Science.gov

Sample records for chloroquine-susceptible pfcrt k76

  1. Plasmodium falciparum K76T pfcrt Gene Mutations and Parasite Population Structure, Haiti, 2006–2009

    PubMed Central

    Charles, Macarthur; Das, Sanchita; Daniels, Rachel; Kirkman, Laura; Delva, Glavdia G.; Destine, Rodney; Escalante, Ananias; Villegas, Leopoldo; Daniels, Noah M.; Shigyo, Kristi; Volkman, Sarah K.; Pape, Jean W.

    2016-01-01

    Hispaniola is the only Caribbean island to which Plasmodium falciparum malaria remains endemic. Resistance to the antimalarial drug chloroquine has rarely been reported in Haiti, which is located on Hispaniola, but the K76T pfcrt (P. falciparum chloroquine resistance transporter) gene mutation that confers chloroquine resistance has been detected intermittently. We analyzed 901 patient samples collected during 2006–2009 and found 2 samples showed possible mixed parasite infections of genetically chloroquine-resistant and -sensitive parasites. Direct sequencing of the pfcrt resistance locus and single-nucleotide polymorphism barcoding did not definitively identify a resistant population, suggesting that sustained propagation of chloroquine-resistant parasites was not occurring in Haiti during the study period. Comparison of parasites from Haiti with those from Colombia, Panama, and Venezuela reveals a geographically distinct population with highly related parasites. Our findings indicate low genetic diversity in the parasite population and low levels of chloroquine resistance in Haiti, raising the possibility that reported cases may be of exogenous origin. PMID:27089479

  2. Plasmodium falciparum K76T pfcrt Gene Mutations and Parasite Population Structure, Haiti, 2006-2009.

    PubMed

    Charles, Macarthur; Das, Sanchita; Daniels, Rachel; Kirkman, Laura; Delva, Glavdia G; Destine, Rodney; Escalante, Ananias; Villegas, Leopoldo; Daniels, Noah M; Shigyo, Kristi; Volkman, Sarah K; Pape, Jean W; Golightly, Linnie M

    2016-05-01

    Hispaniola is the only Caribbean island to which Plasmodium falciparum malaria remains endemic. Resistance to the antimalarial drug chloroquine has rarely been reported in Haiti, which is located on Hispaniola, but the K76T pfcrt (P. falciparum chloroquine resistance transporter) gene mutation that confers chloroquine resistance has been detected intermittently. We analyzed 901 patient samples collected during 2006-2009 and found 2 samples showed possible mixed parasite infections of genetically chloroquine-resistant and -sensitive parasites. Direct sequencing of the pfcrt resistance locus and single-nucleotide polymorphism barcoding did not definitively identify a resistant population, suggesting that sustained propagation of chloroquine-resistant parasites was not occurring in Haiti during the study period. Comparison of parasites from Haiti with those from Colombia, Panama, and Venezuela reveals a geographically distinct population with highly related parasites. Our findings indicate low genetic diversity in the parasite population and low levels of chloroquine resistance in Haiti, raising the possibility that reported cases may be of exogenous origin. PMID:27089479

  3. The Association of K76T Mutation in Pfcrt Gene and Chloroquine Treatment Failure in Uncomplicated Plasmodium falciparum Malaria in a Cohort of Nigerian Children

    NASA Astrophysics Data System (ADS)

    Umar, R. A.; Hassan, S. W.; Ladan, M. J.; Nma Jiya, M.; Abubakar, M. K.; Nata`Ala, U.

    The aim of this study was to evaluate the association of K76T mutation in Pfcrt gene and chloroquine treatment failure following reports that the efficacy of chloroquine in the treatment of uncomplicated falciparum malaria in Africa is seriously compromised by high levels of drug resistance. The occurrence of mutation on codon 76 of Plasmodium falciparum chloroquine resistance transporter (Pfcrt) gene has been associated with development of resistance to chloroquine. We investigated the association of K76T mutation in Pfcrt gene in malaria-infected blood samples from a cohort of Nigerian children with uncomplicated falciparum malaria treated with chloroquine and its association with clinical (in vivo) resistance. The Pfcrt T76 allele was very significantly associated with resistance to chloroquine (Fischer exact test: p = 0.0001). We conclude that K76T mutation in Pfcrt gene is significantly associated with chloroquine resistance and that it could be used as a population marker for chloroquine resistance in this part of the country

  4. First evidence of pfcrt mutant Plasmodium falciparum in Madagascar.

    PubMed

    Randrianarivelojosia, Milijaona; Fidock, David A; Belmonte, Olivier; Valderramos, Stephanie G; Mercereau-Puijalon, Odile; Ariey, Frédéric

    2006-09-01

    The island of Madagascar, lying in the Indian Ocean approximately 250 miles from the African coast, has so far remained one of the few areas in the world without noticeable Plasmodium falciparum high-grade chloroquine (CQ) resistance. Here we report genotyping data on pfcrt in Madagascar. The pfcrt K76T mutation, which is critical for resistance to CQ, was detected in six (3.3%) of 183 P. falciparum isolates screened, within the mutant haplotypes CVIET and CVIDT. This is the first observation of pfcrt mutant parasites on the island. The current massive distribution of CQ for in-home management of fever in children will promote the dissemination of these mutant CQ-resistant parasites. In this context, genotyping of pfcrt remains a useful tool for CQ resistance surveillance as the prevalence of pfcrt mutations is far from saturation in Madagascar.

  5. Combinatorial Genetic Modeling of pfcrt-Mediated Drug Resistance Evolution in Plasmodium falciparum.

    PubMed

    Gabryszewski, Stanislaw J; Modchang, Charin; Musset, Lise; Chookajorn, Thanat; Fidock, David A

    2016-06-01

    The emergence of drug resistance continuously threatens global control of infectious diseases, including malaria caused by the protozoan parasite Plasmodium falciparum A critical parasite determinant is the P. falciparum chloroquine resistance transporter (PfCRT), the primary mediator of chloroquine (CQ) resistance (CQR), and a pleiotropic modulator of susceptibility to several first-line artemisinin-based combination therapy partner drugs. Aside from the validated CQR molecular marker K76T, P. falciparum parasites have acquired at least three additional pfcrt mutations, whose contributions to resistance and fitness have been heretofore unclear. Focusing on the quadruple-mutant Ecuadorian PfCRT haplotype Ecu1110 (K76T/A220S/N326D/I356L), we genetically modified the pfcrt locus of isogenic, asexual blood stage P. falciparum parasites using zinc-finger nucleases, producing all possible combinations of intermediate pfcrt alleles. Our analysis included the related quintuple-mutant PfCRT haplotype 7G8 (Ecu1110 + C72S) that is widespread throughout South America and the Western Pacific. Drug susceptibilities and in vitro growth profiles of our combinatorial pfcrt-modified parasites were used to simulate the mutational trajectories accessible to parasites as they evolved CQR. Our results uncover unique contributions to parasite drug resistance and growth for mutations beyond K76T and predict critical roles for the CQ metabolite monodesethyl-CQ and the related quinoline-type drug amodiaquine in driving mutant pfcrt evolution. Modeling outputs further highlight the influence of parasite proliferation rates alongside gains in drug resistance in dictating successful trajectories. Our findings suggest that P. falciparum parasites have navigated constrained pfcrt adaptive landscapes by means of probabilistically rare mutational bursts that led to the infrequent emergence of pfcrt alleles in the field.

  6. Combinatorial Genetic Modeling of pfcrt-Mediated Drug Resistance Evolution in Plasmodium falciparum

    PubMed Central

    Gabryszewski, Stanislaw J.; Modchang, Charin; Musset, Lise; Chookajorn, Thanat; Fidock, David A.

    2016-01-01

    The emergence of drug resistance continuously threatens global control of infectious diseases, including malaria caused by the protozoan parasite Plasmodium falciparum. A critical parasite determinant is the P. falciparum chloroquine resistance transporter (PfCRT), the primary mediator of chloroquine (CQ) resistance (CQR), and a pleiotropic modulator of susceptibility to several first-line artemisinin-based combination therapy partner drugs. Aside from the validated CQR molecular marker K76T, P. falciparum parasites have acquired at least three additional pfcrt mutations, whose contributions to resistance and fitness have been heretofore unclear. Focusing on the quadruple-mutant Ecuadorian PfCRT haplotype Ecu1110 (K76T/A220S/N326D/I356L), we genetically modified the pfcrt locus of isogenic, asexual blood stage P. falciparum parasites using zinc-finger nucleases, producing all possible combinations of intermediate pfcrt alleles. Our analysis included the related quintuple-mutant PfCRT haplotype 7G8 (Ecu1110 + C72S) that is widespread throughout South America and the Western Pacific. Drug susceptibilities and in vitro growth profiles of our combinatorial pfcrt-modified parasites were used to simulate the mutational trajectories accessible to parasites as they evolved CQR. Our results uncover unique contributions to parasite drug resistance and growth for mutations beyond K76T and predict critical roles for the CQ metabolite monodesethyl-CQ and the related quinoline-type drug amodiaquine in driving mutant pfcrt evolution. Modeling outputs further highlight the influence of parasite proliferation rates alongside gains in drug resistance in dictating successful trajectories. Our findings suggest that P. falciparum parasites have navigated constrained pfcrt adaptive landscapes by means of probabilistically rare mutational bursts that led to the infrequent emergence of pfcrt alleles in the field. PMID:26908582

  7. Association of Plasmodium falciparum isolates encoding the p. Falciparum chloroquine resistance transporter gene K76T polymorphism with anemia and splenomegaly, but not with multiple infections.

    PubMed

    Abdel-Aziz, Inas Z; Oster, Nadja; Stich, August; Coulibaly, Boubacar; Guigemdé, Wendyam A; Wickert, Hannes; Andrews, Kathy T; Kouyaté, Bocar; Lanzer, Michael

    2005-03-01

    The aim of the study was to assess whether infections with Plasmodium falciparum isolates encoding the P. falciparum chloroquine resistance transporter (pfcrt) gene K76T polymorphism, a molecular marker for chloroquine resistance, are associated with multiple infections, age, or clinical signs of malaria in a semi-immune population in a holoendemic area of Burkina Faso. The parameters of interest were investigated in 210 P. falciparum-positive inhabitants. Logistic regression analysis showed that pfcrt K76T-carrying isolates are significantly more likely to cause anemia and splenomegaly. Furthermore, we found that infections with P. falciparum isolates encoding pfcrt K76T are dependent on age rather than multiple infections. Our findings suggest that pfcrt K76T might serve as a valuable marker for assessing the long-term clinical effect of chronic infections with chloroquine-resistant P. falciparum isolates in populations, without the need of drug efficacy trials.

  8. The detection of pfcrt and pfmdr1 point mutations as molecular markers of chloroquine drug resistance, Pahang, Malaysia

    PubMed Central

    2012-01-01

    Background Malaria is still a public health problem in Malaysia with chloroquine (CQ) being the first-line drug in the treatment policy of uncomplicated malaria. There is a scarcity in information about the magnitude of Plasmodium falciparum CQ resistance. This study aims to investigate the presence of single point mutations in the P. falciparum chloroquine-resistance transporter gene (pfcrt) at codons 76, 271, 326, 356 and 371 and in P. falciparum multi-drug resistance-1 gene (pfmdr1) at codons 86 and 1246, as molecular markers of CQ resistance. Methods A total of 75 P. falciparum blood samples were collected from different districts of Pahang state, Malaysia. Single nucleotide polymorphisms in pfcrt gene (codons 76, 271, 326, 356 and 371) and pfmdr1 gene (codons 86 and 1246) were analysed by using mutation-specific nested PCR and restriction fragment length polymorphism (PCR-RFLP) methods. Results Mutations of pfcrt K76T and pfcrt R371I were the most prevalent among pfcrt gene mutations reported by this study; 52% and 77%, respectively. Other codons of the pfcrt gene and the positions 86 and 1246 of the pfmdr1 gene were found mostly of wild type. Significant associations of pfcrt K76T, pfcrt N326S and pfcrt I356T mutations with parasitaemia were also reported. Conclusion The high existence of mutant pfcrt T76 may indicate the low susceptibility of P. falciparum isolates to CQ in Peninsular Malaysia. The findings of this study establish baseline data on the molecular markers of P. falciparum CQ resistance, which may help in the surveillance of drug resistance in Peninsular Malaysia. PMID:22853645

  9. High prevalence of pfcrt-CVIET haplotype in isolates from asymptomatic and symptomatic patients in south-central Oromia, Ethiopia

    PubMed Central

    2014-01-01

    Background As a result of extensive chloroquine resistance (CQR) in Plasmodium falciparum in late 1990s, Ethiopia replaced CQ with sulphadoxine-pyrimethamine (SP) as first-line drug, which in turn was replaced by artemisinin combination therapy in 2004. Plasmodium falciparum resistance to CQ is determined by the mutation at K76T of the P. falciparum chloroquine resistance transporter (pfcrt) gene. Understanding diversity in the P. falciparum genome is crucial since it has the potential to influence important phenotypes of the parasite such as drug resistance. Limited data is available regarding the type of pfcrt mutant allelic type, the effect of CQ withdrawal and diversity of the parasite population in south-central Oromia, Ethiopia. Methods Finger-pricked blood spotted on Whatman 3MM filter papers were collected from falciparum malaria patients. Parasite DNA was extracted from individual blood spots on the filter papers. The presence of K76T mutations was determined using nested PCR for all isolates. Complete sequencing of mutations in pfcrt 72-76 was done for a set of randomly selected resistant isolates. Four microsatellite (MS) markers were analysed to determine the heterozygosity. Results Although CQ was withdrawn for more than a decade, 100% of the parasites still carried the pfcrt K76T mutation. All isolates were mutant at the K76T polymorphism. Based on combinations of MS markers, seven different Ethiopian CQR variants (E1-E7) were identified. Heterozygosity (He) for MS flanking the pfcrt chloroquine resistance allele ranged from 0.00 (mscrt -29, -29.268 kb) to 0.21 (mscrt -2, -2.814 kb). He ranged from 0.00 (msint 3, 0 kb) to 0.19 (msint 2, 0 kb) for MS within the pfcrt gene. Both intronic and MS flanking the pfcrt gene showed low levels of diversity. Conclusion pfcrt CQR allele seems to be fixed in the study area. Of the different haplotypes associated with CQR, only the CVIET genotype was identified. No reversal to the wild-type has occurred in

  10. In vivo selection of Plasmodium falciparum Pfcrt and Pfmdr1 variants by artemether-lumefantrine and dihydroartemisinin-piperaquine in Burkina Faso.

    PubMed

    Baraka, Vito; Tinto, Halidou; Valea, Innocent; Fitzhenry, Robert; Delgado-Ratto, Christopher; Mbonye, Martin K; Van Overmeir, Chantal; Rosanas-Urgell, Anna; Van Geertruyden, Jean-Pierre; D'Alessandro, Umberto; Erhart, Annette

    2015-01-01

    Plasmodium falciparum Pfcrt-76 and Pfmdr1-86 gene polymorphisms were determined during a clinical trial in Burkina Faso comparing the efficacies of dihydroartemisinin-piperaquine (DHA-PPQ) and artemether-lumefantrine (AL). Significant selection of Pfcrt-K76 was observed after exposure to AL and DHA-PPQ, as well as selection of Pfmdr1-N86 after AL but not DHA-PPQ treatment, suggesting reverse selection on the Pfcrt gene by PPQ. These results support the rational use of DHA-PPQ in settings where chloroquine (CQ) resistance is high. PMID:25403659

  11. Functional Comparison of 45 Naturally Occurring Isoforms of the Plasmodium falciparum Chloroquine Resistance Transporter (PfCRT).

    PubMed

    Callaghan, Paul S; Hassett, Matthew R; Roepe, Paul D

    2015-08-18

    At least 53 distinct isoforms of Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein are expressed in strains or isolates of P. falciparum malarial parasites from around the globe. These parasites exhibit a range of sensitivities to chloroquine (CQ) and other drugs. Mutant PfCRT is believed to confer cytostatic CQ resistance (CQR(CS)) by transporting CQ away from its DV target (free heme released upon hemoglobin digestion). One theory is that variable CQ transport catalyzed by these different PfCRT isoforms is responsible for the range of CQ sensitivities now found for P. falciparum. Alternatively, additional mutations in drug-selected parasites, or additional functions of PfCRT, might complement PfCRT-mediated CQ transport in conferring the range of observed resistance phenotypes. To distinguish between these possibilities, we recently optimized a convenient method for measuring PfCRT-mediated CQ transport, involving heterologous expression in Saccharomyces cerevisiae. Here, we use this method to quantify drug transport activity for 45 of 53 of the naturally occurring PfCRT isoforms. Data show that variable levels of CQR likely depend upon either additional PfCRT functions or additional genetic events, including perhaps changes that influence DV membrane potential. The data also suggest that the common K76T PfCRT mutation that is often used to distinguish a P. falciparum CQR phenotype is not, in and of itself, a fully reliable indicator of CQR status.

  12. Analyses of genetic variations at microsatellite loci present in-and-around the Pfcrt gene in Indian Plasmodium falciparum.

    PubMed

    Chauhan, Kshipra; Pande, Veena; Das, Aparup

    2013-12-01

    Evolution and spread of chloroquine resistant (CQR) malaria parasite Plasmodium falciparum have posed great threat in malaria intervention across the globe. The occurrence of K76T mutation in the P. falciparum chloroquine resistance transporter (pfcrt) gene has been widely attributed to CQR with four neighboring mutations providing compensatory fitness benefit to the parasite survival. Understanding evolutionary patterns of the pfcrt gene is of great relevance not only for devising new malaria control measures but also could serve as a model to understand evolution and spread of other human drug-resistant pathogens. Several studies, mainly based on differential patterns of diversities of the microsatellite loci placed in-and-around the pfcrt gene have indicated the role of positive natural selection under the 'hitchhiking' model of molecular evolution. However, the studies were restricted to limited number of microsatellite loci present inside the pfcrt gene. Moreover, comparatively higher level of diversities in microsatellite loci present inside the pfcrt gene than the loci flanking the pfcrt gene are hallmarks of Indian P. falciparum, presenting contrasting evolutionary models to global isolates. With a view to infer evolutionary patterns of the pfcrt gene in Indian P. falciparum, we have adopted a unique sampling scheme of two types of populations (cultured and field collected) and utilized 20 polymorphic microsatellite loci (16 located inside the pfcrt gene and four in the two flanking regions) to disentangle between genetic drift (inbred cultured isolates) and natural selection (field isolates). Data analyses employing different population genetic tests could not straightforwardly explain either the model invoking 'genetic hitchhiking' or 'genetic drift'. However, complex evolutionary models influenced by both demography and natural selection or an alternative model of natural selection (e.g. diversifying/balancing selection) might better explain the observed

  13. Artesunate-Amodiaquine and Artemether-Lumefantrine Therapies and Selection of Pfcrt and Pfmdr1 Alleles in Nanoro, Burkina Faso

    PubMed Central

    Sondo, Paul; Derra, Karim; Diallo Nakanabo, Seydou; Tarnagda, Zekiba; Kazienga, Adama; Zampa, Odile; Valéa, Innocent; Sorgho, Hermann; Owusu-Dabo, Ellis; Ouédraogo, Jean-Bosco; Guiguemdé, Tinga Robert; Tinto, Halidou

    2016-01-01

    The adoption of Artemisinin based combination therapies (ACT) constitutes a basic strategy for malaria control in sub-Saharan Africa. Moreover, since cases of ACT resistance have been reported in South-East Asia, the need to understand P. falciparum resistance mechanism to ACT has become a global research goal. The selective pressure of ACT and the possibility that some specific Pfcrt and Pfmdr1 alleles are associated with treatment failures was assessed in a clinical trial comparing ASAQ to AL in Nanoro. Dried blood spots collected on Day 0 and on the day of recurrent parasitaemia during the 28-day follow-up were analyzed using the restriction fragments length polymorphism (PCR-RFLP) method to detect single nucleotide polymorphisms (SNPs) in Pfcrt (codon76) and Pfmdr1 (codons 86, 184, 1034, 1042, and 1246) genes. Multivariate analysis of the relationship between the presence of Pfcrt and Pfmdr1 alleles and treatment outcome was performed. AL and ASAQ exerted opposite trends in selecting Pfcrt K76T and Pfmdr1-N86Y alleles, raising the potential beneficial effect of using diverse ACT at the same time as first line treatments to reduce the selective pressure by each treatment regimen. No clear association between the presence of Pfcrt and Pfmdr1 alleles carried at baseline and treatment failure was observed. PMID:27031231

  14. Artesunate-Amodiaquine and Artemether-Lumefantrine Therapies and Selection of Pfcrt and Pfmdr1 Alleles in Nanoro, Burkina Faso.

    PubMed

    Sondo, Paul; Derra, Karim; Diallo Nakanabo, Seydou; Tarnagda, Zekiba; Kazienga, Adama; Zampa, Odile; Valéa, Innocent; Sorgho, Hermann; Owusu-Dabo, Ellis; Ouédraogo, Jean-Bosco; Guiguemdé, Tinga Robert; Tinto, Halidou

    2016-01-01

    The adoption of Artemisinin based combination therapies (ACT) constitutes a basic strategy for malaria control in sub-Saharan Africa. Moreover, since cases of ACT resistance have been reported in South-East Asia, the need to understand P. falciparum resistance mechanism to ACT has become a global research goal. The selective pressure of ACT and the possibility that some specific Pfcrt and Pfmdr1 alleles are associated with treatment failures was assessed in a clinical trial comparing ASAQ to AL in Nanoro. Dried blood spots collected on Day 0 and on the day of recurrent parasitaemia during the 28-day follow-up were analyzed using the restriction fragments length polymorphism (PCR-RFLP) method to detect single nucleotide polymorphisms (SNPs) in Pfcrt (codon76) and Pfmdr1 (codons 86, 184, 1034, 1042, and 1246) genes. Multivariate analysis of the relationship between the presence of Pfcrt and Pfmdr1 alleles and treatment outcome was performed. AL and ASAQ exerted opposite trends in selecting Pfcrt K76T and Pfmdr1-N86Y alleles, raising the potential beneficial effect of using diverse ACT at the same time as first line treatments to reduce the selective pressure by each treatment regimen. No clear association between the presence of Pfcrt and Pfmdr1 alleles carried at baseline and treatment failure was observed. PMID:27031231

  15. Artesunate-Amodiaquine and Artemether-Lumefantrine Therapies and Selection of Pfcrt and Pfmdr1 Alleles in Nanoro, Burkina Faso.

    PubMed

    Sondo, Paul; Derra, Karim; Diallo Nakanabo, Seydou; Tarnagda, Zekiba; Kazienga, Adama; Zampa, Odile; Valéa, Innocent; Sorgho, Hermann; Owusu-Dabo, Ellis; Ouédraogo, Jean-Bosco; Guiguemdé, Tinga Robert; Tinto, Halidou

    2016-01-01

    The adoption of Artemisinin based combination therapies (ACT) constitutes a basic strategy for malaria control in sub-Saharan Africa. Moreover, since cases of ACT resistance have been reported in South-East Asia, the need to understand P. falciparum resistance mechanism to ACT has become a global research goal. The selective pressure of ACT and the possibility that some specific Pfcrt and Pfmdr1 alleles are associated with treatment failures was assessed in a clinical trial comparing ASAQ to AL in Nanoro. Dried blood spots collected on Day 0 and on the day of recurrent parasitaemia during the 28-day follow-up were analyzed using the restriction fragments length polymorphism (PCR-RFLP) method to detect single nucleotide polymorphisms (SNPs) in Pfcrt (codon76) and Pfmdr1 (codons 86, 184, 1034, 1042, and 1246) genes. Multivariate analysis of the relationship between the presence of Pfcrt and Pfmdr1 alleles and treatment outcome was performed. AL and ASAQ exerted opposite trends in selecting Pfcrt K76T and Pfmdr1-N86Y alleles, raising the potential beneficial effect of using diverse ACT at the same time as first line treatments to reduce the selective pressure by each treatment regimen. No clear association between the presence of Pfcrt and Pfmdr1 alleles carried at baseline and treatment failure was observed.

  16. Adaptive evolution of malaria parasites in French Guiana: Reversal of chloroquine resistance by acquisition of a mutation in pfcrt

    PubMed Central

    Pelleau, Stéphane; Moss, Eli L.; Dhingra, Satish K.; Volney, Béatrice; Casteras, Jessica; Gabryszewski, Stanislaw J.; Volkman, Sarah K.; Wirth, Dyann F.; Legrand, Eric; Fidock, David A.; Neafsey, Daniel E.; Musset, Lise

    2015-01-01

    In regions with high malaria endemicity, the withdrawal of chloroquine (CQ) as first-line treatment of Plasmodium falciparum infections has typically led to the restoration of CQ susceptibility through the reexpansion of the wild-type (WT) allele K76 of the chloroquine resistance transporter gene (pfcrt) at the expense of less fit mutant alleles carrying the CQ resistance (CQR) marker K76T. In low-transmission settings, such as South America, drug resistance mutations can attain 100% prevalence, thereby precluding the return of WT parasites after the complete removal of drug pressure. In French Guiana, despite the fixation of the K76T allele, the prevalence of CQR isolates progressively dropped from >90% to <30% during 17 y after CQ withdrawal in 1995. Using a genome-wide association study with CQ-sensitive (CQS) and CQR isolates, we have identified a single mutation in pfcrt encoding a C350R substitution that is associated with the restoration of CQ susceptibility. Genome editing of the CQR reference strain 7G8 to incorporate PfCRT C350R caused a complete loss of CQR. A retrospective molecular survey on 580 isolates collected from 1997 to 2012 identified all C350R mutant parasites as being CQS. This mutation emerged in 2002 and rapidly spread throughout the P. falciparum population. The C350R allele is also associated with a significant decrease in piperaquine susceptibility in vitro, suggesting that piperaquine pressure in addition to potential fitness costs associated with the 7G8-type CQR pfcrt allele may have selected for this mutation. These findings have important implications for understanding the evolutionary dynamics of antimalarial drug resistance. PMID:26261345

  17. Adaptive evolution of malaria parasites in French Guiana: Reversal of chloroquine resistance by acquisition of a mutation in pfcrt.

    PubMed

    Pelleau, Stéphane; Moss, Eli L; Dhingra, Satish K; Volney, Béatrice; Casteras, Jessica; Gabryszewski, Stanislaw J; Volkman, Sarah K; Wirth, Dyann F; Legrand, Eric; Fidock, David A; Neafsey, Daniel E; Musset, Lise

    2015-09-15

    In regions with high malaria endemicity, the withdrawal of chloroquine (CQ) as first-line treatment of Plasmodium falciparum infections has typically led to the restoration of CQ susceptibility through the reexpansion of the wild-type (WT) allele K76 of the chloroquine resistance transporter gene (pfcrt) at the expense of less fit mutant alleles carrying the CQ resistance (CQR) marker K76T. In low-transmission settings, such as South America, drug resistance mutations can attain 100% prevalence, thereby precluding the return of WT parasites after the complete removal of drug pressure. In French Guiana, despite the fixation of the K76T allele, the prevalence of CQR isolates progressively dropped from >90% to <30% during 17 y after CQ withdrawal in 1995. Using a genome-wide association study with CQ-sensitive (CQS) and CQR isolates, we have identified a single mutation in pfcrt encoding a C350R substitution that is associated with the restoration of CQ susceptibility. Genome editing of the CQR reference strain 7G8 to incorporate PfCRT C350R caused a complete loss of CQR. A retrospective molecular survey on 580 isolates collected from 1997 to 2012 identified all C350R mutant parasites as being CQS. This mutation emerged in 2002 and rapidly spread throughout the P. falciparum population. The C350R allele is also associated with a significant decrease in piperaquine susceptibility in vitro, suggesting that piperaquine pressure in addition to potential fitness costs associated with the 7G8-type CQR pfcrt allele may have selected for this mutation. These findings have important implications for understanding the evolutionary dynamics of antimalarial drug resistance. PMID:26261345

  18. Adaptive evolution of malaria parasites in French Guiana: Reversal of chloroquine resistance by acquisition of a mutation in pfcrt.

    PubMed

    Pelleau, Stéphane; Moss, Eli L; Dhingra, Satish K; Volney, Béatrice; Casteras, Jessica; Gabryszewski, Stanislaw J; Volkman, Sarah K; Wirth, Dyann F; Legrand, Eric; Fidock, David A; Neafsey, Daniel E; Musset, Lise

    2015-09-15

    In regions with high malaria endemicity, the withdrawal of chloroquine (CQ) as first-line treatment of Plasmodium falciparum infections has typically led to the restoration of CQ susceptibility through the reexpansion of the wild-type (WT) allele K76 of the chloroquine resistance transporter gene (pfcrt) at the expense of less fit mutant alleles carrying the CQ resistance (CQR) marker K76T. In low-transmission settings, such as South America, drug resistance mutations can attain 100% prevalence, thereby precluding the return of WT parasites after the complete removal of drug pressure. In French Guiana, despite the fixation of the K76T allele, the prevalence of CQR isolates progressively dropped from >90% to <30% during 17 y after CQ withdrawal in 1995. Using a genome-wide association study with CQ-sensitive (CQS) and CQR isolates, we have identified a single mutation in pfcrt encoding a C350R substitution that is associated with the restoration of CQ susceptibility. Genome editing of the CQR reference strain 7G8 to incorporate PfCRT C350R caused a complete loss of CQR. A retrospective molecular survey on 580 isolates collected from 1997 to 2012 identified all C350R mutant parasites as being CQS. This mutation emerged in 2002 and rapidly spread throughout the P. falciparum population. The C350R allele is also associated with a significant decrease in piperaquine susceptibility in vitro, suggesting that piperaquine pressure in addition to potential fitness costs associated with the 7G8-type CQR pfcrt allele may have selected for this mutation. These findings have important implications for understanding the evolutionary dynamics of antimalarial drug resistance.

  19. A cross-sectional survey of Plasmodium falciparum pfcrt mutant haplotypes in the Democratic Republic of Congo.

    PubMed

    Antonia, Alejandro L; Taylor, Steve M; Janko, Mark; Emch, Michael; Tshefu, Antoinette K; Meshnick, Steven R

    2014-06-01

    In the Democratic Republic of the Congo (DRC), artesunate-amodiaquine is first-line therapy for falciparum malaria; little is known about the prevalence of molecular markers of parasite drug resistance. Across the DRC, we genotyped 166 parasites in Plasmodium falciparum chloroquine resistance transporter (pfcrt) using polymerase chain reaction (PCR) and sequencing. Of these parasites, 73 (44%) parasites were pure wild-type CVMNK, 55 (31%) parasites were chloroquine-resistant CVIET: , 35 (21.1%) parasites were mixed CVMNK and CVIET: , and 3 parasites were other genotypes. Ninety-two infections (55.4%) harbored the pfcrt K76T: substitution that is highly correlated with chloroquine failure. The amodiaquine-resistant S: VMNT: haplotype was absent. Geographically, pfcrt haplotypes were not clearly clustered. Chloroquine accounted for 19.4% of antimalarial use, and amodiaquine accounted for 15.3% of antimalarial use; there were no associations between drug use and mutant haplotype prevalence. In the DRC, our molecular survey indicates that resistance to chloroquine is substantial but that resistance to amodiaquine is absent. These contrasting findings highlight the need for molecular surveillance of drug resistance to inform malaria control policies.

  20. Polymorphisms in Pfmdr1, Pfcrt, and Pfnhe1 genes are associated with reduced in vitro activities of quinine in Plasmodium falciparum isolates from western Kenya.

    PubMed

    Cheruiyot, Jelagat; Ingasia, Luicer A; Omondi, Angela A; Juma, Dennis W; Opot, Benjamin H; Ndegwa, Joseph M; Mativo, Joan; Cheruiyot, Agnes C; Yeda, Redemptah; Okudo, Charles; Muiruri, Peninah; Bidii, Ngalah S; Chebon, Lorna J; Angienda, Paul O; Eyase, Fredrick L; Johnson, Jacob D; Bulimo, Wallace D; Andagalu, Ben; Akala, Hoseah M; Kamau, Edwin

    2014-07-01

    In combination with antibiotics, quinine is recommended as the second-line treatment for uncomplicated malaria, an alternative first-line treatment for severe malaria, and for treatment of malaria in the first trimester of pregnancy. Quinine has been shown to have frequent clinical failures, and yet the mechanisms of action and resistance have not been fully elucidated. However, resistance is linked to polymorphisms in multiple genes, including multidrug resistance 1 (Pfmdr1), the chloroquine resistance transporter (Pfcrt), and the sodium/hydrogen exchanger gene (Pfnhe1). Here, we investigated the association between in vitro quinine susceptibility and genetic polymorphisms in Pfmdr1codons 86 and 184, Pfcrt codon 76, and Pfnhe1 ms4760 in 88 field isolates from western Kenya. In vitro activity was assessed based on the drug concentration that inhibited 50% of parasite growth (the IC50), and parasite genetic polymorphisms were determined from DNA sequencing. Data revealed there were significant associations between polymorphism in Pfmdr1-86Y, Pfmdr1-184F, or Pfcrt-76T and quinine susceptibility (P < 0.0001 for all three associations). Eighty-two percent of parasites resistant to quinine carried mutant alleles at these codons (Pfmdr1-86Y, Pfmdr1-184F, and Pfcrt-76T), whereas 74% of parasites susceptible to quinine carried the wild-type allele (Pfmdr1-N86, Pfmdr1-Y184, and Pfcrt-K76, respectively). In addition, quinine IC50 values for parasites with Pfnhe1 ms4760 3 DNNND repeats were significantly higher than for those with 1 or 2 repeats (P = 0.033 and P = 0.0043, respectively). Clinical efficacy studies are now required to confirm the validity of these markers and the importance of parasite genetic background.

  1. Pfcrt Gene in Plasmodium falciparum Field Isolates from Muzaffargarh, Pakistan

    PubMed Central

    Sahar, Sumrin; Tanveer, Akhtar; Ali, Akbar; Bilal, Hazrat; Muhammad Saleem, Rana

    2015-01-01

    Background: The aim of the study was to identify the prevalence of different species of Plasmodium and haplotypes of pfcrt in Plasmodium falciparum from the selected area. Methods: Overall, 10,372 blood films of suspected malarial patients were examined microscopically from rural health center Sinawan, district Muzaffargarh, Pakistan from November 2008 to November 2010. P. falciparum positive samples (both whole blood and FTA blood spotted cards) were used for DNA extraction. Nested PCR was used to amplify the pfcrt (codon 72–76) gene fragment. Sequencing was carried out to find the haplotypes in the amplified fragment of pfcrt gene. Result: Over all slide positivity rate (SPR), P. vivax and P. falciparum positivity rate was 21.40 %, 19.37 % and 2.03% respectively. FTA blood spotted cards were equally efficient in the blood storage for PCR and sequencing. Analysis of sequencing results of pfcrt showed only one type of haplotype SagtVMNT (AGTGTAATGAATACA) from codon 72–76 in all samples. Conclusion: The results show high prevalence of CQ resistance and AQ resistant genes. AQ is not recommended to be used as a partner drug in ACT in this locality, so as to ward off future catastrophes. PMID:26623432

  2. Expression and function of pvcrt-o, a Plasmodium vivax ortholog of pfcrt, in Plasmodium falciparum and Dictyostelium discoideum.

    PubMed

    Sá, Juliana Martha; Yamamoto, Marcio M; Fernandez-Becerra, Carmen; de Azevedo, Mauro Ferreira; Papakrivos, Janni; Naudé, Bronwen; Wellems, Thomas E; Del Portillo, Hernando A

    2006-12-01

    Chloroquine resistance in Plasmodium vivax threatens the use of this drug as first-line treatment for millions of people infected each year worldwide. Unlike Plasmodium falciparum, in which chloroquine resistance is associated with mutations in the pfcrt gene encoding a digestive vacuole transmembrane protein, no point mutations have been associated with chloroquine resistance in the P. vivax ortholog gene, pvcrt-o (also called pvcg10). However, the question remains whether pvcrt-o can affect chloroquine response independent of mutations. Since P. vivax cannot be cultured in vitro, we used two heterologous expression systems to address this question. Results from the first system, in which chloroquine sensitive P. falciparum parasites were transformed with pvcrt-o, showed a 2.2-fold increase in chloroquine tolerance with pvcrt-o expression under a strong promoter; this effect was reversed by verapamil. In the second system, wild type pvcrt-o or a mutated form of the gene was expressed in Dictyostelium discoideum. Forms of PvCRT-o engineered to express either lysine or threonine at position 76 produced a verapamil-reversible reduction of chloroquine accumulation in this system to approximately 60% of that in control cells. Our data support an effect of PvCRT-o on chloroquine transport and/or accumulation by P. vivax, independent of the K76T amino acid substitution.

  3. Plasmodium falciparum isolates from Angola show the StctVMNT haplotype in the pfcrt gene

    PubMed Central

    2010-01-01

    Background Effective treatment remains a mainstay of malaria control, but it is unfortunately strongly compromised by drug resistance, particularly in Plasmodium falciparum, the most important human malaria parasite. Although P. falciparum chemoresistance is well recognized all over the world, limited data are available on the distribution and prevalence of pfcrt and pfmdr1 haplotypes that mediate resistance to commonly used drugs and that show distinct geographic differences. Methods Plasmodium falciparum-infected blood samples collected in 2007 at four municipalities of Luanda, Angola, were genotyped using PCR and direct DNA sequencing. Single nucleotide polymorphisms in the P. falciparum pfcrt and pfmdr1 genes were assessed and haplotype prevalences were determined. Results and Discussion The most prevalent pfcrt haplotype was StctVMNT (representing amino acids at codons 72-76). This result was unexpected, since the StctVMNT haplotype has previously been seen mainly in parasites from South America and India. The CVIET, CVMNT and CVINT drug-resistance haplotypes were also found, and one previously undescribed haplotype (CVMDT) was detected. Regarding pfmdr1, the most prevalent haplotype was YEYSNVD (representing amino acids at codons 86, 130, 184, 1034, 1042, 1109 and 1246). Wild haplotypes for pfcrt and pfmdr1 were uncommon; 3% of field isolates harbored wild type pfcrt (CVMNK), whereas 21% had wild type pfmdr1 (NEYSNVD). The observed predominance of the StctVMNT haplotype in Angola could be a result of frequent travel between Brazil and Angola citizens in the context of selective pressure of heavy CQ use. Conclusions The high prevalence of the pfcrt SVMNT haplotype and the pfmdr1 86Y mutation confirm high-level chloroquine resistance and might suggest reduced efficacy of amodiaquine in Angola. Further studies must be encouraged to examine the in vitro sensitivity of pfcrt SVMNT parasites to artesunate and amodiaquine for better conclusive data. PMID:20565881

  4. Comparative Efficacies of Artemisinin Combination Therapies in Plasmodium falciparum Malaria and Polymorphism of pfATPase6, pfcrt, pfdhfr, and pfdhps Genes in Tea Gardens of Jalpaiguri District, India

    PubMed Central

    Saha, Pabitra; Guha, Subhasish K.; Das, Sonali; Mullick, Shrabanee; Ganguly, Swagata; Biswas, Asit; Bera, Dilip K.; Chattopadhyay, Gaurangadeb; Das, Madhusudan; Kundu, Pratip K.; Ray, Krishnangshu

    2012-01-01

    In India, chloroquine has been replaced by a combination of artesunate and sulfadoxine-pyrimethamine (AS-SP) for uncomplicated P. falciparum malaria. Other available combinations, artemether-lumefantrine (AM-LF) and artesunate-mefloquine (AS-MQ), not included in the national program, are widely used by private practitioners. Little is known about the therapeutic efficacy of these artemisinin combinations and the prevalence of molecular markers associated with antimalarial drug resistance. A total of 157 patients with P. falciparum monoinfection were recruited and randomized into three study groups (AS-SP, AM-LF, and AS-MQ). All patients were followed up for 42 days to study the clinical and parasitological responses according to the WHO protocol (2009). We assessed the polymorphism of the pfATPase6, pfcrt, pfdhfr, and pfdhps genes by the DNA-sequencing method. The PCR-corrected therapeutic efficacies of AS-SP, AM-LF, and AS-MQ were 90.6% (95% confidence interval [CI], 0.793 to 0.969), 95.9% (95% CI, 0.860 to 0.995), and 100% (95% CI, 0.927 to 1.00), respectively. No specific mutational pattern was observed in the pfATPase6 gene. All isolates had a K76T mutation in the pfcrt gene. In the pfdhfr-pfdhps genotype, quadruple mutation was frequent, and quintuple mutation was documented in 6.3% of P. falciparum isolates. The significant failure rate of AS-SP (9.5%), although within the limit (10%) for drug policy change, was due to SP failure because of prevailing mutations in pfdhfr, I51R59N108, with pfdhps, G437 and/or E540. The efficacy of this ACT needs periodic monitoring. Artemether-lumefantrine and artesunate-mefloquine are effective alternatives to the artesunate-sulfadoxine-pyrimethamine combination. PMID:22314538

  5. Polymorphisms of the Pfatpase 6 and Pfcrt gene and their relationship with the in vitro susceptibility to dihydroartemisinin and chloroquine of Plasmodium falciparum isolates from Abobo, Côte d'Ivoire.

    PubMed

    Bla, Brice K; Yavo, William; Trébissou, Jonhson; Kipré, Rolland G; Yapi, Félix H; N'guessan, Jean D; Djaman, Joseph A

    2014-01-01

    As a result of widespread resistance to chloroquine (CQ) and sulphadoxine-pyrimethamine (SP), artemisinin-based combination therapy (ACT) has been recommended as a first-line anti-malarial regimen in Côte d'Ivoire since 2005. A thorough understanding of the molecular bases of P. falciparum resistance to existing drugs is therefore needed. The aims of this study were to analyze the in vitro sensitivity of P. falciparum field isolates from Abobo to CQ, pyronaridine (PYR) and dihydroartemisinine (DHA), and to investigate the polymorphisms associated with drug resistance. The standard in vitro drug sensitivity microtechnique recommended by the WHO was used to assess the sensitivity of Plasmodium falciparum isolates collected in December 2006. The Pfcrt haplotype 76 was analysed by PCR-RFLP while Pfatpase 6 amplification products were sequenced. Associations between drug sensitivity and parasite gene polymorphisms were evaluated with Cohen's kappa test. The correlation between the IC50 values for different drugs was assessed by the coefficient of determination (r²). Significance was assumed at p<0.05. Of 128 in vitro tests performed, 112 (87.5%) were successful. Of the isolates, 56.2% were resistant for CQ and 48% for PYR. One isolate (3.6%) demonstrated reduced DHA sensitivity (IC50 higher than 10 nM). The mutant K76T pfcrt codon, present in 90% of DNA fragments analyzed, was associated with CQ-R (ĸ=0.76). The N669Y (16.1%), D734Y (28.6%) and D734H (1.8%) isolates were found to have mutant Pfatpase6, however, these mutations were not associated with diminished DHA sensitivity (k=0.01). These high levels of antimalarial drug resistance in Abobo (Côte d'Ivoire) demand further studies of drug efficacy across the whole country. PMID:25706423

  6. Different patterns of pfcrt and pfmdr1 polymorphism in Plasmodium falciparum isolates from Tehama region, Yemen.

    PubMed

    Atroosh, Wahib M; Al-Mekhlafi, Hesham M; Al-Jasari, Adel; Sady, Hany; Dawaki, Salwa S; Elyana, Fatin N; Al-Areeqi, Mona A; Nasr, Nabil A; Abdulsalam, Awatif M; Subramaniam, Lahvanya R; Azzani, Meram; Ithoi, Init; Lau, Yee Ling; Surin, Johari

    2016-01-01

    Introduction. Despite the efforts of the malaria control programme, malaria morbidity is still a common health problem in Yemen, with 60% of the population at risk. Plasmodium falciparum is responsible for 99% of malaria cases. The emergence in Yemen of parasite resistance to chloroquine (CQ) prompted the adoption of artemisinin combination therapy (ACT) in 2009, which involves the use of artesunate plus sulphadoxine-pyrimethamine (AS + SP). However, CQ was retained as the drug of choice for vivax malaria. To assess the impact of the change in the malaria treatment policy five years after its introduction, the present study investigated the mutations in the CQ resistance transporter (pfcrt) and multidrug resistance 1 (pfmdr1) genes. Method. A molecular investigation of 10 codons of pfcrt (72-76, 220, 271, 326, 356, and 371) and five codons of pfmdr1 (86, 184, 1034, 1042, and 1246) was conducted on P. falciparum isolates from districts with the highest malaria endemicity in the Hodeidah and Al-Mahwit governorates in Tehama region, Yemen. A total of 86 positive cases of falciparum monoinfection were investigated for the presence of mutations related to CQ and other antimalarials using a PCR-RFLP assay. Results. There was a wide prevalence of pfcrt gene mutations with the pfcrt 76T CQ resistance marker being predominant (97.7%). The prevalence of other pfcrt mutations varied from high (75E: 88%) to moderate (74I: 79.1%, 220S: 69.8%, 271E and 371I: 53.5%) or low (326S: 36%, 72S: 10.5%). Mutated pfcrt 72-76 amino acids haplotypes were highly prevalent (98.8%). Among these, the CVIET classic, old-world African/Southeast Asian haplotype was the most predominant, and was mostly found in the isolates from the Khamis Bani Saad district of Al-Mahwit (93.1%) and the AdDahi district of Hodeidah (88.9%). However, it was only found in 26.3% of the isolates from the Bajil district of Hodeidah. Surprisingly, the SVMNT new-world South American haplotype was exclusively detected in 9

  7. Different patterns of pfcrt and pfmdr1 polymorphism in Plasmodium falciparum isolates from Tehama region, Yemen

    PubMed Central

    Al-Jasari, Adel; Sady, Hany; Dawaki, Salwa S.; Elyana, Fatin N.; Al-Areeqi, Mona A.; Nasr, Nabil A.; Abdulsalam, Awatif M.; Subramaniam, Lahvanya R.; Azzani, Meram; Ithoi, Init; Lau, Yee Ling; Surin, Johari

    2016-01-01

    Introduction. Despite the efforts of the malaria control programme, malaria morbidity is still a common health problem in Yemen, with 60% of the population at risk. Plasmodium falciparum is responsible for 99% of malaria cases. The emergence in Yemen of parasite resistance to chloroquine (CQ) prompted the adoption of artemisinin combination therapy (ACT) in 2009, which involves the use of artesunate plus sulphadoxine-pyrimethamine (AS + SP). However, CQ was retained as the drug of choice for vivax malaria. To assess the impact of the change in the malaria treatment policy five years after its introduction, the present study investigated the mutations in the CQ resistance transporter (pfcrt) and multidrug resistance 1 (pfmdr1) genes. Method. A molecular investigation of 10 codons of pfcrt (72–76, 220, 271, 326, 356, and 371) and five codons of pfmdr1 (86, 184, 1034, 1042, and 1246) was conducted on P. falciparum isolates from districts with the highest malaria endemicity in the Hodeidah and Al-Mahwit governorates in Tehama region, Yemen. A total of 86 positive cases of falciparum monoinfection were investigated for the presence of mutations related to CQ and other antimalarials using a PCR-RFLP assay. Results. There was a wide prevalence of pfcrt gene mutations with the pfcrt 76T CQ resistance marker being predominant (97.7%). The prevalence of other pfcrt mutations varied from high (75E: 88%) to moderate (74I: 79.1%, 220S: 69.8%, 271E and 371I: 53.5%) or low (326S: 36%, 72S: 10.5%). Mutated pfcrt 72–76 amino acids haplotypes were highly prevalent (98.8%). Among these, the CVIET classic, old-world African/Southeast Asian haplotype was the most predominant, and was mostly found in the isolates from the Khamis Bani Saad district of Al-Mahwit (93.1%) and the AdDahi district of Hodeidah (88.9%). However, it was only found in 26.3% of the isolates from the Bajil district of Hodeidah. Surprisingly, the SVMNT new-world South American haplotype was exclusively detected

  8. pfmdr1 amplification and fixation of pfcrt chloroquine resistance alleles in Plasmodium falciparum in Venezuela.

    PubMed

    Griffing, Sean; Syphard, Luke; Sridaran, Sankar; McCollum, Andrea M; Mixson-Hayden, Tonya; Vinayak, Sumiti; Villegas, Leopoldo; Barnwell, John W; Escalante, Ananias A; Udhayakumar, Venkatachalam

    2010-04-01

    Molecular tools are valuable for determining evolutionary history and the prevalence of drug-resistant malaria parasites. These tools have helped to predict decreased sensitivity to antimalarials and fixation of multidrug resistance genotypes in some regions. In order to assess how historical drug policies impacted Plasmodium falciparum in Venezuela, we examined molecular changes in genes associated with drug resistance. We examined pfmdr1 and pfcrt in samples from Sifontes, Venezuela, and integrated our findings with earlier work describing dhfr and dhps in these samples. We characterized pfmdr1 genotypes and copy number variation, pfcrt genotypes, and proximal microsatellites in 93 samples originating from surveillance from 2003 to 2004. Multicopy pfmdr1 was found in 12% of the samples. Two pfmdr1 alleles, Y184F/N1042D/D1246Y (37%) and Y184F/S1034C/N1042D/D1246Y (63%), were found. These alleles share ancestry, and no evidence of strong selective pressure on mutations was found. pfcrt chloroquine resistance alleles are fixed with two alleles: S(tct)VMNT (91%) and S(agt)VMNT (9%). These alleles are associated with strong selection. There was also an association between pfcrt, pfmdr1, dhfr, and dhps genotypes/haplotypes. Duplication of pfmdr1 suggests a potential shift in mefloquine sensitivity in this region, which warrants further study. A bottleneck occurred in P. falciparum in Sifontes, Venezuela, and multidrug resistance genotypes are present. This population could be targeted for malaria elimination programs to prevent the possible spread of multidrug-resistant parasites.

  9. Factors associated with regional bias of pfcrt (plasmodium falciparum chloroquine resistance transporter) haplotypes in Nepal.

    PubMed

    Banjara, Megha Raj; Imwong, Mallika; Petmitr, Songsak; Sirawaraporn, Worachart; Joshi, Anand B; Chavalitshewinkoon-Petmitr, Porntip

    2011-01-01

    Evidences of reappearance of chloroquine sensitive Plasmodium falciparum haplotypes after cessation of chloroquine in many countries provide a rationale for the search of chloroquine sensitive haplotypes in P. falciparum isolates in Nepal where the use of chloroquine for falciparum malaria treatment has been ceased since 1988. P. falciparum chloroquine resistant transporter gene (pfcrt) haplotypes were determined and the factors associated with pfcrt haplotypes in the Eastern and Central regions of Nepal were identified. Blood samples from 106 microscopy-positive falciparum malaria patients (62 from the Eastern and 44 from the Central region) were collected on filter paper. Pfcrt region covering codons 72-76 was amplified by PCR and sequenced. SVMNT haplotype was predominant in the Central region, whereas CVIET haplotype significantly more common in the Eastern region. In multivariable analysis of factors associated with CVIET haplotype, the Eastern region and parasite isolates from patients visiting India within one month are significant at 5% level of significance. These findings suggest that antimalarial pressure is different between Eastern and Central regions of Nepal and there is a need of an effective malaria control program in the border areas between India and Nepal.

  10. Molecular interaction of selected phytochemicals under the charged environment of Plasmodium falciparum chloroquine resistance transporter (PfCRT) model.

    PubMed

    Patel, Saumya K; Khedkar, Vijay M; Jha, Prakash C; Jasrai, Yogesh T; Pandya, Himanshu A; George, Linz-Buoy; Highland, Hyacinth N; Skelton, Adam A

    2016-01-01

    Phytochemicals of Catharanthus roseus Linn. and Tylophora indica have been known for their inhibition of malarial parasite, Plasmodium falciparum in cell culture. Resistance to chloroquine (CQ), a widely used antimalarial drug, is due to the CQ resistance transporter (CRT) system. The present study deals with computational modeling of Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein and development of charged environment to mimic a condition of resistance. The model of PfCRT was developed using Protein homology/analogy engine (PHYRE ver 0.2) and was validated based on the results obtained using PSI-PRED. Subsequently, molecular interactions of selected phytochemicals extracted from C. roseus Linn. and T. indica were studied using multiple-iterated genetic algorithm-based docking protocol in order to investigate the translocation of these legends across the PfCRT protein. Further, molecular dynamics studies exhibiting interaction energy estimates of these compounds within the active site of the protein showed that compounds are more selective toward PfCRT. Clusters of conformations with the free energy of binding were estimated which clearly demonstrated the potential channel and by this means the translocation across the PfCRT is anticipated.

  11. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite's food vacuole and alter drug sensitivities.

    PubMed

    Pulcini, Serena; Staines, Henry M; Lee, Andrew H; Shafik, Sarah H; Bouyer, Guillaume; Moore, Catherine M; Daley, Daniel A; Hoke, Matthew J; Altenhofen, Lindsey M; Painter, Heather J; Mu, Jianbing; Ferguson, David J P; Llinás, Manuel; Martin, Rowena E; Fidock, David A; Cooper, Roland A; Krishna, Sanjeev

    2015-09-30

    Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, are the major determinant of chloroquine resistance in this lethal human malaria parasite. Here, we describe P. falciparum lines subjected to selection by amantadine or blasticidin that carry PfCRT mutations (C101F or L272F), causing the development of enlarged food vacuoles. These parasites also have increased sensitivity to chloroquine and some other quinoline antimalarials, but exhibit no or minimal change in sensitivity to artemisinins, when compared with parental strains. A transgenic parasite line expressing the L272F variant of PfCRT confirmed this increased chloroquine sensitivity and enlarged food vacuole phenotype. Furthermore, the introduction of the C101F or L272F mutation into a chloroquine-resistant variant of PfCRT reduced the ability of this protein to transport chloroquine by approximately 93 and 82%, respectively, when expressed in Xenopus oocytes. These data provide, at least in part, a mechanistic explanation for the increased sensitivity of the mutant parasite lines to chloroquine. Taken together, these findings provide new insights into PfCRT function and PfCRT-mediated drug resistance, as well as the food vacuole, which is an important target of many antimalarial drugs.

  12. Investigation of the Plasmodium falciparum food vacuole through inducible expression of the chloroquine resistance transporter (PfCRT).

    PubMed

    Ehlgen, Florian; Pham, James S; de Koning-Ward, Tania; Cowman, Alan F; Ralph, Stuart A

    2012-01-01

    Haemoglobin degradation during the erythrocytic life stages is the major function of the food vacuole (FV) of Plasmodium falciparum and the target of several anti-malarial drugs that interfere with this metabolic pathway, killing the parasite. Two multi-spanning food vacuole membrane proteins are known, the multidrug resistance protein 1 (PfMDR1) and Chloroquine Resistance Transporter (PfCRT). Both modulate resistance to drugs that act in the food vacuole. To investigate the formation and behaviour of the food vacuole membrane we have generated inducible GFP fusions of chloroquine sensitive and resistant forms of the PfCRT protein. The inducible expression system allowed us to follow newly-induced fusion proteins, and corroborated a previous report of a direct trafficking route from the ER/Golgi to the food vacuole membrane. These parasites also allowed the definition of a food vacuole compartment in ring stage parasites well before haemozoin crystals were apparent, as well as the elucidation of secondary PfCRT-labelled compartments adjacent to the food vacuole in late stage parasites. We demonstrated that in addition to previously demonstrated Brefeldin A sensitivity, the trafficking of PfCRT is disrupted by Dynasore, a non competitive inhibitor of dynamin-mediated vesicle formation. Chloroquine sensitivity was not altered in parasites over-expressing chloroquine resistant or sensitive forms of the PfCRT fused to GFP, suggesting that the PfCRT does not mediate chloroquine transport as a GFP fusion protein.

  13. Survey of chloroquine-resistant mutations in the Plasmodium falciparum pfcrt and pfmdr-1 genes in Hadhramout, Yemen.

    PubMed

    Bamaga, Omar A A; Mahdy, Mohammed A K; Lim, Yvonne A L

    2015-09-01

    Malaria is still a major public health problem in Yemen. More than 95% of the malaria cases are due to Plasmodium ‎falciparum‎. Recently in Yemen, the antimalarial treatment policy was changed from chloroquine (CQ) to artemisinin combination therapy (ACTs). However, CQ is still available and prescribed in the Yemeni market. The persistence of CQ resistance will be prolonged if the shift to ACT and the simultaneous withdrawal of CQ are not rigorously implemented. The aim of the current survey is to detect chloroquine-resistant mutations in P. falciparum chloroquine-resistance transporter (pfcrt) and P. falciparum multi-drug resistance-1 (pfmdr1) genes. These data will be important for future monitoring and assessment of antimalarial drug policy in Yemen. Blood specimens were collected from 735 individuals from different districts of the Hadhramout province, Yemen by house-to-house visit. Mutation-specific nested polymerase chain reaction (PCR) and restriction fragment length polymorphism (PCR-RFLP) methods were used to investigate the mutations in the pfmdr1(codons 86 and 1246) and pfcrt (codons 76, 271, 326, 356 and 371) genes. The overall prevalence of pfcrt mutations at codons 76, 271, 326 and 371 were 50.4%, 58.7%, 54.3% and 44.9%, respectively. All isolates had wild-type pfcrt 356 allele. The majority of pfmdr1 86 alleles (83.3%) and all pfmdr1 1246 alleles were wild type. There was no association between pfcrt mutations and symptomatology, gender and age groups. In conclusion, point mutations in codons 76, 271, 326 and 371 of pfcrt of P. falciparum are high suggesting a sustained high CQ resistance even after 4 years of shifting to ACTs. These findings warrant complete withdrawal of CQ use from the Yemeni market for P. falciparum and careful usage of CQ for treating Plasmodium vivax.

  14. Mutant pfcrt "SVMNT" haplotype and wild type pfmdr1 "N86" are endemic in Plasmodium vivax dominated areas of India under high chloroquine exposure

    PubMed Central

    2012-01-01

    Background Chloroquine resistance (CQR) phenotype in Plasmodium falciparum is associated with mutations in pfcrt and pfmdr-1 genes. Mutations at amino acid position 72-76 of pfcrt gene, here defined as pfcrt haplotype are associated with the geographic origin of chloroquine resistant parasite. Here, mutations at 72-76 and codon 220 of pfcrt gene and N86Y pfmdr-1 mutation were studied in blood samples collected across 11 field sites, inclusive of high and low P. falciparum prevalent areas in India. Any probable correlation between these mutations and clinical outcome of CQ treatment was also investigated. Methods Finger pricked blood spotted on Whatman No.3 papers were collected from falciparum malaria patients of high and low P. falciparum prevalent areas. For pfcrt haplotype investigation, the parasite DNA was extracted from blood samples and used for PCR amplification, followed by partial sequencing of the pfcrt gene. For pfmdr-1 N86Y mutation, the PCR product was subjected to restriction digestion with AflIII endonuclease enzyme. Results In 240 P. falciparum isolates with reported in vivo CQ therapeutic efficacy, the analysis of mutations in pfcrt gene shows that mutant SVMNT-S (67.50%) and CVIET-S (23.75%) occurred irrespective of clinical outcome and wild type CVMNK-A (7.91%) occurred only in adequate clinical and parasitological response samples. Of 287 P. falciparum isolates, SVMNTS 192 (66.89%) prevailed in all study sites and showed almost monomorphic existence (98.42% isolates) in low P. falciparum prevalent areas. However, CVIETS-S (19.51%) and CVMNK-A (11.84%) occurrence was limited to high P. falciparum prevalent areas. Investigation of pfmdr-1 N86Y mutation shows no correlation with clinical outcomes. The wild type N86 was prevalent in all the low P. falciparum prevalent areas (94.48%). However, mutant N86Y was comparably higher in numbers at the high P. falciparum prevalent areas (42.76%). Conclusions The wild type pfcrt gene is linked to chloroquine

  15. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite’s food vacuole and alter drug sensitivities

    PubMed Central

    Pulcini, Serena; Staines, Henry M.; Lee, Andrew H.; Shafik, Sarah H.; Bouyer, Guillaume; Moore, Catherine M.; Daley, Daniel A.; Hoke, Matthew J.; Altenhofen, Lindsey M.; Painter, Heather J.; Mu, Jianbing; Ferguson, David J. P.; Llinás, Manuel; Martin, Rowena E.; Fidock, David A.; Cooper, Roland A.; Krishna, Sanjeev

    2015-01-01

    Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, are the major determinant of chloroquine resistance in this lethal human malaria parasite. Here, we describe P. falciparum lines subjected to selection by amantadine or blasticidin that carry PfCRT mutations (C101F or L272F), causing the development of enlarged food vacuoles. These parasites also have increased sensitivity to chloroquine and some other quinoline antimalarials, but exhibit no or minimal change in sensitivity to artemisinins, when compared with parental strains. A transgenic parasite line expressing the L272F variant of PfCRT confirmed this increased chloroquine sensitivity and enlarged food vacuole phenotype. Furthermore, the introduction of the C101F or L272F mutation into a chloroquine-resistant variant of PfCRT reduced the ability of this protein to transport chloroquine by approximately 93 and 82%, respectively, when expressed in Xenopus oocytes. These data provide, at least in part, a mechanistic explanation for the increased sensitivity of the mutant parasite lines to chloroquine. Taken together, these findings provide new insights into PfCRT function and PfCRT-mediated drug resistance, as well as the food vacuole, which is an important target of many antimalarial drugs. PMID:26420308

  16. Ionization chamber measurements of the half-lives of 24Na, 42K, 76As and 198Au.

    PubMed

    Unterweger, M P; Lindstrom, R M

    2004-01-01

    Samples of 24Na, 42K, 76As and 198Au were produced by irradiation in the National Institute of Standards and Technology (NIST) reactor, and examined for impurities before and after measurement. Half-life measurements were carried out in the NIST 4pigamma pressurized ionization chamber. The results are compared to presently accepted values and previous NIST measurements. PMID:14987662

  17. Role of Different Pfcrt and Pfmdr-1 Mutations in Conferring Resistance to Antimalaria Drugs in Plasmodium falciparum

    PubMed Central

    Ibraheem, Zaid O.; Abd Majid, R.; Noor, S. Mohd.; Sedik, H. Mohd.

    2014-01-01

    Emergence of drugs resistant strains of Plasmodium falciparum has augmented the scourge of malaria in endemic areas. Antimalaria drugs act on different intracellular targets. The majority of them interfere with digestive vacuoles (DVs) while others affect other organelles, namely, apicoplast and mitochondria. Prevention of drug accumulation or access into the target site is one of the mechanisms that plasmodium adopts to develop resistance. Plasmodia are endowed with series of transporters that shuffle drugs away from the target site, namely, pfmdr (Plasmodium falciparum multidrug resistance transporter) and pfcrt (Plasmodium falciparum chloroquine resistance transporter) which exist in DV membrane and are considered as putative markers of CQ resistance. They are homologues to human P-glycoproteins (P-gh or multidrug resistance system) and members of drug metabolite transporter (DMT) family, respectively. The former mediates drifting of xenobiotics towards the DV while the latter chucks them outside. Resistance to drugs whose target site of action is intravacuolar develops when the transporters expel them outside the DVs and vice versa for those whose target is extravacuolar. In this review, we are going to summarize the possible pfcrt and pfmdr mutation and their role in changing plasmodium sensitivity to different anti-Plasmodium drugs. PMID:25506039

  18. Role of Different Pfcrt and Pfmdr-1 Mutations in Conferring Resistance to Antimalaria Drugs in Plasmodium falciparum.

    PubMed

    Ibraheem, Zaid O; Abd Majid, R; Noor, S Mohd; Sedik, H Mohd; Basir, R

    2014-01-01

    Emergence of drugs resistant strains of Plasmodium falciparum has augmented the scourge of malaria in endemic areas. Antimalaria drugs act on different intracellular targets. The majority of them interfere with digestive vacuoles (DVs) while others affect other organelles, namely, apicoplast and mitochondria. Prevention of drug accumulation or access into the target site is one of the mechanisms that plasmodium adopts to develop resistance. Plasmodia are endowed with series of transporters that shuffle drugs away from the target site, namely, pfmdr (Plasmodium falciparum multidrug resistance transporter) and pfcrt (Plasmodium falciparum chloroquine resistance transporter) which exist in DV membrane and are considered as putative markers of CQ resistance. They are homologues to human P-glycoproteins (P-gh or multidrug resistance system) and members of drug metabolite transporter (DMT) family, respectively. The former mediates drifting of xenobiotics towards the DV while the latter chucks them outside. Resistance to drugs whose target site of action is intravacuolar develops when the transporters expel them outside the DVs and vice versa for those whose target is extravacuolar. In this review, we are going to summarize the possible pfcrt and pfmdr mutation and their role in changing plasmodium sensitivity to different anti-Plasmodium drugs. PMID:25506039

  19. PfCRT and PfMDR1 modulate interactions of artemisinin derivatives and ion channel blockers

    PubMed Central

    Eastman, Richard T.; Khine, Pwint; Huang, Ruili; Thomas, Craig J.; Su, Xin-zhuan

    2016-01-01

    Treatment of the symptomatic asexual stage of Plasmodium falciparum relies almost exclusively on artemisinin (ART) combination therapies (ACTs) in endemic regions. ACTs combine ART or its derivative with a long-acting partner drug to maximize efficacy during the typical three-day regimen. Both laboratory and clinical studies have previously demonstrated that the common drug resistance determinants P. falciparum chloroquine resistance transporter (PfCRT) and multidrug resistance transporter (PfMDR1) can modulate the susceptibility to many current antimalarial drugs and chemical compounds. Here we investigated the parasite responses to dihydroartemisinin (DHA) and various Ca2+ and Na+ channel blockers and showed positively correlated responses between DHA and several channel blockers, suggesting potential shared transport pathways or mode of action. Additionally, we demonstrated that PfCRT and PfMDR1 could also significantly modulate the pharmacodynamic interactions of the compounds and that the interactions were influenced by the parasite genetic backgrounds. These results provide important information for better understanding of drug resistance and for assessing the overall impact of drug resistance markers on parasite response to ACTs. PMID:27147113

  20. Synthesis and classical pathway Complement inhibitory activity of C7-functionalized filifolinol derivatives, inspired in K-76 COOH.

    PubMed

    Larghi, Enrique L; Operto, María A; Torres, Rene; Kaufman, Teodoro S

    2012-09-01

    A series of carboxylic acids carrying various functionalization on C-7 of their common 3H-spiro[benzofuran-2,1'-cyclohexane] skeleton were synthesized from filifolinol, as analogs of the natural Complement inhibitor K-76 COOH. In order to probe the relevance of the C-7 functionalization on their bioactivity, the ability of the analogs to inhibit Complement activation through the classical pathway was determined. The observed results suggest that functionalization of C-7 can modulate the inhibitory activity of the tested compounds. The 7-trifluoromethyl derivative was the compound with the lowest IC(50) value among the tested analogs (IC(50) = 100 μM), being more potent than K-76 COOH (IC(50) = 570 μM).

  1. In vitro amodiaquine resistance and its association with mutations in pfcrt and pfmdr1 genes of Plasmodium falciparum isolates from Nigeria.

    PubMed

    Folarin, O A; Bustamante, C; Gbotosho, G O; Sowunmi, A; Zalis, M G; Oduola, A M J; Happi, C T

    2011-12-01

    Amodiaquine (AQ) is currently being used as a partner drug in combination with artesunate for treatment of uncomplicated malaria in most endemic countries of Africa. In the absence of molecular markers of artemisinin resistance, molecular markers of resistance to AQ may be useful for monitoring the development and spread of parasites resistance to Artesunate-Amodiaquine combination. This study was designed to assess the potential role of polymorphisms on pfcrt and pfmdr1 genes and parasite in vitro susceptibility for epidemiological surveillance of amodiaquine resistance in Plasmodium falciparum. The modified schizont inhibition assay was used to determine in vitro susceptibility profiles of 98 patients' isolates of P. falciparum to amodiaquine. Polymorphisms on parasites pfcrt and pfmdr1 genes were determined with nested PCR followed by sequencing. The geometric mean (GM) of AQ 50% inhibitory concentration (IC-50) in the 97 P. falciparum isolates was 20.48 nM (95% CI 16.53-25.36 nM). Based on the cut-off value for AQ in vitro susceptibility, 87% (84) of the P. falciparum isolates were sensitive to AQ (GM IC-50=16.32 nM; 95%CI 13.3-20.04 nM) while 13% were resistant to AQ in vitro (GM IC-50=88.73nM; 95%CI 69.67-113.0nM). Molecular analysis showed presence of mutant CVIET pfcrt haplotype, mutant pfmdr1Tyr86 allele and the double mutant CVIET pfcrt haplotype+pfmdr1Tyr86 in 72%, 49% and 35%, respectively. The GM IC-50 of isolates harboring the wild-type pfcrt CVMNK haplotype+pfmdr1Asn86 allele (3.93nM; 95%CI 1.82-8.46 nM) was significantly lower (p=0.001) than those isolates harboring the double mutant pfcrt CVIET haplotype+pfmdr1Tyr86 allele (50.40 nM; 95%CI 40.17-63.24 nM). Results from this study suggest that polymorphisms in pfcrt and pfmdr1 genes are important for AQ resistance and therefore may be useful for epidemiological surveillance of P. falciparum resistance to AQ.

  2. New inhibitors of the complement system inspired in K76-COOH. A SAR study of filifolinol derivatives through modifications of the C3' position.

    PubMed

    Larghi, Enrique L; Operto, María A; Torres, Rene; Kaufman, Teodoro S

    2009-11-01

    A new series of tricyclic carboxylic acids with a 3H-spiro[benzofuran-2,10-cyclohexane] skeleton were synthesized from filifolinol, as analogs of the natural complement inhibitor K76-COOH. Their complement inhibitory activity was determined aiming to probe the importance of structural characteristics of the alicyclic part of K76-COOH. The presence and stereochemistry of O- and N-functionalities on C3' of the filifolinol derivatives are relevant for biological activity. The IC50 values of the most potent compounds were comparable or surpassed the activity of K76-COOH. The results also suggest that the diol moiety of the natural product may be useful for improving compound solubility.

  3. Various pfcrt and pfmdr1 genotypes of Plasmodium falciparum cocirculate with P. malariae, P. ovale spp., and P. vivax in northern Angola.

    PubMed

    Fançony, Cláudia; Gamboa, Dina; Sebastião, Yuri; Hallett, Rachel; Sutherland, Colin; Sousa-Figueiredo, José Carlos; Nery, Susana Vaz

    2012-10-01

    Artemisinin-based combination therapy for malaria has become widely available across Africa. Populations of Plasmodium falciparum that were previously dominated by chloroquine (CQ)-resistant genotypes are now under different drug selection pressures. P. malariae, P. ovale curtisi, and P. ovale wallikeri are sympatric with P. falciparum across the continent and are frequently present as coinfections. The prevalence of human Plasmodium species was determined by PCR using DNA from blood spots collected during a cross-sectional survey in northern Angola. P. falciparum was genotyped at resistance-associated loci in pfcrt and pfmdr1 by real-time PCR or by direct sequencing of amplicons. Of the 3,316 samples collected, 541 (16.3%) contained Plasmodium species infections; 477 (88.2%) of these were P. falciparum alone, 6.5% were P. falciparum and P. malariae together, and 1.1% were P. vivax alone. The majority of the remainder (3.7%) harbored P. ovale curtisi or P. ovale wallikeri alone or in combination with other species. Of 430 P. falciparum isolates genotyped for pfcrt, 61.6% carried the wild-type allele CVMNK at codons 72 to 76, either alone or in combination with the resistant allele CVIET. No other pfcrt allele was found. Wild-type alleles dominated at codons 86, 184, 1034, 1042, and 1246 of the pfmdr1 locus among the sequenced isolates. In contrast to previous studies, P. falciparum in the study area comprises an approximately equal mix of genotypes associated with CQ sensitivity and with CQ resistance, suggesting either lower drug pressure due to poor access to treatment in rural areas or a rapid impact of the policy change away from the use of standard monotherapies.

  4. Amodiaquine-Artesunate versus Artemether-Lumefantrine against Uncomplicated Malaria in Children Less Than 14 Years in Ngaoundere, North Cameroon: Efficacy, Safety, and Baseline Drug Resistant Mutations in pfcrt, pfmdr1, and pfdhfr Genes.

    PubMed

    Ali, Innocent M; Netongo, Palmer M; Atogho-Tiedeu, Barbara; Ngongang, Eric-Olivier; Ajua, Anthony; Achidi, Eric A; Mbacham, Wilfred F

    2013-01-01

    Background. In Cameroon, both Artesunate-amodiaquine (AS/AQ) and artemether-lumefantrine (AL) are used as first-line treatment against uncomplicated malaria in line with the WHO recommendations. We compared the efficacy and safety of both therapeutic combinations and determined the prevalence of drug resistance conferring mutations in three parasite genes. Methods. One hundred and fifty acute malaria patients between six months and 14 years of age were randomized to receive standard doses of either AS/AQ (73) or AL (77) and followedup for 28 days. Outcome of treatment was according to the standard WHO classification. DNA samples from pretreatment parasite isolates were used to determine the prevalence of resistant mutations in the pfcrt, pfmdr1, and dhfr genes. Results. Both drug combinations induced rapid clearance of parasites and malaria symptoms. PCR-corrected cure rates were 100% and 96.4% for AL. The combinations were well tolerated. Major haplotypes included CVIET (71%), CVMNT (25%) for the pfcrt; SND (100%) for the pfmdr1; IRN (79, 8%), NCS (8.8%), and mixed haplotype (11, 8%) for the dhfr. Conclusion. Both AS/AQ and AL were highly effective and well tolerated for the treatment of uncomplicated falciparum malaria in Ngaoundere, Cameroon. High prevalence of mutant pfcrt alleles confirms earlier observations. Long-term monitoring of safety and efficacy and molecular markers is highly solicited.

  5. 3-Halo Chloroquine Derivatives Overcome Plasmodium falciparum Chloroquine Resistance Transporter-Mediated Drug Resistance in P. falciparum.

    PubMed

    Edaye, Sonia; Tazoo, Dagobert; Bohle, D Scott; Georges, Elias

    2015-12-01

    Polymorphism in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) was shown to cause chloroquine resistance. In this report, we examined the antimalarial potential of novel 3-halo chloroquine derivatives (3-chloro, 3-bromo, and 3-iodo) against chloroquine-susceptible and -resistant P. falciparum. All three derivatives inhibited the proliferation of P. falciparum; with 3-iodo chloroquine being most effective. Moreover, 3-iodo chloroquine was highly effective at potentiating and reversing chloroquine toxicity of drug-susceptible and -resistant P. falciparum.

  6. Expression of Plasmodium vivax crt-o Is Related to Parasite Stage but Not Ex Vivo Chloroquine Susceptibility.

    PubMed

    Pava, Zuleima; Handayuni, Irene; Wirjanata, Grennady; To, Sheren; Trianty, Leily; Noviyanti, Rintis; Poespoprodjo, Jeanne Rini; Auburn, Sarah; Price, Ric N; Marfurt, Jutta

    2016-01-01

    Chloroquine (CQ)-resistant Plasmodium vivax is present in most countries where P. vivax infection is endemic, but the underlying molecular mechanisms responsible remain unknown. Increased expression of P. vivax crt-o (pvcrt-o) has been correlated with in vivo CQ resistance in an area with low-grade resistance. We assessed pvcrt-o expression in isolates from Papua (Indonesia), where P. vivax is highly CQ resistant. Ex vivo drug susceptibilities to CQ, amodiaquine, piperaquine, mefloquine, and artesunate were determined using a modified schizont maturation assay. Expression levels of pvcrt-o were measured using a novel real-time quantitative reverse transcription-PCR method. Large variations in pvcrt-o expression were observed across the 51 isolates evaluated, with the fold change in expression level ranging from 0.01 to 59 relative to that seen with the P. vivax β-tubulin gene and from 0.01 to 24 relative to that seen with the P. vivax aldolase gene. Expression was significantly higher in isolates with the majority of parasites at the ring stage of development (median fold change, 1.7) compared to those at the trophozoite stage (median fold change, 0.5; P < 0.001). Twenty-nine isolates fulfilled the criteria for ex vivo drug susceptibility testing and showed high variability in CQ responses (median, 107.9 [range, 6.5 to 345.7] nM). After controlling for the parasite stage, we found that pvcrt-o expression levels did not correlate with the ex vivo response to CQ or with that to any of the other antimalarials tested. Our results highlight the importance of development-stage composition for measuring pvcrt-o expression and suggest that pvcrt-o transcription is not a primary determinant of ex vivo drug susceptibility. A comprehensive transcriptomic approach is warranted for an in-depth investigation of the role of gene expression levels and P. vivax drug resistance. PMID:26525783

  7. Expression of Plasmodium vivax crt-o Is Related to Parasite Stage but Not Ex Vivo Chloroquine Susceptibility.

    PubMed

    Pava, Zuleima; Handayuni, Irene; Wirjanata, Grennady; To, Sheren; Trianty, Leily; Noviyanti, Rintis; Poespoprodjo, Jeanne Rini; Auburn, Sarah; Price, Ric N; Marfurt, Jutta

    2015-11-02

    Chloroquine (CQ)-resistant Plasmodium vivax is present in most countries where P. vivax infection is endemic, but the underlying molecular mechanisms responsible remain unknown. Increased expression of P. vivax crt-o (pvcrt-o) has been correlated with in vivo CQ resistance in an area with low-grade resistance. We assessed pvcrt-o expression in isolates from Papua (Indonesia), where P. vivax is highly CQ resistant. Ex vivo drug susceptibilities to CQ, amodiaquine, piperaquine, mefloquine, and artesunate were determined using a modified schizont maturation assay. Expression levels of pvcrt-o were measured using a novel real-time quantitative reverse transcription-PCR method. Large variations in pvcrt-o expression were observed across the 51 isolates evaluated, with the fold change in expression level ranging from 0.01 to 59 relative to that seen with the P. vivax β-tubulin gene and from 0.01 to 24 relative to that seen with the P. vivax aldolase gene. Expression was significantly higher in isolates with the majority of parasites at the ring stage of development (median fold change, 1.7) compared to those at the trophozoite stage (median fold change, 0.5; P < 0.001). Twenty-nine isolates fulfilled the criteria for ex vivo drug susceptibility testing and showed high variability in CQ responses (median, 107.9 [range, 6.5 to 345.7] nM). After controlling for the parasite stage, we found that pvcrt-o expression levels did not correlate with the ex vivo response to CQ or with that to any of the other antimalarials tested. Our results highlight the importance of development-stage composition for measuring pvcrt-o expression and suggest that pvcrt-o transcription is not a primary determinant of ex vivo drug susceptibility. A comprehensive transcriptomic approach is warranted for an in-depth investigation of the role of gene expression levels and P. vivax drug resistance.

  8. Temporal and seasonal changes of genetic polymorphisms associated with altered drug susceptibility to chloroquine, lumefantrine, and quinine in Guinea-Bissau between 2003 and 2012.

    PubMed

    Jovel, Irina Tatiana; Kofoed, Poul-Erik; Rombo, Lars; Rodrigues, Amabelia; Ursing, Johan

    2015-02-01

    In 2008, artemether-lumefantrine was introduced in Guinea-Bissau, West Africa, but quinine has also been commonly prescribed for the treatment of uncomplicated Plasmodium falciparum malaria. An efficacious high-dose chloroquine treatment regimen was used previously. Temporal and seasonal changes of genetic polymorphisms associated with altered drug susceptibility to chloroquine, lumefantrine, and quinine have been described. P. falciparum chloroquine resistance transporter (pfcrt) K76T, pfmdr1 gene copy numbers, pfmdr1 polymorphisms N86Y and Y184F, and pfmdr1 sequences 1034 to 1246 were determined using PCR-based methods. Blood samples came from virtually all (n=1,806) children<15 years of age who had uncomplicated P. falciparum monoinfection and presented at a health center in suburban Bissau (from 2003 to 2012). The pfcrt K76T and pfmdr1 N86Y frequencies were stable, and seasonal changes were not seen from 2003 to 2007. Since 2007, the mean annual frequencies increased (P<0.001) for pfcrt 76T (24% to 57%), pfmdr1 N86 (72% to 83%), and pfcrt 76+pfmdr1 86 TN (10% to 27%), and pfcrt 76T accumulated during the high transmission season (P=0.001). The pfmdr1 86+184 NF frequency increased from 39% to 66% (from 2003 to 2011; P=0.004). One sample had two pfmdr1 gene copies. pfcrt 76T was associated with a lower parasite density (P<0.001). Following the discontinuation of an effective chloroquine regimen, probably highly artemether-lumefantrine-susceptible P. falciparum (with pfcrt 76T) accumulated, possibly due to suboptimal use of quinine and despite a fitness cost linked to pfcrt 76T. (The studies reported here were registered at ClinicalTrials.gov under registration no. NCT00137514 [PSB-2001-chl-amo], NCT00137566 [PSB-2004-paracetamol], NCT00426439 [PSB-2006-coartem], NCT01157689 [AL-eff 2010], and NCT01704508 [Eurartesim 2012].).

  9. Temporal and Seasonal Changes of Genetic Polymorphisms Associated with Altered Drug Susceptibility to Chloroquine, Lumefantrine, and Quinine in Guinea-Bissau between 2003 and 2012

    PubMed Central

    Kofoed, Poul-Erik; Rombo, Lars; Rodrigues, Amabelia; Ursing, Johan

    2014-01-01

    In 2008, artemether-lumefantrine was introduced in Guinea-Bissau, West Africa, but quinine has also been commonly prescribed for the treatment of uncomplicated Plasmodium falciparum malaria. An efficacious high-dose chloroquine treatment regimen was used previously. Temporal and seasonal changes of genetic polymorphisms associated with altered drug susceptibility to chloroquine, lumefantrine, and quinine have been described. P. falciparum chloroquine resistance transporter (pfcrt) K76T, pfmdr1 gene copy numbers, pfmdr1 polymorphisms N86Y and Y184F, and pfmdr1 sequences 1034 to 1246 were determined using PCR-based methods. Blood samples came from virtually all (n = 1,806) children <15 years of age who had uncomplicated P. falciparum monoinfection and presented at a health center in suburban Bissau (from 2003 to 2012). The pfcrt K76T and pfmdr1 N86Y frequencies were stable, and seasonal changes were not seen from 2003 to 2007. Since 2007, the mean annual frequencies increased (P < 0.001) for pfcrt 76T (24% to 57%), pfmdr1 N86 (72% to 83%), and pfcrt 76 + pfmdr1 86 TN (10% to 27%), and pfcrt 76T accumulated during the high transmission season (P = 0.001). The pfmdr1 86 + 184 NF frequency increased from 39% to 66% (from 2003 to 2011; P = 0.004). One sample had two pfmdr1 gene copies. pfcrt 76T was associated with a lower parasite density (P < 0.001). Following the discontinuation of an effective chloroquine regimen, probably highly artemether-lumefantrine-susceptible P. falciparum (with pfcrt 76T) accumulated, possibly due to suboptimal use of quinine and despite a fitness cost linked to pfcrt 76T. (The studies reported here were registered at ClinicalTrials.gov under registration no. NCT00137514 [PSB-2001-chl-amo], NCT00137566 [PSB-2004-paracetamol], NCT00426439 [PSB-2006-coartem], NCT01157689 [AL-eff 2010], and NCT01704508 [Eurartesim 2012].) PMID:25421474

  10. Temporal and seasonal changes of genetic polymorphisms associated with altered drug susceptibility to chloroquine, lumefantrine, and quinine in Guinea-Bissau between 2003 and 2012.

    PubMed

    Jovel, Irina Tatiana; Kofoed, Poul-Erik; Rombo, Lars; Rodrigues, Amabelia; Ursing, Johan

    2015-02-01

    In 2008, artemether-lumefantrine was introduced in Guinea-Bissau, West Africa, but quinine has also been commonly prescribed for the treatment of uncomplicated Plasmodium falciparum malaria. An efficacious high-dose chloroquine treatment regimen was used previously. Temporal and seasonal changes of genetic polymorphisms associated with altered drug susceptibility to chloroquine, lumefantrine, and quinine have been described. P. falciparum chloroquine resistance transporter (pfcrt) K76T, pfmdr1 gene copy numbers, pfmdr1 polymorphisms N86Y and Y184F, and pfmdr1 sequences 1034 to 1246 were determined using PCR-based methods. Blood samples came from virtually all (n=1,806) children<15 years of age who had uncomplicated P. falciparum monoinfection and presented at a health center in suburban Bissau (from 2003 to 2012). The pfcrt K76T and pfmdr1 N86Y frequencies were stable, and seasonal changes were not seen from 2003 to 2007. Since 2007, the mean annual frequencies increased (P<0.001) for pfcrt 76T (24% to 57%), pfmdr1 N86 (72% to 83%), and pfcrt 76+pfmdr1 86 TN (10% to 27%), and pfcrt 76T accumulated during the high transmission season (P=0.001). The pfmdr1 86+184 NF frequency increased from 39% to 66% (from 2003 to 2011; P=0.004). One sample had two pfmdr1 gene copies. pfcrt 76T was associated with a lower parasite density (P<0.001). Following the discontinuation of an effective chloroquine regimen, probably highly artemether-lumefantrine-susceptible P. falciparum (with pfcrt 76T) accumulated, possibly due to suboptimal use of quinine and despite a fitness cost linked to pfcrt 76T. (The studies reported here were registered at ClinicalTrials.gov under registration no. NCT00137514 [PSB-2001-chl-amo], NCT00137566 [PSB-2004-paracetamol], NCT00426439 [PSB-2006-coartem], NCT01157689 [AL-eff 2010], and NCT01704508 [Eurartesim 2012].). PMID:25421474

  11. Mutation in the Plasmodium falciparum CRT protein determines the stereospecific activity of antimalarial cinchona alkaloids.

    PubMed

    Griffin, Carol E; Hoke, Jonathan M; Samarakoon, Upeka; Duan, Junhui; Mu, Jianbing; Ferdig, Michael T; Warhurst, David C; Cooper, Roland A

    2012-10-01

    The Cinchona alkaloids are quinoline aminoalcohols that occur as diastereomer pairs, typified by (-)-quinine and (+)-quinidine. The potency of (+)-isomers is greater than the (-)-isomers in vitro and in vivo against Plasmodium falciparum malaria parasites. They may act by the inhibition of heme crystallization within the parasite digestive vacuole in a manner similar to chloroquine. Earlier studies showed that a K76I mutation in the digestive vacuole-associated protein, PfCRT (P. falciparum chloroquine resistance transporter), reversed the normal potency order of quinine and quinidine toward P. falciparum. To further explore PfCRT-alkaloid interactions in the malaria parasite, we measured the in vitro susceptibility of eight clonal lines of P. falciparum derived from the 106/1 strain, each containing a unique pfcrt allele, to four Cinchona stereoisomer pairs: quinine and quinidine; cinchonidine and cinchonine; hydroquinine and hydroquinidine; 9-epiquinine and 9-epiquinidine. Stereospecific potency of the Cinchona alkaloids was associated with changes in charge and hydrophobicity of mutable PfCRT amino acids. In isogenic chloroquine-resistant lines, the IC(50) ratio of (-)/(+) CA pairs correlated with side chain hydrophobicity of the position 76 residue. Second-site PfCRT mutations negated the K76I stereospecific effects: charge-change mutations C72R or Q352K/R restored potency patterns similar to the parent K76 line, while V369F increased susceptibility to the alkaloids and nullified stereospecific differences between alkaloid pairs. Interactions between key residues of the PfCRT channel/transporter with (-) and (+) alkaloids are stereospecifically determined, suggesting that PfCRT binding plays an important role in the antimalarial activity of quinine and other Cinchona alkaloids.

  12. Mutation in the Plasmodium falciparum CRT Protein Determines the Stereospecific Activity of Antimalarial Cinchona Alkaloids

    PubMed Central

    Griffin, Carol E.; Hoke, Jonathan M.; Samarakoon, Upeka; Duan, Junhui; Mu, Jianbing; Ferdig, Michael T.; Warhurst, David C.

    2012-01-01

    The Cinchona alkaloids are quinoline aminoalcohols that occur as diastereomer pairs, typified by (−)-quinine and (+)-quinidine. The potency of (+)-isomers is greater than the (−)-isomers in vitro and in vivo against Plasmodium falciparum malaria parasites. They may act by the inhibition of heme crystallization within the parasite digestive vacuole in a manner similar to chloroquine. Earlier studies showed that a K76I mutation in the digestive vacuole-associated protein, PfCRT (P. falciparum chloroquine resistance transporter), reversed the normal potency order of quinine and quinidine toward P. falciparum. To further explore PfCRT-alkaloid interactions in the malaria parasite, we measured the in vitro susceptibility of eight clonal lines of P. falciparum derived from the 106/1 strain, each containing a unique pfcrt allele, to four Cinchona stereoisomer pairs: quinine and quinidine; cinchonidine and cinchonine; hydroquinine and hydroquinidine; 9-epiquinine and 9-epiquinidine. Stereospecific potency of the Cinchona alkaloids was associated with changes in charge and hydrophobicity of mutable PfCRT amino acids. In isogenic chloroquine-resistant lines, the IC50 ratio of (−)/(+) CA pairs correlated with side chain hydrophobicity of the position 76 residue. Second-site PfCRT mutations negated the K76I stereospecific effects: charge-change mutations C72R or Q352K/R restored potency patterns similar to the parent K76 line, while V369F increased susceptibility to the alkaloids and nullified stereospecific differences between alkaloid pairs. Interactions between key residues of the PfCRT channel/transporter with (−) and (+) alkaloids are stereospecifically determined, suggesting that PfCRT binding plays an important role in the antimalarial activity of quinine and other Cinchona alkaloids. PMID:22869567

  13. [Mutant alleles associated to chloroquine and sulfadoxine-pyrimethanime resistance in Plasmodium falciparum of the Ecuador-Peru and Ecuador-Colombia borders].

    PubMed

    Arróspide, Nancy; Hijar-Guerra, Gisely; de Mora, Doménica; Diaz-Cortéz, César Eduardo; Veloz-Perez, Raúl; Gutierrez, Sonia; Cabezas-Sánchez, César

    2014-04-01

    The frequency of mutations in pfCRT and DHFR/DHPS genes of Plasmodium falciparum associated with resistance to chloroquine and sulfadoxine-pyrimethamine was evaluated in 83 strains from the districts of Esmeralda and Machala, located on the borders of Ecuador-Peru and Ecuador-Colombia in 2002. Polymerase chain reaction (PCR), conventional and its variants, was used. Mutations in the pfCRT gene were found in more than 90% of the samples from Esmeralda and Machala. For the DHFR gene, 90% of the strains were mutant samples from Esmeralda, 3 were double mutations and 1 was a triple mutation. In Machala, 25% were simple mutant forms and 75% mixed mutant forms (wild forms/mutant). In conclusion, resistance to chloroquine has been fixed in strains carrying K76T pfCRT mutation, whereas genetic imprinting for resistance to pyrimethamine is evolving, particularly in the district of Esmeralda.

  14. Molecular diagnosis of resistance to antimalarial drugs during epidemics and in war zones.

    PubMed

    Djimdé, Abdoulaye A; Dolo, Amagana; Ouattara, Amed; Diakité, Sira; Plowe, Christopher V; Doumbo, Ogobara K

    2004-08-15

    Plasmodium falciparum mutations pfcrt K76T and the dhfr/dhps "quintuple mutant" are molecular markers of resistance to chloroquine and sulfadoxine-pyrimethamine, respectively. During an epidemic of P. falciparum malaria in an area of political unrest in northern Mali, where standard efficacy studies have been impossible, we measured the prevalence of these markers in a cross-sectional survey. In 80% of cases of infection, pfcrt K76T was detected, but none of the cases carried the dhfr/dhps quintuple mutant. On the basis of these results, chloroquine was replaced by sulfadoxine-pyrimethamine in control efforts. This example illustrates how molecular markers for drug resistance can provide timely data that inform malaria-control policy during epidemics and other emergency situations.

  15. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine.

    PubMed

    Venkatesan, Meera; Gadalla, Nahla B; Stepniewska, Kasia; Dahal, Prabin; Nsanzabana, Christian; Moriera, Clarissa; Price, Ric N; Mårtensson, Andreas; Rosenthal, Philip J; Dorsey, Grant; Sutherland, Colin J; Guérin, Philippe; Davis, Timothy M E; Ménard, Didier; Adam, Ishag; Ademowo, George; Arze, Cesar; Baliraine, Frederick N; Berens-Riha, Nicole; Björkman, Anders; Borrmann, Steffen; Checchi, Francesco; Desai, Meghna; Dhorda, Mehul; Djimdé, Abdoulaye A; El-Sayed, Badria B; Eshetu, Teferi; Eyase, Frederick; Falade, Catherine; Faucher, Jean-François; Fröberg, Gabrielle; Grivoyannis, Anastasia; Hamour, Sally; Houzé, Sandrine; Johnson, Jacob; Kamugisha, Erasmus; Kariuki, Simon; Kiechel, Jean-René; Kironde, Fred; Kofoed, Poul-Erik; LeBras, Jacques; Malmberg, Maja; Mwai, Leah; Ngasala, Billy; Nosten, Francois; Nsobya, Samuel L; Nzila, Alexis; Oguike, Mary; Otienoburu, Sabina Dahlström; Ogutu, Bernhards; Ouédraogo, Jean-Bosco; Piola, Patrice; Rombo, Lars; Schramm, Birgit; Somé, A Fabrice; Thwing, Julie; Ursing, Johan; Wong, Rina P M; Zeynudin, Ahmed; Zongo, Issaka; Plowe, Christopher V; Sibley, Carol Hopkins

    2014-10-01

    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized methods from the WorldWide Antimalarial Resistance Network. Data for more than 7,000 patients were analyzed to assess relationships between parasite polymorphisms in pfcrt and pfmdr1 and clinically relevant outcomes after treatment with AL or ASAQ. Presence of the pfmdr1 gene N86 (adjusted hazards ratio = 4.74, 95% confidence interval = 2.29 - 9.78, P < 0.001) and increased pfmdr1 copy number (adjusted hazards ratio = 6.52, 95% confidence interval = 2.36-17.97, P < 0.001 : were significant independent risk factors for recrudescence in patients treated with AL. AL and ASAQ exerted opposing selective effects on single-nucleotide polymorphisms in pfcrt and pfmdr1. Monitoring selection and responding to emerging signs of drug resistance are critical tools for preserving efficacy of artemisinin combination therapies; determination of the prevalence of at least pfcrt K76T and pfmdr1 N86Y should now be routine.

  16. Intermittent Preventive Treatment with Dihydroartemisinin-Piperaquine in Ugandan Schoolchildren Selects for Plasmodium falciparum Transporter Polymorphisms That Modify Drug Sensitivity.

    PubMed

    Nankabirwa, Joaniter I; Conrad, Melissa D; Legac, Jennifer; Tukwasibwe, Stephen; Tumwebaze, Patrick; Wandera, Bonnie; Brooker, Simon J; Staedke, Sarah G; Kamya, Moses R; Nsobya, Sam L; Dorsey, Grant; Rosenthal, Philip J

    2016-10-01

    Dihydroartemisinin-piperaquine (DP) offers prolonged protection against malaria, but its impact on Plasmodium falciparum drug sensitivity is uncertain. In a trial of intermittent preventive treatment in schoolchildren in Tororo, Uganda, in 2011 to 2012, monthly DP for 1 year decreased the incidence of malaria by 96% compared to placebo; DP once per school term offered protection primarily during the first month after therapy. To assess the impact of DP on selection of drug resistance, we compared the prevalence of key polymorphisms in isolates that emerged at different intervals after treatment with DP. Blood obtained monthly and at each episode of fever was assessed for P. falciparum parasitemia by microscopy. Samples from 160 symptomatic and 650 asymptomatic episodes of parasitemia were assessed at 4 loci (N86Y, Y184F, and D1246Y in pfmdr1 and K76T in pfcrt) that modulate sensitivity to aminoquinoline antimalarials, utilizing a ligase detection reaction-fluorescent microsphere assay. For pfmdr1 N86Y and pfcrt K76T, but not the other studied polymorphisms, the prevalences of mutant genotypes were significantly greater in children who had received DP within the past 30 days than in those not treated within 60 days (86Y, 18.0% versus 8.3% [P = 0.03]; 76T, 96.0% versus 86.1% [P = 0.05]), suggesting selective pressure of DP. Full sequencing of pfcrt in a subset of samples did not identify additional polymorphisms selected by DP. In summary, parasites that emerged soon after treatment with DP were more likely than parasites not under drug pressure to harbor pfmdr1 and pfcrt polymorphisms associated with decreased sensitivity to aminoquinoline antimalarials. (This study has been registered at ClinicalTrials.gov under no. NCT01231880.). PMID:27401569

  17. Low level genotypic chloroquine resistance near Malawi's northern border with Tanzania.

    PubMed

    Bridges, Daniel J; Molyneux, Malcolm; Nkhoma, Standwell

    2009-09-01

    We conducted a prevalence study of mutations in Plasmodium falciparum that are associated with antimalarial drug resistance at a rural site in Karonga near Malawi's northern border with Tanzania. We found a higher prevalence of the key chloroquine resistance-conferring mutation in the pfcrt gene (K76T) at this site in comparison with the prevalence in Blantyre, a city in the south of Malawi, far from an international border (9%vs. 0%; P < 0.0005). In contrast we found a lower prevalence of the quintuple dhfr/dhps mutation, which is highly predictive of SP treatment failure, at the Karonga site compared to Blantyre (76%vs. 88%; P < 0.005). The prevalence of the K76T pfcrt mutation at two Tanzanian sites close to the border with Malawi was recently reported to be over 50%. Our findings suggest a considerable 'leakage' of parasite antimalarial drug resistance across the border between two countries with different national malaria control policies and with different levels of resistance. Neighbouring countries should consider implementing common regional rather than national malaria treatment policies to prevent the spread of antimalarial drug resistance alleles across their borders.

  18. Role of Pfmdr1 in In Vitro Plasmodium falciparum Susceptibility to Chloroquine, Quinine, Monodesethylamodiaquine, Mefloquine, Lumefantrine, and Dihydroartemisinin

    PubMed Central

    Wurtz, Nathalie; Fall, Bécaye; Pascual, Aurélie; Fall, Mansour; Baret, Eric; Camara, Cheikhou; Nakoulima, Aminata; Diatta, Bakary; Fall, Khadidiatou Ba; Mbaye, Pape Saliou; Diémé, Yaya; Bercion, Raymond; Wade, Boubacar

    2014-01-01

    The involvement of Pfmdr1 (Plasmodium falciparum multidrug resistance 1) polymorphisms in antimalarial drug resistance is still debated. Here, we evaluate the association between polymorphisms in Pfmdr1 (N86Y, Y184F, S1034C, N1042D, and D1246Y) and Pfcrt (K76T) and in vitro responses to chloroquine (CQ), mefloquine (MQ), lumefantrine (LMF), quinine (QN), monodesethylamodiaquine (MDAQ), and dihydroartemisinin (DHA) in 174 Plasmodium falciparum isolates from Dakar, Senegal. The Pfmdr1 86Y mutation was identified in 14.9% of the samples, and the 184F mutation was identified in 71.8% of the isolates. No 1034C, 1042N, or 1246Y mutations were detected. The Pfmdr1 86Y mutation was significantly associated with increased susceptibility to MDAQ (P = 0.0023), LMF (P = 0.0001), DHA (P = 0.0387), and MQ (P = 0.00002). The N86Y mutation was not associated with CQ (P = 0.214) or QN (P = 0.287) responses. The Pfmdr1 184F mutation was not associated with various susceptibility responses to the 6 antimalarial drugs (P = 0.168 for CQ, 0.778 for MDAQ, 0.324 for LMF, 0.961 for DHA, 0.084 for QN, and 0.298 for MQ). The Pfmdr1 86Y-Y184 haplotype was significantly associated with increased susceptibility to MDAQ (P = 0.0136), LMF (P = 0.0019), and MQ (P = 0.0001). The additional Pfmdr1 86Y mutation increased significantly the in vitro susceptibility to MDAQ (P < 0.0001), LMF (P < 0.0001), MQ (P < 0.0001), and QN (P = 0.0026) in wild-type Pfcrt K76 parasites. The additional Pfmdr1 86Y mutation significantly increased the in vitro susceptibility to CQ (P = 0.0179) in Pfcrt 76T CQ-resistant parasites. PMID:25199781

  19. Molecular surveillance for drug-resistant Plasmodium falciparum in clinical and subclinical populations from three border regions of Burma/Myanmar: cross-sectional data and a systematic review of resistance studies

    PubMed Central

    2012-01-01

    Background Confirmation of artemisinin-delayed parasite clearance in Plasmodium falciparum along the Thai-Myanmar border has inspired a global response to contain and monitor drug resistance to avert the disastrous consequences of a potential spread to Africa. However, resistance data from Myanmar are sparse, particularly from high-risk areas where limited health services and decades of displacement create conditions for resistance to spread. Subclinical infections may represent an important reservoir for resistance genes that confer a fitness disadvantage relative to wild-type alleles. This study estimates the prevalence of resistance genotypes in three previously unstudied remote populations in Myanmar and tests the a priori hypothesis that resistance gene prevalence would be higher among isolates collected from subclinical infections than isolates collected from febrile clinical patients. A systematic review of resistance studies is provided for context. Methods Community health workers in Karen and Kachin States and an area spanning the Indo-Myanmar border collected dried blood spots from 988 febrile clinical patients and 4,591 villagers with subclinical infection participating in routine prevalence surveys. Samples positive for P. falciparum 18 s ribosomal RNA by real-time PCR were genotyped for P. falciparum multidrug resistance protein (pfmdr1) copy number and the pfcrt K76T polymorphism using multiplex real-time PCR. Results Pfmdr1 copy number increase and the pfcrt K76 polymorphism were determined for 173 and 269 isolates, respectively. Mean pfmdr1 copy number was 1.2 (range: 0.7 to 3.7). Pfmdr1 copy number increase was present in 17.5%, 9.6% and 11.1% of isolates from Karen and Kachin States and the Indo-Myanmar border, respectively. Pfmdr1 amplification was more prevalent in subclinical isolates (20.3%) than clinical isolates (6.4%, odds ratio 3.7, 95% confidence interval 1.1 - 12.5). Pfcrt K76T prevalence ranged from 90-100%. Conclusions Community

  20. Prevalence of Plasmodium falciparum Molecular Markers of Antimalarial Drug Resistance in a Residual Malaria Focus Area in Sabah, Malaysia

    PubMed Central

    Mohd Abd Razak, Mohd Ridzuan; Abdullah, Noor Rain; Sastu, Umi Rubiah; Imwong, Mallika; Muniandy, Prem Kumar; Saat, Muhammad Nor Farhan; Muhammad, Amirrudin; Jelip, Jenarun; Tikuson, Moizin; Yusof, Norsalleh; Rundi, Christina; Mudin, Rose Nani; Syed Mohamed, Ami Fazlin

    2016-01-01

    Chloroquine (CQ) and fansidar (sulphadoxine-pyrimethamine, SP) were widely used for treatment of Plasmodium falciparum for several decades in Malaysia prior to the introduction of Artemisinin-based Combination Therapy (ACT) in 2008. Our previous study in Kalabakan, located in south-east coast of Sabah showed a high prevalence of resistance to CQ and SP, suggesting the use of the treatment may no longer be effective in the area. This study aimed to provide a baseline data of antimalarial drug resistant markers on P. falciparum isolates in Kota Marudu located in the north-east coast of Sabah. Mutations on genes associated with CQ (pfcrt and pfmdr1) and SP (pfdhps and pfdhfr) were assessed by PCR amplification and restriction fragment length polymorphism. Mutations on the kelch13 marker (K13) associated with artemisinin resistance were determined by DNA sequencing technique. The assessment of pfmdr1 copy number variation associated with mefloquine resistant was done by real-time PCR technique. A low prevalence (6.9%) was indicated for both pfcrt K76T and pfmdr1 N86Y mutations. All P. falciparum isolates harboured the pfdhps A437G mutation. Prevalence of pfdhfr gene mutations, S108N and I164L, were 100% and 10.3%, respectively. Combining the different resistant markers, only two isolates were conferred to have CQ and SP treatment failure markers as they contained mutant alleles of pfcrt and pfmdr1 together with quintuple pfdhps/pfdhfr mutation (combination of pfdhps A437G+A581G and pfdhfr C59R+S108N+I164L). All P. falciparum isolates carried single copy number of pfmdr1 and wild type K13 marker. This study has demonstrated a low prevalence of CQ and SP resistance alleles in the study area. Continuous monitoring of antimalarial drug efficacy is warranted and the findings provide information for policy makers in ensuring a proper malaria control. PMID:27788228

  1. Genotyping of chloroquine resistant Plasmodium falciparum in wild caught Anopheles minimus mosquitoes in a malaria endemic area of Assam, India.

    PubMed

    Sarma, D K; Mohapatra, P K; Bhattacharyya, D R; Mahanta, J; Prakash, A

    2014-09-01

    We validated the feasibility of using Plasmodium falciparum, the human malaria parasite, DNA present in wild caught vector mosquitoes for the characterization of chloroquine resistance status. House frequenting mosquitoes belonging to Anopheles minimus complex were collected from human dwellings in a malaria endemic area of Assam, Northeast India and DNA was extracted from the head-thorax region of individual mosquitoes. Anopheles minimus complex mosquitoes were identified to species level and screened for the presence of Plasmodium sp. using molecular tools. Nested PCR-RFLP method was used for genotyping of P. falciparum based on K76T mutation in the chloroquine resistance transporter (pfcrt) gene. Three of the 27 wild caught An. minimus mosquitoes were harbouring P. falciparum sporozoites (positivity 11.1%) and all 3 were had 76T mutation in the pfcrt gene, indicating chloroquine resistance. The approach of characterizing antimalarial resistance of malaria parasite in vector mosquitoes can potentially be used as a surveillance tool for monitoring transmission of antimalarial drug resistant parasite strains in the community.

  2. Molecular Surveillance as Monitoring Tool for Drug-Resistant Plasmodium falciparum in Suriname

    PubMed Central

    Adhin, Malti R.; Labadie-Bracho, Mergiory; Bretas, Gustavo

    2013-01-01

    The aim of this translational study was to show the use of molecular surveillance for polymorphisms and copy number as a monitoring tool to track the emergence and dynamics of Plasmodium falciparum drug resistance. A molecular baseline for Suriname was established in 2005, with P. falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance (pfmdr1) markers and copy number in 40 samples. The baseline results revealed the existence of a uniformly distributed mutated genotype corresponding with the fully mefloquine-sensitive 7G8-like genotype (Y184F, S1034C, N1042D, and D1246Y) and a fixed pfmdr1 N86 haplotype. All samples harbored the pivotal pfcrtK76T mutation, showing that chloroquine reintroduction should not yet be contemplated in Suriname. After 5 years, 40 samples were assessed to trace temporal changes in the status of pfmdr1 polymorphisms and copy number and showed minor genetic alterations in the pfmdr1 gene and no significant changes in copy number, thus providing scientific support for prolongation of the current drug policy in Suriname. PMID:23836573

  3. Temporal trends in prevalence of Plasmodium falciparum molecular markers selected for by artemether–lumefantrine treatment in pre-ACT and post-ACT parasites in western Kenya

    PubMed Central

    Achieng, Angela O.; Muiruri, Peninah; Ingasia, Luicer A.; Opot, Benjamin H.; Juma, Dennis W.; Yeda, Redemptah; Ngalah, Bidii S.; Ogutu, Bernhards R.; Andagalu, Ben; Akala, Hoseah M.; Kamau, Edwin

    2015-01-01

    Artemether–lumefantrine (AL) became the first-line treatment for uncomplicated malaria in Kenya in 2006. Studies have shown AL selects for SNPs in pfcrt and pfmdr1 genes in recurring parasites compared to the baseline infections. The genotypes associated with AL selection are K76 in pfcrt and N86, 184F and D1246 in pfmdr1. To assess the temporal change of these genotypes in western Kenya, 47 parasite isolates collected before (pre-ACT; 1995–2003) and 745 after (post-ACT; 2008–2014) introduction of AL were analyzed. In addition, the associations of parasite haplotype against the IC50 of artemether and lumefantrine, and clearance rates were determined. Parasite genomic DNA collected between 1995 and 2014 was analyzed by sequencing or PCR-based single-base extension on Sequenom MassARRAY. IC50s were determined for a subset of the samples. One hundred eighteen samples from 2013 to 2014 were from an efficacy trial of which 68 had clearance half-lives. Data revealed there were significant differences between pre-ACT and post-ACT genotypes at the four codons (chi-square analysis; p < 0.0001). The prevalence of pfcrt K76 and N86 increased from 6.4% in 1995–1996 to 93.2% in 2014 and 0.0% in 2002–2003 to 92.4% in 2014 respectively. Analysis of parasites carrying pure alleles of K + NFD or T + YYY haplotypes revealed that 100.0% of the pre-ACT parasites carried T + YYY and 99.3% of post-ACT parasites carried K + NFD. There was significant correlation (p = 0.04) between lumefantrine IC50 and polymorphism at pfmdr1 codon 184. There was no difference in parasite clearance half-lives based on genetic haplotype profiles. This study shows there is a significant change in parasite genotype, with key molecular determinants of AL selection almost reaching saturation. The implications of these findings are not clear since AL remains highly efficacious. However, there is need to closely monitor parasite genotypic, phenotypic and clinical dynamics in response to

  4. Temporal trends in prevalence of Plasmodium falciparum molecular markers selected for by artemether-lumefantrine treatment in pre-ACT and post-ACT parasites in western Kenya.

    PubMed

    Achieng, Angela O; Muiruri, Peninah; Ingasia, Luicer A; Opot, Benjamin H; Juma, Dennis W; Yeda, Redemptah; Ngalah, Bidii S; Ogutu, Bernhards R; Andagalu, Ben; Akala, Hoseah M; Kamau, Edwin

    2015-12-01

    Artemether-lumefantrine (AL) became the first-line treatment for uncomplicated malaria in Kenya in 2006. Studies have shown AL selects for SNPs in pfcrt and pfmdr1 genes in recurring parasites compared to the baseline infections. The genotypes associated with AL selection are K76 in pfcrt and N86, 184F and D1246 in pfmdr1. To assess the temporal change of these genotypes in western Kenya, 47 parasite isolates collected before (pre-ACT; 1995-2003) and 745 after (post-ACT; 2008-2014) introduction of AL were analyzed. In addition, the associations of parasite haplotype against the IC50 of artemether and lumefantrine, and clearance rates were determined. Parasite genomic DNA collected between 1995 and 2014 was analyzed by sequencing or PCR-based single-base extension on Sequenom MassARRAY. IC50s were determined for a subset of the samples. One hundred eighteen samples from 2013 to 2014 were from an efficacy trial of which 68 had clearance half-lives. Data revealed there were significant differences between pre-ACT and post-ACT genotypes at the four codons (chi-square analysis; p < 0.0001). The prevalence of pfcrt K76 and N86 increased from 6.4% in 1995-1996 to 93.2% in 2014 and 0.0% in 2002-2003 to 92.4% in 2014 respectively. Analysis of parasites carrying pure alleles of K + NFD or T + YYY haplotypes revealed that 100.0% of the pre-ACT parasites carried T + YYY and 99.3% of post-ACT parasites carried K + NFD. There was significant correlation (p = 0.04) between lumefantrine IC50 and polymorphism at pfmdr1 codon 184. There was no difference in parasite clearance half-lives based on genetic haplotype profiles. This study shows there is a significant change in parasite genotype, with key molecular determinants of AL selection almost reaching saturation. The implications of these findings are not clear since AL remains highly efficacious. However, there is need to closely monitor parasite genotypic, phenotypic and clinical dynamics in response to continued use

  5. Temporal trends in prevalence of Plasmodium falciparum molecular markers selected for by artemether-lumefantrine treatment in pre-ACT and post-ACT parasites in western Kenya.

    PubMed

    Achieng, Angela O; Muiruri, Peninah; Ingasia, Luicer A; Opot, Benjamin H; Juma, Dennis W; Yeda, Redemptah; Ngalah, Bidii S; Ogutu, Bernhards R; Andagalu, Ben; Akala, Hoseah M; Kamau, Edwin

    2015-12-01

    Artemether-lumefantrine (AL) became the first-line treatment for uncomplicated malaria in Kenya in 2006. Studies have shown AL selects for SNPs in pfcrt and pfmdr1 genes in recurring parasites compared to the baseline infections. The genotypes associated with AL selection are K76 in pfcrt and N86, 184F and D1246 in pfmdr1. To assess the temporal change of these genotypes in western Kenya, 47 parasite isolates collected before (pre-ACT; 1995-2003) and 745 after (post-ACT; 2008-2014) introduction of AL were analyzed. In addition, the associations of parasite haplotype against the IC50 of artemether and lumefantrine, and clearance rates were determined. Parasite genomic DNA collected between 1995 and 2014 was analyzed by sequencing or PCR-based single-base extension on Sequenom MassARRAY. IC50s were determined for a subset of the samples. One hundred eighteen samples from 2013 to 2014 were from an efficacy trial of which 68 had clearance half-lives. Data revealed there were significant differences between pre-ACT and post-ACT genotypes at the four codons (chi-square analysis; p < 0.0001). The prevalence of pfcrt K76 and N86 increased from 6.4% in 1995-1996 to 93.2% in 2014 and 0.0% in 2002-2003 to 92.4% in 2014 respectively. Analysis of parasites carrying pure alleles of K + NFD or T + YYY haplotypes revealed that 100.0% of the pre-ACT parasites carried T + YYY and 99.3% of post-ACT parasites carried K + NFD. There was significant correlation (p = 0.04) between lumefantrine IC50 and polymorphism at pfmdr1 codon 184. There was no difference in parasite clearance half-lives based on genetic haplotype profiles. This study shows there is a significant change in parasite genotype, with key molecular determinants of AL selection almost reaching saturation. The implications of these findings are not clear since AL remains highly efficacious. However, there is need to closely monitor parasite genotypic, phenotypic and clinical dynamics in response to continued use

  6. Characterization of drug resistance associated genetic polymorphisms among Plasmodium falciparum field isolates in Ujjain, Madhya Pradesh, India

    PubMed Central

    2014-01-01

    Background Since 2011, artesunate + sulphadoxine-pyrimethamine (ASP), instead of chloroquine, has been recommended for treatment of uncomplicated malaria in India. In Ujjain, central India, with an annual parasite index <0.1, the prevalence of drug-resistant Plasmodium falciparum is unknown. In other parts of India chloroquine and sulphadoxine-pyrimethamine-resistant P. falciparum is prevalent. The aim of this study was to determine the prevalence of anti-malarial drug resistance-associated genetic polymorphisms in P. falciparum collected in Ujjain in 2009 and 2010, prior to the introduction of ASP. Methods Blood samples from 87 patients with P. falciparum mono-infection verified by microscopy were collected on filter-paper at all nine major pathology laboratories in Ujjain city. Codons Pfcrt 72–76, pfmdr1 1034–1246, pfdhfr 16–185, pfdhps 436–632 and pfnhe1 ms4760 haplotypes were identified by sequencing. Pfcrt K76T and pfmdr1 N86Y were identified by restriction fragment length polymorphism, and pfmdr1 gene copy number by real-time PCR. Results Sulphadoxine-pyrimethamine resistance-associated pfdhfr 108 N and 59R alleles were found in 75/78 (96%) and 70/78 (90%) samples, respectively, and pfdhps 437G was found in 7/77 (9%) samples. Double mutant pfdhfr 59R + 108 N were found in 62/76 (82%) samples. Triple mutant pfdhfr 59R + 108 N and pfdhps 437G were found in 6/76 (8%) samples. Chloroquine-resistance-associated pfcrt 76 T was found in 82/87 (94%). The pfcrt 72–76 haplotypes found were: 80/84 (95%) SVMNT, 3/84 (4%) CVMNK and 1/84 (1%) CVMNT. Pfmdr1 N86 and 86Y were identified in 70/83 (84%) and 13/83 (16%) samples, respectively. Pfmdr1 S1034 + N1042 + D1246 were identified together in 70/72 (97%) of successfully sequenced samples. One pfmdr1 gene copy was found in 74/75 (99%) successfully amplified samples. Conclusion This is the first characterization of key anti-malarial drug resistance-associated genetic markers among P

  7. Ferrocene-pyrimidine conjugates: Synthesis, electrochemistry, physicochemical properties and antiplasmodial activities.

    PubMed

    Chopra, Rakesh; de Kock, Carmen; Smith, Peter; Chibale, Kelly; Singh, Kamaljit

    2015-07-15

    The promise of hybrid antimalarial agents and the precedence set by the antimalarial drug ferroquine prompted us to design ferrocene-pyrimidine conjugates. Herein, we report the synthesis, electrochemistry and anti-plasmodial evaluation of ferrocenyl-pyrimidine conjugates against chloroquine susceptible NF54 strain of the malaria parasite Plasmodium falciparum. Also their physicochemical properties have been studied.

  8. Temporal trends in prevalence of Plasmodium falciparum drug resistance alleles over two decades of changing antimalarial policy in coastal Kenya.

    PubMed

    Okombo, John; Kamau, Alice W; Marsh, Kevin; Sutherland, Colin J; Ochola-Oyier, Lynette Isabella

    2014-12-01

    Molecular surveillance of drug resistance markers through time provides crucial information on genomic adaptations, especially in parasite populations exposed to changing drug pressures. To assess temporal trends of established genotypes associated with tolerance to clinically important antimalarials used in Kenya over the last two decades, we sequenced a region of the pfcrt locus encompassing codons 72-76 of the Plasmodium falciparum chloroquine resistance transporter, full-length pfmdr1 - encoding multi-drug resistance protein, P-glycoprotein homolog (Pgh1) and pfdhfr encoding dihydrofolate reductase, in 485 archived Plasmodium falciparum positive blood samples collected in coastal Kenya at four different time points between 1995 and 2013. Microsatellite loci were also analyzed to compare the genetic backgrounds of parasite populations circulating before and after the withdrawal of chloroquine and sulfadoxine/pyrimethamine. Our results reveal a significant increase in the prevalence of the pfcrt K76 wild-type allele between 1995 and 2013 from 38% to 81.7% (p < 0.0001). In contrast, we noted a significant decline in wild-type pfdhfr S108 allele (p < 0.0001) culminating in complete absence of this allele in 2013. We also observed a significant increase in the prevalence of the wild-type pfmdr1 N86/Y184/D1246 haplotype from 14.6% in 1995 to 66.0% in 2013 (p < 0.0001) and a corresponding decline of the mutant pfmdr1 86Y/184Y/1246Y allele from 36.4% to 0% in 19 years (p < 0.0001). We also show extensive genetic heterogeneity among the chloroquine-sensitive parasites before and after the withdrawal of the drug in contrast to a selective sweep around the triple mutant pfdhfr allele, leading to a mono-allelic population at this locus. These findings highlight the importance of continual surveillance and characterization of parasite genotypes as indicators of the therapeutic efficacy of antimalarials, particularly in the context of changes in malaria treatment

  9. Identification of a Mutant PfCRT-Mediated Chloroquine Tolerance Phenotype in Plasmodium falciparum

    PubMed Central

    Valderramos, Stephanie G.; Valderramos, Juan-Carlos; Musset, Lise; Purcell, Lisa A.; Mercereau-Puijalon, Odile; Legrand, Eric; Fidock, David A.

    2010-01-01

    Mutant forms of the Plasmodium falciparum transporter PfCRT constitute the key determinant of parasite resistance to chloroquine (CQ), the former first-line antimalarial, and are ubiquitous to infections that fail CQ treatment. However, treatment can often be successful in individuals harboring mutant pfcrt alleles, raising questions about the role of host immunity or pharmacokinetics vs. the parasite genetic background in contributing to treatment outcomes. To examine whether the parasite genetic background dictates the degree of mutant pfcrt-mediated CQ resistance, we replaced the wild type pfcrt allele in three CQ-sensitive strains with mutant pfcrt of the 7G8 allelic type prevalent in South America, the Oceanic region and India. Recombinant clones exhibited strain-dependent CQ responses that ranged from high-level resistance to an incremental shift that did not meet CQ resistance criteria. Nonetheless, even in the most susceptible clones, 7G8 mutant pfcrt enabled parasites to tolerate CQ pressure and recrudesce in vitro after treatment with high concentrations of CQ. 7G8 mutant pfcrt was found to significantly impact parasite responses to other antimalarials used in artemisinin-based combination therapies, in a strain-dependent manner. We also report clinical isolates from French Guiana that harbor mutant pfcrt, identical or related to the 7G8 haplotype, and manifest a CQ tolerance phenotype. One isolate, H209, harbored a novel PfCRT C350R mutation and demonstrated reduced quinine and artemisinin susceptibility. Our data: 1) suggest that high-level CQR is a complex biological process dependent on the presence of mutant pfcrt; 2) implicate a role for variant pfcrt alleles in modulating parasite susceptibility to other clinically important antimalarials; and 3) uncover the existence of a phenotype of CQ tolerance in some strains harboring mutant pfcrt. PMID:20485514

  10. Synthesis, β-hematin inhibition studies and antimalarial evaluation of dehydroxy isotebuquine derivatives against Plasmodium berghei.

    PubMed

    Romero, Angel H; Acosta, María E; Gamboa, Neira; Charris, Jaime E; Salazar, José; López, Simón E

    2015-08-01

    Diverse dehydroxy-isotebuquine derivatives were prepared by using a five step synthetic sequence in good yields. All these new 4-aminoquinolines were evaluated as inhibitors of haemozoin formation, where most of them showed a significant inhibition value (% IHF >97). The best inhibitors were tested in vivo as potential antimalarials in mice infected with Plasmodium berghei ANKA chloroquine susceptible strain, three of them (11b, 11d and 11h) displayed an antimalarial activity comparable to that of chloroquine.

  11. Analysis of chloroquine resistance transporter (CRT) isoforms and orthologues in S. cerevisiae yeast.

    PubMed

    Baro, Nicholas K; Pooput, Chaya; Roepe, Paul D

    2011-08-01

    Previous work from our laboratory optimized MeOH-inducible expression of the P. falciparum malarial parasite transporter PfCRT in P. pastoris yeast. These strains are useful for many experiments but do not allow for inducible protein expression under ambient growth conditions. We have therefore optimized galactose-inducible expression of PfCRT in S. cerevisiae yeast. We find that expression of PfCRT confers CQ hypersensitivity to growing yeast and that this is due to plasma membrane localization of the transporter. We use quantitative analyses of growth rates to compare hypersensitivity for yeast expressing various PfCRT isoforms. We also report successful high level inducible expression of the P. vivax orthologue, PvCRT, and compare CQ hypersensitivity for PvCRT vs PfCRT expressing yeast. We test the hypothesis that hypersensitivity is due to increased transport of CQ into yeast expressing the transporters via direct (3)H-CQ transport experiments and analyze the effect that membrane potential has on transport. The data suggest important new tools for rapid functional screening of PfCRT and PvCRT isoforms and provide further evidence for a model wherein membrane potential promotes charged CQ transport by PfCRT. Data also support our previous conclusion that wild type PfCRT is capable of CQ transport and provide a basis for understanding the lack of correspondence between PvCRT mutations and resistance to CQ in the important malarial parasite P. vivax.

  12. Photoaffinity Labeling of the Plasmodium falciparum Chloroquine Resistance Transporter with a Novel Perfluorophenylazido Chloroquine†

    PubMed Central

    Lekostaj, Jacqueline K.; Natarajan, Jayakumar K.; Paguio, Michelle F.; Wolf, Christian; Roepe, Paul D.

    2009-01-01

    Several models describing how amino acid substitutions in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to chloroquine (CQ) and other antimalarial drugs have been proposed. Further progress requires molecular analysis of interactions between purified reconstituted PfCRT protein and these drugs. We have thus designed and synthesized several perfluorophenyl azido (pfpa) CQ analogues for PfCRT photolabeling studies. One particularly useful probe (AzBCQ) places the pfpa group at the terminal aliphatic N of CQ via a flexible four-carbon ester linker and includes a convenient biotin tag. This probe photolabels PfCRT in situ with high specificity. Using reconstituted proteoliposomes harboring partially purified recombinant PfCRT, we analyze AzBCQ photolabeling versus competition with CQ and other drugs to probe the nature of the CQ binding site. We also inspect how pH, the chemoreversal agent verapamil (VPL), and various amino acid mutations in PfCRT that cause CQ resistance (CQR) affect the efficiency of AzBCQ photolabeling. Upon gel isolation of AzBCQ-labeled PfCRT followed by trypsin digestion and mass spectrometry analysis, we are able to define a single AzBCQ covalent attachment site lying within the digestive vacuolar-disposed loop between putative helices 9 and 10 of PfCRT. Taken together, the data provide important new insight into PfCRT function and, along with previous results, allow us to propose a model for a single CQ binding site in the PfCRT protein. PMID:18767816

  13. Diverse mutational pathways converge on saturable chloroquine transport via the malaria parasite’s chloroquine resistance transporter

    PubMed Central

    Summers, Robert L.; Dave, Anurag; Dolstra, Tegan J.; Bellanca, Sebastiano; Marchetti, Rosa V.; Nash, Megan N.; Richards, Sashika N.; Goh, Valerie; Schenk, Robyn L.; Stein, Wilfred D.; Kirk, Kiaran; Sanchez, Cecilia P.; Lanzer, Michael; Martin, Rowena E.

    2014-01-01

    Mutations in the chloroquine resistance transporter (PfCRT) are the primary determinant of chloroquine (CQ) resistance in the malaria parasite Plasmodium falciparum. A number of distinct PfCRT haplotypes, containing between 4 and 10 mutations, have given rise to CQ resistance in different parts of the world. Here we present a detailed molecular analysis of the number of mutations (and the order of addition) required to confer CQ transport activity upon the PfCRT as well as a kinetic characterization of diverse forms of PfCRT. We measured the ability of more than 100 variants of PfCRT to transport CQ when expressed at the surface of Xenopus laevis oocytes. Multiple mutational pathways led to saturable CQ transport via PfCRT, but these could be separated into two main lineages. Moreover, the attainment of full activity followed a rigid process in which mutations had to be added in a specific order to avoid reductions in CQ transport activity. A minimum of two mutations sufficed for (low) CQ transport activity, and as few as four conferred full activity. The finding that diverse PfCRT variants are all limited in their capacity to transport CQ suggests that resistance could be overcome by reoptimizing the CQ dosage. PMID:24728833

  14. 1H-1,2,3-triazole tethered isatin-ferrocene conjugates: Synthesis and in vitro antimalarial evaluation.

    PubMed

    Kumar, Kewal; Pradines, Bruno; Madamet, Marilyn; Amalvict, Rémy; Benoit, Nicolas; Kumar, Vipan

    2014-11-24

    1H-1,2,3-triazole tethered isatin-ferrocene conjugates were synthesized and evaluated for their antiplasmodial activities against chloroquine-susceptible (3D7) and chloroquine-resistant (W2) strains of Plasmodium falciparum. The conjugates 5f and 5h with an optimum combination of electron-withdrawing halogen substituent at C-5 position of isatin ring and a propyl chain, introduced as linker, proved to be most potent and non-cytotoxic among the series with IC50 values of 3.76 and 4.58 μM against 3D7 and W2 strains, respectively.

  15. Synthesis and antimalarial properties of new chloro-9H-xanthones with an aminoalkyl side chain.

    PubMed

    Portela, César; Afonso, Carlos M M; Pinto, Madalena M M; Lopes, Dinora; Nogueira, Fátima; do Rosário, Virgílio

    2007-07-01

    The synthesis and antimalarial properties of twelve new chlorinated 9H-xanthones, carrying a [2-(diethylamino)ethyl]amino group in position 1, are reported. All compounds were found to be active towards the chloroquine-susceptible and chloroquine-resistant strains 3D7 and Dd2, resp., of the protozoa parasite Plasmodium falciparum. Especially one compound, 6-chloro-1-{[2-(diethylamino)ethyl]amino}-9H-xanthen-9-one (1k), was found to exhibit significant in vitro activity (IC50 = 3.9 microM) towards the resistant Dd2 strain.

  16. Activities of Various 4-Aminoquinolines Against Infections with Chloroquine-Resistant Strains of Plasmodium falciparum1

    PubMed Central

    Schmidt, L. H.; Vaughan, Dennis; Mueller, Donna; Crosby, Ruth; Hamilton, Rebecca

    1977-01-01

    The studies reported here stemmed from a personal report by Geiman on the capacity of the 4-aminoquinoline amodiaquin to inhibit in vitro maturation of ring stages of the chloroquine-resistant Monterey strain of Plasmodium falciparum. This observation, confirmed in owl monkeys infected with this strain, led to a comparison of the activities of chloroquine, amodiaquin, amopyroquin, and dichlorquinazine (12,278 RP) against infections with various chloroquine-susceptible and chloroquine-resistant strains. The results showed that: (i) these 4-aminoquinolines were essentially equally active against infections with chloroquine-susceptible strains and (ii) the activities of amodiaquin, amopyroquin, and dichlorquinazine were reduced significantly in the face of chloroquine resistance, but (iii) well-tolerated doses of these compounds would cure infections with strains that fully resisted treatment with maximally tolerated doses of chloroquine. Two other 4-aminoquinolines, SN-8137 and SN-9584, which also exhibited activity against chloroquine-resistant parasites in vitro, displayed curative activity in monkeys infected with a chloroquine-resistant strain. These observations show that there is cross-resistance among the 4-aminoquinolines, confirming earlier findings, but indicate that the dimensions of this phenomenon are sufficiently limited so that some derivatives are therapeutically effective against infections refractory to maximally tolerated doses of chloroquine. PMID:406829

  17. Basis of antimalarial action: non-weak base effects of chloroquine on acid vesicle pH

    SciTech Connect

    Krogstad, D.J.; Schlesinger, P.H.

    1987-03-01

    Biologically active concentrations of chloroquine increase the pH of the parasite's acid vesicles within 3-5 min. This increase in pH results from two mechanisms, one of which is markedly reduced in chloroquine-resistant parasites. Because chloroquine is a weak base, it increases vesicle pH by that mechanism in chloroquine-susceptible and resistant parasites and mammalian cells (based on its two pKs and on the delta pH between the acid vesicle and the extracellular environment). In chloroquine-susceptible parasites, but not resistant parasites or mammalian cells, chloroquine increases the pH of acid vesicles 700- to 800-fold more than can be accounted for by its properties as a weak base. The increase in acid vesicle pH caused by these non-weak base effects of nanomolar chloroquine in susceptible parasites suggests that chloroquine acts by interfering with acid vesicle functions in the parasite such as the endocytosis and proteolysis of hemoglobin, and the intracellular targeting of lysosomal enzymes. The non-weak base effects of nanomolar chloroquine on parasite vesicle pH are also responsible for its safety because these chloroquine concentrations do not affect mammalian cells.

  18. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter

    PubMed Central

    Petersen, Ines; Gabryszewski, Stanislaw J.; Johnston, Geoffrey L.; Dhingra, Satish K.; Ecker, Andrea; Lewis, Rebecca E.; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp H.; Palatulan, Eugene; Johnson, David J.; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M.; Lanzer, Michael; Fidock, David A.

    2015-01-01

    Summary The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria. PMID:25898991

  19. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter.

    PubMed

    Petersen, Ines; Gabryszewski, Stanislaw J; Johnston, Geoffrey L; Dhingra, Satish K; Ecker, Andrea; Lewis, Rebecca E; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp P; Palatulan, Eugene; Johnson, David J; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M; Lanzer, Michael; Fidock, David A

    2015-07-01

    The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria.

  20. A four-year surveillance program for detection of Plasmodium falciparum chloroquine resistance in Honduras.

    PubMed

    Fontecha, Gustavo A; Sanchez, Ana L; Mendoza, Meisy; Banegas, Engels; Mejía-Torres, Rosa E

    2014-07-01

    Countries could use the monitoring of drug resistance in malaria parasites as an effective early warning system to develop the timely response mechanisms that are required to avert the further spread of malaria. Drug resistance surveillance is essential in areas where no drug resistance has been reported, especially if neighbouring countries have previously reported resistance. Here, we present the results of a four-year surveillance program based on the sequencing of the pfcrt gene of Plasmodium falciparum populations from endemic areas of Honduras. All isolates were susceptible to chloroquine, as revealed by the pfcrt "CVMNK" genotype in codons 72-76.

  1. Molecular markers of anti-malarial drug resistance in Lahj Governorate, Yemen: baseline data and implications

    PubMed Central

    2011-01-01

    Background This is an investigation of anti-malarial molecular markers coupled with a therapeutic efficacy test of chloroquine (CQ) against falciparum malaria in an area of unstable malaria in Lahj Governorate, Yemen. The study was aimed at assessment of therapeutic response to CQ and elucidation of baseline information on molecular markers for Plasmodium falciparum resistance against CQ and sulphadoxine/pyrimethamine (SP). Methods Between 2002 and 2003 the field test was conducted according to the standard WHO protocol to evaluate the therapeutic efficacy of CQ in 124 patients with falciparum malaria in an endemic area in Lahj Governorate in Yemen. Blood samples collected during this study were analysed for P. falciparum chloroquine resistance transporter gene (pfcrt)-76 polymorphisms, mutation pfcrt-S163R and the antifolate resistance-associated mutations dihydrofolate reductase (dhfr)-C59R and dihydropteroate synthase (dhps)-K540E. Direct DNA sequencing of the pfcrt gene from three representative field samples was carried out after DNA amplification of the 13 exons of the pfcrt gene. Results Treatment failure was detected in 61% of the 122 cases that completed the 14-day follow-up. The prevalence of mutant pfcrt T76 was 98% in 112 amplified pre-treatment samples. The presence of pfcrt T76 was poorly predictive of in vivo CQ resistance (PPV = 61.8%, 95% CI = 52.7-70.9). The prevalence of dhfr Arg-59 mutation in 99 amplified samples was 5%, while the dhps Glu-540 was not detected in any of 119 amplified samples. Sequencing the pfcrt gene confirmed that Yemeni CQ resistant P. falciparum carry the old world (Asian and African) CQ resistant haplotype CVIETSESI at positions 72,73,74,75,76,220,271, 326 and 371. Conclusion This is the first study to report baseline information on the characteristics and implications of anti-malarial drug resistance markers in Yemen. It is also the first report of the haplotype associated with CQR P. falciparum parasites from Yemen

  2. Synthesis and preliminary biological evaluation of a small library of hybrid compounds based on Ugi isocyanide multicomponent reactions with a marine natural product scaffold.

    PubMed

    Avilés, Edward; Prudhomme, Jacques; Le Roch, Karine G; Franzblau, Scott G; Chandrasena, Kevin; Mayer, Alejandro M S; Rodríguez, Abimael D

    2015-11-15

    A mixture-based combinatorial library of five Ugi adducts (4-8) incorporating known antitubercular and antimalarial pharmacophores was successfully synthesized, starting from the naturally occurring diisocyanide 3, via parallel Ugi four-center three-component reactions (U-4C-3CR). The novel α-acylamino amides obtained were evaluated for their antiinfective potential against laboratory strains of Mycobacterium tuberculosis H37Rv and chloroquine-susceptible 3D7 Plasmodium falciparum. Interestingly, compounds 4-8 displayed potent in vitro antiparasitic activity with higher cytotoxicity in comparison to their diisocyanide precursor 3, with the best compound exhibiting an IC50 value of 3.6 nM. Additionally, these natural product inspired hybrids potently inhibited in vitro thromboxane B2 (TXB2) and superoxide anion (O2(-)) generation from Escherichia coli lipopolysaccharide (LPS)-activated rat neonatal microglia, with concomitant low short-term toxicity. PMID:26421992

  3. Chloroquine-resistant malaria in travelers returning from Haiti after 2010 earthquake.

    PubMed

    Gharbi, Myriam; Pillai, Dylan R; Lau, Rachel; Hubert, Véronique; Khairnar, Krishna; Existe, Alexandre; Kendjo, Eric; Dahlström, Sabina; Guérin, Philippe J; Le Bras, Jacques

    2012-08-01

    We investigated chloroquine sensitivity to Plasmodium falciparum in travelers returning to France and Canada from Haiti during a 23-year period. Two of 19 isolates obtained after the 2010 earthquake showed mixed pfcrt 76K+T genotype and high 50% inhibitory concentration. Physicians treating malaria acquired in Haiti should be aware of possible chloroquine resistance.

  4. Characterization of the Chloroquine Resistance Transporter Homologue in Toxoplasma gondii

    PubMed Central

    Warring, Sally D.; Dou, Zhicheng; Carruthers, Vern B.; McFadden, Geoffrey I.

    2014-01-01

    Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein confer resistance to the antimalarial drug chloroquine. PfCRT localizes to the parasite digestive vacuole, the site of chloroquine action, where it mediates resistance by transporting chloroquine out of the digestive vacuole. PfCRT belongs to a family of transporter proteins called the chloroquine resistance transporter family. CRT family proteins are found throughout the Apicomplexa, in some protists, and in plants. Despite the importance of PfCRT in drug resistance, little is known about the evolution or native function of CRT proteins. The apicomplexan parasite Toxoplasma gondii contains one CRT family protein. We demonstrate that T. gondii CRT (TgCRT) colocalizes with markers for the vacuolar (VAC) compartment in these parasites. The TgCRT-containing VAC is a highly dynamic organelle, changing its morphology and protein composition between intracellular and extracellular forms of the parasite. Regulated knockdown of TgCRT expression resulted in modest reduction in parasite fitness and swelling of the VAC, indicating that TgCRT contributes to parasite growth and VAC physiology. Together, our findings provide new information on the role of CRT family proteins in apicomplexan parasites. PMID:24859994

  5. Characterization of the chloroquine resistance transporter homologue in Toxoplasma gondii.

    PubMed

    Warring, Sally D; Dou, Zhicheng; Carruthers, Vern B; McFadden, Geoffrey I; van Dooren, Giel G

    2014-11-01

    Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein confer resistance to the antimalarial drug chloroquine. PfCRT localizes to the parasite digestive vacuole, the site of chloroquine action, where it mediates resistance by transporting chloroquine out of the digestive vacuole. PfCRT belongs to a family of transporter proteins called the chloroquine resistance transporter family. CRT family proteins are found throughout the Apicomplexa, in some protists, and in plants. Despite the importance of PfCRT in drug resistance, little is known about the evolution or native function of CRT proteins. The apicomplexan parasite Toxoplasma gondii contains one CRT family protein. We demonstrate that T. gondii CRT (TgCRT) colocalizes with markers for the vacuolar (VAC) compartment in these parasites. The TgCRT-containing VAC is a highly dynamic organelle, changing its morphology and protein composition between intracellular and extracellular forms of the parasite. Regulated knockdown of TgCRT expression resulted in modest reduction in parasite fitness and swelling of the VAC, indicating that TgCRT contributes to parasite growth and VAC physiology. Together, our findings provide new information on the role of CRT family proteins in apicomplexan parasites.

  6. Full-length sequence analysis of chloroquine resistance transporter gene in Plasmodium falciparum isolates from Sabah, Malaysia.

    PubMed

    Tan, Lii Lian; Lau, Tiek Ying; Timothy, William; Prabakaran, Dhanaraj

    2014-01-01

    Chloroquine resistance (CQR) in falciparum malaria was identified to be associated with several mutations in the chloroquine resistance transporter gene (pfcrt) that encodes the transmembrane transporter in digestive vacuole membrane of the parasite. This study aimed to investigate the point mutations across the full-length pfcrt in Plasmodium falciparum isolates in Sabah, Malaysia. A total of 31 P. falciparum positive samples collected from Keningau, Kota Kinabalu, and Kudat, Sabah, were analyzed. pfcrt was PCR amplified and cloned prior to sequence analysis. This study showed that all the previously described 10 point mutations associated with CQR at codons 72, 74, 75, 76, 97, 220, 271, 326, 356, and 371 were found with different prevalence. Besides, two novel point mutations, I166V and H273N, were identified with 22.5% and 19.3%, respectively. Three haplotypes, namely, CVMNK (29%), CVIET (3.2%), and SVMNT (67.7%), were identified. High prevalence of SVMNT among P. falciparum isolates from Sabah showed that these isolates are closer to the P. falciparum isolates from Papua New Guinea rather than to the more proximal Southeast Asian CVIET haplotype. Full-length analysis of pfcrt showed that chloroquine resistant P. falciparum in Sabah is still prevalent despite the withdrawal of chloroquine usage since 1979. PMID:25574497

  7. Quinine dimers are potent inhibitors of the Plasmodium falciparum chloroquine resistance transporter and are active against quinoline-resistant P. falciparum.

    PubMed

    Hrycyna, Christine A; Summers, Robert L; Lehane, Adele M; Pires, Marcos M; Namanja, Hilda; Bohn, Kelsey; Kuriakose, Jerrin; Ferdig, Michael; Henrich, Philipp P; Fidock, David A; Kirk, Kiaran; Chmielewski, Jean; Martin, Rowena E

    2014-03-21

    Chloroquine (CQ) resistance in the human malaria parasite Plasmodium falciparum is primarily conferred by mutations in the "chloroquine resistance transporter" (PfCRT). The resistance-conferring form of PfCRT (PfCRT(CQR)) mediates CQ resistance by effluxing the drug from the parasite's digestive vacuole, the acidic compartment in which CQ exerts its antiplasmodial effect. PfCRT(CQR) can also decrease the parasite's susceptibility to other quinoline drugs, including the current antimalarials quinine and amodiaquine. Here we describe interactions between PfCRT(CQR) and a series of dimeric quinine molecules using a Xenopus laevis oocyte system for the heterologous expression of PfCRT and using an assay that detects the drug-associated efflux of H(+) ions from the digestive vacuole in parasites that harbor different forms of PfCRT. The antiplasmodial activities of dimers 1 and 6 were also examined in vitro (against drug-sensitive and drug-resistant strains of P. falciparum) and in vivo (against drug-sensitive P. berghei). Our data reveal that the quinine dimers are the most potent inhibitors of PfCRT(CQR) reported to date. Furthermore, the lead compounds (1 and 6) were not effluxed by PfCRT(CQR) from the digestive vacuole but instead accumulated to very high levels within this organelle. Both 1 and 6 exhibited in vitro antiplasmodial activities that were inversely correlated with CQ. Moreover, the additional parasiticidal effect exerted by 1 and 6 in the drug-resistant parasites was attributable, at least in part, to their ability to inhibit PfCRT(CQR). This highlights the potential for devising new antimalarial therapies that exploit inherent weaknesses in a key resistance mechanism of P. falciparum.

  8. Absence of association between pyronaridine in vitro responses and polymorphisms in genes involved in quinoline resistance in Plasmodium falciparum

    PubMed Central

    2010-01-01

    Background The aim of the present work was to assess the in vitro cross-resistance of pyronaridine with other quinoline drugs, artesunate and several other commonly used anti-malarials and to evaluate whether decreased susceptibility to pyronaridine could be associated with genetic polymorphisms in genes involved in reduced quinoline susceptibility, such as pfcrt, pfmdr1, pfmrp and pfnhe. Methods The in vitro chemosusceptibility profiles of 23 strains of Plasmodium falciparum were analysed by the standard 42-hour 3H-hypoxanthine uptake inhibition method for pyronaridine, artesunate, chloroquine, monodesethylamodiaquine, quinine, mefloquine, lumefantrine, atovaquone, pyrimethamine and doxycycline. Genotypes were assessed for pfcrt, pfmdr1, pfnhe-1 and pfmrp genes. Results The IC50 values for pyronaridine ranged from 15 to 49 nM (geometric mean = 23.1 nM). A significant positive correlation was found between responses to pyronaridine and responses to artesunate (r2 = 0.20; P = 0.0317) but too low to suggest cross-resistance. No significant correlation was found between pyronaridine IC50 and responses to other anti-malarials. Significant associations were not found between pyronaridine IC50 and polymorphisms in pfcrt, pfmdr1, pfmrp or pfnhe-1. Conclusion There was an absence of cross-resistance between pyronaridine and quinolines, and the IC50 values for pyronaridine were found to be unrelated to mutations in the transport protein genes pfcrt, pfmdr1, pfmrp or pfnhe-1, known to be involved in quinoline resistance. These results confirm the interest and the efficacy of the use of a combination of pyronaridine and artesunate in areas in which parasites are resistant to quinolines. PMID:21108786

  9. Molecular surveillance of antimalarial drug resistance related genes in Plasmodium falciparum isolates from Eritrea.

    PubMed

    Menegon, Michela; Nurahmed, Abduselam M; Talha, Albadawi A; Nour, Bakri Y M; Severini, Carlo

    2016-05-01

    The introduction of artemisinin-based combination therapy has led to extraordinary results in malaria control, however the recent emergence of partial resistance to artemisinin therapy in Southeast Asia jeopardizes these successes. This study aimed at investigating resistance to the antimalarial drugs by evaluating the polymorphisms in the PfK13, Pfcrt and Pfmdr1 genes in Plasmodium falciparum isolates obtained from patients in Eritrea.

  10. Dynamics of Malaria Drug Resistance Patterns in the Amazon Basin Region following Changes in Peruvian National Treatment Policy for Uncomplicated Malaria▿ †

    PubMed Central

    Bacon, David J.; McCollum, Andrea M.; Griffing, Sean M.; Salas, Carola; Soberon, Valeria; Santolalla, Meddly; Haley, Ryan; Tsukayama, Pablo; Lucas, Carmen; Escalante, Ananias A.; Udhayakumar, Venkatachalam

    2009-01-01

    Monitoring changes in the frequencies of drug-resistant and -sensitive genotypes can facilitate in vivo clinical trials to assess the efficacy of drugs before complete failure occurs. Peru changed its national treatment policy for uncomplicated malaria to artesunate (ART)-plus-mefloquine (MQ) combination therapy in the Amazon basin in 2001. We genotyped isolates collected in 1999 and isolates collected in 2006 to 2007 for mutations in the Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes, multidrug resistance gene 1 (Pfmdr-1), the chloroquine (CQ) resistance transporter gene (Pfcrt), and the Ca2+ ATPase gene (PfATP6); these have been shown to be involved in resistance to sulfadoxine-pyrimethamine (SP), MQ, CQ, and possibly ART, respectively. Microsatellite haplotypes around the Pfdhfr, Pfdhps, Pfcrt, and Pfmdr-1 loci were also determined. There was a significant decline in the highly SP resistant Pfdhfr and Pfdhps genotypes from 1999 to 2006. In contrast, a CQ-resistant Pfcrt genotype increased in frequency during the same period. Among five different Pfmdr-1 allelic forms noted in 1999, two genotypes increased in frequency while one genotype decreased by 2006. We also noted previously undescribed polymorphisms in the PfATP6 gene as well as an increase in the frequency of a deletion mutant during this period. In addition, microsatellite analysis revealed that the resistant Pfdhfr, Pfdhps, and Pfcrt genotypes have each evolved from a single founder haplotype, while Pfmdr-1 genotypes have evolved from at least two independent haplotypes. Importantly, this study demonstrates that the Peruvian triple mutant Pfdhps genotypes are very similar to those found in other parts of South America. PMID:19258269

  11. 1H-NMR metabolite profiles of different strains of Plasmodium falciparum

    PubMed Central

    Teng, Rongwei; Lehane, Adele M.; Winterberg, Markus; Shafik, Sarah H.; Summers, Robert L.; Martin, Rowena E.; van Schalkwyk, Donelly A.; Junankar, Pauline R.; Kirk, Kiaran

    2014-01-01

    Although efforts to understand the basis for inter-strain phenotypic variation in the most virulent malaria species, Plasmodium falciparum, have benefited from advances in genomic technologies, there have to date been few metabolomic studies of this parasite. Using 1H-NMR spectroscopy, we have compared the metabolite profiles of red blood cells infected with different P. falciparum strains. These included both chloroquine-sensitive and chloroquine-resistant strains, as well as transfectant lines engineered to express different isoforms of the chloroquine-resistance-conferring pfcrt (P. falciparum chloroquine resistance transporter). Our analyses revealed strain-specific differences in a range of metabolites. There was marked variation in the levels of the membrane precursors choline and phosphocholine, with some strains having >30-fold higher choline levels and >5-fold higher phosphocholine levels than others. Chloroquine-resistant strains showed elevated levels of a number of amino acids relative to chloroquine-sensitive strains, including an approximately 2-fold increase in aspartate levels. The elevation in amino acid levels was attributable to mutations in pfcrt. Pfcrt-linked differences in amino acid abundance were confirmed using alternate extraction and detection (HPLC) methods. Mutations acquired to withstand chloroquine exposure therefore give rise to significant biochemical alterations in the parasite. PMID:25405893

  12. 1H-NMR metabolite profiles of different strains of Plasmodium falciparum.

    PubMed

    Teng, Rongwei; Lehane, Adele M; Winterberg, Markus; Shafik, Sarah H; Summers, Robert L; Martin, Rowena E; van Schalkwyk, Donelly A; Junankar, Pauline R; Kirk, Kiaran

    2014-01-01

    Although efforts to understand the basis for inter-strain phenotypic variation in the most virulent malaria species, Plasmodium falciparum, have benefited from advances in genomic technologies, there have to date been few metabolomic studies of this parasite. Using 1H-NMR spectroscopy, we have compared the metabolite profiles of red blood cells infected with different P. falciparum strains. These included both chloroquine-sensitive and chloroquine-resistant strains, as well as transfectant lines engineered to express different isoforms of the chloroquine-resistance-conferring pfcrt (P. falciparum chloroquine resistance transporter). Our analyses revealed strain-specific differences in a range of metabolites. There was marked variation in the levels of the membrane precursors choline and phosphocholine, with some strains having >30-fold higher choline levels and >5-fold higher phosphocholine levels than others. Chloroquine-resistant strains showed elevated levels of a number of amino acids relative to chloroquine-sensitive strains, including an approximately 2-fold increase in aspartate levels. The elevation in amino acid levels was attributable to mutations in pfcrt. Pfcrt-linked differences in amino acid abundance were confirmed using alternate extraction and detection (HPLC) methods. Mutations acquired to withstand chloroquine exposure therefore give rise to significant biochemical alterations in the parasite. PMID:25405893

  13. Selective activity of 5-fluoroorotic acid against Plasmodium falciparum in vitro.

    PubMed Central

    Rathod, P K; Khatri, A; Hubbert, T; Milhous, W K

    1989-01-01

    Unlike mammalian cells, malarial parasites are completely dependent on de novo pyrimidine metabolism. Even though these parasites do not use external uracil or uridine, orotic acid, an intermediate of pyrimidine biosynthesis, is successfully transported into the parasite and incorporated into parasite nucleic acids. On this basis, it was hypothesized that 5-fluoroorotate, a cytotoxic derivative of orotic acid, may be a potent and selective antimalarial agent. In vitro, 5-fluoroorotate caused 50% inhibition of the growth of Plasmodium falciparum at a concentration of 6.0 nM. In contrast, 5-fluorouracil, 5-fluorouridine, and 5-fluoro 2'-deoxyuridine were much less effective against malarial parasites. Chloroquine-susceptible and chloroquine-resistant clones of P. falciparum were equally susceptible to 5-fluoroorotate. The toxicity of 5-fluoroorotate was evaluated on four human cell lines (HT-1080, IMR-90, HeLa S3, and HL-60) and one mouse cell line (L-1210). Compared with malarial parasites, the mammalian cells were relatively tolerant of 5-fluoroorotic acid (50% inhibitory concentration, 0.9 to 10 microM). Finally, in the presence of 1 mM uridine, all mammalian cells were partially protected from 5-fluoroorotate cytotoxicity, but uridine offered no protection to P. falciparum. PMID:2675756

  14. Antimalarial dyes revisited: xanthenes, azines, oxazines, and thiazines.

    PubMed Central

    Vennerstrom, J L; Makler, M T; Angerhofer, C K; Williams, J A

    1995-01-01

    In 1891 Guttmann and Ehrlich (P. Guttmann and P. Ehrlich, Berlin Klin. Wochenschr. 28:953-956, 1891) were the first to report the antimalarial properties of a synthetic, rather than a natural, material when they described the clinical cure of two patients after oral administration of a thiazine dye, methylene blue. Since that time, sporadic reports of the antimalarial properties of several xanthene and azine dyes related to methylene blue have been noted. We report here the results from a reexamination of the antimalarial properties of methylene blue. Janus green B, and three rhodamine dyes and disclose new antimalarial data for 16 commercially available structural analogs of these dyes. The 50% inhibitory concentrations for the chloroquine-susceptible D6 clone and SN isolate and the chloroquine-resistant W2 clone of Plasmodium falciparum were determined by the recently described parasite lactate dehydrogenase enzyme assay. No cross-resistance to chloroquine was observed for any of the dyes. For the 21 dyes tested, no correlation was observed between antimalarial activity and cytotoxicity against KB cells. No correlation between log P (where P is the octanol/water partition coefficient) or relative catalyst efficiency for glucose oxidation and antimalarial activity or cytotoxicity was observed for the dyes as a whole or for the thiazine dyes. The thiazine dyes were the most uniformly potent structural class tested, and among the dyes in this class, methylene blue was notable for both its high antimalarial potency and selectivity. PMID:8593000

  15. Management of relapsing Plasmodium vivax malaria

    PubMed Central

    Chu, Cindy S; White, Nicholas J

    2016-01-01

    ABSTRACT Introduction: Relapses are important contributors to illness and morbidity in Plasmodium vivax and P. ovale infections. Relapse prevention (radical cure) with primaquine is required for optimal management, control and ultimately elimination of Plasmodium vivax malaria. A review was conducted with publications in English, French, Portuguese and Spanish using the search terms ‘P. vivax’ and ‘relapse’. Areas covered: Hypnozoites causing relapses may be activated weeks or months after initial infection. Incidence and temporal patterns of relapse varies geographically. Relapses derive from parasites either genetically similar or different from the primary infection indicating that some derive from previous infections. Malaria illness itself may activate relapse. Primaquine is the only widely available treatment for radical cure. However, it is often not given because of uncertainty over the risks of primaquine induced haemolysis when G6PD deficiency testing is unavailable. Recommended dosing of primaquine for radical cure in East Asia and Oceania is 0.5 mg base/kg/day and elsewhere is 0.25 mg base/kg/day. Alternative treatments are under investigation. Expert commentary: Geographic heterogeneity in relapse patterns and chloroquine susceptibility of P. vivax, and G6PD deficiency epidemiology mean that radical treatment should be given much more than it is today. G6PD testing should be made widely available so primaquine can be given more safely. PMID:27530139

  16. Plasmodium vivax drug resistance genes; Pvmdr1 and Pvcrt-o polymorphisms in relation to chloroquine sensitivity from a malaria endemic area of Thailand.

    PubMed

    Rungsihirunrat, Kanchana; Muhamad, Poonuch; Chaijaroenkul, Wanna; Kuesap, Jiraporn; Na-Bangchang, Kesara

    2015-02-01

    The aim of the study was to explore the possible molecular markers of chloroquine resistance in Plasmodium vivax isolates in Thailand. A total of 30 P. vivax isolates were collected from a malaria endemic area along the Thai-Myanmar border in Mae Sot district of Thailand. Dried blood spot samples were collected for analysis of Pvmdr1 and Pvcrt-o polymorphisms. Blood samples (100 μl) were collected by finger-prick for in vitro chloroquine susceptibility testing by schizont maturation inhibition assay. Based on the cut-off IC50 of 100 nM, 19 (63.3%) isolates were classified as chloroquine resistant P. vivax isolates. Seven non-synonymous mutations and 2 synonymous were identified in Pvmdr1 gene. Y976F and F1076L mutations were detected in 7 (23.3%) and 16 isolates (53.3%), respectively. Analysis of Pvcrt-o gene revealed that all isolates were wild-type. Our results suggest that chloroquine resistance gene is now spreading in this area. Monitoring of chloroquine resistant molecular markers provide a useful tool for future control of P. vivax malaria.

  17. Mutant Plasmodium falciparum chloroquine resistance transporter in Hodeidah, Yemen: association with parasitologic indices and treatment-seeking behaviors.

    PubMed

    Abdul-Ghani, Rashad; Farag, Hoda F; Allam, Amal F; Shawky, Sherine M; Al-Mekhlafi, Abdulsalam M

    2013-12-01

    Malaria still represents a major health problem in Yemen, particularly in Hodeidah, despite continuing efforts to eliminate it. With the absence of clinically proven vaccines, chemotherapy with antimalarials is still greatly needed. Chloroquine (CQ) has been popular as the drug of choice for malaria control. However, Plasmodium falciparum resistance to CQ has been one of the main obstacles in malaria control and elimination. Although CQ is no longer the recommended antimalarial chemotherapy, it has remained the number one over-the-counter antimalarial drug in many endemic areas, including Yemen, and is still used for self-medication. In addition, promising reports on CQ efficacy reversal in many African countries brought it again into the scene. This has led to a growing interest in the possibility of its re-introduction, particularly with the concerns raised about the parasite resistance to artemisinin-based combination therapies. Therefore, the present study aimed at analyzing the CQ-associated pfcrt 76T mutation in P. falciparum isolates from patients with uncomplicated falciparum malaria in Hodeidah, west of Yemen. The association of treatment-seeking behaviors and antimalarial drug use with the pfcrt 76T mutant allele was also studied. It was revealed that there is still a sustained high frequency of this molecular marker among parasite isolates associated with younger age, decreased parasite density and the presence of gametocytes in blood. Delay in seeking treatment and frequent use of antimalarials were the behaviors significantly associated with the presence of the pfcrt 76T mutant allele among patients reporting a history of malaria treatment.

  18. Detection of chloroquine and artemisinin resistance molecular markers in Plasmodium falciparum: A hospital based study

    PubMed Central

    Ramani, S; Parija, Subhash Chandra; Mandal, Jharna; Hamide, Abdoul; Bhat, Vishnu

    2016-01-01

    Introduction: Emergence of chloroquine (CQ) resistance in Plasmodium falciparum has increased the morbidity and mortality of falciparum malaria worldwide. Artemisinin-based combination therapies are now recommended by the World Health Organization as the first line treatment for falciparum malaria. Numerous molecular markers have been implicated in the CQ and artemisinin resistance. Materials and Methods: A total of 26 confirmed cases of falciparum malaria (by giemsa stained thick and thin smear, quantitative buffy coat, immunochromatographic test, or polymerase chain reaction [PCR]) were included in the study. About 5 ml of ethylenediaminetetraacetic acid blood sample was collected and stored at −20°C till use. Plasmodium DNA was extracted using QIAamp whole blood DNA extraction kit. PCR was done to amplify pfcrt, pfmdr1, pfserca, and pfmrp1 genes and the amplicons obtained were sequenced by Macrogen, Inc., Korea. Single nucleotide polymorphism (SNP) analysis was done using Bio-Edit Sequence Alignment Editor. Results: Out of the four genes targeted, we noted a SNP in the pfcrt gene alone. This SNP (G > T) was noted in the 658th position of the gene, which was seen in 13 patients. The pfmdr1 and pfserca genes were present in 9 and 14 patients respectively. But we could not find any SNPs in these genes. This SNP in pfcrt gene was not significantly associated with any adverse outcome and neither altered disease progression. Conclusion: Presence of a single SNP may not be associated with any adverse clinical outcome. As the sample size was small, we may have not been able to detect any other known or unknown polymorphisms. PMID:26998436

  19. Molecular markers associated with resistance to commonly used antimalarial drugs among Plasmodium falciparum isolates from a malaria-endemic area in Taiz governorate-Yemen during the transmission season.

    PubMed

    Alareqi, Lina M Q; Mahdy, Mohammed A K; Lau, Yee-Ling; Fong, Mun-Yik; Abdul-Ghani, Rashad; Mahmud, Rohela

    2016-10-01

    Since 2005, artesunate (AS) plus sulfadoxine/pyrimethamine (SP) combination has been adopted as the first-line treatment for uncomplicated malaria in Yemen in response to the high level of Plasmodium falciparum resistance to chloroquine (CQ). Therefore, the aim of the present study was to determine the frequency distribution of molecular markers associated with resistance to CQ and AS plus SP combination among P. falciparum isolates from a malaria-endemic area in Taiz governorate, Yemen. Fifty P. falciparum isolates were collected during a cross-sectional study in Mawza district, Taiz, in the period from October 2013 to April 2014. The isolates were investigated for drug resistance-associated molecular markers in five genes, including P. falciparum CQ resistance transporter (pfcrt) 76T and P. falciparum multidrug resistance 1 (pfmdr1) 86Y as markers of resistance to CQ, mutations in the Kelch 13 (K13) propeller domain for resistance to AS, and P. falciparum dihydrofolate reductase (pfdhfr) and P. falciparum dihydropteroate synthase (pfdhps) genes for resistance to SP. Nested polymerase chain reaction was used to amplify target genes in DNA extracts of the isolates followed by restriction fragment length polymorphism for detecting 76T and 86Y mutations in pfcrt and pfmdr1, respectively, and by DNA sequencing for detecting mutations in K13, pfdhfr and pfdhps. All the investigated isolates from Mawza district were harboring the pfcrt 76T mutant and the pfmdr1 N86 wild-type alleles. The pfdhfr 51I/108N double mutant allele was found in 2.2% (1/45) of the isolates; however, no mutations were detected at codons 436, 437, 540, 581 and 613 of pfdhps. All P. falciparum isolates that were successfully sequenced (n=47) showed the K13 Y493, R539, I543 and C580 wild-type alleles. In conclusion, the pfcrt 76T mutant allele is fixed in the study area about six years after the official withdrawal of CQ, possibly indicating its over-the-counter availability and continued use as a

  20. Comparative assessment on the prevalence of mutations in the Plasmodium falciparum drug-resistant genes in two different ecotypes of Odisha state, India.

    PubMed

    Kar, Narayani Prasad; Chauhan, Kshipra; Nanda, Nutan; Kumar, Ashwani; Carlton, Jane M; Das, Aparup

    2016-07-01

    Considering malaria as a local and focal disease, epidemiological understanding of different ecotypes of malaria can help in devising novel control measures. One of the major hurdles in malaria control lies on the evolution and dispersal of the drug-resistant malaria parasite, Plasmodium falciparum. We herewith present data on genetic variation at the Single Nucleotide Polymorphism (SNP) level in four different genes of P. falciparum (Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps) that confer resistance to different antimalarials in two different eco-epidemiological settings, i.e. Hilly-Forest (HF) and Riverine-Plain (RP), in a high malaria endemic district of Odisha state, India. Greater frequency of antimalarial resistance conferring SNPs and haplotypes was observed in all four genes in P. falciparum, and Pfdhps was the most variable gene among the four. No significant genetic differentiation could be observed in isolates from HF and RP ecotypes. Twelve novel, hitherto unreported nucleotide mutations could be observed in the Pfmdr1 and Pfdhps genes. While the Pfdhps gene presented highest haplotype diversity, the Pfcrt gene displayed the highest nucleotide diversity. When the data on all the four genes were complied, the isolates from HF ecotype were found to harbour higher average nucleotide diversity than those coming from RP ecotype. High and positive Tajima's D values were obtained for the Pfcrt and Pfdhfr genes in isolates from both the HF and RP ecotypes, with statistically significant deviation from neutrality in the RP ecotype. Different patterns of Linkage Disequilibrium (LD) among SNPs located in different drug-resistant genes were found in the isolates collected from HF and RP ecotypes. Whereas in the HF ecotype, SNPs in the Pfmdr1 and Pfdhfr were significantly associated, in the RP ecotype, SNPs located in Pfcrt were associated with Pfmdr1, Pfdhfr and Pfdhps. These findings provide a baseline understanding on how different micro eco-epidemiological settings

  1. Molecular markers associated with resistance to commonly used antimalarial drugs among Plasmodium falciparum isolates from a malaria-endemic area in Taiz governorate-Yemen during the transmission season.

    PubMed

    Alareqi, Lina M Q; Mahdy, Mohammed A K; Lau, Yee-Ling; Fong, Mun-Yik; Abdul-Ghani, Rashad; Mahmud, Rohela

    2016-10-01

    Since 2005, artesunate (AS) plus sulfadoxine/pyrimethamine (SP) combination has been adopted as the first-line treatment for uncomplicated malaria in Yemen in response to the high level of Plasmodium falciparum resistance to chloroquine (CQ). Therefore, the aim of the present study was to determine the frequency distribution of molecular markers associated with resistance to CQ and AS plus SP combination among P. falciparum isolates from a malaria-endemic area in Taiz governorate, Yemen. Fifty P. falciparum isolates were collected during a cross-sectional study in Mawza district, Taiz, in the period from October 2013 to April 2014. The isolates were investigated for drug resistance-associated molecular markers in five genes, including P. falciparum CQ resistance transporter (pfcrt) 76T and P. falciparum multidrug resistance 1 (pfmdr1) 86Y as markers of resistance to CQ, mutations in the Kelch 13 (K13) propeller domain for resistance to AS, and P. falciparum dihydrofolate reductase (pfdhfr) and P. falciparum dihydropteroate synthase (pfdhps) genes for resistance to SP. Nested polymerase chain reaction was used to amplify target genes in DNA extracts of the isolates followed by restriction fragment length polymorphism for detecting 76T and 86Y mutations in pfcrt and pfmdr1, respectively, and by DNA sequencing for detecting mutations in K13, pfdhfr and pfdhps. All the investigated isolates from Mawza district were harboring the pfcrt 76T mutant and the pfmdr1 N86 wild-type alleles. The pfdhfr 51I/108N double mutant allele was found in 2.2% (1/45) of the isolates; however, no mutations were detected at codons 436, 437, 540, 581 and 613 of pfdhps. All P. falciparum isolates that were successfully sequenced (n=47) showed the K13 Y493, R539, I543 and C580 wild-type alleles. In conclusion, the pfcrt 76T mutant allele is fixed in the study area about six years after the official withdrawal of CQ, possibly indicating its over-the-counter availability and continued use as a

  2. In Vitro and In Vivo Antimalarial Activity Assays of Seeds from Balanites aegyptiaca: Compounds of the Extract Show Growth Inhibition and Activity against Plasmodial Aminopeptidase

    PubMed Central

    Kusch, Peter; Deininger, Susanne; Specht, Sabine; Maniako, Rudeka; Haubrich, Stefanie; Pommerening, Tanja; Lin, Paul Kong Thoo; Hoerauf, Achim; Kaiser, Annette

    2011-01-01

    Balanites aegyptiaca (Balanitaceae) is a widely grown desert plant with multiuse potential. In the present paper, a crude extract from B. aegyptiaca seeds equivalent to a ratio of 1 : 2000 seeds to the extract was screened for antiplasmodial activity. The determined IC50 value for the chloroquine-susceptible Plasmodium falciparum NF54 strain was 68.26 μg/μL ± 3.5. Analysis of the extract by gas chromatography-mass spectrometry detected 6-phenyl-2(H)-1,2,4-triazin-5-one oxime, an inhibitor of the parasitic M18 Aspartyl Aminopeptidase as one of the compounds which is responsible for the in vitro antiplasmodial activity. The crude plant extract had a Ki of 2.35 μg/μL and showed a dose-dependent response. After depletion of the compound, a significantly lower inhibition was determined with a Ki of 4.8 μg/μL. Moreover, two phenolic compounds, that is, 2,6-di-tert-butyl-phenol and 2,4-di-tert-butyl-phenol, with determined IC50 values of 50.29 μM ± 3 and 47.82 μM ± 2.5, respectively, were detected. These compounds may contribute to the in vitro antimalarial activity due to their antioxidative properties. In an in vivo experiment, treatment of BALB/c mice with the aqueous Balanite extract did not lead to eradication of the parasites, although a reduced parasitemia at day 12 p.i. was observed. PMID:21687598

  3. 77 FR 22504 - Hazardous Materials; Packages Intended for Transport by Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... special provisions and packing instructions, respectively. Lastly, because organic peroxide liquids are no... 8. Lonnie Jaycox 9. European Chemistry Industry Council (CEFIC) A. Secondary Means of Closure Three... packaging stock for integrity and is consistent with amendments recently adopted under Docket HM-215K (76...

  4. 78 FR 15017 - Guidance for Industry: What You Need To Know About Administrative Detention of Foods; Small...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... regulations in 21 CFR part 1, subpart K (76 FR 25538), that pertain to the criteria for ordering... Administrative Detention of Foods,'' (76 FR 66073, October 25, 2011). The guidance was intended to provide... February 5, 2013 (78 FR 7994), FDA issued a final rule adopting the IFR as final without changes. The...

  5. 77 FR 60334 - New Marking Standards for Parcels Containing Hazardous Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Hazardous Materials Safety Administration (PHMSA) published final rule HM-215K (76 FR 3308- 3389), which... class 5.1 (oxidizing substances), hazard class 5.2 (organic peroxides) and hazard class 8 (corrosives...'' column (only) as follows:] 5 Oxidizing Substances, Only Mailable Limited Organic Peroxides....

  6. 77 FR 70895 - New Marking Standards for Parcels Containing Hazardous Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ...) published final rule HM-215K (76 FR 3308- 3389), which harmonized the requirements of the U.S. Hazardous... Postal Service published a proposed rule in the Federal Register (77 FR 60334-60339) to announce its...), hazard Class 5.2 (organic peroxides) and hazard Class 8 (corrosives). The DOT will no longer define...

  7. Distribution of Drug Resistance Genotypes in Plasmodium falciparum in an Area of Limited Parasite Diversity in Saudi Arabia

    PubMed Central

    Bin Dajem, Saad M.; Al-Farsi, Hissa M.; Al-Hashami, Zainab S.; Al-Sheikh, Adel Ali H.; Al-Qahtani, Ahmed; Babiker, Hamza A.

    2012-01-01

    Two hundred and three Plasmodium falciparum isolates from Jazan area, southwest Saudi Arabia, were typed for Pfcrt, Pfmdr1, dhps, and dhfr mutations associated with resistance to chloroquine, mefloquine, halofantrine, artemisinin, sulfadoxine-pyrimethamine, and the neutral polymorphic gene Pfg377. A large proportion (33%) of isolates harbored double mutant dhfr genotype (51I,59C,108N). However, only one isolate contained mutation dhps-437G. For Pfcrt, almost all examined isolates (163; 99%) harbored the mutant genotype (72C,73V,74I,75E,76T), whereas only 49 (31%) contained the mutant Pfmdr1 genotype (86Y,184F,1034S,1042N), 109 (66%) harbored the single mutant genotype (86N,184F,1034S,1042N), and no mutations were seen in codons 1034, 1042, and 1246. Nonetheless, three new single-nucleotide polymorphisms were detected at codons 182, 192, and 102. No differences were seen in distribution of drug resistance genes among Saudis and expatriates. There was a limited multiplicity (5%), mean number of clones (1.05), and two dominant multilocus genotypes among infected individuals in Jazan. A pattern consistent with limited cross-mating and recombination among local parasite was apparent. PMID:22556074

  8. Selection of pfdhfr/pfdhps alleles and declining artesunate/sulphadoxine-pyrimethamine efficacy against Plasmodium falciparum eight years after deployment in eastern Sudan

    PubMed Central

    2013-01-01

    Background Artesunate/sulphadoxine-pyrimethamine (AS/SP) has been the first-line treatment for falciparum malaria in Sudan since 2004. The impact of this combination on anti-malarial resistance-associated molecular markers has not been investigated. In this study, an evaluation of the efficacy and prevalence of drug resistance alleles (pfcrt, pfmdr1, pfdhfr and pfdhps) eight years after the adoption of AS/SP in eastern Sudan is reported. Methods A 28-day follow-up efficacy trial of AS/SP was conducted in eastern Sudan during the 2012 transmission season. Blood smears were collected from patients on days 0, 1, 2, 3, 7, 14, 21 and 28. Blood spots on filter paper were obtained pre-treatment and on the day the patient was parasite positive by microscopy. Genotyping of alleles was performed by qPCR (pfcrt 72–76 and pfmdr1 copy number) and direct sequencing of pfmdr1, pfdhfr and pfdhps. Results Sixty-three patients out of 68 (93%) completed the 28-day follow-up, adequate clinical, and parasitological response occurred in 90.5% and 85.3% of the patients in the per-protocol and intent-to-treat analyses, respectively. PCR corrected per-protocol efficacy was 93.7%. The enrolment prevalence of pfcrt-CVMNK was 30.2% and pfmdr1-N86 was 40.3%. The pfmdr1 haplotype NFD occurred in 32.8% of pre-treatment samples and was significantly higher than previous reports (Fisher’s exact p = 0.0001). The pfdhfr-51I/108N combination occurred in all sequenced isolates and 59R was observed in a single individual. pfdhps substitutions 436A, 437G, 540E, 581G and 613S were observed at 7.8, 77.3, 76.9%, 33.8% and 0.0%, respectively. Treatment failures were associated with the pfdhps haplotype SGEGA at these five codons (OR 7.3; 95% CI 0.65 - 368; p = 0.048). Conclusion The decrease of CQR associated genotypes reflects the formal policy of complete removal of CQ in Sudan. However, the frequency of markers associated with SP failure is increasing in this study area and may be

  9. Simple Molecular Methods for Early Detection of Chloroquine Drug Resistance in Plasmodium vivax and Plasmodium falciparum

    PubMed Central

    Singh, Raksha; Urhehar, Anant Dattatraya

    2016-01-01

    Introduction Malaria is a human disease of which causes high morbidity and mortality. In Plasmodium falciparum malaria, the resistance to antimalarial drugs, especially chloroquine (CQ) is one of the paramount factors contributing to the global increase in morbidity and mortality, due to malaria. Hence, there is a need for detection of chloroquine drug resistance genes i.e., pfcrt-o (Plasmodium falciparum chloroquine resistance transporter-o) and pfmdr-1 (Plasmodium falciparum multidrug resistance-1) of P. falciparum and pvcrt-o (Plasmodium vivax chloroquine resistance transporter-o) and pvmdr-1 (Plasmodium vivax multidrug resistance-1) of P. vivax by using molecular methods to prevent mortality in malarial cases. Aim To standardize chloroquine drug sensitivity testing by molecular method so as to provide reports of chloroquine within 6-8 hours to physicians for better treatment. Materials and Methods This study was conducted over a period of one year from January to December 2014. A Total of 300 blood samples were collected from malaria suspected patient attending MGM Hospital, Kamothe, Navi Mumbai, India. Out of 300 blood samples, 44 were malaria positive as assessed by Thick and Thin blood smear stained, by Leishman’s method and examination with light microscope. Chloroquine drug sensitivity testing was performed using WHO III plate method (micro test). Nested PCR was done for detection of pfcrt-o and pfmdr-1 for P. falciparum and pvcrt-o, pvmdr-1 genes for P. vivax. Results Total 44 samples were included in this study, out of which 22 samples confirmed for Plasmodium falciparum and 22 samples confirmed for Plasmodium vivax. Out of 22 P. falciparum 15 (68.18%) samples were chloroquine resistant. P. vivax showed chloroquine resistance to 5 samples (22.73%) by method similar to WHO III plate method (micro test) and nested PCR. Conclusion Drug resistance testing by molecular methods is useful for early detection of antimalarial drug resistance. pfmdr-1 along with

  10. Molecular Mechanisms for Drug Hypersensitivity Induced by the Malaria Parasite’s Chloroquine Resistance Transporter

    PubMed Central

    Baker, Eileen S.; Webster, Michael W.; Lehane, Adele M.; Shafik, Sarah H.; Martin, Rowena E.

    2016-01-01

    Mutations in the Plasmodium falciparum ‘chloroquine resistance transporter’ (PfCRT) confer resistance to chloroquine (CQ) and related antimalarials by enabling the protein to transport these drugs away from their targets within the parasite’s digestive vacuole (DV). However, CQ resistance-conferring isoforms of PfCRT (PfCRTCQR) also render the parasite hypersensitive to a subset of structurally-diverse pharmacons. Moreover, mutations in PfCRTCQR that suppress the parasite’s hypersensitivity to these molecules simultaneously reinstate its sensitivity to CQ and related drugs. We sought to understand these phenomena by characterizing the functions of PfCRTCQR isoforms that cause the parasite to become hypersensitive to the antimalarial quinine or the antiviral amantadine. We achieved this by measuring the abilities of these proteins to transport CQ, quinine, and amantadine when expressed in Xenopus oocytes and complemented this work with assays that detect the drug transport activity of PfCRT in its native environment within the parasite. Here we describe two mechanistic explanations for PfCRT-induced drug hypersensitivity. First, we show that quinine, which normally accumulates inside the DV and therewithin exerts its antimalarial effect, binds extremely tightly to the substrate-binding site of certain isoforms of PfCRTCQR. By doing so it likely blocks the normal physiological function of the protein, which is essential for the parasite’s survival, and the drug thereby gains an additional killing effect. In the second scenario, we show that although amantadine also sequesters within the DV, the parasite’s hypersensitivity to this drug arises from the PfCRTCQR-mediated transport of amantadine from the DV into the cytosol, where it can better access its antimalarial target. In both cases, the mutations that suppress hypersensitivity also abrogate the ability of PfCRTCQR to transport CQ, thus explaining why rescue from hypersensitivity restores the parasite

  11. Simple Molecular Methods for Early Detection of Chloroquine Drug Resistance in Plasmodium vivax and Plasmodium falciparum

    PubMed Central

    Singh, Raksha; Urhehar, Anant Dattatraya

    2016-01-01

    Introduction Malaria is a human disease of which causes high morbidity and mortality. In Plasmodium falciparum malaria, the resistance to antimalarial drugs, especially chloroquine (CQ) is one of the paramount factors contributing to the global increase in morbidity and mortality, due to malaria. Hence, there is a need for detection of chloroquine drug resistance genes i.e., pfcrt-o (Plasmodium falciparum chloroquine resistance transporter-o) and pfmdr-1 (Plasmodium falciparum multidrug resistance-1) of P. falciparum and pvcrt-o (Plasmodium vivax chloroquine resistance transporter-o) and pvmdr-1 (Plasmodium vivax multidrug resistance-1) of P. vivax by using molecular methods to prevent mortality in malarial cases. Aim To standardize chloroquine drug sensitivity testing by molecular method so as to provide reports of chloroquine within 6-8 hours to physicians for better treatment. Materials and Methods This study was conducted over a period of one year from January to December 2014. A Total of 300 blood samples were collected from malaria suspected patient attending MGM Hospital, Kamothe, Navi Mumbai, India. Out of 300 blood samples, 44 were malaria positive as assessed by Thick and Thin blood smear stained, by Leishman’s method and examination with light microscope. Chloroquine drug sensitivity testing was performed using WHO III plate method (micro test). Nested PCR was done for detection of pfcrt-o and pfmdr-1 for P. falciparum and pvcrt-o, pvmdr-1 genes for P. vivax. Results Total 44 samples were included in this study, out of which 22 samples confirmed for Plasmodium falciparum and 22 samples confirmed for Plasmodium vivax. Out of 22 P. falciparum 15 (68.18%) samples were chloroquine resistant. P. vivax showed chloroquine resistance to 5 samples (22.73%) by method similar to WHO III plate method (micro test) and nested PCR. Conclusion Drug resistance testing by molecular methods is useful for early detection of antimalarial drug resistance. pfmdr-1 along with

  12. Efficacy of chloroquine for the treatment of uncomplicated Plasmodium falciparum malaria in Honduras.

    PubMed

    Mejia Torres, Rosa Elena; Banegas, Engels Ilich; Mendoza, Meisy; Diaz, Cesar; Bucheli, Sandra Tamara Mancero; Fontecha, Gustavo A; Alam, Md Tauqeer; Goldman, Ira; Udhayakumar, Venkatachalam; Zambrano, Jose Orlinder Nicolas

    2013-05-01

    Chloroquine (CQ) is officially used for the primary treatment of Plasmodium falciparum malaria in Honduras. In this study, the therapeutic efficacy of CQ for the treatment of uncomplicated P. falciparum malaria in the municipality of Puerto Lempira, Gracias a Dios, Honduras was evaluated using the Pan American Health Organization-World Health Organization protocol with a follow-up of 28 days. Sixty-eight patients from 6 months to 60 years of age microscopically diagnosed with uncomplicated P. falciparum malaria were included in the final analysis. All patients who were treated with CQ (25 mg/kg over 3 days) cleared parasitemia by day 3 and acquired no new P. falciparum infection within 28 days of follow-up. All the parasite samples sequenced for CQ resistance mutations (pfcrt) showed only the CQ-sensitive genotype (CVMNK). This finding shows that CQ remains highly efficacious for the treatment of uncomplicated P. falciparum malaria in Gracias a Dios, Honduras.

  13. Enhancement of the antimalarial efficacy of amodiaquine by chlorpheniramine in vivo.

    PubMed

    Sowunmi, Akintunde; Gbotosho, Grace O; Happi, Christian T; Adedeji, Ahmed A; Bolaji, Olayinka M; Fehintola, Fatai A; Fateye, Babasola A; Oduola, Ayoade M J

    2007-06-01

    Resistance in Plasmodium falciparum to amodiaquine (AQ) can be reversed in vitro with with antihistaminic and tricyclic antidepressant compounds, but its significance in vivo is unclear. The present report presents the enhancement of the antimalarial efficacy of AQ by chlorpheniramine, an H1 receptor antagonist that reverses chloroquine (CQ) resistance in vitro and enhances its efficacy in vivo, in five children who failed CQ and/or AQ treatment, and who were subsequently retreated and cured with a combination of AQ plus CP, despite the fact that parasites infecting the children harboured mutant pfcrtT76 and pfmdr1Y86 alleles associated with AQ resistance. This suggests a potential clinical application of the reversal phenomenon.

  14. Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases.

    PubMed

    Straimer, Judith; Lee, Marcus C S; Lee, Andrew H; Zeitler, Bryan; Williams, April E; Pearl, Jocelynn R; Zhang, Lei; Rebar, Edward J; Gregory, Philip D; Llinás, Manuel; Urnov, Fyodor D; Fidock, David A

    2012-10-01

    Malaria afflicts over 200 million people worldwide, and its most lethal etiologic agent, Plasmodium falciparum, is evolving to resist even the latest-generation therapeutics. Efficient tools for genome-directed investigations of P. falciparum-induced pathogenesis, including drug-resistance mechanisms, are clearly required. Here we report rapid and targeted genetic engineering of this parasite using zinc-finger nucleases (ZFNs) that produce a double-strand break in a user-defined locus and trigger homology-directed repair. Targeting an integrated egfp locus, we obtained gene-deletion parasites with unprecedented speed (2 weeks), both with and without direct selection. ZFNs engineered against the parasite gene pfcrt, responsible for escape under chloroquine treatment, rapidly produced parasites that carried either an allelic replacement or a panel of specified point mutations. This method will enable a diverse array of genome-editing approaches to interrogate this human pathogen.

  15. Genetic profiling of the Plasmodium falciparum population using antigenic molecular markers.

    PubMed

    Gupta, Purva; Singh, Ruchi; Khan, Haris; Raza, Adil; Yadavendu, Veena; Bhatt, R M; Singh, Vineeta

    2014-01-01

    About 50% of malaria infections in India are attributed to Plasmodium falciparum but relatively little is known about the genetic structure of the parasite populations. The molecular genotyping of the parasite populations by merozoite surface protein (msp1 and msp2) and glutamate-rich protein (glurp) genes identifies the existing parasite population in the regions which help in understanding the molecular mechanisms involved in the parasite's drive for survival. This study reveals the genetic profile of the parasite population in selected regions across the country with varying degree of endemicity among them. We also report the prevalence of Pfcrt mutations in this parasite population to evaluate the pattern of drug resistance development in them. PMID:25405214

  16. Molecular Epidemiology of Plasmodium falciparum Malaria Outbreak, Tumbes, Peru, 2010-2012.

    PubMed

    Baldeviano, G Christian; Okoth, Sheila Akinyi; Arrospide, Nancy; Gonzalez, Rommell V; Sánchez, Juan F; Macedo, Silvia; Conde, Silvia; Tapia, L Lorena; Salas, Carola; Gamboa, Dionicia; Herrera, Yeni; Edgel, Kimberly A; Udhayakumar, Venkatachalam; Lescano, Andrés G

    2015-05-01

    During 2010-2012, an outbreak of 210 cases of malaria occurred in Tumbes, in the northern coast of Peru, where no Plasmodium falciparum malaria case had been reported since 2006. To identify the source of the parasite causing this outbreak, we conducted a molecular epidemiology investigation. Microsatellite typing showed an identical genotype in all 54 available isolates. This genotype was also identical to that of parasites isolated in 2010 in the Loreto region of the Peruvian Amazon and closely related to clonet B, a parasite lineage previously reported in the Amazon during 1998-2000. These findings are consistent with travel history of index case-patients. DNA sequencing revealed mutations in the Pfdhfr, Pfdhps, Pfcrt, and Pfmdr1 loci, which are strongly associated with resistance to chloroquine and sulfadoxine/pyrimethamine, and deletion of the Pfhrp2 gene. These results highlight the need for timely molecular epidemiology investigations to trace the parasite source during malaria reintroduction events.

  17. Piperaquine Resistance Is Associated with a Copy Number Variation on Chromosome 5 in Drug-Pressured Plasmodium falciparum Parasites▿†

    PubMed Central

    Eastman, Richard T.; Dharia, Neekesh V.; Winzeler, Elizabeth A.; Fidock, David A.

    2011-01-01

    The combination of piperaquine and dihydroartemisinin has recently become the official first-line therapy in several Southeast Asian countries. The pharmacokinetic mismatching of these drugs, whose plasma half-lives are ∼20 days and ∼1 h, respectively, implies that recrudescent or new infections emerging shortly after treatment cessation will encounter piperaquine as a monotherapy agent. This creates substantial selection pressure for the emergence of resistance. To elucidate potential resistance determinants, we subjected cloned Plasmodium falciparum Dd2 parasites to continuous piperaquine pressure in vitro (47 nM; ∼2-fold higher than the Dd2 50% inhibitory concentration [IC50]). The phenotype of outgrowth parasites was assayed in two clones, revealing an IC50 against piperaquine of 2.1 μM and 1.7 μM, over 100-fold greater than that of the parent. To identify the genetic determinant of resistance, we employed comparative whole-genome hybridization analysis. Compared to the Dd2 parent, this analysis found (in both resistant clones) a novel single-nucleotide polymorphism in P. falciparum crt (pfcrt), deamplification of an 82-kb region of chromosome 5 (that includes pfmdr1), and amplification of an adjacent 63-kb region of chromosome 5. Continued propagation without piperaquine selection pressure resulted in “revertant” piperaquine-sensitive parasites. These retained the pfcrt polymorphism and further deamplified the chromosome 5 segment that encompasses pfmdr1; however, these two independently generated revertants both lost the neighboring 63-kb amplification. These results suggest that a copy number variation event on chromosome 5 (825600 to 888300) is associated with piperaquine resistance. Transgene expression studies are underway with individual genes in this segment to evaluate their contribution to piperaquine resistance. PMID:21576453

  18. Analysis of genetic mutations associated with anti-malarial drug resistance in Plasmodium falciparum from the Democratic Republic of East Timor

    PubMed Central

    de Almeida, Afonso; Arez, Ana Paula; Cravo, Pedro VL; do Rosário, Virgílio E

    2009-01-01

    Background In response to chloroquine (CQ) resistance, the policy for the first-line treatment of uncomplicated malaria in the Democratic Republic of East Timor (DRET) was changed in early 2000. The combination of sulphadoxine-pyrimethamine (SP) was then introduced for the treatment of uncomplicated falciparum malaria. Methods Blood samples were collected in two different periods (2003–2004 and 2004–2005) from individuals attending hospitals or clinics in six districts of the DRET and checked for Plasmodium falciparum infection. 112 PCR-positive samples were inspected for genetic polymorphisms in the pfcrt, pfmdr1, pfdhfr and pfdhps genes. Different alleles were interrogated for potential associations that could be indicative of non-random linkage. Results Overall prevalence of mutations associated with resistance to CQ and SP was extremely high. The mutant form of Pfcrt (76T) was found to be fixed even after five years of alleged CQ removal. There was a significant increase in the prevalence of the pfdhps 437G mutation (X2 = 31.1; p = 0.001) from the first to second survey periods. A non-random association was observed between pfdhfr51/pfdhps437 (p = 0.001) and pfdhfr 59/pfdhps 437 (p = 0.013) alleles. Conclusion Persistence of CQ-resistant mutants even after supposed drug withdrawal suggests one or all of the following: local P. falciparum may still be inadvertently exposed to the drug, that mutant parasites are being "imported" into the country, and/or reduced genetic diversity and low parasite transmission help maintain mutant haplotypes. The association between pfdhfr51/pfdhps437 and pfdhfr 59/pfdhps 437 alleles indicates that these are undergoing concomitant positive selection in the DRET. PMID:19358729

  19. Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance

    PubMed Central

    Warhurst, David C.; Craig, John C.

    2016-01-01

    Antimalarial chloroquine (CQ) prevents haematin detoxication when CQ-base concentrates in the acidic digestive vacuole through protonation of its p-aminopyridine (pAP) basic aromatic nitrogen and sidechain diethyl-N. CQ export through the variant vacuolar membrane export channel, PFCRT, causes CQ-resistance in Plasmodium falciparum but 3-methyl CQ (sontochin SC), des-ethyl amodiaquine (DAQ) and bis 4-aminoquinoline piperaquine (PQ) are still active. This is determined by changes in drug accumulation ratios in parasite lipid (LAR) and in vacuolar water (VAR). Higher LAR may facilitate drug binding to and blocking PFCRT and also aid haematin in lipid to bind drug. LAR for CQ is only 8.3; VAR is 143,482. More hydrophobic SC has LAR 143; VAR remains 68,523. Similarly DAQ with a phenol substituent has LAR of 40.8, with VAR 89,366. In PQ, basicity of each pAP is reduced by distal piperazine N, allowing very high LAR of 973,492, retaining VAR of 104,378. In another bis quinoline, dichlorquinazine (DCQ), also active but clinically unsatisfactory, each pAP retains basicity, being insulated by a 2-carbon chain from a proximal nitrogen of the single linking piperazine. While LAR of 15,488 is still high, the lowest estimate of VAR approaches 4.9 million. DCQ may be expected to be very highly lysosomotropic and therefore potentially hepatotoxic. In 11 pAP antimalarials a quadratic relationship between logLAR and logResistance Index (RI) was confirmed, while log (LAR/VAR) vs logRI for 12 was linear. Both might be used to predict the utility of structural modifications. PMID:27483471

  20. Double mutation in the pfmdr1 gene is associated with emergence of chloroquine-resistant Plasmodium falciparum malaria in Eastern India.

    PubMed

    Das, Sabyasachi; Mahapatra, Santanu Kar; Tripathy, Satyajit; Chattopadhyay, Sourav; Dash, Sandeep Kumar; Mandal, Debasis; Das, Balaram; Hati, Amiya Kumar; Roy, Somenath

    2014-10-01

    Malaria is a major public health problem in tropical and subtropical countries, including India. This study elucidates the cause of chloroquine treatment failure (for Plasmodium falciparum infection) before the introduction of artemisinin combination therapy. One hundred twenty-six patients were randomized to chloroquine treatment, and the therapeutic efficacy was monitored from days 1 to 28. An in vitro susceptibility test was performed with all isolates. Parasitic DNA was isolated, followed by PCR and restriction digestion of different codons of the pfcrt gene (codons 72 to 76) and the pfmdr1 gene (N86Y, Y184F, S1034C, N1042D, and D1246Y). Finally, sequencing was done to confirm the mutations. Forty-three (34.13%) early treatment failure cases and 16 (12.69%) late treatment failure cases were observed after chloroquine treatment. In vitro chloroquine resistance was found in 103 isolates (81.75%). Twenty-six (60.47%) early treatment failure cases and 6 (37.5%) late treatment failure cases were associated with the CVMNK-YYSNY allele (the underlined amino acids are those that were mutated). Moreover, the CVIEK-YYSNY allele was found in 8 early treatment failure (18.60%) and 2 late treatment failure (12.5%) cases. The presence of the wild-type pfcrt (CVMNK) and pfmdr1 (YYSNY) double mutant allele in chloroquine-nonresponsive cases was quite uncommon. In vivo chloroquine treatment failure and in vitro chloroquine resistance were strongly correlated with the CVMNK-YYSNY and CVIEK-YYSNY haplotypes (P < 0.01).

  1. Selection of drug resistance-mediating Plasmodium falciparum genetic polymorphisms by seasonal malaria chemoprevention in Burkina Faso.

    PubMed

    Somé, Anyirékun Fabrice; Zongo, Issaka; Compaoré, Yves-Daniel; Sakandé, Souleymane; Nosten, François; Ouédraogo, Jean-Bosco; Rosenthal, Philip J

    2014-07-01

    Seasonal malaria chemoprevention (SMC), with regular use of amodiaquine plus sulfadoxine-pyrimethamine (AQ/SP) during the transmission season, is now a standard malaria control measure in the Sahel subregion of Africa. Another strategy under study is SMC with dihydroartemisinin plus piperaquine (DP). Plasmodium falciparum single nucleotide polymorphisms (SNPs) in P. falciparum crt (pfcrt), pfmdr1, pfdhfr, and pfdhps are associated with decreased response to aminoquinoline and antifolate antimalarials and are selected by use of these drugs. To characterize selection by SMC of key polymorphisms, we assessed 13 SNPs in P. falciparum isolated from children aged 3 to 59 months living in southwestern Burkina Faso and randomized to receive monthly DP or AQ/SP for 3 months in 2009. We compared SNP prevalence before the onset of SMC and 1 month after the third treatment in P. falciparum PCR-positive samples from 120 randomly selected children from each treatment arm and an additional 120 randomly selected children from a control group that did not receive SMC. The prevalence of relevant mutations was increased after SMC with AQ/SP. Significant selection was seen for pfcrt 76T (68.5% to 83.0%, P = 0.04), pfdhfr 59R (54.8% to 83.3%, P = 0.0002), and pfdhfr 108N (55.0% to 87.2%, P = 0.0001), with trends toward selection of pfmdr1 86Y, pfdhfr 51I, and pfdhps 437G. After SMC with DP, only borderline selection of wild-type pfmdr1 D1246 (mutant; 7.7% to 0%, P = 0.05) was seen. In contrast to AQ/SP, SMC with DP did not clearly select for known resistance-mediating polymorphisms. SMC with AQ/SP, but not DP, may hasten the development of resistance to components of this regimen. (This study has been registered at ClinicalTrials.gov under registration no. NCT00941785.).

  2. Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance.

    PubMed

    Warhurst, David C; Craig, John C; Raheem, K Saki

    2016-01-01

    Antimalarial chloroquine (CQ) prevents haematin detoxication when CQ-base concentrates in the acidic digestive vacuole through protonation of its p-aminopyridine (pAP) basic aromatic nitrogen and sidechain diethyl-N. CQ export through the variant vacuolar membrane export channel, PFCRT, causes CQ-resistance in Plasmodium falciparum but 3-methyl CQ (sontochin SC), des-ethyl amodiaquine (DAQ) and bis 4-aminoquinoline piperaquine (PQ) are still active. This is determined by changes in drug accumulation ratios in parasite lipid (LAR) and in vacuolar water (VAR). Higher LAR may facilitate drug binding to and blocking PFCRT and also aid haematin in lipid to bind drug. LAR for CQ is only 8.3; VAR is 143,482. More hydrophobic SC has LAR 143; VAR remains 68,523. Similarly DAQ with a phenol substituent has LAR of 40.8, with VAR 89,366. In PQ, basicity of each pAP is reduced by distal piperazine N, allowing very high LAR of 973,492, retaining VAR of 104,378. In another bis quinoline, dichlorquinazine (DCQ), also active but clinically unsatisfactory, each pAP retains basicity, being insulated by a 2-carbon chain from a proximal nitrogen of the single linking piperazine. While LAR of 15,488 is still high, the lowest estimate of VAR approaches 4.9 million. DCQ may be expected to be very highly lysosomotropic and therefore potentially hepatotoxic. In 11 pAP antimalarials a quadratic relationship between logLAR and logResistance Index (RI) was confirmed, while log (LAR/VAR) vs logRI for 12 was linear. Both might be used to predict the utility of structural modifications. PMID:27483471

  3. Gold mining areas in Suriname: reservoirs of malaria resistance?

    PubMed Central

    Adhin, Malti R; Labadie-Bracho, Mergiory; Vreden, Stephen

    2014-01-01

    Background At present, malaria cases in Suriname occur predominantly in migrants and people living and/or working in areas with gold mining operations. A molecular survey was performed in Plasmodium falciparum isolates originating from persons from gold mining areas to assess the extent and role of mining areas as reservoirs of malaria resistance in Suriname. Methods The status of 14 putative resistance-associated single nucleotide polymorphisms in the pfdhfr, pfcrt, pfmdr1, and pfATP6 genes was assessed for 28 samples from gold miners diagnosed with P. falciparum malaria using polymerase chain reaction amplification and restriction fragment length polymorphism analysis, and the results were compared with earlier data from nonmining villagers. Results Isolates from miners showed a high degree of homogeneity, with a fixed pfdhfr Ile51/Asn108, pfmdr1 Phe184/Asp1042/Tyr1246, and pfcrt Thr76 mutant genotype, while an exclusively wild-type genotype was observed for pfmdr1 Asn86 and pfdhfr Ala16, Cys59, and Ile164, and for the pfATP6 positions Leu263/Ala623/Ser769. Small variations were observed for pfmdr1 S1034C. No statistically significant difference could be detected in allele frequencies between mining and nonmining villagers. Conclusion Despite the increased risk of malaria infection in individuals working/living in gold mining areas, we did not detect an increase in mutation frequency at the 14 analyzed single nucleotide polymorphisms. Therefore, mining areas in Suriname cannot yet be considered as reservoirs for malaria resistance. PMID:24833911

  4. In Vitro and Molecular Surveillance for Antimalarial Drug Resistance in Plasmodium falciparum Parasites in Western Kenya Reveals Sustained Artemisinin Sensitivity and Increased Chloroquine Sensitivity.

    PubMed

    Lucchi, Naomi W; Komino, Franklin; Okoth, Sheila Akinyi; Goldman, Ira; Onyona, Philip; Wiegand, Ryan E; Juma, Elizabeth; Shi, Ya Ping; Barnwell, John W; Udhayakumar, Venkatachalam; Kariuki, Simon

    2015-12-01

    Malaria control is hindered by the evolution and spread of resistance to antimalarials, necessitating multiple changes to drug policies over time. A comprehensive antimalarial drug resistance surveillance program is vital for detecting the potential emergence of resistance to antimalarials, including current artemisinin-based combination therapies. An antimalarial drug resistance surveillance study involving 203 Plasmodium falciparum malaria-positive children was conducted in western Kenya between 2010 and 2013. Specimens from enrolled children were analyzed in vitro for sensitivity to chloroquine (CQ), amodiaquine (AQ), mefloquine (MQ), lumefantrine, and artemisinin derivatives (artesunate and dihydroartemisinin) and for drug resistance allele polymorphisms in P. falciparum crt (Pfcrt), Pfmdr-1, and the K13 propeller domain (K13). We observed a significant increase in the proportion of samples with the Pfcrt wild-type (CVMNK) genotype, from 61.2% in 2010 to 93.0% in 2013 (P < 0.0001), and higher proportions of parasites with elevated sensitivity to CQ in vitro. The majority of isolates harbored the wild-type N allele in Pfmdr-1 codon 86 (93.5%), with only 7 (3.50%) samples with the N86Y mutant allele (the mutant nucleotide is underlined). Likewise, most isolates harbored the wild-type Pfmdr-1 D1246 allele (79.8%), with only 12 (6.38%) specimens with the D1246Y mutant allele and 26 (13.8%) with mixed alleles. All the samples had a single copy of the Pfmdr-1 gene (mean of 0.907 ± 0.141 copies). None of the sequenced parasites had mutations in K13. Our results suggest that artemisinin is likely to remain highly efficacious and that CQ sensitivity appears to be on the rise in western Kenya.

  5. In Vitro and Molecular Surveillance for Antimalarial Drug Resistance in Plasmodium falciparum Parasites in Western Kenya Reveals Sustained Artemisinin Sensitivity and Increased Chloroquine Sensitivity

    PubMed Central

    Komino, Franklin; Okoth, Sheila Akinyi; Goldman, Ira; Onyona, Philip; Wiegand, Ryan E.; Juma, Elizabeth; Shi, Ya Ping; Barnwell, John W.; Udhayakumar, Venkatachalam; Kariuki, Simon

    2015-01-01

    Malaria control is hindered by the evolution and spread of resistance to antimalarials, necessitating multiple changes to drug policies over time. A comprehensive antimalarial drug resistance surveillance program is vital for detecting the potential emergence of resistance to antimalarials, including current artemisinin-based combination therapies. An antimalarial drug resistance surveillance study involving 203 Plasmodium falciparum malaria-positive children was conducted in western Kenya between 2010 and 2013. Specimens from enrolled children were analyzed in vitro for sensitivity to chloroquine (CQ), amodiaquine (AQ), mefloquine (MQ), lumefantrine, and artemisinin derivatives (artesunate and dihydroartemisinin) and for drug resistance allele polymorphisms in P. falciparum crt (Pfcrt), Pfmdr-1, and the K13 propeller domain (K13). We observed a significant increase in the proportion of samples with the Pfcrt wild-type (CVMNK) genotype, from 61.2% in 2010 to 93.0% in 2013 (P < 0.0001), and higher proportions of parasites with elevated sensitivity to CQ in vitro. The majority of isolates harbored the wild-type N allele in Pfmdr-1 codon 86 (93.5%), with only 7 (3.50%) samples with the N86Y mutant allele (the mutant nucleotide is underlined). Likewise, most isolates harbored the wild-type Pfmdr-1 D1246 allele (79.8%), with only 12 (6.38%) specimens with the D1246Y mutant allele and 26 (13.8%) with mixed alleles. All the samples had a single copy of the Pfmdr-1 gene (mean of 0.907 ± 0.141 copies). None of the sequenced parasites had mutations in K13. Our results suggest that artemisinin is likely to remain highly efficacious and that CQ sensitivity appears to be on the rise in western Kenya. PMID:26392510

  6. In Vitro and Molecular Surveillance for Antimalarial Drug Resistance in Plasmodium falciparum Parasites in Western Kenya Reveals Sustained Artemisinin Sensitivity and Increased Chloroquine Sensitivity.

    PubMed

    Lucchi, Naomi W; Komino, Franklin; Okoth, Sheila Akinyi; Goldman, Ira; Onyona, Philip; Wiegand, Ryan E; Juma, Elizabeth; Shi, Ya Ping; Barnwell, John W; Udhayakumar, Venkatachalam; Kariuki, Simon

    2015-12-01

    Malaria control is hindered by the evolution and spread of resistance to antimalarials, necessitating multiple changes to drug policies over time. A comprehensive antimalarial drug resistance surveillance program is vital for detecting the potential emergence of resistance to antimalarials, including current artemisinin-based combination therapies. An antimalarial drug resistance surveillance study involving 203 Plasmodium falciparum malaria-positive children was conducted in western Kenya between 2010 and 2013. Specimens from enrolled children were analyzed in vitro for sensitivity to chloroquine (CQ), amodiaquine (AQ), mefloquine (MQ), lumefantrine, and artemisinin derivatives (artesunate and dihydroartemisinin) and for drug resistance allele polymorphisms in P. falciparum crt (Pfcrt), Pfmdr-1, and the K13 propeller domain (K13). We observed a significant increase in the proportion of samples with the Pfcrt wild-type (CVMNK) genotype, from 61.2% in 2010 to 93.0% in 2013 (P < 0.0001), and higher proportions of parasites with elevated sensitivity to CQ in vitro. The majority of isolates harbored the wild-type N allele in Pfmdr-1 codon 86 (93.5%), with only 7 (3.50%) samples with the N86Y mutant allele (the mutant nucleotide is underlined). Likewise, most isolates harbored the wild-type Pfmdr-1 D1246 allele (79.8%), with only 12 (6.38%) specimens with the D1246Y mutant allele and 26 (13.8%) with mixed alleles. All the samples had a single copy of the Pfmdr-1 gene (mean of 0.907 ± 0.141 copies). None of the sequenced parasites had mutations in K13. Our results suggest that artemisinin is likely to remain highly efficacious and that CQ sensitivity appears to be on the rise in western Kenya. PMID:26392510

  7. Monitoring of malaria parasite resistance to chloroquine and sulphadoxine-pyrimethamine in the Solomon Islands by DNA microarray technology

    PubMed Central

    2010-01-01

    Background Little information is available on resistance to anti-malarial drugs in the Solomon Islands (SI). The analysis of single nucleotide polymorphisms (SNPs) in drug resistance associated parasite genes is a potential alternative to classical time- and resource-consuming in vivo studies to monitor drug resistance. Mutations in pfmdr1 and pfcrt were shown to indicate chloroquine (CQ) resistance, mutations in pfdhfr and pfdhps indicate sulphadoxine-pyrimethamine (SP) resistance, and mutations in pfATPase6 indicate resistance to artemisinin derivatives. Methods The relationship between the rate of treatment failure among 25 symptomatic Plasmodium falciparum-infected patients presenting at the clinic and the pattern of resistance-associated SNPs in P. falciparum infecting 76 asymptomatic individuals from the surrounding population was investigated. The study was conducted in the SI in 2004. Patients presenting at a local clinic with microscopically confirmed P. falciparum malaria were recruited and treated with CQ+SP. Rates of treatment failure were estimated during a 28-day follow-up period. In parallel, a DNA microarray technology was used to analyse mutations associated with CQ, SP, and artemisinin derivative resistance among samples from the asymptomatic community. Mutation and haplotype frequencies were determined, as well as the multiplicity of infection. Results The in vivo study showed an efficacy of 88% for CQ+SP to treat P. falciparum infections. DNA microarray analyses indicated a low diversity in the parasite population with one major haplotype present in 98.7% of the cases. It was composed of fixed mutations at position 86 in pfmdr1, positions 72, 75, 76, 220, 326 and 356 in pfcrt, and positions 59 and 108 in pfdhfr. No mutation was observed in pfdhps or in pfATPase6. The mean multiplicity of infection was 1.39. Conclusion This work provides the first insight into drug resistance markers of P. falciparum in the SI. The obtained results indicated the

  8. Markers of anti-malarial drug resistance in Plasmodium falciparum isolates from Swaziland: identification of pfmdr1-86F in natural parasite isolates

    PubMed Central

    2010-01-01

    Background The development of Plasmodium falciparum resistance to chloroquine (CQ) has limited its use in many malaria endemic areas of the world. However, despite recent drug policy changes to adopt the more effective artemisinin-based combination (ACT) in Africa and in the Southern African region, in 2007 Swaziland still relied on CQ as first-line anti-malarial drug. Methods Parasite DNA was amplified from P. falciparum isolates from Swaziland collected in 1999 (thick smear blood slides) and 2007 (filter paper blood spots). Markers of CQ and sulphadoxine-pyrimethamine (SP) resistance were identified by probe-based qPCR and DNA sequencing. Results Retrospective microscopy, confirmed by PCR amplification, found that only six of 252 patients treated for uncomplicated malaria in 2007 carried detectable P. falciparum. The pfcrt haplotype 72C/73V/74I/75E/76T occurred at a prevalence of 70% (n = 64) in 1999 and 83% (n = 6) in 2007. Prevalence of the pfmdr1-86N allele was 24% in 1999 and 67% in 2007. A novel substitution of phenylalanine for asparagine at codon 86 of pfmdr1 (N86F) occurred in two of 51 isolates successfully amplified from 1999. The pfmdr1-1246Y allele was common in 1999, with a prevalence of 49%, but was absent among isolates collected in 2007. The 86N/184F/1246D pfmdr1 haplotype, associated with enhanced parasite survival in patients treated with artemether-lumefantrine, comprised 8% of 1999 isolates, and 67% among 2007 isolates. The pfdhfr triple-mutant 16C/51I/59R/108N/164I haplotype associated with pyrimethamine resistance was common in both 1999 (82%, n = 34) and 2007 (50%, n = 6), as was the wild-type 431I/436S/437A/540K/581A/613A haplotype of pfdhps (100% and 93% respectively in 1999 and 2007). The quintuple-mutant haplotype pfdhfr/pfdhps-CIRNI/ISGEAA, associated with high-level resistance to SP, was rare (9%) among 1999 isolates and absent among 2007 isolates. Conclusions The prevalence of pfcrt and pfmdr1 alleles reported in this study is

  9. Surveillance of Travellers: An Additional Tool for Tracking Antimalarial Drug Resistance in Endemic Countries

    PubMed Central

    Gharbi, Myriam; Flegg, Jennifer A.; Pradines, Bruno; Berenger, Ako; Ndiaye, Magatte; Djimdé, Abdoulaye A.; Roper, Cally; Hubert, Véronique; Kendjo, Eric; Venkatesan, Meera; Brasseur, Philippe; Gaye, Oumar; Offianan, André T.; Penali, Louis; Le Bras, Jacques; Guérin, Philippe J.; Study, Members of the French National Reference Center for Imported Malaria

    2013-01-01

    Introduction There are growing concerns about the emergence of resistance to artemisinin-based combination therapies (ACTs). Since the widespread adoption of ACTs, there has been a decrease in the systematic surveillance of antimalarial drug resistance in many malaria-endemic countries. The aim of this work was to test whether data on travellers returning from Africa with malaria could serve as an additional surveillance system of local information sources for the emergence of drug resistance in endemic-countries. Methodology Data were collected from travellers with symptomatic Plasmodium falciparum malaria returning from Senegal (n = 1,993), Mali (n = 2,372), Cote d’Ivoire (n = 4,778) or Cameroon (n = 3,272) and recorded in the French Malaria Reference Centre during the period 1996–2011. Temporal trends of the proportion of parasite isolates that carried the mutant genotype, pfcrt 76T, a marker of resistance to chloroquine (CQ) and pfdhfr 108N, a marker of resistance to pyrimethamine, were compared for travellers and within-country surveys that were identified through a literature review in PubMed. The in vitro response to CQ was also compared between these two groups for parasites from Senegal. Results The trends in the proportion of parasites that carried pfcrt 76T, and pfdhfr 108N, were compared for parasites from travellers and patients within-country using the slopes of the curves over time; no significant differences in the trends were found for any of the 4 countries. These results were supported by in vitro analysis of parasites from the field in Senegal and travellers returning to France, where the trends were also not significantly different. Conclusion The results have not shown different trends in resistance between parasites derived from travellers or from parasites within-country. This work highlights the value of an international database of drug responses in travellers as an additional tool to assess the emergence of drug

  10. Active case detection, treatment of falciparum malaria with combined chloroquine and sulphadoxine/pyrimethamine and vivax malaria with chloroquine and molecular markers of anti-malarial resistance in the Republic of Vanuatu

    PubMed Central

    2010-01-01

    Background Chloroquine-resistant Plasmodium falciparum was first described in the Republic of Vanuatu in the early 1980s. In 1991, the Vanuatu Ministry of Health instituted new treatment guidelines for uncomplicated P. falciparum infection consisting of chloroquine/sulphadoxine-pyrimethamine combination therapy. Chloroquine remains the recommended treatment for Plasmodium vivax. Methods In 2005, cross-sectional blood surveys at 45 sites on Malo Island were conducted and 4,060 adults and children screened for malaria. Of those screened, 203 volunteer study subjects without malaria at the time of screening were followed for 13 weeks to observe peak seasonal incidence of infection. Another 54 subjects with malaria were followed over a 28-day period to determine efficacy of anti-malarial therapy; chloroquine alone for P. vivax and chloroquine/sulphadoxine-pyrimethamine for P. falciparum infections. Results The overall prevalence of parasitaemia by mass blood screening was 6%, equally divided between P. falciparum and P. vivax. Twenty percent and 23% of participants with patent P. vivax and P. falciparum parasitaemia, respectively, were febrile at the time of screening. In the incidence study cohort, after 2,303 person-weeks of follow-up, the incidence density of malaria was 1.3 cases per person-year with P. vivax predominating. Among individuals participating in the clinical trial, the 28-day chloroquine P. vivax cure rate was 100%. The 28-day chloroquine/sulphadoxine-pyrimethamine P. falciparum cure rate was 97%. The single treatment failure, confirmed by merozoite surface protein-2 genotyping, was classified as a day 28 late parasitological treatment failure. All P. falciparum isolates carried the Thr-76 pfcrt mutant allele and the double Asn-108 + Arg-59 dhfr mutant alleles. Dhps mutant alleles were not detected in the study sample. Conclusion Peak seasonal malaria prevalence on Malo Island reached hypoendemic levels during the study observation period. The only in

  11. Seasonal Malaria Chemoprevention with Sulphadoxine-Pyrimethamine and Amodiaquine Selects Pfdhfr-dhps Quintuple Mutant Genotype in Mali

    PubMed Central

    Maiga, Hamma; Lasry, Estrella; Diarra, Modibo; Sagara, Issaka; Bamadio, Amadou; Traore, Aliou; Coumare, Samba; Bahonan, Soma; Sangare, Boubou; Dicko, Yeyia; Diallo, Nouhoum; Tembely, Aly; Traore, Djibril; Niangaly, Hamidou; Dao, François; Haidara, Aboubecrine; Dicko, Alassane; Doumbo, Ogobara K.; Djimde, Abdoulaye A.

    2016-01-01

    Background Seasonal malaria chemoprevention (SMC) with sulphadoxine-pyrimethamine (SP) plus amodiaquine (AQ) is being scaled up in Sahelian countries of West Africa. However, the potential development of Plasmodium falciparum resistance to the respective component drugs is a major concern. Methods Two cross-sectional surveys were conducted before (August 2012) and after (June 2014) a pilot implementation of SMC in Koutiala, Mali. Children aged 3–59 months received 7 rounds of curative doses of SP plus AQ over two malaria seasons. Genotypes of P. falciparum Pfdhfr codons 51, 59 and 108; Pfdhps codons 437 and 540, Pfcrt codon 76 and Pfmdr1codon 86 were analyzed by PCR on DNA from samples collected before and after SMC, and in non-SMC patient population as controls (November 2014). Results In the SMC population 191/662 (28.9%) and 85/670 (12.7%) of children were P. falciparum positive by microscopy and were included in the molecular analysis before (2012) and after SMC implementation (2014), respectively. In the non-SMC patient population 220/310 (71%) were successfully PCR analyzed. In the SMC children, the prevalence of all molecular markers of SP resistance increased significantly after SMC including the Pfdhfr-dhps quintuple mutant genotype, which was 1.6% before but 7.1% after SMC (p = 0.02). The prevalence of Pfmdr1-86Y significantly decreased from 26.7% to 15.3% (p = 0.04) while no significant change was seen for Pfcrt 76T. In 2014, prevalence of all molecular markers of SP resistance were significantly higher among SMC children compared to the non-SMC population patient (p < 0.01). No Pfdhfr-164 mutation was found neither at baseline nor post SMC. Conclusion SMC increased the prevalence of molecular markers of P. falciparum resistance to SP in the treated children. However, there was no significant increase of these markers of resistance in the general parasite population after 2 years and 7 rounds of SMC. PMID:27662368

  12. Malaria prevalence in Nias District, North Sumatra Province, Indonesia

    PubMed Central

    Syafruddin, Din; Asih, Puji BS; Wahid, Isra; Dewi, Rita M; Tuti, Sekar; Laowo, Idaman; Hulu, Waozidohu; Zendrato, Pardamean; Laihad, Ferdinand; Shankar, Anuraj H

    2007-01-01

    Background The Nias district of the North Sumatra Province of Indonesia has long been known to be endemic for malaria. Following the economic crisis at the end of 1998 and the subsequent tsunami and earthquake, in December 2004 and March 2005, respectively, the malaria control programme in the area deteriorated. The present study aims to provide baseline data for the establishment of a suitable malaria control programme in the area and to analyse the frequency distribution of drug resistance alleles associated with resistance to chloroquine and sulphadoxine-pyrimethamine. Methods Malariometric and entomology surveys were performed in three subdistricts. Thin and thick blood smears were stained with Giemsa and examined under binocular light microscopy. Blood blots on filter paper were also prepared for isolation of parasite and host DNA to be used for molecular analysis of band 3 (SAO), pfcrt, pfmdr1, dhfr, and dhps. In addition, haemoglobin measurement was performed in the second and third surveys for the subjects less than 10 years old. Results Results of the three surveys revealed an average slide positivity rate of 8.13%, with a relatively higher rate in certain foci. Host genetic analysis, to identify the Band 3 deletion associated with Southeast Asian Ovalocytosis (SAO), revealed an overall frequency of 1.0% among the 1,484 samples examined. One hundred six Plasmodium falciparum isolates from three sub-districts were successfully analysed. Alleles of the dhfr and dhps genes associated with resistance to sulphadoxine-pyrimethamine, dhfr C59R and S108N, and dhps A437G and K540E, were present at frequencies of 52.2%, 82.5%, 1.18% and 1.18%, respectively. The pfmdr1 alleles N86Y and N1042D, putatively associated with mefloquine resistance, were present at 31.4% and 2%, respectively. All but one sample carried the pfcrt 76T allele associated with chloroquine resistance. Entomologic surveys identified three potential anopheline vectors in the area, Anopheles

  13. Downregulation of Keratin 76 Expression during Oral Carcinogenesis of Human, Hamster and Mouse

    PubMed Central

    Heath, Emma; Pandey, Manishkumar; Kumar, Gaurav; Kane, Shubhada; Patil, Asawari; Maru, Girish B.; Desai, Rajiv S.; Watt, Fiona M.; Mahimkar, Manoj B.

    2013-01-01

    Background Keratins are structural marker proteins with tissue specific expression; however, recent reports indicate their involvement in cancer progression. Previous study from our lab revealed deregulation of many genes related to structural molecular integrity including KRT76. Here we evaluate the role of KRT76 downregulation in oral precancer and cancer development. Methods We evaluated KRT76 expression by qRT-PCR in normal and tumor tissues of the oral cavity. We also analyzed K76 expression by immunohistochemistry in normal, oral precancerous lesion (OPL), oral squamous cell carcinoma (OSCC) and in hamster model of oral carcinogenesis. Further, functional implication of KRT76 loss was confirmed using KRT76-knockout (KO) mice. Results We observed a strong association of reduced K76 expression with increased risk of OPL and OSCC development. The buccal epithelium of DMBA treated hamsters showed a similar trend. Oral cavity of KRT76-KO mice showed preneoplastic changes in the gingivobuccal epithelium while no pathological changes were observed in KRT76 negative tissues such as tongue. Conclusion The present study demonstrates loss of KRT76 in oral carcinogenesis. The KRT76-KO mice data underlines the potential of KRT76 being an early event although this loss is not sufficient to drive the development of oral cancers. Thus, future studies to investigate the contributing role of KRT76 in light of other tumor driving events are warranted. PMID:23936238

  14. Structure of the Class IV Adenylyl Cyclase Reveals a Novel Fold

    SciTech Connect

    Gallagher,D.; Smith, N.; Kim, S.; Heroux, A.; Robinson, H.; Reddy, P.

    2006-01-01

    The crystal structure of the class IV adenylyl cyclase (AC) from Yersinia pestis (Yp) is reported at 1.9 {angstrom} resolution. The class IV AC fold is distinct from the previously described folds for class II and class III ACs. The dimeric AC-IV folds into an antiparallel eight-stranded barrel whose connectivity has been seen in only three previous structures: yeast RNA triphosphatase and two proteins of unknown function from Pyrococcus furiosus and Vibrio parahaemolyticus. Eight highly conserved ionic residues E10, E12, K14, R63, K76, K111, D126, and E136 lie in the barrel core and form the likely binding sites for substrate and divalent cations. A phosphate ion is observed bound to R63, K76, K111, and R113 near the center of the conserved cluster. Unlike the AC-II and AC-III active sites that utilize two-Asp motifs for cation binding, the AC-IV active site is relatively enriched in glutamate and features an ExE motif as its most conserved element. Homologs of Y. pestis AC-IV, including human thiamine triphosphatase, span the three kingdoms of life and delineate an ancient family of phosphonucleotide processing enzymes.

  15. A broad analysis of resistance development in the malaria parasite

    PubMed Central

    Corey, Victoria C.; Lukens, Amanda K.; Istvan, Eva S.; Lee, Marcus C. S.; Franco, Virginia; Magistrado, Pamela; Coburn-Flynn, Olivia; Sakata-Kato, Tomoyo; Fuchs, Olivia; Gnädig, Nina F.; Goldgof, Greg; Linares, Maria; Gomez-Lorenzo, Maria G.; De Cózar, Cristina; Lafuente-Monasterio, Maria Jose; Prats, Sara; Meister, Stephan; Tanaseichuk, Olga; Wree, Melanie; Zhou, Yingyao; Willis, Paul A.; Gamo, Francisco-Javier; Goldberg, Daniel E.; Fidock, David A.; Wirth, Dyann F.; Winzeler, Elizabeth A.

    2016-01-01

    Microbial resistance to chemotherapy has caused countless deaths where malaria is endemic. Chemotherapy may fail either due to pre-existing resistance or evolution of drug-resistant parasites. Here we use a diverse set of antimalarial compounds to investigate the acquisition of drug resistance and the degree of cross-resistance against common resistance alleles. We assess cross-resistance using a set of 15 parasite lines carrying resistance-conferring alleles in pfatp4, cytochrome bc1, pfcarl, pfdhod, pfcrt, pfmdr, pfdhfr, cytoplasmic prolyl t-RNA synthetase or hsp90. Subsequently, we assess whether resistant parasites can be obtained after several rounds of drug selection. Twenty-three of the 48 in vitro selections result in resistant parasites, with time to resistance onset ranging from 15 to 300 days. Our data indicate that pre-existing resistance may not be a major hurdle for novel-target antimalarial candidates, and focusing our attention on fast-killing compounds may result in a slower onset of clinical resistance. PMID:27301419

  16. Targeting protein translation, RNA splicing, and degradation by morpholino-based conjugates in Plasmodium falciparum.

    PubMed

    Garg, Aprajita; Wesolowski, Donna; Alonso, Dulce; Deitsch, Kirk W; Ben Mamoun, Choukri; Altman, Sidney

    2015-09-22

    Identification and genetic validation of new targets from available genome sequences are critical steps toward the development of new potent and selective antimalarials. However, no methods are currently available for large-scale functional analysis of the Plasmodium falciparum genome. Here we present evidence for successful use of morpholino oligomers (MO) to mediate degradation of target mRNAs or to inhibit RNA splicing or translation of several genes of P. falciparum involved in chloroquine transport, apicoplast biogenesis, and phospholipid biosynthesis. Consistent with their role in the parasite life cycle, down-regulation of these essential genes resulted in inhibition of parasite development. We show that a MO conjugate that targets the chloroquine-resistant transporter PfCRT is effective against chloroquine-sensitive and -resistant parasites, causes enlarged digestive vacuoles, and renders chloroquine-resistant strains more sensitive to chloroquine. Similarly, we show that a MO conjugate that targets the PfDXR involved in apicoplast biogenesis inhibits parasite growth and that this defect can be rescued by addition of isopentenyl pyrophosphate. MO-based gene regulation is a viable alternative approach to functional analysis of the P. falciparum genome.

  17. A broad analysis of resistance development in the malaria parasite.

    PubMed

    Corey, Victoria C; Lukens, Amanda K; Istvan, Eva S; Lee, Marcus C S; Franco, Virginia; Magistrado, Pamela; Coburn-Flynn, Olivia; Sakata-Kato, Tomoyo; Fuchs, Olivia; Gnädig, Nina F; Goldgof, Greg; Linares, Maria; Gomez-Lorenzo, Maria G; De Cózar, Cristina; Lafuente-Monasterio, Maria Jose; Prats, Sara; Meister, Stephan; Tanaseichuk, Olga; Wree, Melanie; Zhou, Yingyao; Willis, Paul A; Gamo, Francisco-Javier; Goldberg, Daniel E; Fidock, David A; Wirth, Dyann F; Winzeler, Elizabeth A

    2016-06-15

    Microbial resistance to chemotherapy has caused countless deaths where malaria is endemic. Chemotherapy may fail either due to pre-existing resistance or evolution of drug-resistant parasites. Here we use a diverse set of antimalarial compounds to investigate the acquisition of drug resistance and the degree of cross-resistance against common resistance alleles. We assess cross-resistance using a set of 15 parasite lines carrying resistance-conferring alleles in pfatp4, cytochrome bc1, pfcarl, pfdhod, pfcrt, pfmdr, pfdhfr, cytoplasmic prolyl t-RNA synthetase or hsp90. Subsequently, we assess whether resistant parasites can be obtained after several rounds of drug selection. Twenty-three of the 48 in vitro selections result in resistant parasites, with time to resistance onset ranging from 15 to 300 days. Our data indicate that pre-existing resistance may not be a major hurdle for novel-target antimalarial candidates, and focusing our attention on fast-killing compounds may result in a slower onset of clinical resistance.

  18. Whole-Genome Scans Provide Evidence of Adaptive Evolution in Malawian Plasmodium falciparum Isolates

    PubMed Central

    Ocholla, Harold; Preston, Mark D.; Mipando, Mwapatsa; Jensen, Anja T. R.; Campino, Susana; MacInnis, Bronwyn; Alcock, Daniel; Terlouw, Anja; Zongo, Issaka; Oudraogo, Jean-Bosco; Djimde, Abdoulaye A.; Assefa, Samuel; Doumbo, Ogobara K.; Borrmann, Steffen; Nzila, Alexis; Marsh, Kevin; Fairhurst, Rick M.; Nosten, Francois; Anderson, Tim J. C.; Kwiatkowski, Dominic P.; Craig, Alister; Clark, Taane G.; Montgomery, Jacqui

    2014-01-01

    Background Selection by host immunity and antimalarial drugs has driven extensive adaptive evolution in Plasmodium falciparum and continues to produce ever-changing landscapes of genetic variation. Methods We performed whole-genome sequencing of 69 P. falciparum isolates from Malawi and used population genetics approaches to investigate genetic diversity and population structure and identify loci under selection. Results High genetic diversity (π = 2.4 × 10−4), moderately high multiplicity of infection (2.7), and low linkage disequilibrium (500-bp) were observed in Chikhwawa District, Malawi, an area of high malaria transmission. Allele frequency–based tests provided evidence of recent population growth in Malawi and detected potential targets of host immunity and candidate vaccine antigens. Comparison of the sequence variation between isolates from Malawi and those from 5 geographically dispersed countries (Kenya, Burkina Faso, Mali, Cambodia, and Thailand) detected population genetic differences between Africa and Asia, within Southeast Asia, and within Africa. Haplotype-based tests of selection to sequence data from all 6 populations identified signals of directional selection at known drug-resistance loci, including pfcrt, pfdhps, pfmdr1, and pfgch1. Conclusions The sequence variations observed at drug-resistance loci reflect differences in each country's historical use of antimalarial drugs and may be useful in formulating local malaria treatment guidelines. PMID:24948693

  19. A HECT ubiquitin-protein ligase as a novel candidate gene for altered quinine and quinidine responses in Plasmodium falciparum.

    PubMed

    Sanchez, Cecilia P; Liu, Chia-Hao; Mayer, Sybille; Nurhasanah, Astutiati; Cyrklaff, Marek; Mu, Jianbing; Ferdig, Michael T; Stein, Wilfred D; Lanzer, Michael

    2014-05-01

    The emerging resistance to quinine jeopardizes the efficacy of a drug that has been used in the treatment of malaria for several centuries. To identify factors contributing to differential quinine responses in the human malaria parasite Plasmodium falciparum, we have conducted comparative quantitative trait locus analyses on the susceptibility to quinine and also its stereoisomer quinidine, and on the initial and steady-state intracellular drug accumulation levels in the F1 progeny of a genetic cross. These data, together with genetic screens of field isolates and laboratory strains associated differential quinine and quinidine responses with mutated pfcrt, a segment on chromosome 13, and a novel candidate gene, termed MAL7P1.19 (encoding a HECT ubiquitin ligase). Despite a strong likelihood of association, episomal transfections demonstrated a role for the HECT ubiquitin-protein ligase in quinine and quinidine sensitivity in only a subset of genetic backgrounds, and here the changes in IC50 values were moderate (approximately 2-fold). These data show that quinine responsiveness is a complex genetic trait with multiple alleles playing a role and that more experiments are needed to unravel the role of the contributing factors.

  20. Plasmodium falciparum Na+/H+ Exchanger 1 Transporter Is Involved in Reduced Susceptibility to Quinine ▿

    PubMed Central

    Henry, Maud; Briolant, Sébastien; Zettor, Agnès; Pelleau, Stéphane; Baragatti, Meili; Baret, Eric; Mosnier, Joel; Amalvict, Rémy; Fusai, Thierry; Rogier, Christophe; Pradines, Bruno

    2009-01-01

    Polymorphisms in the Plasmodium falciparum crt (Pfcrt), Pfmdr1, and Pfmrp genes were not significantly associated with quinine (QN) 50% inhibitory concentrations (IC50s) in 23 strains of Plasmodium falciparum. An increased number of DNNND repeats in Pfnhe-1 microsatellite ms4760 was associated with an increased IC50 of QN (P = 0.0007). Strains with only one DNNND repeat were more susceptible to QN (mean IC50 of 154 nM). Strains with two DNNND repeats had intermediate susceptibility to QN (mean IC50 of 548 nM). Strains with three DNNND repeats had reduced susceptibility to QN (mean IC50 of 764 nM). Increased numbers of NHNDNHNNDDD repeats were associated with a decreased IC50 of QN (P = 0.0020). Strains with profile 7 for Pfnhe-1 ms4760 (ms4760-7) were significantly associated with reduced QN susceptibility (mean IC50 of 764 nM). The determination of DNNND and NHNDNHNNDDD repeats in Pfnhe-1 ms4760 could be a good marker of QN resistance and provide an attractive surveillance method to monitor temporal trends in P. falciparum susceptibility to QN. The validity of the markers should be further supported by analyzing more isolates. PMID:19273668

  1. Clonal outbreak of Plasmodium falciparum infection in eastern Panama.

    PubMed

    Obaldia, Nicanor; Baro, Nicholas K; Calzada, Jose E; Santamaria, Ana M; Daniels, Rachel; Wong, Wesley; Chang, Hsiao-Han; Hamilton, Elizabeth J; Arevalo-Herrera, Myriam; Herrera, Socrates; Wirth, Dyann F; Hartl, Daniel L; Marti, Matthias; Volkman, Sarah K

    2015-04-01

    Identifying the source of resurgent parasites is paramount to a strategic, successful intervention for malaria elimination. Although the malaria incidence in Panama is low, a recent outbreak resulted in a 6-fold increase in reported cases. We hypothesized that parasites sampled from this epidemic might be related and exhibit a clonal population structure. We tested the genetic relatedness of parasites, using informative single-nucleotide polymorphisms and drug resistance loci. We found that parasites were clustered into 3 clonal subpopulations and were related to parasites from Colombia. Two clusters of Panamanian parasites shared identical drug resistance haplotypes, and all clusters shared a chloroquine-resistance genotype matching the pfcrt haplotype of Colombian origin. Our findings suggest these resurgent parasite populations are highly clonal and that the high clonality likely resulted from epidemic expansion of imported or vestigial cases. Malaria outbreak investigations that use genetic tools can illuminate potential sources of epidemic malaria and guide strategies to prevent further resurgence in areas where malaria has been eliminated.

  2. A HECT Ubiquitin-Protein Ligase as a Novel Candidate Gene for Altered Quinine and Quinidine Responses in Plasmodium falciparum

    PubMed Central

    Sanchez, Cecilia P.; Cyrklaff, Marek; Mu, Jianbing; Ferdig, Michael T.; Stein, Wilfred D.; Lanzer, Michael

    2014-01-01

    The emerging resistance to quinine jeopardizes the efficacy of a drug that has been used in the treatment of malaria for several centuries. To identify factors contributing to differential quinine responses in the human malaria parasite Plasmodium falciparum, we have conducted comparative quantitative trait locus analyses on the susceptibility to quinine and also its stereoisomer quinidine, and on the initial and steady-state intracellular drug accumulation levels in the F1 progeny of a genetic cross. These data, together with genetic screens of field isolates and laboratory strains associated differential quinine and quinidine responses with mutated pfcrt, a segment on chromosome 13, and a novel candidate gene, termed MAL7P1.19 (encoding a HECT ubiquitin ligase). Despite a strong likelihood of association, episomal transfections demonstrated a role for the HECT ubiquitin-protein ligase in quinine and quinidine sensitivity in only a subset of genetic backgrounds, and here the changes in IC50 values were moderate (approximately 2-fold). These data show that quinine responsiveness is a complex genetic trait with multiple alleles playing a role and that more experiments are needed to unravel the role of the contributing factors. PMID:24830312

  3. Clonal Outbreak of Plasmodium falciparum Infection in Eastern Panama

    PubMed Central

    Obaldia, Nicanor; Baro, Nicholas K.; Calzada, Jose E.; Santamaria, Ana M.; Daniels, Rachel; Wong, Wesley; Chang, Hsiao-Han; Hamilton, Elizabeth J.; Arevalo-Herrera, Myriam; Herrera, Socrates; Wirth, Dyann F.; Hartl, Daniel L.; Marti, Matthias; Volkman, Sarah K.

    2015-01-01

    Identifying the source of resurgent parasites is paramount to a strategic, successful intervention for malaria elimination. Although the malaria incidence in Panama is low, a recent outbreak resulted in a 6-fold increase in reported cases. We hypothesized that parasites sampled from this epidemic might be related and exhibit a clonal population structure. We tested the genetic relatedness of parasites, using informative single-nucleotide polymorphisms and drug resistance loci. We found that parasites were clustered into 3 clonal subpopulations and were related to parasites from Colombia. Two clusters of Panamanian parasites shared identical drug resistance haplotypes, and all clusters shared a chloroquine-resistance genotype matching the pfcrt haplotype of Colombian origin. Our findings suggest these resurgent parasite populations are highly clonal and that the high clonality likely resulted from epidemic expansion of imported or vestigial cases. Malaria outbreak investigations that use genetic tools can illuminate potential sources of epidemic malaria and guide strategies to prevent further resurgence in areas where malaria has been eliminated. PMID:25336725

  4. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies.

    PubMed

    Veiga, M Isabel; Dhingra, Satish K; Henrich, Philipp P; Straimer, Judith; Gnädig, Nina; Uhlemann, Anne-Catrin; Martin, Rowena E; Lehane, Adele M; Fidock, David A

    2016-01-01

    Antimalarial chemotherapy, globally reliant on artemisinin-based combination therapies (ACTs), is threatened by the spread of drug resistance in Plasmodium falciparum parasites. Here we use zinc-finger nucleases to genetically modify the multidrug resistance-1 transporter PfMDR1 at amino acids 86 and 184, and demonstrate that the widely prevalent N86Y mutation augments resistance to the ACT partner drug amodiaquine and the former first-line agent chloroquine. In contrast, N86Y increases parasite susceptibility to the partner drugs lumefantrine and mefloquine, and the active artemisinin metabolite dihydroartemisinin. The PfMDR1 N86 plus Y184F isoform moderately reduces piperaquine potency in strains expressing an Asian/African variant of the chloroquine resistance transporter PfCRT. Mutations in both digestive vacuole-resident transporters are thought to differentially regulate ACT drug interactions with host haem, a product of parasite-mediated haemoglobin degradation. Global mapping of these mutations illustrates where the different ACTs could be selectively deployed to optimize treatment based on regional differences in PfMDR1 haplotypes. PMID:27189525

  5. Sequence-based association and selection scans identify drug resistance loci in the Plasmodium falciparum malaria parasite

    PubMed Central

    Park, Daniel J.; Lukens, Amanda K.; Neafsey, Daniel E.; Schaffner, Stephen F.; Chang, Hsiao-Han; Valim, Clarissa; Ribacke, Ulf; Van Tyne, Daria; Galinsky, Kevin; Galligan, Meghan; Becker, Justin S.; Ndiaye, Daouda; Mboup, Souleymane; Wiegand, Roger C.; Hartl, Daniel L.; Sabeti, Pardis C.; Wirth, Dyann F.; Volkman, Sarah K.

    2012-01-01

    Through rapid genetic adaptation and natural selection, the Plasmodium falciparum parasite—the deadliest of those that cause malaria—is able to develop resistance to antimalarial drugs, thwarting present efforts to control it. Genome-wide association studies (GWAS) provide a critical hypothesis-generating tool for understanding how this occurs. However, in P. falciparum, the limited amount of linkage disequilibrium hinders the power of traditional array-based GWAS. Here, we demonstrate the feasibility and power improvements gained by using whole-genome sequencing for association studies. We analyzed data from 45 Senegalese parasites and identified genetic changes associated with the parasites’ in vitro response to 12 different antimalarials. To further increase statistical power, we adapted a common test for natural selection, XP-EHH (cross-population extended haplotype homozygosity), and used it to identify genomic regions associated with resistance to drugs. Using this sequence-based approach and the combination of association and selection-based tests, we detected several loci associated with drug resistance. These loci included the previously known signals at pfcrt, dhfr, and pfmdr1, as well as many genes not previously implicated in drug-resistance roles, including genes in the ubiquitination pathway. Based on the success of the analysis presented in this study, and on the demonstrated shortcomings of array-based approaches, we argue for a complete transition to sequence-based GWAS for small, low linkage-disequilibrium genomes like that of P. falciparum. PMID:22826220

  6. Identification and deconvolution of cross-resistance signals from antimalarial compounds using multidrug-resistant Plasmodium falciparum strains.

    PubMed

    Chugh, Monika; Scheurer, Christian; Sax, Sibylle; Bilsland, Elizabeth; van Schalkwyk, Donelly A; Wicht, Kathryn J; Hofmann, Natalie; Sharma, Anil; Bashyam, Sridevi; Singh, Shivendra; Oliver, Stephen G; Egan, Timothy J; Malhotra, Pawan; Sutherland, Colin J; Beck, Hans-Peter; Wittlin, Sergio; Spangenberg, Thomas; Ding, Xavier C

    2015-02-01

    Plasmodium falciparum, the most deadly agent of malaria, displays a wide variety of resistance mechanisms in the field. The ability of antimalarial compounds in development to overcome these must therefore be carefully evaluated to ensure uncompromised activity against real-life parasites. We report here on the selection and phenotypic as well as genotypic characterization of a panel of sensitive and multidrug-resistant P. falciparum strains that can be used to optimally identify and deconvolute the cross-resistance signals from an extended panel of investigational antimalarials. As a case study, the effectiveness of the selected panel of strains was demonstrated using the 1,2,4-oxadiazole series, a newly identified antimalarial series of compounds with in vitro activity against P. falciparum at nanomolar concentrations. This series of compounds was to be found inactive against several multidrug-resistant strains, and the deconvolution of this signal implicated pfcrt, the genetic determinant of chloroquine resistance. Targeted mode-of-action studies further suggested that this new chemical series might act as falcipain 2 inhibitors, substantiating the suggestion that these compounds have a site of action similar to that of chloroquine but a distinct mode of action. New antimalarials must overcome existing resistance and, ideally, prevent its de novo appearance. The panel of strains reported here, which includes recently collected as well as standard laboratory-adapted field isolates, is able to efficiently detect and precisely characterize cross-resistance and, as such, can contribute to the faster development of new, effective antimalarial drugs.

  7. Identification and deconvolution of cross-resistance signals from antimalarial compounds using multidrug-resistant Plasmodium falciparum strains.

    PubMed

    Chugh, Monika; Scheurer, Christian; Sax, Sibylle; Bilsland, Elizabeth; van Schalkwyk, Donelly A; Wicht, Kathryn J; Hofmann, Natalie; Sharma, Anil; Bashyam, Sridevi; Singh, Shivendra; Oliver, Stephen G; Egan, Timothy J; Malhotra, Pawan; Sutherland, Colin J; Beck, Hans-Peter; Wittlin, Sergio; Spangenberg, Thomas; Ding, Xavier C

    2015-02-01

    Plasmodium falciparum, the most deadly agent of malaria, displays a wide variety of resistance mechanisms in the field. The ability of antimalarial compounds in development to overcome these must therefore be carefully evaluated to ensure uncompromised activity against real-life parasites. We report here on the selection and phenotypic as well as genotypic characterization of a panel of sensitive and multidrug-resistant P. falciparum strains that can be used to optimally identify and deconvolute the cross-resistance signals from an extended panel of investigational antimalarials. As a case study, the effectiveness of the selected panel of strains was demonstrated using the 1,2,4-oxadiazole series, a newly identified antimalarial series of compounds with in vitro activity against P. falciparum at nanomolar concentrations. This series of compounds was to be found inactive against several multidrug-resistant strains, and the deconvolution of this signal implicated pfcrt, the genetic determinant of chloroquine resistance. Targeted mode-of-action studies further suggested that this new chemical series might act as falcipain 2 inhibitors, substantiating the suggestion that these compounds have a site of action similar to that of chloroquine but a distinct mode of action. New antimalarials must overcome existing resistance and, ideally, prevent its de novo appearance. The panel of strains reported here, which includes recently collected as well as standard laboratory-adapted field isolates, is able to efficiently detect and precisely characterize cross-resistance and, as such, can contribute to the faster development of new, effective antimalarial drugs. PMID:25487796

  8. Genome-wide association analysis identifies genetic loci associated with resistance to multiple antimalarials in Plasmodium falciparum from China-Myanmar border

    PubMed Central

    Wang, Zenglei; Cabrera, Mynthia; Yang, Jingyun; Yuan, Lili; Gupta, Bhavna; Liang, Xiaoying; Kemirembe, Karen; Shrestha, Sony; Brashear, Awtum; Li, Xiaolian; Porcella, Stephen F.; Miao, Jun; Yang, Zhaoqing; Su, Xin-zhuan; Cui, Liwang

    2016-01-01

    Drug resistance has emerged as one of the greatest challenges facing malaria control. The recent emergence of resistance to artemisinin (ART) and its partner drugs in ART-based combination therapies (ACT) is threatening the efficacy of this front-line regimen for treating Plasmodium falciparum parasites. Thus, an understanding of the molecular mechanisms that underlie the resistance to ART and the partner drugs has become a high priority for resistance containment and malaria management. Using genome-wide association studies, we investigated the associations of genome-wide single nucleotide polymorphisms with in vitro sensitivities to 10 commonly used antimalarial drugs in 94 P. falciparum isolates from the China-Myanmar border area, a region with the longest history of ART usage. We identified several loci associated with various drugs, including those containing pfcrt and pfdhfr. Of particular interest is a locus on chromosome 10 containing the autophagy-related protein 18 (ATG18) associated with decreased sensitivities to dihydroartemisinin, artemether and piperaquine – an ACT partner drug in this area. ATG18 is a phosphatidylinositol-3-phosphate binding protein essential for autophagy and recently identified as a potential ART target. Further investigations on the ATG18 and genes at the chromosome 10 locus may provide an important lead for a connection between ART resistance and autophagy. PMID:27694982

  9. Targeting protein translation, RNA splicing, and degradation by morpholino-based conjugates in Plasmodium falciparum

    PubMed Central

    Garg, Aprajita; Wesolowski, Donna; Alonso, Dulce; Deitsch, Kirk W.; Ben Mamoun, Choukri; Altman, Sidney

    2015-01-01

    Identification and genetic validation of new targets from available genome sequences are critical steps toward the development of new potent and selective antimalarials. However, no methods are currently available for large-scale functional analysis of the Plasmodium falciparum genome. Here we present evidence for successful use of morpholino oligomers (MO) to mediate degradation of target mRNAs or to inhibit RNA splicing or translation of several genes of P. falciparum involved in chloroquine transport, apicoplast biogenesis, and phospholipid biosynthesis. Consistent with their role in the parasite life cycle, down-regulation of these essential genes resulted in inhibition of parasite development. We show that a MO conjugate that targets the chloroquine-resistant transporter PfCRT is effective against chloroquine-sensitive and -resistant parasites, causes enlarged digestive vacuoles, and renders chloroquine-resistant strains more sensitive to chloroquine. Similarly, we show that a MO conjugate that targets the PfDXR involved in apicoplast biogenesis inhibits parasite growth and that this defect can be rescued by addition of isopentenyl pyrophosphate. MO-based gene regulation is a viable alternative approach to functional analysis of the P. falciparum genome. PMID:26351679

  10. Targeting protein translation, RNA splicing, and degradation by morpholino-based conjugates in Plasmodium falciparum.

    PubMed

    Garg, Aprajita; Wesolowski, Donna; Alonso, Dulce; Deitsch, Kirk W; Ben Mamoun, Choukri; Altman, Sidney

    2015-09-22

    Identification and genetic validation of new targets from available genome sequences are critical steps toward the development of new potent and selective antimalarials. However, no methods are currently available for large-scale functional analysis of the Plasmodium falciparum genome. Here we present evidence for successful use of morpholino oligomers (MO) to mediate degradation of target mRNAs or to inhibit RNA splicing or translation of several genes of P. falciparum involved in chloroquine transport, apicoplast biogenesis, and phospholipid biosynthesis. Consistent with their role in the parasite life cycle, down-regulation of these essential genes resulted in inhibition of parasite development. We show that a MO conjugate that targets the chloroquine-resistant transporter PfCRT is effective against chloroquine-sensitive and -resistant parasites, causes enlarged digestive vacuoles, and renders chloroquine-resistant strains more sensitive to chloroquine. Similarly, we show that a MO conjugate that targets the PfDXR involved in apicoplast biogenesis inhibits parasite growth and that this defect can be rescued by addition of isopentenyl pyrophosphate. MO-based gene regulation is a viable alternative approach to functional analysis of the P. falciparum genome. PMID:26351679

  11. Structural polymorphism in the promoter of pfmrp2 confers Plasmodium falciparum tolerance to quinoline drugs

    PubMed Central

    Mok, Sachel; Liong, Kek-Yee; Lim, Eng-How; Huang, Ximei; Zhu, Lei; Preiser, Peter Rainer; Bozdech, Zbynek

    2014-01-01

    Drug resistance in Plasmodium falciparum remains a challenge for the malaria eradication programmes around the world. With the emergence of artemisinin resistance, the efficacy of the partner drugs in the artemisinin combination therapies (ACT) that include quinoline-based drugs is becoming critical. So far only few resistance markers have been identified from which only two transmembrane transporters namely PfMDR1 (an ATP-binding cassette transporter) and PfCRT (a drug-metabolite transporter) have been experimentally verified. Another P. falciparum transporter, the ATP-binding cassette containing multidrug resistance-associated protein (PfMRP2) represents an additional possible factor of drug resistance in P. falciparum. In this study, we identified a parasite clone that is derived from the 3D7 P. falciparum strain and shows increased resistance to chloroquine, mefloquine and quinine through the trophozoite and schizont stages. We demonstrate that the resistance phenotype is caused by a 4.1 kb deletion in the 5′ upstream region of the pfmrp2 gene that leads to an alteration in the pfmrp2 transcription and thus increased level of PfMRP2 protein. These results also suggest the importance of putative promoter elements in regulation of gene expression during the P. falciparum intra-erythrocytic developmental cycle and the potential of genetic polymorphisms within these regions to underlie drug resistance. PMID:24372851

  12. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies

    PubMed Central

    Veiga, M. Isabel; Dhingra, Satish K.; Henrich, Philipp P.; Straimer, Judith; Gnädig, Nina; Uhlemann, Anne-Catrin; Martin, Rowena E.; Lehane, Adele M.; Fidock, David A.

    2016-01-01

    Antimalarial chemotherapy, globally reliant on artemisinin-based combination therapies (ACTs), is threatened by the spread of drug resistance in Plasmodium falciparum parasites. Here we use zinc-finger nucleases to genetically modify the multidrug resistance-1 transporter PfMDR1 at amino acids 86 and 184, and demonstrate that the widely prevalent N86Y mutation augments resistance to the ACT partner drug amodiaquine and the former first-line agent chloroquine. In contrast, N86Y increases parasite susceptibility to the partner drugs lumefantrine and mefloquine, and the active artemisinin metabolite dihydroartemisinin. The PfMDR1 N86 plus Y184F isoform moderately reduces piperaquine potency in strains expressing an Asian/African variant of the chloroquine resistance transporter PfCRT. Mutations in both digestive vacuole-resident transporters are thought to differentially regulate ACT drug interactions with host haem, a product of parasite-mediated haemoglobin degradation. Global mapping of these mutations illustrates where the different ACTs could be selectively deployed to optimize treatment based on regional differences in PfMDR1 haplotypes. PMID:27189525

  13. Altered drug susceptibility during host adaptation of a Plasmodium falciparum strain in a non-human primate model

    PubMed Central

    Obaldía III, Nicanor; Dow, Geoffrey S.; Gerena, Lucia; Kyle, Dennis; Otero, William; Mantel, Pierre-Yves; Baro, Nicholas; Daniels, Rachel; Mukherjee, Angana; Childs, Lauren M.; Buckee, Caroline; Duraisingh, Manoj T.; Volkman, Sarah K.; Wirth, Dyann F.; Marti, Matthias

    2016-01-01

    Infections with Plasmodium falciparum, the most pathogenic of the Plasmodium species affecting man, have been reduced in part due to artemisinin-based combination therapies. However, artemisinin resistant parasites have recently emerged in South-East Asia. Novel intervention strategies are therefore urgently needed to maintain the current momentum for control and elimination of this disease. In the present study we characterize the phenotypic and genetic properties of the multi drug resistant (MDR) P. falciparum Thai C2A parasite strain in the non-human Aotus primate model, and across multiple passages. Aotus infections with C2A failed to clear upon oral artesunate and mefloquine treatment alone or in combination, and ex vivo drug assays demonstrated reduction in drug susceptibility profiles in later Aotus passages. Further analysis revealed mutations in the pfcrt and pfdhfr loci and increased parasite multiplication rate (PMR) across passages, despite elevated pfmdr1 copy number. Altogether our experiments suggest alterations in parasite population structure and increased fitness during Aotus adaptation. We also present data of early treatment failures with an oral artemisinin combination therapy in a pre-artemisinin resistant P. falciparum Thai isolate in this animal model. PMID:26880111

  14. Identification and Deconvolution of Cross-Resistance Signals from Antimalarial Compounds Using Multidrug-Resistant Plasmodium falciparum Strains

    PubMed Central

    Chugh, Monika; Scheurer, Christian; Sax, Sibylle; Bilsland, Elizabeth; van Schalkwyk, Donelly A.; Wicht, Kathryn J.; Hofmann, Natalie; Sharma, Anil; Bashyam, Sridevi; Singh, Shivendra; Oliver, Stephen G.; Egan, Timothy J.; Malhotra, Pawan; Sutherland, Colin J.; Beck, Hans-Peter; Wittlin, Sergio; Spangenberg, Thomas

    2014-01-01

    Plasmodium falciparum, the most deadly agent of malaria, displays a wide variety of resistance mechanisms in the field. The ability of antimalarial compounds in development to overcome these must therefore be carefully evaluated to ensure uncompromised activity against real-life parasites. We report here on the selection and phenotypic as well as genotypic characterization of a panel of sensitive and multidrug-resistant P. falciparum strains that can be used to optimally identify and deconvolute the cross-resistance signals from an extended panel of investigational antimalarials. As a case study, the effectiveness of the selected panel of strains was demonstrated using the 1,2,4-oxadiazole series, a newly identified antimalarial series of compounds with in vitro activity against P. falciparum at nanomolar concentrations. This series of compounds was to be found inactive against several multidrug-resistant strains, and the deconvolution of this signal implicated pfcrt, the genetic determinant of chloroquine resistance. Targeted mode-of-action studies further suggested that this new chemical series might act as falcipain 2 inhibitors, substantiating the suggestion that these compounds have a site of action similar to that of chloroquine but a distinct mode of action. New antimalarials must overcome existing resistance and, ideally, prevent its de novo appearance. The panel of strains reported here, which includes recently collected as well as standard laboratory-adapted field isolates, is able to efficiently detect and precisely characterize cross-resistance and, as such, can contribute to the faster development of new, effective antimalarial drugs. PMID:25487796

  15. A broad analysis of resistance development in the malaria parasite.

    PubMed

    Corey, Victoria C; Lukens, Amanda K; Istvan, Eva S; Lee, Marcus C S; Franco, Virginia; Magistrado, Pamela; Coburn-Flynn, Olivia; Sakata-Kato, Tomoyo; Fuchs, Olivia; Gnädig, Nina F; Goldgof, Greg; Linares, Maria; Gomez-Lorenzo, Maria G; De Cózar, Cristina; Lafuente-Monasterio, Maria Jose; Prats, Sara; Meister, Stephan; Tanaseichuk, Olga; Wree, Melanie; Zhou, Yingyao; Willis, Paul A; Gamo, Francisco-Javier; Goldberg, Daniel E; Fidock, David A; Wirth, Dyann F; Winzeler, Elizabeth A

    2016-01-01

    Microbial resistance to chemotherapy has caused countless deaths where malaria is endemic. Chemotherapy may fail either due to pre-existing resistance or evolution of drug-resistant parasites. Here we use a diverse set of antimalarial compounds to investigate the acquisition of drug resistance and the degree of cross-resistance against common resistance alleles. We assess cross-resistance using a set of 15 parasite lines carrying resistance-conferring alleles in pfatp4, cytochrome bc1, pfcarl, pfdhod, pfcrt, pfmdr, pfdhfr, cytoplasmic prolyl t-RNA synthetase or hsp90. Subsequently, we assess whether resistant parasites can be obtained after several rounds of drug selection. Twenty-three of the 48 in vitro selections result in resistant parasites, with time to resistance onset ranging from 15 to 300 days. Our data indicate that pre-existing resistance may not be a major hurdle for novel-target antimalarial candidates, and focusing our attention on fast-killing compounds may result in a slower onset of clinical resistance. PMID:27301419

  16. Expanding the spectrum of genetic mutations in antenatal Bartter syndrome type II.

    PubMed

    Fretzayas, Andreas; Gole, Evangelia; Attilakos, Achilleas; Daskalaki, Anna; Nicolaidou, Polyxeni; Papadopoulou, Anna

    2013-06-01

    Bartter syndrome (BS) is a group of genetic disorders characterized by hypokalemic metabolic alkalosis, hyponatremia and elevated renin and aldosterone plasma concentrations. BS type II is caused by mutations in the KCNJ1 gene and usually presents with transient hyperkalemia. We report here a novel KCNJ1 mutation in a male neonate, prematurely born after a pregnancy complicated by polyhydramnios. The infant presented with typical clinical and laboratory findings of BS type II, such as hyponatremia, hypochloremic metabolic alkalosis, severe weight loss, elevated renin and aldosterone levels and transient hyperkalemia in the early postnatal period, which were later normalized. Molecular analysis revealed a compound heterozygous mutation in the KCNJ1 gene, consisting of a novel K76E and an already described V315G mutation, both affecting functional domains of the channel protein. Typical manifestations of antenatal BS in combination with hyperkalemia should prompt the clinician to search for mutations in the KCNJ1 gene first. PMID:23782368

  17. Importation of chloroquine-resistant Plasmodium falciparum by Guatemalan peacekeepers returning from the Democratic Republic of the Congo

    PubMed Central

    2013-01-01

    Background Malaria elimination is being pursued in five of seven Central American countries. Military personnel returning from peacekeeping missions in sub-Saharan Africa could import chloroquine-resistant Plasmodium falciparum, posing a threat to elimination and to the continued efficacy of first-line chloroquine (CQ) treatment in these countries. This report describes the importation of P. falciparum from among 150 Guatemalan army special forces and support staff who spent ten months on a United Nations’ peacekeeping mission in the Democratic Republic of the Congo (DRC) in 2010. Methods Investigators reviewed patients’ medical charts and interviewed members of the contingent to identify malaria cases and risk factors for malaria acquisition. Clinical specimens were tested for malaria; isolated parasites were characterized molecularly for CQ resistance. Results Investigators identified 12 cases (8%) of laboratory-confirmed P. falciparum infection within the contingent; one case was from a soldier infected with a CQ-resistant pfcrt genotype resulting in his death. None of the contingent used an insecticide-treated bed net (ITN) or completely adhered to malaria chemoprophylaxis while in the DRC. Conclusion This report highlights the need to promote use of malaria prevention measures, in particular ITNs and chemoprophylaxis, among peacekeepers stationed in malaria-endemic areas. Countries attempting to eliminate malaria should consider appropriate methods to screen peacekeepers returning from endemic areas for malaria infections. Cases of malaria in travellers, immigrants and soldiers returning to Central America from countries with CQ-resistant malaria should be assumed to be carry resistant parasites and receive appropriate anti-malarial therapy to prevent severe disease and death. PMID:24060234

  18. Implications of Glutathione Levels in the Plasmodium berghei Response to Chloroquine and Artemisinin

    PubMed Central

    Vega-Rodríguez, Joel; Pastrana-Mena, Rebecca; Crespo-Lladó, Keila N.; Ortiz, José G.; Ferrer-Rodríguez, Iván; Serrano, Adelfa E.

    2015-01-01

    Malaria is one of the most devastating parasitic diseases worldwide. Plasmodium drug resistance remains a major challenge to malaria control and has led to the re-emergence of the disease. Chloroquine (CQ) and artemisinin (ART) are thought to exert their anti-malarial activity inducing cytotoxicity in the parasite by blocking heme degradation (for CQ) and increasing oxidative stress. Besides the contribution of the CQ resistance transporter (PfCRT) and the multidrug resistant gene (pfmdr), CQ resistance has also been associated with increased parasite glutathione (GSH) levels. ART resistance was recently shown to be associated with mutations in the K13-propeller protein. To analyze the role of GSH levels in CQ and ART resistance, we generated transgenic Plasmodium berghei parasites either deficient in or overexpressing the gamma-glutamylcysteine synthetase gene (pbggcs) encoding the rate-limiting enzyme in GSH biosynthesis. These lines produce either lower (pbggcs-ko) or higher (pbggcs-oe) levels of GSH than wild type parasites. In addition, GSH levels were determined in P. berghei parasites resistant to CQ and mefloquine (MQ). Increased GSH levels were detected in both, CQ and MQ resistant parasites, when compared to the parental sensitive clone. Sensitivity to CQ and ART remained unaltered in both pgggcs-ko and pbggcs-oe parasites when tested in a 4 days drug suppressive assay. However, recrudescence assays after the parasites have been exposed to a sub-lethal dose of ART showed that parasites with low levels of GSH are more sensitive to ART treatment. These results suggest that GSH levels influence Plasmodium berghei response to ART treatment. PMID:26010448

  19. Plasmodium falciparum Polymorphisms associated with ex vivo drug susceptibility and clinical effectiveness of artemisinin-based combination therapies in Benin.

    PubMed

    Dahlström, Sabina; Aubouy, Agnès; Maïga-Ascofaré, Oumou; Faucher, Jean-François; Wakpo, Abel; Ezinmègnon, Sèm; Massougbodji, Achille; Houzé, Pascal; Kendjo, Eric; Deloron, Philippe; Le Bras, Jacques; Houzé, Sandrine

    2014-01-01

    Artemisinin-based combination therapies (ACTs) are the main option to treat malaria, and their efficacy and susceptibility must be closely monitored to avoid resistance. We assessed the association of Plasmodium falciparum polymorphisms and ex vivo drug susceptibility with clinical effectiveness. Patients enrolled in an effectiveness trial comparing artemether-lumefantrine (n = 96), fixed-dose artesunate-amodiaquine (n = 96), and sulfadoxine-pyrimethamine (n = 48) for the treatment of uncomplicated malaria 2007 in Benin were assessed. pfcrt, pfmdr1, pfmrp1, pfdhfr, and pfdhps polymorphisms were analyzed pretreatment and in recurrent infections. Drug susceptibility was determined in fresh baseline isolates by Plasmodium lactate dehydrogenase enzyme-linked immunosorbent assay (ELISA). A majority had 50% inhibitory concentration (IC50) estimates (the concentration required for 50% growth inhibition) lower than those of the 3D7 reference clone for desethylamodiaquine, lumefantrine, mefloquine, and quinine and was considered to be susceptible, while dihydroartemisinin and pyrimethamine IC50s were higher. No association was found between susceptibility to the ACT compounds and treatment outcome. Selection was observed for the pfmdr1 N86 allele in artemether-lumefantrine recrudescences (recurring infections) (4/7 [57.1%] versus 36/195 [18.5%]), and of the opposite allele, 86Y, in artesunate-amodiaquine reinfections (new infections) (20/22 [90.9%] versus 137/195 [70.3%]) compared to baseline infections. The importance of pfmdr1 N86 in lumefantrine tolerance was emphasized by its association with elevated lumefantrine IC50s. Genetic linkage between N86 and Y184 was observed, which together with the low frequency of 1246Y may explain regional differences in selection of pfmdr1 loci. Selection of opposite alleles in artemether-lumefantrine and artesunate-amodiaquine recurrent infections supports the strategy of multiple first-line treatment. Surveillance based on clinical, ex

  20. Assessment of the therapeutic efficacy of artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in northern KwaZulu-Natal: an observational cohort study

    PubMed Central

    2012-01-01

    Background Recent malaria epidemics in KwaZulu-Natal indicate that effective anti-malarial therapy is essential for malaria control. Although artemether-lumefantrine has been used as first-line treatment for uncomplicated Plasmodium falciparum malaria in northern KwaZulu-Natal since 2001, its efficacy has not been assessed since 2002. The objectives of this study were to quantify the proportion of patients treated for uncomplicated P. falciparum malaria with artemether-lumefantrine who failed treatment after 28 days, and to determine the prevalence of molecular markers associated with artemether-lumefantrine and chloroquine resistance. Methods An observational cohort of 49 symptomatic patients, diagnosed with uncomplicated P. falciparum malaria by rapid diagnostic test, had blood taken for malaria blood films and P. falciparum DNA polymerase chain reaction (PCR). Following diagnosis, patients were treated with artemether-lumefantrine (Coartem®) and invited to return to the health facility after 28 days for repeat blood film and PCR. All PCR P. falciparum positive samples were analysed for molecular markers of lumefantrine and chloroquine resistance. Results Of 49 patients recruited on the basis of a positive rapid diagnostic test, only 16 were confirmed to have P. falciparum by PCR. At follow-up, 14 were PCR-negative for malaria, one was lost to follow-up and one blood specimen had insufficient blood for a PCR analysis. All 16 with PCR-confirmed malaria carried a single copy of the multi-drug resistant (mdr1) gene, and the wild type asparagine allele mdr1 codon 86 (mdr1 86N). Ten of the 16 samples carried the wild type haplotype (CVMNK) at codons 72-76 of the chloroquine resistance transporter gene (pfcrt); three samples carried the resistant CVIET allele; one carried both the resistant and wild type, and in two samples the allele could not be analysed. Conclusions The absence of mdr1 gene copy number variation detected in this study suggests lumefantrine

  1. Molecular evidence of increased resistance to anti-folate drugs in Plasmodium falciparum in North-East India: a signal for potential failure of artemisinin plus sulphadoxine-pyrimethamine combination therapy.

    PubMed

    Mohapatra, Pradyumna Kishore; Sarma, Devojit Kumar; Prakash, Anil; Bora, Khukumoni; Ahmed, Md Atique; Sarma, Bibhas; Goswami, Basanta Kumar; Bhattacharyya, Dibya Ranjan; Mahanta, Jagadish

    2014-01-01

    North-east India, being a corridor to South-east Asia, is believed to play an important role in transmitting drug resistant Plasmodium falciparum malaria to India and South Asia. North-east India was the first place in India to record the emergence of drug resistance to chloroquine as well as sulphadoxine/pyrimethamine. Presently chloroquine resistance is widespread all over the North-east India and resistance to other anti-malarials is increasing. In this study both in vivo therapeutic efficacy and molecular assays were used to screen the spectrum of drug resistance to chloroquine and sulphadoxine/pyrimethamine in the circulating P. falciparum strains. A total of 220 P. falciparum positives subjects were enrolled in the study for therapeutic assessment of chloroquine and sulphadoxine/pyrimethamine and assessment of point mutations conferring resistances to these drugs were carried out by genotyping the isolates following standard methods. Overall clinical failures in sulphadoxine/pyrimethamine and chloroquine were found 12.6 and 69.5% respectively, while overall treatment failures recorded were 13.7 and 81.5% in the two arms. Nearly all (99.0%) the isolates had mutant pfcrt genotype (76 T), while 68% had mutant pfmdr-1 genotype (86 Y). Mutation in dhps 437 codon was the most prevalent one while dhfr codon 108 showed 100% mutation. A total of 23 unique haplotypes at the dhps locus and 7 at dhfr locus were found while dhps-dhfr combined loci revealed 49 unique haplotypes. Prevalence of double, triple and quadruple mutations were common while 1 haplotype was found with all five mutated codons (F/AGEGS/T) at dhps locus. Detection of quadruple mutants (51 I/59 R/108 N/164 L) in the present study, earlier recorded from Car Nicobar Island, India only, indicates the presence of high levels of resistance to sulphadoxine/pyrimethamine in north-east India. Associations between resistant haplotypes and the clinical outcomes and emerging resistance in sulphadoxine

  2. Genetic diversity and signatures of selection of drug resistance in Plasmodium populations from both human and mosquito hosts in continental Equatorial Guinea

    PubMed Central

    2013-01-01

    Background In Plasmodium, the high level of genetic diversity and the interactions established by co-infecting parasite populations within the same host may be a source of selection on pathogen virulence and drug resistance. As different patterns have already been described in humans and mosquitoes, parasite diversity and population structure should be studied in both hosts to properly assess their effects on infection and transmission dynamics. This study aimed to characterize the circulating populations of Plasmodium spp and Plasmodium falciparum from a combined set of human blood and mosquito samples gathered in mainland Equatorial Guinea. Further, the origin and evolution of anti-malarial resistance in this area, where malaria remains a major public health problem were traced. Methods Plasmodium species infecting humans and mosquitoes were identified by nested-PCR of chelex-extracted DNA from dried blood spot samples and mosquitoes. Analysis of Pfmsp2 gene, anti-malarial-resistance associated genes, Pfdhps, Pfdhfr, Pfcrt and Pfmdr1, neutral microsatellites (STR) loci and Pfdhfr and Pfdhps flanking STR was undertaken to evaluate P. falciparum diversity. Results Prevalence of infection remains high in mainland Equatorial Guinea. No differences in parasite formula or significant genetic differentiation were seen in the parasite populations in both human and mosquito samples. Point mutations in all genes associated with anti-malarial resistance were highly prevalent. A high prevalence was observed for the Pfdhfr triple mutant in particular, associated with pyrimethamine resistance. Analysis of Pfdhps and Pfdhfr flanking STR revealed a decrease in the genetic diversity. This finding along with multiple independent introductions of Pfdhps mutant haplotypes suggest a soft selective sweep and an increased differentiation at Pfdhfr flanking microsatellites hints a model of positive directional selection for this gene. Conclusions Chloroquine is no longer recommended for

  3. Identification of novel resistance gene sources to cowpea aphid (Aphis craccivora Koch) in cowpea (Vigna unguiculata L.).

    PubMed

    Aliyu, H; Ishiyaku, M F

    2013-08-01

    The development of cowpea aphid larvae was monitored on seven cowpea genotypes (IAR-48, TVu-15866, IT84S-2246-4, SAKA BABBA SATA, IT90K-76, KANANNADO and TVX 3236). The aim of the study was to determine the developmental response of the larvae as an indication of antibiotic resistance of the genotypes. Highly significant differences (p < 0.01) were observed with respect to fertility, larval development, adult longevity, life span, multiplication rate and intrinsic rate of increase. KANANNADO and TVX 3236 show minimum antibiotic effects while a landrace SAKA BABBA SATA shows relatively high antibiotic effects. This result further reveals the potential of SAKA BABBA SATA as a resistance source to aphid. The reaction of IT84S-2246-4, a hitherto aphid resistant genotype, which supported higher levels of survival of the larvae relative to other known susceptible genotype IAR-48, may be an indication of the presence of a new biotype of Aphis craccivora endemic to Zaria environs, or that of the ability of insects to overcome hindrances to their survival including various forms of resistance.

  4. Spectroscopic, thermal analyses, structural and antibacterial studies on the interaction of some metals with ofloxacin

    NASA Astrophysics Data System (ADS)

    Zordok, W. A.; El-Shwiniy, W. H.; El-Attar, M. S.; Sadeek, S. A.

    2013-09-01

    Reaction between the fluoroquinolone antibacterial agent ofloxacin and V(IV), Zr(IV) and U(VI) in methanol and acetone was studied. The ability of ofloxacin to form metal complexes is high. The isolated solid complexes were characterized by elemental analysis, magnetic moment, conductance measurements, infrared, electronic, 1H NMR spectra and thermal investigation. In all complexes the ofloxacin ligand is coordinated through the pyridone and carboxylate oxygen forming 1:2 M:HOfl complexes. The calculated bond length and force constant, F(Udbnd O), in the uranyl complex are 1.73 Å and 640.83 N m-1, respectively. The metal-ligand binding of the V(IV) and Zr(IV) complexes was predicted by using the density functional theory (DFT) at the B3LYP-CEP-31G level of theory and total energy, dipole moment estimation of different V(IV) and Zr(IV) ofloxacin structures. All the synthesized complexes exhibited higher biocidal activity against S. aureus K1, Bacillus subtilis K22, Br. otitidis K76, Escherichia coli K32, Pseudomonas aeruginosa SW1 and Klebsiella oxytoca K42. compared to parent compounds and standard drugs.

  5. A novel IgE-binding epitope of cat major allergen, Fel d 1.

    PubMed

    Tasaniyananda, Natt; Tungtrongchitr, Anchalee; Seesuay, Watee; Sakolvaree, Yuwaporn; Indrawattana, Nitaya; Chaicumpa, Wanpen; Sookrung, Nitat

    2016-02-12

    Information on the antigenic repertoire, especially the IgE-binding epitopes of an allergen is important for understanding the allergen induced immune response and cross-reactivity, as well as for generating the hypoallergenic variants for specific component resolved immunotherapy/diagnosis (CRIT and CRD). Data on the IgE-binding epitopes of cat allergens are scarce. In this study, a novel IgE-binding epitope of the cat major allergen, Fel d 1, was identified. Mouse monoclonal antibody (MAb) specific to the Fel d 1 was produced. Computerized intermolecular docking was used for determining the residues of the Fel d 1 bound by the specific MAb. The presumptive surface exposed residues of the Fel d 1 intrigued by the MAb are located on the chain 1. They are: L34 and T37 (helix 1); T39 (between helices 1 and 2); P40, E42 and E45 (helix 2); R61, K64, N65 and D68 (helix 3); and E73 and K76 (helix 4). The MAb competed efficiently with the cat allergic patients' serum IgE for Fel d 1 binding in the competitive IgE binding assay, indicating allergenicity of the MAb epitope. The newly identified allergenic epitope of the Fel d 1 is useful in a design of the CRIT and CRD for cat allergy. PMID:26797272

  6. CEP120 interacts with CPAP and positively regulates centriole elongation.

    PubMed

    Lin, Yi-Nan; Wu, Chien-Ting; Lin, Yu-Chih; Hsu, Wen-Bin; Tang, Chieh-Ju C; Chang, Ching-Wen; Tang, Tang K

    2013-07-22

    Centriole duplication begins with the formation of a single procentriole next to a preexisting centriole. CPAP (centrosomal protein 4.1-associated protein) was previously reported to participate in centriole elongation. Here, we show that CEP120 is a cell cycle-regulated protein that directly interacts with CPAP and is required for centriole duplication. CEP120 levels increased gradually from early S to G2/M and decreased significantly after mitosis. Forced overexpression of either CEP120 or CPAP not only induced the assembly of overly long centrioles but also produced atypical supernumerary centrioles that grew from these long centrioles. Depletion of CEP120 inhibited CPAP-induced centriole elongation and vice versa, implying that these proteins work together to regulate centriole elongation. Furthermore, CEP120 was found to contain an N-terminal microtubule-binding domain, a C-terminal dimerization domain, and a centriolar localization domain. Overexpression of a microtubule binding-defective CEP120-K76A mutant significantly suppressed the formation of elongated centrioles. Together, our results indicate that CEP120 is a CPAP-interacting protein that positively regulates centriole elongation.

  7. Long-term diagnostic stability and outcome in recent first-episode cohort studies of schizophrenia.

    PubMed

    Bromet, Evelyn J; Naz, Bushra; Fochtmann, Laura J; Carlson, Gabrielle A; Tanenberg-Karant, Marsha

    2005-07-01

    Knowing the long-term outcomes of schizophrenia and stability of a schizophrenia diagnosis are important from a clinical standpoint as well as essential to future research on diagnostic classifications and outcome. As in prior research on schizophrenia, prospectively designed long-term studies over the past 30 years find that the predominant course of illness includes chronically poor functioning, with little evidence of long-term improvement. Mortality due to suicide is significant at about 10% over 10-year periods of follow-up. Within studies, outcome domains are interrelated, and the relatively consistent predictors of poorer outcome include family history of schizophrenia, insidious onset, poor premorbid functioning, severity of negative symptoms, and severity and duration of untreated psychosis. Residing in a developed rather than a developing country is also associated with a poorer long-term course. The diagnostic stability of schizophrenia is less well studied. The positive predictive value exceeds 90%, and preliminary findings from the 10-year follow-up of the Suffolk County Mental Health Project cohort have found that the agreement across time increased from k = .52 (baseline to 10 years) to k = .76 (6 or 24 months to 10 years). After discussing several limitations of the existing body of research, we suggest that future studies incorporate more "modifiable" risk factors into the assessment battery that could potentially be used as building blocks in experimental intervention designs.

  8. A novel IgE-binding epitope of cat major allergen, Fel d 1.

    PubMed

    Tasaniyananda, Natt; Tungtrongchitr, Anchalee; Seesuay, Watee; Sakolvaree, Yuwaporn; Indrawattana, Nitaya; Chaicumpa, Wanpen; Sookrung, Nitat

    2016-02-12

    Information on the antigenic repertoire, especially the IgE-binding epitopes of an allergen is important for understanding the allergen induced immune response and cross-reactivity, as well as for generating the hypoallergenic variants for specific component resolved immunotherapy/diagnosis (CRIT and CRD). Data on the IgE-binding epitopes of cat allergens are scarce. In this study, a novel IgE-binding epitope of the cat major allergen, Fel d 1, was identified. Mouse monoclonal antibody (MAb) specific to the Fel d 1 was produced. Computerized intermolecular docking was used for determining the residues of the Fel d 1 bound by the specific MAb. The presumptive surface exposed residues of the Fel d 1 intrigued by the MAb are located on the chain 1. They are: L34 and T37 (helix 1); T39 (between helices 1 and 2); P40, E42 and E45 (helix 2); R61, K64, N65 and D68 (helix 3); and E73 and K76 (helix 4). The MAb competed efficiently with the cat allergic patients' serum IgE for Fel d 1 binding in the competitive IgE binding assay, indicating allergenicity of the MAb epitope. The newly identified allergenic epitope of the Fel d 1 is useful in a design of the CRIT and CRD for cat allergy.

  9. Conglutinin-like factors in human saliva--relation to other salivary aggregating factors--.

    PubMed

    Murai, Y

    1980-12-01

    This study was conducted to examine the relation between conglutinin-like factors and other bacterial aggregating factors in human saliva. Human and guinea pig complement intermediate cells (EAC4b,3b) were prepared by using and anticomplementary agent K-76 COONa. Conglutinin-like factors and agglutinins for sensitized sheep erythrocytes in parotid and whole saliva from seven subjects were examined. Whole saliva from the subjects with a periodontal disease showed a lower activity than that from the subjects with a clinically normal gingiva. It seems, therefore, that some strum component from the gingival crevice inhibit the aggregation of sensitized sheep erthrocytes by saliva as in the case of the conglutination of EAC4b, 3b cells. Conglutinin-like factors appeard over a wide region including both the void volume and the secretory IgA region in gel filtration of human whole saliva on Sepharose 4B. The void volume fractions contained a high conglutinin-like factor activity but no Iga activity. These data suggest that conglutinin-like factors are not polymers of IgA but complexes of glycoproteins or those on which IgA is bound furthermore. PMID:6936093

  10. Continuing Measurements of CO2 Crystals with a Hand-Held 35 GHz Radiometer

    NASA Technical Reports Server (NTRS)

    Foster, J.; Chang, A.; Hall, D.; Tait, A.; Wergin, W.; Erbe, E.

    2000-01-01

    In order to increase our knowledge of the Martian polar caps, an improved understanding of the behavior of both frozen H2O and CO2 in different parts of the electromagnetic spectrum is needed. The thermal microwave part of the spectrum has received relatively little attention compared to the visible and infrared wavelengths. A simple experiment to measure the brightness temperature of frozen CO2 was first performed in the winter of 1998 using a 35 GHz radiometer. in experiments performed during the winter of 1999 and 2000, passive microwave radiation emanating from within layers of manufactured CO2 (dry ice) crystals was again measured with a 35 GHz handheld radiometer. Both large (0.8 cm) and small (0.3 cm) cylindrical-shaped dry ice pellets, at a temperature of 197 K (-76 C), were measured. A 1 sq m plate of aluminum sheet metal was positioned beneath the dry ice so that microwave emissions from the underlying soil layers would be minimized. Non-absorbing foam was positioned around the sides of the plate in order to keep the dry ice in place and to assure that the incremental deposits were level. Thirty-five GHz measurements of this plate were made through the dry ice deposits in the following way. Layers of dry ice were built up and measurements were repeated for the increasing CO2 pack. First, 7 cm of large CO2 pellets were poured onto the sheet metal plate, then an additional 7 cm were added, and finally, 12 cm were added on top of the 14 cm base. Hand-held 35 GHz measurements were made each time the thickness of the deposit was increased. The same process was repeated for the smaller grain pellets. Furthermore, during the past winter, 35 GHz measurements were taken of a 25 kg (27 cm x 27 cm x 27 cm) solid cube Of CO2, which was cut in half and then re-measured. Additional information is contained in the original extended abstract.

  11. Continuing Measurements of CO2 Crystals with a Hand-Held 35 GHz Radiometer

    NASA Astrophysics Data System (ADS)

    Foster, J.; Chang, A.; Hall, D.; Tait, A.; Wergin, W.; Erbe, E.

    2000-08-01

    In order to increase our knowledge of the Martian polar caps, an improved understanding of the behavior of both frozen H2O and CO2 in different parts of the electromagnetic spectrum is needed. The thermal microwave part of the spectrum has received relatively little attention compared to the visible and infrared wavelengths. A simple experiment to measure the brightness temperature of frozen CO2 was first performed in the winter of 1998 using a 35 GHz radiometer. in experiments performed during the winter of 1999 and 2000, passive microwave radiation emanating from within layers of manufactured CO2 (dry ice) crystals was again measured with a 35 GHz handheld radiometer. Both large (0.8 cm) and small (0.3 cm) cylindrical-shaped dry ice pellets, at a temperature of 197 K (-76 C), were measured. A 1 sq m plate of aluminum sheet metal was positioned beneath the dry ice so that microwave emissions from the underlying soil layers would be minimized. Non-absorbing foam was positioned around the sides of the plate in order to keep the dry ice in place and to assure that the incremental deposits were level. Thirty-five GHz measurements of this plate were made through the dry ice deposits in the following way. Layers of dry ice were built up and measurements were repeated for the increasing CO2 pack. First, 7 cm of large CO2 pellets were poured onto the sheet metal plate, then an additional 7 cm were added, and finally, 12 cm were added on top of the 14 cm base. Hand-held 35 GHz measurements were made each time the thickness of the deposit was increased. The same process was repeated for the smaller grain pellets. Furthermore, during the past winter, 35 GHz measurements were taken of a 25 kg (27 cm x 27 cm x 27 cm) solid cube Of CO2, which was cut in half and then re-measured. Additional information is contained in the original extended abstract.

  12. Management and characteristics of recycled manure solids used for bedding in Midwest freestall dairy herds.

    PubMed

    Husfeldt, A W; Endres, M I; Salfer, J A; Janni, K A

    2012-04-01

    Interest in using recycled manure solids (RMS) as a bedding material for dairy cows has grown in the US Midwest. Cost of common bedding materials has increased in recent years and availability has decreased. Information regarding the composition of RMS and its use as a bedding material for dairy cows in the Midwest is very limited. The objectives of this study were to characterize RMS as a bedding material, observe bedding management practices, document methods of obtaining RMS, and describe housing facilities. We visited 38 Midwest dairy operations bedding freestalls with RMS to collect data. Methods of obtaining RMS for bedding included separation of anaerobic digested manure, separation of raw manure, and separation of raw manure followed by mechanical drum-composting for 18 to 24 h. Average bedding moisture of unused RMS was 72.4% with a pH of 9.16. Unused samples contained (on a dry basis) 1.4% N, 44.9% C, 32.7C:N ratio, 0.44% P, 0.70% K, 76.5% neutral detergent fiber, 9.4% ash, 4.4% nonfiber carbohydrates, and 1.1% fat. Moisture was lowest for drum-composted solids before and after use as freestall bedding. After use in the stalls, digested solids had lower neutral detergent fiber content (70.5%) than drum-composted (75.0%) and separated raw (73.1%) solids. Total N content was greater in digested solids (2.0%) than in separated raw (1.7%) solids. Total bacterial populations in unused bedding were greatest in separated raw manure solids but were similar between digested and drum-composted manure solids. Drum-composted manure solids had no coliform bacteria before use as freestall bedding. After use as bedding, digested manure solids had lower total bacteria counts compared with drum-composted and separated raw manure solids, which had similar counts. Used bedding samples of digested solids contained fewer environmental streptococci than drum-composted and separated raw solids and had reduced Bacillus counts compared with separated raw solids. Coliform counts

  13. Spectroscopic studies, thermal analyses and biological evaluation of new V(IV), Zr(IV) and U(VI) moxifloxacin complexes

    NASA Astrophysics Data System (ADS)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.; Zordok, Wael A.; Kotb, Essam

    2011-12-01

    The synthesis and characterization of the new solid complexes [VO(MOX) 2H 2O]SO 4·11H 2O, [ZrO(MOX) 2Cl]Cl·15H 2O and [UO 2(MOX) 3](NO 3) 2·3H 2O formed in the interaction of moxifloxacin (MOX) with VOSO 4·H 2O, ZrOCl 2·8H 2O and UO 2(NO 3) 2·6H 2O in methanol and acetone as a solvents at room temperature were reported. The isolated solid complexes have been characterized with melting points, elemental analysis, molar conductance, magnetic moments studies, spectral (UV-Visible, IR and 1HNMR) as well as thermal analyses (TGA and DTG). The results support the formation of the complexes and indicate that moxifloxacin reacts as a bidentate ligand chelate to the metal ion through the pyridone oxygen and one carboxylato oxygen. The kinetic parameters of thermogravimetric (TGA) and its differential (DTG), such as activation energies, E*, enthalpies, Δ H*, entropies, Δ S* and Gibbs free energies, Δ G*, have been evaluated by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The proposed structure of the ligand and their complexes were detected by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The bond stretching force constant and length of the U dbnd O for the [UO 2(MOX) 3](NO 3) 2·3H 2O complex were calculated. The antibacterial activity of the free moxifloxacin ligand and their metal complexes have been tested against some selected bacterial strains such as: Streptococcus aureus K1, Bacillus subtilis K22, Brevibacterium otitidis K76, Escherichia coli K32, Pseudomonas aeruginosa SW1 and Klebsiella oxytoca K42. The complexes showed good antibacterial effect to the selected bacterial strains as compared to the free ligand and Zr(IV) complex is very highly significant compared with the other two complexes.

  14. Immunological and chemical identification of intracellular forms of adenovirus type 2 terminal protein.

    PubMed

    Green, M; Symington, J; Brackmann, K H; Cartas, M A; Thornton, H; Young, L

    1981-11-01

    Highly purified adenovirus type 2 terminal protein (TP) with an apparent M(r) of 55,000 (55K) was prepared in quantities of 10 to 30 mug from guanidine hydrochloride- or sodium dodecyl sulfate-disrupted virions (60 to 120 mg). Guinea pigs were immunized with 14 to 20 injections of TP in amounts of 1 to 2 mug. Antiserum to TP was used to study the intracellular polypeptides related to adenovirus type 2 TP. By immunoprecipitation with anti-TP serum, we identified 80K and 76K polypeptides in the nucleoplasmic and cytoplasmic S100 fractions of [(35)S]methionine-labeled cells early and late after infection with Ad2. By immunoautoradiographic analysis which eliminates coprecipitation of unrelated proteins, we identified an 80K polypeptide (probably an 80K-76K doublet) in unlabeled, late infected cells, using anti-TP serum and (125)I-labeled staphylococcal protein A. About two- to threefold-higher levels of the 80K and 76K polypeptides were present in the nucleoplasm than in the S100 fraction, and two- to threefold-higher levels were found in late infected cells than in early infected cells (cycloheximide enhanced, arabinofuranosylcytosine treated). We did not detect the 80K or 76K polypeptide in uninfected cells, indicating that these polypeptides are virus coded. Tryptic peptide map analysis showed that the 80K and 76K polypeptides are very closely related and that they share peptides with the DNA-bound 55K TP. Our data provide the first direct demonstration of intracellular 80K and 76K forms of TP. The intracellular 80K and 76K polypeptides are closely related or identical to the 80K polypeptide that Challberg and co-workers (Proc. Natl. Acad. Sci. U.S.A. 77:5105-5109, 1980) detected at the termini of adenovirus DNA synthesized in vitro and to the 87K polypeptide that Stillman and co-workers (Cell 23:497-508, 1981) translated in vitro. We did not detect the 55K TP in early or late infected cells, consistent with the proposal by Challberg and co-workers that the 80K

  15. Preliminary paleomagnetic study on Late Paleozoic to Early Mesozoic rocks in Indochina and its paleogeographic implications

    NASA Astrophysics Data System (ADS)

    Yan, Y.; Huang, B.; Zhao, J.

    2013-12-01

    The Indochina block is one of the main blocks in East Asia and its paleogeographic positions in formation of the Pangea supercontinent are still in debate because of the lack of reliable Late Paleozoic to Early Mesozoic paleomagnetic constraints.Here we present some preliminary Late Paleozoic to Early Mesozoic paleomagnetic results from the Simao block, the northern part of the Indochina block in West Yunnan of China. Following detailed rock magnetic and paleomagnetic experiments on a total of 205 drilled samples in 20 sites, characteristic remanent magnetizations (ChRMs) were isolated from most samples following thermal or integrated thermal and alternating field (AF) demagnetization. Results from 40 samples of the Permian sediments yield a mean paleomagnetic direction of Dg=27.6°, Ig=41.5°, k=82.1, α95=2.7° before and Ds=45.2°, Is=35.8°, k=66.4 ,α95=3.0° after tilt correction. Following magnetic fabric analysis and thin sections analysis with microscope, strong tectonic deformation and medium degree metamorphism were identified in these samples. Results from 65 samples of Middle Triassic limestones yield a mean direction of Dg=46.9°, Ig=38.4°, k=31.8, α95=2.5° before and Ds=52.2°, Is=46.5°, k=35.6°, α95=2.4° after tilt correction. General recrystallization was founded in these samples following thin section analysis with microscope. These two mean directions, with slight change in data grouping after tilt correction, appear to have a secondary origin.However, mean direction of 24 samples obtained from the other Middle Triassic limestones profile is of Dg=45.6°, Ig=70.0°, k=76.4, α95=3.1° before and Ds=82.5°, Is=22.4°, k=68.7°, α95=3.3° after tilt correction, corresponding to a paleopole at 182.7°E,11.3°N with A95=3.3°. We interpret this direction as primary remanence in the light of its significant difference with Cretaceous poles, no significant metamorphism founded on hand-samples and thin sections. Besides, mean direction of 40