Sample records for chloroplasts optimizes electron

  1. Structural associations between organelle membranes in nectary parenchyma cells.

    PubMed

    Machado, Silvia Rodrigues; Gregório, Elisa A; Rodrigues, Tatiane M

    2018-05-01

    The close association between membranes and organelles, and the intense chloroplast remodeling in parenchyma cells of extrafloral nectaries occurred only at the secretion time and suggest a relationship with the nectar secretion. Associations between membranes and organelles have been well documented in different tissues and cells of plants, but poorly explored in secretory cells. Here, we described the close physical juxtaposition between membranes and organelles, mainly with chloroplasts, in parenchyma cells of Citharexylum myrianthum (Verbenaeceae) extrafloral nectaries under transmission electron microscopy, using conventional and microwave fixation. At the time of nectar secretion, nectary parenchyma cells exhibit a multitude of different organelle and membrane associations as mitochondria-mitochondria, mitochondria-endoplasmic reticulum, mitochondria-chloroplast, chloroplast-nuclear envelope, mitochondria-nuclear envelope, chloroplast-plasmalemma, chloroplast-chloroplast, chloroplast-tonoplast, chloroplast-peroxisome, and mitochondria-peroxisome. These associations were visualized as amorphous electron-dense material, a network of dense fibrillar material and/or dense bridges. Chloroplasts exhibited protrusions variable in shape and extension, which bring them closer to each other and to plasmalemma, tonoplast, and nuclear envelope. Parenchyma cells in the pre- and post-secretory stages did not exhibit any association or juxtaposition of membranes and organelles, and chloroplast protrusions were absent. Chloroplasts had peripheral reticulum that was more developed in the secretory stage. We propose that such subcellular phenomena during the time of nectar secretion optimize the movement of signaling molecules and the exchange of metabolites. Our results open new avenues on the potential mechanisms of organelle contact in parenchyma nectary cells, and reveal new attributes of the secretory cells on the subcellular level.

  2. Chloroplastic ATP synthase optimizes the trade-off between photosynthetic CO2 assimilation and photoprotection during leaf maturation.

    PubMed

    Huang, Wei; Tikkanen, Mikko; Cai, Yan-Fei; Wang, Ji-Hua; Zhang, Shi-Bao

    2018-06-11

    In the present study, we studied the role of chloroplastic ATP synthase in photosynthetic regulation during leaf maturation. We measured gas exchange, chlorophyll fluorescence, P700 redox state, and the electrochromic shift signal in mature and immature leaves. Under high light, the immature leaves displayed high levels of non-photochemical quenching (NPQ) and P700 oxidation ratio, and higher values for proton motive force (pmf) and proton gradient (ΔpH) across the thylakoid membranes but lower values for the activity of chloroplastic ATP synthase (g H + ) than the mature leaves. Furthermore, g H + was significantly and positively correlated with CO 2 assimilation rate and linear electron flow (LEF), but negatively correlated with pmf and ΔpH. ΔpH was significantly correlated with LEF and the P700 oxidation ratio. These results indicated that g H + was regulated to match photosynthetic capacity during leaf maturation, and the formation of pmf and ΔpH was predominantly regulated by the alterations in g H + . In the immature leaves, the high steady-state ΔpH increased lumen acidification, which, in turn, stimulated photoprotection for the photosynthetic apparatus via NPQ induction and photosynthetic control. Our results highlighted the importance of chloroplastic ATP synthase in optimizing the trade-off between CO 2 assimilation and photoprotection during leaf maturation. Copyright © 2018. Published by Elsevier B.V.

  3. Computer modeling of electron and proton transport in chloroplasts.

    PubMed

    Tikhonov, Alexander N; Vershubskii, Alexey V

    2014-07-01

    Photosynthesis is one of the most important biological processes in biosphere, which provides production of organic substances from atmospheric CO2 and water at expense of solar energy. In this review, we contemplate computer models of oxygenic photosynthesis in the context of feedback regulation of photosynthetic electron transport in chloroplasts, the energy-transducing organelles of the plant cell. We start with a brief overview of electron and proton transport processes in chloroplasts coupled to ATP synthesis and consider basic regulatory mechanisms of oxygenic photosynthesis. General approaches to computer simulation of photosynthetic processes are considered, including the random walk models of plastoquinone diffusion in thylakoid membranes and deterministic approach to modeling electron transport in chloroplasts based on the mass action law. Then we focus on a kinetic model of oxygenic photosynthesis that includes key stages of the linear electron transport, alternative pathways of electron transfer around photosystem I (PSI), transmembrane proton transport and ATP synthesis in chloroplasts. This model includes different regulatory processes: pH-dependent control of the intersystem electron transport, down-regulation of photosystem II (PSII) activity (non-photochemical quenching), the light-induced activation of the Bassham-Benson-Calvin (BBC) cycle. The model correctly describes pH-dependent feedback control of electron transport in chloroplasts and adequately reproduces a variety of experimental data on induction events observed under different experimental conditions in intact chloroplasts (variations of CO2 and O2 concentrations in atmosphere), including a complex kinetics of P700 (primary electron donor in PSI) photooxidation, CO2 consumption in the BBC cycle, and photorespiration. Finally, we describe diffusion-controlled photosynthetic processes in chloroplasts within the framework of the model that takes into account complex architecture of chloroplasts and lateral heterogeneity of lamellar system of thylakoids. The lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids have been calculated under different metabolic conditions. Analyzing topological aspects of diffusion-controlled stages of electron and proton transport in chloroplasts, we conclude that along with the NPQ mechanism of attenuation of PSII activity and deceleration of PQH2 oxidation by the cytochrome b6f complex caused by the lumen acidification, the intersystem electron transport may be down-regulated due to the light-induced alkalization of the narrow partition between adjacent thylakoids of grana. The computer models of electron and proton transport described in this article may be integrated as appropriate modules into a comprehensive model of oxygenic photosynthesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Nitrate and Nitrite Reduction by Wolffia arrhiza1

    PubMed Central

    Swader, J. A.; Stocking, C. R.

    1971-01-01

    Nitrate reductase was not found to be present in or associated with partially purified, intact chloroplasts aqueously isolated from Wolffia arrhiza. Such chloroplasts are capable of using nitrite but not nitrate as an electron acceptor during light-stimulated electron transport in the absence of additional cytoplasmic components. When nitrite acts as an electron acceptor under these conditions, on the average 1.5 moles of oxygen are evolved per mole of nitrite reduced by the chloroplasts, indicating a probable reduction of nitrite to ammonia. Chloroplasts ruptured by osmotic shock fail to reduce nitrite in the absence of additional components. PMID:16657592

  5. Nitrate and Nitrite Reduction by Wolffia arrhiza.

    PubMed

    Swader, J A; Stocking, C R

    1971-02-01

    Nitrate reductase was not found to be present in or associated with partially purified, intact chloroplasts aqueously isolated from Wolffia arrhiza. Such chloroplasts are capable of using nitrite but not nitrate as an electron acceptor during light-stimulated electron transport in the absence of additional cytoplasmic components. When nitrite acts as an electron acceptor under these conditions, on the average 1.5 moles of oxygen are evolved per mole of nitrite reduced by the chloroplasts, indicating a probable reduction of nitrite to ammonia. Chloroplasts ruptured by osmotic shock fail to reduce nitrite in the absence of additional components.

  6. Effect of cationic plastoquinone SkQ1 on electron transfer reactions in chloroplasts and mitochondria from pea seedlings.

    PubMed

    Samuilov, V D; Kiselevsky, D B

    2015-04-01

    Plastoquinone bound with decyltriphenylphosphonium cation (SkQ1) penetrating through the membrane in nanomolar concentrations inhibited H2O2 generation in cells of epidermis of pea seedling leaves that was detected by the fluorescence of 2',7'-dichlorofluorescein. Photosynthetic electron transfer in chloroplasts isolated from pea leaves is suppressed by SkQ1 at micromolar concentrations: the electron transfer in chloroplasts under the action of photosystem II or I (with silicomolybdate or methyl viologen as electron acceptors, respectively) is more sensitive to SkQ1 than under the action of photosystem II + I (with ferricyanide or p-benzoquinone as electron acceptors). SkQ1 reduced by borohydride is oxidized by ferricyanide, p-benzoquinone, and, to a lesser extent, by silicomolybdate, but not by methyl viologen. SkQ1 is not effective as an electron acceptor supporting O2 evolution from water in illuminated chloroplasts. The data on suppression of photosynthetic O2 evolution or consumption show that SkQ1, similarly to phenazine methosulfate, causes conversion of the chloroplast redox-chain from non-cyclic electron transfer mode to the cyclic mode without O2 evolution. Oxidation of NADH or succinate in mitochondria isolated from pea roots is stimulated by SkQ1.

  7. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis

    PubMed Central

    Gnanasekaran, Thiyagarajan; Karcher, Daniel; Nielsen, Agnieszka Zygadlo; Martens, Helle Juel; Ruf, Stephanie; Kroop, Xenia; Olsen, Carl Erik; Motawie, Mohammed Saddik; Pribil, Mathias; Møller, Birger Lindberg; Bock, Ralph; Jensen, Poul Erik

    2016-01-01

    Plant chloroplasts are light-driven cell factories that have great potential to act as a chassis for metabolic engineering applications. Using plant chloroplasts, we demonstrate how photosynthetic reducing power can drive a metabolic pathway to synthesise a bio-active natural product. For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed in the chloroplasts and converted endogenous tyrosine into dhurrin using electrons derived directly from the photosynthetic electron transport chain, without the need for the presence of an NADPH-dependent P450 oxidoreductase. The dhurrin produced in the engineered plants amounted to 0.1–0.2% of leaf dry weight compared to 6% in sorghum. The results obtained pave the way for plant P450s involved in the synthesis of economically important compounds to be engineered into the thylakoid membrane of chloroplasts, and demonstrate that their full catalytic cycle can be driven directly by photosynthesis-derived electrons. PMID:26969746

  8. Identification of the triazine receptor protein as a chloroplast gene product

    PubMed Central

    Steinback, Katherine E.; McIntosh, Lee; Bogorad, Lawrence; Arntzen, Charles J.

    1981-01-01

    The triazine herbicides inhibit photosynthesis by blocking electron transport at the second stable electron acceptor of photosystem II. This electron transport component of chloroplast thylakoid membranes is a protein-plastoquinone complex termed “B.” The polypeptide that is believed to be a component of the B complex has recently been identified as a 32- to 34-kilo-dalton polypeptide by using a photoaffinity labeling probe, azido-[14C]atrazine. A 34-kilodalton polypeptide of pea chloroplasts rapidly incorporates [35S]methionine in vivo and is also a rapidly labeled product of chloroplast-directed protein synthesis. Trypsin treatment of membranes tagged with azido-[14C]atrazine, [35S]methionine in vivo, or [35S]methionine in isolated intact chloroplasts results in identical, sequential alterations of the 34-kilo-dalton polypeptide to species of 32, then 18 and 16 kilodaltons. From the identical pattern of susceptibility to trypsin we conclude that the rapidly synthesized 34-kilodalton polypeptide that is a product of chloroplast-directed protein synthesis is identical to the triazine herbicide-binding protein of photosystem II. Chloroplasts of both triazine-susceptible and triazine-resistant biotypes of Amaranthus hybridus synthesize the 34-kilodalton polypeptide, but that of the resistant biotype does not bind the herbicide. Images PMID:16593133

  9. Chloroplast membrane alterations in triazine-resistant Amaranthus retroflexus biotypes

    PubMed Central

    Arntzen, Charles J.; Ditto, Cathy L.; Brewer, Philip E.

    1979-01-01

    The effectiveness of diuron, atrazine, procyazine, and cyanazine were compared in controlling growth of redroot pigweed (Amaranthus retroflexus L.) in hydroponic culture. A very marked differential inhibition response was observed for atrazine between resistant and susceptible biotypes. Procyazine and cyanazine exhibited less dramatic differential responses, whereas diuron was equally effective in controlling growth in both biotypes. Photosystem II activity of chloroplasts from both triazine-resistant and triazine-susceptible biotypes was inhibited by diuron but only the chloroplasts from triazine-susceptible biotypes were inhibited significantly by atrazine. The photochemical activity of chloroplasts from triazine-resistant biotypes was partially resistant to procyazine or cyanazine inhibition. The parallel lack of diuron differential effects, partial procyazine and cyanazine differential response, and very marked atrazine differential response in both whole plant and chloroplast assays indicates that the chloroplast is the site of selective herbicide tolerance in these triazine-resistant redroot pigweed biotypes. Photosystem II photochemical properties were characterized by analysis of chlorophyll fluorescence transients in the presence or absence of herbicides. Data with susceptible chloroplasts indicated that both diuron and atrazine inhibit electron flow very near the primary electron acceptor of photosystem II. Only diuron altered the fluorescence transient in resistant chloroplasts. In untreated preparations there were marked differences in the fast phases of the fluorescence increase in resistant vs. susceptible chloroplasts; these data are interpreted as showing that the resistant plastids have an alteration in the rate of reoxidation of the primary photosystem II electron acceptor. Electrophoretic analysis of chloroplast membrane proteins of the two biotypes showed small changes in the electrophoretic mobilities of two polypeptide species. The data provide evidence for the following herbicide resistance mechanism: genetically controlled modification of the herbicide target site. Images PMID:16592608

  10. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis.

    PubMed

    Gnanasekaran, Thiyagarajan; Karcher, Daniel; Nielsen, Agnieszka Zygadlo; Martens, Helle Juel; Ruf, Stephanie; Kroop, Xenia; Olsen, Carl Erik; Motawie, Mohammed Saddik; Pribil, Mathias; Møller, Birger Lindberg; Bock, Ralph; Jensen, Poul Erik

    2016-04-01

    Plant chloroplasts are light-driven cell factories that have great potential to act as a chassis for metabolic engineering applications. Using plant chloroplasts, we demonstrate how photosynthetic reducing power can drive a metabolic pathway to synthesise a bio-active natural product. For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed in the chloroplasts and converted endogenous tyrosine into dhurrin using electrons derived directly from the photosynthetic electron transport chain, without the need for the presence of an NADPH-dependent P450 oxidoreductase. The dhurrin produced in the engineered plants amounted to 0.1-0.2% of leaf dry weight compared to 6% in sorghum. The results obtained pave the way for plant P450s involved in the synthesis of economically important compounds to be engineered into the thylakoid membrane of chloroplasts, and demonstrate that their full catalytic cycle can be driven directly by photosynthesis-derived electrons. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. The C-type Arabidopsis thioredoxin reductase ANTR-C acts as an electron donor to 2-Cys peroxiredoxins in chloroplasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Jeong Chan; Jang, Ho Hee; Chae, Ho Byoung

    2006-09-22

    2-Cys peroxiredoxins (Prxs) play important roles in the antioxidative defense systems of plant chloroplasts. In order to determine the interaction partner for these proteins in Arabidopsis, we used a yeast two-hybrid screening procedure with a C175S-mutant of Arabidopsis 2-Cys Prx-A as bait. A cDNA encoding an NADPH-dependent thioredoxin reductase (NTR) isotype C was identified and designated ANTR-C. We demonstrated that this protein effected efficient transfer of electrons from NADPH to the 2-Cys Prxs of chloroplasts. Interaction between 2-Cys Prx-A and ANTR-C was confirmed by a pull-down experiment. ANTR-C contained N-terminal TR and C-terminal Trx domains. It exhibited both TR andmore » Trx activities and co-localized with 2-Cys Prx-A in chloroplasts. These results suggest that ANTR-C functions as an electron donor for plastidial 2-Cys Prxs and represents the NADPH-dependent TR/Trx system in chloroplasts.« less

  12. Photoinactivation of ascorbate peroxidase in isolated tobacco chloroplasts: Galdieria partita APX maintains the electron flux through the water-water cycle in transplastomic tobacco plants.

    PubMed

    Miyake, Chikahiro; Shinzaki, Yuki; Nishioka, Minori; Horiguchi, Sayaka; Tomizawa, Ken-Ichi

    2006-02-01

    We evaluated the H2O2-scavenging activity of the water-water cycle (WWC) in illuminated intact chloroplasts isolated from tobacco leaves. Illumination under conditions that limited photosynthesis [red light (>640 nm), 250 micromol photons m(-2) s(-1) in the absence of HCO3-] caused chloroplasts to take up O2 and accumulate H2O2. Concomitant with the O2 uptake, both ascorbate peroxidase (APX) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) lost their activities. However, superoxide dismutase (SOD), monodehydroascorbate radical reductase (MDAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) activities remained unaffected. The extent to which the photosynthetic linear electron flow decreased was small compared with the decline in APX activity. Therefore, the loss of APX activity lowered the electron flux through the WWC, as evidenced by a decrease in relative electron flux through PSII [Phi(PSII)xPFD]. To verify these interpretations, we created a transplastomic tobacco line in which an H2O2-insensitive APX from the red alga, Galdieria partita, was overproduced in the chloroplasts. In intact transplastomic chloroplasts which were illuminated under conditions that limited photosynthesis, neither O2 uptake nor H2O2 accumulation occurred. Furthermore, the electron flux through the WWC and the activity of GAPDH were maintained. The present work is the first report of APX inactivation by endogenous H2O2 in intact chloroplasts.

  13. Chloroplast evolution, structure and functions

    PubMed Central

    Jensen, Poul Erik

    2014-01-01

    In this review, we consider a selection of recent advances in chloroplast biology. These include new findings concerning chloroplast evolution, such as the identification of Chlamydiae as a third partner in primary endosymbiosis, a second instance of primary endosymbiosis represented by the chromatophores found in amoebae of the genus Paulinella, and a new explanation for the longevity of captured chloroplasts (kleptoplasts) in sacoglossan sea slugs. The controversy surrounding the three-dimensional structure of grana, its recent resolution by tomographic analyses, and the role of the CURVATURE THYLAKOID1 (CURT1) proteins in supporting grana formation are also discussed. We also present an updated inventory of photosynthetic proteins and the factors involved in the assembly of thylakoid multiprotein complexes, and evaluate findings that reveal that cyclic electron flow involves NADPH dehydrogenase (NDH)- and PGRL1/PGR5-dependent pathways, both of which receive electrons from ferredoxin. Other topics covered in this review include new protein components of nucleoids, an updated inventory of the chloroplast proteome, new enzymes in chlorophyll biosynthesis and new candidate messengers in retrograde signaling. Finally, we discuss the first successful synthetic biology approaches that resulted in chloroplasts in which electrons from the photosynthetic light reactions are fed to enzymes derived from secondary metabolism. PMID:24991417

  14. Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana

    PubMed Central

    Vishwakarma, Abhaypratap; Tetali, Sarada Devi; Selinski, Jennifer; Scheibe, Renate; Padmasree, Kollipara

    2015-01-01

    Background and Aims The importance of the alternative oxidase (AOX) pathway, particularly AOX1A, in optimizing photosynthesis during de-etiolation, under elevated CO2, low temperature, high light or combined light and drought stress is well documented. In the present study, the role of AOX1A in optimizing photosynthesis was investigated when electron transport through the cytochrome c oxidase (COX) pathway was restricted at complex III. Methods Leaf discs of wild-type (WT) and aox1a knock-out mutants of Arabidopsis thaliana were treated with antimycin A (AA) under growth-light conditions. To identify the impact of AOX1A deficiency in optimizing photosynthesis, respiratory O2 uptake and photosynthesis-related parameters were measured along with changes in redox couples, reactive oxygen species (ROS), lipid peroxidation and expression levels of genes related to respiration, the malate valve and the antioxidative system. Key Results In the absence of AA, aox1a knock-out mutants did not show any difference in physiological, biochemical or molecular parameters compared with WT. However, after AA treatment, aox1a plants showed a significant reduction in both respiratory O2 uptake and NaHCO3-dependent O2 evolution. Chlorophyll fluorescence and P700 studies revealed that in contrast to WT, aox1a knock-out plants were incapable of maintaining electron flow in the chloroplastic electron transport chain, and thereby inefficient heat dissipation (low non-photochemical quenching) was observed. Furthermore, aox1a mutants exhibited significant disturbances in cellular redox couples of NAD(P)H and ascorbate (Asc) and consequently accumulation of ROS and malondialdehyde (MDA) content. By contrast, WT plants showed a significant increase in transcript levels of CSD1, CAT1, sAPX, COX15 and AOX1A in contrast to aox1a mutants. Conclusions These results suggest that AOX1A plays a significant role in sustaining the chloroplastic redox state and energization to optimize photosynthesis by regulating cellular redox homeostasis and ROS generation when electron transport through the COX pathway is disturbed at complex III. PMID:26292995

  15. Multimodal lightsheet, structured illumination and Airyscan superresolution microscopy of chloroplast size and its impact on light propagation

    USDA-ARS?s Scientific Manuscript database

    Altering chloroplast size changes the way light propagates through a leaf by altering light reflectance and transmission as well as absorption by chlorophyll. Thus changing chloroplast size can used to manipulate leaf optical properties to optimize photosynthetic efficiency with the ultimate goal of...

  16. Connectivity between electron transport complexes and modulation of photosystem II activity in chloroplasts.

    PubMed

    Tikhonov, Alexander N; Vershubskii, Alexey V

    2017-09-01

    In chloroplasts, photosynthetic electron transport complexes interact with each other via the mobile electron carriers (plastoquinone and plastocyanin) which are in surplus amounts with respect to photosystem I and photosystem II (PSI and PSII), and the cytochrome b 6 f complex. In this work, we analyze experimental data on the light-induced redox transients of photoreaction center P 700 in chloroplasts within the framework of our mathematical model. This analysis suggests that during the action of a strong actinic light, even significant attenuation of PSII [for instance, in the result of inhibition of a part of PSII complexes by DCMU or due to non-photochemical quenching (NPQ)] will not cause drastic shortage of electron flow through PSI. This can be explained by "electronic" and/or "excitonic" connectivity between different PSII units. At strong AL, the overall flux of electrons between PSII and PSI will maintain at a high level even with the attenuation of PSII activity, provided the rate-limiting step of electron transfer is beyond the stage of PQH 2 formation. Results of our study are briefly discussed in the context of NPQ-dependent mechanism of chloroplast protection against light stress.

  17. Effect of Flooding on Starch Accumulation in Chloroplasts of Sunflower (Helianthus annuus L.) 1

    PubMed Central

    Wample, Robert L.; Davis, Ronald W.

    1983-01-01

    Chloroplasts in leaves of sunflower (Helianthus annuus L. cv hybrid 894) whose roots were flooded for 4 days showed an increase in the level of starch in chloroplasts when examined with the electron microscope. Starch determination showed significantly higher levels in leaves of flooded plants. Chloroplast and mitochondrial structure seemed otherwise normal. Images Fig. 1 Fig. 2 PMID:16663176

  18. An optimized transit peptide for effective targeting of diverse foreign proteins into chloroplasts in rice.

    PubMed

    Shen, Bo-Ran; Zhu, Cheng-Hua; Yao, Zhen; Cui, Li-Li; Zhang, Jian-Jun; Yang, Cheng-Wei; He, Zheng-Hui; Peng, Xin-Xiang

    2017-04-11

    Various chloroplast transit peptides (CTP) have been used to successfully target some foreign proteins into chloroplasts, but for other proteins these same CTPs have reduced localization efficiencies or fail completely. The underlying cause of the failures remains an open question, and more effective CTPs are needed. In this study, we initially observed that two E.coli enzymes, EcTSR and EcGCL, failed to be targeted into rice chloroplasts by the commonly-used rice rbcS transit peptide (rCTP) and were subsequently degraded. Further analyses revealed that the N-terminal unfolded region of cargo proteins is critical for their localization capability, and that a length of about 20 amino acids is required to attain the maximum localization efficiency. We considered that the unfolded region may alleviate the steric hindrance produced by the cargo protein, by functioning as a spacer to which cytosolic translocators can bind. Based on this inference, an optimized CTP, named RC2, was constructed. Analyses showed that RC2 can more effectively target diverse proteins, including EcTSR and EcGCL, into rice chloroplasts. Collectively, our results provide further insight into the mechanism of CTP-mediated chloroplastic localization, and more importantly, RC2 can be widely applied in future chloroplastic metabolic engineering, particularly for crop plants.

  19. An Essential Component in Chloroplast Development and Maintenance at Moderate High Temperature in Higher Plants: Chloroplast-targeted FtsH11 Proteases

    USDA-ARS?s Scientific Manuscript database

    Among the 12 predicted FtsH proteases in Arabidopsis, AtFtsH11 is the only metalloprotease targeting to both chloroplast and mitochondria and the only one essential for Arabidopsis plant to survive at moderate heat stress at all developmental stages. Under optimal conditions, atftsh11 mutants were...

  20. An Ancient Bacterial Signaling Pathway Regulates Chloroplast Function to Influence Growth and Development in Arabidopsis[OPEN

    PubMed Central

    Sugliani, Matteo; Ke, Hang; Bouveret, Emmanuelle; Robaglia, Christophe; Caffarri, Stefano

    2016-01-01

    The chloroplast originated from the endosymbiosis of an ancient photosynthetic bacterium by a eukaryotic cell. Remarkably, the chloroplast has retained elements of a bacterial stress response pathway that is mediated by the signaling nucleotides guanosine penta- and tetraphosphate (ppGpp). However, an understanding of the mechanism and outcomes of ppGpp signaling in the photosynthetic eukaryotes has remained elusive. Using the model plant Arabidopsis thaliana, we show that ppGpp is a potent regulator of chloroplast gene expression in vivo that directly reduces the quantity of chloroplast transcripts and chloroplast-encoded proteins. We then go on to demonstrate that the antagonistic functions of different plant RelA SpoT homologs together modulate ppGpp levels to regulate chloroplast function and show that they are required for optimal plant growth, chloroplast volume, and chloroplast breakdown during dark-induced and developmental senescence. Therefore, our results show that ppGpp signaling is not only linked to stress responses in plants but is also an important mediator of cooperation between the chloroplast and the nucleocytoplasmic compartment during plant growth and development. PMID:26908759

  1. Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography

    PubMed Central

    Engel, Benjamin D; Schaffer, Miroslava; Kuhn Cuellar, Luis; Villa, Elizabeth; Plitzko, Jürgen M; Baumeister, Wolfgang

    2015-01-01

    Chloroplast function is orchestrated by the organelle's intricate architecture. By combining cryo-focused ion beam milling of vitreous Chlamydomonas cells with cryo-electron tomography, we acquired three-dimensional structures of the chloroplast in its native state within the cell. Chloroplast envelope inner membrane invaginations were frequently found in close association with thylakoid tips, and the tips of multiple thylakoid stacks converged at dynamic sites on the chloroplast envelope, implicating lipid transport in thylakoid biogenesis. Subtomogram averaging and nearest neighbor analysis revealed that RuBisCO complexes were hexagonally packed within the pyrenoid, with ∼15 nm between their centers. Thylakoid stacks and the pyrenoid were connected by cylindrical pyrenoid tubules, physically bridging the sites of light-dependent photosynthesis and light-independent carbon fixation. Multiple parallel minitubules were bundled within each pyrenoid tubule, possibly serving as conduits for the targeted one-dimensional diffusion of small molecules such as ATP and sugars between the chloroplast stroma and the pyrenoid matrix. DOI: http://dx.doi.org/10.7554/eLife.04889.001 PMID:25584625

  2. Chloroplasts in anther endothecium of Zea mays (Poaceae).

    PubMed

    Murphy, Katherine M; Egger, Rachel L; Walbot, Virginia

    2015-11-01

    Although anthers of Zea mays, Oryza sativa, and Arabidopsis thaliana have been studied intensively using genetic and biochemical analyses in the past 20 years, few updates to anther anatomical and ultrastructural descriptions have been reported. For example, no transmission electron microscopy (TEM) images of the premeiotic maize anther have been published. Here we report the presence of chloroplasts in maize anthers. TEM imaging, electron acceptor photosynthesis assay, in planta photon detection, microarray analysis, and light and fluorescence microscopy were used to investigate the presence of chloroplasts in the maize anther. Most cells of the maize subepidermal endothecium have starch-containing chloroplasts that do not conduct measurable photosynthesis in vitro. The maize anther contains chloroplasts in most subepidermal, endothecial cells. Although maize anthers receive sufficient light to photosynthesize in vivo and the maize anther transcribes >96% of photosynthesis-associated genes found in the maize leaf, no photosynthetic light reaction activity was detected in vitro. The endothecial cell layer should no longer be defined as a complete circle viewed transversely in anther lobes, because chloroplasts are observed only in cells directly beneath the epidermis and not those adjacent to the connective tissue. We propose that chloroplasts be a defining characteristic of differentiated endothecial cells and that nonsubepidermal endothecial cells that lack chloroplasts be defined as a separate cell type, the interendothecium. © 2015 Botanical Society of America.

  3. Photolysis of water for H2 production with the use of biological and artificial catalysts

    NASA Astrophysics Data System (ADS)

    Hall, D. O.; Adams, M. W. W.; Morris, P.; Rao, K. K.

    1980-02-01

    An aqueous mixture of chloroplasts, hydrogenase and electron transfer catalyst on illumination liberates H2, the source of the H atoms being water. The rate and duration of H2 production from such a system depends on the stability of chloroplast and hydrogenase activities in light and oxygen. Both chloroplasts and hydrogenases can be stabilized to a certain degree by immobilization in gels or by incubation in bovine serum albumin. Natural electron carriers of hydrogenases are ferredoxin, cytochrome c3 and NAD. Viologen dyes and synthetic iron-sulphur particles (Jeevanu) can substitute for the biological carriers. Methyl viologen, photoreduced in the presence of chloroplasts, can liberate H2 in combination with Pt (Adam's catalyst). An aqueous solution of proflavine can be photoreduced in the presence of organic electron donors such as EDTA, cysteine, dithiothreitol, etc.; the reduced proflavine can subsequently liberate H2 with MV-Pt, MV-hydrogenase, ferredoxin-hydrogenase or cytochrome-hydrogenase systems.

  4. Two Effects of Electrical Fields on Chloroplasts 1

    PubMed Central

    Arnold, William A.; Azzi, Jim R.

    1977-01-01

    An electrical field across a suspension of Chenopodium chloroplasts stimulates the emission of delayed light during the time the field is on. This stimulation can be used to calculate the distance over which the electron moves in the untrapping process that gives the delayed light. An electrical field applied at the time of illumination gives a polarization to the suspension of chloroplasts that lasts for some seconds. This polarization is a new way to study delayed light and fluorescence from chloroplasts. Images PMID:16660112

  5. Longevity of guard cell chloroplasts in falling leaves: implication for stomatal function and cellular aging.

    PubMed

    Zeiger, E; Schwartz, A

    1982-11-12

    Guard cell chloroplasts in senescing leaves from 12 species of perennial trees and three species of annual plants survived considerably longer than their mesophyll counterparts. In Ginkgo biloba, stomata from yellow leaves opened during the day and closed at night; guard cell chloroplasts from these leaves showed fluorescence transients associated with electron transport and photophosphorylation. These findings indicate that guard cell chloroplasts are highly conserved throughout the life-span of the leaf and that leaves retain stomatal control during senescence.

  6. Longevity of guard cell chloroplasts in falling leaves: implication for stomatal function and cellular aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeiger, E.; Schwartz, A.

    1982-11-12

    Guard cell chloroplasts in senescing leaves from 12 species of perennial trees and three species of annual plants survived considerably longer than their mesophyll counterparts. In Ginkgo biloba, stomata from yellow leaves opened during the day and closed at night; guard cell chloroplasts from these leaves showed fluorescence transients associated with electron transport and photophosphorylation. These findings indicate that guard cell chloroplasts are highly conserved throughout the life-span of the leaf and that leaves retain stomatal control during senescence.

  7. An Ancient Bacterial Signaling Pathway Regulates Chloroplast Function to Influence Growth and Development in Arabidopsis.

    PubMed

    Sugliani, Matteo; Abdelkefi, Hela; Ke, Hang; Bouveret, Emmanuelle; Robaglia, Christophe; Caffarri, Stefano; Field, Ben

    2016-03-01

    The chloroplast originated from the endosymbiosis of an ancient photosynthetic bacterium by a eukaryotic cell. Remarkably, the chloroplast has retained elements of a bacterial stress response pathway that is mediated by the signaling nucleotides guanosine penta- and tetraphosphate (ppGpp). However, an understanding of the mechanism and outcomes of ppGpp signaling in the photosynthetic eukaryotes has remained elusive. Using the model plant Arabidopsis thaliana, we show that ppGpp is a potent regulator of chloroplast gene expression in vivo that directly reduces the quantity of chloroplast transcripts and chloroplast-encoded proteins. We then go on to demonstrate that the antagonistic functions of different plant RelA SpoT homologs together modulate ppGpp levels to regulate chloroplast function and show that they are required for optimal plant growth, chloroplast volume, and chloroplast breakdown during dark-induced and developmental senescence. Therefore, our results show that ppGpp signaling is not only linked to stress responses in plants but is also an important mediator of cooperation between the chloroplast and the nucleocytoplasmic compartment during plant growth and development. © 2016 American Society of Plant Biologists. All rights reserved.

  8. Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser.

    PubMed

    Takayama, Yuki; Inui, Yayoi; Sekiguchi, Yuki; Kobayashi, Amane; Oroguchi, Tomotaka; Yamamoto, Masaki; Matsunaga, Sachihiro; Nakasako, Masayoshi

    2015-07-01

    Coherent X-ray diffraction imaging (CXDI) is a lens-less technique for visualizing the structures of non-crystalline particles with the dimensions of submicrometer to micrometer at a resolution of several tens of nanometers. We conducted cryogenic CXDI experiments at 66 K to visualize the internal structures of frozen-hydrated chloroplasts of Cyanidioschyzon merolae using X-ray free electron laser (XFEL) as a coherent X-ray source. Chloroplast dispersed specimen disks at a number density of 7/(10×10 µm(2)) were flash-cooled with liquid ethane without staining, sectioning or chemical labeling. Chloroplasts are destroyed at atomic level immediately after the diffraction by XFEL pulses. Thus, diffraction patterns with a good signal-to-noise ratio from single chloroplasts were selected from many diffraction patterns collected through scanning specimen disks to provide fresh specimens into the irradiation area. The electron density maps of single chloroplasts projected along the direction of the incident X-ray beam were reconstructed by using the iterative phase-retrieval method and multivariate analyses. The electron density map at a resolution of 70 nm appeared as a C-shape. In addition, the fluorescence image of proteins stained with Flamingo™ dye also appeared as a C-shape as did the autofluorescence from Chl. The similar images suggest that the thylakoid membranes with an abundance of proteins distribute along the outer membranes of chloroplasts. To confirm the present results statistically, a number of projection structures must be accumulated through high-throughput data collection in the near future. Based on the results, we discuss the feasibility of XFEL-CXDI experiments in the structural analyses of cellular organelles. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana.

    PubMed

    Vishwakarma, Abhaypratap; Tetali, Sarada Devi; Selinski, Jennifer; Scheibe, Renate; Padmasree, Kollipara

    2015-09-01

    The importance of the alternative oxidase (AOX) pathway, particularly AOX1A, in optimizing photosynthesis during de-etiolation, under elevated CO2, low temperature, high light or combined light and drought stress is well documented. In the present study, the role of AOX1A in optimizing photosynthesis was investigated when electron transport through the cytochrome c oxidase (COX) pathway was restricted at complex III. Leaf discs of wild-type (WT) and aox1a knock-out mutants of Arabidopsis thaliana were treated with antimycin A (AA) under growth-light conditions. To identify the impact of AOX1A deficiency in optimizing photosynthesis, respiratory O2 uptake and photosynthesis-related parameters were measured along with changes in redox couples, reactive oxygen species (ROS), lipid peroxidation and expression levels of genes related to respiration, the malate valve and the antioxidative system. In the absence of AA, aox1a knock-out mutants did not show any difference in physiological, biochemical or molecular parameters compared with WT. However, after AA treatment, aox1a plants showed a significant reduction in both respiratory O2 uptake and NaHCO3-dependent O2 evolution. Chlorophyll fluorescence and P700 studies revealed that in contrast to WT, aox1a knock-out plants were incapable of maintaining electron flow in the chloroplastic electron transport chain, and thereby inefficient heat dissipation (low non-photochemical quenching) was observed. Furthermore, aox1a mutants exhibited significant disturbances in cellular redox couples of NAD(P)H and ascorbate (Asc) and consequently accumulation of ROS and malondialdehyde (MDA) content. By contrast, WT plants showed a significant increase in transcript levels of CSD1, CAT1, sAPX, COX15 and AOX1A in contrast to aox1a mutants. These results suggest that AOX1A plays a significant role in sustaining the chloroplastic redox state and energization to optimize photosynthesis by regulating cellular redox homeostasis and ROS generation when electron transport through the COX pathway is disturbed at complex III. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Towards the D1 protein application for the development of sensors specific for herbicides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piletskaya, E.; Piletsky, S.; Lavrik, N.

    1998-12-01

    One of the most widespread groups of pesticides are the triazine herbicides. These substances inhibit photosynthesis by blocking electron transport in plant chloroplasts. The possibility of the chloroplast D1 protein application for determination of the herbicide concentration in solution was investigated. Potentiometry and cyclic voltammetry have been selected to monitor specific interaction between the D1 protein and herbicide. It was found that membranes with well-defined structure, like Langmuir-Blongett film are more suitable for sensitive sensor construction than cross-linked membranes. After addition of atrazine, the current through these multilayers appeared to increase 5 fold. The effect was found to be fastmore » and irreversible. It has been proposed that the toxic action of herbicides on chloroplasts, traditionally interpreted by inhibition of electron flow along the chloroplast membrane, may also be the result of the thylakoid membrane depolarization.« less

  11. Electrons and proton transfer in chloroplasts in silico: 1. The effect of topological factors on energy coupling in chloroplasts with a nonuniform distribution of protein complexes

    NASA Astrophysics Data System (ADS)

    Vershubskii, A. V.; Tikhonov, A. N.

    2017-05-01

    This paper presents a theoretical study of the effects of topological factors (density of thylakoid packing in grana) on the efficiency of energy coupling in chloroplasts. The study is based on a mathematical model of electron and proton transport processes coupled to ATP synthesis in chloroplasts. The model was developed by the authors earlier, and the nonuniform distribution of electron transport and ATP synthase complexes in the membranes of granal and intergranal thylakoids was taken into account in the model. The results of numerical experiments enabled the analysis of the distribution of lateral profiles of the transmembrane pH difference and the concentrations of mobile plastoquinone and plastocyanin electron transporters in granal and intergranal thylakoids and the dependence of this distribution on the metabolic state of class B chloroplasts (photosynthetic control state or the conditions of intensive ATP synthesis). Moreover, the influence of topological factors (the density of thylakoid packing in grana and the degree of thylakoid swelling) that affect the rate of diffusion of protons and mobile electron carriers in the intrathylakoid space and in the interthylakoidal gap was investigated. The results of numerical experiments that involved the variation of geometric parameters of the system revealed the influence of thylakoid thickness and the distance between the granal thylakoids on the lateral pH profiles inside the thylakoids (pHi) and in the interthylakoidal gap (pHo). Acidification of the intrathylakoid space characterized by the pHi value increased concomitantly to the increase of the width of the interthylakoidal gap l o and decreased concomitantly to the increase of the width of the intrathylakoidal space l i.

  12. Modification of Herbicide Binding to Photosystem II in Two Biotypes of Senecio vulgaris L

    PubMed Central

    Pfister, Klaus; Radosevich, Steven R.; Arntzen, Charles J.

    1979-01-01

    The present study compares the binding and inhibitory activity of two photosystem II inhibitors: 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron [DCMU]) and 2-chloro-4-(ethylamine)-6-(isopropyl amine)-S-triazene (atrazine). Chloroplasts isolated from naturally occurring triazine-susceptible and triazine-resistant biotypes of common groundsel (Senecio vulgaris L.) showed the following characteristics. (a) Diuron strongly inhibited photosynthetic electron transport from H2O to 2,6-dichlorophenolindophenol in both biotypes. Strong inhibition by atrazine was observed only with the susceptible chloroplasts. (b) Hill plots of electron transport inhibition data indicate a noncooperative binding of one inhibitor molecule at the site of action for both diuron and atrazine. (c) Susceptible chloroplasts show a strong diuron and atrazine binding (14C-radiolabel assays) with binding constants (K) of 1.4 × 10−8 molar and 4 × 10−8 molar, respectively. In the resistant chloroplasts the diuron binding was slightly decreased (K = 5 × 10−8 molar), whereas no specific atrazine binding was detected. (d) In susceptible chloroplasts, competitive binding between radioactively labeled diuron and non-labeled atrazine was observed. This competition was absent in the resistant chloroplasts. We conclude that triazine resistance of both intact plants and isolated chloroplasts of Senecio vulgaris L. is based upon a minor modification of the protein in the photosystem II complex which is responsible for herbicide binding. This change results in a specific loss of atrazine (triazine)-binding capacity. PMID:16661120

  13. Sonication-based isolation and enrichment of Chlorella protothecoides chloroplasts for illumina genome sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelova, Angelina; Park, Sang-Hycuk; Kyndt, John

    2013-09-01

    With the increasing world demand for biofuel, a number of oleaginous algal species are being considered as renewable sources of oil. Chlorella protothecoides Krüger synthesizes triacylglycerols (TAGs) as storage compounds that can be converted into renewable fuel utilizing an anabolic pathway that is poorly understood. The paucity of algal chloroplast genome sequences has been an important constraint to chloroplast transformation and for studying gene expression in TAGs pathways. In this study, the intact chloroplasts were released from algal cells using sonication followed by sucrose gradient centrifugation, resulting in a 2.36-fold enrichment of chloroplasts from C. protothecoides, based on qPCR analysis.more » The C. protothecoides chloroplast genome (cpDNA) was determined using the Illumina HiSeq 2000 sequencing platform and found to be 84,576 Kb in size (8.57 Kb) in size, with a GC content of 30.8 %. This is the first report of an optimized protocol that uses a sonication step, followed by sucrose gradient centrifugation, to release and enrich intact chloroplasts from a microalga (C. prototheocoides) of sufficient quality to permit chloroplast genome sequencing with high coverage, while minimizing nuclear genome contamination. The approach is expected to guide chloroplast isolation from other oleaginous algal species for a variety of uses that benefit from enrichment of chloroplasts, ranging from biochemical analysis to genomics studies.« less

  14. Looking for a substituent of spinach (Spinacia oleracea) chloroplasts

    NASA Astrophysics Data System (ADS)

    Chang, Ying Ping; Yeoh, Loo Yew; Chee, Swee Yong; Lim, Tuck Meng

    2017-04-01

    Spinach's chloroplasts electron transport features are often adapted to build biofuel cells or biosensors for environment conservation. This approach may raise food security issues. The present study aimed to test on in vitro functional activity of chloroplasts from selected underutilized leaves of: Pandan (Pandanus amaryllifolius), oil palm (Elaeis guineensis) and water lettuce (Pistia stratiotes) in comparison with spinach (Spinacia oleracea). The leaves' electrical conductivity was measured to evaluate the initial cell permeability. We applied Hill's reaction to determine the photoreduction capacity of the chloroplasts. Initial electrical conductivity of leaves ranged from 11.5 to 18.5 µs/cm/g followed the order of water lettuce

  15. Photosynthesis.

    PubMed

    Johnson, Matthew P

    2016-10-31

    Photosynthesis sustains virtually all life on planet Earth providing the oxygen we breathe and the food we eat; it forms the basis of global food chains and meets the majority of humankind's current energy needs through fossilized photosynthetic fuels. The process of photosynthesis in plants is based on two reactions that are carried out by separate parts of the chloroplast. The light reactions occur in the chloroplast thylakoid membrane and involve the splitting of water into oxygen, protons and electrons. The protons and electrons are then transferred through the thylakoid membrane to create the energy storage molecules adenosine triphosphate (ATP) and nicotinomide-adenine dinucleotide phosphate (NADPH). The ATP and NADPH are then utilized by the enzymes of the Calvin-Benson cycle (the dark reactions), which converts CO 2 into carbohydrate in the chloroplast stroma. The basic principles of solar energy capture, energy, electron and proton transfer and the biochemical basis of carbon fixation are explained and their significance is discussed. © 2016 The Author(s).

  16. Biosynthesis of sulfoquinovosyldiacylglycerol in higher plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleppinger-Sparace, K.F.; Mudd, J.B.

    1987-07-01

    Intact spinach chloroplasts incorporated /sup 35/SO/sub 4//sup 2 -/ into sulfoquinovosyldiacylglycerol in the dark at rates equivalent to those previously reported for illuminated chloroplasts provided that either ATP itself or an ATP-generating system was added. No additional reductant was necessary for SQDG synthesis by chloroplasts. The optimal concentration of ATP was between 2 and 3 millimolar. Rates of synthesis up to 2.6 nanomoles per milligram chlorophyll per hour were observed. UTP, GTP, and CTP could not substitute for ATP. Incubation of UTP with ATP (1:1) stimulated synthesis of sulfoquinovosyldiacylglycerol. No additional stimulation of the reaction was observed upon addition ofmore » other nucleoside triphosphates with ATP. For the generation of ATP in the chloroplast, addition of dihydroxyacetone phosphate alone did not promote synthesis of sulfoquinovosyldiacylglycerol, but in combination with inorganic phosphate and oxaloacetate, rates of synthesis up to 3.2 nanomoles per milligram chlorophyll per hour were observed. Dark synthesis was optimal in the presence of 2 millimolar dihydroxyacetone phosphate, 2 millimolar oxaloacetate, and 1 millimolar KH/sub 2/PO/sub 4/.« less

  17. Interaction between photosynthetic electron transport and chloroplast sinks triggers protection and signalling important for plant productivity

    PubMed Central

    Gollan, Peter J.; Lima-Melo, Yugo; Tiwari, Arjun; Tikkanen, Mikko

    2017-01-01

    The photosynthetic light reactions provide energy that is consumed and stored in electron sinks, the products of photosynthesis. A balance between light reactions and electron consumption in the chloroplast is vital for plants, and is protected by several photosynthetic regulation mechanisms. Photosystem I (PSI) is particularly susceptible to photoinhibition when these factors become unbalanced, which can occur in low temperatures or in high light. In this study we used the pgr5 Arabidopsis mutant that lacks ΔpH-dependent regulation of photosynthetic electron transport as a model to study the consequences of PSI photoinhibition under high light. We found that PSI damage severely inhibits carbon fixation and starch accumulation, and attenuates enzymatic oxylipin synthesis and chloroplast regulation of nuclear gene expression after high light stress. This work shows that modifications to regulation of photosynthetic light reactions, which may be designed to improve yield in crop plants, can negatively impact metabolism and signalling, and thereby threaten plant growth and stress tolerance. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’. PMID:28808104

  18. PDV2 has a dosage effect on chloroplast division in Arabidopsis.

    PubMed

    Chang, Ning; Sun, Qingqing; Li, Yiqiong; Mu, Yajuan; Hu, Jinglei; Feng, Yue; Liu, Xiaomin; Gao, Hongbo

    2017-03-01

    PDV2 has a dosage effect on chloroplast division in Arabidopsis thaliana , but this effect may vary in different plants. Chloroplasts have to be divided as plants grow to maintain an optimized number in the cell. Chloroplasts are divided by protein complexes across the double membranes from the stroma side to the cytosolic side. PDV2 is a chloroplast division protein on the chloroplast outer membrane. It recruits the dynamin-related GTPase ARC5 to the division site. The C-terminus of PDV2 and the C-terminus of ARC6 interact in the intermembrane space, which is important for the localization of PDV2. Previously, it was shown that overexpression of PDV2 can increase the division of chloroplasts in Arabidopsis and moss, so the authors concluded that PDV2 determines the rate of chloroplast division in land plants. PDV2 was also shown to inhibit the GTPase activity of ARC5 by in vitro experiment. These results look to be contradictory. Here, we identified a null allele of PDV2 in Arabidopsis and studied plants with different levels of PDV2. Our results suggested that the chloroplast division phenotype in Arabidopsis is sensitive to the level of PDV2, while this is not the case for ARC6. The level of PDV2 protein is reduced sharply in fast-growing leaves, while the level of ARC6 is not. The levels of PDV2 and ARC6 in several other plant species at different developmental stages were also investigated. The results indicated that their expression pattern varies in different species. Thus, PDV2 is an important positive factor of chloroplast division with an apparent dosage effect in Arabidopsis, but this effect for different chloroplast division proteins in different plants may vary.

  19. Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography.

    PubMed

    Liberton, Michelle; Austin, Jotham R; Berg, R Howard; Pakrasi, Himadri B

    2011-04-01

    Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

  20. Ion and metabolite transport in the chloroplast of algae: lessons from land plants.

    PubMed

    Marchand, Justine; Heydarizadeh, Parisa; Schoefs, Benoît; Spetea, Cornelia

    2018-06-01

    Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.

  1. [The H+/e- ratio in the photosynthetic electron transport chain].

    PubMed

    Ivanov, B N; Shmeleva, V L; Ovchinnikova, V I

    1983-06-01

    The number of protons adsorbed by tylakoids during one electron passage along the photosynthetic electron transport chain (i.e. the H+/e- ratio) was measured in isolated pea chloroplasts upon continuous illumination. Methylviologen was used as electron acceptor on the reducing side of PS I. It was found that at pH 6.0 upon illumination with red light (lambda greater than 620 nm) at an intensity of 2 . 10(5) erg/cm2 . s ("intensive" light) the H+/e- ratio is equal to 3. Upon illumination of dark-adapted chloroplasts with a "weak" light (900 erg/cm2 . s) the H+/e- ratio is equal to 2. Upon illumination of the chloroplasts with a "weak" after "intensive" light the value of this ratio is close to 3. Azide when added to the reaction mixture may interfere with the accuracy of measurements of the value of the H+/e- ratio by affecting proton exchange. Based on the changes in the H+/e- ratio induced by illumination it was assumed that at saturating intensity of the illuminating light the electron transport chain passes into a so-called "light" state when the mechanisms of proton-electron coupling differing from those of rare electron transfer ("weak" light, flashes) are triggered on. At pH 6.0 the "light" state of the electron transport chain is maintained for some time in the dark.

  2. Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus1

    PubMed Central

    Green, Brian J.; Li, Wei-Ye; Manhart, James R.; Fox, Theodore C.; Summer, Elizabeth J.; Kennedy, Robert A.; Pierce, Sidney K.; Rumpho, Mary E.

    2000-01-01

    Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at least 9 months if provided with only light and a source of CO2. Here we demonstrate that the sea slug symbiont chloroplasts maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes. PMID:10982447

  3. Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus.

    PubMed

    Green, B J; Li, W Y; Manhart, J R; Fox, T C; Summer, E J; Kennedy, R A; Pierce, S K; Rumpho, M E

    2000-09-01

    Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO(2) fixation for at least 9 months if provided with only light and a source of CO(2). Here we demonstrate that the sea slug symbiont chloroplasts maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes.

  4. Pb-Induced Avoidance-Like Chloroplast Movements in Fronds of Lemna trisulca L.

    PubMed Central

    Samardakiewicz, Sławomir; Krzeszowiec-Jeleń, Weronika; Bednarski, Waldemar; Jankowski, Artur; Suski, Szymon; Gabryś, Halina; Woźny, Adam

    2015-01-01

    Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed). An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h) in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2). In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete) of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the mechanisms of the toxic effect of lead on chloroplasts can include disturbances in their movement and distribution pattern. PMID:25646776

  5. Stable megadalton TOC-TIC supercomplexes as major mediators of protein import into chloroplasts.

    PubMed

    Chen, Lih-Jen; Li, Hsou-Min

    2017-10-01

    Preproteins are believed to be imported into chloroplasts through membrane contact sites where the translocon complexes of the outer (TOC) and inner (TIC) envelope membranes are assembled together. However, a single TOC-TIC supercomplex containing preproteins undergoing active import has not yet been directly observed. We optimized the blue native polyacrylamide gel electrophoresis (PAGE) (BN-PAGE) system to detect and resolve megadalton (MD)-sized complexes. Using this optimized system, the outer-membrane channel Toc75 from pea chloroplasts was found in at least two complexes: the 880-kD TOC complex and a previously undetected 1-MD complex. Two-dimensional BN-PAGE immunoblots further showed that Toc75, Toc159, Toc34, Tic20, Tic56 and Tic110 were all located in the 880-kD to 1.3-MD region. During active preprotein import, preproteins were transported mostly through the 1-MD complex and a smaller amount of preproteins was also detected in a complex of 1.25 MD. Antibody-shift assays showed that the 1-MD complex is a TOC-TIC supercomplex containing at least Toc75, Toc159, Toc34 and Tic110. Results from crosslinking and import with Arabidopsis chloroplasts suggest that the 1.25-MD complex is also a supercomplex. Our data provide direct evidence supporting that chloroplast preproteins are imported through TOC-TIC supercomplexes, and also provide the first size estimation of these supercomplexes. Furthermore, unlike in mitochondria where translocon supercomplexes are only transiently assembled during preprotein import, in chloroplasts at least some of the supercomplexes are preassembled stable structures. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  6. Knocking Down of Isoprene Emission Modifies the Lipid Matrix of Thylakoid Membranes and Influences the Chloroplast Ultrastructure in Poplar1

    PubMed Central

    Velikova, Violeta; Müller, Constanze; Ghirardo, Andrea; Rock, Theresa Maria; Aichler, Michaela; Walch, Axel; Schmitt-Kopplin, Philippe

    2015-01-01

    Isoprene is a small lipophilic molecule with important functions in plant protection against abiotic stresses. Here, we studied the lipid composition of thylakoid membranes and chloroplast ultrastructure in isoprene-emitting (IE) and nonisoprene-emitting (NE) poplar (Populus × canescens). We demonstrated that the total amount of monogalactosyldiacylglycerols, digalactosyldiacylglycerols, phospholipids, and fatty acids is reduced in chloroplasts when isoprene biosynthesis is blocked. A significantly lower amount of unsaturated fatty acids, particularly linolenic acid in NE chloroplasts, was associated with the reduced fluidity of thylakoid membranes, which in turn negatively affects photosystem II photochemical efficiency. The low photosystem II photochemical efficiency in NE plants was negatively correlated with nonphotochemical quenching and the energy-dependent component of nonphotochemical quenching. Transmission electron microscopy revealed alterations in the chloroplast ultrastructure in NE compared with IE plants. NE chloroplasts were more rounded and contained fewer grana stacks and longer stroma thylakoids, more plastoglobules, and larger associative zones between chloroplasts and mitochondria. These results strongly support the idea that in IE species, the function of this molecule is closely associated with the structural organization and functioning of plastidic membranes. PMID:25975835

  7. Vaccination via Chloroplast Genetics: Affordable Protein Drugs for the Prevention and Treatment of Inherited or Infectious Human Diseases

    PubMed Central

    Daniell, Henry; Chan, Hui-Ting; Pasoreck, Elise K.

    2017-01-01

    Plastid-made biopharmaceuticals treat major metabolic or genetic disorders, including Alzheimer’s, diabetes, hypertension, hemophilia, and retinopathy. Booster vaccines made in chloroplasts prevent global infectious diseases, such as tuberculosis, malaria, cholera, and polio, and biological threats, such as anthrax and plague. Recent advances in this field include commercial-scale production of human therapeutic proteins in FDA-approved cGMP facilities, development of tags to deliver protein drugs to targeted human cells or tissues, methods to deliver precise doses, and long-term stability of protein drugs at ambient temperature, maintaining their efficacy. Codon optimization utilizing valuable information from sequenced chloroplast genomes enhanced expression of eukaryotic human or viral genes in chloroplasts and offered unique insights into translation in chloroplasts. Support from major biopharmaceutical companies, development of hydroponic production systems, and evaluation by regulatory agencies, including the CDC, FDA, and USDA, augur well for advancing this novel concept to the clinic and revolutionizing affordable healthcare. PMID:27893966

  8. ChloroSeq, an optimized chloroplast RNA-Seq bioinformatic pipeline, reveals remodeling of the organellar transcriptome under heat stress

    DOE PAGES

    Castandet, Benoît; Hotto, Amber M.; Strickler, Susan R.; ...

    2016-07-06

    Although RNA-Seq has revolutionized transcript analysis, organellar transcriptomes are rarely assessed even when present in published datasets. Here, we describe the development and application of a rapid and convenient method, ChloroSeq, to delineate qualitative and quantitative features of chloroplast RNA metabolism from strand-specific RNA-Seq datasets, including processing, editing, splicing, and relative transcript abundance. The use of a single experiment to analyze systematically chloroplast transcript maturation and abundance is of particular interest due to frequent pleiotropic effects observed in mutants that affect chloroplast gene expression and/or photosynthesis. To illustrate its utility, ChloroSeq was applied to published RNA-Seq datasets derived from Arabidopsismore » thaliana grown under control and abiotic stress conditions, where the organellar transcriptome had not been examined. The most appreciable effects were found for heat stress, which induces a global reduction in splicing and editing efficiency, and leads to increased abundance of chloroplast transcripts, including genic, intergenic, and antisense transcripts. Moreover, by concomitantly analyzing nuclear transcripts that encode chloroplast gene expression regulators from the same libraries, we demonstrate the possibility of achieving a holistic understanding of the nucleus-organelle system. In conclusion, ChloroSeq thus represents a unique method for streamlining RNA-Seq data interpretation of the chloroplast transcriptome and its regulators.« less

  9. ChloroSeq, an optimized chloroplast RNA-Seq bioinformatic pipeline, reveals remodeling of the organellar transcriptome under heat stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castandet, Benoît; Hotto, Amber M.; Strickler, Susan R.

    Although RNA-Seq has revolutionized transcript analysis, organellar transcriptomes are rarely assessed even when present in published datasets. Here, we describe the development and application of a rapid and convenient method, ChloroSeq, to delineate qualitative and quantitative features of chloroplast RNA metabolism from strand-specific RNA-Seq datasets, including processing, editing, splicing, and relative transcript abundance. The use of a single experiment to analyze systematically chloroplast transcript maturation and abundance is of particular interest due to frequent pleiotropic effects observed in mutants that affect chloroplast gene expression and/or photosynthesis. To illustrate its utility, ChloroSeq was applied to published RNA-Seq datasets derived from Arabidopsismore » thaliana grown under control and abiotic stress conditions, where the organellar transcriptome had not been examined. The most appreciable effects were found for heat stress, which induces a global reduction in splicing and editing efficiency, and leads to increased abundance of chloroplast transcripts, including genic, intergenic, and antisense transcripts. Moreover, by concomitantly analyzing nuclear transcripts that encode chloroplast gene expression regulators from the same libraries, we demonstrate the possibility of achieving a holistic understanding of the nucleus-organelle system. In conclusion, ChloroSeq thus represents a unique method for streamlining RNA-Seq data interpretation of the chloroplast transcriptome and its regulators.« less

  10. A tribute to Ulrich Heber (1930-2016) for his contribution to photosynthesis research: understanding the interplay between photosynthetic primary reactions, metabolism and the environment.

    PubMed

    Dietz, Karl-Josef; Krause, G Heinrich; Siebke, Katharina; Krieger-Liszkay, Anja

    2018-07-01

    The dynamic and efficient coordination of primary photosynthetic reactions with leaf energization and metabolism under a wide range of environmental conditions is a fundamental property of plants involving processes at all functional levels. The present historical perspective covers 60 years of research aiming to understand the underlying mechanisms, linking major breakthroughs to current progress. It centers on the contributions of Ulrich Heber who had pioneered novel concepts, fundamental methods, and mechanistic understanding of photosynthesis. An important first step was the development of non-aqueous preparation of chloroplasts allowing the investigation of chloroplast metabolites ex vivo (meaning that the obtained results reflect the in vivo situation). Later on, intact chloroplasts, retaining their functional envelope membranes, were isolated in aqueous media to investigate compartmentation and exchange of metabolites between chloroplasts and external medium. These studies elucidated metabolic interaction between chloroplasts and cytoplasm during photosynthesis. Experiments with isolated intact chloroplasts clarified that oxygenation of ribulose-1.5-bisphosphate generates glycolate in photorespiration. The development of non-invasive optical methods enabled researchers identifying mechanisms that balance electron flow in the photosynthetic electron transport system avoiding its over-reduction. Recording chlorophyll a (Chl a) fluorescence allowed one to monitor, among other parameters, thermal energy dissipation by means of 'nonphotochemical quenching' of the excited state of Chl a. Furthermore, studies both in vivo and in vitro led to basic understanding of the biochemical mechanisms of freezing damage and frost tolerance of plant leaves, to SO 2 tolerance of tree leaves and dehydrating lichens and mosses.

  11. The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana.

    PubMed

    Ze, Yuguan; Liu, Chao; Wang, Ling; Hong, Mengmeng; Hong, Fashui

    2011-11-01

    Recent studies demonstrated that titanium dioxide nanoparticles (TiO2 NPs) could significantly promote photosynthesis and plant growth, but its mechanism is still unclear. In this article, we studied the mechanism of light absorption and transfer of chloroplasts of Arabidopsis thaliana caused by TiO2 NPs treated. The results showed that TiO2 NPs could induce significant increases of light-harvesting complex II (LHCII) b gene expression and LHCII II content on the thylakoid membrane in A. thaliana, and the increases in LHCII were higher than the non-nano TiO2 (bulk-TiO2) treatment. Meanwhile, spectroscopy assays indicated that TiO2 NPs obviously increased the absorption peak intensity of the chloroplast in red and blue region, the fluorescence quantum yield near 680 nm, the excitation peak intensity near 440 and 480 nm and/or near 650 and 680 nm of the chloroplast. TiO2 NPs treatment could reduce F480/F440 ratio and increase F650/F680 ratio and accelerate the rate of whole chain electron transport and oxygen evolution of the chloroplast. However, the photosynthesis improvement of the non-nanoTiO2 treatment was far less effective than TiO2 NPs treatment. Taken together, TiO2 NPs could promote the light absorption of chloroplast, regulate the distribution of light energy from PS I to PS II by increasing LHCII and accelerate the transformation from light energy to electronic energy, water photolysis, and oxygen evolution.

  12. Chloroplast redox homeostasis is essential for lateral root formation in Arabidopsis.

    PubMed

    Ferrández, Julia; González, Maricruz; Cejudo, Francisco Javier

    2012-09-01

    Redox regulation based on dithiol-disulphide interchange is an essential component of the control of chloroplast metabolism. In contrast to heterotrophic organisms, and non-photosynthetic plant tissues, chloroplast redox regulation relies on ferredoxin (Fd) reduced by the photosynthetic electron transport chain, thus being highly dependent on light. The finding of the NADPH-dependent thioredoxin reductase C (NTRC), a chloroplast-localized NTR with a joint thioredoxin domain, showed that NADPH is also used as source of reducing power for chloroplast redox homeostasis. Recently we have found that NTRC is also in plastids of non-photosynthetic tissues. Because these non-green plastids lack photochemical reactions, their redox homeostasis depends exclusively on NADPH produced from sugars and, thus, NTRC may play an essential role maintaining the redox homeostasis in these plastids. The fact that redox regulation occurs in any type of plastids raises the possibility that the functions of chloroplasts and non-green plastids, such as amyloplasts, are integrated to harmonize the growth of the different organs of the plant. To address this question, we generated Arabidopsis plants the redox homeostasis of which is recovered exclusively in chloroplasts, by leaf-specific expression of NTRC in the ntrc mutant, or exclusively in amyloplasts, by root-specific expression of NTRC. The analysis of these plants suggests that chloroplasts exert a pivotal role on plant growth, as expected because chloroplasts constitute the major source of nutrients and energy, derived from photosynthesis, for growth of heterotrophic tissues. However, NTRC deficiency causes impairment of auxin synthesis and lateral root formation. Interestingly, recovery of redox homeostasis of chloroplasts, but not of amyloplasts, was sufficient to restore wild type levels of lateral roots, showing the important signaling function of chloroplasts for the development of heterotrophic organs.

  13. Integrated role of ROS and Ca+2 in blue light-induced chloroplast avoidance movement in leaves of Hydrilla verticillata (L.f.) Royle.

    PubMed

    Majumdar, Arkajo; Kar, Rup Kumar

    2016-11-01

    Directional chloroplast photorelocation is a major physio-biochemical mechanism that allows these organelles to realign themselves intracellularly in response to the intensity of the incident light as an adaptive response. Signaling processes involved in blue light (BL)-dependent chloroplast movements were investigated in Hydrilla verticillata (L.f.) Royle leaves. Treatments with antagonists of actin filaments [2,3,5-triiodobenzoic acid (TIBA)] and microtubules (oryzalin) revealed that actin filaments, but not microtubules, play a pivotal role in chloroplast movement. Involvement of reactive oxygen species (ROS) in controlling chloroplast avoidance movement has been demonstrated, as exogenous H 2 O 2 not only accelerated chloroplast avoidance but also could induce chloroplast avoidance even in weak blue light (WBL). Further support came from experiments with different ROS scavengers, i.e., dimethylthiourea (DMTU), KI, and CuCl 2 , which inhibited chloroplast avoidance, and from ROS localization using specific stains. Such avoidance was also partially inhibited by ZnCl 2 , an inhibitor of NADPH oxidase (NOX) as well as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a photosynthetic electron transport chain (ETC) inhibitor at PS II. However, methyl viologen (MV), a PS I ETC inhibitor, rather accelerated avoidance response. Exogenous calcium (Ca +2 ) induced avoidance even in WBL while inhibited chloroplast accumulation partially. On the other hand, chloroplast movements (both accumulation and avoidance) were blocked by Ca +2 antagonists, La 3+ (inhibitor of plasma membrane Ca +2 channel) and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA, Ca +2 chelator) while LiCl that affects Ca +2 release from endosomal compartments did not show any effect. A model on integrated role of ROS and Ca +2 (influx from apolastic space) in actin-mediated chloroplast avoidance has been proposed.

  14. Enhanced green fluorescent protein (egfp) gene expression in Tetraselmis subcordiformis chloroplast with endogenous regulators.

    PubMed

    Cui, Yulin; Zhao, Jialin; Hou, Shichang; Qin, Song

    2016-05-01

    On the basis of fundamental genetic transformation technologies, the goal of this study was to optimize Tetraselmis subcordiformis chloroplast transformation through the use of endogenous regulators. The genes rrn16S, rbcL, psbA, and psbC are commonly highly expressed in chloroplasts, and the regulators of these genes are often used in chloroplast transformation. For lack of a known chloroplast genome sequence, the genome-walking method was used here to obtain full sequences of T. subcordiformis endogenous regulators. The resulting regulators, including three promoters, two terminators, and a ribosome combination sequence, were inserted into the previously constructed plasmid pPSC-R, with the egfp gene included as a reporter gene, and five chloroplast expression vectors prepared. These vectors were successfully transformed into T. subcordiformis by particle bombardment and the efficiency of each vector tested by assessing EGFP fluorescence via microscopy. The results showed that these vectors exhibited higher efficiency than the former vector pPSC-G carrying exogenous regulators, and the vector pRFA with Prrn, psbA-5'RE, and TpsbA showed the highest efficiency. This research provides a set of effective endogenous regulators for T. subcordiformis and will facilitate future fundamental studies of this alga.

  15. Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-07-05

    The thiol-based redox regulation system is believed to adjust chloroplast functions in response to changes in light environments. A redox cascade via the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway has been traditionally considered to serve as a transmitter of light signals to target enzymes. However, emerging data indicate that chloroplasts have a complex redox network composed of diverse redox-mediator proteins and target enzymes. Despite extensive research addressing this system, two fundamental questions are still unresolved: How are redox pathways orchestrated within chloroplasts, and why are chloroplasts endowed with a complicated redox network? In this report, we show that NADPH-Trx reductase C (NTRC) is a key redox-mediator protein responsible for regulatory functions distinct from those of the classically known FTR/Trx system. Target screening and subsequent biochemical assays indicated that NTRC and the Trx family differentially recognize their target proteins. In addition, we found that NTRC is an electron donor to Trx-z, which is a key regulator of gene expression in chloroplasts. We further demonstrate that cooperative control of chloroplast functions via the FTR/Trx and NTRC pathways is essential for plant viability. Arabidopsis double mutants impaired in FTR and NTRC expression displayed lethal phenotypes under autotrophic growth conditions. This severe growth phenotype was related to a drastic loss of photosynthetic performance. These combined results provide an expanded map of the chloroplast redox network and its biological functions.

  16. Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability

    PubMed Central

    Yoshida, Keisuke; Hisabori, Toru

    2016-01-01

    The thiol-based redox regulation system is believed to adjust chloroplast functions in response to changes in light environments. A redox cascade via the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway has been traditionally considered to serve as a transmitter of light signals to target enzymes. However, emerging data indicate that chloroplasts have a complex redox network composed of diverse redox-mediator proteins and target enzymes. Despite extensive research addressing this system, two fundamental questions are still unresolved: How are redox pathways orchestrated within chloroplasts, and why are chloroplasts endowed with a complicated redox network? In this report, we show that NADPH-Trx reductase C (NTRC) is a key redox-mediator protein responsible for regulatory functions distinct from those of the classically known FTR/Trx system. Target screening and subsequent biochemical assays indicated that NTRC and the Trx family differentially recognize their target proteins. In addition, we found that NTRC is an electron donor to Trx-z, which is a key regulator of gene expression in chloroplasts. We further demonstrate that cooperative control of chloroplast functions via the FTR/Trx and NTRC pathways is essential for plant viability. Arabidopsis double mutants impaired in FTR and NTRC expression displayed lethal phenotypes under autotrophic growth conditions. This severe growth phenotype was related to a drastic loss of photosynthetic performance. These combined results provide an expanded map of the chloroplast redox network and its biological functions. PMID:27335455

  17. Evolution of Chloroplast Transcript Processing in Plasmodium and Its Chromerid Algal Relatives

    PubMed Central

    Dorrell, Richard G.; Drew, James; Nisbet, R. Ellen R.; Howe, Christopher J.

    2014-01-01

    It is well understood that apicomplexan parasites, such as the malaria pathogen Plasmodium, are descended from free-living algae, and maintain a vestigial chloroplast that has secondarily lost all genes of photosynthetic function. Recently, two fully photosynthetic relatives of parasitic apicomplexans have been identified, the ‘chromerid’ algae Chromera velia and Vitrella brassicaformis, which retain photosynthesis genes within their chloroplasts. Elucidating the processes governing gene expression in chromerid chloroplasts might provide valuable insights into the origins of parasitism in the apicomplexans. We have characterised chloroplast transcript processing pathways in C. velia, V. brassicaformis and P. falciparum with a focus on the addition of an unusual, 3′ poly(U) tail. We demonstrate that poly(U) tails in chromerids are preferentially added to transcripts that encode proteins that are directly involved in photosynthetic electron transfer, over transcripts for proteins that are not involved in photosynthesis. To our knowledge, this represents the first chloroplast transcript processing pathway to be associated with a particular functional category of genes. In contrast, Plasmodium chloroplast transcripts are not polyuridylylated. We additionally present evidence that poly(U) tail addition in chromerids is involved in the alternative processing of polycistronic precursors covering multiple photosynthesis genes, and appears to be associated with high levels of transcript abundance. We propose that changes to the chloroplast transcript processing machinery were an important step in the loss of photosynthesis in ancestors of parasitic apicomplexans. PMID:24453981

  18. Electromagnetic probes of molecular motors in the electron transport chains of mitochondria and chloroplasts

    NASA Astrophysics Data System (ADS)

    Miller, J. H., Jr.; Nawarathna, D.; Vajrala, V.; Gardner, J.; Widger, W. R.

    2005-12-01

    We report on measurements of harmonics generated by whole cells, mitochondria, and chloroplasts in response to applied sinusoidal electric fields. The frequency- and amplitude-dependence of the induced harmonics exhibit features that correlate with physiological processes. Budding yeast (S. cerevisiae) cells produce numerous harmonics, the amplitudes of which depend strongly on frequency. When the second or third harmonic amplitude is plotted vs. applied frequency, we observe two peaks, around 3 kHz and 12 kHz, which are suppressed by respiratory inhibitors. We observe similar peaks when measuring the harmonic response of B. indicas, a relative of the mitochondrial ancestor. In uncoupled mitochondria, in which most of the electron transport chain is active but the ATP-synthase molecular turbine is inactive, only one (lower frequency) of the two peaks is present. Finally, we find that harmonics generated by chloroplasts depend dramatically on incident light, and vanish in the absence of light.

  19. Endosymbiosis and the design of eukaryotic electron transport.

    PubMed

    Berry, Stephan

    2003-09-30

    The bioenergetic organelles of eukaryotic cells, mitochondria and chloroplasts, are derived from endosymbiotic bacteria. Their electron transport chains (ETCs) resemble those of free-living bacteria, but were tailored for energy transformation within the host cell. Parallel evolutionary processes in mitochondria and chloroplasts include reductive as well as expansive events: On one hand, bacterial complexes were lost in eukaryotes with a concomitant loss of metabolic flexibility. On the other hand, new subunits have been added to the remaining bacterial complexes, new complexes have been introduced, and elaborate folding patterns of the thylakoid and mitochondrial inner membranes have emerged. Some bacterial pathways were reinvented independently by eukaryotes, such as parallel routes for quinol oxidation or the use of various anaerobic electron acceptors. Multicellular organization and ontogenetic cycles in eukaryotes gave rise to further modifications of the bioenergetic organelles. Besides mitochondria and chloroplasts, eukaryotes have ETCs in other membranes, such as the plasma membrane (PM) redox system, or the cytochrome P450 (CYP) system. These systems have fewer complexes and simpler branching patterns than those in energy-transforming organelles, and they are often adapted to non-bioenergetic functions such as detoxification or cellular defense.

  20. PIC1, an Ancient Permease in Arabidopsis Chloroplasts, Mediates Iron Transport[W

    PubMed Central

    Duy, Daniela; Wanner, Gerhard; Meda, Anderson R.; von Wirén, Nicolaus; Soll, Jürgen; Philippar, Katrin

    2007-01-01

    In chloroplasts, the transition metals iron and copper play an essential role in photosynthetic electron transport and act as cofactors for superoxide dismutases. Iron is essential for chlorophyll biosynthesis, and ferritin clusters in plastids store iron during germination, development, and iron stress. Thus, plastidic homeostasis of transition metals, in particular of iron, is crucial for chloroplast as well as plant development. However, very little is known about iron uptake by chloroplasts. Arabidopsis thaliana PERMEASE IN CHLOROPLASTS1 (PIC1), identified in a screen for metal transporters in plastids, contains four predicted α-helices, is targeted to the inner envelope, and displays homology with cyanobacterial permease-like proteins. Knockout mutants of PIC1 grew only heterotrophically and were characterized by a chlorotic and dwarfish phenotype reminiscent of iron-deficient plants. Ultrastructural analysis of plastids revealed severely impaired chloroplast development and a striking increase in ferritin clusters. Besides upregulation of ferritin, pic1 mutants showed differential regulation of genes and proteins related to iron stress or transport, photosynthesis, and Fe-S cluster biogenesis. Furthermore, PIC1 and its cyanobacterial homolog mediated iron accumulation in an iron uptake–defective yeast mutant. These observations suggest that PIC1 functions in iron transport across the inner envelope of chloroplasts and hence in cellular metal homeostasis. PMID:17337631

  1. Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll-protein complexes in pea and tomato: plants with a different susceptibility to non-freezing temperature.

    PubMed

    Garstka, Maciej; Venema, Jan Henk; Rumak, Izabela; Gieczewska, Katarzyna; Rosiak, Malgorzata; Koziol-Lipinska, Joanna; Kierdaszuk, Borys; Vredenberg, Wim J; Mostowska, Agnieszka

    2007-10-01

    The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll-protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves. Chilling of pea leaves induced an increase of the relative contribution of LHCII and PSII fluorescence. A substantial decrease of the LHCII/PSII fluorescence accompanied by an increase of that from LHCI/PSI was observed in thylakoids from chilled tomato leaves; both were attenuated by photoactivation. Chlorophyll fluorescence of bright grana discs in chloroplasts from dark-chilled leaves, detected by confocal laser scanning microscopy, was more condensed in pea but significantly dispersed in tomato, compared with control samples. The chloroplast images from transmission-electron microscopy revealed that dark-chilling induced an increase of the degree of grana stacking only in pea chloroplasts. Analyses of O-J-D-I-P fluorescence induction curves in leaves of CS tomato before and after recovery from chilling indicate changes in electron transport rates at acceptor- and donor side of PS II and an increase in antenna size. In CT pea leaves these effects were absent, except for a small but irreversible effect on PSII activity and antenna size. Thus, the differences in chloroplast structure between CS and CT plants, induced by dark-chilling are a consequence of different thylakoid supercomplexes rearrangements.

  2. Interaction of Chloroplasts with Inhibitors

    PubMed Central

    Ridley, Stuart M.

    1977-01-01

    A primary symptom of diuron (DCMU) phytotoxicity in plants is the destruction of chlorophyll. To study this process in vitro, chloroplasts from pea leaves (Pisum sativum L.) have been incubated in the light with DCMU for periods of up to 34 hours. The sequence of photodestruction of chlorophylls and carotenoids has been followed to try and establish the nature of the chloroplast protection mechanisms that are destroyed by DCMU. β-Carotene decays most rapidly, followed by chlorophyll a and xanthophylls which are destroyed in a constant ratio, followed finally by chlorophyll b. Bypassing the DCMU block in the electron transport system with an artificial electron donor provides complete protection against chlorophyll and carotenoid photodestruction. The same protection by this electron donor system is afforded to stroma-free lamellae from which soluble reductants have been removed so that NADPH formation, which has been proposed as an essential part of a protective xanthophyll cycle, is not possible. Both this and the simultaneous loss of chlorophyll a and xanthophylls tend to preclude the breakdown of a xanthophyll cycle from the possible protective mechanisms inhibited or destroyed by DCMU. Cofactors of cyclic electron transport also protect against DCMU-induced photodestruction of pigments. Their concentration dependence for this protection appears to reflect their various abilities to catalyze cyclic photophosphorylation. The extent to which the chlorophylls are destroyed in the major pigment-protein complexes from chloroplasts illuminated with and without DCMU has been measured. In the absence of DCMU, the light-harvesting chlorophyll a/b protein complex is destroyed most rapidly. In the presence of DCMU, the losses of chlorophyll a from the photosystem I P700-chlorophyll a protein and the chlorophyll a/b complex are about the same. Chlorophyll losses are matched by simultaneous losses of the protein moieties; spectral analyses show that the remaining chlorophyll a is held in a loose association with the protein. Phenazine methosulfate protects the chlorophyll of the light-harvesting complex in DCMU-treated chloroplasts more than it protects that in photosystem I. Data published on DCMU-induced fluorescence and its quenching are used to interpret the longer term DCMU-induced chlorosis and its protection. By blocking electron transport, conformational changes in the membrane that allow spillover of excitation energy from photosystem II to photosystem I (and quenching of fluorescence by this means) are prevented. The mechanism that normally protects the chloroplast against excessive illumination is then overloaded which impairs the harmless dissipation of absorbed light energy; consequently, the pigments are destroyed. When photosystem I is allowed to function again through cyclic electron flow, a necessary conformational change is believed to be reintroduced that once again allows the harmless dissipation of excitation energy through spillover. A functional electron transport system associated with photosystem I will protect against DCMU-induced chlorosis when the thylakoid membranes are intact, but when the P700-chlorophyll a protein complex is in isolation, there is only a limited degree of protection. PMID:16659926

  3. The Cytochrome b 6 f Complex: Biophysical Aspects of Its Functioning in Chloroplasts.

    PubMed

    Tikhonov, Alexander N

    2018-01-01

    This chapter presents an overview of structural properties of the cytochrome (Cyt) b 6 f complex and its functioning in chloroplasts. The Cyt b 6 f complex stands at the crossroad of photosynthetic electron transport pathways, providing connectivity between Photosystem (PSI) and Photosysten II (PSII) and pumping protons across the membrane into the thylakoid lumen. After a brief review of the chloroplast electron transport chain, the consideration is focused on the structural organization of the Cyt b 6 f complex and its interaction with plastoquinol (PQH 2 , reduced form of plastoquinone), a mediator of electron transfer from PSII to the Cyt b 6 f complex. The processes of PQH 2 oxidation by the Cyt b 6 f complex have been considered within the framework of the Mitchell's Q-cycle. The overall rate of the intersystem electron transport is determined by PQH 2 turnover at the quinone-binding site Q o of the Cyt b 6 f complex. The rate of PQH 2 oxidation is controlled by the intrathylakoid pH in , which value determines the protonation/deprotonation events in the Q o -center. Two other regulatory mechanisms associated with the Cyt b 6 f complex are briefly overviewed: (i) redistribution of electron fluxes between alternative (linear and cyclic) pathways, and (ii) "state transitions" related to redistribution of solar energy between PSI and PSII.

  4. Effects of inorganic phosphate on the light dependent thylakoid energization of intact spinach chloroplasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heineke, D.; Heldt, H.W.; Stitt, M.

    1989-09-01

    The light dependent energization of the thylakoid membrane was analyzed in isolated intact spinach (Spinacia oleracea L.) chloroplasts incubated with different concentrations of inorganic phosphate (Pi). Two independent methods were used: (a) the accumulation of ({sup 14}C)5,5-dimethyl-2,4-oxazolidinedione and ({sup 14}C)methylamine; (b) the energy dependent chlorophyll fluorescence quenching. The inhibition of CO{sub 2} fixation by superoptimal medium Pi or by adding glyceraldehyde - an inhibitor of the Calvin cycle - leads to an increased energization of the thylakoid membrane; however, the membrane energization decreases when chloroplasts are inhibited by suboptimal Pi. This specific low phosphate effect could be partially reversed bymore » adding oxaloacetate, which regenerates the electron acceptor NADP{sup +} and stimulates linear electron transport. The energization seen in low Pi is, however, always lower than in superoptimal Pi, even in the presence of oxaloacetate. Energization recovers in the presence of low amounts of N,N{prime}-dicyclohexylcarbodiimide, which reacts with proton channels including the coupling factor 1 ATP synthase. N,N{prime}-Dicyclohexylcarbodiimide has no effect on energization of chloroplasts in superoptimal Pi. These results suggest there is a specific low phosphate proton leak in the thylakoids, and its origin is discussed.« less

  5. Seawater spray injury to Quercus acutissima leaves: crystal deposition, stomatal clogging, and chloroplast degeneration.

    PubMed

    Kim, Ki Woo; Koo, Kyosang; Kim, Pan-Gi

    2011-05-01

    Effects of seawater spray on leaf structure were investigated in Quercus acutissima by electron microscopy and X-ray microanalysis. Two-year-old seedlings of Q. acutissima were sprayed with seawater and kept in a greenhouse maintained at 25°C. The most recognizable symptoms of seawater-sprayed seedlings included leaf necrosis, crystal deposition, stomatal clogging, and chloroplast degeneration. Field emission scanning electron microscopy revealed that the leaf surface was covered with additional layers of remnants of seawater spray. Composed of sodium and chloride, cube-shaped crystals (halite) were prevalently found on trichomes and epidermis, and formed aggregates. Meanwhile, wedge-shaped crystals were deposited on epidermis and consisted of calcium and sulfur. As a result of stomatal clogging by crystal deposition on the abaxial surface, it was conceivable that plant respiration became severely hampered. Transmission electron microscopy showed degenerated cytoplasm of seawater-sprayed leaves. It was common to observe severe plasmolysis and disrupted chloroplasts with a reduced number of thylakoids in grana. These results indicate that foliar applications of seawater were sufficient to induce necrosis of Q. acutissima seedlings as an abiotic disturbance factor. Copyright © 2010 Wiley-Liss, Inc.

  6. The role of heterologous chloroplast sequence elements in transgene integration and expression.

    PubMed

    Ruhlman, Tracey; Verma, Dheeraj; Samson, Nalapalli; Daniell, Henry

    2010-04-01

    Heterologous regulatory elements and flanking sequences have been used in chloroplast transformation of several crop species, but their roles and mechanisms have not yet been investigated. Nucleotide sequence identity in the photosystem II protein D1 (psbA) upstream region is 59% across all taxa; similar variation was consistent across all genes and taxa examined. Secondary structure and predicted Gibbs free energy values of the psbA 5' untranslated region (UTR) among different families reflected this variation. Therefore, chloroplast transformation vectors were made for tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa), with endogenous (Nt-Nt, Ls-Ls) or heterologous (Nt-Ls, Ls-Nt) psbA promoter, 5' UTR and 3' UTR, regulating expression of the anthrax protective antigen (PA) or human proinsulin (Pins) fused with the cholera toxin B-subunit (CTB). Unique lettuce flanking sequences were completely eliminated during homologous recombination in the transplastomic tobacco genomes but not unique tobacco sequences. Nt-Ls or Ls-Nt transplastomic lines showed reduction of 80% PA and 97% CTB-Pins expression when compared with endogenous psbA regulatory elements, which accumulated up to 29.6% total soluble protein PA and 72.0% total leaf protein CTB-Pins, 2-fold higher than Rubisco. Transgene transcripts were reduced by 84% in Ls-Nt-CTB-Pins and by 72% in Nt-Ls-PA lines. Transcripts containing endogenous 5' UTR were stabilized in nonpolysomal fractions. Stromal RNA-binding proteins were preferentially associated with endogenous psbA 5' UTR. A rapid and reproducible regeneration system was developed for lettuce commercial cultivars by optimizing plant growth regulators. These findings underscore the need for sequencing complete crop chloroplast genomes, utilization of endogenous regulatory elements and flanking sequences, as well as optimization of plant growth regulators for efficient chloroplast transformation.

  7. The Role of Heterologous Chloroplast Sequence Elements in Transgene Integration and Expression1[W][OA

    PubMed Central

    Ruhlman, Tracey; Verma, Dheeraj; Samson, Nalapalli; Daniell, Henry

    2010-01-01

    Heterologous regulatory elements and flanking sequences have been used in chloroplast transformation of several crop species, but their roles and mechanisms have not yet been investigated. Nucleotide sequence identity in the photosystem II protein D1 (psbA) upstream region is 59% across all taxa; similar variation was consistent across all genes and taxa examined. Secondary structure and predicted Gibbs free energy values of the psbA 5′ untranslated region (UTR) among different families reflected this variation. Therefore, chloroplast transformation vectors were made for tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa), with endogenous (Nt-Nt, Ls-Ls) or heterologous (Nt-Ls, Ls-Nt) psbA promoter, 5′ UTR and 3′ UTR, regulating expression of the anthrax protective antigen (PA) or human proinsulin (Pins) fused with the cholera toxin B-subunit (CTB). Unique lettuce flanking sequences were completely eliminated during homologous recombination in the transplastomic tobacco genomes but not unique tobacco sequences. Nt-Ls or Ls-Nt transplastomic lines showed reduction of 80% PA and 97% CTB-Pins expression when compared with endogenous psbA regulatory elements, which accumulated up to 29.6% total soluble protein PA and 72.0% total leaf protein CTB-Pins, 2-fold higher than Rubisco. Transgene transcripts were reduced by 84% in Ls-Nt-CTB-Pins and by 72% in Nt-Ls-PA lines. Transcripts containing endogenous 5′ UTR were stabilized in nonpolysomal fractions. Stromal RNA-binding proteins were preferentially associated with endogenous psbA 5′ UTR. A rapid and reproducible regeneration system was developed for lettuce commercial cultivars by optimizing plant growth regulators. These findings underscore the need for sequencing complete crop chloroplast genomes, utilization of endogenous regulatory elements and flanking sequences, as well as optimization of plant growth regulators for efficient chloroplast transformation. PMID:20130101

  8. Chloroplast Ultrastructure of the Alga Phaeocystis antarctica Karsten: A New Structural Model Using Electron Tomography

    NASA Technical Reports Server (NTRS)

    Moisan, Tiffany A.; Ellisman, M. H.; Sosinsky, G. E.; Gerlach, John C. (Technical Monitor)

    2001-01-01

    Understanding the light-harvesting properties of algae and higher plants are a fundamental topic in photosynthesis research. Using thick sections obtained from fixed and embedded cultures of colonial P antarctica, we calculate tomographic reconstructions of individual chloroplasts under light-limiting and saturating conditions for net photosynthesis. Our goal is to gain an understanding of the continuity of thylakoid membranes and understand the spatial relationship between the pyrenoid, the starch containing organelle, and thylakoid membranes. We found that Phaeocystis showed considerable morphological and physiological flexibility in response to environmental light levels. We found that the thylakoids generally run parallel to the chloroplast membrane with many junctures and bifurcations, many of which are in contact with the chloroplast membrane itself. The considerable flexibility in the. thylakoid membranes allows for the accommodation of the pyrenoid structure. The arrangement of the thylakoids within these structures resemble those found in new structures of mitochondria cristae. We present a new structural model for algal chloroplasts which greatly revises current concepts of thylakoid membrane structure in relation to photoacclimation.

  9. [THE EFFECT OF ACID RAIN ON ULTRASTRUCTURE AND FUNCTIONAL PARAMETERS OF PHOTOSYNTHETIC APPARATUS OF PEA LEAVES].

    PubMed

    Polishchuk, A V; Vodka, M V; Belyavskaya, N A; Khomochkin, A P; Zolotareva, E K

    2016-01-01

    The effects of simulated acid rain (SAR) on the ultrastructure and functional parameters of the photosynthetic apparatus were studied using 14-day-old pea leaves as test system. Pea plants were sprayed with an aqueous solution containing NaNO₃(0.2 mM) and Na₂SO₄(0.2 mM) (pH 5.6, a control variant), or with the same solution, which was acidified to pH 2.5 (acid variant). Functional characteristics were determined by chlorophyll fluorescence analysis. Acid rain application caused reduction in the efficiency of the photosynthetic electron transport by 25%, which was accompanied by an increase by 85% in the quantum yield of thermal dissipation of excess light quanta. Ultrastructural changes in chloroplast were registered by transmission electron microscopy (TEM) after two days of the SAR-treatment of pea leaves. In this case, the changes in the structure of grana, heterogeneity of thylakoids packaging in granum, namely, the increase of intra-thylakoid gaps and thickness of granal thylakoids compared to the control were found. The migration of protein complexes in thylakoid membranes of chloroplasts isolated from leaves treated with SAR was suppressed. It was shown also that carbonic anhydrase activity was inhibited in chloroplast preparations isolated from SAR-treated pea leaves. We proposed a hypothesis on the possible inactivation of thylakoid carbonic anhydrase under SAR and its involvement in the inhibition of photochemical activity of chloroplasts. The data obtained allows to suggest that acid rains negatively affect the photosynthetic apparatus disrupting the membrane system of chloroplast.

  10. Changes induced by the Pepper mild mottle tobamovirus on the chloroplast proteome of Nicotiana benthamiana.

    PubMed

    Pineda, M; Sajnani, C; Barón, M

    2010-01-01

    We have analyzed the chloroplast proteome of Nicotiana benthamiana using two-dimensional gel electrophoresis and mass spectrometry followed by a database search. In order to improve the resolution of the two-dimensional electrophoresis gels, we have made separate maps for the low and the high pH range. At least 200 spots were detected. We identified 72 polypeptides, some being isoforms of different multiprotein families. In addition, changes in this chloroplast proteome induced by the infection with the Spanish strain of the Pepper mild mottle virus were investigated. Viral infection induced the down-regulation of several chloroplastidic proteins involved in both the photosynthetic electron-transport chain and the Benson-Calvin cycle.

  11. Protein import into isolated pea root leucoplasts.

    PubMed

    Chu, Chiung-Chih; Li, Hsou-Min

    2015-01-01

    Leucoplasts are important organelles for the synthesis and storage of starch, lipids and proteins. However, molecular mechanism of protein import into leucoplasts and how it differs from that of import into chloroplasts remain unknown. We used pea seedlings for both chloroplast and leucoplast isolations to compare within the same species. We further optimized the isolation and import conditions to improve import efficiency and to permit a quantitative comparison between the two plastid types. The authenticity of the import was verified using a mitochondrial precursor protein. Our results show that, when normalized to Toc75, most translocon proteins are less abundant in leucoplasts than in chloroplasts. A precursor shown to prefer the receptor Toc132 indeed had relatively more similar import efficiencies between chloroplasts and leucoplasts compared to precursors that prefer Toc159. Furthermore we found two precursors that exhibited very high import efficiency into leucoplasts. Their transit peptides may be candidates for delivering transgenic proteins into leucoplasts and for analyzing motifs important for leucoplast import.

  12. Purification of intact chloroplasts from marine plant Posidonia oceanica suitable for organelle proteomics.

    PubMed

    Piro, Amalia; Serra, Ilia Anna; Spadafora, Antonia; Cardilio, Monica; Bianco, Linda; Perrotta, Gaetano; Santos, Rui; Mazzuca, Silvia

    2015-12-01

    Posidonia oceanica is a marine angiosperm, or seagrass, adapted to grow to the underwater life from shallow waters to 50 m depth. This raises questions of how their photosynthesis adapted to the attenuation of light through the water column and leads to the assumption that biochemistry and metabolism of the chloroplast are the basis of adaptive capacity. In the present study, we described a protocol that was adapted from those optimized for terrestrial plants, to extract chloroplasts from as minimal tissue as possible. We obtained the best balance between tissue amount/intact chloroplasts yield using one leaf from one plant. After isopynic separations, the chloroplasts purity and integrity were evaluated by biochemical assay and using a proteomic approach. Chloroplast proteins were extracted from highly purified organelles and resolved by 1DE SDS-PAGE. Proteins were sequenced by nLC-ESI-IT-MS/MS of 1DE gel bands and identified against NCBInr green plant databases, Dr. Zompo database for seagrasses in a local customized dataset. The curated localization of proteins in sub-plastidial compartments (i.e. envelope, stroma and thylakoids) was retrieved in the AT_CHLORO database. This purification protocol and the validation of compartment markers may serve as basis for sub-cellular proteomics in P. oceanica and other seagrasses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. [In vivo and in vitro actions of biscarbamates on the photosynthetic activity of chloroplasts].

    PubMed

    Chueca, A; Barón, M; López-Gorgé, J

    1982-01-01

    The "photosynthetic inhibition" component in the whole context of plant toxicity, when different concentrations of the bis-carbamate phenmedipham are supplied through the roots or foliar application to spinach plants grown in hydroponic media have been determined. Chloroplasts were isolated after eight days of the herbicide addition, and then determined: electron transport H2O leads to NADP+, H2O leads to ferrycyanide and ascorbate/DPIP leads to NADP+, cyclic and non cyclic photophosphorilation, CO2 assimilation rate and intermediate patterns of CO2 fixation. We have also determined in foliar disks the O2 evolving and the CO2 assimilation capabilities. Type A and type B chloroplasts showed increased inhibition, respectively, of the Phot. II dependent electron transport chains H2O leads to NADP+ and H2O leads to ferricyanide, to the extent that the phenmedipham concentration increased in the hydroponic media and the spraying solution, so that a 50% inhibition of both processes was obtained at 100 microM and 10 microM, respectively, against 0.2 microM in the in vitro experiments. Non cyclic photophosphorylation showed a stronger inhibition than the cyclic one. Concerning the Phot. I dependent electron transport ascorbate/DPIP leads to NADP+, the chloroplast preparations showed a negligible inhibition. We have found a synergistic effect of the above two factors on the CO2 assimilation. The intermediate patterns of CO2 assimilation showed a decrease of the 3C-compounds P-glycerate and trioses-P, with a parallel increase of the sugar mono and diphosphates as well as disaccharides and amino acids.

  14. The Response of Nannochloropsis gaditana to Nitrogen Starvation Includes De Novo Biosynthesis of Triacylglycerols, a Decrease of Chloroplast Galactolipids, and Reorganization of the Photosynthetic Apparatus

    PubMed Central

    Simionato, Diana; Block, Maryse A.; La Rocca, Nicoletta; Jouhet, Juliette; Maréchal, Eric

    2013-01-01

    Microalgae of the genus Nannochloropsis are capable of accumulating triacylglycerols (TAGs) when exposed to nutrient limitation (in particular, nitrogen [N]) and are therefore considered promising organisms for biodiesel production. Here, after nitrogen removal from the medium, Nannochloropsis gaditana cells showed extensive triacylglycerol accumulation (38% TAG on a dry weight basis). Triacylglycerols accumulated during N deprivation harbored signatures, indicating that they mainly stemmed from freshly synthesized fatty acids, with a small proportion originating from a recycling of membrane glycerolipids. The amount of chloroplast galactoglycerolipids, which are essential for the integrity of thylakoids, decreased, while their fatty acid composition appeared to be unaltered. In starved cells, galactolipids were kept at a level sufficient to maintain chloroplast integrity, as confirmed by electron microscopy. Consistently, N-starved Nannochloropsis cells contained less photosynthetic membranes but were still efficiently performing photosynthesis. N starvation led to a modification of the photosynthetic apparatus with a change in pigment composition and a decrease in the content of all the major electron flow complexes, including photosystem II, photosystem I, and the cytochrome b6f complex. The photosystem II content was particularly affected, leading to the inhibition of linear electron flow from water to CO2. Such a reduction, however, was partially compensated for by activation of alternative electron pathways, such as cyclic electron transport. Overall, these changes allowed cells to modify their energetic metabolism in order to maintain photosynthetic growth. PMID:23457191

  15. Chloroplast ATP Synthase Modulation of the Thylakoid Proton Motive Force: Implications for Photosystem I and Photosystem II Photoprotection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanazawa, Atsuko; Ostendorf, Elisabeth; Kohzuma, Kaori

    In wild type plants, decreasing CO 2 lowers the activity of the chloroplast ATP synthase, slowing proton efflux from the thylakoid lumen resulting in buildup of thylakoid proton motive force (pmf). The resulting acidification of the lumen regulates both light harvesting, via the qE mechanism, and photosynthetic electron transfer through the cytochrome b 6f complex. Here in this paper, we show that the cfq mutant of Arabidopsis, harboring single point mutation in its γ-subunit of the chloroplast ATP synthase, increases the specific activity of the ATP synthase and disables its down-regulation under low CO 2. The increased thylakoid proton conductivitymore » (g H +) in cfq results in decreased pmf and lumen acidification, preventing full activation of qE and more rapid electron transfer through the b6f complex, particularly under low CO 2 and fluctuating light. These conditions favor the accumulation of electrons on the acceptor side of PSI, and result in severe loss of PSI activity. Comparing the current results with previous work on the pgr5 mutant suggests a general mechanism where increased PSI photodamage in both mutants is caused by loss of pmf, rather than inhibition of CEF per se. Overall, our results support a critical role for ATP synthase regulation in maintaining photosynthetic control of electron transfer to prevent photodamage.« less

  16. Chloroplast ATP Synthase Modulation of the Thylakoid Proton Motive Force: Implications for Photosystem I and Photosystem II Photoprotection

    DOE PAGES

    Kanazawa, Atsuko; Ostendorf, Elisabeth; Kohzuma, Kaori; ...

    2017-05-03

    In wild type plants, decreasing CO 2 lowers the activity of the chloroplast ATP synthase, slowing proton efflux from the thylakoid lumen resulting in buildup of thylakoid proton motive force (pmf). The resulting acidification of the lumen regulates both light harvesting, via the qE mechanism, and photosynthetic electron transfer through the cytochrome b 6f complex. Here in this paper, we show that the cfq mutant of Arabidopsis, harboring single point mutation in its γ-subunit of the chloroplast ATP synthase, increases the specific activity of the ATP synthase and disables its down-regulation under low CO 2. The increased thylakoid proton conductivitymore » (g H +) in cfq results in decreased pmf and lumen acidification, preventing full activation of qE and more rapid electron transfer through the b6f complex, particularly under low CO 2 and fluctuating light. These conditions favor the accumulation of electrons on the acceptor side of PSI, and result in severe loss of PSI activity. Comparing the current results with previous work on the pgr5 mutant suggests a general mechanism where increased PSI photodamage in both mutants is caused by loss of pmf, rather than inhibition of CEF per se. Overall, our results support a critical role for ATP synthase regulation in maintaining photosynthetic control of electron transfer to prevent photodamage.« less

  17. Cytological and ultrastructural preservation in Eocene Metasequoia leaves from the Canadian High Arctic.

    PubMed

    Schoenhut, Karimah; Vann, David R; Lepage, Ben A

    2004-06-01

    The ultrastructural examination by transmission electron microscopy of 45-million-year-old mummified leaves of Metasequoia extracted from the Upper Coal member of the Buchanan Lake Formation in Napartulik on Axel Heiberg Island revealed the preservation of intact chloroplasts and chloroplast components. Abundant tanniferous cell inclusions may indicate that the 3-mo period of constant daylight during the Artic summer induced high concentrations of tannins in the leaf tissues, which may have arrested microbial degradation of the litter. Quantified differences in the extent of chloroplast preservation through a vertical section of the lignite suggest that short-term shifts in the depositional environment took place, perhaps influencing the exposure of the leaf tissues to conditions that would either promote or inhibit decomposition.

  18. Cryo-EM structure of the large subunit of the spinach chloroplast ribosome

    PubMed Central

    Ahmed, Tofayel; Yin, Zhan; Bhushan, Shashi

    2016-01-01

    Protein synthesis in the chloroplast is mediated by the chloroplast ribosome (chloro-ribosome). Overall architecture of the chloro-ribosome is considerably similar to the Escherichia coli (E. coli) ribosome but certain differences are evident. The chloro-ribosome proteins are generally larger because of the presence of chloroplast-specific extensions in their N- and C-termini. The chloro-ribosome harbours six plastid-specific ribosomal proteins (PSRPs); four in the small subunit and two in the large subunit. Deletions and insertions occur throughout the rRNA sequence of the chloro-ribosome (except for the conserved peptidyl transferase center region) but the overall length of the rRNAs do not change significantly, compared to the E. coli. Although, recent advancements in cryo-electron microscopy (cryo-EM) have provided detailed high-resolution structures of ribosomes from many different sources, a high-resolution structure of the chloro-ribosome is still lacking. Here, we present a cryo-EM structure of the large subunit of the chloro-ribosome from spinach (Spinacia oleracea) at an average resolution of 3.5 Å. High-resolution map enabled us to localize and model chloro-ribosome proteins, chloroplast-specific protein extensions, two PSRPs (PSRP5 and 6) and three rRNA molecules present in the chloro-ribosome. Although comparable to E. coli, the polypeptide tunnel and the tunnel exit site show chloroplast-specific features. PMID:27762343

  19. THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons.

    PubMed

    Asada, Kozi

    1999-06-01

    Photoreduction of dioxygen in photosystem I (PSI) of chloroplasts generates superoxide radicals as the primary product. In intact chloroplasts, the superoxide and the hydrogen peroxide produced via the disproportionation of superoxide are so rapidly scavenged at the site of their generation that the active oxygens do not inactivate the PSI complex, the stromal enzymes, or the scavenging system itself. The overall reaction for scavenging of active oxygens is the photoreduction of dioxygen to water via superoxide and hydrogen peroxide in PSI by the electrons derived from water in PSII, and the water-water cycle is proposed for these sequences. An overview is given of the molecular mechanism of the water-water cycle and microcompartmentalization of the enzymes participating in it. Whenever the water-water cycle operates properly for scavenging of active oxygens in chloroplasts, it also effectively dissipates excess excitation energy under environmental stress. The dual functions of the water-water cycle for protection from photoinihibition are discussed.

  20. Impact of the ion transportome of chloroplasts on the optimization of photosynthesis.

    PubMed

    Szabò, Ildikò; Spetea, Cornelia

    2017-06-01

    Ions play fundamental roles in all living cells, and their gradients are often essential to fuel transport, regulate enzyme activities, and transduce energy within cells. Regulation of their homeostasis is essential for cell metabolism. Recent results indicate that modulation of ion fluxes might also represent a useful strategy to regulate one of the most important physiological processes taking place in chloroplasts, photosynthesis. Photosynthesis is highly regulated, due to its unique role as a cellular engine for growth in the light. Controlling the balance between ATP and NADPH synthesis is a critical task, and availability of these molecules can limit the overall photosynthetic yield. Photosynthetic organisms optimize photosynthesis in low light, where excitation energy limits CO2 fixation, and minimize photo-oxidative damage in high light by dissipating excess photons. Despite extensive studies of these phenomena, the mechanism governing light utilization in plants is still poorly understood. In this review, we provide an update of the recently identified chloroplast-located ion channels and transporters whose function impacts photosynthetic efficiency in plants. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Towards an understanding of wheat chloroplasts: a methodical investigation of thylakoid proteome.

    PubMed

    Kamal, Abu Hena Mostafa; Cho, Kun; Komatsu, Setsuko; Uozumi, Nobuyuki; Choi, Jong-Soon; Woo, Sun Hee

    2012-05-01

    We utilized Percoll density gradient centrifugation to isolate and fractionate chloroplasts of Korean winter wheat cultivar cv. Kumgang (Triticum aestivum L.). The resulting protein fractions were separated by one dimensional polyacrylamide gel electrophoresis (1D-PAGE) coupled with LTQ-FTICR mass spectrometry. This enabled us to detect and identify 767 unique proteins. Our findings represent the most comprehensive exploration of a proteome to date. Based on annotation information from the UniProtKB/Swiss-Prot database and our analyses via WoLF PSORT and PSORT, these proteins are localized in the chloroplast (607 proteins), chloroplast stroma (145), thylakoid membrane (342), lumens (163), and integral membranes (166). In all, 67% were confirmed as chloroplast thylakoid proteins. Although nearly complete protein coverage (89% proteins) has been accomplished for the key chloroplast pathways in wheat, such as for photosynthesis, many other proteins are involved in regulating carbon metabolism. The identified proteins were assigned to 103 functional categories according to a classification system developed by the iProClass database and provided through Protein Information Resources. Those functions include electron transport, energy, cellular organization and biogenesis, transport, stress responses, and other metabolic processes. Whereas most of these proteins are associated with known complexes and metabolic pathways, about 13% of the proteins have unknown functions. The chloroplast proteome contains many proteins that are localized to the thylakoids but as yet have no known function. We propose that some of these familiar proteins participate in the photosynthetic pathway. Thus, our new and comprehensive protein profile may provide clues for better understanding that photosynthetic process in wheat.

  2. Multiple feedbacks between chloroplast and whole plant in the context of plant adaptation and acclimation to the environment

    PubMed Central

    Demmig-Adams, Barbara; Stewart, Jared J.; Adams, William W.

    2014-01-01

    This review focuses on feedback pathways that serve to match plant energy acquisition with plant energy utilization, and thereby aid in the optimization of chloroplast and whole-plant function in a given environment. First, the role of source–sink signalling in adjusting photosynthetic capacity (light harvesting, photochemistry and carbon fixation) to meet whole-plant carbohydrate demand is briefly reviewed. Contrasting overall outcomes, i.e. increased plant growth versus plant growth arrest, are described and related to respective contrasting environments that either do or do not present opportunities for plant growth. Next, new insights into chloroplast-generated oxidative signals, and their modulation by specific components of the chloroplast's photoprotective network, are reviewed with respect to their ability to block foliar phloem-loading complexes, and, thereby, affect both plant growth and plant biotic defences. Lastly, carbon export capacity is described as a newly identified tuning point that has been subjected to the evolution of differential responses in plant varieties (ecotypes) and species from different geographical origins with contrasting environmental challenges. PMID:24591724

  3. Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts.

    PubMed

    Shikanai, Toshiharu; Yamamoto, Hiroshi

    2017-01-09

    Photosynthetic electron transport is coupled to proton translocation across the thylakoid membrane, resulting in the formation of a trans-thylakoid proton gradient (ΔpH) and membrane potential (Δψ). Ion transporters and channels localized to the thylakoid membrane regulate the contribution of each component to the proton motive force (pmf). Although both ΔpH and Δψ contribute to ATP synthesis as pmf, only ΔpH downregulates photosynthetic electron transport via the acidification of the thylakoid lumen by inducing thermal dissipation of excessive absorbed light energy from photosystem II antennae and slowing down of the electron transport through the cytochrome b 6 f complex. To optimize the tradeoff between efficient light energy utilization and protection of both photosystems against photodamage, plants have to regulate the pmf amplitude and its components, ΔpH and Δψ. Cyclic electron transport around photosystem I (PSI) is a major regulator of the pmf amplitude by generating pmf independently of the net production of NADPH by linear electron transport. Chloroplast ATP synthase relaxes pmf for ATP synthesis, and its activity should be finely tuned for maintaining the size of the pmf during steady-state photosynthesis. Pseudo-cyclic electron transport mediated by flavodiiron protein (Flv) forms a large electron sink, which is essential for PSI photoprotection in fluctuating light in cyanobacteria. Flv is conserved from cyanobacteria to gymnosperms but not in angiosperms. The Arabidopsis proton gradient regulation 5 (pgr5) mutant is defective in the main pathway of PSI cyclic electron transport. By introducing Physcomitrella patens genes encoding Flvs, the function of PSI cyclic electron transport was substituted by that of Flv-dependent pseudo-cyclic electron transport. In transgenic plants, the size of the pmf was complemented to the wild-type level but the contribution of ΔpH to the total pmf was lower than that in the wild type. In the pgr5 mutant, the size of the pmf was drastically lowered by the absence of PSI cyclic electron transport. In the mutant, ΔpH occupied the majority of pmf, suggesting the presence of a mechanism for the homeostasis of luminal pH in the light. To avoid damage to photosynthetic electron transport by periods of excess solar energy, plants employ an intricate regulatory network involving alternative electron transport pathways, ion transporters/channels, and pH-dependent mechanisms for downregulating photosynthetic electron transport. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  4. Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency.

    PubMed

    Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Liu, Bing; Feng, Dongru; Wang, Jinfa; Wang, Hong-Bin

    2016-11-01

    Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency1[OPEN

    PubMed Central

    Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Feng, Dongru; Wang, Jinfa

    2016-01-01

    Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants. PMID:27609860

  6. Enzyme-Triggered Defined Protein Nanoarrays: Efficient Light-Harvesting Systems to Mimic Chloroplasts.

    PubMed

    Zhao, Linlu; Zou, Haoyang; Zhang, Hao; Sun, Hongcheng; Wang, Tingting; Pan, Tiezheng; Li, Xiumei; Bai, Yushi; Qiao, Shanpeng; Luo, Quan; Xu, Jiayun; Hou, Chunxi; Liu, Junqiu

    2017-01-24

    The elegance and efficiency by which chloroplasts harvest solar energy and conduct energy transfer have been a source of inspiration for chemists to mimic such process. However, precise manipulation to obtain orderly arranged antenna chromophores in constructing artificial chloroplast mimics was a great challenge, especially from the structural similarity and bioaffinity standpoints. Here we reported a design strategy that combined covalent and noncovalent interactions to prepare a protein-based light-harvesting system to mimic chloroplasts. Cricoid stable protein one (SP1) was utilized as a building block model. Under enzyme-triggered covalent protein assembly, mutant SP1 with tyrosine (Tyr) residues at the designated sites can couple together to form nanostructures. Through controlling the Tyr sites on the protein surface, we can manipulate the assembly orientation to respectively generate 1D nanotubes and 2D nanosheets. The excellent stability endowed the self-assembled protein architectures with promising applications. We further integrated quantum dots (QDs) possessing optical and electronic properties with the 2D nanosheets to fabricate chloroplast mimics. By attaching different sized QDs as donor and acceptor chromophores to the negatively charged surface of SP1-based protein nanosheets via electrostatic interactions, we successfully developed an artificial light-harvesting system. The assembled protein nanosheets structurally resembled the natural thylakoids, and the QDs can achieve pronounced FRET phenomenon just like the chlorophylls. Therefore, the coassembled system was meaningful to explore the photosynthetic process in vitro, as it was designed to mimic the natural chloroplast.

  7. Faster photosynthetic induction in tobacco by expressing cyanobacterial flavodiiron proteins in chloroplasts.

    PubMed

    Gómez, Rodrigo; Carrillo, Néstor; Morelli, María P; Tula, Suresh; Shahinnia, Fahimeh; Hajirezaei, Mohammad-Reza; Lodeyro, Anabella F

    2018-05-01

    Plants grown in the field experience sharp changes in irradiation due to shading effects caused by clouds, other leaves, etc. The excess of absorbed light energy is dissipated by a number of mechanisms including cyclic electron transport, photorespiration, and Mehler-type reactions. This protection is essential for survival but decreases photosynthetic efficiency. All phototrophs except angiosperms harbor flavodiiron proteins (Flvs) which relieve the excess of excitation energy on the photosynthetic electron transport chain by reducing oxygen directly to water. Introduction of cyanobacterial Flv1/Flv3 in tobacco chloroplasts resulted in transgenic plants that showed similar photosynthetic performance under steady-state illumination, but displayed faster recovery of various photosynthetic parameters, including electron transport and non-photochemical quenching during dark-light transitions. They also kept the electron transport chain in a more oxidized state and enhanced the proton motive force of dark-adapted leaves. The results indicate that, by acting as electron sinks during light transitions, Flvs contribute to increase photosynthesis protection and efficiency under changing environmental conditions as those found by plants in the field.

  8. Morphological transition in kleptochloroplasts after ingestion in the dinoflagellates Amphidinium poecilochroum and Gymnodinium aeruginosum (Dinophyceae).

    PubMed

    Onuma, Ryo; Horiguchi, Takeo

    2013-09-01

    The unarmoured marine dinoflagellate Amphidinium poecilochroum and the unarmoured freshwater dinoflagellate Gymnodinium aeruginosum both belonging to the same clade, are known to possess cryptomonad-derived kleptochloroplasts. Previous studies revealed that G. aeruginosum can synchronise the division of the chloroplast with its own cell division while no simultaneous division takes place in A. poecilochroum, which is interpreted to mean that state of kleptochloroplastidy in G. aeruginosum is closer to that of the initial acquisition of the 'true chloroplast' within the lineage. Although the general ultrastructure of these two species has been reported, the changes in the kleptochloroplast with time have never been followed. We observed morphological changes in kleptochloroplasts of A. poecilochroum and G. aeruginosum following the ingestion of cryptomonad cells, using light and transmission electron microscopes. In A. poecilochroum, the cryptomonad ejectosomes, mitochondria and cytoplasm were all actively transferred into digestive vacuoles within 1h of ingestion. The chloroplasts were deformed and the cryptomonad nucleus was digested after 3h. By contrast, in G. aeruginosum, the cryptomonad cytoplasm and nucleus were retained for 24h following ingestion, and the chloroplast was substantially enlarged. These differences imply that the retention of the cryptomonad nucleus is important for the maintenance of the chloroplast. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Choline oxidation by intact spinach chloroplasts. [Spinacia oleracea L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigel, P.; Lerma, C.; Hanson, A.D.

    1988-01-01

    Plants synthesize betaine by a two-step oxidation of choline (choline ..-->.. betaine aldehyde ..-->.. betaine). Protoplast-derived chloroplasts of spinach (Spinacia oleracea L.) carry out both reactions, more rapidly in light than in darkness. We investigated the light-stimulated oxidation of choline, using spinach chloroplasts isolated directly from leaves. The rates of choline oxidation obtained (dark and light rates: 10-50 and 100-300 nanomoles per hour per milligram chlorophyll, respectively) were approximately 20-fold higher than for protoplast-derived chloroplasts. Betaine aldehyde was the main product. Choline oxidation in darkness and light was suppressed by hypoxia. Neither uncouplers not the Calvin cycle inhibitor glyceraldehyde greatlymore » affected choline oxidation in the light, and maximal choline oxidation was attained far below light saturation of CO/sub 2/ fixation. The light stimulation of choline oxidation was abolished by the PSII inhibitors DCMU and dibromothymoquinone, and was partially restored by adding reduced diaminodurene, an electron donor to PSI. Both methyl viologen and phenazine methosulfate prevented choline oxidation. Adding dihydroxyacetone phosphate, which can generate NADPH in organello, doubled the dark rate of choline oxidation. These results indicate that choline oxidation in chloroplasts requires oxygen, and reducing power generated from PSI. Enzymic reactions consistent with these requirements are discussed.« less

  10. [Chloroplast ultrastructure and photosynthetic characteristics of five kinds of dandelion (Taraxacum) leaves in northeast China].

    PubMed

    Ning, Wei; Wu, Jie; Zhao, Ting; Zhao, Xin; Li, Tianlai

    2012-05-01

    The paper adopted the JEM-100CX II transmission electron microscope to observe chloroplast ultrastructure of five kinds of dandelion (Taraxacum) leaves in northeast, and the LI-6400 portable photosynthesis system was used to compare the chlorophyll fluorescence and the photosynthesis characteristics of five kinds of dandelions in Northeast China. Chloroplast ultrastructure showed: in the five kinds of dandelion, larger chloroplast, grana with more layers, regular thylakoid, without starch grains and so on, these chloroplasts characteristics decided to bigger photosynthetic rate. The five kinds of dandelion P(n) exhibited a "double peak" diurnal curve: stomatal limitation is the main adjustment factors for the midday depression phenomenon. The P(n),G(s),C(i) content of T. mongolicum are the highest, and T. asiaticum are the lowest among them. The relation between P(n) and G(s),C(i) is direct ratio, P(n) and T(r) is in an inverse proportion among the five kinds of dandelion. In addition, P(n) is positively correlated with Chla, Chlb, and the relationship with Chlb is bigger. The paper demonstrates the Mongolian dandelion photosynthetic efficiency is the highest, it is an higher photosynthetic efficiency dandelion,it provide theoretical basis for assessment and use of the resource of dandelion.

  11. Co-Compartmentation of Terpene Biosynthesis and Storage via Synthetic Droplet.

    PubMed

    Zhao, Cheng; Kim, YongKyoung; Zeng, Yining; Li, Man; Wang, Xin; Hu, Cheng; Gorman, Connor; Dai, Susie Y; Ding, Shi-You; Yuan, Joshua S

    2018-03-16

    Traditional bioproduct engineering focuses on pathway optimization, yet is often complicated by product inhibition, downstream consumption, and the toxicity of certain products. Here, we present the co-compartmentation of biosynthesis and storage via a synthetic droplet as an effective new strategy to improve the bioproduct yield, with squalene as a model compound. A hydrophobic protein was designed and introduced into the tobacco chloroplast to generate a synthetic droplet for terpene storage. Simultaneously, squalene biosynthesis enzymes were introduced to chloroplasts together with the droplet-forming protein to co-compartmentalize the biosynthesis and storage of squalene. The strategy has enabled a record yield of squalene at 2.6 mg/g fresh weight without compromising plant growth. Confocal fluorescent microscopy imaging, stimulated Raman scattering microscopy, and droplet composition analysis confirmed the formation of synthetic storage droplet in chloroplast. The co-compartmentation of synthetic storage droplet with a targeted metabolic pathway engineering represents a new strategy for enhancing bioproduct yield.

  12. Role of electron transport chain of chloroplasts in oxidative burst of interaction between Erwinia amylovora and host cells.

    PubMed

    Abdollahi, Hamid; Ghahremani, Zahra; Erfaninia, Kobra; Mehrabi, Rahim

    2015-05-01

    Erwinia amylovora is a necrogenic bacterium, causing the fire blight disease on many rosaceous plants. Triggering oxidative burst by E. amylovora is a key response by which host plants try to restrain pathogen spread. Electron transport chain (ETC) of chloroplasts is known as an inducible source of reactive oxygen species generation in various stresses. This research was performed to assess the role of this ETC in E. amylovora-host interaction using several inhibitors of this chain in susceptible and resistant apple and pear genotypes. All ETC inhibitors delayed appearance of disease necrosis, but the effects of methyl viologen, glutaraldehyde, and DCMU were more significant. In the absence of inhibitors, resistant genotypes showed an earlier and severe H2O2 generation and early suppression of redox dependent, psbA gene. The effects of inhibitors were corresponding to the redox potential of ETC inhibitory sites. In addition, delayed necrosis appearance was associated with the decreased disease severity and delayed H2O2 generation. These results provide evidences for the involvement of this ETC in host oxidative burst and suggest that chloroplast ETC has significant role in E. amylovora-host interaction.

  13. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways.

    PubMed

    Tikhonov, Alexander N

    2014-08-01

    Regulation of photosynthetic electron transport at the level of the cytochrome b6f complex provides efficient performance of the chloroplast electron transport chain (ETC). In this review, after brief overview of the structural organization of the chloroplast ETC, the consideration of the problem of electron transport control is focused on the plastoquinone (PQ) turnover and its interaction with the b6f complex. The data available show that the rates of plastoquinol (PQH2) formation in PSII and its diffusion to the b6f complex do not limit the overall rate of electron transfer between photosystem II (PSII) and photosystem I (PSI). Analysis of experimental and theoretical data demonstrates that the rate-limiting step in the intersystem chain of electron transport is determined by PQH2 oxidation at the Qo-site of the b6f complex, which is accompanied by the proton release into the thylakoid lumen. The acidification of the lumen causes deceleration of PQH2 oxidation, thus impeding the intersystem electron transport. Two other mechanisms of regulation of the intersystem electron transport have been considered: (i) "state transitions" associated with the light-induced redistribution of solar energy between PSI and PSII, and (ii) redistribution of electron fluxes between alternative pathways (noncyclic electron transport and cyclic electron flow around PSI). Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. NADPH Thioredoxin Reductase C and Thioredoxins Act Concertedly in Seedling Development.

    PubMed

    Ojeda, Valle; Pérez-Ruiz, Juan Manuel; González, Maricruz; Nájera, Victoria A; Sahrawy, Mariam; Serrato, Antonio J; Geigenberger, Peter; Cejudo, Francisco Javier

    2017-07-01

    Thiol-dependent redox regulation of enzyme activity plays a central role in the rapid acclimation of chloroplast metabolism to ever-fluctuating light availability. This regulatory mechanism relies on ferredoxin reduced by the photosynthetic electron transport chain, which fuels reducing power to thioredoxins (Trxs) via a ferredoxin-dependent Trx reductase. In addition, chloroplasts harbor an NADPH-dependent Trx reductase, which has a joint Trx domain at the carboxyl terminus, termed NTRC. Thus, a relevant issue concerning chloroplast function is to establish the relationship between these two redox systems and its impact on plant development. To address this issue, we generated Arabidopsis ( Arabidopsis thaliana ) mutants combining the deficiency of NTRC with those of Trxs f , which participate in metabolic redox regulation, and that of Trx x , which has antioxidant function. The ntrc-trxf1f2 and, to a lower extent, ntrc-trxx mutants showed severe growth-retarded phenotypes, decreased photosynthesis performance, and almost abolished light-dependent reduction of fructose-1,6-bisphosphatase. Moreover, the combined deficiency of both redox systems provokes aberrant chloroplast ultrastructure. Remarkably, both the ntrc-trxf1f2 and ntrc-trxx mutants showed high mortality at the seedling stage, which was overcome by the addition of an exogenous carbon source. Based on these results, we propose that NTRC plays a pivotal role in chloroplast redox regulation, being necessary for the activity of diverse Trxs with unrelated functions. The interaction between the two thiol redox systems is indispensable to sustain photosynthesis performed by cotyledons chloroplasts, which is essential for early plant development. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green.

    PubMed

    Terashima, Ichiro; Fujita, Takashi; Inoue, Takeshi; Chow, Wah Soon; Oguchi, Riichi

    2009-04-01

    The literature and our present examinations indicate that the intra-leaf light absorption profile is in most cases steeper than the photosynthetic capacity profile. In strong white light, therefore, the quantum yield of photosynthesis would be lower in the upper chloroplasts, located near the illuminated surface, than that in the lower chloroplasts. Because green light can penetrate further into the leaf than red or blue light, in strong white light, any additional green light absorbed by the lower chloroplasts would increase leaf photosynthesis to a greater extent than would additional red or blue light. Based on the assessment of effects of the additional monochromatic light on leaf photosynthesis, we developed the differential quantum yield method that quantifies efficiency of any monochromatic light in white light. Application of this method to sunflower leaves clearly showed that, in moderate to strong white light, green light drove photosynthesis more effectively than red light. The green leaf should have a considerable volume of chloroplasts to accommodate the inefficient carboxylation enzyme, Rubisco, and deliver appropriate light to all the chloroplasts. By using chlorophylls that absorb green light weakly, modifying mesophyll structure and adjusting the Rubisco/chlorophyll ratio, the leaf appears to satisfy two somewhat conflicting requirements: to increase the absorptance of photosynthetically active radiation, and to drive photosynthesis efficiently in all the chloroplasts. We also discuss some serious problems that are caused by neglecting these intra-leaf profiles when estimating whole leaf electron transport rates and assessing photoinhibition by fluorescence techniques.

  16. The rapidly metabolized 32,000-dalton polypeptide of the chloroplast is the "proteinaceous shield" regulating photosystem II electron transport and mediating diuron herbicide sensitivity.

    PubMed Central

    Mattoo, A K; Pick, U; Hoffman-Falk, H; Edelman, M

    1981-01-01

    Mild trypsin treatment of Spirodela oligorrhiza thylakoid membranes leads to partial digestion of the rapidly metabolized, surface-exposed, 32,000-dalton protein. Under these conditions, photoreduction of ferricyanide becomes insensitive to diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea], an inhibitor of photosystem II electron transport. Preincubation of thylakoids with diuron leads to a conformational change in the 32,000-dalton protein, modifying its trypsin digestion and preventing expression of diuron insensitivity. Finally, light affects the susceptibility of the 32,000-dalton protein to digestion by trypsin. In other experiments, thylakoids specifically depleted in the 32,000-dalton protein were found to be deficient in electron transport at the reducing side of photosystem II but not at the oxidizing side or in photosystem I activities. Thus, the rapidly metabolized 32,000-dalton thylakoid protein in Spirodela chloroplasts fulfills the requirements of the hypothesized "proteinaceous shield" [Renger, G. (1976) Biochim. Biophys. Acta 440, 287-300] regulating electron flow through photosystem II and mediating diuron sensitivity. Images PMID:6940173

  17. Electron and proton transfer in chloroplasts in silico. 2: The effect of diffusion limitations on the process of photosynthesis in spatially inhomogeneous thylakoids

    NASA Astrophysics Data System (ADS)

    Vershubskii, A. V.; Tikhonov, A. N.

    2017-07-01

    The lateral mobility of protons and mobile electron carriers (plastoquinone and plastocyanin) is subjected to diffusion limitations; the effect of these limitations on the kinetics of photoinduced pH i changes has been investigated in the present work for metabolic states 3 (conditions of intensive ATP synthesis) and 4 (the state of photosynthetic control). Computer simulations were based on a mathematical model of electron and proton transport in chloroplasts developed earlier by the authors. Non-uniform distribution of electron carriers and ATP synthase complexes in the membranes of grana and intergranal thylakoids was taken into account in the model. The kinetics of intrathylakoid pH i changes and the lateral profiles of distribution of the mobile electron transporters in granal and intergranal thylakoids were studied. The formation of non-uniform pH i profiles (with lumen acidification in the central parts of the grana being substantially slower than in the stromal thylakoids) was shown to occur under the conditions of ATP synthesis. Variation of the diffusion coefficients of intrathylakoid hydrogen ions and mobile electron carriers (plastoquinone and plastocyanin) can have substantial effects on the lateral pH i profiles and the redox state of the mobile electron carriers.

  18. The novel cytochrome c6 of chloroplasts: a case of evolutionary bricolage?

    PubMed

    Howe, Christopher J; Schlarb-Ridley, Beatrix G; Wastl, Juergen; Purton, Saul; Bendall, Derek S

    2006-01-01

    Cytochrome c6 has long been known as a redox carrier of the thylakoid lumen of cyanobacteria and some eukaryotic algae that can substitute for plastocyanin in electron transfer. Until recently, it was widely accepted that land plants lack a cytochrome c6. However, a homologue of the protein has now been identified in several plant species together with an additional isoform in the green alga Chlamydomonas reinhardtii. This form of the protein, designated cytochrome c6A, differs from the 'conventional' cytochrome c6 in possessing a conserved insertion of 12 amino acids that includes two absolutely conserved cysteine residues. There are conflicting reports of whether cytochrome c6A can substitute for plastocyanin in photosynthetic electron transfer. The evidence for and against this is reviewed and the likely evolutionary history of cytochrome c6A is discussed. It is suggested that it has been converted from a primary role in electron transfer to one in regulation within the chloroplast, and is an example of evolutionary 'bricolage'.

  19. Effects of G, a Growth Regulator from Eucalyptus grandis, on Photosynthesis

    PubMed Central

    Sharkey, Thomas D.; Stevenson, Gay F.; Paton, Dugald M.

    1982-01-01

    A growth regulator (G; 4-ethyl-1-hydroxy-4,8,8,10,10 pentamethyl-7,9-dioxo-2,3 dioxyabicyclo (4.4.0) decene-5) from Eucalyptus grandis (Maiden) reduced stomatal conductance and also photosynthetic capacity when fed through the transpiration stream of detached leaves. The concentration of G required for this effect was high (10−4 molar), but the amount of G taken up (dose) was below the level which has previously been found in E. grandis leaves. Similar effects were observed in detached leaves of Xanthium strumarium L. though almost 10 times more G was required. G reduced CO2-dependent O2 evolution from isolated cells of X. strumarium. In spinach (Spinacia oleracea L.) chloroplasts, electron transport through photosystem II was reduced by G. It is proposed that G affects stomatal conductance and photosynthesis by reducing photosystem II activity in both the guard cell chloroplasts and mesophyll cell chloroplasts. PMID:16662322

  20. Plastids Are Major Regulators of Light Signaling in Arabidopsis1[W][OA

    PubMed Central

    Ruckle, Michael E.; Burgoon, Lyle D.; Lawrence, Lauren A.; Sinkler, Christopher A.; Larkin, Robert M.

    2012-01-01

    We previously provided evidence that plastid signaling regulates the downstream components of a light signaling network and that this signal integration coordinates chloroplast biogenesis with both the light environment and development by regulating gene expression. We tested these ideas by analyzing light- and plastid-regulated transcriptomes in Arabidopsis (Arabidopsis thaliana). We found that the enrichment of Gene Ontology terms in these transcriptomes is consistent with the integration of light and plastid signaling (1) down-regulating photosynthesis and inducing both repair and stress tolerance in dysfunctional chloroplasts and (2) helping coordinate processes such as growth, the circadian rhythm, and stress responses with the degree of chloroplast function. We then tested whether factors that contribute to this signal integration are also regulated by light and plastid signals by characterizing T-DNA insertion alleles of genes that are regulated by light and plastid signaling and that encode proteins that are annotated as contributing to signaling, transcription, or no known function. We found that a high proportion of these mutant alleles induce chloroplast biogenesis during deetiolation. We quantified the expression of four photosynthesis-related genes in seven of these enhanced deetiolation (end) mutants and found that photosynthesis-related gene expression is attenuated. This attenuation is particularly striking for Photosystem II subunit S expression. We conclude that the integration of light and plastid signaling regulates a number of END genes that help optimize chloroplast function and that at least some END genes affect photosynthesis-related gene expression. PMID:22383539

  1. The water-water cycle is essential for chloroplast protection in the absence of stress.

    PubMed

    Rizhsky, Ludmila; Liang, Hongjian; Mittler, Ron

    2003-10-03

    Maintaining electron flow through the photosynthetic apparatus, even in the absence of a sufficient amount of NADP+ as an electron acceptor, is essential for chloroplast protection from photooxidative stress. At least two different pathways are thought to participate in this process, i.e. cyclic electron flow and the water-water cycle. Although the function of the water-water cycle was inferred from a number of biochemical and physiological studies, genetic evidence for the function of this cycle is very limited. Here we show that knockdown Arabidopsis plants with suppressed expression of the key water-water cycle enzyme, thylakoid-attached copper/zinc superoxide dismutase (KD-SOD), are suppressed in their growth and development. Chloroplast size, chlorophyll content, and photosynthetic activity were also reduced in KD-SOD plants. Microarray analysis of KD-SOD plants, grown under controlled conditions, revealed changes in transcript expression consistent with an acclimation response to light stress. Although a number of transcripts involved in the defense of plants from oxidative stress were induced in KD-SOD plants, and seedlings of KD-SOD plants were more tolerant to oxidative stress, these mechanisms were unable to compensate for the suppression of the water-water cycle in mature leaves. Thus, the localization of copper/zinc superoxide dismutase at the vicinity of photosystem I may be essential for its function. Our studies provide genetic evidence for the importance of the water-water cycle in protecting the photosynthetic apparatus of higher plants from photooxidative damage.

  2. A new type of subchloroplast fragments isolated from pea chloroplasts in the presence of digitonin.

    PubMed

    Kochubey, S M; Bondarenko, O Yu; Shevchenko, V V

    2007-09-01

    Heavy fragments were isolated from pea chloroplasts using digitonin treatment and differential centrifugation. The particles were characterized by a significantly lowered chlorophyll a/b ratio, contents of photosystem I (PS I) proteins and ATPase, as well as of amount of P700. The content of photosystem II (PS II) proteins decreased insignificantly, whereas that of proteins of the light-harvesting complex II did not change. The absorption and low-temperature fluorescence spectra were indicative of a decreased content of PS I. Electron microscopy of ultrathin sections of heavy fragment preparations identified them as grana with reduced content of thylakoids. The diameter of these particles was practically the same as within chloroplasts. Comparison of various characteristics of the fragments and chloroplasts from which the fragments were isolated allowed us to define a high degree of preservation of marginal regions in thylakoids present in the heavy fragment particles. Analysis of the results shows that the procedure of fragmentation produces grana with high extent of thylakoid integrity. The phenomenon of reduction of the thylakoid content in grana, occurring as our heavy fragments, is considered in the frame of our previous hypothesis concerning the peculiarities of grana organization in the transversal direction.

  3. Co-Compartmentation of Terpene Biosynthesis and Storage via Synthetic Droplet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Cheng; Kim, YongKyoung; Zeng, Yining

    Traditional bioproduct engineering focuses on pathway optimization, yet is often complicated by product inhibition, downstream consumption, and the toxicity of certain products. Here, we present the co-compartmentation of biosynthesis and storage via a synthetic droplet as an effective new strategy to improve the bioproduct yield, with squalene as a model compound. A hydrophobic protein was designed and introduced into the tobacco chloroplast to generate a synthetic droplet for terpene storage. Simultaneously, squalene biosynthesis enzymes were introduced to chloroplasts together with the droplet-forming protein to co-compartmentalize the biosynthesis and storage of squalene. The strategy has enabled a record yield of squalenemore » at 2.6 mg/g fresh weight without compromising plant growth. Confocal fluorescent microscopy imaging, stimulated Raman scattering microscopy, and droplet composition analysis confirmed the formation of synthetic storage droplet in chloroplast. The co-compartmentation of synthetic storage droplet with a targeted metabolic pathway engineering represents a new strategy for enhancing bioproduct yield.« less

  4. Co-Compartmentation of Terpene Biosynthesis and Storage via Synthetic Droplet

    DOE PAGES

    Zhao, Cheng; Kim, YongKyoung; Zeng, Yining; ...

    2018-02-13

    Traditional bioproduct engineering focuses on pathway optimization, yet is often complicated by product inhibition, downstream consumption, and the toxicity of certain products. Here, we present the co-compartmentation of biosynthesis and storage via a synthetic droplet as an effective new strategy to improve the bioproduct yield, with squalene as a model compound. A hydrophobic protein was designed and introduced into the tobacco chloroplast to generate a synthetic droplet for terpene storage. Simultaneously, squalene biosynthesis enzymes were introduced to chloroplasts together with the droplet-forming protein to co-compartmentalize the biosynthesis and storage of squalene. The strategy has enabled a record yield of squalenemore » at 2.6 mg/g fresh weight without compromising plant growth. Confocal fluorescent microscopy imaging, stimulated Raman scattering microscopy, and droplet composition analysis confirmed the formation of synthetic storage droplet in chloroplast. The co-compartmentation of synthetic storage droplet with a targeted metabolic pathway engineering represents a new strategy for enhancing bioproduct yield.« less

  5. The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model

    PubMed Central

    Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang

    2016-01-01

    Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J. The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. PMID:27702991

  6. Effects of gold nanoparticles on the photophysical and photosynthetic parameters of leaves and chloroplasts.

    PubMed

    Torres, Rocio; Diz, Virginia E; Lagorio, M Gabriela

    2018-04-18

    Effects of gold nanoparticles (average diameter: 10-14 nm) on leaves and chloroplasts have been studied. Gold nanoparticles (AuNPs) quenched significantly chlorophyll fluorescence when introduced both in intact leaves and isolated chloroplasts. Additionally, the fluorescence spectra corrected for light re-absorption processes showed a net decrease in the fluorescence ratio calculated as the quotient between the maximum fluorescence at 680 and 735 nm. This fact gave evidence for a reduction in the fluorescence emission of the PSII relative to that of the PSI. Strikingly, the photosynthetic parameters derived from the analysis of the slow phase of Kautsky's kinetics, the rate of oxygen evolution and the rate of photo-reduction of 2,6-dichlorophenolindophenol were increased in the presence of AuNPs indicating an apparent greater photosynthetic capacity. The observed results were consistent with an electron transfer process from the excited PSII, which was thermodynamically possible, and which competed with both the electron transport process that initiated photosynthesis and the deactivation of the excited PSII by fluorescence emission. Additionally, it is here explained, in terms of a completely rational kinetic scheme and their corresponding algebraic expressions, why the photosynthetic parameters and the variable and non-variable fluorescence of chlorophyll are modified in a photosynthetic tissue containing gold nanoparticles.

  7. Oxidative and Photosynthetic Phosphorylation Mechanisms

    ERIC Educational Resources Information Center

    Wang, Jui H.

    1970-01-01

    Proposes a molecular mechanism for the coupling of phosphorylation to electron transport in both mitochondria and chloroplasts. Justifies the proposed reaction schemes in terms of thermodynamics and biochemical data. Suggests how areobic respiration could have evolved. (EB)

  8. Combined effects of lanthanum ion and acid rain on growth, photosynthesis and chloroplast ultrastructure in soybean seedlings.

    PubMed

    Wen, Kejia; Liang, Chanjuan; Wang, Lihong; Hu, Gang; Zhou, Qing

    2011-07-01

    Rare earth elements (REEs) have been accumulated in the agricultural environment. Acid rain is a serious environmental issue. In the present work, the effects of lanthanum ion (La(3+)) and acid rain on the growth, photosynthesis and chloroplast ultrastructure in soybean seedlings were investigated using the gas exchange measurements system, chlorophyll fluorometer, transmission electron microscopy and some biochemical techniques. It was found that although the growth and photosynthesis of soybean seedlings treated with the low concentration of La(3+) was improved, the growth and photosynthesis of soybean seedlings were obviously inhibited in the combined treatment with the low concentration of La(3+) and acid rain. At the same time, the chloroplast ultrastructure in the cell of soybean seedlings was destroyed. Under the combined treatment with the high concentration of La(3+) and acid rain, the chloroplast ultrastructure in the cell of soybean seedlings was seriously destroyed, and the growth and of photosynthesis were greatly decreased compared with those of the control, the single treatment with the high concentration of La(3+) and the single treatment with acid rain, respectively. The degree of decrease and destruction on chloroplast ultrastructure depended on the increases in the concentration of La(3+) and acid rain (H(+)). In conclusion, the combined pollution of La(3+) and acid rain obviously destroyed the chloroplast ultrastructure of cell and aggravated the harmful effect of the single La(3+) and acid rain on soybean seedlings. As a new combined pollutant, the harmful effect of REEs ions and acid rain on plant should be paid attention to. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Distribution of Cd and other cations between the stroma and thylakoids: a quantitative approach to the search for Cd targets in chloroplasts.

    PubMed

    Lysenko, Eugene A; Klaus, Alexander A; Kartashov, Alexander V; Kusnetsov, Victor V

    2018-06-21

    Plant growth and photosynthetic activity are usually inhibited due to the overall action of Cd on a whole organism, though few cadmium cations can invade chloroplasts in vivo. We found that in vivo, the major portion of Cd in barley chloroplasts is located in the thylakoids (80%), and the minor portion is in the stroma (20%). Therefore, the electron-transport chain in the thylakoids would be the likely target for direct Cd action in vivo. In vitro, we found the distribution of Cd to be shifted to the stroma (40-60%). In barley chloroplasts, the major portions of Mg, Fe, Mn, and Cu were found to be located in the thylakoids, and most Ca, Zn, and K in the stroma. This finding was true for both control and Cu- or Fe-treated plants. Treatment with Cd affected the contents of all cations, and the largest portions of Ca and Zn were in the thylakoids. Alterations of the K and Mn contents were caused by Cd, Cu, or Fe treatment; the levels of other cations in chloroplasts were changed specifically by Cd treatment. The quantity of Cd in chloroplasts was small in comparison to that of Mg, Ca, and Fe. In thylakoids, the amount of Cd was similar to that of Cu and comparable to the levels of Zn and Mn. Accordingly, the possible targets for direct Cd action in thylakoids are the Mn cluster, plastocyanin, carbonic anhydrase, or FtsH protease. The quantity of Cd in thylakoids is sufficient to replace a cation nearly completely at one of these sites or partially (20-30%) at many of these sites.

  10. Transformation of an edible crop with the pagA gene of Bacillus anthracis.

    PubMed

    Aziz, Mohammad Azhar; Sikriwal, Deepa; Singh, Samer; Jarugula, Sridhar; Kumar, P Anand; Bhatnagar, Rakesh

    2005-09-01

    Vaccination against anthrax is the most important strategy to combat the disease. This study describes a generation of edible transgenic crop expressing, functional protective antigen (PA). In vitro studies showed that the plant-expressed antigen is qualitatively similar to recombinant PA. Immunization studies in mouse animal models indicated the generation of PA-specific neutralizing antibodies and stressed the need for improving expression levels to generate higher antibody titers. Genetic engineering of a plant organelle offers immense scope for increasing levels of antigen expression. An AT-rich PA gene (pagA) coding for the 83-kDa PA molecule was thus cloned and expressed in tobacco chloroplasts. Biolistics was used for the transformation of a chloroplast genome under a set of optimized conditions. The expression of the pagA gene with 69% AT content was highly favored by an AT-rich chloroplast genome. A multifold expression level of functional PA was obtained as compared with the nuclear transgenic tobacco plants. This report describes for the first time a comprehensive study on generating transgenic plants expressing PA, which may serve as a source of an edible vaccine against anthrax. Two important achievements of expressing PA in an edible crop and use of chloroplast technology to enhance the expression levels are discussed here.

  11. Effect of water stress on cotton leaves : I. An electron microscopic stereological study of the palisade cells.

    PubMed

    Berlin, J; Quisenberry, J E; Bailey, F; Woodworth, M; McMichael, B L

    1982-07-01

    Palisade cells from fully expanded leaves from irrigated and nonirrigated, field grown cotton (Gossypium hirsutum L. cv. Paymaster 266) were subjected to a microscopic examination to evaluate the effect of water stress on subcellular structures. The water potential difference between the two treatments was 13 bars at the time of sampling. The dimensions of the palisade cells and their density per unit leaf area were determined by light microscopy. Palisade cells from stressed plants had the same diameter, but were taller than their counterparts in irrigated plants. The density of the palisade cells was the same in both treatments as was the fractional volume of the intercellular space. It was concluded that the reduced leaf area observed in the stressed plants resulted primarily from a mitotic sensitivity to water stress. Further, expansion of palisade cells was not inhibited by the stress imposed in this study.Morphometric analysis of electron micrographs was used to evaluate the subcellular structure of palisade cells from nonstressed and stressed plants. The fractional volumes of cell walls, total cytoplasm, chloroplasts, starch granules, intrachloroplast bodies, mitochondria, peroxisomes, and central vacuoles were determined. The surface densities of grana and stroma lamellae, outer chloroplast membranes, mitochondrial cristae, endoplasmic reticulum and Golgi cisternae were also measured. The number of chloroplasts, mitochondria, and peroxisomes were determined. These data were expressed as actual volumes, areas, and numbers per palisade cell for each treatment. Palisade cells from stressed plants had thinner cell walls, larger central vacuoles and approximately the same amount of cytoplasm compared to cells from nonstressed plants. Within the cytoplasm, stressed plants had more but smaller chloroplasts with increased grana and stroma lamellae surfaces, larger mithchondria with reduced cristae surfaces, smaller peroxisomes and reduced membrane surfaces of endoplasmic reticulum and Golgi cisternae.

  12. Linking chloroplast relocation to different responses of photosynthesis to blue and red radiation in low and high light-acclimated leaves of Arabidopsis thaliana (L.).

    PubMed

    Pfündel, Erhard E; Latouche, Gwendal; Meister, Armin; Cerovic, Zoran G

    2018-01-27

    Low light (LL) and high light (HL)-acclimated plants of A. thaliana were exposed to blue (BB) or red (RR) light or to a mixture of blue and red light (BR) of incrementally increasing intensities. The light response of photosystem II was measured by pulse amplitude-modulated chlorophyll fluorescence and that of photosystem I by near infrared difference spectroscopy. The LL but not HL leaves exhibited blue light-specific responses which were assigned to relocation of chloroplasts from the dark to the light-avoidance arrangement. Blue light (BB and BR) decreased the minimum fluorescence ([Formula: see text]) more than RR light. This extra reduction of the [Formula: see text] was stronger than theoretically predicted for [Formula: see text] quenching by energy dissipation but actual measurement and theory agreed in RR treatments. The extra [Formula: see text] reduction was assigned to decreased light absorption of chloroplasts in the avoidance position. A maximum reduction of 30% was calculated. Increasing intensities of blue light affected the fluorescence parameters NPQ and q P to a lesser degree than red light. After correcting for the optical effects of chloroplast relocation, the NPQ responded similarly to blue and red light. The same correction method diminished the color-specific variations in q P but did not abolish it; thus strongly indicating the presence of another blue light effect which also moderates excitation pressure in PSII but cannot be ascribed to absorption variations. Only after RR exposure, a post-illumination overshoot of [Formula: see text] and fast oxidation of PSI electron acceptors occurred, thus, suggesting an electron flow from stromal reductants to the plastoquinone pool.

  13. High light intensity protects photosynthetic apparatus of pea plants against exposure to lead.

    PubMed

    Romanowska, E; Wróblewska, B; Drozak, A; Siedlecka, M

    2006-01-01

    The electron transport rates and coupling factor activity in the chloroplasts; adenylate contents, rates of photosynthesis and respiration in the leaves as well as activity of isolated mitochondria were investigated in Pisum sativum L. leaves of plants grown under low or high light intensity and exposed after detachment to 5 mM Pb(NO(3))(2). The presence of Pb(2+) reduced rate of photosynthesis in the leaves from plants grown under the high light (HL) and low light (LL) conditions, whereas the respiration was enhanced in the leaves from HL plants. Mitochondria from Pb(2+) treated HL-leaves oxidized glycine at a higher rate than those isolated from LL leaves. ATP content in the Pb-treated leaves increased to a greater extend in the HL than LL grown plants. Similarly ATP synthase activity increased markedly when chloroplasts isolated from control and Pb-treated leaves of HL and LL grown plants were subjected to high intensity light. The presence of Pb ions was found inhibit ATP synthase activity only in chloroplasts from LL grown plants or those illuminated with low intensity light. Low light intensity during growth also lowered PSI electron transport rates and the Pb(2+) induced changes in photochemical activity of this photosystem were visible only in the chloroplasts isolated from LL grown plants. The activity of PSII was influenced by Pb ions on similar manner in both light conditions. This study demonstrates that leaves from plants grown under HL conditions were more resistant to lead toxicity than those obtained from the LL grown plants. The data indicate that light conditions during growth might play a role in regulation of photosynthetic and respiratory energy conservation in heavy metal stressed plants by increasing the flexibility of the stoichiometry of ATP to ADP production.

  14. Coordinated regulation of photosynthetic and respiratory components is necessary to maintain chloroplast energy balance in varied growth conditions.

    PubMed

    Dahal, Keshav; Martyn, Greg D; Alber, Nicole A; Vanlerberghe, Greg C

    2017-01-01

    Mitochondria have a non-energy-conserving alternative oxidase (AOX) proposed to support photosynthesis, perhaps by promoting energy balance under varying growth conditions. To investigate this, wild-type (WT) Nicotiana tabacum were compared with AOX knockdown and overexpression lines. In addition, the amount of AOX protein in WT plants was compared with that of chloroplast light-harvesting complex II (LHCB2), whose amount is known to respond to chloroplast energy status. With increased growth irradiance, WT leaves maintained higher rates of respiration in the light (RL), but no differences in RL or photosynthesis were seen between the WT and transgenic lines, suggesting that, under non-stress conditions, AOX was not critical for leaf metabolism, regardless of growth irradiance. However, under drought, the AOX amount became an important determinant of RL, which in turn was an important determinant of chloroplast energy balance (measured as photosystem II excitation pressure, EP), and photosynthetic performance. In the WT, the AOX amount increased and the LHCB2 amount decreased with increased growth irradiance or drought severity. These changes in protein amounts correlated strongly, in opposing ways, with growth EP. This suggests that a signal deriving from the photosynthetic electron transport chain status coordinately controls the amounts of AOX and LHCB2, which then both contribute to maintaining chloroplast energy balance, particularly under stress conditions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Novel AroA from Pseudomonas putida Confers Tobacco Plant with High Tolerance to Glyphosate

    PubMed Central

    Yan, Hai-Qin; Chang, Su-Hua; Tian, Zhe-Xian; Zhang, Le; Sun, Yi-Cheng; Li, Yan; Wang, Jing; Wang, Yi-Ping

    2011-01-01

    Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, also designated as AroA), a key enzyme in the aromatic amino acid biosynthesis pathway in microorganisms and plants. Previously, we reported that a novel AroA (PpAroA1) from Pseudomonas putida had high tolerance to glyphosate, with little homology to class I or class II glyphosate-tolerant AroA. In this study, the coding sequence of PpAroA1 was optimized for tobacco. For maturation of the enzyme in chloroplast, a chloroplast transit peptide coding sequence was fused in frame with the optimized aroA gene (PparoA1optimized) at the 5′ end. The PparoA1optimized gene was introduced into the tobacco (Nicotiana tabacum L. cv. W38) genome via Agrobacterium-mediated transformation. The transformed explants were first screened in shoot induction medium containing kanamycin. Then glyphosate tolerance was assayed in putative transgenic plants and its T1 progeny. Our results show that the PpAroA1 from Pseudomonas putida can efficiently confer tobacco plants with high glyphosate tolerance. Transgenic tobacco overexpressing the PparoA1optimized gene exhibit high tolerance to glyphosate, which suggest that the novel PpAroA1 is a new and good candidate applied in transgenic crops with glyphosate tolerance in future. PMID:21611121

  16. Differentiation between Prototheca and morphologically similar green algae in tissue.

    PubMed

    Chandler, F W; Kaplan, W; Callaway, C S

    1978-07-01

    Evidence that algae are pathogens was provided by the results of electron microscopic studies of tissues from five cattle and sheep suspected of having green algal infections. Chloroplasts were demonstrated in the algae in each case. Prototheca organisms, considered by some to be achloric mutants of green algae, are causative agents of disease in man and animals and may appear morphologically similar to green algae in tissue. However, electron microscopy showed that chloroplasts were absent in these organisms. Light microscopy revealed not only similarities in size, shape, and mode of reproduction, but also a striking difference between the Prototheca organisms and green algae. Unlike Prototheca, the green algae contained abundant cytoplasmic starch granules that were strongly positive by several staining procedures; these granules, which were PAS-negative following diastase digestion, provide a means of differentiating green algae from Prototheca cells in tissue.

  17. Megadalton Complexes in the Chloroplast Stroma of Arabidopsis thaliana Characterized by Size Exclusion Chromatography, Mass Spectrometry, and Hierarchical Clustering*

    PubMed Central

    Olinares, Paul Dominic B.; Ponnala, Lalit; van Wijk, Klaas J.

    2010-01-01

    To characterize MDa-sized macromolecular chloroplast stroma protein assemblies and to extend coverage of the chloroplast stroma proteome, we fractionated soluble chloroplast stroma in the non-denatured state by size exclusion chromatography with a size separation range up to ∼5 MDa. To maximize protein complex stability and resolution of megadalton complexes, ionic strength and composition were optimized. Subsequent high accuracy tandem mass spectrometry analysis (LTQ-Orbitrap) identified 1081 proteins across the complete native mass range. Protein complexes and assembly states above 0.8 MDa were resolved using hierarchical clustering, and protein heat maps were generated from normalized protein spectral counts for each of the size exclusion chromatography fractions; this complemented previous analysis of stromal complexes up to 0.8 MDa (Peltier, J. B., Cai, Y., Sun, Q., Zabrouskov, V., Giacomelli, L., Rudella, A., Ytterberg, A. J., Rutschow, H., and van Wijk, K. J. (2006) The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol. Cell. Proteomics 5, 114–133). This combined experimental and bioinformatics analyses resolved chloroplast ribosomes in different assembly and functional states (e.g. 30, 50, and 70 S), which enabled the identification of plastid homologues of prokaryotic ribosome assembly factors as well as proteins involved in co-translational modifications, targeting, and folding. The roles of these ribosome-associating proteins will be discussed. Known RNA splice factors (e.g. CAF1/WTF1/RNC1) as well as uncharacterized proteins with RNA-binding domains (pentatricopeptide repeat, RNA recognition motif, and chloroplast ribosome maturation), RNases, and DEAD box helicases were found in various sized complexes. Chloroplast DNA (>3 MDa) was found in association with the complete heteromeric plastid-encoded DNA polymerase complex, and a dozen other DNA-binding proteins, e.g. DNA gyrase, topoisomerase, and various DNA repair enzymes. The heteromeric ≥5-MDa pyruvate dehydrogenase complex and the 0.8–1-MDa acetyl-CoA carboxylase complex associated with uncharacterized biotin carboxyl carrier domain proteins constitute the entry point to fatty acid metabolism in leaves; we suggest that their large size relates to the need for metabolic channeling. Protein annotations and identification data are available through the Plant Proteomics Database, and mass spectrometry data are available through Proteomics Identifications database. PMID:20423899

  18. Alternative electron flows (water-water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions.

    PubMed

    Miyake, Chikahiro

    2010-12-01

    An electron flow in addition to the major electron sinks in C(3) plants [both photosynthetic carbon reduction (PCR) and photorespiratory carbon oxidation (PCO) cycles] is termed an alternative electron flow (AEF) and functions in the chloroplasts of leaves. The water-water cycle (WWC; Mehler-ascorbate peroxidase pathway) and cyclic electron flow around PSI (CEF-PSI) have been studied as the main AEFs in chloroplasts and are proposed to play a physiologically important role in both the regulation of photosynthesis and the alleviation of photoinhibition. In the present review, I discuss the molecular mechanisms of both AEFs and their functions in vivo. To determine their physiological function, accurate measurement of the electron flux of AEFs in vivo are required. Methods to assay electron flux in CEF-PSI have been developed recently and their problematic points are discussed. The common physiological function of both the WWC and CEF-PSI is the supply of ATP to drive net CO(2) assimilation. The requirement for ATP depends on the activities of both PCR and PCO cycles, and changes in both WWC and CEF-PSI were compared with the data obtained in intact leaves. Furthermore, the fact that CEF-PSI cannot function independently has been demonstrated. I propose a model for the regulation of CEF-PSI by WWC, in which WWC is indispensable as an electron sink for the expression of CEF-PSI activity.

  19. Inhibition of Photophosphorylation by Kaempferol 1

    PubMed Central

    Arntzen, Charles J.; Falkenthal, Scott V.; Bobick, Sandra

    1974-01-01

    Kaempferol, a naturally occurring flavonol, inhibited coupled electron transport and both cyclic and noncyclic photophosphorylation in isolated pea (Pisum sativum) chloroplasts. Over a concentration range which gave marked inhibition of ATP synthesis, there was no effect on basal or uncoupled electron flow or light-induced proton accumulation by isolated thylakoids. It is suggested that kaempferol acts as an energy transfer inhibitor. PMID:16658695

  20. Measurement of Quantum Yield, Quantum Requirement, and Energetic Efficiency of the O2-Evolving System of Photosynthesis by a Simple Dye Reaction

    NASA Astrophysics Data System (ADS)

    Ros Barcelò, A.; Zapata, J. M.

    1996-11-01

    Photosynthesis is the conversion of absorbed radiant energy from sunlight into various forms of chemical energy by the chloroplasts of higher green plants. The overall process of photosynthesis consists of the oxidation of water (with the release of O2 as a product) and the reduction of CO2 to form carbohydrates. In the test tube electrons produced by the photolytic cleavage of H2) may be deviated from their true acceptor by inserting a suitable dye in the electron chain; i.e.; 2,6-dichlorophenol indophenol (DCPIP) (E'o = + 0.217 V), which is blue in the oxidized quinone form and which becomes colorless when reduced to the phenolic form. This dye-electrom acceptor also has the advantage that it accepts electroms directly from the quinone (Qa) electron-acceptor of the photosystem II< the reaction center associated with the O2-evolving (or water-slplitting) system. Based in the bleaching of DCPIP by illuminated spinach leaf chloroplasts, a classroom laboratory protocol has been developed to determine the quantum yield (QY = micromol O2 s-1 / micromol photons s-1, the quantum requirement (1/QY) and the energetic efficiency (f = chemical energy stored / light energy supplied) of the O2-evolving system of photosynthesis. Although values for the quantum yield, the quantum requirement and the energetic efficiency calculated in the classroom laboratory differ widely from those expected theoretically, these calculations are useful for illustrating the transformation of light energy into chemical energy by the chloroplasts of green plants.

  1. Fat Metabolism in Higher Plants

    PubMed Central

    Jacobson, Bruce S.; Jaworski, J. G.; Stumpf, P. K.

    1974-01-01

    Stearyl-acyl carrier protein desaturase (EC 1.14.99.6), present in the stroma fraction of spinach (Spinacia oleracea) chloroplasts, rapidly desaturated enzymatically prepared stearyl-acyl carrier protein to oleic acid. No other substrates were desaturated. In addition to stearyl-acyl carrier protein, reduced ferredoxin was an essential component of the system. The electron donor systems were either ascorbate, dichlorophenolindophenol, photosystem I and light, or NADPH and ferredoxin-NADP reductase. The desaturase was more active in extracts prepared from chloroplasts obtained from immature spinach leaves than from mature leaves. Stearyl-acyl carrier protein desaturase also occurs in soluble extracts of avocado (Persea americana Mill.) mesocarp and of developing safflower (Carthamus tinctorius) seeds. PMID:16658913

  2. Three-dimensional intracellular structure of a whole rice mesophyll cell observed with FIB-SEM.

    PubMed

    Oi, Takao; Enomoto, Sakiko; Nakao, Tomoyo; Arai, Shigeo; Yamane, Koji; Taniguchi, Mitsutaka

    2017-07-01

    Ultrathin sections of rice leaf blades observed two-dimensionally using a transmission electron microscope (TEM) show that the chlorenchyma is composed of lobed mesophyll cells, with intricate cell boundaries, and lined with chloroplasts. The lobed cell shape and chloroplast positioning are believed to enhance the area available for the gas exchange surface for photosynthesis in rice leaves. However, a cell image revealing the three-dimensional (3-D) ultrastructure of rice mesophyll cells has not been visualized. In this study, a whole rice mesophyll cell was observed using a focused ion beam scanning electron microscope (FIB-SEM), which provides many serial sections automatically, rapidly and correctly, thereby enabling 3-D cell structure reconstruction. Rice leaf blades were fixed chemically using the method for conventional TEM observation, embedded in resin and subsequently set in the FIB-SEM chamber. Specimen blocks were sectioned transversely using the FIB, and block-face images were captured using the SEM. The sectioning and imaging were repeated overnight for 200-500 slices (each 50 nm thick). The resultant large-volume image stacks ( x = 25 μm, y = 25 μm, z = 10-25 μm) contained one or two whole mesophyll cells. The 3-D models of whole mesophyll cells were reconstructed using image processing software. The reconstructed cell models were discoid shaped with several lobes around the cell periphery. The cell shape increased the surface area, and the ratio of surface area to volume was twice that of a cylinder having the same volume. The chloroplasts occupied half the cell volume and spread as sheets along the cell lobes, covering most of the inner cell surface, with adjacent chloroplasts in close contact with each other. Cellular and sub-cellular ultrastructures of a whole mesophyll cell in a rice leaf blade are demonstrated three-dimensionally using a FIB-SEM. The 3-D models and numerical information support the hypothesis that rice mesophyll cells enhance their CO 2 absorption with increased cell surface and sheet-shaped chloroplasts. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. Phosphoinositides play differential roles in regulating phototropin1- and phototropin2-mediated chloroplast movements in Arabidopsis.

    PubMed

    Aggarwal, Chhavi; Labuz, Justyna; Gabryś, Halina

    2013-01-01

    Phototropins are UVA/blue-light receptors involved in controlling the light-dependent physiological responses which serve to optimize the photosynthetic activity of plants and promote growth. The phototropin-induced phosphoinositide (PI) metabolism has been shown to be essential for stomatal opening and phototropism. However, the role of PIs in phototropin-induced chloroplast movements remains poorly understood. The aim of this work is to determine which PI species are involved in the control of chloroplast movements in Arabidopsis and the nature of their involvement. We present the effects of the inactivation of phospholipase C (PLC), PI3-kinase (PI3K) and PI4-kinase (PI4K) on chloroplast relocations in Arabidopsis. The inhibition of the phosphatidylinositol 4,5-bisphospahte [PI(4,5)P2]-PLC pathway, using neomycin and U73122, suppressed the phot2-mediated chloroplast accumulation and avoidance responses, without affecting movement responses controlled by phot1. On the other hand, PI3K and PI4K activities are more restricted to phot1- and phot2-induced weak-light responses. The inactivation of PI3K and PI4K by wortmannin and LY294002 severely affected the weak blue-light-activated accumulation response but had little effect on the strong blue-light-activated avoidance response. The inhibitory effect observed with PI metabolism inhibitors is, at least partly, due to a disturbance in Ca(2+) ((c)) signaling. Using the transgenic aequorin system, we show that the application of these inhibitors suppresses the blue-light-induced transient Ca(2+) ((c)) rise. These results demonstrate the importance of PIs in chloroplast movements, with the PI(4,5)P2-PLC pathway involved in phot2 signaling while PI3K and PI4K are required for the phot1- and phot2-induced accumulation response. Our results suggest that these PIs modulate cytosolic Ca(2+) signaling during movements.

  4. Phenol homeostasis is ensured in vanilla fruit by storage under solid form in a new chloroplast-derived organelle, the phenyloplast

    PubMed Central

    Conéjéro, Geneviève

    2014-01-01

    A multiple cell imaging approach combining immunofluorescence by confocal microscopy, fluorescence spectral analysis by multiphotonic microscopy, and transmission electron microscopy identified the site of accumulation of 4-O-(3-methoxybenzaldehyde) β-d-glucoside, a phenol glucoside massively stockpiled by vanilla fruit. The glucoside is sufficiently abundant to be detected by spectral analysis of its autofluorescence. The convergent results obtained by these different techniques demonstrated that the phenol glucoside accumulates in the inner volume of redifferentiating chloroplasts as solid amorphous deposits, thus ensuring phenylglucoside cell homeostasis. Redifferentiation starts with the generation of loculi between thylakoid membranes which are progressively filled with the glucoside until a fully matured organelle is obtained. This peculiar mode of storage of a phenolic secondary metabolite is suspected to occur in other plants and its generalization in the Plantae could be considered. This new chloroplast-derived organelle is referred to as a ‘phenyloplast’. PMID:24683183

  5. Phenol homeostasis is ensured in vanilla fruit by storage under solid form in a new chloroplast-derived organelle, the phenyloplast.

    PubMed

    Brillouet, Jean-Marc; Verdeil, Jean-Luc; Odoux, Eric; Lartaud, Marc; Grisoni, Michel; Conéjéro, Geneviève

    2014-06-01

    A multiple cell imaging approach combining immunofluorescence by confocal microscopy, fluorescence spectral analysis by multiphotonic microscopy, and transmission electron microscopy identified the site of accumulation of 4-O-(3-methoxybenzaldehyde) β-d-glucoside, a phenol glucoside massively stockpiled by vanilla fruit. The glucoside is sufficiently abundant to be detected by spectral analysis of its autofluorescence. The convergent results obtained by these different techniques demonstrated that the phenol glucoside accumulates in the inner volume of redifferentiating chloroplasts as solid amorphous deposits, thus ensuring phenylglucoside cell homeostasis. Redifferentiation starts with the generation of loculi between thylakoid membranes which are progressively filled with the glucoside until a fully matured organelle is obtained. This peculiar mode of storage of a phenolic secondary metabolite is suspected to occur in other plants and its generalization in the Plantae could be considered. This new chloroplast-derived organelle is referred to as a 'phenyloplast'. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. The effects of lead stress on photosynthetic function and chloroplast ultrastructure of Robinia pseudoacacia seedlings.

    PubMed

    Zhou, Jian; Jiang, Zeping; Ma, Jie; Yang, Lifeng; Wei, Yuan

    2017-04-01

    In this experiment, the effects of different lead (Pb) concentrations (0, 200, 600, 1000, 1400 mg kg -1 ) on photosynthesis and chlorophyll fluorescence in Robinia pseudoacacia seedlings were examined. As Pb concentration increased, chlorophyll a, chlorophyll b, total chlorophyll content, net photosynthetic rate, transpiration rate, stomatal conductance (g s ), and mesophyll intercellular carbon dioxide concentration were gradually reduced. Maximal photochemical efficiency, photochemical quenching, and quantum yield also decreased. However, the initial fluorescence and nonphotochemical quenching gradually increased. Chloroplasts swelled owing to local plasmolysis and lost most of their starch content, and their thylakoid lamellae gradually became disordered and loosely packed. When the chloroplast envelope was lost under high Pb stress (≥1000 mg kg -1 ), lipid globules were released into the surrounding mesophyll cell. Multiple regression analysis showed that g s and inactivity of the PSII reaction center had the greatest effect on photosynthetic function, whereas inhibition of electron transport had minimal effects on black locust seedlings under Pb stress.

  7. Phenotypic, histological and proteomic analyses reveal multiple differences associated with chloroplast development in yellow and variegated variants from Camellia sinensis

    PubMed Central

    Ma, Chengying; Cao, Junxi; Li, Jianke; Zhou, Bo; Tang, Jinchi; Miao, Aiqing

    2016-01-01

    Leaf colour variation is observed in several plants. We obtained two types of branches with yellow and variegated leaves from Camellia sinensis. To reveal the mechanisms that underlie the leaf colour variations, combined morphological, histological, ionomic and proteomic analyses were performed using leaves from abnormal branches (variants) and normal branches (CKs). The measurement of the CIE-Lab coordinates showed that the brightness and yellowness of the variants were more intense than the CKs. When chloroplast profiles were analysed, HY1 (branch with yellow leaves) and HY2 (branch with variegated leaves) displayed abnormal chloroplast structures and a reduced number and size compared with the CKs, indicating that the abnormal chloroplast development might be tightly linked to the leaf colour variations. Moreover, the concentration of elemental minerals was different between the variants and the CKs. Furthermore, DEPs (differentially expressed proteins) were identified in the variants and the CKs by a quantitative proteomics analysis using the label-free approach. The DEPs were significantly involved in photosynthesis and included PSI, PSII, cytochrome b6/f complex, photosynthetic electron transport, LHC and F-type ATPase. Our results suggested that a decrease in the abundance of photosynthetic proteins might be associated with the changes of leaf colours in tea plants. PMID:27633059

  8. Exogenous γ-Aminobutyric Acid Improves the Structure and Function of Photosystem II in Muskmelon Seedlings Exposed to Salinity-Alkalinity Stress

    PubMed Central

    Xu, Weinan; Zhen, Ai; Zhang, Liang; Hu, Xiaohui

    2016-01-01

    Gamma-aminobutyric acid (GABA) is important in plant responses to environmental stresses. We wished to clarify the role of GABA in maintenance of photosynthesis in muskmelon seedlings (Cucumis melo L., cv. Yipintianxia) during saline-alkaline stress. To this end, we assessed the effect of GABA on the structure and function of the photosynthetic apparatus in muskmelon seedlings grown under saline-alkaline stress. These stresses in combination reduced net photosynthetic rate, gas-exchange, and inhibited photosystem II (PSII) electron transport as measured by the JIP-test. They also reduced the activity of chloroplast ATPases and disrupted the internal lamellar system of the thylakoids. Exogenous GABA alleviated the stress-induced reduction of net photosynthesis, the activity of chloroplast ATPases, and overcame some of the damaging effects of stress on the chloroplast structure. Based on interpretation of the JIP-test, we conclude that exogenous GABA alleviated stress-related damage on the acceptor side of PSII. It also restored energy distribution, the reaction center status, and enhanced the ability of PSII to repair reaction centers in stressed seedlings. GABA may play a crucial role in protecting the chloroplast structure and function of PSII against the deleterious effects of salinity-alkalinity stress. PMID:27764179

  9. Analysis of fast chlorophyll fluorescence rise (O-K-J-I-P) curves in green fruits indicates electron flow limitations at the donor side of PSII and the acceptor sides of both photosystems.

    PubMed

    Kalachanis, Dimitrios; Manetas, Yiannis

    2010-07-01

    Limited evidence up to now indicates low linear photosynthetic electron flow and CO(2) assimilation rates in non-foliar chloroplasts. In this investigation, we used chlorophyll fluorescence techniques to locate possible limiting steps in photosystem function in exposed, non-stressed green fruits (both pericarps and seeds) of three species, while corresponding leaves served as controls. Compared with leaves, fruit photosynthesis was characterized by less photon trapping and less quantum yields of electron flow, while the non-photochemical quenching was higher and potentially linked to enhanced carotenoid/chlorophyll ratios. Analysis of fast chlorophyll fluorescence rise curves revealed possible limitations both in the donor (oxygen evolving complex) and the acceptor (Q(A)(-)--> intermediate carriers) sides of photosystem II (PSII) indicating innately low PSII photochemical activity. On the other hand, PSI was characterized by faster reduction of its final electron acceptors and their small pool sizes. We argue that the fast reductive saturation of final PSI electron acceptors may divert electrons back to intermediate carriers facilitating a cyclic flow around PSI, while the partial inactivation of linear flow precludes strong reduction of plastoquinone. As such, the photosynthetic attributes of fruit chloroplasts may act to replenish the ATP lost because of hypoxia usually encountered in sink organs with high diffusive resistance to gas exchange.

  10. Changes in H(+)-ATP Synthase Activity, Proton Electrochemical Gradient, and pH in Pea Chloroplast Can Be Connected with Variation Potential.

    PubMed

    Sukhov, Vladimir; Surova, Lyubov; Morozova, Ekaterina; Sherstneva, Oksana; Vodeneev, Vladimir

    2016-01-01

    Local stimulation induces generation and propagation of electrical signals, including the variation potential (VP) and action potential, in plants. Burning-induced VP changes the physiological state of plants; specifically, it inactivates photosynthesis. However, the mechanisms that decrease photosynthesis are poorly understood. We investigated these mechanisms by measuring VP-connected systemic changes in CO2 assimilation, parameters of light reactions of photosynthesis, electrochromic pigment absorbance shifts, and light scattering. We reveal that inactivation of photosynthesis in the pea, including inactivation of dark and light reactions, was connected with the VP. Inactivation of dark reactions decreased the rate constant of the fast relaxation of the electrochromic pigment absorbance shift, which reflected a decrease in the H(+)-ATP synthase activity. This decrease likely contributed to the acidification of the chloroplast lumen, which developed after VP induction. However, VP-connected decrease of the proton motive force across the thylakoid membrane, possibly, reflected a decreased pH in the stroma. This decrease may be another mechanism of chloroplast lumen acidification. Overall, stroma acidification can decrease electron flow through photosystem I, and lumen acidification induces growth of fluorescence non-photochemical quenching and decreases electron flow through photosystem II, i.e., pH decreases in the stroma and lumen, possibly, contribute to the VP-induced inactivation of light reactions of photosynthesis.

  11. Plastoglobules Are Lipoprotein Subcompartments of the Chloroplast That Are Permanently Coupled to Thylakoid Membranes and Contain Biosynthetic Enzymes

    PubMed Central

    Austin, Jotham R.; Frost, Elizabeth; Vidi, Pierre-Alexandre; Kessler, Felix; Staehelin, L. Andrew

    2006-01-01

    Plastoglobules are lipoprotein particles inside chloroplasts. Their numbers have been shown to increase during the upregulation of plastid lipid metabolism in response to oxidative stress and during senescence. In this study, we used state-of-the-art high-pressure freezing/freeze-substitution methods combined with electron tomography as well as freeze-etch electron microscopy to characterize the structure and spatial relationship of plastoglobules to thylakoid membranes in developing, mature, and senescing chloroplasts. We demonstrate that plastoglobules are attached to thylakoids through a half-lipid bilayer that surrounds the globule contents and is continuous with the stroma-side leaflet of the thylakoid membrane. During oxidative stress and senescence, plastoglobules form linkage groups that are attached to each other and remain continuous with the thylakoid membrane by extensions of the half-lipid bilayer. Using three-dimensional tomography combined with immunolabeling techniques, we show that the plastoglobules contain the enzyme tocopherol cyclase (VTE1) and that this enzyme extends across the surface monolayer into the interior of the plastoglobules. These findings demonstrate that plastoglobules function as both lipid biosynthesis and storage subcompartments of thylakoid membranes. The permanent structural coupling between plastoglobules and thylakoid membranes suggests that the lipid molecules contained in the plastoglobule cores (carotenoids, plastoquinone, and tocopherol [vitamin E]) are in a dynamic equilibrium with those located in the thylakoid membranes. PMID:16731586

  12. The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model.

    PubMed

    Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang

    2016-11-01

    Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Chloroplast in Plant-Virus Interaction

    PubMed Central

    Zhao, Jinping; Zhang, Xian; Hong, Yiguo; Liu, Yule

    2016-01-01

    In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction. PMID:27757106

  14. Identification and Phenotypic Characterization of ZEBRA LEAF16 Encoding a β-Hydroxyacyl-ACP Dehydratase in Rice

    PubMed Central

    Liu, Ziwen; Wang, Zhiyuan; Gu, Han; You, Jia; Hu, Manman; Zhang, Yujun; Zhu, Ze; Wang, Yihua; Liu, Shijia; Chen, Liangming; Liu, Xi; Tian, Yunlu; Zhou, Shirong; Jiang, Ling; Liu, Linglong; Wan, Jianmin

    2018-01-01

    The chloroplast is a self-independent organelle and contains its own transcription and translation systems. The establishment of genetic systems is vital for normal plant growth and development. We isolated a rice zebra leaf 16 (zl16) mutant derived from rice cultivar 9311. The zl16 mutant showed chlorotic abnormalities in the transverse sectors of the young leaves of seedlings. The use of transmission electron microscopy (TEM) demonstrated that dramatic defects occurred in variegated zl16 leaves during the early development of a chloroplast. Map-based cloning revealed that ZL16 encodes a β-hydroxyacyl-ACP dehydratase (HAD) involved in de novo fatty acid synthesis. Compared with the wild type, a missense mutation (Arg164Trp) in the zl16 mutant was identified, which significantly reduced enzymatic activity and altered the three-dimensional modeling structure of the putative protein. ZL16 was ubiquitously expressed in various plant organs, with a pronounced level in the young leaf. A subcellular localization experiment indicated that ZL16 was targeted in the chloroplast. Furthermore, we analyzed the expression of some nuclear genes involved in chloroplast development, and found they were altered in the zl16 mutant. RNA-Seq analysis indicated that some genes related to cell membrane constituents were downregulated in the mutant. An in vivo metabolic assay revealed that the total fatty acid content in the mutant was significantly decreased relative to the wild type. Our results indicate that HAD is essential for the development of chloroplasts by regulating the synthesis of fatty acids in rice. PMID:29946330

  15. Inhibition of electron transport on the oxygen-evolving side of photosystem II by an antiserum to a polypeptide isolated from the thylakoid membrane.

    PubMed

    Schmid, G H; Menke, W; Koenig, F; Radunz, A

    1976-01-01

    A polypeptide fraction with the apparent molecular weight 11 000 was isolated from stroma-freed chloroplasts from Anthirrhinum majus. An antiserum to this polypeptide fraction inhibits photosynthetic electron transport in chloroplasts from Nicotiana tabacum. The relative degree of inhibition is pH dependent and has its maximum at pH 7.4. The maximal inhibition observed was 93%. The dependence of the inhibition on the amount of antiserum yields a sigmoidal curve which hints at a cooperative effect. A calculation of the Hill interaction coefficient gave the value of 10. The inhibition occurs on the water splitting side of photosystem II between the sites of electron donation of tetramethyl benzidine and diphenylcarbazide. Tetramethyl benzidine donates its electrons before the site where diphenylcarbazide feeds in its electrons. Analysis of the steady state level of the variable fluorescence also indicates that the inhibition site is on the water splitting side of photosystem II. Tris-washed chloroplasts are equally inhibited by the antiserum and the inhibition is also observed in the presence of an inhibitor of photophosphorylation like dicyclohexyl carbodiimide and in the presence of the uncoupler carbonylcyanide m-chlorophenyl hydrazone (CCCP) which means that the inhibitory action is directed towards the electron transport chain. Valinomycin which is supposed to affect the cation permeability of the thylakoid membrane has no influence on the inhibitory action of the antiserum. The same is valid for gramicidin. Methylamine on the other hand can induce a state in the thylakoids in which the antiserum is not effective. If the antibodies are already adsorbed prior to the methylamine addition then the high inhibitory effect by the antiserum remains unchanged upon addition of methylamine. From the experiments it follows that a component from the vicinity of photosystem II is accessible to antibodies that is, the component is located in the outer surface of the thylakoid membrane. It appears that the inhibitory effect is produced in the course of the light reaction.

  16. Codon Optimization to Enhance Expression Yields Insights into Chloroplast Translation1[OPEN

    PubMed Central

    Chan, Hui-Ting; Williams-Carrier, Rosalind; Barkan, Alice

    2016-01-01

    Codon optimization based on psbA genes from 133 plant species eliminated 105 (human clotting factor VIII heavy chain [FVIII HC]) and 59 (polio VIRAL CAPSID PROTEIN1 [VP1]) rare codons; replacement with only the most highly preferred codons decreased transgene expression (77- to 111-fold) when compared with the codon usage hierarchy of the psbA genes. Targeted proteomic quantification by parallel reaction monitoring analysis showed 4.9- to 7.1-fold or 22.5- to 28.1-fold increase in FVIII or VP1 codon-optimized genes when normalized with stable isotope-labeled standard peptides (or housekeeping protein peptides), but quantitation using western blots showed 6.3- to 8-fold or 91- to 125-fold increase of transgene expression from the same batch of materials, due to limitations in quantitative protein transfer, denaturation, solubility, or stability. Parallel reaction monitoring, to our knowledge validated here for the first time for in planta quantitation of biopharmaceuticals, is especially useful for insoluble or multimeric proteins required for oral drug delivery. Northern blots confirmed that the increase of codon-optimized protein synthesis is at the translational level rather than any impact on transcript abundance. Ribosome footprints did not increase proportionately with VP1 translation or even decreased after FVIII codon optimization but is useful in diagnosing additional rate-limiting steps. A major ribosome pause at CTC leucine codons in the native gene of FVIII HC was eliminated upon codon optimization. Ribosome stalls observed at clusters of serine codons in the codon-optimized VP1 gene provide an opportunity for further optimization. In addition to increasing our understanding of chloroplast translation, these new tools should help to advance this concept toward human clinical studies. PMID:27465114

  17. Synthesis of chlorophyll b: Localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit

    PubMed Central

    Eggink, Laura L; LoBrutto, Russell; Brune, Daniel C; Brusslan, Judy; Yamasato, Akihiro; Tanaka, Ayumi; Hoober, J Kenneth

    2004-01-01

    Background Assembly of stable light-harvesting complexes (LHCs) in the chloroplast of green algae and plants requires synthesis of chlorophyll (Chl) b, a reaction that involves oxygenation of the 7-methyl group of Chl a to a formyl group. This reaction uses molecular oxygen and is catalyzed by chlorophyllide a oxygenase (CAO). The amino acid sequence of CAO predicts mononuclear iron and Rieske iron-sulfur centers in the protein. The mechanism of synthesis of Chl b and localization of this reaction in the chloroplast are essential steps toward understanding LHC assembly. Results Fluorescence of a CAO-GFP fusion protein, transiently expressed in young pea leaves, was found at the periphery of mature chloroplasts and on thylakoid membranes by confocal fluorescence microscopy. However, when membranes from partially degreened cells of Chlamydomonas reinhardtii cw15 were resolved on sucrose gradients, full-length CAO was detected by immunoblot analysis only on the chloroplast envelope inner membrane. The electron paramagnetic resonance spectrum of CAO included a resonance at g = 4.3, assigned to the predicted mononuclear iron center. Instead of a spectrum of the predicted Rieske iron-sulfur center, a nearly symmetrical, approximately 100 Gauss peak-to-trough signal was observed at g = 2.057, with a sensitivity to temperature characteristic of an iron-sulfur center. A remarkably stable radical in the protein was revealed by an isotropic, 9 Gauss peak-to-trough signal at g = 2.0042. Fragmentation of the protein after incorporation of 125I- identified a conserved tyrosine residue (Tyr-422 in Chlamydomonas and Tyr-518 in Arabidopsis) as the radical species. The radical was quenched by chlorophyll a, an indication that it may be involved in the enzymatic reaction. Conclusion CAO was found on the chloroplast envelope and thylakoid membranes in mature chloroplasts but only on the envelope inner membrane in dark-grown C. reinhardtii cells. Such localization provides further support for the envelope membranes as the initial site of Chl b synthesis and assembly of LHCs during chloroplast development. Identification of a tyrosine radical in the protein provides insight into the mechanism of Chl b synthesis. PMID:15086960

  18. Chloroplast incorporation and long-term photosynthetic performance through the life cycle in laboratory cultures of Elysia timida (Sacoglossa, Heterobranchia)

    PubMed Central

    2014-01-01

    Introduction The Mediterranean sacoglossan Elysia timida is one of the few sea slug species with the ability to sequester chloroplasts from its food algae and to subsequently store them in a functional state in the digestive gland cells for more than a month, during which time the plastids retain high photosynthetic activity (= long-term retention). Adult E. timida have been described to feed on the unicellular alga Acetabularia acetabulum in their natural environment. The suitability of E. timida as a laboratory model culture system including its food source was studied. Results In contrast to the literature reporting that juvenile E. timida feed on Cladophora dalmatica first, and later on switch to the adult diet A. acetabulum, the juveniles in this study fed directly on A. acetabulum (young, non-calcified stalks); they did not feed on the various Cladophora spp. (collected from the sea or laboratory culture) offered. This could possibly hint to cryptic speciation with no clear morphological differences, but incipient ecological differentiation. Transmission electron microscopy of chloroplasts from A. acetabulum after initial intake by juvenile E. timida showed different states of degradation — in conglomerations or singularly — and fragments of phagosome membranes, but differed from kleptoplast images of C. dalmatica in juvenile E. timida from the literature. Based on the finding that the whole life cycle of E. timida can be completed with A. acetabulum as the sole food source, a laboratory culture system was established. An experiment with PAM-fluorometry showed that cultured E. timida are also able to store chloroplasts in long-term retention from Acetabularia peniculus, which stems from the Indo-Pacific and is not abundant in the natural environment of E. timida. Variations between three experiment groups indicated potential influences of temperature on photosynthetic capacities. Conclusions E. timida is a viable laboratory model system to study photosynthesis in incorporated chloroplasts (kleptoplasts). Capacities of chloroplast incorporation in E. timida were investigated in a closed laboratory culture system with two different chloroplast donors and over extended time periods about threefold longer than previously reported. PMID:24428892

  19. High-throughput sequencing of the chloroplast and mitochondrion of Chlamydomonas reinhardtii to generate improved de novo assemblies, analyze expression patterns and transcript speciation, and evaluate diversity among laboratory strains and wild isolates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallaher, Sean D.; Fitz-Gibbon, Sorel T.; Strenkert, Daniela

    Chlamydomonas reinhardtii is a unicellular chlorophyte alga that is widely studied as a reference organism for understanding photosynthesis, sensory and motile cilia, and for development of an algal-based platform for producing biofuels and bio-products. Its highly repetitive, ~205-kbp circular chloroplast genome and ~15.8-kbp linear mitochondrial genome were sequenced prior to the advent of high-throughput sequencing technologies. Here, high coverage shotgun sequencing was used to assemble both organellar genomes de novo. These new genomes correct dozens of errors in the prior genome sequences and annotations. Gen-ome sequencing coverage indicates that each cell contains on average 83 copies of the chloroplast genomemore » and 130 copies of the mitochondrial genome. Using protocols and analyses optimized for organellar tran-scripts, RNA-Seq was used to quantify their relative abundances across 12 different growth conditions. Forty-six percent of total cellular mRNA is attributable to high expression from a few dozen chloroplast genes. RNA-Seq data were used to guide gene annotation, to demonstrate polycistronic gene expression, and to quantify splicing of psaA and psbA introns. In contrast to a conclusion from a recent study, we found that chloroplast transcripts are not edited. Unexpectedly, cytosine-rich polynucleotide tails were observed at the 3’-end of all mitochondrial transcripts. A comparative genomics analysis of eight laboratory strains and 11 wild isolates of C. reinhardtii identified 2658 variants in the organellargenomes, which is 1/10th as much genetic diversity as is found in the nucleus.« less

  20. NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus.

    PubMed

    Pérez-Ruiz, Juan Manuel; Naranjo, Belén; Ojeda, Valle; Guinea, Manuel; Cejudo, Francisco Javier

    2017-11-07

    Thiol-dependent redox regulation allows the rapid adaptation of chloroplast function to unpredictable changes in light intensity. Traditionally, it has been considered that chloroplast redox regulation relies on photosynthetically reduced ferredoxin (Fd), thioredoxins (Trxs), and an Fd-dependent Trx reductase (FTR), the Fd-FTR-Trxs system, which links redox regulation to light. More recently, a plastid-localized NADPH-dependent Trx reductase (NTR) with a joint Trx domain, termed NTRC, was identified. NTRC efficiently reduces 2-Cys peroxiredoxins (Prxs), thus having antioxidant function, but also participates in redox regulation of metabolic pathways previously established to be regulated by Trxs. Thus, the NTRC, 2-Cys Prxs, and Fd-FTR-Trxs redox systems may act concertedly, but the nature of the relationship between them is unknown. Here we show that decreased levels of 2-Cys Prxs suppress the phenotype of the Arabidopsis thaliana ntrc KO mutant. The excess of oxidized 2-Cys Prxs in NTRC-deficient plants drains reducing power from chloroplast Trxs, which results in low efficiency of light energy utilization and impaired redox regulation of Calvin-Benson cycle enzymes. Moreover, the dramatic phenotype of the ntrc-trxf1f2 triple mutant, lacking NTRC and f -type Trxs, was also suppressed by decreased 2-Cys Prxs contents, as the ntrc-trxf1f2-Δ2cp mutant partially recovered the efficiency of light energy utilization and exhibited WT rate of CO 2 fixation and growth phenotype. The suppressor phenotype was not caused by compensatory effects of additional chloroplast antioxidant systems. It is proposed that the Fd-FTR-Trx and NTRC redox systems are linked by the redox balance of 2-Cys Prxs, which is crucial for chloroplast function. Copyright © 2017 the Author(s). Published by PNAS.

  1. Transcriptional up-regulation of genes involved in photosynthesis of the Zn/Cd hyperaccumulator Sedum alfredii in response to zinc and cadmium.

    PubMed

    Tang, Lu; Yao, Aijun; Ming Yuan; Tang, Yetao; Liu, Jian; Liu, Xi; Qiu, Rongliang

    2016-12-01

    Zinc (Zn) and cadmium (Cd) are two closely related chemical elements with very different biological roles in photosynthesis. Zinc plays unique biochemical functions in photosynthesis. Previous studies suggested that in some Zn/Cd hyperaccumulators, many steps in photosynthesis may be Cd tolerant or even Cd stimulated. Using RNA-seq data, we found not only that Cd and Zn both up-regulated the CA1 gene, which encodes a β class carbonic anhydrase (CA) in chloroplasts, but that a large number of other Zn up-regulated genes in the photosynthetic pathway were also significantly up-regulated by Cd in leaves of the Zn/Cd hyperaccumulator Sedum alfredii. These genes also include chloroplast genes involved in transcription and translation (rps18 and rps14), electron transport and ATP synthesis (atpF and ccsA), Photosystem II (PSBI, PSBM, PSBK, PSBZ/YCF9, PSBO-1, PSBQ, LHCB1.1, LHCB1.4, LHCB2.1, LHCB4.3 and LHCB6) and Photosystem I (PSAE-1, PSAF, PSAH2, LHCA1 and LHCA4). Cadmium and Zn also up-regulated the VAR1 gene, which encodes the ATP-dependent zinc metalloprotease FTSH 5 (a member of the FtsH family), and the DAG gene, which influences chloroplast differentiation and plastid development, and the CP29 gene, which supports RNA processing in chloroplasts and has a potential role in signal-dependent co-regulation of chloroplast genes. Further morphological parameters (dry biomass, cross-sectional thickness, chloroplast size, chlorophyll content) and chlorophyll fluorescence parameters confirmed that leaf photosynthesis of S. alfredii responded to Cd much as it did to Zn, which will contribute to our understanding of the positive effects of Zn and Cd on growth of this plant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Accumulation and ultrastructural distribution of copper in Elsholtzia splendens *

    PubMed Central

    Peng, Hong-yun; Yang, Xiao-e; Tian, Sheng-ke

    2005-01-01

    Copper accumulation and intracellular distribution in Elsholtzia splendens, a native Chinese Cu-tolerant and accumulating plant species, was investigated by transmission electron microscope (TEM) and gradient centrifugation techniques. Copper concentrations in roots, stems and leaves of E. splendens increased with increasing Cu levels in solution. After exposure to 500 μmol/L Cu for 8 d, about 1000 mg/kg Cu were accumulated in the stem and 250 mg/kg Cu in the leaf of E. splendens. At 50 µmol/L Cu, no significant toxicity was observed in the chloroplast and mitochondrion within its leaf cells, but separation appeared at the cytoplasm and the cell wall within the root cells. At >250 µmol/L Cu, both root and leaf organelles in E. splendens were damaged heavily by excessive Cu in vivo. Copper subcellular localization in the plant leaf after 8 days’ exposure to 500 µmol/L Cu using gradient centrifugation techniques was found to be decreased in the order: chloroplast>cell wall>soluble fraction>other organelles. The plant root cell wall was found to be the site of highest Cu localization. Increase of Cu exposure time from 8 d to 16 d, increased slightly Cu concentration in cell wall fraction in roots and leaves, while that in the chloroplast fraction decreased in leaves of the plants grown in both 0.25 μmol/L and 500 μmol/L Cu. TEM confirmed that much more Cu localized in cell walls of E. splendens roots and leaves, but also more Cu localized in E. splendens’ chloroplast when the plant is exposed to Cu levels>250 μmol/L, as compared to those in the plant grown in 0.25 μmol/L Cu. Copper treatment at levels>250 μmol/L caused pronounced damage in the leaf chloroplast and root organelles. Copper localization in cell walls and chloroplasts could mainly account for the high detoxification of Cu in E. splendens. PMID:15822140

  3. [Light-dependent changes in the enzyme activity of the ascorbate-glutathione cycle and ascorbate oxidase in the leaves of pea].

    PubMed

    Mittova, V O; Igamberdiev, A U

    2000-01-01

    Light-determined activation of ferments of ascorbate-glutation cycle, ascorbate-oxidase in chloroplasts and cytosol is demonstrated as well as ascorbate-peroxidase, monodehydroascorbate-reductase, glutation-reductase and ascorbate-oxydase in mitochondria. On the other hands activity of mitochondrial dehydroascorbate-reductase increased on reduction of light most likely due to function of electron transport from glutation to dehydroascorbate in mitochondria. Glutation metabolism is proved to be endogenic catalytic process where the amount reconstructed glutation changes slowly with a delay and gradually follow light changes. Light dependable changes of glutation content in chloroplasts ensure resistance of ferment system again hydrogen peroxide and superoxide radicals that generate intensively at light.

  4. The water-water cycle as alternative photon and electron sinks.

    PubMed

    Asada, K

    2000-10-29

    The water-water cycle in chloroplasts is the photoreduction of dioxygen to water in photosystem I (PS I) by the electrons generated in photosystem II (PS II) from water. In the water-water cycle, the rate of photoreduction of dioxygen in PS I is several orders of magnitude lower than those of the disproportionation of superoxide catalysed by superoxide dismutase, the reduction of hydrogen peroxide to water catalysed by ascorbate peroxidase, and the reduction of the resulting oxidized forms of ascorbate by reduced ferredoxin or catalysed by either dehydroascorbate reductase or monodehydroascorbate reductase. The water-water cycle therefore effectively shortens the lifetimes of photoproduced superoxide and hydrogen peroxide to suppress the production of hydroxyl radicals, their interactions with the target molecules in chloroplasts, and resulting photoinhibition. When leaves are exposed to photon intensities of sunlight in excess of that required to support the fixation of CO2, the intersystem electron carriers are over-reduced, resulting in photoinhibition. Under such conditions, the water-water cycle not only scavenges active oxygens, but also safely dissipates excess photon energy and electrons, in addition to downregulation of PS II and photorespiration. The dual functions of the water-water cycle for protection from photoinhibition under photon excess stress are discussed, along with its functional evolution.

  5. Nuclear, chloroplast, and mitochondrial data of a US cannabis DNA database.

    PubMed

    Houston, Rachel; Birck, Matthew; LaRue, Bobby; Hughes-Stamm, Sheree; Gangitano, David

    2018-05-01

    As Cannabis sativa (marijuana) is a controlled substance in many parts of the world, the ability to track biogeographical origin of cannabis could provide law enforcement with investigative leads regarding its trade and distribution. Population substructure and inbreeding may cause cannabis plants to become more genetically related. This genetic relatedness can be helpful for intelligence purposes. Analysis of autosomal, chloroplast, and mitochondrial DNA allows for not only prediction of biogeographical origin of a plant but also discrimination between individual plants. A previously validated, 13-autosomal STR multiplex was used to genotype 510 samples. Samples were analyzed from four different sites: 21 seizures at the US-Mexico border, Northeastern Brazil, hemp seeds purchased in the US, and the Araucania area of Chile. In addition, a previously reported multi-loci system was modified and optimized to genotype five chloroplast and two mitochondrial markers. For this purpose, two methods were designed: a homopolymeric STR pentaplex and a SNP triplex with one chloroplast (Cscp001) marker shared by both methods for quality control. For successful mitochondrial and chloroplast typing, a novel real-time PCR quantitation method was developed and validated to accurately estimate the quantity of the chloroplast DNA (cpDNA) using a synthetic DNA standard. Moreover, a sequenced allelic ladder was also designed for accurate genotyping of the homopolymeric STR pentaplex. For autosomal typing, 356 unique profiles were generated from the 425 samples that yielded full STR profiles and 25 identical genotypes within seizures were observed. Phylogenetic analysis and case-to-case pairwise comparisons of 21 seizures at the US-Mexico border, using the Fixation Index (F ST ) as genetic distance, revealed the genetic association of nine seizures that formed a reference population. For mitochondrial and chloroplast typing, subsampling was performed, and 134 samples were genotyped. Complete haplotypes (STRs and SNPs) were observed for 127 samples. As expected, extensive haplotype sharing was observed; five distinguishable haplotypes were detected. In the reference population, the same haplotype was observed 39 times and two unique haplotypes were also detected. Haplotype sharing was observed between the US border seizures, Brazil, and Chile, while the hemp samples generated a distinct haplotype. Phylogenetic analysis of the four populations was performed, and results revealed that both autosomal and lineage markers could discern population substructure.

  6. Chloroplast Dynamics and Photosynthetic Efficiency: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Maureen

    This project investigated the mechanism by which chloroplasts position themselves to maximize solar energy utilization, to enhance gas exchange, to minimize environmental stress, and to promote efficient exchange of metabolites with other compartments within the plant cell. Chloroplasts move within leaf cells to optimize light levels, moving toward levels of light useful for photosynthesis while moving away from excess light. Plastids sometimes extend their reach by sending out projections (stromules) that can connect anchor chloroplasts in position within the cell or provide close contacts with plasma membrane, mitochondria, peroxisomes, endoplasmic reticulum, and the nucleus. The intracellular location of chloroplasts inmore » relation to other organelles with which they share biosynthetic pathways, such as peroxisomes and mitochondria in photorespiration, affects metabolite flow. This work contributed to the knowledge of the mechanisms of organelle movement and anchoring in specific locations in plant cells and how proteins traffic within the cell. We identified two domains on 12 of the 13 Arabidopsis myosins that were similar to the vacuole-binding (V) domain characterized in yeast and to the DIL domain characterized in yeast and mouse as required for secretory vesicle or melanosome movement, respectively. Because all of the Arabidopsis regions with homology to the V domain contain the amino acid sequence PAL, we refer to this region as the Arabidopsis PAL domain. We have used the yeast Myo2p tail structural information to model the 12 myosin XI tail domains containing the homologous PAL and DIL domains. Eight YFP::DIL domain fusions labeled peroxisomes; none labeled mitochondria or chloroplasts. Six myosin XI Vacuole domains labeled mitochondria and seven labeled Golgi bodies. The Arabidopsis myosin XI-F PAL domain and the homologous myosin XI-F PAL domain from N. benthamiana labels chloroplasts and stromules in N. benthamiana leaves. Using an Arabidopsis line containing hotoconvertible GFP, we observed transfer of protein from one plastid to another and within a stromule from single plastids. We provided time-lapse movies demonstrating movement of both the photoconvertible GFP and standard GFP between plastids. We previously demonstrated the lack of a plastid network within plant cells. We provided protocols explaining how to use fluorescent protein technology to track plastids and stromules within plant cells. We demonstrated that standard GFP unexpectedly could be photoconverted to a red form under certain conditions, allowing the use of GFP lines for studies that require photoconversion.« less

  7. Localization and Characterization of Photosystem II in Grana and Stroma Lamellae 1

    PubMed Central

    Armond, Paul A.; Arntzen, Charles J.

    1977-01-01

    Attempts have been made to identify intramembranous particles observed in freeze-fracture electron microscopy as specific functional components of the membrane. The intramembranous particles of the exoplasmic fracture (EF) face of freeze-fractured pea (Pisum sativum) chloroplast lamellae are nonuniformly distributed along the membrane. Approximately 20% of the particles are in unpaired membrane regions whereas 80% are localized in regions of stacked lamellae (grana partitions). The EF particles within the grana regions of the chloroplast membrane are of a larger average size than those in stroma lamellae. Photosystem II activity of isolated stroma lamellae is about 20 to 25% of that of grana-enriched membrane fragments when measured at high light intensities. The photosystem II activity of stroma lamellae requires higher light intensities for attainment of maximal rates than does that of grana membranes. Lactoperoxidase-catalyzed iodination of stacked chloroplast lamellae was used to demonstrate that 75 to 80% of all photosystem II centers are localized in grana partition regions. The data presented support the concept that the intramembranous particles of the EF face visualized on freeze-fractured chloroplast lamellae represent a central photosystem II reaction center complex plus associated light-harvesting chlorophyll protein. The fact that the EF particles of stroma lamellae are smaller than those of grana regions can be directly correlated to the presence of photosystem II units with small antennae chlorophyll assemblies in stroma lamellae. Images PMID:16659861

  8. Developmental and Subcellular Organization of Single-Cell C₄ Photosynthesis in Bienertia sinuspersici Determined by Large-Scale Proteomics and cDNA Assembly from 454 DNA Sequencing.

    PubMed

    Offermann, Sascha; Friso, Giulia; Doroshenk, Kelly A; Sun, Qi; Sharpe, Richard M; Okita, Thomas W; Wimmer, Diana; Edwards, Gerald E; van Wijk, Klaas J

    2015-05-01

    Kranz C4 species strictly depend on separation of primary and secondary carbon fixation reactions in different cell types. In contrast, the single-cell C4 (SCC4) species Bienertia sinuspersici utilizes intracellular compartmentation including two physiologically and biochemically different chloroplast types; however, information on identity, localization, and induction of proteins required for this SCC4 system is currently very limited. In this study, we determined the distribution of photosynthesis-related proteins and the induction of the C4 system during development by label-free proteomics of subcellular fractions and leaves of different developmental stages. This was enabled by inferring a protein sequence database from 454 sequencing of Bienertia cDNAs. Large-scale proteome rearrangements were observed as C4 photosynthesis developed during leaf maturation. The proteomes of the two chloroplasts are different with differential accumulation of linear and cyclic electron transport components, primary and secondary carbon fixation reactions, and a triose-phosphate shuttle that is shared between the two chloroplast types. This differential protein distribution pattern suggests the presence of a mRNA or protein-sorting mechanism for nuclear-encoded, chloroplast-targeted proteins in SCC4 species. The combined information was used to provide a comprehensive model for NAD-ME type carbon fixation in SCC4 species.

  9. Nonflowering Plants Possess a Unique Folate-Dependent Phenylalanine Hydroxylase That Is Localized in Chloroplasts[W

    PubMed Central

    Pribat, Anne; Noiriel, Alexandre; Morse, Alison M.; Davis, John M.; Fouquet, Romain; Loizeau, Karen; Ravanel, Stéphane; Frank, Wolfgang; Haas, Richard; Reski, Ralf; Bedair, Mohamed; Sumner, Lloyd W.; Hanson, Andrew D.

    2010-01-01

    Tetrahydropterin-dependent aromatic amino acid hydroxylases (AAHs) are known from animals and microbes but not plants. A survey of genomes and ESTs revealed AAH-like sequences in gymnosperms, mosses, and algae. Analysis of full-length AAH cDNAs from Pinus taeda, Physcomitrella patens, and Chlamydomonas reinhardtii indicated that the encoded proteins form a distinct clade within the AAH family. These proteins were shown to have Phe hydroxylase activity by functional complementation of an Escherichia coli Tyr auxotroph and by enzyme assays. The P. taeda and P. patens AAHs were specific for Phe, required iron, showed Michaelian kinetics, and were active as monomers. Uniquely, they preferred 10-formyltetrahydrofolate to any physiological tetrahydropterin as cofactor and, consistent with preferring a folate cofactor, retained activity in complementation tests with tetrahydropterin-depleted E. coli host strains. Targeting assays in Arabidopsis thaliana mesophyll protoplasts using green fluorescent protein fusions, and import assays with purified Pisum sativum chloroplasts, indicated chloroplastic localization. Targeting assays further indicated that pterin-4a-carbinolamine dehydratase, which regenerates the AAH cofactor, is also chloroplastic. Ablating the single AAH gene in P. patens caused accumulation of Phe and caffeic acid esters. These data show that nonflowering plants have functional plastidial AAHs, establish an unprecedented electron donor role for a folate, and uncover a novel link between folate and aromatic metabolism. PMID:20959559

  10. Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae

    PubMed Central

    Huang, Yuan; Wang, Jun; Yang, Yongping; Fan, Chuanzhu; Chen, Jiahui

    2017-01-01

    Chloroplast genomes of plants are highly conserved in both gene order and gene content. Analysis of the whole chloroplast genome is known to provide much more informative DNA sites and thus generates high resolution for plant phylogenies. Here, we report the complete chloroplast genomes of three Salix species in family Salicaceae. Phylogeny of Salicaceae inferred from complete chloroplast genomes is generally consistent with previous studies but resolved with higher statistical support. Incongruences of phylogeny, however, are observed in genus Populus, which most likely results from homoplasy. By comparing three Salix chloroplast genomes with the published chloroplast genomes of other Salicaceae species, we demonstrate that the synteny and length of chloroplast genomes in Salicaceae are highly conserved but experienced dynamic evolution among species. We identify seven positively selected chloroplast genes in Salicaceae, which might be related to the adaptive evolution of Salicaceae species. Comparative chloroplast genome analysis within the family also indicates that some chloroplast genes are lost or became pseudogenes, infer that the chloroplast genes horizontally transferred to the nucleus genome. Based on the complete nucleus genome sequences from two Salicaceae species, we remarkably identify that the entire chloroplast genome is indeed transferred and integrated to the nucleus genome in the individual of the reference genome of P. trichocarpa at least once. This observation, along with presence of the large nuclear plastid DNA (NUPTs) and NUPTs-containing multiple chloroplast genes in their original order in the chloroplast genome, favors the DNA-mediated hypothesis of organelle to nucleus DNA transfer. Overall, the phylogenomic analysis using chloroplast complete genomes clearly elucidates the phylogeny of Salicaceae. The identification of positively selected chloroplast genes and dynamic chloroplast-to-nucleus gene transfers in Salicaceae provide resources to better understand the successful adaptation of Salicaceae species. PMID:28676809

  11. Evidence for a Role of Chloroplastic m-Type Thioredoxins in the Biogenesis of Photosystem II in Arabidopsis1[C][W][OPEN

    PubMed Central

    Wang, Peng; Liu, Jun; Liu, Bing; Feng, Dongru; Da, Qingen; Wang, Peng; Shu, Shengying; Su, Jianbin; Zhang, Yang; Wang, Jinfa; Wang, Hong-Bin

    2013-01-01

    Chloroplastic m-type thioredoxins (TRX m) are essential redox regulators in the light regulation of photosynthetic metabolism. However, recent genetic studies have revealed novel functions for TRX m in meristem development, chloroplast morphology, cyclic electron flow, and tetrapyrrole synthesis. The focus of this study is on the putative role of TRX m1, TRX m2, and TRX m4 in the biogenesis of the photosynthetic apparatus in Arabidopsis (Arabidopsis thaliana). To that end, we investigated the impact of single, double, and triple TRX m deficiency on chloroplast development and the accumulation of thylakoid protein complexes. Intriguingly, only inactivation of three TRX m genes led to pale-green leaves and specifically reduced stability of the photosystem II (PSII) complex, implying functional redundancy between three TRX m isoforms. In addition, plants silenced for three TRX m genes displayed elevated levels of reactive oxygen species, which in turn interrupted the transcription of photosynthesis-related nuclear genes but not the expression of chloroplast-encoded PSII core proteins. To dissect the function of TRX m in PSII biogenesis, we showed that TRX m1, TRX m2, and TRX m4 interact physically with minor PSII assembly intermediates as well as with PSII core subunits D1, D2, and CP47. Furthermore, silencing three TRX m genes disrupted the redox status of intermolecular disulfide bonds in PSII core proteins, most notably resulting in elevated accumulation of oxidized CP47 oligomers. Taken together, our results suggest an important role for TRX m1, TRX m2, and TRX m4 proteins in the biogenesis of PSII, and they appear to assist the assembly of CP47 into PSII. PMID:24151299

  12. Differential changes in photosynthetic capacity, 77 K chlorophyll fluorescence and chloroplast ultrastructure between Zn-efficient and Zn-inefficient rice genotypes (Oryza sativa) under low zinc stress.

    PubMed

    Chen, Wenrong; Yang, Xiaoe; He, Zhenli; Feng, Ying; Hu, Fenghong

    2008-01-01

    The relationship of zinc (Zn) efficiency in rice to differential tolerance of photosynthetic capacity and chloroplast function to low Zn stress was studied using Zn-efficient (IR8192) and Zn-inefficient (Erjiufeng) rice genotypes (Oryza sativa L.). Zinc deficiency caused extensive declines in leaf chlorophyll (Chl) content, ratios of chl a:b, Pn, Fv/Fm and Fv/Fo, indicating that the intrinsic quantum efficiency of the photosystem II (PSII) units was damaged. A greater decline was observed in the inefficient genotype (Erjiufeng) than the efficient genotype (IR8192). The 77 K chl fluorescence emission spectrum revealed that Zn deficiency blocked energy spillover from PSII to PSI and more excitation energy was distributed to PSII in IR8192 than Erjiufeng. The spectrum of Zn-deficient Erjiufeng was completely disordered, implying that the photosynthetic centers were seriously damaged. Electron microscopy showed that Zn deficiency caused a severe damage to the fine structure of chloroplasts, but IR8192 had a better preserved chloroplast ultrastructure as compared with Erjiufeng. These differences may result from the higher levels of the antioxidant enzyme activities and lower oxidant stress level in IR8192. These results indicate that Zn deficiency decreases leaf photosynthetic capacity primarily by reducing the number of PSII units per unit leaf area, and also reducing the photochemical capacity of the remaining PSII units. Therefore, the maintenance of more efficient photochemical capacity under low Zn stress is a key factor for the high Zn efficiency in rice, which may result from less antioxidant damage caused by low Zn to the chloroplast ultrastructure.

  13. The Chloroplast Division Protein ARC6 Acts to Inhibit Disassembly of GDP-bound FtsZ2.

    PubMed

    Sung, Min Woo; Shaik, Rahamthulla; TerBush, Allan D; Osteryoung, Katherine W; Vitha, Stanislav; Holzenburg, Andreas

    2018-05-16

    Chloroplasts host photosynthesis and fulfill other metabolic functions that are essential to plant life. They have to divide by binary fission to maintain their numbers throughout cycles of cell division. Chloroplast division is achieved by a complex ring-shaped division machinery located on both the inner (stromal) and the outer (cytosolic) side of the chloroplast envelope. The inner division ring (termed the Z ring) is formed by the assembly of tubulin-like FtsZ1 and FtsZ2 proteins. ARC6 is a key chloroplast division protein that interacts with the Z ring. ARC6 spans the inner envelope membrane, is known to stabilize or maintain the Z ring, and anchors the Z ring to the inner membrane through interaction with FtsZ2. The underlying mechanism of Z-ring stabilization is not well understood. Here, biochemical and structural characterization of ARC6 was conducted using light scattering, sedimentation, and light and transmission electron microscopy. The recombinant protein was purified as a dimer. The results indicated that a truncated form of ARC6 (tARC6), representing the stromal portion of ARC6, affects FtsZ2 assembly without forming higher-order structures, and exerts its effect via FtsZ2 dynamics. tARC6 prevented GDP-induced FtsZ2 disassembly and caused a significant net increase in FtsZ2 assembly when GDP was present. Single particle analysis and 3D reconstruction were performed to elucidate the structural basis of ARC6 activity. Together, the data reveal that a dimeric form of tARC6 binds to FtsZ2 filaments and does not increase FtsZ polymerization rates but rather inhibits GDP-associated FtsZ2 disassembly. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Role of Temperature Stress on Chloroplast Biogenesis and Protein Import in Pea1[OA

    PubMed Central

    Dutta, Siddhartha; Mohanty, Sasmita; Tripathy, Baishnab C.

    2009-01-01

    Modulation of photosynthesis and chloroplast biogenesis, by low and high temperatures, was studied in 12-d-old pea (Pisum sativum) plants grown at 25°C and subsequently exposed to 7°C or 40°C up to 48 h. The decline in variable chlorophyll a fluorescence/maximum chlorophyll a fluorescence and estimated electron transport rate in temperature-stressed plants was substantially restored when they were transferred to room temperature. The ATP-driven import of precursor of small subunit of Rubisco (pRSS) into plastids was down-regulated by 67% and 49% in heat-stressed and chill-stressed plants, respectively. Reduction in binding of the pRSS to the chloroplast envelope membranes in heat-stressed plants could be due to the down-regulation of Toc159 gene/protein expression. In addition to impaired binding, reduced protein import into chloroplast in heat-stressed plants was likely due to decreased gene/protein expression of certain components of the TOC complex (Toc75), the TIC complex (Tic20, Tic32, Tic55, and Tic62), stromal Hsp93, and stromal processing peptidase. In chill-stressed plants, the gene/protein expression of most of the components of protein import apparatus other than Tic110 and Tic40 were not affected, suggesting the central role of Tic110 and Tic40 in inhibition of protein import at low temperature. Heating of intact chloroplasts at 35°C for 10 min inhibited protein import, implying a low thermal stability of the protein import apparatus. Results demonstrate that in addition to decreased gene and protein expression, down-regulation of photosynthesis in temperature-stressed plants is caused by reduced posttranslational import of plastidic proteins required for the replacement of impaired proteins coded by nuclear genome. PMID:19403728

  15. Superoxide and Singlet Oxygen Produced within the Thylakoid Membranes Both Cause Photosystem I Photoinhibition.

    PubMed

    Takagi, Daisuke; Takumi, Shigeo; Hashiguchi, Masaki; Sejima, Takehiro; Miyake, Chikahiro

    2016-07-01

    Photosystem I (PSI) photoinhibition suppresses plant photosynthesis and growth. However, the mechanism underlying PSI photoinhibition has not been fully clarified. In this study, in order to investigate the mechanism of PSI photoinhibition in higher plants, we applied repetitive short-pulse (rSP) illumination, which causes PSI-specific photoinhibition in chloroplasts isolated from spinach leaves. We found that rSP treatment caused PSI photoinhibition, but not PSII photoinhibition in isolated chloroplasts in the presence of O2 However, chloroplastic superoxide dismutase and ascorbate peroxidase activities failed to protect PSI from its photoinhibition. Importantly, PSI photoinhibition was largely alleviated in the presence of methyl viologen, which stimulates the production of reactive oxygen species (ROS) at the stromal region by accepting electrons from PSI, even under the conditions where CuZn-superoxide dismutase and ascorbate peroxidase activities were inactivated by KCN. These results suggest that the ROS production site, but not the ROS production rate, is critical for PSI photoinhibition. Furthermore, we found that not only superoxide (O2 (-)) but also singlet oxygen ((1)O2) is involved in PSI photoinhibition induced by rSP treatment. From these results, we suggest that PSI photoinhibition is caused by both O2 (-) and (1)O2 produced within the thylakoid membranes when electron carriers in PSI become highly reduced. Here, we show, to our knowledge, new insight into the PSI photoinhibition in higher plants. © 2016 American Society of Plant Biologists. All Rights Reserved.

  16. Light-dependent quenching of chlorophyll fluorescence in pea chloroplasts induced by adenosine 5'-triphosphate.

    PubMed

    Horton, P; Black, M T

    1981-03-12

    Addition of ATP to chloroplasts causes a reversible 25-30% decrease in chlorophyll fluorescence. This quenching is light-dependent, uncoupler insensitive but inhibited by DCMU and electron acceptors and has a half-time of 3 minutes. Electron donors to Photosystem I can not overcome the inhibitory effect of DCMU, suggesting that light activation depends on the reduced state of plastoquinone. Fluorescence emission spectra recorded at -196 degrees C indicate that ATP treatment increases the amount of excitation energy transferred to Photosystem I. Examination of fluorescence induction curves indicate that ATP treatment decreases both the initial (F0) and variable (Fv) fluorescence such that the ratio of Fv to the maximum (Fm) yield is unchanged. The initial sigmoidal phase of induction is slowed down by ATP treatment and is quenched 3-fold more than the exponential slow phase, the rate of which is unchanged. A plot of Fv against area above the induction curve was identical plus or minus ATP. Thus ATP treatment can alter quantal distribution between Photosystems II and I without altering Photosystem II-Photosystem II interaction. The effect of ATP strongly resembles in its properties the phosphorylation of the light-harvesting complex by a light activated, ATP-dependent protein kinase found in chloroplast membranes and could be the basis of physiological mechanisms which contribute to slow fluorescence quenching in vivo and regulate excitation energy distribution between Photosystem I and II. It is suggested that the sensor for this regulation is the redox state of plastoquinone.

  17. Phytotoxic Mechanism of Nanoparticles: Destruction of Chloroplasts and Vascular Bundles and Alteration of Nutrient Absorption

    NASA Astrophysics Data System (ADS)

    Nhan, Le Van; Ma, Chuanxin; Rui, Yukui; Liu, Shutong; Li, Xuguang; Xing, Baoshan; Liu, Liming

    2015-06-01

    This study focused on determining the phytotoxic mechanism of CeO2 nanoparticles (NPs): destroying chloroplasts and vascular bundles and altering absorption of nutrients on conventional and Bt-transgenic cottons. Experiments were designed with three concentrations of CeO2 NPs including: 0, 100 and 500 mg·L-1, and each treatment was three replications. Results indicate that absorbed CeO2 nanoparticles significantly reduced the Zn, Mg, Fe, and P levels in xylem sap compared with the control group and decreased indole-3-acetic acid (IAA) and abscisic acid (ABA) concentrations in the roots of conventional cotton. Transmission electron microscopy (TEM) images revealed that CeO2 NPs were absorbed into the roots and subsequently transported to the stems and leaves of both conventional and Bt-transgenic cotton plants via xylem sap. In addition, the majority of aggregated CeO2 NPs were attached to the external surface of chloroplasts, which were swollen and ruptured, especially in Bt-transgenic cotton. The vascular bundles were destroyed by CeO2 nanoparticles, and more damage was observed in transgenic cotton than conventional cotton.

  18. Fluid Mosaic Membranes and the Light Reactions of Photosynthesis.

    ERIC Educational Resources Information Center

    Hannay, Jack

    1985-01-01

    Discusses: (1) the fluid mosaic membrane structure and light reactions of photosynthesis as exemplified by the Hill and Bendall "Z-scheme"; (2) the arrangement of light-harvesting pigments, electron transport components, and ATP synthesis on chloroplast membranes; and (3) how these topics are treated in A-level textbooks. (JN)

  19. Ferns, mosses and liverworts as model systems for light-mediated chloroplast movements.

    PubMed

    Suetsugu, Noriyuki; Higa, Takeshi; Wada, Masamitsu

    2017-11-01

    Light-induced chloroplast movement is found in most plant species, including algae and land plants. In land plants with multiple small chloroplasts, under weak light conditions, the chloroplasts move towards the light and accumulate on the periclinal cell walls to efficiently perceive light for photosynthesis (the accumulation response). Under strong light conditions, chloroplasts escape from light to avoid photodamage (the avoidance response). In most plant species, blue light induces chloroplast movement, and phototropin receptor kinases are the blue light receptors. Molecular mechanisms for photoreceptors, signal transduction and chloroplast motility systems are being studied using the model plant Arabidopsis thaliana. However, to further understand the molecular mechanisms and evolutionary history of chloroplast movement in green plants, analyses using other plant systems are required. Here, we review recent works on chloroplast movement in green algae, liverwort, mosses and ferns that provide new insights on chloroplast movement. © 2016 John Wiley & Sons Ltd.

  20. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    PubMed

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.

  1. Artemisinin Inhibits Chloroplast Electron Transport Activity: Mode of Action

    PubMed Central

    Bharati, Adyasha; Kar, Monaranjan; Sabat, Surendra Chandra

    2012-01-01

    Artemisinin, a secondary metabolite produced in Artemisia plant species, besides having antimalarial properties is also phytotoxic. Although, the phytotoxic activity of the compound has been long recognized, no information is available on the mechanism of action of the compound on photosynthetic activity of the plant. In this report, we have evaluated the effect of artemisinin on photoelectron transport activity of chloroplast thylakoid membrane. The inhibitory effect of the compound, under in vitro condition, was pronounced in loosely and fully coupled thylakoids; being strong in the former. The extent of inhibition was drastically reduced in the presence of uncouplers like ammonium chloride or gramicidin; a characteristic feature described for energy transfer inhibitors. The compound, on the other hand, when applied to plants (in vivo), behaved as a potent inhibitor of photosynthetic electron transport. The major site of its action was identified to be the QB; the secondary quinone moiety of photosystemII complex. Analysis of photoreduction kinetics of para-benzoquinone and duroquinone suggest that the inhibition leads to formation of low pool of plastoquinol, which becomes limiting for electron flow through photosystemI. Further it was ascertained that the in vivo inhibitory effect appeared as a consequence of the formation of an unidentified artemisinin-metabolite rather than by the interaction of the compound per se. The putative metabolite of artemisinin is highly reactive in instituting the inhibition of photosynthetic electron flow eventually reducing the plant growth. PMID:22719995

  2. Expression of dengue-3 premembrane and envelope polyprotein in lettuce chloroplasts

    PubMed Central

    Kanagaraj, Anderson Paul; Verma, Dheeraj

    2012-01-01

    Dengue is an acute febrile viral disease with >100 million infections occurring each year and more than half of the world population is at risk. Global resurgence of dengue in many urban centers of the tropics is a major concern. Therefore, development of a successful vaccine is urgently needed that is economical and provide long-lasting protection from dengue virus infections. In this manuscript, we report expression of dengue-3 serotype polyprotein (prM/E) consisting of part of capsid, complete premembrane (prM) and truncated envelope (E) protein in an edible crop lettuce. The dengue sequence was controlled by endogenous Lactuca sativa psbA regulatory elements. PCR and Southern blot analysis confirmed transgene integration into the lettuce chloroplast genome via homologous recombination at the trnI/trnA intergenic spacer region. Western blot analysis showed expression of polyprotein prM/E in different forms as monomers (~65 kDa) or possibly heterodimers (~130 kDa) or multimers. Multimers were solubilized into monomers using guanidine hydrochloride. Transplastomic lettuce plants expressing dengue prM/E vaccine antigens grew normally and transgenes were inherited in the T1 progeny without any segregation. Transmission electron microscopy showed the presence of virus-like particles of ~20 nm diameter in chloroplast extracts of transplastomic lettuce expressing prM/E proteins, but not in untransformed plants. The prM/E antigens expressed in lettuce chloroplasts should offer a potential source for investigating an oral Dengue vaccine. PMID:21431782

  3. The KAC family of kinesin-like proteins is essential for the association of chloroplasts with the plasma membrane in land plants.

    PubMed

    Suetsugu, Noriyuki; Sato, Yoshikatsu; Tsuboi, Hidenori; Kasahara, Masahiro; Imaizumi, Takato; Kagawa, Takatoshi; Hiwatashi, Yuji; Hasebe, Mitsuyasu; Wada, Masamitsu

    2012-11-01

    Chloroplasts require association with the plasma membrane for movement in response to light and for appropriate positioning within the cell to capture photosynthetic light efficiently. In Arabidopsis, CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1), KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT 1 (KAC1) and KAC2 are required for both the proper movement of chloroplasts and the association of chloroplasts with the plasma membrane, through the reorganization of short actin filaments located on the periphery of the chloroplasts. Here, we show that KAC and CHUP1 orthologs (AcKAC1, AcCHUP1A and AcCHUP1B, and PpKAC1 and PpKAC2) play important roles in chloroplast positioning in the fern Adiantum capillus-veneris and the moss Physcomitrella patens. The knockdown of AcKAC1 and two AcCHUP1 genes induced the aggregation of chloroplasts around the nucleus. Analyses of A. capillus-veneris mutants containing perinuclear-aggregated chloroplasts confirmed that AcKAC1 is required for chloroplast-plasma membrane association. In addition, P. patens lines in which two KAC genes had been knocked out showed an aggregated chloroplast phenotype similar to that of the fern kac1 mutants. These results indicate that chloroplast positioning and movement are mediated through the activities of KAC and CHUP1 proteins, which are conserved in land plants.

  4. The chloroplast ATP synthase features the characteristic redox regulation machinery.

    PubMed

    Hisabori, Toru; Sunamura, Ei-Ichiro; Kim, Yusung; Konno, Hiroki

    2013-11-20

    Regulation of the activity of the chloroplast ATP synthase is largely accomplished by the chloroplast thioredoxin system, the main redox regulation system in chloroplasts, which is directly coupled to the photosynthetic reaction. We review the current understanding of the redox regulation system of the chloroplast ATP synthase. The thioredoxin-targeted portion of the ATP synthase consists of two cysteines located on the central axis subunit γ. The redox state of these two cysteines is under the influence of chloroplast thioredoxin, which directly controls rotation during catalysis by inducing a conformational change in this subunit. The molecular mechanism of redox regulation of the chloroplast ATP synthase has recently been determined. Regulation of the activity of the chloroplast ATP synthase is critical in driving efficiency into the ATP synthesis reaction in chloroplasts. The molecular architecture of the chloroplast ATP synthase, which confers redox regulatory properties requires further investigation, in light of the molecular structure of the enzyme complex as well as the physiological significance of the regulation system.

  5. The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes.

    PubMed

    Rolland, Norbert; Curien, Gilles; Finazzi, Giovanni; Kuntz, Marcel; Maréchal, Eric; Matringe, Michel; Ravanel, Stéphane; Seigneurin-Berny, Daphné

    2012-01-01

    Plastids are semiautonomous organelles derived from cyanobacterial ancestors. Following endosymbiosis, plastids have evolved to optimize their functions, thereby limiting metabolic redundancy with other cell compartments. Contemporary plastids have also recruited proteins produced by the nuclear genome of the host cell. In addition, many genes acquired from the cyanobacterial ancestor evolved to code for proteins that are targeted to cell compartments other than the plastid. Consequently, metabolic pathways are now a patchwork of enzymes of diverse origins, located in various cell compartments. Because of this, a wide range of metabolites and ions traffic between the plastids and other cell compartments. In this review, we provide a comprehensive analysis of the well-known, and of the as yet uncharacterized, chloroplast/cytosol exchange processes, which can be deduced from what is currently known about compartmentation of plant-cell metabolism.

  6. Chloroplast Biogenesis: Control of Plastid Development, Protein Import, Division and Inheritance

    PubMed Central

    Sakamoto, Wataru; Miyagishima, Shin-ya; Jarvis, Paul

    2008-01-01

    The chloroplast is a multi-copy cellular organelle that not only performs photosynthesis but also synthesizes amino acids, lipids and phytohormones. The plastid also responds to environmental stimuli such as gravitropism. Biogenesis of chloroplasts is initiated from proplastids in shoot meristems, and involves a series of important events. In the last decade, considerable progress has been made towards understanding various aspects of chloroplast biogenesis at the molecular level, via studies in model systems such as Arabidopsis. This review focuses on two important aspects of chloroplast biogenesis, synthesis/assembly and division/transmission. Chloroplasts originated through endosymbiosis from an ancestor of extant cyanobacteria, and thus contain their own genomes. DNA in chloroplasts is organized into complexes with proteins, and these are called nucleoids. The synthesis of chloroplast proteins is regulated at various steps. However, a majority of proteins are synthesized in the cytosol, and their proper import into chloroplast compartments is a prerequisite for chloroplast development. Fundamental aspects of plastid gene expression/regulation and chloroplast protein transport are described, together with recent proteome analyses of the organelle. Chloroplasts are not de novo synthesized, but instead are propagated from pre-existing plastids. In addition, plastids are transmitted from generation to generation with a unique mode of inheritance. Our current knowledge on the division machinery and the inheritance of plastids is described. PMID:22303235

  7. Phosphoglycerate Kinases Are Co-Regulated to Adjust Metabolism and to Optimize Growth.

    PubMed

    Rosa-Téllez, Sara; Anoman, Armand Djoro; Flores-Tornero, María; Toujani, Walid; Alseek, Saleh; Fernie, Alisdair R; Nebauer, Sergio G; Muñoz-Bertomeu, Jesús; Segura, Juan; Ros, Roc

    2018-02-01

    In plants, phosphoglycerate kinase (PGK) converts 1,3-bisphosphoglycerate into 3-phosphoglycerate in glycolysis but also participates in the reverse reaction in gluconeogenesis and the Calvin-Benson cycle. In the databases, we found three genes that encode putative PGKs. Arabidopsis ( Arabidopsis thaliana ) PGK1 was localized exclusively in the chloroplasts of photosynthetic tissues, while PGK2 was expressed in the chloroplast/plastid of photosynthetic and nonphotosynthetic cells. PGK3 was expressed ubiquitously in the cytosol of all studied cell types. Measurements of carbohydrate content and photosynthetic activities in PGK mutants and silenced lines corroborated that PGK1 was the photosynthetic isoform, while PGK2 and PGK3 were the plastidial and cytosolic glycolytic isoforms, respectively. The pgk1.1 knockdown mutant displayed reduced growth, lower photosynthetic capacity, and starch content. The pgk3.2 knockout mutant was characterized by reduced growth but higher starch levels than the wild type. The pgk1.1 pgk3.2 double mutant was bigger than pgk3.2 and displayed an intermediate phenotype between the two single mutants in all measured biochemical and physiological parameters. Expression studies in PGK mutants showed that PGK1 and PGK3 were down-regulated in pgk3.2 and pgk1.1 , respectively. These results indicate that the down-regulation of photosynthetic activity could be a plant strategy when glycolysis is impaired to achieve metabolic adjustment and optimize growth. The double mutants of PGK3 and the triose-phosphate transporter ( pgk3.2 tpt3) displayed a drastic growth phenotype, but they were viable. This implies that other enzymes or nonspecific chloroplast transporters could provide 3-phosphoglycerate to the cytosol. Our results highlight both the complexity and the plasticity of the plant primary metabolic network. © 2018 American Society of Plant Biologists. All Rights Reserved.

  8. Developing molecular tools for Chlamydomonas reinhardtii

    NASA Astrophysics Data System (ADS)

    Noor-Mohammadi, Samaneh

    Microalgae have garnered increasing interest over the years for their ability to produce compounds ranging from biofuels to neutraceuticals. A main focus of researchers has been to use microalgae as a natural bioreactor for the production of valuable and complex compounds. Recombinant protein expression in the chloroplasts of green algae has recently become more routine; however, the heterologous expression of multiple proteins or complete biosynthetic pathways remains a significant challenge. To take full advantage of these organisms' natural abilities, sophisticated molecular tools are needed to be able to introduce and functionally express multiple gene biosynthetic pathways in its genome. To achieve the above objective, we have sought to establish a method to construct, integrate and express multigene operons in the chloroplast and nuclear genome of the model microalgae Chlamydomonas reinhardtii. Here we show that a modified DNA Assembler approach can be used to rapidly assemble multiple-gene biosynthetic pathways in yeast and then integrate these assembled pathways at a site-specific location in the chloroplast, or by random integration in the nuclear genome of C. reinhardtii. As a proof of concept, this method was used to successfully integrate and functionally express up to three reporter proteins (AphA6, AadA, and GFP) in the chloroplast of C. reinhardtii and up to three reporter proteins (Ble, AphVIII, and GFP) in its nuclear genome. An analysis of the relative gene expression of the engineered strains showed significant differences in the mRNA expression levels of the reporter genes and thus highlights the importance of proper promoter/untranslated-region selection when constructing a target pathway. In addition, this work focuses on expressing the cofactor regeneration enzyme phosphite dehydrogenase (PTDH) in the chloroplast and nuclear genomes of C. reinhardtii. The PTDH enzyme converts phosphite into phosphate and NAD(P)+ into NAD(P)H. The reduced nicotinamide cofactor NAD(P)H plays a pivotal role in many biochemical oxidation and reduction reactions, thus this enzyme would allow regeneration of NAD(P)H in a microalgae strain over-expressing a NAD(P)H-dependent oxidoreductase. A phosphite dehydrogenase gene was introduced into the chloroplast genome (codon optimized) and nuclear genome of C. reinhardtii by biolistic transformation and electroporation in separate events, respectively. Successful expression of the heterologous protein was confirmed by transcript analysis and protein analysis. In conclusion, this new method represents a useful genetic tool in the construction and integration of complex biochemical pathways into the chloroplast or nuclear genome of microalgae, and this should aid current efforts to engineer algae for recombinant protein expression, biofuels production and production of other desirable natural products.

  9. Triphenyltin induced growth inhibition and antioxidative responses in the green microalga Scenedesmus quadricauda.

    PubMed

    Xu, Jun; Li, Mei; Mak, Nai Ki; Chen, Feng; Jiang, Yue

    2011-01-01

    The toxicity of organotin compounds in the environment is closely related to their uptake by microorganisms and delivery through the food chain. The population at low trophic levels like microalgae plays an important role in this aspect. In this study, the toxic effects of triphenyltin (TPT) on Scenedesmus quadricauda were assessed at the population, cellular and subcellular levels. The alga was exposed to TPT of up to 64 μg l(-1) (nearly lethal concentration), but the algal growth was inhibited significantly when TPT was elevated to 8 μg l(-1). This growth inhibition was correlated to the presence of oxidative stress as evidenced by the accumulation of malondialdehyde (MDA) and confirmed by fluorescent probing of the intracellular reactive oxygen species (ROS) levels. The imbalanced activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) may lead to an accumulation of intracellular H(2)O(2), which can initiate an oxidative damage to cell components and cause growth inhibition and finally cell death. The detachment of plasma membrane from cell wall, the structural change of chloroplasts as well as the increased number and size of starch granules together with electron-dense deposits in chloroplasts were noticed through electron microscopic examination. It was suggested that mitochondria, chloroplasts and protoplasm might be the direct targets of TPT toxicity. This study confirmed that TPT poisoning on phytoplankton can happen at very low concentrations. There existed different defense mechanisms e.g., antioxidant enzyme activation, starch accumulation and possibly metal sequestration in algal species as the means to resist TPT toxicity.

  10. Chloroplast genomes: diversity, evolution, and applications in genetic engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniell, Henry; Lin, Choun -Sea; Yu, Ming

    Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. Here, we also discuss the potential biotechnological applications of chloroplast genomes.

  11. Chloroplast genomes: diversity, evolution, and applications in genetic engineering

    DOE PAGES

    Daniell, Henry; Lin, Choun -Sea; Yu, Ming; ...

    2016-06-23

    Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. Here, we also discuss the potential biotechnological applications of chloroplast genomes.

  12. Chloroplast and nuclear photorelocation movements

    PubMed Central

    WADA, Masamitsu

    2016-01-01

    Chloroplasts move toward weak light to increase photosynthetic efficiency, and migrate away from strong light to protect chloroplasts from photodamage and eventual cell death. These chloroplast behaviors were first observed more than 100 years ago, but the underlying mechanism has only recently been identified. Ideal plant materials, such as fern gametophytes for photobiological and cell biological approaches, and Arabidopsis thaliana for genetic analyses, have been used along with sophisticated methods, such as partial cell irradiation and time-lapse video recording under infrared light to study chloroplast movement. These studies have revealed precise chloroplast behavior, and identified photoreceptors, other relevant protein components, and novel actin filament structures required for chloroplast movement. In this review, our findings regarding chloroplast and nuclear movements are described. PMID:27840388

  13. Entire Photodamaged Chloroplasts Are Transported to the Central Vacuole by Autophagy[OPEN

    PubMed Central

    2017-01-01

    Turnover of dysfunctional organelles is vital to maintain homeostasis in eukaryotic cells. As photosynthetic organelles, plant chloroplasts can suffer sunlight-induced damage. However, the process for turnover of entire damaged chloroplasts remains unclear. Here, we demonstrate that autophagy is responsible for the elimination of sunlight-damaged, collapsed chloroplasts in Arabidopsis thaliana. We found that vacuolar transport of entire chloroplasts, termed chlorophagy, was induced by UV-B damage to the chloroplast apparatus. This transport did not occur in autophagy-defective atg mutants, which exhibited UV-B-sensitive phenotypes and accumulated collapsed chloroplasts. Use of a fluorescent protein marker of the autophagosomal membrane allowed us to image autophagosome-mediated transport of entire chloroplasts to the central vacuole. In contrast to sugar starvation, which preferentially induced distinct type of chloroplast-targeted autophagy that transports a part of stroma via the Rubisco-containing body (RCB) pathway, photooxidative damage induced chlorophagy without prior activation of RCB production. We further showed that chlorophagy is induced by chloroplast damage caused by either artificial visible light or natural sunlight. Thus, this report establishes that an autophagic process eliminates entire chloroplasts in response to light-induced damage. PMID:28123106

  14. Tobacco mosaic virus RNA enters chloroplasts in vivo

    PubMed Central

    Schoelz, James E.; Zaitlin, Milton

    1989-01-01

    Several lines of evidence are presented to allow us to conclude that tobacco mosaic virus (TMV) RNA enters the chloroplast in vivo. Chloroplasts were prepared from either directly inoculated or systemically infected leaves of tobacco plants inoculated with one of several strains of the virus and from uninfected control plants. Intact chloroplasts were isolated on Percoll gradients and treated with pancreatic RNase and thermolysin to destroy potential TMV virions and RNA on the outside or bound to their surfaces. Northern blot analysis of RNA extracted from these chloroplasts demonstrated that full-length TMV RNA was present within the chloroplasts prepared from both directly inoculated and systemically invaded leaves. Only genomic length, but not subgenomic length, RNA was found in the chloroplast extracts, indicating a selectivity of the transport of the viral RNA into the chloroplast. A temperature-sensitive TMV mutant (Ts 38), in which no virions are formed at 35°C, was used to demonstrate that at that restrictive temperature viral RNA is detected in the chloroplast, indicating that free viral RNA can enter the chloroplast rather than intact virions. To our knowledge, the transport of a foreign RNA species into chloroplasts has not been reported previously. Images PMID:16578844

  15. Differential positioning of C(4) mesophyll and bundle sheath chloroplasts: recovery of chloroplast positioning requires the actomyosin system.

    PubMed

    Kobayashi, Hiroaki; Yamada, Masahiro; Taniguchi, Mitsutaka; Kawasaki, Michio; Sugiyama, Tatsuo; Miyake, Hiroshi

    2009-01-01

    In C(4) plants, bundle sheath (BS) chloroplasts are arranged in the centripetal position or in the centrifugal position, although mesophyll (M) chloroplasts are evenly distributed along cell membranes. To examine the molecular mechanism for the intracellular disposition of these chloroplasts, we observed the distribution of actin filaments in BS and M cells of the C(4) plants finger millet (Eleusine coracana) and maize (Zea mays) using immunofluorescence. Fine actin filaments encircled chloroplasts in both cell types, and an actin network was observed adjacent to plasma membranes. The intracellular disposition of both chloroplasts in finger millet was disrupted by centrifugal force but recovered within 2 h in the dark. Actin filaments remained associated with chloroplasts during recovery. We also examined the effects of inhibitors on the rearrangement of chloroplasts. Inhibitors of actin polymerization, myosin-based activities and cytosolic protein synthesis blocked migration of chloroplasts. In contrast, a microtubule-depolymerizing drug had no effect. These results show that C(4) plants possess a mechanism for keeping chloroplasts in the home position which is dependent on the actomyosin system and cytosolic protein synthesis but not tubulin or light.

  16. Hsp100/ClpB Chaperone Function and Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vierling, Elizabeth

    2015-01-27

    The supported research investigated the mechanism of action of a unique class of molecular chaperones in higher plants, the Hsp100/ClpB proteins, with the ultimate goal of defining how these chaperones influence plant growth, development, stress tolerance and productivity. Molecular chaperones are essential effectors of cellular “protein quality control”, which comprises processes that ensure the proper folding, localization, activation and turnover of proteins. Hsp100/ClpB proteins are required for temperature acclimation in plants, optimal seed yield, and proper chloroplast development. The model plant Arabidopsis thaliana and genetic and molecular approaches were used to investigate two of the three members of the Hsp100/ClpBmore » proteins in plants, cytosolic AtHsp101 and chloroplast-localized AtClpB-p. Investigating the chaperone activity of the Hsp100/ClpB proteins addresses DOE goals in that this activity impacts how “plants generate and assemble components” as well as “allowing for their self repair”. Additionally, Hsp100/ClpB protein function in plants is directly required for optimal “utilization of biological energy” and is involved in “mechanisms that control the architecture of energy transduction systems”.« less

  17. Phylogenic study of Lemnoideae (duckweeds) through complete chloroplast genomes for eight accessions.

    PubMed

    Ding, Yanqiang; Fang, Yang; Guo, Ling; Li, Zhidan; He, Kaize; Zhao, Yun; Zhao, Hai

    2017-01-01

    Phylogenetic relationship within different genera of Lemnoideae, a kind of small aquatic monocotyledonous plants, was not well resolved, using either morphological characters or traditional markers. Given that rich genetic information in chloroplast genome makes them particularly useful for phylogenetic studies, we used chloroplast genomes to clarify the phylogeny within Lemnoideae. DNAs were sequenced with next-generation sequencing. The duckweeds chloroplast genomes were indirectly filtered from the total DNA data, or directly obtained from chloroplast DNA data. To test the reliability of assembling the chloroplast genome based on the filtration of the total DNA, two methods were used to assemble the chloroplast genome of Landoltia punctata strain ZH0202. A phylogenetic tree was built on the basis of the whole chloroplast genome sequences using MrBayes v.3.2.6 and PhyML 3.0. Eight complete duckweeds chloroplast genomes were assembled, with lengths ranging from 165,775 bp to 171,152 bp, and each contains 80 protein-coding sequences, four rRNAs, 30 tRNAs and two pseudogenes. The identity of L. punctata strain ZH0202 chloroplast genomes assembled through two methods was 100%, and their sequences and lengths were completely identical. The chloroplast genome comparison demonstrated that the differences in chloroplast genome sizes among the Lemnoideae primarily resulted from variation in non-coding regions, especially from repeat sequence variation. The phylogenetic analysis demonstrated that the different genera of Lemnoideae are derived from each other in the following order: Spirodela , Landoltia , Lemna , Wolffiella , and Wolffia . This study demonstrates potential of whole chloroplast genome DNA as an effective option for phylogenetic studies of Lemnoideae. It also showed the possibility of using chloroplast DNA data to elucidate those phylogenies which were not yet solved well by traditional methods even in plants other than duckweeds.

  18. Phylogenic study of Lemnoideae (duckweeds) through complete chloroplast genomes for eight accessions

    PubMed Central

    Ding, Yanqiang; Fang, Yang; Guo, Ling; Li, Zhidan; He, Kaize

    2017-01-01

    Background Phylogenetic relationship within different genera of Lemnoideae, a kind of small aquatic monocotyledonous plants, was not well resolved, using either morphological characters or traditional markers. Given that rich genetic information in chloroplast genome makes them particularly useful for phylogenetic studies, we used chloroplast genomes to clarify the phylogeny within Lemnoideae. Methods DNAs were sequenced with next-generation sequencing. The duckweeds chloroplast genomes were indirectly filtered from the total DNA data, or directly obtained from chloroplast DNA data. To test the reliability of assembling the chloroplast genome based on the filtration of the total DNA, two methods were used to assemble the chloroplast genome of Landoltia punctata strain ZH0202. A phylogenetic tree was built on the basis of the whole chloroplast genome sequences using MrBayes v.3.2.6 and PhyML 3.0. Results Eight complete duckweeds chloroplast genomes were assembled, with lengths ranging from 165,775 bp to 171,152 bp, and each contains 80 protein-coding sequences, four rRNAs, 30 tRNAs and two pseudogenes. The identity of L. punctata strain ZH0202 chloroplast genomes assembled through two methods was 100%, and their sequences and lengths were completely identical. The chloroplast genome comparison demonstrated that the differences in chloroplast genome sizes among the Lemnoideae primarily resulted from variation in non-coding regions, especially from repeat sequence variation. The phylogenetic analysis demonstrated that the different genera of Lemnoideae are derived from each other in the following order: Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia. Discussion This study demonstrates potential of whole chloroplast genome DNA as an effective option for phylogenetic studies of Lemnoideae. It also showed the possibility of using chloroplast DNA data to elucidate those phylogenies which were not yet solved well by traditional methods even in plants other than duckweeds. PMID:29302399

  19. Effects of microgravityon the structural organization of Brassica rapa photosynthetic appartus

    NASA Astrophysics Data System (ADS)

    Adamchuk, N.; Kordyum, E.; Guikema, J.

    Leaf mesophyll cells of 13- and 15-day old Brassica rapa plants grown on board the space shuttle Columbia (STS-87) and in the ground control have been investigated using the methods of light and electron microscopy. 13-day old plants were fixed on orbit and 15-day old plants were fixed after landing. It was shown the essential differences in leaf mesophyll quantitative anatomical and ultrastructural characteristics between spaceflight and ground control variants. Both the volume of palisade parenchyma cells and a number of chloroplasts in those cells increased in spaceflight samples. Simultaneusly, a chloroplast size decreased together with increasing of a relative volume of stromal thylakoids, starch grains and plastoglobuli. It was also noted increasing of stromal thylakoid length. In the same time, both a total length of thylakoids in granae and the grana number diminished in space flight. In addition, the interthylakoid space could be expended and the thylakoid length was more variable in chloroplast granae on microgravity, that correlated with a shrinkage of thylakoids in granal stacks. The obtained data a er discussed with the questions on both the photosynthetic apparatus sensitivity to gravity and its adaptive possibility to microgravity.

  20. Evolution of a plant-specific copper chaperone family for chloroplast copper homeostasis

    DOE PAGES

    Blaby-Haas, Crysten E.; Padilla-Benavides, Teresita; Stübe, Roland; ...

    2014-12-02

    Metallochaperones traffic copper (Cu +) from its point of entry at the plasma membrane to its destination. In plants, one destination is the chloroplast, which houses plastocyanin, a Cu-dependent electron transfer protein involved in photosynthesis. In this paper, we present a previously unidentified Cu + chaperone that evolved early in the plant lineage by an alternative-splicing event of the pre-mRNA encoding the chloroplast P-type ATPase in Arabidopsis 1 (PAA1). In several land plants, recent duplication events created a separate chaperone-encoding gene coincident with loss of alternative splicing. The plant-specific Cu + chaperone delivers Cu + with specificity for PAA1, whichmore » is flipped in the envelope relative to prototypical bacterial ATPases, compatible with a role in Cu + import into the stroma and consistent with the canonical catalytic mechanism of these enzymes. The ubiquity of the chaperone suggests conservation of this Cu +-delivery mechanism and provides a unique snapshot into the evolution of a Cu + distribution pathway. Finally, we also provide evidence for an interaction between PAA2, the Cu +-ATPase in thylakoids, and the Cu +-chaperone for Cu/Zn superoxide dismutase (CCS), uncovering a Cu + network that has evolved to fine-tune Cu + distribution.« less

  1. Physiological, Ultrastructural and Proteomic Responses in the Leaf of Maize Seedlings to Polyethylene Glycol-Stimulated Severe Water Deficiency

    PubMed Central

    Shao, Ruixin; Xin, Longfei; Mao, Jun; Li, Leilei; Kang, Guozhang; Yang, Qinghua

    2015-01-01

    After maize seedlings grown in full-strength Hoagland solution for 20 days were exposed to 20% polyethylene glycol (PEG)-stimulated water deficiency for two days, plant height, shoot fresh and dry weights, and pigment contents significantly decreased, whereas malondialdehyde (MDA) content greatly increased. Using transmission electron microscopy, we observed that chloroplasts of mesophyll cells in PEG-treated maize seedlings were swollen, with a disintegrating envelope and disrupted grana thylakoid lamellae. Using two-dimensional gel electrophoresis (2-DE) method, we were able to identify 22 protein spots with significantly altered abundance in the leaves of treated seedlings in response to water deficiency, 16 of which were successfully identified. These protein species were functionally classified into signal transduction, stress defense, carbohydrate metabolism, protein metabolism, and unknown categories. The change in the abundance of the identified protein species may be closely related to the phenotypic and physiological changes due to PEG-stimulated water deficiency. Most of the identified protein species were putatively located in chloroplasts, indicating that chloroplasts may be prone to damage by PEG stimulated-water deficiency in maize seedlings. Our results help clarify the molecular mechanisms of the responses of higher plants to severe water deficiency. PMID:26370980

  2. Influence of antimycin A and uncouplers on anaerobic photosynthesis in isolated chloroplasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slovacek, R.E.; Hind, G.

    1977-10-01

    Anaerobiosis depresses the light- and bicarbonate-saturated rates of O/sub 2/ evolution in intact spinach (Spinacia oleracea) chloroplasts by as much as 3-fold from those observed under aerobic conditions. These lower rates are accelerated 2-fold or more by the addition of 1 ..mu..m antimycin A or by low concentrations of the uncouplers 0.3 mM NH/sub 4/Cl or 0.25 ..mu..m carbonyl cyanide m-chlorophenylhydrazone. Oxaloacetate and glycerate 3-phosphate reduction rates are also increased by antimycin A or an uncoupler under anaerobic conditions. At intermediate light intensities, the rate accelerations by either antimycin A or uncoupler are inversely proportional to the adenosine 5'-triphosphate demandmore » of the reduction process for the acceptors HCO/sub 3//sup -/, glycerate 3-phosphate, and oxaloacetate. The acceleration of bicarbonate-supported O/sub 2/ evolution may also be produced by adding an adenosine 5'-triphosphate sink (ribose 5-phosphate) to anaerobic chloroplasts. The above results suggest that a proton gradient back pressure resulting from antimycin A-sensitive cyclic electron flow is responsible for the depression of light-saturated photosynthesis under anaerobiosis.« less

  3. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Hongmei; Ma, Leyuan; Zhao, Cong

    To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leavesmore » and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.« less

  4. Cellular and molecular aspects of quinoa leaf senescence.

    PubMed

    López-Fernández, María Paula; Burrieza, Hernán Pablo; Rizzo, Axel Joel; Martínez-Tosar, Leandro Julián; Maldonado, Sara

    2015-09-01

    During leaf senescence, degradation of chloroplasts precede to changes in nuclei and other cytoplasmic organelles, RuBisCO stability is progressively lost, grana lose their structure, plastidial DNA becomes distorted and degraded, the number of plastoglobuli increases and abundant senescence-associated vesicles containing electronically dense particles emerge from chloroplasts pouring their content into the central vacuole. This study examines quinoa leaf tissues during development and senescence using a range of well-established markers of programmed cell death (PCD), including: morphological changes in nuclei and chloroplasts, degradation of RuBisCO, changes in chlorophyll content, DNA degradation, variations in ploidy levels, and changes in nuclease profiles. TUNEL reaction and DNA electrophoresis demonstrated that DNA fragmentation in nuclei occurs at early senescence, which correlates with induction of specific nucleases. During senescence, metabolic activity is high and nuclei endoreduplicate, peaking at 4C. At this time, TEM images showed some healthy nuclei with condensed chromatin and nucleoli. We have found that DNA fragmentation, induction of senescence-associated nucleases and endoreduplication take place during leaf senescence. This provides a starting point for further research aiming to identify key genes involved in the senescence of quinoa leaves. Published by Elsevier Ireland Ltd.

  5. The Chloroplast ATP Synthase Features the Characteristic Redox Regulation Machinery

    PubMed Central

    Sunamura, Ei-Ichiro; Kim, Yusung; Konno, Hiroki

    2013-01-01

    Abstract Significance: Regulation of the activity of the chloroplast ATP synthase is largely accomplished by the chloroplast thioredoxin system, the main redox regulation system in chloroplasts, which is directly coupled to the photosynthetic reaction. We review the current understanding of the redox regulation system of the chloroplast ATP synthase. Recent Advances: The thioredoxin-targeted portion of the ATP synthase consists of two cysteines located on the central axis subunit γ. The redox state of these two cysteines is under the influence of chloroplast thioredoxin, which directly controls rotation during catalysis by inducing a conformational change in this subunit. The molecular mechanism of redox regulation of the chloroplast ATP synthase has recently been determined. Critical Issues: Regulation of the activity of the chloroplast ATP synthase is critical in driving efficiency into the ATP synthesis reaction in chloroplasts. Future Directions: The molecular architecture of the chloroplast ATP synthase, which confers redox regulatory properties requires further investigation, in light of the molecular structure of the enzyme complex as well as the physiological significance of the regulation system. Antioxid. Redox Signal. 19, 1846–1854. PMID:23145525

  6. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs.

    PubMed

    Yang, Jun-Bo; Li, De-Zhu; Li, Hong-Tao

    2014-09-01

    Chloroplast genomes supply indispensable information that helps improve the phylogenetic resolution and even as organelle-scale barcodes. Next-generation sequencing technologies have helped promote sequencing of complete chloroplast genomes, but compared with the number of angiosperms, relatively few chloroplast genomes have been sequenced. There are two major reasons for the paucity of completely sequenced chloroplast genomes: (i) massive amounts of fresh leaves are needed for chloroplast sequencing and (ii) there are considerable gaps in the sequenced chloroplast genomes of many plants because of the difficulty of isolating high-quality chloroplast DNA, preventing complete chloroplast genomes from being assembled. To overcome these obstacles, all known angiosperm chloroplast genomes available to date were analysed, and then we designed nine universal primer pairs corresponding to the highly conserved regions. Using these primers, angiosperm whole chloroplast genomes can be amplified using long-range PCR and sequenced using next-generation sequencing methods. The primers showed high universality, which was tested using 24 species representing major clades of angiosperms. To validate the functionality of the primers, eight species representing major groups of angiosperms, that is, early-diverging angiosperms, magnoliids, monocots, Saxifragales, fabids, malvids and asterids, were sequenced and assembled their complete chloroplast genomes. In our trials, only 100 mg of fresh leaves was used. The results show that the universal primer set provided an easy, effective and feasible approach for sequencing whole chloroplast genomes in angiosperms. The designed universal primer pairs provide a possibility to accelerate genome-scale data acquisition and will therefore magnify the phylogenetic resolution and species identification in angiosperms. © 2014 John Wiley & Sons Ltd.

  7. Expression of non-toxic mutant of Escherichia coli heat-labile enterotoxin in tobacco chloroplasts.

    PubMed

    Kang, Tae-Jin; Han, So-Chon; Kim, Mi-Young; Kim, Young-Sook; Yang, Moon-Sik

    2004-11-01

    Chloroplast transformation systems offer unique advantages in biotechnology, including high level of foreign gene expression, maternal inheritance, and polycistronic expression. We studied chloroplast expression of LTK63 (change Ser-->Lys at position 63 in the A subunit) which is the mutant of Escherichia coli heat-labile toxin. LTK63 is devoid of any toxic activity, but still retains its mucosal adjuvanticity. The LTK63 was cloned into chloroplast targeting vector and transformed to tobacco chloroplasts by particle bombardment. PCR and Southern blot analyses confirmed stable homologous recombination of the LTK63 gene into the chloroplast genome. The amount of LTK63 protein detected in tobacco chloroplasts was approximately 3.7% of the total soluble protein. The GM1-ganglioside binding assay confirmed that chloroplast-synthesized LTB of LTK63 binds to the intestinal membrane GM1-ganglioside receptor. Thus, the expression of LTK63 in chloroplasts provides a potential route toward the development of a plant-based edible vaccine for high expression system and environmentally friendly approach.

  8. Redirecting the Cyanobacterial Bicarbonate Transporters BicA and SbtA to the Chloroplast Envelope: Soluble and Membrane Cargos Need Different Chloroplast Targeting Signals in Plants

    PubMed Central

    Rolland, Vivien; Badger, Murray R.; Price, G. Dean

    2016-01-01

    Most major crops used for human consumption are C3 plants, which yields are limited by photosynthetic inefficiency. To circumvent this, it has been proposed to implement the cyanobacterial CO2-concentrating mechanism (CCM), principally consisting of bicarbonate transporters and carboxysomes, into plant chloroplasts. As it is currently not possible to recover homoplasmic transplastomic monocots, foreign genes must be introduced in these plants via nuclear transformation. Consequently, it is paramount to ensure that resulting proteins reach the appropriate sub-cellular compartment, which for cyanobacterial transporters BicA and SbtA, is the chloroplast inner-envelope membrane (IEM). At present, targeting signals to redirect large transmembrane proteins from non-chloroplastic organisms to plant chloroplast envelopes are unknown. The goal of this study was to identify such signals, using agrobacteria-mediated transient expression and confocal microscopy to determine the sub-cellular localization of ∼37 GFP-tagged chimeras. Initially, fragments of chloroplast proteins known to target soluble cargos to the stroma were tested for their ability to redirect BicA, but they proved ineffective. Next, different N-terminal regions from Arabidopsis IEM transporters were tested. We demonstrated that the N-terminus of AtHP59, AtPLGG1 or AtNTT1 (92–115 amino acids), containing a cleavable chloroplast transit peptide (cTP) and a membrane protein leader (MPL), was sufficient to redirect BicA or SbtA to the chloroplast envelope. This constitutes the first evidence that nuclear-encoded transmembrane proteins from non-chloroplastic organisms can be targeted to the envelope of plant chloroplasts; a finding which represents an important advance in chloroplast engineering by opening up the door to further manipulation of the chloroplastic envelope. PMID:26973659

  9. The complete chloroplast genome of Aconitum chiisanense Nakai (Ranunculaceae).

    PubMed

    Lim, Chae Eun; Kim, Goon-Bo; Baek, Seunghoon; Han, Su-Min; Yu, Hee-Ju; Mun, Jeong-Hwan

    2017-01-01

    We determined the complete chloroplast DNA sequence of Aconitum chiisanense Nakai, a rare Aconitum species endemic to Korea. The chloroplast genome is 155 934 bp in length and contains 4 rRNA, 30 tRNA, and 78 protein-coding genes. Phylogenetic analysis revealed that the chloroplast genome of A. chiisanense is closely related to that of A. barbatum var. puberulum. Sequence comparison with other Ranunculaceae chloroplasts identified a unique deletion in the rps16 gene of A. chiisanense chloroplast DNA that can serve as a molecular marker for species identification.

  10. Copper and Iron Homeostasis in Plants: The Challenges of Oxidative Stress

    PubMed Central

    Pilon, Marinus

    2013-01-01

    Abstract Significance: Photosynthesis, the process that drives life on earth, relies on transition metal (e.g., Fe and Cu) containing proteins that participate in electron transfer in the chloroplast. However, the light reactions also generate high levels of reactive oxygen species (ROS), which makes metal use in plants a challenge. Recent Advances: Sophisticated regulatory networks govern Fe and Cu homeostasis in response to metal ion availability according to cellular needs and priorities. Molecular remodeling in response to Fe or Cu limitation leads to its economy to benefit photosynthesis. Fe toxicity is prevented by ferritin, a chloroplastic Fe-storage protein in plants. Recent studies on ferritin function and regulation revealed the interplay between iron homeostasis and the redox balance in the chloroplast. Critical Issues: Although the connections between metal excess and ROS in the chloroplast are established at the molecular level, the mechanistic details and physiological significance remain to be defined. The causality/effect relationship between transition metals, redox signals, and responses is difficult to establish. Future Directions: Integrated approaches have led to a comprehensive understanding of Cu homeostasis in plants. However, the biological functions of several major families of Cu proteins remain unclear. The cellular priorities for Fe use under deficiency remain largely to be determined. A number of transcription factors that function to regulate Cu and Fe homeostasis under deficiency have been characterized, but we have not identified regulators that mediate responses to excess. Importantly, details of metal sensing mechanisms and cross talk to ROS-sensing mechanisms are so far poorly documented in plants. Antioxid. Redox Signal. 19, 919–932. PMID:23199018

  11. Photoinduction of cyclosis-mediated interactions between distant chloroplasts.

    PubMed

    Bulychev, Alexander A; Komarova, Anna V

    2015-01-01

    Communications between chloroplasts and other organelles based on the exchange of metabolites, including redox active substances, are recognized as a part of intracellular regulation, chlororespiration, and defense against oxidative stress. Similar communications may operate between spatially distant chloroplasts in large cells where photosynthetic and respiratory activities are distributed unevenly under fluctuating patterned illumination. Microfluorometry of chlorophyll fluorescence in vivo in internodal cells of the alga Chara corallina revealed that a 30-s pulse of localized light induces a transient increase (~25%) in F' fluorescence of remote cell parts exposed to dim background light at a 1.5-mm distance on the downstream side from the illuminated spot in the plane of unilateral cytoplasmic streaming but has no effect on F' at equal distance on the upstream side. An abrupt arrest of cytoplasmic streaming for about 30s by triggering the action potential extended either the ascending or descending fronts of the F' fluorescence response, depending on the exact moment of streaming cessation. The response of F' fluorescence to localized illumination of a distant cell region was absent in dark-adapted internodes, when the localized light was applied within the first minute after switching on continuous background illumination of the whole cell, but it appeared in full after longer exposures to continuous background light. These results and the elimination of the F' response by methyl viologen known to redirect electron transport pathways beyond photosystem I indicate the importance of photosynthetic induction and the stromal redox state for long-distance communications of chloroplasts in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Mesophyll cell ultrastructure of wheat leaves etiolated by lead and selenium.

    PubMed

    Semenova, Galina A; Fomina, Irina R; Kosobryukhov, Anatoly A; Lyubimov, Valery Yu; Nadezhkina, Ekaterina S; Balakhnina, Tamara I

    2017-12-01

    The ultrastructure of mesophyll cells was studied in leaves of the Triticum aestivum L. cv. "Trizo" seedlings after two weeks of growth on soil contaminated by Pb and/or Se. The soil treatments: control; (Pb1) 50mgkg -1 ; (Pb2) 100mgkg -1 ; (Se1) 0.4mgkg -1 ; (Se2) 0.8mgkg -1 ; (Pb1+Se1); (Pb1+Se2); (P2+Se1); and (Pb2+Se2) were used. Light and other conditions were optimal for plant growth. The (Se1)-plants showed enhanced growth and biomass production; (Pb1+Se1)-plants did not lag behind the controls, though O 2 evolution decreased; chlorophyll content did not differ statistically in these treatments. Other treatments led to statistically significant growth suppression, chlorophyll content reduction, inhibition of photosynthesis, stress development tested by H 2 O 2 and leaf etiolation at the end of 14-days experiment. The tops of etiolated leaves remained green, while the main leaf parts were visually white. Plastids in mesophyll cells of etiolated parts of leaves were mainly represented by etioplasts and an insignificant amount of degraded chloroplasts. Other cellular organelles remained intact in most mesophyll cells of the plants, except (Pb2+Se2)-plants. Ruptured tonoplast and etioplast envelope, swelled cytoplasm and mitochondria, and electron transparent matrix of gialoplasm were observed in the mesophyll cells at (Pb2+Se2)-treatment, that caused maximal inhibition of plant growth. The results indicate that Pb and Se effects on growth of wheat leaves are likely to target meristem in which the development of proplastids to chloroplasts under the light is determined by chlorophyll biosynthesis. Antagonistic effect of low concentration of Se and Pb in combination may retard etiolation process. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Photosynthetic Electron Transport Chain of Chlamydomonas reinhardi VI. Electron Transport in Mutant Strains Lacking Either Cytochrome 553 or Plastocyanin 1

    PubMed Central

    Gorman, Donald S.; Levine, R. P.

    1966-01-01

    A mutant strain of Chlamydomonas reinhardi, ac-206, lacks cytochrome 553, at least in an active and detectable form. Chloroplast fragments of this mutant strain are inactive in the photoreduction of NADP when the source of electrons is water, but they are active when the electron source is 2,6-dichlorophenolindophenol and ascorbate. The addition of either cytochrome 553 or plastocyanin, obtained from the wild-type strain, has no effect upon the photosynthetic activities of the mutant strain. Cells of the mutant strain lack both the soluble and insoluble forms of cytochrome 553, but they possess the mitochondrial type cytochrome c. Thus, the loss of cytochrome 553 appears to be specific. Another mutant strain, ac-208, lacks plastocyanin, or possesses it in an inactive and undetectable form. Chloroplast fragments of ac-208 are inactive in the photoreduction of NADP with either water or 2,6-dichlorophenolindophenol and ascorbate as electron donors. However, these reactions are restored upon the addition of plastocyanin. The addition of cytochrome 553 has no effect. The measurement of light-induced absorbance changes with ac-208 reveal that, in the absence of plastocyanin, light fails to sensitize the oxidation of cytochrome 553, but it will sensitize its reduction. However, the addition of plastocyanin restores the light-induced cytochrome oxidation. A third mutant strain, ac-208 (sup.) carries a suppressor mutation that partially restores the wild phenotype. This mutant strain appears to possess a plastocyanin that is less stable than that of the wild-type strain. The observations with the mutant strains are discussed in terms of the sequence of electron transport System II → cytochrome 553 → plastocyanin → System I. PMID:16656453

  14. A T-DNA insertion mutant of AtHMA1 gene encoding a Cu transporting ATPase in Arabidopsis thaliana has a defect in the water-water cycle of photosynthesis.

    PubMed

    Higuchi, Mieko; Ozaki, Hiroshi; Matsui, Minami; Sonoike, Kintake

    2009-03-03

    The water-water cycle is the electron flow through scavenging enzymes for the reactive species of oxygen in chloroplasts, and is proposed to play a role in alternative electron sink in photosynthesis. Here we showed that the water-water cycle is impaired in the T-DNA insertion mutant of AtHMA1 gene encoding a Cu transporting ATPase in chloroplasts. Chlorophyll fluorescence under steady state was not affected in hma1, indicating that photosynthetic electron transport under normal condition was not impaired. Under electron acceptor limited conditions, however, hma1 showed distinguished phenotype in chlorophyll fluorescence characteristics. The most severe phenotype of hma1 could be observed in high (0.1%) CO(2) concentrations, indicating that hma1 has the defect other than photorespiration. The transient increase of chlorophyll fluorescence upon the cessation of the actinic light as well as the NPQ induction of chlorophyll fluorescence revealed that the two pathways of cyclic electron flow around PSI, NDH-pathway and FQR-pathway, are both intact in hma1. Based on the NPQ induction under 0% oxygen condition, we conclude that the water-water cycle is impaired in hma1, presumably due to the decreased level of Cu/Zn SOD in the mutant. Under high CO(2) condition, hma1 exhibited slightly higher NPQ induction than wild type plants, while this increase of NPQ in hma1 was suppressed when hma1 was crossed with crr2 having a defect in NDH-mediated PSI cyclic electron flow. We propose that the water-water cycle and NDH-mediated pathways might be regulated compensationally with each other especially when photorespiration is suppressed.

  15. Light, genotype, and abscisic acid affect chloroplast positioning in guard cells of Arabidopsis thaliana leaves in distinct ways.

    PubMed

    Königer, Martina; Jessen, Brita; Yang, Rui; Sittler, Dorothea; Harris, Gary C

    2010-09-01

    The goal of this study was to investigate the effects of light intensity, genotype, and various chemical treatments on chloroplast movement in guard cells of Arabidopsis thaliana leaves. After treatment at various light intensities (dark, low, and high light), leaf discs were fixed with glutaraldehyde, and imaged using confocal laser microscopy. Each chloroplast was assigned a horizontal (close to pore, center, or epidermal side) and vertical (outer, middle, inner) position. White light had a distinct effect on chloroplast positioning, most notably under high light (HL) when chloroplasts on the upper leaf surface of wild-type (WT) moved from epidermal and center positions toward the pore. This was not the case for phot1-5/phot2-1 or phot2-1 plants, thus phototropins are essential for chloroplast positioning in guard cells. In npq1-2 mutants, fewer chloroplasts moved to the pore position under HL than in WT plants, indicating that white light can affect chloroplast positioning also in a zeaxanthin-dependent way. Cytochalasin B inhibited the movement of chloroplasts to the pore under HL, while oryzalin did not, supporting the idea that actin plays a role in the movement. The movement along actin cables is dependent on CHUP1 since chloroplast positioning in chup1 was significantly altered. Abscisic acid (ABA) caused most chloroplasts in WT and phot1-5/phot2-1 to be localized in the center, middle part of the guard cells irrespective of light treatment. This indicates that not only light but also water stress influences chloroplast positioning.

  16. Imaging the Photosystem I/Photosystem II chlorophyll ratio inside the leaf.

    PubMed

    Wientjes, Emilie; Philippi, John; Borst, Jan Willem; van Amerongen, Herbert

    2017-03-01

    Oxygenic photosynthesis is driven by photosystems I (PSI) and II (PSII). In plants the number of chlorophylls of PSI versus PSII is adjusted to the light irradiance spectrum. On a timescale of days, this is regulated at the level of protein concentration. Instead, on a timescale of minutes, it is regulated by the dynamic association of light-harvesting complex II with either PSI or PSII. Thus far very diverse values have been reported for the PSI/PSII chlorophyll ratio, ranging from 0.54 to 1.4. The methods used require the isolation of chloroplasts and are time consuming. We present a fluorescence lifetime imaging approach that quantifies the PSI/PSII Chl ratio of chloroplasts directly in their natural leaf environment. In wild type Arabidopsis thaliana plants, grown under white light, the PSI/PSII chlorophyll ratio appeared to be 0.99±0.09 at the adaxial side and 0.83±0.05 at the abaxial side of the leaf. When these plants were acclimated to far red light for several days the PSI/PSII chlorophyll ratio decreased by more than a factor of 3 to compensate for the ineffective far red light absorption of PSII. This shows how plants optimize their light-harvesting capacity to the specific light conditions they encounter. Zooming in on single chloroplasts inside the leaf allowed to study the grana/stroma membrane network and their PSI/PSII chlorophyll ratios. The developed method will be useful to study dynamic processes in chloroplasts in intact leaves which involve changes in the grana and the stroma membranes such as state transitions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Arabidopsis thaliana AMY3 is a unique redox-regulated chloroplastic α-amylase.

    PubMed

    Seung, David; Thalmann, Matthias; Sparla, Francesca; Abou Hachem, Maher; Lee, Sang Kyu; Issakidis-Bourguet, Emmanuelle; Svensson, Birte; Zeeman, Samuel C; Santelia, Diana

    2013-11-22

    α-Amylases are glucan hydrolases that cleave α-1,4-glucosidic bonds in starch. In vascular plants, α-amylases can be classified into three subfamilies. Arabidopsis has one member of each subfamily. Among them, only AtAMY3 is localized in the chloroplast. We expressed and purified AtAMY3 from Escherichia coli and carried out a biochemical characterization of the protein to find factors that regulate its activity. Recombinant AtAMY3 was active toward both insoluble starch granules and soluble substrates, with a strong preference for β-limit dextrin over amylopectin. Activity was shown to be dependent on a conserved aspartic acid residue (Asp(666)), identified as the catalytic nucleophile in other plant α-amylases such as the barley AMY1. AtAMY3 released small linear and branched glucans from Arabidopsis starch granules, and the proportion of branched glucans increased after the predigestion of starch with a β-amylase. Optimal rates of starch digestion in vitro was achieved when both AtAMY3 and β-amylase activities were present, suggesting that the two enzymes work synergistically at the granule surface. We also found that AtAMY3 has unique properties among other characterized plant α-amylases, with a pH optimum of 7.5-8, appropriate for activity in the chloroplast stroma. AtAMY3 is also redox-regulated, and the inactive oxidized form of AtAMY3 could be reactivated by reduced thioredoxins. Site-directed mutagenesis combined with mass spectrometry analysis showed that a disulfide bridge between Cys(499) and Cys(587) is central to this regulation. This work provides new insights into how α-amylase activity may be regulated in the chloroplast.

  18. Tissue-specific accumulation and regulation of zeaxanthin epoxidase in Arabidopsis reflect the multiple functions of the enzyme in plastids.

    PubMed

    Schwarz, Nadine; Armbruster, Ute; Iven, Tim; Brückle, Lena; Melzer, Michael; Feussner, Ivo; Jahns, Peter

    2015-02-01

    The enzyme zeaxanthin epoxidase (ZEP) catalyzes the conversion of zeaxanthin to violaxanthin, a key reaction for ABA biosynthesis and the xanthophyll cycle. Both processes are important for acclimation to environmental stress conditions, in particular drought (ABA biosynthesis) and light (xanthophyll cycle) stress. Hence, both ZEP functions may require differential regulation to optimize plant fitness. The key to understanding the function of ZEP in both stress responses might lie in its spatial and temporal distribution in plant tissues. Therefore, we analyzed the distribution of ZEP in plant tissues and plastids under drought and light stress by use of a ZEP-specific antibody. In addition, we determined the pigment composition of the plant tissues and chloroplast membrane subcompartments in response to these stresses. The ZEP protein was detected in all plant tissues (except flowers) concomitant with xanthophylls. The highest levels of ZEP were present in leaf chloroplasts and root plastids. Within chloroplasts, ZEP was localized predominantly in the thylakoid membrane and stroma, while only a small fraction was bound by the envelope membrane. Light stress affected neither the accumulation nor the relative distribution of ZEP in chloroplasts, while drought stress led to an increase of ZEP in roots and to a degradation of ZEP in leaves. However, drought stress-induced increases in ABA were similar in both tissues. These data support a tissue- and stress-specific accumulation of the ZEP protein in accordance with its different functions in ABA biosynthesis and the xanthophyll cycle. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer.

    PubMed

    Goremykin, Vadim V; Salamini, Francesco; Velasco, Riccardo; Viola, Roberto

    2009-01-01

    The mitochondrial genome of grape (Vitis vinifera), the largest organelle genome sequenced so far, is presented. The genome is 773,279 nt long and has the highest coding capacity among known angiosperm mitochondrial DNAs (mtDNAs). The proportion of promiscuous DNA of plastid origin in the genome is also the largest ever reported for an angiosperm mtDNA, both in absolute and relative terms. In all, 42.4% of chloroplast genome of Vitis has been incorporated into its mitochondrial genome. In order to test if horizontal gene transfer (HGT) has also contributed to the gene content of the grape mtDNA, we built phylogenetic trees with the coding sequences of mitochondrial genes of grape and their homologs from plant mitochondrial genomes. Many incongruent gene tree topologies were obtained. However, the extent of incongruence between these gene trees is not significantly greater than that observed among optimal trees for chloroplast genes, the common ancestry of which has never been in doubt. In both cases, we attribute this incongruence to artifacts of tree reconstruction, insufficient numbers of characters, and gene paralogy. This finding leads us to question the recent phylogenetic interpretation of Bergthorsson et al. (2003, 2004) and Richardson and Palmer (2007) that rampant HGT into the mtDNA of Amborella best explains phylogenetic incongruence between mitochondrial gene trees for angiosperms. The only evidence for HGT into the Vitis mtDNA found involves fragments of two coding sequences stemming from two closteroviruses that cause the leaf roll disease of this plant. We also report that analysis of sequences shared by both chloroplast and mitochondrial genomes provides evidence for a previously unknown gene transfer route from the mitochondrion to the chloroplast.

  20. Chloroplast Growth and Replication in Germinating Spinach Cotyledons following Massive γ-Irradiation of the Seed

    PubMed Central

    Rose, Ray; Possingham, John

    1976-01-01

    Spinach seeds (Spinacia oleracea L.) given massive doses of γ-irradiation (500 krad) germinate and form a seedling with two green cotyledons and a radicle, but develop no further. Irradiated cotyledons show no increase in cell number or total DNA over a 7-day period in the light, while in control cotyledons there is a small increase in cell number and large increases in total DNA and chloroplast number. The chloroplasts of irradiated cotyledons are delayed in their division, become greatly enlarged and contain large amounts of starch. The whole population of chloroplasts subsequently undergoes a wave of division. The daughter chloroplasts show normal thylakoid development, but have some abnormal structural features caused by the radiation stress. Information on the effect of X-irradiation, ultraviolet irradiation, and 5-fluorodeoxyuridine on chloroplast replication and on chloroplast and nuclear DNA synthesis was obtained from cultured spinach leaf discs. It appears that chloroplast replication is more resistant to ionizing radiation than cell division and can proceed in the absence of nuclear DNA synthesis and greatly reduced chloroplast DNA synthesis. Images PMID:16659421

  1. Plastid Ontogeny during Petal Development in Arabidopsis1

    PubMed Central

    Pyke, Kevin A.; Page, Anton M.

    1998-01-01

    Imaging of chlorophyll autofluorescence by confocal microscopy in intact whole petals of Arabidopsis thaliana has been used to analyze chloroplast development and redifferentiation during petal development. Young petals dissected from unopened buds contained green chloroplasts throughout their structure, but as the upper part of the petal lamina developed and expanded, plastids lost their chlorophyll and redifferentiated into leukoplasts, resulting in a white petal blade. Normal green chloroplasts remained in the stalk of the mature petal. In epidermal cells the chloroplasts were normal and green, in stark contrast with leaf epidermal cell plastids. In addition, the majority of these chloroplasts had dumbbell shapes, typical of dividing chloroplasts, and we suggest that the rapid expansion of petal epidermal cells may be a trigger for the initiation of chloroplast division. In petals of the Arabidopsis plastid division mutant arc6, the conversion of chloroplasts into leukoplasts was unaffected in spite of the greatly enlarged size and reduced number of arc6 chloroplasts in cells in the petal base, resulting in few enlarged leukoplasts in cells from the white lamina of arc6 petals. PMID:9489024

  2. Ozone effects on the ultrastructure of peatland plants: Sphagnum mosses, Vaccinium oxycoccus, Andromeda polifolia and Eriophorum vaginatum.

    PubMed

    Rinnan, Riikka; Holopainen, Toini

    2004-10-01

    Ozone effects on peatland vegetation are poorly understood. Since stress responses are often first visible in cell ultrastructure, electron microscopy was used to assess the sensitivity of common peatland plants to elevated ozone concentrations. Three moss species (Sphagnum angustifolium, S. magellanicum and S. papillosum), a graminoid (Eriophorum vaginatum) and two dwarf shrubs (Vaccinium oxycoccus and Andromeda polifolia), all growing within an intact canopy on peat monoliths, were exposed to a concentration of 0, 50, 100 or 150 ppb ozone in two separate growth chamber experiments simulating either summer or autumn conditions in central Finland. After a 4- or 5-week-long exposure, samples were photographed in a transmission electron microscope and analysed quantitatively using image processing software. In the chlorophyllose cells of the Sphagnum moss leaves from the capitulum, ozone exposure led to a decrease in chloroplast area and in granum stack thickness and various changes in plastoglobuli and cell wall thickness, depending on the species and the experiment. In E. vaginatum, ozone exposure significantly reduced chloroplast cross-sectional areas and the amount of starch, whereas there were no clear changes in the plastoglobuli. In the dwarf shrubs, ozone induced thickening of the cell wall and an increase in the size of plastoglobuli under summer conditions. In contrast, under autumn conditions the cell wall thickness remained unchanged but ozone exposure led to a transient increase in the chloroplast and starch areas, and in the number and size of plastoglobuli. Ozone responses in the Sphagnum mosses were comparable to typical ozone stress symptoms of higher plants, and indicated sensitivity especially in S. angustifolium. The responses in the dwarf shrubs suggest stimulation of photosynthesis by low ozone concentrations and ozone sensitivity only under cool autumn conditions.

  3. Inactivation and deficiency of core proteins of photosystems I and II caused by genetical phylloquinone and plastoquinone deficiency but retained lamellar structure in a T-DNA mutant of Arabidopsis.

    PubMed

    Shimada, Hiroshi; Ohno, Ryoichi; Shibata, Masaru; Ikegami, Isamu; Onai, Kiyoshi; Ohto, Masa-aki; Takamiya, Ken-ichiro

    2005-02-01

    Phylloquinone, a substituted 1,4-naphthoquinone with an 18-carbon-saturated phytyl tail, functions as a bound one-electron carrier cofactor at the A1 site of photosystem I (PSI). A Feldmann tag line mutant, no. 2755 (designated as abc4 hereafter), showed pale-green young leaves and white old leaves. The mutated nuclear gene encoded 1,4-dihydroxy-2-naphtoic acid phytyltransferase, an enzyme of phylloquinone biosynthesis, and high-performance liquid chromatography analysis revealed that the abc4 mutant contained no phylloquinone, and only about 3% plastoquinone. Photooxidation of P700 of PSI in the abc4 mutant was not observed, and reduced-versus-oxidized difference spectroscopy indicated that the abc4 mutant had no P700. The maximum quantum yield of photosystem II (PSII) in the abc4 mutant was much decreased, and the electron transfer from PSII to PSI in the abc4 mutant did not occur. For the pale-green leaves of the abc4 mutant plant, the ultrastructure of the chloroplasts was almost the same as that of the wild-type plant. However, the chloroplasts in the albino leaves of the mutant were smaller and had a lot of grana thylakoids and few stroma thylakoids. The amounts of PSI and PSII core subunits in the abc4 mutant were significantly decreased compared with those in the wild type. These results suggested that a deficiency of phylloquinone in PSI caused the abolishment of PSI and a partial defect of PSII due to a significant decrease of plastoquinone, but did not influence the ultrastructure of the chloroplasts in young leaves.

  4. Photosynthetic Adaptation to Length of Day Is Dependent on S-Sulfocysteine Synthase Activity in the Thylakoid Lumen1[W

    PubMed Central

    Bermúdez, María Ángeles; Galmés, Jeroni; Moreno, Inmaculada; Mullineaux, Philip M.; Gotor, Cecilia; Romero, Luis C.

    2012-01-01

    Arabidopsis (Arabidopsis thaliana) chloroplasts contain two O-acetyl-serine(thiol)lyase (OASTL) homologs, OAS-B, which is an authentic OASTL, and CS26, which has S-sulfocysteine synthase activity. In contrast with OAS-B, the loss of CS26 function resulted in dramatic phenotypic changes, which were dependent on the light treatment. We have performed a detailed characterization of the photosynthetic and chlorophyll fluorescence parameters in cs26 plants compared with those of wild-type plants under short-day growth conditions (SD) and long-day growth conditions (LD). Under LD, the photosynthetic characterization, which was based on substomatal CO2 concentrations and CO2 concentration in the chloroplast curves, revealed significant reductions in most of the photosynthetic parameters for cs26, which were unchanged under SD. These parameters included net CO2 assimilation rate, mesophyll conductance, and mitochondrial respiration at darkness. The analysis also showed that cs26 under LD required more absorbed quanta per driven electron flux and fixed CO2. The nonphotochemical quenching values suggested that in cs26 plants, the excess electrons that are not used in photochemical reactions may form reactive oxygen species. A photoinhibitory effect was confirmed by the background fluorescence signal values under LD and SD, which were higher in young leaves compared with mature ones under SD. To hypothesize the role of CS26 in relation to the photosynthetic machinery, we addressed its location inside of the chloroplast. The activity determination and localization analyses that were performed using immunoblotting indicated the presence of an active CS26 enzyme exclusively in the thylakoid lumen. This finding was reinforced by the observation of marked alterations in many lumenal proteins in the cs26 mutant compared with the wild type. PMID:22829322

  5. Mutational Dynamics of Aroid Chloroplast Genomes

    PubMed Central

    Ahmed, Ibrar; Biggs, Patrick J.; Matthews, Peter J.; Collins, Lesley J.; Hendy, Michael D.; Lockhart, Peter J.

    2012-01-01

    A characteristic feature of eukaryote and prokaryote genomes is the co-occurrence of nucleotide substitution and insertion/deletion (indel) mutations. Although similar observations have also been made for chloroplast DNA, genome-wide associations have not been reported. We determined the chloroplast genome sequences for two morphotypes of taro (Colocasia esculenta; family Araceae) and compared these with four publicly available aroid chloroplast genomes. Here, we report the extent of genome-wide association between direct and inverted repeats, indels, and substitutions in these aroid chloroplast genomes. We suggest that alternative but not mutually exclusive hypotheses explain the mutational dynamics of chloroplast genome evolution. PMID:23204304

  6. Short-term regulation and alternative pathways of photosynthetic electron transport in Hibiscus rosa-sinensis leaves.

    PubMed

    Trubitsin, Boris V; Vershubskii, Alexey V; Priklonskii, Vladimir I; Tikhonov, Alexander N

    2015-11-01

    In this work, using the EPR and PAM-fluorometry methods, we have studied induction events of photosynthetic electron transport in Hibiscus rosa-sinensis leaves. The methods used are complementary, providing efficient tools for in situ monitoring of P700 redox transients and photochemical activity of photosystem II (PSII). The induction of P700(+) in dark-adapted leaves is characterized by the multiphase kinetics with a lag-phase, which duration elongates with the dark-adaptation time. Analyzing effects of the uncoupler monensin and artificial electron carrier methylviologen (MV) on photooxidation of P700 and slow induction of chlorophyll a fluorescence (SIF), we could ascribe different phases of transient kinetics of electron transport processes in dark-adapted leaves to the following regulatory mechanisms: (i) acceleration of electron transfer on the acceptor side of PSI, (ii) pH-dependent modulation of the intersystem electron flow, and (iii) re-distribution of electron fluxes between alternative (linear, cyclic, and pseudocyclic) pathways. Monensin significantly decreases a level of P700(+) and inhibits SIF. MV, which mediates electron flow from PSI to O2 with consequent formation of H2O2, promotes a rapid photooxidation of P700 without any lag-phase peculiar to untreated leaves. MV-mediated water-water cycle (H2O→PSII→PSI→MV→O2→H2O2→H2O) is accompanied by generation of ascorbate free radicals. This suggests that the ascorbate peroxidase system of defense against reactive oxygen species is active in chloroplasts of H. rosa-sinensis leaves. In DCMU-treated chloroplasts with inhibited PSII, the contribution of cyclic electron flow is insignificant as compared to linear electron flow. For analysis of induction events, we have simulated electron transport processes within the framework of our generalized mathematical model of oxygenic photosynthesis, which takes into account pH-dependent mechanisms of electron transport control and re-distribution of electron fluxes between alternative pathways. The model adequately describes the main peculiarities of P700(+) induction and dynamics of the intersystem electron transport. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Studies on the nature of the primary reactions of photosystem II in photosynthesis. I. The electrochromic 515 nm absorption change as an appropriate indicator for the functional state of the photochemical active centers of system II in DCMY poisoned chloroplasts.

    PubMed

    Renger, G; Wolff, C

    1975-01-01

    The field indicating electrochromic 515 nm absorption change has been measured under different excitation conditions in DCMU poisoned chloroplasts in the presence of benzylviologen as electron acceptor. It has been found: 1. The amplitude of the 515 nm absorption change is nearly completely suppressed under repetitive single turnover flash excitation conditions which kinetically block the back reaction around system II (P. Bennoun, Biochim. Biophys. Acta 216, 357 [1970]). 2. The amplitude of the 515 nm absorption change measured under repetitive single turnover flash excitation conditions which allow the completion of the back reaction during the dark time between the flashes (measuring light beam switched off) amounts in the presence of 2 mum DCMU nearly 50% of the electrochromic 515 nm amplitude obtained in the absence of DCMU. In DCMU poisoned chloroplasts this amplitude is significantly decreased by hydroxylaminhydrochloride, but nearly doubled in the presence of CDIP+ascorbate. 3. The dependence of the 515 nm amplitude on the time td between the flashes kinetically resembles the back reaction around system ?II. The time course of the back reaction can be fairly described either by a second order reaction or by a two phase exponential kinetics. 4. 1,3-dinitrobenzene (DNE) or alpha-bromo-alpha-benzylmalodinitril (BBMD) reduce the 515 nm amplitude in DCMU poisoned chloroplasts, but seem to influecne only slightly the kinetics of the back reaction. 5. The dependence of the 515 nm amplitude on the flash light intensity (the amplitude normalized to 1 at 100% flash light intensity) is not changed by DNB. Based on these experimental data it has been concluded that in DCMU poisoned chloroplasts the amplitude of the 515 nm absorption change reflects the functional state of photosystem II centers (designated as photoelectric dipole generators II) under suitable excitation conditions. Furthermore, it is inferred that in DCMU poisoned chlorplasts the photoelectric dipole generators II either cooperate (probably as twin-pairs) or exist in two functionally different forms. With respect to BBMD and DNB it is assumed that these agents transform the phtooelectric dipole generators II into powerful nonphotochemical quenchers, which significantly reduce the variable fluorescence in DCMU-poisoned chloroplasts.

  8. Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors.

    PubMed Central

    Daniell, H; Vivekananda, J; Nielsen, B L; Ye, G N; Tewari, K K; Sanford, J C

    1990-01-01

    Expression of chloramphenicol acetyltransferase (cat) by suitable vectors in chloroplasts of cultured tobacco cells, delivered by high-velocity microprojectiles, is reported here. Several chloroplast expression vectors containing bacterial cat genes, placed under the control of either psbA promoter region from pea (pHD series) or rbcL promoter region from maize (pAC series) have been used in this study. In addition, chloroplast expression vectors containing replicon fragments from pea, tobacco, or maize chloroplast DNA have also been tested for efficiency and duration of cat expression in chloroplasts of tobacco cells. Cultured NT1 tobacco cells collected on filter papers were bombarded with tungsten particles coated with pUC118 (negative control), 35S-CAT (nuclear expression vector), pHD312 (repliconless chloroplast expression vector), and pHD407, pACp18, and pACp19 (chloroplast expression vectors with replicon). Sonic extracts of cells bombarded with pUC118 showed no detectable cat activity in the autoradiograms. Nuclear expression of cat reached two-thirds of the maximal 48 hr after bombardment and the maximal at 72 hr. Cells bombarded with chloroplast expression vectors showed a low level of expression until 48 hr of incubation. A dramatic increase in the expression of cat was observed 24 hr after the addition of fresh medium to cultured cells in samples bombarded with pHD407; the repliconless vector pHD312 showed about 50% of this maximal activity. The expression of nuclear cat and the repliconless chloroplast vector decreased after 72 hr, but a high level of chloroplast cat expression was maintained in cells bombarded with pHD407. Organelle-specific expression of cat in appropriate compartments was checked by introducing various plasmid constructions into tobacco protoplasts by electroporation. Although the nuclear expression vector 35S-CAT showed expression of cat, no activity was observed with any chloroplast vectors. Images PMID:2404285

  9. Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors.

    PubMed

    Daniell, H; Vivekananda, J; Nielsen, B L; Ye, G N; Tewari, K K; Sanford, J C

    1990-01-01

    Expression of chloramphenicol acetyltransferase (cat) by suitable vectors in chloroplasts of cultured tobacco cells, delivered by high-velocity microprojectiles, is reported here. Several chloroplast expression vectors containing bacterial cat genes, placed under the control of either psbA promoter region from pea (pHD series) or rbcL promoter region from maize (pAC series) have been used in this study. In addition, chloroplast expression vectors containing replicon fragments from pea, tobacco, or maize chloroplast DNA have also been tested for efficiency and duration of cat expression in chloroplasts of tobacco cells. Cultured NT1 tobacco cells collected on filter papers were bombarded with tungsten particles coated with pUC118 (negative control), 35S-CAT (nuclear expression vector), pHD312 (repliconless chloroplast expression vector), and pHD407, pACp18, and pACp19 (chloroplast expression vectors with replicon). Sonic extracts of cells bombarded with pUC118 showed no detectable cat activity in the autoradiograms. Nuclear expression of cat reached two-thirds of the maximal 48 hr after bombardment and the maximal at 72 hr. Cells bombarded with chloroplast expression vectors showed a low level of expression until 48 hr of incubation. A dramatic increase in the expression of cat was observed 24 hr after the addition of fresh medium to cultured cells in samples bombarded with pHD407; the repliconless vector pHD312 showed about 50% of this maximal activity. The expression of nuclear cat and the repliconless chloroplast vector decreased after 72 hr, but a high level of chloroplast cat expression was maintained in cells bombarded with pHD407. Organelle-specific expression of cat in appropriate compartments was checked by introducing various plasmid constructions into tobacco protoplasts by electroporation. Although the nuclear expression vector 35S-CAT showed expression of cat, no activity was observed with any chloroplast vectors.

  10. A High-Resolution Gene Map of the Chloroplast Genome of the Red Alga Porphyra purpurea.

    PubMed Central

    Reith, M; Munholland, J

    1993-01-01

    Extensive DNA sequencing of the chloroplast genome of the red alga Porphyra purpurea has resulted in the detection of more than 125 genes. Fifty-eight (approximately 46%) of these genes are not found on the chloroplast genomes of land plants. These include genes encoding 17 photosynthetic proteins, three tRNAs, and nine ribosomal proteins. In addition, nine genes encoding proteins related to biosynthetic functions, six genes encoding proteins involved in gene expression, and at least five genes encoding miscellaneous proteins are among those not known to be located on land plant chloroplast genomes. The increased coding capacity of the P. purpurea chloroplast genome, along with other characteristics such as the absence of introns and the conservation of ancestral operons, demonstrate the primitive nature of the P. purpurea chloroplast genome. In addition, evidence for a monophyletic origin of chloroplasts is suggested by the identification of two groups of genes that are clustered in chloroplast genomes but not in cyanobacteria. PMID:12271072

  11. Global RNA association with the transcriptionally active chromosome of chloroplasts.

    PubMed

    Lehniger, Marie-Kristin; Finster, Sabrina; Melonek, Joanna; Oetke, Svenja; Krupinska, Karin; Schmitz-Linneweber, Christian

    2017-10-01

    Processed chloroplast RNAs are co-enriched with preparations of the chloroplast transcriptionally active chromosome. Chloroplast genomes are organized as a polyploid DNA-protein structure called the nucleoid. Transcriptionally active chloroplast DNA together with tightly bound protein factors can be purified by gel filtration as a functional entity called the transcriptionally active chromosome (TAC). Previous proteomics analyses of nucleoids and of TACs demonstrated a considerable overlap in protein composition including RNA binding proteins. Therefore the RNA content of TAC preparations from Nicotiana tabacum was determined using whole genome tiling arrays. A large number of chloroplast RNAs was found to be associated with the TAC. The pattern of RNAs attached to the TAC consists of RNAs produced by different chloroplast RNA polymerases and differs from the pattern of RNA found in input controls. An analysis of RNA splicing and RNA editing of selected RNA species demonstrated that TAC-associated RNAs are processed to a similar extent as the RNA in input controls. Thus, TAC fractions contain a specific subset of the processed chloroplast transcriptome.

  12. Biophotolysis systems for hydrogen production

    NASA Astrophysics Data System (ADS)

    Rao, K. K.; Adams, M. W. W.; Morris, P.; Hall, D. O.; Gisby, P. E.

    Model systems containing natural and sythetic catalysts were constructed for the production of H2 from water using visible solar radiation as the energy source. Chloroplast membranes were used for light absorption and photodecomposition of water, ferredoxin, flavodoxin, cytochrome, viologen dyes, 'Jeevanu' particles or synthetic clusters containing Fe-Mo-S centers were used as electron transfer catalysts, and hydrogenase or PtO2 served as the proton activator. We have also investigated the use of aqueous systems with proflavine as the light activator and artificial electron donors for subsequent production of H2 when coupled to electron mediators and hydrogenase (or Pt). The characteristics, relative merits and defects of these systems are discussed.

  13. Light-stimulated Production of a Chloroplast-localized System for Protein Synthesis in Euglena gracilis1

    PubMed Central

    Reger, Bonnie J.; Smillie, R. M.; Fuller, R. C.

    1972-01-01

    Chloroplasts and proplastids isolated respectively from autotrophic and dark-adapted cells of Euglena gracilis strain Z incorporated 14C-l-leucine into protein. In each case the incorporation was inhibited by chloramphenicol (50% inhibition at about 5 μg/ml for chloroplasts and 30 μg/ml for proplastids), but not appreciably by cycloheximide at concentrations up to 200 μg/ml. Chloroplasts from autotrophic cells incorporated leucine into protein at rates of about 10 pg leucine per mg RNA in one minute, but isolated proplastids were only 5 to 10% as active. When dark-adapted cells were illuminated there was little increase in the activity of the chloroplast fraction during the first 12 hr. Between 12 and 24 hr, when there was a rapid increase in the rate of synthesis of chlorophyll, the capacity of the chloroplast fraction for protein synthesis increased markedly. Suppression of the formation of a chloroplast-localized system for protein synthesis by treating the cells with chloramphenicol and the lack of such an effect with cycloheximide suggests that certain of the proteins which form part of a functional chloroplast system for protein synthesis are themselves synthesized within the chloroplasts. PMID:16658126

  14. Chloroplast Osmotic Adjustment and Water Stress Effects on Photosynthesis 1

    PubMed Central

    Gupta, Ashima Sen; Berkowitz, Gerald A.

    1988-01-01

    Previous studies have suggested that chloroplast stromal volume reduction may mediate the inhibition of photosynthesis under water stress. In this study, the effects of spinach (Spinacia oleracea, var `Winter Bloomsdale') plant water deficits on chloroplast photosynthetic capacity, solute concentrations in chloroplasts, and chloroplast volume were studied. In situ (gas exchange) and in vitro measurements indicated that chloroplast photosynthetic capacity was maintained during initial leaf water potential (Ψw) and relative water content (RWC) decline. During the latter part of the stress period, photosynthesis dropped precipitously. Chloroplast stromal volume apparently remained constant during the initial period of decline in RWC, but as leaf Ψw reached −1.2 megapascals, stromal volume began to decline. The apparent maintenance of stromal volume over the initial RWC decline during a stress cycle suggested that chloroplasts are capable of osmotic adjustment in response to leaf water deficits. This hypothesis was confirmed by measuring chloroplast solute levels, which increased during stress. The results of these experiments suggest that stromal volume reduction in situ may be associated with loss of photosynthetic capacity and that one mechanism of photosynthetic acclimation to low Ψw may involve stromal volume maintenance. PMID:16666266

  15. Impaired Mitochondrial Transcription Termination Disrupts the Stromal Redox Poise in Chlamydomonas1[OPEN

    PubMed Central

    Uhmeyer, Andreas

    2017-01-01

    In photosynthetic eukaryotes, the metabolite exchange between chloroplast and mitochondria ensures efficient photosynthesis under saturating light conditions. The Chlamydomonas reinhardtii mutant stm6 is devoid of the mitochondrial transcription termination factor MOC1 and aberrantly expresses the mitochondrial genome, resulting in enhanced photosynthetic hydrogen production and diminished light tolerance. We analyzed the modulation of mitochondrial and chlororespiration during the acclimation of stm6 and the MOC1-complemented strain to excess light. Although light stress stimulated mitochondrial respiration via the energy-conserving cytochrome c pathway in both strains, the mutant was unable to fine-tune the expression and activity of oxidative phosphorylation complex I in excess light, which was accompanied by an increased mitochondrial respiration via the alternative oxidase pathway. Furthermore, stm6 failed to fully activate chlororespiration and cyclic electron flow due to a more oxidized state of the chloroplast stroma, which is caused by an increased mitochondrial electron sink capacity. Increased susceptibility to photoinhibition of PSII in stm6 demonstrates that the MOC1-dependent modulation of mitochondrial respiration helps control the stromal redox poise as a crucial part of high-light acclimation in C. reinhardtii. PMID:28500267

  16. Chloroplast Movement May Impact Plant Phenotyping and Photochemistry Results

    NASA Astrophysics Data System (ADS)

    Malas, J.; Pleban, J. R.; Wang, D. R.; Riley, C.; Mackay, D. S.

    2017-12-01

    Investigating phenotypic responses of crop species across environmental conditions is vital to improving agricultural productivity. Crop production is closely linked with photosynthetic activity, which can be evaluated using parameters such as relative chlorophyll, SPAD, and variable chlorophyll fluorescence. Recently, a handheld device known as the MultispeQ emerged on the market as an open-source instrument that aims to provide high-output, high-quality field data at a low cost to the plant research community. MultispeQ takes measurements of both environmental conditions (light intensity, temperature, humidity, etc.) and photosynthetic parameters (relative chlorophyll, SPAD, photosystem II quantum efficiency (FII), and non-photochemical quenching (NPQ)). Data are automatically backed up and shared on the PhotosynQ network, which serves as a collaborative platform for researchers and professionals. Here, we used the instrument to quantify photosynthetic time-courses of two Brassica rapa genotypes in response to two contrasting nutrient management strategies (Control; High Nitrogen). Previous research found that chloroplast movement is one strategy plants use to optimize photosynthesis across varying light conditions. We were able to detect chloroplast movement throughout the day using the MultispeQ device. Our results support the idea that chloroplast movement serves both as an intrinsic feature of the circadian clock and as a light avoidance strategy. Under low light conditions (PAR 0-300) more light at the near-infrared and red regions was absorbed than under higher light conditions (PAR 500-800). In one genotype by treatment combination, absorbance at 730nm was around 60% at low light, versus only 30% at high light conditions. In light of our results that relative chlorophyll may change throughout a day, we suggest that it is important to take note of these effects when collecting photosynthesis efficiency data in order to avoid bias in measurements. We also offer some technical suggestions for making measurements with the MultispeQ device (e.g., taking multiple samples on the same leaf to minimize noise and sampling leaves that are oriented most towards the source of light). Further research is needed to understand how chloroplast movement affects chlorophyll fluorescence parameters.

  17. Phylogeny of five species of Nusuttodinium gen. nov. (Dinophyceae), a genus of unarmoured kleptoplastidic dinoflagellates.

    PubMed

    Takano, Yoshihito; Yamaguchi, Haruyo; Inouye, Isao; Moestrup, Øjvind; Horiguchi, Takeo

    2014-12-01

    Cells of five unarmoured kleptoplastidic dinoflagellates, Amphidinium latum, Amphidinium poecilochroum, Gymnodinium amphidinioides, Gymnodinium acidotum and Gymnodinium aeruginosum were observed under light and/or scanning electron microscopy and subjected to single-cell PCR. The SSU rDNA and the partial LSU rDNA of all the examined species were sequenced, and the SSU rDNA of G. myriopyrenoides was sequenced. Phylogenetic analyses revealed that the unarmoured kleptoplastidic species formed a monophyletic clade within the Gymnodinium-clade sensu Daugbjerg et al. (2000). The sister taxa for this clade were Gymnodinium palustre and Spiniferodinium galeiforme, both of which possess brown-coloured chloroplasts. The results indicated that acquisition of kleptoplastidy in these unarmoured dinoflagellates was a single event and that these unarmoured kleptoplastidic dinoflagellates may have evolved from a form with permanent chloroplasts. Molecular trees suggested that the acquisition of kleptoplastidy took place in a marine habitat and later some species colonized the freshwater habitat. Because these unarmoured kleptoplastidic dinoflagellates are monophyletic and characterized by distinct morphological and cytological features (including the presence of the same type of apical groove, absence of nuclear chambers in the nuclear envelope, absence of genuine chloroplasts, and the possession of kleptochloroplasts), we propose the establishment of a new genus, Nusuttodinium, to accommodate all these dinoflagellates. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Enhanced susceptibility of photosynthesis to low-temperature photoinhibition due to interruption of chill-induced increase of S-adenosylmethionine decarboxylase activity in leaves of spinach (Spinacia oleracea L.).

    PubMed

    He, Lixiong; Nada, Kazuyoshi; Kasukabe, Yoshihisa; Tachibana, Shoji

    2002-02-01

    The possible involvement of polyamines in the chilling tolerance of spinach (Spinacia oleracea L.) was investigated focusing on photosynthesis. During chilling at 8/5C (day/night) for 6 d, S-adenosylmethionine decarboxylase (SAMDC) activity increased significantly in leaves in parallel with the increase in putrescine and spermidine (Spd) content in leaves and chloroplasts. Treatment of leaves with methylglyoxal-bis(guanylhydrazone) (MGBG), an SAMDC inhibitor, resulted in the deterioration of plant growth and photosynthesis under chilling conditions, which was reversed by the concomitant treatment with Spd through the roots. Plants treated with MGBG showed lower photochemical efficiency of PSII than either the control or plants treated with MGBG plus Spd during chilling and even after transfer to warm conditions, suggesting an increase of photoinhibition due to low Spd in chloroplasts. Indeed, MGBG-treated plants had much lower activities of thylakoid electron transport and enzymes in carbon metabolism as well as higher degrees of lipid peroxidation of thylakoid membranes compared to the control. These results indicate that the enhanced activity of SAMDC with a consequential rise of Spd in chloroplasts is crucial for the cold acclimation of the photosynthetic apparatus in spinach leaves.

  19. Arabidopsis ILITHYIA protein is necessary for proper chloroplast biogenesis and root development independent of eIF2α phosphorylation.

    PubMed

    Faus, I; Niñoles, R; Kesari, V; Llabata, P; Tam, E; Nebauer, S G; Santiago, J; Hauser, M T; Gadea, J

    One of the main mechanisms blocking translation after stress situations is mediated by phosphorylation of the α-subunit of the eukaryotic initiation factor 2 (eIF2), performed in Arabidopsis by the protein kinase GCN2 which interacts and is activated by ILITHYIA(ILA). ILA is involved in plant immunity and its mutant lines present phenotypes not shared by the gcn2 mutants. The functional link between these two genes remains elusive in plants. In this study, we show that, although both ILA and GCN2 genes are necessary to mediate eIF2α phosphorylation upon treatments with the aromatic amino acid biosynthesis inhibitor glyphosate, their mutants develop distinct root and chloroplast phenotypes. Electron microscopy experiments reveal that ila mutants, but not gcn2, are affected in chloroplast biogenesis, explaining the macroscopic phenotype previously observed for these mutants. ila3 mutants present a complex transcriptional reprogramming affecting defense responses, photosynthesis and protein folding, among others. Double mutant analyses suggest that ILA has a distinct function which is independent of GCN2 and eIF2α phosphorylation. These results suggest that these two genes may have common but also distinct functions in Arabidopsis. Copyright © 2018 Elsevier GmbH. All rights reserved.

  20. Co-localization of glyceraldehyde-3-phosphate dehydrogenase with ferredoxin-NADP reductase in pea leaf chloroplasts

    PubMed Central

    Negi, Surendra S.; Carol, Andrew A.; Pandya, Shivangi; Braun, Werner; Anderson, Louise E.

    2008-01-01

    In immunogold double-labeling of pea leaf thin sections with antibodies raised against ferredoxin-NADP reductase (EC 1.18.1.2, FNR) and antibodies directed against the A or B subunits of the NADP-linked glyceraldehyde-3-P dehydrogenase (GAPD) (EC 1.2.1.13), many small and large gold particles were found together over the chloroplasts. Nearest neighbor analysis of the distribution of the gold particles indicates that FNR and the NADP-linked GAPD are co-localized, in situ. This suggests that FNR might carry FADH2 or NADPH from the thylakoid membrane to GAPD, or that ferredoxin might carry electrons to FNR co-localized with GAPD in the stroma. Crystal structures of the spinach enzymes are available. When they are docked computationally, the proteins appear, as modeled, to be able to form at least two different complexes. One involves a single GAPD monomer and an FNR monomer (or dimer). The amino acid residues located at the putative interface are highly conserved on the chloroplastic forms of both enzymes. The other potential complex involves the GAPD A2B2 tetramer and an FNR monomer (or dimer). The interface residues are conserved in this model as well. Ferredoxin is able to interact with FNR in either complex. PMID:17945509

  1. Utilization of radiation technique on the saccharification and fermentation of biomass

    NASA Astrophysics Data System (ADS)

    Kaetsu, I.; Kumakura, M.; Fujimura, T.; Yoshii, F.; Kojima, T.; Tamada, M.

    The application of irradiation technique to the process of saccharification and subsequent fermentation of cellulosic wastes such as chaff and rice straw to obtain ethanol, was investigated. It was found that when waste raw materials were irradiated by ?-ray or electron beam, they became accessible to the subsequent enzymatic saccharification reaction. Irradiation of 10 7-10 8 Rad was enough for this effect. Some kind of additives reduced necessary dosage for this pretreatment. Cellulase, Trichoderma reesei which produce cellulase, and yeast were immobilized as biocatalysts for biomass conversion by radiation-induced polymerization of glass-forming monomer at low temperature. The immobilized cellulase showed almost same activity of glucose production as the native cellulase. Continuous saccharification reaction was carried out by using the immobilized cellulase. The immobilized Trichoderma reesei and the immobilized yeast showed almost same activity as the intact biocatalysts. It was concluded that the continuous saccharification and subsequent fermentation could be carried out effectively by using the immobilized biocatalysts. Spinach chloroplasts were immobilized by the same method as the first step for the conversion of water into hydrogen gas using solar energy. The immobilized chloroplasts kept the O 2 evolution activity in storage more than 30 days at 4°C. Thermostatility of chloroplasts was also improved greatly by the immobilization.

  2. Chloroplast Omp85 proteins change orientation during evolution

    PubMed Central

    Sommer, Maik S.; Daum, Bertram; Gross, Lucia E.; Weis, Benjamin L. M.; Mirus, Oliver; Abram, Lars; Maier, Uwe-G.; Kühlbrandt, Werner; Schleiff, Enrico

    2011-01-01

    The majority of outer membrane proteins (OMPs) from Gram-negative bacteria and many of mitochondria and chloroplasts are β-barrels. Insertion and assembly of these proteins are catalyzed by the Omp85 protein family in a seemingly conserved process. All members of this family exhibit a characteristic N-terminal polypeptide-transport–associated (POTRA) and a C-terminal 16-stranded β-barrel domain. In plants, two phylogenetically distinct and essential Omp85's exist in the chloroplast outer membrane, namely Toc75-III and Toc75-V. Whereas Toc75-V, similar to the mitochondrial Sam50, is thought to possess the original bacterial function, its homolog, Toc75-III, evolved to the pore-forming unit of the TOC translocon for preprotein import. In all current models of OMP biogenesis and preprotein translocation, a topology of Omp85 with the POTRA domain in the periplasm or intermembrane space is assumed. Using self-assembly GFP-based in vivo experiments and in situ topology studies by electron cryotomography, we show that the POTRA domains of both Toc75-III and Toc75-V are exposed to the cytoplasm. This unexpected finding explains many experimental observations and requires a reevaluation of current models of OMP biogenesis and TOC complex function. PMID:21825140

  3. High Yields of Hydrogen Production Induced by Meta-Substituted Dichlorophenols Biodegradation from the Green Alga Scenedesmus obliquus

    PubMed Central

    Papazi, Aikaterini; Andronis, Efthimios; Ioannidis, Nikolaos E.; Chaniotakis, Nikolaos; Kotzabasis, Kiriakos

    2012-01-01

    Hydrogen is a highly promising energy source with important social and economic implications. The ability of green algae to produce photosynthetic hydrogen under anaerobic conditions has been known for years. However, until today the yield of production has been very low, limiting an industrial scale use. In the present paper, 73 years after the first report on H2-production from green algae, we present a combinational biological system where the biodegradation procedure of one meta-substituted dichlorophenol (m-dcp) is the key element for maintaining continuous and high rate H2-production (>100 times higher than previously reported) in chloroplasts and mitochondria of the green alga Scenedesmus obliquus. In particular, we report that reduced m-dcps (biodegradation intermediates) mimic endogenous electron and proton carriers in chloroplasts and mitochondria, inhibit Photosystem II (PSII) activity (and therefore O2 production) and enhance Photosystem I (PSI) and hydrogenase activity. In addition, we show that there are some indications for hydrogen production from sources other than chloroplasts in Scenedesmus obliquus. The regulation of these multistage and highly evolved redox pathways leads to high yields of hydrogen production and paves the way for an efficient application to industrial scale use, utilizing simple energy sources and one meta-substituted dichlorophenol as regulating elements. PMID:23145057

  4. Mesophyll cells of C4 plants have fewer chloroplasts than those of closely related C3 plants.

    PubMed

    Stata, Matt; Sage, Tammy L; Rennie, Troy D; Khoshravesh, Roxana; Sultmanis, Stefanie; Khaikin, Yannay; Ludwig, Martha; Sage, Rowan F

    2014-11-01

    The evolution of C(4) photosynthesis from C(3) ancestors eliminates ribulose bisphosphate carboxylation in the mesophyll (M) cell chloroplast while activating phosphoenolpyruvate (PEP) carboxylation in the cytosol. These changes may lead to fewer chloroplasts and different chloroplast positioning within M cells. To evaluate these possibilities, we compared chloroplast number, size and position in M cells of closely related C(3), C(3) -C(4) intermediate and C(4) species from 12 lineages of C(4) evolution. All C(3) species had more chloroplasts per M cell area than their C(4) relatives in high-light growth conditions. C(3) species also had higher chloroplast coverage of the M cell periphery than C(4) species, particularly opposite intercellular air spaces. In M cells from 10 of the 12 C(4) lineages, a greater fraction of the chloroplast envelope was pulled away from the plasmalemma in the C(4) species than their C(3) relatives. C(3) -C(4) intermediate species generally exhibited similar patterns as their C(3) relatives. We interpret these results to reflect adaptive shifts that facilitate efficient C(4) function by enhancing diffusive access to the site of primary carbon fixation in the cytosol. Fewer chloroplasts in C(4) M cells would also reduce shading of the bundle sheath chloroplasts, which also generate energy required by C(4) photosynthesis. © 2014 John Wiley & Sons Ltd.

  5. REDUCED CHLOROPLAST COVERAGE genes from Arabidopsis thaliana help to establish the size of the chloroplast compartment

    DOE PAGES

    Larkin, Robert M.; Stefano, Giovanni; Ruckle, Michael E.; ...

    2016-02-09

    Eukaryotic cells require mechanisms to establish the proportion of cellular volume devoted to particular organelles. These mechanisms are poorly understood. From a screen for plastid-to-nucleus signaling mutants in Arabidopsis thaliana, we cloned a mutant allele of a gene that encodes a protein of unknown function that is homologous to two other Arabidopsis genes of unknown function and Arabidopsis. In contrast to FRIENDLY, these three homologs of FRIENDLY are found only in photosynthetic organisms. Based on these data, we proposed that FRIENDLY expanded into a small gene family to help regulate the energy metabolism of cells that contain both mitochondria andmore » chloroplasts. Indeed, we found that knocking out these genes caused a number of chloroplast phenotypes, including a reduction in the proportion of cellular volume devoted to chloroplasts to 50% of wild type. Thus, we refer to these genes as REDUCED CHLOROPLAST COVERAGE (REC). The size of the chloroplast compartment was reduced most in rec1 mutants. The REC1 protein accumulated in the cytosol and the nucleus. REC1 was excluded from the nucleus when plants were treated with amitrole, which inhibits cell expansion and chloroplast function. Finally, we conclude that REC1 is an extraplastidic protein that helps to establish the size of the chloroplast compartment, and that signals derived from cell expansion or chloroplasts may regulate REC1.« less

  6. Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants.

    PubMed

    Civaň, Peter; Foster, Peter G; Embley, Martin T; Séneca, Ana; Cox, Cymon J

    2014-04-01

    Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes.

  7. Analyses of Charophyte Chloroplast Genomes Help Characterize the Ancestral Chloroplast Genome of Land Plants

    PubMed Central

    Civáň, Peter; Foster, Peter G.; Embley, Martin T.; Séneca, Ana; Cox, Cymon J.

    2014-01-01

    Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes. PMID:24682153

  8. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis)

    USDA-ARS?s Scientific Manuscript database

    Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and ...

  9. Alternative quinone substrates and inhibitors of human electron-transfer flavoprotein-ubiquinone oxidoreductase.

    PubMed Central

    Simkovic, Martin; Frerman, Frank E

    2004-01-01

    Electron-transfer flavoprotein (ETF)-ubiquinone (2,3-dimethoxy-5-methyl-1,4-benzoquinone) oxidoreductase (ETF-QO) is a membrane-bound iron-sulphur flavoprotein that participates in an electron-transport pathway between eleven mitochondrial flavoprotein dehydrogenases and the ubiquinone pool. ETF is the intermediate electron carrier between the dehydrogenases and ETF-QO. The steady-state kinetic constants of human ETF-QO were determined with ubiquinone homologues and analogues that contained saturated n-alkyl substituents at the 6 position. These experiments show that optimal substrates contain a ten-carbon-atom side chain, consistent with a preliminary crystal structure that shows that only the first two of ten isoprene units of co-enzyme Q10 (CoQ10) interact with the protein. Derivatives with saturated alkyl side chains are very good substrates, indicating that, unlike other ubiquinone oxidoreductases, there is little preference for the methyl branches or rigidity of the CoQ side chain. Few of the compounds that inhibit ubiquinone oxidoreductases inhibit ETF-QO. Compounds found to act as inhibitors of ETF-QO include 2-n-heptyl-4-hydroxyquinoline N-oxide, a naphthoquinone analogue, 2-(3-methylpentyl)-4,6-dinitrophenol and pentachlorophenol. 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which inhibits the mitochondrial bc1 complex and the chloroplast b6 f complex in redox-dependent fashion, can serve as an electron acceptor for human ETF-QO. The observation of simple Michaelis-Menten kinetic patterns and a single type of quinone-binding site, determined by fluorescence titrations of the protein with DBMIB and 6-(10-bromodecyl)ubiquinone, are consistent with one ubiquinone-binding site per ETF-QO monomer. PMID:14640977

  10. Alternative quinone substrates and inhibitors of human electron-transfer flavoprotein-ubiquinone oxidoreductase.

    PubMed

    Simkovic, Martin; Frerman, Frank E

    2004-03-01

    Electron-transfer flavoprotein (ETF)-ubiquinone (2,3-dimethoxy-5-methyl-1,4-benzoquinone) oxidoreductase (ETF-QO) is a membrane-bound iron-sulphur flavoprotein that participates in an electron-transport pathway between eleven mitochondrial flavoprotein dehydrogenases and the ubiquinone pool. ETF is the intermediate electron carrier between the dehydrogenases and ETF-QO. The steady-state kinetic constants of human ETF-QO were determined with ubiquinone homologues and analogues that contained saturated n-alkyl substituents at the 6 position. These experiments show that optimal substrates contain a ten-carbon-atom side chain, consistent with a preliminary crystal structure that shows that only the first two of ten isoprene units of co-enzyme Q10 (CoQ10) interact with the protein. Derivatives with saturated alkyl side chains are very good substrates, indicating that, unlike other ubiquinone oxidoreductases, there is little preference for the methyl branches or rigidity of the CoQ side chain. Few of the compounds that inhibit ubiquinone oxidoreductases inhibit ETF-QO. Compounds found to act as inhibitors of ETF-QO include 2-n-heptyl-4-hydroxyquinoline N-oxide, a naphthoquinone analogue, 2-(3-methylpentyl)-4,6-dinitrophenol and pentachlorophenol. 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which inhibits the mitochondrial bc1 complex and the chloroplast b6 f complex in redox-dependent fashion, can serve as an electron acceptor for human ETF-QO. The observation of simple Michaelis-Menten kinetic patterns and a single type of quinone-binding site, determined by fluorescence titrations of the protein with DBMIB and 6-(10-bromodecyl)ubiquinone, are consistent with one ubiquinone-binding site per ETF-QO monomer.

  11. Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts

    DOE PAGES

    Woodson, Jesse D.; Joens, Matthew S.; Sinson, Andrew B.; ...

    2015-10-23

    Energy production by chloroplasts and mitochondria causes constant oxidative damage. A functioning photosynthetic cell requires quality-control mechanisms to turn over and degrade chloroplasts damaged by reactive oxygen species (ROS). Here in this study, we generated a conditionally lethal Arabidopsis mutant that accumulated excess protoporphyrin IX in the chloroplast and produced singlet oxygen. Damaged chloroplasts were subsequently ubiquitinated and selectively degraded. A genetic screen identified the plant U-box 4 (PUB4) E3 ubiquitin ligase as being necessary for this process. pub4-6 mutants had defects in stress adaptation and longevity. As a result, we have identified a signal that leads to the targetedmore » removal of ROS-overproducing chloroplasts.« less

  12. Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodson, Jesse D.; Joens, Matthew S.; Sinson, Andrew B.

    Energy production by chloroplasts and mitochondria causes constant oxidative damage. A functioning photosynthetic cell requires quality-control mechanisms to turn over and degrade chloroplasts damaged by reactive oxygen species (ROS). Here in this study, we generated a conditionally lethal Arabidopsis mutant that accumulated excess protoporphyrin IX in the chloroplast and produced singlet oxygen. Damaged chloroplasts were subsequently ubiquitinated and selectively degraded. A genetic screen identified the plant U-box 4 (PUB4) E3 ubiquitin ligase as being necessary for this process. pub4-6 mutants had defects in stress adaptation and longevity. As a result, we have identified a signal that leads to the targetedmore » removal of ROS-overproducing chloroplasts.« less

  13. The evolution of blue-greens and the origins of chloroplasts

    NASA Technical Reports Server (NTRS)

    Schwartz, R. M.; Dayhoff, M. O.

    1981-01-01

    All of the available molecular data support the theory that the chloroplasts of eukaryote cells were originally free-living blue-greens. Of great interest is what the relationships are between contemporary types of blue-greens and eukaryote chloroplasts and whether the chloroplasts of the various eukaryotes are the result of one or more than one symbiosis. By combining information from phylogenetic trees based on cytochrome c6 and 2Fe-2S ferredoxin sequences, it is shown that the chloroplasts of a number of eukaryote algae as well as the protist Euglena are polyphyletic; the chloroplasts of green algae and the higher plants may be the result of a single symbiosis.

  14. Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation.

    PubMed

    Appenroth, K-J; Krech, K; Keresztes, A; Fischer, W; Koloczek, H

    2010-01-01

    Toxic effects of Ni(2+) on the chloroplasts of the two duckweed species Spirodela polyrhiza, clone SJ and Lemna minor, clone St were investigated according to the ISO 20079 protocol. Ni(2+) induced a transition from chloroplasts to chloro-amyloplasts and amylo-chloroplasts, but not to gerontoplasts, as shown by electron microscopy. The contents of the chlorophylls a and b decreased strongly, whereas that of carotenoids remained approximately constant. Most striking was, however, the accumulation of transitory starch. Bell-shaped dose-response curves showed that Spirodela and Lemna amassed maximum starch contents of approximately 10% and 7%, respectively, on a fresh weight basis. Because Ni(2+) in the concentrations applied does not stimulate photosynthesis, the Ni(2+)-induced starch accumulation indicates that the export of carbohydrates out of the plastids decreased, most probably due to the lower demand of the rest of the cells as a result of the Ni(2+)-dependent inhibition of growth. The half-maximal concentrations for inhibition of the fresh weight increase over the 7-day test period were 3.7 microM and 6.6 microM for Spirodela and Lemna, respectively: Spirodela was thus somewhat more sensitive to the heavy metal. Both species accumulated approximately 3g of Ni(2+) per kg of dry weight after application of 100 microM NiCl(2). Because of their high sensitivity to phytotoxic effects, however, Spirodela and Lemna do not appear to be particularly suitable for phytoremediation of Ni(2+)-contaminated waste water. The high sensitivity to Ni(2+) makes them instead a suitable system for ecotoxicological testing in accordance with the ISO 20079 protocol. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Effect of Water Stress on Cotton Leaves 1

    PubMed Central

    Berlin, Jerry; Quisenberry, J. E.; Bailey, Franklin; Woodworth, Margaret; McMichael, B. L.

    1982-01-01

    Palisade cells from fully expanded leaves from irrigated and nonirrigated, field grown cotton (Gossypium hirsutum L. cv. Paymaster 266) were subjected to a microscopic examination to evaluate the effect of water stress on subcellular structures. The water potential difference between the two treatments was 13 bars at the time of sampling. The dimensions of the palisade cells and their density per unit leaf area were determined by light microscopy. Palisade cells from stressed plants had the same diameter, but were taller than their counterparts in irrigated plants. The density of the palisade cells was the same in both treatments as was the fractional volume of the intercellular space. It was concluded that the reduced leaf area observed in the stressed plants resulted primarily from a mitotic sensitivity to water stress. Further, expansion of palisade cells was not inhibited by the stress imposed in this study. Morphometric analysis of electron micrographs was used to evaluate the subcellular structure of palisade cells from nonstressed and stressed plants. The fractional volumes of cell walls, total cytoplasm, chloroplasts, starch granules, intrachloroplast bodies, mitochondria, peroxisomes, and central vacuoles were determined. The surface densities of grana and stroma lamellae, outer chloroplast membranes, mitochondrial cristae, endoplasmic reticulum and Golgi cisternae were also measured. The number of chloroplasts, mitochondria, and peroxisomes were determined. These data were expressed as actual volumes, areas, and numbers per palisade cell for each treatment. Palisade cells from stressed plants had thinner cell walls, larger central vacuoles and approximately the same amount of cytoplasm compared to cells from nonstressed plants. Within the cytoplasm, stressed plants had more but smaller chloroplasts with increased grana and stroma lamellae surfaces, larger mithchondria with reduced cristae surfaces, smaller peroxisomes and reduced membrane surfaces of endoplasmic reticulum and Golgi cisternae. Images Fig. 1 PMID:16662453

  16. Multiple complexes of nitrogen assimilatory enzymes in spinach chloroplasts: possible mechanisms for the regulation of enzyme function.

    PubMed

    Kimata-Ariga, Yoko; Hase, Toshiharu

    2014-01-01

    Assimilation of nitrogen is an essential biological process for plant growth and productivity. Here we show that three chloroplast enzymes involved in nitrogen assimilation, glutamate synthase (GOGAT), nitrite reductase (NiR) and glutamine synthetase (GS), separately assemble into distinct protein complexes in spinach chloroplasts, as analyzed by western blots under blue native electrophoresis (BN-PAGE). GOGAT and NiR were present not only as monomers, but also as novel complexes with a discrete size (730 kDa) and multiple sizes (>120 kDa), respectively, in the stromal fraction of chloroplasts. These complexes showed the same mobility as each monomer on two-dimensional (2D) SDS-PAGE after BN-PAGE. The 730 kDa complex containing GOGAT dissociated into monomers, and multiple complexes of NiR reversibly converted into monomers, in response to the changes in the pH of the stromal solvent. On the other hand, the bands detected by anti-GS antibody were present not only in stroma as a conventional decameric holoenzyme complex of 420 kDa, but also in thylakoids as a novel complex of 560 kDa. The polypeptide in the 560 kDa complex showed slower mobility than that of the 420 kDa complex on the 2D SDS-PAGE, implying the assembly of distinct GS isoforms or a post-translational modification of the same GS protein. The function of these multiple complexes was evaluated by in-gel GS activity under native conditions and by the binding ability of NiR and GOGAT with their physiological electron donor, ferredoxin. The results indicate that these multiplicities in size and localization of the three nitrogen assimilatory enzymes may be involved in the physiological regulation of their enzyme function, in a similar way as recently described cases of carbon assimilatory enzymes.

  17. The Purification of the Chlamydomonas reinhardtii chloroplast ClpP complex: additional subunits and structural features

    PubMed Central

    Derrien, Benoît; Majeran, Wojciech; Effantin, Grégory; Ebenezer, Joseph; Friso, Giulia; van Wijk, Klaas J.; Steven, Alasdair C.; Maurizi, Michael R.; Vallon, Olivier

    2012-01-01

    The ClpP peptidase is a major constituent of the proteolytic machinery of bacteria and organelles. The chloroplast ClpP complex is unusual, in that it associates a large number of subunits, one of which (ClpP1) is encoded in the chloroplast, the others in the nucleus. The complexity of these large hetero-oligomeric complexes has been a major difficulty in their overproduction and biochemical characterization. In this paper, we describe the purification of native chloroplast ClpP complex from the green alga Chlamydomonas reinhardtii, using a strain that carries the Strep-tag II at the C-terminus of the ClpP1 subunit. Similar to land plants, the algal complex comprises active and inactive subunits (3 ClpP and 5 ClpR, respectively). Evidence is presented that a sub-complex can be produced by dissociation, comprising ClpP1 and ClpR1, 2, 3 and 4, similar to the ClpR-ring described in land plants. Our Chlamydomonas ClpP preparation also contains two ClpT subunits, ClpT3 and ClpT4, which like the land plant ClpT1 and ClpT2 show 2 Clp-N domains. ClpTs are believed to function in substrate binding and/or assembly of the two heptameric rings. Phylogenetic analysis indicates that ClpT subunits have appeared independently in Chlorophycean algae, in land plants and in dispersed cyanobacterial genomes. Negative staining electron microscopy shows that the Chlamydomonas complex retains the barrel-like shape of homo-oligomeric ClpPs, with 4 additional peripheral masses that we speculate represent either the additional IS1 domain of ClpP1 (a feature unique to algae) or ClpTs or extensions of ClpR subunits PMID:22772861

  18. The effect of clinorotation on structural and functional organization of assimilative tissues, cells and growth regulator activity in orchids of different age

    NASA Astrophysics Data System (ADS)

    Cherevchenko, T.; Zaimenko, N.; Sitnyanska, N.; Majko, T.; Grishko, M. M.

    Ultrastructural analyses of assimilative tissues of the orchids, Cymbidium hybridum and Doritis pulcherrima, show that, in plants of different age, chloroplasts differ in structure and stage of membrane system development. Variability was found in the number, size and electron density of plastoglobuli, and in the orientation and length of thylakoid membranes. We consider significant the increase of the plastoglobuli which completely fill the stroma of chloroplasts in cells of old leaves and, under conditions of clinorotation (using a horizontal clinostat at 3 r.p.m.), are able to block membrane function. In the early stages of orchid plant development, the content of substances with auxin-like activity (as judged by bioassay) in the leaves was low, but increased with age. Clinorotation resulted in a sharp decrease of their content. There was a concomitant increase in the content of growth inhibitors of a phenolic nature.

  19. Functional analysis of chloroplast early light inducible proteins (ELIPs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetzel, Carolyn M

    The objectives of this project were to characterize gene expression patterns of early light inducible protein (ELIP) genes in Arabidopsis thaliana and in Lycopersicon esculentum, to identify knock mutants of the 2 ELIP genes in Arabidopsis, and to characterize the effects of the knockouts. Expression in Arabidopsis was studied in response to thylakoid electron transport chain (PETC) capacity, where it was found that there is a signal for expression associated with reduction of the PETC. Expression in response to salt was also studied, with different responses of the two gene copies. Knockout lines for ELIP1 and ELIP2 have been identifiedmore » and are being characterized. In tomato, it was found that the single-copy ELIP gene is highly expressed in ripening fruit during the chloroplast-to-chromoplast transition. Studies of expression in tomato ripening mutants are ongoing.« less

  20. The Chloroplast Genome of Pellia endiviifolia: Gene Content, RNA-Editing Pattern, and the Origin of Chloroplast Editing

    PubMed Central

    Grosche, Christopher; Funk, Helena T.; Maier, Uwe G.; Zauner, Stefan

    2012-01-01

    RNA editing is a post-transcriptional process that can act upon transcripts from mitochondrial, nuclear, and chloroplast genomes. In chloroplasts, single-nucleotide conversions in mRNAs via RNA editing occur at different frequencies across the plant kingdom. These range from several hundred edited sites in some mosses and ferns to lower frequencies in seed plants and the complete lack of RNA editing in the liverwort Marchantia polymorpha. Here, we report the sequence and edited sites of the chloroplast genome from the liverwort Pellia endiviifolia. The type and frequency of chloroplast RNA editing display a pattern highly similar to that in seed plants. Analyses of the C to U conversions and the genomic context in which the editing sites are embedded provide evidence in favor of the hypothesis that chloroplast RNA editing evolved to compensate mutations in the first land plants. PMID:23221608

  1. AtPAP2 modulates the import of the small subunit of Rubisco into chloroplasts.

    PubMed

    Zhang, Renshan; Guan, Xiaoqian; Law, Yee-Song; Sun, Feng; Chen, Shuai; Wong, Kam Bo; Lim, Boon Leong

    2016-10-02

    Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2) is the only phosphatase that is dual-targeted to both chloroplasts and mitochondria. Like Toc33/34 of the TOC and Tom 20 of the TOM, AtPAP2 is anchored to the outer membranes of chloroplasts and mitochondria via a hydrophobic C-terminal motif. AtPAP2 on the mitochondria was previously shown to recognize the presequences of several nuclear-encoded mitochondrial proteins and modulate the import of pMORF3 into the mitochondria. Here we show that AtPAP2 binds to the small subunit of Rubisco (pSSU) and that chloroplast import experiments demonstrated that pSSU was imported less efficiently into pap2 chloroplasts than into wild-type chloroplasts. We propose that AtPAP2 is an outer membrane-bound phosphatase receptor that facilitates the import of selected proteins into chloroplasts.

  2. The complete chloroplast genome sequence of tung tree (Vernicia fordii): Organization and phylogenetic relationships with other angiosperms

    USDA-ARS?s Scientific Manuscript database

    Tung tree (Vernicia fordii) is an economically important plant widely cultivated for industrial oil production in China. To better understand the molecular basis of tung tree chloroplasts, we sequenced and characterized the complete chloroplast genome. The chloroplast genome was 161,524 bp in length...

  3. The Unicellular Green Alga Chlamydomonas reinhardtii as an Experimental System to Study Chloroplast RNA Metabolism

    NASA Astrophysics Data System (ADS)

    Nickelsen, J.; Kück, U.

    Chloroplasts are typical organelles of photoautotrophic eukaryotic cells which drive a variety of functions, including photosynthesis. For many years the unicellular green alga Chlamydomonas reinhardtii has served as an experimental organism for studying photosynthetic processes. The recent development of molecular tools for this organism together with efficient methods of genetic analysis and the availability of many photosynthesis mutants has now made this alga a powerful model system for the analysis of chloroplast biogenesis. For example, techniques have been developed to transfer recombinant DNA into both the nuclear and the chloroplast genome. This allows both complementation tests and analyses of gene functions in vivo. Moreover, site-specific DNA recombinations in the chloroplast allow targeted gene disruption experiments which enable a "reverse genetics" to be performed. The potential of the algal system for the study of chloroplast biogenesis is illustrated in this review by the description of regulatory systems of gene expression involved in organelle biogenesis. One example concerns the regulation of trans-splicing of chloroplast mRNAs, a process which is controlled by both multiple nuclear- and chloroplast-encoded factors. The second example involves the stabilization of chloroplast mRNAs. The available data lead us predict distinct RNA elements, which interact with trans-acting factors to protect the RNA against nucleolytic attacks.

  4. Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor.

    PubMed

    Sato, Y; Wada, M; Kadota, A

    2001-01-01

    Light induced chloroplast movement has been studied as a model system for photoreception and actin microfilament (MF)-based intracellular motilities in plants. Chloroplast photo-accumulation and -avoidance movement is mediated by phytochrome as well as blue light (BL) receptor in the moss Physcomitrella patens. Here we report the discovery of an involvement of a microtubule (MT)-based system in addition to an MF-based system in photorelocation of chloroplasts in this moss. In the dark, MTs provided tracks for rapid movement of chloroplasts in a longitudinal direction and MFs contributed the tracks for slow movement in any direction. We found that phytochrome responses utilized only the MT-based system, while BL responses had an alternative way of moving, either along MTs or MFs. MT-based systems were mediated by both photoreceptors, but chloroplasts showed movements with different velocity and pattern between them. No apparent difference in the behavior of chloroplast movement between the accumulation and avoidance movement was detected in phytochrome responses or BL responses, except for the direction of the movement. The results presented here demonstrate that chloroplasts use both MTs and MFs for motility and that phytochrome and a BL receptor control directional photo-movement of chloroplasts through the differential regulation of these motile systems.

  5. The Cytoskeleton and the Peroxisomal-Targeted SNOWY COTYLEDON3 Protein Are Required for Chloroplast Development in Arabidopsis[W

    PubMed Central

    Albrecht, Verónica; Šimková, Klára; Carrie, Chris; Delannoy, Etienne; Giraud, Estelle; Whelan, Jim; Small, Ian David; Apel, Klaus; Badger, Murray R.; Pogson, Barry James

    2010-01-01

    Here, we describe the snowy cotyledon3 (sco3-1) mutation, which impairs chloroplast and etioplast development in Arabidopsis thaliana seedlings. SCO3 is a member of a largely uncharacterized protein family unique to the plant kingdom. The sco3-1 mutation alters chloroplast morphology and development, reduces chlorophyll accumulation, impairs thylakoid formation and photosynthesis in seedlings, and results in photoinhibition under extreme CO2 concentrations in mature leaves. There are no readily apparent changes to chloroplast biology, such as transcription or assembly that explain the disruption to chloroplast biogenesis. Indeed, SCO3 is actually targeted to another organelle, specifically to the periphery of peroxisomes. However, impaired chloroplast development cannot be attributed to perturbed peroxisomal metabolic processes involving germination, fatty acid β-oxidation or photorespiration, though there are so far undescribed changes in low and high CO2 sensitivity in seedlings and young true leaves. Many of the chloroplasts are bilobed, and some have persistent membranous extensions that encircle other cellular components. Significantly, there are changes to the cytoskeleton in sco3-1, and microtubule inhibitors have similar effects on chloroplast biogenesis as sco3-1 does. The localization of SCO3 to the periphery of the peroxisomes was shown to be dependent on a functional microtubule cytoskeleton. Therefore, the microtubule and peroxisome-associated SCO3 protein is required for chloroplast development, and sco3-1, along with microtubule inhibitors, demonstrates an unexpected role for the cytoskeleton and peroxisomes in chloroplast biogenesis. PMID:20978221

  6. Complete chloroplast genome sequences of Solanum commersonii and its application to chloroplast genotype in somatic hybrids with Solanum tuberosum.

    PubMed

    Cho, Kwang-Soo; Cheon, Kyeong-Sik; Hong, Su-Young; Cho, Ji-Hong; Im, Ju-Seong; Mekapogu, Manjulatha; Yu, Yei-Soo; Park, Tae-Ho

    2016-10-01

    Chloroplast genome of Solanum commersonii and S olanum tuberosum were completely sequenced, and Indel markers were successfully applied to distinguish chlorotypes demonstrating the chloroplast genome was randomly distributed during protoplast fusion. Somatic hybridization has been widely employed for the introgression of resistance to several diseases from wild Solanum species to overcome sexual barriers in potato breeding. Solanum commersonii is a major resource used as a parent line in somatic hybridization to improve bacterial wilt resistance in interspecies transfer to cultivated potato (S. tuberosum). Here, we sequenced the complete chloroplast genomes of Lz3.2 (S. commersonii) and S. tuberosum (PT56), which were used to develop fusion products, then compared them with those of five members of the Solanaceae family, S. tuberosum, Capsicum annum, S. lycopersicum, S. bulbocastanum and S. nigrum and Coffea arabica as an out-group. We then developed Indel markers for application in chloroplast genotyping. The complete chloroplast genome of Lz3.2 is composed of 155,525 bp, which is larger than the PT56 genome with 155,296 bp. Gene content, order and orientation of the S. commersonii chloroplast genome were highly conserved with those of other Solanaceae species, and the phylogenetic tree revealed that S. commersonii is located within the same node of S. tuberosum. However, sequence alignment revealed nine Indels between S. commersonii and S. tuberosum in their chloroplast genomes, allowing two Indel markers to be developed. The markers could distinguish the two species and were successfully applied to chloroplast genotyping (chlorotype) in somatic hybrids and their progenies. The results obtained in this study confirmed the random distribution of the chloroplast genome during protoplast fusion and its maternal inheritance and can be applied to select proper plastid genotypes in potato breeding program.

  7. The Complete Chloroplast Genome of Banana (Musa acuminata, Zingiberales): Insight into Plastid Monocotyledon Evolution

    PubMed Central

    Martin, Guillaume; Baurens, Franc-Christophe; Cardi, Céline; Aury, Jean-Marc; D’Hont, Angélique

    2013-01-01

    Background Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. Methodology/Principal Findings The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. Conclusion The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas. PMID:23840670

  8. The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution.

    PubMed

    Martin, Guillaume; Baurens, Franc-Christophe; Cardi, Céline; Aury, Jean-Marc; D'Hont, Angélique

    2013-01-01

    Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas.

  9. Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol.

    PubMed

    Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H

    2009-07-01

    Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best-characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild-type poplar hybrid Populus tremula x P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding gamma-glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild-type plants; soil contamination significantly decreased biomass accumulation in both wild-type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two-dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast surface/volume ratio, both at the control and the contaminated site. Chloroplast number per cell did not differ between wild and transgenic poplars at the control site. Soil contamination led to suppression of chloroplast replication in wild-type plants. From these results, we assume that overexpressing the bacterial gsh1 gene in the cytosol interacts with processes in the chloroplast and that sequestration of heavy metal phytochelatin complexes into the vacuole may partially counteract this interaction in plants grown at heavy metal-contaminated field sites. Further experiments are required to test these assumptions.

  10. Electron microscopy of hydrocarbon production in parthenium argentatum (guayule)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Thomas E.

    1977-11-01

    The electron microscope was used to study the biological processes involved in hydrocarbon production. The little desert shrub Guayule (Parthenium argentatum) was selected for study. This shrub can produce hydrocarbons (rubber) in concentrations up to 1/4 of its dry weight. It grows on semi-arid land and has been extensively studied. The potential of Guayule is described in detail. Results of an investigation into the morphology of Guayule at the electron microscope level are given. Experiments, which would allow the biosynthesis of hydrocarbon in Guayule to be followed, were designed. In order to do this, knowledge of the biochemistry of rubbermore » formation was used to select a tracer, mevalonic acid. Mevalonic acid is the precursor of all the terpenoids, a large class of hydrocarbons which includes rubber. It was found that when high enough concentrations of mevalonic acid are administered to seedling Guayule plants, build-ups of metabolized products are found within the chloroplasts of the seedlings. Also, tritium labeled mevalonic acid was used as a precursor, and its metabolic progress was followed by using the technique of electron microscope autoradiography. The results of these experiments also implicated chloroplasts of the Guayule plant in hydrocarbon production. The final task was the development of a system to produce three-dimensional stereo reconstructions of organelles suspected of involvement in hydrocarbon biosynthesis in Guayule. The techniques are designed to reconstruct an object from serial sections of that object. The techniques use stereo imaging both to abstract information for computer processing, and also in the computer produced reconstruction.« less

  11. Chloroplast targeting of FtsHprotease is essential for chloroplast development and thylakoid stability at elevated temperatures in plants

    USDA-ARS?s Scientific Manuscript database

    AtFtsH11 is a chloroplast and mitochondria dual targeted metalloprotease, identified as essential for Arabidopsis plant to survive at moderate high temperatures at all developmental stages. Our study showed that FtsH11 plays critical roles in both the early stages of chloroplast biogenesis and main...

  12. Pyrosequencing of the northern red oak (Quercus rubra L.) chloroplast genome reveals high quality polymorphisms for population management

    Treesearch

    Lisa W. Alexander; Keith E. Woeste

    2014-01-01

    Given the low intraspecific chloroplast diversity detected in northern red oak (Quercus rubra L.), more powerful genetic tools are necessary to accurately characterize Q. rubra chloroplast diversity and structure. We report the sequencing, assembly, and annotation of the chloroplast genome of northern red oak via pyrosequencing and...

  13. Isolation of Intact Chloroplasts from Euglena gracilis by Zonal Centrifugation 1

    PubMed Central

    Vasconcelos, Aurea; Pollack, Marilyn; Mendiola, Leticia R.; Hoffmann, H.-P.; Brown, D. H.; Price, C. A.

    1971-01-01

    Chloroplasts were separated from Euglena gracilis by zonal centrifugation at low speed in density gradients of Ficoll or dextran. The chloroplasts were intact by the criteria of ultrastructure and their content of ribulose diphosphate carboxylase and soluble protein. The chloroplasts also contained ribosomes and ribosomal RNA uncontaminated by the corresponding cytoplasmic particles. Images PMID:16657599

  14. Identification of a maize nucleic acid-binding protein (NBP) belonging to a family of nuclear-encoded chloroplast proteins.

    PubMed Central

    Cook, W B; Walker, J C

    1992-01-01

    A cDNA encoding a nuclear-encoded chloroplast nucleic acid-binding protein (NBP) has been isolated from maize. Identified as an in vitro DNA-binding activity, NBP belongs to a family of nuclear-encoded chloroplast proteins which share a common domain structure and are thought to be involved in posttranscriptional regulation of chloroplast gene expression. NBP contains an N-terminal chloroplast transit peptide, a highly acidic domain and a pair of ribonucleoprotein consensus sequence domains. NBP is expressed in a light-dependent, organ-specific manner which is consistent with its involvement in chloroplast biogenesis. The relationship of NBP to the other members of this protein family and their possible regulatory functions are discussed. Images PMID:1346929

  15. The tannosome is an organelle forming condensed tannins in the chlorophyllous organs of Tracheophyta.

    PubMed

    Brillouet, Jean-Marc; Romieu, Charles; Schoefs, Benoît; Solymosi, Katalin; Cheynier, Véronique; Fulcrand, Hélène; Verdeil, Jean-Luc; Conéjéro, Geneviève

    2013-10-01

    Condensed tannins (also called proanthocyanidins) are widespread polymers of catechins and are essential for the defence mechanisms of vascular plants (Tracheophyta). A large body of evidence argues for the synthesis of monomeric epicatechin on the cytosolic face of the endoplasmic reticulum and its transport to the vacuole, although the site of its polymerization into tannins remains to be elucidated. The aim of the study was to re-examine the cellular frame of tannin polymerization in various representatives of the Tracheophyta. Light microscopy epifluorescence, confocal microscopy, transmission electron microscopy (TEM), chemical analysis of tannins following cell fractionation, and immunocytochemistry were used as independent methods on tannin-rich samples from various organs from Cycadophyta, Ginkgophyta, Equisetophyta, Pteridophyta, Coniferophyta and Magnoliophyta. Tissues were fixed in a caffeine-glutaraldehyde mixture and examined by TEM. Other fresh samples were incubated with primary antibodies against proteins from both chloroplastic envelopes and a thylakoidal chlorophyll-carrying protein; they were also incubated with gelatin-Oregon Green, a fluorescent marker of condensed tannins. Coupled spectral analyses of chlorophyll and tannins were carried out by confocal microscopy on fresh tissues and tannin-rich accretions obtained through cell fractionation; chemical analyses of tannins and chlorophylls were also performed on the accretions. The presence of the three different chloroplast membranes inside vacuolar accretions that constitute the typical form of tannin storage in vascular plants was established in fresh tissues as well as in purified organelles, using several independent methods. Tannins are polymerized in a new chloroplast-derived organelle, the tannosome. These are formed by pearling of the thylakoids into 30 nm spheres, which are then encapsulated in a tannosome shuttle formed by budding from the chloroplast and bound by a membrane resulting from the fusion of both chloroplast envelopes. The shuttle conveys numerous tannosomes through the cytoplasm towards the vacuole in which it is then incorporated by invagination of the tonoplast. Finally, shuttles bound by a portion of tonoplast aggregate into tannin accretions which are stored in the vacuole. Polymerization of tannins occurs inside the tannosome regardless of the compartment being crossed. A complete sequence of events apparently valid in all studied Tracheophyta is described.

  16. Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica.

    PubMed

    Mujer, C V; Andrews, D L; Manhart, J R; Pierce, S K; Rumpho, M E

    1996-10-29

    The marine slug Elysia chlorotica (Gould) forms an intracellular symbiosis with photosynthetically active chloroplasts from the chromophytic alga Vaucheria litorea (C. Agardh). This symbiotic association was characterized over a period of 8 months during which E. chlorotica was deprived of V. litorea but provided with light and CO2. The fine structure of the symbiotic chloroplasts remained intact in E. chlorotica even after 8 months of starvation as revealed by electron microscopy. Southern blot analysis of total DNA from E. chlorotica indicated that algal genes, i.e., rbcL, rbcS, psaB, psbA, and 16S rRNA are present in the animal. These genes are typically localized to the plastid genome in higher plants and algae except rbcS, which is nuclear-encoded in higher plants and green (chlorophyll a/b) algae. Our analysis suggests, however, that similar to the few other chromophytes (chlorophyll a/c) examined, rbcS is chloroplast encoded in V. litorea. Levels of psbA transcripts remained constant in E. chlorotica starved for 2 and 3 months and then gradually declined over the next 5 months corresponding with senescence of the animal in culture and in nature. The RNA synthesis inhibitor 6-methylpurine reduced the accumulation of psbA transcripts confirming active transcription. In contrast to psbA, levels of 16S rRNA transcripts remained constant throughout the starvation period. The levels of the photosystem II proteins, D1 and CP43, were high at 2 and 4 months of starvation and remained constant at a lower steady-state level after 6 months. In contrast, D2 protein levels, although high at 2 and 4 months, were very low at all other periods of starvation. At 8 months, de novo synthesis of several thylakoid membrane-enriched proteins, including D1, still occurred. To our knowledge, these results represent the first molecular evidence for active transcription and translation of algal chloroplast genes in an animal host and are discussed in relation to the endosymbiotic theory of eukaryote origins.

  17. Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica.

    PubMed Central

    Mujer, C V; Andrews, D L; Manhart, J R; Pierce, S K; Rumpho, M E

    1996-01-01

    The marine slug Elysia chlorotica (Gould) forms an intracellular symbiosis with photosynthetically active chloroplasts from the chromophytic alga Vaucheria litorea (C. Agardh). This symbiotic association was characterized over a period of 8 months during which E. chlorotica was deprived of V. litorea but provided with light and CO2. The fine structure of the symbiotic chloroplasts remained intact in E. chlorotica even after 8 months of starvation as revealed by electron microscopy. Southern blot analysis of total DNA from E. chlorotica indicated that algal genes, i.e., rbcL, rbcS, psaB, psbA, and 16S rRNA are present in the animal. These genes are typically localized to the plastid genome in higher plants and algae except rbcS, which is nuclear-encoded in higher plants and green (chlorophyll a/b) algae. Our analysis suggests, however, that similar to the few other chromophytes (chlorophyll a/c) examined, rbcS is chloroplast encoded in V. litorea. Levels of psbA transcripts remained constant in E. chlorotica starved for 2 and 3 months and then gradually declined over the next 5 months corresponding with senescence of the animal in culture and in nature. The RNA synthesis inhibitor 6-methylpurine reduced the accumulation of psbA transcripts confirming active transcription. In contrast to psbA, levels of 16S rRNA transcripts remained constant throughout the starvation period. The levels of the photosystem II proteins, D1 and CP43, were high at 2 and 4 months of starvation and remained constant at a lower steady-state level after 6 months. In contrast, D2 protein levels, although high at 2 and 4 months, were very low at all other periods of starvation. At 8 months, de novo synthesis of several thylakoid membrane-enriched proteins, including D1, still occurred. To our knowledge, these results represent the first molecular evidence for active transcription and translation of algal chloroplast genes in an animal host and are discussed in relation to the endosymbiotic theory of eukaryote origins. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8901581

  18. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells.

    PubMed

    Majeran, Wojciech; Zybailov, Boris; Ytterberg, A Jimmy; Dunsmore, Jason; Sun, Qi; van Wijk, Klaas J

    2008-09-01

    Chloroplasts of maize leaves differentiate into specific bundle sheath (BS) and mesophyll (M) types to accommodate C(4) photosynthesis. Chloroplasts contain thylakoid and envelope membranes that contain the photosynthetic machineries and transporters but also proteins involved in e.g. protein homeostasis. These chloroplast membranes must be specialized within each cell type to accommodate C(4) photosynthesis and regulate metabolic fluxes and activities. This quantitative study determined the differentiated state of BS and M chloroplast thylakoid and envelope membrane proteomes and their oligomeric states using innovative gel-based and mass spectrometry-based protein quantifications. This included native gels, iTRAQ, and label-free quantification using an LTQ-Orbitrap. Subunits of Photosystems I and II, the cytochrome b(6)f, and ATP synthase complexes showed average BS/M accumulation ratios of 1.6, 0.45, 1.0, and 1.33, respectively, whereas ratios for the light-harvesting complex I and II families were 1.72 and 0.68, respectively. A 1000-kDa BS-specific NAD(P)H dehydrogenase complex with associated proteins of unknown function containing more than 15 proteins was observed; we speculate that this novel complex possibly functions in inorganic carbon concentration when carboxylation rates by ribulose-bisphosphate carboxylase/oxygenase are lower than decarboxylation rates by malic enzyme. Differential accumulation of thylakoid proteases (Egy and DegP), state transition kinases (STN7,8), and Photosystem I and II assembly factors was observed, suggesting that cell-specific photosynthetic electron transport depends on post-translational regulatory mechanisms. BS/M ratios for inner envelope transporters phosphoenolpyruvate/P(i) translocator, Dit1, Dit2, and Mex1 were determined and reflect metabolic fluxes in carbon metabolism. A wide variety of hundreds of other proteins showed differential BS/M accumulation. Mass spectral information and functional annotations are available through the Plant Proteome Database. These data are integrated with previous data, resulting in a model for C(4) photosynthesis, thereby providing new rationales for metabolic engineering of C(4) pathways and targeted analysis of genetic networks that coordinate C(4) differentiation.

  19. The SAL-PAP Chloroplast Retrograde Pathway Contributes to Plant Immunity by Regulating Glucosinolate Pathway and Phytohormone Signaling.

    PubMed

    Ishiga, Yasuhiro; Watanabe, Mutsumi; Ishiga, Takako; Tohge, Takayuki; Matsuura, Takakazu; Ikeda, Yoko; Hoefgen, Rainer; Fernie, Alisdair R; Mysore, Kirankumar S

    2017-10-01

    Chloroplasts have a crucial role in plant immunity against pathogens. Increasing evidence suggests that phytopathogens target chloroplast homeostasis as a pathogenicity mechanism. In order to regulate the performance of chloroplasts under stress conditions, chloroplasts produce retrograde signals to alter nuclear gene expression. Many signals for the chloroplast retrograde pathway have been identified, including chlorophyll intermediates, reactive oxygen species, and metabolic retrograde signals. Although there is a reasonably good understanding of chloroplast retrograde signaling in plant immunity, some signals are not well-understood. In order to understand the role of chloroplast retrograde signaling in plant immunity, we investigated Arabidopsis chloroplast retrograde signaling mutants in response to pathogen inoculation. sal1 mutants (fry1-2 and alx8) responsible for the SAL1-PAP retrograde signaling pathway showed enhanced disease symptoms not only to the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 but, also, to the necrotrophic pathogen Pectobacterium carotovorum subsp. carotovorum EC1. Glucosinolate profiles demonstrated the reduced accumulation of aliphatic glucosinolates in the fry1-2 and alx8 mutants compared with the wild-type Col-0 in response to DC3000 infection. In addition, quantification of multiple phytohormones and analyses of their gene expression profiles revealed that both the salicylic acid (SA)- and jasmonic acid (JA)-mediated signaling pathways were down-regulated in the fry1-2 and alx8 mutants. These results suggest that the SAL1-PAP chloroplast retrograde pathway is involved in plant immunity by regulating the SA- and JA-mediated signaling pathways.

  20. Unbiased estimation of chloroplast number in mesophyll cells: advantage of a genuine three-dimensional approach

    PubMed Central

    Kubínová, Zuzana

    2014-01-01

    Chloroplast number per cell is a frequently examined quantitative anatomical parameter, often estimated by counting chloroplast profiles in two-dimensional (2D) sections of mesophyll cells. However, a mesophyll cell is a three-dimensional (3D) structure and this has to be taken into account when quantifying its internal structure. We compared 2D and 3D approaches to chloroplast counting from different points of view: (i) in practical measurements of mesophyll cells of Norway spruce needles, (ii) in a 3D model of a mesophyll cell with chloroplasts, and (iii) using a theoretical analysis. We applied, for the first time, the stereological method of an optical disector based on counting chloroplasts in stacks of spruce needle optical cross-sections acquired by confocal laser-scanning microscopy. This estimate was compared with counting chloroplast profiles in 2D sections from the same stacks of sections. Comparing practical measurements of mesophyll cells, calculations performed in a 3D model of a cell with chloroplasts as well as a theoretical analysis showed that the 2D approach yielded biased results, while the underestimation could be up to 10-fold. We proved that the frequently used method for counting chloroplasts in a mesophyll cell by counting their profiles in 2D sections did not give correct results. We concluded that the present disector method can be efficiently used for unbiased estimation of chloroplast number per mesophyll cell. This should be the method of choice, especially in coniferous needles and leaves with mesophyll cells with lignified cell walls where maceration methods are difficult or impossible to use. PMID:24336344

  1. Transcriptome and proteomic analyses reveal multiple differences associated with chloroplast development in the spaceflight-induced wheat albino mutant mta.

    PubMed

    Shi, Kui; Gu, Jiayu; Guo, Huijun; Zhao, Linshu; Xie, Yongdun; Xiong, Hongchun; Li, Junhui; Zhao, Shirong; Song, Xiyun; Liu, Luxiang

    2017-01-01

    Chloroplast development is an integral part of plant survival and growth, and occurs in parallel with chlorophyll biosynthesis. However, little is known about the mechanisms underlying chloroplast development in hexaploid wheat. Here, we obtained a spaceflight-induced wheat albino mutant mta. Chloroplast ultra-structural observation showed that chloroplasts of mta exhibit abnormal morphology and distribution compared to wild type. Photosynthetic pigments content was also significantly decreased in mta. Transcriptome and chloroplast proteome profiling of mta and wild type were done to identify differentially expressed genes (DEGs) and proteins (DEPs), respectively. In total 4,588 DEGs including 1,980 up- and 2,608 down-regulated, and 48 chloroplast DEPs including 15 up- and 33 down-regulated were identified in mta. Classification of DEGs revealed that most were involved in chloroplast development, chlorophyll biosynthesis, or photosynthesis. Besides, transcription factors such as PIF3, GLK and MYB which might participate in those pathways were also identified. The correlation analysis between DEGs and DEPs revealed that the transcript-to-protein in abundance was functioned into photosynthesis and chloroplast relevant groups. Real time qPCR analysis validated that the expression level of genes encoding photosynthetic proteins was significantly decreased in mta. Together, our results suggest that the molecular mechanism for albino leaf color formation in mta is a thoroughly regulated and complicated process. The combined analysis of transcriptome and proteome afford comprehensive information for further research on chloroplast development mechanism in wheat. And spaceflight provides a potential means for mutagenesis in crop breeding.

  2. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).

    PubMed

    Nguyen Dinh, Sy; Sai, Than Zaw Tun; Nawaz, Ghazala; Lee, Kwanuk; Kang, Hunseung

    2016-08-20

    Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Dissipation of the Proton Electrochemical Potential in Intact and Lysed Chloroplasts 1

    PubMed Central

    Nishio, John N.; Whitmarsh, John

    1991-01-01

    Effective ionophore:chlorophyll ratios were determined for various ionophores that decrease the electrical potential across thylakoid membranes in intact and hypo-osmotically lysed chloroplasts isolated from spinach (Spinacia oleracea). The efficacy of gramicidin D, valinomycin, carbonylcyanide m-chlorophenylhydrazone, and dicyclohexano-18-crown-6 in collapsing the electrical potential was determined spectrophotometrically by the decay half-time of the absorbance change at 518 nanometers induced by a saturating, single turnover flash. The results show that the effectiveness of the ionophores in collapsing the electrical potential in intact and lysed chloroplasts depends on the amount of ionophore-accessible membrane in the assay medium. Only gramicidin exhibited a significant difference in efficacy between intact and lysed chloroplasts. The ratio of gramicidin to chlorophyll required to collapse the electrical potential was more than 50 times higher in intact chloroplasts than in lysed chloroplasts. The efficacy of carbonylcyanide m-chlorophenylhydrazone was significantly reduced in the presence of bovine serum albumin. The other ionophores tested maintained their potency in the presence of bovine serum albumin. Valinomycin was the most effective ionophore tested for collapsing the electrical potential in intact chloroplasts, whereas gramicidin was the most potent ionophore in lysed chloroplasts. The significance of the ionophore:chlorophyll ratios required to collapse the electrical potential is discussed with regard to bioenergetic studies, especially those that examine the contribution of the transmembrane electrochemical potential to protein transport into chloroplasts. PMID:16668015

  4. The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus

    PubMed Central

    Keller, J.; Rousseau-Gueutin, M.; Martin, G.E.; Morice, J.; Boutte, J.; Coissac, E.; Ourari, M.; Aïnouche, M.; Salmon, A.; Cabello-Hurtado, F.

    2017-01-01

    Abstract The Fabaceae family is considered as a model system for understanding chloroplast genome evolution due to the presence of extensive structural rearrangements, gene losses and localized hypermutable regions. Here, we provide sequences of four chloroplast genomes from the Lupinus genus, belonging to the underinvestigated Genistoid clade. Notably, we found in Lupinus species the functional loss of the essential rps16 gene, which was most likely replaced by the nuclear rps16 gene that encodes chloroplast and mitochondrion targeted RPS16 proteins. To study the evolutionary fate of the rps16 gene, we explored all available plant chloroplast, mitochondrial and nuclear genomes. Whereas no plant mitochondrial genomes carry an rps16 gene, many plants still have a functional nuclear and chloroplast rps16 gene. Ka/Ks ratios revealed that both chloroplast and nuclear rps16 copies were under purifying selection. However, due to the dual targeting of the nuclear rps16 gene product and the absence of a mitochondrial copy, the chloroplast gene may be lost. We also performed comparative analyses of lupine plastomes (SNPs, indels and repeat elements), identified the most variable regions and examined their phylogenetic utility. The markers identified here will help to reveal the evolutionary history of lupines, Genistoids and closely related clades. PMID:28338826

  5. Integration of light and circadian signals that regulate chloroplast transcription by a nuclear-encoded sigma factor.

    PubMed

    Belbin, Fiona E; Noordally, Zeenat B; Wetherill, Sarah J; Atkins, Kelly A; Franklin, Keara A; Dodd, Antony N

    2017-01-01

    We investigated the signalling pathways that regulate chloroplast transcription in response to environmental signals. One mechanism controlling plastid transcription involves nuclear-encoded sigma subunits of plastid-encoded plastid RNA polymerase. Transcripts encoding the sigma factor SIG5 are regulated by light and the circadian clock. However, the extent to which a chloroplast target of SIG5 is regulated by light-induced changes in SIG5 expression is unknown. Moreover, the photoreceptor signalling pathways underlying the circadian regulation of chloroplast transcription by SIG5 are unidentified. We monitored the regulation of chloroplast transcription in photoreceptor and sigma factor mutants under controlled light regimes in Arabidopsis thaliana. We established that a chloroplast transcriptional response to light intensity was mediated by SIG5; a chloroplast transcriptional response to the relative proportions of red and far red light was regulated by SIG5 through phytochrome and photosynthetic signals; and the circadian regulation of chloroplast transcription by SIG5 was predominantly dependent on blue light and cryptochrome. Our experiments reveal the extensive integration of signals concerning the light environment by a single sigma factor to regulate chloroplast transcription. This may originate from an evolutionarily ancient mechanism that protects photosynthetic bacteria from high light stress, which subsequently became integrated with higher plant phototransduction networks. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Effects of temperature and light on the formation of chloroplast protrusions in leaf mesophyll cells of high alpine plants.

    PubMed

    Buchner, Othmar; Holzinger, Andreas; Lütz, Cornelius

    2007-11-01

    Chloroplasts of many alpine plants have the ability to form marked, stroma-filled protrusions that do not contain thylakoids. Effects of temperature and light intensity on the frequency of chloroplasts with such protrusions in leaf mesophyll cells of nine different alpine plant species (Carex curvula All., Leontodon helveticus Merat., Oxyria digyna (L.) Hill., Poa alpina L. ssp. vivipara, Polygonum viviparum L., Ranunculus glacialis L., Ranunculus alpestris L., Silene acaulis L. and Soldanella pusilla Baumg.) covering seven different families were studied. Leaves were exposed to either darkness and a stepwise increase in temperature (10-38 degrees C) or to different light intensities (500 and 2000 micromol photons m(-2) s(-1)) and a constant temperature of 10 or 30 degrees C in a special temperature-regulated chamber. A chloroplast protrusions index characterising the relative proportion of chloroplasts with protrusions was defined. Seven of the nine species showed a significant increase in chloroplast protrusions when temperature was elevated to over 20 degrees C. In contrast, the light level did not generally affect the abundance of chloroplasts with protrusions. Chloroplast protrusions lead to a dynamic enlargement of the chloroplast surface area. They do not appear to be directly connected to a distinct photosystem II (PSII) (F(v)/F(m)) status and thus seem to be involved in secondary, not primary, photosynthetic processes.

  7. Isolation and Characterization of Chloroplast DNA from the Duckweed Spirodela oligorrhiza

    PubMed Central

    van Ee, Jan H.; Veld, Willem A. Man In'T; Planta, Rudi J.

    1980-01-01

    Chloroplast DNA of the duckweed Spirodela oligorrhiza, isolated by CsCl gradient centrifugation, was characterized by its buoyant density, guanine + cytosine content, melting behavior, circularity, and contour length. In all these characteristics, chloroplast DNA of S. oligorrhiza is similar to the chloroplast genomes of other higher plants, except that it has a significantly larger size. Images PMID:16661479

  8. Chloroplast avoidance movement is not functional in plants grown under strong sunlight.

    PubMed

    Higa, Takeshi; Wada, Masamitsu

    2016-04-01

    Chloroplast movement in nine climbing plant species was investigated. It is thought that chloroplasts generally escape from strong light to avoid photodamage but accumulate towards weak light to perform photosynthesis effectively. Unexpectedly, however, the leaves of climbing plants grown under strong sunlight showed very low or no chloroplast photorelocation responses to either weak or strong blue light when detected by red light transmittance through leaves. Direct observations of Cayratia japonica leaves, for example, revealed that the average number of chloroplasts in upper periclinal walls of palisade tissue cells was only 1.2 after weak blue-light irradiation and almost all of the chloroplasts remained at the anticlinal wall, the state of chloroplast avoidance response. The leaves grown under strong light have thin and columnar palisade tissue cells comparing with the leaves grown under low light. Depending on our analyses and our schematic model, the thinner cells in a unit leaf area have a wider total plasma membrane area, such that more chloroplasts can exist on the plasma membrane in the thinner cells than in the thicker cells in a unit leaf-area basis. The same strategy might be used in other plant leaves grown under direct sunlight. © 2015 John Wiley & Sons Ltd.

  9. Chloroplast Translation: Structural and Functional Organization, Operational Control, and Regulation[OPEN

    PubMed Central

    2018-01-01

    Chloroplast translation is essential for cellular viability and plant development. Its positioning at the intersection of organellar RNA and protein metabolism makes it a unique point for the regulation of gene expression in response to internal and external cues. Recently obtained high-resolution structures of plastid ribosomes, the development of approaches allowing genome-wide analyses of chloroplast translation (i.e., ribosome profiling), and the discovery of RNA binding proteins involved in the control of translational activity have greatly increased our understanding of the chloroplast translation process and its regulation. In this review, we provide an overview of the current knowledge of the chloroplast translation machinery, its structure, organization, and function. In addition, we summarize the techniques that are currently available to study chloroplast translation and describe how translational activity is controlled and which cis-elements and trans-factors are involved. Finally, we discuss how translational control contributes to the regulation of chloroplast gene expression in response to developmental, environmental, and physiological cues. We also illustrate the commonalities and the differences between the chloroplast and bacterial translation machineries and the mechanisms of protein biosynthesis in these two prokaryotic systems. PMID:29610211

  10. Plastid intramembrane proteolysis.

    PubMed

    Adam, Zach

    2015-09-01

    Progress in the field of regulated intramembrane proteolysis (RIP) in recent years has not surpassed plant biology. Nevertheless, reports on RIP in plants, and especially in chloroplasts, are still scarce. Of the four different families of intramembrane proteases, only two have been linked to chloroplasts so far, rhomboids and site-2 proteases (S2Ps). The lack of chloroplast-located rhomboid proteases was associated with reduced fertility and aberrations in flower morphology, probably due to perturbations in jasmonic acid biosynthesis, which occurs in chloroplasts. Mutations in homologues of S2P resulted in chlorophyll deficiency and impaired chloroplast development, through a yet unknown mechanism. To date, the only known substrate of RIP in chloroplasts is a PHD transcription factor, located in the envelope. Upon proteolytic cleavage by an unknown protease, the soluble N-terminal domain of this protein is released from the membrane and relocates to the nucleus, where it activates the transcription of the ABA response gene ABI4. Continuing studies on these proteases and substrates, as well as identification of the genes responsible for different chloroplast mutant phenotypes, are expected to shed more light on the roles of intramembrane proteases in chloroplast biology. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Structure-Function Analysis of Chloroplast Proteins via Random Mutagenesis Using Error-Prone PCR.

    PubMed

    Dumas, Louis; Zito, Francesca; Auroy, Pascaline; Johnson, Xenie; Peltier, Gilles; Alric, Jean

    2018-06-01

    Site-directed mutagenesis of chloroplast genes was developed three decades ago and has greatly advanced the field of photosynthesis research. Here, we describe a new approach for generating random chloroplast gene mutants that combines error-prone polymerase chain reaction of a gene of interest with chloroplast complementation of the knockout Chlamydomonas reinhardtii mutant. As a proof of concept, we targeted a 300-bp sequence of the petD gene that encodes subunit IV of the thylakoid membrane-bound cytochrome b 6 f complex. By sequencing chloroplast transformants, we revealed 149 mutations in the 300-bp target petD sequence that resulted in 92 amino acid substitutions in the 100-residue target subunit IV sequence. Our results show that this method is suited to the study of highly hydrophobic, multisubunit, and chloroplast-encoded proteins containing cofactors such as hemes, iron-sulfur clusters, and chlorophyll pigments. Moreover, we show that mutant screening and sequencing can be used to study photosynthetic mechanisms or to probe the mutational robustness of chloroplast-encoded proteins, and we propose that this method is a valuable tool for the directed evolution of enzymes in the chloroplast. © 2018 American Society of Plant Biologists. All rights reserved.

  12. Chloroplast and mitochondrial DNA are paternally inherited in Sequoia sempervirens D. Don Endl

    PubMed Central

    Neale, David B.; Marshall, Kimberly A.; Sederoff, Ronald R.

    1989-01-01

    Restriction fragment length polymorphisms in controlled crosses were used to infer the mode of inheritance of chloroplast DNA and mitochondrial DNA in coast redwood (Sequoia sempervirens D. Don Endl.). Chloroplast DNA was paternally inherited, as is true for all other conifers studied thus far. Surprisingly, a restriction fragment length polymorphism detected by a mitochondrial probe was paternally inherited as well. This polymorphism could not be detected in hybridizations with chloroplast probes covering the entire chloroplast genome, thus providing evidence that the mitochondrial probe had not hybridized to chloroplast DNA on the blot. We conclude that mitochondrial DNA is paternally inherited in coast redwood. To our knowledge, paternal inheritance of mitochondrial DNA in sexual crosses of a multicellular eukaryotic organism has not been previously reported. Images PMID:16594091

  13. The complete chloroplast genome of the Dendrobium strongylanthum (Orchidaceae: Epidendroideae).

    PubMed

    Li, Jing; Chen, Chen; Wang, Zhe-Zhi

    2016-07-01

    Complete chloroplast genome sequence is very useful for studying the phylogenetic and evolution of species. In this study, the complete chloroplast genome of Dendrobium strongylanthum was constructed from whole-genome Illumina sequencing data. The chloroplast genome is 153 058 bp in length with 37.6% GC content and consists of two inverted repeats (IRs) of 26 316 bp. The IR regions are separated by large single-copy region (LSC, 85 836 bp) and small single-copy (SSC, 14 590 bp) region. A total of 130 chloroplast genes were successfully annotated, including 84 protein coding genes, 38 tRNA genes, and eight rRNA genes. Phylogenetic analyses showed that the chloroplast genome of Dendrobium strongylanthum is related to that of the Dendrobium officinal.

  14. Construction of a restriction map and gene map of the lettuce chloroplast small single-copy region using Southern cross-hybridization.

    PubMed

    Mitchelson, K R

    1996-01-01

    The small single-copy region (SSCR) of the chloroplast genome of many higher plants typically contain ndh genes encoding proteins that share homology with subunits of the respiratory-chain reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase complex of mitochondria. A map of the lettuce chloroplast SSCR has been determined by Southern cross-hybridization, taking advantage of the high degree of homology between a tobacco small single-copy fragment and a corresponding lettuce chloroplast fragment. The gene order of the SSCR of lettuce and tobacco chloroplasts is similar. The cross-hybridization method can rapidly create a primary gene map of unknown chloroplast fragments, thus providing detailed information of the localization and arrangement of genes and conserved open reading frame regions.

  15. A long PCR–based approach for DNA enrichment prior to next-generation sequencing for systematic studies1

    PubMed Central

    Uribe-Convers, Simon; Duke, Justin R.; Moore, Michael J.; Tank, David C.

    2014-01-01

    • Premise of the study: We present an alternative approach for molecular systematic studies that combines long PCR and next-generation sequencing. Our approach can be used to generate templates from any DNA source for next-generation sequencing. Here we test our approach by amplifying complete chloroplast genomes, and we present a set of 58 potentially universal primers for angiosperms to do so. Additionally, this approach is likely to be particularly useful for nuclear and mitochondrial regions. • Methods and Results: Chloroplast genomes of 30 species across angiosperms were amplified to test our approach. Amplification success varied depending on whether PCR conditions were optimized for a given taxon. To further test our approach, some amplicons were sequenced on an Illumina HiSeq 2000. • Conclusions: Although here we tested this approach by sequencing plastomes, long PCR amplicons could be generated using DNA from any genome, expanding the possibilities of this approach for molecular systematic studies. PMID:25202592

  16. New evidence for grain specific C4 photosynthesis in wheat

    PubMed Central

    Rangan, Parimalan; Furtado, Agnelo; Henry, Robert J

    2016-01-01

    The C4 photosynthetic pathway evolved to allow efficient CO2 capture by plants where effective carbon supply may be limiting as in hot or dry environments, explaining the high growth rates of C4 plants such as maize. Important crops such as wheat and rice are C3 plants resulting in efforts to engineer them to use the C4 pathway. Here we show the presence of a C4 photosynthetic pathway in the developing wheat grain that is absent in the leaves. Genes specific for C4 photosynthesis were identified in the wheat genome and found to be preferentially expressed in the photosynthetic pericarp tissue (cross- and tube-cell layers) of the wheat caryopsis. The chloroplasts exhibit dimorphism that corresponds to chloroplasts of mesophyll- and bundle sheath-cells in leaves of classical C4 plants. Breeding to optimize the relative contributions of C3 and C4 photosynthesis may adapt wheat to climate change, contributing to wheat food security. PMID:27530078

  17. Seamless editing of the chloroplast genome in plants.

    PubMed

    Martin Avila, Elena; Gisby, Martin F; Day, Anil

    2016-07-29

    Gene editing technologies enable the precise insertion of favourable mutations and performance enhancing trait genes into chromosomes whilst excluding all excess DNA from modified genomes. The technology gives rise to a new class of biotech crops which is likely to have widespread applications in agriculture. Despite progress in the nucleus, the seamless insertions of point mutations and non-selectable foreign genes into the organelle genomes of crops have not been described. The chloroplast genome is an attractive target to improve photosynthesis and crop performance. Current chloroplast genome engineering technologies for introducing point mutations into native chloroplast genes leave DNA scars, such as the target sites for recombination enzymes. Seamless editing methods to modify chloroplast genes need to address reversal of site-directed point mutations by template mediated repair with the vast excess of wild type chloroplast genomes that are present early in the transformation process. Using tobacco, we developed an efficient two-step method to edit a chloroplast gene by replacing the wild type sequence with a transient intermediate. This was resolved to the final edited gene by recombination between imperfect direct repeats. Six out of 11 transplastomic plants isolated contained the desired intermediate and at the second step this was resolved to the edited chloroplast gene in five of six plants tested. Maintenance of a single base deletion mutation in an imperfect direct repeat of the native chloroplast rbcL gene showed the limited influence of biased repair back to the wild type sequence. The deletion caused a frameshift, which replaced the five C-terminal amino acids of the Rubisco large subunit with 16 alternative residues resulting in a ~30-fold reduction in its accumulation. We monitored the process in vivo by engineering an overlapping gusA gene downstream of the edited rbcL gene. Translational coupling between the overlapping rbcL and gusA genes resulted in relatively high GUS accumulation (~0.5 % of leaf protein). Editing chloroplast genomes using transient imperfect direct repeats provides an efficient method for introducing point mutations into chloroplast genes. Moreover, we describe the first synthetic operon allowing expression of a downstream overlapping gene by translational coupling in chloroplasts. Overlapping genes provide a new mechanism for co-ordinating the translation of foreign proteins in chloroplasts.

  18. Triazine herbicide resistance in the photosynthetic bacterium Rhodopseudomonas sphaeroides

    PubMed Central

    Brown, Alfred E.; Gilbert, Carl W.; Guy, Rachel; Arntzen, Charles J.

    1984-01-01

    The photoaffinity herbicide azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-s-triazine) selectively labels the L subunit of the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides. Herbicide-resistant mutants retain the L subunit and have altered binding properties for methylthio- and chloro-substituted triazines as well as altered equilibrium constants for electron transfer between primary and secondary electron acceptors. We suggest that a subtle alteration in the L subunit is responsible for herbicide resistance and that the L subunit is the functional analog of the 32-kDa QB protein of chloroplast membranes. Images PMID:16593520

  19. Mesophyll Chloroplast Investment in C3, C4 and C2 Species of the Genus Flaveria.

    PubMed

    Stata, Matt; Sage, Tammy L; Hoffmann, Natalie; Covshoff, Sarah; Ka-Shu Wong, Gane; Sage, Rowan F

    2016-05-01

    The mesophyll (M) cells of C4 plants contain fewer chloroplasts than observed in related C3 plants; however, it is uncertain where along the evolutionary transition from C3 to C4 that the reduction in M chloroplast number occurs. Using 18 species in the genus Flaveria, which contains C3, C4 and a range of C3-C4 intermediate species, we examined changes in chloroplast number and size per M cell, and positioning of chloroplasts relative to the M cell periphery. Chloroplast number and coverage of the M cell periphery declined in proportion to increasing strength of C4 metabolism in Flaveria, while chloroplast size increased with increasing C4 cycle strength. These changes increase cytosolic exposure to the cell periphery which could enhance diffusion of inorganic carbon to phosphenolpyruvate carboxylase (PEPC), a cytosolic enzyme. Analysis of the transcriptome from juvenile leaves of nine Flaveria species showed that the transcript abundance of four genes involved in plastid biogenesis-FtsZ1, FtsZ2, DRP5B and PARC6-was negatively correlated with variation in C4 cycle strength and positively correlated with M chloroplast number per planar cell area. Chloroplast size was negatively correlated with abundance of FtsZ1, FtsZ2 and PARC6 transcripts. These results indicate that natural selection targeted the proteins of the contractile ring assembly to effect the reduction in chloroplast numbers in the M cells of C4 Flaveria species. If so, efforts to engineer the C4 pathway into C3 plants might evaluate whether inducing transcriptome changes similar to those observed in Flaveria could reduce M chloroplast numbers, and thus introduce a trait that appears essential for efficient C4 function. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity.

    PubMed

    Yang, Jianguo; Xie, Xiaqing; Yang, Mingxuan; Dixon, Ray; Wang, Yi-Ping

    2017-03-21

    A large number of genes are necessary for the biosynthesis and activity of the enzyme nitrogenase to carry out the process of biological nitrogen fixation (BNF), which requires large amounts of ATP and reducing power. The multiplicity of the genes involved, the oxygen sensitivity of nitrogenase, plus the demand for energy and reducing power, are thought to be major obstacles to engineering BNF into cereal crops. Genes required for nitrogen fixation can be considered as three functional modules encoding electron-transport components (ETCs), proteins required for metal cluster biosynthesis, and the "core" nitrogenase apoenzyme, respectively. Among these modules, the ETC is important for the supply of reducing power. In this work, we have used Escherichia coli as a chassis to study the compatibility between molybdenum and the iron-only nitrogenases with ETC modules from target plant organelles, including chloroplasts, root plastids, and mitochondria. We have replaced an ETC module present in diazotrophic bacteria with genes encoding ferredoxin-NADPH oxidoreductases (FNRs) and their cognate ferredoxin counterparts from plant organelles. We observe that the FNR-ferredoxin module from chloroplasts and root plastids can support the activities of both types of nitrogenase. In contrast, an analogous ETC module from mitochondria could not function in electron transfer to nitrogenase. However, this incompatibility could be overcome with hybrid modules comprising mitochondrial NADPH-dependent adrenodoxin oxidoreductase and the Anabaena ferredoxins FdxH or FdxB. We pinpoint endogenous ETCs from plant organelles as power supplies to support nitrogenase for future engineering of diazotrophy in cereal crops.

  1. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis).

    PubMed

    Zhou, Xiangjun; Fei, Zhangjun; Thannhauser, Theodore W; Li, Li

    2011-11-23

    Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5) was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant.

  2. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis)

    PubMed Central

    2011-01-01

    Background Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Results Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5) was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. Conclusions The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant. PMID:22112144

  3. An Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat-stress response.

    PubMed

    Myouga, Fumiyoshi; Motohashi, Reiko; Kuromori, Takashi; Nagata, Noriko; Shinozaki, Kazuo

    2006-10-01

    Analysis of albino or pale-green (apg) mutants is important for identifying nuclear genes responsible for chloroplast development and pigment synthesis. We have identified 38 apg mutants by screening 11 000 Arabidopsis Ds-tagged lines. One mutant, apg6, contains a Ds insertion in a gene encoding APG6 (ClpB3), a homologue of the heat-shock protein Hsp101 (ClpB1). We isolated somatic revertants and identified two Ds-tagged and one T-DNA-tagged mutant alleles of apg6. All three alleles gave the same pale-green phenotype. These results suggest that APG6 is important for chloroplast development. The APG6 protein contains a transit peptide and is localized in chloroplasts. The plastids of apg6 pale-green cells were smaller than those of the wild type, and contained undeveloped thylakoid membranes. APG6 mRNA accumulated in response to heat shock in various organs, but not in response to other abiotic stresses. Under normal conditions, APG6 is constitutively expressed in the root tips, the organ boundary region, the reproductive tissues of mature plants where plastids exist as proplastids, and slightly in the stems and leaves. In addition, constitutive overexpression of APG6 in transgenic plants inhibited chloroplast development and resulted in a mild pale-green phenotype. The amounts of chloroplast proteins related to photosynthesis were markedly decreased in apg6 mutants. These results suggest that APG6 functions as a molecular chaperone involved in plastid differentiation mediating internal thylakoid membrane formation and conferring thermotolerance to chloroplasts during heat stress. The APG6 protein is not only involved in heat-stress response in chloroplasts, but is also essential for chloroplast development.

  4. Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures

    PubMed Central

    Doyle, Siamsa M.; Diamond, Mark; McCabe, Paul F.

    2010-01-01

    Chloroplasts produce reactive oxygen species (ROS) during cellular stress. ROS are known to act as regulators of programmed cell death (PCD) in plant and animal cells, so it is possible that chloroplasts have a role in regulating PCD in green tissue. Arabidopsis thaliana cell suspension cultures are model systems in which to test this, as here it is shown that their cells contain well-developed, functional chloroplasts when grown in the light, but not when grown in the dark. Heat treatment at 55 °C induced apoptotic-like (AL)-PCD in the cultures, but light-grown cultures responded with significantly less AL-PCD than dark-grown cultures. Chloroplast-free light-grown cultures were established using norflurazon, spectinomycin, and lincomycin and these cultures responded to heat treatment with increased AL-PCD, demonstrating that chloroplasts affect AL-PCD induction in light-grown cultures. Antioxidant treatment of light-grown cultures also resulted in increased AL-PCD induction, suggesting that chloroplast-produced ROS may be involved in AL-PCD regulation. Cycloheximide treatment of light-grown cultures prolonged cell viability and attenuated AL-PCD induction; however, this effect was less pronounced in dark-grown cultures, and did not occur in antioxidant-treated light-grown cultures. This suggests that a complex interplay between light, chloroplasts, ROS, and nuclear protein synthesis occurs during plant AL-PCD. The results of this study highlight the importance of taking into account the time-point at which cells are observed and whether the cells are light-grown and chloroplast-containing or not, for any study on plant AL-PCD, as it appears that chloroplasts can play a significant role in AL-PCD regulation. PMID:19933317

  5. Photosynthesis Involvement in the Mechanism of Action of Diphenyl Ether Herbicides 1

    PubMed Central

    Ensminger, Michael P.; Hess, F. Dan

    1985-01-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity. PMID:16664206

  6. Photosynthesis involvement in the mechanism of action of diphenyl ether herbicides.

    PubMed

    Ensminger, M P; Hess, F D

    1985-05-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1'-dimethyl-4,4'-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity.

  7. Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants.

    PubMed

    Turkan, Ismail; Uzilday, Baris; Dietz, Karl-Josef; Bräutigam, Andrea; Ozgur, Rengin

    2018-02-26

    Redox regulation, antioxidant defence and ROS signalling are critical in realizing and tuning metabolic activities. However, our concepts were mostly developed for C3 plants since Arabidopsis thaliana is major model. Efforts to convert C3 plants to C4 plants to increase yield (see C4 rice; c4rice.irri.org/) entails better understanding of these processes in C4 plants. Various photosynthetic enzymes that take part in light reactions and carbon reactions are regulated via redox components such as thioredoxins as redox transmitters and peroxiredoxins. Due to this, understanding redox regulation in mesophyll and bundle sheath chloroplasts of C4 plants is of paramount importance. It appears impossible to utilize efficient C4 photosynthesis without understanding its exact redox needs and regulation mechanisms used during light reactions. In this review we will discuss available knowledge on redox regulation in C3 and C4 plants with special emphasis on mesophyll and bundle sheath differences in C4. In these two cell types of C4 plants, linear and cyclic electron transport in chloroplasts operate differentially when compared to C3 chloroplasts, changing the redox needs of the cell. Therefore, the focus is given to photosynthetic light reactions, ROS production dynamics, antioxidant defence and thiol based redox regulation with the aim to draw a picture of current knowledge.

  8. A nuclear-encoded chloroplast protein harboring a single CRM domain plays an important role in the Arabidopsis growth and stress response.

    PubMed

    Lee, Kwanuk; Lee, Hwa Jung; Kim, Dong Hyun; Jeon, Young; Pai, Hyun-Sook; Kang, Hunseung

    2014-04-16

    Although several chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins have been characterized for intron splicing and rRNA processing during chloroplast gene expression, the functional role of a majority of CRM domain proteins in plant growth and development as well as chloroplast RNA metabolism remains largely unknown. Here, we characterized the developmental and stress response roles of a nuclear-encoded chloroplast protein harboring a single CRM domain (At4g39040), designated CFM4, in Arabidopsis thaliana. Analysis of CFM4-GFP fusion proteins revealed that CFM4 is localized to chloroplasts. The loss-of-function T-DNA insertion mutants for CFM4 (cfm4) displayed retarded growth and delayed senescence, suggesting that CFM4 plays a role in growth and development of plants under normal growth conditions. In addition, cfm4 mutants showed retarded seed germination and seedling growth under stress conditions. No alteration in the splicing patterns of intron-containing chloroplast genes was observed in the mutant plants, but the processing of 16S and 4.5S rRNAs was abnormal in the mutant plants. Importantly, CFM4 was determined to possess RNA chaperone activity. These results suggest that the chloroplast-targeted CFM4, one of two Arabidopsis genes encoding a single CRM domain-containing protein, harbors RNA chaperone activity and plays a role in the Arabidopsis growth and stress response by affecting rRNA processing in chloroplasts.

  9. A nuclear-encoded chloroplast protein harboring a single CRM domain plays an important role in the Arabidopsis growth and stress response

    PubMed Central

    2014-01-01

    Background Although several chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins have been characterized for intron splicing and rRNA processing during chloroplast gene expression, the functional role of a majority of CRM domain proteins in plant growth and development as well as chloroplast RNA metabolism remains largely unknown. Here, we characterized the developmental and stress response roles of a nuclear-encoded chloroplast protein harboring a single CRM domain (At4g39040), designated CFM4, in Arabidopsis thaliana. Results Analysis of CFM4-GFP fusion proteins revealed that CFM4 is localized to chloroplasts. The loss-of-function T-DNA insertion mutants for CFM4 (cfm4) displayed retarded growth and delayed senescence, suggesting that CFM4 plays a role in growth and development of plants under normal growth conditions. In addition, cfm4 mutants showed retarded seed germination and seedling growth under stress conditions. No alteration in the splicing patterns of intron-containing chloroplast genes was observed in the mutant plants, but the processing of 16S and 4.5S rRNAs was abnormal in the mutant plants. Importantly, CFM4 was determined to possess RNA chaperone activity. Conclusions These results suggest that the chloroplast-targeted CFM4, one of two Arabidopsis genes encoding a single CRM domain-containing protein, harbors RNA chaperone activity and plays a role in the Arabidopsis growth and stress response by affecting rRNA processing in chloroplasts. PMID:24739417

  10. The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus.

    PubMed

    Keller, J; Rousseau-Gueutin, M; Martin, G E; Morice, J; Boutte, J; Coissac, E; Ourari, M; Aïnouche, M; Salmon, A; Cabello-Hurtado, F; Aïnouche, A

    2017-08-01

    The Fabaceae family is considered as a model system for understanding chloroplast genome evolution due to the presence of extensive structural rearrangements, gene losses and localized hypermutable regions. Here, we provide sequences of four chloroplast genomes from the Lupinus genus, belonging to the underinvestigated Genistoid clade. Notably, we found in Lupinus species the functional loss of the essential rps16 gene, which was most likely replaced by the nuclear rps16 gene that encodes chloroplast and mitochondrion targeted RPS16 proteins. To study the evolutionary fate of the rps16 gene, we explored all available plant chloroplast, mitochondrial and nuclear genomes. Whereas no plant mitochondrial genomes carry an rps16 gene, many plants still have a functional nuclear and chloroplast rps16 gene. Ka/Ks ratios revealed that both chloroplast and nuclear rps16 copies were under purifying selection. However, due to the dual targeting of the nuclear rps16 gene product and the absence of a mitochondrial copy, the chloroplast gene may be lost. We also performed comparative analyses of lupine plastomes (SNPs, indels and repeat elements), identified the most variable regions and examined their phylogenetic utility. The markers identified here will help to reveal the evolutionary history of lupines, Genistoids and closely related clades. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  11. The novel chloroplast outer membrane kinase KOC1 is a required component of the plastid protein import machinery.

    PubMed

    Zufferey, Mónica; Montandon, Cyrille; Douet, Véronique; Demarsy, Emilie; Agne, Birgit; Baginsky, Sacha; Kessler, Felix

    2017-04-28

    The biogenesis and maintenance of cell organelles such as mitochondria and chloroplasts require the import of many proteins from the cytosol, a process that is controlled by phosphorylation. In the case of chloroplasts, the import of hundreds of different proteins depends on translocons at the outer and inner chloroplast membrane (TOC and TIC, respectively) complexes. The essential protein TOC159 functions thereby as an import receptor. It has an N-terminal acidic (A-) domain that extends into the cytosol, controls receptor specificity, and is highly phosphorylated in vivo However, kinases that phosphorylate the TOC159 A-domain to enable protein import have remained elusive. Here, using co-purification with TOC159 from Arabidopsis , we discovered a novel component of the chloroplast import machinery, the regulatory kinase at the outer chloroplast membrane 1 (KOC1). We found that KOC1 is an integral membrane protein facing the cytosol and stably associates with TOC. Moreover, KOC1 phosphorylated the A-domain of TOC159 in vitro , and in mutant koc1 chloroplasts, preprotein import efficiency was diminished. koc1 Arabidopsis seedlings had reduced survival rates after transfer from the dark to the light in which protein import into plastids is required to rapidly complete chloroplast biogenesis. In summary, our data indicate that KOC1 is a functional component of the TOC machinery that phosphorylates import receptors, supports preprotein import, and contributes to efficient chloroplast biogenesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The novel chloroplast outer membrane kinase KOC1 is a required component of the plastid protein import machinery

    PubMed Central

    Zufferey, Mónica; Montandon, Cyrille; Douet, Véronique; Demarsy, Emilie; Agne, Birgit; Baginsky, Sacha; Kessler, Felix

    2017-01-01

    The biogenesis and maintenance of cell organelles such as mitochondria and chloroplasts require the import of many proteins from the cytosol, a process that is controlled by phosphorylation. In the case of chloroplasts, the import of hundreds of different proteins depends on translocons at the outer and inner chloroplast membrane (TOC and TIC, respectively) complexes. The essential protein TOC159 functions thereby as an import receptor. It has an N-terminal acidic (A-) domain that extends into the cytosol, controls receptor specificity, and is highly phosphorylated in vivo. However, kinases that phosphorylate the TOC159 A-domain to enable protein import have remained elusive. Here, using co-purification with TOC159 from Arabidopsis, we discovered a novel component of the chloroplast import machinery, the regulatory kinase at the outer chloroplast membrane 1 (KOC1). We found that KOC1 is an integral membrane protein facing the cytosol and stably associates with TOC. Moreover, KOC1 phosphorylated the A-domain of TOC159 in vitro, and in mutant koc1 chloroplasts, preprotein import efficiency was diminished. koc1 Arabidopsis seedlings had reduced survival rates after transfer from the dark to the light in which protein import into plastids is required to rapidly complete chloroplast biogenesis. In summary, our data indicate that KOC1 is a functional component of the TOC machinery that phosphorylates import receptors, supports preprotein import, and contributes to efficient chloroplast biogenesis. PMID:28283569

  13. Arabidopsis ACCELERATED CELL DEATH2 Modulates Programmed Cell DeathW⃞

    PubMed Central

    Yao, Nan; Greenberg, Jean T.

    2006-01-01

    The Arabidopsis thaliana chloroplast protein ACCELERATED CELL DEATH2 (ACD2) modulates the amount of programmed cell death (PCD) triggered by Pseudomonas syringae and protoporphyrin IX (PPIX) treatment. In vitro, ACD2 can reduce red chlorophyll catabolite, a chlorophyll derivative. We find that ACD2 shields root protoplasts that lack chlorophyll from light- and PPIX-induced PCD. Thus, chlorophyll catabolism is not obligatory for ACD2 anti-PCD function. Upon P. syringae infection, ACD2 levels and localization change in cells undergoing PCD and in their close neighbors. Thus, ACD2 shifts from being largely in chloroplasts to partitioning to chloroplasts, mitochondria, and, to a small extent, cytosol. ACD2 protects cells from PCD that requires the early mitochondrial oxidative burst. Later, the chloroplasts of dying cells generate NO, which only slightly affects cell viability. Finally, the mitochondria in dying cells have dramatically altered movements and cellular distribution. Overproduction of both ACD2 (localized to mitochondria and chloroplasts) and ascorbate peroxidase (localized to chloroplasts) greatly reduces P. syringae–induced PCD, suggesting a pro-PCD role for mitochondrial and chloroplast events. During infection, ACD2 may bind to and/or reduce PCD-inducing porphyrin-related molecules in mitochondria and possibly chloroplasts that generate reactive oxygen species, cause altered organelle behavior, and activate a cascade of PCD-inducing events. PMID:16387834

  14. Chloroplastic and cytoplasmic overexpression of sheep serotonin N-acetyltransferase in transgenic rice plants is associated with low melatonin production despite high enzyme activity.

    PubMed

    Byeon, Yeong; Lee, Hyoung Yool; Back, Kyoungwhan

    2015-05-01

    Serotonin N-acetyltransferase (SNAT), the penultimate enzyme in melatonin biosynthesis, catalyzes the conversion of serotonin into N-acetylserotonin. Plant SNAT is localized in chloroplasts. To test SNAT localization effects on melatonin synthesis, we generated transgenic rice plants overexpressing a sheep (Ovis aries) SNAT (OaSNAT) in their chloroplasts and compared melatonin biosynthesis with that of transgenic rice plants overexpressing OaSNAT in their cytoplasm. To localize the OaSNAT in chloroplasts, we used a chloroplast targeting sequence (CTS) from tobacco protoporphyrinogen IX oxidase (PPO), which expresses in chloroplasts. The purified recombinant CTS:OaSNAT fusion protein was enzymatically functional and localized in chloroplasts as confirmed by confocal microscopic analysis. The chloroplast-targeted CTS:OaSNAT lines and cytoplasm-expressed OaSNAT lines had similarly high SNAT enzyme activities. However, after cadmium and butafenacil treatments, melatonin production in rice leaves was severalfold lower in the CTS:OaSNAT lines than in the OaSNAT lines. Notably, enhanced SNAT enzyme activity was not directly proportional to the production of N-acetylserotonin, melatonin, or 2-hydroxymelatonin, suggesting that plant SNAT has a role in the homeostatic regulation of melatonin rather than in accelerating melatonin synthesis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants.

    PubMed

    Suetsugu, Noriyuki; Takemiya, Atsushi; Kong, Sam-Geun; Higa, Takeshi; Komatsu, Aino; Shimazaki, Ken-Ichiro; Kohchi, Takayuki; Wada, Masamitsu

    2016-09-13

    In green plants, the blue light receptor kinase phototropin mediates various photomovements and developmental responses, such as phototropism, chloroplast photorelocation movements (accumulation and avoidance), stomatal opening, and leaf flattening, which facilitate photosynthesis. In Arabidopsis, two phototropins (phot1 and phot2) redundantly mediate these responses. Two phototropin-interacting proteins, NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2), which belong to the NPH3/RPT2-like (NRL) family of BTB (broad complex, tramtrack, and bric à brac) domain proteins, mediate phototropism and leaf flattening. However, the roles of NRL proteins in chloroplast photorelocation movement remain to be determined. Here, we show that another phototropin-interacting NRL protein, NRL PROTEIN FOR CHLOROPLAST MOVEMENT 1 (NCH1), and RPT2 redundantly mediate the chloroplast accumulation response but not the avoidance response. NPH3, RPT2, and NCH1 are not involved in the chloroplast avoidance response or stomatal opening. In the liverwort Marchantia polymorpha, the NCH1 ortholog, MpNCH1, is essential for the chloroplast accumulation response but not the avoidance response, indicating that the regulation of the phototropin-mediated chloroplast accumulation response by RPT2/NCH1 is conserved in land plants. Thus, the NRL protein combination could determine the specificity of diverse phototropin-mediated responses.

  16. DNA Gyrase Is Involved in Chloroplast Nucleoid Partitioning

    PubMed Central

    Cho, Hye Sun; Lee, Sang Sook; Kim, Kwang Dong; Hwang, Inhwan; Lim, Jong-Seok; Park, Youn-Il; Pai, Hyun-Sook

    2004-01-01

    DNA gyrase, which catalyzes topological transformation of DNA, plays an essential role in replication and transcription in prokaryotes. Virus-induced gene silencing of NbGyrA or NbGyrB, which putatively encode DNA gyrase subunits A and B, respectively, resulted in leaf yellowing phenotypes in Nicotiana benthamiana. NbGyrA and NbGyrB complemented the gyrA and gyrB temperature-sensitive mutations of Escherichia coli, respectively, which indicates that the plant and bacterial subunits are functionally similar. NbGyrA and NbGyrB were targeted to both chloroplasts and mitochondria, and depletion of these subunits affected both organelles by reducing chloroplast numbers and inducing morphological and physiological abnormalities in both organelles. Flow cytometry analysis revealed that the average DNA content in the affected chloroplasts and mitochondria was significantly higher than in the control organelles. Furthermore, 4′,6-diamidino-2-phenylindole staining revealed that the abnormal chloroplasts contained one or a few large nucleoids instead of multiple small nucleoids dispersed throughout the stroma. Pulse-field gel electrophoresis analyses of chloroplasts demonstrated that the sizes and/or structure of the DNA molecules in the abnormal chloroplast nucleoids are highly aberrant. Based on these results, we propose that DNA gyrase plays a critical role in chloroplast nucleoid partitioning by regulating DNA topology. PMID:15367714

  17. Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression

    PubMed Central

    Puthiyaveetil, Sujith; Allen, John F.

    2009-01-01

    Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles—chloroplasts and mitochondria. Until recently, it was thought that two-component systems inherited from an ancestral cyanobacterial symbiont are no longer present in chloroplasts. Recent research now shows that two-component systems have survived in chloroplasts as products of both chloroplast and nuclear genes. Comparative genomic analysis of photosynthetic eukaryotes shows a lineage-specific distribution of chloroplast two-component systems. The components and the systems they comprise have homologues in extant cyanobacterial lineages, indicating their ancient cyanobacterial origin. Sequence and functional characteristics of chloroplast two-component systems point to their fundamental role in linking photosynthesis with gene expression. We propose that two-component systems provide a coupling between photosynthesis and gene expression that serves to retain genes in chloroplasts, thus providing the basis of cytoplasmic, non-Mendelian inheritance of plastid-associated characters. We discuss the role of this coupling in the chronobiology of cells and in the dialogue between nuclear and cytoplasmic genetic systems. PMID:19324807

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larkin, Robert M.; Stefano, Giovanni; Ruckle, Michael E.

    Eukaryotic cells require mechanisms to establish the proportion of cellular volume devoted to particular organelles. These mechanisms are poorly understood. From a screen for plastid-to-nucleus signaling mutants in Arabidopsis thaliana, we cloned a mutant allele of a gene that encodes a protein of unknown function that is homologous to two other Arabidopsis genes of unknown function and Arabidopsis. In contrast to FRIENDLY, these three homologs of FRIENDLY are found only in photosynthetic organisms. Based on these data, we proposed that FRIENDLY expanded into a small gene family to help regulate the energy metabolism of cells that contain both mitochondria andmore » chloroplasts. Indeed, we found that knocking out these genes caused a number of chloroplast phenotypes, including a reduction in the proportion of cellular volume devoted to chloroplasts to 50% of wild type. Thus, we refer to these genes as REDUCED CHLOROPLAST COVERAGE (REC). The size of the chloroplast compartment was reduced most in rec1 mutants. The REC1 protein accumulated in the cytosol and the nucleus. REC1 was excluded from the nucleus when plants were treated with amitrole, which inhibits cell expansion and chloroplast function. Finally, we conclude that REC1 is an extraplastidic protein that helps to establish the size of the chloroplast compartment, and that signals derived from cell expansion or chloroplasts may regulate REC1.« less

  19. Low-molecular-weight (4.5S) ribonucleic acid in higher-plant chloroplast ribosomes.

    PubMed Central

    Whitfeld, P R; Leaver, C J; Bottomley, W; Atchison, B

    1978-01-01

    A species of RNA that migrates on 10% (w/v) polyacrylamide gels between 5S and 4S RNA was detected in spinach chloroplasts. This RNA (referred to as 4.5 S RNA) was present in amounts equimolar to the 5S RNA and its molecular weight was estimated to be approx. 33 000. Fractionation of the chloroplast components showed that the 4.5S RNA was associated with the 50 S ribosomal subunit and that it could be removed by washing the ribosomes with a buffer containing 0.01 M-EDTA and 0.5 M-KCl. It did not appear to be a cleavage product of the labile 23 S RNA of spinach chloroplast ribosomes. When 125I-labelled 4.5 S RNA was hybridized to fragments of spinach chloroplast DNA produced by SmaI restriction endonuclease, a single fragment (mol.wt. 1.15 times 10(6)) became labelled. The same DNA fragment also hybridized to chloroplast 5 S RNA and part of the 23 S RNA. It was concluded that the coding sequence for 4.5 S RNA was part of, or immediately adjacent to, the rRNA-gene region in chloroplast DNA . A comparable RNA species was observed in chloroplasts of tobacco and pea leaves. Images Fig. 8. PMID:743229

  20. Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae.

    PubMed

    Bernhardt, Nadine; Brassac, Jonathan; Kilian, Benjamin; Blattner, Frank R

    2017-06-16

    Triticeae, the tribe of wheat grasses, harbours the cereals barley, rye and wheat and their wild relatives. Although economically important, relationships within the tribe are still not understood. We analysed the phylogeny of chloroplast lineages among nearly all monogenomic Triticeae taxa and polyploid wheat species aiming at a deeper understanding of the tribe's evolution. We used on- and off-target reads of a target-enrichment experiment followed by Illumina sequencing. The read data was used to assemble the plastid locus ndhF for 194 individuals and the whole chloroplast genome for 183 individuals, representing 53 Triticeae species and 15 genera. We conducted Bayesian and multispecies coalescent analyses to infer relationships and estimate divergence times of the taxa. We present the most comprehensive dated Triticeae chloroplast phylogeny and review previous hypotheses in the framework of our results. Monophyly of Triticeae chloroplasts could not be confirmed, as either Bromus or Psathyrostachys captured a chloroplast from a lineage closely related to a Bromus-Triticeae ancestor. The most recent common ancestor of Triticeae occurred approximately between ten and 19 million years ago. The comparison of the chloroplast phylogeny with available nuclear data in several cases revealed incongruences indicating past hybridizations. Recent events of chloroplast capture were detected as individuals grouped apart from con-specific accessions in otherwise monopyhletic groups.

  1. Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression.

    PubMed

    Puthiyaveetil, Sujith; Allen, John F

    2009-06-22

    Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles-chloroplasts and mitochondria. Until recently, it was thought that two-component systems inherited from an ancestral cyanobacterial symbiont are no longer present in chloroplasts. Recent research now shows that two-component systems have survived in chloroplasts as products of both chloroplast and nuclear genes. Comparative genomic analysis of photosynthetic eukaryotes shows a lineage-specific distribution of chloroplast two-component systems. The components and the systems they comprise have homologues in extant cyanobacterial lineages, indicating their ancient cyanobacterial origin. Sequence and functional characteristics of chloroplast two-component systems point to their fundamental role in linking photosynthesis with gene expression. We propose that two-component systems provide a coupling between photosynthesis and gene expression that serves to retain genes in chloroplasts, thus providing the basis of cytoplasmic, non-Mendelian inheritance of plastid-associated characters. We discuss the role of this coupling in the chronobiology of cells and in the dialogue between nuclear and cytoplasmic genetic systems.

  2. Chloroplasts do not have a polarity for light-induced accumulation movement.

    PubMed

    Tsuboi, Hidenori; Yamashita, Hiroko; Wada, Masamitsu

    2009-01-01

    Chloroplast photorelocation movement in green plants is generally mediated by blue light. However, in cryptogam plants, including ferns, mosses, and algae, both red light and blue light are effective. Although the photoreceptors required for this phenomenon have been identified, the mechanisms underlying this movement response are not yet known. In order to analyze this response in more detail, chloroplast movement was induced in dark-adapted Adiantum capillus-veneris gametophyte cells by partial cell irradiation with a microbeam of red and/or blue light. In each case, chloroplasts were found to move toward the microbeam-irradiated area. A second microbeam was also applied to the cell at a separate location before the chloroplasts had reached the destination of the first microbeam. Under these conditions, chloroplasts were found to change their direction of movement without turning and move toward the second microbeam-irradiated area after a lag time of a few minutes. These findings indicate that chloroplasts can move in any direction and do not exhibit a polarity for chloroplast accumulation movement. This phenomenon was analyzed in detail in Adiantum and subsequently confirmed in Arabidopsis thaliana palisade cells. Interestingly, the lag time for direction change toward the second microbeam in Adiantum was longer in the red light than in the blue light. However, the reason for this discrepancy is not yet understood.

  3. Sustained Photobiological Hydrogen Gas Production upon Reversible Inactivation of Oxygen Evolution in the Green Alga Chlamydomonas reinhardtii1

    PubMed Central

    Melis, Anastasios; Zhang, Liping; Forestier, Marc; Ghirardi, Maria L.; Seibert, Michael

    2000-01-01

    The work describes a novel approach for sustained photobiological production of H2 gas via the reversible hydrogenase pathway in the green alga Chlamydomonas reinhardtii. This single-organism, two-stage H2 production method circumvents the severe O2 sensitivity of the reversible hydrogenase by temporally separating photosynthetic O2 evolution and carbon accumulation (stage 1) from the consumption of cellular metabolites and concomitant H2 production (stage 2). A transition from stage 1 to stage 2 was effected upon S deprivation of the culture, which reversibly inactivated photosystem II (PSII) and O2 evolution. Under these conditions, oxidative respiration by the cells in the light depleted O2 and caused anaerobiosis in the culture, which was necessary and sufficient for the induction of the reversible hydrogenase. Subsequently, sustained cellular H2 gas production was observed in the light but not in the dark. The mechanism of H2 production entailed protein consumption and electron transport from endogenous substrate to the cytochrome b6-f and PSI complexes in the chloroplast thylakoids. Light absorption by PSI was required for H2 evolution, suggesting that photoreduction of ferredoxin is followed by electron donation to the reversible hydrogenase. The latter catalyzes the reduction of protons to molecular H2 in the chloroplast stroma. PMID:10631256

  4. Mechanism of protein import across the chloroplast envelope.

    PubMed

    Chen, K; Chen, X; Schnell, D J

    2000-01-01

    The development and maintenance of chloroplasts relies on the contribution of protein subunits from both plastid and nuclear genomes. Most chloroplast proteins are encoded by nuclear genes and are post-translationally imported into the organelle across the double membrane of the chloroplast envelope. Protein import into the chloroplast consists of two essential elements: the specific recognition of the targeting signals (transit sequences) of cytoplasmic preproteins by receptors at the outer envelope membrane and the subsequent translocation of preproteins simultaneously across the double membrane of the envelope. These processes are mediated via the co-ordinate action of protein translocon complexes in the outer (Toc apparatus) and inner (Tic apparatus) envelope membranes.

  5. Protein targeting and integration signal for the chloroplastic outer envelope membrane.

    PubMed Central

    Li, H M; Chen, L J

    1996-01-01

    Most proteins in chloroplasts are encoded by the nuclear genome and synthesized in the cytosol. With the exception of most quter envelope membrane proteins, nuclear-encoded chloroplastic proteins are synthesized with N-terminal extensions that contain the chloroplast targeting information of these proteins. Most outer membrane proteins, however, are synthesized without extensions in the cytosol. Therefore, it is not clear where the chloroplastic outer membrane targeting information resides within these polypeptides. We have analyzed a chloroplastic outer membrane protein, OEP14 (outer envelope membrane protein of 14 kD, previously named OM14), and localized its outer membrane targeting and integration signal to the first 30 amino acids of the protein. This signal consists of a positively charged N-terminal portion followed by a hydrophobic core, bearing resemblance to the signal peptides of proteins targeted to the endoplasmic reticulum. However, a chimeric protein containing this signal fused to a passenger protein did not integrate into the endoplasmic reticulum membrane. Furthermore, membrane topology analysis indicated that the signal inserts into the chloroplastic outer membrane in an orientation opposite to that predicted by the "positive inside" rule. PMID:8953775

  6. Pea chloroplast DnaJ-J8 and Toc12 are encoded by the same gene and localized in the stroma.

    PubMed

    Chiu, Chi-Chou; Chen, Lih-Jen; Li, Hsou-min

    2010-11-01

    Toc12 is a novel J domain-containing protein identified in pea (Pisum sativum) chloroplasts. It was shown to be an integral outer membrane protein localizing in the intermembrane space of the chloroplast envelope. Furthermore, Toc12 was shown to associate with an intermembrane space Hsp70, suggesting that Toc12 is important for protein translocation across the chloroplast envelope. Toc12 shares a high degree of sequence similarity with Arabidopsis (Arabidopsis thaliana) DnaJ-J8, which has been suggested to be a soluble protein of the chloroplast stroma. Here, we isolated genes encoding DnaJ-J8 from pea and found that Toc12 is a truncated clone of one of the pea DnaJ-J8s. Protein import analyses indicate that Toc12 and DnaJ-J8s possess a cleavable transit peptide and are localized in the stroma. Arabidopsis mutants with T-DNA insertions in the DnaJ-J8 gene show no defect in chloroplast protein import. Implications of these results in the energetics and mechanisms of chloroplast protein import are discussed.

  7. Rust fungal effectors mimic host transit peptides to translocate into chloroplasts.

    PubMed

    Petre, Benjamin; Lorrain, Cécile; Saunders, Diane G O; Win, Joe; Sklenar, Jan; Duplessis, Sébastien; Kamoun, Sophien

    2016-04-01

    Parasite effector proteins target various host cell compartments to alter host processes and promote infection. How effectors cross membrane-rich interfaces to reach these compartments is a major question in effector biology. Growing evidence suggests that effectors use molecular mimicry to subvert host cell machinery for protein sorting. We recently identified chloroplast-targeted protein 1 (CTP1), a candidate effector from the poplar leaf rust fungus Melampsora larici-populina that carries a predicted transit peptide and accumulates in chloroplasts and mitochondria. Here, we show that the CTP1 transit peptide is necessary and sufficient for accumulation in the stroma of chloroplasts. CTP1 is part of a Melampsora-specific family of polymorphic secreted proteins. Two members of that family, CTP2 and CTP3, also translocate in chloroplasts in an N-terminal signal-dependent manner. CTP1, CTP2 and CTP3 are cleaved when they accumulate in chloroplasts, while they remain intact when they do not translocate into chloroplasts. Our findings reveal that fungi have evolved effector proteins that mimic plant-specific sorting signals to traffic within plant cells. © 2015 John Wiley & Sons Ltd.

  8. Translation efficiencies of synonymous codons are not always correlated with codon usage in tobacco chloroplasts.

    PubMed

    Nakamura, Masayuki; Sugiura, Masahiro

    2007-01-01

    Codon usage in chloroplasts is different from that in prokaryotic and eukaryotic nuclear genomes. However, no experimental approach has been made to analyse the translation efficiency of individual codons in chloroplasts. We devised an in vitro assay for translation efficiencies using synthetic mRNAs, and measured the translation efficiencies of five synonymous codon groups in tobacco chloroplasts. Among four alanine codons (GCN, where N is U, C, A or G), GCU was the most efficient for translation, whereas the chloroplast genome lacks tRNA genes corresponding to GCU. Phenylalanine and tyrosine are each encoded by two codons (UUU/C and UAU/C, respectively). Phenylalanine UUC and tyrosine UAC were translated more than twice as efficiently than UUU and UAU, respectively, contrary to their codon usage, whereas translation efficiencies of synonymous codons for alanine, aspartic acid and asparagine were parallel to their codon usage. These observations indicate that translation efficiencies of individual codons are not always correlated with codon usage in vitro in chloroplasts. This raises an important issue for foreign gene expression in chloroplasts.

  9. Chloroplast behaviour and interactions with other organelles in Arabidopsis thaliana pavement cells.

    PubMed

    Barton, Kiah A; Wozny, Michael R; Mathur, Neeta; Jaipargas, Erica-Ashley; Mathur, Jaideep

    2018-01-29

    Chloroplasts are a characteristic feature of green plants. Mesophyll cells possess the majority of chloroplasts and it is widely believed that, with the exception of guard cells, the epidermal layer in most higher plants does not contain chloroplasts. However, recent observations on Arabidopsis thaliana have shown a population of chloroplasts in pavement cells that are smaller than mesophyll chloroplasts and have a high stroma to grana ratio. Here, using stable transgenic lines expressing fluorescent proteins targeted to the plastid stroma, plasma membrane, endoplasmic reticulum, tonoplast, nucleus, mitochondria, peroxisomes, F-actin and microtubules, we characterize the spatiotemporal relationships between the pavement cell chloroplasts (PCCs) and their subcellular environment. Observations on the PCCs suggest a source-sink relationship between the epidermal and the mesophyll layers, and experiments with the Arabidopsis mutants glabra2 ( gl2 ) and immutans ( im ), which show altered epidermal plastid development, underscored their developmental plasticity. Our findings lay down the foundation for further investigations aimed at understanding the precise role and contributions of PCCs in plant interactions with the environment. © 2018. Published by The Company of Biologists Ltd.

  10. Mergers and acquisitions: malaria and the great chloroplast heist.

    PubMed

    McFadden, G I

    2000-01-01

    The origin of the relict chloroplast recently identified in malarial parasites has been mysterious. Several new papers suggest that the parasites obtained their chloroplasts in an ancient endosymbiotic event that also created some major algal groups.

  11. An Examination of the Plastid DNA of Hypohaploid Nicotiana plumbaginifolia Plants

    PubMed Central

    Cannon, Gordon C.; Van, K. Tran Thanh; Heinhorst, Sabine; Trinh, T. H.; Weissbach, Arthur

    1989-01-01

    DNA was extracted from different morphological types of hypohaploid Nicotiana plumbaginifolia plants. The cellular levels of chloroplast DNA (expressed as percent of total DNA) were found to be approximately two- to threefold higher in two albino hypohaploids than in a green hypohaploid. The level of chloroplast DNA in the green hypohaploid was not significantly different from either in vitro or in vivo grown haploid N. plumbaginifolia plants. Molecular hybridization with DNA probes for the large subunit of ribulose bisphosphate carboxylase from spinach and with Pvull fragments representing the entire Nicotiana tabacum chloroplast genome revealed no gross qualitative differences in the chloroplast DNAs of hypohaploid plants. Based on these observations we have concluded that the lack of chloroplast function observed in the albino forms of hypohaploid N. plumbaginifolia plants is not due to changes in the chloroplast genome. Images Figure 1 Figure 2 PMID:16666781

  12. Effect of phytotoxic secondary metabolites and semisynthetic compounds from endophytic fungus Xylaria feejeensis strain SM3e-1b on spinach chloroplast photosynthesis.

    PubMed

    Macías-Rubalcava, Martha Lydia; García-Méndez, Marbella Claudia; King-Díaz, Beatriz; Macías-Ruvalcaba, Norma Angélica

    2017-01-01

    We investigated the mechanism of action on the photosynthesis light reactions of three major secondary metabolites produced by the endophytic fungus Xylaria feejeensis strain SM3e-1b, isolated from Sapium macrocarpum; and four novel derivatives of coriloxine, a major compound produced by X. feejeensis. The natural phytotoxins include one epoxycyclohexenone derivative, coriloxine (1), and two quinone derivatives (2-3). The semisynthetic derivatives of coriloxine are two cyclohexenone (4-6) and two quinone compounds (5-7). Cyclohexenone (4), (4R,5S,6R)-6-chloro-4,5-dihydroxy-3-methoxy-5-methylcyclohex-2-enone, inhibited ATP synthesis in freshly lysed spinach chloroplasts from water to MV; it also partly inhibited the basal and uncoupled photosynthetic electron transport, and significantly enhanced the phosphorylating electron transport and Mg 2+ -ATPase activity, thus demonstrating its action as an uncoupler agent. On the other hand, quinone (7), 2-((4-butylphenyl)amino)-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione, inhibited ATP synthesis, and non-cyclic electron transport from water to MV in basal, phosphorylating and uncoupled conditions in a concentration-dependent manner. Hence, (7) behaves as a Hill reaction inhibitor at the PSII electron transport on the water splitting enzyme (OEC), and on the acceptor side between P 680 and Q A . This mechanism of action was confirmed by chlorophyll a fluorescence measurements. These results indicate that coriloxine derivatives 4 and 7 could work as prototype structures for the development of new herbicides. Contrastingly, natural products 1-3, and derivatives 5 and 6 did not show a significant inhibitory effect on ATP synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Ozone Effects on the Ultrastructure of Peatland Plants: Sphagnum Mosses, Vaccinium oxycoccus, Andromeda polifolia and Eriophorum vaginatum

    PubMed Central

    RINNAN, RIIKKA; HOLOPAINEN, TOINI

    2004-01-01

    • Background and Aims Ozone effects on peatland vegetation are poorly understood. Since stress responses are often first visible in cell ultrastructure, electron microscopy was used to assess the sensitivity of common peatland plants to elevated ozone concentrations. • Methods Three moss species (Sphagnum angustifolium, S. magellanicum and S. papillosum), a graminoid (Eriophorum vaginatum) and two dwarf shrubs (Vaccinium oxycoccus and Andromeda polifolia), all growing within an intact canopy on peat monoliths, were exposed to a concentration of 0, 50, 100 or 150 ppb ozone in two separate growth chamber experiments simulating either summer or autumn conditions in central Finland. After a 4- or 5-week-long exposure, samples were photographed in a transmission electron microscope and analysed quantitatively using image processing software. • Key Results In the chlorophyllose cells of the Sphagnum moss leaves from the capitulum, ozone exposure led to a decrease in chloroplast area and in granum stack thickness and various changes in plastoglobuli and cell wall thickness, depending on the species and the experiment. In E. vaginatum, ozone exposure significantly reduced chloroplast cross-sectional areas and the amount of starch, whereas there were no clear changes in the plastoglobuli. In the dwarf shrubs, ozone induced thickening of the cell wall and an increase in the size of plastoglobuli under summer conditions. In contrast, under autumn conditions the cell wall thickness remained unchanged but ozone exposure led to a transient increase in the chloroplast and starch areas, and in the number and size of plastoglobuli. • Conclusions Ozone responses in the Sphagnum mosses were comparable to typical ozone stress symptoms of higher plants, and indicated sensitivity especially in S. angustifolium. The responses in the dwarf shrubs suggest stimulation of photosynthesis by low ozone concentrations and ozone sensitivity only under cool autumn conditions. PMID:15333464

  14. Uncovering the Protein Lysine and Arginine Methylation Network in Arabidopsis Chloroplasts

    PubMed Central

    Mininno, Morgane; Brugière, Sabine; Gilgen, Annabelle; Ma, Sheng; Mazzoleni, Meryl; Gigarel, Océane; Martin-Laffon, Jacqueline; Ferro, Myriam; Ravanel, Stéphane

    2014-01-01

    Post-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division). Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the β-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology. PMID:24748391

  15. Mergers and acquisitions: malaria and the great chloroplast heist

    PubMed Central

    McFadden, Geoffrey I

    2000-01-01

    The origin of the relict chloroplast recently identified in malarial parasites has been mysterious. Several new papers suggest that the parasites obtained their chloroplasts in an ancient endosymbiotic event that also created some major algal groups. PMID:11178253

  16. Promotion of chloroplast proliferation upon enhanced post-mitotic cell expansion in leaves.

    PubMed

    Kawade, Kensuke; Horiguchi, Gorou; Ishikawa, Naoko; Hirai, Masami Yokota; Tsukaya, Hirokazu

    2013-09-28

    Leaves are determinate organs; hence, precise control of cell proliferation and post-mitotic cell expansion is essential for their growth. A defect in cell proliferation often triggers enhanced post-mitotic cell expansion in leaves. This phenomenon is referred to as 'compensation'. Several lines of evidence from studies on compensation have shown that cell proliferation and post-mitotic cell expansion are coordinately regulated during leaf development. Therefore, compensation has attracted much attention to the mechanisms for leaf growth. However, our understanding of compensation at the subcellular level remains limited because studies of compensation have focused mainly on cellular-level phenotypes. Proper leaf growth requires quantitative control of subcellular components in association with cellular-level changes. To gain insight into the subcellular aspect of compensation, we investigated the well-known relationship between cell area and chloroplast number per cell in compensation-exhibiting lines, and asked whether chloroplast proliferation is modulated in response to the induction of compensation. We first established a convenient and reliable method for observation of chloroplasts in situ. Using this method, we analyzed Arabidopsis thaliana mutants fugu5 and angustifolia3 (an3), and a transgenic line KIP-RELATED PROTEIN2 overexpressor (KRP2 OE), which are known to exhibit typical features of compensation. We here showed that chloroplast number per cell increased in the subepidermal palisade tissue of these lines. We analyzed tetraploidized wild type, fugu5, an3 and KRP2 OE, and found that cell area itself, but not nuclear ploidy, is a key parameter that determines the activity of chloroplast proliferation. In particular, in the case of an3, we uncovered that promotion of chloroplast proliferation depends on the enhanced post-mitotic cell expansion. The expression levels of chloroplast proliferation-related genes are similar to or lower than that in the wild type during this process. This study demonstrates that chloroplast proliferation is promoted in compensation-exhibiting lines. This promotion of chloroplast proliferation takes place in response to cell-area increase in post-mitotic phase in an3. The expression of chloroplast proliferation-related genes were not promoted in compensation-exhibiting lines including an3, arguing that an as-yet-unknown mechanism is responsible for modulation of chloroplast proliferation in these lines.

  17. Promotion of chloroplast proliferation upon enhanced post-mitotic cell expansion in leaves

    PubMed Central

    2013-01-01

    Background Leaves are determinate organs; hence, precise control of cell proliferation and post-mitotic cell expansion is essential for their growth. A defect in cell proliferation often triggers enhanced post-mitotic cell expansion in leaves. This phenomenon is referred to as ‘compensation’. Several lines of evidence from studies on compensation have shown that cell proliferation and post-mitotic cell expansion are coordinately regulated during leaf development. Therefore, compensation has attracted much attention to the mechanisms for leaf growth. However, our understanding of compensation at the subcellular level remains limited because studies of compensation have focused mainly on cellular-level phenotypes. Proper leaf growth requires quantitative control of subcellular components in association with cellular-level changes. To gain insight into the subcellular aspect of compensation, we investigated the well-known relationship between cell area and chloroplast number per cell in compensation-exhibiting lines, and asked whether chloroplast proliferation is modulated in response to the induction of compensation. Results We first established a convenient and reliable method for observation of chloroplasts in situ. Using this method, we analyzed Arabidopsis thaliana mutants fugu5 and angustifolia3 (an3), and a transgenic line KIP-RELATED PROTEIN2 overexpressor (KRP2 OE), which are known to exhibit typical features of compensation. We here showed that chloroplast number per cell increased in the subepidermal palisade tissue of these lines. We analyzed tetraploidized wild type, fugu5, an3 and KRP2 OE, and found that cell area itself, but not nuclear ploidy, is a key parameter that determines the activity of chloroplast proliferation. In particular, in the case of an3, we uncovered that promotion of chloroplast proliferation depends on the enhanced post-mitotic cell expansion. The expression levels of chloroplast proliferation-related genes are similar to or lower than that in the wild type during this process. Conclusions This study demonstrates that chloroplast proliferation is promoted in compensation-exhibiting lines. This promotion of chloroplast proliferation takes place in response to cell-area increase in post-mitotic phase in an3. The expression of chloroplast proliferation-related genes were not promoted in compensation-exhibiting lines including an3, arguing that an as-yet-unknown mechanism is responsible for modulation of chloroplast proliferation in these lines. PMID:24074400

  18. Different effects of eubacterial and eukaryotic DNA topoisomerase II inhibitors on chloroplasts ofEuglena gracilis

    NASA Astrophysics Data System (ADS)

    Krajčovič, Juraj; Ebringer, Libor

    1990-03-01

    Inhibitors of eubacterial and eukaryotic DNA topoisomerases type II exhibited different effects on chloroplasts of the flagellateEuglena gracilis. Antibacterial agents (cinoxacin, nalidixic and oxolinic acids, ciprofloxacin, enoxacin, norfloxacin and ofloxacin) from the group of quinolones and coumarins (coumermycin A1, clorobiocin and novobiocin) — all inhibitors of prokaryotic DNA topoisomerase II — were very potent eliminators of chloroplasts fromE. gracilis. In contrast, antitumor drugs (adriamycin, etoposide, teniposide and mitoxantrone) — antagonists of the eukaryotic counterpart — did not affect these semiautonomous photosynthetic organelles. These findings point out again the close evolutionary relationships between eubacteria and chloroplasts and are in agreement with the hypothesis of an endosymbiotic origin of chloroplasts.

  19. The complete chloroplast genome of two Brassica species, Brassica nigra and B. Oleracea.

    PubMed

    Seol, Young-Joo; Kim, Kyunghee; Kang, Sang-Ho; Perumal, Sampath; Lee, Jonghoon; Kim, Chang-Kug

    2017-03-01

    The two Brassica species, Brassica nigra and Brassica oleracea, are important agronomic crops. The chloroplast genome sequences were generated by de novo assembly using whole genome next-generation sequences. The chloroplast genomes of B. nigra and B. oleracea were 153 633 bp and 153 366 bp in size, respectively, and showed conserved typical chloroplast structure. The both chloroplast genomes contained a total of 114 genes including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis revealed that B. oleracea is closely related to B. rapa and B. napus but B. nigra is more diverse than the neighbor species Raphanus sativus.

  20. The complete chloroplast genomes of two Wisteria species, W. floribunda and W. sinensis (Fabaceae).

    PubMed

    Kim, Na-Rae; Kim, Kyunghee; Lee, Sang-Choon; Lee, Jung-Hoon; Cho, Seong-Hyun; Yu, Yeisoo; Kim, Young-Dong; Yang, Tae-Jin

    2016-11-01

    Wisteria floribunda and Wisteria sinensis are ornamental woody vines in the Fabaceae. The complete chloroplast genome sequences of the two species were generated by de novo assembly using whole genome next generation sequences. The chloroplast genomes of W. floribunda and W. sinensis were 130 960 bp and 130 561 bp long, respectively, and showed inverted repeat (IR)-lacking structures as those reported in IRLC in the Fabaceae. The chloroplast genomes of both species contained same number of protein-coding sequences (77), tRNA genes (30), and rRNA genes (4). The phylogenetic analysis with the reported chloroplast genomes confirmed close taxonomical relationship of W. floribunda and W. sinensis.

  1. The Chloroplast Genome of Symplocarpus renifolius: A Comparison of Chloroplast Genome Structure in Araceae.

    PubMed

    Choi, Kyoung Su; Park, Kyu Tae; Park, SeonJoo

    2017-11-16

    Symplocarpus renifolius is a member of Araceae family that is extraordinarily diverse in appearance. Previous studies on chloroplast genomes in Araceae were focused on duckweeds (Lemnoideae) and root crops ( Colocasia , commonly known as taro). Here, we determined the chloroplast genome of Symplocarpus renifolius and compared the factors, such as genes and inverted repeat (IR) junctions and performed phylogenetic analysis using other Araceae species. The chloroplast genome of S. renifolius is 158,521 bp and includes 113 genes. A comparison among the Araceae chloroplast genomes showed that infA in Lemna , Spirodela , Wolffiella , Wolffia , Dieffenbachia and Colocasia has been lost or has become a pseudogene and has only been retained in Symplocarpus . In the Araceae chloroplast DNA (cpDNA), psbZ is retained. However, psbZ duplication occurred in Wolffia species and tandem repeats were noted around the duplication regions. A comparison of the IR junction in Araceae species revealed the presence of ycf1 and rps15 in the small single copy region, whereas duckweed species contained ycf1 and rps15 in the IR region. The phylogenetic analyses of the chloroplast genomes revealed that Symplocarpus are a basal group and are sister to the other Araceae species. Consequently, infA deletion or pseudogene events in Araceae occurred after the divergence of Symplocarpus and aquatic plants (duckweeds) in Araceae and duplication events of rps15 and ycf1 occurred in the IR region.

  2. Chloroplast precursor proteins compete to form early import intermediates in isolated pea chloroplasts.

    PubMed

    Row, P E; Gray, J C

    2001-01-01

    In order to ascertain whether there is one site for the import of precursor proteins into chloroplasts or whether different precursor proteins are imported via different import machineries, chloroplasts were incubated with large quantities of the precursor of the 33 kDa subunit of the oxygen-evolving complex (pOE33) or the precursor of the light-harvesting chlorophyll a/b-binding protein (pLHCP) and tested for their ability to import a wide range of other chloroplast precursor proteins. Both pOE33 and pLHCP competed for import into chloroplasts with precursors of the stromally-targeted small subunit of Rubisco (pSSu), ferredoxin NADP(+) reductase (pFNR) and porphobilinogen deaminase; the thylakoid membrane proteins LHCP and the Rieske iron-sulphur protein (pRieske protein); ferrochelatase and the gamma subunit of the ATP synthase (which are both associated with the thylakoid membrane); the thylakoid lumenal protein plastocyanin and the phosphate translocator, an integral membrane protein of the inner envelope. The concentrations of pOE33 or pLHCP required to cause half-maximal inhibition of import ranged between 0.2 and 4.9 microM. These results indicate that all of these proteins are imported into the chloroplast by a common import machinery. Incubation of chloroplasts with pOE33 inhibited the formation of early import intermediates of pSSu, pFNR and pRieske protein.

  3. Chloroplast chlB gene is required for light-independent chlorophyll accumulation in Chlamydomonas reinhardtii.

    PubMed

    Liu, X Q; Xu, H; Huang, C

    1993-10-01

    Light-independent chlorophyll synthesis occurs in some algae, lower plants, and gymnosperms, but not in angiosperms. We have identified a new chloroplast gene, chlB, that is required for the light-independent accumulation of chlorophyll in the green alga Chlamydomonas reinhardtii. The chlB gene was cloned, sequenced, and then disrupted by performing particle gun-mediated chloroplast transformation. The resulting homoplasmic mutant was unable to accumulate chlorophyll in the dark and thus exhibited a 'yellow-in-the-dark' phenotype. The chlB gene encodes a polypeptide of 688 amino acid residues, and is distinct from two previously characterized chloroplast genes (chlN and chlL) also required for light-independent chlorophyll accumulation in C. reinhardtii. Three unidentified open reading frames in chloroplast genomes of liverwort, black pine, and Chlamydomonas moewusii were also identified as chlB genes, based on their striking sequence similarities to the C. reinhardtii chlB gene. A chlB-like gene is absent in chloroplast genomes of tobacco and rice, consistent with the lack of light-independent chlorophyll synthesis in these plants. Polypeptides encoded by the chloroplast chlB genes also show significant sequence similarities with the bchB gene product of Rhodobacter capsulatus. Comparisons among the chloroplast chlB and the bacterial bchB gene products revealed five highly conserved sequence areas that are interspersed by four stretches of highly variable and probably insertional sequences.

  4. Maternal lineages of peach genotypes

    USDA-ARS?s Scientific Manuscript database

    Simple sequence repeats (SSRs) in chloroplast genomes are useful markers to determine maternal lineages. The SSR mining results revealed that most chloroplast SSRs among three Prunus chloroplast genomes were conserved in locations and motif types, but polymorphic in motif and/or amplicon lengths. Fi...

  5. Combined Analysis of the Chloroplast Genome and Transcriptome of the Antarctic Vascular Plant Deschampsia antarctica Desv

    PubMed Central

    Lee, Jungeun; Kang, Yoonjee; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok

    2014-01-01

    Background Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. Results The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp) and small (SSC: 12,519 bp) single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp). It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5′- or 3′-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. Conclusions We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers understand the characteristics of the chloroplast transcriptome. PMID:24647560

  6. Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia antarctica Desv.

    PubMed

    Lee, Jungeun; Kang, Yoonjee; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok

    2014-01-01

    Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp) and small (SSC: 12,519 bp) single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp). It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5'- or 3'-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers understand the characteristics of the chloroplast transcriptome.

  7. A CK2 site is reversibly phosphorylated in the photosystem II subunit CP29.

    PubMed

    Testi, M G; Croce, R; Polverino-De Laureto, P; Bassi, R

    1996-12-16

    Protein phosphorylation is a major mechanism in the regulation of protein function. In chloroplast thylakoids several photosystem II subunits, including the major antenna light-harvesting complex II and several core complex components, are reversibly phosphorylated depending on the redox state of the electron carriers. A previously unknown reversible phosphorylation event has recently been described on the CP29 subunit which leads to conformational changes and protection from cold stress (Bergantino, E., Dainese, P., Cerovic, Z. Sechi, S. and Bassi, R. (1995) J. Biol Chem. 270, 8474-8481). In this study, we have identified the phosphorylation site on the N-terminal, stroma-exposed domain, showing that it is located in a sequence not homologous to the other members of the Lhc family. The phosphorylated sequence is unique in chloroplast membranes since it meets the requirements for CK2 (casein kinase II) kinases. The possibility that this phosphorylation is involved in a signal transduction pathway is discussed.

  8. Export of carbon from chloroplasts at night

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schleucher, J.; Vanderveer, P.J.; Sharkey, T.D.

    Hexose export from chloroplasts at night has been inferred in previous studies of mutant and transgenic plants. The authors have tested whether hexose export is the normal route of carbon export from chloroplasts at night. The authors used nuclear magnetic resonance to distinguish glucose (Glc) made from hexose export and Glc made from triose export. Glc synthesized in vitro from fructose-6-phosphate in the presence of deuterium-labeled water had deuterium incorporated at C-2, whereas synthesis from triose phosphates caused C-2 through C-5 to become deuterated. In both tomato (Lycopersicon esculentum L.) and bean (phaseolus vulgaris L.), Glc from sucrose made atmore » night in the presence of deuterium-enriched water was deuterated only in the C-2 position, indicating that >75% of carbon is exported as hexoses at night. In darkness the phosphate in the cytosol was 28 mM, whereas that in the chloroplasts was 5 mW, but hexose phosphates were 10-fold higher in the cytosol than in the chloroplasts. Therefore, hexose phosphates would not move out of chloroplasts without the input of energy. The authors conclude that most carbon leaves chloroplasts at night as Glc, maltose, or higher maltodextrins under normal conditions.« less

  9. Vesicles Are Persistent Features of Different Plastids.

    PubMed

    Lindquist, Emelie; Solymosi, Katalin; Aronsson, Henrik

    2016-10-01

    Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle-like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio-chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein-mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Conflict amongst chloroplast DNA sequences obscures the phylogeny of a group of Asplenium ferns.

    PubMed

    Shepherd, Lara D; Holland, Barbara R; Perrie, Leon R

    2008-07-01

    A previous study of the relationships amongst three subgroups of the Austral Asplenium ferns found conflicting signal between the two chloroplast loci investigated. Because organelle genomes like those of chloroplasts and mitochondria are thought to be non-recombining, with a single evolutionary history, we sequenced four additional chloroplast loci with the expectation that this would resolve these relationships. Instead, the conflict was only magnified. Although tree-building analyses favoured one of the three possible trees, one of the alternative trees actually had one more supporting site (six versus five) and received greater support in spectral and neighbor-net analyses. Simulations suggested that chance alone was unlikely to produce strong support for two of the possible trees and none for the third. Likelihood permutation tests indicated that the concatenated chloroplast sequence data appeared to have experienced recombination. However, recombination between the chloroplast genomes of different species would be highly atypical, and corollary supporting observations, like chloroplast heteroplasmy, are lacking. Wider taxon sampling clarified the composition of the Austral group, but the conflicting signal meant analyses (e.g., morphological evolution, biogeographic) conditional on a well-supported phylogeny could not be performed.

  11. Multiplexed fragaria chloroplast genome sequencing

    Treesearch

    W. Njuguna; A. Liston; R. Cronn; N.V. Bassil

    2010-01-01

    A method to sequence multiple chloroplast genomes using ultra high throughput sequencing technologies was recently described. Complete chloroplast genome sequences can resolve phylogenetic relationships at low taxonomic levels and identify informative point mutations and indels. The objective of this research was to sequence multiple Fragaria...

  12. Method of producing metallized chloroplasts and use thereof in the photochemical production of hydrogen and oxygen

    DOEpatents

    Greenbaum, Elias

    1987-01-01

    The invention is primarily a metallized chloroplast composition for use in a photosynthetic reaction. A catalytic metal is precipitated on a chloroplast membrane at the location where a catalyzed reduction reaction occurs. This metallized chloroplast is stabilized by depositing it on a support medium such as fiber so that it can be easily handled. A possible application of this invention is the splitting of water to form hydrogen and oxygen that can be used as a renewable energy source.

  13. Three-dimensional electron diffraction of plant light-harvesting complex

    PubMed Central

    Wang, Da Neng; Kühlbrandt, Werner

    1992-01-01

    Electron diffraction patterns of two-dimensional crystals of light-harvesting chlorophyll a/b-protein complex (LHC-II) from photosynthetic membranes of pea chloroplasts, tilted at different angles up to 60°, were collected to 3.2 Å resolution at -125°C. The reflection intensities were merged into a three-dimensional data set. The Friedel R-factor and the merging R-factor were 21.8 and 27.6%, respectively. Specimen flatness and crystal size were critical for recording electron diffraction patterns from crystals at high tilts. The principal sources of experimental error were attributed to limitations of the number of unit cells contributing to an electron diffraction pattern, and to the critical electron dose. The distribution of strong diffraction spots indicated that the three-dimensional structure of LHC-II is less regular than that of other known membrane proteins and is not dominated by a particular feature of secondary structure. ImagesFIGURE 1FIGURE 2 PMID:19431817

  14. Flow Cytometry of Spinach Chloroplasts 1

    PubMed Central

    Schröder, Wolfgang P.; Petit, Patrice X.

    1992-01-01

    Intact spinach (Spinacia oleracea) chloroplasts, thylakoid membranes, and inside-out or right-side-out thylakoid vesicles have been characterized by flow cytometry with respect to forward angle light scatter, right angle light scatter, and chlorophyll fluorescence. Analysis of intact chloroplasts with respect to forward light scatter and the chlorophyll fluorescence parameter revealed the presence of truly “intact” and “disrupted” chloroplasts. The forward light scatter parameter, normally considered to reflect object size, was instead found to reflect the particle density. One essential advantage of flow cytometry is that additional parameters such as Ricinus communis agglutinin (linked to fluorescein isothiocyanate) fluorescence can be determined through logical conditions placed on bit-maps, amounting to an analytical purification procedure. In the present case, chloroplast subpopulations with fully preserved envelopes, thylakoid membrane, and inside-out or right-side-out thylakoid membranes vesicles can be distinguished. Flow cytometry is also a useful tool to address the question of availability of glycosyl moities on the membrane surfaces if one keeps in mind that organelle-to-organelle interactions could be partially mediated through a recognition process. A high specific binding of R. communis agglutinin and peanut lectin to the chloroplast envelope was detected. This showed that galactose residues were exposed and accessible to specific lectins on the chloroplast surface. No exposed glucose, fucose, or mannose residues could be detected by the appropriate lectins. Ricin binding to the intact chloroplasts caused a strong aggregation. Disruption of these aggregates by resuspension or during passage in the flow cytometer induced partial breakage of the chloroplasts. Only minor binding of R. communis agglutinin and peanut lectin to the purified thylakoid membranes was detected; the binding was found to be low for both inside-out and right-side-out vesicles of the thylakoid membranes. Images Figure 1 Figure 1 Figure 1 PMID:16653090

  15. A DIRECT LIGHT EFFECT ON MAINTAINING PHOTOSYNTHETIC ACTIVITY OF NITELLA CHLOROPLASTS

    PubMed Central

    Craig, I. W.; Gibor, A.

    1970-01-01

    The chloroplasts of internodal cells of Nitella are fixed to a stationary layer of cytoplasm whereas the nuclei and most of the cytoplasm stream along the longitudinal axis. Isolated internodal cells were maintained for several days with half the cell kept in the dark, the other half kept under continuous light. Photosynthetic activity of the cells was checked by placing the cell evenly illuminated in a 14CO2 atmosphere. Chloroplasts of the previously dark half of the cell were found to fix only half as much CO2 as the chloroplasts which were continuously illuminated. These results are discussed in relation to the possible direct effect of light on biosynthetic reactions of mature chloroplasts. PMID:5411077

  16. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit.

    PubMed

    D'Andrea, Lucio; Amenós, Montse; Rodríguez-Concepción, Manuel

    2014-01-01

    Plant cells are unique among eukaryotic cells because of the presence of plastids, including chloroplasts and chromoplasts. Chloroplasts are found in green tissues and harbor the photosynthetic machinery (including chlorophyll molecules), while chromoplasts are present in non-photosynthetic tissues and accumulate large amounts of carotenoids. During tomato fruit development, chloroplasts are converted into chromoplasts that accumulate high levels of lycopene, a linear carotenoid responsible for the characteristic red color of ripe fruit. Here, we describe a simple and fast method to detect both types of fully differentiated plastids (chloroplasts and chromoplasts), as well as intermediate stages, in fresh tomato fruits. The method is based on the differential autofluorescence of chlorophylls and carotenoids (lycopene) detected by Confocal Laser Scanning Microscopy.

  17. Prochloron research

    NASA Technical Reports Server (NTRS)

    Lewin, R. A.; Cheng, L.

    1983-01-01

    The purpose was to prepare Prochloron photosynthetic membranes for the isolation of the two major chlorophyll-proteins, the P700-chlorophyll a-protein and the light-harvesting chlorophyll a/b-protein, using SDS-polyacrylamide gel electrophoresis. The prepared proteins (purified) were examined for their cross-reactivity to polyclonal antibodies prepared from higher plant proteins. In addition, material was prepared for electron microscopy, and isolation of the DNA for determination of its general complexity (COT analysis) and similarity to barley chloroplast DNA and Anabaena DNA by using restriction-endonuclease analysis. Kleinschmidt spreads of the DNA were in the electron microscope to identify and measure the extent and size of the circlar DNA.

  18. Evidence That Isoprene Emission Is Not Limited by Cytosolic Metabolites. Exogenous Malate Does Not Invert the Reverse Sensitivity of Isoprene Emission to High [CO2].

    PubMed

    Rasulov, Bahtijor; Talts, Eero; Bichele, Irina; Niinemets, Ülo

    2018-02-01

    Isoprene is synthesized via the chloroplastic 2- C -methyl-d-erythritol 4-phosphate/1-deoxy-d-xylulose 5-phosphate pathway (MEP/DOXP), and its synthesis is directly related to photosynthesis, except under high CO 2 concentration, when the rate of photosynthesis increases but isoprene emission decreases. Suppression of MEP/DOXP pathway activity by high CO 2 has been explained either by limited supply of the cytosolic substrate precursor, phospho enol pyruvate (PEP), into chloroplast as the result of enhanced activity of cytosolic PEP carboxylase or by limited supply of energetic and reductive equivalents. We tested the PEP-limitation hypotheses by feeding leaves with the PEP carboxylase competitive inhibitors malate and diethyl oxalacetate (DOA) in the strong isoprene emitter hybrid aspen ( Populus tremula × Populus tremuloides ). Malate feeding resulted in the inhibition of net assimilation, photosynthetic electron transport, and isoprene emission rates, but DOA feeding did not affect any of these processes except at very high application concentrations. Both malate and DOA did not alter the sensitivity of isoprene emission to high CO 2 concentration. Malate inhibition of isoprene emission was associated with enhanced chloroplastic reductive status that suppressed light reactions of photosynthesis, ultimately leading to reduced isoprene substrate dimethylallyl diphosphate pool size. Additional experiments with altered oxygen concentrations in conditions of feedback-limited and non-feedback-limited photosynthesis further indicated that changes in isoprene emission rate in control and malate-inhibited leaves were associated with changes in the share of ATP and reductive equivalent supply for isoprene synthesis. The results of this study collectively indicate that malate importantly controls the chloroplast reductive status and, thereby, affects isoprene emission, but they do not support the hypothesis that cytosolic metabolite availability alters the response of isoprene emission to changes in atmospheric composition. © 2018 American Society of Plant Biologists. All Rights Reserved.

  19. Betaine synthesis in chenopods: localization in chloroplasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, A.D.; May A.M.; Grumet, R.

    1985-06-01

    Plants from several families (Chenopodiaceae, Gramineae, Compositae) accumulate betaine (glycine betaine) in response to salt or water stress via the pathway: choline betainal (betaine aldehyde) betaine. Betaine accumulation is probably a metabolic adaptation to stress. Intact protoplasts from leaves of spinach (Spinacia oleracea) oxidized ( UC)choline to betainal and betaine, as did protoplast lysates. Upon differential centrifugation, the ( UC)choline-oxidizing activity of lysates sedimented with chloroplasts. Chloroplasts purified from protoplast lysates by a Percoll cushion procedure retained strong ( UC)choline-oxidizing activity, although the proportion of the intermediate, ( UC)betainal, in the reaction products was usually higher than for protoplasts. Isolatedmore » chloroplasts also readily oxidized ( UC)betainal to betaine. Light increased the oxidation of both ( UC)choline and ( UC)betainal by isolated chloroplasts. Similar results were obtained with another chenopod (Beta vulgaris) but not with pea (Pisum sativum), a species that accumulates no betaine. The chloroplast site for betaine synthesis in chenopods contrasts with the mitochondrial site in mammals.« less

  20. The ultrastructure and genetic traits of plants under the condition of hypobaric and hypoxia

    NASA Astrophysics Data System (ADS)

    Guo, Shuangsheng; Tang, Yongkang; Wang, Shulei; Cheng, Quanyong; Zhao, Qi

    This study analyzed the cellular, sub-cellular and molecular levels, particle composition and volume changes of Indian lettuce under the conditions of hypobaric and hypoxia. Firstly, in the hypobaric and hypoxia conditions, two kinds of sample showed a decrease in the num-ber of cells, the increase in volume and the deflation in nuclear size. Secondly, Significant changes of the chloroplast ultrastructure have taken place in the two conditions. Thirdly, in the hypoxia condition, the chloroplast grana lamellae fractured and aggregated, which caused the chloroplasts to enlarge, their lamellae to reduce,become vaguer and finally to disintegrate. Fourthly, the volume change and aggregation of the chloroplasts induced mitochondria to ap-proach the chloroplasts. Fifthly, cytoskeleton immunofluorescence positioning results showed that the microtubules had decreased in number, shortened in length and gathered in the vicinity of the nucleus. In addition, total leaf DNA-sequence alignment found no rbcl gene mutation in the extreme conditions. Keywords: Chloroplast Ultrastructure Cytoskeleton rbcl gene Indian lettuce

  1. Maternal inheritance of the chloroplast genome in Eucalyptus globulus and interspecific hybrids.

    PubMed

    Mckinnon, A E; Vaillancourt, R E; Tilyard, P A; Potts, B M

    2001-10-01

    The utility of chloroplast DNA (cpDNA) in Eucalyptus, either as a molecular marker for genetic studies or as a potential vehicle for genetic manipulation, is based on knowledge of its mode of inheritance. Chloroplast inheritance in angiosperms can vary among and within species, and anomalous inheritance has been reported in some interspecific-hybrid combinations. In Eucalyptus, abnormalities of pollen-tube growth occur in a number of interspecific-hybrid combinations, and this might increase the likelihood of anomalous chloroplast transmission. We used a rapid PCR technique to determine chloroplast heritability in 425 progeny of Eucalyptus, comprising 194 progeny of the premier pulpwood species E. globulus and 231 interspecific hybrids between E. globulus and E. nitens (F1, F2, and backcrosses). At this sampling intensity, no pollen-mediated transmission of cpDNA was found in any of the 40 families tested. The results are discussed with reference to chloroplast engineering and the use of cpDNA as a seed-specific marker in phylogeographic studies of Eucalyptus.

  2. RNA-stabilization factors in chloroplasts of vascular plants.

    PubMed

    Manavski, Nikolay; Schmid, Lisa-Marie; Meurer, Jörg

    2018-04-13

    In contrast to the cyanobacterial ancestor, chloroplast gene expression is predominantly governed on the post-transcriptional level such as modifications of the RNA sequence, decay rates, exo- and endonucleolytic processing as well as translational events. The concerted function of numerous chloroplast RNA-binding proteins plays a fundamental and often essential role in all these processes but our understanding of their impact in regulation of RNA degradation is only at the beginning. Moreover, metabolic processes and post-translational modifications are thought to affect the function of RNA protectors. These protectors contain a variety of different RNA-recognition motifs, which often appear as multiple repeats. They are required for normal plant growth and development as well as diverse stress responses and acclimation processes. Interestingly, most of the protectors are plant specific which reflects a fast-evolving RNA metabolism in chloroplasts congruent with the diverging RNA targets. Here, we mainly focused on the characteristics of known chloroplast RNA-binding proteins that protect exonuclease-sensitive sites in chloroplasts of vascular plants. © 2018 The Author(s).

  3. The tannosome is an organelle forming condensed tannins in the chlorophyllous organs of Tracheophyta

    PubMed Central

    Brillouet, Jean-Marc; Romieu, Charles; Schoefs, Benoît; Solymosi, Katalin; Cheynier, Véronique; Fulcrand, Hélène; Verdeil, Jean-Luc; Conéjéro, Geneviève

    2013-01-01

    Background and Aims Condensed tannins (also called proanthocyanidins) are widespread polymers of catechins and are essential for the defence mechanisms of vascular plants (Tracheophyta). A large body of evidence argues for the synthesis of monomeric epicatechin on the cytosolic face of the endoplasmic reticulum and its transport to the vacuole, although the site of its polymerization into tannins remains to be elucidated. The aim of the study was to re-examine the cellular frame of tannin polymerization in various representatives of the Tracheophyta. Methods Light microscopy epifluorescence, confocal microscopy, transmission electron microscopy (TEM), chemical analysis of tannins following cell fractionation, and immunocytochemistry were used as independent methods on tannin-rich samples from various organs from Cycadophyta, Ginkgophyta, Equisetophyta, Pteridophyta, Coniferophyta and Magnoliophyta. Tissues were fixed in a caffeine–glutaraldehyde mixture and examined by TEM. Other fresh samples were incubated with primary antibodies against proteins from both chloroplastic envelopes and a thylakoidal chlorophyll-carrying protein; they were also incubated with gelatin–Oregon Green, a fluorescent marker of condensed tannins. Coupled spectral analyses of chlorophyll and tannins were carried out by confocal microscopy on fresh tissues and tannin-rich accretions obtained through cell fractionation; chemical analyses of tannins and chlorophylls were also performed on the accretions. Key Results and Conclusions The presence of the three different chloroplast membranes inside vacuolar accretions that constitute the typical form of tannin storage in vascular plants was established in fresh tissues as well as in purified organelles, using several independent methods. Tannins are polymerized in a new chloroplast-derived organelle, the tannosome. These are formed by pearling of the thylakoids into 30 nm spheres, which are then encapsulated in a tannosome shuttle formed by budding from the chloroplast and bound by a membrane resulting from the fusion of both chloroplast envelopes. The shuttle conveys numerous tannosomes through the cytoplasm towards the vacuole in which it is then incorporated by invagination of the tonoplast. Finally, shuttles bound by a portion of tonoplast aggregate into tannin accretions which are stored in the vacuole. Polymerization of tannins occurs inside the tannosome regardless of the compartment being crossed. A complete sequence of events apparently valid in all studied Tracheophyta is described. PMID:24026439

  4. The Chloroplast Genome of Symplocarpus renifolius: A Comparison of Chloroplast Genome Structure in Araceae

    PubMed Central

    Park, Kyu Tae

    2017-01-01

    Symplocarpus renifolius is a member of Araceae family that is extraordinarily diverse in appearance. Previous studies on chloroplast genomes in Araceae were focused on duckweeds (Lemnoideae) and root crops (Colocasia, commonly known as taro). Here, we determined the chloroplast genome of Symplocarpus renifolius and compared the factors, such as genes and inverted repeat (IR) junctions and performed phylogenetic analysis using other Araceae species. The chloroplast genome of S. renifolius is 158,521 bp and includes 113 genes. A comparison among the Araceae chloroplast genomes showed that infA in Lemna, Spirodela, Wolffiella, Wolffia, Dieffenbachia and Colocasia has been lost or has become a pseudogene and has only been retained in Symplocarpus. In the Araceae chloroplast DNA (cpDNA), psbZ is retained. However, psbZ duplication occurred in Wolffia species and tandem repeats were noted around the duplication regions. A comparison of the IR junction in Araceae species revealed the presence of ycf1 and rps15 in the small single copy region, whereas duckweed species contained ycf1 and rps15 in the IR region. The phylogenetic analyses of the chloroplast genomes revealed that Symplocarpus are a basal group and are sister to the other Araceae species. Consequently, infA deletion or pseudogene events in Araceae occurred after the divergence of Symplocarpus and aquatic plants (duckweeds) in Araceae and duplication events of rps15 and ycf1 occurred in the IR region. PMID:29144427

  5. Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity

    PubMed Central

    Yang, Jianguo; Xie, Xiaqing; Yang, Mingxuan; Dixon, Ray; Wang, Yi-Ping

    2017-01-01

    A large number of genes are necessary for the biosynthesis and activity of the enzyme nitrogenase to carry out the process of biological nitrogen fixation (BNF), which requires large amounts of ATP and reducing power. The multiplicity of the genes involved, the oxygen sensitivity of nitrogenase, plus the demand for energy and reducing power, are thought to be major obstacles to engineering BNF into cereal crops. Genes required for nitrogen fixation can be considered as three functional modules encoding electron-transport components (ETCs), proteins required for metal cluster biosynthesis, and the “core” nitrogenase apoenzyme, respectively. Among these modules, the ETC is important for the supply of reducing power. In this work, we have used Escherichia coli as a chassis to study the compatibility between molybdenum and the iron-only nitrogenases with ETC modules from target plant organelles, including chloroplasts, root plastids, and mitochondria. We have replaced an ETC module present in diazotrophic bacteria with genes encoding ferredoxin–NADPH oxidoreductases (FNRs) and their cognate ferredoxin counterparts from plant organelles. We observe that the FNR–ferredoxin module from chloroplasts and root plastids can support the activities of both types of nitrogenase. In contrast, an analogous ETC module from mitochondria could not function in electron transfer to nitrogenase. However, this incompatibility could be overcome with hybrid modules comprising mitochondrial NADPH-dependent adrenodoxin oxidoreductase and the Anabaena ferredoxins FdxH or FdxB. We pinpoint endogenous ETCs from plant organelles as power supplies to support nitrogenase for future engineering of diazotrophy in cereal crops. PMID:28193863

  6. Characterization of polymorphic chloroplast microsatellites in Prunus species and maternal lineages in peach genotypes

    USDA-ARS?s Scientific Manuscript database

    Several available Prunus chloroplast genomes have not been exploited to develop polymorphic chloroplast microsatellites that could be useful in Prunus maternal lineage and phylogenetic analysis. In this study, using available bioinformatics tools, 80, 75, and 78 microsatellites were identified from ...

  7. Origin of β-Carotene-Rich Plastoglobuli in Dunaliella bardawil1[C][W][OPEN

    PubMed Central

    Davidi, Lital; Shimoni, Eyal; Khozin-Goldberg, Inna; Zamir, Ada; Pick, Uri

    2014-01-01

    The halotolerant microalgae Dunaliella bardawil accumulates under nitrogen deprivation two types of lipid droplets: plastoglobuli rich in β-carotene (βC-plastoglobuli) and cytoplasmatic lipid droplets (CLDs). We describe the isolation, composition, and origin of these lipid droplets. Plastoglobuli contain β-carotene, phytoene, and galactolipids missing in CLDs. The two preparations contain different lipid-associated proteins: major lipid droplet protein in CLD and the Prorich carotene globule protein in βC-plastoglobuli. The compositions of triglyceride (TAG) molecular species, total fatty acids, and sn-1+3 and sn-2 positions in the two lipid pools are similar, except for a small increase in palmitic acid in plastoglobuli, suggesting a common origin. The formation of CLD TAG precedes that of βC-plastoglobuli, reaching a maximum after 48 h of nitrogen deprivation and then decreasing. Palmitic acid incorporation kinetics indicated that, at early stages of nitrogen deprivation, CLD TAG is synthesized mostly from newly formed fatty acids, whereas in βC-plastoglobuli, a large part of TAG is produced from fatty acids of preformed membrane lipids. Electron microscopic analyses revealed that CLDs adhere to chloroplast envelope membranes concomitant with appearance of small βC-plastoglobuli within the chloroplast. Based on these results, we propose that CLDs in D. bardawil are produced in the endoplasmatic reticulum, whereas βC-plastoglobuli are made, in part, from hydrolysis of chloroplast membrane lipids and in part, by a continual transfer of TAG or fatty acids derived from CLD. PMID:24567188

  8. An ATP synthase harboring an atypical γ-subunit is involved in ATP synthesis in tomato fruit chromoplasts.

    PubMed

    Pateraki, Irini; Renato, Marta; Azcón-Bieto, Joaquín; Boronat, Albert

    2013-04-01

    Chromoplasts are non-photosynthetic plastids specialized in the synthesis and accumulation of carotenoids. During fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts in a process characterized by the degradation of the thylakoid membranes, and by the active synthesis and accumulation of carotenoids. This transition renders chromoplasts unable to photochemically synthesize ATP, and therefore these organelles need to obtain the ATP required for anabolic processes through alternative sources. It is widely accepted that the ATP used for biosynthetic processes in non-photosynthetic plastids is imported from the cytosol or is obtained through glycolysis. In this work, however, we show that isolated tomato (Solanum lycopersicum) fruit chromoplasts are able to synthesize ATP de novo through a respiratory pathway using NADPH as an electron donor. We also report the involvement of a plastidial ATP synthase harboring an atypical γ-subunit induced during ripening, which lacks the regulatory dithiol domain present in plant and algae chloroplast γ-subunits. Silencing of this atypical γ-subunit during fruit ripening impairs the capacity of isolated chromoplast to synthesize ATP de novo. We propose that the replacement of the γ-subunit present in tomato leaf and green fruit chloroplasts by the atypical γ-subunit lacking the dithiol domain during fruit ripening reflects evolutionary changes, which allow the operation of chromoplast ATP synthase under the particular physiological conditions found in this organelle. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.

  9. Designing specific chloroplast markers for black walnut from a set of universal primers

    Treesearch

    Erin Victory; Rodney L. Robichaud; Keith Woeste

    2003-01-01

    Chloroplasts are a valuable source of genetic information because their sequence is highly conserved, they undergo little or no recombination, and they are uniparentally inherited. Chloroplast polymorphisms are powerful genetic tools for identifying matrilineal family groups, studying gene flow from seed versus pollen movement, reconstructing phylogeographic...

  10. The complete chloroplast genome of common walnut (Juglans regia)

    Treesearch

    Yiheng ​Hu; Keith E. Woeste; Meng Dang; Tao Zhou; Xiaojia Feng; Guifang Zhao; Zhanlin Liu; Zhonghu Li; Peng Zhao

    2016-01-01

    Common walnut (Juglans regia L.) is cultivated in temperate regions worldwide for its wood and nuts. The complete chloroplast genome of J. regia was sequenced using the Illumina MiSeq platform. This is the first complete chloroplast sequence for the Juglandaceae, a family that includes numerous species of economic importance....

  11. Chloroplast microsatellite primers for cacao (Theobroma cacao) and other Malvaceae.

    PubMed

    Yang, Ji Y; Motilal, Lambert A; Dempewolf, Hannes; Maharaj, Kamaldeo; Cronk, Q C B

    2011-12-01

    Chloroplast microsatellites were developed in Theobroma cacao to examine the genetic diversity of cacao cultivars in Trinidad and Tobago. Nine polymorphic microsatellites were designed from the chloroplast genomes of two T. cacao accessions. These microsatellites were tested in 95 hybrid accessions from Trinidad and Tobago. An average of 2.9 alleles per locus was found. These chloroplast microsatellites, particularly the highly polymorphic pentameric repeat, were useful in assessing genetic variation in T. cacao. In addition, these markers should also prove to be useful for population genetic studies in other species of Malvaceae.

  12. Redox-shuttling between chloroplast and cytosol: integration of intra-chloroplast and extra-chloroplast metabolism.

    PubMed

    Taniguchi, Mitsutaka; Miyake, Hiroshi

    2012-06-01

    Reducing equivalents produced in the chloroplast are essential for many key cellular metabolic enzyme reactions. Two redox shuttle systems transfer reductant out of the chloroplast; these systems consist of metabolite transporters, coupled with stromal and cytosolic dehydrogenase isozymes. The transporters function in the redox shuttle and also operate as key enzymes in carbon/nitrogen metabolism. To maintain adequate levels of reductant and proper metabolic balance, the shuttle systems are finely controlled. Also, in the leaves of C(4) plants, cell-specific division of carbon and nitrogen assimilation includes cell-specific localization of the redox shuttle systems. The redox shuttle systems are tightly linked to cellular metabolic pathways and are essential for maintaining metabolic balance between energy and reducing equivalents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The DCL gene of tomato is required for chloroplast development and palisade cell morphogenesis in leaves.

    PubMed

    Keddie, J S; Carroll, B; Jones, J D; Gruissem, W

    1996-08-15

    The defective chloroplasts and leaves-mutable (dcl-m) mutation of tomato was identified in a Ds mutagenesis screen. This unstable mutation affects both chloroplast development and palisade cell morphogenesis in leaves. Mutant plants are clonally variegated as a result of somatic excision of Ds and have albino leaves with green sectors. Leaf midribs and stems are light green with sectors of dark green tissue but fruit and petals are wild-type in appearance. Within dark green sectors of dcl-m leaves, palisade cells are normal, whereas in albino areas of dcl-m leaves, palisade cells do not expand to become their characteristic columnar shape. The development of chloroplasts from proplastids in albino areas is apparently blocked at an early stage. DCL was cloned using Ds as a tag and encodes a novel protein of approximately 25 kDa, containing a chloroplast transit peptide and an acidic alpha-helical region. DCL protein was imported into chloroplasts in vitro and processed to a mature form. Because of the ubiquitous expression of DCL and the proplastid-like appearance of dcl-affected plastids, the DCL protein may regulate a basic and universal function of the plastid. The novel dcl-m phenotype suggests that chloroplast development is required for correct palisade cell morphogenesis during leaf development.

  14. Chloroplast Galactolipids: The Link Between Photosynthesis, Chloroplast Shape, Jasmonates, Phosphate Starvation and Freezing Tolerance.

    PubMed

    Li, Hsou-Min; Yu, Chun-Wei

    2018-06-01

    Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) together constitute approximately 80% of chloroplast lipids. Apart from facilitating the photosynthesis light reaction in the thylakoid membrane, these two lipids are important for maintaining chloroplast morphology and for plant survival under abiotic stresses such as phosphate starvation and freezing. Recently it was shown that severe growth retardation phenotypes of the DGDG-deficient mutant dgd1 were due to jasmonate overproduction, linking MGDG and DGDG homeostasis with phytohormone production and suggesting MGDG as a major substrate for jasmonate biosynthesis. Induction of jasmonate synthesis and jasmonic acid (JA) signaling was also observed under conditions of phosphate starvation. We hypothesize that when DGDG is recruited to substitute for phospholipids in extraplastidic membranes during phosphate deficiency, the altered MGDG to DGDG ratio in the chloroplast envelope triggers the conversion of galactolipids into jasmonates. The conversion may contribute to rebalancing the MGDG to DGDG ratio rapidly to maintain chloroplast shape, and jasmonate production can reduce the growth rate and enhance predator deterrence. We also hypothesize that other conditions, such as suppression of dgd1 phenotypes by trigalactosyldiacylglycerol (tgd) mutations, may all be linked to altered jasmonate production, indicating that caution should be exercised when interpreting phenotypes caused by conditions that may alter the MGDG to DGDG ratio at the chloroplast envelope.

  15. Functional Differentiation of Bundle Sheath and Mesophyll Maize Chloroplasts Determined by Comparative ProteomicsW⃞

    PubMed Central

    Majeran, Wojciech; Cai, Yang; Sun, Qi; van Wijk, Klaas J.

    2005-01-01

    Chloroplasts of maize (Zea mays) leaves differentiate into specific bundle sheath (BS) and mesophyll (M) types to accommodate C4 photosynthesis. Consequences for other plastid functions are not well understood but are addressed here through a quantitative comparative proteome analysis of purified M and BS chloroplast stroma. Three independent techniques were used, including cleavable stable isotope coded affinity tags. Enzymes involved in lipid biosynthesis, nitrogen import, and tetrapyrrole and isoprenoid biosynthesis are preferentially located in the M chloroplasts. By contrast, enzymes involved in starch synthesis and sulfur import preferentially accumulate in BS chloroplasts. The different soluble antioxidative systems, in particular peroxiredoxins, accumulate at higher levels in M chloroplasts. We also observed differential accumulation of proteins involved in expression of plastid-encoded proteins (e.g., EF-Tu, EF-G, and mRNA binding proteins) and thylakoid formation (VIPP1), whereas others were equally distributed. Enzymes related to the C4 shuttle, the carboxylation and regeneration phase of the Calvin cycle, and several regulators (e.g., CP12) distributed as expected. However, enzymes involved in triose phosphate reduction and triose phosphate isomerase are primarily located in the M chloroplasts, indicating that the M-localized triose phosphate shuttle should be viewed as part of the BS-localized Calvin cycle, rather than a parallel pathway. PMID:16243905

  16. A chloroplast-targeted cabbage DEAD-box RNA helicase BrRH22 confers abiotic stress tolerance to transgenic Arabidopsis plants by affecting translation of chloroplast transcripts.

    PubMed

    Nawaz, Ghazala; Lee, Kwanuk; Park, Su Jung; Kim, Yeon-Ok; Kang, Hunseung

    2018-06-01

    Although the roles of many DEAD-box RNA helicases (RHs) have been determined in the nucleus as well as in cytoplasm during stress responses, the importance of chloroplast-targeted DEAD-box RHs in stress response remains largely unknown. In this study, we determined the function of BrRH22, a chloroplast-targeted DEAD-box RH in cabbage (Brassica rapa), in abiotic stress responses. The expression of BrRH22 was markedly increased by drought, heat, salt, or cold stress and by ABA treatment, but was largely decreased by UV stress. Expression of BrRH22 in Arabidopsis enhanced germination and plantlet growth under high salinity or drought stress. BrRH22-expressing plants displayed a higher cotyledon greening and better plantlet growth upon ABA treatment due to decreases in the levels of ABI3, ABI4, and ABI5. Further, BrRH22 affected translation of several chloroplast transcripts under stress. Notably, BrRH22 had RNA chaperone function. These results altogether suggest that chloroplast-transported BrRH22 contributes positively to the response of transgenic Arabidopsis to abiotic stress by affecting translation of chloroplast genes via its RNA chaperone activity. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Activation of cyclic electron flow by hydrogen peroxide in vivo

    DOE PAGES

    Strand, Deserah D.; Livingston, Aaron K.; Satoh-Cruz, Mio; ...

    2015-04-13

    Cyclic electron flow (CEF) around photosystem I is thought to balance the ATP/NADPH energy budget of photosynthesis, requiring that its rate be finely regulated. The mechanisms of this regulation are not well understood. We observed that mutants that exhibited constitutively high rates of CEF also showed elevated production of H 2O 2. We thus tested the hypothesis that CEF can be activated by H 2O 2 in vivo. CEF was strongly increased by H 2O 2 both by infiltration or in situ production by chloroplast-localized glycolate oxidase, implying that H 2O 2 can activate CEF either directly by redox modulationmore » of key enzymes, or indirectly by affecting other photosynthetic processes. CEF appeared with a half time of about 20 min after exposure to H 2O 2, suggesting activation of previously expressed CEF-related machinery. H 2O 2-dependent CEF was not sensitive to antimycin A or loss of PGR5, indicating that increased CEF probably does not involve the PGR5-PGRL1 associated pathway. In contrast, the rise in CEF was not observed in a mutant deficient in the chloroplast NADPH:PQ reductase (NDH), supporting the involvement of this complex in CEF activated by H 2O 2. In conclusion, we propose that H 2O 2 is a missing link between environmental stress, metabolism, and redox regulation of CEF in higher plants.« less

  18. The effect of medium viscosity on kinetics of ATP hydrolysis by the chloroplast coupling factor CF1.

    PubMed

    Malyan, Alexander N

    2016-05-01

    The coupling factor CF1 is a catalytic part of chloroplast ATP synthase which is exposed to stroma whose viscosity is many-fold higher than that of reaction mixtures commonly used to measure kinetics of CF1-catalyzed ATP hydrolysis. This study is focused on the effect of medium viscosity modulated by sucrose or bovine serum albumin (BSA) on kinetics of Ca(2+)- and Mg(2+)-dependent ATP hydrolysis by CF1. These agents were shown to reduce the maximal rate of Ca(2+)-dependent ATPase without changing the apparent Michaelis constant (К m), thus supporting the hypothesis on viscosity dependence of CF1 activity. For the sulfite- and ethanol-stimulated Mg(2+)-dependent reaction, the presence of sucrose increased К m without changing the maximal rate that is many-fold as high as that of Ca(2+)-dependent hydrolysis. The hydrolysis reaction was shown to be stimulated by low concentrations of BSA and inhibited by its higher concentrations, with the increasing maximal reaction rate estimated by extrapolation. Sucrose- or BSA-induced inhibition of the Mg(2+)-dependent ATPase reaction is believed to result from diffusion-caused deceleration, while its BSA-induced stimulation is probably caused by optimization of the enzyme structure. Molecular mechanisms of the inhibitory effect of viscosity are discussed. Taking into account high protein concentrations in the chloroplast stroma, it was suggested that kinetic parameters of ATP hydrolysis, and probably those of ATP synthesis in vivo as well, must be quite different from measurements taken at a viscosity level close to that of water.

  19. Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding

    PubMed Central

    Mader, Malte; Le Paslier, Marie-Christine; Bounon, Rémi; Berard, Aurélie; Vettori, Cristina; Schroeder, Hilke; Leplé, Jean-Charles; Fladung, Matthias

    2016-01-01

    Complete Populus genome sequences are available for the nucleus (P. trichocarpa; section Tacamahaca) and for chloroplasts (seven species), but not for mitochondria. Here, we provide the complete genome sequences of the chloroplast and the mitochondrion for the clones P. tremula W52 and P. tremula x P. alba 717-1B4 (section Populus). The organization of the chloroplast genomes of both Populus clones is described. A phylogenetic tree constructed from all available complete chloroplast DNA sequences of Populus was not congruent with the assignment of the related species to different Populus sections. In total, 3,024 variable nucleotide positions were identified among all compared Populus chloroplast DNA sequences. The 5-prime part of the LSC from trnH to atpA showed the highest frequency of variations. The variable positions included 163 positions with SNPs allowing for differentiating the two clones with P. tremula chloroplast genomes (W52, 717-1B4) from the other seven Populus individuals. These potential P. tremula-specific SNPs were displayed as a whole-plastome barcode on the P. tremula W52 chloroplast DNA sequence. Three of these SNPs and one InDel in the trnH-psbA linker were successfully validated by Sanger sequencing in an extended set of Populus individuals. The complete mitochondrial genome sequence of P. tremula is the first in the family of Salicaceae. The mitochondrial genomes of the two clones are 783,442 bp (W52) and 783,513 bp (717-1B4) in size, structurally very similar and organized as single circles. DNA sequence regions with high similarity to the W52 chloroplast sequence account for about 2% of the W52 mitochondrial genome. The mean SNP frequency was found to be nearly six fold higher in the chloroplast than in the mitochondrial genome when comparing 717-1B4 with W52. The availability of the genomic information of all three DNA-containing cell organelles will allow a holistic approach in poplar molecular breeding in the future. PMID:26800039

  20. A simple low-cost microcontroller-based photometric instrument for monitoring chloroplast movement.

    PubMed

    Berg, Robert; Königer, Martina; Schjeide, Brit-Maren; Dikmak, George; Kohler, Susan; Harris, Gary C

    2006-03-01

    A new microcontroller-based photometric instrument for monitoring blue light dependent changes in leaf transmission (chloroplast movement) was developed based on a modification of the double-beam technique developed by Walzcak and Gabrys [(1980) Photosynthetica 14: 65-72]. A blue and red bicolor light emitting diode (LED) provided both a variable intensity blue actinic light and a low intensity red measuring beam. A phototransistor detected the intensity of the transmitted measuring light. An inexpensive microcontroller independently and precisely controlled the light emission of the bicolor LED. A typical measurement event involved turning off the blue actinic light for 100 mus to create a narrow temporal window for turning on and measuring the transmittance of the red light. The microcontroller was programmed using LogoChip Logo (http://www.wellesley.edu/Physics/Rberg/logochip/) to record fluence rate response curves. Laser scanning confocal microscopy was utilized to correlate the changes in leaf transmission with intercellular chloroplast position. In the dark, the chloroplasts in the spongy mesophyll exhibited no evident asymmetries in their distribution, however, in the palisade layer the cell surface in contact with the overlying epidermis was devoid of chloroplasts. The low light dependent decrease in leaf transmittance in dark acclimated leaves was correlated with the movement of chloroplasts within the palisade layer into the regions previously devoid of chloroplasts. Changes in leaf transmittance were evident within one minute following the onset of illumination. Minimal leaf transmittance was correlated with chloroplasts having retreated from cell surfaces perpendicular to the incident light (avoidance reaction) in both spongy and palisade layers.

  1. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants.

    PubMed

    Choi, Geun-Hee; Lee, Hyoung Yool; Back, Kyoungwhan

    2017-08-01

    Recent analyses of the enzymatic features of various melatonin biosynthetic genes from bacteria, animals, and plants have led to the hypothesis that melatonin could be synthesized via the 5-methoxytryptamine (5-MT) pathway. 5-MT is known to be synthesized in vitro from serotonin by the enzymatic action of O-methyltransferases, including N-acetylserotonin methyltransferase (ASMT) and caffeic acid O-methyltransferase (COMT), leading to melatonin synthesis by the subsequent enzymatic reaction with serotonin N-acetyltransferase (SNAT). Here, we show that 5-MT was produced and served as a precursor for melatonin synthesis in plants. When rice seedlings were challenged with senescence treatment, 5-MT levels and melatonin production were increased in transgenic rice seedlings overexpressing the rice COMT in chloroplasts, while no such increases were observed in wild-type or transgenic seedlings overexpressing the rice COMT in the cytosol, suggesting a 5-MT transport limitation from the cytosol to chloroplasts. In contrast, cadmium treatment led to results different from those in senescence. The enhanced melatonin production was not observed in the chloroplast COMT lines relative over the cytosol COMT lines although 5-MT levels were equally induced in all genotypes upon cadmium treatment. The transgenic seedlings with enhanced melatonin in their chloroplasts exhibited improved seedling growth vs the wild type under continuous light conditions. This is the first report describing enhanced melatonin production in chloroplasts via the 5-MT pathway with the ectopic overexpression of COMT in chloroplasts in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Analysis of Protein Interactions at Native Chloroplast Membranes by Ellipsometry

    PubMed Central

    Kriechbaumer, Verena; Nabok, Alexei; Mustafa, Mohd K.; Al-Ammar, Rukaiah; Tsargorodskaya, Anna; Smith, David P.; Abell, Ben M.

    2012-01-01

    Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE). We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins. PMID:22479632

  3. Cyclophilin 20-3 is positioned as a regulatory hub between light-dependent redox and 12-oxo-phytodienoic acid signaling.

    PubMed

    Cheong, Hoon; Barbosa Dos Santos, Izailda; Liu, Wenshan; Gosse, Heather N; Park, Sang-Wook

    2017-09-02

    The jasmonate family of phytohormones plays central roles in plant development and stress acclimation. However, the regulatory modes of their signaling circuitry remain largely unknown. Here we describe that cyclophilin 20-3 (CYP20-3), a binding protein of (+)-12-oxo-phytodienoic acid (OPDA), crisscrosses stress responses with light-dependent redox reactions, which fine-tunes the activity of key enzymes in the plastid photosynthetic carbon assimilation and sulfur assimilation pathways. Under stressed states, OPDA - accumulated in the chloroplasts - binds and promotes CYP20-3 to transfer electron (e - ) from thioredoxins (i.e., type-f2 and -x) to 2-Cys peroxiredoxin B (2-CysPrxB) or serine acetyltransferase 1 (SAT1). Reduction (activation) of 2-CysPrxB then optimizes peroxide detoxification and carbon metabolisms in the photosynthesis, whereas the activation of SAT1 stimulates sulfur assimilation which in turn coordinates redox-resolved nucleus gene expressions in defense responses against biotic and abiotic stresses. Thus, we conclude that CYP20-3 is positioned as a unique metabolic hub in the interface between photosynthesis (light) and OPDA signaling, where controls resource (e - ) allocations between plant growth and defense responses.

  4. Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology

    Treesearch

    Richard Cronn; Aaron Liston; Matthew Parks; David S. Gernandt; Rongkun Shen; Todd Mockler

    2008-01-01

    Organellar DNA sequences are widely used in evolutionary and population genetic studies; however, the conservative nature of chloroplast gene and genome evolution often limits phylogenetic resolution and statistical power. To gain maximal access to the historical record contained within chloroplast genomes, we have adapted multiplex sequencing-by-synthesis (MSBS) to...

  5. Expression of the B subunit of E. coli heat-labile enterotoxin in the chloroplasts of plants and its characterization.

    PubMed

    Kang, Tae-Jin; Loc, Nguyen-Hoang; Jang, Mi-Ok; Jang, Yong-Suk; Kim, Young-Sook; Seo, Jo-Eun; Yang, Moon-Sik

    2003-12-01

    Transgenic chloroplasts have become attractive systems for heterologous gene expressions because of unique advantages. Here, we report a feasibility study for producing the nontoxic B subunit of Escherichia coli heat-labile enterotoxin (LTB) via chloroplast transformation of tobacco. Stable site-specific integration of the LTB gene into chloroplast genome was confirmed by PCR and genomic Southern blot analysis in transformed plants. Immunoblot analysis indicated that plant-derived LTB protein was oligomeric, and dissociated after boiling. Pentameric LTB molecules were the dominant molecular species in LTB isolated from transgenic tobacco leaf tissues. The amount of LTB protein detected in transplastomic tobacco leaf was approximately 2.5% of the total soluble plant protein, approximately 250-fold higher than in plants generated via nuclear transformation. The GM1-ELISA binding assay indicated that chloroplast-synthesized LTB protein bound to GM1-ganglioside receptors. LTB protein with biochemical properties identical to native LTB protein in the chloroplast of edible plants opens the way for inexpensive, safe, and effective plant-based edible vaccines for humans and animals.

  6. Distribution of Metabolites between Chloroplast and Cytoplasm during the Induction Phase of Photosynthesis in Leaf Protoplasts 1

    PubMed Central

    Robinson, Simon P.; Walker, David A.

    1980-01-01

    A method for rapid separation of the chloroplast and cytoplasmic fractions from isolated leaf protoplasts of wheat and spinach has been used to determine the distribution of 14C-labeled products during photosynthesis. In the dark, CO2 fixation was only 1 to 2% of that in the light and the products were mainly in the cytoplasmic fraction suggesting fixation by phosphoenolpyruvate carboxylase. Label appeared rapidly in the chloroplast fraction following illumination but the amount leveled off after 4 to 5 minutes reflecting the buildup of intermediates to steady state levels. There was only a slight lag before label appeared in the cytoplasmic fraction and it continued to increase at a constant rate reflecting synthesis of neutral products. In the light, the percentage of label in the chloroplast fraction decreased rapidly in the first minute of illumination and was only 10 to 20% in the steady-state. It is suggested that the chloroplast phosphate transporter promotes a rapid transfer of sugar phosphates from the chloroplast to the cytoplasm, even during the induction phase of photosynthesis. PMID:16661305

  7. Mode of inheritance and evidence for cistron heterogeneity of chloroplast 16S ribosomal RNA genes in Nicotiana.

    PubMed

    Vacek, A T; Bourque, D P

    1980-09-01

    Oligonucleotide maps (fingerprints) of T1 RNase digests of 125I-labeled 16 S chloroplast rRNA of Nicotiana tabacum and N. gossei revealed the presence of T1 oligonucleotide fragment 100 in the 16 S rRNA of N. gossei while N. tabacum 16 S rRNA had a unique T1 oligonucleotide (fragment 101) as well as some fragment 100. From the positions in the fingerprints and from fingerprints of secondary enzymatic digestion of the fragments, we conclude that fragments 100 and 101 are similar in sequence and size, but fragment 100 probably contains an extra uracil residue. This difference is shown to be maternally inherited, thus confirming the location of 16 S chloroplast rRNA genes on chloroplast DNA and ruling out the possibility of genetically active chloroplast rRNA genes in the nucleus. The presence of both fragments 100 and 101 in N. tabacum may indicate sequence heterogeneity between the two cistrons for 16 S chloroplast rRNA. These results demonstrate the feasibility of determining the inheritance of organelle genes by genetic analysis of their primary transcripts.

  8. Photoregulation of fructose and glucose respiration in the intact chloroplasts of Chlamydomonas reinhardtii F-60 and spinach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, K.K.; Changguo Chen; Gibbs, M.

    1993-04-01

    The photoregulation of chloroplastic respiration was studied by monitoring in darkness and in light the release of [sup 14]CO[sub 2] from whole chloroplasts of Chlamydomonas reinhardtii F-60 and spinach (Spinacia oleracea L.) supplied externally with [[sup 14]C]glucose and [[sup 14]C]fructose, respectively. CO[sub 2] release was inhibited more than 90% in both chloroplasts by a light intensity of 4 W m[sup [minus]2]. Oxidants, oxaloacetate in Chlamydomonas, nitrite in spinach, and phenazine methosulfate in both chloroplasts, reversed the inhibition. The onset of the photoinhibitory effect on CO[sub 2] release was relatively rapid compared to the restoration of CO[sub 2] release following illumination.more » In both darkened chloroplasts, dithiothreitol inhibited release. Of the four enzymes (fructokinase, phosphoglucose isomerase, glucose-6-P dehydrogenase, and gluconate-6-P dehydrogenase) in the pathway catalyzing the release of CO[sub 2] from fructose, only glucose-6-P dehydrogenase was deactivated by light and by dithiothreitol. 33 refs., 3 figs., 4 tabs.« less

  9. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    PubMed

    Kwon, Kwang-Chul; Verma, Dheeraj; Jin, Shuangxia; Singh, Nameirakpam D; Daniell, Henry

    2013-01-01

    Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These results suggest a novel signaling mechanism, especially for participation of chloroplast proteins (e.g. transcription factors) in retrograde signaling, thereby offering new opportunities to regulate pathways outside chloroplasts.

  10. Release of Proteins from Intact Chloroplasts Induced by Reactive Oxygen Species during Biotic and Abiotic Stress

    PubMed Central

    Singh, Nameirakpam D.; Daniell, Henry

    2013-01-01

    Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These results suggest a novel signaling mechanism, especially for participation of chloroplast proteins (e.g. transcription factors) in retrograde signaling, thereby offering new opportunities to regulate pathways outside chloroplasts. PMID:23799142

  11. Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale – A wild ancestor of cultivated buckwheat

    PubMed Central

    Logacheva, Maria D; Samigullin, Tahir H; Dhingra, Amit; Penin, Aleksey A

    2008-01-01

    Background Chloroplast genome sequences are extremely informative about species-interrelationships owing to its non-meiotic and often uniparental inheritance over generations. The subject of our study, Fagopyrum esculentum, is a member of the family Polygonaceae belonging to the order Caryophyllales. An uncertainty remains regarding the affinity of Caryophyllales and the asterids that could be due to undersampling of the taxa. With that background, having access to the complete chloroplast genome sequence for Fagopyrum becomes quite pertinent. Results We report the complete chloroplast genome sequence of a wild ancestor of cultivated buckwheat, Fagopyrum esculentum ssp. ancestrale. The sequence was rapidly determined using a previously described approach that utilized a PCR-based method and employed universal primers, designed on the scaffold of multiple sequence alignment of chloroplast genomes. The gene content and order in buckwheat chloroplast genome is similar to Spinacia oleracea. However, some unique structural differences exist: the presence of an intron in the rpl2 gene, a frameshift mutation in the rpl23 gene and extension of the inverted repeat region to include the ycf1 gene. Phylogenetic analysis of 61 protein-coding gene sequences from 44 complete plastid genomes provided strong support for the sister relationships of Caryophyllales (including Polygonaceae) to asterids. Further, our analysis also provided support for Amborella as sister to all other angiosperms, but interestingly, in the bayesian phylogeny inference based on first two codon positions Amborella united with Nymphaeales. Conclusion Comparative genomics analyses revealed that the Fagopyrum chloroplast genome harbors the characteristic gene content and organization as has been described for several other chloroplast genomes. However, it has some unique structural features distinct from previously reported complete chloroplast genome sequences. Phylogenetic analysis of the dataset, including this new sequence from non-core Caryophyllales supports the sister relationship between Caryophyllales and asterids. PMID:18492277

  12. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins.

    PubMed

    Ferro, Myriam; Brugière, Sabine; Salvi, Daniel; Seigneurin-Berny, Daphné; Court, Magali; Moyet, Lucas; Ramus, Claire; Miras, Stéphane; Mellal, Mourad; Le Gall, Sophie; Kieffer-Jaquinod, Sylvie; Bruley, Christophe; Garin, Jérôme; Joyard, Jacques; Masselon, Christophe; Rolland, Norbert

    2010-06-01

    Recent advances in the proteomics field have allowed a series of high throughput experiments to be conducted on chloroplast samples, and the data are available in several public databases. However, the accurate localization of many chloroplast proteins often remains hypothetical. This is especially true for envelope proteins. We went a step further into the knowledge of the chloroplast proteome by focusing, in the same set of experiments, on the localization of proteins in the stroma, the thylakoids, and envelope membranes. LC-MS/MS-based analyses first allowed building the AT_CHLORO database (http://www.grenoble.prabi.fr/protehome/grenoble-plant-proteomics/), a comprehensive repertoire of the 1323 proteins, identified by 10,654 unique peptide sequences, present in highly purified chloroplasts and their subfractions prepared from Arabidopsis thaliana leaves. This database also provides extensive proteomics information (peptide sequences and molecular weight, chromatographic retention times, MS/MS spectra, and spectral count) for a unique chloroplast protein accurate mass and time tag database gathering identified peptides with their respective and precise analytical coordinates, molecular weight, and retention time. We assessed the partitioning of each protein in the three chloroplast compartments by using a semiquantitative proteomics approach (spectral count). These data together with an in-depth investigation of the literature were compiled to provide accurate subplastidial localization of previously known and newly identified proteins. A unique knowledge base containing extensive information on the proteins identified in envelope fractions was thus obtained, allowing new insights into this membrane system to be revealed. Altogether, the data we obtained provide unexpected information about plastidial or subplastidial localization of some proteins that were not suspected to be associated to this membrane system. The spectral counting-based strategy was further validated as the compartmentation of well known pathways (for instance, photosynthesis and amino acid, fatty acid, or glycerolipid biosynthesis) within chloroplasts could be dissected. It also allowed revisiting the compartmentation of the chloroplast metabolism and functions.

  13. Chloroplast genes transferred to the nuclear plant genome have adjusted to nuclear base composition and codon usage.

    PubMed Central

    Oliver, J L; Marín, A; Martínez-Zapater, J M

    1990-01-01

    During plant evolution, some plastid genes have been moved to the nuclear genome. These transferred genes are now correctly expressed in the nucleus, their products being transported into the chloroplast. We compared the base compositions, the distributions of some dinucleotides and codon usages of transferred, nuclear and chloroplast genes in two dicots and two monocots plant species. Our results indicate that transferred genes have adjusted to nuclear base composition and codon usage, being now more similar to the nuclear genes than to the chloroplast ones in every species analyzed. PMID:2308837

  14. Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress

    PubMed Central

    Zheng, Xiaodong; Tan, Dun X.; Allan, Andrew C.; Zuo, Bixiao; Zhao, Yu; Reiter, Russel J.; Wang, Lin; Wang, Zhi; Guo, Yan; Zhou, Jingzhe; Shan, Dongqian; Li, Qingtian; Han, Zhenhai; Kong, Jin

    2017-01-01

    Within the chloroplasts reactive oxygen species (ROS) are generated during photosynthesis and stressful conditions. Excessive ROS damages chloroplasts and reduces photosynthesis if not properly detoxified. In this current study, we document that chloroplasts produce melatonin, a recently-discovered plant antioxidant molecule. When N-acetylserotonin, a substrate for melatonin synthesis, was fed to purified chloroplasts, they produced melatonin in a dose-response manner. To further confirm this function of chloroplasts, the terminal enzyme for melatonin synthesis, N-acetylserotonin-O-methyltransferase (ASMT), was cloned from apple rootstock, Malus zumi. The in vivo fluorescence observations and Western blots confirmed MzASMT9 was localized in the chloroplasts. A study of enzyme kinetics revealed that the Km and Vmax of the purified recombinant MzASMT9 protein for melatonin synthesis were 500 μM and 12 pmol/min·mg protein, respectively. Arabidopsis ectopically-expressing MzASMT9 possessed improved melatonin level. Importantly, the MzASMT9 gene was found to be upregulated by high light intensity and salt stress. Increased melatonin due to the highly-expressed MzASMT9 resulted in Arabidopsis lines with enhanced salt tolerance than wild type plants, as indicated by reduced ROS, lowered lipid peroxidation and enhanced photosynthesis. These findings have agricultural applications for the genetic enhancement of melatonin-enriched plants for increasing crop production under a variety of unfavorable environmental conditions. PMID:28145449

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yu Ping; Cheng, Fei; Zhou, Yan Hong

    Highlights: Black-Right-Pointing-Pointer Activity of certain Calvin cycle enzymes and CO{sub 2} assimilation are induced by BRs. Black-Right-Pointing-Pointer BRs upregulate the activity of the ascorbate-glutathione cycle in the chloroplasts. Black-Right-Pointing-Pointer BRs increase the chloroplast thiol reduction state. Black-Right-Pointing-Pointer A BR-induced reducing environment increases the stability of photosynthetic enzymes. -- Abstract: Brassinosteroids (BRs) play important roles in plant growth, development, photosynthesis and stress tolerance; however, the mechanism underlying BR-enhanced photosynthesis is currently unclear. Here, we provide evidence that an increase in the BR level increased the quantum yield of PSII, activities of Rubisco activase (RCA) and fructose-1,6-bisphosphatase (FBPase), and CO{sub 2} assimilation.more » BRs upregulated the transcript levels of genes and activity of enzymes involved in the ascorbate-glutathione cycle in the chloroplasts, leading to an increased ratio of reduced (GSH) to oxidized (GSSG) glutathione in the chloroplasts. An increased GSH/GSSG ratio protected RCA from proteolytic digestion and increased the stability of redox-sensitive enzymes in the chloroplasts. These results strongly suggest that BRs are capable of regulating the glutathione redox state in the chloroplasts through the activation of the ascorbate-glutathione cycle. The resulting increase in the chloroplast thiol reduction state promotes CO{sub 2} assimilation, at least in part, by enhancing the stability and activity of redox-sensitive photosynthetic enzymes through post-translational modifications.« less

  16. Salt-stress-responsive chloroplast proteins in Brassica juncea genotypes with contrasting salt tolerance and their quantitative PCR analysis.

    PubMed

    Yousuf, Peerzada Yasir; Ahmad, Altaf; Aref, Ibrahim M; Ozturk, Munir; Hemant; Ganie, Arshid Hussain; Iqbal, Muhammad

    2016-11-01

    Brassica juncea is mainly cultivated in the arid and semi-arid regions of India where its production is significantly affected by soil salinity. Adequate knowledge of the mechanisms underlying the salt tolerance at sub-cellular levels must aid in developing the salt-tolerant plants. A proper functioning of chloroplasts under salinity conditions is highly desirable to maintain crop productivity. The adaptive molecular mechanisms offered by plants at the chloroplast level to cope with salinity stress must be a prime target in developing the salt-tolerant plants. In the present study, we have analyzed differential expression of chloroplast proteins in two Brassica juncea genotypes, Pusa Agrani (salt-sensitive) and CS-54 (salt-tolerant), under the effect of sodium chloride. The chloroplast proteins were isolated and resolved using 2DE, which facilitated identification and quantification of 12 proteins that differed in expression in the salt-tolerant and salt-sensitive genotypes. The identified proteins were related to a variety of chloroplast-associated molecular processes, including oxygen-evolving process, PS I and PS II functioning, Calvin cycle and redox homeostasis. Expression analysis of genes encoding differentially expressed proteins through real time PCR supported our findings with proteomic analysis. The study indicates that modulating the expression of chloroplast proteins associated with stabilization of photosystems and oxidative defence plays imperative roles in adaptation to salt stress.

  17. Short-term effects of salt exposure on the maize chloroplast protein pattern.

    PubMed

    Zörb, Christian; Herbst, Ramona; Forreiter, Christoph; Schubert, Sven

    2009-09-01

    It is of fundamental importance to understand the physiological differences leading to salt resistance and to get access to the molecular mechanisms underlying this physiological response. The aim of this work was to investigate the effects of short-term salt exposure on the proteome of maize chloroplasts in the initial phase of salt stress (up to 4 h). It could be shown that sodium ions accumulate quickly and excessively in chloroplasts in the initial phase of moderate salt stress. A change in the chloroplast protein pattern was observed without a change in water potential of the leaves. 2-DE revealed that 12 salt-responsive chloroplast proteins increased while eight chloroplast proteins decreased. Some of the maize chloroplast proteins such as CF1e and a Ca(2+)-sensing receptor show a rather transient response for the first 4 h of salt exposure. The enhanced abundance of the ferredoxin NADPH reductase, the 23 kDa polypeptide of the photosystem II, and the FtsH-like protein might reflect mechanism to attenuate the detrimental effects of Na(+) on the photosynthetic machinery. The observed transient increase and subsequent decrease of selected proteins may exhibit a counterbalancing effect of target proteins in this context. Intriguingly, several subunits of the CF1-CF0 complex are unequally affected, whereas others do not respond at all.

  18. Effects of catalase on chloroplast arrangement in Opuntia streptacantha chlorenchyma cells under salt stress.

    PubMed

    Arias-Moreno, Diana Marcela; Jiménez-Bremont, Juan Francisco; Maruri-López, Israel; Delgado-Sánchez, Pablo

    2017-08-17

    In arid and semiarid regions, low precipitation rates lead to soil salinity problems, which may limit plant establishment, growth, and survival. Herein, we investigated the NaCl stress effect on chlorophyll fluorescence, photosynthetic-pigments, movement and chloroplasts ultrastructure in chlorenchyma cells of Opuntia streptacantha cladodes. Cladodes segments were exposed to salt stress at 0, 100, 200, and 300 mM NaCl for 8, 16, and 24 h. The results showed that salt stress reduced chlorophyll content, F v /F m , ΦPSII, and qP values. Under the highest salt stress treatments, the chloroplasts were densely clumped toward the cell center and thylakoid membranes were notably affected. We analyzed the effect of exogenous catalase in salt-stressed cladode segments during 8, 16, and 24 h. The catalase application to salt-stressed cladodes counteracted the NaCl adverse effects, increasing the chlorophyll fluorescence parameters, photosynthetic-pigments, and avoided chloroplast clustering. Our results indicate that salt stress triggered the chloroplast clumping and affected the photosynthesis in O. streptacantha chlorenchyma cells. The exogenous catalase reverted the H 2 O 2 accumulation and clustering of chloroplast, which led to an improvement of the photosynthetic efficiency. These data suggest that H 2 O 2 detoxification by catalase is important to protect the chloroplast, thus conserving the photosynthetic activity in O. streptacantha under stress.

  19. Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait

    Treesearch

    Craig S. Echt; L.L. DeVerno; M. Anzidei; G.G. Vendramin

    1998-01-01

    Variation in paternally inherited chloroplast microsatellite (cpSSR) DNA was used to study population genetic structure in red pine (Pinus resinosa Ait.), a species characterized by morphological uniformity, no allozyme variation, and limited RAPD variation. Using nine cpSSR loci, a total of 23 chloroplast haplotypes and 25 cpSSR alleles were were...

  20. Abscisic acid affects transcription of chloroplast genes via protein phosphatase 2C-dependent activation of nuclear genes: repression by guanosine-3'-5'-bisdiphosphate and activation by sigma factor 5.

    PubMed

    Yamburenko, Maria V; Zubo, Yan O; Börner, Thomas

    2015-06-01

    Abscisic acid (ABA) represses the transcriptional activity of chloroplast genes (determined by run-on assays), with the exception of psbD and a few other genes in wild-type Arabidopsis seedlings and mature rosette leaves. Abscisic acid does not influence chloroplast transcription in the mutant lines abi1-1 and abi2-1 with constitutive protein phosphatase 2C (PP2C) activity, suggesting that ABA affects chloroplast gene activity by binding to the pyrabactin resistance (PYR)/PYR1-like or regulatory component of ABA receptor protein family (PYR/PYL/RCAR) and signaling via PP2Cs and sucrose non-fermenting protein-related kinases 2 (SnRK2s). Further we show by quantitative PCR that ABA enhances the transcript levels of RSH2, RSH3, PTF1 and SIG5. RelA/SpoT homolog 2 (RSH2) and RSH3 are known to synthesize guanosine-3'-5'-bisdiphosphate (ppGpp), an inhibitor of the plastid-gene-encoded chloroplast RNA polymerase. We propose, therefore, that ABA leads to an inhibition of chloroplast gene expression via stimulation of ppGpp synthesis. On the other hand, sigma factor 5 (SIG5) and plastid transcription factor 1 (PTF1) are known to be necessary for the transcription of psbD from a specific light- and stress-induced promoter (the blue light responsive promoter, BLRP). We demonstrate that ABA activates the psbD gene by stimulation of transcription initiation at BLRP. Taken together, our data suggest that ABA affects the transcription of chloroplast genes by a PP2C-dependent activation of nuclear genes encoding proteins involved in chloroplast transcription. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  1. Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality.

    PubMed

    Albrecht, Verónica; Ingenfeld, Anke; Apel, Klaus

    2006-03-01

    During seedling development chloroplast formation marks the transition from heterotrophic to autotrophic growth. The development and activity of chloroplasts may differ in cotyledons that initially serve as a storage organ and true leaves whose primary function is photosynthesis. A genetic screen was used for the identification of genes that affect selectively chloroplast function in cotyledons of Arabidopsis thaliana. Several mutants exhibiting pale cotyledons and green true leaves were isolated and dubbed snowy cotyledon (sco). One of the mutants, sco1, was characterized in more detail. The mutated gene was identified using map-based cloning. The mutant contains a point mutation in a gene encoding the chloroplast elongation factor G, leading to an amino acid exchange within the predicted 70S ribosome-binding domain. The mutation results in a delay in the onset of germination. At this early developmental stage embryos still contain undifferentiated proplastids, whose proper function seems necessary for seed germination. In light-grown sco1 seedlings the greening of cotyledons is severely impaired, whereas the following true leaves develop normally as in wild-type plants. Despite this apparent similarity of chloroplast development in true leaves of mutant and wild-type plants various aspects of mature plant development are also affected by the sco1 mutation such as the onset of flowering, the growth rate, and seed production. The onset of senescence in the mutant and the wild-type plants occurs, however, at the same time, suggesting that in the mutant this particular developmental step does not seem to suffer from reduced protein translation efficiency in chloroplasts.

  2. Eukaryotic Hsp70 chaperones in the intermembrane space of chloroplasts.

    PubMed

    Bionda, Tihana; Gross, Lucia E; Becker, Thomas; Papasotiriou, Dimitrios G; Leisegang, Matthias S; Karas, Michael; Schleiff, Enrico

    2016-03-01

    Multiple eukaryotic Hsp70 typically localized in the cytoplasm are also distributed to the intermembrane space of chloroplasts and might thereby represent the missing link in energizing protein translocation. Protein translocation into organelles is a central cellular process that is tightly regulated. It depends on signals within the preprotein and on molecular machines catalyzing the process. Molecular chaperones participate in transport and translocation of preproteins into organelles to control folding and to provide energy for the individual steps. While most of the processes are explored and the components are identified, the transfer of preproteins into and across the intermembrane space of chloroplasts is not yet understood. The existence of an energy source in this compartment is discussed, because the required transit peptide length for successful translocation into chloroplasts is shorter than that found for mitochondria where energy is provided exclusively by matrix chaperones. Furthermore, a cytosolic-type Hsp70 homologue was proposed as component of the chloroplast translocon in the intermembrane space energizing the initial translocation. The molecular identity of such intermembrane space localized Hsp70 remained unknown, which led to a controversy concerning its existence. We identified multiple cytosolic Hsp70s by mass spectrometry on isolated, thermolysin-treated Medicago sativa chloroplasts. The localization of these Hsp70s of M. sativa or Arabidopsis thaliana in the intermembrane space was confirmed by a self-assembly GFP-based in vivo system. The localization of cytosolic Hsp70s in the stroma of chloroplasts or different mitochondrial compartments could not be observed. Similarly, we could not identify any cytosolic Hsp90 in the intermembrane space of chloroplast. With respect to our results we discuss the possible targeting and function of the Hsp70 found in the intermembrane space.

  3. Electron microscopy of two viruses of deadly nightshade (Atropa belladonna L.).

    PubMed

    Fránová, J

    2000-02-01

    Deadly nightshade plants showing severe necrotic lesions on leaves were observed in southern Bohemia. In negatively stained preparations of spontaneously infected deadly nightshade, artificially inoculated host plants and purified preparations two types of virus particles, isometric ones of about 26 nm in diameter and flexuous ones with length of 765 nm were seen by electron microscopy. The virus with isometric particles was identified as belladonna mottle virus (BMV), indistinguishable serologically from the Hungarian isolate of this virus. Identification of the virus with flexuous particles is discussed. Observations of the ultrastructure revealed the presence of filamentous virus particle aggregates and chloroplasts with peripheral vesicles bounded by double membranes, a feature typical for tymoviruses.

  4. Cytochemical and Cytofluorometric Evidence for Guard Cell Photosystems 1

    PubMed Central

    Vaughn, Kevin C.; Outlaw, William H.

    1983-01-01

    Evidence for photosynthetic linear electron transport in guard cells was obtained with two sensitive methods of high spacial resolution. Light-dependent diaminobenzidine oxidation (an indicator of PSI) and DCMU-sensitive, light-dependent thiocarbamyl nitroblue tetrazolium reduction (an indicator of PSII) were observed in guard cell plastids of Hordeum vulgare L. cv Himalaya using electron microscopic cytochemical procedures. DCMU-sensitive Chl a fluorescence induction (an indicator of PSII) was detected in individual guard cell pairs of Vicia faba L. cv Longpod using an ultramicrofluorometer. At least for these species, we conclude these results are proof for the presence of PSII in guard cell chloroplasts, which until now has been somewhat controversial. Images Fig. 2 Fig. 1 PMID:16662840

  5. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development.

    PubMed

    Naested, Henrik; Holm, Agnethe; Jenkins, Tom; Nielsen, H Bjørn; Harris, Cassandra A; Beale, Michael H; Andersen, Mathias; Mant, Alexandra; Scheller, Henrik; Camara, Bilal; Mattsson, Ole; Mundy, John

    2004-09-15

    The stable, recessive Arabidopsis variegated 3 (var3) mutant exhibits a variegated phenotype due to somatic areas lacking or containing developmentally retarded chloroplasts and greatly reduced numbers of palisade cells. The VAR3 gene, isolated by transposon tagging, encodes the 85.9 kDa VAR3 protein containing novel repeats and zinc fingers described as protein interaction domains. VAR3 interacts specifically in yeast and in vitro with NCED4, a putative polyene chain or carotenoid dioxygenase, and both VAR3 and NCED4 accumulate in the chloroplast stroma. Metabolic profiling demonstrates that pigment profiles are qualitatively similar in wild type and var3, although var3 accumulates lower levels of chlorophylls and carotenoids. These results indicate that VAR3 is a part of a protein complex required for normal chloroplast and palisade cell development.

  6. Genetic structure of Eurasian and North American Leymus (Triticeae) wildryes assessed by chloroplast DNA sequences and AFLP profiles

    Treesearch

    C. Mae Culumber; Steve R. Larson; Kevin B. Jensen; Thomas A. Jones

    2011-01-01

    Leymus is a genomically defined allopolyploid of genus Triticeae with two distinct subgenomes. Chloroplast DNA sequences of Eurasian and North American species are distinct and polyphyletic. However, phylogenies derived from chloroplast and nuclear DNA sequences are confounded by polyploidy and lack of polymorphism among many taxa. The AFLP technique can resolve...

  7. Mutations Altering Chloroplast Ribosome Phenotype in Chlamydomonas, II. A New Mendelian Mutation*

    PubMed Central

    Boynton, John E.; Gillham, Nicholas W.; Burkholder, Barbara

    1970-01-01

    A new mutation of Chlamydomonas reinhardi, cr-1, is characterized. The mutation exhibits Mendelian inheritance and affects the sedimentation velocity and formation of intact chloroplast ribosomes. The mutant grows reasonably well when supplied with sodium acetate as a carbon source, but poorly when forced to grow photosynthetically using carbon dioxide. Since the mutant cr-1 accumulates large subunits of the chloroplast ribosome, we postulate that it is blocked in the formation of the small subunit. A tentative model explaining the behavior of the several mutants in Chlamydomonas now known to have altered chloroplast ribosomal phenotypes is presented. Images PMID:16591885

  8. Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon

    PubMed Central

    Chou, Ming-Lun; Fitzpatrick, Lynda M.; Tu, Shuh-Long; Budziszewski, Gregory; Potter-Lewis, Sharon; Akita, Mitsuru; Levin, Joshua Z.; Keegstra, Kenneth; Li, Hsou-min

    2003-01-01

    The function of Tic40 during chloroplast protein import was investigated. Tic40 is an inner envelope membrane protein with a large hydrophilic domain located in the stroma. Arabidopsis null mutants of the atTic40 gene were very pale green and grew slowly but were not seedling lethal. Isolated mutant chloroplasts imported precursor proteins at a lower rate than wild-type chloroplasts. Mutant chloroplasts were normal in allowing binding of precursor proteins. However, during subsequent translocation across the inner membrane, fewer precursors were translocated and more precursors were released from the mutant chloroplasts. Cross-linking experiments demonstrated that Tic40 was part of the translocon complex and functioned at the same stage of import as Tic110 and Hsp93, a member of the Hsp100 family of molecular chaperones. Tertiary structure prediction and immunological studies indicated that the C-terminal portion of Tic40 contains a TPR domain followed by a domain with sequence similarity to co-chaperones Sti1p/Hop and Hip. We propose that Tic40 functions as a co-chaperone in the stromal chaperone complex that facilitates protein translocation across the inner membrane. PMID:12805212

  9. Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L.).

    PubMed

    Cui, Cuiju; Song, Fei; Tan, Yi; Zhou, Xuan; Zhao, Wen; Ma, Fengyun; Liu, Yunyi; Hussain, Javeed; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan

    2011-04-01

    Chloroplast transformation in wheat was achieved by bombardment of scutella from immature embryos and immature inflorescences, respectively. A wheat chloroplast site-specific expression vector, pBAGNRK, was constructed by placing an expression cassette containing neomycin phosphotransferase II (nptII) and green fluorescent protein (gfp) as selection and reporter genes, respectively, in the intergenic spacer between atpB and rbcL of wheat chloroplast genome. Integration of gfp gene in the plastome was identified by polymerase chain reaction (PCR) analysis and Southern blotting using gfp gene as a probe. Expression of GFP protein was examined by western blot. Three positive transformants were obtained and the Southern blot of partial fragment of atpB and rbcL (targeting site) probes verified that one of them was homoplasmic. Stable expression of GFP fluorescence was confirmed by confocal microscopy in the leaf tissues from T(1) progeny seedlings. PCR analysis of gfp gene also confirmed the inheritance of transgene in the T(1) progeny. These results strengthen the feasibility of wheat chloroplast transformation and also give a novel method for the introduction of important agronomic traits in wheat through chloroplast transformation.

  10. Is chloroplast import of photosynthesis proteins facilitated by an actin-TOC-TIC-VIPP1 complex?

    PubMed

    Jouhet, Juliette; Gray, John C

    2009-10-01

    Actin filaments are major components of the cytoskeleton that interact with chloroplast envelope membranes to allow chloroplast positioning and movement, stromule mobility and gravitropism perception. We recently reported that Toc159, a component of the TOC complex of the chloroplast protein import apparatus, interacts directly with actin. The interaction of Toc159 and actin was identified by co-immunoprecipitation and co-sedimentation experiments with detergent-solubilised pea chloroplast envelope membranes. In addition, many of the components of the TOC-TIC protein import apparatus and VIPP1 (vesicle-inducing protein in plastids 1) were identified by mass spectroscopy in the material co-immunoprecipitated with antibodies to actin. Toc159 is the receptor for the import of photosynthesis proteins and VIPP1 is involved in thylakoid membrane formation by inducing vesicle formation from the chloroplast inner envelope membrane, suggesting we may have identified an actin-TOC-TIC-VIPP1 complex that may provide a means of channeling cytosolic preproteins to the thylakoid membrane. The interaction of Toc159 with actin may facilitate exchange between the putative soluble and membrane forms of Toc159 and promote the interaction of cytosolic preproteins with the TOC complex.

  11. The Chloroplast atpA Gene Cluster in Chlamydomonas reinhardtii1

    PubMed Central

    Drapier, Dominique; Suzuki, Hideki; Levy, Haim; Rimbault, Blandine; Kindle, Karen L.; Stern, David B.; Wollman, Francis-André

    1998-01-01

    Most chloroplast genes in vascular plants are organized into polycistronic transcription units, which generate a complex pattern of mono-, di-, and polycistronic transcripts. In contrast, most Chlamydomonas reinhardtii chloroplast transcripts characterized to date have been monocistronic. This paper describes the atpA gene cluster in the C. reinhardtii chloroplast genome, which includes the atpA, psbI, cemA, and atpH genes, encoding the α-subunit of the coupling-factor-1 (CF1) ATP synthase, a small photosystem II polypeptide, a chloroplast envelope membrane protein, and subunit III of the CF0 ATP synthase, respectively. We show that promoters precede the atpA, psbI, and atpH genes, but not the cemA gene, and that cemA mRNA is present only as part of di-, tri-, or tetracistronic transcripts. Deletions introduced into the gene cluster reveal, first, that CF1-α can be translated from di- or polycistronic transcripts, and, second, that substantial reductions in mRNA quantity have minimal effects on protein synthesis rates. We suggest that posttranscriptional mRNA processing is common in C. reinhardtii chloroplasts, permitting the expression of multiple genes from a single promoter. PMID:9625716

  12. Genetic manipulation of isoprene emissions in poplar plants remodels the chloroplast proteome.

    PubMed

    Velikova, Violeta; Ghirardo, Andrea; Vanzo, Elisa; Merl, Juliane; Hauck, Stefanie M; Schnitzler, Jörg-Peter

    2014-04-04

    Biogenic isoprene (2-methyl-1,3-butadiene) improves the integrity and functionality of thylakoid membranes and scavenges reactive oxygen species (ROS) in plant tissue under stress conditions. On the basis of available physiological studies, we hypothesized that the suppression of isoprene production in the poplar plant by genetic engineering would cause changes in the chloroplast protein pattern, which in turn would compensate for changes in chloroplast functionality and overall plant performance under abiotic stress. To test this hypothesis, we used a stable isotope-coded protein-labeling technique in conjunction with polyacrylamide gel electrophoresis and liquid chromatography tandem mass spectrometry. We analyzed quantitative and qualitative changes in the chloroplast proteome of isoprene-emitting and non isoprene-emitting poplars. Here we demonstrate that suppression of isoprene synthase by RNA interference resulted in decreased levels of chloroplast proteins involved in photosynthesis and increased levels of histones, ribosomal proteins, and proteins related to metabolism. Overall, our results show that the absence of isoprene triggers a rearrangement of the chloroplast protein profile to minimize the negative stress effects resulting from the absence of isoprene. The present data strongly support the idea that isoprene improves/stabilizes thylakoid membrane structure and interferes with the production of ROS.

  13. Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue.

    PubMed

    Egea, Isabel; Bian, Wanping; Barsan, Cristina; Jauneau, Alain; Pech, Jean-Claude; Latché, Alain; Li, Zhengguo; Chervin, Christian

    2011-08-01

    There are several studies suggesting that tomato (Solanum lycopersicum) chromoplasts arise from chloroplasts, but there is still no report showing the fluorescence of both chlorophylls and carotenoids in an intermediate plastid, and no video showing this transition phase. Pigment fluorescence within individual plastids, isolated from tomato fruit using sucrose gradients, was observed at different ripening stages, and an in situ real-time recording of pigment fluorescence was performed on live tomato fruit slices. At the mature green and red stages, homogenous fractions of chloroplasts and chromoplasts were obtained, respectively. At the breaker stage, spectral confocal microscopy showed that intermediate plastids contained both chlorophylls and carotenoids. Furthermore, an in situ real-time recording (a) showed that the chloroplast to chromoplast transition was synchronous for all plastids of a single cell; and (b) confirmed that all chromoplasts derived from pre-existing chloroplasts. These results give details of the early steps of tomato chromoplast biogenesis from chloroplasts, with the formation of intermediate plastids containing both carotenoids and chlorophylls. They provide information at the sub-cellular level on the synchronism of plastid transition and pigment changes.

  14. Purification and Characterization of Ferredoxin-Nicotinamide Adenine Dinucleotide Phosphate Reductase from a Nitrogen-Fixing Bacterium

    PubMed Central

    Yoch, Duane C.

    1973-01-01

    Evidence suggesting that Bacillus polymyxa has an active ferredoxin-NADP+ reductase (EC 1.6.99.4) was obtained when NADPH was found to provide reducing power for the nitrogenase of this organism; direct evidence was provided when it was shown that B. polymyxa extracts could substitute for the native ferredoxin-NADP+ reductase in the photochemical reduction of NADP+ by blue-green algal particles. The ferredoxin-NADP+ reductase was purified about 80-fold by a combination of high-speed centrifugation, ammonium sulfate fractionation, and chromatography on Sephadex G-100 and diethylaminoethyl-cellulose. The molecular weight was estimated by gel filtration to be 60,000. A small amount of the enzyme was further purified by polyacrylamide gel electrophoresis and shown to be a flavoprotein. The reductase was specific for NADPH in the ferredoxin-dependent reduction of cytochrome c and methyl viologen diaphorase reactions; furthermore, NADP+ was the acceptor of preference when the electron donor was photoreduced ferredoxin. The reductase also has an irreversible NADPH-NAD+ transhydrogenase (reduced-NADP:NAD oxidoreductase, EC 1.6.1.1) activity, the rate of which was proportional to the concentration of NAD (Km = 5.0 × 10−3M). The reductase catalyzed electron transfer from NADPH not only to B. polymyxa ferredoxin but also to the ferredoxins of Clostridium pasteurianum, Azotobacter vinelandii, and spinach chloroplasts, although less effectively. Rubredoxin from Clostridium acidi-urici and azotoflavin from A. vinelandii also accept electrons from the B. polymyxa reductase. The pH optima for the various reactions catalyzed by the B. polymyxa ferredoxin-NADP reductase are similar to those of the chloroplast reductase. NAD and acetyl-coenzyme A, which obligatorily activate NADPH- and NADH-ferredoxin reductases, respectively, in Clostridium kluyveri, have no effect on B. polymyxa reductase. PMID:4147648

  15. Mediated Plastid RNA Editing in Plant Immunity

    PubMed Central

    García-Andrade, Javier; Ramírez, Vicente; López, Ana; Vera, Pablo

    2013-01-01

    Plant regulatory circuits coordinating nuclear and plastid gene expression have evolved in response to external stimuli. RNA editing is one of such control mechanisms. We determined the Arabidopsis nuclear-encoded homeodomain-containing protein OCP3 is incorporated into the chloroplast, and contributes to control over the extent of ndhB transcript editing. ndhB encodes the B subunit of the chloroplast NADH dehydrogenase-like complex (NDH) involved in cyclic electron flow (CEF) around photosystem I. In ocp3 mutant strains, ndhB editing efficiency decays, CEF is impaired and disease resistance to fungal pathogens substantially enhanced, a process recapitulated in plants defective in editing plastid RNAs encoding NDH complex subunits due to mutations in previously described nuclear-encoded pentatricopeptide-related proteins (i.e. CRR21, CRR2). Furthermore, we observed that following a pathogenic challenge, wild type plants respond with editing inhibition of ndhB transcript. In parallel, rapid destabilization of the plastidial NDH complex is also observed in the plant following perception of a pathogenic cue. Therefore, NDH complex activity and plant immunity appear as interlinked processes. PMID:24204264

  16. Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes

    PubMed Central

    Pfister, Klaus; Steinback, Katherine E.; Gardner, Gary; Arntzen, Charles J.

    1981-01-01

    2-Azido-4-ethylamino-6-isopropylamino-s-triazine (azido-atrazine) inhibits photosynthetic electron transport at a site identical to that affected by atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine). The latter is a well-characterized inhibitor of photosystem II reactions. Azido-atrazine was used as a photoaffinity label to identify the herbicide receptor protein; UV irradiation of chloroplast thylakoids in the presence of azido[14C]atrazine resulted in the covalent attachment of radioactive inhibitor to thylakoid membranes isolated from pea seedlings and from a triazine-susceptible biotype of the weed Amaranthus hybridus. No covalent binding of azido-atrazine was observed for thylakoid membranes isolated from a naturally occurring triazine-resistant biotype of A. hybridus. Analysis of thylakoid polypeptides from both the susceptible and resistant A. hybridus biotypes by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, followed by fluorography to locate 14C label, demonstrated specific association of the azido[14C]atrazine with polypeptides of the 34- to 32-kilodalton size class in susceptible but not in resistant membranes. Images PMID:16592984

  17. Effects of long-term space condition on cell ultrastructure and the molecular level change of the tomato

    NASA Astrophysics Data System (ADS)

    Jinying, L.; Min, L.; Huai, X.; Yi, P.; Chunhua, Z.; Nechitalo, G.

    Effects of long-term exposure to physical factors of space flight on dormant seeds were studied on plants derived from tomato seeds flown for 6 years on board of the space station MIR Upon return to the Earth the seeds were germinated and grown to maturity Samples of plants were compared to plants from parallel ground-based controls Various differences of ultrastructure of the tomato leaf cell were observed with an electron microscope One plant carried by space station has the anatomy of leaves with a three-layered palisade tissue and other plants similar with ground controls have the anatomy of leaves with a one-layered palisade tissue The number of starch grains per chloroplast of every space-treated tomato leaf increased significantly compared with that of the ground control The leaf cell walls of two plants carried by space station became contracted and deformed The size of chloroplast in some space-treated plants was larger and the lamellae s structure of some chloroplasts turned curvature and loose The results obtained point out to significant changes occurring on the molecular level among the space-flight treated seedlings and the ground control The leaves of plants were used for AFLP Amplification Fragment Length Polymorphism analysis For the first generation space-flight treated tomato plants among 64 pairs of primers used in this experiment 43 primers generated the same DNA bands type and 21 primers generated a different DNA band type 2582 DNA bands were produced among which 34 DNA bands were polymorphic with the percentage

  18. Blue light-dependent changes in loosely bound calcium in Arabidopsis mesophyll cells: an X-ray microanalysis study

    PubMed Central

    Łabuz, Justyna; Samardakiewicz, Sławomir; Hermanowicz, Paweł; Wyroba, Elżbieta; Pilarska, Maria; Gabryś, Halina

    2016-01-01

    Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca2+ after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca2+, and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca2+ was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca2+ homeostasis in mesophyll cells. PMID:26957564

  19. Copper-Deficiency in Brassica napus Induces Copper Remobilization, Molybdenum Accumulation and Modification of the Expression of Chloroplastic Proteins

    PubMed Central

    Billard, Vincent; Ourry, Alain; Maillard, Anne; Garnica, Maria; Coquet, Laurent; Jouenne, Thierry; Cruz, Florence; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Etienne, Philippe

    2014-01-01

    During the last 40 years, crop breeding has strongly increased yields but has had adverse effects on the content of micronutrients, such as Fe, Mg, Zn and Cu, in edible products despite their sufficient supply in most soils. This suggests that micronutrient remobilization to edible tissues has been negatively selected. As a consequence, the aim of this work was to quantify the remobilization of Cu in leaves of Brassica napus L. during Cu deficiency and to identify the main metabolic processes that were affected so that improvements can be achieved in the future. While Cu deficiency reduced oilseed rape growth by less than 19% compared to control plants, Cu content in old leaves decreased by 61.4%, thus demonstrating a remobilization process between leaves. Cu deficiency also triggered an increase in Cu transporter expression in roots (COPT2) and leaves (HMA1), and more surprisingly, the induction of the MOT1 gene encoding a molybdenum transporter associated with a strong increase in molybdenum (Mo) uptake. Proteomic analysis of leaves revealed 33 proteins differentially regulated by Cu deficiency, among which more than half were located in chloroplasts. Eleven differentially expressed proteins are known to require Cu for their synthesis and/or activity. Enzymes that were located directly upstream or downstream of Cu-dependent enzymes were also differentially expressed. The overall results are then discussed in relation to remobilization of Cu, the interaction between Mo and Cu that occurs through the synthesis pathway of Mo cofactor, and finally their putative regulation within the Calvin cycle and the chloroplastic electron transport chain. PMID:25333918

  20. Increasing Phosphatidylinositol (4,5)-Bisphosphate Biosynthesis Affects Basal Signaling and Chloroplast Metabolism in Arabidopsis thaliana

    PubMed Central

    Im, Yang Ju; Smith, Caroline M.; Phillippy, Brian Q.; Strand, Deserah; Kramer, David M.; Grunden, Amy M.; Boss, Wendy F.

    2014-01-01

    One challenge in studying the second messenger inositol(1,4,5)-trisphosphate (InsP3) is that it is present in very low amounts and increases only transiently in response to stimuli. To identify events downstream of InsP3, we generated transgenic plants constitutively expressing the high specific activity, human phosphatidylinositol 4-phosphate 5-kinase Iα (HsPIPKIα). PIP5K is the enzyme that synthesizes phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2); this reaction is flux limiting in InsP3 biosynthesis in plants. Plasma membranes from transgenic Arabidopsis expressing HsPIPKIα had 2–3 fold higher PIP5K specific activity, and basal InsP3 levels in seedlings and leaves were >2-fold higher than wild type. Although there was no significant difference in photosynthetic electron transport, HsPIPKIα plants had significantly higher starch (2–4 fold) and 20% higher anthocyanin compared to controls. Starch content was higher both during the day and at the end of dark period. In addition, transcripts of genes involved in starch metabolism such as SEX1 (glucan water dikinase) and SEX4 (phosphoglucan phosphatase), DBE (debranching enzyme), MEX1 (maltose transporter), APL3 (ADP-glucose pyrophosphorylase) and glucose-6-phosphate transporter (Glc6PT) were up-regulated in the HsPIPKIα plants. Our results reveal that increasing the phosphoinositide (PI) pathway affects chloroplast carbon metabolism and suggest that InsP3 is one component of an inter-organelle signaling network regulating chloroplast metabolism. PMID:27135490

  1. Chloroplast NADPH-Dependent Thioredoxin Reductase from Chlorella vulgaris Alleviates Environmental Stresses in Yeast Together with 2-Cys Peroxiredoxin

    PubMed Central

    Machida, Takeshi; Ishibashi, Akiko; Kirino, Ai; Sato, Jun-ichi; Kawasaki, Shinji; Niimura, Youichi; Honjoh, Ken-ichi; Miyamoto, Takahisa

    2012-01-01

    Chloroplast NADPH-dependent thioredoxin reductase (NTRC) catalyzes the reduction of 2-Cys peroxiredoxin (2-Cys Prx) and, thus, probably functions as an antioxidant system. The functions of the enzyme in oxidative and salt stresses have been reported previously. We have previously identified and characterized NTRC in Chlorella vulgaris. In the present study, we isolated a full-length cDNA clone encoding 2-Cys Prx from C. vulgaris and investigated the involvement of Chlorella NTRC/2-Cys Prx system in several environmental stress tolerances by using yeast as a eukaryotic model. Deduced Chlorella 2-Cys Prx was homologous to those of chloroplast 2-Cys Prxs from plants, and two conserved cysteine residues were found in the deduced sequence. Enzyme assay showed that recombinant mature C. vulgaris NTRC (mCvNTRC) transferred electrons from NADPH to recombinant mature C. vulgaris 2-Cys Prx (mCvPrx), and mCvPrx decomposed hydrogen peroxide, tert-butyl hydroperoxide, and peroxynitrite by cooperating with mCvNTRC. Based on the results, the mCvNTRC/mCvPrx antioxidant system was identified in Chlorella. The antioxidant system genes were expressed in yeast separately or coordinately. Stress tolerances of yeast against freezing, heat, and menadione-induced oxidative stresses were significantly improved by expression of mCvNTRC, and the elevated tolerances were more significant when both mCvNTRC and mCvPrx were co-expressed. Our results reveal a novel feature of NTRC: it functions as an antioxidant system with 2-Cys Prx in freezing and heat stress tolerances. PMID:23029353

  2. Reduction of Cr (VI) into Cr (III) by organelles of Chlorella vulgaris in aqueous solution: An organelle-level attempt.

    PubMed

    Chen, Zunwei; Song, Shufang; Wen, Yuezhong

    2016-12-01

    The priority pollutant chromium (Cr) was ubiquitous and great efforts have been made to reduce Cr (VI) into less-toxic Cr (III) by alga for the convenient availability and low expense. However, the functional role of organelle inside the algal cell in Cr (VI) reduction was poorly understood. In this study, organelles in green algae Chlorella vulgaris were extracted and further decorated for Cr (VI) reduction tests. Results showed that the chloroplast exhibited not only adsorption ability of total Cr (21.18% comparing to control) but also reduction potential of Cr (VI) (almost 70% comparing to control), whose most suitable working concentration was at 17μg/mL. Furtherly, the isolated thylakoid membrane (ITM) showed better Cr (VI) reduction potential with the presence of sodium alginate (SA), even though the Hill reaction activity (HRA) was inhibited. As for photosystem II (PSII), the addition of mesoporous silica SBA-15 enhanced the reduction ability through improving the light-harvesting complex (LHC) II efficiency and electron transport rate. On the whole, the reduction ability order of the three kinds of materials based on chloroplast in C. vulgaris was PSII@SBA-15>Chloroplast>ITM@SA. The attempt made in this study to reduce the Cr (VI) with C. vulgaris organelles might not only offer basement to detect the potential action mechanism of Cr (VI) reduction by C. vulgaris but also provide a new sight for the scavenge of heavy metal with biological materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Temporal programming of chloroplast and cytoplasmic ribosomal RNA transcription in the synchronous cell cycle of Chlamydomonas reinhardtii

    PubMed Central

    1977-01-01

    Approximately 90% of the Chlamydomonas reinhardtii chloroplast and cytoplasmic rRNAs was transcribed in the nuclear G1 phase, which occurred during the light period under an alternating light-dark synchronization regime of 12 h each. The remaining 10% of chloroplast and cytoplasmic rRNAs was transcribed from its respective DNAs in the dark period, in the midst of an apparent turnover of a transcription appeared to be prokaryotic in sophistication. The transcription was not interrupted during chloroplast DNA synthesis which occurred during the light period. However, transcription of the nuclear DNA was repressed severely during the nuclear S phase in the dark period. The patterns of incorporation of 32P into chloroplast and cytoplasmic rRNA species in the cell cycle were similar to those of the actual rRNA synthesis as measured optically. However, the quantity of 32P incorporation per unit amount of rRNA synthesized varied considerably during the cell cycle, increasing in all rRNA's during the dark period. 32P incorporation data obtained from continuous and pulse 32P-labeling experiments also revealed a turnover of a small amount of both cytoplasmic and chloroplast rRNAs at the end of the S phase. The 32P incorporation into cytoplasmic and chloroplast rRNAs was well matched temporally with the 32P incorporation into their corresponding ribosomes, indicating that the newly synthesized rRNA molecules are utilized without delay throughout the cell cycle in the assembly of ribosomes. PMID:833204

  4. An Auxilin-Like J-Domain Protein, JAC1, Regulates Phototropin-Mediated Chloroplast Movement in Arabidopsis1[w

    PubMed Central

    Suetsugu, Noriyuki; Kagawa, Takatoshi; Wada, Masamitsu

    2005-01-01

    The ambient-light conditions mediate chloroplast relocation in plant cells. Under the low-light conditions, chloroplasts accumulate in the light (accumulation response), while under the high-light conditions, they avoid the light (avoidance response). In Arabidopsis (Arabidopsis thaliana), the accumulation response is mediated by two blue-light receptors, termed phototropins (phot1 and phot2) that act redundantly, and the avoidance response is mediated by phot2 alone. A mutant, J-domain protein required for chloroplast accumulation response 1 (jac1), lacks the accumulation response under weak blue light but shows a normal avoidance response under strong blue light. In dark-adapted wild-type cells, chloroplasts accumulate on the bottom of cells. Both the jac1 and phot2 mutants are defective in this chloroplast movement in darkness. Positional cloning of JAC1 reveals that this gene encodes a J-domain protein, resembling clathrin-uncoating factor auxilin at its C terminus. The amounts of JAC1 transcripts and JAC1 proteins are not regulated by light and by phototropins. A green fluorescent protein-JAC1 fusion protein showed a similar localization pattern to green fluorescent protein alone in a transient expression assay using Arabidopsis mesophyll cells and onion (Allium cepa) epidermal cells, suggesting that the JAC1 protein may be a soluble cytosolic protein. Together, these results suggest that JAC1 is an essential component of phototropin-mediated chloroplast movement. PMID:16113208

  5. Unique localization of the plastid-specific ribosomal proteins in the chloroplast ribosome small subunit provides mechanistic insights into the chloroplastic translation

    PubMed Central

    Ahmed, Tofayel; Shi, Jian

    2017-01-01

    Abstract Chloroplastic translation is mediated by a bacterial-type 70S chloroplast ribosome. During the evolution, chloroplast ribosomes have acquired five plastid-specific ribosomal proteins or PSRPs (cS22, cS23, bTHXc, cL37 and cL38) which have been suggested to play important regulatory roles in translation. However, their exact locations on the chloroplast ribosome remain elusive due to lack of a high-resolution structure, hindering our progress to understand their possible roles. Here we present a cryo-EM structure of the 70S chloroplast ribosome from spinach resolved to 3.4 Å and focus our discussion mainly on the architecture of the 30S small subunit (SSU) which is resolved to 3.7 Å. cS22 localizes at the SSU foot where it seems to compensate for the deletions in 16S rRNA. The mRNA exit site is highly remodeled due to the presence of cS23 suggesting an alternative mode of translation initiation. bTHXc is positioned at the SSU head and appears to stabilize the intersubunit bridge B1b during thermal fluctuations. The translation factor plastid pY binds to the SSU on the intersubunit side and interacts with the conserved nucleotide bases involved in decoding. Most of the intersubunit bridges are conserved compared to the bacteria, except for a new bridge involving uL2c and bS6c. PMID:28582576

  6. Comparative analysis of complete chloroplast genome sequence and inversion variation in Lasthenia burkei (Madieae, Asteraceae).

    PubMed

    Walker, Joseph F; Zanis, Michael J; Emery, Nancy C

    2014-04-01

    Complete chloroplast genome studies can help resolve relationships among large, complex plant lineages such as Asteraceae. We present the first whole plastome from the Madieae tribe and compare its sequence variation to other chloroplast genomes in Asteraceae. We used high throughput sequencing to obtain the Lasthenia burkei chloroplast genome. We compared sequence structure and rates of molecular evolution in the small single copy (SSC), large single copy (LSC), and inverted repeat (IR) regions to those for eight Asteraceae accessions and one Solanaceae accession. The chloroplast sequence of L. burkei is 150 746 bp and contains 81 unique protein coding genes and 4 coding ribosomal RNA sequences. We identified three major inversions in the L. burkei chloroplast, all of which have been found in other Asteraceae lineages, and a previously unreported inversion in Lactuca sativa. Regions flanking inversions contained tRNA sequences, but did not have particularly high G + C content. Substitution rates varied among the SSC, LSC, and IR regions, and rates of evolution within each region varied among species. Some observed differences in rates of molecular evolution may be explained by the relative proportion of coding to noncoding sequence within regions. Rates of molecular evolution vary substantially within and among chloroplast genomes, and major inversion events may be promoted by the presence of tRNAs. Collectively, these results provide insight into different mechanisms that may promote intramolecular recombination and the inversion of large genomic regions in the plastome.

  7. 3D Printing of Plant Golgi Stacks from Their Electron Tomographic Models.

    PubMed

    Mai, Keith Ka Ki; Kang, Madison J; Kang, Byung-Ho

    2017-01-01

    Three-dimensional (3D) printing is an effective tool for preparing tangible 3D models from computer visualizations to assist in scientific research and education. With the recent popularization of 3D printing processes, it is now possible for individual laboratories to convert their scientific data into a physical form suitable for presentation or teaching purposes. Electron tomography is an electron microscopy method by which 3D structures of subcellular organelles or macromolecular complexes are determined at nanometer-level resolutions. Electron tomography analyses have revealed the convoluted membrane architectures of Golgi stacks, chloroplasts, and mitochondria. But the intricacy of their 3D organizations is difficult to grasp from tomographic models illustrated on computer screens. Despite the rapid development of 3D printing technologies, production of organelle models based on experimental data with 3D printing has rarely been documented. In this chapter, we present a simple guide to creating 3D prints of electron tomographic models of plant Golgi stacks using the two most accessible 3D printing technologies.

  8. Insights into Alternanthera mosaic virus TGB3 functions: Interactions with Nicotiana benthamiana PsbO correlate with chloroplast vesiculation and veinal necrosis caused by TGB3 overexpression

    USDA-ARS?s Scientific Manuscript database

    Alternanthera mosaic virus (AltMV) triple gene block 3 (TGB3) protein is involved in viral movement. AltMV TGB3 subcellular localization was previously shown to be distinct from that of Potato virus X (PVX) TGB3, and a chloroplast binding domain identified; veinal necrosis and chloroplast vesiculati...

  9. Enzymic synthesis of γ-coniceine in Conium maculatum chloroplasts and mitochondria.

    PubMed

    Roberts, M F

    1981-08-01

    Further studies of the transaminase responsible for the first committed step in alkaloid formation in Conium maculatum have shown the L-alanine: 5-ketooctanal transaminase to occur in both the mitochondria and chloroplast. Experiments suggest that these enzymes are the isoenzymes Transaminase A and B respectively previously isolated by the author. It is suggested that the chloroplast enzyme is normally responsible for alkaloid production.

  10. Biogenesis of light harvesting proteins.

    PubMed

    Dall'Osto, Luca; Bressan, Mauro; Bassi, Roberto

    2015-09-01

    The LHC family includes nuclear-encoded, integral thylakoid membrane proteins, most of which coordinate chlorophyll and xanthophyll chromophores. By assembling with the core complexes of both photosystems, LHCs form a flexible peripheral moiety for enhancing light-harvesting cross-section, regulating its efficiency and providing protection against photo-oxidative stress. Upon its first appearance, LHC proteins underwent evolutionary diversification into a large protein family with a complex genetic redundancy. Such differentiation appears as a crucial event in the adaptation of photosynthetic organisms to changing environmental conditions and land colonization. The structure of photosystems, including nuclear- and chloroplast-encoded subunits, presented the cell with a number of challenges for the control of the light harvesting function. Indeed, LHC-encoding messages are translated in the cytosol, and pre-proteins imported into the chloroplast, processed to their mature size and targeted to the thylakoids where are assembled with chromophores. Thus, a tight coordination between nuclear and plastid gene expression, in response to environmental stimuli, is required to adjust LHC composition during photoacclimation. In recent years, remarkable progress has been achieved in elucidating structure, function and regulatory pathways involving LHCs; however, a number of molecular details still await elucidation. In this review, we will provide an overview on the current knowledge on LHC biogenesis, ranging from organization of pigment-protein complexes to the modulation of gene expression, import and targeting to the photosynthetic membranes, and regulation of LHC assembly and turnover. Genes controlling these events are potential candidate for biotechnological applications aimed at optimizing light use efficiency of photosynthetic organisms. This article is part of a Special Issue entitled: Chloroplast biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Differential uptake of photosynthetic and non-photosynthetic proteins by pea root plastids.

    PubMed

    Yan, Xianxi; Khan, Sultan; Hase, Toshiharu; Emes, Michael J; Bowsher, Caroline G

    2006-11-27

    The photosynthetic proteins RuBiSCO, ferredoxin I and ferredoxin NADP(+)-oxidoreductase (pFNR) were efficiently imported into isolated pea chloroplasts but not into pea root plastids. By contrast non-photosynthetic ferredoxin III and heterotrophic FNR (hFNR) were efficiently imported into both isolated chloroplasts and root plastids. Chimeric ferredoxin I/III (transit peptide of ferredoxin I attached to the mature region of ferredoxin III) only imported into chloroplasts. Ferredoxin III/I (transit peptide of ferredoxin III attached to the mature region of ferredoxin I) imported into both chloroplasts and root plastids. This suggests that import depends on specific interactions between the transit peptide and the translocon apparatus.

  12. Localization of Carbamoylphosphate Synthetase and Aspartate Carbamoyltransferase in Chloroplasts

    PubMed Central

    Shibata, Hitoshi; Ochiai, Hideo; Sawa, Yoshihiro; Miyoshi, Shoji

    1986-01-01

    The localization of carbamoylphosphate synthetase (CPSase) and aspartate carbamoyltransferase (ACTase), the first two enzymes of the pyrimidine biosynthetic pathway, in chloroplasts was investigated. In dark-grown radish (Raphanus sativus) seedlings, light induced a prominent increase in CPSase activity, but had little effect on ACTase activity. Both enzymes were found in chloroplasts isolated from radish cotyledons and leaves of spinach (Spinacia oleracea), soybean (Glycine max), and corn (Zea mays). The higher activity of ACTase relative to CPSase is discussed in relation to the instability of carbamoylphosphate, the product of the CPSase, and to the control of pyrimidine synthesis. Based on these results, the function of CPSase and ACTase in chloroplasts is discussed. PMID:16664566

  13. Engineered Chloroplast Genome just got Smarter

    PubMed Central

    Jin, Shuangxia; Daniell, Henry

    2015-01-01

    Chloroplasts are known to sustain life on earth by providing food, fuel and oxygen through the process of photosynthesis. However, the chloroplast genome has also been smartly engineered to confer valuable agronomic traits and/or serve as bioreactors for production of industrial enzymes, biopharmaceuticals, bio-products or vaccines. The recent breakthrough in hyper-expression of biopharmaceuticals in edible leaves has facilitated the advancement to clinical studies by major pharmaceutical companies. This review critically evaluates progress in developing new tools to enhance or simplify expression of targeted genes in chloroplasts. These tools hold the promise to further the development of novel fuels and products, enhance the photosynthetic process, and increase our understanding of retrograde signaling and cellular processes. PMID:26440432

  14. Plant innate immunity – sunny side up?

    PubMed Central

    Stael, Simon; Kmiecik, Przemyslaw; Willems, Patrick; Van Der Kelen, Katrien; Coll, Nuria S.; Teige, Markus; Van Breusegem, Frank

    2016-01-01

    Reactive oxygen species (ROS)- and calcium- dependent signaling pathways play well-established roles during plant innate immunity. Chloroplasts host major biosynthetic pathways and have central roles in energy production, redox homeostasis, and retrograde signaling. However, the organelle’s importance in immunity has been somehow overlooked. Recent findings suggest that the chloroplast also has an unanticipated function as a hub for ROS- and calcium-signaling that affects immunity responses at an early stage after pathogen attack. In this opinion article, we discuss a chloroplastic calcium-ROS signaling branch of plant innate immunity. We propose that this chloroplastic branch acts as a light-dependent rheostat that, through the production of ROS, influences the severity of the immune response. PMID:25457110

  15. Paraquat Resistance in Conyza1

    PubMed Central

    Fuerst, E. Patrick; Nakatani, Herbert Y.; Dodge, Alan D.; Penner, Donald; Arntzen, Charles J.

    1985-01-01

    A biotype of Conyza bonariensis (L.) Cronq. (identical to Conyza linefolia in other publications) originating in Egypt is resistant to the herbicide 1,1′-dimethyl-4,4′-bipyridinium ion (paraquat). Penetration of the cuticle by [14C]paraquat was greater in the resistant biotype than the susceptible (wild) biotype; therefore, resistance was not due to differences in uptake. The resistant and susceptible biotypes were indistinguishable by measuring in vitro photosystem I partial reactions using paraquat, 6,7-dihydrodipyrido [1,2-α:2′,1′-c] pyrazinediium ion (diquat), or 7,8-dihydro-6H-dipyrido [1,2-α:2′,1′-c] [1,4] diazepinediium ion (triquat) as electron acceptors. Therefore, alteration at the electron acceptor level of photosystem I is not the basis for resistance. Chlorophyll fluorescence measured in vivo was quenched in the susceptible biotype by leaf treatment with the bipyridinium herbicides. Resistance to quenching of in vivo chlorophyll fluorescence was observed in the resistant biotype, indicating that the herbicide was excluded from the chloroplasts. Movement of [14C] paraquat was restricted in the resistant biotype when excised leaves were supplied [14C]paraquat through the petiole. We propose that the mechanism of resistance to paraquat is exclusion of paraquat from its site of action in the chloroplast by a rapid sequestration mechanism. No differential binding of paraquat to cell walls isolated from susceptible and resistant biotypes could be detected. The exact site and mechanism of paraquat binding to sequester the herbicide remains to be determined. Images Fig. 6 PMID:16664176

  16. Inhibitory mechanism of phthalate esters on Karenia brevis.

    PubMed

    Liu, Ning; Wen, Fuling; Li, Fengmin; Zheng, Xiang; Liang, Zhi; Zheng, Hao

    2016-07-01

    The occurrence of phthalate esters (PAEs), a class of widely used and environmentally prevalent chemicals, raises concern to environmental and human health globally. The PAEs have been demonstrated to inhibit algae growth, but the underlying mechanisms remain unclear. In this research, diethyl ortho-phthalate (DEP), diallyl phthalate (DAP), di-n-butyl ortho-phthalate (DBP), di-iso-butyl ortho-phthalate, and benzyl-n-butyl ortho-phthalate (BBP) were screened from 11 species of PAEs to study their inhibitory effects on Karenia brevis and determine their target sites on algae. With increasing the alkyl chains of these five PAEs, the values of EC50,96h decreased. The content of malondialdehyde increased with the continuous accumulation of reactive oxygen species (ROS) in the algae cells. Moreover, the superoxide dismutase and catalase contents were first activated and then inhibited. The ultrastructures of Karenia brevis cells were detected by transmission electron microscopy, and cells treated with PAEs exhibiting distorted shapes and large vacuoles. Thus, the algae were damaged by ROS accumulation, resulting in lipid oxidation and algal growth inhibition. The inhibitors of the electron transport chain showed that the sites of ROS production and accumulation in K. brevis cells under DEP and BBP were the mitochondria and chloroplast, respectively. Moreover, the target sites of DAP and DBP were both the chloroplast and mitochondria. These results are useful for controlling PAEs contamination in and revealing the fate of PAEs in aquatic ecosystem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. [Cytochrome b-559 photooxidation in the presence of carbonyl cyanide p-trifluorometh-oxyphenylhydrazone and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone or p-benzoquinone in three non-photosynthetic mutants of Chlamydomonas reinhardti (author's transl)].

    PubMed

    Maroc, J; Garnier, J

    1975-04-14

    Studies of absorbance related to the cytochrome b-559 photooxidation induced by FCCP, with and without addition of 3-p-chlorophenyl-1, 1-dimethylurea (CMU), DBMIB or p-benzoquinone, in whole cells and in chloroplast fragments of Chlamydomonas reinhardti, were carried out. In addition to the wild type, three strains of non-photosynthetic mutants were used: Fl 5, which lacks P 700; Fl 9 and Fl 15, which are deficient in bound cytochrome c-553 and in cytochrome b-563. In the presence of FCCP, whole cells and chloroplast fragments of the four strains showed a System II-dependent photooxidation of cytochrome b-559. This photooxidation was inhibited by CMU but it occurred again in presence of FCCP, CMU and DBMIB. In chloroplast fragments, cytochrome b-559 photooxidation was also inhibited by an excess of FCCP; it was recovered, likewise, by addition of DBMIB. In whole cells, the highest measured redox changes were: 1 mu mol oxidized cytochrome b-559 per 1 mmol chlorophyll, corresponding approximately to about one seventh (wild type, Fl5) or one fifth (Fl 9, Fl 15) of the total amount of this cytochrome. Another kind of cytochrome b-559 photooxidation, CMU-insensitive, also occurred in the mutants Fl 9 and Fl 15 and in the wild type, but not in the mutant Fl 5. This latter kind of photooxidation was observed with chloroplast fragments in the presence of FCCP and CMU and also with whole cells in the presence of FCCP, CMU and p-benzoquinone. These reactions can be attributed to the Photosystem I; they do not require the intervention of the cytochrome c-553. A high-potential form of cytochrome b-559, hydroquinone-reducible, was involved in these two kinds of photooxidation. In addition, a lower potential form, reducible only by ascorbate, appeared to be able to interfere also. An interpretation is attempted, taking into consideration the various effects of FCCP and DBMIB, at different concentrations, on photosynthetic electron transport.

  18. Verdant: automated annotation, alignment and phylogenetic analysis of whole chloroplast genomes.

    PubMed

    McKain, Michael R; Hartsock, Ryan H; Wohl, Molly M; Kellogg, Elizabeth A

    2017-01-01

    Chloroplast genomes are now produced in the hundreds for angiosperm phylogenetics projects, but current methods for annotation, alignment and tree estimation still require some manual intervention reducing throughput and increasing analysis time for large chloroplast systematics projects. Verdant is a web-based software suite and database built to take advantage a novel annotation program, annoBTD. Using annoBTD, Verdant provides accurate annotation of chloroplast genomes without manual intervention. Subsequent alignment and tree estimation can incorporate newly annotated and publically available plastomes and can accommodate a large number of taxa. Verdant sharply reduces the time required for analysis of assembled chloroplast genomes and removes the need for pipelines and software on personal hardware. Verdant is available at: http://verdant.iplantcollaborative.org/plastidDB/ It is implemented in PHP, Perl, MySQL, Javascript, HTML and CSS with all major browsers supported. mrmckain@gmail.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  19. The Translational Apparatus of Plastids and Its Role in Plant Development

    PubMed Central

    Tiller, Nadine; Bock, Ralph

    2014-01-01

    Chloroplasts (plastids) possess a genome and their own machinery to express it. Translation in plastids occurs on bacterial-type 70S ribosomes utilizing a set of tRNAs that is entirely encoded in the plastid genome. In recent years, the components of the chloroplast translational apparatus have been intensely studied by proteomic approaches and by reverse genetics in the model systems tobacco (plastid-encoded components) and Arabidopsis (nucleus-encoded components). This work has provided important new insights into the structure, function, and biogenesis of chloroplast ribosomes, and also has shed fresh light on the molecular mechanisms of the translation process in plastids. In addition, mutants affected in plastid translation have yielded strong genetic evidence for chloroplast genes and gene products influencing plant development at various levels, presumably via retrograde signaling pathway(s). In this review, we describe recent progress with the functional analysis of components of the chloroplast translational machinery and discuss the currently available evidence that supports a significant impact of plastid translational activity on plant anatomy and morphology. PMID:24589494

  20. Chloroplast DNA codon use: evidence for selection at the psb A locus based on tRNA availability.

    PubMed

    Morton, B R

    1993-09-01

    Codon use in the three sequenced chloroplast genomes (Marchantia, Oryza, and Nicotiana) is examined. The chloroplast has a bias in that codons NNA and NNT are favored over synonymous NNC and NNG codons. This appears to be a consequence of an overall high A + T content of the genome. This pattern of codon use is not followed by the psb A gene of all three genomes and other psb A sequences examined. In this gene, the codon use favors NNC over NNT for twofold degenerate amino acids. In each case the only tRNA coded by the genome is complementary to the NNC codon. This codon use is similar to the codon use by chloroplast genes examined from Chlamydomonas reinhardtii. Since psb A is the major translation product of the chloroplast, this suggests that selection is acting on the codon use of this gene to adapt codons to tRNA availability, as previously suggested for unicellular organisms.

  1. Transport of Phosphoenolpyruvate by Chloroplasts from Mesembryanthemum crystallinum L. Exhibiting Crassulacean Acid Metabolism 1

    PubMed Central

    Neuhaus, H. Ekkehard; Holtum, Joseph A. M.; Latzko, Erwin

    1988-01-01

    Chloroplasts from CAM-Mesembryanthemum crystallinum can transport phosphoenolpyruvate (PEP) across the envelope. The initial velocities of PEP uptake in the dark at 4°C exhibited saturation kinetics with increasing external PEP concentration. PEP uptake had a Vmax of 6.46 (±0.05) micromoles per milligram chlorophyll per hour and an apparent Kmpep of 0.148 (±0.004) millimolar. The uptake was competitively inhibited by Pi (apparent Ki = 0.19 millimolar), by glycerate 3-phosphate (apparent Ki = 0.13 millimolar), and by dihydroxyacetone phosphate, but malate and pyruvate were without effect. The chloroplasts were able to synthesize PEP when presented with pyruvate. PEP synthesis was light dependent. The prolonged synthesis and export of PEP from the chloroplasts required the presence of Pi or glycerate 3-phosphate in the external medium. It is suggested that the transport of pyruvate and PEP across the chloroplasts envelope is required during the gluconeogenic conversion of carbon from malate to storage carbohydrate in the light. PMID:16666128

  2. CLA1, a novel gene required for chloroplast development, is highly conserved in evolution.

    PubMed

    Mandel, M A; Feldmann, K A; Herrera-Estrella, L; Rocha-Sosa, M; León, P

    1996-05-01

    An albino mutant designated cla1-1 (for "cloroplastos alterados', or "altered chloroplasts') has been isolated from a T-DNA-generated library of Arabidopsis thaliana. In cla1-1 plants, chloroplast development is arrested at an early stage. cla1-1 plants behave like wild-type in their capacity to etiolate and produce anthocyanins indicating that the light signal transduction pathway seems to be unaffected. Genetic and molecular analyses show that the disruption of a single gene, CLA1, by the T-DNA insertion is responsible for the mutant phenotype. RNA expression patterns indicate that CLA1 is positively regulated by light and that it has different effects on the steady-state RNA levels of some nuclear- and chloroplast-encoded photosynthetic genes. Although the specific function of the CLA1 gene is still unknown, it encodes a novel protein conserved in evolution between photosynthetic bacteria and plants which is essential for chloroplast development in Arabidopsis.

  3. MFP1 is a thylakoid-associated, nucleoid-binding protein with a coiled-coil structure

    PubMed Central

    Jeong, Sun Yong; Rose, Annkatrin; Meier, Iris

    2003-01-01

    Plastid DNA, like bacterial and mitochondrial DNA, is organized into protein–DNA complexes called nucleoids. Plastid nucleoids are believed to be associated with the inner envelope in developing plastids and the thylakoid membranes in mature chloroplasts, but the mechanism for this re-localization is unknown. Here, we present the further characterization of the coiled-coil DNA-binding protein MFP1 as a protein associated with nucleoids and with the thylakoid membranes in mature chloroplasts. MFP1 is located in plastids in both suspension culture cells and leaves and is attached to the thylakoid membranes with its C-terminal DNA-binding domain oriented towards the stroma. It has a major DNA-binding activity in mature Arabidopsis chloroplasts and binds to all tested chloroplast DNA fragments without detectable sequence specificity. Its expression is tightly correlated with the accumulation of thylakoid membranes. Importantly, it is associated in vivo with nucleoids, suggesting a function for MFP1 at the interface between chloroplast nucleoids and the developing thylakoid membrane system. PMID:12930969

  4. Chloroplast-cytoplasmic interrelations involved in chloroplast development in Chlamydomonas reinhardi y-1: effect of selective depletion of chloroplast translates

    PubMed Central

    1980-01-01

    Chlamydomonas reinhardi y-1 cells grown in the dark in the presence of chloramphenicol (CD cells) are depleted of photosynthetic membranes and 70S translates. These cells were found to be unable to synthesize chlorophyll in the light until chloroplast protein synthesis was resumed. On the other hand, CD cells acquired the capacity to partially green in the presence of cycloheximide. This greening was characterized by the development of photosynthetic activity, as demonstrated by light- dependent oxygen evolution of whole cells and by measurements of ribulose-1,5-bisphosphate carboxylase and fluorescence kinetics. The chlorophyll synthesized de novo during greening in the absence of 80S ribosomal activity was organized in chlorophyll-protein complexes, as ascertained by low-temperature fluorescence-emission spectra. The morphology of these cells appeared to be normal. A model has been proposed as a working hypothesis, which could account for the phenomena described above and previously reported data pertaining to chloroplast development. PMID:7419587

  5. LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell

    PubMed Central

    Sperschneider, Jana; Catanzariti, Ann-Maree; DeBoer, Kathleen; Petre, Benjamin; Gardiner, Donald M.; Singh, Karam B.; Dodds, Peter N.; Taylor, Jennifer M.

    2017-01-01

    Pathogens secrete effector proteins and many operate inside plant cells to enable infection. Some effectors have been found to enter subcellular compartments by mimicking host targeting sequences. Although many computational methods exist to predict plant protein subcellular localization, they perform poorly for effectors. We introduce LOCALIZER for predicting plant and effector protein localization to chloroplasts, mitochondria, and nuclei. LOCALIZER shows greater prediction accuracy for chloroplast and mitochondrial targeting compared to other methods for 652 plant proteins. For 107 eukaryotic effectors, LOCALIZER outperforms other methods and predicts a previously unrecognized chloroplast transit peptide for the ToxA effector, which we show translocates into tobacco chloroplasts. Secretome-wide predictions and confocal microscopy reveal that rust fungi might have evolved multiple effectors that target chloroplasts or nuclei. LOCALIZER is the first method for predicting effector localisation in plants and is a valuable tool for prioritizing effector candidates for functional investigations. LOCALIZER is available at http://localizer.csiro.au/. PMID:28300209

  6. Carbon and hydrogen metabolism of green algae in light and dark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    After adaptation to a hydrogen metabolism, Chlamydomonas reinhardtii can photoanaerobically metabolize acetate with the evolution of H{sub 2} and CO{sub 2}. An enzyme profile of the chloroplastic, cytoplasmic, and mitochondrial fractions were obtained with a cellular fractionation procedure that incorporated cell wall removal by autolysine, digestion of the plasmalemma with digitonin and fractionation by differential centrifugation on a Percoll step gradient. The sequence of events leading to the photo-evolution of H{sub 2} from acetate includes the conversion of acetate into succinate via the extraplastidic glyoxylate cycle, the oxidation of succinate to fumarate by chloroplastic succinic dehydrogenase and the oxidation ofmore » malate to oxaloacetate in the chloroplast by NAD dependent malate dehydrogenase. The level of potential activity of the enzymes was sufficient to accommodate the observed rate of gas evolution. The isolated darkened chloroplast evolves aerobically CO{sub 2} from glucose indicating a chloroplastic respiratory pathway. Evolution of CO{sub 2} is blocked by mitochondrial inhibitors.« less

  7. On the pathways feeding the H2 production process in nutrient-replete, hypoxic conditions. Commentary on the article "Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures", by Jurado-Oller et al., Biotechnology for Biofuels, published September 7, 2015; 8:149.

    PubMed

    Scoma, Alberto; Tóth, Szilvia Z

    2017-01-01

    Under low O 2 concentration (hypoxia) and low light, Chlamydomonas cells can produce H 2 gas in nutrient-replete conditions. This process is hindered by the presence of O 2 , which inactivates the [FeFe]-hydrogenase enzyme responsible for H 2 gas production shifting algal cultures back to normal growth. The main pathways accounting for H 2 production in hypoxia are not entirely understood, as much as culture conditions setting the optimal redox state in the chloroplast supporting long-lasting H 2 production. The reducing power for H 2 production can be provided by photosystem II (PSII) and photofermentative processes during which proteins are degraded via yet unknown pathways. In hetero- or mixotrophic conditions, acetate respiration was proposed to indirectly contribute to H 2 evolution, although this pathway has not been described in detail. Recently, Jurado-Oller et al. (Biotechnol Biofuels 8: 149, 7) proposed that acetate respiration may substantially support H 2 production in nutrient-replete hypoxic conditions. Addition of low amounts of O 2 enhanced acetate respiration rate, particularly in the light, resulting in improved H 2 production. The authors surmised that acetate oxidation through the glyoxylate pathway generates intermediates such as succinate and malate, which would be in turn oxidized in the chloroplast generating FADH 2 and NADH. The latter would enter a PSII-independent pathway at the level of the plastoquinone pool, consistent with the light dependence of H 2 production. The authors concluded that the water-splitting activity of PSII has a minor role in H 2 evolution in nutrient-replete, mixotrophic cultures under hypoxia. However, their results with the PSII inhibitor DCMU also reveal that O 2 or acetate additions promoted acetate respiration over the usually dominant PSII-dependent pathway. The more oxidized state experienced by these cultures in combination with the relatively short experimental time prevented acclimation to hypoxia, thus precluding the PSII-dependent pathway from contributing to H 2 production. In Chlamydomonas , continuous H 2 gas evolution is expected once low O 2 partial pressure and optimal reducing conditions are set. Under nutrient-replete conditions, the electrogenic processes involved in H 2 photoproduction may rely on various electron transport pathways. Understanding how physiological conditions select for specific metabolic routes is key to achieve economic viability of this renewable energy source.

  8. Arabidopsis ANGULATA10 is required for thylakoid biogenesis and mesophyll development

    PubMed Central

    Micol, José Luis

    2014-01-01

    The chloroplasts of land plants contain internal membrane systems, the thylakoids, which are arranged in stacks called grana. Because grana have not been found in Cyanobacteria, the evolutionary origin of genes controlling the structural and functional diversification of thylakoidal membranes in land plants remains unclear. The angulata10-1 (anu10-1) mutant, which exhibits pale-green rosettes, reduced growth, and deficient leaf lateral expansion, resulting in the presence of prominent marginal teeth, was isolated. Palisade cells in anu10-1 are larger and less packed than in the wild type, giving rise to large intercellular spaces. The ANU10 gene encodes a protein of unknown function that localizes to both chloroplasts and amyloplasts. In chloroplasts, ANU10 associates with thylakoidal membranes. Mutant anu10-1 chloroplasts accumulate H2O2, and have reduced levels of chlorophyll and carotenoids. Moreover, these chloroplasts are small and abnormally shaped, thylakoidal membranes are less abundant, and their grana are absent due to impaired thylakoid stacking in the anu10-1 mutant. Because the trimeric light-harvesting complex II (LHCII) has been reported to be required for thylakoid stacking, its levels were determined in anu10-1 thylakoids and they were found to be reduced. Together, the data point to a requirement for ANU10 for chloroplast and mesophyll development. PMID:24663344

  9. Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis.

    PubMed

    Gotoh, Eiji; Suetsugu, Noriyuki; Higa, Takeshi; Matsushita, Tomonao; Tsukaya, Hirokazu; Wada, Masamitsu

    2018-01-24

    Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m -2 s -1 ), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis.

  10. Two Novel Vesicle-Inducing Proteins in Plastids 1 Genes Cloned and Characterized in Triticum urartu

    PubMed Central

    Chen, Bo; Jiao, Juan; Jia, Lijia; Liu, Cuimin

    2017-01-01

    Vesicle-inducing protein in plastids 1 (Vipp1) is thought to play an important role both in thylakoid biogenesis and chloroplast envelope maintenance during stress. Vipp1 is conserved in photosynthetic organisms and forms a high homo-oligomer complex structure that may help sustain the membrane integrity of chloroplasts. This study cloned two novel VIPP1 genes from Triticum urartu and named them TuVipp1 and TuVipp2. Both proteins shared high identity with the homologous proteins AtVipp1 and CrVipp1. TuVipp1 and TuVipp2 were expressed in various organs of common wheat, and both genes were induced by light and various stress treatments. Purified TuVipp1 and TuVipp2 proteins showed secondary and advanced structures similar to those of the homologous proteins. Similar to AtVipp1, TuVipp1 is a chloroplast target protein. Additionally, TuVipp1 was able to rescue the phenotypes of pale leaves, lethality, and disordered chloroplast structures of AtVipp1 (-/-) mutant lines. Collectively, our data demonstrate that TuVipp1 and TuVipp2 are functional proteins in chloroplasts in wheat and may be critical for maintaining the chloroplast envelope under stress and membrane biogenesis upon photosynthesis. PMID:28103282

  11. Evolutionary, Molecular and Genetic Analyses of Tic22 Homologues in Arabidopsis thaliana Chloroplasts

    PubMed Central

    Kasmati, Ali Reza; Patel, Ramesh; Ling, Qihua; Karim, Sazzad; Aronsson, Henrik; Jarvis, Paul

    2013-01-01

    The Tic22 protein was previously identified in pea as a putative component of the chloroplast protein import apparatus. It is a peripheral protein of the inner envelope membrane, residing in the intermembrane space. In Arabidopsis, there are two Tic22 homologues, termed atTic22-III and atTic22-IV, both of which are predicted to localize in chloroplasts. These two proteins defined clades that are conserved in all land plants, which appear to have evolved at a similar rates since their separation >400 million years ago, suggesting functional conservation. The atTIC22-IV gene was expressed several-fold more highly than atTIC22-III, but the genes exhibited similar expression profiles and were expressed throughout development. Knockout mutants lacking atTic22-IV were visibly normal, whereas those lacking atTic22-III exhibited moderate chlorosis. Double mutants lacking both isoforms were more strongly chlorotic, particularly during early development, but were viable and fertile. Double-mutant chloroplasts were small and under-developed relative to those in wild type, and displayed inefficient import of precursor proteins. The data indicate that the two Tic22 isoforms act redundantly in chloroplast protein import, and that their function is non-essential but nonetheless required for normal chloroplast biogenesis, particularly during early plant development. PMID:23675512

  12. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    NASA Technical Reports Server (NTRS)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  13. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads

    PubMed Central

    Jiang, Guo-Feng; Hinsinger, Damien Daniel; Strijk, Joeri Sergej

    2016-01-01

    Cycads are among the most threatened plant species. Increasing the availability of genomic information by adding whole chloroplast data is a fundamental step in supporting phylogenetic studies and conservation efforts. Here, we assemble a dataset encompassing three taxonomic levels in cycads, including ten genera, three species in the genus Cycas and two individuals of C. debaoensis. Repeated sequences, SSRs and variations of the chloroplast were analyzed at the intraspecific, interspecific and intergeneric scale, and using our sequence data, we reconstruct a phylogenomic tree for cycads. The chloroplast was 162,094 bp in length, with 133 genes annotated, including 87 protein-coding, 37 tRNA and 8 rRNA genes. We found 7 repeated sequences and 39 SSRs. Seven loci showed promising levels of variations for application in DNA-barcoding. The chloroplast phylogeny confirmed the division of Cycadales in two suborders, each of them being monophyletic, revealing a contradiction with the current family circumscription and its evolution. Finally, 10 intraspecific SNPs were found. Our results showed that despite the extremely restricted distribution range of C. debaoensis, using complete chloroplast data is useful not only in intraspecific studies, but also to improve our understanding of cycad evolution and in defining conservation strategies for this emblematic group. PMID:27558458

  14. Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue

    PubMed Central

    Egea, Isabel; Bian, Wanping; Barsan, Cristina; Jauneau, Alain; Pech, Jean-Claude; Latché, Alain; Li, Zhengguo; Chervin, Christian

    2011-01-01

    Background and Aims There are several studies suggesting that tomato (Solanum lycopersicum) chromoplasts arise from chloroplasts, but there is still no report showing the fluorescence of both chlorophylls and carotenoids in an intermediate plastid, and no video showing this transition phase. Methods Pigment fluorescence within individual plastids, isolated from tomato fruit using sucrose gradients, was observed at different ripening stages, and an in situ real-time recording of pigment fluorescence was performed on live tomato fruit slices. Key results At the mature green and red stages, homogenous fractions of chloroplasts and chromoplasts were obtained, respectively. At the breaker stage, spectral confocal microscopy showed that intermediate plastids contained both chlorophylls and carotenoids. Furthermore, an in situ real-time recording (a) showed that the chloroplast to chromoplast transition was synchronous for all plastids of a single cell; and (b) confirmed that all chromoplasts derived from pre-existing chloroplasts. Conclusions These results give details of the early steps of tomato chromoplast biogenesis from chloroplasts, with the formation of intermediate plastids containing both carotenoids and chlorophylls. They provide information at the sub-cellular level on the synchronism of plastid transition and pigment changes. PMID:21788376

  15. Identification of Highly Divergent Diatom-Derived Chloroplasts in Dinoflagellates, Including a Description of Durinskia kwazulunatalensis sp. nov. (Peridiniales, Dinophyceae).

    PubMed

    Yamada, Norico; Sym, Stuart D; Horiguchi, Takeo

    2017-06-01

    Dinoflagellates are known to possess chloroplasts of multiple origins derived from a red alga, a green alga, haptophytes, or diatoms. The monophyletic "dinotoms" harbor a chloroplast of diatom origin, but their chloroplasts are polyphyletic belonging to one of four genera: Chaetoceros, Cyclotella, Discostella, or Nitzschia. It has been speculated that serial replacement of diatom-derived chloroplasts by other diatoms has caused this diversity of chloroplasts. Although previous work suggested that the endosymbionts of Nitzschia origin might not be monophyletic, this has not been seriously investigated. To infer the number of replacements of diatom-derived chloroplasts in dinotoms, we analyzed the phylogenetic affinities of 14 species of dinotoms based on the endosymbiotic rbcL gene and SSU rDNA, and the host SSU rDNA. Resultant phylogenetic trees revealed that six species of Nitzschia were taken up by eight marine dinoflagellate species. Our phylogenies also indicate that four separate diatom species belonging to three genera were incorporated into the five freshwater dinotoms. Particular attention was paid to two crucially closely related species, Durinskia capensis and a novel species, D. kwazulunatalensis, because they possess distantly related Nitzschia species. This study clarified that any of a total of at least 11 diatom species in five genera are employed as an endosymbiont by 14 dinotoms, which infers a more frequent replacement of endosymbionts in the world of dinotoms than previously envisaged. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum L.).

    PubMed

    Tamburino, Rachele; Vitale, Monica; Ruggiero, Alessandra; Sassi, Mauro; Sannino, Lorenza; Arena, Simona; Costa, Antonello; Batelli, Giorgia; Zambrano, Nicola; Scaloni, Andrea; Grillo, Stefania; Scotti, Nunzia

    2017-02-10

    Drought is a major constraint for plant growth and crop productivity that is receiving an increased attention due to global climate changes. Chloroplasts act as environmental sensors, however, only partial information is available on stress-induced mechanisms within plastids. Here, we investigated the chloroplast response to a severe drought treatment and a subsequent recovery cycle in tomato through physiological, metabolite and proteomic analyses. Under stress conditions, tomato plants showed stunted growth, and elevated levels of proline, abscisic acid (ABA) and late embryogenesis abundant gene transcript. Proteomics revealed that water deficit deeply affects chloroplast protein repertoire (31 differentially represented components), mainly involving energy-related functional species. Following the rewatering cycle, physiological parameters and metabolite levels indicated a recovery of tomato plant functions, while proteomics revealed a still ongoing adjustment of the chloroplast protein repertoire, which was even wider than during the drought phase (54 components differentially represented). Changes in gene expression of candidate genes and accumulation of ABA suggested the activation under stress of a specific chloroplast-to-nucleus (retrograde) signaling pathway and interconnection with the ABA-dependent network. Our results give an original overview on the role of chloroplast as enviromental sensor by both coordinating the expression of nuclear-encoded plastid-localised proteins and mediating plant stress response. Although our data suggest the activation of a specific retrograde signaling pathway and interconnection with ABA signaling network in tomato, the involvement and fine regulation of such pathway need to be further investigated through the development and characterization of ad hoc designed plant mutants.

  17. “Prokaryotic Pathway” Is Not Prokaryotic: Noncyanobacterial Origin of the Chloroplast Lipid Biosynthetic Pathway Revealed by Comprehensive Phylogenomic Analysis

    PubMed Central

    Awai, Koichiro

    2017-01-01

    Abstract Lipid biosynthesis within the chloroplast, or more generally plastids, was conventionally called “prokaryotic pathway,” which produces glycerolipids bearing C18 acids at the sn-1 position and C16 acids at the sn-2 position, as in cyanobacteria such as Anabaena and Synechocystis. This positional specificity is determined during the synthesis of phosphatidate, which is a precursor to diacylglycerol, the acceptor of galactose for the synthesis of galactolipids. The first acylation at sn-1 is catalyzed by glycerol-3-phosphate acyltransferase (GPAT or GPT), whereas the second acylation at sn-2 is performed by lysophosphatidate acyltransferase (LPAAT, AGPAT, or PlsC). Here we present comprehensive phylogenomic analysis of the origins of various acyltransferases involved in the synthesis of phosphatidate, as well as phosphatidate phosphatases in the chloroplasts. The results showed that the enzymes involved in the two steps of acylation in cyanobacteria and chloroplasts are entirely phylogenetically unrelated despite a previous report stating that the chloroplast LPAAT (ATS2) and cyanobacterial PlsC were sister groups. Phosphatidate phosphatases were separated into eukaryotic and prokaryotic clades, and the chloroplast enzymes were not of cyanobacterial origin, in contrast with another previous report. These results indicate that the lipid biosynthetic pathway in the chloroplasts or plastids did not originate from the cyanobacterial endosymbiont and is not “prokaryotic” in the context of endosymbiotic theory of plastid origin. This is another line of evidence for the discontinuity of plastids and cyanobacteria, which has been suggested in the glycolipid biosynthesis. PMID:29145606

  18. A Putative Chloroplast-Localized Ca(2+)/H(+) Antiporter CCHA1 Is Involved in Calcium and pH Homeostasis and Required for PSII Function in Arabidopsis.

    PubMed

    Wang, Chao; Xu, Weitao; Jin, Honglei; Zhang, Taijie; Lai, Jianbin; Zhou, Xuan; Zhang, Shengchun; Liu, Shengjie; Duan, Xuewu; Wang, Hongbin; Peng, Changlian; Yang, Chengwei

    2016-08-01

    Calcium is important for chloroplast, not only in its photosynthetic but also nonphotosynthetic functions. Multiple Ca(2+)/H(+) transporters and channels have been described and studied in the plasma membrane and organelle membranes of plant cells; however, the molecular identity and physiological roles of chloroplast Ca(2+)/H(+) antiporters have remained unknown. Here we report the identification and characterization of a member of the UPF0016 family, CCHA1 (a chloroplast-localized potential Ca(2+)/H(+) antiporter), in Arabidopsis thaliana. We observed that the ccha1 mutant plants developed pale green leaves and showed severely stunted growth along with impaired photosystem II (PSII) function. CCHA1 localizes to the chloroplasts, and the levels of the PSII core subunits and the oxygen-evolving complex were significantly decreased in the ccha1 mutants compared with the wild type. In high Ca(2+) concentrations, Arabidopsis CCHA1 partially rescued the growth defect of yeast gdt1Δ null mutant, which is defective in a Ca(2+)/H(+) antiporter. The ccha1 mutant plants also showed significant sensitivity to high concentrations of CaCl2 and MnCl2, as well as variation in pH. Taken these results together, we propose that CCHA1 might encode a putative chloroplast-localized Ca(2+)/H(+) antiporter with critical functions in the regulation of PSII and in chloroplast Ca(2+) and pH homeostasis in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  19. Photosynthesis-dependent formation of convoluted plasma membrane domains in Chara internodal cells is independent of chloroplast position.

    PubMed

    Foissner, Ilse; Sommer, Aniela; Hoeftberger, Margit

    2015-07-01

    The characean green alga Chara australis forms complex plasma membrane convolutions called charasomes when exposed to light. Charasomes are involved in local acidification of the surrounding medium which facilitates carbon uptake required for photosynthesis. They have hitherto been only described in the internodal cells and in close contact with the stationary chloroplasts. Here, we show that charasomes are not only present in the internodal cells of the main axis, side branches, and branchlets but that the plasma membranes of chloroplast-containing nodal cells, protonemata, and rhizoids are also able to invaginate into complex domains. Removal of chloroplasts by local irradiation with intense light revealed that charasomes can develop at chloroplast-free "windows" and that the resulting pH banding pattern is independent of chloroplast or window position. Charasomes were not detected along cell walls containing functional plasmodesmata. However, charasomes formed next to a smooth wound wall which was deposited onto the plasmodesmata-containing wall when the neighboring cell was damaged. In contrast, charasomes were rarely found at uneven, bulged wound walls which protrude into the streaming endoplasm and which were induced by ligation or puncturing. The results of this study show that charasome formation, although dependent on photosynthesis, does not require intimate contact with chloroplasts. Our data suggest further that the presence of plasmodesmata inhibits charasome formation and/or that exposure to the outer medium is a prerequisite for charasome formation. Finally, we hypothesize that the absence of charasomes at bulged wound walls is due to the disturbance of uniform laminar mass streaming.

  20. Evaluation of candidate barcoding markers in Orinus (Poaceae).

    PubMed

    Su, X; Liu, Y P; Chen, Z; Chen, K L

    2016-04-26

    Orinus is an alpine endemic genus of Poaceae. Because of the imperfect specimens, high level of intraspecific morphological variability, and homoplasies of morphological characters, it is relatively difficult to delimitate species of Orinus by using morphology alone. To this end, the DNA barcoding has shown great potential in identifying species. The present study is the first attempt to test the feasibility of four proposed DNA barcoding markers (matK, rbcL, trnH-psbA, and ITS) in identifying four currently revised species of Orinus from the Qinghai-Tibetan Plateau (QTP). Among all the single-barcode candidates, the differentiation power was the highest for the nuclear internal transcribed spacer (ITS), while the chloroplast barcodes matK (M), rbcL (R), and trnH-psbA (H) could not identify the species. Meanwhile, the differentiation efficiency of the nuclear ITS (I) was also higher than any two- or three-locus combination of chloroplast barcodes, or even a combination of ITS and any chloroplast barcode except H + I and R + I. All the combinations of chloroplast barcodes plus the nuclear ITS, H + I, and R + I differentiated the highest portion of species. The highest differentiation rate for the barcodes or barcode combinations examined here was 100% (H + I and R + I). In summary, this case study showed that the nuclear ITS region represents a more promising barcode than any maternally inherited chloroplast region or combination of chloroplast regions in differentiating Orinus species from the QTP. Moreover, combining the ITS region with chloroplast regions may improve the barcoding success rate.

  1. Expression of the recombinant bacterial outer surface protein A in tobacco chloroplasts leads to thylakoid localization and loss of photosynthesis.

    PubMed

    Hennig, Anna; Bonfig, Katharina; Roitsch, Thomas; Warzecha, Heribert

    2007-11-01

    Bacterial lipoproteins play crucial roles in host-pathogen interactions and pathogenesis and are important targets for the immune system. A prominent example is the outer surface protein A (OspA) of Borrelia burgdorferi, which has been efficiently used as a vaccine for the prevention of Lyme disease. In a previous study, OspA could be produced in tobacco chloroplasts in a lipidated and immunogenic form. To further explore the potential of chloroplasts for the production of bacterial lipoproteins, the role of the N-terminal leader sequence was investigated. The amount of recombinant OspA could be increased up to ten-fold by the variation of the insertion site in the chloroplast genome. Analysis of OspA mutants revealed that replacement of the invariant cysteine residue as well as deletion of the leader sequence abolishes palmitolyation of OspA. Also, decoration of OspA with an N-terminal eukaryotic lipidation motif does not lead to palmitoylation in chloroplasts. Strikingly, the bacterial signal peptide of OspA efficiently targets the protein to thylakoids, and causes a mutant phenotype. Plants accumulating OspA at 10% total soluble protein could not grow without exogenously supplied sugars and rapidly died after transfer to soil under greenhouse conditions. The plants were found to be strongly affected in photosystem II, as revealed by the analyses of temporal and spatial dynamics of photosynthetic activity by chlorophyll fluorescence imaging. Thus, overexpression of OspA in chloroplasts is limited by its concentration-dependent interference with essential functions of chloroplastic membranes required for primary metabolism.

  2. Complete Chloroplast Genome Sequences of Mongolia Medicine Artemisia frigida and Phylogenetic Relationships with Other Plants

    PubMed Central

    Liu, Yue; Huo, Naxin; Dong, Lingli; Wang, Yi; Zhang, Shuixian; Young, Hugh A.; Feng, Xiaoxiao; Gu, Yong Qiang

    2013-01-01

    Background Artemisia frigida Willd. is an important Mongolian traditional medicinal plant with pharmacological functions of stanch and detumescence. However, there is little sequence and genomic information available for Artemisia frigida, which makes phylogenetic identification, evolutionary studies, and genetic improvement of its value very difficult. We report the complete chloroplast genome sequence of Artemisia frigida based on 454 pyrosequencing. Methodology/Principal Findings The complete chloroplast genome of Artemisia frigida is 151,076 bp including a large single copy (LSC) region of 82,740 bp, a small single copy (SSC) region of 18,394 bp and a pair of inverted repeats (IRs) of 24,971 bp. The genome contains 114 unique genes and 18 duplicated genes. The chloroplast genome of Artemisia frigida contains a small 3.4 kb inversion within a large 23 kb inversion in the LSC region, a unique feature in Asteraceae. The gene order in the SSC region of Artemisia frigida is inverted compared with the other 6 Asteraceae species with the chloroplast genomes sequenced. This inversion is likely caused by an intramolecular recombination event only occurred in Artemisia frigida. The existence of rich SSR loci in the Artemisia frigida chloroplast genome provides a rare opportunity to study population genetics of this Mongolian medicinal plant. Phylogenetic analysis demonstrates a sister relationship between Artemisia frigida and four other species in Asteraceae, including Ageratina adenophora, Helianthus annuus, Guizotia abyssinica and Lactuca sativa, based on 61 protein-coding sequences. Furthermore, Artemisia frigida was placed in the tribe Anthemideae in the subfamily Asteroideae (Asteraceae) based on ndhF and trnL-F sequence comparisons. Conclusion The chloroplast genome sequence of Artemisia frigida was assembled and analyzed in this study, representing the first plastid genome sequenced in the Anthemideae tribe. This complete chloroplast genome sequence will be useful for molecular ecology and molecular phylogeny studies within Artemisia species and also within the Asteraceae family. PMID:23460871

  3. Light Affects the Chloroplast Ultrastructure and Post-Storage Photosynthetic Performance of Watermelon (Citrullus lanatus) Plug Seedlings

    PubMed Central

    Duan, Qingqing; Jiang, Wu; Ding, Ming; Lin, Ye; Huang, Danfeng

    2014-01-01

    Watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] plug seedlings were stored at 15°C in the light at a photosynthetic photon flux density of 15 µmol·m−2·s−1 or in darkness for 6 days, to evaluate their chloroplast ultrastructure, and associated photosynthetic characteristics. Storage in the dark caused swelling, disordered granal arrangement, and starch grain disappearance in the chloroplasts. In contrast, the chloroplasts stored in the light were relatively normal. As a result, the light-stored seedlings had a significantly higher chlorophyll content, Fv/Fm, and Pn than did dark-stored seedlings. Regardless of whether the seedlings were stored in light or darkness, the Gs and Ls of the seedlings significantly decreased, while the Ci obviously increased when the Pn decreased after 6 days of storage. This result suggests that the decreased Pn is not solely a stomatal effect, as the effects on the chloroplasts contributed to this photosynthetic inhibition. Six days after transplanting, seedlings that were stored in the light or darkness for 2 or 4 days showed complete recovery of chloroplast ultrastructure, chlorophyll content, Fv/Fm, Gs and Pn. When the storage period increased to 6 days, the dark-stored seedlings had a significantly lower Fv/Fm and Pn than the light-stored and control seedlings 6 days after transplanting, which was mainly ascribed to incomplete recovery of chloroplast ultrastructure. Furthermore, the light-stored seedlings exhibited a significantly higher shoot dry weight during storage and a higher percentage dry weight increase after transplanting than the dark-stored seedlings. These effects were enhanced by prolonged storage (4 to 6 days). This study demonstrated that dim light during storage is beneficial for maintaining chloroplast ultrastructure as well as photosynthetic efficiency in watermelon seedlings, thus contributing to the rapid recovery of post-storage photosynthetic performance, which ensures the transplant quality of the seedlings after removal from storage. PMID:25340859

  4. Insights from the complete chloroplast genome into the evolution of Sesamum indicum L.

    PubMed

    Zhang, Haiyang; Li, Chun; Miao, Hongmei; Xiong, Songjin

    2013-01-01

    Sesame (Sesamum indicum L.) is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded) using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603). The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC) regions and inverted repeats (IR) in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1-585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17) were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants.

  5. Combined effects of simulated acid rain and lanthanum chloride on chloroplast structure and functional elements in rice.

    PubMed

    Hu, Huiqing; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-05-01

    Acid rain and rare earth element (REE) pollution exist simultaneously in many agricultural regions. However, how REE pollution and acid rain affect plant growth in combination remains largely unknown. In this study, the combined effects of simulated acid rain and lanthanum chloride (LaCl3) on chloroplast morphology, chloroplast ultrastructure, functional element contents, chlorophyll content, and the net photosynthetic rate (P n) in rice (Oryza sativa) were investigated by simulating acid rain and rare earth pollution. Under the combined treatment of simulated acid rain at pH 4.5 and 0.08 mM LaCl3, the chloroplast membrane was smooth, proteins on this membrane were uniform, chloroplast structure was integrated, and the thylakoids were orderly arranged, and simulated acid rain and LaCl3 exhibited a mild antagonistic effect; the Mg, Ca, Mn contents, the chlorophyll content, and the P n increased under this combined treatment, with a synergistic effect of simulated acid rain and LaCl3. Under other combined treatments of simulated acid rain and LaCl3, the chloroplast membrane surface was uneven, a clear "hole" was observed on the surface of chloroplasts, and the thylakoids were dissolved and loose; and the P n and contents of functional elements (P, Mg, K, Ca, Mn, Fe, Ni, Cu, Zn and Mo) and chlorophyll decreased. Under these combined treatments, simulated acid rain and LaCl3 exhibited a synergistic effect. Based on the above results, a model of the combined effects of simulated acid rain and LaCl3 on plant photosynthesis was established in order to reveal the combined effects on plant photosynthesis, especially on the photosynthetic organelle-chloroplast. Our results would provide some references for further understanding the mechanism of the combined effects of simulated acid rain and LaCl3 on plant photosynthesis.

  6. Investigating biological activity spectrum for novel styrylquinazoline analogues.

    PubMed

    Jampilek, Josef; Musiol, Robert; Finster, Jacek; Pesko, Matus; Carroll, James; Kralova, Katarina; Vejsova, Marcela; O'Mahony, Jim; Coffey, Aidan; Dohnal, Jiri; Polanski, Jaroslaw

    2009-10-23

    In this study, series of ring-substituted 2-styrylquinazolin-4(3H)-one and 4-chloro-2-styrylquinazoline derivatives were prepared. The syntheses of the discussed compounds are presented. The compounds were analyzed by RP-HPLC to determine lipophilicity. They were tested for their inhibitory activity on photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial strains and against eight fungal strains. Several compounds showed biological activity comparable with or higher than that of the standard isoniazid. It was found that the electronic properties of the R substituent, and not the total lipophilicity of the compound, were decisive for the photosynthesis-inhibiting activity of tested compounds.

  7. Desaturation of oleoyl groups in envelope membranes from spinach chloroplasts.

    PubMed Central

    Schmidt, H; Heinz, E

    1990-01-01

    Envelope membranes isolated from chloroplasts of spinach (Spinacia oleracea) desaturate oleoyl groups in monogalactosyl diacylglycerol to linoleoyl groups. The desaturation requires NADPH in combination with ferredoxin and is not restricted to monogalactosyl diacylglycerol, since it is also observed in biosynthetic intermediates as, for example, in phosphatidic acid. This indicates a certain degree of unspecificity of the oleate desaturase in isolated envelope membranes. Lipid desaturation is another important function of chloroplast envelopes. PMID:11607123

  8. The complete chloroplast genome of a medicinal plant Epimedium koreanum Nakai (Berberidaceae).

    PubMed

    Lee, Jung-Hoon; Kim, Kyunghee; Kim, Na-Rae; Lee, Sang-Choon; Yang, Tae-Jin; Kim, Young-Dong

    2016-11-01

    Epimedium koreanum is a perennial medicinal plant distributed in Eastern Asia. The complete chloroplast genome sequences of E. koreanum was obtained by de novo assembly using whole genome next-generation sequences. The chloroplast genome of E. koreanum was 157 218 bp in length and separated into four distinct regions such as large single copy region (89 600 bp), small single copy region (17 222 bp) and a pair of inverted repeat regions (25 198 bp). The genome contained a total of 112 genes including 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that E. koreanum is most closely related to Berberis bealei, a traditional medicinal plant in the Berberidaceae family.

  9. Breakthrough in chloroplast genetic engineering of agronomically important crops

    PubMed Central

    Daniell, Henry; Kumar, Shashi; Dufourmantel, Nathalie

    2012-01-01

    Chloroplast genetic engineering offers several unique advantages, including high-level transgene expression, multi-gene engineering in a single transformation event and transgene containment by maternal inheritance, as well as a lack of gene silencing, position and pleiotropic effects and undesirable foreign DNA. More than 40 transgenes have been stably integrated and expressed using the tobacco chloroplast genome to confer desired agronomic traits or express high levels of vaccine antigens and biopharmaceuticals. Despite such significant progress, this technology has not been extended to major crops. However, highly efficient soybean, carrot and cotton plastid transformation has recently been accomplished through somatic embryogenesis using species-specific chloroplast vectors. This review focuses on recent exciting developments in this field and offers directions for further research and development. PMID:15866001

  10. A Reliable and Non-destructive Method for Monitoring the Stromal pH in Isolated Chloroplasts Using a Fluorescent pH Probe.

    PubMed

    Su, Pai-Hsiang; Lai, Yen-Hsun

    2017-01-01

    The proton gradient established by the pH difference across a biological membrane is essential for many physiological processes, including ATP synthesis and ion and metabolite transport. Currently, ionophores are used to study proton gradients, and determine their importance to biological functions of interest. Because of the lack of an easy method for monitoring the proton gradient across the inner envelope membrane of chloroplasts (ΔpH env ), whether the concentration of ionophores used can effectively abolish the ΔpH env is not proven for most experiments. To overcome this hindrance, we tried to setup an easy method for real-time monitoring of the stromal pH in buffered, isolated chloroplasts by using fluorescent pH probes; using this method the ΔpH env can be calculated by subtracting the buffer pH from the measured stromal pH. When three fluorescent dyes, BCECF-AM [2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester], CFDA-SE [5(6)-Carboxyfluorescein diacetate succinimidyl ester] and SNARF-1 carboxylic acid acetate succinimidyl ester were incubated with isolated chloroplasts, BCECF-AM and CFDA-SE, but not the ester-formed SNARF-1 were taken up by chloroplasts and digested with esterase to release high levels of fluorescence. According to its relatively higher pKa value (6.98, near the physiological pH of the stroma), BCECF was chosen for further development. Due to shielding of the excitation and emission lights by chloroplast pigments, the ratiometric fluorescence of BCECF was highly dependent on the concentration of chloroplasts. By using a fixed concentration of chloroplasts, a highly correlated standard curve of pH to the BCECF ratiometric fluorescence with an r -square value of 0.98 was obtained, indicating the reliability of this method. Consistent with previous reports, the light-dependent formation of ΔpH env can be detected ranging from 0.15 to 0.33 pH units upon illumination. The concentration of the ionophore nigericin required to collapse the ΔpH env was then studied. The establishment of a non-destructive method of monitoring the stromal pH will be valuable for studying the roles of the ΔpH env in chloroplast physiology.

  11. Correlation between spatial (3D) structure of pea and bean thylakoid membranes and arrangement of chlorophyll-protein complexes.

    PubMed

    Rumak, Izabela; Mazur, Radosław; Gieczewska, Katarzyna; Kozioł-Lipińska, Joanna; Kierdaszuk, Borys; Michalski, Wojtek P; Shiell, Brian J; Venema, Jan Henk; Vredenberg, Wim J; Mostowska, Agnieszka; Garstka, Maciej

    2012-05-25

    The thylakoid system in plant chloroplasts is organized into two distinct domains: grana arranged in stacks of appressed membranes and non-appressed membranes consisting of stroma thylakoids and margins of granal stacks. It is argued that the reason for the development of appressed membranes in plants is that their photosynthetic apparatus need to cope with and survive ever-changing environmental conditions. It is not known however, why different plant species have different arrangements of grana within their chloroplasts. It is important to elucidate whether a different arrangement and distribution of appressed and non-appressed thylakoids in chloroplasts are linked with different qualitative and/or quantitative organization of chlorophyll-protein (CP) complexes in the thylakoid membranes and whether this arrangement influences the photosynthetic efficiency. Our results from TEM and in situ CLSM strongly indicate the existence of different arrangements of pea and bean thylakoid membranes. In pea, larger appressed thylakoids are regularly arranged within chloroplasts as uniformly distributed red fluorescent bodies, while irregular appressed thylakoid membranes within bean chloroplasts correspond to smaller and less distinguished fluorescent areas in CLSM images. 3D models of pea chloroplasts show a distinct spatial separation of stacked thylakoids from stromal spaces whereas spatial division of stroma and thylakoid areas in bean chloroplasts are more complex. Structural differences influenced the PSII photochemistry, however without significant changes in photosynthetic efficiency. Qualitative and quantitative analysis of chlorophyll-protein complexes as well as spectroscopic investigations indicated a similar proportion between PSI and PSII core complexes in pea and bean thylakoids, but higher abundance of LHCII antenna in pea ones. Furthermore, distinct differences in size and arrangements of LHCII-PSII and LHCI-PSI supercomplexes between species are suggested. Based on proteomic and spectroscopic investigations we postulate that the differences in the chloroplast structure between the analyzed species are a consequence of quantitative proportions between the individual CP complexes and its arrangement inside membranes. Such a structure of membranes induced the formation of large stacked domains in pea, or smaller heterogeneous regions in bean thylakoids. Presented 3D models of chloroplasts showed that stacked areas are noticeably irregular with variable thickness, merging with each other and not always parallel to each other.

  12. The complete chloroplast genome sequence of strawberry (Fragaria  × ananassa Duch.) and comparison with related species of Rosaceae

    PubMed Central

    Cheng, Hui; Li, Jinfeng; Zhang, Hong; Cai, Binhua; Gao, Zhihong

    2017-01-01

    Compared with other members of the family Rosaceae, the chloroplast genomes of Fragaria species exhibit low variation, and this situation has limited phylogenetic analyses; thus, complete chloroplast genome sequencing of Fragaria species is needed. In this study, we sequenced the complete chloroplast genome of F. × ananassa ‘Benihoppe’ using the Illumina HiSeq 2500-PE150 platform and then performed a combination of de novo assembly and reference-guided mapping of contigs to generate complete chloroplast genome sequences. The chloroplast genome exhibits a typical quadripartite structure with a pair of inverted repeats (IRs, 25,936 bp) separated by large (LSC, 85,531 bp) and small (SSC, 18,146 bp) single-copy (SC) regions. The length of the F. × ananassa ‘Benihoppe’ chloroplast genome is 155,549 bp, representing the smallest Fragaria chloroplast genome observed to date. The genome encodes 112 unique genes, comprising 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Comparative analysis of the overall nucleotide sequence identity among ten complete chloroplast genomes confirmed that for both coding and non-coding regions in Rosaceae, SC regions exhibit higher sequence variation than IRs. The Ka/Ks ratio of most genes was less than 1, suggesting that most genes are under purifying selection. Moreover, the mVISTA results also showed a high degree of conservation in genome structure, gene order and gene content in Fragaria, particularly among three octoploid strawberries which were F. × ananassa ‘Benihoppe’, F. chiloensis (GP33) and F. virginiana (O477). However, when the sequences of the coding and non-coding regions of F. × ananassa ‘Benihoppe’ were compared in detail with those of F. chiloensis (GP33) and F. virginiana (O477), a number of SNPs and InDels were revealed by MEGA 7. Six non-coding regions (trnK-matK, trnS-trnG, atpF-atpH, trnC-petN, trnT-psbD and trnP-psaJ) with a percentage of variable sites greater than 1% and no less than five parsimony-informative sites were identified and may be useful for phylogenetic analysis of the genus Fragaria. PMID:29038765

  13. The wheat chloroplastic proteome.

    PubMed

    Kamal, Abu Hena Mostafa; Cho, Kun; Choi, Jong-Soon; Bae, Kwang-Hee; Komatsu, Setsuko; Uozumi, Nobuyuki; Woo, Sun Hee

    2013-11-20

    With the availability of plant genome sequencing, analysis of plant proteins with mass spectrometry has become promising and admired. Determining the proteome of a cell is still a challenging assignment, which is convoluted by proteome dynamics and convolution. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. In this review, an overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. In recent years, we and other groups have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during vegetative stage. Those studies provide interesting results leading to better understanding of the photosynthesis and identifying the stress-responsive proteins. Indeed, recent studies aimed at resolving the photosynthesis pathway in wheat. Proteomic analysis combining two complementary approaches such as 2-DE and shotgun methods couple to high through put mass spectrometry (LTQ-FTICR and MALDI-TOF/TOF) in order to better understand the responsible proteins in photosynthesis and abiotic stress (salt and water) in wheat chloroplast will be focused. In this review we discussed the identification of the most abundant protein in wheat chloroplast and stress-responsive under salt and water stress in chloroplast of wheat seedlings, thus providing the proteomic view of the events during the development of this seedling under stress conditions. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. An overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. We have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during seedling stage. Those studies provide interesting results leading to a better understanding of the photosynthesis and identifying the stress-responsive proteins. In reality, our studies aspired at resolving the photosynthesis pathway in wheat. Proteomic analysis united two complementary approaches such as Tricine SDS-PAGE and 2-DE methods couple to high through put mass spectrometry (LTQ-FTICR and MALDI-TOF/TOF) in order to better understand the responsible proteins in photosynthesis and abiotic stress (salt and water) in wheat chloroplast will be highlighted. This article is part of a Special Issue entitled: Translational Plant Proteomics. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  14. Correlation between spatial (3D) structure of pea and bean thylakoid membranes and arrangement of chlorophyll-protein complexes

    PubMed Central

    2012-01-01

    Background The thylakoid system in plant chloroplasts is organized into two distinct domains: grana arranged in stacks of appressed membranes and non-appressed membranes consisting of stroma thylakoids and margins of granal stacks. It is argued that the reason for the development of appressed membranes in plants is that their photosynthetic apparatus need to cope with and survive ever-changing environmental conditions. It is not known however, why different plant species have different arrangements of grana within their chloroplasts. It is important to elucidate whether a different arrangement and distribution of appressed and non-appressed thylakoids in chloroplasts are linked with different qualitative and/or quantitative organization of chlorophyll-protein (CP) complexes in the thylakoid membranes and whether this arrangement influences the photosynthetic efficiency. Results Our results from TEM and in situ CLSM strongly indicate the existence of different arrangements of pea and bean thylakoid membranes. In pea, larger appressed thylakoids are regularly arranged within chloroplasts as uniformly distributed red fluorescent bodies, while irregular appressed thylakoid membranes within bean chloroplasts correspond to smaller and less distinguished fluorescent areas in CLSM images. 3D models of pea chloroplasts show a distinct spatial separation of stacked thylakoids from stromal spaces whereas spatial division of stroma and thylakoid areas in bean chloroplasts are more complex. Structural differences influenced the PSII photochemistry, however without significant changes in photosynthetic efficiency. Qualitative and quantitative analysis of chlorophyll-protein complexes as well as spectroscopic investigations indicated a similar proportion between PSI and PSII core complexes in pea and bean thylakoids, but higher abundance of LHCII antenna in pea ones. Furthermore, distinct differences in size and arrangements of LHCII-PSII and LHCI-PSI supercomplexes between species are suggested. Conclusions Based on proteomic and spectroscopic investigations we postulate that the differences in the chloroplast structure between the analyzed species are a consequence of quantitative proportions between the individual CP complexes and its arrangement inside membranes. Such a structure of membranes induced the formation of large stacked domains in pea, or smaller heterogeneous regions in bean thylakoids. Presented 3D models of chloroplasts showed that stacked areas are noticeably irregular with variable thickness, merging with each other and not always parallel to each other. PMID:22631450

  15. Light- induced electron transfer and ATP synthesis in a carotene synthesizing insect

    NASA Astrophysics Data System (ADS)

    Valmalette, Jean Christophe; Dombrovsky, Aviv; Brat, Pierre; Mertz, Christian; Capovilla, Maria; Robichon, Alain

    2012-08-01

    A singular adaptive phenotype of a parthenogenetic insect species (Acyrthosiphon pisum) was selected in cold conditions and is characterized by a remarkable apparition of a greenish colour. The aphid pigments involve carotenoid genes well defined in chloroplasts and cyanobacteria and amazingly present in the aphid genome, likely by lateral transfer during evolution. The abundant carotenoid synthesis in aphids suggests strongly that a major and unknown physiological role is related to these compounds beyond their canonical anti-oxidant properties. We report here that the capture of light energy in living aphids results in the photo induced electron transfer from excited chromophores to acceptor molecules. The redox potentials of molecules involved in this process would be compatible with the reduction of the NAD+ coenzyme. This appears as an archaic photosynthetic system consisting of photo-emitted electrons that are in fine funnelled into the mitochondrial reducing power in order to synthesize ATP molecules.

  16. Ruminal protozoal contribution to the duodenal flow of fatty acids following feeding of steers on forages differing in chloroplast content.

    PubMed

    Huws, S A; Lee, M R F; Kingston-Smith, A H; Kim, E J; Scott, M B; Tweed, J K S; Scollan, N D

    2012-12-28

    Ruminant products are criticised for their SFA content relative to PUFA, although n-6:n-3 PUFA is desirable for human health ( < 4). Rumen protozoa are rich in unsaturated fatty acids due to engulfment of PUFA-rich chloroplasts. Increasing the chloroplast content of rumen protozoa offers a potentially novel approach to enhance PUFA flow to the duodenum and subsequent incorporation into meat and milk. We evaluated protozoal contribution to duodenal n-3 PUFA flow due to intracellular chloroplast content. A total of six Holstein × Friesian steers were fed, in a two-period changeover design, either straw:concentrate (S:C, 60:40; DM basis; S:C, low chloroplast) or fresh perennial ryegrass (PRG; high chloroplast). Following 12 d adaptation to diet, ruminal protozoal and whole duodenal samples were obtained. N and fatty acid content of whole duodenum and rumen protozoal samples were assessed and protozoal 18S rDNA quantitative PCR performed, enabling calculation of protozoal N flow. The ratio of individual fatty acids:N in rumen protozoal samples was calculated to obtain protozoal fatty acid flows. Based on total fatty acid flow, contribution (%) of protozoa to individual fatty acid flows was calculated. Protozoal fatty acid data and microscopical observations revealed that protozoa were enriched with 18 : 3n-3 following PRG feeding, compared with the S:C diet, due to increased intracellular chloroplast content. However, duodenal protozoal 18S rDNA concentration post PRG feeding was low, indicating rumen retention of the protozoa. Nutrition influences the 18 : 3n-3 content of protozoa; the challenge is to increase protozoal flow to the small intestine, while maintaining sustainable rumen densities.

  17. Phaseolin expression in tobacco chloroplast reveals an autoregulatory mechanism in heterologous protein translation.

    PubMed

    De Marchis, Francesca; Bellucci, Michele; Pompa, Andrea

    2016-02-01

    Plastid DNA engineering is a well-established research area of plant biotechnology, and plastid transgenes often give high expression levels. However, it is still almost impossible to predict the accumulation rate of heterologous protein in transplastomic plants, and there are many cases of unsuccessful transgene expression. Chloroplasts regulate their proteome at the post-transcriptional level, mainly through translation control. One of the mechanisms to modulate the translation has been described in plant chloroplasts for the chloroplast-encoded subunits of multiprotein complexes, and the autoregulation of the translation initiation of these subunits depends on the availability of their assembly partners [control by epistasy of synthesis (CES)]. In Chlamydomonas reinhardtii, autoregulation of endogenous proteins recruited in the assembly of functional complexes has also been reported. In this study, we revealed a self-regulation mechanism triggered by the accumulation of a soluble recombinant protein, phaseolin, in the stroma of chloroplast-transformed tobacco plants. Immunoblotting experiments showed that phaseolin could avoid this self-regulation mechanism when targeted to the thylakoids in transplastomic plants. To inhibit the thylakoid-targeted phaseolin translation as well, this protein was expressed in the presence of a nuclear version of the phaseolin gene with a transit peptide. Pulse-chase and polysome analysis revealed that phaseolin mRNA translation on plastid ribosomes was repressed due to the accumulation in the stroma of the same soluble polypeptide imported from the cytosol. We suggest that translation autoregulation in chloroplast is not limited to heteromeric protein subunits but also involves at least some of the foreign soluble recombinant proteins, leading to the inhibition of plastome-encoded transgene expression in chloroplast. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. "Prokaryotic Pathway" Is Not Prokaryotic: Noncyanobacterial Origin of the Chloroplast Lipid Biosynthetic Pathway Revealed by Comprehensive Phylogenomic Analysis.

    PubMed

    Sato, Naoki; Awai, Koichiro

    2017-11-01

    Lipid biosynthesis within the chloroplast, or more generally plastids, was conventionally called "prokaryotic pathway," which produces glycerolipids bearing C18 acids at the sn-1 position and C16 acids at the sn-2 position, as in cyanobacteria such as Anabaena and Synechocystis. This positional specificity is determined during the synthesis of phosphatidate, which is a precursor to diacylglycerol, the acceptor of galactose for the synthesis of galactolipids. The first acylation at sn-1 is catalyzed by glycerol-3-phosphate acyltransferase (GPAT or GPT), whereas the second acylation at sn-2 is performed by lysophosphatidate acyltransferase (LPAAT, AGPAT, or PlsC). Here we present comprehensive phylogenomic analysis of the origins of various acyltransferases involved in the synthesis of phosphatidate, as well as phosphatidate phosphatases in the chloroplasts. The results showed that the enzymes involved in the two steps of acylation in cyanobacteria and chloroplasts are entirely phylogenetically unrelated despite a previous report stating that the chloroplast LPAAT (ATS2) and cyanobacterial PlsC were sister groups. Phosphatidate phosphatases were separated into eukaryotic and prokaryotic clades, and the chloroplast enzymes were not of cyanobacterial origin, in contrast with another previous report. These results indicate that the lipid biosynthetic pathway in the chloroplasts or plastids did not originate from the cyanobacterial endosymbiont and is not "prokaryotic" in the context of endosymbiotic theory of plastid origin. This is another line of evidence for the discontinuity of plastids and cyanobacteria, which has been suggested in the glycolipid biosynthesis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Comparative Chloroplast Genomes of Photosynthetic Orchids: Insights into Evolution of the Orchidaceae and Development of Molecular Markers for Phylogenetic Applications

    PubMed Central

    Niu, Zhi-Tao; Liu, Wei; Xue, Qing-Yun; Ding, Xiao-Yu

    2014-01-01

    The orchid family Orchidaceae is one of the largest angiosperm families, including many species of important economic value. While chloroplast genomes are very informative for systematics and species identification, there is very limited information available on chloroplast genomes in the Orchidaceae. Here, we report the complete chloroplast genomes of the medicinal plant Dendrobium officinale and the ornamental orchid Cypripedium macranthos, demonstrating their gene content and order and potential RNA editing sites. The chloroplast genomes of the above two species and five known photosynthetic orchids showed similarities in structure as well as gene order and content, but differences in the organization of the inverted repeat/small single-copy junction and ndh genes. The organization of the inverted repeat/small single-copy junctions in the chloroplast genomes of these orchids was classified into four types; we propose that inverted repeats flanking the small single-copy region underwent expansion or contraction among Orchidaceae. The AT-rich regions of the ycf1 gene in orchids could be linked to the recombination of inverted repeat/small single-copy junctions. Relative species in orchids displayed similar patterns of variation in ndh gene contents. Furthermore, fifteen highly divergent protein-coding genes were identified, which are useful for phylogenetic analyses in orchids. To test the efficiency of these genes serving as markers in phylogenetic analyses, coding regions of four genes (accD, ccsA, matK, and ycf1) were used as a case study to construct phylogenetic trees in the subfamily Epidendroideae. High support was obtained for placement of previously unlocated subtribes Collabiinae and Dendrobiinae in the subfamily Epidendroideae. Our findings expand understanding of the diversity of orchid chloroplast genomes and provide a reference for study of the molecular systematics of this family. PMID:24911363

  20. Comparative chloroplast genomes of photosynthetic orchids: insights into evolution of the Orchidaceae and development of molecular markers for phylogenetic applications.

    PubMed

    Luo, Jing; Hou, Bei-Wei; Niu, Zhi-Tao; Liu, Wei; Xue, Qing-Yun; Ding, Xiao-Yu

    2014-01-01

    The orchid family Orchidaceae is one of the largest angiosperm families, including many species of important economic value. While chloroplast genomes are very informative for systematics and species identification, there is very limited information available on chloroplast genomes in the Orchidaceae. Here, we report the complete chloroplast genomes of the medicinal plant Dendrobium officinale and the ornamental orchid Cypripedium macranthos, demonstrating their gene content and order and potential RNA editing sites. The chloroplast genomes of the above two species and five known photosynthetic orchids showed similarities in structure as well as gene order and content, but differences in the organization of the inverted repeat/small single-copy junction and ndh genes. The organization of the inverted repeat/small single-copy junctions in the chloroplast genomes of these orchids was classified into four types; we propose that inverted repeats flanking the small single-copy region underwent expansion or contraction among Orchidaceae. The AT-rich regions of the ycf1 gene in orchids could be linked to the recombination of inverted repeat/small single-copy junctions. Relative species in orchids displayed similar patterns of variation in ndh gene contents. Furthermore, fifteen highly divergent protein-coding genes were identified, which are useful for phylogenetic analyses in orchids. To test the efficiency of these genes serving as markers in phylogenetic analyses, coding regions of four genes (accD, ccsA, matK, and ycf1) were used as a case study to construct phylogenetic trees in the subfamily Epidendroideae. High support was obtained for placement of previously unlocated subtribes Collabiinae and Dendrobiinae in the subfamily Epidendroideae. Our findings expand understanding of the diversity of orchid chloroplast genomes and provide a reference for study of the molecular systematics of this family.

  1. Identification and Characterization of a Chloroplast-Targeted Obg GTPase in Dendrobium officinale.

    PubMed

    Chen, Ji; Deng, Feng; Deng, Mengsheng; Han, Jincheng; Chen, Jianbin; Wang, Li; Yan, Shen; Tong, Kai; Liu, Fan; Tian, Mengliang

    2016-12-01

    Bacterial homologous chloroplast-targeted Obg GTPases (ObgCs) belong to the plant-typical Obg group, which is involved in diverse physiological processes during chloroplast development. However, the evolutionarily conserved function of ObgC in plants remains elusive and requires further investigation. In this study, we identified DoObgC from an epiphytic plant Dendrobium officinale and demonstrated the characteristics of DoObgC. Sequence analysis indicated that DoObgC is highly conserved with other plant ObgCs, which contain the chloroplast transit peptide (cTP), Obg fold, G domain, and OCT regions. The C terminus of DoObgC lacking the chloroplast-targeting cTP region, DoObgC Δ1-160 , showed strong similarity to ObgE and other bacterial Obgs. Overexpression of DoObgC Δ1-160 in Escherichia coli caused slow cell growth and an increased number of elongated cells. This phenotype was consistent with the phenotype of cells overexpressing ObgE. Furthermore, the expression of recombinant DoObgC Δ1-160 enhanced the cell persistence of E. coli to streptomycin. Results of transient expression assays revealed that DoObgC was localized to chloroplasts. Moreover, we demonstrated that DoObgC could rescue the embryotic lethal phenotype of the Arabidopsis obgc-t mutant, suggesting that DoObgC is a functional homolog to Arabidopsis AtObgC in D. officinale. Gene expression profiles showed that DoObgC was expressed in leaf-specific and light-dependent patterns and that DoObgC responded to wounding treatments. Our previous and present studies reveal that ObgC has an evolutionarily conserved role in ribosome biogenesis to adapt chloroplast development to the environment.

  2. Chloroplast diversity in the genus Malus: new insights into the relationship between the European wild apple (Malus sylvestris (L.) Mill.) and the domesticated apple (Malus domestica Borkh.).

    PubMed

    Coart, E; VAN Glabeke, S; DE Loose, M; Larsen, A S; Roldán-Ruiz, I

    2006-07-01

    To unravel the relationship between the European wild apple, Malus sylvestris (L.) Mill., and its domesticated relative M. domestica Borkh., we studied chloroplast DNA variation in 634 wild and 422 domesticated accessions originating from different regions. Hybridization between M. sylvestris and M. domestica was checked using 10 nuclear microsatellites and a Bayesian assignment approach. This allowed us to identify hybrids and feral plants escaped from cultivation. Sixty-eight genotypes belonging to 12 other wild Malus species, including 20 M. sieversii (Ledeb.) Roem. accessions were also included in the analysis of chloroplast diversity. Marker techniques were developed to type a formerly described duplication and a newly detected transversion in the matK gene. Chloroplast DNA variation was further investigated using PCR-RFLP (Polymerase Chain Reaction-Random Fragment Length Polymorphism), and haplotypes were constructed based on all mutational combinations. A closer relationship than presently accepted between M. sylvestris and M. domestica was established at the cytoplasmic level, with the detection of eight chloroplast haplotypes shared by both species. Hybridization between M. sylvestris and M. domestica was also apparent at the local level with sharing of rare haplotypes among local cultivars and sympatric wild trees. Indications of the use of wild Malus genotypes in the (local) cultivation process of M. domestica and cytoplasmic introgression of chloroplast haplotypes into M. sylvestris from the domesticated apple were found. Only one of the M. sieversii trees studied displayed one of the three main chloroplast haplotypes shared by M. sylvestris and M. domestica. This is surprising as M. sieversii has formerly been described as the main maternal progenitor of the domesticated apple. This study hereby reopens the exciting discussion on the origin of M. domestica.

  3. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    PubMed Central

    2012-01-01

    Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR) are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas. PMID:23256920

  4. Identification and Molecular Characterization of the Chloroplast Targeting Domain of Turnip yellow mosaic virus Replication Proteins

    PubMed Central

    Moriceau, Lucille; Jomat, Lucile; Bressanelli, Stéphane; Alcaide-Loridan, Catherine; Jupin, Isabelle

    2017-01-01

    Turnip yellow mosaic virus (TYMV) is a positive-strand RNA virus infecting plants. The TYMV 140K replication protein is a key organizer of viral replication complex (VRC) assembly, being responsible for recruitment of the viral polymerase and for targeting the VRCs to the chloroplast envelope where viral replication takes place. However, the structural requirements determining the subcellular localization and membrane association of this essential viral protein have not yet been defined. In this study, we investigated determinants for the in vivo chloroplast targeting of the TYMV 140K replication protein. Subcellular localization studies of deletion mutants identified a 41-residue internal sequence as the chloroplast targeting domain (CTD) of TYMV 140K; this sequence is sufficient to target GFP to the chloroplast envelope. The CTD appears to be located in the C-terminal extension of the methyltransferase domain—a region shared by 140K and its mature cleavage product 98K, which behaves as an integral membrane protein during infection. We predicted the CTD to fold into two amphipathic α-helices—a folding that was confirmed in vitro by circular dichroism spectroscopy analyses of a synthetic peptide. The importance for subcellular localization of the integrity of these amphipathic helices, and the function of 140K/98K, was demonstrated by performing amino acid substitutions that affected chloroplast targeting, membrane association and viral replication. These results establish a short internal α-helical peptide as an unusual signal for targeting proteins to the chloroplast envelope membrane, and provide new insights into membrane targeting of viral replication proteins—a universal feature of positive-strand RNA viruses. PMID:29312393

  5. Overproduction of Petunia Chloroplastic Copper/Zinc Superoxide Dismutase Does Not Confer Ozone Tolerance in Transgenic Tobacco 1

    PubMed Central

    Pitcher, Lynne H.; Brennan, Eileen; Hurley, Arthur; Dunsmuir, Pamela; Tepperman, James M.; Zilinskas, Barbara A.

    1991-01-01

    Transgenic tobacco (Nicotiana tabacum cultivar W38) plants that overproduce petunia chloroplastic Cu/Zn superoxide dismutase were exposed to ozone dosages that injure control tobacco plants. Based on foliar injury ratings, there was no consistent protection provided to the transgenic plants. These data indicate that an increase in the chloroplastic Cu/Zn superoxide dismutase alone is not sufficient to reduce ozone toxicity. ImagesFigure 1 PMID:16668407

  6. Sequence evidence for the symbiotic origins of chloroplasts and mitochondria

    NASA Technical Reports Server (NTRS)

    George, D. G.; Hunt, L. T.; Dayhoff, M. O.

    1983-01-01

    The origin of mitochondria and chloroplasts is investigated on the basis of prokaryotic and early-eukaryotic evolutionary trees derived from protein and nucleic-acid sequences by the method of Dayhoff (1979). Trees for bacterial ferrodoxins, 5S ribosomal RNA, c-type cytochromes, the lipid-binding subunit of ATPase, and dihydrofolate reductase are presented and discussed. Good agreement among the trees is found, and it is argued that the mitochondria and chloroplasts evolved by multiple symbiotic events.

  7. Recognition of RNA Editing Sites Is Directed by Unique Proteins in Chloroplasts: Biochemical Identification of cis-Acting Elements and trans-Acting Factors Involved in RNA Editing in Tobacco and Pea Chloroplasts

    PubMed Central

    Miyamoto, Tetsuya; Obokata, Junichi; Sugiura, Masahiro

    2002-01-01

    RNA editing in higher-plant chloroplasts involves C-to-U conversions at specific sites. Although in vivo analyses have been performed, little is known about the biochemical aspects of chloroplast editing reactions. Here we improved our original in vitro system and devised a procedure for preparing active chloroplast extracts not only from tobacco plants but also from pea plants. Using our tobacco in vitro system, cis-acting elements were defined for psbE and petB mRNAs. Distinct proteins were found to bind specifically to each cis-element, a 56-kDa protein to the psbE site and a 70-kDa species to the petB site. Pea chloroplasts lack the corresponding editing site in psbE since T is already present in the DNA. Parallel in vitro analyses with tobacco and pea extracts revealed that the pea plant has no editing activity for psbE mRNAs and lacks the 56-kDa protein, whereas petB mRNAs are edited and the 70-kDa protein is also present. Therefore, coevolution of an editing site and its cognate trans-factor was demonstrated biochemically in psbE mRNA editing between tobacco and pea plants. PMID:12215530

  8. Chloroplast-derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality.

    PubMed

    Chebolu, S; Daniell, H

    2009-01-01

    Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%-31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antibiotic free selectable markers or the ability to excise selectable marker genes. Hyperexpression of several therapeutic proteins, including human serum albumin (11.1% TSP), somatotropin (7% TSP), interferon-alpha (19% TSP), interferon-gamma (6% TSP), and antimicrobial peptide (21.5% TSP), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitates assembly of complex multisubunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLA cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Purification of human proinsulin has been achieved using novel purification strategies (inverse temperature transition property) that do not require expensive column chromatography techniques. Thus, transgenic chloroplasts are ideal bio-reactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner.

  9. The complete chloroplast genome of Cinnamomum camphora and its comparison with related Lauraceae species.

    PubMed

    Chen, Caihui; Zheng, Yongjie; Liu, Sian; Zhong, Yongda; Wu, Yanfang; Li, Jiang; Xu, Li-An; Xu, Meng

    2017-01-01

    Cinnamomum camphora , a member of the Lauraceae family, is a valuable aromatic and timber tree that is indigenous to the south of China and Japan. All parts of Cinnamomum camphora have secretory cells containing different volatile chemical compounds that are utilized as herbal medicines and essential oils. Here, we reported the complete sequencing of the chloroplast genome of Cinnamomum camphora using illumina technology. The chloroplast genome of Cinnamomum camphora is 152,570 bp in length and characterized by a relatively conserved quadripartite structure containing a large single copy region of 93,705 bp, a small single copy region of 19,093 bp and two inverted repeat (IR) regions of 19,886 bp. Overall, the genome contained 123 coding regions, of which 15 were repeated in the IR regions. An analysis of chloroplast sequence divergence revealed that the small single copy region was highly variable among the different genera in the Lauraceae family. A total of 40 repeat structures and 83 simple sequence repeats were detected in both the coding and non-coding regions. A phylogenetic analysis indicated that Calycanthus is most closely related to Lauraceae , both being members of Laurales , which forms a sister group to Magnoliids . The complete sequence of the chloroplast of Cinnamomum camphora will aid in in-depth taxonomical studies of the Lauraceae family in the future. The genetic sequence information will also have valuable applications for chloroplast genetic engineering.

  10. Loss‐of‐function mutation of rice SLAC7 decreases chloroplast stability and induces a photoprotection mechanism in rice

    PubMed Central

    Fan, Xiaolei; Wu, Jiemin; Chen, Taiyu; Tie, Weiwei; Chen, Hao; Zhou, Fei

    2015-01-01

    Abstract Plants absorb sunlight to power the photochemical reactions of photosynthesis, which can potentially damage the photosynthetic machinery. However, the mechanism that protects chloroplasts from the damage remains unclear. In this work, we demonstrated that rice (Oryza sativa L.) SLAC7 is a generally expressed membrane protein. Loss‐of‐function of SLAC7 caused continuous damage to the chloroplasts of mutant leaves under normal light conditions. Ion leakage indicators related to leaf damage such as H2O2 and abscisic acid levels were significantly higher in slac7‐1 than in the wild type. Consistently, the photosynthesis efficiency and Fv/Fm ratio of slac7‐1 were significantly decreased (similar to photoinhibition). In response to chloroplast damage, slac7‐1 altered its leaf morphology (curled or fused leaf) by the synergy between plant hormones and transcriptional factors to decrease the absorption of light, suggesting that a photoprotection mechanism for chloroplast damage was activated in slac7‐1. When grown in dark conditions, slac7‐1 displayed a normal phenotype. SLAC7 under the control of the AtSLAC1 promoter could partially complement the phenotypes of Arabidopsis slac1 mutants, indicating a partial conservation of SLAC protein functions. These results suggest that SLAC7 is essential for maintaining the chloroplast stability in rice. PMID:25739330

  11. Photophysiology of kleptoplasts: photosynthetic use of light by chloroplasts living in animal cells.

    PubMed

    Serôdio, João; Cruz, Sónia; Cartaxana, Paulo; Calado, Ricardo

    2014-04-19

    Kleptoplasty is a remarkable type of photosynthetic association, resulting from the maintenance of functional chloroplasts--the 'kleptoplasts'--in the tissues of a non-photosynthetic host. It represents a biologically unique condition for chloroplast and photosynthesis functioning, occurring in different phylogenetic lineages, namely dinoflagellates, ciliates, foraminiferans and, most interestingly, a single taxon of metazoans, the sacoglossan sea slugs. In the case of sea slugs, chloroplasts from macroalgae are often maintained as intracellular organelles in cells of these marine gastropods, structurally intact and photosynthetically competent for extended periods of time. Kleptoplasty has long attracted interest owing to the longevity of functional kleptoplasts in the absence of the original algal nucleus and the limited number of proteins encoded by the chloroplast genome. This review updates the state-of-the-art on kleptoplast photophysiology, focusing on the comparative analysis of the responses to light of the chloroplasts when in their original, macroalgal cells, and when sequestered in animal cells and functioning as kleptoplasts. It covers fundamental but ecologically relevant aspects of kleptoplast light responses, such as the occurrence of photoacclimation in hospite, operation of photoprotective processes and susceptibility to photoinhibition. Emphasis is given to host-mediated processes unique to kleptoplastic associations, reviewing current hypotheses on behavioural photoprotection and host-mediated enhancement of photosynthetic performance, and identifying current gaps in sacoglossan kleptoplast photophysiology research.

  12. [Effects of light intensities after anthesis on the photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize (Zea mays L. )].

    PubMed

    Gao, Jia; Cui, Hai Yan; Shi, Jian Guo; Dong, Shu Ting; Liu, Peng; Zhao, Bin; Zhang, Ji Wang

    2018-03-01

    We examined the changes of photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize in response to different light intensities in the field, with the summer maize hybrid Denghai 605 as experimental material. Two treatments of both shading (S) and increasing light (L) from flowering to physiological maturity stage were designed, with the ambient sunlight treatment as control (CK). Under shading treatment, poorly developed thylakoid structure, blurry lamellar structure, loose granum, large gap between slices and warping granum were the major characteristics in chloroplast. Meanwhile, photosynthetic rate (P n ), transpiration rate, stomatal conductance, chlorophyll content, and actual photo-chemical efficiency (Φ PSII ) decreased, whereas the maximal photochemical efficiency and non-photochemical quenching increased, which resulted in decreases in grain yield under shading treatment. However, a better development was observed in chloroplasts for L treatment, with the number of grana and lamellae increased and lamellae arranged compactly. In addition, P n and Φ PSII increased under L treatment, which increased grain yield. The chloroplast arrangement dispersed in mesophyll cells and chloroplast ultrastructure was destroyed after shading, and then chlorophyll synthesis per unit leaf area and photosynthetic capacity decreased. In contrast, the number of grana and lamellae increased and lamellae arranged compactly after increasing light, which are beneficial for corn yield.

  13. Chloroplast-Derived Vaccine Antigens and Biopharmaceuticals: Expression, Folding, Assembly and Functionality

    PubMed Central

    Chebolu, S.; Daniell, H.

    2009-01-01

    Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%–31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antibiotic free selectable markers or the ability to excise selectable marker genes. Hyperexpression of several therapeutic proteins, including human serum albumin (11.1% TSP), somatotropin (7% TSP), interferon-alpha (19% TSP), interferon-gamma (6% TSP), and antimicrobial peptide (21.5% TSP), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitates assembly of complex multisubunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLA cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Purification of human proinsulin has been achieved using novel purification strategies (inverse temperature transition property) that do not require expensive column chromatography techniques. Thus, transgenic chloroplasts are ideal bioreactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner. PMID:19401820

  14. Transformation of Chloroplast Ribosomal RNA Genes in Chlamydomonas: Molecular and Genetic Characterization of Integration Events

    PubMed Central

    Newman, S. M.; Boynton, J. E.; Gillham, N. W.; Randolph-Anderson, B. L.; Johnson, A. M.; Harris, E. H.

    1990-01-01

    Transformation of chloroplast ribosomal RNA (rRNA) genes in Chlamydomonas has been achieved by the biolistic process using cloned chloroplast DNA fragments carrying mutations that confer antibiotic resistance. The sites of exchange employed during the integration of the donor DNA into the recipient genome have been localized using a combination of antibiotic resistance mutations in the 16S and 23S rRNA genes and restriction fragment length polymorphisms that flank these genes. Complete or nearly complete replacement of a region of the chloroplast genome in the recipient cell by the corresponding sequence from the donor plasmid was the most common integration event. Exchange events between the homologous donor and recipient sequences occurred preferentially near the vector:insert junctions. Insertion of the donor rRNA genes and flanking sequences into one inverted repeat of the recipient genome was followed by intramolecular copy correction so that both copies of the inverted repeat acquired identical sequences. Increased frequencies of rRNA gene transformants were achieved by reducing the copy number of the chloroplast genome in the recipient cells and by decreasing the heterology between donor and recipient DNA sequences flanking the selectable markers. In addition to producing bona fide chloroplast rRNA transformants, the biolistic process induced mutants resistant to low levels of streptomycin, typical of nuclear mutations in Chlamydomonas. PMID:1981764

  15. Blue light-dependent changes in loosely bound calcium in Arabidopsis mesophyll cells: an X-ray microanalysis study.

    PubMed

    Łabuz, Justyna; Samardakiewicz, Sławomir; Hermanowicz, Paweł; Wyroba, Elżbieta; Pilarska, Maria; Gabryś, Halina

    2016-06-01

    Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca(2+) after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca(2+), and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca(2+) was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca(2+) homeostasis in mesophyll cells. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. The CoRR hypothesis for genes in organelles.

    PubMed

    Allen, John F

    2017-12-07

    Chloroplasts and mitochondria perform energy transduction in photosynthesis and respiration. These processes can be described in physico-chemical terms with no obvious requirement for co-located genetic systems, separat from those of the rest of the cell. Accordingly, biochemists once tended to regard endosymbiosis as untestable evolutionary speculation. Lynn Sagan's seminal 1967 paper "On the Origin of Mitosing Cells" outlined the evolution of eukaryotic cells by endosymbiosis of prokaryotes. The endosymbiont hypothesis is consistent with presence of DNA in chloroplasts and mitochondria, but does not assign it a function. Biochemistry and molecular biology now show that Sagan's proposal has an explanatory reach far beyond that originally envisaged. Prokaryotic origins of photosynthetic and respiratory mechanisms are apparent in protein structural insights into energy coupling. Genome sequencing confirms the underlying, prokaryotic architecture of chloroplasts and mitochondria and illustrates the profound influence of the original mergers of their ancestors' genes and proteins with those of their host cells. Peter Mitchell's 1961 chemiosmotic hypothesis applied the concept of vectorial catalysis that underlies biological energy transduction and cell structure, function, and origins. Continuity of electrical charge separation and membrane sidedness requires compartments within compartments, together with intricate mechanisms for transport within and between them. I suggest that the reason for the persistence of distinct genetic systems within bioenergetic organelles is the selective advantage of subcellular co-location of specific genes with their gene products. Co-location for Redox Regulation - CoRR - provides for a dialogue between chemical reduction-oxidation and the action of genes encoding its protein catalysts. These genes and their protein products are in intimate contact, and cannot be isolated from each other without loss of an essential mechanism of adaptation of electron transport to change in the external environment. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  17. Downregulation of a putative plastid PDC E1α subunit impairs photosynthetic activity and triacylglycerol accumulation in nitrogen-starved photoautotrophic Chlamydomonas reinhardtii

    PubMed Central

    Shtaida, Nastassia; Khozin-Goldberg, Inna; Solovchenko, Alexei; Chekanov, Konstantin; Didi-Cohen, Shoshana; Leu, Stefan; Cohen, Zvi; Boussiba, Sammy

    2014-01-01

    The chloroplast pyruvate dehydrogenase complex (cpPDC) catalyses the oxidative decarboxylation of pyruvate forming acetyl-CoA, an immediate primer for the initial reactions of de novo fatty acid (FA) synthesis. Little is known about the source of acetyl-CoA in the chloroplasts of photosynthetic microalgae, which are capable of producing high amounts of the storage lipid triacylglycerol (TAG) under conditions of nutrient stresses. We generated Chlamydomonas reinhardtii CC-1618 mutants with decreased expression of the PDC2_E1α gene, encoding the putative chloroplast pyruvate dehydrogenase subunit E1α, using artificial microRNA. A comparative study on the effects of PDC2_E1α silencing on FAs and TAG production in C. reinhardtii, grown photoautotrophically and mixotrophically, with and without a nitrogen source in the nutrient medium, was carried out. Reduced expression of PDC2 _E1α led to a severely hampered photoautotrophic growth phenotype with drastic impairment in TAG accumulation under nitrogen deprivation. In the presence of acetate, downregulation of PDC2_E1α exerted little to no effect on TAG production and photosynthetic activity. In contrast, under photoautotrophic conditions, especially in the absence of a nitrogen source, a dramatic decline in photosynthetic oxygen evolution and photosystem II quantum yield against a background of the apparent over-reduction of the photosynthetic electron chain was recorded. Our results suggest an essential role of cpPDC in the supply of carbon precursors for de novo FA synthesis in microalgae under conditions of photoautotrophy. A shortage of this supply is detrimental to the nitrogen-starvation-induced synthesis of storage TAG, an important carbon and energy sink in stressed Chlamydomonas cells, thereby impairing the acclimation ability of the microalga. PMID:25210079

  18. Response and Defense Mechanisms of Taxus chinensis Leaves Under UV-A Radiation are Revealed Using Comparative Proteomics and Metabolomics Analyses.

    PubMed

    Zheng, Wen; Komatsu, Setsuko; Zhu, Wei; Zhang, Lin; Li, Ximin; Cui, Lei; Tian, Jingkui

    2016-09-01

    Taxus chinensis var. mairei is a species endemic to south-eastern China and one of the natural sources for the anticancer medicine paclitaxel. To investigate the molecular response and defense mechanisms of T. chinensis leaves to enhanced ultraviolet-A (UV-A) radiation, gel-free/label-free and gel-based proteomics and gas chromatography-mass spectrometry (GC-MS) analyses were performed. The transmission electron microscopy results indicated damage to the chloroplast under UV-A radiation. Proteomics analyses in leaves and chloroplasts showed that photosynthesis-, glycolysis-, secondary metabolism-, stress-, and protein synthesis-, degradation- and activation-related systems were mainly changed under UV-A radiation. Forty-seven PSII proteins and six PSI proteins were identified as being changed in leaves and chloroplasts under UV-A treatment. This indicated that PSII was more sensitive to UV-A than PSI as the target of UV-A light. Enhanced glycolysis, with four glycolysis-related key enzymes increased, provided precursors for secondary metabolism. The 1-deoxy-d-xylulose-5-phosphate reductoisomerase and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase were identified as being significantly increased during UV-A radiation, which resulted in paclitaxel enhancement. Additionally, mRNA expression levels of genes involved in the paclitaxel biosynthetic pathway indicated a down-regulation under UV-A irradiation and up-regulation in dark incubation. These results reveal that a short-term high dose of UV-A radiation could stimulate the plant stress defense system and paclitaxel production. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. SChloro: directing Viridiplantae proteins to six chloroplastic sub-compartments.

    PubMed

    Savojardo, Castrense; Martelli, Pier Luigi; Fariselli, Piero; Casadio, Rita

    2017-02-01

    Chloroplasts are organelles found in plants and involved in several important cell processes. Similarly to other compartments in the cell, chloroplasts have an internal structure comprising several sub-compartments, where different proteins are targeted to perform their functions. Given the relation between protein function and localization, the availability of effective computational tools to predict protein sub-organelle localizations is crucial for large-scale functional studies. In this paper we present SChloro, a novel machine-learning approach to predict protein sub-chloroplastic localization, based on targeting signal detection and membrane protein information. The proposed approach performs multi-label predictions discriminating six chloroplastic sub-compartments that include inner membrane, outer membrane, stroma, thylakoid lumen, plastoglobule and thylakoid membrane. In comparative benchmarks, the proposed method outperforms current state-of-the-art methods in both single- and multi-compartment predictions, with an overall multi-label accuracy of 74%. The results demonstrate the relevance of the approach that is eligible as a good candidate for integration into more general large-scale annotation pipelines of protein subcellular localization. The method is available as web server at http://schloro.biocomp.unibo.it gigi@biocomp.unibo.it.

  20. Complete chloroplast genome of Tetragonia tetragonioides: Molecular phylogenetic relationships and evolution in Caryophyllales.

    PubMed

    Choi, Kyoung Su; Kwak, Myounghai; Lee, Byoungyoon; Park, SeonJoo

    2018-01-01

    The chloroplast genome of Tetragonia tetragonioides (Aizoaceae; Caryophyllales) was sequenced to provide information for studies on phylogeny and evolution within Caryophyllales. The chloroplast genome of Tetragonia tetragonioides is 149,506 bp in length and includes a pair of inverted repeats (IRs) of 24,769 bp that separate a large single copy (LSC) region of 82,780 bp and a small single copy (SSC) region of 17,188 bp. Comparative analysis of the chloroplast genome showed that Caryphyllales species have lost many genes. In particular, the rpl2 intron and infA gene were not found in T. tetragonioides, and core Caryophyllales lack the rpl2 intron. Phylogenetic analyses were conducted using 55 genes in 16 complete chloroplast genomes. Caryophyllales was found to divide into two clades; core Caryophyllales and noncore Caryophyllales. The genus Tetragonia is closely related to Mesembryanthemum. Comparisons of the synonymous (Ks), nonsynonymous (Ka), and Ka/Ks substitution rates revealed that nonsynonymous substitution rates were lower than synonymous substitution rates and that Ka/Ks rates were less than 1. The findings of the present study suggest that most genes are a purified selection.

  1. The TOC complex: preprotein gateway to the chloroplast.

    PubMed

    Andrès, Charles; Agne, Birgit; Kessler, Felix

    2010-06-01

    Photosynthetic eukaryotes strongly depend on chloroplast metabolic pathways. Most if not all involve nuclear encoded proteins. These are synthesized as cytosolic preproteins with N-terminal, cleavable targeting sequences (transit peptide). Preproteins are imported by a major pathway composed of two proteins complexes: TOC and TIC (Translocon of the Outer and Inner membranes of the Chloroplasts, respectively). These selectively recognize the preproteins and facilitate their transport across the chloroplast envelope. The TOC core complex consists of three types of components, each belonging to a small family: Toc34, Toc75 and Toc159. Toc34 and Toc159 isoforms represent a subfamily of the GTPase superfamily. The members of the Toc34 and Toc159 subfamily act as GTP-dependent receptors at the chloroplast surface and distinct members of each occur in defined, substrate-specific TOC complexes. Toc75, a member of the Omp85 family, is conserved from prokaryotes and functions as the unique protein-conducting channel at the outer membrane. In this review we will describe the current state of knowledge regarding the composition and function of the TOC complex.

  2. Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta)

    PubMed Central

    Leliaert, Frederik; Marcelino, Vanessa R

    2018-01-01

    Abstract Chloroplast genomes have undergone tremendous alterations through the evolutionary history of the green algae (Chloroplastida). This study focuses on the evolution of chloroplast genomes in the siphonous green algae (order Bryopsidales). We present five new chloroplast genomes, which along with existing sequences, yield a data set representing all but one families of the order. Using comparative phylogenetic methods, we investigated the evolutionary dynamics of genomic features in the order. Our results show extensive variation in chloroplast genome architecture and intron content. Variation in genome size is accounted for by the amount of intergenic space and freestanding open reading frames that do not show significant homology to standard plastid genes. We show the diversity of these nonstandard genes based on their conserved protein domains, which are often associated with mobile functions (reverse transcriptase/intron maturase, integrases, phage- or plasmid-DNA primases, transposases, integrases, ligases). Investigation of the introns showed proliferation of group II introns in the early evolution of the order and their subsequent loss in the core Halimedineae, possibly through RT-mediated intron loss. PMID:29635329

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, J.; Xu, C.

    The biogenesis of photosynthetic membranes in plants relies largely on lipid import from the endoplasmic reticulum (ER) and this lipid transport process is mediated by TGD proteins in Arabidopsis. Such a dependency of chloroplast biogenesis on ER-to-plastid lipid transport was recently exemplified by analyzing double mutants between tgd1-1 or tgd4-3 and fad6 mutants. The fad6 mutants are defective in the desaturation of membrane lipids in chloroplasts and therefore dependent on import of polyunsaturated lipid precursors from the ER for constructing a competent thylakoid membrane system. In support of a critical role of TGD proteins in ER-to-plastid lipid trafficking, we showedmore » that the introduction of the tgd mutations into fad6 mutant backgrounds led to drastic reductions in relative amounts of thylakoid lipids. Moreover, the tgd1-1 fad6 and tgd4-3 fad6 double mutants were deficient in polyunsaturated fatty acids in chloroplast membrane lipids, and severely compromised in the biogenesis of photosynthetic membrane systems. Here we report that these double mutants are severely impaired in chloroplast division. The possible role of membrane lipids in chloroplast division is discussed.« less

  4. The translational apparatus of plastids and its role in plant development.

    PubMed

    Tiller, Nadine; Bock, Ralph

    2014-07-01

    Chloroplasts (plastids) possess a genome and their own machinery to express it. Translation in plastids occurs on bacterial-type 70S ribosomes utilizing a set of tRNAs that is entirely encoded in the plastid genome. In recent years, the components of the chloroplast translational apparatus have been intensely studied by proteomic approaches and by reverse genetics in the model systems tobacco (plastid-encoded components) and Arabidopsis (nucleus-encoded components). This work has provided important new insights into the structure, function, and biogenesis of chloroplast ribosomes, and also has shed fresh light on the molecular mechanisms of the translation process in plastids. In addition, mutants affected in plastid translation have yielded strong genetic evidence for chloroplast genes and gene products influencing plant development at various levels, presumably via retrograde signaling pathway(s). In this review, we describe recent progress with the functional analysis of components of the chloroplast translational machinery and discuss the currently available evidence that supports a significant impact of plastid translational activity on plant anatomy and morphology. © The Author 2014. Published by Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  5. Formation and Change of Chloroplast-Located Plant Metabolites in Response to Light Conditions.

    PubMed

    Chen, Yiyong; Zhou, Bo; Li, Jianlong; Tang, Hao; Tang, Jinchi; Yang, Ziyin

    2018-02-26

    Photosynthesis is the central energy conversion process for plant metabolism and occurs within mature chloroplasts. Chloroplasts are also the site of various metabolic reactions involving amino acids, lipids, starch, and sulfur, as well as where the production of some hormones takes place. Light is one of the most important environmental factors, acting as an essential energy source for plants, but also as an external signal influencing their growth and development. Plants experience large fluctuations in the intensity and spectral quality of light, and many attempts have been made to improve or modify plant metabolites by treating them with different light qualities (artificial lighting) or intensities. In this review, we discuss how changes in light intensity and wavelength affect the formation of chloroplast-located metabolites in plants.

  6. Complete chloroplast genome sequence of MD-2 pineapple and its comparative analysis among nine other plants from the subclass Commelinidae.

    PubMed

    Redwan, R M; Saidin, A; Kumar, S V

    2015-08-12

    Pineapple (Ananas comosus var. comosus) is known as the king of fruits for its crown and is the third most important tropical fruit after banana and citrus. The plant, which is indigenous to South America, is the most important species in the Bromeliaceae family and is largely traded for fresh fruit consumption. Here, we report the complete chloroplast sequence of the MD-2 pineapple that was sequenced using the PacBio sequencing technology. In this study, the high error rate of PacBio long sequence reads of A. comosus's total genomic DNA were improved by leveraging on the high accuracy but short Illumina reads for error-correction via the latest error correction module from Novocraft. Error corrected long PacBio reads were assembled by using a single tool to produce a contig representing the pineapple chloroplast genome. The genome of 159,636 bp in length is featured with the conserved quadripartite structure of chloroplast containing a large single copy region (LSC) with a size of 87,482 bp, a small single copy region (SSC) with a size of 18,622 bp and two inverted repeat regions (IRA and IRB) each with the size of 26,766 bp. Overall, the genome contained 117 unique coding regions and 30 were repeated in the IR region with its genes contents, structure and arrangement similar to its sister taxon, Typha latifolia. A total of 35 repeats structure were detected in both the coding and non-coding regions with a majority being tandem repeats. In addition, 205 SSRs were detected in the genome with six protein-coding genes contained more than two SSRs. Comparative chloroplast genomes from the subclass Commelinidae revealed a conservative protein coding gene albeit located in a highly divergence region. Analysis of selection pressure on protein-coding genes using Ka/Ks ratio showed significant positive selection exerted on the rps7 gene of the pineapple chloroplast with P less than 0.05. Phylogenetic analysis confirmed the recent taxonomical relation among the member of commelinids which support the monophyly relationship between Arecales and Dasypogonaceae and between Zingiberales to the Poales, which includes the A. comosus. The complete sequence of the chloroplast of pineapple provides insights to the divergence of genic chloroplast sequences from the members of the subclass Commelinidae. The complete pineapple chloroplast will serve as a reference for in-depth taxonomical studies in the Bromeliaceae family when more species under the family are sequenced in the future. The genetic sequence information will also make feasible other molecular applications of the pineapple chloroplast for plant genetic improvement.

  7. The effect of cerium (III) on the chlorophyll formation in spinach.

    PubMed

    Fashui, Hong; Ling, Wang; Xiangxuan, Meng; Zheng, Wei; Guiwen, Zhao

    2002-12-01

    The effect of Ce(3+) on the chlorophyll (chl) of spinach was studied in pot culture experiments. The results showed that Ce(3+) could obviously stimulate the growth of spinach and increase its chlorophyll contents and photosynthetic rate. It could also improve the PSII formation and enhance its electron transport rate of PSII as well. By inductively coupled plasma-mass spectroscopy and atom absorption spectroscopy methods, it was revealed that the rare-earth-element (REE) distribution pattern in the Ce(3+)-treated spinach was leaf > root > shoot in Ce(3+) contents. The spinach leaves easily absorbed REEs. The Ce(3+) contents of chloroplast and chlorophyll of the Ce(3+)-treated spinach were higher than that of any other rare earth and were much higher than that of the control; it was also suggested that Ce(3+) could enter the chloroplast and bind easily to chlorophyll and might replace magnesium to form Ce-chlorophyll. By ultraviolet-visible, Fourier transform infrared, and extended X-ray absorption fine structure (EXAFS) methods, Ce(3+)-coordinated nitrogen of porphyrin rings with eight coordination numbers and average length of the Ce-N bond of 0.251 nm.

  8. The Over-expression of the Plastidial Transglutaminase from Maize in Arabidopsis Increases the Activation Threshold of Photoprotection

    PubMed Central

    Ioannidis, Nikolaos E.; Malliarakis, Dimitris; Torné, Josep M.; Santos, Mireya; Kotzabasis, Kiriakos

    2016-01-01

    Plastidial transglutaminase is one of the most promising enzymes in chloroplast bioenergetics due to its link with polyamine pathways and the cross talk with signals such as Ca2+ and GTP. Here, we show the effect of the increase of transglutaminase activity in Arabidopsis by using genetic transformation techniques. These lines fulfill their biological cycle normally (normal growth in soil, production of viable seeds) and show a relatively mild increase in transglutaminase activity (127%). These overexpressors of transglutaminase (OE TGase) have an extended stroma thylakoid network (71% higher number of PSIIβ centers), similar chlorophyll content (-4%), higher linear electron flow (+13%), and higher threshold of photoprotection activation (∼100%). On the other hand OE TGase showed a reduced maximum photochemistry of PSII (-6.5%), a smaller antenna per photosystem II (-25%), a lower photoprotective “energization” quenching or qE (-77% at 490 μmol photons m-2 s-1) due to a higher threshold of qE activation and slightly lower light induced proton motive force (-17%). The role of the polyamines and of the transglutaminase in the regulation of chemiosmosis and photoprotection in chloroplasts is discussed. PMID:27242838

  9. Development of the photosynthetic apparatus of Cunninghamia lanceolata in light and darkness.

    PubMed

    Xue, Xian; Wang, Qi; Qu, Yanli; Wu, Hongyang; Dong, Fengqin; Cao, Haoyan; Wang, Hou-Ling; Xiao, Jianwei; Shen, Yingbai; Wan, Yinglang

    2017-01-01

    Here, we compared the development of dark- and light-grown Chinese fir (Cunninghamia lanceolata) cotyledons, which synthesize chlorophyll in the dark, representing a different phenomenon from angiosperm model plants. We determined that the grana lamellar membranes were well developed in both chloroplasts and etiochloroplasts. The accumulation of thylakoid membrane protein complexes was similar between chloroplasts and etiochloroplasts. Measurement of chlorophyll fluorescence parameters indicated that photosystem II (PSII) had low photosynthetic activities, whereas the photosystem I (PSI)-driven cyclic electron flow (CEF) rate exceeded the rate of PSII-mediated photon harvesting in etiochloroplasts. Analysis of the protein contents in etiochloroplasts indicated that the light-harvesting complex II remained mostly in its monomeric conformation. The ferredoxin NADP + oxidoreductase and NADH dehydrogenase-like complexes were relatively abundantly expressed in etiochloroplasts for Chinese fir. Our transcriptome analysis contributes a global expression database for Chinese fir cotyledons, providing background information on the regulatory mechanisms of different genes involved in the development of dark- and light-grown cotyledons. In conclusion, we provide a novel description of the early developmental status of the light-dependent and light-independent photosynthetic apparatuses in gymnosperms. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Salinity inhibits post transcriptional processing of chloroplast 16S rRNA in shoot cultures of jojoba (Simmondsia chinesis).

    PubMed

    Mizrahi-Aviv, Ela; Mills, David; Benzioni, Aliza; Bar-Zvi, Dudy

    2005-03-01

    Chloroplast metabolism is rapidly affected by salt stress. Photosynthesis is one of the first processes known to be affected by salinity. Here, we report that salinity inhibits chloroplast post-transcriptional RNA processing. A differentially expressed 680-bp cDNA, containing the 3' sequence of 16S rRNA, transcribed intergenic spacer, exon 1 and intron of tRNA(Ile), was isolated by differential display reverse transcriptase PCR from salt-grown jojoba (Simmondsia chinesis) shoot cultures. Northern blot analysis indicated that although most rRNA appears to be fully processed, partially processed chloroplast 16S rRNA accumulates in salt-grown cultures. Thus, salinity appears to decrease the processing of the rrn transcript. The possible effect of this decreased processing on physiological processes is, as yet, unknown.

  11. The subcellular distribution and biosynthesis of castaprenols and plastoquinone in the leaves of Aesculus hippocastanum

    PubMed Central

    Wellburn, A. R.; Hemming, F. W.

    1967-01-01

    Intact chloroplasts and cell walls were prepared from horse-chestnut leaves that had previously metabolized [2-14C]mevalonate. The bulk of the castaprenols and plastoquinone-9 was found within the chloroplasts. The remaining portion of the castaprenols was associated with the cell-wall preparation whereas that of the plastoquinone-9 was probably localized in the soluble fraction of the plant cell. The 14C content of these compounds of different cell fractions indicated the presence of polyisoprenoid-synthesizing activity both inside and outside the chloroplasts. This was confirmed by the relative incorporation of 14C when ultrasonically treated and intact chloroplasts were incubated with [2-14C]mevalonate. As the leaves aged (on the tree) an increase in extraplastidic castaprenols and plastoquinone-9, together with associated synthesizing activities, was observed. PMID:6068175

  12. Expression and Chloroplast Targeting of Cholesterol Oxidase in Transgenic Tobacco Plants

    PubMed Central

    Corbin, David R.; Grebenok, Robert J.; Ohnmeiss, Thomas E.; Greenplate, John T.; Purcell, John P.

    2001-01-01

    Cholesterol oxidase represents a novel type of insecticidal protein with potent activity against the cotton boll weevil (Anthonomus grandis grandis Boheman). We transformed tobacco (Nicotiana tabacum) plants with the cholesterol oxidase choM gene and expressed cytosolic and chloroplast-targeted versions of the ChoM protein. Transgenic leaf tissues expressing cholesterol oxidase exerted insecticidal activity against boll weevil larvae. Our results indicate that cholesterol oxidase can metabolize phytosterols in vivo when produced cytosolically or when targeted to chloroplasts. The transgenic plants exhibiting cytosolic expression accumulated low levels of saturated sterols known as stanols, and displayed severe developmental aberrations. In contrast, the transgenic plants expressing chloroplast-targeted cholesterol oxidase maintained a greater accumulation of stanols, and appeared phenotypically and developmentally normal. These results are discussed within the context of plant sterol distribution and metabolism. PMID:11457962

  13. Capturing chloroplast variation for molecular ecology studies: a simple next generation sequencing approach applied to a rainforest tree

    PubMed Central

    2013-01-01

    Background With high quantity and quality data production and low cost, next generation sequencing has the potential to provide new opportunities for plant phylogeographic studies on single and multiple species. Here we present an approach for in silicio chloroplast DNA assembly and single nucleotide polymorphism detection from short-read shotgun sequencing. The approach is simple and effective and can be implemented using standard bioinformatic tools. Results The chloroplast genome of Toona ciliata (Meliaceae), 159,514 base pairs long, was assembled from shotgun sequencing on the Illumina platform using de novo assembly of contigs. To evaluate its practicality, value and quality, we compared the short read assembly with an assembly completed using 454 data obtained after chloroplast DNA isolation. Sanger sequence verifications indicated that the Illumina dataset outperformed the longer read 454 data. Pooling of several individuals during preparation of the shotgun library enabled detection of informative chloroplast SNP markers. Following validation, we used the identified SNPs for a preliminary phylogeographic study of T. ciliata in Australia and to confirm low diversity across the distribution. Conclusions Our approach provides a simple method for construction of whole chloroplast genomes from shotgun sequencing of whole genomic DNA using short-read data and no available closely related reference genome (e.g. from the same species or genus). The high coverage of Illumina sequence data also renders this method appropriate for multiplexing and SNP discovery and therefore a useful approach for landscape level studies of evolutionary ecology. PMID:23497206

  14. The Arabidopsis ppi1 Mutant Is Specifically Defective in the Expression, Chloroplast Import, and Accumulation of Photosynthetic ProteinsW⃞

    PubMed Central

    Kubis, Sybille; Baldwin, Amy; Patel, Ramesh; Razzaq, Azam; Dupree, Paul; Lilley, Kathryn; Kurth, Joachim; Leister, Dario; Jarvis, Paul

    2003-01-01

    The import of nucleus-encoded proteins into chloroplasts is mediated by translocon complexes in the envelope membranes. A component of the translocon in the outer envelope membrane, Toc34, is encoded in Arabidopsis by two homologous genes, atTOC33 and atTOC34. Whereas atTOC34 displays relatively uniform expression throughout development, atTOC33 is strongly upregulated in rapidly growing, photosynthetic tissues. To understand the reason for the existence of these two related genes, we characterized the atTOC33 knockout mutant ppi1. Immunoblotting and proteomics revealed that components of the photosynthetic apparatus are deficient in ppi1 chloroplasts and that nonphotosynthetic chloroplast proteins are unchanged or enriched slightly. Furthermore, DNA array analysis of 3292 transcripts revealed that photosynthetic genes are moderately, but specifically, downregulated in ppi1. Proteome differences in ppi1 could be correlated with protein import rates: ppi1 chloroplasts imported the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit and 33-kD oxygen-evolving complex precursors at significantly reduced rates, but the import of a 50S ribosomal subunit precursor was largely unaffected. The ppi1 import defect occurred at the level of preprotein binding, which is consistent with a role for atToc33 during preprotein recognition. The data suggest that atToc33 is involved preferentially in the import of photosynthetic proteins and, by extension, that atToc34 is involved in the import of nonphotosynthetic chloroplast proteins. PMID:12897258

  15. Chloroplast targeting of FanC, the major antigenic subunit of Escherichia coli K99 fimbriae, in transgenic soybean.

    PubMed

    Garg, Renu; Tolbert, Melanie; Oakes, Judy L; Clemente, Thomas E; Bost, Kenneth L; Piller, Kenneth J

    2007-07-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of enteric diseases affecting livestock and humans. Edible transgenic plants producing E. coli fimbrial subunit proteins have the potential to vaccinate against these diseases, but have not reached their full potential as a renewable source of oral vaccines due in part to insufficient levels of recombinant protein accumulation. Previously, we reported that cytosol targeting of the E. coli K99 fimbrial subunit antigen resulted in FanC accumulation to approximately 0.4% of total soluble protein in soybean leaves (Piller et al. in Planta 222:6-18, 2005). In this study, we report on the subcellular targeting of FanC to chloroplasts. Twenty-two transgenic T1 progeny derived from seven individual T0 transformation events were characterized, and 17 accumulated transgenic FanC. All of the characterized events displayed relatively low T-DNA complexity, and all exhibited proper targeting of FanC to the chloroplast. Accumulation of chloroplast-targeted FanC was approximately 0.08% of total soluble leaf protein, or approximately 5-fold less than cytosol-targeted FanC. Protein analysis of leaves at various stages of maturity suggested stability of chloroplast-targeted FanC throughout leaf maturation. Furthermore, mice immunized intraperitoneally with protein extract derived from transgenic leaves expressing chloroplast-targeted FanC developed significant antibody titers against FanC. This is the first report of subcellular targeting of a vaccine subunit antigen in soybean.

  16. Two Isoforms of Dihydroxyacetone Phosphate Reductase from the Chloroplasts of Dunaliella tertiolecta.

    PubMed

    Gee, R.; Goyal, A.; Byerrum, R. U.; Tolbert, N. E.

    1993-09-01

    Three isoforms of dihydroxyacetone phosphate reductase in extracts from Dunaliella tertiolecta have been separated by a diethylaminoethyl cellulose column chromatography with a shallow NaCl gradient. The chloroplasts contained the two major isoforms, and the third, minor form was in the cytosol. The isoforms are unstable in the absence of glycerol and they are cold labile, but they may be partially reactivated at 35[deg]C. The first chloroplast form to elute from the DEAE cellulose column was the major form when the cells were grown on high NaCl and it has been referred to as the form for glycerol production for osmoregulation or "osmoregulator form." The second form increased in specific activity when inorganic phosphate was increased in the growth media to stimulate growth, and it has been given the designation for the form for glyceride synthesis, "glyceride form." The osmoregulator form was stimulated by NaCl added to the enzyme assay, but not by reduced Escherichia coli thioredoxin. The glyceride form had properties similar to the enzyme in leaf chloroplast, such as inhibition by NaCl and by fatty acyl-coenzyme A derivatives and some stimulation by dithiothreitol, uridine diphosphate galactose, cyti-dine diphosphate dipalmatoyl diglyceride, and reduced E. coli thioredoxin. Thus, Dunaliella chloroplasts have a salt-stimulated osmoregulatory form of dihydroxyacetone phosphate reductase, which seems to have a role in glycerol production, and an isoform, which may be involved in glyceride synthesis and which has properties similar to the enzyme in chloroplasts of higher plants.

  17. Two Isoforms of Dihydroxyacetone Phosphate Reductase from the Chloroplasts of Dunaliella tertiolecta.

    PubMed Central

    Gee, R.; Goyal, A.; Byerrum, R. U.; Tolbert, N. E.

    1993-01-01

    Three isoforms of dihydroxyacetone phosphate reductase in extracts from Dunaliella tertiolecta have been separated by a diethylaminoethyl cellulose column chromatography with a shallow NaCl gradient. The chloroplasts contained the two major isoforms, and the third, minor form was in the cytosol. The isoforms are unstable in the absence of glycerol and they are cold labile, but they may be partially reactivated at 35[deg]C. The first chloroplast form to elute from the DEAE cellulose column was the major form when the cells were grown on high NaCl and it has been referred to as the form for glycerol production for osmoregulation or "osmoregulator form." The second form increased in specific activity when inorganic phosphate was increased in the growth media to stimulate growth, and it has been given the designation for the form for glyceride synthesis, "glyceride form." The osmoregulator form was stimulated by NaCl added to the enzyme assay, but not by reduced Escherichia coli thioredoxin. The glyceride form had properties similar to the enzyme in leaf chloroplast, such as inhibition by NaCl and by fatty acyl-coenzyme A derivatives and some stimulation by dithiothreitol, uridine diphosphate galactose, cyti-dine diphosphate dipalmatoyl diglyceride, and reduced E. coli thioredoxin. Thus, Dunaliella chloroplasts have a salt-stimulated osmoregulatory form of dihydroxyacetone phosphate reductase, which seems to have a role in glycerol production, and an isoform, which may be involved in glyceride synthesis and which has properties similar to the enzyme in chloroplasts of higher plants. PMID:12231930

  18. Chloroplast Transcription at Different Light Intensities. Glutathione-Mediated Phosphorylation of the Major RNA Polymerase Involved in Redox-Regulated Organellar Gene Expression1

    PubMed Central

    Baena-González, Elena; Baginsky, Sacha; Mulo, Paula; Summer, Holger; Aro, Eva-Mari; Link, Gerhard

    2001-01-01

    Previous studies using purified RNA polymerase from mustard (Sinapis alba) chloroplasts showed control of transcription by an associated protein kinase. This kinase was found to respond to reversible thiol/disulfide formation mediated by glutathione (GSH), although at concentrations exceeding those thought to exist in vivo. In the present study, several lines of evidence are presented to substantiate the functioning of this regulation mechanism, also in vivo: (a) Studies on the polymerase-associated transcription kinase revealed that at appropriate ATP levels, GSH concentrations similar to those in vivo are sufficient to modulate the kinase activity; (b) GSH measurements from isolated mustard chloroplasts showed considerable differences in response to light intensity; (c) this was reflected by run-on transcription rates in isolated chloroplasts that were generally higher if organelles were prepared from seedlings incubated under high-light as compared with growth-light conditions; (d) the notion of a general transcriptional switch was strengthened by in vitro experiments showing that the kinase not only affects the transcription of a photosynthetic gene (psbA) but also that of a non-photosynthetic gene (trnQ); and (e) the polymerase-kinase complex revealed specific differences in the phosphorylation state of polypeptides depending on the light intensity to which the seedlings had been exposed prior to chloroplast isolation. Taken together, these data are consistent with GSH and phosphorylation-dependent regulation of chloroplast transcription in vivo. PMID:11706185

  19. Reduced starch granule number per chloroplast in the dpe2/phs1 mutant is dependent on initiation of starch degradation

    PubMed Central

    Malinova, Irina

    2017-01-01

    An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5–7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology. PMID:29155859

  20. Fine-scale mergers of chloroplast and mitochondrial genes create functional, transcompartmentally chimeric mitochondrial genes.

    PubMed

    Hao, Weilong; Palmer, Jeffrey D

    2009-09-29

    The mitochondrial genomes of flowering plants possess a promiscuous proclivity for taking up sequences from the chloroplast genome. All characterized chloroplast integrants exist apart from native mitochondrial genes, and only a few, involving chloroplast tRNA genes that have functionally supplanted their mitochondrial counterparts, appear to be of functional consequence. We developed a novel computational approach to search for homologous recombination (gene conversion) in a large number of sequences and applied it to 22 mitochondrial and chloroplast gene pairs, which last shared common ancestry some 2 billion years ago. We found evidence of recurrent conversion of short patches of mitochondrial genes by chloroplast homologs during angiosperm evolution, but no evidence of gene conversion in the opposite direction. All 9 putative conversion events involve the atp1/atpA gene encoding the alpha subunit of ATP synthase, which is unusually well conserved between the 2 organelles and the only shared gene that is widely sequenced across plant mitochondria. Moreover, all conversions were limited to the 2 regions of greatest nucleotide and amino acid conservation of atp1/atpA. These observations probably reflect constraints operating on both the occurrence and fixation of recombination between ancient homologs. These findings indicate that recombination between anciently related sequences is more frequent than previously appreciated and creates functional mitochondrial genes of chimeric origin. These results also have implications for the widespread use of mitochondrial atp1 in phylogeny reconstruction.

Top