plant biomass and plant height under saline conditions. A concentration-dependent increase in Na(+) uptake was observed in the aerial parts of B. napus plants. On the other hand, ALA reduced Na(+) uptake, leading to a significant decrease in Na(+)/K(+) ratio. Accumulation of Na(+) augmented the oxidative stress, which was evident by electron microscopic images, highlighting several changes in cell shape and size, chloroplast swelling, increased number of plastogloubli, reduced starch granules and dilations of the thylakoids. Foliar application of ALA improved the energy supply and investment in mechanisms (higher chlorophyll and carotenoid contents, enhanced photosynthetic efficiency), reduced the oxidative stress as evident by the regular shaped chloroplasts with more intact thylakoids. On the basis of these results we can suggest that ALA is a promising plant growth regulator which can improve plant survival under salinity.

  12. Crystallization of the c[subscript 14]-rotor of the chloroplast ATP synthase reveals that it contains pigments

    SciTech Connect

    Varco-Merth, Benjamin; Fromme, Raimund; Wang, Meitian; Fromme, Petra

    2008-08-27

    The ATP synthase is one of the most important enzymes on earth as it couples the transmembrane electrochemical potential of protons to the synthesis of ATP from ADP and inorganic phosphage, providing the main ATP source of almost all higher life on earth. During ATP synthesis, stepwise protonation of a conserved carboxylate on each protein subunit of an oligomeric ring of 10--15 c-subunits is commonly thought to drive rotation of the rotor moiety (c{sub 10-14}{gamma}{sup {epsilon}}) relative to stator moiety ({alpha}{sub 3}{beta}{sub 3}{delta}ab{sub 2}). Here we report the isolation and crystallization of the c{sub 14}-ring of subunit c from the spinach chloroplast enzyme diffracting as far as 2.8 {angstrom}. Though ATP synthase was not previously know to contain any pigments, the crystals of the c-subunit possessed a strong yellow color. The pigment analysis revaled that they contain 1 chlorophyll and 2 carotenoids, thereby showing for the first time that the chloroplast ATP synthase contains cofactors, leading to the question of the possible roles of the functions of the pigments in the chloroplast ATP synthase.

  13. Genetic diversity and differentiation in reef-building Millepora species, as revealed by cross-species amplification of fifteen novel microsatellite loci.

    PubMed

    Dubé, Caroline E; Planes, Serge; Zhou, Yuxiang; Berteaux-Lecellier, Véronique; Boissin, Emilie

    2017-01-01

    Quantifying the genetic diversity in natural populations is crucial to address ecological and evolutionary questions. Despite recent advances in whole-genome sequencing, microsatellite markers have remained one of the most powerful tools for a myriad of population genetic approaches. Here, we used the 454 sequencing technique to develop microsatellite loci in the fire coral Millepora platyphylla, an important reef-builder of Indo-Pacific reefs. We tested the cross-species amplification of these loci in five other species of the genus Millepora and analysed its success in correlation with the genetic distances between species using mitochondrial 16S sequences. We succeeded in discovering fifteen microsatellite loci in our target species M. platyphylla, among which twelve were polymorphic with 2-13 alleles and a mean observed heterozygosity of 0.411. Cross-species amplification in the five other Millepora species revealed a high probability of amplification success (71%) and polymorphism (59%) of the loci. Our results show no evidence of decreased heterozygosity with increasing genetic distance. However, only one locus enabled measures of genetic diversity in the Caribbean species M. complanata due to high proportions of null alleles for most of the microsatellites. This result indicates that our novel markers may only be useful for the Indo-Pacific species of Millepora. Measures of genetic diversity revealed significant linkage disequilibrium, moderate levels of observed heterozygosity (0.323-0.496) and heterozygote deficiencies for the Indo-Pacific species. The accessibility to new polymorphic microsatellite markers for hydrozoan Millepora species creates new opportunities for future research on processes driving the complexity of their colonisation success on many Indo-Pacific reefs.

  14. Genetic diversity and differentiation in reef-building Millepora species, as revealed by cross-species amplification of fifteen novel microsatellite loci

    PubMed Central

    Planes, Serge; Zhou, Yuxiang; Berteaux-Lecellier, Véronique; Boissin, Emilie

    2017-01-01

    Quantifying the genetic diversity in natural populations is crucial to address ecological and evolutionary questions. Despite recent advances in whole-genome sequencing, microsatellite markers have remained one of the most powerful tools for a myriad of population genetic approaches. Here, we used the 454 sequencing technique to develop microsatellite loci in the fire coral Millepora platyphylla, an important reef-builder of Indo-Pacific reefs. We tested the cross-species amplification of these loci in five other species of the genus Millepora and analysed its success in correlation with the genetic distances between species using mitochondrial 16S sequences. We succeeded in discovering fifteen microsatellite loci in our target species M. platyphylla, among which twelve were polymorphic with 2–13 alleles and a mean observed heterozygosity of 0.411. Cross-species amplification in the five other Millepora species revealed a high probability of amplification success (71%) and polymorphism (59%) of the loci. Our results show no evidence of decreased heterozygosity with increasing genetic distance. However, only one locus enabled measures of genetic diversity in the Caribbean species M. complanata due to high proportions of null alleles for most of the microsatellites. This result indicates that our novel markers may only be useful for the Indo-Pacific species of Millepora. Measures of genetic diversity revealed significant linkage disequilibrium, moderate levels of observed heterozygosity (0.323–0.496) and heterozygote deficiencies for the Indo-Pacific species. The accessibility to new polymorphic microsatellite markers for hydrozoan Millepora species creates new opportunities for future research on processes driving the complexity of their colonisation success on many Indo-Pacific reefs. PMID:28243525

  15. Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers (SSR).

    PubMed

    Hasnaoui, Nejib; Buonamici, Anna; Sebastiani, Federico; Mars, Messaoud; Zhang, Dapeng; Vendramin, Giovanni G

    2012-02-01

    Pomegranate (Punica granatum L.) is one of the oldest known edible fruits and more and more it arouse interest of scientific community given its numerous biological activities. However, information about its genetic resources and characterization using reliable molecular markers are still scarce. In the present study, we report the development of 4 new polymorphic SSR markers. They have been used in addition to 11 SSRs previously published to investigate molecular diversity of 33 P. granatum ecotypes. Based on the multi-locus profiles, twenty-two distinctive genotypes were identified. Globally, quite low genetic diversity has been revealed, as measured by allele richness (2.83 per locus) and heterozygosity (He=0.245; Ho=0.243), reflecting the narrow genetic background of the plant material. Four synonymous groups could be detected involving 15 accessions. Results of ordination and cluster analysis suggested that almost all the Tunisian cultivars share similar genetic background, and are likely derived from a small number of introductions in ancient times. Results issued from this study provide essential information to project a pomegranate core-collection without plant material duplication and for sustainable management of pomegranate landraces at national and international level. Furthermore, these SSR markers are powerful tool for marker assisted selection (MAS) program and for QTL studies.

  16. Heterogeneous evolution of microsatellites revealed by reconstruction of recent mutation history in an invasive apomictic snail, Potamopyrgus antipodarum.

    PubMed

    Weetman, David; Hauser, Lorenz; Carvalho, Gary R

    2006-05-01

    Heterogeneous patterns of microsatellite evolution present a major challenge for the development of mutation models, and an improved understanding of the determinants of variation in mutation rates and patterns among loci, alleles and taxa is required. A 19th Century bottleneck associated with the introduction of clones of the snail Potamopyrgus antipodarum to Britain presented an opportunity to reconstruct recent microsatellite evolution within the most common apomictic lineage. There was significant variation in both the number and step size of mutations among the seven loci studied. Patterns of mutability were consistent with higher mutation rates for di- than trinucleotides and for longer alleles at a locus. Mutation size was influenced in a more complex way, decreasing with relative allele length much more strongly for tri-, than dinucleotides. We found support for this latter, highly novel result in the literature via reanalysis of data in a recent genome-scan study of human microsatellites, which showed a similarly disparate pattern of length-dependence between di- and trinucleotides. In spite of the apomictic form of reproduction and an unusually strong excess of microsatellite contractions in P. antipodarum, there were notable similarities with mutation processes of human microsatellites, supporting the wider taxonomic generality of such evolutionary mechanisms.

  17. Reconstruction of microsatellite mutation history reveals a strong and consistent deletion bias in invasive clonal snails, Potamopyrgus antipodarum.

    PubMed

    Weetman, David; Hauser, Lorenz; Carvalho, Gary R

    2002-10-01

    Direct observations of mutations and comparative analyses suggest that nuclear microsatellites show a tendency to expand, with reports of deletion biases limited to very long alleles or a few loci in multilocus studies. Here we investigate microsatellite evolution in clonal snails, Potamopyrgus antipodarum, since their introduction to Britain in the 19th century, using an analysis based on minimum spanning networks of multilocus microsatellite genotypes. British populations consist of a small number of highly distinct genotype groups with very few outlying genotypes, suggesting clonal lineages containing minor variation generated by mutation. Network patterns suggest that a single introduced genotype was the ancestor of all extant variation and also provide support for wholly apomictic reproduction within the most common clonal lineage (group A). Microsatellites within group A showed a strong tendency to delete repeats, with an overall bias exceeding 88%, irrespective of the exact method used to infer mutations. This highly unusual pattern of deletion bias is consistent across populations and loci and is unrelated to allele size. We suggest that for persistence of microsatellites in this clone, some change in the mutation mechanism must have occurred in relatively recent evolutionary time. Possible causes of such a change in mechanism are discussed.

  18. Complete chloroplast genome of a valuable medicinal plant, Huperzia serrata (Lycopodiaceae), and comparison with its congener1

    PubMed Central

    Guo, Zhi-You; Zhang, Hong-Rui; Shrestha, Nawal; Zhang, Xian-Chun

    2016-01-01

    Premise of the study: Here we report the complete chloroplast genome of the important medicinal species Huperzia serrata (Lycopodiaceae) and compare it to the chloroplast genome of the congeneric species H. lucidula. Methods and Results: The whole chloroplast genome of H. serrata was sequenced using an Illumina platform and assembled with Geneious version R9.0.5. The genome size of H. serrata was 154,176 bp, with 36.3% GC content. The complete chloroplast genome contained 120 unique genes, including 86 coding genes, four rRNA genes, and 30 tRNA genes. Comparison with the chloroplast genome of H. lucidula revealed three highly variable regions (rps16-chlB, ycf12-trnR, and ycf1) between these two species and 252 mutation events including 27 insertion/deletion polymorphisms and 225 single-nucleotide polymorphisms (SNPs). Ninety-two SNPs were identified in the gene-coding regions. In addition, 18 microsatellite sites were found, which can potentially be used in phylogeographic studies. Conclusions: The complete chloroplast genome of H. serrata is reported here, and will be a valuable genome resource for further phylogenetic, evolutionary, and medical studies of medicinal plants in the genus Huperzia. PMID:27843724

  19. Chloroplast signaling: retrograde regulation revelations.

    PubMed

    Beale, Samuel I

    2011-05-24

    Developing chloroplasts are able to communicate their status to the nucleus and regulate expression of genes whose products are needed for photosynthesis. Heme is revealed to be a signaling molecule for this retrograde communication.

  20. Genetic diversity and phylogeny of Japanese sake-brewing rice as revealed by AFLP and nuclear and chloroplast SSR markers.

    PubMed

    Hashimoto, Z; Mori, N; Kawamura, M; Ishii, T; Yoshida, S; Ikegami, M; Takumi, S; Nakamura, C

    2004-11-01

    Japanese rice ( Oryza sativa L.) cultivars that are strictly used for the brewing of sake (Japanese rice wine) represent a unique and traditional group. These cultivars are characterized by common traits such as large grain size with low protein content and a large, central white-core structure. To understand the genetic diversity and phylogenetic characteristics of sake-brewing rice, we performed amplified fragment length polymorphism and simple sequence repeat analyses, using 95 cultivars of local and modern sake-brewing rice together with 76 cultivars of local and modern cooking rice. Our analysis of both nuclear and chloroplast genome polymorphisms showed that the genetic diversity in sake-brewing rice cultivars was much smaller than the diversity found in cooking rice cultivars. Interestingly, the genetic diversity within the modern sake-brewing cultivars was about twofold higher than the diversity within the local sake-brewing cultivars, which was in contrast to the cooking cultivars. This is most likely due to introgression of the modern cooking cultivars into the modern sake-brewing cultivars through breeding practices. Cluster analysis and chloroplast haplotype analysis suggested that the local sake-brewing cultivars originated monophyletically in the western regions of Japan. Analysis of variance tests showed that several markers were significantly associated with sake-brewing traits, particularly with the large white-core structure.

  1. Genetic structure among sorghum landraces as revealed by morphological variation and microsatellite markers in three agroclimatic regions of Burkina Faso.

    PubMed

    Barro-Kondombo, Clarisse; Sagnard, Fabrice; Chantereau, Jacques; Deu, Monique; Vom Brocke, Kirsten; Durand, Patrick; Gozé, Eric; Zongo, Jean Didier

    2010-05-01

    Diversity among 124 sorghum landraces from 10 villages surveyed in 3 regions of Burkina Faso covering different agroecological zones was assessed by 28 agromorphological traits and 29 microsatellite markers. 94.4% of the landraces collected belonged to the botanical race guinea (consisting of 96.6% guinea gambicum and 3.4% guinea margaritiferum), 74.2% had white kernels, 13.7% had orange and 12.1% had red kernels. Compared to the "village nested within zone" factor, the "variety nested within village within zone" factor predominately contributed to the diversity pattern for all nine statistically analysed quantitative traits. The multivariate analyses performed on ten morphological traits identified five landrace groups, and of these, the red kernel sorghum types appeared the most homogenous. 2 to 17 alleles were detected per locus with a mean 4.9 alleles per locus and a gene diversity (He) of 0.37. Landraces from the sub-Sahelian zone had the highest gene diversity (He = 0.38). Cluster analysis revealed that the diversity was weakly stratified and could not be explained by any biophysical criteria. One homogenous guinea margaritiferum group was distinguished from other guinea landraces. The red kernel type appeared to be genetically distinct from all other guinea landraces. The kernel colour was the principal structuring factor. This is an example of a homogeneous group of varieties selected for a specific use (for local beer preparation), mainly grown around the households in compound fields, and presenting particular agromorphological and genetic traits. This is the most original feature of sorghum diversity in Burkina Faso and should be the focus of special conservation efforts.

  2. Microsatellite organization in the grasshopper Abracris flavolineata (Orthoptera: Acrididae) revealed by FISH mapping: remarkable spreading in the A and B chromosomes.

    PubMed

    Milani, Diogo; Cabral-de-Mello, Diogo Cavalcanti

    2014-01-01

    With the aim of acquiring deeper knowledge about repetitive DNAs chromosomal organization in grasshoppers, we used fluorescent in situ hybridization (FISH) to map the distribution of 16 microsatellite repeats, including mono-, di-, tri- and tetra-nucleotides, in the chromosomes of the species Abracris flavolineata (Acrididae), which harbors B chromosome. FISH revealed two main patterns: (i) exclusively scattered signals, and (ii) scattered and specific signals, forming evident blocks. The enrichment was observed in both euchromatic and heterochromatic areas and only the motif (C)30 was absent in heterochromatin. The A and B chromosomes were enriched with all the elements that were mapped, being observed in the B chromosome more distinctive blocks for (GA)15 and (GAG)10. For A complement distinctive blocks were noticed for (A)30, (CA)15, (CG)15, (GA)15, (CAC)10, (CAA)10, (CGG)10, (GAA)10, (GAC)10 and (GATA)8. These results revealed an intense spreading of microsatellites in the A. flavolineata genome that was independent of the A+T or G+C enrichment in the repeats. The data indicate that the microsatellites compose the B chromosome and could be involved in the evolution of this element in this species, although no specific relationship with any A chromosome was observed to discuss about its origin. The systematic analysis presented here contributes to the knowledge of repetitive DNA chromosomal organization among grasshoppers including the B chromosomes.

  3. A microsatellite linkage map of striped bass (Morone saxatilis) reveals conserved synteny with the hree-spined stickleback (Gasterosteus aculeatus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The striped bass (Morone saxatilis) and its relatives (genus Morone) are of great importance to fisheries and aquaculture in North America. As part of a collaborative effort to employ molecular genetic technologies in striped bass breeding programs, nearly 500 microsatellite markers were...

  4. Functional characterization of the GATA transcription factors GNC and CGA1 reveals their key role in chloroplast development, growth, and division in Arabidopsis.

    PubMed

    Chiang, Yi-Hsuan; Zubo, Yan O; Tapken, Wiebke; Kim, Hyo Jung; Lavanway, Ann M; Howard, Louisa; Pilon, Marinus; Kieber, Joseph J; Schaller, G Eric

    2012-09-01

    Chloroplasts develop from proplastids in a process that requires the interplay of nuclear and chloroplast genomes, but key steps in this developmental process have yet to be elucidated. Here, we show that the nucleus-localized transcription factors GATA NITRATE-INDUCIBLE CARBON-METABOLISM-INVOLVED (GNC) and CYTOKININ-RESPONSIVE GATA1 (CGA1) regulate chloroplast development, growth, and division in Arabidopsis (Arabidopsis thaliana). GNC and CGA1 are highly expressed in green tissues, and the phytohormone cytokinin regulates their expression. A gnc cga1 mutant exhibits a reduction in overall chlorophyll levels as well as in chloroplast size in the hypocotyl. Ectopic overexpression of either GNC or CGA1 promotes chloroplast biogenesis in hypocotyl cortex and root pericycle cells, based on increases in the number and size of the chloroplasts, and also results in expanded zones of chloroplast production into the epidermis of hypocotyls and cotyledons and into the cortex of roots. Ectopic overexpression also promotes the development of etioplasts from proplastids in dark-grown seedlings, subsequently enhancing the deetiolation process. Inducible expression of GNC demonstrates that GNC-mediated chloroplast biogenesis can be regulated postembryonically, notably so for chloroplast production in cotyledon epidermal cells. Analysis of the gnc cga1 loss-of-function and overexpression lines supports a role for these transcription factors in regulating the effects of cytokinin on chloroplast division. These data support a model in which GNC and CGA1 serve as two of the master transcriptional regulators of chloroplast biogenesis, acting downstream of cytokinin and mediating the development of chloroplasts from proplastids and enhancing chloroplast growth and division in specific tissues.

  5. Genetic structuring in a relictual population of screaming hairy armadillo (Chaetophractus vellerosus) in Argentina revealed by a set of novel microsatellite loci.

    PubMed

    Nardelli, Maximiliano; Ibáñez, Ezequiel Alejandro; Dobler, Dara; Justy, Fabienne; Delsuc, Frédéric; Abba, Agustín Manuel; Cassini, Marcelo Hernán; Túnez, Juan Ignacio

    2016-08-01

    The screaming hairy armadillo (Chaetophractus vellerosus) is a mammal species containing disjunct and isolated populations. In order to assess the effect of habitat fragmentation and geographic isolation, we developed seven new microsatellite loci isolated from low-coverage genome shotgun sequencing data for this species. Among these loci, six microsatellites were found to be polymorphic with 8-26 alleles per locus detected across 69 samples analyzed from a relictual population of the species located in the northeast of the Buenos Aires Province (Argentina). Mean allelic richness and polymorphic information content were 15 and 0.75, with observed and expected heterozygosities ranging from 0.40 to 0.67 and 0.58 to 0.90, respectively. All loci showed departures from Hardy-Weinberg equilibrium. The analysis of population structure in this relictual population revealed three groups of individuals that are genetically differentiated. These newly developed microsatellites will constitute a very useful tool for the estimation of genetic diversity and structure, population dynamics, social structure, parentage and mating system in this little-studied armadillo species. Such genetic data will be particularly helpful for the development of conservation strategies for this isolated population and also for the endangered Bolivian populations previously recognized as a distinct species (Chaetophractus nationi).

  6. Genetic diversity of Ulva prolifera population in Qingdao coastal water during the green algal blooms revealed by microsatellite.

    PubMed

    Li, Yue; Huang, Hong-Jia; Li, Hongye; Liu, Jiesheng; Yang, Weidong

    2016-10-15

    Green tides have occurred in Qingdao coast in China for seven consecutive years from 2007 to 2013. To provide information on the genetic structure of these blooms, 210 free-floating green algae samples isolated from the green tide in Qingdao coast on June 19, 2013 were identified based on the ITS, rbcL and 5S sequence, and genetic diversity was investigated by microsatellite markers. According to ITS, rbcL and 5S sequence, all the 210 samples belonged to Ulva prolifera. Nei's genetic diversity and Shannon index estimated using eight microsatellite markers indicated that the genetic diversity of U. prolifera population within Qingdao's green bloom in 2013 was low. Taking into account previous reports about life history and physiology of U. prolifera, we proposed that the limited origin area of the free-floating biomass and asexual reproduction of U. prolifera might be responsible for the lower diversity of free floating U. prolifera.

  7. Origin and diversification of Hibiscus glaber, species endemic to the oceanic Bonin Islands, revealed by chloroplast DNA polymorphism.

    PubMed

    Takayama, Koji; Ohi-Toma, Tetsuo; Kudoh, Hiroshi; Kato, Hidetoshi

    2005-04-01

    Abstract Two woody Hibiscus species co-occur in the Bonin Islands of the northwestern Pacific Ocean: Hibiscus glaber Matsum. is endemic to the islands, and its putative ancestral species, Hibiscus tiliaceus L., is widely distributed in coastal areas of the tropics and subtropics. To infer isolating mechanisms that led to speciation of H. glaber and the processes that resulted in co-occurrence of the two closely related species on the Bonin Islands, we conducted molecular phylogenetic analyses on chloroplast DNA (cpDNA) sequences. Materials collected from a wide area of the Pacific and Indian Oceans were used, and two closely related species, Hibiscus hamabo Siebold Zucc. and Hibiscus macrophyllus Roxb., were also included in the analyses. The constructed tree suggested that H. glaber has been derived from H. tiliaceus, and that most of the modern Bonin populations of H. tiliaceus did not share most recent ancestry with H. glaber. Geographic isolation appears to be the most important mechanism in the speciation of H. glaber. The co-occurrence of the two species can be attributed to multiple migrations of different lineages into the islands. While a wide and overlapping geographical distribution of haplotypes was found in H. tiliaceus, localized geographical distribution of haplotypes was detected in H. glaber. It is hypothesized that a shift to inland habitats may have affected the mode of seed dispersal from ocean currents to gravity and hence resulted in geographical structuring of H. glaber haplotypes.

  8. Population structuring of the ubiquitous stingless bee Tetragonisca angustula in southern Brazil as revealed by microsatellite and mitochondrial markers.

    PubMed

    Francisco, Flávio O; Santiago, Leandro R; Mizusawa, Yuri M; Oldroyd, Benjamin P; Arias, Maria C

    2016-06-23

    Tetragonisca angustula is one of the most widespread stingless bees in the Neotropics. This species swarms frequently and is extremely successful in urban environments. In addition, it is one of the most popular stingless bee species for beekeeping in Latin America, so nest transportation and trading is common. Nest transportation can change the genetic structure of the host population, reducing inbreeding and increasing homogenization. Here, we evaluate the genetic structure of 17 geographic populations of T. angustula in southern Brazil to quantify the level of genetic differentiation between populations. Analyses were conducted on partially sequenced mitochondrial genes and 11 microsatellite loci of 1002 workers from 457 sites distributed on the mainland and on 3 islands. Our results show that T. angustula populations are highly differentiated as demonstrated by mitochondrial DNA (mtDNA) and microsatellite markers. Of 73 haplotypes, 67 were population-specific. MtDNA diversity was low in 9 populations but microsatellite diversity was moderate to high in all populations. Microsatellite data suggest 10 genetic clusters and low level of gene flow throughout the studied area. However, physical barriers, such as rivers and mountain ranges, or the presence or absence of forest appear to be unrelated to population clusters. Factors such as low dispersal, different ecological conditions, and isolation by distance are most likely shaping the population structure of this species. Thus far, nest transportation has not influenced the general population structure in the studied area. However, due to the genetic structure we found, we recommend that nest transportation should only occur within and between populations that are genetically similar.

  9. Whole genome amplification and microsatellite genotyping of herbarium DNA revealed the identity of an ancient grapevine cultivar

    NASA Astrophysics Data System (ADS)

    Malenica, Nenad; Šimon, Silvio; Besendorfer, Višnja; Maletić, Edi; Karoglan Kontić, Jasminka; Pejić, Ivan

    2011-09-01

    Reconstruction of the grapevine cultivation history has advanced tremendously during the last decade. Identification of grapevine cultivars by using microsatellite DNA markers has mostly become a routine. The parentage of several renowned grapevine cultivars, like Cabernet Sauvignon and Chardonnay, has been elucidated. However, the assembly of a complete grapevine genealogy is not yet possible because missing links might no longer be in cultivation or are even extinct. This problem could be overcome by analyzing ancient DNA from grapevine herbarium specimens and other historical remnants of once cultivated varieties. Here, we present the first successful genotyping of a grapevine herbarium specimen and the identification of the corresponding grapevine cultivar. Using a set of nine grapevine microsatellite markers, in combination with a whole genome amplification procedure, we found the 90-year-old Tribidrag herbarium specimen to display the same microsatellite profile as the popular American cultivar Zinfandel. This work, together with information from several historical documents, provides a new clue of Zinfandel cultivation in Croatia as early as the beginning of fifteenth century, under the native name Tribidrag. Moreover, it emphasizes substantial information potential of existing grapevine and other herbarium collections worldwide.

  10. Synthetic chloroplasts

    SciTech Connect

    Calvin, M.

    1980-06-01

    The principal function of the chloroplast is to capture solar quanta and to store them in some stable form. We are in the process of trying to construct a totally synthetic system that would simulate some of the reactions of the two photosystems which occur in natural chloroplasts. Toward this end, we have demonstrated a number of the reactions required in separated systems. We have shown that it is possible to transfer electrons across an insulating membrane barrier with a surfactant photosensitizer. Others have shown, and we have confirmed, that it is possible to collect the two electrons necessary for the generation of molecular hydrogen on a heterogeneous catalyst suspended in water and similarly to collect the four holes on another heterogeneous catalyst suspended in water for the generation of molecular oxygen. A synthesis of some of these molecular catalysts for both these purposes is underway, with some partial success. When these partial reactions are assembled in a system, the resulting synthetic chloroplasts will not resemble the natural entity in detailed construction as they will contain no protein.

  11. Chloroplast actin filaments organize meshwork on the photorelocated chloroplasts in the moss Physcomitrella patens.

    PubMed

    Yamashita, Hiroko; Sato, Yoshikatsu; Kanegae, Takeshi; Kagawa, Takatoshi; Wada, Masamitsu; Kadota, Akeo

    2011-02-01

    Cytoskeleton dynamics during phototropin-dependent chloroplast photorelocation movement was analyzed in protonemal cells of actin- and microtubule-visualized lines of Physcomitrella patens expressing GFP- or tdTomato-talin and GFP-tubulin. Using newly developed epi- and trans-microbeam irradiation systems that permit fluorescence observation of the cell under blue microbeam irradiation inducing chloroplast relocation, it was revealed that meshwork of actin filaments formed at the chloroplast-accumulating area both in the avoidance and accumulation movements. The structure disappeared soon when blue microbeam was turned off, and it was not induced under red microbeam irradiation that did not evoke chloroplast relocation movement. In contrast, no apparent change in microtubule organization was detected during the movements. The actin meshwork was composed of short actin filaments distinct from the cytoplasmic long actin cables and was present between the chloroplasts and plasma membrane. The short actin filaments emerged from around the chloroplast periphery towards the center of chloroplast. Showing highly dynamic behavior, the chloroplast actin filaments (cp-actin filaments) were rapidly organized into meshwork on the chloroplast surface facing plasma membrane. The actin filament configuration on a chloroplast led to the formation of actin meshwork area in the cell as the chloroplasts arrived at and occupied the area. After establishment of the meshwork, cp-actin filaments were still highly dynamic, showing appearance, disappearance, severing and bundling of filaments. These results indicate that the cp-actin filaments have significant roles in the chloroplast movement and positioning in the cell.

  12. Functional complementation in yeast reveals a protective role of chloroplast 2-Cys peroxiredoxin against reactive nitrogen species.

    PubMed

    Sakamoto, Atsushi; Tsukamoto, Shigefumi; Yamamoto, Hiroshi; Ueda-Hashimoto, Manami; Takahashi, Misa; Suzuki, Hitomi; Morikawa, Hiromichi

    2003-03-01

    The importance of nitric oxide (NO) as a signaling molecule to various plant physiological and pathophysiological processes is becoming increasingly evident. However, little is known about how plants protect themselves from nitrosative and oxidative damage mediated by NO and NO-derived reactive nitrogen species (RNS). Peroxynitrite, the product of the reaction between NO and superoxide anion, is considered to play a central role in RNS-induced cytotoxicity, as a result of its potent ability to oxidize diverse biomolecules. Employing heterologous expression in bacteria and yeast, we investigated peroxynitrite-scavenging activity in plants of 2-Cys peroxiredoxin (2CPRX), originally identified as a hydroperoxide-reducing peroxidase that is ubiquitously distributed among organisms. The putative mature form of a chloroplast-localized 2CPRX from Arabidopsis thaliana was overproduced in Escherichia coli as an amino-terminally hexahistidine-tagged fusion protein. The purified recombinant 2CPRX, which was catalytically active as peroxidase, efficiently prevented the peroxynitrite-induced oxidation of a sensitive compound. We also examined in vivo the ability of the Arabidopsis 2CPRX to complement the 2CPRX deficiency of a Saccharomyces cerevisiae mutant. Functional expression in the mutant strain of the Arabidopsis 2CPRX not only increased cellular tolerance to hydrogen peroxide, but also complemented the hypersensitive growth defect induced by nitrite-mediated cytotoxicity. The complemented cells significantly enhanced the capacity to reduce RNS-mediated oxidative damages. The results presented here demonstrate a new role of plant 2CPRX as a critical determinant of the resistance to RNS, and support the existence of a plant enzymatic basis for RNS metabolism.

  13. Genetic variation of Trigonobalanus verticillata, a primitive species of Fagaceae, in Malaysia revealed by chloroplast sequences and AFLP markers.

    PubMed

    Kamiya, Koichi; Harada, Ko; Clyde, Mahani Mansor; Mohamed, Abdul Latiff

    2002-06-01

    The genetic variation of Trigonobalanus verticillata, the most recently described genus of Fagaceae, was studied using chloroplast DNA sequences and AFLP fingerprinting. This species has a restricted distribution that is known to include seven localities in tropical lower montane forests in Malaysia and Indonesia. A total of 75 individuals were collected from Bario, Kinabalu, and Fraser's Hill in Malaysia. The sequences of rbcL, matK, and three non-coding regions (atpB-rbcL spacer, trnL intron, and trnL-trnF spacer) were determined for 19 individuals from these populations. We found a total of 30 nucleotide substitutions and four length variations, which allowed identification of three haplotypes characterizing each population. No substitutions were detected within populations, while the tandem repeats in the trnL -trnF spacer had a variable repeat number of a 20-bp motif only in Kinabalu. The differentiation of the populations inferred from the cpDNA molecular clock calibrated with paleontological data was estimated to be 8.3 MYA between Bario and Kinabalu, and 16.7 MYA between Fraser's Hill and the other populations. In AFLP analysis, four selective primer pairs yielded a total of 431 loci, of which 340 (78.9%) were polymorphic. The results showed relatively high gene diversity (H(S) = 0.153 and H(T) = 0.198) and nucleotide diversity (pi(S) = 0.0132 and pi(T) = 0.0168) both within and among the populations. Although the cpDNA data suggest that little or no gene flow occurred between the populations via seeds, the fixation index estimated from AFLP data (F(ST) = 0.153 and N(ST) = 0.214) implies that some gene flow occurs between populations, possibly through pollen transfer.

  14. Dynamic nature of the proximal AZFc region of the human Y chromosome: multiple independent deletion and duplication events revealed by microsatellite analysis.

    PubMed

    Balaresque, Patricia; Bowden, Georgina R; Parkin, Emma J; Omran, Ghada A; Heyer, Evelyne; Quintana-Murci, Lluis; Roewer, Lutz; Stoneking, Mark; Nasidze, Ivan; Carvalho-Silva, Denise R; Tyler-Smith, Chris; de Knijff, Peter; Jobling, Mark A

    2008-10-01

    The human Y chromosome shows frequent structural variants, some of which are selectively neutral, while others cause impaired fertility due to the loss of spermatogenic genes. The large-scale use of multiple Y-chromosomal microsatellites in forensic and population genetic studies can reveal such variants, through the absence or duplication of specific markers in haplotypes. We describe Y chromosomes in apparently normal males carrying null and duplicated alleles at the microsatellite DYS448, which lies in the proximal part of the azoospermia factor c (AZFc) region, important in spermatogenesis, and made up of "ampliconic" repeats that act as substrates for nonallelic homologous recombination (NAHR). Physical mapping in 26 DYS448 deletion chromosomes reveals that only three cases belong to a previously described class, representing independent occurrences of an approximately 1.5-Mb deletion mediated by recombination between the b1 and b3 repeat units. The remainder belong to five novel classes; none appears to be mediated through homologous recombination, and all remove some genes, but are likely to be compatible with normal fertility. A combination of deletion analysis with binary-marker and microsatellite haplotyping shows that the 26 deletions represent nine independent events. Nine DYS448 duplication chromosomes can be explained by four independent events. Some lineages have risen to high frequency in particular populations, in particular a deletion within haplogroup (hg) C(*)(xC3a,C3c) found in 18 Asian males. The nonrandom phylogenetic distribution of duplication and deletion events suggests possible structural predisposition to such mutations in hgs C and G.

  15. Microsatellite development and flow cytometry in the African tree genus Afzelia (Fabaceae, Caesalpinioideae) reveal a polyploid complex1

    PubMed Central

    Donkpegan, Armel S. L.; Doucet, Jean-Louis; Dainou, Kasso; Hardy, Olivier J.

    2015-01-01

    • Premise of the study: Microsatellites were developed in the vulnerable African rainforest tree Afzelia bipindensis to investigate gene flow patterns. • Methods and Results: Using 454 GS-FLX technique, 16 primer sets were identified and optimized, leading to 11 polymorphic and readable markers displaying each six to 25 alleles in a population. Up to four alleles per individual were found in each of the loci, without evidence of fixed heterozygosity, suggesting an autotetraploid genome. Cross-amplification succeeded for all loci in the African rainforest species A. pachyloba and A. bella, which appeared tetraploid, and for most loci in the African woodland species A. africana and A. quanzensis, which appeared diploid, but failed in the Asian species A. xylocarpa. Flow cytometry confirmed the suspected differences in ploidy. • Conclusions: African Afzelia species are diploid or tetraploid, a situation rarely documented in tropical trees. These newly developed microsatellites will help in the study of their mating system and gene flow patterns. PMID:25606356

  16. Genetic variability of wild cherry (Prunus avium L.) seed stands in Slovenia as revealed by nuclear microsatellite loci.

    PubMed

    Jarni, Kristjan; De Cuyper, Bart; Brus, Robert

    2012-01-01

    Microsatellite markers were used to describe the genetic variability of four seed stands of wild cherry (Prunus avium L.). One hundred and thirty one individuals were genotyped at ten nuclear microsatellite loci. Total genetic diversity was high (H(E) = 0.704), while differences between stands were small but significant (F(ST) = 0.053, G'(ST) = 0.234). There was a significant amount of clonal reproduction in one stand, with only 11 genotypes identified among 36 trees. One stand showed a significant excess (F(IS) = -0.044) of heterozygosity, and one showed a deficit (F(IS) = 0.044). Our results demonstrate the importance of taking into account the biological and genetic characteristics of species in forest management, especially when determining a new seed stand. The small genetic differences found between seed stands indicate that a large number of stands are not required. However, they should be carefully selected and should possess adequate genetic variability to ensure low relatedness between seed trees.

  17. Chloroplast research in the genomic age.

    PubMed

    Leister, Dario

    2003-01-01

    Chloroplast research takes significant advantage of genomics and genome sequencing, and a new picture is emerging of how the chloroplast functions and communicates with other cellular compartments. In terms of evolution, it is now known that only a fraction of the many proteins of cyanobacterial origin were rerouted to higher plant plastids. Reverse genetics and novel mutant screens are providing a growing catalogue of chloroplast protein-function relationships, and the characterization of plastid-to-nucleus signalling mutants reveals cell-organelle interactions. Recent advances in transcriptomics and proteomics of the chloroplast make this organelle one of the best understood of all plant cell compartments.

  18. Comparative Microsatellite Typing of New World Leishmania infantum Reveals Low Heterogeneity among Populations and Its Recent Old World Origin

    PubMed Central

    Kuhls, Katrin; Alam, Mohammad Zahangir; Cupolillo, Elisa; Ferreira, Gabriel Eduardo M.; Mauricio, Isabel L.; Oddone, Rolando; Feliciangeli, M. Dora; Wirth, Thierry; Miles, Michael A.; Schönian, Gabriele

    2011-01-01

    Leishmania infantum (syn. L. chagasi) is the causative agent of visceral leishmaniasis (VL) in the New World (NW) with endemic regions extending from southern USA to northern Argentina. The two hypotheses about the origin of VL in the NW suggest (1) recent importation of L. infantum from the Old World (OW), or (2) an indigenous origin and a distinct taxonomic rank for the NW parasite. Multilocus microsatellite typing was applied in a survey of 98 L. infantum isolates from different NW foci. The microsatellite profiles obtained were compared to those of 308 L. infantum and 20 L. donovani strains from OW countries previously assigned to well-defined populations. Two main populations were identified for both NW and OW L. infantum. Most of the NW strains belonged to population 1, which corresponded to the OW MON-1 population. However, the NW population was much more homogeneous. A second, more heterogeneous, population comprised most Caribbean strains and corresponded to the OW non-MON-1 population. All Brazilian L. infantum strains belonged to population 1, although they represented 61% of the sample and originated from 9 states. Population analysis including the OW L. infantum populations indicated that the NW strains were more similar to MON-1 and non-MON-1 sub-populations of L. infantum from southwest Europe, than to any other OW sub-population. Moreover, similarity between NW and Southwest European L. infantum was higher than between OW L. infantum from distinct parts of the Mediterranean region, Middle East and Central Asia. No correlation was found between NW L. infantum genotypes and clinical picture or host background. This study represents the first continent-wide analysis of NW L. infantum population structure. It confirmed that the agent of VL in the NW is L. infantum and that the parasite has been recently imported multiple times to the NW from southwest Europe. PMID:21666787

  19. Cross-species amplification of microsatellites reveals incongruence in the molecular variation and taxonomic limits of the Pilosocereus aurisetus group (Cactaceae).

    PubMed

    Moraes, Evandro M; Perez, Manolo F; Téo, Mariana F; Zappi, Daniela C; Taylor, Nigel P; Machado, Marlon C

    2012-09-01

    The Pilosocereus aurisetus group contains eight cactus species restricted to xeric habitats in eastern and central Brazil that have an archipelago-like distribution. In this study, 5-11 microsatellite markers previously designed for Pilosocereus machrisii were evaluated for cross-amplification and polymorphisms in ten populations from six species of the P. aurisetus group. The genotypic information was subsequently used to investigate the genetic relationships between the individuals, populations, and species analyzed. Only the Pmac101 locus failed to amplify in all of the six analyzed species, resulting in an 88 % success rate. The number of alleles per polymorphic locus ranged from 2 to 12, and the most successfully amplified loci showed at least one population with a larger number of alleles than were reported in the source species. The population relationships revealed clear genetic clustering in a neighbor-joining tree that was partially incongruent with the taxonomic limits between the P. aurisetus and P. machrisii species, a fact which parallels the problematic taxonomy of the P. aurisetus group. A Bayesian clustering analysis of the individual genotypes confirmed the observed taxonomic incongruence. These microsatellite markers provide a valuable resource for facilitating large-scale genetic studies on population structures, systematics and evolutionary history in this group.

  20. Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance.

    PubMed

    Wang, Xuchu; Chang, Lili; Wang, Baichen; Wang, Dan; Li, Pinghua; Wang, Limin; Yi, Xiaoping; Huang, Qixing; Peng, Ming; Guo, Anping

    2013-08-01

    Thellungiella halophila, a close relative of Arabidopsis, is a model halophyte used to study plant salt tolerance. The proteomic/physiological/transcriptomic analyses of Thellungiella plant leaves subjected to different salinity levels, reported herein, indicate an extraordinary ability of Thellungiella to adapt to large concentrations of exogenous saline by compartmentalizing Na(+) into cell vacuoles and accumulating proline and soluble sugars as organic osmolytes. Salinity stress stimulated the accumulation of starch in chloroplasts, which resulted in a greatly increased content of starch and total sugars in leaves. Comparative proteomics of Thellungiella leaves identified 209 salt-responsive proteins. Among these, the sequences of 108 proteins were strongly homologous to Arabidopsis protein sequences, and 30 had previously been identified as Thellungiella proteins. Functional classification of these proteins into 16 categories indicated that the majority are involved in carbohydrate metabolism, followed by those involved in energy production and conversion, and then those involved in the transport of inorganic ions. Pathway analysis revealed that most of the proteins are involved in starch and sucrose metabolism, carbon fixation, photosynthesis, and glycolysis. Of these processes, the most affected were starch and sucrose metabolism, which might be pivotal for salt tolerance. The gene expression patterns of the 209 salt-responsive proteins revealed through hierarchical clustering of microarray data and the expression patterns of 29 Thellungiella genes evaluated via quantitative RT-PCR were similar to those deduced via proteomic analysis, which underscored the possibility that starch and sucrose metabolism might play pivotal roles in determining the salt tolerance ability of Thellungiella. Our observations enabled us to propose a schematic representation of the systematic salt-tolerance phenotype in Thellungiella and suggested that the increased accumulation of

  1. Comparative Proteomics of Thellungiella halophila Leaves from Plants Subjected to Salinity Reveals the Importance of Chloroplastic Starch and Soluble Sugars in Halophyte Salt Tolerance*

    PubMed Central

    Wang, Xuchu; Chang, Lili; Wang, Baichen; Wang, Dan; Li, Pinghua; Wang, Limin; Yi, Xiaoping; Huang, Qixing; Peng, Ming; Guo, Anping

    2013-01-01

    Thellungiella halophila, a close relative of Arabidopsis, is a model halophyte used to study plant salt tolerance. The proteomic/physiological/transcriptomic analyses of Thellungiella plant leaves subjected to different salinity levels, reported herein, indicate an extraordinary ability of Thellungiella to adapt to large concentrations of exogenous saline by compartmentalizing Na+ into cell vacuoles and accumulating proline and soluble sugars as organic osmolytes. Salinity stress stimulated the accumulation of starch in chloroplasts, which resulted in a greatly increased content of starch and total sugars in leaves. Comparative proteomics of Thellungiella leaves identified 209 salt-responsive proteins. Among these, the sequences of 108 proteins were strongly homologous to Arabidopsis protein sequences, and 30 had previously been identified as Thellungiella proteins. Functional classification of these proteins into 16 categories indicated that the majority are involved in carbohydrate metabolism, followed by those involved in energy production and conversion, and then those involved in the transport of inorganic ions. Pathway analysis revealed that most of the proteins are involved in starch and sucrose metabolism, carbon fixation, photosynthesis, and glycolysis. Of these processes, the most affected were starch and sucrose metabolism, which might be pivotal for salt tolerance. The gene expression patterns of the 209 salt-responsive proteins revealed through hierarchical clustering of microarray data and the expression patterns of 29 Thellungiella genes evaluated via quantitative RT-PCR were similar to those deduced via proteomic analysis, which underscored the possibility that starch and sucrose metabolism might play pivotal roles in determining the salt tolerance ability of Thellungiella. Our observations enabled us to propose a schematic representation of the systematic salt-tolerance phenotype in Thellungiella and suggested that the increased accumulation of

  2. Significant population genetic structure of the Cameroonian fresh water snail, Bulinus globosus, (Gastropoda: Planorbidae) revealed by nuclear microsatellite loci analysis.

    PubMed

    Djuikwo-Teukeng, F F; Da Silva, A; Njiokou, F; Kamgang, B; Ekobo, A Same; Dreyfuss, G

    2014-09-01

    In order to characterize the demographic traits and spatial structure of Cameroonians Bulinus globosus, intermediate host of Schistosoma haematobium, genetic structure of seven different populations, collected from the tropical zone, was studied using six polymorphic microsatellites. Intrapopulation genetic diversity ranged from 0.37 to 0.55. Interpopulation genetic diversity variation clearly illustrated their significant isolation due to distance with gene flow substantially limited to neighbouring populations. The effective population sizes (Ne) were relatively low (from 3.0 to 18.6), which supposes a high rate from which populations would lose their genetic diversity by drift. Analysis of genetic temporal variability indicated fluctuations of allelic frequencies (35 of 42 locus-population combinations, P<0.05) characteristic of stochastic demography, and this is reinforced by events of bottlenecks detected in all populations. These findings demonstrated that Cameroonian B. globosus were mixed-maters with some populations showing clear preference for outcrossing. These data also suggest that genetic drift and gene flow are the main factors shaping the genetic structure of studied populations.

  3. Conspecific brood parasitism in the white-faced ibis Plegadis chihi (Aves: Pelecaniformes) revealed by microsatellites' based kinship-reconstruction.

    PubMed

    de Castro e Souza, Andiara Silos Moraes; Del Lama, Silvia Nassif; Miño, Carolina Isabel

    2013-06-01

    The white-faced ibis Plegadis chihi Vieillot, 1817 (Pelecaniformes: Threskiornithidae) is a socially monogamous colonially breeding bird in which behavioral and ecological observations suggest the occurrence of conspecific brood parasitism (CBP). We inferred aspects of the genetic mating system of P. chihi in nature, using a genetic approach in the absence of parental information. We used five heterologous microsatellite loci and a multiple-step methodological approach to infer kinship patterns among 104 pairs of nestlings sampled inside 80 nests in a breeding colony from southern Brazil. The estimated effective population size was 69 white-faced ibises (95% CI: 50-98), enough to ensure long-term population survival. Kinship patterns were identified for 38% of the analyzed pairs: 60% of the diagnosed pairs were identified as full-siblings, 2.5% as half-siblings and 37.5% as unrelated individuals. CBP could explain the presence of unrelated nestlings within broods, in agreement with available non-genetic evidence. The presence of half-siblings within broods could indicate extra-pair paternity. Results suggest that a non-strictly monogamous genetic mating system may be present in the white-faced ibis. This study is the first molecular approach to better characterize the reproductive behavior of P. chihi in the wild. Our findings set the stage for further research to investigate the possible causes and consequences of alternative reproductive strategies in this species.

  4. Multilocus Microsatellite Typing reveals intra-focal genetic diversity among strains of Leishmania tropica in Chichaoua Province, Morocco.

    PubMed

    Krayter, Lena; Alam, Mohammad Zahangir; Rhajaoui, Mohamed; Schnur, Lionel F; Schönian, Gabriele

    2014-12-01

    In Morocco, cutaneous leishmaniasis (CL) caused by Leishmania (L.) tropica is a major public health threat. Strains of this species have been shown to display considerable serological, biochemical, molecular biological and genetic heterogeneity; and Multilocus Enzyme Electrophoresis (MLEE), has shown that in many countries including Morocco heterogenic variants of L. tropica can co-exist in single geographical foci. Here, the microsatellite profiles discerned by MLMT of nine Moroccan strains of L. tropica isolated in 2000 from human cases of CL from Chichaoua Province were compared to those of nine Moroccan strains of L. tropica isolated between 1988 and 1990 from human cases of CL from Marrakech Province, and also to those of 147 strains of L. tropica isolated at different times from different worldwide geographical locations within the range of distribution of the species. Several programs, each employing a different algorithm, were used for population genetic analysis. The strains from each of the two Moroccan foci separated into two phylogenetic clusters independent of their geographical origin. Genetic diversity and heterogeneity existed in both foci, which are geographically close to each other. This intra-focal distribution of genetic variants of L. tropica is not considered owing to in situ mutation. Rather, it is proposed to be explained by the importation of pre-existing variants of L. tropica into Morocco.

  5. Patterns of invasion and colonization of the sea lamprey (Petromyzon marinus) in North America as revealed by microsatellite genotypes.

    PubMed

    Bryan, M B; Zalinski, D; Filcek, K B; Libants, S; Li, W; Scribner, K T

    2005-10-01

    Invasions by exotic organisms have had devastating affects on aquatic ecosystems, both ecologically and economically. One striking example of a successful invader that has dramatically affected fish community structure in freshwater lakes of North America is the sea lamprey (Petromyzon marinus). We used eight microsatellite loci and multiple analytical techniques to examine competing hypotheses concerning the origins and colonization history of sea lamprey (n = 741). Analyses were based on replicated invasive populations from Lakes Erie, Huron, Michigan, and Superior, populations of unknown origins from Lakes Ontario, Champlain, and Cayuga, and populations of anadromous putative progenitor populations in North America and Europe. Populations in recently colonized lakes were each established by few colonists through a series of genetic bottlenecks which resulted in lower allelic diversity in more recently established populations. The spatial genetic structure of invasive populations differed from that of native populations on the Atlantic coast, reflecting founder events and connectivity of invaded habitats. Anadromous populations were found to be panmictic (theta(P) = 0.002; 95% CI = -0.003-0.006; P > 0.05). In contrast, there was significant genetic differentiation between populations in the lower and upper Great Lakes (theta(P) = 0.007; P < 0.05; 95% CI = 0.003-0.009). Populations in Lakes Ontario, Champlain, and Cayuga are native. Alternative models that describe different routes and timing of colonization of freshwater habitats were examined using coalescent-based analyses, and demonstrated that populations likely originated from natural migrations via the St Lawrence River.

  6. Microsatellites reveal extensive geographical, ecological and genetic contacts between invasive and indigenous whitefly biotypes in an insular environment.

    PubMed

    Delatte, H; David, P; Granier, M; Lett, J M; Goldbach, R; Peterschmitt, M; Reynaud, B

    2006-04-01

    Human-mediated bioinvasions provide the opportunity to study the early stages of contact between formerly allopatric, divergent populations of a species. However, when invasive and resident populations are morphologically similar, it may be very difficult to assess their distribution in the field, as well as the extent of ecological overlap and genetic exchanges between invasive and resident populations. We here illustrate the use of data obtained from a set of eight microsatellite markers together with Bayesian clustering methods to document invasions in a group of major tropical pests, Bemisia tabaci, which comprises several morphologically indistinguishable biotypes with different agronomic impacts. We focus on the island of La Réunion, where an invasive biotype (B) has recently been introduced and now interacts with the resident biotype (Ms). The temporal and spatial distribution, host-plant range and genetic structure of both biotypes are investigated. We showed (i) that, without prior information, clustering methods separate two groups of individuals that can safely be identified as the B and Ms biotypes; (ii) that the B biotype has invaded all regions of the island, and showed no signs of genetic founder effect relative to the Ms biotype; (iii) that the B and Ms biotypes coexist in sympatry throughout most of their geographical ranges, although they tend to segregate into different host plants; and finally (iv) that asymmetrical and locus-specific introgression occurs between the two biotypes when they are in syntopy.

  7. Phylogeography and genetic effects of habitat fragmentation on endangered Taxus yunnanensis in southwest China as revealed by microsatellite data.

    PubMed

    Miao, Y C; Lang, X D; Zhang, Z Z; Su, J R

    2014-03-01

    It is not known how the profoundly complex topography and habitat heterogeneity generated by the uplift of the Qinghai-Tibetan Plateau (QTP) during the late Tertiary affected population genetic structure of endangered Taxus yunnanensis. In addition, the effects of habitat fragmentation due to anthropogenic disturbance on genetic diversity and population differentiation of this species have not been studied. T. yunnanensis is an ancient tree/shrub mainly distributed in southwest China. Recently, the species has suffered a sharp decline due to excessive logging for its famous anticancer metabolite taxol, resulting in smaller and more isolated populations. To understand the phylogeography and genetic consequences of habitat fragmentation of this endangered species, using 11 polymorphic microsatellites, we genotyped 288 individuals from 14 populations from a range-wide sampling in China. Our results suggest that two different population groups that were once isolated have persisted in situ during glacial periods in both areas, and have not merged since. Habitat fragmentation has led to significant genetic bottlenecks, high inbreeding and population divergence in this species. The two different population groups of T. yunnanensis could be attributed to restricted gene flow caused through isolation by geographical barriers and by habitat heterogeneity during uplift of the QTP, or the existence of two separate glacial refugia during the Pleistocene. In situ and ex situ conservation of the two Evolutionarily Significant Units (ESUs), artificial gene flow between populations and a comprehensive understanding of the pollination system in this endangered species are suggested from this study.

  8. Genetic diversity and phylogenetic relationship among Tunisian cactus species (Opuntia) as revealed by random amplified microsatellite polymorphism markers.

    PubMed

    Bendhifi Zarroug, M; Baraket, G; Zourgui, L; Souid, S; Salhi Hannachi, A

    2015-02-13

    Opuntia ficus indica is one of the most economically important species in the Cactaceae family. Increased interest in this crop stems from its potential contribution to agricultural diversification, application in the exploitation of marginal lands, and utility as additional income sources for farmers. In Tunisia, O. ficus indica has been affected by drastic genetic erosion resulting from biotic and abiotic stresses. Thus, it is imperative to identify and preserve this germplasm. In this study, we focused on the use of random amplified microsatellite polymorphisms to assess genetic diversity among 25 representatives of Tunisian Opuntia species maintained in the collection of the National Institute of Agronomic Research of Tunisia. Seventy-two DNA markers were screened to discriminate accessions using 16 successful primer combinations. The high percentage of polymorphic band (100%), the resolving power value (5.68), the polymorphic information content (0.94), and the marker index (7.2) demonstrated the efficiency of the primers tested. Therefore, appropriate cluster analysis used in this study illustrated a divergence among the cultivars studied and exhibited continuous variation that occurred independently of geographic origin. O. ficus indica accessions did not cluster separately from the other cactus pear species, indicating that their current taxonomical classifications are not well aligned with their genetic variability or locality of origin.

  9. Population structures of the red fox (Vulpes vulpes) on the Hokkaido Island, Japan, revealed by microsatellite analysis.

    PubMed

    Oishi, Takuya; Uraguchi, Kohji; Takahashi, Kenichi; Masuda, Ryuichi

    2011-01-01

    In order to examine the population structures of the red fox (Vulpes vulpes) on the Hokkaido Island in Japan, we conducted analysis on 250 foxes from all over the island for 12 microsatellite loci. Assignment tests using the genotype data set showed that they were divided into 6 subpopulations. Of the 6, one was geographically isolated in the southern region and considered definitive subpopulation, whereas the other 5 were not. The slight differences among the latter 5 subpopulations were explained by the high adaptability and long dispersal of the red fox on the Hokkaido Island. Although there are few ecological data to explain the genetic differentiation of the southern population, we have proposed some hypotheses from the present ecological and geohistorical viewpoints. One convincing reason from the ecological viewpoint is the restriction of gene flow to southern Hokkaido from other areas due to geographical isolation resulting from the land shape. The other explanation is the geohistorical division of southern Hokkaido from other regions on the island during the last interglacial age, resulting in the isolation of the fox population.

  10. High genetic diversity in gametophyte clones of Undaria pinnatifida from Vladivostok, Dalian and Qingdao revealed using microsatellite analysis

    NASA Astrophysics Data System (ADS)

    Shan, Tifeng; Pang, Shaojun; Liu, Feng; Xu, Na; Zhao, Xiaobo; Gao, Suqin

    2012-03-01

    Breeding practice for Undaria pinnatifida (Harvey) Suringar requires the screening of a large number of offspring from gametophyte crossings to obtain an elite variety for large-scale cultivation. To better understand the genetic relationships of different gametophyte cultures isolated from different sources, 20 microsatellite loci were screened and 53 gametophyte clone cultures analyzed for U. pinnatifida isolated from wild sporophytes in Vladivostok, Russia and from cultivated sporophytes from Dalian and Qingdao, China. One locus was abandoned because of poor amplification. At the sex-linked locus of Up-AC-2A8, 3 alleles were detected in 25 female gametophyte clones, with sizes ranging from 307 to 316 bp. At other loci, 3 to 7 alleles were detected with an average of 4.5 alleles per locus. The average number of alleles at each locus was 1.3 and 3.7 for Russian and Chinese gametophyte clones, respectively. The average gene diversity for Russian, Chinese, and for the combined total of gametophyte clones was 0.1, 0.4, and 0.5, respectively. Russian gametophyte clones had unique alleles at 7 out of the 19 loci. In cluster analysis, Russian and Chinese gametophyte clones were separated into two different groups according to genetic distance. Overall, high genetic diversity was detected in gametophyte clones isolated from the two countries. These gametophyte cultures were believed to be appropriate parental materials for conducting breeding programs in the future.

  11. Genetic diversity and parentage in farmer selections of cacao from Southern Sulawesi, Indonesia revealed by microsatellite markers

    PubMed Central

    Dinarti, Diny; Susilo, Agung W.; Meinhardt, Lyndel W.; Ji, Kun; Motilal, Lambert A.; Mischke, Sue; Zhang, Dapeng

    2015-01-01

    Indonesia is the third largest cocoa-producing country in the world. Knowledge of genetic diversity and parentage of farmer selections is important for effective selection and rational deployment of superior cacao clones in farmers’ fields. We assessed genetic diversity and parentage of 53 farmer selections of cacao in Sulawesi, Indonesia, using 152 international clones as references. Cluster analysis, based on 15 microsatellite markers, showed that these Sulawesi farmer selections are mainly comprised of hybrids derived from Trinitario and two Upper Amazon Forastero groups. Bayesian assignment and likelihood-based parentage analysis further demonstrated that only a small number of germplasm groups, dominantly Trinitario and Parinari, contributed to these farmer selections, in spite of diverse parental clones having been used in the breeding program and seed gardens in Indonesia since the 1950s. The narrow parentage predicts a less durable host resistance to cacao diseases. Limited access of the farmers to diverse planting materials or the strong preference for large pods and large bean size by local farmers, may have affected the selection outcome. Diverse sources of resistance, harbored in different cacao germplasm groups, need to be effectively incorporated to broaden the on-farm diversity and ensure sustainable cacao production in Sulawesi. PMID:26719747

  12. Proteomic Insight into the Response of Arabidopsis Chloroplasts to Darkness

    PubMed Central

    Wang, Jing; Yu, Qingbo; Xiong, Haibo; Wang, Jun; Chen, Sixue; Yang, Zhongnan; Dai, Shaojun

    2016-01-01

    Chloroplast function in photosynthesis is essential for plant growth and development. It is well-known that chloroplasts respond to various light conditions. However, it remains poorly understood about how chloroplasts respond to darkness. In this study, we found 81 darkness-responsive proteins in Arabidopsis chloroplasts under 8 h darkness treatment. Most of the proteins are nucleus-encoded, indicating that chloroplast darkness response is closely regulated by the nucleus. Among them, 17 ribosome proteins were obviously reduced after darkness treatment. The protein expressional patterns and physiological changes revealed the mechanisms in chloroplasts in response to darkness, e.g., (1) inhibition of photosystem II resulted in preferential cyclic electron flow around PSI; (2) promotion of starch degradation; (3) inhibition of chloroplastic translation; and (4) regulation by redox and jasmonate signaling. The results have improved our understanding of molecular regulatory mechanisms in chloroplasts under darkness. PMID:27137770

  13. Large Scale Comparative Proteomics of a Chloroplast Clp Protease Mutant Reveals Folding Stress, Altered Protein Homeostasis, and Feedback Regulation of Metabolism*

    PubMed Central

    Zybailov, Boris; Friso, Giulia; Kim, Jitae; Rudella, Andrea; Rodríguez, Verenice Ramírez; Asakura, Yukari; Sun, Qi; van Wijk, Klaas J.

    2009-01-01

    The clpr2-1 mutant is delayed in development due to reduction of the chloroplast ClpPR protease complex. To understand the role of Clp proteases in plastid biogenesis and homeostasis, leaf proteomes of young seedlings of clpr2-1 and wild type were compared using large scale mass spectrometry-based quantification using an LTQ-Orbitrap and spectral counting with significance determined by G-tests. Virtually only chloroplast-localized proteins were significantly affected, indicating that the molecular phenotype was confined to the chloroplast. A comparative chloroplast stromal proteome analysis of fully developed plants was used to complement the data set. Chloroplast unfoldase ClpB3 was strongly up-regulated in both young and mature leaves, suggesting widespread and persistent protein folding stress. The importance of ClpB3 in the clp2-1 mutant was demonstrated by the observation that a CLPR2 and CLPB3 double mutant was seedling-lethal. The observed up-regulation of chloroplast chaperones and protein sorting components further illustrated destabilization of protein homeostasis. Delayed rRNA processing and up-regulation of a chloroplast DEAD box RNA helicase and polynucleotide phosphorylase, but no significant change in accumulation of ribosomal subunits, suggested a bottleneck in ribosome assembly or RNA metabolism. Strong up-regulation of a chloroplast translational regulator TypA/BipA GTPase suggested a specific response in plastid gene expression to the distorted homeostasis. The stromal proteases PreP1,2 were up-regulated, likely constituting compensation for reduced Clp protease activity and possibly shared substrates between the ClpP and PreP protease systems. The thylakoid photosynthetic apparatus was decreased in the seedlings, whereas several structural thylakoid-associated plastoglobular proteins were strongly up-regulated. Two thylakoid-associated reductases involved in isoprenoid and chlorophyll synthesis were up-regulated reflecting feedback from rate

  14. Molecular phylogenetics and microsatellite analysis reveal cryptic species of speckled dace (Cyprinidae: Rhinichthys osculus) in Oregon's Great Basin.

    PubMed

    Hoekzema, Kendra; Sidlauskas, Brian L

    2014-08-01

    Speckled dace (Rhinichthys osculus) is a small cyprinid that occurs throughout western North America and is the most commonly occurring fish in Oregon. Because of the high genetic and morphological variation in this species across its range, it has been referred to as a species complex; however, no revision to its taxonomy has occurred since 1984. Here, the phylogenetics and population genetics of speckled dace are examined throughout Oregon's Great Basin to describe genetic variation and infer the geographic boundaries between distinct taxonomic entities and populations. We tested the validity of a putative subspecies, Foskett Spring speckled dace, that occurs in a single spring within Warner Valley in Southeast Oregon and is listed Federally as threatened. Dace were collected from Foskett Spring and all surrounding basins containing speckled dace (Warner, Goose Lake, Lake Abert, Silver Lake, and Malheur), as well as Stinking Lake Spring (located within Malheur), created phylogenetic trees from mitochondrial ND2 and nuclear S7 sequence data, and genotyped eight microsatellite loci for population-level analyses. Three highly divergent clades warrant species-level status: Malheur stream dace, Stinking Lake Spring dace, and dace from the other four basins combined. Although Foskett Spring dace were not monophyletic, substantial population structure occurs at the basin-level and separates Foskett Spring dace from other dace in the surrounding Warner Valley. Thus, we recommend ESU status for the isolated population of speckled dace in Foskett Spring. The high, previously unrecognized, taxonomic diversity within this region indicates a need for a range-wide phylogeographic study of speckled dace and an investigation of the morphological distinctiveness of the putative new species.

  15. Genetic structure and diversity of coffee (Coffea) across Africa and the Indian Ocean islands revealed using microsatellites

    PubMed Central

    Razafinarivo, Norosoa J.; Guyot, Romain; Davis, Aaron P.; Couturon, Emmanuel; Hamon, Serge; Crouzillat, Dominique; Rigoreau, Michel; Dubreuil-Tranchant, Christine; Poncet, Valerie; De Kochko, Alexandre; Rakotomalala, Jean-Jacques; Hamon, Perla

    2013-01-01

    Background and Aims The coffee genus (Coffea) comprises 124 species, and is indigenous to the Old World Tropics. Due to its immense economic importance, Coffea has been the focus of numerous genetic diversity studies, but despite this effort it remains insufficiently studied. In this study the genetic diversity and genetic structure of Coffea across Africa and the Indian Ocean islands is investigated. Methods Genetic data were produced using 13 polymorphic nuclear microsatellite markers (simple sequence repeats, SSRs), including seven expressed sequence tag-SSRs, and the data were analysed using model- and non-model-based methods. The study includes a total of 728 individuals from 60 species. Key Results Across Africa and the Indian Ocean islands Coffea comprises a closely related group of species with an overall pattern of genotypes running from west to east. Genetic structure was identified in accordance with pre-determined geographical regions and phylogenetic groups. There is a good relationship between morpho-taxonomic species delimitations and genetic units. Genetic diversity in African and Indian Ocean Coffea is high in terms of number of alleles detected, and Madagascar appears to represent a place of significant diversification in terms of allelic richness and species diversity. Conclusions Cross-species SSR transferability in African and Indian Ocean islands Coffea was very efficient. On the basis of the number of private alleles, diversification in East Africa and the Indian Ocean islands appears to be more recent than in West and West-Central Africa, although this general trend is complicated in Africa by the position of species belonging to lineages connecting the main geographical regions. The general pattern of phylogeography is not in agreement with an overall east to west (Mascarene, Madagascar, East Africa, West Africa) increase in genome size, the high proportion of shared alleles between the four regions or the high numbers of exclusive shared

  16. The impact of selection on population genetic structure in the clam Meretrix petechialis revealed by microsatellite markers.

    PubMed

    Lu, Xia; Wang, Hongxia; Li, Yan; Liu, Baozhong

    2016-02-01

    The aim of our work is to evaluate the impact of mass selection on genetic structure in artificially closed populations of the clam Meretrix petechialis. In the present study, we performed mass selection over four generations (from 2004 to 2010) on two clam populations [shell features of purple lines (SP) and black dots (SB)] and analyzed their temporal genetic variation and structure using microsatellite makers. The two closed populations originated from the natural Shandong population (SD); thus, a natural SD population (10SD) was used to detect the current genetic structure after 6 years of natural selection. The results showed that the genetic diversity of the four generations of SB and SP was gradually reduced but remained at relatively high levels (SB, A = 18.9.4-16.8, Ho = 0.7389-0.6971, and He = 0.8897-0.8591; SP, A = 20.0-17.8, Ho = 0.7512-0.7043, and He = 0.8938-0.8625), which has not been reduced compared with that of the 10SD population (A = 17.8, Ho = 0.6803, and He = 0.8302). The Ne estimates for the two populations were almost at the same levels as the actual numbers of parental individuals. In addition, a low inbreeding coefficient was detected in the two populations (SB, 0.00201-0.00639; SP, 0.00176-0.00541). Based on the results, the present mass selection has not made a large impact on the population genetic structure of the closed populations. The present investigation provides important information for the development of management strategies for genetic breeding of the clam.

  17. Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components.

    PubMed

    Barsan, Cristina; Zouine, Mohamed; Maza, Elie; Bian, Wanping; Egea, Isabel; Rossignol, Michel; Bouyssie, David; Pichereaux, Carole; Purgatto, Eduardo; Bouzayen, Mondher; Latché, Alain; Pech, Jean-Claude

    2012-10-01

    A comparative proteomic approach was performed to identify differentially expressed proteins in plastids at three stages of tomato (Solanum lycopersicum) fruit ripening (mature-green, breaker, red). Stringent curation and processing of the data from three independent replicates identified 1,932 proteins among which 1,529 were quantified by spectral counting. The quantification procedures have been subsequently validated by immunoblot analysis of six proteins representative of distinct metabolic or regulatory pathways. Among the main features of the chloroplast-to-chromoplast transition revealed by the study, chromoplastogenesis appears to be associated with major metabolic shifts: (1) strong decrease in abundance of proteins of light reactions (photosynthesis, Calvin cycle, photorespiration) and carbohydrate metabolism (starch synthesis/degradation), mostly between breaker and red stages and (2) increase in terpenoid biosynthesis (including carotenoids) and stress-response proteins (ascorbate-glutathione cycle, abiotic stress, redox, heat shock). These metabolic shifts are preceded by the accumulation of plastid-encoded acetyl Coenzyme A carboxylase D proteins accounting for the generation of a storage matrix that will accumulate carotenoids. Of particular note is the high abundance of proteins involved in providing energy and in metabolites import. Structural differentiation of the chromoplast is characterized by a sharp and continuous decrease of thylakoid proteins whereas envelope and stroma proteins remain remarkably stable. This is coincident with the disruption of the machinery for thylakoids and photosystem biogenesis (vesicular trafficking, provision of material for thylakoid biosynthesis, photosystems assembly) and the loss of the plastid division machinery. Altogether, the data provide new insights on the chromoplast differentiation process while enriching our knowledge of the plant plastid proteome.

  18. Insights into chloroplast biogenesis and development.

    PubMed

    Pogson, Barry J; Ganguly, Diep; Albrecht-Borth, Verónica

    2015-09-01

    In recent years many advances have been made to obtain insight into chloroplast biogenesis and development. In plants several plastids types exist such as the proplastid (which is the progenitor of all plastids), leucoplasts (group of colourless plastids important for storage including elaioplasts (lipids), amyloplasts (starch) or proteinoplasts (proteins)), chromoplasts (yellow to orange-coloured due to carotenoids, in flowers or in old leaves as gerontoplasts), and the green chloroplasts. Chloroplasts are indispensable for plant development; not only by performing photosynthesis and thus rendering the plant photoautotrophic, but also for biochemical processes (which in some instances can also take place in other plastids types), such as the synthesis of pigments, lipids, and plant hormones and sensing environmental stimuli. Although we understand many aspects of these processes there are gaps in our understanding of the establishment of functional chloroplasts and their regulation. Why is that so? Even though chloroplast function is comparable in all plants and most of the algae, ferns and moss, detailed analyses have revealed many differences, specifically with respect to its biogenesis. As an update to our prior review on the genetic analysis of chloroplast biogenesis and development [1] herein we will focus on recent advances in Angiosperms (monocotyledonous and dicotyledonous plants) that provide novel insights and highlight the challenges and prospects for unravelling the regulation of chloroplast biogenesis specifically during the establishment of the young plants. This article is part of a Special Issue entitled: Chloroplast Biogenesis.

  19. Phylogeny of prokaryotes and chloroplasts revealed by a simple composition approach on all protein sequences from complete genomes without sequence alignment.

    PubMed

    Yu, Z G; Zhou, L Q; Anh, V V; Chu, K H; Long, S C; Deng, J Q

    2005-04-01

    The complete genomes of living organisms have provided much information on their phylogenetic relationships. Similarly, the complete genomes of chloroplasts have helped to resolve the evolution of this organelle in photosynthetic eukaryotes. In this paper we propose an alternative method of phylogenetic analysis using compositional statistics for all protein sequences from complete genomes. This new method is conceptually simpler than and computationally as fast as the one proposed by Qi et al. (2004b) and Chu et al. (2004). The same data sets used in Qi et al. (2004b) and Chu et al. (2004) are analyzed using the new method. Our distance-based phylogenic tree of the 109 prokaryotes and eukaryotes agrees with the biologists "tree of life" based on 16S rRNA comparison in a predominant majority of basic branching and most lower taxa. Our phylogenetic analysis also shows that the chloroplast genomes are separated to two major clades corresponding to chlorophytes s.l. and rhodophytes s.l. The interrelationships among the chloroplasts are largely in agreement with the current understanding on chloroplast evolution.

  20. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms.

    PubMed

    Ma, Ji; Yang, Bingxian; Zhu, Wei; Sun, Lianli; Tian, Jingkui; Wang, Xumin

    2013-10-10

    Mahonia bealei (Berberidaceae) is a frequently-used traditional Chinese medicinal plant with efficient anti-inflammatory ability. This plant is one of the sources of berberine, a new cholesterol-lowering drug with anti-diabetic activity. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of M. bealei. The complete cp genome of M. bealei is 164,792 bp in length, and has a typical structure with large (LSC 73,052 bp) and small (SSC 18,591 bp) single-copy regions separated by a pair of inverted repeats (IRs 36,501 bp) of large size. The Mahonia cp genome contains 111 unique genes and 39 genes are duplicated in the IR regions. The gene order and content of M. bealei are almost unarranged which is consistent with the hypothesis that large IRs stabilize cp genome and reduce gene loss-and-gain probabilities during evolutionary process. A large IR expansion of over 12 kb has occurred in M. bealei, 15 genes (rps19, rpl22, rps3, rpl16, rpl14, rps8, infA, rpl36, rps11, petD, petB, psbH, psbN, psbT and psbB) have expanded to have an additional copy in the IRs. The IR expansion rearrangement occurred via a double-strand DNA break and subsequence repair, which is different from the ordinary gene conversion mechanism. Repeat analysis identified 39 direct/inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Analysis also revealed 75 simple sequence repeat (SSR) loci and almost all are composed of A or T, contributing to a distinct bias in base composition. Comparison of protein-coding sequences with ESTs reveals 9 putative RNA edits and 5 of them resulted in non-synonymous modifications in rpoC1, rps2, rps19 and ycf1. Phylogenetic analysis using maximum parsimony (MP) and maximum likelihood (ML) was performed on a dataset composed of 65 protein-coding genes from 25 taxa, which yields an identical tree topology as previous plastid-based trees, and provides strong support for the sister relationship between Ranunculaceae and Berberidaceae

  1. Survey of compound microsatellites in multiple Lactobacillus genomes.

    PubMed

    Basharat, Zarrin; Yasmin, Azra

    2015-12-01

    Distinct simple sequence repeats with 2 or more individual microsatellites joined together or lying adjacent to each other are identified as compound microsatellites. Investigation of such composite microsatellites in the genomes of genus Lactobacillus was the aim of this study. In silico inspection of microsatellite clustering in genomes of 14 Lactobacillus species revealed a wealth of compound microsatellites. All of the mined compound microsatellites were imperfect, were composed of variant motifs, and increased in all genomes, with maximum distance (dMAX) increments of 10 to 50. The majority of these repeats were present in the coding regions. A correlation of microsatellite to compound microsatellite density was detected. The difference established in compound microsatellite division among eukaryotes, Escherichia coli, and lactobacilli is suggestive of diverse genomic features and elementary distinction between creation and fixation methods of compound microsatellites among these organisms.

  2. Karyotypic analysis and FISH mapping of microsatellite motifs reveal highly differentiated XX/XY sex chromosomes in the pink-tailed worm-lizard (Aprasia parapulchella, Pygopodidae, Squamata)

    PubMed Central

    2013-01-01

    Background The infraorder Gekkota is intriguing because it contains multiple chromosomal and environmental sex determination systems that vary even among closely related taxa. Here, we compare male and females karyotypes of the pink-tailed worm-lizard (Aprasia parapulchella), a small legless lizard belonging to the endemic Australian family Pygopodidae. Results We applied comparative genomic hybridization to reveal an XX/XY sex chromosome system in which the Y chromosome is highly differentiated from the X in both gross morphology and DNA sequence. In addition, FISH mapping has revealed that two microsatellite repeat motifs, (AGAT)n and (AC)n, have been amplified multiple times on the Y chromosome. Conclusion XY karyotypes are found in other pygopodids (Delma inornata and Lialis burtonis), suggesting that the common ancestor of Pygopodidae also had XY sex chromosomes. However, the morphology and size of the Y chromosomes are different among the three species, suggesting that the processes underlying the evolution of sex chromosomes in the Pygopodidae involved chromosome rearrangements and accumulation and amplification of repeats. PMID:24344753

  3. Barley stripe mosaic virus-encoded proteins triple-gene block 2 and gammab localize to chloroplasts in virus-infected monocot and dicot plants, revealing hitherto-unknown roles in virus replication.

    PubMed

    Torrance, L; Cowan, G H; Gillespie, T; Ziegler, A; Lacomme, C

    2006-08-01

    Replication of Barley stripe mosaic virus (BSMV), genus Hordeivirus, is thought to be associated with vesicles in proplastids and chloroplasts, but the molecular details of the process and identity of virus proteins involved in establishing the virus replication complexes are unknown. In addition, BSMV encodes a triple-gene block of movement proteins (TGBs) that putatively share functional roles with their counterparts in other hordei-, pomo- and pecluviruses, but detailed information on the intracellular locations of the individual TGBs is lacking. Here, the subcellular localizations of BSMV-encoded proteins TGB2 and gammab fused to green or red fluorescent proteins were examined in epidermal cells of Nicotiana benthamiana and barley (Hordeum vulgare 'Black Hulless'). The fusion proteins were expressed from a BSMV vector or under the control of the cauliflower mosaic virus 35S promoter. The subcellular localizations were studied by confocal laser-scanning microscopy (CLSM). CLSM studies showed that both proteins were recruited to chloroplasts in the presence of viral RNA and that virus RNA, coat protein and gammab protein were detected in plastid preparations from infected leaves. Electron microscope images of thin sections of virus-infected leaves revealed abnormal chloroplasts with cytoplasmic inclusions containing virus-like particles. In addition, cellular localizations of BSMV TGB2 suggest subtle differences in function between the hordei-like TGB2 proteins. The results indicate that TGB2 and gammab proteins play a previously unknown functional role at the site of virus replication.

  4. The distribution of Quercus suber chloroplast haplotypes matches the palaeogeographical history of the western Mediterranean.

    PubMed

    Magri, D; Fineschi, S; Bellarosa, R; Buonamici, A; Sebastiani, F; Schirone, B; Simeone, M C; Vendramin, G G

    2007-12-01

    Combining molecular analyses with geological and palaeontological data may reveal timing and modes for the divergence of lineages within species. The Mediterranean Basin is particularly appropriate for this kind of multidisciplinary studies, because of its complex geological history and biological diversity. Here, we investigated chloroplast DNA of Quercus suber populations in order to detect possible relationships between their geographical distribution and the palaeogeographical history of the western Mediterranean domain. We analysed 110 cork oak populations, covering the whole distribution range of the species, by 14 chloroplast microsatellite markers, among which eight displayed variation among populations. We identified five haplotypes whose distribution is clearly geographically structured. Results demonstrated that cork oak populations have undergone a genetic drift geographically consistent with the Oligocene and Miocene break-up events of the European-Iberian continental margin and suggested that they have persisted in a number of separate microplates, currently found in Tunisia, Sardinia, Corsica, and Provence, without detectable chloroplast DNA modifications for a time span of over 15 million years. A similar distribution pattern of mitochondrial DNA of Pinus pinaster supports the hypothesis of such long-term persistence, in spite of Quaternary climate oscillations and of isolation due to insularity, and suggests that part of the modern geographical structure of Mediterranean populations may be traced back to the Tertiary history of taxa.

  5. Microsatellites reveal origin and genetic diversity of Eurasian invasions by one of the world's most notorious marine invader, Mnemiopsis leidyi (Ctenophora).

    PubMed

    Reusch, Thorsten B H; Bolte, Sören; Sparwel, Maximiliane; Moss, Anthony G; Javidpour, Jamileh

    2010-07-01

    Marine invasions are taking place at an increasing rate. When occurring in blooms, zooplanktivorous comb jellies of the genus Mnemiopsis are able to cause pelagic regime shifts in coastal areas and may cause the collapse of commercially important fish populations. Using microsatellites, developed for the first time in the phylum Ctenophora, we show that Mnemiopsis leidyi has colonized Eurasia from two source regions. Our preliminary data set included four sites within the putative source region (US East Coast and Gulf of Mexico) and 10 invaded locations in Eurasian waters. Bayesian clustering and phylogeographic approaches revealed the origin of earlier invasions of the Black and Caspian Sea in the 1980s/1990s within or close to the Gulf of Mexico, while the 2006 invasion of the North and Baltic Seas can be directly traced to New England (pairwise F(ST) = 0). We found no evidence for mixing among both gene pools in the invaded areas. While the genetic diversity (allelic richness) remained similar in the Baltic Sea compared to the source region New England, it was reduced in the North Sea, supporting the view of an initial invasion of Northern Europe to a Baltic Sea port. In Black and Caspian Sea samples, we found a gradual decline in allelic richness compared to the Gulf of Mexico region, supporting a stepping-stone model of colonization with two sequential genetic founder events. Our data also suggest that current practices of ballast water treatment are insufficient to prevent repeated invasions of gelatinous zooplankton.

  6. Ribonucleic acid synthesis in chloroplasts

    PubMed Central

    Hartley, M. R.; Ellis, R. J.

    1973-01-01

    Chloroplasts isolated from young spinach leaves incorporate [3H]uridine into RNA. This incorporation shows an absolute requirement for light and does not occur in lysed chloroplasts. Fractionation by polyacrylamide-gel electrophoresis of the RNA synthesized in vitro reveals a major discrete product of molecular weight 2.7×106 and two minor products of molecular weight 1.2×106 and 0.47×106. These discrete products are super-imposed on a background of polydisperse RNA. The incorporation of 32Pi into chloroplast rRNA species (mol.wt. 1.05×106 and 0.56×106) in excised spinach leaves proceeds after a distinct lag period compared with the incorporation into cytoplasmic rRNA species (mol.wt. 1.34×106 and 0.7×106). Incorporation of 32Pi into chloroplast RNA species of molecular weight 2.7×106, 1.2×106, 0.65×106 and 0.47×106 proceeds without such a time-lag. The kinetics of labelling of the individual RNA components is consistent with the rapidly labelled RNA species of molecular weight 1.2×106 and 0.65×106 being precursors to the more slowly labelled rRNA species of molecular weight 1.05×106 and 0.56×106 respectively. PMID:4723226

  7. Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin

    PubMed Central

    2011-01-01

    Background The melon belongs to the Cucurbitaceae family, whose economic importance among vegetable crops is second only to Solanaceae. The melon has a small genome size (454 Mb), which makes it suitable for molecular and genetic studies. Despite similar nuclear and chloroplast genome sizes, cucurbits show great variation when their mitochondrial genomes are compared. The melon possesses the largest plant mitochondrial genome, as much as eight times larger than that of other cucurbits. Results The nucleotide sequences of the melon chloroplast and mitochondrial genomes were determined. The chloroplast genome (156,017 bp) included 132 genes, with 98 single-copy genes dispersed between the small (SSC) and large (LSC) single-copy regions and 17 duplicated genes in the inverted repeat regions (IRa and IRb). A comparison of the cucumber and melon chloroplast genomes showed differences in only approximately 5% of nucleotides, mainly due to short indels and SNPs. Additionally, 2.74 Mb of mitochondrial sequence, accounting for 95% of the estimated mitochondrial genome size, were assembled into five scaffolds and four additional unscaffolded contigs. An 84% of the mitochondrial genome is contained in a single scaffold. The gene-coding region accounted for 1.7% (45,926 bp) of the total sequence, including 51 protein-coding genes, 4 conserved ORFs, 3 rRNA genes and 24 tRNA genes. Despite the differences observed in the mitochondrial genome sizes of cucurbit species, Citrullus lanatus (379 kb), Cucurbita pepo (983 kb) and Cucumis melo (2,740 kb) share 120 kb of sequence, including the predicted protein-coding regions. Nevertheless, melon contained a high number of repetitive sequences and a high content of DNA of nuclear origin, which represented 42% and 47% of the total sequence, respectively. Conclusions Whereas the size and gene organisation of chloroplast genomes are similar among the cucurbit species, mitochondrial genomes show a wide variety of sizes, with a non

  8. Phenotype and transcriptome analysis reveals chloroplast development and pigment biosynthesis together influenced the leaf color formation in mutants of Anthurium andraeanum ‘Sonate’

    PubMed Central

    Yang, Yuxia; Chen, Xingxu; Xu, Bin; Li, Yuxia; Ma, Yuehua; Wang, Guangdong

    2015-01-01

    Leaf color is one of the well-sought traits in breeding program for Anthurium andraeanum Lind. Knowledge of mechanisms in anthuriums to produce leaves with different shades of green would help to effectively select desirable traits. In this study, the micro- and ultra-structural and physiological features of leaves on wild type and leaf color mutants (dark green, rubescent, etiolated, albino) in A. andraeanum ‘Sonate’ were analyzed. Results show that chloroplasts of leaf color mutants exhibited abnormal morphology and distribution. Using next generation sequencing technology followed by de novo assembly, leaf transcriptomes comprising of 41,017 unigenes with an average sequence length of 768 bp were produced from wild type and rubescent mutant. From the 27,539 (67.1%) unigenes with annotated functions, 858 significantly differently expressed genes (DEGs) were identified, consisting of 446 up-regulated genes and 412 down-regulated genes. Genes that affect chloroplasts development and division, and chlorophyll biosynthesis were included in the down-regulated DEGs. Quantitative real-time PCR (qRT-PCR) analysis validated that the expression level of those genes was significantly lower in the rubescent, etiolated, and albino mutant compared to wild type plants, which concurs with the differences in micro- and ultra-structures and physiological features between these two types of plants. Conclusively, the leaf color formation is greatly affected by the activity of chloroplast development and pigment biosynthesis. And the possible formation pathway of leaf color mutant of A. andraeanum ‘Sonate’ is deduced based on our results. PMID:25814997

  9. The selective biotin tagging and thermolysin proteolysis of chloroplast outer envelope proteins reveals information on protein topology and association into complexes.

    PubMed

    Hardré, Hélène; Kuhn, Lauriane; Albrieux, Catherine; Jouhet, Juliette; Michaud, Morgane; Seigneurin-Berny, Daphné; Falconet, Denis; Block, Maryse A; Maréchal, Eric

    2014-01-01

    The understanding of chloroplast function requires the precise localization of proteins in each of its sub-compartments. High-sensitivity mass spectrometry has allowed the inventory of proteins in thylakoid, stroma, and envelope fractions. Concerning membrane association, proteins can be either integral or peripheral or even soluble proteins bound transiently to a membrane complex. We sought a method providing information at the surface of the outer envelope membrane (OEM), based on specific tagging with biotin or proteolysis using thermolysin, a non-membrane permeable protease. To evaluate this method, envelope, thylakoid, and stroma proteins were separated by two-dimensional electrophoresis and analyzed by immunostaining and mass spectrometry. A short selection of proteins associated to the chloroplast envelope fraction was checked after superficial treatments of intact chloroplasts. We showed that this method could allow the characterization of OEM embedded proteins facing the cytosol, as well as peripheral and soluble proteins associated via tight or lose interactions. Some stromal proteins were associated with biotinylated spots and analyzes are still needed to determine whether polypeptides were tagged prior import or if they co-migrated with OEM proteins. This method also suggests that some proteins associated with the inner envelope membrane (IEM) might need the integrity of a trans-envelope (IEM-OEM) protein complex (e.g., division ring-forming components) or at least an intact OEM partner. Following this evaluation, proteomic analyzes should be refined and the putative role of inter-membrane space components stabilizing trans-envelope complexes demonstrated. For future comprehensive studies, perspectives include the dynamic analyses of OEM proteins and IEM-OEM complexes in various physiological contexts and using virtually any other purified membrane organelle.

  10. The selective biotin tagging and thermolysin proteolysis of chloroplast outer envelope proteins reveals information on protein topology and association into complexes

    PubMed Central

    Hardré, Hélène; Kuhn, Lauriane; Albrieux, Catherine; Jouhet, Juliette; Michaud, Morgane; Seigneurin-Berny, Daphné; Falconet, Denis; Block, Maryse A.; Maréchal, Eric

    2014-01-01

    The understanding of chloroplast function requires the precise localization of proteins in each of its sub-compartments. High-sensitivity mass spectrometry has allowed the inventory of proteins in thylakoid, stroma, and envelope fractions. Concerning membrane association, proteins can be either integral or peripheral or even soluble proteins bound transiently to a membrane complex. We sought a method providing information at the surface of the outer envelope membrane (OEM), based on specific tagging with biotin or proteolysis using thermolysin, a non-membrane permeable protease. To evaluate this method, envelope, thylakoid, and stroma proteins were separated by two-dimensional electrophoresis and analyzed by immunostaining and mass spectrometry. A short selection of proteins associated to the chloroplast envelope fraction was checked after superficial treatments of intact chloroplasts. We showed that this method could allow the characterization of OEM embedded proteins facing the cytosol, as well as peripheral and soluble proteins associated via tight or lose interactions. Some stromal proteins were associated with biotinylated spots and analyzes are still needed to determine whether polypeptides were tagged prior import or if they co-migrated with OEM proteins. This method also suggests that some proteins associated with the inner envelope membrane (IEM) might need the integrity of a trans-envelope (IEM–OEM) protein complex (e.g., division ring-forming components) or at least an intact OEM partner. Following this evaluation, proteomic analyzes should be refined and the putative role of inter-membrane space components stabilizing trans-envelope complexes demonstrated. For future comprehensive studies, perspectives include the dynamic analyses of OEM proteins and IEM–OEM complexes in various physiological contexts and using virtually any other purified membrane organelle. PMID:24999344

  11. The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice.

    PubMed

    Caverzan, Andréia; Bonifacio, Aurenivia; Carvalho, Fabricio E L; Andrade, Claudia M B; Passaia, Gisele; Schünemann, Mariana; Maraschin, Felipe Dos Santos; Martins, Marcio O; Teixeira, Felipe K; Rauber, Rafael; Margis, Rogério; Silveira, Joaquim Albenisio Gomes; Margis-Pinheiro, Márcia

    2014-01-01

    The inactivation of the chloroplast ascorbate peroxidases (chlAPXs) has been thought to limit the efficiency of the water-water cycle and photo-oxidative protection under stress conditions. In this study, we have generated double knockdown rice (Oryza sativa L.) plants in both OsAPX7 (sAPX) and OsAPX8 (tAPX) genes, which encode chloroplastic APXs (chlAPXs). By employing an integrated approach involving gene expression, proteomics, biochemical and physiological analyses of photosynthesis, we have assessed the role of chlAPXs in the regulation of the protection of the photosystem II (PSII) activity and CO2 assimilation in rice plants exposed to high light (HL) and methyl violagen (MV). The chlAPX knockdown plants were affected more severely than the non-transformed (NT) plants in the activity and structure of PSII and CO2 assimilation in the presence of MV. Although MV induced significant increases in pigment content in the knockdown plants, the increases were apparently not sufficient for protection. Treatment with HL also caused generalized damage in PSII in both types of plants. The knockdown and NT plants exhibited differences in photosynthetic parameters related to efficiency of utilization of light and CO2. The knockdown plants overexpressed other antioxidant enzymes in response to the stresses and increased the GPX activity in the chloroplast-enriched fraction. Our data suggest that a partial deficiency of chlAPX expression modulate the PSII activity and integrity, reflecting the overall photosynthesis when rice plants are subjected to acute oxidative stress. However, under normal growth conditions, the knockdown plants exhibit normal phenotype, biochemical and physiological performance.

  12. Genetic Differentiation and Genetic Diversity of Castanopsis (Fagaceae), the Dominant Tree Species in Japanese Broadleaved Evergreen Forests, Revealed by Analysis of EST-Associated Microsatellites

    PubMed Central

    Aoki, Kyoko; Ueno, Saneyoshi; Kamijo, Takashi; Setoguchi, Hiroaki; Murakami, Noriaki; Kato, Makoto; Tsumura, Yoshihiko

    2014-01-01

    The broadleaved evergreen forests of the East Asian warm temperate zone are characterised by their high biodiversity and endemism, and there is therefore a need to extend our understanding of its genetic diversity and phylogeographic patterns. Castanopsis (Fagaceae) is one of the dominant tree species in the broadleaved evergreen forests of Japan. In this study we investigate the genetic diversity, genetic structure and leaf epidermal morphology of 63 natural populations of C. sieboldii and C. cuspidata, using 32 Expressed Sequence Tag associated microsatellites. The overall genetic differentiation between populations was low (GST = 0.069 in C. sieboldii and GST = 0.057 in C. cuspidata). Neighbor-joining tree and Bayesian clustering analyses revealed that the populations of C. sieboldii and C. cuspidata were genetically clearly differentiated, a result which is consistent with the morphology of their epidermal cell layers. This suggests that C. sieboldii and C. cuspidata should be treated as independent species, although intermediate morphologies are often observed, especially at sites where the two species coexist. The higher level of genetic diversity observed in the Kyushu region (for both species) and the Ryukyu Islands (for C. sieboldii) is consistent with the available fossil pollen data for Castanopsis-type broadleaved evergreen trees during the Last Glacial Maximum and suggests the existence of refugia for Castanopsis forests in southern Japan. Within the C. sieboldii populations, Bayesian clustering analyses detected three clusters, in the western and eastern parts of the main islands and in the Ryukyu Islands. The west-east genetic differentiation observed for this species in the main islands, a pattern which is also found in several plant and animal species inhabiting Castanopsis forests in Japan, suggests that they have been isolated from each other in the western and eastern populations for an extended period of time, and may imply the

  13. Genetic differentiation and genetic diversity of Castanopsis (Fagaceae), the dominant tree species in Japanese broadleaved evergreen forests, revealed by analysis of EST-associated microsatellites.

    PubMed

    Aoki, Kyoko; Ueno, Saneyoshi; Kamijo, Takashi; Setoguchi, Hiroaki; Murakami, Noriaki; Kato, Makoto; Tsumura, Yoshihiko

    2014-01-01

    The broadleaved evergreen forests of the East Asian warm temperate zone are characterised by their high biodiversity and endemism, and there is therefore a need to extend our understanding of its genetic diversity and phylogeographic patterns. Castanopsis (Fagaceae) is one of the dominant tree species in the broadleaved evergreen forests of Japan. In this study we investigate the genetic diversity, genetic structure and leaf epidermal morphology of 63 natural populations of C. sieboldii and C. cuspidata, using 32 Expressed Sequence Tag associated microsatellites. The overall genetic differentiation between populations was low (GST = 0.069 in C. sieboldii and GST = 0.057 in C. cuspidata). Neighbor-joining tree and Bayesian clustering analyses revealed that the populations of C. sieboldii and C. cuspidata were genetically clearly differentiated, a result which is consistent with the morphology of their epidermal cell layers. This suggests that C. sieboldii and C. cuspidata should be treated as independent species, although intermediate morphologies are often observed, especially at sites where the two species coexist. The higher level of genetic diversity observed in the Kyushu region (for both species) and the Ryukyu Islands (for C. sieboldii) is consistent with the available fossil pollen data for Castanopsis-type broadleaved evergreen trees during the Last Glacial Maximum and suggests the existence of refugia for Castanopsis forests in southern Japan. Within the C. sieboldii populations, Bayesian clustering analyses detected three clusters, in the western and eastern parts of the main islands and in the Ryukyu Islands. The west-east genetic differentiation observed for this species in the main islands, a pattern which is also found in several plant and animal species inhabiting Castanopsis forests in Japan, suggests that they have been isolated from each other in the western and eastern populations for an extended period of time, and may imply the

  14. Chloroplast DNA diversity reveals the contribution of two wild species to the origin and evolution of diploid safflower (Carthamus tinctorius L.).

    PubMed

    Sehgal, Deepmala; Rajpal, Vijay Rani; Raina, Soom Nath

    2008-08-01

    The identity of the wild progenitor of one of the most important oil crop species, Carthamus tinctorius (2n = 2x = 24), commonly known as safflower, has been the subject of numerous studies at morphological, biochemical, cytogenetic, and biosystematic levels, but no definitive conclusions have been made. The nuclear, mitochondrial, and chloroplast genomes of the two botanical varieties of C. tinctorius, C. tinctorius var. tinctorius and C. tinctorius var. inermis, and two wild species, C. palaestinus and C. oxyacantha, were assayed at the nucleotide sequence level and by DNA markers. The nuclear and mitochondrial DNA assays were not helpful in conclusively identifying the diploid ancestor of C. tinctorius. The chloroplast DNA diversity, on the other hand, unambiguously provided new and novel evidence that C. palaestinus and C. oxyacantha contributed their plastomes to the evolution of C. tinctorius var. inermis and C. tinctorius var. tinctorius, respectively. This study, therefore, affirms a startling revelation of a rare event of two wild species contributing to the origin and evolution of safflower, a major world oilseed crop about whose genetics very little is known.

  15. Auxin and chloroplast movements.

    PubMed

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Waligórski, Piotr; Gabryś, Halina

    2016-03-01

    Auxin is involved in a wide spectrum of physiological processes in plants, including responses controlled by the blue light photoreceptors phototropins: phototropic bending and stomatal movement. However, the role of auxin in phototropin-mediated chloroplast movements has never been studied. To address this question we searched for potential interactions between auxin and the chloroplast movement signaling pathway using different experimental approaches and two model plants, Arabidopsis thaliana and Nicotiana tabacum. We observed that the disturbance of auxin homeostasis by shoot decapitation caused a decrease in chloroplast movement parameters, which could be rescued by exogenous auxin application. In several cases, the impairment of polar auxin transport, by chemical inhibitors or in auxin carrier mutants, had a similar negative effect on chloroplast movements. This inhibition was not correlated with changes in auxin levels. Chloroplast relocations were also affected by the antiauxin p-chlorophenoxyisobutyric acid and mutations in genes encoding some of the elements of the SCF(TIR1)-Aux/IAA auxin receptor complex. The observed changes in chloroplast movement parameters are not prominent, which points to a modulatory role of auxin in this process. Taken together, the obtained results suggest that auxin acts indirectly to regulate chloroplast movements, presumably by regulating gene expression via the SCF(TIR1)-Aux/IAA-ARF pathway. Auxin does not seem to be involved in controlling the expression of phototropins.

  16. Complete Chloroplast Genome Sequence of Holoparasite Cistanche deserticola (Orobanchaceae) Reveals Gene Loss and Horizontal Gene Transfer from Its Host Haloxylon ammodendron (Chenopodiaceae)

    PubMed Central

    Qiao, Qin; Ren, Zhumei; Zhao, Jiayuan; Yonezawa, Takahiro; Hasegawa, Masami; Crabbe, M. James C; Li, Jianqiang; Zhong, Yang

    2013-01-01

    Background The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. Principal Findings/Significance Here we report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae. The cp genome of C. deserticola is greatly reduced both in size (102,657 bp) and in gene content, indicating that all genes required for photosynthesis suffer from gene loss and pseudogenization, except for psbM. The striking difference from other holoparasitic plants is that it retains almost a full set of tRNA genes, and it has lower dN/dS for most genes than another close holoparasitic plant, E. virginiana, suggesting that Cistanche deserticola has undergone fewer losses, either due to a reduced level of holoparasitism, or to a recent switch to this life history. We also found that the rpoC2 gene was present in two copies within C. deserticola. Its own copy has much shortened and turned out to be a pseudogene. Another copy, which was not located in its cp genome, was a homolog of the host plant, Haloxylon ammodendron (Chenopodiaceae), suggesting that it was acquired from its host via a horizontal gene transfer. PMID:23554920

  17. Nanophotonics of Chloroplasts for Bio-Inspired Solar Energy Materials

    NASA Astrophysics Data System (ADS)

    Gourley, Paul L.; Gourley, Cheryl R.

    2011-03-01

    In the search for new energy sources, lessons can be learned from chloroplast photonics. The nano-architecture of chloroplasts is remarkably well-adapted to mediate sunlight interactions for efficient energy conversion. We carried out experiments with chloroplasts isolated from spinach and leaf lettuce to elucidate the relationship between nano-architecture, biomolecular composition and photonic properties. We obtained high-resolution microscopic images of single chloroplasts to identify geometries of chloroplasts and interior grana. We performed micro-spectroscopy to identify strengths of absorption and fluorescence transitions and related them to broadband reflectance and transmittance spectra of whole leaf structures. Finally, the nonlinear optical properties were investigated with nanolaser spectroscopy by placing chloroplasts into micro-resonators and optically pumping. These spectra reveal chloroplast photonic modes and allow measurement of single chloroplast light scattering cross section, polarizability, and refractive index. The nanolaser spectra recorded at increasing pump powers enabled us to observe non-linear optics, photon dynamics, and stimulated emission from single chloroplasts. All of these experiments provide insight into plant photonics and inspiration of paradigms for synthetic biomaterials to harness sunlight in new ways.

  18. Genetic structure of Sakhalin spruce (Picea glehnii) in northern Japan and adjacent regions revealed by nuclear microsatellites and mitochondrial gene sequences.

    PubMed

    Aizawa, Mineaki; Yoshimaru, Hiroshi; Takahashi, Makoto; Kawahara, Takayuki; Sugita, Hisashi; Saito, Hideyuki; Sabirov, Renat N

    2015-01-01

    The genetic structure of Sakhalin spruce (Picea glehnii) was studied across the natural range of the species, including two small isolated populations in south Sakhalin and Hayachine, by using six microsatellite loci and maternally inherited mitochondrial gene sequences. We also analyzed P. jezoensis, a sympatric spruce in the range. Genetic diversity of P. glehnii was higher in central Hokkaido and the lowest in the Hayachine. Bayesian clustering and principal coordinate analysis by using the microsatellites indicated that the Hayachine was clearly distinct from other populations, implying that it had undergone strong genetic drift since the last glacial period. P. glehnii harbored four mitochondrial haplotypes, two of which were shared with P. jezoensis. One of the two was observed without geographical concentration, suggesting its derivation from ancestral polymorphism. Another was observed in south Sakhalin and in P. jezoensis across Sakhalin. The Bayesian clustering--by using four microsatellite loci, including P. jezoensis populations--indicated unambiguous species delimitation, but with possible admixture of P. jezoensis genes into P. glehnii in south Sakhalin, where P. glehnii is abundantly overwhelmed by P. jezoensis; this might explain the occurrence of introgression of the haplotype of P. jezoensis into P. glehnii.

  19. The chloroplast RNA helicase ISE2 is required for multiple chloroplast RNA processing steps in Arabidopsis thaliana.

    PubMed

    Bobik, Krzysztof; McCray, Tyra N; Ernest, Ben; Fernandez, Jessica C; Howell, Katharine A; Lane, Thomas; Staton, Margaret; Burch-Smith, Tessa M

    2017-03-27

    INCREASED SIZE EXCLUSION LIMIT2 (ISE2) is a chloroplast-localized RNA helicase that is indispensable for proper plant development. Chloroplasts in leaves with reduced ISE2 expression have previously been shown to exhibit reduced thylakoid contents and increased stromal volume, indicative of defective development. It has recently been reported that ISE2 is required for the splicing of group II introns from chloroplast transcripts. The current study extends these findings, and presents evidence for ISE2's role in multiple aspects of chloroplast RNA processing beyond group II intron splicing. Loss of ISE2 from Arabidopsis thaliana leaves resulted in defects in C-to-U RNA editing, altered accumulation of chloroplast transcripts and chloroplast-encoded proteins, and defective processing of chloroplast ribosomal RNAs. Potential ISE2 substrates were identified by RNA immunoprecipitation followed by next-generation sequencing (RIP-seq), and the diversity of RNA species identified supports ISE2's involvement in multiple aspects of chloroplast RNA metabolism. Comprehensive phylogenetic analyses revealed that ISE2 is a non-canonical Ski2-like RNA helicase that represents a separate sub-clade unique to green photosynthetic organisms, consistent with its function as an essential protein. Thus ISE2's evolutionary conservation may be explained by its numerous roles in regulating chloroplast gene expression. This article is protected by copyright. All rights reserved.

  20. Evidence of Natural Hybridization and Introgression between Vasconcellea Species (Caricaceae) from Southern Ecuador Revealed by Chloroplast, Mitochondrial and Nuclear DNA Markers

    PubMed Central

    VAN DROOGENBROECK, B.; KYNDT, T.; ROMEIJN-PEETERS, E.; VAN THUYNE, W.; GOETGHEBEUR, P.; ROMERO-MOTOCHI, J. P.; GHEYSEN, G.

    2006-01-01

    • Background and Aims Vasconcellea × heilbornii is believed to be of natural hybrid origin between V. cundinamarcensis and V. stipulata, and is often difficult to discriminate from V. stipulata on morphological grounds. The aim of this paper is to examine individuals of these three taxa and of individuals from the closely related species V. parviflora and V. weberbaueri, which all inhabit a hybrid zone in southern Ecuador. • Methods Molecular data from mitochondrial, chloroplast and nuclear DNA from 61 individuals were analysed. • Key Results Molecular analysis confirmed occasional contemporary hybridization between V. stipulata, V. cundinamarcensis and V. × heilbornii and suggested the possible involvement of V. weberbaueri in the origin of V. × heilbornii. In addition, the molecular data indicated unidirectional introgression of the V. cundinamarcensis nuclear genome into that of V. stipulata. Several of the individuals examined with morphology similar to that of V. stipulata had genetic traces of hybridization with V. cundinamarcensis, which only seems to act as pollen donor in interspecific hybridization events. Molecular analyses also strongly suggested that most of the V. × heilbornii individuals are not F1 hybrids but instead are progeny of repeated backcrosses with V. stipulata. • Conclusions The results of the present study point to the need for re-evaluation of natural populations of V. stipulata and V. × heilbornii. In general, this analysis demonstrates the complex patterns of genetic and morphological diversity found in natural plant hybrid zones. PMID:16500954

  1. Chloroplast diversity of Casearia grandiflora in the Cerrado of Piauí State.

    PubMed

    Costa, M F; Pereira, A A; Pinheiro, J B; Zucchi, M I; Araújo, A S F; Gomes, R L F; Valente, S E S; Oliveira, M E A; Lopes, A C A

    2017-02-16

    Casearia grandiflora (Salicaceae) is a typical Cerrado species adapted to disturbed environments, making it useful for restoration projects. Knowledge of genetic diversity is important for establishing conservation strategies for this species. This study aimed to compare chloroplast haplotype diversity and structure of C. grandiflora, under the assumption that protected areas hold greater genetic diversity than disturbed areas. The populations studied are from Parque Nacional de Sete Cidades Conservation Unit and from the surroundings of the city of Cocal de Telha, both located in the State of Piauí. Molecular analyses were performed with seven chloroplast microsatellite loci. The number of private haplotypes and haplotype diversity were higher in the conservation unit, which reinforces the importance of these areas in maintaining biodiversity. Analysis of molecular variance showed that most of the genetic variation is found within populations, with a moderate divergence between them (FST = 0.14). The Bayesian analysis and discriminant analysis of principal components suggested that populations are not structured, revealing that a set of individuals from Parque Nacional de Sete Cidades were more divergent within populations than between them. Since literature has little information on C. grandiflora, the results of this study provide important contribution to a better understanding of the specie's genetic diversity.

  2. Identification of chloroplast genome loci suitable for high-resolution phylogeographic studies of Colocasia esculenta (L.) Schott (Araceae) and closely related taxa.

    PubMed

    Ahmed, Ibrar; Matthews, Peter J; Biggs, Patrick J; Naeem, Muhammad; McLenachan, Patricia A; Lockhart, Peter J

    2013-09-01

    Recently, we reported the chloroplast genome-wide association of oligonucleotide repeats, indels and nucleotide substitutions in aroid chloroplast genomes. We hypothesized that the distribution of oligonucleotide repeat sequences in a single representative genome can be used to identify mutational hotspots and loci suitable for population genetic, phylogenetic and phylogeographic studies. Using information on the location of oligonucleotide repeats in the chloroplast genome of taro (Colocasia esculenta), we designed 30 primer pairs to amplify and sequence polymorphic loci. The primers have been tested in a range of intra-specific to intergeneric comparisons, including ten taro samples (Colocasia esculenta) from diverse geographical locations, four other Colocasia species (C. affinis, C. fallax, C. formosana, C. gigantea) and three other aroid genera (represented by Remusatia vivipara, Alocasia brisbanensis and Amorphophallus konjac). Multiple sequence alignments for the intra-specific comparison revealed nucleotide substitutions (point mutations) at all 30 loci and microsatellite polymorphisms at 14 loci. The primer pairs reported here reveal levels of genetic variation suitable for high-resolution phylogeographic and evolutionary studies of taro and other closely related aroids. Our results confirm that information on repeat distribution can be used to identify loci suitable for such studies, and we expect that this approach can be used in other plant groups.

  3. Intercontinental long-distance dispersal of Canellaceae from the New to the Old World revealed by a nuclear single copy gene and chloroplast loci.

    PubMed

    Müller, Sebastian; Salomo, Karsten; Salazar, Jackeline; Naumann, Julia; Jaramillo, M Alejandra; Neinhuis, Christoph; Feild, Taylor S; Wanke, Stefan

    2015-03-01

    Canellales, a clade consisting of Winteraceae and Canellaceae, represent the smallest order of magnoliid angiosperms. The clade shows a broad distribution throughout the Southern Hemisphere, across a diverse range of dry to wet tropical forests. In contrast to their sister-group, Winteraceae, the phylogenetic relations and biogeography within Canellaceae remain poorly studied. Here we present the phylogenetic relationships of all currently recognized genera of Canellales with a special focus on the Old World Canellaceae using a combined dataset consisting of the chloroplast trnK-matK-trnK-psbA and the nuclear single copy gene mag1 (Maigo 1). Within Canellaceae we found high statistical support for the monophyly of Warburgia and Cinnamosma. However, we also found relationships that differ from previous studies. Cinnamodendron splitted into two clades, a South American clade and a second clade confined to the Antilles and adjacent areas. Cinnamodendron from the Antilles, as well as Capsicodendron, South American Cinnamodendron and Pleodendron were not monophyletic. Consequently, Capsicodendron should be included in the South American Cinnamodendron clade and the genus Pleodendron merged with the Cinnamodendron clade from the Antilles. We also found that Warburgia (restricted to mainland eastern Africa) together with the South American Cinnamodendron and Capsicodendron are sister to the Malagasy genus Cinnamosma. In addition to the unexpected geographical relationships, both biogeographic and molecular clock analyses suggest vicariance, extinction, and at least one intercontinental long-distance-dispersal event. Our dating result contrasts previous work on Winteraceae. Diversification of Winteraceae took place in the Paleocene, predating the Canellaceae diversification by 13 MA in the Eocene. The phylogenetic relationships for Canellaceae supported here offer a solid framework for a future taxonomic revision of the Canellaceae.

  4. Mitochondrial and microsatellite DNA markers reveal a Balkan origin for the highly invasive horse-chestnut leaf miner Cameraria ohridella (Lepidoptera, Gracillariidae).

    PubMed

    Valade, R; Kenis, M; Hernandez-Lopez, A; Augustin, S; Mari Mena, N; Magnoux, E; Rougerie, R; Lakatos, F; Roques, A; Lopez-Vaamonde, C

    2009-08-01

    Biological invasions usually start with a small number of founder individuals. These founders are likely to represent a small fraction of the total genetic diversity found in the source population. Our study set out to trace genetically the geographical origin of the horse-chestnut leafminer, Cameraria ohridella, an invasive microlepidopteran whose area of origin is still unkown. Since its discovery in Macedonia 25 years ago, this insect has experienced an explosive westward range expansion, progressively colonizing all of Central and Western Europe. We used cytochrome oxidase I sequences (DNA barcode fragment) and a set of six polymorphic microsatellites to assess the genetic variability of C. ohridella populations, and to test the hypothesis that C. ohridella derives from the southern Balkans (Albania, Macedonia and Greece). Analysis of mtDNA of 486 individuals from 88 localities allowed us to identify 25 geographically structured haplotypes. In addition, 480 individuals from 16 populations from Europe and the southern Balkans were genotyped for 6 polymorphic microsatellite loci. High haplotype diversity and low measures of nucleotide diversities including a significantly negative Tajima's D indicate that C. ohridella has experienced rapid population expansion during its dispersal across Europe. Both mtDNA and microsatellites show a reduction in genetic diversity of C. ohridella populations sampled from artificial habitats (e.g. planted trees in public parks, gardens, along roads in urban or sub-urban areas) across Europe compared with C. ohridella sampled in natural stands of horse-chestnuts in the southern Balkans. These findings suggest that European populations of C. ohridella may indeed derive from the southern Balkans.

  5. Microsatellite and mitochondrial markers reveal strong gene flow barriers for Anopheles farauti in the Solomon Archipelago: implications for malaria vector control.

    PubMed

    Ambrose, Luke; Cooper, Robert D; Russell, Tanya L; Burkot, Thomas R; Lobo, Neil F; Collins, Frank H; Hii, Jeffrey; Beebe, Nigel W

    2014-03-01

    Anopheles farauti is the primary malaria vector throughout the coastal regions of the Southwest Pacific. A shift in peak biting time from late to early in the night occurred following widespread indoor residue spraying of dichlorodiphenyltrichloro-ethane (DDT) and has persisted in some island populations despite the intervention ending decades ago. We used mitochondrial cytochrome oxidase I (COI) sequence data and 12 newly developed microsatellite markers to assess the population genetic structure of this malaria vector in the Solomon Archipelago. With geographically distinct differences in peak A. farauti night biting time observed in the Solomon Archipelago, we tested the hypothesis that strong barriers to gene flow exist in this region. Significant and often large fixation index (FST) values were found between different island populations for the mitochondrial and nuclear markers, suggesting highly restricted gene flow between islands. Some discordance in the location and strength of genetic breaks was observed between the mitochondrial and microsatellite markers. Since early night biting A. farauti individuals occur naturally in all populations, the strong gene flow barriers that we have identified in the Solomon Archipelago lend weight to the hypothesis that the shifts in peak biting time from late to early night have appeared independently in these disconnected island populations. For this reason, we suggest that insecticide impregnated bed nets and indoor residue spraying are unlikely to be effective as control tools against A. farauti occurring elsewhere, and if used, will probably result in peak biting time behavioural shifts similar to that observed in the Solomon Islands.

  6. Genetic differentiation of the pine wilt disease vector Monochamus alternatus (Coleoptera: Cerambycidae) over a mountain range - revealed from microsatellite DNA markers.

    PubMed

    Shoda-Kagaya, E

    2007-04-01

    To study the dispersal process of the pine sawyer Monochamus alternatus (Hope) in frontier populations, a microsatellite marker-based genetic analysis was performed on expanding populations at the northern limit of its range in Japan. In Asian countries, M. alternatus is the main vector of pine wilt disease, the most serious forest disease in Japan. Sawyers were collected from nine sites near the frontier of the pine wilt disease damage area. A mountain range divides the population into western and eastern sides. Five microsatellite loci were examined and a total of 188 individuals was genotyped from each locus with the number of alleles ranged from two to nine. The mean observed heterozygosity for all loci varied from 0.282 to 0.480 in the nine sites, with an overall mean of 0.364. None of the populations have experienced a significant bottleneck. Significant differentiation was found across the mountain range, but the genetic composition was similar amongst populations of each side. It is believed that the mountain range acts as a geographical barrier to dispersal and that gene flow without a geographical barrier is high. On the west side of the mountain range, a pattern of isolation by distance was detected. This was likely to be caused by secondary contact of different colonizing routes on a small spatial scale. Based on these data, a process linking genetic structure at local (kilometres) and regional spatial scales (hundreds of kilometres) was proposed.

  7. Multilocus microsatellite typing revealed high genetic variability of Leishmania donovani strains isolated during and after a Kala-azar epidemic in Libo Kemkem district, northwest Ethiopia.

    PubMed

    Gelanew, Tesfaye; Cruz, Israel; Kuhls, Katrin; Alvar, Jorge; Cañavate, Carmen; Hailu, Asrat; Schönian, Gabriele

    2011-06-01

    In 2004, an outbreak of kala-azar (KA) occurred for the first time in Libo Kemkem district, in the highland area of northwest Ethiopia. In order to track the possible origins of the outbreak parasites, we have investigated 19 strains of Leishmania donovani that were collected during (n = 6) and after (n = 13) the outbreak by using 14 highly polymorphic microsatellite markers. Unique microsatellite profiles were obtained for all strains from Libo Kemkem. When compared to those of L. donovani strains from different Ethiopian, Kenyan and Sudanese foci, by genetic distance and Bayesian clustering model analyses, most strains from Libo Kemkem grouped with strains from: (i) Humera and Metema in the lowlands and Belessa in the highland of Ethiopia, and (ii) Sudan, at different hierarchal levels. The strains from Libo Kemkem district were assigned at least to three genetically distinct clusters (A, B1 and B2) of which only one, cluster B2, consisted exclusively of strains from Libo Kemkem. The fact that most of the outbreak strains were found to be related to strains from well-known KA foci in northwest Ethiopia and Sudan might suggest multiple introductions of L. donovani strains from these foci into Libo Kemkem district.

  8. Automatic Chloroplast Movement Analysis.

    PubMed

    Johansson, Henrik; Zeidler, Mathias

    2016-01-01

    In response to low or high intensities of light, the chloroplasts in the mesophyll cells of the leaf are able to increase or decrease their exposure to light by accumulating at the upper and lower sides or along the side walls of the cell respectively. This movement, regulated by the phototropin blue light photoreceptors phot1 and phot2, results in a decreased or increased transmission of light through the leaf. This way the plant is able to optimize harvesting of the incoming light or avoid damage caused by excess light. Here we describe a method that indirectly measures the movement of chloroplasts by taking advantage of the resulting change in leaf transmittance. By using a microplate reader, quantitative measurements of chloroplast accumulation or avoidance can be monitored over time, for multiple samples with relatively little hands-on time.

  9. Why have chloroplasts developed a unique motility system?

    PubMed

    Suetsugu, Noriyuki; Dolja, Valerian V; Wada, Masamitsu

    2010-10-01

    Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction, and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.

  10. Distribution pattern changes of actin filaments during chloroplast movement in Adiantum capillus-veneris.

    PubMed

    Tsuboi, Hidenori; Wada, Masamitsu

    2012-05-01

    Chloroplasts change their positions in a cell in response to light intensities. The photoreceptors involved in chloroplast photo-relocation movements and the behavior of chloroplasts during their migration were identified in our previous studies, but the mechanism of movement has yet to be clarified. In this study, the behavior of actin filaments under various light conditions was observed in Adiantum capillus-veneris gametophytes. In chloroplasts staying in one place under a weak light condition and not moving, circular structures composed of actin filaments were observed around the chloroplast periphery. In contrast, short actin filaments were observed at the leading edge of moving chloroplasts induced by partial cell irradiation. In the dark, the circular structures found under the weak light condition disappeared and then reappeared around the moving chloroplasts. Mutant analyses revealed that the disappearance of the circular actin structure was mediated by the blue light photoreceptor, phototropin2.

  11. Microsatellite variation reveals weak genetic structure and retention of genetic variability in threatened Chinook salmon (Oncorhynchus tshawytscha) within a Snake River watershed

    USGS Publications Warehouse

    Neville, Helen; Issacs, Frank B.; Thurow, Russel; Dunham, J.B.; Rieman, B.

    2007-01-01

    Pacific salmon (Oncorhynchus spp.) have been central to the development of management concepts associated with evolutionarily significant units (ESUs), yet there are still relatively few studies of genetic diversity within threatened and endangered ESUs for salmon or other species. We analyzed genetic variation at 10 microsatellite loci to evaluate spatial population structure and genetic variability in indigenous Chinook salmon (Oncorhynchus tshawytscha) across a large wilderness basin within a Snake River ESU. Despite dramatic 20th century declines in abundance, these populations retained robust levels of genetic variability. No significant genetic bottlenecks were found, although the bottleneck metric (M ratio) was significantly correlated with average population size and variability. Weak but significant genetic structure existed among tributaries despite evidence of high levels of gene flow, with the strongest genetic differentiation mirroring the physical segregation of fish from two sub-basins. Despite the more recent colonization of one sub-basin and differences between sub-basins in the natural level of fragmentation, gene diversity and genetic differentiation were similar between sub-basins. Various factors, such as the (unknown) genetic contribution of precocial males, genetic compensation, lack of hatchery influence, and high levels of current gene flow may have contributed to the persistence of genetic variability in this system in spite of historical declines. This unique study of indigenous Chinook salmon underscores the importance of maintaining natural populations in interconnected and complex habitats to minimize losses of genetic diversity within ESUs.

  12. Microsatellite analyses of artificial and spontaneous dogrose hybrids reveal the hybridogenic origin of Rosa micrantha by the contribution of unreduced gametes.

    PubMed

    Ritz, Christiane M; Wissemann, Volker

    2011-01-01

    Dogroses are characterized by a unique meiosis system, the so-called canina meiosis, which facilitates sexual reproduction at odd-number ploidy. The mostly pentaploid somatic level of dogroses is restored by a merger of haploid sperm cells and tetraploid egg cells. We analyzed experimental hybrids between different dogrose species using microsatellites to determine pollen-transmitted alleles. This information was used to reconstruct the putative hybridogenic origin of Rosa micrantha and R. dumalis and to estimate the frequency of spontaneous hybridization in a natural population. We found no evidence for the hybrid origin of R. dumalis, but our data suggest that R. micrantha presumably arose by hybridization between R. rubiginosa and R. canina or R. corymbifera. We observed only hexaploid individuals of R. micrantha, thus the establishment of this hybridogenic species was favored when unreduced gametes contributed to their origin. We demonstrate that spontaneous hybrids originated infrequently from the parental species in a natural population, but hybridization was often associated with the formation of unreduced gametes. We postulate that unreduced gametes play a major role in the evolutionary success of dogrose hybrids because they provide highly homologous chromosomes crucial for bivalent formation during canina meiosis and thus ensuring this unique form of sexual reproduction.

  13. Genetic distinctness and variation in the Tsushima Islands population of the Japanese marten, Martes melampus (Carnivora: Mustelidae), revealed by microsatellite analysis.

    PubMed

    Kamada, Shouko; Moteki, Shusaku; Baba, Minoru; Ochiai, Keiji; Masuda, Ryuichi

    2012-12-01

    A carnivoran mammal endemic to Japan, the Japanese marten (Martes melampus) is native in forested regions on Honshu, Shikoku, Kyushu (main islands of Japan), and the Tsushima Islands. The Tsushima population is classified as a different subspecies (M. m. tsuensis) from populations on the main islands (M. m. melampus). To elucidate the genetic structure of the Tsushima population, we genotyped 101 individuals from the Tsushima Islands and 43 individuals from Honshu and Kyushu using 10 microsatellite loci, and performed population genetic analyses on the genotype data. Genetic diversity was lower in the Tsushima population than in three geographic populations on the main islands: heterozygosity was 0.189-0.364 in the former, compared to 0.457-0.747 in the latter. In addition, high pairwise Fst values (0.485-0.682) and Nei's standard distance (0.550-1.183) between the Tsushima and main-island populations indicated a high degree of genetic differentiation. Finally, a Bayesian clustering analysis showed that the Tsushima population is apparently differentiated from the main-island populations and comprises two genetic clusters. A factorial correspondence analysis corroborated these results. Our results suggest that restricted gene flow or inbreeding may have reduced genetic diversity in the Tsushima population, which has been geographically isolated from the main-island populations since the formation of Tsushima Strait.

  14. Transposon-induced nuclear mutations that alter chloroplast gene expression

    SciTech Connect

    Barkan, A.

    1992-01-01

    The goal of this project is to use mutant phenotypes as a guide to nuclear genes that determine the timing and localization of chloroplast development The immediate goals are to identify nuclear mutants with defects in chloroplast gene expression from maize lines harboring active Mu transposons; characterize their phenotypes to determine the precise defect in gene expression; clone several of the most interesting mutations by exploiting the transposon tag; and use the clones to further define the roles of these genes in modulating chloroplast gene expression. Three mutants were described earlier that had global defects in chloroplast gene expression. We have found that two of these mutations are allelic. Both alleles have global defects in chloroplast translation initiation, as revealed by the failure to assemble chloroplast mRNAs into polysomes. We have isolated and characterized three new mutants from Mu lines that have novel defects in chloroplast RNA metabolism. We are now ready to begin the task of cloning several of these genes, by using the Mu transposon tag.

  15. [Chloroplast Deg proteases].

    PubMed

    Grabsztunowicz, Magda; Luciński, Robert; Baranek, Małgorzata; Sikora, Bogna; Jackowski, Grzegorz

    2011-01-01

    For some chloroplast proteases ATP binding and hydrolysis is not necessary for their catalytic activity, most probably because even strongly unfolded substrates may penetrate their catalytic chamber. Deg1, 2, 5 and 8 are the best known of Arabidopsis thaliana ATP- independent chloroplast proteases, encoded by orthologues of genes coding for DegP, DegQ and DegS proteases of Escherichia coli. Current awareness in the area of structure and functions of chloroplast Degs is much more limited vs the one about their bacterial counterparts. Deg5 and Deg8 form a catalytic heterododecamer which is loosely attached to luminal side of thylakoid membrane. The complex catalyses--supported by Deg1 and one of FtsH proteases--the degradation of PsbA damaged due to plant exposition to elevated irradiance and thus these protease are of key importance for the plants' sensitivity to photoinhibition. Deg2 role in the disposal of damaged PsbA has not been elucidated. Recombinant Deg1 may degrade PsbO and plastocyanin in vitro but it is not clear whether this reaction is performed in vivo as well.

  16. Immunofluorescent quantitation of chloroplast proteins.

    PubMed

    Leech, R M; Marrison, J L

    1996-12-01

    Using scanning light microscopy software to detect and measure immunofluorescence in leaf sections Rubisco concentration in situ in chloroplasts has been accurately determined throughout development. The fluorescence measurements were calibrated by comparison with values for Rubisco accumulation obtained from rocket immuno-electrophoresis profiles of soluble protein from isolated cells and from chloroplasts using a purified sample of Rubisco as the standard. It has been shown that in situ immunofluorescence can be used for cytoquantitation of proteins within individual chloroplasts to a sensitivity of 1fg and also for the comparison of the protein levels in adjacent chloroplasts and cells. Several important applications of this new technique are discussed.

  17. Pb-induced avoidance-like chloroplast movements in fronds of Lemna trisulca L.

    PubMed

    Samardakiewicz, Sławomir; Krzeszowiec-Jeleń, Weronika; Bednarski, Waldemar; Jankowski, Artur; Suski, Szymon; Gabryś, Halina; Woźny, Adam

    2015-01-01

    Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed). An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h) in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2). In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete) of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the mechanisms of the toxic

  18. Pb-Induced Avoidance-Like Chloroplast Movements in Fronds of Lemna trisulca L.

    PubMed Central

    Samardakiewicz, Sławomir; Krzeszowiec-Jeleń, Weronika; Bednarski, Waldemar; Jankowski, Artur; Suski, Szymon; Gabryś, Halina; Woźny, Adam

    2015-01-01

    Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed). An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h) in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2). In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete) of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the mechanisms of the toxic

  19. Chloroplast ribosomes and protein synthesis.

    PubMed Central

    Harris, E H; Boynton, J E; Gillham, N W

    1994-01-01

    Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival. PMID:7854253

  20. WHITE PANICLE1, a Val-tRNA Synthetase Regulating Chloroplast Ribosome Biogenesis in Rice, Is Essential for Early Chloroplast Development1[OPEN

    PubMed Central

    Wang, Chunming; Zheng, Ming; Lyu, Jia; Xu, Yang; Li, Xiaohui; Niu, Mei; Long, Wuhua; Wang, Di; Wang, Yihua; Wan, Jianmin

    2016-01-01

    Chloroplasts and mitochondria contain their own genomes and transcriptional and translational systems. Establishing these genetic systems is essential for plant growth and development. Here we characterized a mutant form of a Val-tRNA synthetase (OsValRS2) from Oryza sativa that is targeted to both chloroplasts and mitochondria. A single base change in OsValRS2 caused virescent to albino phenotypes in seedlings and white panicles at heading. We therefore named this mutant white panicle 1 (wp1). Chlorophyll autofluorescence observations and transmission electron microscopy analyses indicated that wp1 mutants are defective in early chloroplast development. RNA-seq analysis revealed that expression of nuclear-encoded photosynthetic genes is significantly repressed, while expression of many chloroplast-encoded genes also changed significantly in wp1 mutants. Western-blot analyses of chloroplast-encoded proteins showed that chloroplast protein levels were reduced in wp1 mutants, although mRNA levels of some genes were higher in wp1 than in wild type. We found that wp1 was impaired in chloroplast ribosome biogenesis. Taken together, our results show that OsValRS2 plays an essential role in chloroplast development and regulating chloroplast ribosome biogenesis. PMID:26839129

  1. Photoprotective function of chloroplast avoidance movement: in vivo chlorophyll fluorescence study.

    PubMed

    Sztatelman, Olga; Waloszek, Andrzej; Banaś, Agnieszka Katarzyna; Gabryś, Halina

    2010-06-15

    Light-induced chloroplast avoidance movement has long been considered to be a photoprotective mechanism. Here, we present an experimental model in which this function can be shown for wild type Arabidopsis thaliana. We used blue light of different fluence rates for chloroplast positioning, and strong red light inactive in chloroplast positioning as a stressing light. The performance of photosystem II was measured by means of chlorophyll fluorescence. After stressing light treatment, a smaller decrease in photosystem II quantum yield was observed for leaves with chloroplasts in profile position as compared with leaves with chloroplasts in face position. Three Arabidopsis mutants, phot2 (no avoidance response), npq1 (impaired zeaxanhtin accumulation) and stn7 (no state transition), were examined for their chloroplast positioning and chlorophyll fluorescence parameters under identical experimental conditions. The results obtained for these mutants revealed additional stressing effects of blue light as compared with red light.

  2. A Nucleus-Encoded Chloroplast Protein YL1 Is Involved in Chloroplast Development and Efficient Biogenesis of Chloroplast ATP Synthase in Rice

    PubMed Central

    Chen, Fei; Dong, Guojun; Wu, Limin; Wang, Fang; Yang, Xingzheng; Ma, Xiaohui; Wang, Haili; Wu, Jiahuan; Zhang, Yanli; Wang, Huizhong; Qian, Qian; Yu, Yanchun

    2016-01-01

    Chloroplast ATP synthase (cpATPase) is an importance thylakoid membrane-associated photosynthetic complex involved in the light-dependent reactions of photosynthesis. In this study, we isolated and characterized a rice (Oryza sativa) mutant yellow leaf 1 (yl1), which exhibits chlorotic leaves throughout developmental stages. The YL1 mutation showed reduced chlorophyll contents, abnormal chloroplast morphology, and decreased photochemical efficiency. Moreover, YL1 deficiency disrupts the expression of genes associated with chloroplast development and photosynthesis. Molecular and genetic analyses revealed that YL1 is a nucleus-encoded protein with a predicted transmembrane domain in its carboxyl-terminus that is conserved in the higher plant kingdom. YL1 localizes to chloroplasts and is preferentially expressed in green tissues containing chloroplasts. Immunoblot analyses showed that inactivation of YL1 leads to drastically reduced accumulation of AtpA (α) and AtpB (β), two core subunits of CF1αβ subcomplex of cpATPase, meanwhile, a severe decrease (ca. 41.7%) in cpATPase activity was observed in the yl1-1 mutant compared with the wild type. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation assays revealed a specific interaction between YL1 and AtpB subunit of cpATPase. Taken together, our results suggest that YL1 is a plant lineage-specific auxiliary factor involved in the biogenesis of the cpATPase complex, possibly via interacting with the β-subunit. PMID:27585744

  3. Complete Chloroplast Genome of Nicotiana otophora and its Comparison with Related Species

    PubMed Central

    Asaf, Sajjad; Khan, Abdul L.; Khan, Abdur R.; Waqas, Muhammad; Kang, Sang-Mo; Khan, Muhammad A.; Lee, Seok-Min; Lee, In-Jung

    2016-01-01

    Nicotiana otophora is a wild parental species of Nicotiana tabacum, an interspecific hybrid of Nicotiana tomentosiformis and Nicotiana sylvestris. However, N. otophora is least understood as an alternative paternal donor. Here, we compared the fully assembled chloroplast (cp) genome of N. otophora and with those of closely related species. The analysis showed a cp genome size of 156,073 bp and exhibited a typical quadripartite structure, which contains a pair of inverted repeats separated by small and large single copies, containing 163 representative genes, with 165 microsatellites distributed unevenly throughout the genome. Comparative analysis of a gene with known function across Nicotiana species revealed 76 protein-coding sequences, 20 tRNA sequences, and 3 rRNA sequence shared between the cp genomes. The analysis revealed that N. otophora is a sister species to N. tomentosiformis within the Nicotiana genus, and Atropha belladonna and Datura stramonium are their closest relatives. These findings provide a valuable analysis of the complete N. otophora cp genome, which can identify species, elucidate taxonomy, and reconstruct the phylogeny of genus Nicotiana. PMID:27379132

  4. Molecular data reveal isolation by distance and past population expansion for the shea tree (Vitellaria paradoxa C.F. Gaertn) in West Africa.

    PubMed

    Logossa, Zénor Ablah; Camus-Kulandaivelu, Létizia; Allal, François; Vaillant, Alexandre; Sanou, Haby; Kokou, Kouami; Bouvet, Jean-Marc

    2011-10-01

    While the genetic structure of many tree species in temperate, American and Asian regions is largely explained by climatic oscillations and subsequent habitat contractions and expansions, little is known about Africa. We investigated the genetic diversity and structure of shea tree (Vitellaria paradoxa,) in Western Africa, an economically important tree species in the Sudano-Sahelian zone. Eleven nuclear microsatellites (nuc) were used to genotype 673 trees selected in 38 populations. They revealed moderate to high within-population diversity: allelic richness ranged from R(nuc) = 3.99 to 5.63. This diversity was evenly distributed across West Africa. Populations were weakly differentiated (F(STnuc) = 0.085; P < 0.0001) and a pattern of isolation by distance was noted. No phylogeographic signal could be detected across the studied sample. Additionally, two chloroplast microsatellite loci, leading to 11 chlorotypes, were used to analyse a sub-set of 370 individuals. Some variation in chloroplast allelic richness among populations could be detected (R(cp) = 0.00 to 4.36), but these differences were not significant. No trend with latitude and longitude were observed. Differentiation was marked (G(STcp) = 0.553; P < 0.0001), but without a significant phylogeographical signal. Population expansion was detected considering the total population using approximate Bayesian computation (nuclear microsatellites) and mismatch distribution (chloroplast microsatellites) methods. This expansion signal and the isolation by distance pattern could be linked to the past climatic conditions in West Africa during the Pleistocene and Holocene which should have been favourable to shea tree development. In addition, human activities through agroforestry and domestication (started 10,000 bp) have probably enhanced gene flow and population expansion.

  5. Tagetitoxin inhibits chloroplast RNA synthesis

    SciTech Connect

    Mathews, D.E.; Durbin, R.D.

    1987-04-01

    Tagetitoxin is a non-host specific phytotoxin which inhibits chloroplast development. Chloroplast encoded gene products as well as their transcripts are conspicuously depleted in toxin-treated tissue. Intact chloroplasts from 8-9 day old peas were incubated for 60 min. in the presence of tagetitoxin. This treatment reduced RNA synthesis but did not affect protein synthesis as measured by the incorporation of radiolabeled uridine or methionine, respectively. Tagetitoxin also inhibited chloroplast RNA synthesis in vitro. Total UTP incorporation was reduced 50% by 0.5..mu..M tagetitoxin in transcriptionally active chloroplast extracts containing 5mg/ml protein. In vitro transcription with purified E. coli RNA polymerase was also inhibited by tagetitoxin, yet wheat germ RNA polymerase II and several bacteriophage RNA polymerase enzymes were unaffected. Recent evidence suggests that RNA polymerase from chloroplasts and prokaryotes may share extensive homology. In light of this evidence and the authors own data, they propose that tagetitoxin directly inhibits chloroplast RNA polymerase.

  6. Genetic Analysis of Chloroplast Translation

    SciTech Connect

    Barkan, Alice

    2005-08-15

    The assembly of the photosynthetic apparatus requires the concerted action of hundreds of genes distributed between the two physically separate genomes in the nucleus and chloroplast. Nuclear genes coordinate this process by controlling the expression of chloroplast genes in response to developmental and environmental cues. However, few regulatory factors have been identified. We used mutant phenotypes to identify nuclear genes in maize that modulate chloroplast translation, a key control point in chloroplast gene expression. This project focused on the nuclear gene crp1, required for the translation of two chloroplast mRNAs. CRP1 is related to fungal proteins involved in the translation of mitochondrial mRNAs, and is the founding member of a large gene family in plants, with {approx}450 members. Members of the CRP1 family are defined by a repeated 35 amino acid motif called a ''PPR'' motif. The PPR motif is closely related to the TPR motif, which mediates protein-protein interactions. We and others have speculated that PPR tracts adopt a structure similar to that of TPR tracts, but with a substrate binding surface adapted to bind RNA instead of protein. To understand how CRP1 influences the translation of specific chloroplast mRNAs, we sought proteins that interact with CRP1, and identified the RNAs associated with CRP1 in vivo. We showed that CRP1 is associated in vivo with the mRNAs whose translation it activates. To explore the functions of PPR proteins more generally, we sought mutations in other PPR-encoding genes: mutations in the maize PPR2 and PPR4 were shown to disrupt chloroplast ribosome biogenesis and chloroplast trans-splicing, respectively. These and other results suggest that the nuclear-encoded PPR family plays a major role in modulating the expression of the chloroplast genome in higher plants.

  7. Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize

    PubMed Central

    Chotewutmontri, Prakitchai; Barkan, Alice

    2016-01-01

    Chloroplast genomes in land plants contain approximately 100 genes, the majority of which reside in polycistronic transcription units derived from cyanobacterial operons. The expression of chloroplast genes is integrated into developmental programs underlying the differentiation of photosynthetic cells from non-photosynthetic progenitors. In C4 plants, the partitioning of photosynthesis between two cell types, bundle sheath and mesophyll, adds an additional layer of complexity. We used ribosome profiling and RNA-seq to generate a comprehensive description of chloroplast gene expression at four stages of chloroplast differentiation, as displayed along the maize seedling leaf blade. The rate of protein output of most genes increases early in development and declines once the photosynthetic apparatus is mature. The developmental dynamics of protein output fall into several patterns. Programmed changes in mRNA abundance make a strong contribution to the developmental shifts in protein output, but output is further adjusted by changes in translational efficiency. RNAs with prioritized translation early in development are largely involved in chloroplast gene expression, whereas those with prioritized translation in photosynthetic tissues are generally involved in photosynthesis. Differential gene expression in bundle sheath and mesophyll chloroplasts results primarily from differences in mRNA abundance, but differences in translational efficiency amplify mRNA-level effects in some instances. In most cases, rates of protein output approximate steady-state protein stoichiometries, implying a limited role for proteolysis in eliminating unassembled or damaged proteins under non-stress conditions. Tuned protein output results from gene-specific trade-offs between translational efficiency and mRNA abundance, both of which span a large dynamic range. Analysis of ribosome footprints at sites of RNA editing showed that the chloroplast translation machinery does not generally

  8. A plant-specific protein essential for blue-light-induced chloroplast movements.

    PubMed

    DeBlasio, Stacy L; Luesse, Darron L; Hangarter, Roger P

    2005-09-01

    In Arabidopsis (Arabidopsis thaliana), light-dependent chloroplast movements are induced by blue light. When exposed to low fluence rates of light, chloroplasts accumulate in periclinal layers perpendicular to the direction of light, presumably to optimize light absorption by exposing more chloroplast area to the light. Under high light conditions, chloroplasts become positioned parallel to the incoming light in a response that can reduce exposure to light intensities that may damage the photosynthetic machinery. To identify components of the pathway downstream of the photoreceptors that mediate chloroplast movements (i.e. phototropins), we conducted a mutant screen that has led to the isolation of several Arabidopsis mutants displaying altered chloroplast movements. The plastid movement impaired1 (pmi1) mutant exhibits severely attenuated chloroplast movements under all tested fluence rates of light, suggesting that it is a necessary component for both the low- and high-light-dependant chloroplast movement responses. Analysis of pmi1 leaf cross sections revealed that regardless of the light condition, chloroplasts are more evenly distributed in leaf mesophyll cells than in the wild type. The pmi1-1 mutant was found to contain a single nonsense mutation within the open reading frame of At1g42550. This gene encodes a plant-specific protein of unknown function that appears to be conserved among angiosperms. Sequence analysis of the protein suggests that it may be involved in calcium-mediated signal transduction, possibly through protein-protein interactions.

  9. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    NASA Technical Reports Server (NTRS)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  10. The Complete Chloroplast Genome of Wild Rice (Oryza minuta) and Its Comparison to Related Species

    PubMed Central

    Asaf, Sajjad; Waqas, Muhammad; Khan, Abdul L.; Khan, Muhammad A.; Kang, Sang-Mo; Imran, Qari M.; Shahzad, Raheem; Bilal, Saqib; Yun, Byung-Wook; Lee, In-Jung

    2017-01-01

    Oryza minuta, a tetraploid wild relative of cultivated rice (family Poaceae), possesses a BBCC genome and contains genes that confer resistance to bacterial blight (BB) and white-backed (WBPH) and brown (BPH) plant hoppers. Based on the importance of this wild species, this study aimed to understand the phylogenetic relationships of O. minuta with other Oryza species through an in-depth analysis of the composition and diversity of the chloroplast (cp) genome. The analysis revealed a cp genome size of 135,094 bp with a typical quadripartite structure and consisting of a pair of inverted repeats separated by small and large single copies, 139 representative genes, and 419 randomly distributed microsatellites. The genomic organization, gene order, GC content and codon usage are similar to those of typical angiosperm cp genomes. Approximately 30 forward, 28 tandem and 20 palindromic repeats were detected in the O. minuta cp genome. Comparison of the complete O. minuta cp genome with another eleven Oryza species showed a high degree of sequence similarity and relatively high divergence of intergenic spacers. Phylogenetic analyses were conducted based on the complete genome sequence, 65 shared genes and matK gene showed same topologies and O. minuta forms a single clade with parental O. punctata. Thus, the complete O. minuta cp genome provides interesting insights and valuable information that can be used to identify related species and reconstruct its phylogeny. PMID:28326093

  11. Molecular Diversity and Population Structure of a Worldwide Collection of Cultivated Tetraploid Alfalfa (Medicago sativa subsp. sativa L.) Germplasm as Revealed by Microsatellite Markers.

    PubMed

    Qiang, Haiping; Chen, Zhihong; Zhang, Zhengli; Wang, Xuemin; Gao, Hongwen; Wang, Zan

    2015-01-01

    Information on genetic diversity and population structure of a tetraploid alfalfa collection might be valuable in effective use of the genetic resources. A set of 336 worldwide genotypes of tetraploid alfalfa (Medicago sativa subsp. sativa L.) was genotyped using 85 genome-wide distributed SSR markers to reveal the genetic diversity and population structure in the alfalfa. Genetic diversity analysis identified a total of 1056 alleles across 85 marker loci. The average expected heterozygosity and polymorphism information content values were 0.677 and 0.638, respectively, showing high levels of genetic diversity in the cultivated tetraploid alfalfa germplasm. Comparison of genetic characteristics across chromosomes indicated regions of chromosomes 2 and 3 had the highest genetic diversity. A higher genetic diversity was detected in alfalfa landraces than that of wild materials and cultivars. Two populations were identified by the model-based population structure, principal coordinate and neighbor-joining analyses, corresponding to China and other parts of the world. However, lack of strictly correlation between clustering and geographic origins suggested extensive germplasm exchanges of alfalfa germplasm across diverse geographic regions. The quantitative analysis of the genetic diversity and population structure in this study could be useful for genetic and genomic analysis and utilization of the genetic variation in alfalfa breeding.

  12. Survey and Analysis of Microsatellites in the Silkworm, Bombyx mori

    PubMed Central

    Prasad, M. Dharma; Muthulakshmi, M.; Madhu, M.; Archak, Sunil; Mita, K.; Nagaraju, J.

    2005-01-01

    We studied microsatellite frequency and distribution in 21.76-Mb random genomic sequences, 0.67-Mb BAC sequences from the Z chromosome, and 6.3-Mb EST sequences of Bombyx mori. We mined microsatellites of ≥15 bases of mononucleotide repeats and ≥5 repeat units of other classes of repeats. We estimated that microsatellites account for 0.31% of the genome of B. mori. Microsatellite tracts of A, AT, and ATT were the most abundant whereas their number drastically decreased as the length of the repeat motif increased. In general, tri- and hexanucleotide repeats were overrepresented in the transcribed sequences except TAA, GTA, and TGA, which were in excess in genomic sequences. The Z chromosome sequences contained shorter repeat types than the rest of the chromosomes in addition to a higher abundance of AT-rich repeats. Our results showed that base composition of the flanking sequence has an influence on the origin and evolution of microsatellites. Transitions/transversions were high in microsatellites of ESTs, whereas the genomic sequence had an equal number of substitutions and indels. The average heterozygosity value for 23 polymorphic microsatellite loci surveyed in 13 diverse silkmoth strains having 2–14 alleles was 0.54. Only 36 (18.2%) of 198 microsatellite loci were polymorphic between the two divergent silkworm populations and 10 (5%) loci revealed null alleles. The microsatellite map generated using these polymorphic markers resulted in 8 linkage groups. B. mori microsatellite loci were the most conserved in its immediate ancestor, B. mandarina, followed by the wild saturniid silkmoth, Antheraea assama. PMID:15371363

  13. Red light, Phot1 and JAC1 modulate Phot2-dependent reorganization of chloroplast actin filaments and chloroplast avoidance movement.

    PubMed

    Ichikawa, Satoshi; Yamada, Noboru; Suetsugu, Noriyuki; Wada, Masamitsu; Kadota, Akeo

    2011-08-01

    The phototropin (phot)-dependent intracellular relocation of chloroplasts is a ubiquitous phenomenon in plants. We have previously revealed the involvement of a short cp-actin (chloroplast actin) filament-based mechanism in this movement. Here, the reorganization of cp-actin filaments during the avoidance movement of chloroplasts was analyzed in higher time resolution under blue GFP (green fluorescent protein) excitation light in an actin filament-visualized line of Arabidopsis thaliana. Under standard background red light of 89 μmol m(-2) s(-1), cp-actin filaments transiently disappeared at approximately 30 s and reappeared in a biased configuration on chloroplasts approximately 70 s after blue excitation light irradiation. The timing of biased cp-actin reappearance was delayed under the background of strong red light or in the absence of red light. Consistently, chloroplast movement was delayed under these conditions. In phot1 mutants, acceleration of both the disappearance and reappearance of cp-actin filaments occurred, indicating an inhibitory action of phot1 on reorganization of cp-actin filaments. Avoidance movements began sooner in phot1 than in wild-type plants. No reorganization of cp-actin filaments was seen in phot2 or phot1phot2 mutants lacking phot2, which is responsible for avoidance movements. Surprisingly, jac1 (j-domain protein required for chloroplast accumulation response 1) mutants, lacking the accumulation response, showed no avoidance movements under the whole-cell irradiation condition for GFP observation. Cp-actin filaments in jac1 did not show a biased distribution, with a small or almost no transient decrease in the number. These results indicate a close association between the biased distribution of cp-actin filaments and chloroplast movement. Further, JAC1 is suggested to function in the biased cp-actin filament distribution by regulating their appearance and disappearance.

  14. Chloroplast in Plant-Virus Interaction

    PubMed Central

    Zhao, Jinping; Zhang, Xian; Hong, Yiguo; Liu, Yule

    2016-01-01

    In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction. PMID:27757106

  15. The complete chloroplast genome of Capsicum frutescens (Solanaceae)1

    PubMed Central

    Shim, Donghwan; Raveendar, Sebastin; Lee, Jung-Ro; Lee, Gi-An; Ro, Na-Young; Jeon, Young-Ah; Cho, Gyu-Taek; Lee, Ho-Sun; Ma, Kyung-Ho; Chung, Jong-Wook

    2016-01-01

    Premise of the study: We report the complete sequence of the chloroplast genome of Capsicum frutescens (Solanaceae), a species of chili pepper. Methods and Results: Using an Illumina platform, we sequenced the chloroplast genome of C. frutescens. The total length of the genome is 156,817 bp, and the overall GC content is 37.7%. A pair of 25,792-bp inverted repeats is separated by small (17,853 bp) and large (87,380 bp) single-copy regions. The C. frutescens chloroplast genome encodes 132 unique genes, including 87 protein-coding genes, 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. Of these, seven genes are duplicated in the inverted repeats and 12 genes contain one or two introns. Comparative analysis with the reference chloroplast genome revealed 125 simple sequence repeat motifs and 34 variants, mostly located in the noncoding regions. Conclusions: The complete chloroplast genome sequence of C. frutescens reported here is a valuable genetic resource for Capsicum species. PMID:27213127

  16. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads

    PubMed Central

    Jiang, Guo-Feng; Hinsinger, Damien Daniel; Strijk, Joeri Sergej

    2016-01-01

    Cycads are among the most threatened plant species. Increasing the availability of genomic information by adding whole chloroplast data is a fundamental step in supporting phylogenetic studies and conservation efforts. Here, we assemble a dataset encompassing three taxonomic levels in cycads, including ten genera, three species in the genus Cycas and two individuals of C. debaoensis. Repeated sequences, SSRs and variations of the chloroplast were analyzed at the intraspecific, interspecific and intergeneric scale, and using our sequence data, we reconstruct a phylogenomic tree for cycads. The chloroplast was 162,094 bp in length, with 133 genes annotated, including 87 protein-coding, 37 tRNA and 8 rRNA genes. We found 7 repeated sequences and 39 SSRs. Seven loci showed promising levels of variations for application in DNA-barcoding. The chloroplast phylogeny confirmed the division of Cycadales in two suborders, each of them being monophyletic, revealing a contradiction with the current family circumscription and its evolution. Finally, 10 intraspecific SNPs were found. Our results showed that despite the extremely restricted distribution range of C. debaoensis, using complete chloroplast data is useful not only in intraspecific studies, but also to improve our understanding of cycad evolution and in defining conservation strategies for this emblematic group. PMID:27558458

  17. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads.

    PubMed

    Jiang, Guo-Feng; Hinsinger, Damien Daniel; Strijk, Joeri Sergej

    2016-08-25

    Cycads are among the most threatened plant species. Increasing the availability of genomic information by adding whole chloroplast data is a fundamental step in supporting phylogenetic studies and conservation efforts. Here, we assemble a dataset encompassing three taxonomic levels in cycads, including ten genera, three species in the genus Cycas and two individuals of C. debaoensis. Repeated sequences, SSRs and variations of the chloroplast were analyzed at the intraspecific, interspecific and intergeneric scale, and using our sequence data, we reconstruct a phylogenomic tree for cycads. The chloroplast was 162,094 bp in length, with 133 genes annotated, including 87 protein-coding, 37 tRNA and 8 rRNA genes. We found 7 repeated sequences and 39 SSRs. Seven loci showed promising levels of variations for application in DNA-barcoding. The chloroplast phylogeny confirmed the division of Cycadales in two suborders, each of them being monophyletic, revealing a contradiction with the current family circumscription and its evolution. Finally, 10 intraspecific SNPs were found. Our results showed that despite the extremely restricted distribution range of C. debaoensis, using complete chloroplast data is useful not only in intraspecific studies, but also to improve our understanding of cycad evolution and in defining conservation strategies for this emblematic group.

  18. Circadian oscillations of cytosolic and chloroplastic free calcium in plants

    NASA Technical Reports Server (NTRS)

    Johnson, C. H.; Knight, M. R.; Kondo, T.; Masson, P.; Sedbrook, J.; Haley, A.; Trewavas, A.

    1995-01-01

    Tobacco and Arabidopsis plants, expressing a transgene for the calcium-sensitive luminescent protein apoaequorin, revealed circadian oscillations in free cytosolic calcium that can be phase-shifted by light-dark signals. When apoaequorin was targeted to the chloroplast, circadian chloroplast calcium rhythms were likewise observed after transfer of the seedlings to constant darkness. Circadian oscillations in free calcium concentrations can be expected to control many calcium-dependent enzymes and processes accounting for circadian outputs. Regulation of calcium flux is therefore fundamental to the organization of circadian systems.

  19. Middle-Upper Pleistocene climate changes shaped the divergence and demography of Cycas guizhouensis (Cycadaceae): Evidence from DNA sequences and microsatellite markers.

    PubMed

    Feng, Xiuyan; Zheng, Ying; Gong, Xun

    2016-06-07

    Climatic oscillations in the Pleistocene have had profound effects on the demography and genetic diversity of many extant species. Cycas guizhouensis Lan &R.F. Zou is an endemic and endangered species in Southwest China that is primarily distributed along the valleys of the Nanpan River. In this study, we used four chloroplast DNAs (cpDNA), three nuclear genes (nDNA) and 13 microsatellite (SSR) loci to investigate the genetic structure, divergence time and demographic history of 11 populations of C. guizhouensis. High genetic diversity and high levels of genetic differentiation among the populations were observed. Two evolutionary units were revealed based on network and Structure analysis. The divergence time estimations suggested that haplotypes of C. guizhouensis were diverged during the Middle-Upper Pleistocene. Additionally, the demographic histories deduced from different DNA sequences were discordant, but overall indicated that C. guizhouensis had experienced a recent population expansion during the post-glacial period. Microsatellite data revealed that there was a contraction in effective population size in the past. These genetic features allow conservation measures to be taken to ensure the protection of this endangered species from extinction.

  20. Middle-Upper Pleistocene climate changes shaped the divergence and demography of Cycas guizhouensis (Cycadaceae): Evidence from DNA sequences and microsatellite markers

    PubMed Central

    Feng, Xiuyan; Zheng, Ying; Gong, Xun

    2016-01-01

    Climatic oscillations in the Pleistocene have had profound effects on the demography and genetic diversity of many extant species. Cycas guizhouensis Lan & R.F. Zou is an endemic and endangered species in Southwest China that is primarily distributed along the valleys of the Nanpan River. In this study, we used four chloroplast DNAs (cpDNA), three nuclear genes (nDNA) and 13 microsatellite (SSR) loci to investigate the genetic structure, divergence time and demographic history of 11 populations of C. guizhouensis. High genetic diversity and high levels of genetic differentiation among the populations were observed. Two evolutionary units were revealed based on network and Structure analysis. The divergence time estimations suggested that haplotypes of C. guizhouensis were diverged during the Middle-Upper Pleistocene. Additionally, the demographic histories deduced from different DNA sequences were discordant, but overall indicated that C. guizhouensis had experienced a recent population expansion during the post-glacial period. Microsatellite data revealed that there was a contraction in effective population size in the past. These genetic features allow conservation measures to be taken to ensure the protection of this endangered species from extinction. PMID:27270859

  1. The complete chloroplast genome sequence of Alocasia macrorrhizos.

    PubMed

    Wang, Bin; Han, Limin

    2016-09-01

    The complete chloroplast sequence of Alocasia macrorrhizos is 154 995 bp in length, containing a pair of inverted repeats of 25 944 bp separated by a large single-copy (LSC) region and a small single-copy (SSC) region of 87 366 bp and 15 741 bp, respectively. The chloroplast genome encodes 132 predicted functional genes, including 87 protein-coding genes, four ribosomal RNA genes, and 37 transfer RNA genes, 18 of which are duplicated in the inverted repeat regions. In these genes, 16 genes contained single intron and two genes comprising double introns. A maximum-likelihood phylogenetic analysis using complete chloroplast genome revealed that A. macrorrhizos does not belong to Araceae family, which infers that the A. macrorrhizos is distant from the species in Araceae family.

  2. AKR2A-mediated import of chloroplast outer membrane proteins is essential for chloroplast biogenesis.

    PubMed

    Bae, Wonsil; Lee, Yong Jik; Kim, Dae Heon; Lee, Junho; Kim, Soojin; Sohn, Eun Ju; Hwang, Inhwan

    2008-02-01

    In plant cells, chloroplasts have essential roles in many biochemical reactions and physiological responses. Chloroplasts require numerous protein components, but only a fraction of these proteins are encoded by the chloroplast genome. Instead, most are encoded by the nuclear genome and imported into chloroplasts from the cytoplasm post-translationally. Membrane proteins located in the chloroplast outer envelope membrane (OEM) have a critical function in the import of proteins into the chloroplast. However, the biogenesis of chloroplast OEM proteins remains poorly understood. Here, we report that an Arabidopsis ankyrin repeat protein, AKR2A, plays an essential role in the biogenesis of the chloroplast OEM proteins. AKR2A binds to chloroplast OEM protein targeting signals, as well as to chloroplasts. It also displays chaperone activity towards chloroplast OEM proteins, and facilitates the targeting of OEP7 to chloroplasts in vitro. AKR2A RNAi in plants with an akr2b knockout background showed greatly reduced levels of chloroplast proteins, including OEM proteins, and chloroplast biogenesis was also defective. Thus, AKR2A functions as a cytosolic mediator for sorting and targeting of nascent chloroplast OEM proteins to the chloroplast.

  3. Chloroplast evolution: secondary symbiogenesis and multiple losses.

    PubMed

    Cavalier-Smith, T

    2002-01-22

    Chloroplasts originated from cyanobacteria only once, but have been laterally transferred to other lineages by symbiogenetic cell mergers. Such secondary symbiogenesis is rarer and chloroplast losses commoner than often assumed.

  4. The complete chloroplast genome sequence of Dendropanax morbifera (Léveillé).

    PubMed

    Kim, Kyunghee; Lee, Sang-Choon; Yang, Tae-Jin

    2016-07-01

    The complete chloroplast genome sequence of Dendropanax morbifera, an economically and medicinally important endemic tree species in Korea, was obtained by de novo assembly with whole-genome sequence data and manual correction. A circular 156 366-bp chloroplast genome showed typical chloroplast genome structure comprising a large single copy region of 86 475 bp, a small single copy region of 18 125 bp, and a pair of inverted repeats of 25 883 bp. The chloroplast genome harbored 87 protein-coding genes. Phylogenetic analysis with the chloroplast genome revealed that D. morbifera is most closely related to Dendropanax dentiger, an evergreen tree species in China and Southeastern Asia.

  5. Isolation of chloroplastic phosphoglycerate kinase

    SciTech Connect

    Macioszek, J.; Anderson, L.E. ); Anderson, J.B. )

    1990-09-01

    We report here a method for the isolation of high specific activity phosphoglycerate kinase (EC 2.7.2.3) from chloroplasts. The enzyme has been purified over 200-fold from pea (Pisum sativum L.) stromal extracts to apparent homogeneity with 23% recovery. Negative cooperativity is observed with the two enzyme phosphoglycerate kinase/glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) couple restored from the purified enzymes when NADPH is the reducing pyridine nucleotide, consistent with earlier results obtained with crude chloroplastic extracts. Michaelis Menten kinetics are observed when 3-phosphoglycerate is held constant and phosphoglycerate kinase is varied, which suggests that phosphoglycerate kinase-bound 1,3-bisphosphoglycerate may be the preferred substrate for glyceraldehyde-3-P dehydrogenase in the chloroplast.

  6. Chloroplast retrograde signal regulates flowering

    PubMed Central

    Feng, Peiqiang; Guo, Hailong; Chi, Wei; Chai, Xin; Sun, Xuwu; Xu, Xiumei; Ma, Jinfang; Rochaix, Jean-David; Leister, Dario; Wang, Haiyang; Lu, Congming; Zhang, Lixin

    2016-01-01

    Light is a major environmental factor regulating flowering time, thus ensuring reproductive success of higher plants. In contrast to our detailed understanding of light quality and photoperiod mechanisms involved, the molecular basis underlying high light-promoted flowering remains elusive. Here we show that, in Arabidopsis, a chloroplast-derived signal is critical for high light-regulated flowering mediated by the FLOWERING LOCUS C (FLC). We also demonstrate that PTM, a PHD transcription factor involved in chloroplast retrograde signaling, perceives such a signal and mediates transcriptional repression of FLC through recruitment of FVE, a component of the histone deacetylase complex. Thus, our data suggest that chloroplasts function as essential sensors of high light to regulate flowering and adaptive responses by triggering nuclear transcriptional changes at the chromatin level. PMID:27601637

  7. Chloroplast Proteases: Updates on Proteolysis within and across Suborganellar Compartments1[OPEN

    PubMed Central

    Nishimura, Kenji

    2016-01-01

    Chloroplasts originated from the endosymbiosis of ancestral cyanobacteria and maintain transcription and translation machineries for around 100 proteins. Most endosymbiont genes, however, have been transferred to the host nucleus, and the majority of the chloroplast proteome is composed of nucleus-encoded proteins that are biosynthesized in the cytosol and then imported into chloroplasts. How chloroplasts and the nucleus communicate to control the plastid proteome remains an important question. Protein-degrading machineries play key roles in chloroplast proteome biogenesis, remodeling, and maintenance. Research in the past few decades has revealed more than 20 chloroplast proteases, which are localized to specific suborganellar locations. In particular, two energy-dependent processive proteases of bacterial origin, Clp and FtsH, are central to protein homeostasis. Processing endopeptidases such as stromal processing peptidase and thylakoidal processing peptidase are involved in the maturation of precursor proteins imported into chloroplasts by cleaving off the amino-terminal transit peptides. Presequence peptidases and organellar oligopeptidase subsequently degrade the cleaved targeting peptides. Recent findings have indicated that not only intraplastidic but also extraplastidic processive protein-degrading systems participate in the regulation and quality control of protein translocation across the envelopes. In this review, we summarize current knowledge of the major chloroplast proteases in terms of type, suborganellar localization, and diversification. We present details of these degradation processes as case studies according to suborganellar compartment (envelope, stroma, and thylakoids). Key questions and future directions in this field are discussed. PMID:27288365

  8. Phototropins mediate blue and red light-induced chloroplast movements in Physcomitrella patens.

    PubMed

    Kasahara, Masahiro; Kagawa, Takatoshi; Sato, Yoshikatsu; Kiyosue, Tomohiro; Wada, Masamitsu

    2004-07-01

    Phototropin is the blue-light receptor that mediates phototropism, chloroplast movement, and stomatal opening in Arabidopsis. Blue and red light induce chloroplast movement in the moss Physcomitrella patens. To study the photoreceptors for chloroplast movement in P. patens, four phototropin genes (PHOTA1, PHOTA2, PHOTB1, and PHOTB2) were isolated by screening cDNA libraries. These genes were classified into two groups (PHOTA and PHOTB) on the basis of their deduced amino acid sequences. Then phototropin disruptants were generated by homologous recombination and used for analysis of chloroplast movement. Data revealed that blue light-induced chloroplast movement was mediated by phototropins in P. patens. Both photA and photB groups were able to mediate chloroplast avoidance, as has been reported for Arabidopsis phot2, although the photA group contributed more to the response. Red light-induced chloroplast movement was also significantly reduced in photA2photB1photB2 triple disruptants. Because the primary photoreceptor for red light-induced chloroplast movement in P. patens is phytochrome, phototropins may be downstream components of phytochromes in the signaling pathway. To our knowledge, this work is the first to show a function for the phototropin blue-light receptor in a response to wavelengths that it does not absorb.

  9. Development of novel microsatellite markers for strain-specific identification of Chlorella vulgaris.

    PubMed

    Jo, Beom-Ho; Lee, Chang Soo; Song, Hae-Ryong; Lee, Hyung-Gwan; Oh, Hee-Mock

    2014-09-01

    A strain-specific identification method is required to secure Chlorella strains with useful genetic traits, such as a fast growth rate or high lipid productivity, for application in biofuels, functional foods, and pharmaceuticals. Microsatellite markers based on simple sequence repeats can be a useful tool for this purpose. Therefore, this study developed five novel microsatellite markers (mChl-001, mChl-002, mChl-005, mChl-011, and mChl-012) using specific loci along the chloroplast genome of Chlorella vulgaris. The microsatellite markers were characterized based on their allelic diversities among nine strains of C. vulgaris with the same 18S rRNA sequence similarity. Each microsatellite marker exhibited 2~5 polymorphic allele types, and their combinations allowed discrimination between seven of the C. vulgaris strains. The two remaining strains were distinguished using one specific interspace region between the mChl-001 and mChl-005 loci, which was composed of about 27 single nucleotide polymorphisms, 13~15 specific sequence sites, and (T)n repeat sites. Thus, the polymorphic combination of the five microsatellite markers and one specific locus facilitated a clear distinction of C. vulgaris at the strain level, suggesting that the proposed microsatellite marker system can be useful for the accurate identification and classification of C. vulgaris.

  10. CHLOROPLAST DEVELOPMENT IN OCHROMONAS DANICA

    PubMed Central

    Gibbs, Sarah P.

    1962-01-01

    When dark-grown cells of Ochromonas danica are placed in the light, the amount of chlorophyll a per cell increases 82-fold; the content of carotenoid pigment, 24-fold. Concomitantly with this increase in chlorophyll and carotenoid pigment, the small proplastid of dark-grown cells develops into a large lamellate chloroplast. During the first 12 hours in the light, vesicles appear within the loose clusters of dense chloroplast granules, enlarge, align themselves into rows (plates in three dimensions), and fuse into discs. Double discs may form from the more or less simultaneous fusion of two adjacent plates of vesicles or by the addition of vesicles to an already formed single disc. Three-disc bands arise by the addition of a disc to an already formed two-disc band through the approach and fusion of more vesicles. After 24 hours in the light, most of the chloroplast bands contain three discs, but the chloroplasts are still small. After 48 hours in the light, almost all the cells contain full-sized chloroplasts with a full complement of three-disc bands. However, at this time the amount of chlorophyll a and carotenoid pigment is only one-half of maximum. During the next 3 days in the light, as the number of chlorophyll and carotenoid molecules per chloroplast approximately doubles, there is a compression of the discs in each band (from 180 to 130 A) and a precise alignment of their membranes. Changes also occur in the nucleus when dark-grown cells are placed in the light. There is an increase in the number of small nucleolar bodies, many of which lie directly against the nuclear envelope, and in a few cells a dense mass of granules is seen between the two membranes of the nuclear envelope. PMID:13947686

  11. Nitrogen control of chloroplast differentiation

    SciTech Connect

    Schmidt, G.W.

    1992-07-01

    This project is directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins functioning in energy transduction and carbon metabolism. Molecular analyses performed with Chlamydomonas reinhardtii grown in a continuous culture system such that ammonium concentration is maintained at a low steady-state concentration so as to limit cell division. As compared to chloroplasts from cells of non-limiting nitrogen provisions, chloroplasts of N-limited cells are profoundly chlorophyll-deficient but still assimilate carbon for deposition of as starch and as storage lipids. Chlorophyll deficiency arises by limiting accumulation of appropriate nuclear-encoded mRNAs of and by depressed rates of translation of chloroplast mRNAs for apoproteins of reaction centers. Chloroplast translational effects can be partially ascribed to diminished rates of chlorophyll biosynthesis in N-limited cells, but pigment levels are not determinants for expression of the nuclear light-harvesting protein genes. Consequently, other signals that are responsive to nitrogen availability mediate transcriptional or post-transcriptional processes for accumulation of the mRNAs for LHC apoproteins and other mRNAs whose abundance is dependent upon high nitrogen levels. Conversely, limited nitrogen availability promotes accumulation of other proteins involved in carbon metabolism and oxidative electron transport in chloroplasts. Hence, thylakoids of N-limited cells exhibit enhanced chlororespiratory activities wherein oxygen serves as the electron acceptor in a pathway that involves plastoquinone and other electron carrier proteins that remain to be thoroughly characterized. Ongoing and future studies are also outlined.

  12. [Study of Chloroplast DNA Polymorphism in the Sunflower (Helianthus L.)].

    PubMed

    Markina, N V; Usatov, A V; Logacheva, M D; Azarin, K V; Gorbachenko, C F; Kornienko, I V; Gavrilova, V A; Tihobaeva, V E

    2015-08-01

    The polymorphism of microsatellite loci of chloroplast genome in six Helianthus species and 46 lines of cultivated sunflower H. annuus (17 CMS lines and 29 Rf-lines) were studied. The differences between species are confined to four SSR loci. Within cultivated forms of the sunflower H. annuus, the polymorphism is absent. A comparative analysis was performed on sequences of the cpDNA inbred line 3629, line 398941 of the wild sunflower, and the American line HA383 H. annuus. As a result, 52 polymorphic loci represented by 27 SSR and 25 SNP were found; they can be used for genotyping of H. annuus samples, including cultural varieties: twelve polymorphic positions, of which eight are SSR and four are SNP.

  13. Heterologous expression of a chloroplast outer envelope protein from Suaeda salsa confers oxidative stress tolerance and induces chloroplast aggregation in transgenic Arabidopsis plants.

    PubMed

    Wang, Fang; Yang, Chun-Lin; Wang, Li-Li; Zhong, Nai-Qin; Wu, Xiao-Min; Han, Li-Bo; Xia, Gui-Xian

    2012-03-01

    Suaeda salsa is a euhalophytic plant that is tolerant to coastal seawater salinity. In this study, we cloned a cDNA encoding an 8.4 kDa chloroplast outer envelope protein (designated as SsOEP8) from S. salsa and characterized its cellular function. Steady-state transcript levels of SsOEP8 in S. salsa were up-regulated in response to oxidative stress. Consistently, ectopic expression of SsOEP8 conferred enhanced oxidative stress tolerance in transgenic Bright Yellow 2 (BY-2) cells and Arabidopsis, in which H(2) O(2) content was reduced significantly in leaf cells. Further studies revealed that chloroplasts aggregated to the sides of mesophyll cells in transgenic Arabidopsis leaves, and this event was accompanied by inhibited expression of genes encoding proteins for chloroplast movements such as AtCHUP1, a protein involved in actin-based chloroplast positioning and movement. Moreover, organization of actin cytoskeleton was found to be altered in transgenic BY-2 cells. Together, these results suggest that SsOEP8 may play a critical role in oxidative stress tolerance by changing actin cytoskeleton-dependent chloroplast distribution, which may consequently lead to the suppressed production of reactive oxygen species (ROS) in chloroplasts. One significantly novel aspect of this study is the finding that the small chloroplast envelope protein is involved in oxidative stress tolerance.

  14. Editing of the chloroplast rpoB transcript is independent of chloroplast translation and shows different patterns in barley and maize.

    PubMed Central

    Zeltz, P; Hess, W R; Neckermann, K; Börner, T; Kössel, H

    1993-01-01

    Sequence analysis of amplified cDNAs derived from the maize chloroplast rpoB transcript which encodes the beta subunit of a chloroplast specific, DNA dependent RNA polymerase reveals four C-to-U editing sites clustered within 150 nucleotides of the 5' terminal region of the rpoB message. These newly identified editing sites confirm the bias of chloroplast editing for certain codon transitions and for second codon positions which both appear suggestive for an involvement of the translational apparatus in the editing process. This supposition prompted us to investigate editing of the rpoB transcript from ribosome deficient, and hence protein synthesis deficient, plastids of the barley mutant albostrians. In this mutant editing is, however, not impaired at any of the editing sites functional in the barley wild type rpoB transcript. This demonstrates that chloroplast editing is neither linked to nor dependent on the chloroplast translational apparatus. As a further consequence any peptide components required for chloroplast editing must be encoded in the nuclear genome. In spite of strong sequence conservation only three of the four editing sites identified in the maize rpoB transcript are functional in barley. This indicates that sequences surrounding an editing site alone are not sufficient as determinants for the editing process in chloroplasts, but that trans-acting templates carrying the editing information for each individual site may also be required. Images PMID:8223439

  15. Protein import into chloroplasts requires a chloroplast ATPase

    SciTech Connect

    Pain, D.; Blobel, G.

    1987-05-01

    The authors have transcribed mRNA from a cDNA clone coding for pea ribulose-1,5-bisphosphate carboxylase, translated the mRNA in a wheat germ cell-free system, and studied the energy requirement for posttranslational import of the (/sup 35/S)methionine-labeled protein into the stroma of pea chloroplasts. They found that import depends on ATP hydrolysis within the stroma. Import is not inhibited when H/sup +/, K/sup +/, Na/sup +/, or divalent cation gradients across the chloroplast membranes are dissipated by ionophores, as long as exogenously added ATP is also present during the import reaction. The data suggest that protein import into the chloroplast stroma requires a chloroplast ATPase that does not function to generate a membrane potential for driving the import reaction but that exerts its effect in another, yet-to-be-determined, mode. They have carried out a preliminary characterization of this ATPase regarding its nucleotide specificity and the effects of various ATPase inhibitors.

  16. Student's Microsatellite Project

    NASA Astrophysics Data System (ADS)

    Zelentsov, Victor; Kopik, Anatoliy; Karpenko, Stanislav; Mayorova, Victoria

    2002-01-01

    Nowadays BMSTU Youth space center carries on development of the microsatellite project. The project is based on principles of students direct involvement on all stages of development and maintenance of the satellite. The group of students was organized within the university with purpose of coordination of work at the program. Project current condition The work on creation of an experimental model of the micro satellite is performed. The aim is to define the structure and parameters of on-board devices (mass-overall dimensions characteristics, energy consumption and so on). developed. According to the simplified model an active stabilization system (three orthogonal electro-magnetic coils) and orientation characterization system (sunlight detector and magnitometer) are included in OCS structure. most suitable battery storage, power-supply controlling system. Student micro-satellite program goals 1.Scientific Information gaining in the field of Earth study- using perspective research methods. Studying of new devices behavior in space conditions. 2. Educative a. Students derive real experience of projecting, building of a spacecraft from the point of view of an experimenter, a constructor and a researcher. b. Organization of student's cooperation with key men of aerospace industry and other branches. c. Brainpower and material base preparation for micro-satellite systems' development. d. Attraction of youth interest to the topic, by: - Students' and pupils' groups attraction and involvement in experiments conduction and results processing. - Seminars and lections devoted to Earth study from the space organization - Specific scientific data distribution over World Wide Web. 3. International With purpose of program expansion, the developers' group looks to start of an international project. Within the project new experiments conduction and scientific information exchange are expected. 4. Status Bauman Moscow State Technical University's status improvement in the field

  17. Spontaneous capture of oilseed rape (Brassica napus) chloroplasts by wild B. rapa: implications for the use of chloroplast transformation for biocontainment.

    PubMed

    Haider, Nadia; Allainguillaume, Joel; Wilkinson, Mike J

    2009-04-01

    Environmental concerns over the cultivation of Genetically Modified (GM) crops largely centre on the ecological consequences following gene flow to wild relatives. One attractive solution is to deploy biocontainment measures that prevent hybridization. Chloroplast transformation is the most advanced biocontainment method but is compromised by chloroplast capture (hybridization through the maternal lineage). To date, however, there is a paucity of information on the frequency of chloroplast capture in the wild. Oilseed rape (Brassica napus, AACC) frequently hybridises with wild Brassica rapa (AA, as paternal parent) and yields B. rapa-like introgressed individuals after only two generations. In this study we used chloroplast CAPS markers that differentiate between the two species to survey wild and weedy populations of B. rapa for the capture of B. napus chloroplasts. A total of 464 B. rapa plants belonging to 14 populations growing either in close proximity to B. napus (i.e. sympatric <5 m) or else were allopatric from the crop (>1 km) were assessed for chloroplast capture using PCR (trnL-F) and CAPS (trnT-L-Xba I) markers. The screen revealed that two sympatric B. rapa populations included 53 plants that possessed the chloroplast of B. napus. In order to discount these B. rapa plants as F(1) crop-wild hybrids, we used a C-genome-specific marker and found that 45 out of 53 plants lacked the C-genome and so were at least second generation introgressants. The most plausible explanation is that these individuals represent multiple cases of chloroplast capture following introgressive hybridisation through the female germ line from the crop. The abundance of such plants in sympatric sites thereby questions whether the use of chloroplast transformation would provide a sufficient biocontainment for GM oilseed rape in the United Kingdom.

  18. Comparative chromatography of chloroplast pigment

    NASA Technical Reports Server (NTRS)

    Grandolfo, M.; Sherma, J.; Strain, H. H.

    1969-01-01

    Methods for isolation of low concentration pigments of the cocklebur species are described. The methods entail two step chromatography so that the different sorption properties of the various pigments in varying column parameters can be utilized. Columnar and thin layer methods are compared. Many conditions influence separability of the chloroplasts.

  19. The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng

    PubMed Central

    Zhao, Yongbing; Yin, Jinlong; Guo, Haiyan; Zhang, Yuyu; Xiao, Wen; Sun, Chen; Wu, Jiayan; Qu, Xiaobo; Yu, Jun; Wang, Xumin; Xiao, Jingfa

    2015-01-01

    Panax ginseng C.A. Meyer (P. ginseng) is an important medicinal plant and is often used in traditional Chinese medicine. With next generation sequencing (NGS) technology, we determined the complete chloroplast genome sequences for four Chinese P. ginseng strains, which are Damaya (DMY), Ermaya (EMY), Gaolishen (GLS), and Yeshanshen (YSS). The total chloroplast genome sequence length for DMY, EMY, and GLS was 156,354 bp, while that for YSS was 156,355 bp. Comparative genomic analysis of the chloroplast genome sequences indicate that gene content, GC content, and gene order in DMY are quite similar to its relative species, and nucleotide sequence diversity of inverted repeat region (IR) is lower than that of its counterparts, large single copy region (LSC) and small single copy region (SSC). A comparison among these four P. ginseng strains revealed that the chloroplast genome sequences of DMY, EMY, and GLS were identical and YSS had a 1-bp insertion at base 5472. To further study the heterogeneity in chloroplast genome during domestication, high-resolution reads were mapped to the genome sequences to investigate the differences at the minor allele level; 208 minor allele sites with minor allele frequencies (MAF) of ≥0.05 were identified. The polymorphism site numbers per kb of chloroplast genome sequence for DMY, EMY, GLS, and YSS were 0.74, 0.59, 0.97, and 1.23, respectively. All the minor allele sites located in LSC and IR regions, and the four strains showed the same variation types (substitution base or indel) at all identified polymorphism sites. Comparison results of heterogeneity in the chloroplast genome sequences showed that the minor allele sites on the chloroplast genome were undergoing purifying selection to adapt to changing environment during domestication process. A study of P. ginseng chloroplast genome with particular focus on minor allele sites would aid in investigating the dynamics on the chloroplast genomes and different P. ginseng strains

  20. Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement.

    PubMed

    Oikawa, Kazusato; Yamasato, Akihiro; Kong, Sam-Geun; Kasahara, Masahiro; Nakai, Masato; Takahashi, Fumio; Ogura, Yasunobu; Kagawa, Takatoshi; Wada, Masamitsu

    2008-10-01

    Chloroplasts change their intracellular distribution in response to light intensity. Previously, we isolated the chloroplast unusual positioning1 (chup1) mutant of Arabidopsis (Arabidopsis thaliana). This mutant is defective in normal chloroplast relocation movement and shows aggregation of chloroplasts at the bottom of palisade mesophyll cells. The isolated gene encodes a protein with an actin-binding motif. Here, we used biochemical analyses to determine the subcellular localization of full-length CHUP1 on the chloroplast outer envelope. A CHUP1-green fluorescent protein (GFP) fusion, which was detected at the outermost part of mesophyll cell chloroplasts, complemented the chup1 phenotype, but GFP-CHUP1, which was localized mainly in the cytosol, did not. Overexpression of the N-terminal hydrophobic region (NtHR) of CHUP1 fused with GFP (NtHR-GFP) induced a chup1-like phenotype, indicating a dominant-negative effect on chloroplast relocation movement. A similar pattern was found in chloroplast OUTER ENVELOPE PROTEIN7 (OEP7)-GFP transformants, and a protein containing OEP7 in place of NtHR complemented the mutant phenotype. Physiological analyses of transgenic Arabidopsis plants expressing truncated CHUP1 in a chup1 mutant background and cytoskeletal inhibitor experiments showed that the coiled-coil region of CHUP1 anchors chloroplasts firmly on the plasma membrane, consistent with the localization of coiled-coil GFP on the plasma membrane. Thus, CHUP1 localization on chloroplasts, with the N terminus inserted into the chloroplast outer envelope and the C terminus facing the cytosol, is essential for CHUP1 function, and the coiled-coil region of CHUP1 prevents chloroplast aggregation and participates in chloroplast relocation movement.

  1. Chloroplast DNA diversity of the dioecious European tree Ilex aquifolium L. (English holly).

    PubMed

    Rendell, S; Ennos, R A

    2003-10-01

    Variation in the chloroplast genome of Ilex aquifolium (English holly), a dioecious evergreen tree native to south, west and central Europe, was analysed using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs) and microsatellites. Differentiation between populations was high (GST = 0.595) and evidence for phylogeographical structure was detected (NST = 0.697, significantly higher than GST). Two chloroplast lineages were inferred originating from putative glacial refugia in southern Europe (Iberia, Italy and possibly the Balkans). The GST value was higher than reported for endozoochorous hermaphrodite species and for anemochorous dioecious species investigated over a similar geographical scale. It appears that dioecy has contributed to strong differentiation between refugia and that this has been maintained following postglacial recolonization as a result of limited seed flow. Palynological records for I. aquifolium are poor, thus these results give an important insight into patterns of glacial isolation and postglacial recolonization of this species.

  2. Phototropin encoded by a single-copy gene mediates chloroplast photorelocation movements in the liverwort Marchantia polymorpha.

    PubMed

    Komatsu, Aino; Terai, Mika; Ishizaki, Kimitsune; Suetsugu, Noriyuki; Tsuboi, Hidenori; Nishihama, Ryuichi; Yamato, Katsuyuki T; Wada, Masamitsu; Kohchi, Takayuki

    2014-09-01

    Blue-light-induced chloroplast photorelocation movement is observed in most land plants. Chloroplasts move toward weak-light-irradiated areas to efficiently absorb light (the accumulation response) and escape from strong-light-irradiated areas to avoid photodamage (the avoidance response). The plant-specific kinase phototropin (phot) is the blue-light receptor for chloroplast movements. Although the molecular mechanisms for chloroplast photorelocation movement have been analyzed, the overall aspects of signal transduction common to land plants are still unknown. Here, we show that the liverwort Marchantia polymorpha exhibits the accumulation and avoidance responses exclusively induced by blue light as well as specific chloroplast positioning in the dark. Moreover, in silico and Southern-blot analyses revealed that the M. polymorpha genome encodes a single PHOT gene, MpPHOT, and its knockout line displayed none of the chloroplast photorelocation movements, indicating that the sole MpPHOT gene mediates all types of movement. Mpphot was localized on the plasma membrane and exhibited blue-light-dependent autophosphorylation both in vitro and in vivo. Heterologous expression of MpPHOT rescued the defects in chloroplast movement of phot mutants in the fern Adiantum capillus-veneris and the seed plant Arabidopsis (Arabidopsis thaliana). These results indicate that Mpphot possesses evolutionarily conserved regulatory activities for chloroplast photorelocation movement. M. polymorpha offers a simple and versatile platform for analyzing the fundamental processes of phototropin-mediated chloroplast photorelocation movement common to land plants.

  3. Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis.

    PubMed

    Lippold, Felix; vom Dorp, Katharina; Abraham, Marion; Hölzl, Georg; Wewer, Vera; Yilmaz, Jenny Lindberg; Lager, Ida; Montandon, Cyrille; Besagni, Céline; Kessler, Felix; Stymne, Sten; Dörmann, Peter

    2012-05-01

    During stress or senescence, thylakoid membranes in chloroplasts are disintegrated, and chlorophyll and galactolipid are broken down, resulting in the accumulation of toxic intermediates, i.e., tetrapyrroles, free phytol, and free fatty acids. Chlorophyll degradation has been studied in detail, but the catabolic pathways for phytol and fatty acids remain unclear. A large proportion of phytol and fatty acids is converted into fatty acid phytyl esters and triacylglycerol during stress or senescence in chloroplasts. We isolated two genes (PHYTYL ESTER SYNTHASE1 [PES1] and PES2) of the esterase/lipase/thioesterase family of acyltransferases from Arabidopsis thaliana that are involved in fatty acid phytyl ester synthesis in chloroplasts. The two proteins are highly expressed during senescence and nitrogen deprivation. Heterologous expression in yeast revealed that PES1 and PES2 have phytyl ester synthesis and diacylglycerol acyltransferase activities. The enzymes show broad substrate specificities and can employ acyl-CoAs, acyl carrier proteins, and galactolipids as acyl donors. Double mutant plants (pes1 pes2) grow normally but show reduced phytyl ester and triacylglycerol accumulation. These results demonstrate that PES1 and PES2 are involved in the deposition of free phytol and free fatty acids in the form of phytyl esters in chloroplasts, a process involved in maintaining the integrity of the photosynthetic membrane during abiotic stress and senescence.

  4. Targeting of nucleus-encoded proteins to chloroplasts in plants.

    PubMed

    Jarvis, Paul

    2008-07-01

    Most chloroplast proteins are encoded in the nucleus and synthesized on free, cytosolic ribosomes in precursor form. Each precursor has an amino-terminal extension called a transit peptide, which directs the protein through a post-translational targeting pathway and is removed upon arrival inside the organelle. This 'protein import' process is mediated by the coordinate action of two multiprotein complexes, one in each of the envelope membranes: the TOC and TIC (Translocon at the Outer/ Inner envelope membrane of Chloroplasts) machines. Many components of these complexes have been identified biochemically in pea; these include transit peptide receptors, channel proteins, and molecular chaperones. Intriguingly, the Arabidopsis genome encodes multiple, homologous genes for receptor components of the TOC complex. Careful analysis indicated that the different receptor isoforms operate in different import pathways with distinct precursor recognition specificities. These 'substrate-specific' import pathways might play a role in the differentiation of different plastid types, and/or act to prevent deleterious competition effects between abundant and nonabundant precursors. Until recently, all proteins destined for internal chloroplast compartments were thought to possess a cleavable transit peptide, and to engage the TOC/TIC machinery. New studies using proteomics and other approaches have revealed that this is far from true. Remarkably, a significant number of chloroplast proteins are transported via a pathway that involves the endoplasmic reticulum and Golgi apparatus. Other recent reports have elucidated an intriguing array of protein targeting routes leading to the envelope membranes themselves.

  5. GRANULES ASSOCIATED WITH THE CHLOROPLAST LAMELLAE OF PORPHYRIDIUM CRUENTUM

    PubMed Central

    Gantt, E.; Conti, S. F.

    1966-01-01

    Small granules with a diameter of approximately 350 A are attached to the chloroplast lamellae of the red alga Porphyridium cruentum. To some extent, their size depends on the culture conditions and the age of the cell. It was possible to preserve the granules only with aldehyde prefixation. It can be seen that fixed or negatively stained granules are comprised of smaller subunits. The granules are arranged regularly on the lamellae in repeating rows with a center-to-center granule distance of 400 to 500 A. Attempts at characterization of these chloroplast granules revealed that they are resistant to hydrolysis by ribonuclease and appear to be structurally unaffected by methanol-acetone extraction. Because of their close association with the chloroplast lamellae, they are considered as possible sites of phycobilin concentration. This possibility is supported by two observations: when the phycobilins are removed, the granules disappear; and, when the chlorophyll and stainable membrane portions are selectively removed, the phycobilins and granules are still present. It was found that all other marine red algae examined had granules which were associated with the chloroplast lamellae. PMID:5962937

  6. Chloroplast avoidance movement is not functional in plants grown under strong sunlight.

    PubMed

    Higa, Takeshi; Wada, Masamitsu

    2016-04-01

    Chloroplast movement in nine climbing plant species was investigated. It is thought that chloroplasts generally escape from strong light to avoid photodamage but accumulate towards weak light to perform photosynthesis effectively. Unexpectedly, however, the leaves of climbing plants grown under strong sunlight showed very low or no chloroplast photorelocation responses to either weak or strong blue light when detected by red light transmittance through leaves. Direct observations of Cayratia japonica leaves, for example, revealed that the average number of chloroplasts in upper periclinal walls of palisade tissue cells was only 1.2 after weak blue-light irradiation and almost all of the chloroplasts remained at the anticlinal wall, the state of chloroplast avoidance response. The leaves grown under strong light have thin and columnar palisade tissue cells comparing with the leaves grown under low light. Depending on our analyses and our schematic model, the thinner cells in a unit leaf area have a wider total plasma membrane area, such that more chloroplasts can exist on the plasma membrane in the thinner cells than in the thicker cells in a unit leaf-area basis. The same strategy might be used in other plant leaves grown under direct sunlight.

  7. Microsatellites in Pursuit of Microbial Genome Evolution

    PubMed Central

    Saeed, Abdullah F.; Wang, Rongzhi; Wang, Shihua

    2016-01-01

    Microsatellites or short sequence repeats are widespread genetic markers which are hypermutable 1–6 bp long short nucleotide motifs. Significantly, their applications in genetics are extensive due to their ceaseless mutational degree, widespread length variations and hypermutability skills. These features make them useful in determining the driving forces of evolution by using powerful molecular techniques. Consequently, revealing important questions, for example, what is the significance of these abundant sequences in DNA, what are their roles in genomic evolution? The answers of these important questions are hidden in the ways these short motifs contributed in altering the microbial genomes since the origin of life. Even though their size ranges from 1 –to- 6 bases, these repeats are becoming one of the most popular genetic probes in determining their associations and phylogenetic relationships in closely related genomes. Currently, they have been widely used in molecular genetics, biotechnology and evolutionary biology. However, due to limited knowledge; there is a significant gap in research and lack of information concerning hypermutational mechanisms. These mechanisms play a key role in microsatellite loci point mutations and phase variations. This review will extend the understandings of impacts and contributions of microsatellite in genomic evolution and their universal applications in microbiology. PMID:26779133

  8. Preparation and proteomic analysis of chloroplast ribosomes.

    PubMed

    Yamaguchi, Kenichi

    2011-01-01

    Proteomics of chloroplast ribosomes in spinach and Chlamydomonas revealed unique protein composition and structures of plastid ribosomes. These studies have suggested the presence of some ribosomal proteins unique to plastid ribosomes which may be involved in plastid-unique translation regulation. Considering the strong background of genetic analysis and molecular biology in Arabidopsis, the in-depth proteomic characterization of Arabidopsis plastid ribosomes would facilitate further understanding of plastid translation in higher plants. Here, I describe simple and rapid methods for the preparation of plastid ribosomes from Chlamydomonas and Arabidopsis using sucrose gradients. I also describe purity criteria and methods for yield estimation of the purified plastid ribosomes and subunits, methods for the preparation of plastid ribosomal proteins, as well as the identification of some Arabidopsis plastid ribosomal proteins by matrix-assisted laser desorption/ionization mass spectrometry.

  9. Chloroplast avoidance movement reduces photodamage in plants.

    PubMed

    Kasahara, Masahiro; Kagawa, Takatoshi; Oikawa, Kazusato; Suetsugu, Noriyuki; Miyao, Mitsue; Wada, Masamitsu

    When plants are exposed to light levels higher than those required for photosynthesis, reactive oxygen species are generated in the chloroplasts and cause photodamage. This can occur even under natural growth conditions. To mitigate photodamage, plants have developed several protective mechanisms. One is chloroplast avoidance movement, in which chloroplasts move from the cell surface to the side walls of cells under high light conditions, although experimental support is still awaited. Here, using different classes of mutant defective in chloroplast avoidance movement, we show that these mutants are more susceptible to damage in high light than wild-type plants. Damage of the photosynthetic apparatus and subsequent bleaching of leaf colour and necrosis occur faster under high light conditions in the mutants than in wild-type plants. We conclude that chloroplast avoidance movement actually decreases the amount of light absorption by chloroplasts, and might therefore be important to the survival of plants under natural growth conditions.

  10. cpDNA microsatellite markers for Lemna minor (Araceae): Phylogeographic implications1

    PubMed Central

    Wani, Gowher A.; Shah, Manzoor A.; Reshi, Zafar A.; Atangana, Alain R.; Khasa, Damase P.

    2014-01-01

    • Premise of the study: A lack of genetic markers impedes our understanding of the population biology of Lemna minor. Thus, the development of appropriate genetic markers for L. minor promises to be highly useful for population genetic studies and for addressing other life history questions regarding the species. • Methods and Results: For the first time, we characterized nine polymorphic and 24 monomorphic chloroplast microsatellite markers in L. minor using DNA samples of 26 individuals sampled from five populations in Kashmir and of 17 individuals from three populations in Quebec. Initially, we designed 33 primer pairs, which were tested on genomic DNA from natural populations. Nine loci provided markers with two alleles. Based on genotyping of the chloroplast DNA fragments from 43 sampled individuals, we identified one haplotype in Quebec and 11 haplotypes in Kashmir, of which one occurs in 56% of the genotypes, one in 8%, and nine in 4%, respectively. There was a maximum of two alleles per locus. • Conclusions: These new chloroplast microsatellite markers for L. minor and haplotype distribution patterns indicate a complex phylogeographic history that merits further investigation. PMID:25202636

  11. Reinvestigation of the triplet-minus-singlet spectrum of chloroplasts

    NASA Astrophysics Data System (ADS)

    Jávorfi, T.; Garab, G.; Razi Naqvi, K.

    2000-01-01

    A comparison of the triplet-minus-singlet (TmS) absorption spectrum of spinach chloroplasts, recorded some thirty years ago, with the more recently published TmS spectrum of isolated Chl a/ b LHCII (light-harvesting complexes associated with photosystem II of higher plants) shows that the two spectra are very similar, which is to be expected, since only the carotenoid pigments contribute to each spectrum. Be that as it may, the comparison also reveals a dissimilarity: photoexcitation of the sample does, or does not, affect the absorbance in the Qy region (650-700 nm), depending on whether the sample is a suspension of chloroplasts or of isolated LHCII. The Qy-signal in the TmS spectrum of LHCII decays, it should be noted, at the same rate as the rest of the difference spectrum, and its most prominent feature is a negative peak. As the carotenoids do not absorb in the Qy region, the presence of a signal in this region calls for an explanation: van der Vos, Carbonera and Hoff, the first to find as well as fathom the phenomenon, attributed the Qy-signal to a change, in the absorption spectrum of a chlorophyll a (Chl a) molecule, brought about by the presence of triplet excitation on a neighbouring carotenoid (Car). The difference in the behaviours of chloroplasts and LHCII, if reproducible, would imply that the Car triplets which give rise to the TmS spectrum of chloroplasts do not influence the absorption spectra of their Chl a neighbours. With a view to reaching a firm conclusion about this vexed issue, spinach chloroplasts and thylakoids have been examined with the aid of the same kinetic spectrometer as that used for investigating LHCII; the TmS spectra of both chloroplasts and thylakoids contain prominent bleaching signals centred at 680 nm, and the triplet decay time in each case is comparable to that of the Chl a/ b LHCII triplets. Results pertaining to other closely related systems are recalled, and it is concluded that, so far as the overall appearance of the

  12. Microsatellite analysis of malaria parasites.

    PubMed

    Orjuela-Sánchez, Pamela; Brandi, Michelle C; Ferreira, Marcelo U

    2013-01-01

    Microsatellites have been increasingly used to investigate the population structure of malaria parasites, to map genetic loci contributing to phenotypes such as drug resistance and virulence in laboratory crosses and genome-wide association studies and to distinguish between treatment failures and new infections in clinical trials. Here, we provide optimized protocols for genotyping highly polymorphic microsatellites sampled from across the genomes of the human malaria parasites Plasmodium falciparum and P. vivax that have been extensively used in research laboratories worldwide.

  13. The complete chloroplast genome sequence of an important medicinal plant Cynanchum wilfordii (Maxim.) Hemsl. (Apocynaceae).

    PubMed

    Park, Hyun-Seung; Kim, Kyu-Yeob; Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Seong, Rack Seon; Shim, Young Hun; Sung, Sang Hyun; Yang, Tae-Jin

    2016-09-01

    Cynanchum wilfordii (Maxim.) Hemsl. is a traditional medicinal herb belonging to the Asclepiadoideae subfamily, whose dried roots have been used as traditional medicine in Asia. The complete chloroplast genome of C. wilfordii was generated by de novo assembly using the small amount of whole genome sequencing data. The chloroplast genome of C. wilfordii was 161 241 bp long, composed of large single copy region (91 995 bp), small single copy region (19 930 bp) and a pair of inverted repeat regions (24 658 bp). The overall GC contents of the chloroplast genome was 37.8%. A total of 114 genes were annotated, which included 80 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that C. wilfordii is most closely related to Asclepias nivea (Caribbean milkweed) and Asclepias syriaca (common milkweed) within the Asclepiadoideae subfamily.

  14. The complete chloroplast genome of two Brassica species, Brassica nigra and B. Oleracea.

    PubMed

    Seol, Young-Joo; Kim, Kyunghee; Kang, Sang-Ho; Perumal, Sampath; Lee, Jonghoon; Kim, Chang-Kug

    2017-03-01

    The two Brassica species, Brassica nigra and Brassica oleracea, are important agronomic crops. The chloroplast genome sequences were generated by de novo assembly using whole genome next-generation sequences. The chloroplast genomes of B. nigra and B. oleracea were 153 633 bp and 153 366 bp in size, respectively, and showed conserved typical chloroplast structure. The both chloroplast genomes contained a total of 114 genes including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis revealed that B. oleracea is closely related to B. rapa and B. napus but B. nigra is more diverse than the neighbor species Raphanus sativus.

  15. Albino Leaf 2 is involved in the splicing of chloroplast group I and II introns in rice

    PubMed Central

    Liu, Changhong; Zhu, Haitao; Xing, Yi; Tan, Jianjie; Chen, Xionghui; Zhang, Jianjun; Peng, Haifeng; Xie, Qingjun; Zhang, Zemin

    2016-01-01

    Chloroplasts play an essential role in plant growth and development through manipulating photosynthesis and the production of hormones and metabolites. Although many genes or regulators involved in chloroplast biogenesis and development have been isolated and characterized, identification of novel components is still lacking. We isolated a rice (Oryza sativa) mutant, termed albino leaf 2 (al2), using genetic screening. Phenotypic analysis revealed that the al2 mutation caused obvious albino leaves at the early developmental stage, eventually leading to al2 seedling death. Electron microscopy investigations indicated that the chloroplast structure was disrupted in the al2 mutants at an early developmental stage and subsequently resulted in the breakdown of the entire chloroplast. Molecular cloning illustrated that AL2 encodes a chloroplast group IIA intron splicing facilitator (CRS1) in rice, which was confirmed by a genetic complementation experiment. Moreover, our results demonstrated that AL2 was constitutively expressed in various tissues, including green and non-green tissues. Interestingly, we found that the expression levels of a subset of chloroplast genes that contain group IIA and IIB introns were significantly reduced in the al2 mutant compared to that in the wild type, suggesting that AL2 is a functional CRS1 in rice. Differing from the orthologous CRS1 in maize and Arabidopsis that only regulates splicing of the chloroplast group II intron, our results demonstrated that the AL2 gene is also likely to be involved in the splicing of the chloroplast group I intron. They also showed that disruption of AL2 results in the altered expression of chloroplast-associated genes, including chlorophyll biosynthetic genes, plastid-encoded polymerases and nuclear-encoded chloroplast genes. Taken together, these findings shed new light on the function of nuclear-encoded chloroplast group I and II intron splicing factors in rice. PMID:27543605

  16. CHUP1 mediates actin-based light-induced chloroplast avoidance movement in the moss Physcomitrella patens.

    PubMed

    Usami, Hiroka; Maeda, Takuma; Fujii, Yusuke; Oikawa, Kazusato; Takahashi, Fumio; Kagawa, Takatoshi; Wada, Masamitsu; Kasahara, Masahiro

    2012-12-01

    Chloroplasts change their intracellular distribution in response to light intensity. CHUP1 (CHLOROPLAST UNUSUAL POSITIONING1) is indispensable for this response in Arabidopsis thaliana. However, involvement of CHUP1 in light-induced chloroplast movement is unknown in other plants. In this study, CHUP1 orthologues were isolated from a moss, Physcomitrella patens, and a fern, Adiantum capillus-veneris, by cDNA library screening and PCR cloning based on the P. patens genome sequence. Functional motifs found in CHUP1 of A. thaliana were conserved among the CHUP1 orthologues. In addition to the putative functional regions, the C-terminal regions (approximately 250 amino acids), which are unique in CHUP1s, were highly conserved. Green fluorescent protein (GFP) fusions of P. patens CHUP1s (PpCHUP1A, PpCHUP1B and PpCHUP1C) were transiently expressed in protoplast cells. All GFP fusions were localized on the chloroplasts. Light-induced chloroplast avoidance movement of chup1 disruptants of P. patens was examined in the presence of cytoskeletal inhibitors because of the utilization of both microtubules and actin filaments for the movement in P. patens. When actin filaments were disrupted by cytochalasin B, the wild type (WT) and all chup1 disruptants showed chloroplast avoidance movement. However, when microtubules were disrupted by Oryzalin, chloroplasts in ∆chup1A and ∆chup1A/B rarely moved and stayed in the strong light-irradiated area. On the other hand, WT, ∆chup1B and ∆chup1C showed chloroplast avoidance movement. These results suggest that PpCHUP1A predominantly mediates the actin-based light-induced chloroplast avoidance movement. This study reveals that CHUP1 functions on the chloroplasts and is involved in the actin-based light-induced chloroplast avoidance movement in P. patens.

  17. Essential role of VIPP1 in chloroplast envelope maintenance in Arabidopsis.

    PubMed

    Zhang, Lingang; Kato, Yusuke; Otters, Stephanie; Vothknecht, Ute C; Sakamoto, Wataru

    2012-09-01

    VESICLE-INDUCING PROTEIN IN PLASTIDS1 (VIPP1), proposed to play a role in thylakoid biogenesis, is conserved in photosynthetic organisms and is closely related to Phage Shock Protein A (PspA), which is involved in plasma membrane integrity in Escherichia coli. This study showed that chloroplasts/plastids in Arabidopsis thaliana vipp1 knockdown and knockout mutants exhibit a unique morphology, forming balloon-like structures. This altered morphology, as well as lethality of vipp1, was complemented by expression of VIPP1 fused to green fluorescent protein (VIPP1-GFP). Several lines of evidence show that the balloon chloroplasts result from chloroplast swelling related to osmotic stress, implicating VIPP1 in the maintenance of plastid envelopes. In support of this, Arabidopsis VIPP1 rescued defective proton leakage in an E. coli pspA mutant. Microscopy observation of VIPP1-GFP in transgenic Arabidopsis revealed that VIPP1 forms large macrostructures that are integrated into various morphologies along the envelopes. Furthermore, live imaging revealed that VIPP1-GFP is highly mobile when chloroplasts are subjected to osmotic stress. VIPP1-GFP showed dynamic movement in the transparent area of spherical chloroplasts, as the fluorescent molecules formed filament-like structures likely derived from disassembly of the large VIPP1 complex. Collectively, our data demonstrate that VIPP1 is a multifunctional protein in chloroplasts that is critically important for envelope maintenance.

  18. Essential Role of VIPP1 in Chloroplast Envelope Maintenance in Arabidopsis[W

    PubMed Central

    Zhang, Lingang; Kato, Yusuke; Otters, Stephanie; Vothknecht, Ute C.; Sakamoto, Wataru

    2012-01-01

    VESICLE-INDUCING PROTEIN IN PLASTIDS1 (VIPP1), proposed to play a role in thylakoid biogenesis, is conserved in photosynthetic organisms and is closely related to Phage Shock Protein A (PspA), which is involved in plasma membrane integrity in Escherichia coli. This study showed that chloroplasts/plastids in Arabidopsis thaliana vipp1 knockdown and knockout mutants exhibit a unique morphology, forming balloon-like structures. This altered morphology, as well as lethality of vipp1, was complemented by expression of VIPP1 fused to green fluorescent protein (VIPP1-GFP). Several lines of evidence show that the balloon chloroplasts result from chloroplast swelling related to osmotic stress, implicating VIPP1 in the maintenance of plastid envelopes. In support of this, Arabidopsis VIPP1 rescued defective proton leakage in an E. coli pspA mutant. Microscopy observation of VIPP1-GFP in transgenic Arabidopsis revealed that VIPP1 forms large macrostructures that are integrated into various morphologies along the envelopes. Furthermore, live imaging revealed that VIPP1-GFP is highly mobile when chloroplasts are subjected to osmotic stress. VIPP1-GFP showed dynamic movement in the transparent area of spherical chloroplasts, as the fluorescent molecules formed filament-like structures likely derived from disassembly of the large VIPP1 complex. Collectively, our data demonstrate that VIPP1 is a multifunctional protein in chloroplasts that is critically important for envelope maintenance. PMID:23001039

  19. Characterization of microsatellite DNA libraries from three mealybug species and development of microsatellite markers for Pseudococcus viburni (Hemiptera: Pseudococcidae).

    PubMed

    Correa, M C G; Zaviezo, T; Le Maguet, J; Herrbach, E; Malausa, T

    2014-04-01

    Mealybugs (Hemiptera: Pseudococcidae) are important pests for crops worldwide. Different species, cryptic taxa under the same species name or even populations within a species can differ in biological characteristics, such as phenology, resistance to insecticides, virus transmission and susceptibility to natural enemies. Therefore, their management efficacy depends on their accurate identification. Microsatellite genetic markers are efficient in revealing the fine-scale taxonomic status of insects, both at inter- and intra-specific level. Despite their potential uses, microsatellites have been developed only for one mealybug species so far. Hence, it is unclear whether microsatellites may be useful to assess mealybug population differentiation and structuring. In this work, we tested the feasibility of developing microsatellite markers in mealybugs by: (i) producing and characterizing microsatellite DNA libraries for three species: Pseudococcus viburni, Pseudococcus comstocki and Heliococcus bohemicus, and (ii) by developing and testing markers for Ps. viburni. The obtained libraries contained balanced percentages of dinucleotide (ranging from 15 to 25%) and trinucleotide (from 5 to 17%) motifs. The marker setup for Ps. viburni was successful, although 70% of the primers initially tested were discarded for a lack of polymorphism. Finally, 25 markers were combined in two multiplex polymerase chain reactions with 21 displaying no evidence of deviation from Hardy-Weinberg equilibrium. Ps. viburni markers were tested on one population from France and one from Chile. The markers revealed a significant genetic differentiation between the two populations with an Fst estimate of 0.266.

  20. A microsatellite genetic linkage map of human chromosome 18

    SciTech Connect

    Straub, R.E.; Speer, M.C.; Luo, Ying; Ott, J.; Gilliam, T.C. ); Rojas, K.; Overhauser, J. )

    1993-01-01

    We isolated nine new microsatellite markers from chromosome 18 and further characterized and mapped eight microsatellites developed in other laboratories. We have constructed a framework linkage map of chromosome 18 that includes 14 microsatellite markers (12 dinucleotide and 2 tetranucleotide) and 2 RFLP markers. Cytogenetic localization for the microsatellites was performed by PCR amplification of IS somatic cell hybrids containing different deletions of chromosome 18. Twelve of the microsatellites and one of the RFLPs have heterozygosities greater than 70%. The average heterozygosity of the markers included in the map is 72%. In addition, we have made provisional placements of 3 more microsatellite markers and 2 more RFLP markers. The map lengths (in Kosambi centimorgans) are as follows: sex-averaged, 109.3 cM; male, 72.4 cM; female, 161.2 cM. The average distance between markers in the sex-averaged map is 7.3 cM, and the largest gap between markers is 16.7 cM. Analysis of the data for differences in the female:male map distance ratio revealed significant evidence for a constant difference in the ratio (X[sup 2]=32.25; df = 1; P < 0.001; ratio = 2.5:1). Furthermore, there was significant evidence in favor of a variable female:male map distance ratio across the chromosome compared to a constant distance ratio (X[sup 2] = 27.78; df = 14; P = 0.015). To facilitate their use in genomic screening for disease genes, all of the microsatellite markers used here can be amplified under standard PCR conditions, and most can be used in duplex PCR reactions. 36 refs., 3 figs., 4 tabs.

  1. A large population of small chloroplasts in tobacco leaf cells allows more effective chloroplast movement than a few enlarged chloroplasts.

    PubMed

    Jeong, Won Joong; Park, Youn-Il; Suh, KyeHong; Raven, John A; Yoo, Ook Joon; Liu, Jang Ryol

    2002-05-01

    We generated transgenic tobacco (Nicotiana tabacum cv Xanthi) plants that contained only one to three enlarged chloroplasts per leaf mesophyll cell by introducing NtFtsZ1-2, a cDNA for plastid division. These plants were used to investigate the advantages of having a large population of small chloroplasts rather than a few enlarged chloroplasts in a leaf mesophyll cell. Despite the similarities in photosynthetic components and ultrastructure of photosynthetic machinery between wild-type and transgenic plants, the overall growth of transgenic plants under low- and high-light conditions was retarded. In wild-type plants, the chloroplasts moved toward the face position under low light and toward the profile position under high-light conditions. However, chloroplast rearrangement in transgenic plants in response to light conditions was not evident. In addition, transgenic plant leaves showed greatly diminished changes in leaf transmittance values under both light conditions, indicating that chloroplast rearrangement was severely retarded. Therefore, under low-light conditions the incomplete face position of the enlarged chloroplasts results in decreased absorbance of light energy. This, in turn, reduces plant growth. Under high-light conditions, the amount of absorbed light exceeds the photosynthetic utilization capacity due to the incomplete profile position of the enlarged chloroplasts, resulting in photodamage to the photosynthetic machinery, and decreased growth. The presence of a large number of small and/or rapidly moving chloroplasts in the cells of higher land plants permits more effective chloroplast phototaxis and, hence, allows more efficient utilization of low-incident photon flux densities. The photosynthetic apparatus is, consequently, protected from damage under high-incident photon flux densities.

  2. Diversity of a ribonucleoprotein family in tobacco chloroplasts: two new chloroplast ribonucleoproteins and a phylogenetic tree of ten chloroplast RNA-binding domains.

    PubMed Central

    Ye, L H; Li, Y Q; Fukami-Kobayashi, K; Go, M; Konishi, T; Watanabe, A; Sugiura, M

    1991-01-01

    Two new ribonucleoproteins (RNPs) have been identified from a tobacco chloroplast lysate. These two proteins (cp29A and cp29B) are nuclear-encoded and have a less affinity to single-stranded DNA as compared with three other chloroplast RNPs (cp28, cp31 and cp33) previously isolated. DNA sequencing revealed that both contain two consensus sequence-type homologous RNA-binding domains (CS-RBDs) and a very acidic amino-terminal domain but shorter than that of cp28, cp31 and cp33. Comparison of cp29A and cp29B showed a 19 amino acid insertion in the region separating the two CS-RBDs in cp29B. This insertion results in three tandem repeats of a glycine-rich sequence of 10 amino acids, which is a novel feature in RNPs. The two proteins are encoded by different single nuclear genes and no alternatively spliced transcripts could be identified. We constructed a phylogenetic tree for the ten chloroplast CS-RBDs. These results suggest that there is a sizable RNP family in chloroplasts and the diversity was mainly generated through a series of gene duplications rather than through alternative pre-mRNA splicing. The gene for cp29B contains three introns. The first and second introns interrupt the first CS-RBD and the third intron does the second CS-RBD. The position of the first intron site is the same as that in the human hnRNP A1 protein gene. Images PMID:1721701

  3. Nitrogen control of chloroplast differentiation

    SciTech Connect

    Schmidt, G.W.

    1994-11-01

    This project was directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins that function in energy transduction and carbon metabolism. The availability of this nutrient most pervasively limits plant growth and agricultural productivity but the molecular and physiological consequences of nitrogen-deficiency are poorly understood. The model system for our studies of nitrogen-dependent regulation of chloroplast differentiation is the unicellular green alga Chlamydomonas reinhardtii which is grown phototrophically in a continuous culture system. When 150 {mu}M nitrogen is provided at a dilution rate of 0.25 volumes of the growth medium per day, the cultures are sustained at a density of less than 10{sup 5} cells/ml and chlorophyll deficiency, the classical symptom of nitrogen-deficiency, becomes quite pronounced. We found that there is a concomitant loss of light-harvesting complexes and reduced levels of Photosystem II reaction center complexes while ATP synthetase and Photosystem I reaction centers are maintained at high levels. Moreover, reduced rates of chloroplast protein synthesis are due to differential effects on mRNA translation. In contrast, the deficiency of light-harvesting genes is due to marked reductions of the nuclear-encoded cab mRNAs. Although there is no significant reduction of the amounts of RuBPCase, we also detected substantial changes in the mRNA abundance of the alga`s two small subunit genes. All of the effects of nitrogen-limitation are readily reversible: greening of cells is completed within 24 hours after provision of 10 mM ammonium. During this time, the plastid translational constraints are disengaged and progressive changes in the abundance of nuclear transcripts occur, including a transient 30-fold elevation of {und cab} mRNAs.

  4. ARC3, a chloroplast division factor, is a chimera of prokaryotic FtsZ and part of eukaryotic phosphatidylinositol-4-phosphate 5-kinase.

    PubMed

    Shimada, Hiroshi; Koizumi, Masato; Kuroki, Kouta; Mochizuki, Mariko; Fujimoto, Hitoshi; Ohta, Hiroyuki; Masuda, Tatsuru; Takamiya, Ken-ichiro

    2004-08-01

    The arc3 (accumulation and replication of chloroplast) mutant of Arabidopsis thaliana has a small number of abnormally large chloroplasts in the cell, suggesting that chloroplast division is arrested in the mutant and ARC3 has an important role in the initiation of chloroplast division. To elucidate the role of ARC3, first we identified the ARC3 gene, and determined the location of ARC3 protein during chloroplast division because the localization and spatial orientation of such division factors are vital for correct chloroplast division. Sequencing analysis showed that ARC3 was a fusion of the prokaryotic FtsZ and part of the eukaryotic phosphatidylinositol-4-phosphate 5-kinase (PIP5K) genes. The PIP5K-homologous region of ARC3 had no catalytic domain but a membrane-occupation-and-recognition-nexus (MORN) repeat motif. Immunofluorescence microscopy, Western blotting analysis and in vitro chloroplast import and protease protection assays revealed that ARC3 protein was soluble, and located on the outer surface of the chloroplast in a ring-like structure at the early stage of chloroplast division. Prokaryotes have one FtsZ as a gene for division but have no ARC3 counterparts, the chimera of FtsZ and PIP5K, suggesting that the ARC3 gene might have been generated from FtsZ as another division factor during the evolution of chloroplast by endosymbiosis.

  5. Integration of light and circadian signals that regulate chloroplast transcription by a nuclear-encoded sigma factor.

    PubMed

    Belbin, Fiona E; Noordally, Zeenat B; Wetherill, Sarah J; Atkins, Kelly A; Franklin, Keara A; Dodd, Antony N

    2017-01-01

    We investigated the signalling pathways that regulate chloroplast transcription in response to environmental signals. One mechanism controlling plastid transcription involves nuclear-encoded sigma subunits of plastid-encoded plastid RNA polymerase. Transcripts encoding the sigma factor SIG5 are regulated by light and the circadian clock. However, the extent to which a chloroplast target of SIG5 is regulated by light-induced changes in SIG5 expression is unknown. Moreover, the photoreceptor signalling pathways underlying the circadian regulation of chloroplast transcription by SIG5 are unidentified. We monitored the regulation of chloroplast transcription in photoreceptor and sigma factor mutants under controlled light regimes in Arabidopsis thaliana. We established that a chloroplast transcriptional response to light intensity was mediated by SIG5; a chloroplast transcriptional response to the relative proportions of red and far red light was regulated by SIG5 through phytochrome and photosynthetic signals; and the circadian regulation of chloroplast transcription by SIG5 was predominantly dependent on blue light and cryptochrome. Our experiments reveal the extensive integration of signals concerning the light environment by a single sigma factor to regulate chloroplast transcription. This may originate from an evolutionarily ancient mechanism that protects photosynthetic bacteria from high light stress, which subsequently became integrated with higher plant phototransduction networks.

  6. Exploring mechanisms linked to differentiation and function of dimorphic chloroplasts in the single cell C4 species Bienertia sinuspersici

    PubMed Central

    2014-01-01

    Background In the model single-cell C4 plant Bienertia sinuspersici, chloroplast- and nuclear-encoded photosynthetic enzymes, characteristically confined to either bundle sheath or mesophyll cells in Kranz-type C4 leaves, all occur together within individual leaf chlorenchyma cells. Intracellular separation of dimorphic chloroplasts and key enzymes within central and peripheral compartments allow for C4 carbon fixation analogous to NAD-malic enzyme (NAD-ME) Kranz type species. Several methods were used to investigate dimorphic chloroplast differentiation in B. sinuspersici. Results Confocal analysis revealed that Rubisco-containing chloroplasts in the central compartment chloroplasts (CCC) contained more photosystem II proteins than the peripheral compartment chloroplasts (PCC) which contain pyruvate,Pi dikinase (PPDK), a pattern analogous to the cell type-specific chloroplasts of many Kranz type NAD-ME species. Transient expression analysis using GFP fusion constructs containing various lengths of a B. sinuspersici Rubisco small subunit (RbcS) gene and the transit peptide of PPDK revealed that their import was not specific to either chloroplast type. Immunolocalization showed the rbcL-specific mRNA binding protein RLSB to be selectively localized to the CCC in B. sinuspersici, and to Rubisco-containing BS chloroplasts in the closely related Kranz species Suaeda taxifolia. Comparative fluorescence analyses were made using redox-sensitive and insensitive GFP forms, as well comparative staining using the peroxidase indicator 3,3-diaminobenzidine (DAB), which demonstrated differences in stromal redox potential, with the CCC having a more negative potential than the PCC. Conclusions Both CCC RLSB localization and the differential chloroplast redox state are suggested to have a role in post-transcriptional rbcL expression. PMID:24443986

  7. Molecular basis of chloroplast photorelocation movement.

    PubMed

    Kong, Sam-Geun; Wada, Masamitsu

    2016-03-01

    Chloroplast photorelocation movement is an essential physiological response for sessile plant survival and the optimization of photosynthetic ability. Simple but effective experiments on the physiological, cell biological and molecular genetic aspects have been widely used to investigate the signaling components of chloroplast photorelocation movement in Arabidopsis for the past few decades. Although recent knowledge on chloroplast photorelocation movement has led us to a deeper understanding of its physiological and molecular basis, the biochemical roles of the downstream factors remain largely unknown. In this review, we briefly summarize recent advances regarding chloroplast photorelocation movement and propose that a new high-resolution approach is necessary to investigate the molecular mechanism underlying actin-based chloroplast photorelocation movement.

  8. Characterization of 11 new microsatellite loci in taro (Colocasia esculenta).

    PubMed

    Hu, Kan; Huang, Xing Fang; Ke, Wei Dong; Ding, Yi

    2009-03-01

    Eleven new microsatellite markers were isolated from taro, Colocasia esculenta (L.) Schott, a root crop widely distributed all over the world. Forty-eight primer pairs were designed from a microsatellite-enriched genomic library, of which 11 primer pairs have polymorphisms in 30 individuals tested from a population in China, which revealed two to six alleles per locus with the observed and expected heterozygosity levels ranging from 0 to 0.733 and from 0.381 to 0.731, respectively. These new genetic markers will be useful for the study of taro germplasm management and population evolution in the future.

  9. Characterization of microsatellite loci isolated in trumpeter swan (Cygnus buccinator)

    USGS Publications Warehouse

    John, J. St; Ransler, F.A.; Quinn, T.W.; Oyler-McCance, S.J.

    2006-01-01

    Primers for 16 microsatellite loci were developed for the trumpeter swan (Cygnus buccinator), a species recovering from a recent population bottleneck. In a screen of 158 individuals, the 16 loci were found to have levels of variability ranging from two to seven alleles. No loci were found to be linked, although two loci repeatedly revealed significant departures from Hardy-Weinberg equilibrium. Amplification in the closely related tundra swan (Cygnus columbianus) was successful for all except one locus. These microsatellite loci will be applicable for population genetic analyses and ultimately aid in management efforts. ?? 2006 The Authors.

  10. Characterization of microsatellite loci isolated in Mountain Plover (Charadrius montanus)

    USGS Publications Warehouse

    John, J. St; Kysela, R.F.; Oyler-McCance, S.J.

    2007-01-01

    Primers for 15 microsatellite loci were developed for Mountain Plover, a species whose distribution and abundance have been reduced drastically in the past 30 years. In a screen of 126 individuals collected from four breeding locales across the species' range, levels of polymorphism ranged from two to 13 alleles per locus. No two loci were found to be linked, although one locus revealed significant departures from Hardy-Weinberg equilibrium. These microsatellite loci can be used in population genetic studies, ultimately aiding in management efforts for Mountain Plover. Additionally, these markers can potentially be used in studies investigating the mating system of Mountain Plover. ?? 2007 Blackwell Publishing Ltd.

  11. A Novel Approach for Characterizing Microsatellite Instability in Cancer Cells

    PubMed Central

    Lu, Yuheng; Soong, T. David; Elemento, Olivier

    2013-01-01

    Microsatellite instability (MSI) is characterized by the expansion or contraction of DNA repeat tracts as a consequence of DNA mismatch repair deficiency (MMRD). Accurate detection of MSI in cancer cells is important since MSI is associated with several cancer subtypes and can help inform therapeutic decisions. Although experimental assays have been developed to detect MSI, they typically depend on a small number of known microsatellite loci or mismatch repair genes and have limited reliability. Here, we report a novel genome-wide approach for MSI detection based on the global detection of insertions and deletions (indels) in microsatellites found in expressed genes. Our large-scale analyses of 20 cancer cell lines and 123 normal individuals revealed striking indel features associated with MSI: there is a significant increase of short microsatellite deletions in MSI samples compared to microsatellite stable (MSS) ones, suggesting a mechanistic bias of repair efficiency between insertions and deletions in normal human cells. By incorporating this observation into our MSI scoring metric, we show that our approach can correctly distinguish between MSI and MSS cancer cell lines. Moreover, when we applied this approach to primal tumor samples, our metric is also well consistent with diagnosed MSI status. Thus, our study offers new insight into DNA mismatch repair system, and also provides a novel MSI diagnosis method for clinical oncology with better reliability. PMID:23671654

  12. Microsatellite and Chromosome Evolution of Parthenogenetic Sitobion Aphids in Australia

    PubMed Central

    Sunnucks, P.; England, P. R.; Taylor, A. C.; Hales, D. F.

    1996-01-01

    Single-locus microsatellite variation correlated perfectly with chromosome number in Sitobion miscanthi aphids. The microsatellites were highly heterozygous, with up to 10 alleles per locus in this species. Despite this considerable allelic variation, only seven different S. miscanthi genotypes were discovered in 555 individuals collected from a wide range of locations, hosts and sampling periods. Relatedness between genotypes suggests only two successful colonizations of Australia. There was no evidence for genetic recombination in 555 S. miscanthi so the occurrence of recent sexual reproduction must be near zero. Thus diversification is by mutation and chromosomal rearrangement alone. Since the aphids showed no sexual recombination, microsatellites can mutate without meiosis. Five of seven microsatellite differences were a single repeat unit, and one larger jump is likely. The minimum numbers of changes between karyotypes corresponded roughly one-to-one with microsatellite allele changes, which suggests very rapid chromosomal evolution. A chromosomal fission occurred in a cultured line, and a previously unknown chromosomal race was detected. All 121 diverse S. near fragariae were heterozygous but revealed only one genotype. This species too must have a low rate of sexual reproduction and few colonizations of Australia. PMID:8889535

  13. Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress

    PubMed Central

    Zheng, Xiaodong; Tan, Dun X.; Allan, Andrew C.; Zuo, Bixiao; Zhao, Yu; Reiter, Russel J.; Wang, Lin; Wang, Zhi; Guo, Yan; Zhou, Jingzhe; Shan, Dongqian; Li, Qingtian; Han, Zhenhai; Kong, Jin

    2017-01-01

    Within the chloroplasts reactive oxygen species (ROS) are generated during photosynthesis and stressful conditions. Excessive ROS damages chloroplasts and reduces photosynthesis if not properly detoxified. In this current study, we document that chloroplasts produce melatonin, a recently-discovered plant antioxidant molecule. When N-acetylserotonin, a substrate for melatonin synthesis, was fed to purified chloroplasts, they produced melatonin in a dose-response manner. To further confirm this function of chloroplasts, the terminal enzyme for melatonin synthesis, N-acetylserotonin-O-methyltransferase (ASMT), was cloned from apple rootstock, Malus zumi. The in vivo fluorescence observations and Western blots confirmed MzASMT9 was localized in the chloroplasts. A study of enzyme kinetics revealed that the Km and Vmax of the purified recombinant MzASMT9 protein for melatonin synthesis were 500 μM and 12 pmol/min·mg protein, respectively. Arabidopsis ectopically-expressing MzASMT9 possessed improved melatonin level. Importantly, the MzASMT9 gene was found to be upregulated by high light intensity and salt stress. Increased melatonin due to the highly-expressed MzASMT9 resulted in Arabidopsis lines with enhanced salt tolerance than wild type plants, as indicated by reduced ROS, lowered lipid peroxidation and enhanced photosynthesis. These findings have agricultural applications for the genetic enhancement of melatonin-enriched plants for increasing crop production under a variety of unfavorable environmental conditions. PMID:28145449

  14. An optimized transit peptide for effective targeting of diverse foreign proteins into chloroplasts in rice

    PubMed Central

    Shen, Bo-Ran; Zhu, Cheng-Hua; Yao, Zhen; Cui, Li-Li; Zhang, Jian-Jun; Yang, Cheng-Wei; He, Zheng-Hui; Peng, Xin-Xiang

    2017-01-01

    Various chloroplast transit peptides (CTP) have been used to successfully target some foreign proteins into chloroplasts, but for other proteins these same CTPs have reduced localization efficiencies or fail completely. The underlying cause of the failures remains an open question, and more effective CTPs are needed. In this study, we initially observed that two E.coli enzymes, EcTSR and EcGCL, failed to be targeted into rice chloroplasts by the commonly-used rice rbcS transit peptide (rCTP) and were subsequently degraded. Further analyses revealed that the N-terminal unfolded region of cargo proteins is critical for their localization capability, and that a length of about 20 amino acids is required to attain the maximum localization efficiency. We considered that the unfolded region may alleviate the steric hindrance produced by the cargo protein, by functioning as a spacer to which cytosolic translocators can bind. Based on this inference, an optimized CTP, named RC2, was constructed. Analyses showed that RC2 can more effectively target diverse proteins, including EcTSR and EcGCL, into rice chloroplasts. Collectively, our results provide further insight into the mechanism of CTP-mediated chloroplastic localization, and more importantly, RC2 can be widely applied in future chloroplastic metabolic engineering, particularly for crop plants.

  15. Phosphorylation of the transit sequence of chloroplast precursor proteins.

    PubMed

    Waegemann, K; Soll, J

    1996-03-15

    A protein kinase was located in the cytosol of pea mesophyll cells. The protein kinase phosphorylates, in an ATP-dependent manner, chloroplast-destined precursor proteins but not precursor proteins, which are located to plant mitochondria or plant peroxisomes. The phosphorylation occurs on either serine or threonine residues, depending on the precursor protein used. We demonstrate the specific phosphorylation of the precursor forms of the chloroplast stroma proteins ferredoxin (preFd), small subunit of ribulose-bisphosphate-carboxylase (preSSU), the thylakoid localized light-harvesting chlorophyll a/b-binding protein (preLHCP), and the thylakoid lumen-localized proteins of the oxygen-evolving complex of 23 kDa (preOE23) and 33 kDa (preOE33). In the case of thylakoid lumen proteins which possess bipartite transit sequences, the phosphorylation occurs within the stroma-targeting domain. By using single amino acid substitution within the presequences of preSSU, preOE23, and preOE33, we were able to tentatively identify a consensus motif for the precursor protein protein kinase. This motif is (P/G)X(n)(R/K)X(n)(S/T)X(n) (S*/T*), were n = 0-3 amino acids spacer and S*/T* represents the phosphate acceptor. The precursor protein protein kinase is present only in plant extracts, e.g. wheat germ and pea, but not in a reticulocyte lysate. Protein import experiments into chloroplasts revealed that phosphorylated preSSU binds to the organelles, but dephosphorylation seems required to complete the translocation process and to obtain complete import. These results suggest that a precursor protein protein phosphatase is involved in chloroplast import and represents a so far unidentified component of the import machinery. In contrast to sucrose synthase, a cytosolic marker protein, the precursor protein protein kinase seems to adhere partially to the chloroplast surface. A phosphorylation-dephosphorylation cycle of chloroplast-destined precursor proteins might represent one step

  16. Transpecific microsatellites for hard pines.

    PubMed

    Shepherd, M.; Cross, M.; Maguire, L.; Dieters, J.; Williams, G.; Henry, J.

    2002-04-01

    Microsatellites are difficult to recover from large plant genomes so cross-specific utilisation is an important source of markers. Fifty microsatellites were tested for cross-specific amplification and polymorphism to two New World hard pine species, slash pine ( Pinus elliottii var. elliottii) and Caribbean pine ( P. caribaea var. hondurensis). Twenty-nine (58%) markers amplified in both hard pine species, and 23 of these 29 were polymorphic. Soft pine (subgenus Strobus) microsatellite markers did amplify, but none were polymorphic. Pinus elliottii var. elliottii and P. caribaea var. hondurensis showed mutational changes in the flanking regions and the repeat motif that were informative for Pinus spp. phylogenetic relationships. Most allele length variation could be attributed to variability in repeat unit number. There was no evidence for ascertainment bias.

  17. Analysis of chloroplast movement and relocation in Arabidopsis.

    PubMed

    Wada, Masamitsu; Kong, Sam-Geun

    2011-01-01

    Chloroplast photorelocation movement is essential for the sessile plant survival and plays a role for efficient photosynthesis and avoiding photodamage of chloroplasts. There are several ways to observe or detect chloroplast movement directly or indirectly. Here, techniques for the induction of chloroplast movement and how to detect the responses, as well as various points of attention and advice for the experiments, are described.

  18. Rapid isolation of intact chloroplasts from spinach leaves.

    PubMed

    Joly, David; Carpentier, Robert

    2011-01-01

    In this chapter, a rapid method to isolate intact chloroplasts from spinach leaves is described. Intact chloroplasts are isolated using two short centrifugation steps and avoiding the use of percoll gradient. Intactness of chloroplast is evaluated by the inability of potassium ferricyanide to enter inside the chloroplasts and to act as an electron acceptor for photosystem II.

  19. Phosphorylation of a chloroplast RNA-binding protein changes its affinity to RNA.

    PubMed Central

    Lisitsky, I; Schuster, G

    1995-01-01

    An RNA-binding protein of 28 kDa (28RNP) was previously isolated from spinach chloroplasts and found to be required for 3' end-processing of chloroplast mRNAs. The amino acid sequence of 28RNP revealed two approximately 80 amino-acid RNA-binding domains, as well as an acidic- and glycine-rich amino terminal domain. Upon analysis of the RNA-binding properties of the 'native' 28RNP in comparison to the recombinant bacterial expressed protein, differences were detected in the affinity to some chloroplastic 3' end RNAs. It was suggested that post-translational modification can modulate the affinity of the 28RNP in the chloroplast to different RNAs. In order to determine if phosphorylation accounts for this post-translational modification, we examined if the 28RNP is a phosphoprotein and if it can serve as a substrate for protein kinases. It was found that the 28RNP was phosphorylated when intact chloroplasts were metabolically labeled with [32P] orthophosphate, and that recombinant 28RNP served as an excellent substrate in vitro for protein kinase isolated from spinach chloroplasts or recombinant alpha subunit of maize casein kinase II. The 28RNP was apparently phosphorylated at one site located in the acidic domain at the N-terminus of the protein. Site-directed mutagenesis of the serines in that region revealed that the phosphorylation of the protein was eliminated when serine number 22 from the N-terminus was changed to tryptophan. RNA-binding analysis of the phosphorylated 28RNP revealed that the affinity of the phosphorylated protein was reduced approximately 3-4-fold in comparison to the non-phosphorylated protein. Therefore, phosphorylation of the 28RNP modulates its affinity to RNA and may play a significant role in its biological function in the chloroplast. Images PMID:7630729

  20. Plastidic Isoprenoid Synthesis during Chloroplast Development 1

    PubMed Central

    Heintze, Adolf; Görlach, Jörn; Leuschner, Carola; Hoppe, Petra; Hagelstein, Petra; Schulze-Siebert, Detlef; Schultz, Gernot

    1990-01-01

    The chloroplast isoprenoid synthesis of very young leaves is supplied by the plastidic CO2 → pyruvate → acetyl-coenzyme A (C3 → C2) metabolism (D Schulze-Siebert, G Schultz [1987] Plant Physiol 84: 1233-1237) and occurs via the plastidic mevalonate pathway. The plastidic C3 → C2 metabolism and/or plastidic mevalonate pathway of barley (Hordeum vulgare L.) seedlings changes from maximal activity at the leaf base (containing developing chloroplasts with incomplete thylakoid stacking but a considerable rate of photosynthetic CO2-fixation) almost to ineffectivity at the leaf tip (containing mature chloroplasts with maximal photosynthetic activity). The ability to import isopentenyl diphosphate from the extraplastidic space gradually increases to substitute for the loss of endogenous intermediate supply for chloroplast isoprenoid synthesis (change from autonomic to division-of-labor stage). Fatty acid synthesis from NaH14CO3 decreases in the same manner as shown for leaf sections and chloroplasts isolated from these. Evidence has been obtained for a drastic decrease of pyruvate decarboxylase-dehydrogenase activity during chloroplast development compared with other anabolic chloroplast pathways (synthesis of aromatic amino acid and branched chain amino acids). The noncompetition of pyruvate and acetate in isotopic dilution studies indicates that both a pyruvate-derived and an acetate-derived compound are simultaneously needed to form introductory intermediates of the mevalonate pathway, presumably acetoacetyl-coenzyme A. PMID:16667567

  1. The DnaJ OsDjA7/8 is essential for chloroplast development in rice (Oryza sativa).

    PubMed

    Zhu, Xiaobo; Liang, Sihui; Yin, Junjie; Yuan, Can; Wang, Jing; Li, Weitao; He, Min; Wang, Jichun; Chen, Weilan; Ma, Bingtian; Wang, Yuping; Qin, Peng; Li, Shigui; Chen, Xuewei

    2015-12-10

    DnaJ proteins belong to chaperones of Hsp40 family that ubiquitously participate in various cellular processes. Previous studies have shown chloroplast-targeted DnaJs are involved in the development of chloroplast in some plant species. However, little is known about the function of DnaJs in rice, one of the main staple crops. In this study, we characterized a type I DnaJ protein OsDjA7/8. We found that the gene OsDjA7/8 was expressed in all collected tissues, with a priority in the vigorous growth leaf. Subcellular localization revealed that the protein OsDjA7/8 was mainly distributed in chloroplast. Reduced expression of OsDjA7/8 in rice led to albino lethal at the seedling stage. Transmission electron microscopy observation showed that the chloroplast structures were abnormally developed in the plants silenced for OsDjA7/8. In addition, the transcriptional expression of the genes tightly associated with the development of chloroplast was deeply reduced in the plants silenced for OsDjA7/8. Collectively, our study reveals that OsDjA7/8 encodes a chloroplast-localized protein and is essential for chloroplast development and differentiation in rice.

  2. Functional analysis and expression characteristics of chloroplastic Prx IIE.

    PubMed

    Gama, Filipe; Bréhélin, Claire; Gelhaye, Eric; Meyer, Yves; Jacquot, Jean-Pierre; Rey, Pascal; Rouhier, Nicolas

    2008-07-01

    Peroxiredoxins (Prxs) are ubiquitous thiol-dependent peroxidases capable of eliminating a variety of peroxides through reactive catalytic cysteines, which are regenerated by reducing systems. Based on amino acid sequences and their mode of catalysis, five groups of thiol peroxidases have been distinguished in plants, and type II Prx is one of them with representatives in many sub-cellular compartments. The mature form of poplar chloroplastic Prx IIE was expressed as a recombinant protein in Escherichia coli. The protein is able to reduce H2O2 and tert-butyl hydroperoxide and is regenerated by both glutaredoxin (Grx) and thioredoxin (Trx) systems. Nevertheless, compared with Trxs, Grxs, and more especially chloroplastic Grx S12, are far more efficient reductants towards Prx IIE. The expression of Prx IIE at both the mRNA and protein levels as a function of organ type and abiotic stress conditions was investigated. Western blot analysis revealed that Prx IIE gene is constitutively expressed in Arabidopsis thaliana, mostly in young and mature leaves and in flowers. Under photo-oxidative treatment and water deficit, almost no change was observed in the abundance of Prx IIE in A. thaliana, while the level of Prx Q (one of the two other chloroplastic Prxs with 2-Cys Prx) increased in response to both stresses, indicating that plastidic members of the Prx family exhibit specific patterns of expression under stress.

  3. Analysis of microsatellite polymorphism in inbred knockout mice.

    PubMed

    Zuo, Baofen; Du, Xiaoyan; Zhao, Jing; Yang, Huixin; Wang, Chao; Wu, Yanhua; Lu, Jing; Wang, Ying; Chen, Zhenwen

    2012-01-01

    Previously, we found that the genotype of 42 out of 198 mouse microsatellite loci, which are distributed among all chromosomes except the Y chromosome, changed from monomorphism to polymorphism (CMP) in a genetically modified inbred mouse strain. In this study, we further examined whether CMP also relates to the homologous recombination in gene knockout (KO) mouse strains. The same 42 microsatellite loci were analyzed by polymerase chain reaction (PCR) in 29 KO inbred mouse strains via short tandem sequence repeat (STR) scanning and direct sequence cloning to justify microsatellite polymorphisms. The C57BL/6J and 129 mouse strains, from which these 29 KO mice were derived, were chosen as the background controls. The results indicated that 10 out of 42 (23.8%) loci showed CMP in some of these mouse strains. Except for the trinucleotide repeat locus of D3Mit22, which had microsatellite CMP in strain number 9, the core sequences of the remaining 41 loci were dinucleotide repeats, and 9 out of 41 (21.95%) showed CMPs among detected mouse strains. However, 11 out of 29 (37.9%) KO mice strains were recognized as having CMPs. The popular dinucleotide motifs in CMP were (TG)(n) (50%, 2/4), followed by (GT)(n) (27.27%, 3/11) and (CA)(n) (23.08%, 3/13). The microsatellite CMP in (CT)(n) and (AG)(n) repeats were 20% (1/5). According to cloning sequencing results, 6 KO mouse strains showed insertions of nucleotides whereas 1 showed a deletion. Furthermore, 2 loci (D13Mit3 and D14Mit102) revealed CMP in 2 strains, and mouse strain number 9 showed CMPs in two loci (D3Mit22 and D13Mit3) simultaneously. Collectively, these results indicated that microsatellite polymorphisms were present in the examined inbred KO mice.

  4. Analysis of Microsatellite Polymorphism in Inbred Knockout Mice

    PubMed Central

    Zhao, Jing; Yang, Huixin; Wang, Chao; Wu, Yanhua; Lu, Jing; Wang, Ying; Chen, Zhenwen

    2012-01-01

    Previously, we found that the genotype of 42 out of 198 mouse microsatellite loci, which are distributed among all chromosomes except the Y chromosome, changed from monomorphism to polymorphism (CMP) in a genetically modified inbred mouse strain. In this study, we further examined whether CMP also relates to the homologous recombination in gene knockout (KO) mouse strains. The same 42 microsatellite loci were analyzed by polymerase chain reaction (PCR) in 29 KO inbred mouse strains via short tandem sequence repeat (STR) scanning and direct sequence cloning to justify microsatellite polymorphisms. The C57BL/6J and 129 mouse strains, from which these 29 KO mice were derived, were chosen as the background controls. The results indicated that 10 out of 42 (23.8%) loci showed CMP in some of these mouse strains. Except for the trinucleotide repeat locus of D3Mit22, which had microsatellite CMP in strain number 9, the core sequences of the remaining 41 loci were dinucleotide repeats, and 9 out of 41 (21.95%) showed CMPs among detected mouse strains. However, 11 out of 29 (37.9%) KO mice strains were recognized as having CMPs. The popular dinucleotide motifs in CMP were (TG)n (50%, 2/4), followed by (GT)n (27.27%, 3/11) and (CA)n (23.08%, 3/13). The microsatellite CMP in (CT)n and (AG)n repeats were 20% (1/5). According to cloning sequencing results, 6 KO mouse strains showed insertions of nucleotides whereas 1 showed a deletion. Furthermore, 2 loci (D13Mit3 and D14Mit102) revealed CMP in 2 strains, and mouse strain number 9 showed CMPs in two loci (D3Mit22 and D13Mit3) simultaneously. Collectively, these results indicated that microsatellite polymorphisms were present in the examined inbred KO mice. PMID:22509320

  5. Blueberry Microsatellite Markers Identify Cranberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forty-six blueberry simple sequence repeat (SSR) markers or microsatellites were tested for the ability to amplify a polymorphic marker in eight American cranberry accessions. Sixteen SSRs resulted in informative and polymorphic SSR primer pairs and were used to fingerprint 16 economically important...

  6. Heterozygosity increases microsatellite mutation rate

    PubMed Central

    Amos, William

    2016-01-01

    Whole genome sequencing of families of Arabidopsis has recently lent strong support to the heterozygote instability (HI) hypothesis that heterozygosity locally increases mutation rate. However, there is an important theoretical difference between the impact on base substitutions, where mutation rate increases in regions surrounding a heterozygous site, and the impact of HI on sequences such as microsatellites, where mutations are likely to occur at the heterozygous site itself. At microsatellite loci, HI should create a positive feedback loop, with heterozygosity and mutation rate mutually increasing each other. Direct support for HI acting on microsatellites is limited and contradictory. I therefore analysed AC microsatellites in 1163 genome sequences from the 1000 genomes project. I used the presence of rare alleles, which are likely to be very recent in origin, as a surrogate measure of mutation rate. I show that rare alleles are more likely to occur at locus-population combinations with higher heterozygosity even when all populations carry exactly the same number of alleles. PMID:26740567

  7. Plastome Mutations and Recombination Events in Barley Chloroplast Mutator Seedlings.

    PubMed

    Landau, Alejandra; Lencina, Franco; Pacheco, María G; Prina, Alberto R

    2016-05-01

    The barley chloroplast mutator (cpm) is an allele of a nuclear gene that when homozygous induces several types of cytoplasmically inherited chlorophyll deficiencies. In this work, a plastome Targeting Induced Local Lesions in Genomes (TILLING) strategy based on mismatch digestion was used on families that carried the cpm genotype through many generations. Extensive scanning of 33 plastome genes and a few intergenic regions was conducted. Numerous polymorphisms were detected on both genic and intergenic regions. The detected polymorphisms can be accounted for by at least 61 independent mutational events. The vast majority of the polymorphisms originated in substitutions and small indels (insertions/deletions) in microsatellites. The rpl23 and the rps16 genes were the most polymorphic. Interestingly, the variation observed in the rpl23 gene consisted of several combinations of 5 different one nucleotide polymorphisms. Besides, 4 large indels that have direct repeats at both ends were also observed, which appear to be originated from recombinational events. The cpm mutation spectrum suggests that the CPM gene product is probably involved in plastome mismatch repair. The numerous subtle molecular changes that were localized in a wide range of plastome sites show the cpm as a valuable source of plastome variability for plant research and/or plant breeding. Moreover, the cpm mutant appears to be an interesting experimental material for investigating the mechanisms responsible for maintaining the stability of plant organelle DNA.

  8. The analysis of microsatellites and compound microsatellites in 56 complete genomes of Herpesvirales.

    PubMed

    Wu, Xiaolong; Zhou, Lan; Zhao, Xiangyan; Tan, Zhongyang

    2014-11-01

    Simple sequence repeats (SSRs), or microsatellites, are special DNA/RNA sequences with repeated unit of 1-6 bp. The genomes of Herpesvirales have many repeating structures, which is an excellent system to study the evolution and roles of microsatellites and compound microsatellites in viruses. Therefore, 56 genomes of Herpesvirales were selected and the occurrence, composition and complexity of different repeats were investigated in the genomes. A total of 63,939 microsatellites and 5825 compound microsatellites were extracted from 56 genomes. It found that GC content has a significant strong correlation with both the counts of microsatellites (CM) and the counts of compound microsatellites (CCM). However, genome size has a moderate correlation only with CM and almost no correlation with CCM. The compound microsatellites occurring in genic regions are obviously more than that in intergenic regions. In general, the number of compound microsatellite decreases with the increase of complexity (C) (the count of individual microsatellites being part of a compound microsatellite) and the complexity hardly exceeds C=4. The vast majority of compound microsatellites exist in intergenic regions, when C≥10. The distributions of SSRs tend to be organism-specific rather than host-specific in herpesvirus genomes. The diversity of microsatellites and compound microsatellites may be helpful for a better understanding of the viral genetic diversity, genotyping, and evolutionary biology in herpesviruses genomes.

  9. Export of carbon from chloroplasts at night

    SciTech Connect

    Schleucher, J.; Vanderveer, P.J.; Sharkey, T.D.

    1998-12-01

    Hexose export from chloroplasts at night has been inferred in previous studies of mutant and transgenic plants. The authors have tested whether hexose export is the normal route of carbon export from chloroplasts at night. The authors used nuclear magnetic resonance to distinguish glucose (Glc) made from hexose export and Glc made from triose export. Glc synthesized in vitro from fructose-6-phosphate in the presence of deuterium-labeled water had deuterium incorporated at C-2, whereas synthesis from triose phosphates caused C-2 through C-5 to become deuterated. In both tomato (Lycopersicon esculentum L.) and bean (phaseolus vulgaris L.), Glc from sucrose made at night in the presence of deuterium-enriched water was deuterated only in the C-2 position, indicating that >75% of carbon is exported as hexoses at night. In darkness the phosphate in the cytosol was 28 mM, whereas that in the chloroplasts was 5 mW, but hexose phosphates were 10-fold higher in the cytosol than in the chloroplasts. Therefore, hexose phosphates would not move out of chloroplasts without the input of energy. The authors conclude that most carbon leaves chloroplasts at night as Glc, maltose, or higher maltodextrins under normal conditions.

  10. Transposon-induced nuclear mutations that alter chloroplast gene expression. Annual report, September 1, 1991--August 31, 1992

    SciTech Connect

    Barkan, A.

    1992-12-31

    The goal of this project is to use mutant phenotypes as a guide to nuclear genes that determine the timing and localization of chloroplast development The immediate goals are to identify nuclear mutants with defects in chloroplast gene expression from maize lines harboring active Mu transposons; characterize their phenotypes to determine the precise defect in gene expression; clone several of the most interesting mutations by exploiting the transposon tag; and use the clones to further define the roles of these genes in modulating chloroplast gene expression. Three mutants were described earlier that had global defects in chloroplast gene expression. We have found that two of these mutations are allelic. Both alleles have global defects in chloroplast translation initiation, as revealed by the failure to assemble chloroplast mRNAs into polysomes. We have isolated and characterized three new mutants from Mu lines that have novel defects in chloroplast RNA metabolism. We are now ready to begin the task of cloning several of these genes, by using the Mu transposon tag.

  11. Activation of polyphenol oxidase of chloroplasts.

    PubMed

    Tolbert, N E

    1973-02-01

    Polyphenol oxidase of leaves is located mainly in chloroplasts isolated by differential or sucrose density gradient centrifugation. This activity is part of the lamellar structure that is not lost on repeated washing of the plastids. The oxidase activity was stable during prolonged storage of the particles at 4 C or -18 C. The Km (dihydroxyphenylalanine) for spinach leaf polyphenol oxidase was 7 mm by a spectrophotometric assay and 2 mm by the manometric assay. Polyphenol oxidase activity in the leaf peroxisomal fraction, after isopycnic centrifugation on a linear sucrose gradient, did not coincide with the peroxisomal enzymes but was attributed to proplastids at nearly the same specific density.Plants were grouped by the latency properties for polyphenol oxidase in their isolated chloroplasts. In a group including spinach, Swiss chard, and beet leaves the plastids immediately after preparation from fresh leaves required a small amount of light for maximal rates of oxidation of dihydroxyphenylalanine. Polyphenol oxidase activity in the dark or light increased many fold during aging of these chloroplasts for 1 to 5 days. Soluble polyphenol oxidase of the cytoplasm was not so stimulated. Chloroplasts prepared from stored leaves were also much more active than from fresh leaves. Maximum rates of dihydroxyphenylalanine oxidation were 2 to 6 mmoles x mg(-1) chlorophyll x hr(-1). Equal stimulation of latent polyphenol oxidase in fresh or aged chloroplasts in this group was obtained by either light, an aged trypsin digest, 3-(4-chlorophenyl)-1, 1-dimethylurea, or antimycin A. A variety of other treatments did not activate or had little effect on the oxidase, including various peptides, salts, detergents, and other proteolytic enzymes.Activation of latent polyphenol oxidase in spinach chloroplasts by trypsin amounted to as much as 30-fold. The trypsin activation occurred even after the trypsin had been treated with 10% trichloroacetic acid, 1.0 n HCl or boiled for 30

  12. Indications for Three Independent Domestication Events for the Tea Plant (Camellia sinensis (L.) O. Kuntze) and New Insights into the Origin of Tea Germplasm in China and India Revealed by Nuclear Microsatellites

    PubMed Central

    Meegahakumbura, M. K.; Wambulwa, M. C.; Thapa, K. K.; Li, M. M.; Möller, M.; Xu, J. C.; Yang, J. B.; Liu, B. Y.; Ranjitkar, S.; Liu, J.; Li, D. Z.; Gao, L. M.

    2016-01-01

    Background Tea is the world’s most popular non-alcoholic beverage. China and India are known to be the largest tea producing countries and recognized as the centers for the domestication of the tea plant (Camellia sinensis (L.) O. Kuntze). However, molecular studies on the origin, domestication and relationships of the main teas, China type, Assam type and Cambod type are lacking. Methodology/Principal Findings Twenty-three nuclear microsatellite markers were used to investigate the genetic diversity, relatedness, and domestication history of cultivated tea in both China and India. Based on a total of 392 samples, high levels of genetic diversity were observed for all tea types in both countries. The cultivars clustered into three distinct genetic groups (i.e. China tea, Chinese Assam tea and Indian Assam tea) based on STRUCTURE, PCoA and UPGMA analyses with significant pairwise genetic differentiation, corresponding well with their geographical distribution. A high proportion (30%) of the studied tea samples were shown to possess genetic admixtures of different tea types suggesting a hybrid origin for these samples, including the Cambod type. Conclusions We demonstrate that Chinese Assam tea is a distinct genetic lineage from Indian Assam tea, and that China tea sampled from India was likely introduced from China directly. Our results further indicate that China type tea, Chinese Assam type tea and Indian Assam type tea are likely the result of three independent domestication events from three separate regions across China and India. Our findings have important implications for the conservation of genetic stocks, as well as future breeding programs. PMID:27218820

  13. Characterization and transferability of microsatellite markers developed for Carpinus betulus (Betulaceae)1

    PubMed Central

    Prinz, Kathleen; Finkeldey, Reiner

    2015-01-01

    Premise of the study: Carpinus betulus (Betulaceae) is an octoploid, ecologically important, common tree species in European woodlands. We established 11 nuclear microsatellite loci allowing for detailed analyses of genetic diversity and structure. Methods and Results: A microsatellite-enriched library was used to develop primers for 11 microsatellite loci that revealed high allele numbers and genetic diversity in a preliminary study. Conclusions: All of the loci developed here are informative for C. betulus. In addition, the loci are transferable to several species within the genus, and almost all loci cross-amplified in species of different genera of the Betulaceae. PMID:26504678

  14. Characterization of microsatellite DNA markers for the alligator snapping turtle, Macrochelys temminckii: Primer note

    USGS Publications Warehouse

    Hackler, J.C.; Van Den Bussche, Ronald A.; Leslie, David M.

    2007-01-01

    Two trinucleotide and seven tetranucleotide microsatellite loci were isolated from an alligator snapping turtle Macrochelys temminckii. To assess the degree of variability in these nine microsatellite loci, we genotyped 174 individuals collected from eight river drainage basins in the southeastern USA. These markers revealed a moderate degree of allelic diversity (six to 16 alleles per locus) and observed heterozygosity (0.166-0.686). These polymorphic microsatellite loci provide powerful tools for population genetic studies for a species that is afforded some level of conservation protection in every state in which it occurs. ?? 2006 The Authors.

  15. A comparative approach to elucidate chloroplast genome replication

    PubMed Central

    Krishnan, Neeraja M; Rao, Basuthkar J

    2009-01-01

    Background Electron microscopy analyses of replicating chloroplast molecules earlier predicted bidirectional Cairns replication as the prevalent mechanism, perhaps followed by rounds of a rolling circle mechanism. This standard model is being challenged by the recent proposition of homologous recombination-mediated replication in chloroplasts. Results We address this issue in our current study by analyzing nucleotide composition in genome regions between known replication origins, with an aim to reveal any adenine to guanine deamination gradients. These gradual linear gradients typically result from the accumulation of deaminations over the time spent single-stranded by one of the strands of the circular molecule during replication and can, therefore, be used to model the course of replication. Our linear regression analyses on the nucleotide compositions of the non-coding regions and the synonymous third codon position of coding regions, between pairs of replication origins, reveal the existence of significant adenine to guanine deamination gradients in portions overlapping the Small Single Copy (SSC) and the Large Single Copy (LSC) regions between inverted repeats. These gradients increase bi-directionally from the center of each region towards the respective ends, suggesting that both the strands were left single-stranded during replication. Conclusion Single-stranded regions of the genome and gradients in time that these regions are left single-stranded, as revealed by our nucleotide composition analyses, appear to converge with the original bi-directional dual displacement loop model and restore evidence for its existence as the primary mechanism. Other proposed faster modes such as homologous recombination and rolling circle initiation could exist in addition to this primary mechanism to facilitate homoplasmy among the intra-cellular chloroplast population PMID:19457260

  16. REDUCED CHLOROPLAST COVERAGE genes from Arabidopsis thaliana help to establish the size of the chloroplast compartment

    PubMed Central

    Larkin, Robert M.; Stefano, Giovanni; Ruckle, Michael E.; Stavoe, Andrea K.; Sinkler, Christopher A.; Brandizzi, Federica; Malmstrom, Carolyn M.; Osteryoung, Katherine W.

    2016-01-01

    Eukaryotic cells require mechanisms to establish the proportion of cellular volume devoted to particular organelles. These mechanisms are poorly understood. From a screen for plastid-to-nucleus signaling mutants in Arabidopsis thaliana, we cloned a mutant allele of a gene that encodes a protein of unknown function that is homologous to two other Arabidopsis genes of unknown function and to FRIENDLY, which was previously shown to promote the normal distribution of mitochondria in Arabidopsis. In contrast to FRIENDLY, these three homologs of FRIENDLY are found only in photosynthetic organisms. Based on these data, we proposed that FRIENDLY expanded into a small gene family to help regulate the energy metabolism of cells that contain both mitochondria and chloroplasts. Indeed, we found that knocking out these genes caused a number of chloroplast phenotypes, including a reduction in the proportion of cellular volume devoted to chloroplasts to 50% of wild type. Thus, we refer to these genes as REDUCED CHLOROPLAST COVERAGE (REC). The size of the chloroplast compartment was reduced most in rec1 mutants. The REC1 protein accumulated in the cytosol and the nucleus. REC1 was excluded from the nucleus when plants were treated with amitrole, which inhibits cell expansion and chloroplast function. We conclude that REC1 is an extraplastidic protein that helps to establish the size of the chloroplast compartment, and that signals derived from cell expansion or chloroplasts may regulate REC1. PMID:26862170

  17. Chloroplast anchoring: its implications for the regulation of intracellular chloroplast distribution.

    PubMed

    Takagi, Shingo; Takamatsu, Hideyasu; Sakurai-Ozato, Nami

    2009-01-01

    The intracellular distribution of organelles plays a pivotal role in the maintenance and adaptation of a wide spectrum of cellular activities in plants. Chloroplasts are a special type of organelle able to photosynthesize, capturing light energy to fix atmospheric CO2. Consequently, the intracellular positioning of chloroplasts is crucial for plant growth and development. Knowledge of the photoreceptors and cellular apparatus responsible for chloroplast movement has gradually accumulated over time, yet recent advances have allowed improved understanding. In this article, several aspects of research progress into the mechanisms for maintaining the specific intracellular distribution patterns of chloroplasts, namely, chloroplast anchoring, are summarized, together with a brief consideration of the future prospects of this subject. Our discussion covers developmental, physiological, ecophysiological, and recent cell biological research areas.

  18. Roles of chloroplast RNA polymerase sigma factors in chloroplast development and stress response in higher plants.

    PubMed

    Kanamaru, Kengo; Tanaka, Kan

    2004-11-01

    Chloroplast transcription in higher plants is performed by two types of RNA polymerases, plastid-encoded RNA polymerase (PEP) and nuclear-encoded RNA polymerase (NEP). PEP is a eubacteria-type multisubunit enzyme whose catalytic core subunits are encoded by the chloroplast genome, whereas NEP is the nuclear encoded T7 phage-type single subunit enzyme. PEP is critical for the biogenesis and maintenance of chloroplasts, and is finely tuned by the nuclear encoded sigma subunits. Of the six Arabidopsis sigma subunits, SIG2 is involved in the transcription of several chloroplast tRNA genes, including trnE encoding tRNA-Glu. SIG2 possibly couples translation and pigment synthesis in chloroplasts. On the other hand, SIG5 is induced by various stresses and contributes to repair of damaged photosystem II (PSII) through transcription of the psbD and psbC genes. Thus target genes and the physiological role of each sigma subunit are becoming clearer.

  19. Heme content in developing chloroplasts

    SciTech Connect

    Thomas, J.; Weinstein, J.D. )

    1991-05-01

    Heme regulates tetrapyrrole biosynthesis by inhibition of {delta}-aminolevulinic acid synthesis, product inhibition of heme synthesis, and possibly other mechanisms. Determination of the physiological relevance of this inhibition requires a sensitive measurement which can distinguish regulatory free heme from heme which is an integral part of functional hemoproteins. A preliminary estimate was provided by reconstituting peroxidase activity from apo-peroxidase and the heme contained in broken plastids. However, subsequent experiments have suggested that this initial estimate was too large due to reconstitution of apo-peroxidase with heme from functional hemoproteins (i.e. heme stealing). The authors have now refined the measurement techniques to greatly reduce the extent of this heme stealing. Incubation of broken plastids with apo-peroxidase at 10C resolves the kinetics of reconstitution into two components. A fast component levels off after 100 min, and a slow component increases linearly for up to 6 hours. They believe that the heme which reconstitutes during the fast phase represents free heme, and the linear slow component represents heme stealing. In support of this theory, incubation at 15C increases the rate of both components. However, extrapolation to zero time of the slow components of the 10C and 15C time courses results in equivalent amounts of heme. Based on this kinetic differentiation between free heme and hemoprotein heme, chloroplasts isolated from cucumber cotyledons after 30 h of greening contain substantially greater amounts of free heme than etioplasts.

  20. A novel microsatellite control system

    SciTech Connect

    Moore, K.R.; Frigo, J.R.; Tilden, M.W.

    1998-02-01

    The authors are researching extremely simple yet quite capable analog pulse-coded neural networks for ``smaller-faster-cheaper`` spacecraft attitude and control systems. The will demonstrate a prototype microsatellite that uses their novel control method to autonomously stabilize itself in the ambient magnetic field and point itself at the brightest available light source. Though still in design infancy, the ``Nervous Net`` controllers described could allow for space missions not currently possible given conventional satellite hardware. Result, prospects and details are presented.

  1. Range-wide patterns of nuclear and chloroplast DNA diversity in Vriesea gigantea (Bromeliaceae), a neotropical forest species.

    PubMed

    Palma-Silva, C; Lexer, C; Paggi, G M; Barbará, T; Bered, F; Bodanese-Zanettini, M H

    2009-12-01

    The processes that have shaped the extraordinary species diversity in neotropical rainforests are poorly understood, and knowledge about the patterns of genetic diversity across species' ranges is scarce, in contrast to other regions of the globe. We have conducted a range-wide study of genetic diversity in a plant endemic to the Brazilian Atlantic Rainforest, Vriesea gigantea (Bromeliaceae), based on a combined data set of nuclear microsatellites and chloroplast (cp) DNA markers typed in 429 plants from 13 populations. The results indicate a strong negative correlation between genetic diversity and population latitude, consistent with historical forest expansion from the northern half of the present distribution range. A deep phylogeographic split exists between the Brazilian states of São Paulo and Rio de Janeiro at ca. 23 degrees S latitude, probably reflecting past population isolation within more than one glacial refuge during the climatic changes of the Pleistocene. A comparison of genetic structures at cpDNA and nuclear markers revealed a pollen/seed flow ratio of more than 3:1, thus indicating an important role of the pollinating animals (that is, bats) in shaping the population genetic structure of this species. Diversity was reduced for cpDNA markers in the island populations off the coast, and reduced diversity and increased differentiation were observed for both nuclear and cpDNA at the edges of the species' range. The link between patterns of genetic and species diversity supports the hypothesis that both were shaped by the same biogeographic processes, triggered by the climatic oscillations of the Pleistocene.

  2. The Complete Chloroplast Genome Sequences of Three Veroniceae Species (Plantaginaceae): Comparative Analysis and Highly Divergent Regions

    PubMed Central

    Choi, Kyoung Su; Chung, Myong Gi; Park, SeonJoo

    2016-01-01

    Previous studies of Veronica and related genera were weakly supported by molecular and paraphyletic taxa. Here, we report the complete chloroplast genome sequence of Veronica nakaiana and the related species Veronica persica and Veronicastrum sibiricum. The chloroplast genome length of V. nakaiana, V. persica, and V. sibiricum ranged from 150,198 bp to 152,930 bp. A total of 112 genes comprising 79 protein coding genes, 29 tRNA genes, and 4 rRNA genes were observed in three chloroplast genomes. The total number of SSRs was 48, 51, and 53 in V. nakaiana, V. persica, and V. sibiricum, respectively. Two SSRs (10 bp of AT and 12 bp of AATA) were observed in the same regions (rpoC2 and ndhD) in three chloroplast genomes. A comparison of coding genes and non-coding regions between V. nakaiana and V. persica revealed divergent sites, with the greatest variation occurring petD-rpoA region. The complete chloroplast genome sequence information regarding the three Veroniceae will be helpful for elucidating Veroniceae phylogenetic relationships. PMID:27047524

  3. Evolutionary rewiring: a modified prokaryotic gene-regulatory pathway in chloroplasts

    PubMed Central

    Puthiyaveetil, Sujith; Ibrahim, Iskander M.; Allen, John F.

    2013-01-01

    Photosynthetic electron transport regulates chloroplast gene transcription through the action of a bacterial-type sensor kinase known as chloroplast sensor kinase (CSK). CSK represses photosystem I (PS I) gene transcription in PS I light and thus initiates photosystem stoichiometry adjustment. In cyanobacteria and in non-green algae, CSK homologues co-exist with their response regulator partners in canonical bacterial two-component systems. In green algae and plants, however, no response regulator partner of CSK is found. Yeast two-hybrid analysis has revealed interaction of CSK with sigma factor 1 (SIG1) of chloroplast RNA polymerase. Here we present further evidence for the interaction between CSK and SIG1. We also show that CSK interacts with quinone. Arabidopsis SIG1 becomes phosphorylated in PS I light, which then specifically represses transcription of PS I genes. In view of the identical signalling properties of CSK and SIG1 and of their interactions, we suggest that CSK is a SIG1 kinase. We propose that the selective repression of PS I genes arises from the operation of a gene-regulatory phosphoswitch in SIG1. The CSK-SIG1 system represents a novel, rewired chloroplast-signalling pathway created by evolutionary tinkering. This regulatory system supports a proposal for the selection pressure behind the evolutionary stasis of chloroplast genes. PMID:23754813

  4. The tetratricopeptide repeat-containing protein slow green1 is required for chloroplast development in Arabidopsis.

    PubMed

    Hu, Zhihong; Xu, Fan; Guan, Liping; Qian, Pingping; Liu, Yaqiong; Zhang, Huifang; Huang, Yan; Hou, Suiwen

    2014-03-01

    A new gene, SG1, was identified in a slow-greening mutant (sg1) isolated from an ethylmethanesulphonate-mutagenized population of Arabidopsis thaliana. The newly formed leaves of sg1 were initially albino, but gradually became pale green. After 3 weeks, the leaves of the mutant were as green as those of the wild-type plants. Transmission electron microscopic observations revealed that the mutant displayed delayed proplastid to chloroplast transition. The results of map-based cloning showed that SG1 encodes a chloroplast-localized tetratricopeptide repeat-containing protein. Quantitative real-time reverse transcription-PCR data demonstrated the presence of SG1 gene expression in all tissues, particularly young green tissues. The sg1 mutation disrupted the expression levels of several genes associated with chloroplast development, photosynthesis, and chlorophyll biosynthesis. The results of genetic analysis indicated that gun1 and gun4 partially restored the expression patterns of the previously detected chloroplast-associated genes, thereby ameliorating the slow-greening phenotype of sg1. Taken together, the results suggest that the newly identified protein, SG1, is required for chloroplast development in Arabidopsis.

  5. Evolutionary rewiring: a modified prokaryotic gene-regulatory pathway in chloroplasts.

    PubMed

    Puthiyaveetil, Sujith; Ibrahim, Iskander M; Allen, John F

    2013-07-19

    Photosynthetic electron transport regulates chloroplast gene transcription through the action of a bacterial-type sensor kinase known as chloroplast sensor kinase (CSK). CSK represses photosystem I (PS I) gene transcription in PS I light and thus initiates photosystem stoichiometry adjustment. In cyanobacteria and in non-green algae, CSK homologues co-exist with their response regulator partners in canonical bacterial two-component systems. In green algae and plants, however, no response regulator partner of CSK is found. Yeast two-hybrid analysis has revealed interaction of CSK with sigma factor 1 (SIG1) of chloroplast RNA polymerase. Here we present further evidence for the interaction between CSK and SIG1. We also show that CSK interacts with quinone. Arabidopsis SIG1 becomes phosphorylated in PS I light, which then specifically represses transcription of PS I genes. In view of the identical signalling properties of CSK and SIG1 and of their interactions, we suggest that CSK is a SIG1 kinase. We propose that the selective repression of PS I genes arises from the operation of a gene-regulatory phosphoswitch in SIG1. The CSK-SIG1 system represents a novel, rewired chloroplast-signalling pathway created by evolutionary tinkering. This regulatory system supports a proposal for the selection pressure behind the evolutionary stasis of chloroplast genes.

  6. The Complete Chloroplast Genome Sequences of the Medicinal Plant Pogostemon cablin

    PubMed Central

    He, Yang; Xiao, Hongtao; Deng, Cao; Xiong, Liang; Yang, Jian; Peng, Cheng

    2016-01-01

    Pogostemon cablin, the natural source of patchouli alcohol, is an important herb in the Lamiaceae family. Here, we present the entire chloroplast genome of P. cablin. This genome, with 38.24% GC content, is 152,460 bp in length. The genome presents a typical quadripartite structure with two inverted repeats (each 25,417 bp in length), separated by one small and one large single-copy region (17,652 and 83,974 bp in length, respectively). The chloroplast genome encodes 127 genes, of which 107 genes are single-copy, including 79 protein-coding genes, four rRNA genes, and 24 tRNA genes. The genome structure, GC content, and codon usage of this chloroplast genome are similar to those of other species in the family, except that it encodes less protein-coding genes and tRNA genes. Phylogenetic analysis reveals that P. cablin diverged from the Scutellarioideae clade about 29.45 million years ago (Mya). Furthermore, most of the simple sequence repeats (SSRs) are short polyadenine or polythymine repeats that contribute to high AT content in the chloroplast genome. Complete sequences and annotation of P. cablin chloroplast genome will facilitate phylogenic, population and genetic engineering research investigations involving this particular species. PMID:27275817

  7. Microsatellite instability in adenocarcinomas of the upper gastrointestinal tract. Relation to clinicopathological data and family history.

    PubMed Central

    Keller, G.; Rotter, M.; Vogelsang, H.; Bischoff, P.; Becker, K. F.; Mueller, J.; Brauch, H.; Siewert, J. R.; Höfler, H.

    1995-01-01

    We analyzed 66 adenocarcinomas arising in the upper gastrointestinal tract for microsatellite instability at eight microsatellite loci to investigate the role of these genetic alterations in the etiology of these tumors. We identified alterations in at least one locus in 11/46 adenocarcinomas of the stomach, in 2/15 adenocarcinomas arising in Barrett's esophagus, and in 1/5 adenocarcinomas of the duodenum and jejunum. Microsatellite instability in gastric tumors was found in 5/22 of intestinal, 1/3 of mixed, and 5/21 of diffuse type tumors. No relationship to the tumor stage (TNM), age, and survival time of the patients was observed. One patient had two synchronous gastric tumors both exhibiting microsatellite instability at multiple loci. His family history revealed four individuals in the maternal line afflicted with gastric carcinoma in three generations. Our data show that microsatellite instability is a genetic event in 11 to 24% of tumors of the upper gastrointestinal tract. The observation of microsatellite instability and a familial clustering of gastric tumors may suggest a genetic predisposition for a subset of gastric tumors, which may be identified by microsatellite analysis. Images Figure 1 PMID:7677173

  8. Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome.

    PubMed

    Azim, M Kamran; Khan, Ishtaiq A; Zhang, Yong

    2014-05-01

    We characterized mango leaf transcriptome and chloroplast genome using next generation DNA sequencing. The RNA-seq output of mango transcriptome generated >12 million reads (total nucleotides sequenced >1 Gb). De novo transcriptome assembly generated 30,509 unigenes with lengths in the range of 300 to ≥3,000 nt and 67× depth of coverage. Blast searching against nonredundant nucleotide databases and several Viridiplantae genomic datasets annotated 24,593 mango unigenes (80% of total) and identified Citrus sinensis as closest neighbor of mango with 9,141 (37%) matched sequences. The annotation with gene ontology and Clusters of Orthologous Group terms categorized unigene sequences into 57 and 25 classes, respectively. More than 13,500 unigenes were assigned to 293 KEGG pathways. Besides major plant biology related pathways, KEGG based gene annotation pointed out active presence of an array of biochemical pathways involved in (a) biosynthesis of bioactive flavonoids, flavones and flavonols, (b) biosynthesis of terpenoids and lignins and (c) plant hormone signal transduction. The mango transcriptome sequences revealed 235 proteases belonging to five catalytic classes of proteolytic enzymes. The draft genome of mango chloroplast (cp) was obtained by a combination of Sanger and next generation sequencing. The draft mango cp genome size is 151,173 bp with a pair of inverted repeats of 27,093 bp separated by small and large single copy regions, respectively. Out of 139 genes in mango cp genome, 91 found to be protein coding. Sequence analysis revealed cp genome of C. sinensis as closest neighbor of mango. We found 51 short repeats in mango cp genome supposed to be associated with extensive rearrangements. This is the first report of transcriptome and chloroplast genome analysis of any Anacardiaceae family member.

  9. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis

    PubMed Central

    Yang, Leiyun; Yang, Fen; Wang, Yi; Zhu, Jian-Kang; Hua, Jian

    2016-01-01

    Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance. PMID:27138552

  10. Glycolate transporter of the pea chloroplast envelope

    SciTech Connect

    Howitz, K.T.

    1985-01-01

    The discovery of a glycolate transporter in the pea (Pisum sativum) chloroplast envelope is described. Several novel silicone oil centrifugation methods were developed to resolve the initial rate kinetics of (/sup 14/C)glycolate transport by isolated, intact pea chloroplasts. Chloroplast glycolate transport was found to be carrier mediated. Transport rates saturated with increasing glycolate concentration. N-Ethylmaleimide (NEM) pretreatment of chloroplasts inhibited transport, an inhibition prevented by glycolate. Glycolate distributed across the envelope in a way which equalized stromal and medium glycolic acid concentrations, limiting possible transport mechanisms to facilitated glycolic acid diffusion, proton symport or hydroxyl antiport. The effects of stomal and medium pH's on the K/sub m/ and V/sub max/ fit the predictions of mobile carrier kinetic models of hydroxyl antiport or proton symport (H/sup +/ binds first). The carrier mediated transport was fast enough to be consistent with in vivo rates of photorespiration. The 2-hydroxymonocarboxylates, glycerate, lactate and glyoxylate are competitive inhibitors of chloroplast glycolate uptake. Glyoxylate, D-lactate and D-glycerate cause glycolate counterflow, indicating that they are also substrates of the glycolate carrier. This finding was confirmed for D-glycerate by studies on glycolate effects on (1-/sup 14/C)D-glycerate transport.

  11. Isolation and Suborganellar Fractionation of Arabidopsis Chloroplasts.

    PubMed

    Flores-Pérez, Úrsula; Jarvis, Paul

    2017-01-01

    Chloroplasts are structurally complex organelles containing ~2000-3000 proteins. They are delimited by a double membrane system or envelope, have an inner aqueous compartment called the stroma, and possess a second internal membrane system called the thylakoids. Thus, determining the suborganellar location of a chloroplast protein is vital to understanding or verifying its function. One way in which protein localization can be addressed is through fractionation. Here we present two rapid and simple methods that may be applied sequentially on the same day: (a) The isolation of intact chloroplasts from Arabidopsis thaliana plants that may be used directly (e.g., for functional studies such as protein import analysis), or for further processing as follows; (b) separation of isolated chloroplasts into three suborganellar fractions (envelope membranes, a soluble fraction containing stromal proteins, and the thylakoids). These methods are routinely used in our laboratory, and they provide a good yield of isolated chloroplasts and suborganellar fractions that can be used for various downstream applications.

  12. Heme content and breakdown in developing chloroplasts

    SciTech Connect

    Thomas, J.; Weinstein, J.D. )

    1990-05-01

    Heme regulates tetrapyrrole biosynthesis in plants by inhibition of {delta}-aminolevulinic acid (ALA) synthesis, product inhibition of heme synthesis, and possibly other mechanisms. Plastid heme levels may be modulated by heme synthesis, breakdown and/or efflux. Heme breakdown may be catalyzed by a chloroplast localized heme oxygenase. Chloroplasts isolated from greening cucumber cotyledons were incubated in the presence or absence of various components thought to modulate heme breakdown. Following the incubations, the chloroplasts were broken (freeze-thaw) and then supplemented with horseradish peroxidase apoenzyme. The reconstituted peroxidase activity was used to determine the amount of free heme remaining (Thomas Weinstein (1989) Plant Physiol. 89S: 74). Chloroplasts, freshly isolated from seedlings greened for 16 hours, contained approximately 37 pmol heme/mg protein. When chloroplasts were incubated with 5 mM NADPH for 30 min, the endogenous heme dropped to unmeasurable levels. Exogenous heme was also broken down when NADPH was included in the incubation. Heme levels could be increased by the inclusion of 50 {mu}M ALA and/or p-hydroxymercuribenzoate. The increase due to exogenous ALA was blocked by levulinic acid, an inhibitor of ALA utilization. NADPH-dependent heme breakdown acid was inhibited by p-hydroxymercuribenzoate.

  13. Vectorial photocurrents and photoconductivity in metalized chloroplasts

    SciTech Connect

    Greenbaum, E. )

    1990-08-09

    A novel photobiophysical phenomenon was observed in isolated spinach chloroplasts that were metalized by precipitating colloidal platinum onto the surface of the thylakoid membranes. A two-point irradiation and detection system was constructed in which a continuous-beam helium-neon laser ({lambda} = 632.8 nm) was used to irradiate the platinized chloroplasts at varying perpendicular distances (Figure 1) from a single linear platinum electrode in pressure contact with the platinized chloroplasts. No external voltage bias was applied to the system. The key objective of the experiments reported in this report was to measure the relative photoconductivity of the chloroplast-metal composite matrix. Unlike conventional photosynthetic electrochemical cells, in which irradiated chloroplasts are in close proximity to an electrode or linked to the electrode by an electrode-active mediator, the flow of photocurrent was through the biocomposite material. A sustained steady-state vectorial flow of current in the plane of the entrapped composite from the point of laser irradiation to the wire electrode was measured.

  14. Betaine synthesis in chenopods: localization in chloroplasts

    SciTech Connect

    Hanson, A.D.; May A.M.; Grumet, R.; Bode, J.; Jamieson, G.C.; Rhodes, D.

    1985-06-01

    Plants from several families (Chenopodiaceae, Gramineae, Compositae) accumulate betaine (glycine betaine) in response to salt or water stress via the pathway: choline betainal (betaine aldehyde) betaine. Betaine accumulation is probably a metabolic adaptation to stress. Intact protoplasts from leaves of spinach (Spinacia oleracea) oxidized ( UC)choline to betainal and betaine, as did protoplast lysates. Upon differential centrifugation, the ( UC)choline-oxidizing activity of lysates sedimented with chloroplasts. Chloroplasts purified from protoplast lysates by a Percoll cushion procedure retained strong ( UC)choline-oxidizing activity, although the proportion of the intermediate, ( UC)betainal, in the reaction products was usually higher than for protoplasts. Isolated chloroplasts also readily oxidized ( UC)betainal to betaine. Light increased the oxidation of both ( UC)choline and ( UC)betainal by isolated chloroplasts. Similar results were obtained with another chenopod (Beta vulgaris) but not with pea (Pisum sativum), a species that accumulates no betaine. The chloroplast site for betaine synthesis in chenopods contrasts with the mitochondrial site in mammals.

  15. Mergers and acquisitions: malaria and the great chloroplast heist.

    PubMed

    McFadden, G I

    2000-01-01

    The origin of the relict chloroplast recently identified in malarial parasites has been mysterious. Several new papers suggest that the parasites obtained their chloroplasts in an ancient endosymbiotic event that also created some major algal groups.

  16. Two interacting coiled-coil proteins, WEB1 and PMI2, maintain the chloroplast photorelocation movement velocity in Arabidopsis.

    PubMed

    Kodama, Yutaka; Suetsugu, Noriyuki; Kong, Sam-Geun; Wada, Masamitsu

    2010-11-09

    Chloroplasts move toward weak light (accumulation response) and away from strong light (avoidance response). The fast and accurate movement of chloroplasts in response to ambient light conditions is essential for efficient photosynthesis and photodamage prevention in chloroplasts. Here, we report that two Arabidopsis mutants, weak chloroplast movement under blue light 1 (web1) and web2, are defective in both the avoidance and the accumulation responses. Map-based cloning revealed that both genes encode coiled-coil proteins and that WEB2 is identical to the plastid movement impaired 2 (PMI2) gene. The velocities of chloroplast movement in web1 and pmi2 were approximately threefold lower than that in the wild type. Defects in the avoidance response of web1 and pmi2 were suppressed by mutation of the J-domain protein required for chloroplast accumulation response 1 (JAC1) gene, which is essential for the accumulation response; these results indicate that WEB1 and PMI2 play a role in suppressing JAC1 under strong light conditions. A yeast two-hybrid analysis and a nuclear recruitment assay identified a physical interaction between WEB1 and PMI2, and transient expression analysis of CFP-WEB1 and YFP-PMI2 revealed that they colocalized in the cytosol. Bimolecular fluorescence complementation analysis confirmed the interaction of these proteins in the cytosol. Blue light-induced changes in short chloroplast actin filaments (cp-actin filaments) were impaired in both web1 and pmi2. Our findings suggest that a cytosolic WEB1-PMI2 complex maintains the velocity of chloroplast photorelocation movement via cp-actin filament regulation.

  17. A Microsatellite Genetic Map of the Turbot (Scophthalmus maximus)

    PubMed Central

    Bouza, Carmen; Hermida, Miguel; Pardo, Belén G.; Fernández, Carlos; Fortes, Gloria G.; Castro, Jaime; Sánchez, Laura; Presa, Pablo; Pérez, Montse; Sanjuán, Andrés; de Carlos, Alejandro; Álvarez-Dios, José Antonio; Ezcurra, Susana; Cal, Rosa M.; Piferrer, Francesc; Martínez, Paulino

    2007-01-01

    A consensus microsatellite-based linkage map of the turbot (Scophthalmus maximus) was constructed from two unrelated families. The mapping panel was derived from a gynogenetic family of 96 haploid embryos and a biparental diploid family of 85 full-sib progeny with known linkage phase. A total of 242 microsatellites were mapped in 26 linkage groups, six markers remaining unlinked. The consensus map length was 1343.2 cM, with an average distance between markers of 6.5 ± 0.5 cM. Similar length of female and male maps was evidenced. However, the mean recombination at common intervals throughout the genome revealed significant differences between sexes, ∼1.6 times higher in the female than in the male. The comparison of turbot microsatellite flanking sequences against the Tetraodon nigroviridis genome revealed 55 significant matches, with a mean length of 102 bp and high sequence similarity (81–100%). The comparative mapping revealed significant syntenic regions among fish species. This study represents the first linkage map in the turbot, one of the most important flatfish in European aquaculture. This map will be suitable for QTL identification of productive traits in this species and for further evolutionary studies in fish and vertebrate species. PMID:18073440

  18. Analyses of Charophyte Chloroplast Genomes Help Characterize the Ancestral Chloroplast Genome of Land Plants

    PubMed Central

    Civáň, Peter; Foster, Peter G.; Embley, Martin T.; Séneca, Ana; Cox, Cymon J.

    2014-01-01

    Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes. PMID:24682153

  19. A Putative Chloroplast Thylakoid Metalloprotease VIRESCENT3 Regulates Chloroplast Development in Arabidopsis thaliana*

    PubMed Central

    Qi, Yafei; Liu, Xiayan; Liang, Shuang; Wang, Rui; Li, Yuanfeng; Zhao, Jun; Shao, Jingxia; An, Lijun; Yu, Fei

    2016-01-01

    The chloroplast is the site of photosynthesis and many other essential plant metabolic processes, and chloroplast development is an integral part of plant growth and development. Mutants defective in chloroplast development can display various color phenotypes including the intriguing virescence phenotype, which shows yellow/white coloration at the leaf base and greening toward the leaf tip. Through large scale genetic screens, we identified a series of new virescent mutants including virescent3-1 (vir3-1), vir4-1, and vir5-1 in Arabidopsis thaliana. We showed that VIR3 encodes a putative chloroplast metalloprotease by map-based cloning. Through site-directed mutagenesis, we showed that the conserved histidine 235 residue in the zinc binding motif HEAGH of VIR3 is indispensable for VIR3 accumulation in the chloroplast. The chloroplast localization of VIR3 was confirmed by the transient expression of VIR3-GFP in leaf protoplasts. Furthermore, taking advantage of transgenic lines expressing VIR3-FLAG, we demonstrated that VIR3 is an intrinsic thylakoid membrane protein that mainly resides in the stromal lamellae. Moreover, topology analysis using transgenic lines expressing a dual epitope-tagged VIR3 indicated that both the N and C termini of VIR3 are located in the stroma, and the catalytic domain of VIR3 is probably facing the stroma. Blue native gel analysis indicated that VIR3 is likely present as a monomer or part of a small complex in the thylakoid membrane. This work not only implicates VIR3 as a new factor involved in early chloroplast development but also provides more insight into the roles of chloroplast proteases in chloroplast biogenesis. PMID:26702056

  20. Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants.

    PubMed

    Civaň, Peter; Foster, Peter G; Embley, Martin T; Séneca, Ana; Cox, Cymon J

    2014-04-01

    Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes.

  1. Protein methylation reactions in intact pea chloroplasts

    SciTech Connect

    Niemi, K.J. )

    1989-04-01

    Post-translational protein methylation was investigated in Pisum sativum chloroplasts. Intact pea chloroplasts were incubated with ({sup 3}H-methyl)-S-adenosylmethionine under various conditions. The chloroplasts were then separated into stromal and thylakoid fractions and analyzed for radioactivity transferred to protein. Light enhanced the magnitude of labeling in both fractions. One thylakoid polypeptide with an apparent molecular mass of 43 kDa was labeled only in the light. Several other thylakoid and stromal proteins were labeled in both light and dark-labeling conditions. Both base-labile methylation, carboxy-methylesters and base-stable groups, N-methylations were found. Further characterization of the methyl-transfer reactions will be presented.

  2. Engineered Chloroplast Genome just got Smarter

    PubMed Central

    Jin, Shuangxia; Daniell, Henry

    2015-01-01

    Chloroplasts are known to sustain life on earth by providing food, fuel and oxygen through the process of photosynthesis. However, the chloroplast genome has also been smartly engineered to confer valuable agronomic traits and/or serve as bioreactors for production of industrial enzymes, biopharmaceuticals, bio-products or vaccines. The recent breakthrough in hyper-expression of biopharmaceuticals in edible leaves has facilitated the advancement to clinical studies by major pharmaceutical companies. This review critically evaluates progress in developing new tools to enhance or simplify expression of targeted genes in chloroplasts. These tools hold the promise to further the development of novel fuels and products, enhance the photosynthetic process, and increase our understanding of retrograde signaling and cellular processes. PMID:26440432

  3. The chloroplast genome exists in multimeric forms

    SciTech Connect

    Deng, Xingwang; Wing, R.A.; Gruissem, W. )

    1989-06-01

    Chloroplast DNA conformation was analyzed by pulse-field gel electrophoresis. The authors found that spinach leaf chloroplast DNA molecules exist in at least four distinct forms with the apparent molecular weights of monomer, dimer, trimer, and tetramer. Two-dimensional gel analysis of DNA after UV nicking and in the presence of ethidium bromide indicates that they are not isomers that differ in superhelical density. DNA gyrase decatenation analysis demonstrates that the majority of the DNA molecules are oligomers rather than catenanes. The relative amounts of monomer, dimer, trimer, and tetramer forms, quantitated by molecular hybridization, are 1, 1/3, 1/9, and 1/27, respectively, and do not change during leaf maturation. The possible mechanisms of chloroplast DNA oligomer formation are discussed.

  4. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).

    PubMed

    Nguyen Dinh, Sy; Sai, Than Zaw Tun; Nawaz, Ghazala; Lee, Kwanuk; Kang, Hunseung

    2016-08-20

    Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes.

  5. Guanosine tetra- and pentaphosphate synthase activity in chloroplasts of a higher plant: association with 70S ribosomes and inhibition by tetracycline

    PubMed Central

    Kasai, Koji; Kanno, Takuya; Endo, Yaeta; Wakasa, Kyo; Tozawa, Yuzuru

    2004-01-01

    Chloroplasts possess bacterial-type systems for transcription and translation. On the basis of the identification of a Chlamydomonas reinhardtii gene encoding a RelA-SpoT homolog (RSH) that catalyzes the synthesis of guanosine tetra- or pentaphosphate [(p)ppGpp], we have previously suggested the operation of stringent control in the chloroplast genetic system. Although RSH genes have also been identified in several higher plants, the activities of the encoded enzymes and their mode of action in chloroplasts have remained uncharacterized. We have now characterized the intrinsic (p)ppGpp synthase activity of chloroplast extracts prepared from pea (Pisum sativum). Fractionation by ultracentrifugation suggested that the (p)ppGpp synthase activity of a translationally active chloroplast stromal extract was associated with 70S ribosomes. Furthermore, this enzymatic activity was inhibited by tetracycline, as was the peptide elongation activity of the extract. Structural comparisons between rRNA molecules of Escherichia coli and pea chloroplasts revealed the conservation of putative tetracycline-binding sites. These observations demonstrate the presence of a ribosome-associated (p)ppGpp synthase activity in the chloroplasts of a higher plant, further implicating (p)ppGpp in a genetic system of chloroplasts similar to that operative in bacteria. PMID:15507686

  6. Chloroplasts can move in any direction to avoid strong light.

    PubMed

    Tsuboi, Hidenori; Wada, Masamitsu

    2011-01-01

    Chloroplasts migrate in response to different light intensities. Under weak light, chloroplasts gather at an illuminated area to maximize light absorption and photosynthesis rates (the accumulation response). In contrast, chloroplasts escape from strong light to avoid photodamage (the avoidance response). Photoreceptors involved in these phenomena have been identified in Arabidopsis thaliana and Adiantum capillus-veneris. Chloroplast behavior has been studied in detail during the accumulation response, but not for the avoidance response. Hence, we analyzed the chloroplast avoidance response in detail using dark-adapted Adiantum capillus-veneris gametophyte cells and partial cell irradiation with a microbeam of blue light. Chloroplasts escaped from an irradiated spot. Both duration of this response and the distance of the migrated chloroplasts were proportional to the total fluence irradiated. The speed of movement during the avoidance response was dependent on the fluence rate, but the speed of the accumulation response towards the microbeam from cell periphery was constant irrespective of fluence rate. When a chloroplast was only partially irradiated with a strong microbeam, it moved away towards the non-irradiated region within a few minutes. During this avoidance response two additional microbeam irradiations were applied to different locus of the same chloroplast. Under these conditions the chloroplast changed the moving direction after a lag time of a few minutes without rolling. Taken together, these findings indicate that chloroplasts can move in any direction and never have an intrinsic polarity. Similar phenomenon was observed in chloroplasts of Arabidopsis thaliana palisade cells.

  7. Chloroplast signaling within, between and beyond cells

    PubMed Central

    Bobik, Krzysztof; Burch-Smith, Tessa M.

    2015-01-01

    The most conspicuous function of plastids is the oxygenic photosynthesis of chloroplasts, yet plastids are super-factories that produce a plethora of compounds that are indispensable for proper plant physiology and development. Given their origins as free-living prokaryotes, it is not surprising that plastids possess their own genomes whose expression is essential to plastid function. This semi-autonomous character of plastids requires the existence of sophisticated regulatory mechanisms that provide reliable communication between them and other cellular compartments. Such intracellular signaling is necessary for coordinating whole-cell responses to constantly varying environmental cues and cellular metabolic needs. This is achieved by plastids acting as receivers and transmitters of specific signals that coordinate expression of the nuclear and plastid genomes according to particular needs. In this review we will consider the so-called retrograde signaling occurring between plastids and nuclei, and between plastids and other organelles. Another important role of the plastid we will discuss is the involvement of plastid signaling in biotic and abiotic stress that, in addition to influencing retrograde signaling, has direct effects on several cellular compartments including the cell wall. We will also review recent evidence pointing to an intriguing function of chloroplasts in regulating intercellular symplasmic transport. Finally, we consider an intriguing yet less widely known aspect of plant biology, chloroplast signaling from the perspective of the entire plant. Thus, accumulating evidence highlights that chloroplasts, with their complex signaling pathways, provide a mechanism for exquisite regulation of plant development, metabolism and responses to the environment. As chloroplast processes are targeted for engineering for improved productivity the effect of such modifications on chloroplast signaling will have to be carefully considered in order to avoid

  8. Microsatellite spreading in the human genome: evolutionary mechanisms and structural implications.

    PubMed

    Nadir, E; Margalit, H; Gallily, T; Ben-Sasson, S A

    1996-06-25

    Microsatellites are tandem repeat sequences abundant in the genomes of higher eukaryotes and hitherto considered as "junk DNA." Analysis of a human genome representative data base (2.84 Mb) reveals a distinct juxtaposition of A-rich microsatellites and retroposons and suggests their coevolution. The analysis implies that most microsatellites were generated by a 3'-extension of retrotranscripts, similar to mRNA polyadenylylation, and that they serve in turn as "retroposition navigators," directing the retroposons via homology-driven integration into defined sites. Thus, they became instrumental in the preservation and extension of primordial genomic patterns. A role is assigned to these reiterating A-rich loci in the higher-order organization of the chromatin. The disease-associated triplet repeats are mostly found in coding regions and do not show an association with retroposons, constituting a unique set within the family of microsatellite sequences.

  9. Defining the Core Proteome of the Chloroplast Envelope Membranes

    PubMed Central

    Simm, Stefan; Papasotiriou, Dimitrios G.; Ibrahim, Mohamed; Leisegang, Matthias S.; Müller, Bernd; Schorge, Tobias; Karas, Michael; Mirus, Oliver; Sommer, Maik S.; Schleiff, Enrico

    2013-01-01

    High-throughput protein localization studies require multiple strategies. Mass spectrometric analysis of defined cellular fractions is one of the complementary approaches to a diverse array of cell biological methods. In recent years, the protein content of different cellular (sub-)compartments was approached. Despite of all the efforts made, the analysis of membrane fractions remains difficult, in that the dissection of the proteomes of the envelope membranes of chloroplasts or mitochondria is often not reliable because sample purity is not always warranted. Moreover, proteomic studies are often restricted to single (model) species, and therefore limited in respect to differential individual evolution. In this study we analyzed the chloroplast envelope proteomes of different plant species, namely, the individual proteomes of inner and outer envelope (OE) membrane of Pisum sativum and the mixed envelope proteomes of Arabidopsis thaliana and Medicago sativa. The analysis of all three species yielded 341 identified proteins in total, 247 of them being unique. 39 proteins were genuine envelope proteins found in at least two species. Based on this and previous envelope studies we defined the core envelope proteome of chloroplasts. Comparing the general overlap of the available six independent studies (including ours) revealed only a number of 27 envelope proteins. Depending on the stringency of applied selection criteria we found 231 envelope proteins, while less stringent criteria increases this number to 649 putative envelope proteins. Based on the latter we provide a map of the outer and inner envelope core proteome, which includes many yet uncharacterized proteins predicted to be involved in transport, signaling, and response. Furthermore, a foundation for the functional characterization of yet unidentified functions of the inner and OE for further analyses is provided. PMID:23390424

  10. Microsatellite primers for red drum (Sciaenops ocellatus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this note, we document polymerase-chain-reaction (PCR) primer pairs for 101, nuclear-encoded microsatellites designed and developed from a red drum (Sciaenops ocellatus) genomic library. The 101 microsatellites (Genbank Accession Numbers EU015882-EU015982) were amplified successfully and used to...

  11. Sequence determinants of human microsatellite variability

    PubMed Central

    2009-01-01

    Background Microsatellite loci are frequently used in genomic studies of DNA sequence repeats and in population studies of genetic variability. To investigate the effect of sequence properties of microsatellites on their level of variability we have analyzed genotypes at 627 microsatellite loci in 1,048 worldwide individuals from the HGDP-CEPH cell line panel together with the DNA sequences of these microsatellites in the human RefSeq database. Results Calibrating PCR fragment lengths in individual genotypes by using the RefSeq sequence enabled us to infer repeat number in the HGDP-CEPH dataset and to calculate the mean number of repeats (as opposed to the mean PCR fragment length), under the assumption that differences in PCR fragment length reflect differences in the numbers of repeats in the embedded repeat sequences. We find the mean and maximum numbers of repeats across individuals to be positively correlated with heterozygosity. The size and composition of the repeat unit of a microsatellite are also important factors in predicting heterozygosity, with tetra-nucleotide repeat units high in G/C content leading to higher heterozygosity. Finally, we find that microsatellites containing more separate sets of repeated motifs generally have higher heterozygosity. Conclusions These results suggest that sequence properties of microsatellites have a significant impact in determining the features of human microsatellite variability. PMID:20015383

  12. Knocking Down of Isoprene Emission Modifies the Lipid Matrix of Thylakoid Membranes and Influences the Chloroplast Ultrastructure in Poplar1

    PubMed Central

    Velikova, Violeta; Müller, Constanze; Ghirardo, Andrea; Rock, Theresa Maria; Aichler, Michaela; Walch, Axel; Schmitt-Kopplin, Philippe

    2015-01-01

    Isoprene is a small lipophilic molecule with important functions in plant protection against abiotic stresses. Here, we studied the lipid composition of thylakoid membranes and chloroplast ultrastructure in isoprene-emitting (IE) and nonisoprene-emitting (NE) poplar (Populus × canescens). We demonstrated that the total amount of monogalactosyldiacylglycerols, digalactosyldiacylglycerols, phospholipids, and fatty acids is reduced in chloroplasts when isoprene biosynthesis is blocked. A significantly lower amount of unsaturated fatty acids, particularly linolenic acid in NE chloroplasts, was associated with the reduced fluidity of thylakoid membranes, which in turn negatively affects photosystem II photochemical efficiency. The low photosystem II photochemical efficiency in NE plants was negatively correlated with nonphotochemical quenching and the energy-dependent component of nonphotochemical quenching. Transmission electron microscopy revealed alterations in the chloroplast ultrastructure in NE compared with IE plants. NE chloroplasts were more rounded and contained fewer grana stacks and longer stroma thylakoids, more plastoglobules, and larger associative zones between chloroplasts and mitochondria. These results strongly support the idea that in IE species, the function of this molecule is closely associated with the structural organization and functioning of plastidic membranes. PMID:25975835

  13. An auxilin-like J-domain protein, JAC1, regulates phototropin-mediated chloroplast movement in Arabidopsis.

    PubMed

    Suetsugu, Noriyuki; Kagawa, Takatoshi; Wada, Masamitsu

    2005-09-01

    The ambient-light conditions mediate chloroplast relocation in plant cells. Under the low-light conditions, chloroplasts accumulate in the light (accumulation response), while under the high-light conditions, they avoid the light (avoidance response). In Arabidopsis (Arabidopsis thaliana), the accumulation response is mediated by two blue-light receptors, termed phototropins (phot1 and phot2) that act redundantly, and the avoidance response is mediated by phot2 alone. A mutant, J-domain protein required for chloroplast accumulation response 1 (jac1), lacks the accumulation response under weak blue light but shows a normal avoidance response under strong blue light. In dark-adapted wild-type cells, chloroplasts accumulate on the bottom of cells. Both the jac1 and phot2 mutants are defective in this chloroplast movement in darkness. Positional cloning of JAC1 reveals that this gene encodes a J-domain protein, resembling clathrin-uncoating factor auxilin at its C terminus. The amounts of JAC1 transcripts and JAC1 proteins are not regulated by light and by phototropins. A green fluorescent protein-JAC1 fusion protein showed a similar localization pattern to green fluorescent protein alone in a transient expression assay using Arabidopsis mesophyll cells and onion (Allium cepa) epidermal cells, suggesting that the JAC1 protein may be a soluble cytosolic protein. Together, these results suggest that JAC1 is an essential component of phototropin-mediated chloroplast movement.

  14. Integration of Phot1, Phot2, and PhyB signalling in light-induced chloroplast movements.

    PubMed

    Luesse, Darron R; DeBlasio, Stacy L; Hangarter, Roger P

    2010-10-01

    In Arabidopsis thaliana, chloroplasts move towards the periclinal cell walls upon exposure to low blue light intensities and to anticlinal walls under high light. The regulation of these chloroplast movements involves members of both the phototropin and phytochrome families of photoreceptors. Examination of fluence-rate response dependencies in phot1 and phot2 mutants revealed that although both photoreceptors are capable of inducing chloroplast accumulation under low-light conditions, the signals from these photoreceptors appear to be antagonistic. Chloroplast movements in wild-type plants were intermediate between those of the single phot mutants, consistent with each operating through separate signalling cascades. Mutants in phot2 showed transient chloroplast avoidance responses upon exposure to intense blue light, and slow but sustained chloroplast avoidance under intense white light, indicating that in the absence of phot2, phot1 is capable of generating both a low and a high-light response signal. Mutations in phytochrome B (phyB) caused an enhanced avoidance response at intermediate and high light intensities. Examination of phyB, phot1phyB, and phot2phyB mutants indicated that this enhancement is caused by PhyB inhibition of the high-light avoidance response in wild-type plants. In addition, our results suggest that the inhibition by PhyB is not exclusive to either of the phot1 or phot2 signalling pathways.

  15. Chloroplast Activity and 3′phosphadenosine 5′phosphate Signaling Regulate Programmed Cell Death in Arabidopsis1

    PubMed Central

    Mazubert, Christelle; Prunier, Florence; Chan, Kai Xun; Pogson, Barry James; Krieger-Liszkay, Anja; Delarue, Marianne; Benhamed, Moussa; Bergounioux, Catherine; Raynaud, Cécile

    2016-01-01

    Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3′-phosphoadenosine 5′-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5′-3′ exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response. PMID:26747283

  16. A rare case of plastid protein-coding gene duplication in the chloroplast genome of Euglena archaeoplastidiata (Euglenophyta).

    PubMed

    Bennett, Matthew S; Shiu, Shin-Han; Triemer, Richard E

    2017-03-12

    Gene duplication is an important evolutionary process that allows duplicate functions to diverge, or, in some cases, allows for new functional gains. However, in contrast to the nuclear genome, gene duplications within the chloroplast are extremely rare. Here, we present the chloroplast genome of the photosynthetic protist Euglena archaeoplastidiata. Upon annotation, it was found that the chloroplast genome contained a novel tandem direct duplication that encoded a portion of RuBisCO large subunit (rbcL) followed by a complete copy of ribosomal protein L32 (rpl32), as well as the associated intergenic sequences. Analyses of the duplicated rpl32 were inconclusive regarding selective pressures, although it was found that substitutions in the duplicated region, all non-synonymous, likely had a neutral functional effect. The duplicated region did not exhibit patterns consistent with previously described mechanisms for tandem direct duplications, and demonstrated an unknown mechanism of duplication. In addition, a comparison of this chloroplast genome to other previously characterized chloroplast genomes from the same family revealed characteristics that indicated E. archaeoplastidiata was probably more closely related to taxa in the genera Monomorphina, Cryptoglena, and Euglenaria than it was to other Euglena taxa. Taken together, the chloroplast genome of E. archaeoplastidiata demonstrated multiple characteristics unique to the euglenoid world, and has justified the longstanding curiosity regarding this enigmatic taxon.

  17. The Origin of Clonal Diversity and Structure of Populus alba in Sardinia: Evidence from Nuclear and Plastid Microsatellite Markers

    PubMed Central

    Brundu, Giuseppe; Lupi, Renato; Zapelli, Ilaria; Fossati, Tiziana; Patrignani, Giuseppe; Camarda, Ignazio; Sala, Francesco; Castiglione, Stefano

    2008-01-01

    Background and Aims Populus alba is a thermophilic forest tree present in the Mediterranean basin. Its habitat is highly fragmented and its distribution range has been subject to long-term human interference, resulting in debate surrounding whether certain populations are native or exotic in origin. In particular, populations from the islands of Corsica and Sardinia are of uncertain origin. While populations of P. alba mainly reproduce sexually, clonal reproduction is also common. The aims of this study were to locate and molecularly characterize the poorly studied island populations of P. alba and compare these with samples from various spatial scales, in order to provide information on the genetic structure and phylogeography of this species. This information will provide evidence on whether the species is native to Sardinia, which is important for the development of conservation strategies. Methods DNA extracts were obtained from the following P. alba trees: 159 from Sardinia, 47 from Ticino regional park (northern Italy), 15 acquired from an Italian Germoplasm Bank (IRC; Italian Reference Collection) and 28 from the Mediterranean basin (MB). Genetic polymorphisms were revealed at nuclear and chloroplast DNA (cpDNA) microsatellite loci, both at the island scale (Sardinia) and at broader scales, for comparative assessment of the genetic and genotypic diversity and phylogeography. Key Results Based on nuclear microsatellite loci, Sardinian white poplar consists of a small number of genets (26), each of which is represented by several ramets. Despite the uniqueness of the Sardinian haplotypes and the very low value of genetic diversity at the cpDNA level (vK = 0·15), the HT (0·60) and the AR (3·61) values, estimated at the nuclear level for Sardinia, were comparable with those of the other populations and collections. Conclusions The uniqueness of the cpDNA haplotypes, the prevalence of clonality and the restricted number of genets recorded suggest that

  18. AT_CHLORO, a Comprehensive Chloroplast Proteome Database with Subplastidial Localization and Curated Information on Envelope Proteins*

    PubMed Central

    Ferro, Myriam; Brugière, Sabine; Salvi, Daniel; Seigneurin-Berny, Daphné; Court, Magali; Moyet, Lucas; Ramus, Claire; Miras, Stéphane; Mellal, Mourad; Le Gall, Sophie; Kieffer-Jaquinod, Sylvie; Bruley, Christophe; Garin, Jérôme; Joyard, Jacques; Masselon, Christophe; Rolland, Norbert

    2010-01-01

    Recent advances in the proteomics field have allowed a series of high throughput experiments to be conducted on chloroplast samples, and the data are available in several public databases. However, the accurate localization of many chloroplast proteins often remains hypothetical. This is especially true for envelope proteins. We went a step further into the knowledge of the chloroplast proteome by focusing, in the same set of experiments, on the localization of proteins in the stroma, the thylakoids, and envelope membranes. LC-MS/MS-based analyses first allowed building the AT_CHLORO database (http://www.grenoble.prabi.fr/protehome/grenoble-plant-proteomics/), a comprehensive repertoire of the 1323 proteins, identified by 10,654 unique peptide sequences, present in highly purified chloroplasts and their subfractions prepared from Arabidopsis thaliana leaves. This database also provides extensive proteomics information (peptide sequences and molecular weight, chromatographic retention times, MS/MS spectra, and spectral count) for a unique chloroplast protein accurate mass and time tag database gathering identified peptides with their respective and precise analytical coordinates, molecular weight, and retention time. We assessed the partitioning of each protein in the three chloroplast compartments by using a semiquantitative proteomics approach (spectral count). These data together with an in-depth investigation of the literature were compiled to provide accurate subplastidial localization of previously known and newly identified proteins. A unique knowledge base containing extensive information on the proteins identified in envelope fractions was thus obtained, allowing new insights into this membrane system to be revealed. Altogether, the data we obtained provide unexpected information about plastidial or subplastidial localization of some proteins that were not suspected to be associated to this membrane system. The spectral counting-based strategy was further

  19. Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale – A wild ancestor of cultivated buckwheat

    PubMed Central

    Logacheva, Maria D; Samigullin, Tahir H; Dhingra, Amit; Penin, Aleksey A

    2008-01-01

    Background Chloroplast genome sequences are extremely informative about species-interrelationships owing to its non-meiotic and often uniparental inheritance over generations. The subject of our study, Fagopyrum esculentum, is a member of the family Polygonaceae belonging to the order Caryophyllales. An uncertainty remains regarding the affinity of Caryophyllales and the asterids that could be due to undersampling of the taxa. With that background, having access to the complete chloroplast genome sequence for Fagopyrum becomes quite pertinent. Results We report the complete chloroplast genome sequence of a wild ancestor of cultivated buckwheat, Fagopyrum esculentum ssp. ancestrale. The sequence was rapidly determined using a previously described approach that utilized a PCR-based method and employed universal primers, designed on the scaffold of multiple sequence alignment of chloroplast genomes. The gene content and order in buckwheat chloroplast genome is similar to Spinacia oleracea. However, some unique structural differences exist: the presence of an intron in the rpl2 gene, a frameshift mutation in the rpl23 gene and extension of the inverted repeat region to include the ycf1 gene. Phylogenetic analysis of 61 protein-coding gene sequences from 44 complete plastid genomes provided strong support for the sister relationships of Caryophyllales (including Polygonaceae) to asterids. Further, our analysis also provided support for Amborella as sister to all other angiosperms, but interestingly, in the bayesian phylogeny inference based on first two codon positions Amborella united with Nymphaeales. Conclusion Comparative genomics analyses revealed that the Fagopyrum chloroplast genome harbors the characteristic gene content and organization as has been described for several other chloroplast genomes. However, it has some unique structural features distinct from previously reported complete chloroplast genome sequences. Phylogenetic analysis of the dataset

  20. Velocity of chloroplast avoidance movement is fluence rate dependent.

    PubMed

    Kagawa, Takatoshi; Wada, Masamitsu

    2004-06-01

    In Arabidopsis leaves, chloroplast movement is fluence rate dependent. At optimal, lower light fluences, chloroplasts accumulate at the cell surface to maximize photosynthetic potential. Under high fluence rates, chloroplasts avoid incident light to escape photodamage. In this paper, we examine the phenomenon of chloroplast avoidance movement in greater detail and demonstrate a proportional relationship between fluence rate and the velocity of chloroplast avoidance. In addition we show that the amount of light-activated phototropin2, the photoreceptor for the avoidance response, likely plays a role in this phenomenon, as heterozygous mutant plants show a reduced avoidance velocity compared to that of homozygous wild type plants.

  1. Infrequent microsatellite instability in oesophageal cancers.

    PubMed Central

    Muzeau, F.; Fléjou, J. F.; Belghiti, J.; Thomas, G.; Hamelin, R.

    1997-01-01

    Alterations of microsatellites have been found at relatively high frequency in hereditary and sporadic colorectal cancer and gastric and pancreatic cancers and at lower frequency in some other cancers. We determined the frequency of instability at 39 poly-CA microsatellite loci in 20 squamous cell carcinomas and 26 Barrett's adenocarcinomas of the oesophagus. None of the tumours presented instability for a high percentage of the tested loci. Four squamous cell carcinomas and six Barrett's adenocarcinomas showed microsatellite instability at one locus, and three Barrett's adenocarcinomas showed microsatellite instability at two loci. The presence of few loci showing microsatellite instability could be due to an instability background. We conclude that genetic defects in the DNA mismatch repair system do not play an important role in oesophageal cancers. Images Figure 1 PMID:9155055

  2. The evolution of chloroplast RNA editing.

    PubMed

    Tillich, Michael; Lehwark, Pascal; Morton, Brian R; Maier, Uwe G

    2006-10-01

    RNA editing alters the nucleotide sequence of an RNA molecule so that it deviates from the sequence of its DNA template. Different RNA-editing systems are found in the major eukaryotic lineages, and these systems are thought to have evolved independently. In this study, we provide a detailed analysis of data on C-to-U editing sites in land plant chloroplasts and propose a model for the evolution of RNA editing in land plants. First, our data suggest that the limited RNA-editing system of seed plants and the much more extensive systems found in hornworts and ferns are of monophyletic origin. Further, although some eukaryotic editing systems appear to have evolved to regulate gene expression, or at least are now involved in gene regulation, there is no evidence that RNA editing plays a role in gene regulation in land plant chloroplasts. Instead, our results suggest that land plant chloroplast C-to-U RNA editing originated as a mechanism to generate variation at the RNA level, which could complement variation at the DNA level. Under this model, many of the original sites, particularly in seed plants, have been subsequently lost due to mutation at the DNA level, and the function of extant sites is merely to conserve certain codons. This is the first comprehensive model for the evolution of the chloroplast RNA-editing system of land plants and may also be applicable to the evolution of RNA editing in plant mitochondria.

  3. Chloroplast DNA codes for transfer RNA.

    PubMed Central

    McCrea, J M; Hershberger, C L

    1976-01-01

    Transfer RNA's were isolated from Euglena gracilis. Chloroplast cistrons for tRNA were quantitated by hybridizing tRNA to ct DNA. Species of tRNA hybridizing to ct DNA were partially purified by hybridization-chromatography. The tRNA's hybridizing to ct DNA and nuclear DNA appear to be different. Total cellular tRNA was hybridized to ct DNA to an equivalent of approximately 25 cistrons. The total cellular tRNA was also separated into 2 fractions by chromatography on dihydroxyboryl substituted amino ethyl cellulose. Fraction I hybridized to both nuclear and ct DNA. Hybridizations to ct DNA indicated approximately 18 cistrons. Fraction II-tRNA hybridized only to ct DNA, saturating at a level of approximately 7 cistrons. The tRNA from isolated chloroplasts hybridized to both chloroplast and nuclear DNA. The level of hybridization to ct DNA indicated approximately 18 cistrons. Fraction II-type tRNA could not be detected in the isolated chloroplasts. PMID:823529

  4. Integrated role of ROS and Ca(+2) in blue light-induced chloroplast avoidance movement in leaves of Hydrilla verticillata (L.f.) Royle.

    PubMed

    Majumdar, Arkajo; Kar, Rup Kumar

    2016-11-01

    Directional chloroplast photorelocation is a major physio-biochemical mechanism that allows these organelles to realign themselves intracellularly in response to the intensity of the incident light as an adaptive response. Signaling processes involved in blue light (BL)-dependent chloroplast movements were investigated in Hydrilla verticillata (L.f.) Royle leaves. Treatments with antagonists of actin filaments [2,3,5-triiodobenzoic acid (TIBA)] and microtubules (oryzalin) revealed that actin filaments, but not microtubules, play a pivotal role in chloroplast movement. Involvement of reactive oxygen species (ROS) in controlling chloroplast avoidance movement has been demonstrated, as exogenous H2O2 not only accelerated chloroplast avoidance but also could induce chloroplast avoidance even in weak blue light (WBL). Further support came from experiments with different ROS scavengers, i.e., dimethylthiourea (DMTU), KI, and CuCl2, which inhibited chloroplast avoidance, and from ROS localization using specific stains. Such avoidance was also partially inhibited by ZnCl2, an inhibitor of NADPH oxidase (NOX) as well as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a photosynthetic electron transport chain (ETC) inhibitor at PS II. However, methyl viologen (MV), a PS I ETC inhibitor, rather accelerated avoidance response. Exogenous calcium (Ca(+2)) induced avoidance even in WBL while inhibited chloroplast accumulation partially. On the other hand, chloroplast movements (both accumulation and avoidance) were blocked by Ca(+2) antagonists, La(3+) (inhibitor of plasma membrane Ca(+2) channel) and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA, Ca(+2) chelator) while LiCl that affects Ca(+2) release from endosomal compartments did not show any effect. A model on integrated role of ROS and Ca(+2) (influx from apolastic space) in actin-mediated chloroplast avoidance has been proposed.

  5. Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon.

    PubMed

    Palmer, J D; Zamir, D

    1982-08-01

    Chloroplast DNA was purified from 12 accessions that represent most of the species diversity in the genus Lycopersicon (family Solanaceae) and from 3 closely related species in the genus Solanum. Fragment patterns produced by digestion of these DNAs with 25 different restriction endonucleases were analyzed by agarose gel electrophoresis. In all 15 DNAs, a total of only 39 restriction site mutations were detected among 484 restriction sites surveyed, representing 2,800 base pairs of sequence information. This low rate of base sequence change is paralleled by an extremely low rate of convergent change in restriction sites; only 1 of the 39 mutations appears to have occurred independently in two different lineages. Parsimony analysis of shared mutations has allowed the construction of a maternal phylogeny for the 15 accessions. This phylogeny is generally consistent with relationships based on morphology and crossability but provides more detailed resolution at several places. All accessions within Lycopersicon form a coherent group, with two of the three species of Solanum as outside reference points. Chloroplast DNA analysis places S. pennellii firmly within Lycopersicon, confirming recent studies that have removed it from Solanum. Red-orange fruit color is shown to be a monophyletic trait in three species of Lycopersicon, including the cultivated tomato, L. esculentum. Analysis of six accessions within L. peruvianum reveals a limited amount of intraspecific polymorphism which, however, encompasses all the variation observed in L. chilense and L. chmielewskii. It is suggested that these latter two accessions be relegated to positions within the L. peruvianum complex.

  6. Light-harvesting superstructures of green plant chloroplasts lacking photosystems.

    PubMed

    Belgio, Erica; Ungerer, Petra; Ruban, Alexander V

    2015-10-01

    The light-harvesting antenna of higher plant photosystem II (LHCII) is the major photosynthetic membrane component encoded by an entire family of homologous nuclear genes. On the contrary, the great majority of proteins of photosystems and electron transport components are encoded by the chloroplast genome. In this work, we succeeded in gradually inhibiting the expression of the chloroplast genes that led to the disappearance of the photosystem complexes, mimicking almost total photoinhibition. The treated plants, despite displaying only some early signs of senescence, sustained their metabolism and growth for several weeks. The only major remaining membrane component was LHCII antenna that formed superstructures - stacks of dozens of thylakoids or supergrana. Freeze-fracture electron microscopy revealed specific organization, directly displaying frequently bifurcated membranes with reduced or totally absent photosystem II (PSII) reaction centre complexes. Our findings show that it is possible to accumulate large amounts of light-harvesting membranes, organized into three-dimensional structures, in the absence of reaction centre complexes. This points to the reciprocal role of LHCII and PSII in self-assembly of the three-dimensional matrix of the photosynthetic membrane, dictating its size and flexible adaptation to the light environment.

  7. The Chloroplast Genome of Elaeagnus macrophylla and trnH Duplication Event in Elaeagnaceae

    PubMed Central

    Choi, Kyoung Su; Son, OGyeong; Park, SeonJoo

    2015-01-01

    Elaeagnaceae, which harbor nitrogen-fixing actinomycetes, is a plant family of the Rosales and sister to Rhamnaceae, Barbeyaceae and Dirachmaceae. The results of previous molecular studies have not strongly supported the families of Elaeagnaceae, Rhamnaceae, Barbeyaceae and Dirachmaceae. However, chloroplast genome studies provide valuable phylogenetic information; therefore, we determined the chloroplast genome of Elaeaganus macrophylla and compared it to that of Rosales such as IR junction and infA gene. The chloroplast genome of Elaeagnus macrophylla is 152,224 bp in length and the infA gene of E. macrophylla was psuedogenation. Phylogenetic analyses based on 79 genes in 30 species revealed that Elaeagnus was closely related to Morus. Comparison of the IR junction in six other rosids revealed that the trnH gene contained the LSC region, whereas E. macrophylla contained a trnH gene duplication in the IR region. Comparison of the LSC/IRb (JLB) and the IRa/LSC (JLA) regions of Elaeagnaceae (Elaeagnus and Shephedia) and Rhamnaceae (Rhamnus) showed that trnH gene duplication only occurred in the Elaeagnaceae. The complete chloroplast genome of Elaeagnus macrophylla provides unique characteristics in rosids. The infA gene has been lost or transferred to the nucleus in rosids, while E. macrophylla lost the infA gene. Evaluation of the chloroplast genome of Elaeagnus revealed trnH gene duplication for the first time in rosids. The availability of Elaeagnus cp genomes provides valuable information describing the relationship of Elaeagnaceae, Barbeyaceae and Dirachmaceae, IR junction that will be valuable to future systematics studies. PMID:26394223

  8. [A search for null alleles at the microsatellite locus of chum salmon (Oncorhynchus keta Walbaum)].

    PubMed

    Kordicheva, S Iu; Rubtsova, G A; Shitova, M V; Shaĭkhaev, G O; Afanas'ev, K I; Zhivotovskiĭ, L A

    2010-08-01

    Population studies with the use of microsatellite markers face a problem of null alleles, i.e., the absence of a PCR product, caused by the mutations in the microsatellite flanking regions, which serve as the sites of primer hybridization. In this case, the microsatellite primer associated with such mutation is not amplified, leading to false homozygosity in heterozygous individuals. This, in turn, results in biased population genetic estimates, including the excess of homozygotes at microsatellite loci. Analysis of the population structure of a Pacific salmon species, chum salmon (Oncorhynchus keta Walbaum), revealed the presence of null alleles at the Oke3 microsatellite locus in the population samples, in which an excess of homozygotes was observed. The analysis was performed using different combinations of modified primers chosen to match the Oke3 locus. The use of these primers enabled identification of true heterozygotes among those individuals, which were previously diagnosed as homozygotes with the use of standard primers. Removal of null alleles eliminated the excess homozygotes in the chum salmon samples described. In addition to the exclusion of false homozygosity, the use of modified primers makes it possible to introduce polymorphic primer variants associated with certain microsatellite alleles into population studies.

  9. Distinctive patterns of p53 protein expression and microsatellite instability in human colorectal cancer.

    PubMed

    Nyiraneza, Christine; Jouret-Mourin, Anne; Kartheuser, Alex; Camby, Philippe; Plomteux, Olivier; Detry, Roger; Dahan, Karin; Sempoux, Christine

    2011-12-01

    Although evidence suggests an inverse relationship between microsatellite instability and p53 alterations in colorectal cancer, no study has thoroughly examined the use of p53 immunohistochemistry in phenotyping colorectal cancers. We investigated the value of p53 immunohistochemistry in microsatellite instability-positive colorectal cancers prescreening and attempted to clarify the relationship between DNA mismatch repair system and p53 pathway. In a series of 104 consecutive colorectal cancers, we performed p53 immunohistochemistry, TP53 mutational analysis, DNA mismatch repair system efficiency evaluation (DNA mismatch repair system immunohistochemistry, microsatellite instability status, MLH1/MSH2 germ line, and BRAF, murine double minute 2, and p21 immunohistochemistry. Microsatellite instability high was observed in 25 of 104 colorectal cancers, with DNA mismatch repair system protein loss (24/25) and germ line (8/25) or BRAF mutations (8/25). p53 immunohistochemistry revealed 3 distinct patterns of expression: complete negative immunostaining associated with truncating TP53 mutations (P < .0001), diffuse overexpression associated with missense TP53 mutations (P < .0001), and restricted overexpression characterized by a limited number of homogenously scattered strongly positive tumor cells in 36.5% of colorectal cancers. This latest pattern was associated with wild-type TP53 and microsatellite instability high colorectal cancers (P < .0001) including all Lynch tumors (8/8), but its presence among 22% of DNA mismatch repair system-competent colorectal cancers decreased its positive predictive value (55.2% [95% confidence interval, 45%-65%]). It was also correlated with murine double minute 2 overexpression (P < .0001) and inversely with p21 loss (P = .0002), independently of microsatellite instability status. In conclusion, a restricted pattern of p53 overexpression is preferentially associated with microsatellite instability high phenotype and could

  10. Microsatellite DNA capture from enriched libraries.

    PubMed

    Gonzalez, Elena G; Zardoya, Rafael

    2013-01-01

    Microsatellites are DNA sequences of tandem repeats of one to six nucleotides, which are highly polymorphic, and thus the molecular markers of choice in many kinship, population genetic, and conservation studies. There have been significant technical improvements since the early methods for microsatellite isolation were developed, and today the most common procedures take advantage of the hybrid capture methods of enriched-targeted microsatellite DNA. Furthermore, recent advents in sequencing technologies (i.e., next-generation sequencing, NGS) have fostered the mining of microsatellite markers in non-model organisms, affording a cost-effective way of obtaining a large amount of sequence data potentially useful for loci characterization. The rapid improvements of NGS platforms together with the increase in available microsatellite information open new avenues to the understanding of the evolutionary forces that shape genetic structuring in wild populations. Here, we provide detailed methodological procedures for microsatellite isolation based on the screening of GT microsatellite-enriched libraries, either by cloning and Sanger sequencing of positive clones or by direct NGS. Guides for designing new species-specific primers and basic genotyping are also given.

  11. Passive cryocooler for microsatellite payload

    NASA Astrophysics Data System (ADS)

    Mullins, Mayes; Thomas, Paul J.; Harron, John W.; Duggan, Philip; Sinclair, Peter M.; Khanna, Shyam M.

    1998-11-01

    A passive cryocooler has been developed for the cooling of small payloads to temperatures as low as 145 K. Although designed for a specific electronics experiment on the STRV-1d microsatellite, the device is suitable for a wide range of applications. The cryocooler uses coated surfaces for tailored radiative cooling. Mechanical support between components is provided by fiberglass struts. The measured end temperature reached is 151 K in a liquid nitrogen dewar which extrapolates to an end temperature of lower than 145 K in space. Thermal vacuum testing and random vibration testing at levels consistent with an Ariane 5 launch have been performed as part of formal qualification for the STRV mission. In this paper, details of the design, analysis, fabrication and testing of the passive cryocooler are presented.

  12. A review of the prevalence, utility, and caveats of using chloroplast simple sequence repeats for studies of plant biology1

    PubMed Central

    Wheeler, Gregory L.; Dorman, Hanna E.; Buchanan, Alenda; Challagundla, Lavanya; Wallace, Lisa E.

    2014-01-01

    Microsatellites occur in all plant genomes and provide useful markers for studies of genetic diversity and structure. Chloroplast microsatellites (cpSSRs) are frequently targeted because they are more easily isolated than nuclear microsatellites. Here, we quantified the frequency and uses of cpSSRs based on a literature review of over 400 studies published 1995–2013. These markers are an important and economical tool for plant biologists and continue to be used alongside modern genomics approaches to study genetic diversity and structure, evolutionary history, and hybridization in native and agricultural species. Studies using species-specific primers reported a greater number of polymorphic loci than those employing universal primers. A major disadvantage to cpSSRs is fragment size homoplasy; therefore, we documented its occurrence at several cpSSR loci within and between species of Acmispon (Fabaceae). Based on our empirical data set, we recommend targeted sequencing of a subset of samples combined with fragment genotyping as a cost-efficient, data-rich approach to the use of cpSSRs and as a test of homoplasy. The availability of genomic resources for plants aids in the development of primers for new study systems, thereby enhancing the utility of cpSSRs across plant biology. PMID:25506520

  13. Microsatellite instability in prostate cancer

    SciTech Connect

    Shan, A.L.; Wick, M.J.; Persons, D.L.

    1994-09-01

    Microsatellite instability (MIN) has been documented in hereditary nonpolyposis colorectal cancer (HNPCC) as well as in sporadic forms of human cancers. Two of the genes which appear to be responsible for this particular tumor phenotype, hMSH2 and hMLH1, have now been identified. To determine the potential role of these mutator genes in prostate cancer, we have examined 95 prostate adenocarcinomas (40 paraffin embedded and 55 fresh frozen) for the presence of genetic instability at four microsatellite markers. The markers are localized to chromosome arms 5q(APC-CA1), 8p(Mfd 210Z), 15q(635/636), and 17q(p53-CA). Patients from whom paraffin embedded material was obtained were divided into short term (<3 years, n=18), and long term (>3 years, n=22) survivors. Of the 95 tumors examined, only four tumors (4%) demonstrated MIN: two tumors demonstrated MIN at 3 loci (p53-CA, APC-CA1, 635/636), one tumor demonstrated MIN at 2 loci (APC-CA1 and 635/636), and one tumor demonstrated instability at 635/636 only. All tumors exhibiting MIN had Gleason scores of {ge} 4+4. A correlation between MIN and survival was not observed. Information on family history was limited. However, of the two patients demonstrating MIN at three loci, one patient was diagnosed with a second malignancy (TCC of the ureter), but otherwise had a negative family history, while the second patient had one first degree relative with esophageal cancer. The patient demonstrating MIN at two loci had a negative family history, while the remaining patient had two first degree relatives with cancer (prostate and stomach). These results suggest that hMSH2 and hMLH1 (as reflected by the small percentage of tumors displaying MIN) do not play a prominent role in the process of prostate tumorigenesis.

  14. Analysis of Protein Import into Chloroplasts Isolated from Stressed Plants.

    PubMed

    Ling, Qihua; Jarvis, Paul

    2016-11-01

    Chloroplasts are organelles with many vital roles in plants, which include not only photosynthesis but numerous other metabolic and signaling functions. Furthermore, chloroplasts are critical for plant responses to various abiotic stresses, such as salinity and osmotic stresses. A chloroplast may contain up to ~3,000 different proteins, some of which are encoded by its own genome. However, the majority of chloroplast proteins are encoded in the nucleus and synthesized in the cytosol, and these proteins need to be imported into the chloroplast through translocons at the chloroplast envelope membranes. Recent studies have shown that the chloroplast protein import can be actively regulated by stress. To biochemically investigate such regulation of protein import under stress conditions, we developed the method described here as a quick and straightforward procedure that can easily be achieved in any laboratory. In this method, plants are grown under normal conditions and then exposed to stress conditions in liquid culture. Plant material is collected, and chloroplasts are then released by homogenization. The crude homogenate is separated by density gradient centrifugation, enabling isolation of the intact chloroplasts. Chloroplast yield is assessed by counting, and chloroplast intactness is checked under a microscope. For the protein import assays, purified chloroplasts are incubated with (35)S radiolabeled in vitro translated precursor proteins, and time-course experiments are conducted to enable comparisons of import rates between genotypes under stress conditions. We present data generated using this method which show that the rate of protein import into chloroplasts from a regulatory mutant is specifically altered under osmotic stress conditions.

  15. Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines.

    PubMed Central

    Powell, W; Morgante, M; McDevitt, R; Vendramin, G G; Rafalski, J A

    1995-01-01

    Simple sequence repeats (SSRs), consisting of tandemly repeated multiple copies of mono-, di-, tri-, or tetranucleotide motifs, are ubiquitous in eukaryotic genomes and are frequently used as genetic markers, taking advantage of their length polymorphism. We have examined the polymorphism of such sequences in the chloroplast genomes of plants, by using a PCR-based assay. GenBank searches identified the presence of several (dA)n.(dT)n mononucleotide stretches in chloroplast genomes. A chloroplast (cp) SSR was identified in three pine species (Pinus contorta, Pinus sylvestris, and Pinus thunbergii) 312 bp upstream of the psbA gene. DNA amplification of this repeated region from 11 pine species identified nine length variants. The polymorphic amplified fragments were isolated and the DNA sequence was determined, confirming that the length polymorphism was caused by variation in the length of the repeated region. In the pines, the chloroplast genome is transmitted through pollen and this PCR assay may be used to monitor gene flow in this genus. Analysis of 305 individuals from seven populations of Pinus leucodermis Ant. revealed the presence of four variants with intrapopulational diversities ranging from 0.000 to 0.629 and an average of 0.320. Restriction fragment length polymorphism analysis of cpDNA on the same populations previously failed to detect any variation. Population subdivision based on cpSSR was higher (Gst = 0.22, where Gst is coefficient of gene differentiation) than that revealed in a previous isozyme study (Gst = 0.05). We anticipate that SSR loci within the chloroplast genome should provide a highly informative assay for the analysis of the genetic structure of plant populations. Images Fig. 2 PMID:7644491

  16. Dynamic Interplay between Nucleoid Segregation and Genome Integrity in Chlamydomonas Chloroplasts1[OPEN

    PubMed Central

    Odahara, Masaki; Kobayashi, Yusuke; Shikanai, Toshiharu; Nishimura, Yoshiki

    2016-01-01

    The chloroplast (cp) genome is organized as nucleoids that are dispersed throughout the cp stroma. Previously, a cp homolog of bacterial recombinase RecA (cpRECA) was shown to be involved in the maintenance of cp genome integrity by repairing damaged chloroplast DNA and by suppressing aberrant recombination between short dispersed repeats in the moss Physcomitrella patens. Here, overexpression and knockdown analysis of cpRECA in the green alga Chlamydomonas reinhardtii revealed that cpRECA was involved in cp nucleoid dynamics as well as having a role in maintaining cp genome integrity. Overexpression of cpRECA tagged with yellow fluorescent protein or hemagglutinin resulted in the formation of giant filamentous structures that colocalized exclusively to chloroplast DNA and cpRECA localized to cp nucleoids in a heterogenous manner. Knockdown of cpRECA led to a significant reduction in cp nucleoid number that was accompanied by nucleoid enlargement. This phenotype resembled those of gyrase inhibitor-treated cells and monokaryotic chloroplast mutant cells and suggested that cpRECA was involved in organizing cp nucleoid dynamics. The cp genome also was destabilized by induced recombination between short dispersed repeats in cpRECA-knockdown cells and gyrase inhibitor-treated cells. Taken together, these results suggest that cpRECA and gyrase are both involved in nucleoid dynamics and the maintenance of genome integrity and that the mechanisms underlying these processes may be intimately related in C. reinhardtii cps. PMID:27756821

  17. Identification of Two Conserved Residues Involved in Copper Release from Chloroplast PIB-1-ATPases.

    PubMed

    Sautron, Emeline; Giustini, Cécile; Dang, ThuyVan; Moyet, Lucas; Salvi, Daniel; Crouzy, Serge; Rolland, Norbert; Catty, Patrice; Seigneurin-Berny, Daphné

    2016-09-16

    Copper is an essential transition metal for living organisms. In the plant model Arabidopsis thaliana, half of the copper content is localized in the chloroplast, and as a cofactor of plastocyanin, copper is essential for photosynthesis. Within the chloroplast, copper delivery to plastocyanin involves two transporters of the PIB-1-ATPases subfamily: HMA6 at the chloroplast envelope and HMA8 in the thylakoid membranes. Both proteins are high affinity copper transporters but share distinct enzymatic properties. In the present work, the comparison of 140 sequences of PIB-1-ATPases revealed a conserved region unusually rich in histidine and cysteine residues in the TMA-L1 region of eukaryotic chloroplast copper ATPases. To evaluate the role of these residues, we mutated them in HMA6 and HMA8. Mutants of interest were selected from phenotypic tests in yeast and produced in Lactococcus lactis for further biochemical characterizations using phosphorylation assays from ATP and Pi Combining functional and structural data, we highlight the importance of the cysteine and the first histidine of the CX3HX2H motif in the process of copper release from HMA6 and HMA8 and propose a copper pathway through the membrane domain of these transporters. Finally, our work suggests a more general role of the histidine residue in the transport of copper by PIB-1-ATPases.

  18. Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development.

    PubMed

    Kobayashi, Koichi

    2016-07-01

    The lipid bilayer of the thylakoid membrane in plant chloroplasts and cyanobacterial cells is predominantly composed of four unique lipid classes; monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG). MGDG and DGDG are uncharged galactolipids that constitute the bulk of thylakoid membrane lipids and provide a lipid bilayer matrix for photosynthetic complexes as the main constituents. The glycolipid SQDG and phospholipid PG are anionic lipids with a negative charge on their head groups. SQDG and PG substitute for each other to maintain the amount of total anionic lipids in the thylakoid membrane, with PG having indispensable functions in photosynthesis. In addition to biochemical studies, extensive analyses of mutants deficient in thylakoid lipids have revealed important roles of these lipids in photosynthesis and thylakoid membrane biogenesis. Moreover, recent studies of Arabidopsis thaliana suggest that thylakoid lipid biosynthesis triggers the expression of photosynthesis-associated genes in both the nucleus and plastids and activates the formation of photosynthetic machineries and chloroplast development. Meanwhile, galactolipid biosynthesis is regulated in response to chloroplast functionality and lipid metabolism at transcriptional and post-translational levels. This review summarizes the roles of thylakoid lipids with their biosynthetic pathways in plants and discusses the coordinated regulation of thylakoid lipid biosynthesis with the development of photosynthetic machinery during chloroplast biogenesis.

  19. Arabidopsis MDA1, a nuclear-encoded protein, functions in chloroplast development and abiotic stress responses.

    PubMed

    Robles, Pedro; Micol, José Luis; Quesada, Víctor

    2012-01-01

    Most chloroplast and mitochondrial proteins are encoded by nuclear genes, whose functions remain largely unknown because mutant alleles are lacking. A reverse genetics screen for mutations affecting the mitochondrial transcription termination factor (mTERF) family in Arabidopsis thaliana allowed us to identify 75 lines carrying T-DNA insertions. Two of them were homozygous for insertions in the At4g14605 gene, which we dubbed MDA1 (MTERF DEFECTIVE IN Arabidopsis1). The mda1 mutants exhibited altered chloroplast morphology and plant growth, and reduced pigmentation of cotyledons, leaves, stems and sepals. The mda1 mutations enhanced salt and osmotic stress tolerance and altered sugar responses during seedling establishment, possibly as a result of reduced ABA sensitivity. Loss of MDA1 function caused up-regulation of the RpoTp/SCA3 nuclear gene encoding a plastid RNA polymerase and modified the steady-state levels of chloroplast gene transcripts. Double mutant analyses indicated that MDA1 and the previously described mTERF genes SOLDAT10 and RUG2 act in different pathways. Our findings reveal a new role for mTERF proteins in the response to abiotic stress, probably through perturbed ABA retrograde signalling resulting from a disruption in chloroplast homeostasis.

  20. The Chloroplast Genome of Passiflora edulis (Passifloraceae) Assembled from Long Sequence Reads: Structural Organization and Phylogenomic Studies in Malpighiales

    PubMed Central

    Cauz-Santos, Luiz A.; Munhoz, Carla F.; Rodde, Nathalie; Cauet, Stephane; Santos, Anselmo A.; Penha, Helen A.; Dornelas, Marcelo C.; Varani, Alessandro M.; Oliveira, Giancarlo C. X.; Bergès, Hélène; Vieira, Maria Lucia C.

    2017-01-01

    The family Passifloraceae consists of some 700 species classified in around 16 genera. Almost all its members belong to the genus Passiflora. In Brazil, the yellow passion fruit (Passiflora edulis) is of considerable economic importance, both for juice production and consumption as fresh fruit. The availability of chloroplast genomes (cp genomes) and their sequence comparisons has led to a better understanding of the evolutionary relationships within plant taxa. In this study, we obtained the complete nucleotide sequence of the P. edulis chloroplast genome, the first entirely sequenced in the Passifloraceae family. We determined its structure and organization, and also performed phylogenomic studies on the order Malpighiales and the Fabids clade. The P. edulis chloroplast genome is characterized by the presence of two copies of an inverted repeat sequence (IRA and IRB) of 26,154 bp, each separating a small single copy region of 13,378 bp and a large single copy (LSC) region of 85,720 bp. The annotation resulted in the identification of 105 unique genes, including 30 tRNAs, 4 rRNAs, and 71 protein coding genes. Also, 36 repetitive elements and 85 SSRs (microsatellites) were identified. The structure of the complete cp genome of P. edulis differs from that of other species because of rearrangement events detected by means of a comparison based on 22 members of the Malpighiales. The rearrangements were three inversions of 46,151, 3,765 and 1,631 bp, located in the LSC region. Phylogenomic analysis resulted in strongly supported trees, but this could also be a consequence of the limited taxonomic sampling used. Our results have provided a better understanding of the evolutionary relationships in the Malpighiales and the Fabids, confirming the potential of complete chloroplast genome sequences in inferring evolutionary relationships and the utility of long sequence reads for generating very accurate biological information. PMID:28344587

  1. The Chloroplast Genome of Passiflora edulis (Passifloraceae) Assembled from Long Sequence Reads: Structural Organization and Phylogenomic Studies in Malpighiales.

    PubMed

    Cauz-Santos, Luiz A; Munhoz, Carla F; Rodde, Nathalie; Cauet, Stephane; Santos, Anselmo A; Penha, Helen A; Dornelas, Marcelo C; Varani, Alessandro M; Oliveira, Giancarlo C X; Bergès, Hélène; Vieira, Maria Lucia C

    2017-01-01

    The family Passifloraceae consists of some 700 species classified in around 16 genera. Almost all its members belong to the genus Passiflora. In Brazil, the yellow passion fruit (Passiflora edulis) is of considerable economic importance, both for juice production and consumption as fresh fruit. The availability of chloroplast genomes (cp genomes) and their sequence comparisons has led to a better understanding of the evolutionary relationships within plant taxa. In this study, we obtained the complete nucleotide sequence of the P. edulis chloroplast genome, the first entirely sequenced in the Passifloraceae family. We determined its structure and organization, and also performed phylogenomic studies on the order Malpighiales and the Fabids clade. The P. edulis chloroplast genome is characterized by the presence of two copies of an inverted repeat sequence (IRA and IRB) of 26,154 bp, each separating a small single copy region of 13,378 bp and a large single copy (LSC) region of 85,720 bp. The annotation resulted in the identification of 105 unique genes, including 30 tRNAs, 4 rRNAs, and 71 protein coding genes. Also, 36 repetitive elements and 85 SSRs (microsatellites) were identified. The structure of the complete cp genome of P. edulis differs from that of other species because of rearrangement events detected by means of a comparison based on 22 members of the Malpighiales. The rearrangements were three inversions of 46,151, 3,765 and 1,631 bp, located in the LSC region. Phylogenomic analysis resulted in strongly supported trees, but this could also be a consequence of the limited taxonomic sampling used. Our results have provided a better understanding of the evolutionary relationships in the Malpighiales and the Fabids, confirming the potential of complete chloroplast genome sequences in inferring evolutionary relationships and the utility of long sequence reads for generating very accurate biological information.

  2. Direct Chloroplast Sequencing: Comparison of Sequencing Platforms and Analysis Tools for Whole Chloroplast Barcoding

    PubMed Central

    Brozynska, Marta; Furtado, Agnelo; Henry, Robert James

    2014-01-01

    Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina) and Ion Torrent (Life Technology) sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare). Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels) between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis. PMID:25329378

  3. The potato mop-top virus TGB2 protein and viral RNA associate with chloroplasts and viral infection induces inclusions in the plastids

    PubMed Central

    Cowan, Graham H.; Roberts, Alison G.; Chapman, Sean N.; Ziegler, Angelika; Savenkov, Eugene I.; Torrance, Lesley

    2012-01-01

    The potato mop-top virus (PMTV) triple gene block 2 (TGB2) movement proteins fused to monomeric red fluorescent protein (mRFP-TGB2) was expressed under the control of the PMTV subgenomic promoter from a PMTV vector. The subcellular localizations and interactions of mRFP-TGB2 were investigated using confocal imaging [confocal laser-scanning microscope, (CLSM)] and biochemical analysis. The results revealed associations with membranes of the endoplasmic reticulum (ER), mobile granules, small round structures (1–2 μm in diameter), and chloroplasts. Expression of mRFP-TGB2 in epidermal cells enabled cell-to-cell movement of a TGB2 defective PMTV reporter clone, indicating that the mRFP-TGB2 fusion protein was functional and required for cell-to-cell movement. Protein-lipid interaction assays revealed an association between TGB2 and lipids present in chloroplasts, consistent with microscopical observations where the plastid envelope was labeled later in infection. To further investigate the association of PMTV infection with chloroplasts, ultrastructural studies of thin sections of PMTV-infected potato and Nicotiana benthamiana leaves by electron microscopy revealed abnormal chloroplasts with cytoplasmic inclusions and terminal projections. Viral coat protein (CP), genomic RNA and fluorescently-labeled TGB2 were detected in plastid preparations isolated from the infected leaves, and viral RNA was localized to chloroplasts in infected tissues. The results reveal a novel association of TGB2 and vRNA with chloroplasts, and suggest viral replication is associated with chloroplast membranes, and that TGB2 plays a novel role in targeting the virus to chloroplasts. PMID:23269927

  4. Microsatellite data support subpopulation structuring among Basques.

    PubMed

    Pérez-Miranda, Ana M; Alfonso-Sánchez, Miguel A; Kalantar, Arif; García-Obregón, Susana; de Pancorbo, Marian M; Peña, José A; Herrera, Rene J

    2005-01-01

    Genomic diversity based on 13 short tandem repeat (STR) loci (D3S1358, vWA, FGA, D8S1179, D21S11, D18S51, D5S818, D13S317, D7S820, D16S539, TH01, TPOX, and CSF1PO) is reported for the first time in Basques from the provinces of Guipúzcoa and Navarre (Spain). STR data from previous studies on Basques from Alava and Vizcaya provinces were also examined using hierarchal analysis of molecular variance (AMOVA) and genetic admixture estimations to ascertain whether the Basques are genetically heterogeneous. To assess the genetic position of Basques in a broader geographic context, we conducted phylogenetic analyses based on F(ST) genetic distances [neighbor-joining trees and multidimensional scaling (MDS)] using data compiled in previous publications. The genetic profile of the Basque groups revealed distinctive regional partitioning of short tandem repeat (STR) diversity. Consistent with the above, native Basques clearly segregated from other populations from Europe (including Spain), North Africa, and the Middle East. The main line of genetic discontinuity inferred from the spatial variability of the microsatellite diversity in Basques significantly overlapped the geographic distribution of the Basque language. The genetic heterogeneity among native Basque groups correlates with the peculiar geography of peopling and marital structure in rural Basque zones and with language boundaries resulting from the uneven impact of Romance languages in the different Basque territories.

  5. The complete chloroplast genome of Sinopodophyllum hexandrum (Berberidaceae).

    PubMed

    Li, Huie; Guo, Qiqiang

    2016-07-01

    The complete chloroplast (cp) genome of the Sinopodophyllum hexandrum (Berberidaceae) was determined in this study. The circular genome is 157,940 bp in size, and comprises a pair of inverted repeat (IR) regions of 26,077 bp each, a large single-copy (LSC) region of 86,460 bp and a small single-copy (SSC) region of 19,326 bp. The GC content of the whole cp genome was 38.5%. A total of 133 genes were identified, including 88 protein-coding genes, 37 tRNA genes and eight rRNA genes. The whole cp genome consists of 114 unique genes, and 19 genes are duplicated in the IR regions. The phylogenetic analysis revealed that S. hexandrum is closely related to Nandina domestica within the family Berberidaceae.

  6. Protein trafficking to the complex chloroplasts of Euglena.

    PubMed

    Vacula, Rostislav; Sláviková, Silvia; Schwartzbach, Steven D

    2007-01-01

    Proteins are delivered to Euglena chloroplasts using the secretory pathway. We describe analytical methods to study the intracellular trafficking of Euglena chloroplast proteins and a method to isolate preparative amounts of intact import competent chloroplasts for biochemical studies. Cells are pulse labeled with 35S-sulfate and chased with unlabeled sulfate allowing the trafficking and posttranslational processing of the labeled protein to be followed. Sucrose gradients are used to separate a 35S-labeled cell lysate into cytoplasmic, endoplasmic reticuum (ER), Golgi apparatus, chloroplast and mitochondrial fractions. Immunoprecipitation of each gradient fraction allows identification of the intracellular compartment containing a specific 35S-labeled protein at different times after synthesis delineating the trafficking pathway. Because sucrose gradients cannot be used to isolate preparative amounts of highly purified chloroplasts for biochemical characterization, a preparative high-yield procedure using Percoll gradients to isolate highly purified import competent chloroplasts is also presented.

  7. Microsatellites as targets of natural selection.

    PubMed

    Haasl, Ryan J; Payseur, Bret A

    2013-02-01

    The ability to survey polymorphism on a genomic scale has enabled genome-wide scans for the targets of natural selection. Theory that connects patterns of genetic variation to evidence of natural selection most often assumes a diallelic locus and no recurrent mutation. Although these assumptions are suitable to selection that targets single nucleotide variants, fundamentally different types of mutation generate abundant polymorphism in genomes. Moreover, recent empirical results suggest that mutationally complex, multiallelic loci including microsatellites and copy number variants are sometimes targeted by natural selection. Given their abundance, the lack of inference methods tailored to the mutational peculiarities of these types of loci represents a notable gap in our ability to interrogate genomes for signatures of natural selection. Previous theoretical investigations of mutation-selection balance at multiallelic loci include assumptions that limit their application to inference from empirical data. Focusing on microsatellites, we assess the dynamics and population-level consequences of selection targeting mutationally complex variants. We develop general models of a multiallelic fitness surface, a realistic model of microsatellite mutation, and an efficient simulation algorithm. Using these tools, we explore mutation-selection-drift equilibrium at microsatellites and investigate the mutational history and selective regime of the microsatellite that causes Friedreich's ataxia. We characterize microsatellite selective events by their duration and cost, note similarities to sweeps from standing point variation, and conclude that it is premature to label microsatellites as ubiquitous agents of efficient adaptive change. Together, our models and simulation algorithm provide a powerful framework for statistical inference, which can be used to test the neutrality of microsatellites and other multiallelic variants.

  8. Combined effects of simulated acid rain and lanthanum chloride on chloroplast structure and functional elements in rice.

    PubMed

    Hu, Huiqing; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-05-01

    Acid rain and rare earth element (REE) pollution exist simultaneously in many agricultural regions. However, how REE pollution and acid rain affect plant growth in combination remains largely unknown. In this study, the combined effects of simulated acid rain and lanthanum chloride (LaCl3) on chloroplast morphology, chloroplast ultrastructure, functional element contents, chlorophyll content, and the net photosynthetic rate (P n) in rice (Oryza sativa) were investigated by simulating acid rain and rare earth pollution. Under the combined treatment of simulated acid rain at pH 4.5 and 0.08 mM LaCl3, the chloroplast membrane was smooth, proteins on this membrane were uniform, chloroplast structure was integrated, and the thylakoids were orderly arranged, and simulated acid rain and LaCl3 exhibited a mild antagonistic effect; the Mg, Ca, Mn contents, the chlorophyll content, and the P n increased under this combined treatment, with a synergistic effect of simulated acid rain and LaCl3. Under other combined treatments of simulated acid rain and LaCl3, the chloroplast membrane surface was uneven, a clear "hole" was observed on the surface of chloroplasts, and the thylakoids were dissolved and loose; and the P n and contents of functional elements (P, Mg, K, Ca, Mn, Fe, Ni, Cu, Zn and Mo) and chlorophyll decreased. Under these combined treatments, simulated acid rain and LaCl3 exhibited a synergistic effect. Based on the above results, a model of the combined effects of simulated acid rain and LaCl3 on plant photosynthesis was established in order to reveal the combined effects on plant photosynthesis, especially on the photosynthetic organelle-chloroplast. Our results would provide some references for further understanding the mechanism of the combined effects of simulated acid rain and LaCl3 on plant photosynthesis.

  9. Isolation and characterization of microsatellite loci in the Chinese Cobra Naja atra (Elapidae).

    PubMed

    Lin, Long-Hui; Mao, Lu-Xi; Luo, Xia; Qu, Yan-Fu; Ji, Xiang

    2011-01-01

    We characterize thirteen polymorphic microsatellite loci isolated from Naja atra genomic libraries, which were enriched for AC-motif microsatellites. The thirteen loci were screened on a group of 48 individuals from two populations, one in Yong'an and the other in Ganzhou. These markers revealed a relatively high degree of genetic diversity (4-12 alleles per locus) and heterozygosity (Ho ranged from 0.213-0.854 and He ranged from 0.301-0.838). Tests for departure from Hardy-Weinberg equilibrium and for linkage disequilibrium were conducted for each of the two populations separately. After sequential Bonferroni correction, none of the 13 loci showed significant departures from Hardy-Weinberg equilibrium. Hierarchical analysis of molecular variance indicated that a small but significant (P < 0.001) proportion (16.0%) of the total variation in the microsatellite DNA data were attributable to differences among populations, indicating geographical structuring and restricted gene flow. It could be attributable to the Wuyi mountains in the area having a sufficiently isolating effect to significantly reduce gene flow. Our microsatellite data also showed a low N(m) (1.31) value in the two populations from mainland China. Thus, the Yong'an and Ganzhou populations could be treated as distinct evolutionarily significant units (ESUs). The high level of polymorphism revealed by these microsatellite markers will be useful for the study of gene flow, population structure and evolutionary history of N. atra.

  10. Chloroplast targeting factor AKR2 evolved from an ankyrin repeat domain coincidentally binds two chloroplast lipids

    PubMed Central

    Kim, Dae Heon; Park, Mi-Jeong; Gwon, Gwang Hyeon; Silkov, Antonina; Xu, Zheng-Yi; Yang, Eun Chan; Song, Seohyeon; Song, Kyungyoung; Kim, Younghyun; Yoon, Hwan Su; Honig, Barry; Cho, Wonhwa; Cho, Yunje; Hwang, Inhwan

    2014-01-01

    SUMMARY In organellogenesis of the chloroplast from endosymbiotic cyanobacterium, the establishment of protein targeting mechanisms to the chloroplast should have been pivotal. However, it is still mysterious how these mechanisms were established and how they work in plant cells. Here, we show that AKR2A, the cytosolic targeting factor for chloroplast outer membrane (COM) proteins, evolved from the ankyrin repeat domain (ARD) of the host cell by stepwise extensions of its N-terminal domain, and two lipids monogalactosyldiacylglycerol (MGDG) and phosphatidylglycerol (PG) of the endosymbiont were selected to function as the AKR2A receptor. Structural analysis, molecular modeling and mutational analysis of the ARD identified two adjacent sites for coincidental and synergistic binding of MGDG and PG. Based on these findings, we propose that the targeting mechanism of COM proteins was established using components from both the endosymbiont and host cell through a modification of the protein-protein interacting ARD into a lipid binding domain. PMID:25203210

  11. Microsatellite characterization of Cimarron Uruguayo dogs

    PubMed Central

    Gagliardi, Rosa; Llambí, Silvia; García, Cristina; Arruga, María Victoria

    2011-01-01

    Various genetic markers, including microsatellites, have been used to analyze the genetic polymorphism and heterozygosity in canine breeds. In this work, we used nine microsatellite markers to investigate the genetic variability in Cimarron Uruguayo dogs, the only officially recognized native canine breed in Uruguay. DNA from 30 Cimarron Uruguayo dogs from northeastern and southern Uruguay was analyzed. The allelic frequencies for each microsatellite, the genetic variability and the consanguinity were calculated, as were the polymorphic information content (PIC) and the probability of exclusion (PE). All of the microsatellites studied were polymorphic. FH 2361, FH 2305 and PEZ 03 were the most informative, with PIC values > 0.7, in agreement with results for other canine breeds. The PE values for the markers were within the ranges previously described and were generally greater for microsatellites with higher PIC values. The heterozygosity value (0.649) was considered high since only nine microsatellites were analyzed. Compared with data for other breeds, the results obtained here indicate that Cimarron Uruguayo dogs have high genetic diversity. PMID:21637561

  12. New softwares for automated microsatellite marker development

    PubMed Central

    Martins, Wellington; de Sousa, Daniel; Proite, Karina; Guimarães, Patrícia; Moretzsohn, Marcio; Bertioli, David

    2006-01-01

    Microsatellites are repeated small sequence motifs that are highly polymorphic and abundant in the genomes of eukaryotes. Often they are the molecular markers of choice. To aid the development of microsatellite markers we have developed a module that integrates a program for the detection of microsatellites (TROLL), with the sequence assembly and analysis software, the Staden Package. The module has easily adjustable parameters for microsatellite lengths and base pair quality control. Starting with large datasets of unassembled sequence data in the form of chromatograms and/or text data, it enables the creation of a compact database consisting of the processed and assembled microsatellite containing sequences. For the final phase of primer design, we developed a program that accepts the multi-sequence ‘experiment file’ format as input and produces a list of primer pairs for amplification of microsatellite markers. The program can take into account the quality values of consensus bases, improving success rate of primer pairs in PCR. The software is freely available and simple to install in both Windows and Unix-based operating systems. Here we demonstrate the software by developing primer pairs for 427 new candidate markers for peanut. PMID:16493138

  13. New softwares for automated microsatellite marker development.

    PubMed

    Martins, Wellington; de Sousa, Daniel; Proite, Karina; Guimarães, Patrícia; Moretzsohn, Marcio; Bertioli, David

    2006-02-21

    Microsatellites are repeated small sequence motifs that are highly polymorphic and abundant in the genomes of eukaryotes. Often they are the molecular markers of choice. To aid the development of microsatellite markers we have developed a module that integrates a program for the detection of microsatellites (TROLL), with the sequence assembly and analysis software, the Staden Package. The module has easily adjustable parameters for microsatellite lengths and base pair quality control. Starting with large datasets of unassembled sequence data in the form of chromatograms and/or text data, it enables the creation of a compact database consisting of the processed and assembled microsatellite containing sequences. For the final phase of primer design, we developed a program that accepts the multi-sequence 'experiment file' format as input and produces a list of primer pairs for amplification of microsatellite markers. The program can take into account the quality values of consensus bases, improving success rate of primer pairs in PCR. The software is freely available and simple to install in both Windows and Unix-based operating systems. Here we demonstrate the software by developing primer pairs for 427 new candidate markers for peanut.

  14. Disruption of microtubules in plants suppresses macroautophagy and triggers starch excess-associated chloroplast autophagy

    PubMed Central

    Wang, Yan; Zheng, Xiyin; Yu, Bingjie; Han, Shaojie; Guo, Jiangbo; Tang, Haiping; Yu, Alice Yunzi L; Deng, Haiteng; Hong, Yiguo; Liu, Yule

    2015-01-01

    Microtubules, the major components of cytoskeleton, are involved in various fundamental biological processes in plants. Recent studies in mammalian cells have revealed the importance of microtubule cytoskeleton in autophagy. However, little is known about the roles of microtubules in plant autophagy. Here, we found that ATG6 interacts with TUB8/β-tubulin 8 and colocalizes with microtubules in Nicotiana benthamiana. Disruption of microtubules by either silencing of tubulin genes or treatment with microtubule-depolymerizing agents in N. benthamiana reduces autophagosome formation during upregulation of nocturnal or oxidation-induced macroautophagy. Furthermore, a blockage of leaf starch degradation occurred in microtubule-disrupted cells and triggered a distinct ATG6-, ATG5- and ATG7-independent autophagic pathway termed starch excess-associated chloroplast autophagy (SEX chlorophagy) for clearance of dysfunctional chloroplasts. Our findings reveal that an intact microtubule network is important for efficient macroautophagy and leaf starch degradation. PMID:26566764

  15. The chloroplast ATP-dependent Clp protease in vascular plants - new dimensions and future challenges.

    PubMed

    Clarke, Adrian K

    2012-05-01

    The ATP-dependent Clp protease is by far the most intricate protease in chloroplasts of vascular plants. Structurally, it is particularly complex with a proteolytic core complex containing 11 distinct subunits along with three potential chaperone partners. The Clp protease is also essential for chloroplast development and overall plant viability. Over the past decade, many of the important characteristics of this crucial protease have been revealed in the model plant species Arabidopsis thaliana. Despite this, challenges still remain in fully resolving certain key features, in particular, how the assembly of this multisubunit protease is regulated, the full range of native protein substrates and how they are targeted for degradation and how this complicated enzyme might have developed from simpler bacterial forms. This article focuses upon the recent advances in revealing the details underlying these important features. It also take the opportunity to speculate upon many of these findings in the hope of stimulating further investigation.

  16. The complete chloroplast genome of Phalaenopsis "Tiny Star".

    PubMed

    Kim, Goon-Bo; Kwon, Youngeun; Yu, Hee-Ju; Lim, Ki-Byung; Seo, Jae-Hwan; Mun, Jeong-Hwan

    2016-01-01

    We determined the complete chloroplast DNA sequence of Phalaenopsis "Tiny Star" based on Illumina sequencing. The total length of the chloroplast genome is 148,918 bp long with GC content of 36.7%. It contains 70 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Comparative analysis with the reported orchid chloroplast sequences identified unique InDel variations in the "Tiny Star" chloroplast genome that have potential as genetic markers to investigate the maternal lineage of Phalaenopsis and Doritaenopsis cultivars.

  17. Copper Delivery to Chloroplast Proteins and its Regulation.

    PubMed

    Aguirre, Guadalupe; Pilon, Marinus

    2015-01-01

    Copper is required for photosynthesis in chloroplasts of plants because it is a cofactor of plastocyanin, an essential electron carrier in the thylakoid lumen. Other chloroplast copper proteins are copper/zinc superoxide dismutase and polyphenol oxidase, but these proteins seem to be dispensable under conditions of low copper supply when transcripts for these proteins undergo microRNA-mediated down regulation. Two ATP-driven copper transporters function in tandem to deliver copper to chloroplast compartments. This review seeks to summarize the mechanisms of copper delivery to chloroplast proteins and its regulation. We also delineate some of the unanswered questions that still remain in this field.

  18. A role for mechanosensitive channels in chloroplast and bacterial fission.

    PubMed

    Wilson, Margaret; Haswell, Elizabeth

    2012-02-01

    The division site in both chloroplasts and bacteria is established by the medial placement of the FtsZ ring, a process that is in part regulated by the evolutionarily conserved components of the Min system. We recently showed that mechanosensitive ion channels influence FtsZ ring assembly in both Arabidopsis thaliana chloroplasts and in Escherichia coli; in chloroplasts they do so through the same genetic pathway as the Min system. Here we describe the effect of heterologous expression of the Arabidopsis MS channel homolog MSL2 on FtsZ ring placement in E. coli. We also discuss possible molecular mechanisms by which MS channels might influence chloroplast or bacterial division.

  19. Copper Delivery to Chloroplast Proteins and its Regulation

    PubMed Central

    Aguirre, Guadalupe; Pilon, Marinus

    2016-01-01

    Copper is required for photosynthesis in chloroplasts of plants because it is a cofactor of plastocyanin, an essential electron carrier in the thylakoid lumen. Other chloroplast copper proteins are copper/zinc superoxide dismutase and polyphenol oxidase, but these proteins seem to be dispensable under conditions of low copper supply when transcripts for these proteins undergo microRNA-mediated down regulation. Two ATP-driven copper transporters function in tandem to deliver copper to chloroplast compartments. This review seeks to summarize the mechanisms of copper delivery to chloroplast proteins and its regulation. We also delineate some of the unanswered questions that still remain in this field. PMID:26793223

  20. New insights into dynamic actin-based chloroplast photorelocation movement.

    PubMed

    Kong, Sam-Geun; Wada, Masamitsu

    2011-09-01

    Chloroplast movement is essential for plants to survive under various environmental light conditions. Phototropins-plant-specific blue-light-activated receptor kinases-mediate the response by perceiving light intensity and direction. Recently, novel chloroplast actin (cp-actin) filaments have been identified as playing a pivotal role in the directional chloroplast photorelocation movement. Encouraging progress has recently been made in this field of research through molecular genetics and cell biological analyses. This review describes factors that have been identified as being involved in chloroplast movement and their roles in the regulation of cp-actin filaments, thus providing a basis for reflection on their biochemical activities and functions.

  1. Complex chloroplast RNA metabolism: just debugging the genetic programme?

    PubMed Central

    Maier, Uwe G; Bozarth, Andrew; Funk, Helena T; Zauner, Stefan; Rensing, Stefan A; Schmitz-Linneweber, Christian; Börner, Thomas; Tillich, Michael

    2008-01-01

    Background The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity. Results We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants. Conclusion Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions. PMID:18755031

  2. Amylases in Pea Tissues with Reduced Chloroplast Density and/or Function.

    PubMed

    Saeed, M; Duke, S H

    1990-12-01

    Pea (Pisum sativum L.) tissues with reduced chloroplast density (e.g. petals and stems) or function (i.e. senescent leaves and leaves darkened for prolonged periods) were surveyed to determine whether tissues with genetically or environmentally reduced chloroplast density and/or function also have significantly different amylolytic enzyme activities and/or isoform patterns than leaf tissues with totally competent chloroplasts. Native PAGE followed by electrophoretically blotting through a starch or beta-limit dextrin containing gel and KI/I(2) staining revealed that the primary amylases in leaves, stems, petals, and roots were the primarily vacuolar beta-amylase (EC 3.2.1.2) and the primarily apoplastic alpha-amylase (EC 3.2.1.1). Among tissues of light grown pea plants, petals contained the highest levels of total amylolytic (primarily beta-amylase) activity and considerably higher ratios of beta- to alpha-amylase. In aerial tissues there was an inverse relationship between chlorophyll and starch concentration, and beta-amylase activity. In sections of petals and stems there was a pronounced inverse relationship between chlorophyll concentration and the activity of alpha-amylase. Senescing leaves of pea, as determined by age, and protein and chlorophyll content, contained 3.8-fold (fresh weight basis) and 32-fold (protein basis) higher alpha-amylase activity than fully mature leaves. Leaves maintained in darkness for 12 days displayed a 14-fold (fresh weight basis) increase in alpha-amylase activity over those grown under continuous light. In senescence and prolonged darkness studies, the alpha-amylase that was greatly increased in activity was the primarily apoplastic alpha-amylase. These studies indicate that there is a pronounced inverse relationship between chloroplast function and levels of apoplastic alpha-amylase activity and in some cases an inverse relationship between chloroplast density and/or function and vacuolar beta-amylase activity.

  3. Functional analyses of the Physcomitrella patens phytochromes in regulating chloroplast avoidance movement.

    PubMed

    Uenaka, Hidetoshi; Kadota, Akeo

    2007-09-01

    Red light-induced chloroplast movement in Physcomitrella patens (Pp) is mediated by dichroic phytochrome in the cytoplasm. To analyze the molecular function of the photoreceptor in the cytoplasm, we developed a protoplast system in which chloroplast photomovement was exclusively dependent on the expression of phytochrome cDNA constructs introduced by polyethylene glycol (PEG) transformation. YFP was fused to the phytochrome constructs and their expression was detected by fluorescence. The chloroplast avoidance response was induced in the protoplasts expressing a YFP fusion of PHY1-PHY3, but not of PHY4 or YFP alone. Phy::yfp fluorescence was detected in the cytoplasm. No change in the location of phy1::yfp or phy2::yfp was revealed before and after photomovement. When phy1::yfp and phy2::yfp were targeted to the nucleus by fusing a nuclear localization signal to the constructs, red light avoidance was not induced. To determine the domains of PHY2 essential for avoidance response, various partially-deleted PHY2::YFP constructs were tested. The N-terminal extension domain (NTE) was found to be necessary but the C-terminal histidine kinase-related domain (HKRD) was dispensable. An avoidance response was not induced under expression of phytochrome N-terminal half domain [deleting both the PAS (Per, Arnt, Sim)-related domain (PRD) and HKRD]. GUS fusion of this N-terminal half domain, reported to be fully functional in Arabidopsis for several phyA- and phyB-regulated responses was not effective in chloroplast avoidance movement. Domain requirement and GUS fusion effect were also confirmed in PHY1. These results indicate that Pp phy1-Pp phy3 in the cytoplasm mediate chloroplast avoidance movement, and that NTE and PRD, but not HKRD, are required for their function.

  4. Integrative Analyses of Colorectal Cancer Show Immunoscore Is a Stronger Predictor of Patient Survival Than Microsatellite Instability.

    PubMed

    Mlecnik, Bernhard; Bindea, Gabriela; Angell, Helen K; Maby, Pauline; Angelova, Mihaela; Tougeron, David; Church, Sarah E; Lafontaine, Lucie; Fischer, Maria; Fredriksen, Tessa; Sasso, Maristella; Bilocq, Amélie M; Kirilovsky, Amos; Obenauf, Anna C; Hamieh, Mohamad; Berger, Anne; Bruneval, Patrick; Tuech, Jean-Jacques; Sabourin, Jean-Christophe; Le Pessot, Florence; Mauillon, Jacques; Rafii, Arash; Laurent-Puig, Pierre; Speicher, Michael R; Trajanoski, Zlatko; Michel, Pierre; Sesboüe, Richard; Frebourg, Thierry; Pagès, Franck; Valge-Archer, Viia; Latouche, Jean-Baptiste; Galon, Jérôme

    2016-03-15

    Microsatellite instability in colorectal cancer predicts favorable outcomes. However, the mechanistic relationship between microsatellite instability, tumor-infiltrating immune cells, Immunoscore, and their impact on patient survival remains to be elucidated. We found significant differences in mutational patterns, chromosomal instability, and gene expression that correlated with patient microsatellite instability status. A prominent immune gene expression was observed in microsatellite-instable (MSI) tumors, as well as in a subgroup of microsatellite-stable (MSS) tumors. MSI tumors had increased frameshift mutations, showed genetic evidence of immunoediting, had higher densities of Th1, effector-memory T cells, in situ proliferating T cells, and inhibitory PD1-PDL1 cells, had high Immunoscores, and were infiltrated with mutation-specific cytotoxic T cells. Multivariate analysis revealed that Immunoscore was superior to microsatellite instability in predicting patients' disease-specific recurrence and survival. These findings indicate that assessment of the immune status via Immunoscore provides a potent indicator of tumor recurrence beyond microsatellite-instability staging that could be an important guide for immunotherapy strategies.

  5. RAP, the sole octotricopeptide repeat protein in Arabidopsis, is required for chloroplast 16S rRNA maturation.

    PubMed

    Kleinknecht, Laura; Wang, Fei; Stübe, Roland; Philippar, Katrin; Nickelsen, Jörg; Bohne, Alexandra-Viola

    2014-02-01

    The biogenesis and activity of chloroplasts in both vascular plants and algae depends on an intracellular network of nucleus-encoded, trans-acting factors that control almost all aspects of organellar gene expression. Most of these regulatory factors belong to the helical repeat protein superfamily, which includes tetratricopeptide repeat, pentatricopeptide repeat, and the recently identified octotricopeptide repeat (OPR) proteins. Whereas green algae express many different OPR proteins, only a single orthologous OPR protein is encoded in the genomes of most land plants. Here, we report the characterization of the only OPR protein in Arabidopsis thaliana, RAP, which has previously been implicated in plant pathogen defense. Loss of RAP led to a severe defect in processing of chloroplast 16S rRNA resulting in impaired chloroplast translation and photosynthesis. In vitro RNA binding and RNase protection assays revealed that RAP has an intrinsic and specific RNA binding capacity, and the RAP binding site was mapped to the 5' region of the 16S rRNA precursor. Nucleoid localization of RAP was shown by transient green fluorescent protein import assays, implicating the nucleoid as the site of chloroplast rRNA processing. Taken together, our data indicate that the single OPR protein in Arabidopsis is important for a basic process of chloroplast biogenesis.

  6. The chloroplast atpA gene cluster in Chlamydomonas reinhardtii. Functional analysis of a polycistronic transcription unit.

    PubMed

    Drapier, D; Suzuki, H; Levy, H; Rimbault, B; Kindle, K L; Stern, D B; Wollman, F A

    1998-06-01

    Most chloroplast genes in vascular plants are organized into polycistronic transcription units, which generate a complex pattern of mono-, di-, and polycistronic transcripts. In contrast, most Chlamydomonas reinhardtii chloroplast transcripts characterized to date have been monocistronic. This paper describes the atpA gene cluster in the C. reinhardtii chloroplast genome, which includes the atpA, psbI, cemA, and atpH genes, encoding the alpha-subunit of the coupling-factor-1 (CF1) ATP synthase, a small photosystem II polypeptide, a chloroplast envelope membrane protein, and subunit III of the CF0 ATP synthase, respectively. We show that promoters precede the atpA, psbI, and atpH genes, but not the cemA gene, and that cemA mRNA is present only as part of di-, tri-, or tetracistronic transcripts. Deletions introduced into the gene cluster reveal, first, that CF1-alpha can be translated from di- or polycistronic transcripts, and, second, that substantial reductions in mRNA quantity have minimal effects on protein synthesis rates. We suggest that posttranscriptional mRNA processing is common in C. reinhardtii chloroplasts, permitting the expression of multiple genes from a single promoter.

  7. Selective excitation of photosystems in chloroplasts inside plant leaves observed by near-infrared laser-based fluorescence spectral microscopy.

    PubMed

    Hasegawa, Makoto; Shiina, Takashi; Terazima, Masahide; Kumazaki, Shigeichi

    2010-02-01

    In this study, we produced selective images of photosystems in plant chloroplasts in situ. We used a spectroimaging microscope, equipped with a near-infrared (NIR) laser that provided light at wavelengths mainly between 800 and 830 nm, to analyze chlorophyll autofluorescence spectra and images from chloroplasts in leaves of Zea mays at room temperature. Femtosecond laser excitation of chloroplasts in mesophyll cells revealed a spectral shape that was attributable to PSII and its antenna in the centers of grana spots. We found that a continuous wave emitted by the NIR laser at a wavelength as long as 820 nm induced chlorophyll autofluorescence with a high contribution from PSI through a one-photon absorption mechanism. A spectral shape attributable to PSI and its antenna was thus obtained using continuous wave laser excitation of chloroplasts in bundle sheath cells. These highly pure spectra of photosystems were utilized for spectral decomposition at every intrachloroplast space to show distributions of PSI and PSII and their associated antenna. A new methodology using an NIR laser to detect the PSI/PSII ratio in single chloroplasts in leaves at room temperature is described.

  8. Functional determinants in transit sequences: import and partial maturation by vascular plant chloroplasts of the ribulose-1,5- bisphosphate carboxylase small subunit of Chlamydomonas

    PubMed Central

    1985-01-01

    The precursor of the ribulose-1,5-bisphosphate carboxylase small subunit and other proteins from Chlamydomonas reinhardtii are efficiently transported into chloroplasts isolated from spinach and pea. Thus, similar determinants specify precursor-chloroplast interactions in the alga and vascular plants. Removal of all or part of its transit sequence was found to block import of the algal small subunit into isolated chloroplasts. Comparison of available sequences revealed a nine amino acid segment conserved in the transit sequences of all small subunit precursors. A protease in the vascular plant chloroplasts recognized this region in the Chlamydomonas precursor and produced an intermediate form of the small subunit. We propose that processing of the small subunit precursor involves at least two proteolytic events; only one of these has been evolutionarily conserved. PMID:3965471

  9. The First Chloroplast Genome Sequence of Boswellia sacra, a Resin-Producing Plant in Oman.

    PubMed

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Asaf, Sajjad; Park, Chang Eon; Park, Gun-Seok; Khan, Abdur Rahim; Lee, In-Jung; Al-Rawahi, Ahmed; Shin, Jae-Ho

    2017-01-01

    Boswellia sacra (Burseraceae), a keystone endemic species, is famous for the production of fragrant oleo-gum resin. However, the genetic make-up especially the genomic information about chloroplast is still unknown. Here, we described for the first time the chloroplast (cp) genome of B. sacra. The complete cp sequence revealed a circular genome of 160,543 bp size with 37.61% GC content. The cp genome is a typical quadripartite chloroplast structure with inverted repeats (IRs 26,763 bp) separated by small single copy (SSC; 18,962 bp) and large single copy (LSC; 88,055 bp) regions. De novo assembly and annotation showed the presence of 114 unique genes with 83 protein-coding regions. The phylogenetic analysis revealed that the B. sacra cp genome is closely related to the cp genome of Azadirachta indica and Citrus sinensis, while most of the syntenic differences were found in the non-coding regions. The pairwise distance among 76 shared genes of B. sacra and A. indica was highest for atpA, rpl2, rps12 and ycf1. The cp genome of B. sacra reveals a novel genome, which could be used for further studied to understand its diversity, taxonomy and phylogeny.

  10. The First Chloroplast Genome Sequence of Boswellia sacra, a Resin-Producing Plant in Oman

    PubMed Central

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Asaf, Sajjad; Park, Chang Eon; Park, Gun-Seok; Khan, Abdur Rahim; Lee, In-Jung; Al-Rawahi, Ahmed; Shin, Jae-Ho

    2017-01-01

    Boswellia sacra (Burseraceae), a keystone endemic species, is famous for the production of fragrant oleo-gum resin. However, the genetic make-up especially the genomic information about chloroplast is still unknown. Here, we described for the first time the chloroplast (cp) genome of B. sacra. The complete cp sequence revealed a circular genome of 160,543 bp size with 37.61% GC content. The cp genome is a typical quadripartite chloroplast structure with inverted repeats (IRs 26,763 bp) separated by small single copy (SSC; 18,962 bp) and large single copy (LSC; 88,055 bp) regions. De novo assembly and annotation showed the presence of 114 unique genes with 83 protein-coding regions. The phylogenetic analysis revealed that the B. sacra cp genome is closely related to the cp genome of Azadirachta indica and Citrus sinensis, while most of the syntenic differences were found in the non-coding regions. The pairwise distance among 76 shared genes of B. sacra and A. indica was highest for atpA, rpl2, rps12 and ycf1. The cp genome of B. sacra reveals a novel genome, which could be used for further studied to understand its diversity, taxonomy and phylogeny. PMID:28085925

  11. Isolation and characterization of microsatellite loci from the yellow-eyed penguin (Megadyptes antipodes).

    PubMed

    Boessenkool, S; King, T M; Seddon, P J; Waters, J M

    2008-09-01

    Twelve microsatellite loci were isolated and characterized in the endangered yellow-eyed penguin (Megadyptes antipodes) using enriched genomic libraries. Polymorphic loci revealed two to eight alleles per locus and observed heterozygosity ranged from 0.21 to 0.77. These loci will be suitable for assessing current and historical patterns of genetic variability in yellow-eyed penguins.

  12. The complete chloroplast genome of Origanum vulgare L. (Lamiaceae).

    PubMed

    Lukas, Brigitte; Novak, Johannes

    2013-10-10

    Oregano (Origanum vulgare L., Lamiaceae) is a medicinal and aromatic plant maybe best known for flavouring pizza. New applications e.g. as natural antioxidants for food are emerging due to the plants' high antibacterial and antioxidant activity. The complete chloroplast (cp) genome of Origanum vulgare (GenBank/EBML/DDBJ accession number: JX880022) consists of 151,935 bp and includes a pair of inverted repeats (IR) of 25,527 bp separated by one small and one large single copy region (SSC and LSC) of 17,745 and 83,136 bp, respectively. The genome with an overall GC content of 38% hosts 114 genes that covering 63% of the genome of which 8% were introns. The comparison of the Origanum cp genome with the cp genomes of two other core lamiales (Salvia miltiorrhiza Bunge and Sesamum indicum L.) revealed completely conserved protein-coding regions in the IR region but also in the LSC and SSC regions. Phylogenetic analysis of the lamiids based on 56 protein-coding genes give a hint at the basic structure of the Lamiales. However, further genomes will be necessary to clarify this taxonomically complicated order. The variability of the cp within the genus Origanum, studied exemplarily on 16 different chloroplast DNA regions, demonstrated that in 14 regions analyzed, the variability was extremely low (max. 0.7%), while only two regions showed a moderate variability of up to 2.3%. The cp genome of Origanum vulgare contains 27 perfect mononucleotide repeats (number of repeats>9) consisting exclusively of the nucleotides A or T. 34 perfect repeats (repeat lengths>1 and number of repeats>3) were found, of which 32 were di-, and 2 were trinucleotide repeats.

  13. Disruption of the plastid ycf10 open reading frame affects uptake of inorganic carbon in the chloroplast of Chlamydomonas.

    PubMed Central

    Rolland, N; Dorne, A J; Amoroso, G; Sültemeyer, D F; Joyard, J; Rochaix, J D

    1997-01-01

    The product of the chloroplast ycf10 gene has been localized in the inner chloroplast envelope membrane (Sasaki et al., 1993) and found to display sequence homology with the cyanobacterial CotA product which is altered in mutants defective in CO2 transport and proton extrusion (Katoh et al., 1996a,b). In Chlamydomonas reinhardtii, ycf10, located between the psbI and atpH genes, encodes a putative hydrophobic protein of 500 residues, which is considerably larger than its higher plant homologue because of a long insertion that separates the conserved N and C termini. Using biolistic transformation, we have disrupted ycf10 with the chloroplast aadA expression cassette and examined the phenotype of the homoplasmic transformants. These were found to grow both photoheterotrophically and photoautotrophically under low light, thereby revealing that the Ycf10 product is not essential for the photosynthetic reactions. However, under high light these transformants did not grow photoautotrophically and barely photoheterotrophically. The increased light sensitivity of the transformants appears to result from a limitation in photochemical energy utilization and/or dissipation which correlates with a greatly diminished photosynthetic response to exogenous (CO2 + HCO3-), especially under conditions where the chloroplast inorganic carbon transport system is not induced. Mass spectrometric measurements with either whole cells or isolated chloroplasts from the transformants revealed that the CO2 and HCO3- uptake systems have a reduced affinity for their substrates. The results suggest the existence of a ycf10-dependent system within the plastid envelope which promotes efficient inorganic carbon (Ci) uptake into chloroplasts. PMID:9362486

  14. Characterization of ten microsatellite loci in midget faded rattlesnake (Crotalus oreganus concolor)

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Parker, Joshua M.

    2010-01-01

    Primers for 10 microsatellite loci were developed for midget faded rattlesnake (Crotalus oreganus concolor), a small bodied subspecies of the Western Rattlesnake, which is found in the Colorado Plateau of eastern Utah, western Colorado and southwestern Wyoming. In a screen of 23 individuals from the most northern portion of the subspecies range in southwestern Wyoming, the 10 loci were found to have levels of variability ranging from 4 to 11 alleles. No loci were found to be linked, although one locus revealed significant departures from Hardy–Weinberg equilibrium. These microsatellite loci will be applicable for population genetic analyses, which will ultimately aid in management efforts for this rare subspecies of rattlesnake.

  15. Genome-wide characterization of microsatellites in Triticeae species: abundance, distribution and evolution

    PubMed Central

    Deng, Pingchuan; Wang, Meng; Feng, Kewei; Cui, Licao; Tong, Wei; Song, Weining; Nie, Xiaojun

    2016-01-01

    Microsatellites are an important constituent of plant genome and distributed across entire genome. In this study, genome-wide analysis of microsatellites in 8 Triticeae species and 9 model plants revealed that microsatellite characteristics were similar among the Triticeae species. Furthermore, genome-wide microsatellite markers were designed in wheat and then used to analyze the evolutionary relationship of wheat and other Triticeae species. Results displayed that Aegilops tauschii was found to be the closest species to Triticum aestivum, followed by Triticum urartu, Triticum turgidum and Aegilops speltoides, while Triticum monococcum, Aegilops sharonensis and Hordeum vulgare showed a relatively lower PCR amplification effectivity. Additionally, a significantly higher PCR amplification effectivity was found in chromosomes at the same subgenome than its homoeologous when these markers were subjected to search against different chromosomes in wheat. After a rigorous screening process, a total of 20,666 markers showed high amplification and polymorphic potential in wheat and its relatives, which were integrated with the public available wheat markers and then anchored to the genome of wheat (CS). This study not only provided the useful resource for SSR markers development in Triticeae species, but also shed light on the evolution of polyploid wheat from the perspective of microsatellites. PMID:27561724

  16. Novel microsatellite markers acquired from Rubus coreanus Miq. and cross-amplification in other Rubus species.

    PubMed

    Lee, Gi-An; Song, Jae Young; Choi, Heh-Ran; Chung, Jong-Wook; Jeon, Young-Ah; Lee, Jung-Ro; Ma, Kyung-Ho; Lee, Myung-Chul

    2015-04-10

    The Rubus genus consists of more than 600 species that are distributed globally. Only a few Rubus species, including raspberries and blueberries, have been domesticated. Genetic diversity within and between Rubus species is an important resource for breeding programs. We developed genomic microsatellite markers using an SSR-enriched R. coreanus library to study the diversity of the Rubus species. Microsatellite motifs were discovered in 546 of 646 unique clones, and a dinucleotide repeat was the most frequent (75.3%) type of repeat. From 97 microsatellite loci with reproducible amplicons, we acquired 29 polymorphic microsatellite markers in the Rubus coreanus collection. The transferability values ranged from 59.8% to 84% across six Rubus species, and Rubus parvifolius had the highest transferability value (84%). The average number of alleles and the polymorphism information content were 5.7 and 0.541, respectively, in the R. coreanus collection. The diversity index of R. coreanus was similar to the values reported for other Rubus species. A phylogenetic dendrogram based on SSR profiles revealed that seven Rubus species could be allocated to three groups, and that R. coreanus was genetically close to Rubus crataegifolius (mountain berry). These new microsatellite markers might prove useful in studies of the genetic diversity, population structure, and evolutionary relationships among Rubus species.

  17. Multiplexed microsatellite recovery using massively parallel sequencing.

    PubMed

    Jennings, T N; Knaus, B J; Mullins, T D; Haig, S M; Cronn, R C

    2011-11-01

    Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of massively parallel sequencing (MPS), it is now possible to sequence microsatellite-enriched genomic libraries in multiplex pools. To test this approach, we prepared seven microsatellite-enriched, barcoded genomic libraries from diverse taxa (two conifer trees, five birds) and sequenced these on one lane of the Illumina Genome Analyzer using paired-end 80-bp reads. In this experiment, we screened 6.1 million sequences and identified 356,958 unique microreads that contained di- or trinucleotide microsatellites. Examination of four species shows that our conversion rate from raw sequences to polymorphic markers compares favourably to Sanger- and 454-based methods. The advantage of multiplexed MPS is that the staggering capacity of modern microread sequencing is spread across many libraries; this reduces sample preparation and sequencing costs to less than $400 (USD) per species. This price is sufficiently low that microsatellite libraries could be prepared and sequenced for all 1373 organisms listed as 'threatened' and 'endangered' in the United States for under $0.5 M (USD).

  18. Multiplexed microsatellite recovery using massively parallel sequencing

    USGS Publications Warehouse

    Jennings, T.N.; Knaus, B.J.; Mullins, T.D.; Haig, S.M.; Cronn, R.C.

    2011-01-01

    Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of massively parallel sequencing (MPS), it is now possible to sequence microsatellite-enriched genomic libraries in multiplex pools. To test this approach, we prepared seven microsatellite-enriched, barcoded genomic libraries from diverse taxa (two conifer trees, five birds) and sequenced these on one lane of the Illumina Genome Analyzer using paired-end 80-bp reads. In this experiment, we screened 6.1 million sequences and identified 356958 unique microreads that contained di- or trinucleotide microsatellites. Examination of four species shows that our conversion rate from raw sequences to polymorphic markers compares favourably to Sanger- and 454-based methods. The advantage of multiplexed MPS is that the staggering capacity of modern microread sequencing is spread across many libraries; this reduces sample preparation and sequencing costs to less than $400 (USD) per species. This price is sufficiently low that microsatellite libraries could be prepared and sequenced for all 1373 organisms listed as 'threatened' and 'endangered' in the United States for under $0.5M (USD).

  19. Arabidopsis thaliana leaves with altered chloroplast numbers and chloroplast movement exhibit impaired adjustments to both low and high light.

    PubMed

    Königer, Martina; Delamaide, Joy A; Marlow, Elizabeth D; Harris, Gary C

    2008-01-01

    The effects of chloroplast number and size on the capacity for blue light-dependent chloroplast movement, the ability to increase light absorption under low light, and the susceptibility to photoinhibition were investigated in Arabidopsis thaliana. Leaves of wild-type and chloroplast number mutants with mean chloroplast numbers ranging from 120 to two per mesophyll cell were analysed. Chloroplast movement was monitored as changes in light transmission through the leaves. Light transmission was used as an indicator of the ability of leaves to optimize light absorption. The ability of leaves to deal with 3 h of high light stress at 10 degrees C and their capacity to recover in low light was determined by measuring photochemical efficiencies of PSII using chlorophyll a fluorescence. Chloroplast movement was comparable in leaves ranging in chloroplast numbers from 120 to 30 per mesophyll cell: the final light transmission levels after exposure to 0.1 (accumulation response) and 100 micromol photons m(-2) s(-1) (avoidance response) were indistinguishable, the chloroplasts responded quickly to small increases in light intensity and the kinetics of movement were similar. However, when chloroplast numbers per mesophyll cell decreased to 18 or below, the accumulation response was significantly reduced. The avoidance response was only impaired in mutants with nine or fewer chloroplasts, both in terms of final transmission levels and the speed of movement. Only mutants lacking both blue light receptors (phot1/phot2) or those with drastically reduced chloroplast numbers and severely impacted avoidance responses showed a reduced ability to recover from high light stress.

  20. Evidence of multiple paternity in Morelet's Crocodile (Crocodylus moreletii) in Belize, CA, inferred from microsatellite markers.

    PubMed

    McVay, John D; Rodriguez, David; Rainwater, Thomas R; Dever, Jennifer A; Platt, Steven G; McMurry, Scott T; Forstner, Michael R J; Densmore, Llewellyn D

    2008-12-01

    Microsatellite data were generated from hatchlings collected from ten nests of Morelet's Crocodile (Crocodylus moreletii) from New River Lagoon and Gold Button Lagoon in Belize to test for evidence of multiple paternity. Nine microsatellite loci were genotyped for 188 individuals from the 10 nests, alongside 42 nonhatchlings from Gold Button Lagoon. Then mitochondrial control region sequences were generated for the nonhatchlings and for one individual from each nest to test for presence of C. acutus-like haplotypes. Analyses of five of the nine microsatellite loci revealed evidence that progeny from five of the ten nests were sired by at least two males. These data suggest the presence of multiple paternity as a mating strategy in the true crocodiles. This information may be useful in the application of conservation and management techniques to the 12 species in this genus, most of which are threatened or endangered.

  1. Membrane heredity and early chloroplast evolution.

    PubMed

    Cavalier-Smith, T

    2000-04-01

    Membrane heredity was central to the unique symbiogenetic origin from cyanobacteria of chloroplasts in the ancestor of Plantae (green plants, red algae, glaucophytes) and to subsequent lateral transfers of plastids to form even more complex photosynthetic chimeras. Each symbiogenesis integrated disparate genomes and several radically different genetic membranes into a more complex cell. The common ancestor of Plantae evolved transit machinery for plastid protein import. In later secondary symbiogeneses, signal sequences were added to target proteins across host perialgal membranes: independently into green algal plastids (euglenoids, chlorarachneans) and red algal plastids (alveolates, chromists). Conservatism and innovation during early plastid diversification are discussed.

  2. Noncoding chloroplast DNA variation in Mexican pines.

    PubMed

    Perez de la Rosa, J; Harris, S A; Farjon, A

    1995-11-01

    Universal primers were used for PCR amplification of three noncoding regions of chloroplast DNA in order to study restriction site variation in 12 Mexican pine species. Two length mutations were identified that are of diagnostic value for two subgenera or sections of the genus. Phylogenetic analysis of the restriction site and length variation showed patterns of variation largely consistent with previous arrangements of these pines, except for the position of Pinus nelsonii, indicating that Pinus section Parraya Mayr, as circumscribed by Little and Critchfield (1969) and later authors, is not a monophyletic group.

  3. Expression of eukaryotic polypeptides in chloroplasts

    DOEpatents

    Mayfield, Stephen P

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  4. The complete chloroplast genome of the Dendrobium strongylanthum (Orchidaceae: Epidendroideae).

    PubMed

    Li, Jing; Chen, Chen; Wang, Zhe-Zhi

    2016-07-01

    Complete chloroplast genome sequence is very useful for studying the phylogenetic and evolution of species. In this study, the complete chloroplast genome of Dendrobium strongylanthum was constructed from whole-genome Illumina sequencing data. The chloroplast genome is 153 058 bp in length with 37.6% GC content and consists of two inverted repeats (IRs) of 26 316 bp. The IR regions are separated by large single-copy region (LSC, 85 836 bp) and small single-copy (SSC, 14 590 bp) region. A total of 130 chloroplast genes were successfully annotated, including 84 protein coding genes, 38 tRNA genes, and eight rRNA genes. Phylogenetic analyses showed that the chloroplast genome of Dendrobium strongylanthum is related to that of the Dendrobium officinal.

  5. Non-contact intracellular binding of chloroplasts in vivo

    NASA Astrophysics Data System (ADS)

    Li, Yuchao; Xin, Hongbao; Liu, Xiaoshuai; Li, Baojun

    2015-06-01

    Non-contact intracellular binding and controllable manipulation of chloroplasts in vivo was demonstrated using an optical fiber probe. Launching a 980-nm laser beam into a fiber, which was placed about 3 μm above the surface of a living plant (Hydrilla verticillata) leaf, enabled stable binding of different numbers of chloroplasts, as well as their arrangement into one-dimensional chains and two-dimensional arrays inside the leaf without damaging the chloroplasts. Additionally, the formed chloroplast chains were controllably transported inside the living cells. The optical force exerted on the chloroplasts was calculated to explain the experimental results. This method provides a flexible method for studying intracellular organelle interaction with highly organized organelle-organelle contact in vivo in a non-contact manner.

  6. Comparative analysis of microsatellites and compound microsatellites in T4-like viruses.

    PubMed

    Zhou, Lan; Deng, Liang; Fu, Yongzhuo; Wu, Xiaolong; Zhao, Xiangyan; Chen, Yubao; Li, Mingfu; Tan, Zhongyang

    2016-01-10

    Microsatellites or simple sequence repeats (SSRs) are known to present ubiquitously in genomes of eukaryotes and prokaryotes, as well as viruses. A comprehensive analysis of microsatellites and compound microsatellites (CM) was performed for 67 T4-like bacteriophage genomes. We found that the number of repeats was generally proportional to the size of the genome. CM were more abundant in genic regions, while their relative abundance was higher in intergenic regions. Meanwhile, the number of CM rapidly decreased with the increase of complexity but gradually increased with higher dMAX (maximum distance between any two adjacent microsatellites). (A)n/(T)n, (AT)n/(TA)n and (AAG)n were the most abundant repeats of mono-, di- and trinucleotide microsatellites, respectively. The number of microsatellites in reference sequences was significantly lower than that in corresponding random sequences. This result was mainly attributed to mono- and dinucleotide repeats which hardly exceeded 6bp in T4-like viruses. These observations may be helpful to understand the distribution of microsatellites and viral genetic diversity in T4-like viruses.

  7. Hydrogen peroxide-mediated inactivation of two chloroplastic peroxidases, ascorbate peroxidase and 2-cys peroxiredoxin.

    PubMed

    Kitajima, Sakihito

    2008-01-01

    Reactive oxygen species (ROS), such as the superoxide anion and hydrogen peroxide, are generated by the photosystems because photoexcited electrons are often generated in excess of requirements for CO2 fixation and used for reducing molecular oxygen, even under normal environmental conditions. Moreover, ROS generation is increased in chloroplasts if plants are subjected to stresses, such as drought, high salinity and chilling. Chloroplast-localized isoforms of ascorbate peroxidase and possibly peroxiredoxins assume the principal role of scavenging hydrogen peroxide. However, in vitro studies revealed that both types of peroxidases are easily damaged by hydrogen peroxide and lose their catalytic activities. This is one contributing factor for cellular damage that occurs under severe oxidative stress. In this review, I describe mechanisms of hydrogen peroxide-mediated inactivation of these two enzymes and discuss a reason why they became susceptible to damage by hydrogen peroxide.

  8. Functional proteomics of barley and barley chloroplasts – strategies, methods and perspectives

    PubMed Central

    Petersen, Jørgen; Rogowska-Wrzesinska, Adelina; Jensen, Ole N.

    2013-01-01

    Barley (Hordeum vulgare) is an important cereal grain that is used in a range of products for animal and human consumption. Crop yield and seed quality has been optimized during decades by plant breeding programs supported by biotechnology and molecular biology techniques. The recently completed whole-genome sequencing of barley revealed approximately 26,100 open reading frames, which provides a foundation for detailed molecular studies of barley by functional genomics and proteomics approaches. Such studies will provide further insights into the mechanisms of, for example, drought and stress tolerance, micronutrient utilization, and photosynthesis in barley. In the present review we present the current state of proteomics research for investigations of barley chloroplasts, i.e., the organelle that contain the photosynthetic apparatus in the plant. We describe several different proteomics strategies and discuss their applications in characterization of the barley chloroplast as well as future perspectives for functional proteomics in barley research. PMID:23515231

  9. Alterations in rice chloroplast integrity, photosynthesis and metabolome associated with pathogenesis of Rhizoctonia solani

    PubMed Central

    Ghosh, Srayan; Kanwar, Poonam; Jha, Gopaljee

    2017-01-01

    Sheath blight disease is caused by a necrotrophic fungal pathogen Rhizoctonia solani and it continues to be a challenge for sustainable rice cultivation. In this study, we adopted a multi-pronged approach to understand the intricacies of rice undergoing susceptible interactions with R. solani. Extensive anatomical alteration, chloroplast localized ROS, deformed chloroplast ultrastructure along with decreased photosynthetic efficiency were observed in infected tissue. GC-MS based metabolite profiling revealed accumulation of glycolysis and TCA cycle intermediates, suggesting enhanced respiration. Several aromatic and aliphatic amino acids along with phenylpropanoid intermediates were also accumulated, suggesting induction of secondary metabolism during pathogenesis. Furthermore, alterations in carbon metabolism along with perturbation of hormonal signalling were highlighted in this study. The gene expression analysis including RNAseq profiling reinforced observed metabolic alterations in the infected tissues. In conclusion, the present study unravels key events associated during susceptible rice-R. solani interactions and identifies metabolites and transcripts that are accumulated in infected tissues. PMID:28165003

  10. High polymorphism at microsatellite loci in the Chinese donkey.

    PubMed

    Zhang, R F; Xie, W M; Zhang, T; Lei, C Z

    2016-06-24

    To reveal the genetic diversity and phylogenetic relationships between Chinese donkey breeds, 415 individuals representing ten breeds were investigated using ten microsatellite markers. The observed number of alleles, mean effective number of alleles (NE), mean expected heterozygosity (HE), and polymorphic information content (PIC) of each breed and polymorphic locus were analyzed. The results showed that seven (HTG7, HTG10, AHT4, HTG6, HMS6, HMS3, and HMS7) of ten microsatellite loci were polymorphic. The mean PIC, HE, and NE of seven polymorphic loci for the ten donkey breeds were 0.7679, 0.8072, and 6.0275, respectively. These results suggest that domestic Chinese donkey breeds possess higher levels of genetic diversity and heterozygosity than foreign donkeys. A neighbor-joining tree based on Nei's standard genetic distance showed that there was close genetic distance among Xinjiang, Qingyang, Xiji, and Guanzhong donkey breeds. In addition, Mongolia and Dezhou donkey breeds were placed in the same category. The phylogenetic tree revealed that the genetic relationships between Chinese donkey breeds are consistent with their geographic distribution and breeding history.

  11. Chloroplast targeting of FtsHprotease is essential for chloroplast development and thylakoid stability at elevated temperatures in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AtFtsH11 is a chloroplast and mitochondria dual targeted metalloprotease, identified as essential for Arabidopsis plant to survive at moderate high temperatures at all developmental stages. Our study showed that FtsH11 plays critical roles in both the early stages of chloroplast biogenesis and main...

  12. Habitat loss other than fragmentation per se decreased nuclear and chloroplast genetic diversity in a monoecious tree.

    PubMed

    Zhang, Xin; Shi, Miao-Miao; Shen, Dong-Wei; Chen, Xiao-Yong

    2012-01-01

    Generally, effect of fragmentation per se on biodiversity has not been separated from the effect of habitat loss. In this paper, using nDNA and cpDNA SSRs, we studied genetic diversity of Castanopsis sclerophylla (Lindl. & Paxton) Schotty populations and decoupled the effects of habitat loss and fragmentation per se. We selected seven nuclear and six cpDNA microsatellite loci and genotyped 460 individuals from mainland and island populations, which were located in the impoundment created in 1959. Number of alleles per locus of populations in larger habitats was significantly higher than that in smaller habitats. There was a significant relationship between the number of alleles per locus and habitat size. Based on this relationship, the predicted genetic diversity of an imaginary population of size equaling the total area of the islands was lower than that of the global population on the islands. Re-sampling demonstrated that low genetic diversity of populations in small habitats was caused by unevenness in sample size. Fisher's α index was similar among habitat types. These results indicate that the decreased nuclear and chloroplast genetic diversity of populations in smaller habitats was mainly caused by habitat loss. For nuclear and chloroplast microsatellite loci, values of F(ST) were 0.066 and 0.893, respectively, and the calculated pollen/seed dispersal ratio was 162.2. When separated into pre-and post-fragmentation cohorts, pollen/seed ratios were 121.2 and 189.5, respectively. Our results suggest that habitat loss explains the early decrease in genetic diversity, while fragmentation per se may play a major role in inbreeding and differentiation among fragmented populations and later loss of genetic diversity.

  13. Newly identified CSP41b gene localized in chloroplasts affects leaf color in rice.

    PubMed

    Mei, Jiasong; Li, Feifei; Liu, Xuri; Hu, Guocheng; Fu, Yaping; Liu, Wenzhen

    2017-03-01

    A rice mutant with light-green leaves was discovered from a transgenic line of Oryza sativa. The mutant has reduced chlorophyll content and abnormal chloroplast morphology throughout its life cycle. Genetic analysis revealed that a single nuclear-encoded recessive gene is responsible for the mutation, here designated as lgl1. To isolate the lgl1 gene, a high-resolution physical map of the chromosomal region around the lgl1 gene was made using a mapping population consisting of 1984 mutant individuals. The lgl1 gene was mapped in the 76.5kb region between marker YG4 and marker YG5 on chromosome 12. Sequence analysis revealed that there was a 39bp deletion within the fourth exon of the candidate gene Os12g0420200 (TIGR locus Os12g23180) encoding a chloroplast stem-loop-binding protein of 41kDa b (CSP41b). The lgl1 mutation was rescued by transformation with the wild type CSP41b gene. Accordingly, the CSP41b gene is identified as the LGL1 gene. CSP41b was transcribed in various tissues and was mainly expressed in leaves. Expression of CSP41b-GFP fusion protein indicated that CSP41b is localized in chloroplasts. The expression levels of some key genes involved in chlorophyll biosynthesis and photosynthesis, such as ChlD, ChlI, Hema1, Ygl1, POR, Cab1R, Cab2R, PsaA, and rbcL, was significantly changed in the lgl1 mutant. Our results demonstrate that CSP41b is a novel gene required for normal leaf color and chloroplast morphology in rice.

  14. (Calcium gating of proton fluxes in chloroplasts)

    SciTech Connect

    Dilley, R.A.

    1991-01-01

    Work supported by this grant has been aimed at better understanding the still-mysterious phenomenon of sequestered proton gradients which strong evidence suggests can energize ATP formation in chloroplast organelle membranes. Results from several laboratories support the notion that chloroplasts can couple the energy of H{sup +} gradients. Research in may lab has, since 1983, been deeply involved in a two-pronged approach, (A) identifying and quantitating sequestered proton buffering groups and (B) trying to elucidate just how the sequestered H{sup +} gradient is maintained and what regulates the switching between the localized and delocalized coupling modes. One aspect we have worked on under DOE auspices is the question whether the localized H{sup +} coupling, routinely detected in my lab by a protocol which measures the number of single-turnover flashes (usually fired at 5 Hz) required to reach the energization threshold for ATP formation, can continue in steady illumination. It is possible to consider that a localized coupling response could be observed in the initial energization transient followed obligatorily by the sustained H{sup +} gradient equilibrating with the lumen bulk phase. If that occurred, it would have very important ramifications as to how one evaluates the possible physiological meaning of localized'' coupling. To test this, we developed a steady illumination protocol which is briefly discussed.

  15. Ferredoxin-linked chloroplast enzymes. Progress report

    SciTech Connect

    1993-12-31

    This report summarizes research on ferredoxin:NADP{sup +} oxidoreductase and ferredoxin:thioredoxin reductase. One of the primary goals of the original proposal was to map the ferredoxin-binding sites on three soluble enzymes that are located in spinach chloroplasts and utilize ferredoxin as an electron donor:Ferredoxin:NADP{sup +} oxidoreductase (FNR); ferredoxin:thioredoxin reductase (FTR) and glutamate synthase. As the availability of amino acid sequences for the enzymes are important in such studies, it was proposed that the amino acid sequence of glutamate synthase be determined. The amino acid sequences of FNR, FTR and ferredoxin are already known. An aim related to elucidating the binding sites on these enzymes for ferredoxin was to determine whether there is a common site on ferredoxin involved in binding to all of these ferredoxin-dependent chloroplast enzymes and, if so, to map it. One additional aim was to characterize thioredoxin binding by FTR and determine whether the same site on FTR is involved in binding both ferredoxin and thioredoxin. Considerable progress has been made on most of these original projects, although work conducted on FTR is still in its preliminary stages.

  16. Arginine Decarboxylase Is Localized in Chloroplasts.

    PubMed Central

    Borrell, A.; Culianez-Macia, F. A.; Altabella, T.; Besford, R. T.; Flores, D.; Tiburcio, A. F.

    1995-01-01

    Plants, unlike animals, can use either ornithine decarboxylase or arginine decarboxylase (ADC) to produce the polyamine precursor putrescine. Lack of knowledge of the exact cellular and subcellular location of these enzymes has been one of the main obstacles to our understanding of the biological role of polyamines in plants. We have generated polyclonal antibodies to oat (Avena sativa L.) ADC to study the spatial distribution and subcellular localization of ADC protein in different oat tissues. By immunoblotting and immunocytochemistry, we show that ADC is organ specific. By cell fractionation and immunoblotting, we show that ADC is localized in chloroplasts associated with the thylakoid membrane. The results also show that increased levels of ADC protein are correlated with high levels of ADC activity and putrescine in osmotically stressed oat leaves. A model of compartmentalization for the arginine pathway and putrescine biosynthesis in active photosynthetic tissues has been proposed. In the context of endosymbiote-driven metabolic evolution in plants, the location of ADC in the chloroplast compartment may have major evolutionary significance, since it explains (a) why plants can use two alternative pathways for putrescine biosynthesis and (b) why animals do not possess ADC. PMID:12228631

  17. Complete sequence of Euglena gracilis chloroplast DNA.

    PubMed Central

    Hallick, R B; Hong, L; Drager, R G; Favreau, M R; Monfort, A; Orsat, B; Spielmann, A; Stutz, E

    1993-01-01

    We report the complete DNA sequence of the Euglena gracilis, Pringsheim strain Z chloroplast genome. This circular DNA is 143,170 bp, counting only one copy of a 54 bp tandem repeat sequence that is present in variable copy number within a single culture. The overall organization of the genome involves a tandem array of three complete and one partial ribosomal RNA operons, and a large single copy region. There are genes for the 16S, 5S, and 23S rRNAs of the 70S chloroplast ribosomes, 27 different tRNA species, 21 ribosomal proteins plus the gene for elongation factor EF-Tu, three RNA polymerase subunits, and 27 known photosynthesis-related polypeptides. Several putative genes of unknown function have also been identified, including five within large introns, and five with amino acid sequence similarity to genes in other organisms. This genome contains at least 149 introns. There are 72 individual group II introns, 46 individual group III introns, 10 group II introns and 18 group III introns that are components of twintrons (introns-within-introns), and three additional introns suspected to be twintrons composed of multiple group II and/or group III introns, but not yet characterized. At least 54,804 bp, or 38.3% of the total DNA content is represented by introns. PMID:8346031

  18. Heteroplasmy of chloroplast DNA in Medicago.

    PubMed

    Johnson, L B; Palmer, J D

    1989-01-01

    Two chloroplast DNA (cpDNA) regions exhibiting a high frequency of intra- or inter-species variation were identified in 12 accessions of the genus Medicago. Restriction maps of both regions were prepared for alfalfa, and the probable nature of the events causing the DNA differences was identified. Specific DNA fragments were then cloned for use in identification of variants in each region. Two each of M. sativa ssp. varia and ssp. caerulea and one of six M. sativa ssp. sativa single plants examined possessed cpDNA heterogeneity as identified by screening extracts for fragments generated by the presence and absence of a specific Xba I restriction site. Three plants of M. sativa ssp. sativa, two of each of sspp. varia and caerulea, and three M. scutellata were also examined for single-plant cpDNA heterogeneity at a hypervariable region where differences resulted from small insertion-deletion events. A single M. scutellata plant with mixed cpDNAs was identified. Sorting out was seen when one spp. sativa plant with mixed plastid types identifiable by the Xba I restriction site difference was vegetatively propagated. This indicated that the initial stock plant was heteroplastidic. Controlled crosses will be required in order to test whether heteroplasmy results from chloroplast transmission in the pollen and to examine the dynamic of sorting out. However, heteroplasmy is apparently not a rare situation in Medicago.

  19. The Chloroplast Genome of Pellia endiviifolia: Gene Content, RNA-Editing Pattern, and the Origin of Chloroplast Editing

    PubMed Central

    Grosche, Christopher; Funk, Helena T.; Maier, Uwe G.; Zauner, Stefan

    2012-01-01

    RNA editing is a post-transcriptional process that can act upon transcripts from mitochondrial, nuclear, and chloroplast genomes. In chloroplasts, single-nucleotide conversions in mRNAs via RNA editing occur at different frequencies across the plant kingdom. These range from several hundred edited sites in some mosses and ferns to lower frequencies in seed plants and the complete lack of RNA editing in the liverwort Marchantia polymorpha. Here, we report the sequence and edited sites of the chloroplast genome from the liverwort Pellia endiviifolia. The type and frequency of chloroplast RNA editing display a pattern highly similar to that in seed plants. Analyses of the C to U conversions and the genomic context in which the editing sites are embedded provide evidence in favor of the hypothesis that chloroplast RNA editing evolved to compensate mutations in the first land plants. PMID:23221608

  20. The workflow for quantitative proteome analysis of chloroplast development and differentiation, chloroplast mutants, and protein interactions by spectral counting.

    PubMed

    Friso, Giulia; Olinares, Paul Dominic B; van Wijk, Klaas J

    2011-01-01

    This chapter outlines a quantitative proteomics workflow using a label-free spectral counting technique. The workflow has been tested on different aspects of chloroplast biology in maize and Arabidopsis, including chloroplast mutant analysis, cell-type specific chloroplast differentiation, and the proplastid-to-chloroplast transition. The workflow involves one-dimensional SDS-PAGE of the proteomes of leaves or chloroplast subfractions, tryptic digestions, online LC-MS/MS using a mass spectrometer with high mass accuracy and duty cycle, followed by semiautomatic data processing. The bioinformatics analysis can effectively select best gene models and deals with quantification of closely related proteins; the workflow avoids overidentification of proteins and results in more accurate protein quantification. The final output includes pairwise comparative quantitative analysis, as well as hierarchical clustering for discovery of temporal and spatial patterns of protein accumulation. A brief discussion about potential pitfalls, as well as the advantages and disadvantages of spectral counting, is provided.

  1. The chloroplast genome of Pellia endiviifolia: gene content, RNA-editing pattern, and the origin of chloroplast editing.

    PubMed

    Grosche, Christopher; Funk, Helena T; Maier, Uwe G; Zauner, Stefan

    2012-01-01

    RNA editing is a post-transcriptional process that can act upon transcripts from mitochondrial, nuclear, and chloroplast genomes. In chloroplasts, single-nucleotide conversions in mRNAs via RNA editing occur at different frequencies across the plant kingdom. These range from several hundred edited sites in some mosses and ferns to lower frequencies in seed plants and the complete lack of RNA editing in the liverwort Marchantia polymorpha. Here, we report the sequence and edited sites of the chloroplast genome from the liverwort Pellia endiviifolia. The type and frequency of chloroplast RNA editing display a pattern highly similar to that in seed plants. Analyses of the C to U conversions and the genomic context in which the editing sites are embedded provide evidence in favor of the hypothesis that chloroplast RNA editing evolved to compensate mutations in the first land plants.

  2. Triplet-repeat microsatellites shared among hard and soft pines.

    PubMed

    Kutil, B L; Williams, C G

    2001-01-01

    Vascular plant species have shown a low level of microsatellite conservation compared to many animal species. Finding trans-specific microsatellites for plants may be improved by using a priori knowledge of genome organization. Fifteen triplet-repeat microsatellites from hard pine (Pinus taeda L.) were tested for trans-specific amplification across seven hard pines (P. palustris Mill., P. echinata Mill., P. radiata D. Don., P. patula Schiede et Deppe, P. halepensis Mill., P. kesiya Royle), a soft pine (P. strobus L.), and Picea rubens Sargent. Seven of 15 microsatellites had trans-specific amplification in both hard and soft pine subgenera. Two P. taeda microsatellites had conserved flanking regions and repeat motifs in all seven hard pines, soft pine P. strobus, and P. rubens. Perfect triplet-repeat P. taeda microsatellites appear to be better candidates for trans-specific polymorphism than compound microsatellites. Not all perfect triplet-repeat microsatellites were conserved, but all conserved microsatellites had perfect repeat motifs. Persistent microsatellites PtTX2123 and PtTX3020 had highly conserved flanking regions and a conserved repeat motif composition with variable repeat unit numbers. Using trinucleotide microsatellites improved trans-specific microsatellite recovery among hard and soft pine species.

  3. Conditional Depletion of the Chlamydomonas Chloroplast ClpP Protease Activates Nuclear Genes Involved in Autophagy and Plastid Protein Quality Control[W

    PubMed Central

    Ramundo, Silvia; Casero, David; Mühlhaus, Timo; Hemme, Dorothea; Sommer, Frederik; Crèvecoeur, Michèle; Rahire, Michèle; Schroda, Michael; Rusch, Jannette; Goodenough, Ursula; Pellegrini, Matteo; Perez-Perez, Maria Esther; Crespo, José Luis; Schaad, Olivier; Civic, Natacha; Rochaix, Jean David

    2014-01-01

    Plastid protein homeostasis is critical during chloroplast biogenesis and responses to changes in environmental conditions. Proteases and molecular chaperones involved in plastid protein quality control are encoded by the nucleus except for the catalytic subunit of ClpP, an evolutionarily conserved serine protease. Unlike its Escherichia coli ortholog, this chloroplast protease is essential for cell viability. To study its function, we used a recently developed system of repressible chloroplast gene expression in the alga Chlamydomonas reinhardtii. Using this repressible system, we have shown that a selective gradual depletion of ClpP leads to alteration of chloroplast morphology, causes formation of vesicles, and induces extensive cytoplasmic vacuolization that is reminiscent of autophagy. Analysis of the transcriptome and proteome during ClpP depletion revealed a set of proteins that are more abundant at the protein level, but not at the RNA level. These proteins may comprise some of the ClpP substrates. Moreover, the specific increase in accumulation, both at the RNA and protein level, of small heat shock proteins, chaperones, proteases, and proteins involved in thylakoid maintenance upon perturbation of plastid protein homeostasis suggests the existence of a chloroplast-to-nucleus signaling pathway involved in organelle quality control. We suggest that this represents a chloroplast unfolded protein response that is conceptually similar to that observed in the endoplasmic reticulum and in mitochondria. PMID:24879428

  4. Conditional Depletion of the Chlamydomonas Chloroplast ClpP Protease Activates Nuclear Genes Involved in Autophagy and Plastid Protein Quality Control.

    PubMed

    Ramundo, Silvia; Casero, David; Mühlhaus, Timo; Hemme, Dorothea; Sommer, Frederik; Crèvecoeur, Michèle; Rahire, Michèle; Schroda, Michael; Rusch, Jannette; Goodenough, Ursula; Pellegrini, Matteo; Perez-Perez, Maria Esther; Crespo, José Luis; Schaad, Olivier; Civic, Natacha; Rochaix, Jean David

    2014-05-01

    Plastid protein homeostasis is critical during chloroplast biogenesis and responses to changes in environmental conditions. Proteases and molecular chaperones involved in plastid protein quality control are encoded by the nucleus except for the catalytic subunit of ClpP, an evolutionarily conserved serine protease. Unlike its Escherichia coli ortholog, this chloroplast protease is essential for cell viability. To study its function, we used a recently developed system of repressible chloroplast gene expression in the alga Chlamydomonas reinhardtii. Using this repressible system, we have shown that a selective gradual depletion of ClpP leads to alteration of chloroplast morphology, causes formation of vesicles, and induces extensive cytoplasmic vacuolization that is reminiscent of autophagy. Analysis of the transcriptome and proteome during ClpP depletion revealed a set of proteins that are more abundant at the protein level, but not at the RNA level. These proteins may comprise some of the ClpP substrates. Moreover, the specific increase in accumulation, both at the RNA and protein level, of small heat shock proteins, chaperones, proteases, and proteins involved in thylakoid maintenance upon perturbation of plastid protein homeostasis suggests the existence of a chloroplast-to-nucleus signaling pathway involved in organelle quality control. We suggest that this represents a chloroplast unfolded protein response that is conceptually similar to that observed in the endoplasmic reticulum and in mitochondria.

  5. Comparative Analysis of the Chloroplast Genomic Information of Cunninghamia lanceolata (Lamb.) Hook with Sibling Species from the Genera Cryptomeria D. Don, Taiwania Hayata, and Calocedrus Kurz.

    PubMed

    Zheng, Weiwei; Chen, Jinhui; Hao, Zhaodong; Shi, Jisen

    2016-07-07

    Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is an important coniferous tree species for timber production, which accounts for ~40% of log supply from plantations in southern China. Chloroplast genetic engineering is an exciting field to engineer several valuable tree traits. In this study, we revisited the published complete Chinese fir (NC_021437) and four other coniferous species chloroplast genome sequence in Taxodiaceae. Comparison of their chloroplast genomes revealed three unique inversions found in the downstream of the gene clusters and evolutionary divergence were found, although overall the chloroplast genomic structure of the Cupressaceae linage was conserved. We also investigated the phylogenetic position of Chinese fir among conifers by examining gene functions, selection forces, substitution rates, and the full chloroplast genome sequence. Consistent with previous molecular systematics analysis, the results provided a well-supported phylogeny framework for the Cupressaceae that strongly confirms the "basal" position of Cunninghamia lanceolata. The structure of the Cunninghamia lanceolata chloroplast genome showed a partial lack of one IR copy, rearrangements clearly occurred and slight evolutionary divergence appeared among the cp genome of C. lanceolata, Taiwania cryptomerioides, Taiwania flousiana, Calocedrus formosana and Cryptomeria japonica. The information from sequence divergence and length variation of genes could be further considered for bioengineering research.

  6. Comparative Analysis of the Chloroplast Genomic Information of Cunninghamia lanceolata (Lamb.) Hook with Sibling Species from the Genera Cryptomeria D. Don, Taiwania Hayata, and Calocedrus Kurz

    PubMed Central

    Zheng, Weiwei; Chen, Jinhui; Hao, Zhaodong; Shi, Jisen

    2016-01-01

    Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is an important coniferous tree species for timber production, which accounts for ~40% of log supply from plantations in southern China. Chloroplast genetic engineering is an exciting field to engineer several valuable tree traits. In this study, we revisited the published complete Chinese fir (NC_021437) and four other coniferous species chloroplast genome sequence in Taxodiaceae. Comparison of their chloroplast genomes revealed three unique inversions found in the downstream of the gene clusters and evolutionary divergence were found, although overall the chloroplast genomic structure of the Cupressaceae linage was conserved. We also investigated the phylogenetic position of Chinese fir among conifers by examining gene functions, selection forces, substitution rates, and the full chloroplast genome sequence. Consistent with previous molecular systematics analysis, the results provided a well-supported phylogeny framework for the Cupressaceae that strongly confirms the “basal” position of Cunninghamia lanceolata. The structure of the Cunninghamia lanceolata chloroplast genome showed a partial lack of one IR copy, rearrangements clearly occurred and slight evolutionary divergence appeared among the cp genome of C. lanceolata, Taiwania cryptomerioides, Taiwania flousiana, Calocedrus formosana and Cryptomeria japonica. The information from sequence divergence and length variation of genes could be further considered for bioengineering research. PMID:27399686

  7. Photosynthesis-dependent formation of convoluted plasma membrane domains in Chara internodal cells is independent of chloroplast position.

    PubMed

    Foissner, Ilse; Sommer, Aniela; Hoeftberger, Margit

    2015-07-01

    The characean green alga Chara australis forms complex plasma membrane convolutions called charasomes when exposed to light. Charasomes are involved in local acidification of the surrounding medium which facilitates carbon uptake required for photosynthesis. They have hitherto been only described in the internodal cells and in close contact with the stationary chloroplasts. Here, we show that charasomes are not only present in the internodal cells of the main axis, side branches, and branchlets but that the plasma membranes of chloroplast-containing nodal cells, protonemata, and rhizoids are also able to invaginate into complex domains. Removal of chloroplasts by local irradiation with intense light revealed that charasomes can develop at chloroplast-free "windows" and that the resulting pH banding pattern is independent of chloroplast or window position. Charasomes were not detected along cell walls containing functional plasmodesmata. However, charasomes formed next to a smooth wound wall which was deposited onto the plasmodesmata-containing wall when the neighboring cell was damaged. In contrast, charasomes were rarely found at uneven, bulged wound walls which protrude into the streaming endoplasm and which were induced by ligation or puncturing. The results of this study show that charasome formation, although dependent on photosynthesis, does not require intimate contact with chloroplasts. Our data suggest further that the presence of plasmodesmata inhibits charasome formation and/or that exposure to the outer medium is a prerequisite for charasome formation. Finally, we hypothesize that the absence of charasomes at bulged wound walls is due to the disturbance of uniform laminar mass streaming.

  8. Albino Leaf1 That Encodes the Sole Octotricopeptide Repeat Protein Is Responsible for Chloroplast Development1[OPEN

    PubMed Central

    Tan, Jianjie; Xing, Yi; Liu, Changhong; Chen, Qiaoling; Zhu, Haitao; Wang, Jiang; Zhang, Jingliu; Zhang, Guiquan

    2016-01-01

    Chloroplast, the photosynthetic organelle in plants, plays a crucial role in plant development and growth through manipulating the capacity of photosynthesis. However, the regulatory mechanism of chloroplast development still remains elusive. Here, we characterized a mutant with defective chloroplasts in rice (Oryza sativa), termed albino leaf1 (al1), which exhibits a distinct albino phenotype in leaves, eventually leading to al1 seedling lethality. Electronic microscopy observation demonstrated that the number of thylakoids was reduced and the structure of thylakoids was disrupted in the al1 mutant during rice development, which eventually led to the breakdown of chloroplast. Molecular cloning revealed that AL1 encodes the sole octotricopeptide repeat protein (RAP) in rice. Genetic complementation of Arabidopsis (Arabidopsis thaliana) rap mutants indicated that the AL1 protein is a functional RAP. Further analysis illustrated that three transcript variants were present in the AL1 gene, and the altered splices occurred at the 3′ untranslated region of the AL1 transcript. In addition, our results also indicate that disruption of the AL1 gene results in an altered expression of chloroplast-associated genes. Consistently, proteomic analysis demonstrated that the abundance of photosynthesis-associated proteins is altered significantly, as is that of a group of metabolism-associated proteins. More specifically, we found that the loss of AL1 resulted in altered abundances of ribosomal proteins, suggesting that RAP likely also regulates the homeostasis of ribosomal proteins in rice in addition to the ribosomal RNA. Taken together, we propose that AL1, particularly the AL1a and AL1c isoforms, plays an essential role in chloroplast development in rice. PMID:27208287

  9. Differential Replication of Two Chloroplast Genome Forms in Heteroplasmic Chlamydomonas reinhardtii Gametes Contributes to Alternative Inheritance Patterns

    PubMed Central

    Nishimura, Yoshiki; Stern, David B.

    2010-01-01

    Two mechanisms for chloroplast DNA replication have been revealed through the study of an unusual heteroplasmic strain of the green alga Chlamydomonas reinhardtii. Heteroplasmy is a state in which more than one genome type occurs in a mitochondrion or chloroplast. The Chlamydomonas strain spa19 bears two distinct chloroplast genomes, termed PS+ and PS−. PS+ genomes predominate and are stably maintained in vegetative cells, despite their lack of known replication origins. In sexual crosses with spa19 as the mating type plus parent, however, PS+ genomes are transmitted in only ∼25% of tetrads, whereas the PS− genomes are faithfully inherited in all progeny. In this research, we have explored the mechanism underlying this biased uniparental inheritance. We show that the relative reduction and dilution of PS+ vs. PS− genomes takes place during gametogenesis. Bromodeoxyuridine labeling, followed by immunoprecipitation and PCR, was used to compare replication activities of PS+ and PS− genomes. We found that the replication of PS+ genomes is specifically suppressed during gametogenesis and germination of zygospores, a phenomenon that also was observed when spa19 cells were treated with rifampicin, an inhibitor of the chloroplast RNA polymerase. Furthermore, when bromodeoxyuridine incorporation was compared at 11 sites within the chloroplast genome between vegetative cells, gametes, and rifampicin-treated cells by quantitative PCR, we found that incorporation was often reduced at the same sites in gametes that were also sensitive to rifampicin treatment. We conclude that a transcription-mediated form of DNA replication priming, which may be downregulated during gametogenesis, is indispensable for robust maintenance of PS+ genomes. These results highlight the potential for chloroplast genome copy number regulation through alternative replication strategies. PMID:20519744

  10. Differential replication of two chloroplast genome forms in heteroplasmic Chlamydomonas reinhardtii gametes contributes to alternative inheritance patterns.

    PubMed

    Nishimura, Yoshiki; Stern, David B

    2010-08-01

    Two mechanisms for chloroplast DNA replication have been revealed through the study of an unusual heteroplasmic strain of the green alga Chlamydomonas reinhardtii. Heteroplasmy is a state in which more than one genome type occurs in a mitochondrion or chloroplast. The Chlamydomonas strain spa19 bears two distinct chloroplast genomes, termed PS+ and PS-. PS+ genomes predominate and are stably maintained in vegetative cells, despite their lack of known replication origins. In sexual crosses with spa19 as the mating type plus parent, however, PS+ genomes are transmitted in only approximately 25% of tetrads, whereas the PS- genomes are faithfully inherited in all progeny. In this research, we have explored the mechanism underlying this biased uniparental inheritance. We show that the relative reduction and dilution of PS+ vs. PS- genomes takes place during gametogenesis. Bromodeoxyuridine labeling, followed by immunoprecipitation and PCR, was used to compare replication activities of PS+ and PS- genomes. We found that the replication of PS+ genomes is specifically suppressed during gametogenesis and germination of zygospores, a phenomenon that also was observed when spa19 cells were treated with rifampicin, an inhibitor of the chloroplast RNA polymerase. Furthermore, when bromodeoxyuridine incorporation was compared at 11 sites within the chloroplast genome between vegetative cells, gametes, and rifampicin-treated cells by quantitative PCR, we found that incorporation was often reduced at the same sites in gametes that were also sensitive to rifampicin treatment. We conclude that a transcription-mediated form of DNA replication priming, which may be downregulated during gametogenesis, is indispensable for robust maintenance of PS+ genomes. These results highlight the potential for chloroplast genome copy number regulation through alternative replication strategies.

  11. Antisense Transcript and RNA Processing Alterations Suppress Instability of Polyadenylated mRNA in Chlamydomonas Chloroplasts

    PubMed Central

    Nishimura, Yoshiki; Kikis, Elise A.; Zimmer, Sara L.; Komine, Yutaka; Stern, David B.

    2004-01-01

    In chloroplasts, the control of mRNA stability is of critical importance for proper regulation of gene expression. The Chlamydomonas reinhardtii strain Δ26pAtE is engineered such that the atpB mRNA terminates with an mRNA destabilizing polyadenylate tract, resulting in this strain being unable to conduct photosynthesis. A collection of photosynthetic revertants was obtained from Δ26pAtE, and gel blot hybridizations revealed RNA processing alterations in the majority of these suppressor of polyadenylation (spa) strains, resulting in a failure to expose the atpB mRNA 3′ poly(A) tail. Two exceptions were spa19 and spa23, which maintained unusual heteroplasmic chloroplast genomes. One genome type, termed PS+, conferred photosynthetic competence by contributing to the stability of atpB mRNA; the other, termed PS−, was required for viability but could not produce stable atpB transcripts. Based on strand-specific RT-PCR, S1 nuclease protection, and RNA gel blots, evidence was obtained that the PS+ genome stabilizes atpB mRNA by generating an atpB antisense transcript, which attenuates the degradation of the polyadenylated form. The accumulation of double-stranded RNA was confirmed by insensitivity of atpB mRNA from PS+ genome-containing cells to S1 nuclease digestion. To obtain additional evidence for antisense RNA function in chloroplasts, we used strain Δ26, in which atpB mRNA is unstable because of the lack of a 3′ stem-loop structure. In this context, when a 121-nucleotide segment of atpB antisense RNA was expressed from an ectopic site, an elevated accumulation of atpB mRNA resulted. Finally, when spa19 was placed in a genetic background in which expression of the chloroplast exoribonuclease polynucleotide phosphorylase was diminished, the PS+ genome and the antisense transcript were no longer required for photosynthesis. Taken together, our results suggest that antisense RNA in chloroplasts can protect otherwise unstable transcripts from 3′→5

  12. Formation kinetics and H2O2 distribution in chloroplasts and protoplasts of photosynthetic leaf cells of higher plants under illumination.

    PubMed

    Naydov, I A; Mubarakshina, M M; Ivanov, B N

    2012-02-01

    The dye H(2)DCF-DA, which forms the fluorescent molecule DCF in the reaction with hydrogen peroxide, H(2)O(2), was used to study light-induced H(2)O(2) production in isolated intact chloroplasts and in protoplasts of mesophyll cells of Arabidopsis, pea, and maize. A technique to follow the kinetics of light-induced H(2)O(2) production in the photosynthesizing cells using this dye has been developed. Distribution of DCF fluorescence in these cells in the light has been investigated. It was found that for the first minutes of illumination the intensity of DCF fluorescence increases linearly after a small lag both in isolated chloroplasts and in chloroplasts inside protoplast. In protoplasts of Arabidopsis mutant vtc2-2 with disturbed biosynthesis of ascorbate, the rate of increase in DCF fluorescence intensity in chloroplasts was considerably higher than in protoplasts of the wild type plant. Illumination of protoplasts also led to an increase in DCF fluorescence intensity in mitochondria. Intensity of DCF fluorescence in chloroplasts increased much more rapidly than in cytoplasm. The cessation of cytoplasmic movement under illumination lowered the rate of DCF fluorescence intensity increase in chloroplasts and sharply accelerated it in the cytoplasm. It was revealed that in response to switching off the light, the intensity of fluorescence of both DCF and fluorescent dye FDA increases in the cytoplasm in the vicinity of chloroplasts, while it decreases in the chloroplasts; the opposite changes occur in response to switching on the light again. It was established that these phenomena are connected with proton transport from chloroplasts in the light. In the presence of nigericin, which prevents the establishment of transmembrane proton gradients, the level of DCF fluorescence in cytoplasm was higher and increased more rapidly than in the chloroplasts from the very beginning of illumination. These results imply the presence of H(2)O(2) export from chloroplasts to

  13. Chloroplast: The Trojan Horse in Plant-Virus Interaction.

    PubMed

    Bhattacharyya, Dhriti; Chakraborty, Supriya

    2017-01-05

    Chloroplast is one of the most dynamic organelle of a plant cell. It carries out photosynthesis, synthesizes major phytohormones, takes active part in defence response, and is crucial for inter-organelle signaling. Viruses, on the other hand, are extremely strategic in manipulating the internal environment of the host cell. Chloroplast, a prime target for viruses, undergoes enormous structural and functional damage during viral infection. In fact, large proportions of affected gene products in a virus infected plant are closely associated to chloroplast and photosynthesis process. Although chloroplast is deficient in gene-silencing machinery, it elicits effector-triggered immune response against viral pathogens. Virus infection induces the organelle to produce extensive network of stromules which are involved in both viral propagation and anti-viral defence. From last few decades' study, involvement of chloroplast in regulating plant-virus interaction has become increasingly evident. Current review presents an exhaustive account of these facts, with their implication in pathogenicity. We have attempted to highlight the intricacies of chloroplast-virus interaction and explained the existing gaps in current knowledge, which will promote the virologists to utilize the chloroplast genome-based antiviral resistance in economically important crops. This article is protected by copyright. All rights reserved.

  14. Import of Soluble Proteins into Chloroplasts and Potential Regulatory Mechanisms

    PubMed Central

    Sjuts, Inga; Soll, Jürgen; Bölter, Bettina

    2017-01-01

    Chloroplasts originated from an endosymbiotic event in which a free-living cyanobacterium was engulfed by an ancestral eukaryotic host. During evolution the majority of the chloroplast genetic information was transferred to the host cell nucleus. As a consequence, proteins formerly encoded by the chloroplast genome are now translated in the cytosol and must be subsequently imported into the chloroplast. This process involves three steps: (i) cytosolic sorting procedures, (ii) binding to the designated receptor-equipped target organelle and (iii) the consecutive translocation process. During import, proteins have to overcome the two barriers of the chloroplast envelope, namely the outer envelope membrane (OEM) and the inner envelope membrane (IEM). In the majority of cases, this is facilitated by two distinct multiprotein complexes, located in the OEM and IEM, respectively, designated TOC and TIC. Plants are constantly exposed to fluctuating environmental conditions such as temperature and light and must therefore regulate protein composition within the chloroplast to ensure optimal functioning of elementary processes such as photosynthesis. In this review we will discuss the recent models of each individual import stage with regard to short-term strategies that plants might use to potentially acclimate to changes in their environmental conditions and preserve the chloroplast protein homeostasis. PMID:28228773

  15. GLK gene pairs regulate chloroplast development in diverse plant species.

    PubMed

    Fitter, David W; Martin, David J; Copley, Martin J; Scotland, Robert W; Langdale, Jane A

    2002-09-01

    Chloroplast biogenesis is a complex process that requires close co-ordination between two genomes. Many of the proteins that accumulate in the chloroplast are encoded by the nuclear genome, and the developmental transition from proplastid to chloroplast is regulated by nuclear genes. Here we show that a pair of Golden 2-like (GLK) genes regulates chloroplast development in Arabidopsis. The GLK proteins are members of the GARP superfamily of transcription factors, and phylogenetic analysis demonstrates that the maize, rice and Arabidopsis GLK gene pairs comprise a distinct group within the GARP superfamily. Further phylogenetic analysis suggests that the gene pairs arose through separate duplication events in the monocot and dicot lineages. As in rice, AtGLK1 and AtGLK2 are expressed in partially overlapping domains in photosynthetic tissue. Insertion mutants demonstrate that this expression pattern reflects a degree of functional redundancy as single mutants display normal phenotypes in most photosynthetic tissues. However, double mutants are pale green in all photosynthetic tissues and chloroplasts exhibit a reduction in granal thylakoids. Products of several genes involved in light harvesting also accumulate at reduced levels in double mutant chloroplasts. GLK genes therefore regulate chloroplast development in diverse plant species.

  16. Does Chloroplast Size Influence Photosynthetic Nitrogen Use Efficiency?

    PubMed Central

    Li, Yong; Ren, Binbin; Ding, Lei; Shen, Qirong; Peng, Shaobing; Guo, Shiwei

    2013-01-01

    High nitrogen (N) supply frequently results in a decreased photosynthetic N-use efficiency (PNUE), which indicates a less efficient use of accumulated Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Chloroplasts are the location of Rubisco and the endpoint of CO2 diffusion, and they play a vital important role in photosynthesis. However, the effects of chloroplast development on photosynthesis are poorly explored. In the present study, rice seedlings (Oryza sativa L., cv. ‘Shanyou 63’, and ‘Yangdao 6’) were grown hydroponically with three different N levels, morphological characteristics, photosynthetic variables and chloroplast size were measured. In Shanyou 63, a negative relationship between chloroplast size and PNUE was observed across three different N levels. Here, plants with larger chloroplasts had a decreased ratio of mesophyll conductance (gm) to Rubisco content (gm/Rubisco) and a lower Rubisco specific activity. In Yangdao 6, there was no change in chloroplast size and no decline in PNUE or gm/Rubisco ratio under high N supply. It is suggested that large chloroplasts under high N supply is correlated with the decreased Rubisco specific activity and PNUE. PMID:23620801

  17. Chloroplasts move towards the nearest anticlinal walls under dark condition.

    PubMed

    Tsuboi, Hidenori; Wada, Masamitsu

    2012-03-01

    Chloroplasts change their intracellular positions in response to their light environment. Under darkness, chloroplasts assume special positions that are different from those under light conditions. Here, we analyzed chloroplast dark positioning using Adiantum capillus-veneris gametophyte cells. When chloroplasts were transferred into darkness, during the first 1-5 h, they moved towards the anticlinal cell walls bordering the adjacent cells rather rapidly. Then, they slowed down and accumulated at the anticlinal walls gradually over the following 24-36 h. The chloroplast movements could be roughly classified into two different categories: initial rapid straight movement and later, slow staggering movement. When the chloroplast accumulation response was induced in dark-adapted cells by partial cell irradiation with a microbeam targeted to the center of the cells, chloroplasts moved towards the beam spot from the anticlinal walls. However, when the microbeam was switched off, they moved to the nearest anticlinal walls and not to their original positions if they were not the closest, indicating that they know the direction of the nearest anticlinal wall and do not have particular areas that they migrate to during dark positioning.

  18. Microsatellite markers for raspberry and blackberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    welve microsatellites were isolated from SSR-enriched genomic libraries of Rubus idaeus L.‘Meeker’ red raspberry (diploid) and R. loganobaccus L. H. Bailey ‘Marion’ blackberry-raspberry hybrid (hexaploid). These primer pairs, with the addition of one developed from a GenBank R. idaeus sequence, we...

  19. Microsatellite Markers for Raspberries and Blackberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twelve microsatellites were isolated from SSR-enriched genomic libraries of Rubus idaeus L.‘Meeker’ red raspberry (diploid) and R. loganobaccus L. H. Bailey ‘Marion’ blackberry-raspberry hybrid (hexaploid). These primer pairs, with the addition of one developed from a GenBank R. idaeus sequence, w...

  20. Microsatellite markers in plant pathogenic fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowing the genetic diversity of plant pathogenic fungi is essential in the management of crops and disease. The genetic variability of fungal pathogens can be evaluated using molecular markers, among which, microsatellites are a relatively inexpensive source of information. We have developed an e...

  1. Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii

    PubMed Central

    2014-01-01

    Chloroplast transformation in the photosynthetic alga Chlamydomonas reinhardtii has been used to explore the potential to use it as an inexpensive and easily scalable system for the production of therapeutic recombinant proteins. Diverse proteins, such as bacterial and viral antigens, antibodies and, immunotoxins have been successfully expressed in the chloroplast using endogenous and chimeric promoter sequences. In some cases, proteins have accumulated to high level, demonstrating that this technology could compete with current production platforms. This review focuses on the works that have engineered the chloroplast of C. reinhardtii with the aim of producing recombinant proteins intended for therapeutical use in humans or animals. PMID:25136510

  2. Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii.

    PubMed

    Almaraz-Delgado, Alma Lorena; Flores-Uribe, José; Pérez-España, Víctor Hugo; Salgado-Manjarrez, Edgar; Badillo-Corona, Jesús Agustín

    2014-01-01

    Chloroplast transformation in the photosynthetic alga Chlamydomonas reinhardtii has been used to explore the potential to use it as an inexpensive and easily scalable system for the production of therapeutic recombinant proteins. Diverse proteins, such as bacterial and viral antigens, antibodies and, immunotoxins have been successfully expressed in the chloroplast using endogenous and chimeric promoter sequences. In some cases, proteins have accumulated to high level, demonstrating that this technology could compete with current production platforms. This review focuses on the works that have engineered the chloroplast of C. reinhardtii with the aim of producing recombinant proteins intended for therapeutical use in humans or animals.

  3. Decreased capacity for sodium export out of Arabidopsis chloroplasts impairs salt tolerance, photosynthesis and plant performance.

    PubMed

    Müller, Maria; Kunz, Hans-Henning; Schroeder, Julian I; Kemp, Grant; Young, Howard S; Neuhaus, H Ekkehard

    2014-05-01

    Salt stress is a widespread phenomenon, limiting plant performance in large areas around the world. Although various types of plant sodium/proton antiporters have been characterized, the physiological function of NHD1 from Arabidopsis thaliana has not been elucidated in detail so far. Here we report that the NHD1-GFP fusion protein localizes to the chloroplast envelope. Heterologous expression of AtNHD1 was sufficient to complement a salt-sensitive Escherichia coli mutant lacking its endogenous sodium/proton exchangers. Transport competence of NHD1 was confirmed using recombinant, highly purified carrier protein reconstituted into proteoliposomes, proving Na(+) /H(+) antiport. In planta NHD1 expression was found to be highest in mature and senescent leaves but was not induced by sodium chloride application. When compared to wild-type controls, nhd1 T-DNA insertion mutants showed decreased biomasses and lower chlorophyll levels after sodium feeding. Interestingly, if grown on sand and supplemented with high sodium chloride, nhd1 mutants exhibited leaf tissue Na(+) levels similar to those of wild-type plants, but the Na(+) content of chloroplasts increased significantly. These high sodium levels in mutant chloroplasts resulted in markedly impaired photosynthetic performance as revealed by a lower quantum yield of photosystem II and increased non-photochemical quenching. Moreover, high Na(+) levels might hamper activity of the plastidic bile acid/sodium symporter family protein 2 (BASS2). The resulting pyruvate deficiency might cause the observed decreased phenylalanine levels in the nhd1 mutants due to lack of precursors.

  4. The Complete Chloroplast Genome of Guadua angustifolia and Comparative Analyses of Neotropical-Paleotropical Bamboos

    PubMed Central

    Wu, Miaoli; Lan, Siren; Cai, Bangping; Chen, Shipin; Chen, Hui; Zhou, Shiliang

    2015-01-01

    To elucidate chloroplast genome evolution within neotropical-paleotropical bamboos, we fully characterized the chloroplast genome of the woody bamboo Guadua angustifolia. This genome is 135,331 bp long and comprises of an 82,839-bp large single-copy (LSC) region, a 12,898-bp small single-copy (SSC) region, and a pair of 19,797-bp inverted repeats (IRs). Comparative analyses revealed marked conservation of gene content and sequence evolutionary rates between neotropical and paleotropical woody bamboos. The neotropical herbaceous bamboo Cryptochloa strictiflora differs from woody bamboos in IR/SSC boundaries in that it exhibits slightly contracted IRs and a faster substitution rate. The G. angustifolia chloroplast genome is similar in size to that of neotropical herbaceous bamboos but is ~3 kb smaller than that of paleotropical woody bamboos. Dissimilarities in genome size are correlated with differences in the lengths of intergenic spacers, which are caused by large-fragment insertion and deletion. Phylogenomic analyses of 62 taxa yielded a tree topology identical to that found in preceding studies. Divergence time estimation suggested that most bamboo genera diverged after the Miocene and that speciation events of extant species occurred during or after the Pliocene. PMID:26630488

  5. Intraspecific and heteroplasmic variations, gene losses and inversions in the chloroplast genome of Astragalus membranaceus

    PubMed Central

    Lei, Wanjun; Ni, Dapeng; Wang, Yujun; Shao, Junjie; Wang, Xincun; Yang, Dan; Wang, Jinsheng; Chen, Haimei; Liu, Chang

    2016-01-01

    Astragalus membranaceus is an important medicinal plant in Asia. Several of its varieties have been used interchangeably as raw materials for commercial production. High resolution genetic markers are in urgent need to distinguish these varieties. Here, we sequenced and analyzed the chloroplast genome of A. membranaceus (Fisch.) Bunge var. mongholicus (Bunge) P.K. Hsiao using the next generation DNA sequencing technology. The genome was assembled using Abyss and then subjected to gene prediction using CPGAVAS and repeat analysis using MISA, Tandem Repeats Finder, and REPuter. Finally, the genome was subjected phylogenetic and comparative genomic analyses. The complete genome is 123,582 bp long, containing only one copy of the inverted repeat. Gene prediction revealed 110 genes encoding 76 proteins, 30 tRNAs, and four rRNAs. Five intra-specific hypermutation loci were identified, three of which are heteroplasmic. Furthermore, three gene losses and two large inversions were identified. Comparative genomic analyses demonstrated the dynamic nature of the Papilionoideae chloroplast genomes, which showed occurrence of numerous hypermutation loci, frequent gene losses, and fragment inversions. Results obtained herein elucidate the complex evolutionary history of chloroplast genomes and have laid the foundation for the identification of genetic markers to distinguish A. membranaceus varieties. PMID:26899134

  6. Ion Channels in Native Chloroplast Membranes: Challenges and Potential for Direct Patch-Clamp Studies

    PubMed Central

    Pottosin, Igor; Dobrovinskaya, Oxana

    2015-01-01

    Photosynthesis without any doubt depends on the activity of the chloroplast ion channels. The thylakoid ion channels participate in the fine partitioning of the light-generated proton-motive force (p.m.f.). By regulating, therefore, luminal pH, they affect the linear electron flow and non-photochemical quenching. Stromal ion homeostasis and signaling, on the other hand, depend on the activity of both thylakoid and envelope ion channels. Experimentally, intact chloroplasts and swollen thylakoids were proven to be suitable for direct measurements of the ion channels activity via conventional patch-clamp technique; yet, such studies became infrequent, although their potential is far from being exhausted. In this paper we wish to summarize existing challenges for direct patch-clamping of native chloroplast membranes as well as present available results on the activity of thylakoid Cl− (ClC?) and divalent cation-permeable channels, along with their tentative roles in the p.m.f. partitioning, volume regulation, and stromal Ca2+ and Mg2+ dynamics. Patch-clamping of the intact envelope revealed both large-conductance porin-like channels, likely located in the outer envelope membrane and smaller conductance channels, more compatible with the inner envelope location. Possible equivalent model for the sandwich-like arrangement of the two envelope membranes within the patch electrode will be discussed, along with peculiar properties of the fast-activated cation channel in the context of the stromal pH control. PMID:26733887

  7. Transcriptional regulation and DNA methylation in plastids during transitional conversion of chloroplasts to chromoplasts.

    PubMed Central

    Kobayashi, H; Ngernprasirtsiri, J; Akazawa, T

    1990-01-01

    During transitional conversion of chloroplasts to chromoplasts in ripening tomato (Lycopersicon esculentum) fruits, transcripts for several plastid genes for photosynthesis decreased to undetectable levels. Run-on transcription of plastids indicated that transcriptional regulation operated as a predominant factor. We found that most of the genes in chloroplasts were actively transcribed in vitro by Escherichia coli and soluble plastid RNA polymerases, but some genes in chromoplasts seemed to be silent when assayed by the in vitro systems. The regulatory step, therefore, was ascribed to DNA templates. The analysis of modified base composition revealed the presence of methylated bases in chromoplast DNA, in which 5-methylcytosine was most abundant. The presence of 5-methylcytosine detected by isoschizomeric endonucleases and Southern hybridization was correlated with the undetectable transcription activity of each gene in the run-on assay and in vitro transcription experiments. It is thus concluded that the suppression of transcription mediated by DNA methylation is one of the mechanisms governing gene expression in plastids converting from chloroplasts to chromoplasts. Images Fig. 1 Fig. 2 Fig. 3. Fig. 4. Fig. 5. PMID:2303026

  8. Post-translational Modifications in Regulation of Chloroplast Function: Recent Advances

    PubMed Central

    Grabsztunowicz, Magda; Koskela, Minna M.; Mulo, Paula

    2017-01-01

    Post-translational modifications (PTMs) of proteins enable fast modulation of protein function in response to metabolic and environmental changes. Phosphorylation is known to play a major role in regulating distribution of light energy between the Photosystems (PS) I and II (state transitions) and in PSII repair cycle. In addition, thioredoxin-mediated redox regulation of Calvin cycle enzymes has been shown to determine the efficiency of carbon assimilation. Besides these well characterized modifications, recent methodological progress has enabled identification of numerous other types of PTMs in various plant compartments, including chloroplasts. To date, at least N-terminal and Lys acetylation, Lys methylation, Tyr nitration and S-nitrosylation, glutathionylation, sumoylation and glycosylation of chloroplast proteins have been described. These modifications impact DNA replication, control transcriptional efficiency, regulate translational machinery and affect metabolic activities within the chloroplast. Moreover, light reactions of photosynthesis as well as carbon assimilation are regulated at multiple levels by a number of PTMs. It is likely that future studies will reveal new metabolic pathways to be regulated by PTMs as well as detailed molecular mechanisms of PTM-mediated regulation. PMID:28280500

  9. Species delimitation in the Central African herbs Haumania (Marantaceae) using georeferenced nuclear and chloroplastic DNA sequences.

    PubMed

    Ley, A C; Hardy, O J

    2010-11-01

    Species delimitation is a fundamental biological concept which is frequently discussed and altered to integrate new insights. These revealed that speciation is not a one step phenomenon but an ongoing process and morphological characters alone are not sufficient anymore to properly describe the results of this process. Here we want to assess the degree of speciation in two closely related lianescent taxa from the tropical African genus Haumania which display distinct vegetative traits despite a high similarity in reproductive traits and a partial overlap in distribution area which might facilitate gene flow. To this end, we combined phylogenetic and phylogeographic analyses using nuclear (nr) and chloroplast (cp) DNA sequences in comparison to morphological species descriptions. The nuclear dataset unambiguously supports the morphological species concept in Haumania. However, the main chloroplastic haplotypes are shared between species and, although a geographic analysis of cpDNA diversity confirms that individuals from the same taxon are more related than individuals from distinct taxa, cp-haplotypes display correlated geographic distributions between species. Hybridization is the most plausible reason for this pattern. A scenario involving speciation in geographic isolation followed by range expansion is outlined. The study highlights the gain of information on the speciation process in Haumania by adding georeferenced molecular data to the morphological characteristics. It also shows that nr and cp sequence data might provide different but complementary information, questioning the reliability of the unique use of chloroplast data for species recognition by DNA barcoding.

  10. Partners in crime: bidirectional transcription in unstable microsatellite disease.

    PubMed

    Batra, Ranjan; Charizanis, Konstantinos; Swanson, Maurice S

    2010-04-15

    Nearly two decades have passed since the discovery that the expansion of microsatellite trinucleotide repeats is responsible for a prominent class of neurological disorders, including Huntington disease and fragile X syndrome. These hereditary diseases are characterized by genetic anticipation or the intergenerational increase in disease severity accompanied by a decrease in age-of-onset. The revelation that the variable expansion of simple sequence repeats accounted for anticipation spawned a number of pathogenesis models and a flurry of studies designed to reveal the molecular events affected by these expansions. This work led to our current understanding that expansions in protein-coding regions result in extended homopolymeric amino acid tracts, often polyglutamine or polyQ, and deleterious protein gain-of-function effects. In contrast, expansions in noncoding regions cause RNA-mediated toxicity. However, the realization that the transcriptome is considerably more complex than previously imagined, as well as the emerging regulatory importance of antisense RNAs, has blurred this distinction. In this review, we summarize evidence for bidirectional transcription of microsatellite disease genes and discuss recent suggestions that some repeat expansions produce variable levels of both toxic RNAs and proteins that influence cell viability, disease penetrance and pathological severity.

  11. Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes.

    PubMed

    Daniell, Henry; Lee, Seung-Bum; Grevich, Justin; Saski, Christopher; Quesada-Vargas, Tania; Guda, Chittibabu; Tomkins, Jeffrey; Jansen, Robert K

    2006-05-01

    Despite the agricultural importance of both potato and tomato, very little is known about their chloroplast genomes. Analysis of the complete sequences of tomato, potato, tobacco, and Atropa chloroplast genomes reveals significant insertions and deletions within certain coding regions or regulatory sequences (e.g., deletion of repeated sequences within 16S rRNA, ycf2 or ribosomal binding sites in ycf2). RNA, photosynthesis, and atp synthase genes are the least divergent and the most divergent genes are clpP, cemA, ccsA, and matK. Repeat analyses identified 33-45 direct and inverted repeats >or=30 bp with a sequence identity of at least 90%; all but five of the repeats shared by all four Solanaceae genomes are located in the same genes or intergenic regions, suggesting a functional role. A comprehensive genome-wide analysis of all coding sequences and intergenic spacer regions was done for the first time in chloroplast genomes. Only four spacer regions are fully conserved (100% sequence identity) among all genomes; deletions or insertions within some intergenic spacer regions result in less than 25% sequence identity, underscoring the importance of choosing appropriate intergenic spacers for plastid transformation and providing valuable new information for phylogenetic utility of the chloroplast intergenic spacer regions. Comparison of coding sequences with expressed sequence tags showed considerable amount of variation, resulting in amino acid changes; none of the C-to-U conversions observed in potato and tomato were conserved in tobacco and Atropa. It is possible that there has been a loss of conserved editing sites in potato and tomato.

  12. Light Mediated Generation of Silver Nanoparticles by Spinach Thylakoids/Chloroplasts

    PubMed Central

    Shabnam, Nisha; Sharmila, P.; Kim, Hyunook; Pardha-Saradhi, P.

    2016-01-01

    The unique potential of chloroplasts/thylakoids to harness light energy to transport electrons from H2O to various entities was exploited for reduction of Ag+ to generate nanoparticles (NPs). Spinach thylakoids/chloroplasts turned AgNO3 solutions brown in light, but not in dark. Besides showing Ag-NPs specific surface plasmon resonance band, these brown solutions showed presence of 5–30 nm crystalline NPs composed of Ag. Powder X-ray diffraction (PXRD) analysis revealed that Ag-NPs were biphasic composed of face-centered cubic Ag0 and cubic Ag2O. X-ray photoelectron spectroscopy (XPS) data further corroborated the presence of Ag2O in Ag-NPs. Limited formation of Ag-NPs in dark and increased generation of Ag0/Ag2O–NPs with increase in light intensity (photon flux density) by thylakoids/chloroplasts, established the role of light-harvesting photosynthetic machinery in generation of Ag0/Ag2O-NPs. Potential of thylakoids/chloroplasts to generate Ag-NPs from Ag+ on exposure to red and blue wavelength regions of visible light of electromagnetic spectrum, further confirmed the involvement of photosynthetic electron transport in reduction of Ag+ and generation of Ag-NPs. While light energy mediated photosynthetic electron transport donates energized electrons extracted from H2O to Ag+ to form Ag0-NPs, O2 released as a by-product during photolysis of H2O oxidizes Ag0 to form Ag2O-NPs. Our findings furnish a novel, simple, economic and green method that can be exploited for commercial production of Ag0/Ag2O-NPs. PMID:27936248

  13. Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress.

    PubMed

    Muneer, Sowbiya; Park, Yoo Gyeong; Manivannan, Abinaya; Soundararajan, Prabhakaran; Jeong, Byoung Ryong

    2014-11-26

    Tomato plants often grow in saline environments in Mediterranean countries where salt accumulation in the soil is a major abiotic stress that limits its productivity. However, silicon (Si) supplementation has been reported to improve tolerance against several forms of abiotic stress. The primary aim of our study was to investigate, using comparative physiological and proteomic approaches, salinity stress in chloroplasts of tomato under silicon supplementation. Tomato seedlings (Solanum lycopersicum L.) were grown in nutrient media in the presence or absence of NaCl and supplemented with silicon for 5 days. Salinity stress caused oxidative damage, followed by a decrease in silicon concentrations in the leaves of the tomato plants. However, supplementation with silicon had an overall protective effect against this stress. The major physiological parameters measured in our studies including total chlorophyll and carotenoid content were largely decreased under salinity stress, but were recovered in the presence of silicon. Insufficient levels of net-photosynthesis, transpiration and stomatal conductance were also largely improved by silicon supplementation. Proteomics analysis of chloroplasts analyzed by 2D-BN-PAGE (second-dimensional blue native polyacrylamide-gel electrophoresis) revealed a high sensitivity of multiprotein complex proteins (MCPs) such as photosystems I (PSI) and II (PSII) to the presence of saline. A significant reduction in cytochrome b6/f and the ATP-synthase complex was also alleviated by silicon during salinity stress, while the complex forms of light harvesting complex trimers and monomers (LHCs) were rapidly up-regulated. Our results suggest that silicon plays an important role in moderating damage to chloroplasts and their metabolism in saline environments. We therefore hypothesize that tomato plants have a greater capacity for tolerating saline stress through the improvement of photosynthetic metabolism and chloroplast proteome expression

  14. Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii

    PubMed Central

    Yamano, Takashi; Sato, Emi; Iguchi, Hiro; Fukuda, Yuri; Fukuzawa, Hideya

    2015-01-01

    The supply of inorganic carbon (Ci; CO2 and HCO3–) is an environmental rate-limiting factor in aquatic photosynthetic organisms. To overcome the difficulty in acquiring Ci in limiting-CO2 conditions, an active Ci uptake system called the CO2-concentrating mechanism (CCM) is induced to increase CO2 concentrations in the chloroplast stroma. An ATP-binding cassette transporter, HLA3, and a formate/nitrite transporter homolog, LCIA, are reported to be associated with HCO3– uptake [Wang and Spalding (2014) Plant Physiol 166(4):2040–2050]. However, direct evidence of the route of HCO3– uptake from the outside of cells to the chloroplast stroma remains elusive owing to a lack of information on HLA3 localization and comparative analyses of the contribution of HLA3 and LCIA to the CCM. In this study, we revealed that HLA3 and LCIA are localized to the plasma membrane and chloroplast envelope, respectively. Insertion mutants of HLA3 and/or LCIA showed decreased Ci affinities/accumulation, especially in alkaline conditions where HCO3– is the predominant form of Ci. HLA3 and LCIA formed protein complexes independently, and the absence of LCIA decreased HLA3 mRNA accumulation, suggesting the presence of unidentified retrograde signals from the chloroplast to the nucleus to maintain HLA3 mRNA expression. Furthermore, although single overexpression of HLA3 or LCIA in high CO2 conditions did not affect Ci affinity, simultaneous overexpression of HLA3 with LCIA significantly increased Ci affinity/accumulation. These results highlight the HLA3/LCIA-driven cooperative uptake of HCO3– and a key role of LCIA in the maintenance of HLA3 stability as well as Ci affinity/accumulation in the CCM. PMID:26015566

  15. Microsatellite flanking region similarities among different loci within insect species.

    PubMed

    Meglécz, E; Anderson, S J; Bourguet, D; Butcher, R; Caldas, A; Cassel-Lundhagen, A; d'Acier, A C; Dawson, D A; Faure, N; Fauvelot, C; Franck, P; Harper, G; Keyghobadi, N; Kluetsch, C; Muthulakshmi, M; Nagaraju, J; Patt, A; Péténian, F; Silvain, J-F; Wilcock, H R

    2007-04-01

    Although microsatellites are ubiquitous in eukaryota, the number of available markers varies strongly among taxa. This meta-analysis was conducted on 32 insect species. Sequences were obtained from two assembled whole genomes, whole genome shotgun (WGS) sequences from 10 species and screening partial genomic libraries for microsatellites from 23 species. We have demonstrated: (1) strong differences in the abundance of microsatellites among species; (2) that microsatellites within species are often grouped into families based on similarities in their flanking sequences; (3) that the proportion of microsatellites grouped into families varies strongly among taxa; and (4) that microsatellite families were significantly more often associated with transposable elements - or their remnants - than unique microsatellite sequences.

  16. Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts

    NASA Technical Reports Server (NTRS)

    Schwartz, R. M.; Dayhoff, M. O.

    1978-01-01

    A computer branching model is used to analyze cellular evolution. Attention is given to certain key amino acids and nucleotide residues (ferredoxin, 5s ribosomal RNA, and c-type cytochromes) because of their commonality over a wide variety of cell types. Each amino acid or nucleotide residue is a sequence in an inherited biological trait; and the branching method is employed to align sequences so that changes reflect substitution of one residue for another. Based on the computer analysis, the symbiotic theory of cellular evolution is considered the most probable. This theory holds that organelles, e.g., mitochondria and chloroplasts invaded larger bodies, e.g., bacteria, and combined functions to form eucaryotic cells.

  17. Chloroplast Phylogenomic Inference of Green Algae Relationships.

    PubMed

    Sun, Linhua; Fang, Ling; Zhang, Zhenhua; Chang, Xin; Penny, David; Zhong, Bojian

    2016-02-05

    The green algal phylum Chlorophyta has six diverse classes, but the phylogenetic relationship of the classes within Chlorophyta remains uncertain. In order to better understand the ancient Chlorophyta evolution, we have applied a site pattern sorting method to study compositional heterogeneity and the model fit in the green algal chloroplast genomic data. We show that the fastest-evolving sites are significantly correlated with among-site compositional heterogeneity, and these sites have a much poorer fit to the evolutionary model. Our phylogenomic analyses suggest that the class Chlorophyceae is a monophyletic group, and the classes Ulvophyceae, Trebouxiophyceae and Prasinophyceae are non-monophyletic groups. Our proposed phylogenetic tree of Chlorophyta will offer new insights to investigate ancient green algae evolution, and our analytical framework will provide a useful approach for evaluating and mitigating the potential errors of phylogenomic inferences.

  18. Genome-wide microsatellite identification in the fungus Anisogramma anomala using Illumina sequencing and genome assembly.

    PubMed

    Cai, Guohong; Leadbetter, Clayton W; Muehlbauer, Megan F; Molnar, Thomas J; Hillman, Bradley I

    2013-01-01

    High-throughput sequencing has been dramatically accelerating the discovery of microsatellite markers (also known as Simple Sequence Repeats). Both 454 and Illumina reads have been used directly in microsatellite discovery and primer design (the "Seq-to-SSR" approach). However, constraints of this approach include: 1) many microsatellite-containing reads do not have sufficient flanking sequences to allow primer design, and 2) difficulties in removing microsatellite loci residing in longer, repetitive regions. In the current study, we applied the novel "Seq-Assembly-SSR" approach to overcome these constraints in Anisogramma anomala. In our approach, Illumina reads were first assembled into a draft genome, and the latter was then used in microsatellite discovery. A. anomala is an obligate biotrophic ascomycete that causes eastern filbert blight disease of commercial European hazelnut. Little is known about its population structure or diversity. Approximately 26 M 146 bp Illumina reads were generated from a paired-end library of a fungal strain from Oregon. The reads were assembled into a draft genome of 333 Mb (excluding gaps), with contig N50 of 10,384 bp and scaffold N50 of 32,987 bp. A bioinformatics pipeline identified 46,677 microsatellite motifs at 44,247 loci, including 2,430 compound loci. Primers were successfully designed for 42,923 loci (97%). After removing 2,886 loci close to assembly gaps and 676 loci in repetitive regions, a genome-wide microsatellite database of 39,361 loci was generated for the fungus. In experimental screening of 236 loci using four geographically representative strains, 228 (96.6%) were successfully amplified and 214 (90.7%) produced single PCR products. Twenty-three (9.7%) were found to be perfect polymorphic loci. A small-scale population study using 11 polymorphic loci revealed considerable gene diversity. Clustering analysis grouped isolates of this fungus into two clades in accordance with their geographic origins. Thus, the

  19. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    SciTech Connect

    McCarty, R. E.

    2004-06-02

    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied.

  20. Photosynthetic light reactions: integral to chloroplast retrograde signalling.

    PubMed

    Gollan, Peter J; Tikkanen, Mikko; Aro, Eva-Mari

    2015-10-01

    Chloroplast retrograde signalling is ultimately dependent on the function of the photosynthetic light reactions and not only guides the acclimation of the photosynthetic apparatus to changing environmental and metabolic cues, but has a much wider influence on the growth and development of plants. New information generated during the past few years about regulation of photosynthetic light reactions and identification of the underlying regulatory proteins has paved the way towards better understanding of the signalling molecules produced in chloroplasts upon changes in the environment. Likewise, the availability of various mutants lacking regulatory functions has made it possible to address the role of excitation energy distribution and electron flow in the thylakoid membrane in inducing the retrograde signals from chloroplasts to the nucleus. Such signalling molecules also induce and interact with hormonal signalling cascades to provide comprehensive information from chloroplasts to the nucleus.

  1. Synthesis of Proteins by Isolated Euglena gracilis Chloroplasts 1

    PubMed Central

    Vasconcelos, Aurea C.

    1976-01-01

    Intact Euglena gracilis chloroplasts, which had been purified on gradients of silica sol, incorporated [35S]methionine or [3H]leucine into soluble and membrane-bound products, using light as the only source of energy. The chloroplasts were osmotically shocked, fractionated on discontinuous gradients of sucrose, and the products of protein synthesis of the different fractions characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The soluble fraction resolved into three zones of radioactivity, the major one corresponding to the large subunit or ribulose diphosphate carboxylase. The thylakoid membrane fraction contained nine labeled polypeptides, the two most prominent in the region of 31 and 42 kilodaltons. The envelope fraction contained a major radioactive peak of about 48 kilodaltons and four other minor peaks. The patterns of protein synthesis by isolated Euglena chloroplasts are broadly similar to those observed with chloroplasts of spinach and pea. PMID:16659752

  2. Full transcription of the chloroplast genome in photosynthetic eukaryotes

    PubMed Central

    Shi, Chao; Wang, Shuo; Xia, En-Hua; Jiang, Jian-Jun; Zeng, Fan-Chun; Gao, Li-Zhi

    2016-01-01

    Prokaryotes possess a simple genome transcription system that is different from that of eukaryotes. In chloroplasts (plastids), it is believed that the prokaryotic gene transcription features govern genome transcription. However, the polycistronic operon transcription model cannot account for all the chloroplast genome (plastome) transcription products at whole-genome level, especially regarding various RNA isoforms. By systematically analyzing transcriptomes of plastids of algae and higher plants, and cyanobacteria, we find that the entire plastome is transcribed in photosynthetic green plants, and that this pattern originated from prokaryotic cyanobacteria — ancestor of the chloroplast genomes that diverged about 1 billion years ago. We propose a multiple arrangement transcription model that multiple transcription initiations and terminations combine haphazardly to accomplish the genome transcription followed by subsequent RNA processing events, which explains the full chloroplast genome transcription phenomenon and numerous functional and/or aberrant pre-RNAs. Our findings indicate a complex prokaryotic genome regulation when processing primary transcripts. PMID:27456469

  3. Separation of Chloroplast Pigments Using Reverse Phase Chromatography.

    ERIC Educational Resources Information Center

    Reese, R. Neil

    1997-01-01

    Presents a protocol that uses reverse phase chromatography for the separation of chloroplast pigments. Provides a simple and relatively safe procedure for use in teaching laboratories. Discusses pigment extraction, chromatography, results, and advantages of the process. (JRH)

  4. Herbarium specimens reveal a historical shift in phylogeographic structure of common ragweed during native range disturbance.

    PubMed

    Martin, Michael D; Zimmer, Elizabeth A; Olsen, Morten T; Foote, Andrew D; Gilbert, M Thomas P; Brush, Grace S

    2014-04-01

    Invasive plants provide ample opportunity to study evolutionary shifts that occur after introduction to novel environments. However, although genetic characters pre-dating introduction can be important determinants of later success, large-scale investigations of historical genetic structure have not been feasible. Common ragweed (Ambrosia artemisiifolia L.) is an invasive weed native to North America that is known for its allergenic pollen. Palynological records from sediment cores indicate that this species was uncommon before European colonization of North America, and ragweed populations expanded rapidly as settlers deforested the landscape on a massive scale, later becoming an aggressive invasive with populations established globally. Towards a direct comparison of genetic structure now and during intense anthropogenic disturbance of the late 19th century, we sampled 45 natural populations of common ragweed across its native range as well as historical herbarium specimens collected up to 140 years ago. Bayesian clustering analyses of 453 modern and 473 historical samples genotyped at three chloroplast spacer regions and six nuclear microsatellite loci reveal that historical ragweed's spatial genetic structure mirrors both the palaeo-record of Ambrosia pollen deposition and the historical pattern of agricultural density across the landscape. Furthermore, for unknown reasons, this spatial genetic pattern has changed substantially in the intervening years. Following on previous work relating morphology and genetic expression between plants collected from eastern North America and Western Europe, we speculate that the cluster associated with humans' rapid transformation of the landscape is a likely source of these aggressive invasive populations.

  5. Gene flow among wild and domesticated almond species: insights from chloroplast and nuclear markers

    PubMed Central

    Delplancke, Malou; Alvarez, Nadir; Espíndola, Anahí; Joly, Hélène; Benoit, Laure; Brouck, Elise; Arrigo, Nils

    2012-01-01

    Hybridization has played a central role in the evolutionary history of domesticated plants. Notably, several breeding programs relying on gene introgression from the wild compartment have been performed in fruit tree species within the genus Prunus but few studies investigated spontaneous gene flow among wild and domesticated Prunus species. Consequently, a comprehensive understanding of genetic relationships and levels of gene flow between domesticated and wild Prunus species is needed. Combining nuclear and chloroplastic microsatellites, we investigated the gene flow and hybridization among two key almond tree species, the cultivated Prunus dulcis and one of the most widespread wild relative Prunus orientalis in the Fertile Crescent. We detected high genetic diversity levels in both species along with substantial and symmetric gene flow between the domesticated P. dulcis and the wild P. orientalis. These results were discussed in light of the cultivated species diversity, by outlining the frequent spontaneous genetic contributions of wild species to the domesticated compartment. In addition, crop-to-wild gene flow suggests that ad hoc transgene containment strategies would be required if genetically modified cultivars were introduced in the northwestern Mediterranean. PMID:25568053

  6. Complete Chloroplast Genome of Tanaecium tetragonolobum: The First Bignoniaceae Plastome

    PubMed Central

    Nazareno, Alison Gonçalves; Carlsen, Monica; Lohmann, Lúcia Garcez

    2015-01-01

    Bignoniaceae is a Pantropical plant family that is especially abundant in the Neotropics. Members of the Bignoniaceae are diverse in many ecosystems and represent key components of the Tropical flora. Despite the ecological importance of the Bignoniaceae and all the efforts to reconstruct the phylogeny of this group, whole chloroplast genome information has not yet been reported for any members of the family. Here, we report the complete chloroplast genome sequence of Tanaecium tetragonolobum (Jacq.) L.G. Lohmann, which was reconstructed using de novo and referenced-based assembly of single-end reads generated by shotgun sequencing of total genomic DNA in an Illumina platform. The gene order and organization of the chloroplast genome of T. tetragonolobum exhibits the general structure of flowering plants, and is similar to other Lamiales chloroplast genomes. The chloroplast genome of T. tetragonolobum is a circular molecule of 153,776 base pairs (bp) with a quadripartite structure containing two single copy regions, a large single copy region (LSC, 84,612 bp) and a small single copy region (SSC, 17,586 bp) separated by inverted repeat regions (IRs, 25,789 bp). In addition, the chloroplast genome of T. tetragonolobum has 38.3% GC content and includes 121 genes, of which 86 are protein-coding, 31 are transfer RNA, and four are ribosomal RNA. The chloroplast genome of T. tetragonolobum presents a total of 47 tandem repeats and 347 simple sequence repeats (SSRs) with mononucleotides being the most common and di-, tri-, tetra-, and hexanucleotides occurring with less frequency. The results obtained here were compared to other chloroplast genomes of Lamiales available to date, providing new insight into the evolution of chloroplast genomes within Lamiales. Overall, the evolutionary rates of genes in Lamiales are lineage-, locus-, and region-specific, indicating that the evolutionary pattern of nucleotide substitution in chloroplast genomes of flowering plants is complex

  7. Sequence evidence for the symbiotic origins of chloroplasts and mitochondria

    NASA Technical Reports Server (NTRS)

    George, D. G.; Hunt, L. T.; Dayhoff, M. O.

    1983-01-01

    The origin of mitochondria and chloroplasts is investigated on the basis of prokaryotic and early-eukaryotic evolutionary trees derived from protein and nucleic-acid sequences by the method of Dayhoff (1979). Trees for bacterial ferrodoxins, 5S ribosomal RNA, c-type cytochromes, the lipid-binding subunit of ATPase, and dihydrofolate reductase are presented and discussed. Good agreement among the trees is found, and it is argued that the mitochondria and chloroplasts evolved by multiple symbiotic events.

  8. [Chloroplast genetic engineering: a new approach in plant biotechnology].

    PubMed

    Su, Tao; Zhan, Ya-Guang; Han, Mei; Hao, Ai-Ping

    2005-07-01

    Chloroplast genetic engineering, offers several advantages over nuclear transformation, including high level of gene expression, increased biosafety, remedying some limitations associated with nuclear genetic transformation, such as gene silencing and the stability of transformed genes. It is now regarded as an attractive new transgenic technique and further development of biotechnology in agriculture. In this article we reviewed the characteristics, applications of chloroplast genetic engineering and its promising prospects were discussed.

  9. The complete chloroplast genome sequences of Lychnis wilfordii and Silene capitata and comparative analyses with other Caryophyllaceae genomes

    PubMed Central

    Kang, Jong-Soo; Lee, Byoung Yoon; Kwak, Myounghai

    2017-01-01

    The complete chloroplast genomes of Lychnis wilfordii and Silene capitata were determined and compared with ten previously reported Caryophyllaceae chloroplast genomes. The chloroplast genome sequences of L. wilfordii and S. capitata contain 152,320 bp and 150,224 bp, respectively. The gene contents and orders among 12 Caryophyllaceae species are consistent, but several microstructural changes have occurred. Expansion of the inverted repeat (IR) regions at the large single copy (LSC)/IRb and small single copy (SSC)/IR boundaries led to partial or entire gene duplications. Additionally, rearrangements of the LSC region were caused by gene inversions and/or transpositions. The 18 kb inversions, which occurred three times in different lineages of tribe Sileneae, were thought to be facilitated by the intermolecular duplicated sequences. Sequence analyses of the L. wilfordii and S. capitata genomes revealed 39 and 43 repeats, respectively, including forward, palindromic, and reverse repeats. In addition, a total of 67 and 56 simple sequence repeats were discovered in the L. wilfordii and S. capitata chloroplast genomes, respectively. Finally, we constructed phylogenetic trees of the 12 Caryophyllaceae species and two Amaranthaceae species based on 73 protein-coding genes using both maximum parsimony and likelihood methods. PMID:28241056

  10. The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis.

    PubMed Central

    Wu, D; Wright, D A; Wetzel, C; Voytas, D F; Rodermel, S

    1999-01-01

    Nuclear gene-induced variegation mutants provide a powerful system to dissect interactions between the genetic systems of the nucleus-cytoplasm, the chloroplast, and the mitochondrion. The immutans (im) variegation mutation of Arabidopsis is nuclear and recessive and results in the production of green- and white-sectored leaves. The green sectors contain cells with normal chloroplasts, whereas the white sectors are heteroplastidic and contain cells with abnormal, pigment-deficient plastids as well as some normal chloroplasts. White sector formation can be promoted by enhanced light intensities, but sectoring becomes irreversible early in leaf development. The white sectors accumulate the carotenoid precursor phytoene. We have positionally cloned IM and found that the gene encodes a 40.5-kD protein with sequence motifs characteristic of alternative oxidase, a mitochondrial protein that functions as a terminal oxidase in the respiratory chains of all plants. However, phylogenetic analyses revealed that the IM protein is only distantly related to these other alternative oxidases, suggesting that IM is a novel member of this protein class. We sequenced three alleles of im, and all are predicted to be null. Our data suggest a model of variegation in which the IM protein functions early in chloroplast biogenesis as a component of a redox chain responsible for phytoene desaturation but that a redundant electron transfer function is capable of compensating for IM activity in some plastids and cells. PMID:9878631

  11. Highly rearranged and size-variable chloroplast genomes in conifers II clade (cupressophytes): evolution towards shorter intergenic spacers.

    PubMed

    Wu, Chung-Shien; Chaw, Shu-Miaw

    2014-04-01

    Although conifers are of immense ecological and economic value, bioengineering of their chloroplasts remains undeveloped. Understanding the chloroplast genomic organization of conifers can facilitate their bioengineering. Members of the conifer II clade (or cupressophytes) are highly diverse in both morphologic features and chloroplast genomic organization. We compared six cupressophyte chloroplast genomes (cpDNAs) that represent four of the five cupressophyte families, including three genomes that are first reported here (Agathis dammara, Calocedrus formosana and Nageia nagi). The six cupressophyte cpDNAs have lost a pair of large inverted repeats (IRs) and vary greatly in size, organization and tRNA copies. We demonstrate that cupressophyte cpDNAs have evolved towards reduced size, largely due to shrunken intergenic spacers. In cupressophytes, cpDNA rearrangements are capable of extending intergenic spacers, and synonymous mutations are negatively associated with the size and frequency of rearrangements. The variable cpDNA sizes of cupressophytes may have been shaped by mutational burden and genomic rearrangements. On the basis of cpDNA organization, our analyses revealed that in gymnosperms, cpDNA rearrangements are phylogenetically informative, which supports the 'gnepines' clade. In addition, removal of a specific IR influences the minimal rearrangements required for the gnepines and cupressophyte clades, whereby Pinaceae favours the removal of IRB but cupressophytes exclusion of IRA. This result strongly suggests that different IR copies have been lost from conifers I and II. Our data help understand the complexity and evolution of cupressophyte cpDNAs.

  12. Purification, properties and in situ localization of the amphibolic enzymes D-ribulose 5-phosphate 3-epimerase and transketolase from spinach chloroplasts.

    PubMed

    Teige, M; Melzer, M; Süss, K H

    1998-03-01

    The amphibolic enzymes D-ribulose 5-phosphate 3-epimerase and transketolase have been purified from stroma extracts of spinach chloroplasts using ammonium sulfate fractionation and FPLC. For the native enzymes, a molecular mass of 180 kDa for epimerase and 160 kDa for transketolase was found and the molecular masses of the subunits was determined to be 23 kDa for epimerase and 74 kDa for transketolase. Protein sequencing of the purified chloroplast enzymes revealed the NH2-terminal amino acid sequences of mature epimerase (NH2-TSRVDKFSKSDIIVSP) and transketolase (NH2-AAVEALESTDTDQLVEG). The enzymic properties of both enzymes such as Km values or pH optima, were found to be very similar to those for epimerases and transketolases from other sources, including yeast and animal cells. In contrast to the light-activated enzymes of the Calvin cycle, the activity of these amphibolic enzymes was not redox-dependent. Immunogold electron microscopy on spinach leaf thin sections revealed that about 90% of the total epimerase and transketolase, and 96% of the total chloroplast H+-ATP synthase portion CF1 are associated with thylakoid membranes in situ. Ribulose-1,5-bisphosphate carboxylase/oxygenase, in contrast, was evenly distributed throughout chloroplasts. These and other results indicate that minor chloroplast enzymes are arranged in a thin layer on thylakoid membrane surfaces in vivo.

  13. Chloroplast phylogenomics indicates that Ginkgo biloba is sister to cycads.

    PubMed

    Wu, Chung-Shien; Chaw, Shu-Miaw; Huang, Ya-Yi

    2013-01-01

    Molecular phylogenetic studies have not yet reached a consensus on the placement of Ginkgoales, which is represented by the only living species, Ginkgo biloba (common name: ginkgo). At least six discrepant placements of ginkgo have been proposed. This study aimed to use the chloroplast phylogenomic approach to examine possible factors that lead to such disagreeing placements. We found the sequence types used in the analyses as the most critical factor in the conflicting placements of ginkgo. In addition, the placement of ginkgo varied in the trees inferred from nucleotide (NU) sequences, which notably depended on breadth of taxon sampling, tree-building methods, codon positions, positions of Gnetopsida (common name: gnetophytes), and including or excluding gnetophytes in data sets. In contrast, the trees inferred from amino acid (AA) sequences congruently supported the monophyly of a ginkgo and Cycadales (common name: cycads) clade, regardless of which factors were examined. Our site-stripping analysis further revealed that the high substitution saturation of NU sequences mainly derived from the third codon positions and contributed to the variable placements of ginkgo. In summary, the factors we surveyed did not affect results inferred from analyses of AA sequences. Congruent topologies in our AA trees give more confidence in supporting the ginkgo-cycad sister-group hypothesis.

  14. Regulation of Chloroplast Photosynthetic Activity by Exogenous Magnesium 1

    PubMed Central

    Huber, Steven C.

    1978-01-01

    Magnesium was most inhibitory to photosynthetic reactions by intact chloroplasts when the magnesium was added in the dark before illumination. Two millimolar MgCl2, added in the dark, inhibited CO2-dependent O2 evolution by Hordeum vulgare L. and Spinacia oleracea L. (C3 plants) chloroplasts 70 to 100% and inhibited (pyruvate + oxaloacetate)-dependent O2 evolution by Digitaria sanguinalis L. (C4 plant) mesophyll chloroplasts from 80 to 100%. When Mg2+ was added in the light, O2 evolution was reduced only slightly. O2 evolution in the presence of phosphoglycerate was less sensitive to Mg2+ inhibition than was CO2-dependent O2 evolution. Magnesium prevented the light activation of several photosynthetic enzymes. Two millimolar Mg2+ blocked the light activation of NADP-malate dehydrogenase in D. sanguinalis mesophyll chloroplasts, and the light activation of phosphoribulokinase, NADP-linked glyceraldehyde-3-phosphate dehydrogenase, and fructose 1,6-diphosphatase in barley chloroplasts. The results suggest that Mg2+ inhibits chloroplast photosynthesis by preventing the light activation of certain enzymes. PMID:16660509

  15. Surveying the Oligomeric State of Arabidopsis thaliana Chloroplasts.

    PubMed

    Lundquist, Peter K; Mantegazza, Otho; Stefanski, Anja; Stühler, Kai; Weber, Andreas P M

    2017-01-09

    Blue native-PAGE (BN-PAGE) resolves protein complexes in their native state. When combined with immunoblotting, it can be used to identify the presence of high molecular weight complexes at high resolution for any protein, given a suitable antibody. To identify proteins in high molecular weight complexes on a large scale and to bypass the requirement for specific antibodies, we applied a tandem mass spectrometry (MS/MS) approach to BN-PAGE-resolved chloroplasts. Fractionation of the gel into six bands allowed identification and label-free quantification of 1000 chloroplast proteins with native molecular weight separation. Significantly, this approach achieves a depth of identification comparable with traditional shotgun proteomic analyses of chloroplasts, indicating much of the known chloroplast proteome is amenable to MS/MS identification under our fractionation scheme. By limiting the number of fractionation bands to six, we facilitate scaled-up comparative analyses, as we demonstrate with the reticulata chloroplast mutant displaying a reticulated leaf phenotype. Our comparative proteomics approach identified a candidate interacting protein of RETICULATA as well as effects on lipid remodeling proteins, amino acid metabolic enzymes, and plastid division machinery. We additionally highlight selected proteins from each sub-compartment of the chloroplast that provide novel insight on known or hypothesized protein complexes to further illustrate the utility of this approach. Our results demonstrate the high sensitivity and reproducibility of this technique, which is anticipated to be widely adaptable to other sub-cellular compartments.

  16. Chloroplast membrane transport: interplay of prokaryotic and eukaryotic traits.

    PubMed

    Vothknecht, Ute C; Soll, Jürgen

    2005-07-18

    Chloroplasts are specific plant organelles of prokaryotic origin. They are separated from the surrounding cell by a double membrane, which represents an effective barrier for the transport of metabolites and proteins. Specific transporters in the inner envelope membrane have been described, which facilitate the exchange of metabolites. In contrast, the outer envelope has been viewed for a long time as a molecular sieve that offers a mere size constriction to the passage of molecules. This view has been challenged lately, and a number of specific and regulated pore proteins of the outer envelope (OEPs) have been identified. These pores seem to have originated by adaptation of outer membrane proteins of the cyanobacterial ancestor of the chloroplast. In a similar fashion, the transport of proteins across the two envelope membranes is achieved by two hetero-oligomeric protein complexes called Toc (translocon in the outer envelope of chloroplasts) and Tic (translocon in the inner envelope of chloroplasts). The phylogenetic provenance of the translocon components is less clear, but at least the channel protein of the Toc translocon is of cyanobacterial origin. Characteristic of cyanobacteria and chloroplasts is furthermore a specialized internal membrane system, the thylakoids, on which the components of the photosynthetic machinery are located. Despite the importance of this membrane, very little is known about its phylogenetic origin or the manner of its synthesis. Vipp1 appears to be a ubiquitous component of thylakoid formation, while in chloroplasts of land plants, additionally a vesicle transport system of eukaryotic origin might be involved in this process.

  17. Role of mitochondria in sulfolipid biosynthesis by Euglena chloroplasts

    SciTech Connect

    Saidha, T.; Schiff, J.A.

    1987-04-01

    Sulfate activation occurs in Euglena mitochondria the authors now find that the sulfate activating enzymes are absent from Euglena chloroplasts. Cells of mutant W/sub 10/BSmL lacking plastids also lack detectable sulfolipid (SL) when grown on /sup 35/SO/sub 4//sup 2 -/ indicating that SL is absent from the mitochondria and is exclusively in the plastids. Plastids alone will convert /sup 35/S-cysteine to /sup 35/SL in the presence of ATP and Mg/sup 2 +/; light is stimulatory. Under similar conditions, chloroplasts and mitochondria incubated together convert /sup 35/SO/sub 4//sup 2 -/ to plastid-localized /sup 35/SL but either organelle incubated alone fails to effect this conversion. Unlabeled cysteine blocks SL labeling from sulfate in the mixed incubation; since cysteine is formed from sulfate by Euglena mitochrondria, cysteine (and other compounds) may move from the mitochondrion to the chloroplast to provide the sulfo group for SL formation. Although mitochondria form labeled protein from /sup 35/SO/sub 4//sup 2 -/ via cysteine, chloroplasts alone do not form labeled protein from /sup 35/SO/sub 4//sup 2 -/, ATP and Mg/sup 2 +/ in light or darkness; incubation of chloroplasts plus mitochondria under these conditions labels chloroplast protein.

  18. Chloroplasts continuously monitor photoreceptor signals during accumulation movement.

    PubMed

    Tsuboi, Hidenori; Wada, Masamitsu

    2013-07-01

    Under low light conditions, chloroplasts gather at a cell surface to maximize light absorption for efficient photosynthesis, which is called the accumulation response. Phototropin1 (phot1) and phototropin2 (phot2) were identified as blue light photoreceptors in the accumulation response that occurs in Arabidopsis thaliana and Adiantum capillus-veneris with neochrome1 (neo1) as a red light photoreceptor in A. capillus-veneris. However, the signal molecule that is emitted from the photoreceptors and transmitted to the chloroplasts is not known. To investigate this topic, the accumulation response was induced by partial cell irradiation with a microbeam of red, blue and far-red light in A. capillus-veneris gametophyte cells. Chloroplasts moved towards the irradiated region and were able to sense the signal as long as its signal flowed. The signal from neo1 had a longer life than the signal that came from phototropins. When two microbeams with the same wavelength and the same fluence rate were placed 20 μm apart from each other and were applied to a dark-adapted cell, chloroplasts at an equidistant position always moved towards the center (midpoint) of the two microbeams, but not towards either one. This result indicates that chloroplasts are detecting the concentration of the signal but not the direction of signal flow. Chloroplasts repeatedly move and stop at roughly 10 s intervals during the accumulation response, suggesting that they monitor the intermittent signal waves from photoreceptors.

  19. Interaction of actin and the chloroplast protein import apparatus.

    PubMed

    Jouhet, Juliette; Gray, John C

    2009-07-10

    Actin filaments are major components of the cytoskeleton and play numerous essential roles, including chloroplast positioning and plastid stromule movement, in plant cells. Actin is present in pea chloroplast envelope membrane preparations and is localized at the surface of the chloroplasts, as shown by agglutination of intact isolated chloroplasts by antibodies to actin. To identify chloroplast envelope proteins involved in actin binding, we have carried out actin co-immunoprecipitation and co-sedimentation experiments on detergent-solubilized pea chloroplast envelope membranes. Proteins co-immunoprecipitated with actin were identified by mass spectrometry and by Western blotting and included the Toc159, Toc75, Toc34, and Tic110 components of the TOC-TIC protein import apparatus. A direct interaction of actin with Escherichia coli-expressed Toc159, but not Toc33, was shown by co-sedimentation experiments, suggesting that Toc159 is the component of the TOC complex that interacts with actin on the cytosolic side of the outer envelope membrane. The physiological significance of this interaction is unknown, but it may play a role in the import of nuclear-encoded photosynthesis proteins.

  20. Speed of signal transfer in the chloroplast accumulation response.

    PubMed

    Tsuboi, Hidenori; Wada, Masamitsu

    2010-05-01

    Chloroplast photorelocation movement is important for plants to perform efficient photosynthesis. Phototropins were identified as blue-light receptors for chloroplast movement in Arabidopsis thaliana and in the fern Adiantum capillus-veneris, whereas neochrome functions as a dual red/blue light receptor in the latter. However, the signal transduction pathways involved in chloroplast movement remain to be clarified. To investigate the kinetic properties of signalling from these photoreceptors to the chloroplasts, we deduced the speed of signal transfer using Adiantum capillus-veneris gametophytes. When a region of dark-adapted gametophyte cells was subjected to microbeam irradiation, chloroplasts moved towards the irradiated area even in subsequent darkness. We therefore recorded the movement and calculated the speeds of signal transfer by time-lapse imaging. Movement speeds under red or blue light were similar, e.g., about 1.0 microm min(-1) in prothallial cells. However, speeds varied according to cell polarity in protonemal cells. The speed of signal transfer from the protonemal apex to the base was approximately 0.7 microm min(-1), but roughly 2.3 microm min(-1) in the opposite direction. The speed of signal transfer in Arabidopsis thaliana mesophyll cells was approximately 0.8 microm min(-1) by comparison. Surprisingly, chloroplasts located farthest away from the microbeam were found to move faster than those in close proximity to the site of irradiation both in Adiantum capillus-veneris and A. thaliana.

  1. Novel mechanisms for maturation of chloroplast transfer RNA precursors

    PubMed Central

    Wang, Ming Jing; Davis, N. Wayne; Gegenheimer, Peter

    1988-01-01

    Despite the prokaryotic origins of chloroplasts, a plant chloroplast tRNA precursor is processed in a homologous in vitro system by a pathway distinct from that observed in Escherichia coli, but identical to that utilized for maturation of nuclear pre-tRNAs. The mature tRNA 5' terminus is generated by the site-specific endonucleolytic cleavage of an RNase P (or P-type) activity. The 3' end is likewise produced by a single precise endonucleolytic cut at the 3' terminus of the encoded tRNA domain. This is the first complete structural characterization of an organellar tRNA processing system using a homologous substrate. In contrast to eubacterial RNase P, chloroplast RNase P does not appear to contain an RNA subunit. The chloroplast activity bands with bulk protein at 1.28 g/ml in CsCI density gradients, whereas E.coli RNase P bands as ribonucleoprotein at 1.73 g/ml. Chloroplast RNase P activity survives treatment with micrococcal nuclease (MN) at levels 10- to 100-fold higher than those required to totally inactivate the E.coli enzyme. The chloroplast system is sensitive to a suppression of tRNA processing, caused by binding of inactive MN to pre-tRNA substrate, which is readily overcome by addition of carrier RNA to the assay. Images PMID:16453848

  2. Evidence that sigma factors are components of chloroplast RNA polymerase.

    PubMed Central

    Troxler, R F; Zhang, F; Hu, J; Bogorad, L

    1994-01-01

    Plastid genes are transcribed by DNA-dependent RNA polymerase(s), which have been incompletely characterized and have been examined in a limited number of species. Plastid genomes contain rpoA, rpoB, rpoC1, and rpoC2 coding for alpha, beta, beta', and beta" RNA polymerase subunits that are homologous to the alpha, beta, and beta' subunits that constitute the core moiety of RNA polymerase in bacteria. However, genes with homology to sigma subunits in bacteria have not been found in plastid genomes. An antibody directed against the principal sigma subunit of RNA polymerase from the cyanobacterium Anabaena sp. PCC 7120 was used to probe western blots of purified chloroplast RNA polymerase from maize, rice, Chlamydomonas reinhardtii, and Cyanidium caldarium. Chloroplast RNA polymerase from maize and rice contained an immunoreactive 64-kD protein. Chloroplast RNA polymerase from C. reinhardtii contained immunoreactive 100- and 82-kD proteins, and chloroplast RNA polymerase from C. caldarium contained an immunoreactive 32-kD protein. The elution profile of enzyme activity of both algal chloroplast RNA polymerases coeluted from DEAE with the respective immunoreactive proteins, indicating that they are components of the enzyme. These results provide immunological evidence for sigma-like factors in chloroplast RNA polymerase in higher plants and algae. PMID:8159791

  3. Ferns, mosses and liverworts as model systems for light-mediated chloroplast movements.

    PubMed

    Suetsugu, Noriyuki; Higa, Takeshi; Wada, Masamitsu

    2016-11-17

    Light-induced chloroplast movement is found in most plant species, including algae and land plants. In land plants with multiple small chloroplasts, under weak light conditions, the chloroplasts move towards the light and accumulate on the periclinal cell walls to efficiently perceive light for photosynthesis (the accumulation response). Under strong light conditions, chloroplasts escape from light to avoid photodamage (the avoidance response). In most plant species, blue light induces chloroplast movement, and phototropin receptor kinases are the blue light receptors. Molecular mechanisms for photoreceptors, signal transduction and chloroplast motility systems are being studied using the model plant Arabidopsis thaliana. However, to further understand the molecular mechanisms and evolutionary history of chloroplast movement in green plants, analyses using other plant systems are required. Here, we review recent works on chloroplast movement in green algae, liverwort, mosses and ferns that provide new insights on chloroplast movement.

  4. Isolation and characterization of microsatellite loci in Sisyrinchium (Iridaceae) and cross amplification in other genera.

    PubMed

    Miz, R B; Tacuatiá, L O; Cidade, F W; de Souza, A P; Bered, F; Eggers, L; de Souza-Chies, T T

    2016-09-16

    Recent phylogenetic studies on Sisyrinchium strongly suggest that species classified in section Hydastylus and section Viperella belong to a single group of plants in recent adaptive radiation (Clade IV). These species neither present clear morphological differentiation among them nor show clear identification using DNA barcode markers. Thus, the main goal of this study was to develop a set of polymorphic microsatellite markers compatible for representative species of both sections to ensure variability that could be revealed by SSR markers. Therefore, microsatellite primers were isolated and characterized for Sisyrinchium palmifolium and S. marchioides. In addition, transferability of the developed primers was tested in Iridoideae, primarily in closely related species of Sisyrinchium. Sixteen microsatellite loci were developed from enriched genomic libraries, of which ten were polymorphic. GST values indicated higher differentiation among subpopulations of S. palmifolium than those from S. marchioides. Major transferability was obtained using primers isolated from S. marchioides. All primers exhibited higher rates of cross-amplification for species belonging to Clade IV of Sisyrinchium, as well as to the genera Calydorea and Herbertia. These developed microsatellite markers can be used as an efficient tool for characterization of genetic variability in species belonging to Iridoideae, as well as for studies on population dynamics, genetic structure, and mating system in other Sisyrinchium species.

  5. Microsatellite Instability Assay — EDRN Public Portal

    Cancer.gov

    Microsatellite analysis (MSA) is a promising new technique for the surveillance of bladder cancer. The technology, which permits the separation by electrophoresis of polymerase chain reaction (PCR)-amplified sequences from non-malignant and malignant sources, has been applied to the diagnosis of solid tumors arising in colon, lung, oropharynx, kidney and bladder. MSA can detect genetic changes indicative of carcinoma from urothelial cells obtained in voided urine specimens. The genetic profile of DNA purified from urine is compared to that of DNA purified from peripheral lymphocytes that are considered normal. Once the DNA from uroepithelial cells has been obtained, PCR is performed with specific oligonucleotide primers for each chromosomal locus. The PCR products are then examined for evidence of microsatellite instability (MSI) and loss of heterozygosity (LOH), which are genetic characteristics of epithelial tumors. Preliminary work shows that MSA detects 95% of cancers.

  6. Microsatellite data analysis for population genetics.

    PubMed

    Kim, Kyung Seok; Sappington, Thomas W

    2013-01-01

    Theories and analytical tools of population genetics have been widely applied for addressing various questions in the fields of ecological genetics, conservation biology, and any context where the role of dispersal or gene flow is important. Underlying much of population genetics is the analysis of variation at selectively neutral marker loci, and microsatellites continue to be a popular choice of marker. In recent decades, software programs to estimate population genetics parameters have been developed at an increasing pace as computational science and theoretical knowledge advance. Numerous population genetics software programs are presently available to analyze microsatellite genotype data, but only a handful are commonly employed for calculating parameters such as genetic variation, genetic structure, patterns of spatial and temporal gene flow, population demography, individual population assignment, and genetic relationships within and between populations. In this chapter, we introduce statistical analyses and relevant population genetic software programs that are commonly employed in the field of population genetics and molecular ecology.

  7. Microsatellite variability among wild and cultivated hops (Humulus lupulus L.).

    PubMed

    Jakse, Jernej; Satovic, Zlatko; Javornik, Branka

    2004-10-01

    Hop (Humulus lupulus L.) is a dioecious perennial plant native to the northern hemisphere cultivated for its use in the brewing industry. To investigate the genetic diversity present in wild hop accessions in comparison with cultivated hops, microsatellite marker variation was assessed at four loci in 124 accessions of wild (from Europe, Asia and from North America) and cultivated (varieties and breeding lines) hops. A total of 63 alleles were identified, with an average of 15.7 alleles per locus and an average PIC of 0.64 over four loci. The average number of alleles per locus in groups of accessions ranged from 5.75 to 8.30, with the highest number detected in groups of wild hops either of European (EU) or North American (NA) origin. Accessions from NA revealed the highest number of unique alleles indicating the high diversity present in this gene pool. Cluster analysis based on the D(D) or D(sw) distance matrix divided accessions into 10 different clusters, which reflect the relationship among geographically diverse wild accessions and hop cultivars. The highest genetic differences were found between NA wild accessions, forming one distant cluster, and all the other accessions. The differentiation between European wild and cultivated accessions was revealed by PCoA based on the D(D) distance matrix and by AMOVA results. Cultivated hops differ significantly from wild ones, although most of the variability was found within groups. The molecular variances within groups of cultivated and wild hops were homogeneous, suggesting that a similar level of molecular variability is found in both groups of accessions. The analysis of allele polymorphism and of allele sequences showed that hop germplasm can be differentiated to NA and EU geographic types according to the differences of allele sizes at three loci or by the specific microsatellite repeat type at one locus. The analysis also indicates the different evolutionary dynamics and complex mutations of microsatellite

  8. Microsatellite variation in red-winged blackbirds (Agelaius phoeniceus).

    PubMed

    Williams, C Lenney; Homan, H J; Johnston, J J; Linz, G M

    2004-02-01

    Territorial male red-winged blackbirds from five locations in the United States and Canada were genotyped using a suite of six microsatellite loci. Each population possessed unique alleles, but numbers of alleles per locus (range = 7.3-8.8) and expected multilocus heterozygosities (range = 0.76-0.80) were similar in all populations. Significant overall allele frequency differences were detected between some population pairs, and some pairwise Fst values were significant (but small). However, Fst among populations, although significant, was also small (0.009). Despite revealing low levels of population structure, the high multilocus polymorphism indicates these loci will be valuable in the genetic analysis of behavior and reproductive strategies in this species.

  9. Autosomal microsatellite data from Northwestern Colombia.

    PubMed

    Palacio, Oscar Darío; Triana, Omar; Gaviria, Aníbal; Ibarra, Adriana Alexandra; Ochoa, Luz Mariela; Posada, Yeny; Maya, María Clara; Lareu, María Victoria; Brión, María; Acosta, María Amparo; Carracedo, Angel

    2006-07-13

    Allele frequencies and some forensic parameters for 12 autosomal microsatellites (CSF1PO, TPOX, THO1, VWA, D16S539, D7S820, D13S317, D5S818, F13A1, FESFPS, F13B, LPL) were estimated from three departments from Northwestern Colombia. The total number of samples analysed was 1045 individuals. Comparative analysis among the three studied departments and with other published Colombian populations were also performed and discussed.

  10. Identification and characterization of a novel chloroplast/mitochondria co-localized glutathione reductase 3 involved in salt stress response in rice.

    PubMed

    Wu, Tsung-Meng; Lin, Wan-Rong; Kao, Yun-Ting; Hsu, Yi-Ting; Yeh, Ching-Hui; Hong, Chwan-Yang; Kao, Ching Huei

    2013-11-01

    Glutathione reductases (GRs) are important components of the antioxidant machinery that plants use to respond against abiotic stresses. In rice, one cytosolic and two chloroplas