Varsano, Neta; Fargion, Iael; Wolf, Sharon G; Leiserowitz, Leslie; Addadi, Lia
2015-02-04
Atherosclerosis is the major precursor of cardiovascular disease. The formation of cholesterol crystals in atherosclerotic plaques is associated with the onset of acute pathology. The cholesterol crystals induce physical injury in the plaque core, promoting cell apoptosis and triggering an increased inflammatory response. Herein we address the question of how cholesterol crystal formation occurs in atherosclerosis. We demonstrate that three-dimensional (3D) cholesterol crystals can undergo directed nucleation from bilayer membranes containing two-dimensional (2D) cholesterol crystalline domains. We studied crystal formation on supported lipid bilayers loaded with exogenous cholesterol and labeled using a monoclonal antibody that specifically recognizes ordered cholesterol arrays. Our findings show that 3D crystals are formed exclusively on the bilayer regions where there are segregated 2D cholesterol crystalline domains and that they form on the domains. This study has potentially significant implications for our understanding of the crucial step in the mechanism by which atherosclerotic lesions form.
Keulemans, Y C; Mok, K S; Slors, J F; Brink, M A; Gouma, D J; Tytgat, G N; Groen, A K
1999-10-01
Crohn's disease is a risk factor for gallstone formation. In contrast, patients with ulcerative colitis have an incidence of gallstone formation comparable to the general population. The reason for this difference is not known. The aim of this study was to elucidate the factors controlling cholesterol crystallization in gallbladder bile of Crohn's disease and ulcerative colitis patients. Gallbladder bile was obtained by aspiration during bowel resections (26 Crohn's disease patients, 20 ulcerative colitis patients). Biliary lipid composition, crystal detection time and the effect of extraction of the concanavalin A-binding fraction on crystal formation were determined. Cholesterol crystals were present in seven of the 26 bile samples of Crohn's disease-patients and one of the 20 ulcerative colitis patients. Four of the bile samples of Crohn's disease patients were fast nucleating. None of the 20 ulcerative colitis patients had fast nucleating bile. Lipid composition, total lipid concentration and CSI were not significantly different between the two groups. In Crohn's disease patients extraction of concanavalin A-binding fraction decreased crystallization in 10 bile samples but accelerated crystallization in one bile sample. In eight bile samples from ulcerative colitis patients crystallization increased after concanavalin A-binding fraction extraction. Compared to ulcerative colitis patients, gallbladder bile of Crohn's disease patients showed increased cholesterol crystallization despite comparable lipid composition and cholesterol saturation index. This difference is caused by increased cholesterol crystallization-promoting activity. Bile from ulcerative colitis patients contains a Con A-binding factor which inhibits cholesterol crystallization.
An investigation of the optical properties of cholesterol crystals in human synovial fluid
NASA Astrophysics Data System (ADS)
Zakharova, M. M.; Nasonova, V. A.; Konstantinova, A. F.; Chudakov, V. S.; Gaĭnutdinov, R. V.
2009-05-01
The synovial fluid of patients with rheumatoid diseases has been investigated. The presence of cholesterol crystals in the synovial fluid is revealed by polarization microscopy. A comparative analysis of the composition and properties of synovial fluid and the optical properties of cholesterol crystals is performed. It is established that the size, number, and growth of cholesterol crystals are interrelated to the synovial fluid composition. It is shown that rheumatoid diseases can be accompanied by the formation of cholesterol crystals in the synovial fluid from different joints and in rheumatic nodules. It is shown that all investigated crystals have a significant birefringence.
Crystal growth of cholesterol in hydrogels and its characterization
NASA Astrophysics Data System (ADS)
Manuel Bravo-Arredondo, J.; Moreno, A.; Mendoza, M. E.
2014-09-01
In this work, we report the crystallization of cholesterol in ethanol solution and in three different hydrogel media: tetramethyl orthosilane, sodium metasilicate, and poly(vinyl)alcohol, whose structures are similar to the gel-like polymer structure of mucin, which is found in the mucus present in bile stone formation. The monohydrated triclinic phase was identified in all the samples by means of X-ray powder diffraction. The characteristic polymorphic crystalline transition of the anhydrous cholesterol was detected by differential thermal analysis and modulated differential scanning calorimetry only in crystals grown in ethanol, sodium silicate, and tetramethyl orthosilane. Finally, hysteresis of the phase transition temperature was measured by modulated differential scanning calorimetry in crystals grown in ethanol. The biological implications of the crystallization of cholesterol for bile stones formation are discussed in the last part of this contribution.
Acuña, Mariana; González-Hódar, Lila; Amigo, Ludwig; Castro, Juan; Morales, M Gabriela; Cancino, Gonzalo I; Groen, Albert K; Young, Juan; Miquel, Juan Francisco; Zanlungo, Silvana
2016-02-01
Niemann-Pick C2 (NPC2) is a lysosomal protein involved in the egress of low-density lipoprotein-derived cholesterol from lysosomes to other intracellular compartments. NPC2 has been detected in several tissues and is also secreted from the liver into bile. We have previously shown that NPC2-deficient mice fed a lithogenic diet showed reduced biliary cholesterol secretion as well as cholesterol crystal and gallstone formation. This study aimed to investigate the consequences of NPC2 hepatic overexpression on liver cholesterol metabolism, biliary lipid secretion, gallstone formation and the effect of NPC2 on cholesterol crystallization in model bile. We generated NPC2 transgenic mice (Npc2.Tg) and fed them either chow or lithogenic diets. We studied liver cholesterol metabolism, biliary lipid secretion, bile acid composition and gallstone formation. We performed cholesterol crystallization studies in model bile using a recombinant NPC2 protein. No differences were observed in biliary cholesterol content or secretion between wild-type and Npc2.Tg mice fed the chow or lithogenic diets. Interestingly, Npc2.Tg mice showed an increased susceptibility to the lithogenic diet, developing more cholesterol gallstones at early times, but did not show differences in the bile acid hydrophobicity and gallbladder cholesterol saturation indices compared to wild-type mice. Finally, recombinant NPC2 decreased nucleation time in model bile. These results suggest that NPC2 promotes cholesterol gallstone formation by decreasing the cholesterol nucleation time, indicating a pro-nucleating function of NPC2 in bile. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Possible Domain Formation In PE/PC Bilayers Containing High Cholesterol
NASA Astrophysics Data System (ADS)
Hein, Matthew; Hussain, Fazle; Huang, Juyang
2015-03-01
Cholesterol is a significant component of animal cell membranes, and its presence has the effects of not only adding rigidity to the lipid bilayer, but also leading to the formation of lipid domains. Two other lipids of interest are phosphatidylethanolamine (PE), which constitutes about 45 percent of the phospholipids found in human nervous tissues, and phosphatidylcholine (PC), which is found in every cell of the human body. The maximum solubility of cholesterol is the highest mole fraction of cholesterol that the lipid bilayer can retain, at which point cholesterol begins to precipitate out to form cholesterol monohydrate crystals. We have measured the maximum solubility of cholesterol in mixtures of 16:0-18:1PE and 16:0-18:1PC using a new light scattering technique, which utilizes the anisotropic nature of light scattering by cholesterol crystals. This new method is highly accurate and reproducible. Our results show that the maximum solubility of cholesterol increases linearly as a function of the molar ratio POPC/(POPE+POPC), which suggests possible domain formation in mixtures of PE and PC containing maximum amount of cholesterol.
[Effects of vitamin C administration on cholesterol gallstone formation].
del Pozo, Reginald; Muñoz, Mirna; Dumas, Andrés; Tapia, Claudio; Muñoz, Katia; Fuentes, Felipe; Maldonado, Mafalda; Jüngst, Dieter
2014-01-01
Biliary cholesterol is transported by vesicles and micelles. Cholesterol microcrystals are derived from thermodynamically unstable vesicles. In experimental animals vitamin C deficiency leads to a super-saturation of biliary cholesterol and to the formation of gallstones. To search for a possible relationship between serum levels of vitamin C and the formation of cholesterol gallstones in patients with cholelithiasis. Thirteen patients with cholelithiasis and a programmed surgical intervention were treated with 2 g/day of vitamin C per os for two weeks before surgery. Forty nine patients subjected to a cholecystectomy not supplemented with vitamin C were studied as controls. Plasma concentrations of vitamin C and lipid profiles were measured. The cholesterol saturation index, crystallization time, cholesterol and phospholipid content in vesicles and micelles, separated by gel filtration chromatography, were studied in bile samples obtained from the gallbladder. Vitamin C supplementation did not change significantly plasma lipids and bile lipid concentrations. However, in supplemented patients, significant reductions in vesicular cholesterol content (6.5 ± 4.8% compared to 17.9 ± 14.0% in the control group; p < 0.05) and vesicular cholesterol/phospholipid ratio (0.71 ± 0.53 compared to 1.36 ± 1.15 in controls; p < 0.05), were observed. Vitamin C administration may modify bile cholesterol crystallization process, the first step in cholesterol gallstone formation.
Hattori, Y; Tazuma, S; Yamashita, G; Ochi, H; Sunami, Y; Nishioka, T; Hyogo, H; Yasumiba, S; Kajihara, T; Nakai, K; Tsuboi, K; Asamoto, Y; Sakomoto, M; Kajiyama, G
2000-07-01
Phospholipase A2 plays a role in cholesterol gallstone development by hydrolyzing bile phospholipids into lysolecithin and free fatty acids. Lysolecithin and polyunsaturated free fatty acids are known to stimulate the synthesis and/or secretion of gallbladder mucin via a prostanoid pathway, leading to enhancing cholesterol crystal nucleation and growth, and therefore, the action of phospholipase A2 is associated, in part, with bile phospholipid fatty acid. To clarify this hypothesis, we evaluated the effect on bile lipid metastability in vitro of replacing phospholipids with lysolecithin and various free fatty acids. Supersaturated model biles were created with an identical composition (cholesterol saturation index, 1.8; egg yolk lecithin, 34 mM; taurocholate, 120 mM; cholesterol, 25 mM) except for 5%, 10%, or 20% replacement of egg yolk lecithin with a combination of palmitoyl-lysolecithin and a free fatty acid (palmitate, stearate, oleate, linoleate, or arachidonate), followed by time-sequentially monitoring of vesicles and cholesterol crystals using spectrophotometer and video-enhanced differential contrast microscopy. Replacement with hydrophilic fatty acids (linoleate and arachidonate) reduced vesicle formation and promoted cholesterol crystallization, whereas an enhanced cholesterol-holding capacity was evident after replacement with hydrophobic fatty acids (palmitate and stearate). These results indicate that the effect of phospholipase A2 on bile lithogenecity is modulated by the fatty acid species in bile phospholipids, and therefore, that the role of phospholipase A2 in cholesterol gallstone formation is dependent, in part, on biliary phospholipid species selection at the site of hepatic excretion.
Tazuma, S; Ochi, H; Teramen, K; Yamashita, Y; Horikawa, K; Miura, H; Hirano, N; Sasaki, M; Aihara, N; Hatsushika, S
1994-11-17
To clarify factors involved in the formation of cholesterol gallstones, we studied the relationship between the degree of fatty acyl chain unsaturation of biliary lecithin and bile metastability. We used supersaturated model bile solutions (molar taurocholate/lecithin/cholesterol ratio (73:19.5:7.5), total lipid concentration 9 g/dl) that contained equimolar egg yolk or soybean lecithins or a sn-1 palmitoyl, sn-2 linoleoyl phosphatidylcholine. Gel permeation chromatographic studies showed that the vesicular cholesterol distribution and dimension were inversely related to the degree of unsaturation of the lecithin species, estimated by reverse phase, high-performance liquid chromatography. Differential interference contrast microscopy and assay of cholesterol crystal growth showed that a higher degree of fatty acyl chain unsaturation of the lecithin species was associated with a faster nucleation time and rate of crystal growth. Our results suggest that vesicular lecithins containing more unsaturated fatty acyl chains bind less tightly to cholesterol than lecithins containing predominantly saturated fatty acids, and that the biliary lecithin species dictates, in part, the nucleation and growth of cholesterol crystals in bile.
Jüngst, D; del Pozo, R; Dolu, M H; Schneeweiss, S G; Frimberger, E
1997-03-01
Laparoscopic cholecystotomy (LCT) with subsequent extraction of gallstones and primary closure of the gallbladder has been introduced as an alternative therapy for patients with cholecystolithiasis and preserved gallbladder function. However, stone recurrence has to be considered as a major drawback that might be related to lithogenic factors of gallbladder bile or the composition of gallbladder stones. Therefore, these were studied in relation to stone recurrence within an observation period of 1 to 5 years (median, 3.6 years) in 50 patients after LCT. The concentrations of total and individual bile acids, phospholipids, cholesterol, total lipids, mucin, protein, and the cholesterol saturation indices in gallbladder bile were not significantly different between 10 patients with and 40 patients without stone recurrence. However, the crystal observation time was significantly (P < .02) shorter (range, 1-2 days; median, 1.5) in the bile of patients with stone recurrence compared to those without (range, 1-21 days, median 3.5). Moreover, all 10 stone recurrences were observed in the 28 patients with a crystal observation time in the bile of less than or equal to 2 days (approximate annual risk: 12%-15%), and no recurrences were observed in the 22 patients with a crystal observation time greater than 2 days (P < .0001) or in patients with pigment stones. The rapid formation of cholesterol monohydrate crystals in bile seems to be the major risk factor for recurrent stones after LCT. These are most likely cholesterol stones and, therefore, are amenable to oral bile-acid prevention or treatment.
Defective cholesterol clearance limits remyelination in the aged central nervous system.
Cantuti-Castelvetri, Ludovico; Fitzner, Dirk; Bosch-Queralt, Mar; Weil, Marie-Theres; Su, Minhui; Sen, Paromita; Ruhwedel, Torben; Mitkovski, Miso; Trendelenburg, George; Lütjohann, Dieter; Möbius, Wiebke; Simons, Mikael
2018-02-09
Age-associated decline in regeneration capacity limits the restoration of nervous system functionality after injury. In a model for demyelination, we found that old mice fail to resolve the inflammatory response initiated after myelin damage. Aged phagocytes accumulated excessive amounts of myelin debris, which triggered cholesterol crystal formation and phagolysosomal membrane rupture and stimulated inflammasomes. Myelin debris clearance required cholesterol transporters, including apolipoprotein E. Stimulation of reverse cholesterol transport was sufficient to restore the capacity of old mice to remyelinate lesioned tissue. Thus, cholesterol-rich myelin debris can overwhelm the efflux capacity of phagocytes, resulting in a phase transition of cholesterol into crystals and thereby inducing a maladaptive immune response that impedes tissue regeneration. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Raghavendra, Chikkanna K; Srinivasan, Krishnapura
2015-02-01
Tender cluster beans (CBs; Cyamopsis tetragonoloba) are observed to possess anti-lithogenic potential in experimental mice. Formation of cholesterol gallstones in gallbladder is controlled by procrystallizing and anticrystallizing factors present in bile in addition to supersaturation of cholesterol. This study aimed at evaluating the influence of CB on biliary glycoproteins, low molecular weight (LMW) and high molecular weight (HMW) proteins, cholesterol nucleation time, and cholesterol crystal growth in rat hepatic bile. Groups of rats were fed for 10 weeks with 0.5% cholesterol to render the bile lithogenic. Experimental dietary interventions were: 10% freeze-dried CB, 1% garlic powder or their combination. Incorporation of CB into HCD decreased the cholesterol saturation index in bile, increased bile flow and biliary glycoproteins. Dietary CB prolonged cholesterol nucleation time in bile. Electrophoresis of biliary proteins showed the presence of high concentration of 27 kDa protein which might be responsible for the prolongation of cholesterol nucleation time in the CB fed group. Proteins of 20 kDa and 18 kDa were higher in CB treated animals, while the same were less expressed in HCD group. Biliary proteins from CB fed animals reduced cholesterol crystal growth index which was elevated in the presence of proteins from HCD group. Cholesterol-7α-hydroxylase and cholesterol-27-hydroxylase mRNA expression was increased in CB treated animals contributing to the bile acid synthesis. Thus, the beneficial anti-lithogenic effect of dietary CB which primarily is due to reduced cholesterol saturation index was additionally affected through a modulation of the nucleating and anti-nucleating proteins that affect cholesterol crystallization. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Yong; Yu, Xing; Zhao, Qun-zi; Zheng, Shu; Qing, Wen-jie; Miao, Chun-di; Sanjay, Jaiswal
2016-01-01
We have investigated comprehensively the effects of thyroid function on gallstone formation in a mouse model. Gonadectomized gallstone-susceptible male C57BL/6 mice were randomly distributed into three groups each of which received an intervention to induce hyperthyroidism, hypothyroidism, or euthyroidism. After 5 weeks of feeding a lithogenic diet of 15% (w/w) butter fat, 1% (w/w) cholesterol, and 0.5% (w/w) cholic acid, mice were killed for further experiments. The incidence of cholesterol monohydrate crystal formation was 100% in mice with hyperthyroidism, 83% in hypothyroidism, and 33% in euthyroidism, the differences being statistically significant. Among the hepatic lithogenic genes, Trβ was found to be up-regulated and Rxr down-regulated in the mice with hypothyroidism. In contrast, Lxrα, Rxr, and Cyp7α1 were up-regulated and Fxr down-regulated in the mice with hyperthyroidism. In conclusion, thyroid dysfunction, either hyperthyroidism or hypothyroidism, promotes the formation of cholesterol gallstones in C57BL/6 mice. Gene expression differences suggest that thyroid hormone disturbance leads to gallstone formation in different ways. Hyperthyroidism induces cholesterol gallstone formation by regulating expression of the hepatic nuclear receptor genes such as Lxrα and Rxr, which are significant in cholesterol metabolism pathways. However, hypothyroidism induces cholesterol gallstone formation by promoting cholesterol biosynthesis. PMID:27381728
Wang, Yong; Yu, Xing; Zhao, Qun-Zi; Zheng, Shu; Qing, Wen-Jie; Miao, Chun-di; Sanjay, Jaiswal
2016-07-01
We have investigated comprehensively the effects of thyroid function on gallstone formation in a mouse model. Gonadectomized gallstone-susceptible male C57BL/6 mice were randomly distributed into three groups each of which received an intervention to induce hyperthyroidism, hypothyroidism, or euthyroidism. After 5 weeks of feeding a lithogenic diet of 15% (w/w) butter fat, 1% (w/w) cholesterol, and 0.5% (w/w) cholic acid, mice were killed for further experiments. The incidence of cholesterol monohydrate crystal formation was 100% in mice with hyperthyroidism, 83% in hypothyroidism, and 33% in euthyroidism, the differences being statistically significant. Among the hepatic lithogenic genes, Trβ was found to be up-regulated and Rxr down-regulated in the mice with hypothyroidism. In contrast, Lxrα, Rxr, and Cyp7α1 were up-regulated and Fxr down-regulated in the mice with hyperthyroidism. In conclusion, thyroid dysfunction, either hyperthyroidism or hypothyroidism, promotes the formation of cholesterol gallstones in C57BL/6 mice. Gene expression differences suggest that thyroid hormone disturbance leads to gallstone formation in different ways. Hyperthyroidism induces cholesterol gallstone formation by regulating expression of the hepatic nuclear receptor genes such as Lxrα and Rxr, which are significant in cholesterol metabolism pathways. However, hypothyroidism induces cholesterol gallstone formation by promoting cholesterol biosynthesis.
Gilat, T; Somjen, G; Mazur, Y; Leikin-Frenkel, A; Rosenberg, R; Halpern, Z; Konikoff, F.
2001-01-01
BACKGROUND—Cholesterol gall stones are a frequent disease for which at present surgery is the usual therapy. Despite the importance of bile acids it has become evident that phospholipids are the main cholesterol solubilisers in bile. Even phospholipid components, such as fatty acids, have anticrystallising activity. AIM—To synthesise fatty acid bile acid conjugates (FABACs) and study their effects on cholesterol crystallisation in bile in vitro and in vivo. METHODS—FABACs were prepared by conjugation of cholic acid at position 3 with saturated fatty acids of variable chain length using an amide bond. Cholesterol crystallisation and its kinetics (crystal observation time, crystal mass) were studied in model bile, pooled enriched human bile, and fresh human bile using FABACs with saturated fatty acids of varying chain length (C-6 to C-22). Absorption of FABACs into blood and bile was tested in hamsters. Prevention of biliary cholesterol crystallisation in vivo was tested in hamsters and inbred mice. RESULTS—FABACs strongly inhibited cholesterol crystallisation in model as well as native bile. The FABACs with longer acyl chains (C-16 to C-22) were more effective. At a concentration of 5 mM, FABACs almost completely inhibited cholesterol crystallisation in fresh human bile for 21 days. FABACs were absorbed and found in both portal and heart blood of hamsters. Levels in bile were 2-3 times higher than in blood, indicating active secretion. Appreciable levels were found in the systemic circulation 24-48 hours after a single administration. Ingested FABACs completely prevented the formation of cholesterol crystals in the gall bladders of hamsters and mice fed a lithogenic diet. CONCLUSIONS—FABACs are potent inhibitors of cholesterol crystallisation in bile. They are absorbed and secreted into bile and prevent the earliest step of cholesterol gall stone formation in animals. These compounds may be of potential use in cholesterol gall stone disease in humans. Keywords: gall stones; bile; phospholipids; cholesterol crystallisation; fatty acid bile acid conjugates PMID:11115826
Bode, Niklas; Grebe, Alena; Kerksiek, Anja; Lütjohann, Dieter; Werner, Nikos; Nickenig, Georg; Latz, Eicke; Zimmer, Sebastian
2016-09-09
Atherosclerosis is a chronic inflammatory disease driven primarily by a continuous retention of cholesterol within the subendothelial space where it precipitates to form cholesterol crystals (CC). These CC trigger a complex inflammatory response through activation of the NLRP3 inflammasome and promote lesion development. Here we examined whether increasing cholesterol solubility with ursodeoxycholic acid (UDCA) affects vascular CC formation and ultimately atherosclerotic lesion development. UDCA mediated intracellular CC dissolution in macrophages and reduced IL-1β production. In ApoE(-/-) mice, UDCA treatment not only impaired atherosclerotic plaque development but also mediated regression of established vascular lesions. Importantly, mice treated with UDCA had decreased CC-depositions in atherosclerotic plaques compared to controls. Together, our data demonstrate that UDCA impaired CC and NLRP3 dependent inflammation by increasing cholesterol solubility and diminished atherosclerosis in mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Modeling of Mechanical Stress Exerted by Cholesterol Crystallization on Atherosclerotic Plaques.
Luo, Yuemei; Cui, Dongyao; Yu, Xiaojun; Chen, Si; Liu, Xinyu; Tang, Hongying; Wang, Xianghong; Liu, Linbo
2016-01-01
Plaque rupture is the critical cause of cardiovascular thrombosis, but the detailed mechanisms are not fully understood. Recent studies have found abundant cholesterol crystals in ruptured plaques, and it has been proposed that the rapid expansion of cholesterol crystals in a limited space during crystallization may contribute to plaque rupture. To evaluate the effect of cholesterol crystal growth on atherosclerotic plaques, we modeled the expansion of cholesterol crystals during the crystallization process in the necrotic core and estimated the stress on the thin cap with different arrangements of cholesterol crystals. We developed a two-dimensional finite element method model of atherosclerotic plaques containing expanding cholesterol crystals and investigated the effect of the magnitude and distribution of crystallization on the peak circumferential stress born by the cap. Using micro-optical coherence tomography (μOCT), we extracted the cross-sectional geometric information of cholesterol crystals in human atherosclerotic aorta tissue ex vivo and applied the information to the model. The results demonstrate that (1) the peak circumference stress is proportionally dependent on the cholesterol crystal growth; (2) cholesterol crystals at the cap shoulder impose the highest peak circumference stress; and (3) spatial distributions of cholesterol crystals have a significant impact on the peak circumference stress: evenly distributed cholesterol crystals exert less peak circumferential stress on the cap than concentrated crystals.
Ileus caused by cholesterol crystal embolization: A case report.
Azuma, Shunjiro; Ikenouchi, Maiko; Akamatsu, Takuji; Seta, Takeshi; Urai, Shunji; Uenoyama, Yoshito; Yamashita, Yukitaka
2016-03-28
Cholesterol crystal embolization (CCE) is a rare systemic embolism caused by formation of cholesterol crystals from atherosclerotic plaques. CCE usually occurs during vascular manipulation, such as vascular surgery or endovascular catheter manipulation, or due to anticoagulation or thrombolytic therapy. We report a rare case of intestinal obstruction caused by spontaneous CCE. An 81-year-old man with a history of hypertension was admitted for complaints of abdominal pain, bloating, and anorexia persisting for 4 mo. An abdominal computed tomography revealed intestinal ileus. His symptoms were immediately relieved by an ileus tube insertion, and he was discharged 6 d later. However, these symptoms immediately reappeared and persisted, and partial resection of the small intestine was performed. A histopathological examination indicated that small intestine obstruction was caused by CCE. At the 12-mo follow-up, the patient showed no evidence of CCE recurrence. Thus, in cases of intestinal obstruction, CCE should also be considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miroshnikova, Y. A.; Elsenbeck, M.; Zastavker, Y. V.
2009-04-19
Formation of biological self-assemblies at all scales is a focus of studies in fields ranging from biology to physics to biomimetics. Understanding the physico-chemical properties of these self-assemblies may lead to the design of bio-inspired structures and technological applications. Here we examine self-assembled filamentous, helical ribbon, and crystal microstructures formed in chemically defined lipid concentrate (CDLC), a model system for cholesterol crystallization in gallbladder bile. CDLC consists of cholesterol, bilayer-forming amphiphiles, micelle-forming amphiphiles, and water. Phase contrast and differential interference contrast (DIC) microscopy indicate the presence of three microstructure types in all samples studied, and allow for an investigation ofmore » the structures' unique geometries. Additionally, confocal microscopy is used for qualitative assessment of surface and internal composition. To complement optical observations, calorimetric (differential-scanning and modulation) experiments, provide the basis for an in-depth understanding of collective and individual thermal behavior. Observed ''transition'' features indicate clustering and ''straightening'' of helical ribbons into short, increasingly thickening, filaments that dissolve with increasing temperature. These results suggest that all microstructures formed in CDLC may coexist in a metastable chemical equilibrium. Further investigation of the CDLC thermal profile should uncover the process of cholesterol crystallization as well as the unique design and function of microstructures formed in this system.« less
Ezetimibe prevents the formation of estrogen-induced cholesterol gallstones in mice
de Bari, Ornella; Wang, Helen H.; Portincasa, Piero; Paik, Chang-Nyol; Liu, Min; Wang, David Q.-H.
2014-01-01
Background Estrogen is an important risk factor for cholesterol cholelithiasis not only in women of childbearing age taking oral contraceptives and postmenopausal women undergoing hormone replacement therapy, but also in male patients receiving estrogen therapy for prostatic cancer. In women, hormonal changes occurring during pregnancy markedly increase the risk of developing gallstones. We investigated whether the potent cholesterol absorption inhibitor ezetimibe could prevent the formation of estrogen-induced cholesterol gallstones in mice. Design Following ovariectomy, female AKR mice were implanted subcutaneously with pellets releasing 17β-estradiol at 6 μg/day and fed a lithogenic diet supplemented with ezetimibe in doses of 0 or 8 mg/kg/day for 8 weeks. Cholesterol crystallization and gallstone prevalence, lipid concentrations and composition in bile, and biliary lipid output were analyzed by physical-chemical methods. Intestinal cholesterol absorption efficiency was determined by fecal dual-isotope ratio methods. Results Ezetimibe inhibited intestinal cholesterol absorption, while significantly reducing hepatic secretion of biliary cholesterol. Consequently, bile was desaturated through the formation of numerous unsaturated micelles and gallstones were prevented by ezetimibe in mice exposed to high doses of estrogen and fed the lithogenic diet. Ezetimibe did not influence mRNA levels of the classical estrogen receptors α (ERα) and ERβ, as well as a novel estrogen receptor the G protein-coupled receptor 30 (GPR30) in the liver. Conclusions Ezetimibe protects against the estrogen-mediated lithogenic actions on gallstone formation in mice. Our finding may provide an efficacious novel strategy for the prevention of cholesterol gallstones in high-risk subjects, especially those exposed to high levels of estrogen. PMID:25303682
Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals
NASA Astrophysics Data System (ADS)
Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano
2015-03-01
Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, H.Z.; Lee, S.P.; Schy, A.L.
1991-06-01
Ceftriaxone, a third-generation cephalosporin, is partially excreted into bile. With its clinical use, the formation of gallbladder sludge detected by ultrasonography has been reported. Four surgical specimens were examined and no gallstones were found. Instead, fine precipitates of 20-250 microns were present. Microscopically, there was a small number of cholesterol monohydrate crystals and bilirubin granules among an abundant amount of granular-crystalline material that was not morphologically cholesterol monohydrate crystals. The chemical composition of the precipitates (n = 4) was determined. There was a small amount of cholesterol (1.7% +/- 0.8%) and bilirubin (13.9% +/- 0.74%). The major component of themore » precipitate was a residue. On further analysis using thin-layer chromatography, high-performance liquid chromatography, and electron microprobe analysis, the residue was identified as a calcium salt of ceftriaxone. The residue also had identical crystal morphology and chromatographic elution profile as authentic calcium-ceftriaxone standards. It is concluded that ceftriaxone, after excretion and being concentrated in the gallbladder bile, can form a precipitate. The major constituent has been identified as a ceftriaxone-calcium salt.« less
The polymorphic and mesomorphic behavior of four esters of cholesterol.
NASA Technical Reports Server (NTRS)
Merritt, W. G.; Cole, G. D.; Walker, W. W.
1971-01-01
The techniques of differential scanning calorimetry, X-ray powder diffractometry, and positron annihilation have been used to study the polymorphic and mesomorphic behavior of the following esters of cholesterol: cholesteryl formate, cholesteryl butyrate, cholesteryl benzoate, and cholesteryl cinnamate. Each of these compounds exhibits a single mesophase of the cholesteric type. The solid phase formed from the melt for each ester was observed to be structurally different from the solid phase obtained from solution. Solvents from which the solution-grown samples were crystallized were as follows: cholesteryl formate and cholesteryl butyrate from acetone, cholesteryl benzoate from benzene, and cholesteryl cinnamate from 2-butanone.
Effect of medicinal plants on the crystallization of cholesterol
NASA Astrophysics Data System (ADS)
Saraswathi, N. T.; Gnanam, F. D.
1997-08-01
One of the least desirable calcifications in the human body is the mineral deposition in atherosclerosis plaques. These plaques principally consist of lipids such as cholesterol, cholesteryl esters, phospholipids and triglycerides. Chemical analysis of advanced plaques have shown the presence of considerable amounts of free cholesterol identified as cholesterol monohydrate crystals. Cholesterol has been crystallized in vitro. The extracts of some of the Indian medicinal plants detailed below were used as additives to study their effect on the crystallization behaviour of cholesterol. It has been found that many of the herbs have inhibitory effect on the crystallization such as nucleation, crystal size and habit modification. The inhibitory effect of the plants are graded as Commiphora mughul > Aegle marmeleos > Cynoden dactylon > Musa paradisiaca > Polygala javana > Alphinia officinarum > Solanum trilobatum > Enicostemma lyssopifolium.
Stewart, Sarah E; D'Angelo, Michael E; Paintavigna, Stefania; Tabor, Rico F; Martin, Lisandra L; Bird, Phillip I
2015-01-01
Streptolysin O (SLO) is a bacterial pore forming protein that is part of the cholesterol dependent cytolysin (CDC) family. We have used quartz crystal microbalance with dissipation monitoring (QCM-D) to examine SLO membrane binding and pore formation. In this system, SLO binds tightly to cholesterol-containing membranes, and assembles into partial and complete pores confirmed by atomic force microscopy. SLO binds to the lipid bilayer at a single rate consistent with the Langmuir isotherm model of adsorption. Changes in dissipation illustrate that SLO alters the viscoelastic properties of the bilayer during pore formation, but there is no loss of material from the bilayer as reported for small membrane-penetrating peptides. SLO mutants were used to further dissect the assembly and insertion processes by QCM-D. This shows the signature of SLO in QCM-D changes when pore formation is inhibited, and that bound and inserted SLO forms can be distinguished. Furthermore a pre-pore locked SLO mutant binds reversibly to lipid, suggesting that the partially complete wtSLO forms observed by AFM are anchored to the membrane. Copyright © 2014 Elsevier B.V. All rights reserved.
Cholesterol crystallization within hepatocyte lipid droplets and its role in murine NASH[S
Ioannou, George N.; Subramanian, Savitha; Chait, Alan; Haigh, W. Geoffrey; Yeh, Matthew M.; Farrell, Geoffrey C.; Lee, Sum P.; Savard, Christopher
2017-01-01
We recently reported that cholesterol crystals form in hepatocyte lipid droplets (LDs) in human and experimental nonalcoholic steatohepatitis. Herein, we assigned WT C57BL/6J mice to a high-fat (15%) diet for 6 months, supplemented with 0%, 0.25%, 0.5%, 0.75%, or 1% dietary cholesterol. Increasing dietary cholesterol led to cholesterol loading of the liver, but not of adipose tissue, resulting in fibrosing steatohepatitis at a dietary cholesterol concentration of ≥0.5%, whereas mice on lower-cholesterol diets developed only simple steatosis. Hepatic cholesterol crystals and crown-like structures also developed at a dietary cholesterol concentration ≥0.5%. Crown-like structures consisted of activated Kupffer cells (KCs) staining positive for NLRP3 and activated caspase 1, which surrounded and processed cholesterol crystal-containing remnant LDs of dead hepatocytes. The KCs processed LDs at the center of crown-like structures in the extracellular space by lysosomal enzymes, ultimately transforming into lipid-laden foam cells. When HepG2 cells were exposed to LDL cholesterol, they developed cholesterol crystals in LD membranes, which caused activation of THP1 cells (macrophages) grown in coculture; upregulation of TNF-alpha, NLRP3, and interleukin 1beta (IL1β) mRNA; and secretion of IL-1beta. In conclusion, cholesterol crystals form on the LD membrane of hepatocytes and cause activation and cholesterol loading of KCs that surround and process these LDs by lysosomal enzymes. PMID:28404639
Ioannou, George N.; Van Rooyen, Derrick M.; Savard, Christopher; Haigh, W. Geoffrey; Yeh, Matthew M.; Teoh, Narci C.; Farrell, Geoffrey C.
2015-01-01
Cholesterol crystals form within hepatocyte lipid droplets in human and experimental nonalcoholic steatohepatitis (NASH) and are the focus of crown-like structures (CLSs) of activated Kupffer cells (KCs). Obese, diabetic Alms1 mutant (foz/foz) mice were a fed high-fat (23%) diet containing 0.2% cholesterol for 16 weeks and then assigned to four intervention groups for 8 weeks: a) vehicle control, b) ezetimibe (5 mg/kg/day), c) atorvastatin (20 mg/kg/day), or d) ezetimibe and atorvastatin. Livers of vehicle-treated mice developed fibrosing NASH with abundant cholesterol crystallization within lipid droplets calculated to extend over 3.3% (SD, 2.2%) of liver surface area. Hepatocyte lipid droplets with prominent cholesterol crystallization were surrounded by TNFα-positive (activated) KCs forming CLSs (≥3 per high-power field). KCs that formed CLSs stained positive for NLRP3, implicating activation of the NLRP3 inflammasome in response to cholesterol crystals. In contrast, foz/foz mice treated with ezetimibe and atorvastatin showed near-complete resolution of cholesterol crystals [0.01% (SD, 0.02%) of surface area] and CLSs (0 per high-power field), with amelioration of fibrotic NASH. Ezetimibe or atorvastatin alone had intermediate effects on cholesterol crystallization, CLSs, and NASH. These findings are consistent with a causative link between exposure of hepatocytes and KCs to cholesterol crystals and with the development of NASH possibly mediated by NLRP3 activation. PMID:25520429
Ioannou, George N; Van Rooyen, Derrick M; Savard, Christopher; Haigh, W Geoffrey; Yeh, Matthew M; Teoh, Narci C; Farrell, Geoffrey C
2015-02-01
Cholesterol crystals form within hepatocyte lipid droplets in human and experimental nonalcoholic steatohepatitis (NASH) and are the focus of crown-like structures (CLSs) of activated Kupffer cells (KCs). Obese, diabetic Alms1 mutant (foz/foz) mice were a fed high-fat (23%) diet containing 0.2% cholesterol for 16 weeks and then assigned to four intervention groups for 8 weeks: a) vehicle control, b) ezetimibe (5 mg/kg/day), c) atorvastatin (20 mg/kg/day), or d) ezetimibe and atorvastatin. Livers of vehicle-treated mice developed fibrosing NASH with abundant cholesterol crystallization within lipid droplets calculated to extend over 3.3% (SD, 2.2%) of liver surface area. Hepatocyte lipid droplets with prominent cholesterol crystallization were surrounded by TNFα-positive (activated) KCs forming CLSs (≥ 3 per high-power field). KCs that formed CLSs stained positive for NLRP3, implicating activation of the NLRP3 inflammasome in response to cholesterol crystals. In contrast, foz/foz mice treated with ezetimibe and atorvastatin showed near-complete resolution of cholesterol crystals [0.01% (SD, 0.02%) of surface area] and CLSs (0 per high-power field), with amelioration of fibrotic NASH. Ezetimibe or atorvastatin alone had intermediate effects on cholesterol crystallization, CLSs, and NASH. These findings are consistent with a causative link between exposure of hepatocytes and KCs to cholesterol crystals and with the development of NASH possibly mediated by NLRP3 activation.
Sequential changes in biliary lipids and gallbladder ion transport during gallstone formation.
Giurgiu, D I; Saunders-Kirkwood, K D; Roslyn, J J; Abedin, M Z
1997-01-01
OBJECTIVE: This study sought to correlate gallbladder (GB) Na+ and Cl-) fluxes with biliary lipid composition during the various stages of gallstone (GS) formation. SUMMARY BACKGROUND DATA: GS formation is associated with altered GB ion transport and increased biliary lipid and Ca2+ concentrations. Nonetheless, the longitudinal relationship between ion transport and biliary lipid changes during GS formation has not been defined. METHODS: Prairie dogs were fed standard (n = 18) or 1.2% cholesterol-enriched (n = 30) diets for 4 to 21 days. Hepatic and GB bile were analyzed for lipids and Ca2+. Animals were designated either Pre-Crystal, Crystal, or GS based on absence or presence of crystals or GS, respectively. GBs were mounted in Ussing chambers, electrophysiologic parameters were recorded, and unidirectional Na+ and Cl- fluxes measured. RESULTS: Short-circuit current and potential difference were similar during Pre-Crystal and Crystal stages but significantly reduced during GS stage compared to controls and Pre-Crystals. Transepithelial resistance was similar in all groups. Net Na+ absorption was increased during Pre-Crystal but decreased during GS stage due to increased mucosa-to-serosa and serosa-to-mucosa flux, respectively. Increased serosa-to-mucosa flux of both Na+ and Cl- characterized the Crystal stage. Biliary lipids and Ca2+ increased progressively during various stages of GS formation and correlated positively with unidirectional fluxes of Na+ and Cl-. CONCLUSION: GB epithelial ion transport changes sequentially during GS formation, with the early Pre-Crystal stage characterized by increased Na+ absorption, and the later Crystal stage accompanied by prosecretory stimuli on Na+ and Cl- fluxes, which may be due to elevated GB bile Ca2+ and total bile acids. Images Figure 1. Figure 3. Figure 4. PMID:9114797
Xanthine Oxidase Inhibition by Febuxostat Attenuates Experimental Atherosclerosis in Mice
Nomura, Johji; Busso, Nathalie; Ives, Annette; Matsui, Chieko; Tsujimoto, Syunsuke; Shirakura, Takashi; Tamura, Mizuho; Kobayashi, Tsunefumi; So, Alexander; Yamanaka, Yoshihiro
2014-01-01
Atherosclerosis is a chronic inflammatory disease due to lipid deposition in the arterial wall. Multiple mechanisms participate in the inflammatory process, including oxidative stress. Xanthine oxidase (XO) is a major source of reactive oxygen species (ROS) and has been linked to the pathogenesis of atherosclerosis, but the underlying mechanisms remain unclear. Here, we show enhanced XO expression in macrophages in the atherosclerotic plaque and in aortic endothelial cells in ApoE−/− mice, and that febuxostat, a highly potent XO inhibitor, suppressed plaque formation, reduced arterial ROS levels and improved endothelial dysfunction in ApoE−/− mice without affecting plasma cholesterol levels. In vitro, febuxostat inhibited cholesterol crystal-induced ROS formation and inflammatory cytokine release in murine macrophages. These results demonstrate that in the atherosclerotic plaque, XO-mediated ROS formation is pro-inflammatory and XO-inhibition by febuxostat is a potential therapy for atherosclerosis. PMID:24686534
Co-crystallization of cholesterol and calcium phosphate as related to atherosclerosis
NASA Astrophysics Data System (ADS)
Hirsch, Danielle; Azoury, Reuven; Sarig, Sara
1990-09-01
Calcification of atherosclerotic plaques occurs very frequently and aggravates the disease. In biological systems, epitaxial relationships between crystal structures may be important in nucleating the deposit of a solid phase. The biologically preferred calcium phosphate species, apatite, and cholesterol crystal have structurally compatible crystallographic faces which allow epitaxial growth of one crystal upon another. The present study describes a new approach to explore, in vitro, the crystallization processes of calcium phosphate (CaP) with cholesterol (CS) and cholestanol (CN) which are related to atherosclerosis. Aqueous solutions containing calcium and phosphate ions or CaP crystals as hydroxyapatite were added into saturated ethanolic solutions of CS or CS and 10% CN. After precipitation, crystals were collected and analyzed by nuclear magnetic resonance (NMR), infra-red (IR), X-ray, scanning electron microscope (SEM-LINK), differential scanning calorimeter (DSC) and atomic absorption. The principal result is the well-formed crystals precipitation when an aqueous solution and CaP seed crystals were added to saturated solutions of CS and 10% CN. Cholesterol-cholestanol dihydrate (CC2W) crystals precipitated in the presence of CaP seeds were compared to the CC2W crystals obtained without the mineral compound. The results of this comparison indicate a special link between crystals of CaP and CC2W, and support the epitaxial relationship between the two kinds of crystals. The potential of CC2W crystals to be precipitated by CaP seed crystals prove likewise the possible significant role of the cholestanol metabolite in the process of cholesterol crystallization and calcification in the arteries.
Future therapeutic targets for the treatment and prevention of cholesterol gallstones.
Castro-Torres, Ibrahim Guillermo; de Jesús Cárdenas-Vázquez, René; Velázquez-González, Claudia; Ventura-Martínez, Rosa; De la O-Arciniega, Minarda; Naranjo-Rodríguez, Elia Brosla; Martínez-Vázquez, Mariano
2015-10-15
The formation of cholesterol gallstones involves very complex imbalances, such as alterations in the secretion of biliary lipids (which involves the ABCG5, ABCG8, ABCB4 and ABCB11 transporters), biochemical and immunological reactions in the gallbladder that produce biliary sludge (mucins), physicochemical changes in the structure of cholesterol (crystallization), alterations in gallbladder motility, changes in the intestinal absorption of cholesterol (ABCG5/8 transporters and Niemann-Pick C1L1 protein) and alterations in small intestine motility. Some of these proteins have been studied at the clinical and experimental levels, but more research is required. In this review, we discuss the results of studies on some molecules involved in the pathophysiology of gallstones that may be future therapeutic targets to prevent the development of this disease, and possible sites for treatment based mainly on the absorption of intestinal cholesterol (Niemann-Pick C1L1 and ABCG5/8 proteins). Copyright © 2015. Published by Elsevier B.V.
Small, D M; Bond, M G; Waugh, D; Prack, M; Sawyer, J K
1984-01-01
To identify the temporal changes occurring during progression and regression of atherosclerosis in nonhuman primates, we have studied the physicochemical and histological characteristics of arterial wall lesions during a 30-mo progression period of diet-induced hypercholesterolemia and during a 12-mo period of regression. Three groups of cynomolgous monkeys (Macaca fascicularis) were studied. Control groups were fed a basal chow diet for 18, 24, and 30 mo and were compared with progression groups that were fed a high-cholesterol-containing diet for up to 30 mo. Regression groups were fed a high-cholesterol diet for 18 mo to induce atherosclerosis and then fed monkey chow for up to 12 mo. The progression group monkeys were killed at 6, 12, 18, 24, and 30 mo, and the regression animals were killed at 24 and 30 mo (i.e., after 6 and 12 mo of being fed a noncholesterol-containing chow diet). Histology and morphometry, physical microscopy for cholesterol monohydrate crystals, foam cell and droplet melting points and chemical composition studies were completed on a large number of individual arterial lesions. Control animals had very little cholesterol ester, rare foam cells, and no extracellular cholesterol ester droplets or cholesterol crystals. During progression, the arteries first increased cholesterol ester content to produce high melting (approximately 45 degrees C) foam cell-rich lesions essentially devoid of cholesterol crystals. With time, the number of cholesterol crystals increased so that by 30 mo large numbers were present. Foam cells decreased with time but their melting temperature remained high while that of extracellular droplets fell to approximately 38 degrees C. Between 18 and 30 mo necrosis appeared and worsened. After 6-mo regression, unexpected changes occurred in the lesions. Compared with 24-mo progression, the chemical composition showed a relative increase in free cholesterol, a decrease in cholesterol ester and microscopy revealed large numbers of cholesterol crystals. Concomitantly, foam cells decreased and the melting temperature of both intra- and extracellular cholesterol ester markedly decreased. After 12-mo regression cholesterol decreased, cholesterol crystals and necrosis diminished and collagen appeared increased. Thus, during progression there is initially an increase in the number of foam cells containing very high-melting intracellular cholesterol ester droplets. By 30 mo, cholesterol crystals and necrosis dominate and high-melting foam cells appear only at lesion margins, suggesting that the initial process continues at the lesion edge. The lower melting point of extracellular esters indicates a lipid composition different from intracellular droplets. Thus, the changes observed in these animals generally reflect those predicted for progression of human atherosclerosis. During the initial 6 mo of regression, necrosis remains, the number of foam cell decreases, and cholesterol ester content decreases; however the relative proportion of free cholesterol content increases, and large numbers of cholesterol content are formed. Thus, large and rapid decreases in serum cholesterol concentration to produce regression in fact may result in the precipitation of cholesterol monohydrate and an apparent worsening of the lesions. More prolonged regression (12-mo) tends to return the lipid composition of the artery wall towards normal, partially reduces cholesterol crystals, and results in an improved but scarred intima. Images PMID:6725553
Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation
NASA Astrophysics Data System (ADS)
Köster, Stefan; van Pee, Katharina; Hudel, Martina; Leustik, Martin; Rhinow, Daniel; Kühlbrandt, Werner; Chakraborty, Trinad; Yildiz, Özkan
2014-04-01
Listeriolysin O (LLO) is an essential virulence factor of Listeria monocytogenes that causes listeriosis. Listeria monocytogenes owes its ability to live within cells to the pH- and temperature-dependent pore-forming activity of LLO, which is unique among cholesterol-dependent cytolysins. LLO enables the bacteria to cross the phagosomal membrane and is also involved in activation of cellular processes, including the modulation of gene expression or intracellular Ca2+ oscillations. Neither the pore-forming mechanism nor the mechanisms triggering the signalling processes in the host cell are known in detail. Here, we report the crystal structure of LLO, in which we identified regions important for oligomerization and pore formation. Mutants were characterized by determining their haemolytic and Ca2+ uptake activity. We analysed the pore formation of LLO and its variants on erythrocyte ghosts by electron microscopy and show that pore formation requires precise interface interactions during toxin oligomerization on the membrane.
NASA Astrophysics Data System (ADS)
Narayana Kalkura, S.; Natarajan, Subramanian
Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone constituents are described. In addition, tables of gel-grown organic and inorganic crystals are provided.
Cholesterol embolisms as possible adverse drug reaction of direct oral anticoagulants.
Muller-Hansma, A H G; Daemen-Gubbels, C R G M; Schut, N H
2018-04-01
The Netherlands Pharmacovigilance Centre Lareb has received two reports of cholesterol crystal embolisms associated with the use of a direct oral anticoagulant (DOAC). The European pharmacovigilance database contains several other cases concerning this association, and one report was published in the scientific literature. Cholesterol crystal embolisms were described in association with the use of several other antithrombotic drugs, although the role as an independent risk factor is not conclusive. The case series described in this article, indicates the possibility of an adverse drug reaction when a patient develops cholesterol crystal embolisms while using a DOAC.
Matsuoka, Keisuke; Hirosawa, Takashi; Honda, Chikako; Endo, Kazutoyo; Moroi, Yoshikiyo; Shibata, Osamu
2007-07-01
Differences in the preferential solubilization of cholesterol and competitive solubilizates (beta-sitosterol and aromatic compounds) in bile salt micelles was systematically studied by changing the molar ratio of cholesterol to competitive solubilizates. The cholesterol solubility in a mixed binary system (cholesterol and beta-sitosterol) was almost half that of the cholesterol alone system, regardless of the excess beta-sitosterol quantity added. On the other hand, the mutual solubilities of cholesterol and pyrene were not inhibited by their presence in binary mixed crystals. Finally, the cholesterol solubility was measured by changing the alkyl chain length of n-alkylbenzenes. When tetradecylbenzene was added to the bile solution, the cholesterol solubility decreased slightly and was below the original cholesterol solubility. Based on Gibbs energy change (DeltaG degrees ) for solubilization, chemicals that inhibit cholesterol solubility in their combined crystal systems showed a larger negative DeltaG degrees value than cholesterol alone.
Chronic skin inflammation accelerates macrophage cholesterol crystal formation and atherosclerosis
Ng, Qimin; Sanda, Gregory E.; Dey, Amit K.; Teague, Heather L.; Sorokin, Alexander V.; Dagur, Pradeep K.; Silverman, Joanna I.; Harrington, Charlotte L.; Rodante, Justin A.; Rose, Shawn M.; Varghese, Nevin J.; Belur, Agastya D.; Goyal, Aditya; Gelfand, Joel M.; Springer, Danielle A.; Bleck, Christopher K.E.; Thomas, Crystal L.; Yu, Zu-Xi; Winge, Mårten C.G.; Kruth, Howard S.; Marinkovich, M. Peter; Joshi, Aditya A.; Playford, Martin P.; Mehta, Nehal N.
2018-01-01
Inflammation is critical to atherogenesis. Psoriasis is a chronic inflammatory skin disease that accelerates atherosclerosis in humans and provides a compelling model to understand potential pathways linking these diseases. A murine model capturing the vascular and metabolic diseases in psoriasis would accelerate our understanding and provide a platform to test emerging therapies. We aimed to characterize a new murine model of skin inflammation (Rac1V12) from a cardiovascular standpoint to identify novel atherosclerotic signaling pathways modulated in chronic skin inflammation. The RacV12 psoriasis mouse resembled the human disease state, including presence of systemic inflammation, dyslipidemia, and cardiometabolic dysfunction. Psoriasis macrophages had a proatherosclerotic phenotype with increased lipid uptake and foam cell formation, and also showed a 6-fold increase in cholesterol crystal formation. We generated a triple-genetic K14-RacV12–/+/Srb1–/–/ApoER61H/H mouse and confirmed psoriasis accelerates atherogenesis (~7-fold increase). Finally, we noted a 60% reduction in superoxide dismutase 2 (SOD2) expression in human psoriasis macrophages. When SOD2 activity was restored in macrophages, their proatherogenic phenotype reversed. We demonstrate that the K14-RacV12 murine model captures the cardiometabolic dysfunction and accelerates vascular disease observed in chronic inflammation and that skin inflammation induces a proatherosclerotic macrophage phenotype with impaired SOD2 function, which associated with accelerated atherogenesis. PMID:29321372
Compound K Attenuates the Development of Atherosclerosis in ApoE−/− Mice via LXRα Activation
Zhou, Li; Zheng, Yu; Li, Zhuoying; Bao, Lingxia; Dou, Yin; Tang, Yuan; Zhang, Jianxiang; Zhou, Jianzhi; Liu, Ya; Jia, Yi; Li, Xiaohui
2016-01-01
Background: Atherosclerosis is a fundamental pathological process responded to some serious cardiovascular events. Although the cholesterol-lowering drugs are widely prescribed for atherosclerosis therapy, it is still the leading cause of death in the developed world. Here we measured the effects of compound K in atherosclerosis formation and investigated the probably mechanisms of the anti-antherosclerosis roles of compound K. Methods: We treated the atherosclerotic model animals (apoE−/− mice on western diet) with compound K and measured the size of atherosclerotic lesions, inflammatory cytokine levels and serum lipid profile. Peritoneal macrophages were collected in vitro for the foam cell and inflammasome experiments. Results: Our results show that treatment with compound K dose-dependently attenuates the formation of atherosclerotic plaques by 55% through activation of reverse cholesterol transport pathway, reduction of systemic inflammatory cytokines and inhibition of local inflammasome activity. Compound K increases the cholesterol efflux of macrophage-derived foam cells, and reduces the inflammasome activity in cholesterol crystal stimulated macrophages. The activation of LXRα may contribute to the athero-protective effects of compound K. Conclusion: These observations provide evidence for an athero-protective effect of compound K via LXRα activation, and support its further evaluation as a potential effective modulator for the prevention and treatment of atherosclerosis. PMID:27399689
McMullen, T P; Lewis, R N; McElhaney, R N
2000-01-01
We have examined the effects of cholesterol on the thermotropic phase behavior and organization of aqueous dispersions of a homologous series of linear disaturated phosphatidylserines by high-sensitivity differential scanning calorimetry and Fourier transform infrared spectroscopy. We find that the incorporation of increasing quantities of cholesterol progressively reduces the temperature, enthalpy, and cooperativity of the gel-to-liquid-crystalline phase transition of the host phosphatidylserine bilayer, such that a cooperative chain-melting phase transition is completely or almost completely abolished at 50 mol % cholesterol, in contrast to the results of previous studies. We are also unable to detect the presence of a separate anhydrous cholesterol or cholesterol monohydrate phase in our binary mixtures, again in contrast to previous reports. We further show that the magnitude of the reduction in the phase transition temperature induced by cholesterol addition is independent of the hydrocarbon chain length of the phosphatidylserine studied. This result contrasts with our previous results with phosphatidylcholine bilayers, where we found that cholesterol increases or decreases the phase transition temperature in a chain length-dependent manner (1993. Biochemistry, 32:516-522), but is in agreement with our previous results for phosphatidylethanolamine bilayers, where no hydrocarbon chain length-dependent effects were observed (1999. Biochim. Biophys. Acta, 1416:119-234). However, the reduction in the phase transition temperature by cholesterol is of greater magnitude in phosphatidylethanolamine as compared to phosphatidylserine bilayers. We also show that the addition of cholesterol facilitates the formation of the lamellar crystalline phase in phosphatidylserine bilayers, as it does in phosphatidylethanolamine bilayers, whereas the formation of such phases in phosphatidylcholine bilayers is inhibited by the presence of cholesterol. We ascribe the limited miscibility of cholesterol in phosphatidylserine bilayers reported previously to a fractional crystallization of the cholesterol and phospholipid phases during the removal of organic solvent from the binary mixture before the hydration of the sample. In general, the results of our studies to date indicate that the magnitude of the effect of cholesterol on the thermotropic phase behavior of the host phospholipid bilayer, and its miscibility in phospholipid dispersions generally, depend on the strength of the attractive interactions between the polar headgroups and the hydrocarbon chains of the phospholipid molecule, and not on the charge of the polar headgroups per se. PMID:11023909
Gustafsson, Ulf; Benthin, Lisbet; Granström, Lars; Groen, Albert K; Sahlin, Staffan; Einarsson, Curt
2005-06-01
The aim of the present study was to elucidate the mechanisms of development of cholesterol crystals and gallstones during weight reduction in obese subjects. Twenty-five morbidly obese, gallstone-free subjects underwent vertical-banded gastroplasty. Gallbladder bile was collected at the time of the operation via needle aspiration and 1.1-7.3 months after the operation via ultrasound-guided transhepatic puncture of the gallbladder. The mean weight loss was 17 kg. Two patients developed gallstones and 10 patients displayed cholesterol crystals in their bile. In patients with a follow-up time of less than 2 months (n = 13), cholesterol saturation increased from 90% to 114% but tended to decrease in the patients with a follow-up time of more than 2 months. The extraction of the concanavalin-A-binding fraction from gallbladder bile obtained after weight reduction in 7 patients prolonged crystallization detection time from 6 to 10 days. The hexosamine concentration, a marker for mucin, was increased by about 100% in bile obtained in 6 of 7 patients after weight reduction. In conclusion, the results indicate that crystallization-promoting compounds (mucin) are of great importance in the development of cholesterol crystals and gallstones in obese subjects during weight reduction, probably because of defective gallbladder emptying.
Mason, R Preston; Jacob, Robert F; Shrivastava, Sandeep; Sherratt, Samuel C R; Chattopadhyay, Amitabha
2016-12-01
Cholesterol crystalline domains characterize atherosclerotic membranes, altering vascular signaling and function. Omega-3 fatty acids reduce membrane lipid peroxidation and subsequent cholesterol domain formation. We evaluated non-peroxidation-mediated effects of eicosapentaenoic acid (EPA), other TG-lowering agents, docosahexaenoic acid (DHA), and other long-chain fatty acids on membrane fluidity, bilayer width, and cholesterol domain formation in model membranes. In membranes prepared at 1.5:1 cholesterol-to-phospholipid (C/P) mole ratio (creating pre-existing domains), EPA, glycyrrhizin, arachidonic acid, and alpha linolenic acid promoted the greatest reductions in cholesterol domains (by 65.5%, 54.9%, 46.8%, and 45.2%, respectively) compared to controls; other treatments had modest effects. EPA effects on cholesterol domain formation were dose-dependent. In membranes with 1:1 C/P (predisposing domain formation), DHA, but not EPA, dose-dependently increased membrane fluidity. DHA also induced cholesterol domain formation without affecting temperature-induced changes in-bilayer unit cell periodicity relative to controls (d-space; 57Å-55Å over 15-30°C). Together, these data suggest simultaneous formation of distinct cholesterol-rich ordered domains and cholesterol-poor disordered domains in the presence of DHA. By contrast, EPA had no effect on cholesterol domain formation and produced larger d-space values relative to controls (60Å-57Å; p<0.05) over the same temperature range, suggesting a more uniform maintenance of lipid dynamics despite the presence of cholesterol. These data indicate that EPA and DHA had different effects on membrane bilayer width, membrane fluidity, and cholesterol crystalline domain formation; suggesting omega-3 fatty acids with differing chain length or unsaturation may differentially influence membrane lipid dynamics and structural organization as a result of distinct phospholipid/sterol interactions. Copyright © 2016. Published by Elsevier B.V.
Telocytes: new insight into the pathogenesis of gallstone disease
Matyja, Andrzej; Gil, Krzysztof; Pasternak, Artur; Sztefko, Krystyna; Gajda, Mariusz; Tomaszewski, Krzysztof A; Matyja, Maciej; Walocha, Jerzy A; Kulig, Jan; Thor, Piotr
2013-01-01
The major mechanisms of gallstone formation include biliary cholesterol hypersecretion, supersaturation and crystallization, mucus hypersecretion, gel formation and bile stasis. Gallbladder hypomotility seems to be a key event that triggers the precipitation of cholesterol microcrystals from supersaturated lithogenic bile. Telocytes, a new type of interstitial cells, have been recently identified in many organs, including gallbladder. Considering telocyte functions, it is presumed that these cells might be involved in the signalling processes. The purpose of this study was to correlate the quantity of telocytes in the gallbladder with the lithogenicity of bile. Gallbladder specimens were collected from 24 patients who underwent elective laparoscopic cholecystectomy for symptomatic gallstone disease. The control group consisted of 25 consecutive patients who received elective treatment for pancreatic head tumours. Telocytes were visualized in paraffin sections of gallbladders with double immunofluorescence using primary antibodies against c-Kit (anti-CD117) and anti-mast cell tryptase. Cholesterol, phospholipid and bile acid levels were measured in gallbladder bile. The number of telocytes in the gallbladder wall was significantly lower in the study group than that in the control group (3.03 ± 1.43 versus 6.34 ± 1.66 cell/field of view in the muscularis propria, P < 0.001) and correlated with a significant increase in the cholesterol saturation index. The glycocholic and taurocholic acid levels were significantly elevated in the control subjects compared with the study group. The results suggest that bile composition may play an important role in the reduction in telocytes density in the gallbladder. PMID:23551596
Megalin and cubilin expression in gallbladder epithelium and regulation by bile acids.
Erranz, Benjamín; Miquel, Juan Francisco; Argraves, W Scott; Barth, Jeremy L; Pimentel, Fernando; Marzolo, María-Paz
2004-12-01
Cholesterol crystal formation in the gallbladder is a key step in gallstone pathogenesis. Gallbladder epithelial cells might prevent luminal gallstone formation through a poorly understood cholesterol absorption process. Genetic studies in mice have highlighted potential gallstone susceptibility alleles, Lith genes, which include the gene for megalin. Megalin, in conjunction with the large peripheral membrane protein cubilin, mediates the endocytosis of numerous ligands, including HDL/apolipoprotein A-I (apoA-I). Although the bile contains apoA-I and several cholesterol-binding megalin ligands, the expression of megalin and cubilin in the gallbladder has not been investigated. Here, we show that both proteins are expressed by human and mouse gallbladder epithelia. In vitro studies using a megalin-expressing cell line showed that lithocholic acid strongly inhibits and cholic and chenodeoxycholic acids increase megalin expression. The effects of bile acids (BAs) were also demonstrated in vivo, analyzing gallbladder levels of megalin and cubilin from mice fed with different BAs. The BA effects could be mediated by the farnesoid X receptor, expressed in the gallbladder. Megalin protein was also strongly increased after feeding a lithogenic diet. These results indicate a physiological role for megalin and cubilin in the gallbladder and provide support for a role for megalin in gallstone pathogenesis.
Membrane rafts stabilized by chiral liquid crystal correction to bare interfacial tension
NASA Astrophysics Data System (ADS)
Kang, Louis; Lubensky, T. C.
Lipid rafts are hypothesized to facilitate protein interaction, tension regulation, and trafficking in biological membranes, but the mechanisms responsible for their formation and maintenance are not clear. Recently, experiments showed that bidisperse mixtures of filamentous viruses can self-assemble into colloidal monolayers with thermodynamically stable rafts that exhibit chiral structure and repulsive interactions. We quantitatively explain these observations by modeling the membrane particles as chiral liquid crystals. Chiral twist promotes the formation of finite-sized rafts by decreasing the effective interfacial tension between rafts and background membrane. It also mediates a repulsion that distributes rafts evenly throughout the membrane. Although this system is composed of filamentous viruses whose aggregation is entropically driven by dextran depletants instead of phospholipids and cholesterol with prominent electrostatic interactions, colloidal and biological membranes share many of the same physical symmetries. Chiral twist can contribute to the behavior of both systems and may account for certain stereospecific effects observed in molecular membranes.
Determination of NMR chemical shifts for cholesterol crystals from first-principles
NASA Astrophysics Data System (ADS)
Kucukbenli, Emine; de Gironcoli, Stefano
2011-03-01
Solid State Nuclear Magnetic Resonance (NMR) is a powerful tool in crystallography when combined with theoretical predictions. So far, empirical calculations of spectra have been employed for an unambiguous identification. However, many complex systems are outside the scope of these methods. Our implementation of ultrasoft and projector augmented wave pseudopotentials within ab initio gauge including projector augmented plane wave (GIPAW) method in Quantum Espresso simulation package allows affordable calculations of NMR spectra for systems of thousands of electrons. We report here the first ab initio determination of NMR spectra for several crystal structures of cholesterol. Cholesterol crystals, the main component of human gallstones, are of interest to medical research as their structural properties can shed light on the pathologies of gallbladder. With our application we show that ab initio calculations can be employed to aid NMR crystallography.
Role of chirality in peptide-induced formation of cholesterol-rich domains
2005-01-01
The chiral specificity of the interactions of peptides that induce the formation of cholesterol-rich domains has not been extensively investigated. Both the peptide and most lipids are chiral, so there is a possibility that interactions between peptide and lipid could require chiral recognition. On the other hand, in our models with small peptides, the extent of folding of the peptide to form a specific binding pocket is limited. We have determined that replacing cholesterol with its enantiomer, ent-cholesterol, alters the modulation of lipid organization by peptides. The phase-transition properties of SOPC (1-stearoyl-2-oleoylphosphatidylcholine):cholesterol [in a 6:4 ratio with 0.2 mol% PtdIns(4,5)P2] are not significantly altered when ent-cholesterol replaces cholesterol. However, in the presence of 10 mol% of a 19-amino-acid, N-terminally myristoylated fragment (myristoyl-GGKLSKKKKGYNVNDEKAK-amide) of the protein NAP-22 (neuronal axonal membrane protein), the lipid mixture containing cholesterol undergoes separation into cholesterol-rich and cholesterol-depleted domains. This does not occur when ent-cholesterol replaces cholesterol. In another example, when N-acetyl-Leu-Trp-Tyr-Ile-Lys-amide (N-acetyl-LWYIK-amide) is added to SOPC:cholesterol (7:3 ratio), there is a marked increase in the transition enthalpy of the phospholipid, indicating separation of a cholesterol-depleted domain of SOPC. This phenomenon completely disappears when ent-cholesterol replaces cholesterol. The all-D-isomer of N-acetyl-LWYIK-amide also induces the formation of cholesterol-rich domains with natural cholesterol, but does so to a lesser extent with ent-cholesterol. Thus specific peptide chirality is not required for interaction with cholesterol-containing membranes. However, a specific chirality of membrane lipids is required for peptide-induced formation of cholesterol-rich domains. PMID:15929726
Gallstones: A Worldwide Multifaceted Disease and Its Correlations with Gallbladder Carcinoma.
Sharma, Raj Kumar; Sonkar, Kanchan; Sinha, Neeraj; Rebala, Pradeep; Albani, Ahmad Ebrah; Behari, Anu; Reddy, Duvvuri Nageshwar; Farooqui, Alvina; Kapoor, Vinay Kumar
2016-01-01
Gallstones (GS) associated diseases are among the most recurrent and frequent diseases delineated in India and United Arab Emirates. Several reports suggest that the association of GS with gallbladder cancer (GBC) is very high in Northern part of India; however, its occurrence in UAE and Southern part of India is notably low. Therefore, in the present study, we aimed to perform compositional analysis of GS in three different geographical areas by Solid State Nuclear Magnetic Resonance and Fourier Transformed Infrared spectroscopy. Natural abundance 13C cross polarization magic angle spinning Nuclear Magnetic Resonance and Fourier Transform Infrared spectroscopy is employed for the analysis of human gallstone. Cholesterol, bilirubin and calcium carbonate were present in variant concentrations in GS obtained from three different geographical regions. Cholesterol was present predominantly in gallstones from North India. Bilirubin was found to be a main constituent in gallstones pertaining to South India. Whereas GS from UAE showed both cholesterol and bilirubin as their major constituents. Calcium carbonate was found in varying concentrations in gallstones acquired from different regions. Variation in environmental condition and dietary habits may contribute and affect the GS formation. Alterations in bile composition influence the GB and augment the crystallization of cholesterol. Analysis of different geographical regions GS could be an important stride to understand the etiology of GS diseases.
NASA Astrophysics Data System (ADS)
Darwiche, Rabih; Kelleher, Alan; Hudspeth, Elissa M.; Schneiter, Roger; Asojo, Oluwatoyin A.
2016-06-01
The production, crystal structure, and functional characterization of the C-terminal cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domain of pathogen-related yeast protein-1 (Pry1) from Saccharomyces cerevisiae is presented. The CAP domain of Pry1 (Pry1CAP) is functional in vivo as its expression restores cholesterol export to yeast mutants lacking endogenous Pry1 and Pry2. Recombinant Pry1CAP forms dimers in solution, is sufficient for in vitro cholesterol binding, and has comparable binding properties as full-length Pry1. Two crystal structures of Pry1CAP are reported, one with Mg2+ coordinated to the conserved CAP tetrad (His208, Glu215, Glu233 and His250) in spacegroup I41 and the other without divalent cations in spacegroup P6122. The latter structure contains four 1,4-dioxane molecules from the crystallization solution, one of which sits in the cholesterol binding site. Both structures reveal that the divalent cation and cholesterol binding sites are connected upon dimerization, providing a structural basis for the observed Mg2+-dependent sterol binding by Pry1.
Miyamoto, J; Kaneko, H; Takamatsu, Y
1986-06-01
In accordance with in vivo findings, of the four chiral isomers of fenvalerate (S-5602 Sumicidin, Pydrin, [RS]-alpha-cyano-3-phenoxybenzyl [RS]-2-(4-chlorophenyl)isovalerate), only the [2R, alpha S]-isomer (B-isomer) yielded cholesteryl [2R]-2-(4-chlorophenyl)isovalerate (CPIA-cholesterol ester) in the in vitro study using several tissue homogenates of mice, rats, dogs, and monkeys. There were species differences in the extent of CPIA-cholesterol-ester formation, with mouse tissues showing relatively higher activity than those of other animals. The kidney, brain, and spleen of mice showed relatively higher capacities to form this ester compared to other tissues, and the enzyme activity was mainly localized in microsomal fractions. The CPIA-cholesterol ester did not seem to be produced by three known biosynthetic pathways of endogenous cholesterol esters--acyl-CoA:cholesterol O-acyltransferase (ACAT), lecithin:cholesterol O-acyltransferase (LCAT), and cholesterol esterase. Carboxyesterase(s) of mouse kidney microsomes solubilized by digitonin hydrolyzed only the B alpha-isomer of fenvalerate, yielding CPIA, whereas they yielded the corresponding cholesterol ester in the presence of artificial liposomes containing cholesterol. Thus, it appears that the stereoselective formation of the CPIA-cholesterol ester results from the stereoselective formation of the CPIA-carboxyesterase complex only from the B alpha-isomer, which subsequently undergoes cleavage by cholesterol to yield the CPIA-cholesterol ester.
Nucleation time of gall bladder bile in gall stone patients: influence of bile acid treatment.
Sahlin, S; Ahlberg, J; Angelin, B; Reihnér, E; Einarsson, K
1991-01-01
The time required for precipitation of cholesterol crystals (nucleation time, NT) was determined and related to the cholesterol saturation in gall bladder bile of gall stone free subjects (n = 11), patients with pigment stones (n = 3), and patients with cholesterol gall stones (n = 30) undergoing cholecystectomy. Seven of the gall stone patients had been treated with chenodeoxycholic acid (CDCA) and nine with ursodeoxycholic acid (UDCA), 15 mg/kg/day for three weeks before operation. NT was longer in gall stone free subjects (mean, 20 days), patients with pigment stones (14 days) and patients treated with CDCA (24 days) and UDCA (17 days) compared with untreated patients with cholesterol gall stones (1.5 days). In spite of low cholesterol saturation and prolonged NT, and in contrast to those treated with CDCA, four of the nine patients treated with UDCA had cholesterol crystals in their bile. These observations give further support to the concept that the mechanism for inducing gall stone dissolution may be different for CDCA and UDCA. PMID:1773966
Liu, De-Chun; Zeng, Qiong; Ji, Qing-Xun; Liu, Chuan-Fu; Liu, Shan-Bei; Liu, Yong
2012-12-01
The altered ultrastructure and composition of cuticular wax from 'glossy Newhall' (MT) fruits lead to its glossy phenotype. A novel mutant derived from the wild-type (WT) 'Newhall' navel orange (Citrus sinensis [L.] Osbeck cv. Newhall), named 'glossy Newhall' (MT), which produced much more glossy fruits that were easily distinguishable from the WT fruits was characterized in this report. The total wax loads of both WT and MT fruits varied considerably during the fruit development. The most abundant wax fraction of WT mature fruits was triterpenoids, followed by aldehydes, alkanes, fatty acids, primary alcohol and cholesterol. The total wax load in MT mature fruits was reduced by 44.2 % compared with WT. Except for the minor wax components of primary alcohol and cholesterol, the amounts of all major wax fractions in MT mature fruits were decreased in varying degrees. The major reduction occurred in aldehydes that decreased 96.4 % and alkanes that decreased 81.9 %, which was consistent with scanning electron micrographs of MT mature fruit surfaces that showed a severe loss of wax crystals. Hence, aldehydes and alkanes were suggested to be required for wax crystal formation in 'Newhall' navel orange fruits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mastrangelo, J.C.; Chen, S.H.
Thermotropic chiral nematics in thin films on the order of 10 [mu]m possess a unique optical property, selective wavelength reflection, that forms the basis of a number of potential applications including circular polarizers, notch filters, beamsplitters, and so on. Instead of low molar mass chiral nematics, thermotropic copolymers have been actively pursued as an alternative in view of the possibility of achieving long-term mesophase stability and optical characteristics desired for passive device applications. Cyanobiphenyl is a relatively high birefringent group which is known to contribute to the formation of low molar mass liquid crystals; it was found to exhibit amore » nematic mesophase between the glass transition and clearing temperatures in side-chain polyacrylates with spacer lengths in the 2-6 range. However, there exists only one report on the formation of a chiral nematic copolymer with cholesterol as the chiral moiety. Since several chiral building blocks other than cholesterol have been found to possess strong helical twisting powers with selected nematogenic monomers, it would be of interest to explore a cyanobiphenyl group as a building block for the synthesis of new chiral nematic copolymers.« less
Cholesterol inhibits entotic cell-in-cell formation and actomyosin contraction.
Ruan, Banzhan; Zhang, Bo; Chen, Ang; Yuan, Long; Liang, Jianqing; Wang, Manna; Zhang, Zhengrong; Fan, Jie; Yu, Xiaochen; Zhang, Xin; Niu, Zubiao; Zheng, You; Gu, Songzhi; Liu, Xiaoqing; Du, Hongli; Wang, Jufang; Hu, Xianwen; Gao, Lihua; Chen, Zhaolie; Huang, Hongyan; Wang, Xiaoning; Sun, Qiang
2018-01-01
Cell-in-cell structure is prevalent in human cancer, and associated with several specific pathophysiological phenomena. Although cell membrane adhesion molecules were found critical for cell-in-cell formation, the roles of other membrane components, such as lipids, remain to be explored. In this study, we attempted to investigate the effects of cholesterol and phospholipids on the formation of cell-in-cell structures by utilizing liposome as a vector. We found that Lipofectamine-2000, the reagent commonly used for routine transfection, could significantly reduce entotic cell-in-cell formation in a cell-specific manner, which is correlated with suppressed actomyosin contraction as indicated by reduced β-actin expression and myosin light chain phosphorylation. The influence on cell-in-cell formation was likely dictated by specific liposome components as some liposomes affected cell-in-cell formation while some others didn't. Screening on a limited number of lipids, the major components of liposome, identified phosphatidylethanolamine (PE), stearamide (SA), lysophosphatidic acid (LPA) and cholesterol (CHOL) as the inhibitors of cell-in-cell formation. Importantly, cholesterol treatment significantly inhibited myosin light chain phosphorylation, which resembles the effect of Lipofectamine-2000, suggesting cholesterol might be partially responsible for liposomes' effects on cell-in-cell formation. Together, our findings supporting a role of membrane lipids and cholesterol in cell-in-cell formation probably via regulating actomyosin contraction. Copyright © 2017 Elsevier Inc. All rights reserved.
2006-01-01
HDL, ’good cholesterol ’) and are involved in the prevention of atherosclerosis . We describe the first crystal structure of a PON family member, a... atherosclerosis and to OP poisoning3. In vitro assays show that PON1 and PON3 inhibit lipid oxidation in LDL (“bad cholesterol ”), thus reducing levels of...PON3, which share ~60% sequence identity with PON1. PON1 and PON3 reside in the cholesterol -carrying HDL (“good cholesterol ”) particles, whereas
Küçükbenli, Emine; Sonkar, Kanchan; Sinha, Neeraj; de Gironcoli, Stefano
2012-04-12
We report here the first fully ab initio determination of (13)C NMR spectra for several crystal structures of cholesterol, observed in various biomaterials. We combine Gauge-Including Projector Augmented Waves (GIPAW) calculations at relaxed structures, fully including dispersion forces, with Magic Angle Spinning Solid State NMR experiments and spectral editing to achieve a detailed interpretation of the complex NMR spectra of cholesterol crystals. By introducing an environment-dependent secondary referencing scheme in our calculations, not only do we reproduce the characteristic spectral features of the different crystalline polymorphs, thus clearly discriminating among them, but also closely represent the spectrum in the region of several highly overlapping peaks. This, in combination with spectral editing, allows us to provide a complete peak assignment for monohydrate (ChM) and low-temperature anhydrous (ChAl) crystal polymorphs. Our results show that the synergy between ab initio calculations and refined experimental techniques can be exploited for an accurate and efficient NMR crystallography of complex systems of great interest for biomaterial studies. The method is general in nature and can be applied for studies of various complex biomaterials.
Lawrence, Sara L.; Feil, Susanne C.; Morton, Craig J.; Farrand, Allison J.; Mulhern, Terrence D.; Gorman, Michael A.; Wade, Kristin R.; Tweten, Rodney K.; Parker, Michael W.
2015-01-01
Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world’s leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface. PMID:26403197
Crystallization of steroids in gels
NASA Astrophysics Data System (ADS)
Kalkura, S. Narayana; Devanarayanan, S.
1991-03-01
The crystal growth and characterization of certain steriods, viz., cholesterol, cholesteryl acetate, β-sitosterol, progesterone and testosterone, in a silica gel medium is discussed. The present study shows that the single test tube diffusion method can be used to grow crystals of steroids in a silica gel medium by the reduction of steroid solubility.
MAISA, Anna; HEARPS, Anna C.; ANGELOVICH, Thomas A.; PEREIRA, Candida F.; ZHOU, Jingling; SHI, Margaret D.Y.; PALMER, Clovis S.; MULLER, William A.; CROWE, Suzanne M.; JAWOROWSKI, Anthony
2016-01-01
Design HIV+ individuals have an increased risk of atherosclerosis and cardiovascular disease which is independent of antiretroviral therapy and traditional risk factors. Monocytes play a central role in the development of atherosclerosis, and HIV-related chronic inflammation and monocyte activation may contribute to increased atherosclerosis, but the mechanisms are unknown. Methods Using an in vitro model of atherosclerotic plaque formation, we measured the transendothelial migration of purified monocytes from age-matched HIV+ and uninfected donors and examined their differentiation into foam cells. Cholesterol efflux and the expression of cholesterol metabolism genes were also assessed. Results Monocytes from HIV+ individuals showed increased foam cell formation compared to controls (18.9% vs 0% respectively, p=0.004) and serum from virologically suppressed HIV+ individuals potentiated foam cell formation by monocytes from both uninfected and HIV+ donors. Plasma TNF levels were increased in HIV+ vs control donors (5.9 vs 3.5 pg/ml, p=0.02) and foam cell formation was inhibited by blocking antibodies to TNF receptors, suggesting a direct effect on monocyte differentiation to foam cells. Monocytes from virologically suppressed HIV+ donors showed impaired cholesterol efflux and decreased expression of key genes regulating cholesterol metabolism, including the cholesterol transporter ABCA1 (p=0.02). Conclusions Monocytes from HIV+ individuals show impaired cholesterol efflux and are primed for foam cell formation following trans-endothelial migration. Factors present in HIV+ serum, including elevated TNF levels, further enhance foam cell formation. The pro-atherogenic phenotype of monocytes persists in virologically suppressed HIV+ individuals and may contribute mechanistically to increased atherosclerosis in this population. PMID:26244384
Cholesteric liquid crystals in living matter.
Mitov, Michel
2017-06-14
Liquid crystals play an important role in biology because the combination of order and mobility is a basic requirement for self-organisation and structure formation in living systems. Cholesteric liquid crystals are omnipresent in living matter under both in vivo and in vitro conditions and address the major types of molecules essential to life. In the animal and plant kingdoms, the cholesteric structure is a recurring design, suggesting a convergent evolution to an optimised left-handed helix. Herein, we review the recent advances in the cholesteric organisation of DNA, chromatin, chitin, cellulose, collagen, viruses, silk and cholesterol ester deposition in atherosclerosis. Cholesteric structures can be found in bacteriophages, archaea, eukaryotes, bacterial nucleoids, chromosomes of unicellular algae, sperm nuclei of many vertebrates, cuticles of crustaceans and insects, bone, tendon, cornea, fish scales and scutes, cuttlebone and squid pens, plant cell walls, virus suspensions, silk produced by spiders and silkworms, and arterial wall lesions. This article specifically aims at describing the consequences of the cholesteric geometry in living matter, which are far from being fully defined and understood, and discusses various perspectives. The roles and functions of biological cholesteric liquid crystals include maximisation of packing efficiency, morphogenesis, mechanical stability, optical information, radiation protection and evolution pressure.
Peng, Yuhong; Yang, Yang; Liu, Yongkang; Nie, Yuanyang; Xu, Peilun; Xia, Baixue; Tian, Fuzhou; Sun, Qun
2015-01-01
The prevalence of cholesterol gallstones has increased in recent years. Bacterial infection correlates with the formation of gallstones. We studied the composition and function of bacterial communities in cholesterol gallstones and bile from 22 cholesterol gallstone patients using culture-dependent and culture-independent methods. Altogether fourteen and eight bacterial genera were detected in cholesterol gallstones and bile, respectively. Pseudomonas spp. were the dominant bacteria in both cholesterol gallstones and bile. As judged by diversity indices, hierarchical clustering and principal component analysis, the bacterial communities in gallstones were different from those in bile. The gallstone microbiome was considered more stable than that of bile. The different microbial communities may be partially explained by differences in their habitats. We found that 30% of the culturable strains from cholesterol gallstones secreted β-glucuronidase and phospholipase A2. Pseudomonas aeruginosa strains showed the highest β-glucuronidase activity and produced the highest concentration of phospholipase A2, indicating that Ps. aeruginosa may be a major agent in the formation of cholesterol gallstones. Copyright © 2015 Elsevier Ltd. All rights reserved.
Unraveling the Pore-Forming Steps of Pneumolysin from Streptococcus pneumoniae.
van Pee, Katharina; Mulvihill, Estefania; Müller, Daniel J; Yildiz, Özkan
2016-12-14
Pneumolysin (PLY) is the main virulence factor of Streptococcus pneumoniae that causes pneumonia, meningitis, and invasive pneumococcal infection. PLY is produced as monomers, which bind to cholesterol-containing membranes, where they oligomerize into large pores. To investigate the pore-forming mechanism, we determined the crystal structure of PLY at 2.4 Å and used it to design mutants on the surface of monomers. Electron microscopy of liposomes incubated with PLY mutants revealed that several mutations interfered with ring formation. Mutants that formed incomplete rings or linear arrays had strongly reduced hemolytic activity. By high-resolution time-lapse atomic force microscopy of wild-type PLY, we observed two different ring-shaped complexes. Most of the complexes protruded ∼8 nm above the membrane surface, while a smaller number protruded ∼11 nm or more. The lower complexes were identified as pores or prepores by the presence or absence of a lipid bilayer in their center. The taller complexes were side-by-side assemblies of monomers of soluble PLY that represent an early form of the prepore. Our observations suggest a four-step mechanism of membrane attachment and pore formation by PLY, which is discussed in the context of recent structural models. The functional separation of these steps is necessary for the understanding how cholesterol-dependent cytolysins form pores and lyse cells.
Xu, Zhipeng; Wang, Gang; Zhu, Yuxiao; Liu, Ran; Song, Jingwei; Ni, Yangyue; Sun, Hongzhi; Yang, Bingya; Hou, Min; Chen, Lin; Ji, Minjun; Fu, Zan
2017-03-01
Peroxisome proliferator-activated receptor (PPAR)-γ plays critical roles in human metabolic disorders. However, the mechanism remains incompletely understood. Regulatory cells contribute to these metabolic improvements; therefore, whether PPAR-γ agonist regulates regulatory cells was investigated. C57BL/6J mice received a normal or high-fat diet (HFD) with or without pioglitazone treatment. Mice were sacrificed for detecting the metabolic parameters. Lymphocytes from spleen and visceral adipose tissue (VAT) were collected and analyzed for ST2 + Tregs and Bregs by flow cytometry. IL-10 in the liver or VAT was detected by immunofluorescence and ELISA. Correlation analysis between IL-10 and liver weight or serum total cholesterol was made by Pearson correlation analysis. Pioglitazone increased VAT weight but reduced serum total cholesterol, hepatic steatosis, and cholesterol crystallization formation. Pioglitazone treatment enhanced ST2 + Tregs and Bregs in the VAT and spleen of HFD-fed mice (all P < 0.05). Pioglitazone treatment increased IL-10 in the livers or VAT of HFD-fed mice (all P < 0.05). The expression of IL-10 in the liver was significantly negatively correlated with liver weight or serum total cholesterol in pioglitazone-treated HFD-fed mice (r 2 = 0.74, P < 0.05; r 2 = 0.58, P < 0.05). PPAR-γ signaling plays a critical role in the regulation of metabolic disorders through promoting regulatory cell response. © 2017 The Obesity Society.
Ibupoto, Z H; Khun, K; Liu, X; Willander, M
2013-10-01
In this study, we have successfully synthesised CuO bundle of nanowires using simple, cheap and low temperature hydrothermal growth method. The growth parameters such as precursor concentration and time for duration of growth were optimised. The field emission scanning electron microscopy (FESEM) has demonstrated that the CuO bundles of nanowires are highly dense, uniform and perpendicularly oriented to the substrate. The high resolution transmission electron microscopy (HRTEM) has demonstrated that the CuO nanostructures consist of bundle of nanowires and their growth pattern is along the [010] direction. The X-ray diffraction (XRD) technique described that CuO bundle of nanowires possess the monoclinic crystal phase. The surface and chemical composition analyses were carried out with X-ray photoelectron spectroscopy (XPS) technique and the obtained results suggested the pure crystal state of CuO nanostructures. In addition, the CuO nanowires were used for the cholesterol sensing application by immobilising the cholesterol oxidase through electrostatic attraction. The infrared reflection absorption spectroscopy study has also revealed that CuO nanostructures are consisting of only CuO bonding and has also shown the possible interaction of cholesterol oxidase with the sharp edge surface of CuO bundle of nanowires. The proposed cholesterol sensor has demonstrated the wide range of detection of cholesterol with good sensitivity of 33.88±0.96 mV/decade. Moreover, the CuO bundle of nanowires based sensor electrode has revealed good repeatability, reproducibility, stability, selectivity and a fast response time of less than 10s. The cholesterol sensor based on the immobilised cholesterol oxidase has good potential applicability for the determination of cholesterol from the human serum and other biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Raghavendra, Chikkanna K; Srinivasan, Krishnapura
2015-10-01
Dietary fibre-rich tender cluster beans (Cyamopsis tetragonoloba; CB) are known to exert beneficial cholesterol lowering influence. We examined the influence of a combination of dietary tender CB and garlic (Allium sativum) in reducing the cholesterol gallstone formation in mice. Cholesterol gallstones were induced in Swiss mice by feeding a high-cholesterol diet (HCD) for 10 wk. Dietary interventions were made with 10 per cent CB and 1 per cent garlic included individually or together along with HCD. A total of 100 mice were divided into five groups of 20 mice each. Dietary CB, garlic and CB+garlic reduced the formation of cholesterol gallstones by 44, 25 and 56 per cent, respectively, lowered cholesterol by 23-48, 16-24, and 24-58 in bile, serum, and liver, respectively. Cholesterol saturation index in bile and cholesterol: phospholipid ratio in circulation and hepatic tissue were significantly lowered by these dietary interventions, with highest beneficial effect from CB+garlic. Activities of hepatic cholesterol metabolizing enzymes were modulated by CB, garlic and CB+garlic. Elevation in lipid peroxides caused by HCD was also countered by these dietary interventions, the combination producing the highest effect. The results showed that the prevention of experimentally induced formation of cholesterol gallstones by dietary CB and garlic was due to decreased biliary cholesterol secretion and increased cholesterol saturation index. In addition of anti-lithogenic effect, dietary CB and garlic in combination had a beneficial antioxidant effect.
Li, Yong; Chen, Youliang; Li, Hua
2017-01-01
Response surface methodology was used to optimize ultrasound-assisted ethanol extraction (UAE) of cholesterol from cholesterol-β-cyclodextrin (C-β-CD) inclusion complex prepared from duck yolk oil. The best extraction conditions were solvent-solid ratio 10mL/g, ultrasonic power 251W, extraction temperature 56°C and sonication time 36min. Under these conditions, the highest cholesterol extraction yield and cholesterol content obtained 98.12±0.25% and 43.38±0.61mg/g inclusion complex, respectively. As compared with Reflux extraction and Soxhlet extraction, the UAE was more efficient and economical. To increase the purity of crude cholesterol extraction, silica gel column chromatography and crystallization were carried out. Finally, cholesterol was obtained at 95.1% purity, 71.7% recovery and 22.0% yield. Copyright © 2016 Elsevier B.V. All rights reserved.
Change of motion and localization of cholesterol molecule during L(alpha)-H(II) transition.
Hayakawa, E; Naganuma, M; Mukasa, K; Shimozawa, T; Araiso, T
1998-01-01
Formation of the inverted hexagonal (H(II)) phase from the lamellar (L(alpha)) phase of bovine brain-extracted phosphatidylcholine (BBPC) and phosphatidylethanolamine (BBPE) was investigated using 31P-NMR with or without cholesterol. When the ratio of BBPC to BBPE was 1:1, the H(II) formation was observed in the presence of 33 mol% cholesterol (i.e., BBPC:BBPE:cholesterol = 1:1:1) at 47 degrees C. The fraction of the H(II) phase in the BBPC/BBPE/cholesterol system could be controlled by the addition of dioleoylglycerol. The change of molecular motion of cholesterol affected by the H(II) formation was measured at various ratios of the L(alpha) to H(II) phase with the time-resolved fluorescence depolarization method, using dehydroergosterol as a fluorescent probe. It is observed that the motion of cholesterol became vigorous in the mixture state of the L(alpha) and the H(II) phases compared to that in the L(alpha) or the H(II) phase only. These facts show that cholesterol has the strong ability to induce the H(II) phase, probably by special molecular motion, which includes change of its location from the headgroup area to the acyl-chain area. PMID:9533700
Raghavendra, Chikkanna K.; Srinivasan, Krishnapura
2015-01-01
Background & objectives: Dietary fibre-rich tender cluster beans (Cyamopsis tetragonoloba; CB) are known to exert beneficial cholesterol lowering influence. We examined the influence of a combination of dietary tender CB and garlic (Allium sativum) in reducing the cholesterol gallstone formation in mice. Methods: Cholesterol gallstones were induced in Swiss mice by feeding a high-cholesterol diet (HCD) for 10 wk. Dietary interventions were made with 10 per cent CB and 1 per cent garlic included individually or together along with HCD. A total of 100 mice were divided into five groups of 20 mice each. Results: Dietary CB, garlic and CB+garlic reduced the formation of cholesterol gallstones by 44, 25 and 56 per cent, respectively, lowered cholesterol by 23-48, 16-24, and 24-58 in bile, serum, and liver, respectively. Cholesterol saturation index in bile and cholesterol: phospholipid ratio in circulation and hepatic tissue were significantly lowered by these dietary interventions, with highest beneficial effect from CB+garlic. Activities of hepatic cholesterol metabolizing enzymes were modulated by CB, garlic and CB+garlic. Elevation in lipid peroxides caused by HCD was also countered by these dietary interventions, the combination producing the highest effect. Interpretation & conclusions: The results showed that the prevention of experimentally induced formation of cholesterol gallstones by dietary CB and garlic was due to decreased biliary cholesterol secretion and increased cholesterol saturation index. In addition of anti-lithogenic effect, dietary CB and garlic in combination had a beneficial antioxidant effect. PMID:26609039
Huang, Juyang
2002-08-01
Experimental evidences have indicated that cholesterol may adapt highly regular lateral distributions (i.e., superlattices) in a phospholipid bilayer. We investigated the formations of superlattices at cholesterol mole fraction of 0.154, 0.25, 0.40, and 0.5 using Monte Carlo simulation. We found that in general, conventional pairwise-additive interactions cannot produce superlattices. Instead, a multibody (nonpairwise) interaction is required. Cholesterol superlattice formation reveals that although the overall interaction between cholesterol and phospholipids is favorable, it contains two large opposing components: an interaction favoring cholesterol-phospholipid mixing and an unfavorable acyl chain multibody interaction that increases nonlinearly with the number of cholesterol contacts. The magnitudes of interactions are in the order of kT. The physical origins of these interactions can be explained by our umbrella model. They most likely come from the requirement for polar phospholipid headgroups to cover the nonpolar cholesterol to avoid the exposure of cholesterol to water and from the sharp decreasing of acyl chain conformation entropy due to cholesterol contact. This study together with our previous work demonstrate that the driving force of cholesterol-phospholipid mixing is a hydrophobic interaction, and multibody interactions dominate others over a wide range of cholesterol concentration.
Mvondo, Marie A; Njamen, Dieudonné; Kretzschmar, Georg; Imma Bader, Manuela; Tanee Fomum, Stephen; Wandji, Jean; Vollmer, Günter
2015-07-01
Erythrina lysistemon was found to improve lipid profile in ovariectomized rats. Alpinumisoflavone (AIF) and abyssinone V 4'-methylether (AME) derived from this plant induced analogous effects on lipid profile and decreased atherogenic risks. To highlight the molecular mechanism of action of these natural products, we evaluated their effects on the expression of some estrogen-sensitive genes associated with cholesterol synthesis (Esr1 and Apoa1) and cholesterol clearance (Ldlr, Scarb1 and Cyp7a1). Ovariectomized rats were subcutaneously treated for three consecutive days with either compound at the daily dose of 0.1, 1 and 10 mg/kg body weight (BW). Animals were sacrificed thereafter and their liver was collected. The mRNA of genes of interest was analysed by quantitative real-time polymerase chain reaction. Both compounds downregulated the mRNA expression of Esr1, a gene associated with cholesterogenesis and cholesterol gallstone formation. AME leaned the Apoa1/Scarb1 balance in favour of Apoa1, an effect promoting high-density lipoprotein (HDL)-cholesterol formation. It also upregulated the mRNA expression of Ldlr at 1 mg/kg/BW per day (25%) and 10 mg/kg/BW per day (133.17%), an effect favouring the clearance of low-density lipoprotein (LDL)-cholesterol. Both compounds may also promote the conversion of cholesterol into bile acids as they upregulated Cyp7a1 mRNA expression. AIF and AME atheroprotective effects may result from their ability to upregulate mechanisms promoting HDL-cholesterol and bile acid formation. © 2015 Royal Pharmaceutical Society.
Cholesterol-Induced Formation of Liquid Ordered Phase-Like Structures in Non-Phospholipid Systems.
Konno, Yoshikazu; Yoshimura, Akio; Naito, Noboru; Aramaki, Kenji
2018-01-01
The formation of liquid ordered (L o ) phase-like structures in stearyltrimethylammonium chloride/cholesterol/1,3-butanediol/water and hepta(oxyethylen) octadecyl ether/cholesterol/1,3-butanediol/water systems was investigated. Differential scanning calorimetry and X-ray scattering measurements confirmed that L o phase-like structures were formed in both surfactant/cholesterol systems, similar to the lysophospholipid/cholesterol system. It was revealed that the concentration of cholesterol at which only L o phase-like structures are formed increases in the order stearyltrimethylammonium chloride < lysophospholipid < hepta(oxyethylen) octadecyl ether. In addition, for both surfactants, the interlayer spacing, d, was larger for L o phase-like structures than for α-gel structures. These results suggest that the ionicity and structure of the hydrophilic group of each surfactant play important roles.
Chen, Liang; Yao, Qiying; Xu, Siwei; Wang, Hongyan; Qu, Peng
2018-01-01
The NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome plays an important role in the development of atherosclerosis. The activated NLRP3 inflammasome has been reported to promote macrophage foam cell formation, but not all studies have obtained the same result, and how NLRP3 inflammasome is involved in the formation of foam cells remains elusive. We used selective NLRP3 inflammasome inhibitors and NLRP3-deficient THP-1 cells to assess the effect of NLRP3 inflammasome inhibition on macrophage foam cell formation, oxidized low-density lipoprotein (ox-LDL) uptake, esterification, and cholesterol efflux, as well as the expression of associated proteins. Inhibition of the NLRP3 inflammasome attenuated foam cell formation, diminished ox-LDL uptake, and promoted cholesterol efflux from THP-1 macrophages. Moreover, it downregulated CD36, acyl coenzyme A: cholesterol acyltransferase-1 and neutral cholesterol ester hydrolase expression; upregulated ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) expression; but had no effect on the expression of scavenger receptor class A and ATP-binding cassette transporter G1. Collectively, our findings show that inhibition of the NLRP3 inflammasome decreases foam cell formation of THP-1 macrophages via suppression of ox-LDL uptake and enhancement of cholesterol efflux, which may be due to downregulation of CD36 expression and upregulation of ABCA1 and SR-BI expression, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.
NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice.
Mridha, Auvro R; Wree, Alexander; Robertson, Avril A B; Yeh, Matthew M; Johnson, Casey D; Van Rooyen, Derrick M; Haczeyni, Fahrettin; Teoh, Narci C-H; Savard, Christopher; Ioannou, George N; Masters, Seth L; Schroder, Kate; Cooper, Matthew A; Feldstein, Ariel E; Farrell, Geoffrey C
2017-05-01
NOD-like receptor protein 3 (NLRP3) inflammasome activation occurs in Non-alcoholic fatty liver disease (NAFLD). We used the first small molecule NLRP3 inhibitor, MCC950, to test whether inflammasome blockade alters inflammatory recruitment and liver fibrosis in two murine models of steatohepatitis. We fed foz/foz and wild-type mice an atherogenic diet for 16weeks, gavaged MCC950 or vehicle until 24weeks, then determined NAFLD phenotype. In mice fed an methionine/choline deficient (MCD) diet, we gavaged MCC950 or vehicle for 6weeks and determined the effects on liver fibrosis. In vehicle-treated foz/foz mice, hepatic expression of NLRP3, pro-IL-1β, active caspase-1 and IL-1β increased at 24weeks, in association with cholesterol crystal formation and NASH pathology; plasma IL-1β, IL-6, MCP-1, ALT/AST all increased. MCC950 treatment normalized hepatic caspase 1 and IL-1β expression, plasma IL-1β, MCP-1 and IL-6, lowered ALT/AST, and reduced the severity of liver inflammation including designation as NASH pathology, and liver fibrosis. In vitro, cholesterol crystals activated Kupffer cells and macrophages to release IL-1β; MCC950 abolished this, and the associated neutrophil migration. MCD diet-fed mice developed fibrotic steatohepatitis; MCC950 suppressed the increase in hepatic caspase 1 and IL-1β, lowered numbers of macrophages and neutrophils in the liver, and improved liver fibrosis. MCC950, an NLRP3 selective inhibitor, improved NAFLD pathology and fibrosis in obese diabetic mice. This is potentially attributable to the blockade of cholesterol crystal-mediated NLRP3 activation in myeloid cells. MCC950 reduced liver fibrosis in MCD-fed mice. Targeting NLRP3 is a logical direction in pharmacotherapy of NASH. Fatty liver disease caused by being overweight with diabetes and a high risk of heart attack, termed non-alcoholic steatohepatitis (NASH), is the most common serious liver disease with no current treatment. There could be several causes of inflammation in NASH, but activation of a protein scaffold within cells termed the inflammasome (NLRP3) has been suggested to play a role. Here we show that cholesterol crystals could be one pathway to activate the inflammasome in NASH. We used a drug called MCC950, which has already been shown to block NLRP3 activation, in an attempt to reduce liver injury in NASH. This drug partly reversed liver inflammation, particularly in obese diabetic mice that most closely resembles the human context of NASH. In addition, such dampening of liver inflammation in NASH achieved with MCC950 partly reversed liver scarring, the process that links NASH to the development of cirrhosis. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
The Onion Sign in neovascular age-related macular degeneration represents cholesterol crystals
Pang, Claudine E.; Messinger, Jeffrey D.; Zanzottera, Emma C.; Freund, K. Bailey; Curcio, Christine A.
2015-01-01
Purpose To investigate the frequency, natural evolution and histological correlates of layered, hyperreflective, sub-retinal pigment epithelium (sub-RPE) lines, known as the Onion Sign, in neovascular age-related macular degeneration (nvAMD). Design Retrospective observational cohort study; an experimental laboratory study. Participants Two hundred thirty eyes of 150 consecutive patients with nvAMD; 40 human donor eyes with clinical and histopathologic diagnosis of nvAMD. Methods Spectral-domain optical coherence tomography (SD-OCT), near-infrared reflectance (nIR), color fundus images and medical charts were reviewed. Donor eyes underwent multimodal ex vivo imaging including SD-OCT before processing for high-resolution histology. Main Outcome Measures Presence of layered, hyperreflective sub-RPE lines, qualitative analysis of their change in appearance over time with SD-OCT, histological correlates of these lines, and associated findings within surrounding tissues. Results Sixteen of 230 eyes of patients (7.0%) and 2 of 40 donor eyes (5.0%) with nvAMD had layered, hyperreflective sub-RPE lines on SD-OCT imaging. These appeared as refractile, yellow-gray exudates on color imaging and hyperreflective lesions on nIR. In all 16 eyes, the Onion Sign persisted in follow-up for up to 5 years, with fluctuations in the abundance of lines and associated with intraretinal hyperreflective foci. Patients with the Onion Sign were disproportionately taking cholesterol-lowering medications (p = 0.025). Histology of 2 donor eyes revealed that hyperreflective lines correlated with clefts created by extraction of cholesterol crystals during tissue processing. Fluid surrounding crystals contained lipid yet was distinct from oily drusen. Intraretinal hyperreflective foci correlated with intraretinal RPE and lipid-filled cells of probable monocyte origin. Conclusion Persistent and dynamic, the Onion Sign represents sub-RPE cholesterol crystal precipitation in aqueous environment. The frequency of the Onion Sign in nvAMD in a referral practice and a pathology archive is 5–7%. Associations include use of cholesterol-lowering medication and intraretinal hyperreflective foci attributable to RPE cells and lipid-filled cells of monocyte origin. PMID:26298717
Hargrove, Tatiana Y.; Friggeri, Laura; Wawrzak, Zdzislaw; Sivakumaran, Suneethi; Yazlovitskaya, Eugenia M.; Hiebert, Scott W.; Guengerich, F. Peter; Waterman, Michael R.; Lepesheva, Galina I.
2016-01-01
Rapidly multiplying cancer cells synthesize greater amounts of cholesterol to build their membranes. Cholesterol-lowering drugs (statins) are currently in clinical trials for anticancer chemotherapy. However, given at higher doses, statins cause serious side effects by inhibiting the formation of other biologically important molecules derived from mevalonate. Sterol 14α-demethylase (CYP51), which acts 10 steps downstream, is potentially a more specific drug target because this portion of the pathway is fully committed to cholesterol production. However, screening a variety of commercial and experimental inhibitors of microbial CYP51 orthologs revealed that most of them (including all clinical antifungals) weakly inhibit human CYP51 activity, even if they display high apparent spectral binding affinity. Only one relatively potent compound, (R)-N-(1-(3,4′-difluorobiphenyl-4-yl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide (VFV), was identified. VFV has been further tested in cellular experiments and found to decrease proliferation of different cancer cell types. The crystal structures of human CYP51-VFV complexes (2.0 and 2.5 Å) both display a 2:1 inhibitor/enzyme stoichiometry, provide molecular insights regarding a broader substrate profile, faster catalysis, and weaker susceptibility of human CYP51 to inhibition, and outline directions for the development of more potent inhibitors. PMID:27313059
Clonorcis sinensis eggs are associated with calcium carbonate gallbladder stones.
Qiao, Tie; Ma, Rui-hong; Luo, Zhen-liang; Yang, Liu-qing; Luo, Xiao-bing; Zheng, Pei-ming
2014-10-01
Calcium carbonate gallbladder stones were easily neglected because they were previously reported as a rare stone type in adults. The aim of this study was to investigate the relationship between calcium carbonate stones and Clonorchis sinensis infection. A total of 598 gallbladder stones were studied. The stone types were identified by FTIR spectroscopy. The C. sinensis eggs and DNA were detected by microscopic examination and real-time fluorescent PCR respectively. And then, some egg-positive stones were randomly selected for further SEM examination. Corresponding clinical characteristics of patients with different types of stones were also statistically analyzed. The detection rate of C. sinensis eggs in calcium carbonate stone, pigment stone, mixed stone and cholesterol stone types, as well as other stone types was 60%, 44%, 36%, 6% and 30%, respectively, which was highest in calcium carbonate stone yet lowest in cholesterol stone. A total of 182 stones were egg-positive, 67 (37%) of which were calcium carbonate stones. The C. sinensis eggs were found adherent to calcium carbonate crystals by both light microscopy and scanning electron microscopy. Patients with calcium carbonate stones were mainly male between the ages of 30 and 60, the CO2 combining power of patients with calcium carbonate stones were higher than those with cholesterol stones. Calcium carbonate gallbladder stones are not rare, the formation of which may be associated with C. sinensis infection. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosicek, Marko, E-mail: marko.kosicek@irb.hr; Malnar, Martina, E-mail: martina.malnar@irb.hr; Goate, Alison, E-mail: goate@icarus.wustl.edu
It has been suggested that cholesterol may modulate amyloid-{beta} (A{beta}) formation, a causative factor of Alzheimer's disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD ({beta}-amyloid precursor protein (APP), {beta}-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/A{beta} formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1{sup -/-} cells (NPC cells) and parental CHOwt cells. By sucrose density gradientmore » centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, {gamma}-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards A{beta} occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer's disease and supports the role of lipid rafts in these processes.« less
Sobenin, Igor A; Andrianova, Irina V; Lakunin, Konstantin Y; Karagodin, Vasilii P; Bobryshev, Yuri V; Orekhov, Alexander N
2016-10-15
Garlic (Allium sativum L.) is one of the most popular substances used to reduce various risks associated with cardiovascular disease. However, little is known on the direct effects of garlic on atherosclerosis. In the present study we have examined the effect of per oral administration of the time-released garlic herbal preparation on serum atherogenicity and formation of intimal thickening after freeze injury in cholesterol-fed rabbits. Group 1 rabbits maintained on the standard cholesterol-rich diet served as the control. Group 2 rabbits were fed the cholesterol-rich diet and treated with garlic preparation containing 300 mg garlic powder. Local thickening of the aortic media (i.e., the neointima formation) in the freeze injury zone was observed in all the rabbits. Regular garlic preparation therapy prevented the neointima formation and the accumulation of free and esterified cholesterol, triglycerides, phospholipids and collagen in the neointima, the effects being statistically significant. Garlic preparation also decreased serum lipid content by 1.5-fold and lowered atherogenic activity of blood serum (ability to induce lipid accumulation in cultured cells) induced by cholesterol-rich diet. The results obtained indicate that garlic preparation prevents the development of cholesterol-induced experimental atherosclerosis and possesses the direct anti-atherogenic activity. Copyright © 2015 Elsevier GmbH. All rights reserved.
Mechanisms of foam cell formation in atherosclerosis.
Chistiakov, Dimitry A; Melnichenko, Alexandra A; Myasoedova, Veronika A; Grechko, Andrey V; Orekhov, Alexander N
2017-11-01
Low-density lipoprotein (LDL) and cholesterol homeostasis in the peripheral blood is maintained by specialized cells, such as macrophages. Macrophages express a variety of scavenger receptors (SR) that interact with lipoproteins, including SR-A1, CD36, and lectin-like oxLDL receptor-1 (LOX-1). These cells also have several cholesterol transporters, including ATP-binding cassette transporter ABCA1, ABCG1, and SR-BI, that are involved in reverse cholesterol transport. Lipids internalized by phagocytosis are transported to late endosomes/lysosomes, where lysosomal acid lipase (LAL) digests cholesteryl esters releasing free cholesterol. Free cholesterol in turn is processed by acetyl-CoA acetyltransferase (ACAT1), an enzyme that transforms cholesterol to cholesteryl esters. The endoplasmic reticulum serves as a depot for maintaining newly synthesized cholesteryl esters that can be processed by neutral cholesterol ester hydrolase (NCEH), which generates free cholesterol that can exit via cholesterol transporters. In atherosclerosis, pro-inflammatory stimuli upregulate expression of scavenger receptors, especially LOX-1, and downregulate expression of cholesterol transporters. ACAT1 is also increased, while NCEH expression is reduced. This results in deposition of free and esterified cholesterol in macrophages and generation of foam cells. Moreover, other cell types, such as endothelial (ECs) and vascular smooth muscle cells (VSMCs), can also become foam cells. In this review, we discuss known pathways of foam cell formation in atherosclerosis.
Chen, Fu-xin; Wang, Lian-kai
2015-02-01
The formation of macrophage-derived foam cells is a typical feature of atherosclerosis (AS). Reverse cholesterol efflux (RCT) is one of important factors for the formation of macrophage foam cells. In this study, macrophage form cells were induced by oxidized low density lipoprotein (ox-LDL) and then treated with different concentrations of ferulic acid, so as to observe the effect of ferulic acid on the intracellular lipid metabolism in the ox-LDL-induced macrophage foam cell formation, the cholesterol efflux and the mRNA expression and protein levels of ATP binding cassette transporter A1 (ABCA1) and ATP binding cassette transporter G1 (ABCG1) that mediate cholesterol efflux, and discuss the potential mechanism of ferulic acid in resisting AS. According to the findings, compared with the control group, the ox-LDL-treated group showed significant increase in intracellular lipid content, especially for the cholesterol content; whereas the intracellular lipid accumulation markedly decreased, after the treatment with ferulic acid. The data also demonstrated that the mRNA and protein expressions of ABCA1 and ABCG1 significantly increased after macrophage foam cells were treated with different concentrations of ferulic acid. In summary, ferulic acid may show the anti-atherosclerosis effect by increasing the surface ABCA1 and ABCG1 expressions of macrophage form cells and promoting cholesterol efflux.
Gonzalez-Escobedo, Geoffrey
2013-01-01
Salmonella spp. are able to form biofilms on abiotic and biotic surfaces. In vivo studies in our laboratory have shown that Salmonella can form biofilms on the surfaces of cholesterol gallstones in the gallbladders of mice and human carriers. Biofilm formation on gallstones has been demonstrated to be a mechanism of persistence. The purpose of this work was to identify and evaluate Salmonella sp. cholesterol-dependent biofilm factors. Differential gene expression analysis between biofilms on glass or cholesterol-coated surfaces and subsequent quantitative real-time PCR (qRT-PCR) revealed that type 1 fimbria structural genes and a gene encoding a putative outer membrane protein (ycfR) were specifically upregulated in Salmonella enterica serovar Typhimurium biofilms grown on cholesterol-coated surfaces. Spatiotemporal expression of ycfR and FimA verified their regulation during biofilm development on cholesterol-coated surfaces. Surprisingly, confocal and scanning electron microscopy demonstrated that a mutant of type 1 fimbria structural genes (ΔfimAICDHF) and a ycfR mutant showed increased biofilm formation on cholesterol-coated surfaces. In vivo experiments using Nramp1+/+ mice harboring gallstones showed that only the ΔycfR mutant formed extensive biofilms on mouse gallstones at 7 and 21 days postinfection; ΔfimAICDHF was not observed on gallstone surfaces after the 7-day-postinfection time point. These data suggest that in Salmonella spp., wild-type type 1 fimbriae are important for attachment to and/or persistence on gallstones at later points of chronic infection, whereas YcfR may represent a specific potential natural inhibitor of initial biofilm formation on gallstones. PMID:23897604
Novel Colloidal Microstructures of β-Escin and the Liposomal Components Cholesterol and DPPC.
de Groot, Carolin; Müsken, Mathias; Müller-Goymann, Christel C
2018-05-24
The discovery of immunostimulating complex formation by the saponin Quil A from the plant Quillaja saponaria with cholesterol and a phospholipid opened up new avenues for the development of drug delivery systems for vaccine application with additional adjuvant properties. In this study, β -escin, a monodesmosidic triterpene saponin from horse chestnut, was investigated in terms of its interaction with liposomal components (cholesterol, dipalmitoylphosphatidylcholine) by Langmuir film balance studies and with regard to particle formation visualized by transmission electron microscopy. A strong interaction of β -escin with cholesterol was observed by Langmuir isotherms due to the intercalation of the saponin into the monolayer, whereas no interaction occurred with dipalmitoylphosphatidylcholine. Transmission electron microscopy studies also confirmed the strong interaction of β -escin with cholesterol. In aqueous pseudo-ternary systems ( β -escin, dipalmitoylphosphatidylcholine, cholesterol) and in pseudo-binary systems ( β -escin, cholesterol), new colloidal structures built up from ring-like and worm-like subunits were observed with a size of about 100 - 200 nm. These colloidal structures are formed in pseudo-binary systems by aggregation of the subunits, whereas in pseudo-ternary systems, they are formed among others by attacking the liposomal membrane. The rehydration of the liposomal dispersions in NANOpure water or Tris buffer pH 7.4 (140 mM) resulted in the same particle formation. In contrast, the sequence of the dispersions' production process affected the particle formation. Unless adding the saponin to the other components from the beginning, just a liposomal dispersion was formed without any colloidal aggregates of the subunits mentioned above. Georg Thieme Verlag KG Stuttgart · New York.
Polymer stabilization of electrohydrodynamic instability in non-iridescent cholesteric thin films.
Hsiao, Yu-Cheng; Lee, Wei
2015-08-24
A non-iridescent cholesterol liquid crystal (CLC) thin film is demonstrated by using the polymer-stabilized electrohydrodymanic (PSEHD) method. The photopolymerized cell made from a CLC/monomer mixture exhibits an optically stable gridlike pattern. The helical axis of thus-formed CLC is aligned with the hydrodynamic flow induced by a space charge motion, and the arrayed CLC grid configuration renders a wide viewing angle thanks to the limited color shift at various lines of sight. The formation of the PSEHD structure was verified with polarized optical microscopy, ascertaining that the electrohydrodymanic pattern can be photo-cured or stabilized. The PSEHD CLC is simple to fabricate and potentially suitable for applications in wide-viewing-angle or non-iridescent devices.
Human cytochrome P450scc (CYP11A1) catalyzes epoxide formation with ergosterol.
Tuckey, Robert C; Nguyen, Minh N; Chen, Jianjun; Slominski, Andrzej T; Baldisseri, Donna M; Tieu, Elaine W; Zjawiony, Jordan K; Li, Wei
2012-03-01
Cytochrome P450scc (P450scc) catalyzes the cleavage of the side chain of both cholesterol and the vitamin D(3) precursor, 7-dehydrocholesterol. The aim of this study was to test the ability of human P450scc to metabolize ergosterol, the vitamin D(2) precursor, and define the structure of the major products. P450scc incorporated into the bilayer of phospholipid vesicles converted ergosterol to two major and four minor products with a k(cat) of 53 mol · min(-1) · mol P450scc(-1) and a K(m) of 0.18 mol ergosterol/mol phospholipid, similar to the values observed for cholesterol metabolism. The reaction of ergosterol with P450scc was scaled up to make enough of the two major products for structural analysis. From mass spectrometry, NMR, and comparison of the NMR data to that for similar molecules, we determined the structures of the two major products as 20-hydroxy-22,23-epoxy-22,23-dihydroergosterol and 22-keto-23-hydroxy-22,23-dihydroergosterol. Molecular modeling and nuclear Overhauser effect (or enhancement) spectroscopy spectra analysis helped to establish the configurations at C20, C22, and C23 and determine the final structures of major products as 22R,23S-epoxyergosta-5,7-diene-3β,20α-diol and 3β,23S-dihydroxyergosta-5,7-dien-22-one. It is likely that the formation of the second product is through a 22,23-epoxy (oxirane) intermediate followed by C22 hydroxylation with the formation of strained 22-hydroxy-22,23-epoxide (oxiranol), which is immediately transformed to the more stable α-hydroxyketone. Molecular modeling of ergosterol into the P450scc crystal structure positioned the ergosterol side chain consistent with formation of the above products. Thus, we have shown that P450scc efficiently catalyzes epoxide formation with ergosterol giving rise to novel epoxy, hydroxy, and keto derivatives, without causing cleavage of the side chain.
Kinetics of 25-hydroperoxycholesterol formation during photo-oxidation of crystalline cholesterol.
Medina-Meza, Ilce Gabriela; Rodriguez-Estrada, Maria Teresa; Lercker, Giovanni; Barnaba, Carlo; García, Hugo Sergio
2014-06-01
25-Hydroxycholesterol (25-OH), a side-chain product of cholesterol oxidation, has emerged as one of the important issues in food chemistry and biochemistry, because of its involvement in several human pathologies. This oxysterol is derived from both enzymatic and non-enzymatic pathways. However, the latter mechanism has been scarcely studied in either food or model systems. In this work, a kinetic model was developed to evaluate the formation of 25-OH and its precursor 25-hydroperoxycholesterol (25-OOH) during photo-oxidation of cholesterol for 28 days under fluorescent light. 25-OOH was estimated by an indirect method, using thin-layer chromatography coupled with gas chromatography-mass spectrometry. Peroxide value (POV) and cholesterol oxidation products (COPs) were determined. POV showed a hyperbolic behavior, typical of a crystalline system in which the availability of cholesterol is the limiting factor. Further reactions of hydroperoxides were followed; in particular, after photo-oxidation, 25-OOH (0.55 mg g(-1) ) and 25-OH (0.08 mg g(-1) ) were found in cholesterol, as well as seven other oxysterols, including 7-hydroxy and 5,6-epoxy derivatives. The application of kinetic models to the data showed good correlation with theoretical values, allowing derivation of the kinetic parameters for each oxidation route. The results of this work confirm that cholesterol in the crystalline state involves different oxidation patterns as compared to cholesterol in solution. Moreover, the numerical fit proved that hydroperoxidation is the rate-limiting step in 25-OH formation. © 2013 Society of Chemical Industry.
Common structural features of cholesterol binding sites in crystallized soluble proteins
Bukiya, Anna N.; Dopico, Alejandro M.
2017-01-01
Cholesterol-protein interactions are essential for the architectural organization of cell membranes and for lipid metabolism. While cholesterol-sensing motifs in transmembrane proteins have been identified, little is known about cholesterol recognition by soluble proteins. We reviewed the structural characteristics of binding sites for cholesterol and cholesterol sulfate from crystallographic structures available in the Protein Data Bank. This analysis unveiled key features of cholesterol-binding sites that are present in either all or the majority of sites: i) the cholesterol molecule is generally positioned between protein domains that have an organized secondary structure; ii) the cholesterol hydroxyl/sulfo group is often partnered by Asn, Gln, and/or Tyr, while the hydrophobic part of cholesterol interacts with Leu, Ile, Val, and/or Phe; iii) cholesterol hydrogen-bonding partners are often found on α-helices, while amino acids that interact with cholesterol’s hydrophobic core have a slight preference for β-strands and secondary structure-lacking protein areas; iv) the steroid’s C21 and C26 constitute the “hot spots” most often seen for steroid-protein hydrophobic interactions; v) common “cold spots” are C8–C10, C13, and C17, at which contacts with the proteins were not detected. Several common features we identified for soluble protein-steroid interaction appear evolutionarily conserved. PMID:28420706
Chiral twist drives raft formation and organization in membranes composed of rod-like particles
Lubensky, Tom C.
2017-01-01
Lipid rafts are hypothesized to facilitate protein interaction, tension regulation, and trafficking in biological membranes, but the mechanisms responsible for their formation and maintenance are not clear. Insights into many other condensed matter phenomena have come from colloidal systems, whose micron-scale particles mimic basic properties of atoms and molecules but permit dynamic visualization with single-particle resolution. Recently, experiments showed that bidisperse mixtures of filamentous viruses can self-assemble into colloidal monolayers with thermodynamically stable rafts exhibiting chiral structure and repulsive interactions. We quantitatively explain these observations by modeling the membrane particles as chiral liquid crystals. Chiral twist promotes the formation of finite-sized rafts and mediates a repulsion that distributes them evenly throughout the membrane. Although this system is composed of filamentous viruses whose aggregation is entropically driven by dextran depletants instead of phospholipids and cholesterol with prominent electrostatic interactions, colloidal and biological membranes share many of the same physical symmetries. Chiral twist can contribute to the behavior of both systems and may account for certain stereospecific effects observed in molecular membranes. PMID:27999184
Fan, Ying; Wu, Shuo-Dong; Fu, Bei-Bei; Weng, Chao; Wang, Xin-Peng
2014-01-01
To study the changes of interstitial cells of Cajal (ICCs) and expression of c-kt and scf mRNA in terminal ileum tissue during cholesterol gallstone formation in guinea pigs fed on high cholesterol diet, forty guinea pigs were divided into the gallstone group and the control group. The animals in the gallstone group were fed on a high cholesterol diet (HCD), while those in the control group fed on a standard diet (StD). The guinea pigs were sacrificed at the 8th week. The expression of c-kit and scf in terminal ileum were determined by RT-PCR and the morphological characteristics and number of ICCs were observed and calculated by using immunohistochemistry. RT-PCR showed that, compared with the control group, the c-kit and scf mRNA expression levels in the gallstone group were significantly declined. In the animal assay, the decreased number of ICCs was present obviously in the gallstone group. We concluded from the study that decreased number of ICCs, decreased expression of c-kit and scf in terminal ileum are present in guinea pigs fed on high cholesterol diet. The c-kit/scf pathway inhibition might be involved in the decline of intestinal transit function during cholesterol gallstone formation. PMID:24995081
Paraganglioma presenting as cholesterol granuloma of the petrous apex.
Heman-Ackah, Selena E; Huang, Tina C
2013-09-01
We report the unique finding of a petrous apex cholesterol granuloma associated with a paraganglioma, also known as a glomus jugulare tumor, in a 52-year-old woman who presented to our department with pulsatile tinnitus, hearing loss, aural fullness, and disequilibrium. She had been treated for a petrous apex cholesterol granuloma 20 years earlier, at which time she had undergone drainage of the granuloma via subtotal petrous apicectomy. When she came to our facility approximately 20 years later, she had signs and symptoms consistent with a jugular paraganglioma, which was likely to have been present at the time of her initial presentation for the cholesterol granuloma. In fact, microscopic bleeding from the paraganglioma might have led to the formation of the cholesterol granuloma. The metachronous presentation of these two entities, which to our knowledge has not been reported previously in the literature, indicates the potential association of paragangliomas with the formation of cholesterol granulomas of the petrous apex.
Tomotake, Hiroyuki; Yamamoto, Naoe; Yanaka, Noriyuki; Ohinata, Hiroshi; Yamazaki, Rikio; Kayashita, Jun; Kato, Norihisa
2006-02-01
This study evaluated the physiologic properties of high protein buckwheat flour (PBF) by examining its effects on serum cholesterol and body fat in rats and on cholesterol gallstone formation in mice. Animals were fed experimental diets that contained casein, buckwheat protein extract (BWP), or PBF as a protein source (net protein content 200 g/kg). In experiment 1, consumption of PBF and BWP for 10 d caused 33% and 31% decreases, respectively, in serum cholesterol of rats fed cholesterol-enriched diets when compared with consumption of casein (P < 0.05). Dietary PBF caused a significant decrease in liver cholesterol, whereas dietary BWP caused only a slight decrease (P > 0.05). Fecal excretion of neutral and acidic steroids in the PBF group was significantly higher than those in the BWP and casein groups. In experiment 2, consumption of PBF for 10 d significantly suppressed adipose tissue weight and hepatic activity of fatty acid synthase in rats fed cholesterol-free diets compared with consumption of casein (P < 0.05), whereas that of BWP for this period caused only a slight decrease in adipose tissue weight (P > 0.05). In experiment 3, dietary PBF and BWP significantly decreased the incidence of cholesterol gallstones and lithogenic index in mice fed cholesterol-enriched diets for 27 d, which was associated with increased fecal excretion of acidic steroids. This study demonstrated that PBF has strong activities against hypercholesterolemia, obesity, and gallstone formation, suggesting a potential usefulness of PBF as functional ingredient.
Martin, Gregory G.; Atshaves, Barbara P.; Landrock, Kerstin K.; Landrock, Danilo; Storey, Stephen M.; Howles, Philip N.; Kier, Ann B.
2014-01-01
On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol. PMID:25277800
Stroke secondary to multiple spontaneous cholesterol emboli.
Pascual, M; Baumgartner, J M; Bounameaux, H
1991-01-01
We describe one male, 49-year-old diabetic patient in whom regressive stroke with aphasia and right-sided hemiparesia was related to multiple small emboli in the left paraventricular cortex. Simultaneous presence of several cholesterol emboli in the left eye ground and detection of an atheromatous plaque at the homolateral carotid bifurcation let assume that the cerebral emboli originated from that plaque and also consisted of cholesterol crystals. The patient was discharged on low-dose aspirin (100 mg/day) after neurologic improvement. Follow-up at one year revealed clinical stability, recurrence of the cholesterol emboli at the eye ground examination and no change of the carotid plaque. Cholesterol embolization with renal failure, hypertension and peripheral arterial occlusions causing skin ulcerations is classical in case of atheromatous aortic disease but stroke has rarely been reported in this syndrome. However, more frequent use of invasive procedures (arteriography, transluminal angioplasty, vascular surgery) or thrombolytic treatment might increase its incidence in the near future.
Biliary bacterial factors determine the path of gallstone formation.
Stewart, Lygia; Grifiss, J McLeod; Jarvis, Gary A; Way, Lawrence W
2006-11-01
Bacteria cause pigment gallstones and can act as a nidus for cholesterol gallstone formation. Bacterial factors that facilitate gallstone formation include beta-glucuronidase (bG), phospholipase (PhL), and slime. The current study sought to determine whether bacterial factors influence the path of gallstone formation. A total of 382 gallstones were cultured and/or examined using scanning electron microscopy (SEM). Bacteria were tested for bG and slime production. Gallstone composition was determined using infrared spectrography. Ca-palmitate presence documented bacterial PhL production. Groups were identified based upon bacterial factors present: slime and bGPhL (slime/bGPhL), bGPhL only, and slime only. Influence of bacterial stone-forming factors on gallstone composition and morphology was analyzed. Bacteria were present in 75% of pigment, 76% of mixed, and 20% of cholesterol stones. Gallstones with bGPhL producing bacteria contained more pigment (71% vs. 26%, P < .0001). The slime/bGPhL group was associated (79%) with pigment stones, bGPhL was associated (56%) with mixed stones, while slime (or none) only was associated (67%) with cholesterol stones (P < .031, all comparisons). Bacterial properties determined the path of gallstone formation. Bacteria that produced all stone-forming factors promoted pigment stone formation, while those that produced only bGPhL promoted mixed stone formation. Bacteria that only produced slime lacked the ability to generate pigment solids, and consequently were more common in the centers of cholesterol stones. This shows how bacterial characteristics may govern the process of gallstone formation.
Code of Federal Regulations, 2010 CFR
2010-04-01
... irradiation of ergosterol isolated from yeast and related fungi and is purified by crystallization. (2.... It is also manufactured by ultraviolet irradiation of 7-dehydrocholesterol produced from cholesterol...
Code of Federal Regulations, 2011 CFR
2011-04-01
... irradiation of ergosterol isolated from yeast and related fungi and is purified by crystallization. (2.... It is also manufactured by ultraviolet irradiation of 7-dehydrocholesterol produced from cholesterol...
Code of Federal Regulations, 2012 CFR
2012-04-01
... irradiation of ergosterol isolated from yeast and related fungi and is purified by crystallization. (2.... It is also manufactured by ultraviolet irradiation of 7-dehydrocholesterol produced from cholesterol...
Code of Federal Regulations, 2013 CFR
2013-04-01
... irradiation of ergosterol isolated from yeast and related fungi and is purified by crystallization. (2.... It is also manufactured by ultraviolet irradiation of 7-dehydrocholesterol produced from cholesterol...
Eren, Tanju; Atar, Necip; Yola, Mehmet Lütfi; Karimi-Maleh, Hassan
2015-10-15
Lovastatin (LOV) is a statin, used to lower cholesterol which has been found as a hypolipidemic agent in commercial red yeast rice. In present study, a sensitive molecular imprinted quartz crystal microbalance (QCM) sensor was prepared by fabricating a self-assembling monolayer formation of allylmercaptane on QCM chip surface for selective determination of lovastatin (LOV) in red yeast rice. To prepare molecular imprinted quartz crystal microbalance (QCM) nanosensor, LOV imprinted poly(2-hydroxyethyl methacrylate-methacryloylamidoaspartic acid) [p(HEMA-MAAsp)] nanofilm was attached on the modified gold surface of QCM chip. The non-modified and improved surfaces were characterized by using contact angle, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. The imprinted QCM sensor was validated according to the ICH guideline (International Conference on Harmonisation). The linearity range was obtained as 0.10-1.25 nM. The detection limit of the prepared material was calculated as 0.030 nM. The developed QCM nanosensor was successfully used to examine red yeast rice. Furthermore, the stability and repeatability of the prepared QCM nanosensor were studied. The spectacular long-term stability and repeatability of the prepared LOV-imprinted QCM nanosensor make them intriguing for use in QCM sensors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming
Zimmer, Sebastian; Grebe, Alena; Bakke, Siril S.; Bode, Niklas; Halvorsen, Bente; Ulas, Thomas; Skjelland, Mona; De Nardo, Dominic; Labzin, Larisa I.; Kerksiek, Anja; Hempel, Chris; Heneka, Michael T.; Hawxhurst, Victoria; Fitzgerald, Michael L; Trebicka, Jonel; Gustafsson, Jan-Åke; Westerterp, Marit; Tall, Alan R.; Wright, Samuel D.; Espevik, Terje; Schultze, Joachim L.; Nickenig, Georg; Lütjohann, Dieter; Latz, Eicke
2016-01-01
Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol levels. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B-containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Since cholesterol accumulation and deposition of cholesterol crystals (CCs) triggers a complex inflammatory response, we tested the efficacy of the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (CD), a compound that increases cholesterol solubility, in preventing and reversing atherosclerosis. Here we show that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load, and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production in both macrophages and human atherosclerotic plaques, and promoted liver X receptor (LXR)-mediated transcriptional reprogramming to improve cholesterol efflux and exert anti-inflammatory effects. In vivo, this CD-mediated LXR agonism was required for the anti-atherosclerotic and anti-inflammatory effects of CD as well as for augmented reverse cholesterol transport. Since CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis. PMID:27053774
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, Mukta; Agrawal, V. V.; Chandran, Achu
A unique cholesterol oxidase (ChOx) liquid crystal (LC) biosensor, based on the disruption of orientation in LCs, is developed for cholesterol detection. A self-assembled monolayer (SAM) of Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP) and (3-Aminopropyl)trimethoxy-silane (APTMS) is prepared on a glass plate by adsorption. The enzyme (ChOx) is immobilized on SAM surface for 12 h before utilizing the film for biosensing purpose. LC based biosensing study is conducted on SAM/ChOx/LC (5CB) cells for cholesterol concentrations ranging from 10 mg/dl to 250 mg/dl. The sensing mechanism has been verified through polarizing optical microscopy, scanning electron microscopy, and spectrometric techniques.
Paré, C; Lafleur, M
1998-01-01
It is well established that cholesterol induces the formation of a liquid-ordered phase in phosphatidylcholine (PC) bilayers. The goal of this work is to examine the influence of cholesterol on phosphatidylethanolamine polymorphism. The behavior of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE)/cholesterol mixtures was characterized using infrared and 2H nuclear magnetic resonance (NMR) spectroscopy (using POPE bearing a perdeuterated palmitoyl chain in the latter case). Our results reveal that cholesterol induces the formation of a liquid-ordered phase in POPE membranes, similar to those observed for various PC/cholesterol systems. However, the coexistence region of the gel and the liquid-ordered phases is different from that proposed for PC/cholesterol systems. The results indicate a progressive broadening of the gel-to-fluid phase transition, suggesting the absence of an eutectic. In addition, there is a progressive downshift of the end of the transition for cholesterol content higher than 10 mol %. Cholesterol has an ordering effect on the acyl chains of POPE, but it is less pronounced than for the PC equivalent. This study also shows that the cholesterol effect on the lamellar-to-hexagonal (L(alpha)-H(II)) phase transition is not monotonous. It shifts the transition toward the low temperatures between 0 and 30 mol % cholesterol but shifts it toward the high temperatures when cholesterol content is higher than 30 mol %. The change in conformational order of the lipid acyl chains, as probed by the shift of the symmetric methylene C-H stretching, shows concerted variations. Finally, we show that cholesterol maintains its chain ordering effect in the hexagonal phase. PMID:9533701
Desai, Aditya J.; Dong, Maoqing; Harikumar, Kaleeckal G.
2015-01-01
Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation. PMID:26138469
Desai, Aditya J; Dong, Maoqing; Harikumar, Kaleeckal G; Miller, Laurence J
2015-09-01
Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation. Copyright © 2015 the American Physiological Society.
Physical Chemistry of Bile: Detailed Pathogenesis of Cholelithiasis.
Itani, Malak; Dubinsky, Theodore J
2017-09-01
Despite the overwhelming prevalence of cholelithiasis, many health care professionals are not familiar with the basic pathophysiology of gallstone formation. This article provides an overview of the biochemical pathways related to bile, with a focus on the physical chemistry of bile. We describe the important factors in bile synthesis and secretion that affect the composition of bile and consequently its liquid state. Within this biochemical background lies the foundation for understanding the clinical and sonographic manifestation of cholelithiasis, including the pathophysiology of cholesterol crystallization, gallbladder sludge, and gallstones. There is a brief discussion of the clinical manifestations of inflammatory and obstructive cholestasis and the impact on bile metabolism and subsequently on liver function tests. Despite being the key modality in diagnosing cholelithiasis, ultrasound has a limited role in the characterization of stone composition.
Acyl Chain Preference in Foam Cell Formation from Mouse Peritoneal Macrophages.
Fujiwara, Yuko; Hama, Kotaro; Tsukahara, Makoto; Izumi-Tsuzuki, Ryosuke; Nagai, Toru; Ohe-Yamada, Mihoko; Inoue, Keizo; Yokoyama, Kazuaki
2018-01-01
Macrophage foam cells play critical roles in the initiation and development of atherosclerosis by synthesizing and accumulating cholesteryl ester (CE) in lipid droplets. However, in analyzing lipid metabolism in foam cell formation, studies have focused on the sterol group, and little research has been done on the acyl chains. Therefore, we adapted a model system using liposomes containing particular acyl chains and examined the effect of various acyl chains on foam cell formation. Of the phosphatidylserine (PS) liposomes tested containing PS, phosphatidylcholine, and cholesterol, we found that unsaturated (C18:1), but not saturated (C16:0 and C18:0), PS liposomes induced lipid droplet formation, indicating that foam cell formation depends on the nature of the acyl chain of the PS liposomes. Experiments on the uptake and accumulation of cholesterol from liposomes by adding [ 14 C]cholesterol suggested that foam cell formation could be induced only when cholesterol was converted to CE in the case of C18:1 PS liposomes. Both microscopic observations and metabolic analysis suggest that cholesterol incorporated into either C16:0 or C18:0 PS liposomes may stay intact after being taken in by endosomes. The [ 14 C]C18:1 fatty acyl chain in the C18:1 PS liposome was used to synthesize CE and triacylglycerol (TG). Interestingly, the [ 14 C]C16:0 in the C18:1 PS liposome was metabolized to sphingomyelin rather than being incorporated into either CE or TG, which could be because of enzymatic acyl chain selectivity. In conclusion, our results indicate that the acyl chain preference of macrophages could have some impact on their progression to foam cells.
Li, Andrew C.; Binder, Christoph J.; Gutierrez, Alejandra; Brown, Kathleen K.; Plotkin, Christine R.; Pattison, Jennifer W.; Valledor, Annabel F.; Davis, Roger A.; Willson, Timothy M.; Witztum, Joseph L.; Palinski, Wulf; Glass, Christopher K.
2004-01-01
PPARα, β/δ, and γ regulate genes involved in the control of lipid metabolism and inflammation and are expressed in all major cell types of atherosclerotic lesions. In vitro studies have suggested that PPARs exert antiatherogenic effects by inhibiting the expression of proinflammatory genes and enhancing cholesterol efflux via activation of the liver X receptor–ABCA1 (LXR-ABCA1) pathway. To investigate the potential importance of these activities in vivo, we performed a systematic analysis of the effects of PPARα, β, and γ agonists on foam-cell formation and atherosclerosis in male LDL receptor–deficient (LDLR–/–) mice. Like the PPARγ agonist, a PPARα-specific agonist strongly inhibited atherosclerosis, whereas a PPARβ-specific agonist failed to inhibit lesion formation. In concert with their effects on atherosclerosis, PPARα and PPARγ agonists, but not the PPARβ agonist, inhibited the formation of macrophage foam cells in the peritoneal cavity. Unexpectedly, PPARα and PPARγ agonists inhibited foam-cell formation in vivo through distinct ABCA1-independent pathways. While inhibition of foam-cell formation by PPARα required LXRs, activation of PPARγ reduced cholesterol esterification, induced expression of ABCG1, and stimulated HDL-dependent cholesterol efflux in an LXR-independent manner. In concert, these findings reveal receptor-specific mechanisms by which PPARs influence macrophage cholesterol homeostasis. In the future, these mechanisms may be exploited pharmacologically to inhibit the development of atherosclerosis. PMID:15578089
Martin, Gregory G; Atshaves, Barbara P; Landrock, Kerstin K; Landrock, Danilo; Storey, Stephen M; Howles, Philip N; Kier, Ann B; Schroeder, Friedhelm
2014-12-01
On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol. Copyright © 2014 the American Physiological Society.
Liang, Bin; Wang, Xin; Song, Xiaosu; Bai, Rui; Yang, Huiyu; Yang, Zhiming; Xiao, Chuanshi; Bian, Yunfei
2017-09-01
ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in reverse cholesterol transport and exhibits anti-atherosclerosis effects. Some microRNAs (miRs) regulate ABCA1 expression, and recent studies have shown that miR-20a/b might play a critical role in atherosclerotic diseases. Here, we attempted to clarify the potential contribution of miR-20a/b in post-transcriptional regulation of ABCA1, cholesterol efflux, and atherosclerosis. We performed bioinformatics analysis and found that miR-20a/b was highly conserved and directly bound to ABCA1 mRNA with low binding free energy. Luciferase-reporter assay also confirmed that miR-20a/b significantly reduced luciferase activity associated with the ABCA1 3' untranslated region reporter construct. Additionally, miR-20a/b decreased ABCA1 expression, which, in turn, decreased cholesterol efflux and increased cholesterol content in THP-1 and RAW 264.7 macrophage-derived foam cells. In contrast, miR-20a/b inhibitors increased ABCA1 expression and cholesterol efflux, decreased cholesterol content, and inhibited foam-cell formation. Consistent with our in vitro results, miR-20a/b-treated ApoE -/- mice showed decreased ABCA1expression in the liver and reductions of reverse cholesterol transport in vivo. Furthermore, miR-20a/b regulated the formation of nascent high-density lipoprotein and promoted atherosclerotic development, whereas miR-20a/b knockdown attenuated atherosclerotic formation. miR-20 is a new miRNA capable of targeting ABCA1 and regulating ABCA1 expression. Therefore, miR-20 inhibition constitutes a new strategy for ABCA1-based treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimoto, Y.; Hiramoto, M.; Kakinuma, K.
1989-03-01
Being administered to Locusta migratoria adult females, (6-{sup 3}H, 4-{sup 14}C)cholesterol was incorporated into ecdysone and 2-deoxyecdysone. The ratio of {sup 3}H/{sup 14}C of the two ecdysteroids isolated from newly laid eggs revealed that C-6-hydrogen of cholesterol was eliminated during the conversion to ecdysteroids in the ovaries of the insects. Thus, a hypothetical mechanism involving migration of the C-6-hydrogen to the C-5 position in the formation of A/B cis junction turned out to be less likely.
Colecchia, Antonio; Larocca, Anna; Scaioli, Eleonora; Bacchi-Reggiani, Maria Letizia; Di Biase, Anna Rita; Azzaroli, Francesco; Gualandi, Roberta; Simoni, Patrizia; Vestito, Amanda; Festi, Davide
2009-03-01
Little is known about the natural history and pathogenesis of small gallbladder polyps (<10 mm, usually of the cholesterol type), particularly in Western populations. It is unclear if these polyps and gallstones represent different aspects of the same disease. The aim of this study was to characterize the natural history and pathogenesis of small gallbladder polyps. Fifty-six Caucasian patients with small gallbladder polyps, 30 matched gallstone patients, and 30 controls were enrolled in this 5-year prospective study. Patients underwent a symptomatic questionnaire, abdominal ultrasonography, and ultrasonographic evaluation of gallbladder motility at baseline and yearly intervals for 5 years. Cholesterol saturation index, cholesterol crystals in bile, and apolipoprotein E genotype were also determined. Most patients with polyps (mean size: 5.3 mm) were men (61%), asymptomatic, and had multiple polyps (57%). Polyps did not change in 91% of patients during follow-up. No subject experienced biliary pain or underwent cholecystectomy; four developed gallstones. Cholesterol saturation index was higher in patients with polyps or gallstones than in controls (P<0.05). Cholesterol crystals were more frequent in patients with polyps than in controls (P<0.0001) but less common than in gallstone patients (P<0.0001). Polyps and gallstones were associated with nonapolipoprotein E4 phenotypes. The natural history of small gallbladder polyps was benign, as no patient developed specific symptoms and/or morphological changes in polyps. Consequently, a "wait and see" policy is advisable in these patients. Polyps have some pathogenetic mechanisms in common with gallstones, but few patients developed gallstones.
Parks, J S; Li, H; Gebre, A K; Smith, T L; Maeda, N
1995-02-01
Plasma cholesteryl ester (CE) synthesis by lecithin cholesterol acyltransferase (LCAT) is activated by apolipoprotein (apo)A-I. We studied the effect of plasma apoA-I concentration on LCAT activation, using normal, heterozygous or homozygous apoA-I-deficient mice made by gene targeting. Plasma esterified cholesterol concentrations of mice fed chow diets were ordered (mean +/- SEM): 105 +/- 7 (normal) > 70 +/- 5 (heterozygotes) > 26 +/- 2 (homozygotes) mg/dl. Plasma free cholesterol concentrations were similar among the three genotypes. Endogenous LCAT activity, measured as the decrease in plasma free cholesterol after a 1 h incubation at 37 degrees C, was ordered: 44 +/- 3 (normal) > 21 +/- 2 (heterozygotes) > 5 +/- 1 (homozygotes) nmol CE formed/h per ml plasma. Using a recombinant exogenous substrate consisting of egg yolk phospholipid, [14C]cholesterol, and apoA-I, CE formation of normals and heterozygotes was similar (27.4 +/- 0.6 and 28.8 +/- 1.3 nmol/h per ml plasma, respectively), but was significantly less for homozygotes (19.2 +/- 1.7 nmol/h per ml plasma). However, using a small unilamellar vesicle substrate particle containing phospholipid and [14C]cholesterol, CE formation was ordered: 1.6 +/- 0.1 (normal) = 1.6 +/- 0.1 (heterozygotes) > 0.6 +/- 0.1 (homozygotes) nmol/h per ml plasma; addition of apoA-I to the plasma of homozygous animals restored CE formation to normal levels (1.6 +/- 0.1). CE fatty acid analysis demonstrated that plasma from homozygous mice contained significantly more saturated and monounsaturated and fewer polyunsaturated fatty acids compared to normal and heterozygous mice.(ABSTRACT TRUNCATED AT 250 WORDS)
Composition and distribution of elements and ultrastructural topography of a human cardiac calculus.
Cheng, Ching-Li; Chang, Hsiao-Huang; Huang, Pei-Jung; Chu, Yu-Ting; Lin, Shan-Yang
2013-04-01
Trace elements (TEs) may contribute to the formation of calculi or stones or be involved in the aetiopathogenesis of stone diseases. The compositions and spatial distribution of elements from the inner nucleus to outer crust of the cardiac calculus were investigated by energy-dispersive X-ray fluorescence (EDXRF) spectrometer. The surface topograph, distribution map of elements, elemental and chemical compositions were also determined by environmental scanning electron microscope (ESEM)-energy-dispersive X-ray (EDX) analysis. Twenty-five elements were identifiable from 18 positions on the cardiac calculus by EDXRF spectrometer, in which the highest concentrations of toxic TEs (Ni, Pt, Hg, Sn, Pb, W, Au, Al, Si) and higher levels of essential TEs (Ca, Sr, Cr, P) were detected. A moderate positive Pearson's correlation between TEs concentrations of Mg, Ca or P and location differences from centre to periphery in the cardiac calculus was observed. A positive correlation was also found for Ca/Zn and Ca/Cu, indicating the gradual increase of calcium concentration from inner nucleus to outer crust of cardiac calculus. The drop-like nodules/crystals on the surface of petrous part of cardiac calculus were observed from ESEM analysis. ESEM-EDX analysis determined the calculus to be predominantly composed of calcium hydroxyapatite and cholesterol, as indicated by the petrous surface and drop-like nodules/crystals, respectively. This composition was confirmed using a portable Raman analyser. The spatial distribution analysis indicated a gradual increase in Mg, P and Ca concentrations from the inner nucleus to the outer crust of the cardiac calculus. The major chemical compositions of calcium hydroxyapatite and cholesterol were detected on this cardiac calculus.
Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Tain-Junn; Department of Neurology, Chi Mei Medical Center, 901 Chung-Hwa Road, Tainan 710, Taiwan; Department of Occupational Medicine, Chi Mei Medical Center, 901 Chung-Hwa Road, Yongkang, Tainan 710, Taiwan
2011-10-15
Arsenic in drinking water is a global environmental health problem, and the exposure may increase cardiovascular and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of atherosclerosis formation after arsenic exposure is still unclear. To study the mechanism of atherosclerosis formation after arsenic exposure and explore the role of high cholesterol diet (HCD) in this process, we fed spontaneous hypertensive rats and Wistar Kyoto rats with basal diet or HCD and provided with them drinking water containing arsenic at different ages and orders for 20 consecutive weeks. We measured high density lipoprotein cholesterol (HDL-C), low density lipoproteinmore » cholesterol (LDL-C), total cholesterol, triglycerides, heat shock protein 70 (HSP 70), and high sensitive C-reactive protein (hs-CRP) at predetermined intervals and determined expressions of cholesteryl ester transfer protein-1 (CETP-1) and liver X receptor {beta} (LXR{beta}) in the liver. Atherosclerosis was determined by examining the aorta with hematoxylin and eosin stain. After 20 weeks, we found arsenic, alone or combined with HCD, may promote atherosclerosis formation with transient increases in HSP 70 and hs-CRP. Early combination exposure decreased the HDL-C/LDL-C ratio without changing the levels of total cholesterol and triglyceride until 30 weeks old. Both CETP-1 and LXR{beta} activities were suppressed, most significantly in early combination exposure. In conclusion, arsenic exposure may induce atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism and suppressing LXR{beta} and CEPT-1 expressions. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element. - Highlights: > Arsenic causes cardiovascular and cerebrovascular diseases through atherosclerosis. > Arsenic may promote atherosclerosis with transient increase in HSP 70 and hs-CRP. > Arsenic exposure and high cholesterol diet early in life suppress CEPT-1 and LXR? > Arsenic may induce atherosclerosis by modifying reverse cholesterol transport. > Prevent arsenic exposure in early life is important to decreasing atherosclerosis.« less
Anti-cholelithogenic potential of dietary spices and their bioactives.
Srinivasan, Krishnapura
2017-05-24
Dietary hypocholesterolemic spices-curcumin (active compound of turmeric (Curcuma longa)) and capsaicin (active compound of red pepper (Capsicum annuum)), the active principles of spices-turmeric (Curcuma longa) and red pepper (Capsicum annuum), fenugreek (Trigonella foenum-graecum) seeds, garlic (Allium sativum), and onion (Allium cepa) are documented to have anti-cholelithogenic property in animal model. These spices prevent the induction of cholesterol gallstones by lithogenic high cholesterol diet and also regress the pre-established cholesterol gallstones, by virtue of their hypolipidemic potential. The antilithogenic influence of these spices is primarily attributable to their hypocholesterolemic effect. Increased cholesterol saturation index, cholesterol:phospholipid ratio and cholesterol:bile acid ratio in the bile caused by the lithogenic diet was countered by these spices. The antilithogenicity of these hypocholesterolemic spices was considered to be due also to their influence on biliary proteins that have pro-nucleating activity and anti-nucleating activity. Investigations on the involvement of biliary proteins in cholesterol crystal nucleation revealed that in an in vitro bile model, low molecular weight biliary proteins of the lithogenic diet fed animals have a pro-nucleating activity. On the contrary, low molecular weight biliary proteins of the animals fed hypocholesterolemic spices along with lithogenic diet showed a potent anti-nucleating activity.
Cholesterol: a novel regulatory role in myelin formation.
Saher, Gesine; Quintes, Susanne; Nave, Klaus-Armin
2011-02-01
Myelin consists of tightly compacted membranes that form an insulating sheath around axons. The function of myelin for rapid saltatory nerve conduction is dependent on its unique composition, highly enriched in glycosphingolipids and cholesterol. Cholesterol emerged as the only integral myelin component that is essential and rate limiting for the development of CNS and PNS myelin. Experiments with conditional mouse mutants that lack cholesterol biosynthesis in oligodendrocytes revealed that only minimal changes of the CNS myelin lipid composition are tolerated. In Schwann cells of the PNS, protein trafficking and myelin compaction depend on cholesterol. In this review, the authors summarize the role of cholesterol in myelin biogenesis and myelin disease.
Robinson, Lucy E.; Shridar, Mitesh; Smith, Philip; Murrell-Lagnado, Ruth D.
2014-01-01
P2X7 receptors are nonselective cation channels gated by high extracellular ATP, but with sustained activation, receptor sensitization occurs, whereby the intrinsic pore dilates, making the cell permeable to large organic cations, which eventually leads to cell death. P2X7 receptors associate with cholesterol-rich lipid rafts, but it is unclear how this affects the properties of the receptor channel. Here we show that pore-forming properties of human and rodent P2X7 receptors are sensitive to perturbations of cholesterol levels. Acute depletion of cholesterol with 5 mm methyl-β-cyclodextrin (MCD) caused a substantial increase in the rate of agonist-evoked pore formation, as measured by the uptake of ethidium dye, whereas cholesterol loading inhibited this process. Patch clamp analysis of P2X7 receptor currents carried by Na+ and N-methyl-d-glucamine (NMDG+) showed enhanced activation and current facilitation following cholesterol depletion. This contrasts with the inhibitory effect of methyl-β-cyclodextrin reported for other P2X subtypes. Mutational analysis suggests the involvement of an N-terminal region and a proximal C-terminal region that comprises multiple cholesterol recognition amino acid consensus (CRAC) motifs, in the cholesterol sensitivity of channel gating. These results reveal cholesterol as a negative regulator of P2X7 receptor pore formation, protecting cells from P2X7-mediated cell death. PMID:25281740
Phospholipid Chain Interactions with Cholesterol Drive Domain Formation in Lipid Membranes.
Bennett, W F Drew; Shea, Joan-Emma; Tieleman, D Peter
2018-06-05
Cholesterol is a key component of eukaryotic membranes, but its role in cellular biology in general and in lipid rafts in particular remains controversial. Model membranes are used extensively to determine the phase behavior of ternary mixtures of cholesterol, a saturated lipid, and an unsaturated lipid with liquid-ordered and liquid-disordered phase coexistence. Despite many different experiments that determine lipid-phase diagrams, we lack an understanding of the molecular-level driving forces for liquid phase coexistence in bilayers with cholesterol. Here, we use atomistic molecular dynamics computer simulations to address the driving forces for phase coexistence in ternary lipid mixtures. Domain formation is directly observed in a long-timescale simulation of a mixture of 1,2-distearoyl-sn-glycero-3-phosphocholine, unsaturated 1,2-dilinoleoyl-sn-glycero-3-phosphocholine, and cholesterol. Free-energy calculations for the exchange of the saturated and unsaturated lipids between the ordered and disordered phases give insight into the mixing behavior. We show that a large energetic contribution to domain formation is favorable enthalpic interactions of the saturated lipid in the ordered phase. This favorable energy for forming an ordered, cholesterol-rich phase is opposed by a large unfavorable entropy. Martini coarse-grained simulations capture the unfavorable free energy of mixing but do not reproduce the entropic contribution because of the reduced representation of the phospholipid tails. Phospholipid tails and their degree of unsaturation are key energetic contributors to lipid phase separation. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Grajeda-Iglesias, Claudia; Rom, Oren; Hamoud, Shadi; Volkova, Nina; Hayek, Tony; Abu-Saleh, Niroz; Aviram, Michael
2018-02-05
Whereas atherogenicity of dietary lipids has been largely studied, relatively little is known about the possible contribution of dietary amino acids to macrophage foam-cell formation, a hallmark of early atherogenesis. Recently, we showed that leucine has antiatherogenic properties in the macrophage model system. In this study, an in-depth investigation of the role of leucine in macrophage lipid metabolism was conducted by supplementing humans, mice, or cultured macrophages with leucine. Macrophage incubation with serum obtained from healthy adults supplemented with leucine (5 g/d, 3 weeks) significantly decreased cellular cholesterol mass by inhibiting the rate of cholesterol biosynthesis and increasing cholesterol efflux from macrophages. Similarly, leucine supplementation to C57BL/6 mice (8 weeks) resulted in decreased cholesterol content in their harvested peritoneal macrophages (MPM) in relation with reduced cholesterol biosynthesis rate. Studies in J774A.1 murine macrophages revealed that leucine dose-dependently decreased cellular cholesterol and triglyceride mass. Macrophages treated with leucine (0.2 mM) showed attenuated uptake of very low-density lipoproteins and triglyceride biosynthesis rate, with a concurrent down-regulation of diacylglycerol acyltransferase-1, a key enzyme catalyzing triglyceride biosynthesis in macrophages. Similar effects were observed when macrophages were treated with α-ketoisocaproate, a key leucine metabolite. Finally, both in vivo and in vitro leucine supplementation significantly improved macrophage mitochondrial respiration and ATP production. The above studies, conducted in human, mice, and cultured macrophages, highlight a protective role for leucine attenuating macrophage foam-cell formation by mechanisms related to the metabolism of cholesterol, triglycerides, and energy production. © 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako
In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition andmore » activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol.« less
Mechanism for the cholesterol-lowering action of egg white protein in rats.
Matsuoka, Ryosuke; Kimura, Mamoru; Muto, Ayano; Masuda, Yasunobu; Sato, Masao; Imaizumi, Katsumi
2008-06-01
Eggs are a popular source of dietary cholesterol, but their consumption does not necessarily result in an increased serum cholesterol concentration. We investigated the cholesterol-lowering activity of egg white protein (EWP) and its potential mechanism in rats. The consumption of EWP resulted in a decreased concentration of cholesterol in the serum, liver and intestinal mucosa. The excretion of fecal neutral sterols and bile acids was greater by rats fed with EWP than by those fed with casein. The ratio of cholesterol and bile acids in the micellar phase to those in the solid phase was lower in the intestinal contents from rats fed with EWP than from those fed with casein. These results suggest that the cholesterol-lowering activity of EWP can be attributed to lowering the cholesterol absorption by intervening in the micellar formation in the intestines.
Pereira, Miria G.; Nakayasu, Ernesto S.; Sant'Anna, Celso; De Cicco, Nuccia N. T.; Atella, Georgia C.; de Souza, Wanderley; Almeida, Igor C.; Cunha-e-Silva, Narcisa
2011-01-01
Background Reservosomes are lysosome-related organelles found in Trypanosoma cruzi epimastigotes. They represent the last step in epimastigote endocytic route, accumulating a set of proteins and enzymes related to protein digestion and lipid metabolism. The reservosome matrix contains planar membranes, vesicles and lipid inclusions. Some of the latter may assume rectangular or sword-shaped crystalloid forms surrounded by a phospholipid monolayer, resembling the cholesterol crystals in foam cells. Methodology/Principal Findings Using Nile Red fluorimetry and fluorescence microscopy, as well as electron microscopy, we have established a direct correlation between serum concentration in culture medium and the presence of crystalloid lipid inclusions. Starting from a reservosome purified fraction, we have developed a fractionation protocol to isolate lipid inclusions. Gas-chromatography mass-spectrometry (GC-MS) analysis revealed that lipid inclusions are composed mainly by cholesterol and cholesterol esters. Moreover, when the parasites with crystalloid lipid-loaded reservosomes were maintained in serum free medium for 48 hours the inclusions disappeared almost completely, including the sword shaped ones. Conclusions/Significance Taken together, our results suggest that epimastigote forms of T. cruzi store high amounts of neutral lipids from extracellular medium, mostly cholesterol or cholesterol esters inside reservosomes. Interestingly, the parasites are able to disassemble the reservosome cholesterol crystalloid inclusions when submitted to serum starvation. PMID:21818313
Cholesterol photosensitised oxidation of horse meat slices stored under different packaging films.
Boselli, Emanuele; Rodriguez-Estrada, Maria Teresa; Ferioli, Federico; Caboni, Maria Fiorenza; Lercker, Giovanni
2010-07-01
The effect of the type of packaging film (transparent vs. light-protecting red film) was evaluated on the formation of cholesterol oxidation products (COPs) in refrigerated horse meat slices stored in retail conditions under light exposure for 8h. In meat wrapped with a transparent film, COPs increased from 233 (control) to 317 microg/g of fat, whereas the red film delayed cholesterol oxidation and offered protection against COPs formation, since COPs decreased from 173 (control) to 139 microg/g of fat after 8h of light exposure. In addition, light opened the epoxy ring and led to the formation of triol, which was actually absent at T(0.) A proper packaging film may represent a useful strategy to retard oxidative degradation in a light-sensitive, high pigment- and fat-containing food, such as horse meat. Copyright 2010. Published by Elsevier Ltd.
High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review.
Subczynski, Witold K; Pasenkiewicz-Gierula, Marta; Widomska, Justyna; Mainali, Laxman; Raguz, Marija
2017-12-01
Lipid composition determines membrane properties, and cholesterol plays a major role in this determination as it regulates membrane fluidity and permeability, as well as induces the formation of coexisting phases and domains in the membrane. Biological membranes display a very diverse lipid composition, the lateral organization of which plays a crucial role in regulating a variety of membrane functions. We hypothesize that, during biological evolution, membranes with a particular cholesterol content were selected to perform certain functions in the cells of eukaryotic organisms. In this review, we discuss the major membrane properties induced by cholesterol, and their relationship to certain membrane functions.
Quantitative analysis of Hedgehog gradient formation using an inducible expression system
Su, Vivian F; Jones, Kelly A; Brodsky, Michael; The, Inge
2007-01-01
Background The Hedgehog (Hh) family of secreted growth factors are morphogens that act in development to direct growth and patterning. Mutations in human Hh and other Hh pathway components have been linked to human diseases. Analysis of Hh distribution during development indicates that cholesterol modification and receptor mediated endocytosis affect the range of Hh signaling and the cellular localization of Hh. Results We have used an inducible, cell type-specific expression system to characterize the three-dimensional distribution of newly synthesized, GFP-tagged Hh in the developing Drosophila wing. Following induction of Hh-GFP expression in posterior producing cells, punctate structures containing Hh-GFP were observed in the anterior target cells. The distance of these particles from the expressing cells was quantified to determine the shape of the Hh gradient at different time points following induction. The majority of cholesterol-modified Hh-GFP was found associated with cells near the anterior/posterior (A/P) boundary, which express high levels of Hh target genes. Without cholesterol, the Hh gradient was flatter, with a lower percentage of particles near the source and a greater maximum distance. Inhibition of Dynamin-dependent endocytosis blocked formation of intracellular Hh particles, but did not prevent movement of newly synthesized Hh to the apical or basolateral surfaces of target cells. In the absence of both cholesterol and endocytosis, Hh particles accumulated in the extracellular space. Staining for the Hh receptor Ptc revealed four categories of Hh particles: cytoplasmic with and without Ptc, and cell surface with and without Ptc. Interestingly, mainly cholesterol-modified Hh is detected in the cytoplasmic particles lacking Ptc. Conclusion We have developed a system to quantitatively analyze Hh distribution during gradient formation. We directly demonstrate that inhibition of Dynamin-dependent endocytosis is not required for movement of Hh across target cells, indicating that transcytosis is not required for Hh gradient formation. The localization of Hh in these cells suggests that Hh normally moves across both apical and basolateral regions of the target cells. We also conclude that cholesterol modification is required for formation of a specific subset of Hh particles that are both cytoplasmic and not associated with the receptor Ptc. PMID:17484784
Quantitative analysis of Hedgehog gradient formation using an inducible expression system.
Su, Vivian F; Jones, Kelly A; Brodsky, Michael; The, Inge
2007-05-07
The Hedgehog (Hh) family of secreted growth factors are morphogens that act in development to direct growth and patterning. Mutations in human Hh and other Hh pathway components have been linked to human diseases. Analysis of Hh distribution during development indicates that cholesterol modification and receptor mediated endocytosis affect the range of Hh signaling and the cellular localization of Hh. We have used an inducible, cell type-specific expression system to characterize the three-dimensional distribution of newly synthesized, GFP-tagged Hh in the developing Drosophila wing. Following induction of Hh-GFP expression in posterior producing cells, punctate structures containing Hh-GFP were observed in the anterior target cells. The distance of these particles from the expressing cells was quantified to determine the shape of the Hh gradient at different time points following induction. The majority of cholesterol-modified Hh-GFP was found associated with cells near the anterior/posterior (A/P) boundary, which express high levels of Hh target genes. Without cholesterol, the Hh gradient was flatter, with a lower percentage of particles near the source and a greater maximum distance. Inhibition of Dynamin-dependent endocytosis blocked formation of intracellular Hh particles, but did not prevent movement of newly synthesized Hh to the apical or basolateral surfaces of target cells. In the absence of both cholesterol and endocytosis, Hh particles accumulated in the extracellular space. Staining for the Hh receptor Ptc revealed four categories of Hh particles: cytoplasmic with and without Ptc, and cell surface with and without Ptc. Interestingly, mainly cholesterol-modified Hh is detected in the cytoplasmic particles lacking Ptc. We have developed a system to quantitatively analyze Hh distribution during gradient formation. We directly demonstrate that inhibition of Dynamin-dependent endocytosis is not required for movement of Hh across target cells, indicating that transcytosis is not required for Hh gradient formation. The localization of Hh in these cells suggests that Hh normally moves across both apical and basolateral regions of the target cells. We also conclude that cholesterol modification is required for formation of a specific subset of Hh particles that are both cytoplasmic and not associated with the receptor Ptc.
Adapting phase-switch Monte Carlo method for flexible organic molecules
NASA Astrophysics Data System (ADS)
Bridgwater, Sally; Quigley, David
2014-03-01
The role of cholesterol in lipid bilayers has been widely studied via molecular simulation, however, there has been relatively little work on crystalline cholesterol in biological environments. Recent work has linked the crystallisation of cholesterol in the body with heart attacks and strokes. Any attempt to model this process will require new models and advanced sampling methods to capture and quantify the subtle polymorphism of solid cholesterol, in which two crystalline phases are separated by a phase transition close to body temperature. To this end, we have adapted phase-switch Monte Carlo for use with flexible molecules, to calculate the free energy between crystal polymorphs to a high degree of accuracy. The method samples an order parameter , which divides a displacement space for the N molecules, into regions energetically favourable for each polymorph; which is traversed using biased Monte Carlo. Results for a simple model of butane will be presented, demonstrating that conformational flexibility can be correctly incorporated within a phase-switching scheme. Extension to a coarse grained model of cholesterol and the resulting free energies will be discussed.
Oxysterol Restraint of Cholesterol Synthesis Prevents AIM2 Inflammasome Activation.
Dang, Eric V; McDonald, Jeffrey G; Russell, David W; Cyster, Jason G
2017-11-16
Type I interferon restrains interleukin-1β (IL-1β)-driven inflammation in macrophages by upregulating cholesterol-25-hydroxylase (Ch25h) and repressing SREBP transcription factors. However, the molecular links between lipid metabolism and IL-1β production remain obscure. Here, we demonstrate that production of 25-hydroxycholesterol (25-HC) by macrophages is required to prevent inflammasome activation by the DNA sensor protein absent in melanoma 2 (AIM2). We find that in response to bacterial infection or lipopolysaccharide (LPS) stimulation, macrophages upregulate Ch25h to maintain repression of SREBP2 activation and cholesterol synthesis. Increasing macrophage cholesterol content is sufficient to trigger IL-1β release in a crystal-independent but AIM2-dependent manner. Ch25h deficiency results in cholesterol-dependent reduced mitochondrial respiratory capacity and release of mitochondrial DNA into the cytosol. AIM2 deficiency rescues the increased inflammasome activity observed in Ch25h -/- . Therefore, activated macrophages utilize 25-HC in an anti-inflammatory circuit that maintains mitochondrial integrity and prevents spurious AIM2 inflammasome activation. Copyright © 2017 Elsevier Inc. All rights reserved.
Wong, Daniel; Wang, Mingfu
2013-09-04
The capacities of 15 vitamins to inhibit the formation of 7α-hydroxycholesterol, 7β-hydroxycholesterol, and 7-ketocholesterol were examined in beef patties. Their inhibitory activities were tested at a concentration of 0.4 mmol in 30 g of beef. Among them, L-ascorbic acid, retinoic acid, and α-(±)-tocopherol were found to exert a potent inhibitory effect (30-50%) on 7-ketocholesterol formation and (~20%) on 7α-hydroxycholesterol and 7β-hydroxycholesterol formations. Pyridoxamine inhibited 7-ketocholesterol formation by 60% with a statistically significant difference (p < 0.05) from that achieved in the control setup. To further elucidate the possible inhibitory mechanism of pyridoxamine against cholesterol oxidation, a chemical model with pyridoxamine added in the cholesterol oxidation system (heated at 140 °C for 240 min in dimethyl sulfoxide) was employed. It was demonstrated that pyridoxamine could directly react with 7-ketocholesterol via the addition reaction. The reaction involved a nucleophilic attack of the free amine group of pyridoxamine on 7-ketocholesterol (an α,β-unsaturated carbonyl compound). This type of reaction was also found to occur in beef patties by chromatographic and spectral analyses.
Jakobsdottir, Greta; Xu, Jie; Molin, Göran; Ahrné, Siv; Nyman, Margareta
2013-01-01
Introduction Obesity is linked to type 2 diabetes and risk factors associated to the metabolic syndrome. Consumption of dietary fibres has been shown to have positive metabolic health effects, such as by increasing satiety, lowering blood glucose and cholesterol levels. These effects may be associated with short-chain fatty acids (SCFAs), particularly propionic and butyric acids, formed by microbial degradation of dietary fibres in colon, and by their capacity to reduce low-grade inflammation. Objective To investigate whether dietary fibres, giving rise to different SCFAs, would affect metabolic risk markers in low-fat and high-fat diets using a model with conventional rats for 2, 4 and 6 weeks. Material and Methods Conventional rats were administered low-fat or high-fat diets, for 2, 4 or 6 weeks, supplemented with fermentable dietary fibres, giving rise to different SCFA patterns (pectin – acetic acid; guar gum – propionic acid; or a mixture – butyric acid). At the end of each experimental period, liver fat, cholesterol and triglycerides, serum and caecal SCFAs, plasma cholesterol, and inflammatory cytokines were analysed. The caecal microbiota was analysed after 6 weeks. Results and Discussion Fermentable dietary fibre decreased weight gain, liver fat, cholesterol and triglyceride content, and changed the formation of SCFAs. The high-fat diet primarily reduced formation of SCFAs but, after a longer experimental period, the formation of propionic and acetic acids recovered. The concentration of succinic acid in the rats increased in high-fat diets with time, indicating harmful effect of high-fat consumption. The dietary fibre partly counteracted these harmful effects and reduced inflammation. Furthermore, the number of Bacteroides was higher with guar gum, while noticeably that of Akkermansia was highest with the fibre-free diet. PMID:24236183
Mermelstein, Cláudia S; Portilho, Débora M; Medeiros, Rommel B; Matos, Aline R; Einicker-Lamas, Marcelo; Tortelote, Giovane G; Vieyra, Adalberto; Costa, Manoel L
2005-02-01
The formation of a skeletal muscle fiber begins with the withdrawal of committed mononucleated precursors from the cell cycle. These myoblasts elongate while aligning with each other, guided by recognition between their membranes. This step is followed by cell fusion and the formation of long striated multinucleated myotubes. We used methyl-beta-cyclodextrin (MCD) in primary cultured chick skeletal muscle cells to deplete membrane cholesterol and investigate its role during myogenesis. MCD promoted a significant increase in the expression of troponin T, enhanced myoblast fusion, and induced the formation of large multinucleated myotubes with nuclei being clustered centrally and not aligned at the cell periphery. MCD myotubes were striated, as indicated by sarcomeric alpha-actinin staining, and microtubule and desmin filament distribution was not altered. Pre-fusion MCD-treated myoblasts formed large aggregates, with cadherin and beta-catenin being accumulated in cell adhesion contacts. We also found that the membrane microdomain marker GM1 was not present as clusters in the membrane of MCD-treated myoblasts. Our data demonstrate that cholesterol is involved in the early steps of skeletal muscle differentiation.
Templated cocrystallization of cholesterol and phytosterols from microemulsions
NASA Astrophysics Data System (ADS)
Rozner, Shoshana; Popov, Inna; Uvarov, Vladimir; Aserin, Abraham; Garti, Nissim
2009-08-01
A major cause of cardiovascular disease is high cholesterol (CH) levels in the blood, a potential solution to which is the intake of phytosterols (PS) known as CH-reducing agents. One mechanism proposed for PS activity is the mutual cocrystallization of CH and PS from dietary mixed micelles (DMM), a process that removes excess CH from the transporting micelles. In this study, microemulsions (MEs) were used both as a model system for cocrystallization mimicking DMM and as a possible alternative pathway, based on the competitive solubilization of CH and PS, to reduce solubilized CH transport levels from the ME. The effects of different CH/PS ratios, aqueous dilution, and lecithin-based MEs on sterol crystallization were studied. The precipitated crystals from the ME-loaded system with PS alone and from that loaded with 1:1 or 1:3 CH/PS mixtures were significantly influenced by ME microstructure and by dilution with aqueous phase (X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC) results). No new polymorphic structures were detected apart from the corresponding sterol hydrates. Mixed crystal morphology and the habit of the precipitated sterols were strongly affected by the CH/PS ratio and the structures of the diluted ME. As the amount of PS in the mixture increased or as the ME aqueous dilution proceeded, precipitated crystal shape became more needle-like. The mixed sterols seemed to be forming eutectic solids.
Self-Assembly of Helical Ribbons
NASA Astrophysics Data System (ADS)
Zastavker, Yevgeniya V.; Asherie, Neer; Lomakin, Aleksey; Pande, Jayanti; Donovan, Joanne M.; Schnur, Joel M.; Benedek, George B.
1999-07-01
The self-assembly of helical ribbons is examined in a variety of multicomponent enantiomerically pure systems that contain a bile salt or a nonionic detergent, a phosphatidylcholine or a fatty acid, and a steroid analog of cholesterol. In almost all systems, two different pitch types of helical ribbons are observed: high pitch, with a pitch angle of 54± 2 degrees, and low pitch, with a pitch angle of 11± 2 degrees. Although the majority of these helices are right-handed, a small proportion of left-handed helices is observed. Additionally, a third type of helical ribbon, with a pitch angle in the range 30-47 degrees, is occasionally found. These experimental findings suggest that the helical ribbons are crystalline rather than liquid crystal in nature and also suggest that molecular chirality may not be the determining factor in helix formation. The large yields of helices produced will permit a systematic investigation of their individual kinetic evolution and their elastic moduli.
Crystallization, flow and thermal histories of lunar and terrestrial compositions
NASA Technical Reports Server (NTRS)
Uhlmann, D. R.
1979-01-01
Contents: a kinetic treatment of glass formation; effects of nucleating heterogeneities on glass formation; glass formation under continuous cooling conditions; crystallization statistics; kinetics of crystal nucleation; diffusion controlled crystal growth; crystallization of lunar compositions; crystallization between solidus and liquidus; crystallization on reheating a glass; temperature distributions during crystallization; crystallization of anorthite and anorthite-albite compositions; effect of oxidation state on viscosity; diffusive creep and viscous flow; high temperature flow behavior of glass-forming liquids, a free volume interpretation; viscous flow behavior of lunar compositions; thermal history of orange soil material; breccias formation by viscous sintering; viscous sintering; thermal histories of breccias; solute partitioning and thermal history of lunar rocks; heat flow in impact melts; and thermal histories of olivines.
Rajapakse, Dinusha; Peterson, Katherine; Mishra, Sanghamitra; Wistow, Graeme
2017-12-15
Retinal pigment epithelium (RPE) has been implicated as key source of cholesterol-rich deposits at Bruch's membrane (BrM) and in drusen in aging human eye. We have shown that serum-deprivation of confluent RPE cells is associated with upregulation of cholesterol synthesis and accumulation of unesterified cholesterol (UC). Here we investigate the cellular processes involved in this response. We compared the distribution and localization of UC and esterified cholesterol (EC); the age-related macular degeneration (AMD) associated EFEMP1/Fibulin3 (Fib3); and levels of acyl-coenzyme A (CoA): cholesterol acyltransferases (ACAT) ACAT1, ACAT2 and Apolipoprotein B (ApoB) in ARPE-19 cells cultured in serum-supplemented and serum-free media. The results were compared with distributions of these lipids and proteins in human donor eyes with AMD. Serum deprivation of ARPE-19 was associated with increased formation of FM dye-positive membrane vesicles, many of which co-labeled for UC. Additionally, UC colocalized with Fib3 in distinct granules. By day 5, serum-deprived cells grown on transwells secreted Fib3 basally into the matrix. While mRNA and protein levels of ACTA1 were constant over several days of serum-deprivation, ACAT2 levels increased significantly after serum-deprivation, suggesting increased formation of EC. The lower levels of intracellular EC observed under serum-deprivation were associated with increased formation and secretion of ApoB. The responses to serum-deprivation in RPE-derived cells: accumulation and secretion of lipids, lipoproteins, and Fib3 are very similar to patterns seen in human donor eyes with AMD and suggest that this model mimics processes relevant to disease progression. Published by Elsevier Inc.
Saeed, Omar; Otsuka, Fumiyuki; Polavarapu, Rohini; Karmali, Vinit; Weiss, Daiana; Davis, Talina; Rostad, Brad; Pachura, Kimberly; Adams, Lila; Elliott, John; Taylor, W. Robert; Narula, Jagat; Kolodgie, Frank; Virmani, Renu; Hong, Charles C.; Finn, Aloke V.
2012-01-01
Objectives We recently reported that lowering of macrophage free intracellular iron increases expression of cholesterol efflux transporters ABCA1 and ABCG1 by reducing generation of reactive oxygen species. In this study, we explore whether reducing macrophage intracellular iron levels via pharmacologic suppression of hepcidin can increase macrophage-specific expression of cholesterol efflux transporters and reduce atherosclerosis. Methods and Results To suppress hepcidin, increase expression of the iron exporter ferroportin (FPN), and reduce macrophage intracellular iron, we used a small molecule inhibitor of BMP signaling, LDN 193189 (LDN). LDN (10 mg/kg i.p. bid) was administered to mice and its effects on atherosclerosis, intracellular iron, oxidative stress, lipid efflux, and foam cell formation were measured in plaques and peritoneal macrophages. Long-term LDN administration to Apo E (-/-) mice increased ABCA1 immunoreactivity within intraplaque macrophages by 3.7-fold (n=8; p=0.03), reduced oil-red-o positive lipid area by 50% (n=8; p=0.02) and decreased total plaque area by 43% (n=8; p=0.001). LDN suppressed liver hepcidin transcription and increased macrophage FPN, lowering intracellular iron and hydrogen peroxide production. LDN treatment increased macrophage ABCA1 and ABCG1 expression, significantly raised cholesterol efflux to ApoA-1 and decreased foam cell formation. All preceding LDN-induced effects on cholesterol efflux were reversed by exogenous hepcidin administration, suggesting that modulation of intracellular iron levels within macrophages as the mechanism by which LDN triggers these effects. Conclusion These data suggest that pharmacologic manipulation of iron homeostasis may be a promising target to increase macrophage reverse cholesterol transport and limit atherosclerosis. PMID:22095982
Guo, Wen; Morrisett, Joel D.; DeBakey, Michael E.; Lawrie, Gerald M.; Hamilton, James A.
2010-01-01
Because of renewed interest in the progression, stabilization, and regression of atherosclerotic plaques, it has become important to develop methods for characterizing structural features of plaques in situ and noninvasively. We present a nondestructive method for ex vivo quantification of 2 solid-phase components of plaques: crystalline cholesterol and calcium phosphate salts. Magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of human carotid endarterectomy plaques revealed 13C resonances of crystalline cholesterol monohydrate and a 31P resonance of calcium phosphate hydroxyapatite (CPH). The spectra were obtained under conditions in which there was little or no interference from other chemical components and were suitable for quantification in situ of the crystalline cholesterol and CPH. Carotid atherosclerotic plaques showed a wide variation in their crystalline cholesterol content. The calculated molar ratio of liquid-crystalline cholesterol to phospholipid ranged from 1.1 to 1.7, demonstrating different capabilities of the phospholipids to reduce crystallization of cholesterol. The spectral properties of the phosphate groups in CPH in carotid plaques were identical to those of CPH in bone. 31P MAS NMR is a simple, rapid method for quantification of calcium phosphate salts in tissue without extraction and time-consuming chemical analysis. Crystalline phases in intact atherosclerotic plaques (ex vivo) can be quantified accurately by solid-state 13C and 31PMAS NMR spectroscopy. PMID:10845882
Vranceanu, Marcel; Terinte, Nicoleta; Nirschl, Hermann; Leneweit, Gero
2011-02-01
Bilayer structures are formed by approaching two liquid surfaces with phospholipid monolayers, which are brought into contact by oblique drop impact on a liquid surface. Asymmetric bilayers can be produced by the coupling of drop and target monolayers. In contrast, symmetric bilayers or multilayers are formed by collapse of the compressed target monolayer. We show that under all studied conditions bilayer/multilayer synthesis takes place. The experimental conditions for the synthesis of asymmetric or symmetric bilayers are described quantitatively in terms of the surface rheological (surface elasticity and dilational viscosity) and the hydrodynamical parameters (Weber number and impact angle). The composition and mechanical properties of the phospholipid monolayers strongly influences the patterns of drop impact and the bilayer/multilayer formation. Cholesterol stiffens unsaturated phospholipid monolayers and fluidifies saturated monolayers. All monolayers form asymmetric vesicle-like structures, which are stable in the aqueous medium. Additionally, unsaturated phospholipid monolayers without cholesterol form symmetric vesicles by folding parts of the target monolayer. Sufficient presence of cholesterol in unsaturated phospholipid monolayers inhibits the folding of the target monolayer and the subsequent formation of symmetric bilayers. The rheological properties of saturated and unsaturated phospholipid monolayers and their mixtures with cholesterol are discussed. Based on drop impact results it is shown that the state of a so far undefined region in the DPPC/cholesterol phase diagram is a fluid phase. Copyright © 2010 Elsevier Inc. All rights reserved.
Castro-Alves, Victor Costa; Nascimento, João Roberto Oliveira do
2018-05-01
Macrophages play an essential role in lipid metabolism; however, the excessive uptake of modified lipids and cholesterol crystals (CC) leads to the formation of pro-inflammatory lipid-laden macrophages called foam cells. Since the α-1,6- and β-1,3-d-glucans from the basidiome and the mycelium of the edible mushroom Pleurotus albidus have previously been shown to regulate macrophage function, these glucans were tested in macrophage-like THP-1 cells previously exposed to acetylated low-density lipoproteins (acLDL) or CC. The glucans inhibited lipid-induced inflammation, but only the β-1,3-d-glucan regulated both the NLRP3 inflammasome activation and the expression of genes involved on lipid efflux in acLDL- or CC-pretreated cells, thereby reducing foam cell formation. In contrast, the two α-1,6-glucans tested inhibited foam cell formation only in acLDL-pretreated cells and had no effect on the expression of the peroxisome proliferator-activated receptor gamma and liver X receptor alpha genes, suggesting that these glucans regulate lipid influx rather than lipid efflux. Thus, α- and β-d-glucans differentially regulate lipid-induced inflammation and foam cell formation in macrophage-like cells. Furthermore, results emphasize that P. albidus has potential to be used as a functional food or as a source for the extraction of biologically-active glucans. Copyright © 2018 Elsevier B.V. All rights reserved.
Structure of human Niemann–Pick C1 protein
Li, Xiaochun; Wang, Jiawei; Coutavas, Elias; Shi, Hang; Hao, Qi; Blobel, Günter
2016-01-01
Niemann–Pick C1 protein (NPC1) is a late-endosomal membrane protein involved in trafficking of LDL-derived cholesterol, Niemann–Pick disease type C, and Ebola virus infection. NPC1 contains 13 transmembrane segments (TMs), five of which are thought to represent a “sterol-sensing domain” (SSD). Although present also in other key regulatory proteins of cholesterol biosynthesis, uptake, and signaling, the structure and mechanism of action of the SSD are unknown. Here we report a crystal structure of a large fragment of human NPC1 at 3.6 Å resolution, which reveals internal twofold pseudosymmetry along TM 2–13 and two structurally homologous domains that protrude 60 Å into the endosomal lumen. Strikingly, NPC1's SSD forms a cavity that is accessible from both the luminal bilayer leaflet and the endosomal lumen; computational modeling suggests that this cavity is large enough to accommodate one cholesterol molecule. We propose a model for NPC1 function in cholesterol sensing and transport. PMID:27307437
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jing; Zhang, Suhua, E-mail: drsuhuangzhang@qq.com
Transformation of macrophages into foam cells plays a critical role in the pathogenesis of atherosclerosis. The aim of this study was to determine the expression and biological roles of microRNA (miR)-150 in the formation of macrophage foam cells and to identify its functional target(s). Exposure to 50 μg/ml oxidized low-density lipoprotein (oxLDL) led to a significant upregulation of miR-150 in THP-1 macrophages. Overexpression of miR-150 inhibited oxLDL-induced lipid accumulation in THP-1 macrophages, while knockdown of miR-150 enhanced lipid accumulation. apoA-I- and HDL-mediated cholesterol efflux was increased by 66% and 43%, respectively, in miR-150-overexpressing macrophages relative to control cells. In contrast, downregulationmore » of miR-150 significantly reduced cholesterol efflux from oxLDL-laden macrophages. Bioinformatic analysis and luciferase reporter assay revealed adiponectin receptor 2 (AdipoR2) as a direct target of miR-150. Small interfering RNA-mediated downregulation of AdipoR2 phenocopied the effects of miR-150 overexpression, reducing lipid accumulation and facilitating cholesterol efflux in oxLDL-treated THP-1 macrophages. Knockdown of AdipoR2 induced the expression of proliferator-activated receptor gamma (PPARγ), liver X receptor alpha (LXRα), ABCA1, and ABCG1. Moreover, pharmacological inhibition of PPARγ or LXRα impaired AdipoR2 silencing-induced upregulation of ABCA1 and ABCG1. Taken together, our results indicate that miR-150 can attenuate oxLDL-induced lipid accumulation in macrophages via promotion of cholesterol efflux. The suppressive effects of miR-150 on macrophage foam cell formation are mediated through targeting of AdipoR2. Delivery of miR-150 may represent a potential approach to prevent macrophage foam cell formation in atherosclerosis. -- Highlights: •miR-150 inhibits macrophage foam cell formation. •miR-150 accelerates cholesterol efflux from oxLDL-laden macrophages. •miR-150 suppresses macrophage foam cell formation by targeting AdipoR2.« less
Lv, Yun-Cheng; Tang, Yan-Yan; Peng, Juan; Zhao, Guo-Jun; Yang, Jing; Yao, Feng; Ouyang, Xin-Ping; He, Ping-Ping; Xie, Wei; Tan, Yu-Lin; Zhang, Min; Liu, Dan; Tang, Deng-Pei; Cayabyab, Francisco S; Zheng, Xi-Long; Zhang, Da-Wei; Tian, Guo-Ping; Tang, Chao-Ke
2014-09-01
Macrophage accumulation of cholesterol leads to foam cell formation which is a major pathological event of atherosclerosis. Recent studies have shown that microRNA (miR)-19b might play an important role in cholesterol metabolism and atherosclerotic diseases. Here, we have identified miR-19b binding to the 3'UTR of ATP-binding cassette transporter A1 (ABCA1) transporters, and further determined the potential roles of this novel interaction in atherogenesis. To investigate the molecular mechanisms involved in a miR-19b promotion of macrophage cholesterol accumulation and the development of aortic atherosclerosis. We performed bioinformatics analysis using online websites, and found that miR-19b was highly conserved during evolution and directly bound to ABCA1 mRNA with very low binding free energy. Luciferase reporter assay confirmed that miR-19b bound to 3110-3116 sites within ABCA1 3'UTR. MiR-19b directly regulated the expression levels of endogenous ABCA1 in foam cells derived from human THP-1 macrophages and mouse peritoneal macrophages (MPMs) as determined by qRT-PCR and western blot. Cholesterol transport assays revealed that miR-19b dramatically suppressed apolipoprotein AI-mediated ABCA1-dependent cholesterol efflux, resulting in the increased levels of total cholesterol (TC), free cholesterol (FC) and cholesterol ester (CE) as revealed by HPLC. The excretion of (3)H-cholesterol originating from cholesterol-laden MPMs into feces was decreased in mice overexpressing miR-19b. Finally, we evaluated the proatherosclerotic role of miR-19b in apolipoprotein E deficient (apoE(-/-)) mice. Treatment with miR-19b precursor reduced plasma high-density lipoprotein (HDL) levels, but increased plasma low-density lipoprotein (LDL) levels. Consistently, miR-19b precursor treatment increased aortic plaque size and lipid content, but reduced collagen content and ABCA1 expression. In contrast, treatment with the inhibitory miR-19b antisense oligonucleotides (ASO) prevented or reversed these effects. MiR-19b promotes macrophage cholesterol accumulation, foam cell formation and aortic atherosclerotic development by targeting ABCA1. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Engineering calcium oxalate crystal formation in Arabidopsis
USDA-ARS?s Scientific Manuscript database
Many plants accumulate crystals of calcium oxalate. Just how these crystals form remains unknown. To gain insight into the mechanisms regulating calcium oxalate crystal formation, a crystal engineering approach was initiated utilizing the non-crystal accumulating plant, Arabidopsis. The success of t...
A study on the inhibitory mechanism for cholesterol absorption by α-cyclodextrin administration
Furune, Takahiro; Ikuta, Naoko; Ishida, Yoshiyuki; Okamoto, Hinako; Nakata, Daisuke; Terao, Keiji
2014-01-01
Summary Background: Micelle formation of cholesterol with lecithin and bile salts is a key process for intestinal absorption of lipids. Some dietary fibers commonly used to reduce the lipid content in the body are thought to inhibit lipid absorption by binding to bile salts and decreasing the lipid solubility. Amongst these, α-cyclodextrin (α-CD) is reportedly one of the most powerful dietary fibers for decreasing blood cholesterol. However, it is difficult to believe that α-CD directly removes cholesterol because it has a very low affinity for cholesterol and its mechanism of action is less well understood than those of other dietary fibers. To identify this mechanism, we investigated the interaction of α-CD with lecithin and bile salts, which are essential components for the dissolution of cholesterol in the small intestine, and the effect of α-CD on micellar solubility of cholesterol. Results: α-CD was added to Fed-State Simulated Intestinal Fluid (FeSSIF), and precipitation of a white solid was observed. Analytical data showed that the precipitate was a lecithin and α-CD complex with a molar ratio of 1:4 or 1:5. The micellar solubility of cholesterol in the mixture of FeSSIF and α-CD was investigated, and found to decrease through lecithin precipitation caused by the addition of α-CD, in a dose-dependent manner. Furthermore, each of several other water-soluble dietary fibers was added to the FeSSIF, and no precipitate was generated. Conclusion: This study suggests that α-CD decreases the micellar solubility of cholesterol in the lumen of the small intestine via the precipitation of lecithin from bile salt micelles by complex formation with α-CD. It further indicates that the lecithin precipitation effect on the bile salt micelles by α-CD addition clearly differs from addition of other water-soluble dietary fibers. The decrease in micellar cholesterol solubility in the FeSSIF was the strongest with α-CD addition. PMID:25550749
Cholesterol transfer at endosomal-organelle membrane contact sites.
Ridgway, Neale D; Zhao, Kexin
2018-06-01
Cholesterol is delivered to the limiting membrane of late endosomes by Niemann-Pick Type C1 and C2 proteins. This review summarizes recent evidence that cholesterol transfer from endosomes to the endoplasmic reticulum and other organelles is mediated by lipid-binding proteins that localize to membrane contact sites (MCS). LDL-cholesterol in the late endosomal/lysosomes is exported to the plasma membrane, where most cholesterol resides, and the endoplasmic reticulum, which harbors the regulatory complexes and enzymes that control the synthesis and esterification of cholesterol. A major advance in dissecting these cholesterol transport pathways was identification of frequent and dynamic MCS between endosomes and the endoplasmic reticulum, peroxisomes and plasma membrane. Positioned at these MCS are members of the oxysterol-binding protein (OSBP) and steroidogenic acute regulatory protein-related lipid-transfer family of lipid transfer proteins that bridge the opposing membranes and directly or indirectly mediate cholesterol transfer. OSBP-related protein 1L (ORP1L), ORP5 and ORP6 mediate cholesterol transfer to the endoplasmic reticulum that regulates cholesterol homeostasis. ORP1L and STARD3 also move cholesterol from the endoplasmic reticulum-to-late endosomal/lysosomes under low-cholesterol conditions to facilitate intraluminal vesicle formation. Cholesterol transport also occurs at MCS with peroxisomes and possibly the plasma membrane. Frequent contacts between organelles and the endo-lysosomal vesicles are sites for bidirectional transfer of cholesterol.
NASA Astrophysics Data System (ADS)
Sugahara, Mitsuaki; Sekino-Suzuki, Naoko; Ohno-Iwashita, Yoshiko; Miki, Kunio
1996-10-01
θ-Toxin (perfringolysin O), a cholesterol-binding, pore-forming cytolysin of Clostridium perfringens type A was crystallized by the vapor diffusion procedure using polyethyleneglycol 4000 and sodium chloride as precipitants in 2-(cyclohexylamino)ethanesulfonic acid (CHES) buffer at pH 9.5. The diffraction patterns of precession photographs indicated that the crystals belong to the orthorhombic system and the space group C222 1 with unit-cell dimensions of a = 47.7 Å, b = 182.0 Å and c = 175.8 Å. Assuming that the asymmetric unit contains one or two molecules (Mw 52 700), the Vm value is calculated as 3.6 or 1.8 Å 3/dalton, respectively. The crystals diffract X-rays to at least 3 Å resolution and are suitable for high resolution X-ray crystal structure determination.
Shigematsu, Taiki; Koshiyama, Kenichiro; Wada, Shigeo
2015-01-01
Rupture of biological cell membrane under mechanical stresses is critical for cell viability. It is triggered by local rearrangements of membrane molecules. We investigated the effects of stretching speed on mechanical rupture of phospholipid/cholesterol bilayers using unsteady molecular dynamics simulations. We focused on pore formation, the trigger of rupture, in a 40 mol% cholesterol-including bilayer. The unsteady stretching was modeled by proportional and temporal scaling of atom positions at stretching speeds from 0.025 to 30 m/s. The effects of the stretching speed on the critical areal strain, where the pore forms, is composed of two regimes. At low speeds (<1.0 m/s), the critical areal strain is insensitive to speed, whereas it significantly increases at higher speeds. Also, the strain is larger than that of a pure bilayer, regardless of the stretching speeds, which qualitatively agrees with available experimental data. Transient recovery of the cholesterol and phospholipid molecular orientations was evident at lower speeds, suggesting the formation of a stretch-induced interdigitated gel-like phase. However, this recovery was not confirmed at higher speeds or for the pure bilayer. The different responses of the molecular orientations may help explain the two regimes for the effect of stretching speed on pore formation. PMID:26471872
Sphingosine and Sphingosine Kinase 1 Involvement in Endocytic Membrane Trafficking*
Lima, Santiago; Milstien, Sheldon; Spiegel, Sarah
2017-01-01
The balance between cholesterol and sphingolipids within the plasma membrane has long been implicated in endocytic membrane trafficking. However, in contrast to cholesterol functions, little is still known about the roles of sphingolipids and their metabolites. Perturbing the cholesterol/sphingomyelin balance was shown to induce narrow tubular plasma membrane invaginations enriched with sphingosine kinase 1 (SphK1), the enzyme that converts the bioactive sphingolipid metabolite sphingosine to sphingosine-1-phosphate, and suggested a role for sphingosine phosphorylation in endocytic membrane trafficking. Here we show that sphingosine and sphingosine-like SphK1 inhibitors induced rapid and massive formation of vesicles in diverse cell types that accumulated as dilated late endosomes. However, much smaller vesicles were formed in SphK1-deficient cells. Moreover, inhibition or deletion of SphK1 prolonged the lifetime of sphingosine-induced vesicles. Perturbing the plasma membrane cholesterol/sphingomyelin balance abrogated vesicle formation. This massive endosomal influx was accompanied by dramatic recruitment of the intracellular SphK1 and Bin/Amphiphysin/Rvs domain-containing proteins endophilin-A2 and endophilin-B1 to enlarged endosomes and formation of highly dynamic filamentous networks containing endophilin-B1 and SphK1. Together, our results highlight the importance of sphingosine and its conversion to sphingosine-1-phosphate by SphK1 in endocytic membrane trafficking. PMID:28049734
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yan; Wu, Jian-Feng; Tang, Yan-Yan
Highlights: • U II reduces cholesterol efflux in THP-1 macrophages. • U II decreases the expression of ABCA1. • Inhibition of the ERK/NF-κB pathway reduces U II effects on ABCA1 expression and cholesterol efflux. - Abstract: Objective: Foam cell formation in the arterial wall plays a key role in the development of atherosclerosis. Recent studies showed that Urotensin II (U II) is involved in the pathogenesis of atherosclerosis. Here we examined the effects of human U II on ATP-binding cassette transporter A1 (ABCA1) expression and the underlying mechanism in THP-1 macrophages. Methods and results: Cultured THP-1 macrophages were treated withmore » U II, followed by measuring the intracellular lipid contents, cholesterol efflux and ABCA1 levels. The results showed that U II dramatically decreased ABCA1 levels and impaired cholesterol efflux. However, the effects of U II on ABCA1 protein expression and cellular cholesterol efflux were partially reversed by inhibition of extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa B (NF-κB) activity, suggesting the potential roles of ERK1/2 and NF-κB in ABCA1 expression, respectively. Conclusion: Our current data indicate that U II may have promoting effects on the progression of atherosclerosis, likely through suppressing ABCA1 expression via activation of the ERK/NF-κB pathway and reducing cholesterol efflux to promote macrophage foam cell formation.« less
Structural requirements of cholesterol for binding to Vibrio cholerae hemolysin.
Ikigai, Hajime; Otsuru, Hiroshi; Yamamoto, Koichiro; Shimamura, Tadakatsu
2006-01-01
Cholesterol is necessary for the conversion of Vibrio cholerae hemolysin (VCH) monomers into oligomers in liposome membranes. Using different sterols, we determined the stereochemical structures of the VCH-binding active groups present in cholesterol. The VCH monomers are bound to cholesterol, diosgenin, campesterol, and ergosterol, which have a hydroxyl group at position C-3 (3betaOH) in the A ring and a C-C double bond between positions C-5 and C-6 (C-C Delta(5)) in the B ring. They are not bound to epicholesterol and dihydrocholesterol, which form a covalent link with a 3alphaOH group and a C-C single bond between positions C-5 and C-6, respectively. This result suggests that the 3betaOH group and the C-CDelta(5) bond in cholesterol are required for VCH monomer binding. We further examined VCH oligomer binding to cholesterol. However, this oligomer did not bind to cholesterol, suggesting that the disappearance of the cholesterol-binding potential of the VCH oligomer might be a result of the conformational change caused by the conversion of the monomer into the oligomer. VCH oligomer formation was observed in liposomes containing sterols with the 3betaOH group and the C-C Delta(5) bond, and it correlated with the binding affinity of the monomer to each sterol. Therefore, it seems likely that monomer binding to membrane sterol leads to the assembly of the monomer. However, since oligomer formation was induced by liposomes containing either epicholesterol or dihydrocholesterol, the 3betaOH group and the C-C Delta(5) bond were not essential for conversion into the oligomer.
Zarychta, Bartosz; Lyubimov, Artem; Ahmed, Maqsood; Munshi, Parthapratim; Guillot, Benoît; Vrielink, Alice; Jelsch, Christian
2015-04-01
Examination of protein structure at the subatomic level is required to improve the understanding of enzymatic function. For this purpose, X-ray diffraction data have been collected at 100 K from cholesterol oxidase crystals using synchrotron radiation to an optical resolution of 0.94 Å. After refinement using the spherical atom model, nonmodelled bonding peaks were detected in the Fourier residual electron density on some of the individual bonds. Well defined bond density was observed in the peptide plane after averaging maps on the residues with the lowest thermal motion. The multipolar electron density of the protein-cofactor complex was modelled by transfer of the ELMAM2 charge-density database, and the topology of the intermolecular interactions between the protein and the flavin adenine dinucleotide (FAD) cofactor was subsequently investigated. Taking advantage of the high resolution of the structure, the stereochemistry of main-chain bond lengths and of C=O···H-N hydrogen bonds was analyzed with respect to the different secondary-structure elements.
The organic matrix of gallstones
Sutor, D. June; Wooley, Susan E.
1974-01-01
Dissolution of gallstones consisting of cholesterol, calcium carbonate, or calcium phosphate in different solvents left an amorphous organic gel-like substance (the matrix). Matrix from cholesterol stones could be colourless but was usually orange, yellow, or brown while that from calcium carbonate and calcium phosphate stones was almost invariably coloured black or dark brown. These pigments were also shown to be organic and amorphous. The amount of matrix present and its structure varied with the texture of the crystalline material. Irrespective of their composition, laminated pieces of material yielded compact laminated matrix of the same shape as the original piece and areas of loose crystalline material gave small pieces of non-cohesive matrix. Only large cholesterol crystals which usually radiate from the stone nucleus had no associated matrix. ImagesFig 1Fig 2Fig 3Fig 4Fig 5 PMID:4854981
Two classes of cholesterol binding sites for the β2AR revealed by thermostability and NMR.
Gater, Deborah L; Saurel, Olivier; Iordanov, Iordan; Liu, Wei; Cherezov, Vadim; Milon, Alain
2014-11-18
Cholesterol binding to G protein-coupled receptors (GPCRs) and modulation of their activities in membranes is a fundamental issue for understanding their function. Despite the identification of cholesterol binding sites in high-resolution x-ray structures of the ?2 adrenergic receptor (β2AR) and other GPCRs, the binding affinity of cholesterol for this receptor and exchange rates between the free and bound cholesterol remain unknown. In this study we report the existence of two classes of cholesterol binding sites in β2AR. By analyzing the β2AR unfolding temperature in lipidic cubic phase (LCP) as a function of cholesterol concentration we observed high-affinity cooperative binding of cholesterol with sub-nM affinity constant. In contrast, saturation transfer difference (STD) NMR experiments revealed the existence of a second class of cholesterol binding sites, in fast exchange on the STD NMR timescale. Titration of the STD signal as a function of cholesterol concentration provided a lower limit of 100 mM for their dissociation constant. However, these binding sites are specific for both cholesterol and β2AR, as shown with control experiments using ergosterol and a control membrane protein (KpOmpA). We postulate that this specificity is mediated by the high-affinity bound cholesterol molecules and propose the formation of transient cholesterol clusters around the high-affinity binding sites.
2012-01-01
Background A cholesterol-palmitoyl interaction has been reported to occur in the dimeric interface of the β2-adrenergic receptor crystal structure. We sought to investigate whether a similar phenomenon could be observed with μ-opioid receptor (OPRM1), and if so, to assess the role of cholesterol in this class of G protein-coupled receptor (GPCR) signaling. Results C3.55(170) was determined to be the palmitoylation site of OPRM1. Mutation of this Cys to Ala did not affect the binding of agonists, but attenuated receptor signaling and decreased cholesterol associated with the receptor signaling complex. In addition, both attenuation of receptor palmitoylation (by mutation of C3.55[170] to Ala) and inhibition of cholesterol synthesis (by treating the cells with simvastatin, a HMG-CoA reductase inhibitor) impaired receptor signaling, possibly by decreasing receptor homodimerization and Gαi2 coupling; this was demonstrated by co-immunoprecipitation, immunofluorescence colocalization and fluorescence resonance energy transfer (FRET) analyses. A computational model of the OPRM1 homodimer structure indicated that a specific cholesterol-palmitoyl interaction can facilitate OPRM1 homodimerization at the TMH4-TMH4 interface. Conclusions We demonstrate that C3.55(170) is the palmitoylation site of OPRM1 and identify a cholesterol-palmitoyl interaction in the OPRM1 complex. Our findings suggest that this interaction contributes to OPRM1 signaling by facilitating receptor homodimerization and G protein coupling. This conclusion is supported by computational modeling of the OPRM1 homodimer. PMID:22429589
Melanocortin 1 Receptor Signaling Regulates Cholesterol Transport in Macrophages.
Rinne, Petteri; Rami, Martina; Nuutinen, Salla; Santovito, Donato; van der Vorst, Emiel P C; Guillamat-Prats, Raquel; Lyytikäinen, Leo-Pekka; Raitoharju, Emma; Oksala, Niku; Ring, Larisa; Cai, Minying; Hruby, Victor J; Lehtimäki, Terho; Weber, Christian; Steffens, Sabine
2017-07-04
The melanocortin 1 receptor (MC1-R) is expressed by monocytes and macrophages, where it exerts anti-inflammatory actions on stimulation with its natural ligand α-melanocyte-stimulating hormone. The present study was designed to investigate the specific role of MC1-R in the context of atherosclerosis and possible regulatory pathways of MC1-R beyond anti-inflammation. Human and mouse atherosclerotic samples and primary mouse macrophages were used to study the regulatory functions of MC1-R. The impact of pharmacological MC1-R activation on atherosclerosis was assessed in apolipoprotein E-deficient mice. Characterization of human and mouse atherosclerotic plaques revealed that MC1-R expression localizes in lesional macrophages and is significantly associated with the ATP-binding cassette transporters ABCA1 and ABCG1, which are responsible for initiating reverse cholesterol transport. Using bone marrow-derived macrophages, we observed that α-melanocyte-stimulating hormone and selective MC1-R agonists similarly promoted cholesterol efflux, which is a counterregulatory mechanism against foam cell formation. Mechanistically, MC1-R activation upregulated the levels of ABCA1 and ABCG1. These effects were accompanied by a reduction in cell surface CD36 expression and in cholesterol uptake, further protecting macrophages from excessive lipid accumulation. Conversely, macrophages deficient in functional MC1-R displayed a phenotype with impaired efflux and enhanced uptake of cholesterol. Pharmacological targeting of MC1-R in atherosclerotic apolipoprotein E-deficient mice reduced plasma cholesterol levels and aortic CD36 expression and increased plaque ABCG1 expression and signs of plaque stability. Our findings identify a novel role for MC1-R in macrophage cholesterol transport. Activation of MC1-R confers protection against macrophage foam cell formation through a dual mechanism: It prevents cholesterol uptake while concomitantly promoting ABCA1- and ABCG1-mediated reverse cholesterol transport. © 2017 American Heart Association, Inc.
Kayano, Keisuke; Saruwatari, Kazuko; Kogure, Toshihiro; Shiraiwa, Yoshihiro
2011-02-01
Marine coccolithophorids (Haptophyceae) produce calcified scales "coccoliths" which are composed of CaCO(3) and coccolith polysaccharides (CP) in the coccolith vesicles. CP was previously reported to be composed of uronic acids and sulfated residues, etc. attached to the polymannose main chain. Although anionic polymers are generally known to play key roles in biomineralization process, there is no experimental data how CP contributes to calcite crystal formation in the coccolithophorids. CP used was isolated from the most abundant coccolithophorid, Emiliania huxleyi. CaCO(3) crystallization experiment was performed on agar template layered onto a plastic plate that was dipped in the CaCO(3) crystallization solution. The typical rhombohedral calcite crystals were formed in the absence of CP. CaCO(3) crystals formed on the naked plastic plate were obviously changed to stick-like shapes when CP was present in the solution. EBSD analysis proved that the crystal is calcite of which c-axis was elongated. CP in the solution stimulated the formation of tabular crystals with flat edge in the agarose gel. SEM and FIB-TEM observations showed that the calcite crystals were formed in the gel. The formation of crystals without flat edge was stimulated when CP was preliminarily added in the gel. These observations suggest that CP has two functions: namely, one is to elongate the calcite crystal along c-axis and another is to induce tabular calcite crystal formation in the agarose gel. Thus, CP may function for the formation of highly elaborate species-specific structures of coccoliths in coccolithophorids.
Wrobel, T P; Marzec, K M; Chlopicki, S; Maślak, E; Jasztal, A; Franczyk-Żarów, M; Czyżyńska-Cichoń, I; Moszkowski, T; Kostogrys, R B; Baranska, M
2015-09-22
Low Carbohydrate High Protein (LCHP) diet displays pro-atherogenic effects, however, the exact mechanisms involved are still unclear. Here, with the use of vibrational imaging, such as Fourier transform infrared (FT-IR) and Raman (RS) spectroscopies, we characterize biochemical content of plaques in Brachiocephalic Arteries (BCA) from ApoE/LDLR(-/-) mice fed LCHP diet as compared to control, recomended by American Institute of Nutrition, AIN diet. FT-IR images were taken from 6-10 sections of BCA from each mice and were complemented with RS measurements with higher spatial resolution of chosen areas of plaque sections. In aortic plaques from LCHP fed ApoE/LDLR(-/-) mice, the content of cholesterol and cholesterol esters was increased, while that of proteins was decreased as evidenced by global FT-IR analysis. High resolution imaging by RS identified necrotic core/foam cells, lipids (including cholesterol crystals), calcium mineralization and fibrous cap. The decreased relative thickness of the outer fibrous cap and the presence of buried caps were prominent features of the plaques in ApoE/LDLR(-/-) mice fed LCHP diet. In conclusion, FT-IR and Raman-based imaging provided a complementary insight into the biochemical composition of the plaque suggesting that LCHP diet increased plaque cholesterol and cholesterol esters contents of atherosclerotic plaque, supporting the cholesterol-driven pathogenesis of LCHP-induced atherogenesis.
Lipid-lowering Activity of Natural and Semi-Synthetic Sterols and Stanols.
Taha, Dhiaa A; Wasan, Ellen K; Wasan, Kishor M; Gershkovich, Pavel
2015-01-01
Consumption of plant sterols/ stanols has long been demonstrated to reduce plasma cholesterol levels. The objective of this review is to demonstrate the lipid-lowering activity and anti-atherogenic effects of natural and semi-synthetic plant sterols/ stanols based on evidence from cell-culture studies, animal studies and clinical trials. Additionally, this review highlights certain molecular mechanisms by which plant sterols/ stanols lower plasma cholesterol levels with a special emphasis on factors that affect the cholesterol-lowering activity of plant sterols/stanols. The crystalline nature and the poor oil solubility of these natural products could be important factors that limit their cholesterol-lowering efficiency. Several attempts have been made to improve the cholesterol-lowering activity by enhancing the bioavailability of crystalline sterols and stanols. Approaches involved reduction of the crystal size and/or esterification with fatty acids from vegetable or fish oils. However, the most promising approach in this context is the chemical modification of plant sterols /stanols into water soluble disodium ascorbyl phytostanyl phosphates analogue by esterification with ascorbic acid. This novel semi-synthetic stanol derivative has improved efficacy over natural plant sterols/ stanols and can provide additional benefits by combining the cholesterol-lowering properties of plant stanols with the antioxidant potential of ascorbic acid. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; ...
2015-07-24
Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from themore » carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are potentially anti-atherogenic.« less
Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; Genest, Jacques
2015-01-01
Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are potentially anti-atherogenic. PMID:26207756
Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase.
Cherezov, Vadim; Clogston, Jeffrey; Misquitta, Yohann; Abdel-Gawad, Wissam; Caffrey, Martin
2002-01-01
Hydrated monoolein forms the cubic-Pn3m mesophase that has been used for in meso crystallization of membrane proteins. The crystals have subsequently provided high-resolution structures by crystallographic means. It is possible that the hosting cubic phase created by monoolein alone, which itself is not a common membrane component, will limit the range of membrane proteins crystallizable by the in meso method. With a view to expanding the range of applicability of the method, we investigated by x-ray diffraction the degree to which the reference cubic-Pn3m phase formed by hydrated monoolein could be modified by other lipid types. These included phosphatidylcholine (PC), phosphatidylethanolamine, phosphatidylserine, cardiolipin, lyso-PC, a polyethylene glycol-lipid, 2-monoolein, oleamide, and cholesterol. The results show that all nine lipids were accommodated in the cubic phase to some extent without altering phase identity. The positional isomer, 2-monoolein, was tolerated to the highest level. The least well tolerated were the anionic lipids, followed by lyso-PC. The others were accommodated to the extent of 20-25 mol %. Beyond a certain concentration limit, the lipid additives either triggered one or a series of phase transitions or saturated the phase and separated out as crystals, as seen with oleamide and cholesterol. The series of phases observed and their order of appearance were consistent with expectations in terms of interfacial curvature changes. The changes in phase type and microstructure have been rationalized on the basis of lipid molecular shape, interfacial curvature, and chain packing energy. The data should prove useful in the rational design of cubic phase crystallization matrices with different lipid profiles that match the needs of a greater range of membrane proteins. PMID:12496106
Space-Time Crystals of Trapped Ions
2012-10-15
Spontaneous symmetry breaking can lead to the formation of time crystals, as well as spatial crystals. Here we propose a space- time crystal of...fields with fractional fluxes. The persistent rotation of trapped ions produces the temporal order, leading to the formation of a space- time crystal . We
Lin, Hung-Chih; Lii, Chong-Kuei; Chen, Hui-Chun; Lin, Ai-Hsuan; Yang, Ya-Chen; Chen, Haw-Wen
2018-01-01
oxLDL is involved in the pathogenesis of atherosclerotic lesions through cholesterol accumulation in macrophage foam cells. Andrographolide, the bioactive component of Andrographis paniculata, possesses several biological activities such as anti-inflammatory, anti-oxidant, and anticancer functions. Scavenger receptors (SRs), including class A SR (SR-A) and CD36, are responsible for the internalization of oxLDL. In contrast, receptors for reverse cholesterol transport, including ABCA1 and ABCG1, mediate the efflux of cholesterol from macrophage foam cells. Transcription factor liver X receptor [Formula: see text] (LXR[Formula: see text] plays a key role in lipid metabolism and inflammation as well as in the regulation of ABCA1 and ABCG1 expression. Because of the contribution of inflammation to macrophage foam cell formation and the potent anti-inflammatory activity of andrographolide, we hypothesized that andrographolide might inhibit oxLDL-induced macrophage foam cell formation. The results showed that andrographolide reduced oxLDL-induced lipid accumulation in macrophage foam cells. Andrographolide decreased the mRNA and protein expression of CD36 by inducing the degradation of CD36 mRNA; however, andrographolide had no effect on SR-A expression. In contrast, andrographolide increased the mRNA and protein expression of ABCA1 and ABCG1, which were dependent on LXR[Formula: see text]. Andrographolide enhanced LXR[Formula: see text] nuclear translocation and DNA binding activity. Treatment with the LXR[Formula: see text] antagonist GGPP and transfection with LXR[Formula: see text] siRNA reversed the ability of andrographolide to stimulate ABCA1 and ABCG1 protein expression. In conclusion, inhibition of CD36-mediated oxLDL uptake and induction of ABCA1- and ABCG1-dependent cholesterol efflux are two working mechanisms by which andrographolide inhibits macrophage foam cell formation, which suggests that andrographolide could be a potential candidate to prevent atherosclerosis.
2013-01-01
Background Elucidating gut microbiota among gallstone patients as well as the complex bacterial colonization of cholesterol gallstones may help in both the prediction and subsequent lowered risk of cholelithiasis. To this end, we studied the composition of bacterial communities of gut, bile, and gallstones from 29 gallstone patients as well as the gut of 38 normal individuals, examining and analyzing some 299, 217 bacterial 16S rRNA gene sequences from 120 samples. Results First, as compared with normal individuals, in gallstone patients there were significant (P < 0.001) increases of gut bacterial phylum Proteobacteria and decreases of three gut bacterial genera, Faecalibacterium, Lachnospira, and Roseburia. Second, about 70% of gut bacterial operational taxonomic units (OTUs) from gallstone patients were detectable in the biliary tract and bacteria diversity of biliary tract was significantly (P < 0.001) higher than that of gut. Third, analysis of the biliary tract core microbiome (represented by 106 bacteria OTUs) among gallstone patients showed that 33.96% (36/106) of constituents can be matched to known bacterial species (15 of which have publicly available genomes). A genome-wide search of MDR, BSH, bG, and phL genes purpotedly associated with the formation of cholesterol gallstones showed that all 15 species with known genomes (e.g., Propionibacterium acnes, Bacteroides vulgates, and Pseudomonas putida) contained at least contained one of the four genes. This finding could potentially provide underlying information needed to explain the association between biliary tract microbiota and the formation of cholesterol gallstones. Conclusions To the best of our knowledge, this is the first study to discover gut microbiota dysbiosis among gallstone patients, the presence of which may be a key contributor to the complex bacteria community assembly linked with the presence of cholesterol gallstones. Likewise, this study also provides the first large-scale glimpse of biliary tract microbiota potentially associated with cholesterol gallstones. Such a characterization of the biliary tract core microbiome has potentially important biological and medical implications regarding the role of bacteria in the formation cholesterol gallstones. PMID:24083370
Elevated Cholesterol in the Coxiella burnetii Intracellular Niche Is Bacteriolytic
Mulye, Minal; Samanta, Dhritiman; Winfree, Seth; Heinzen, Robert A.
2017-01-01
ABSTRACT Coxiella burnetii is an intracellular bacterial pathogen and a significant cause of culture-negative endocarditis in the United States. Upon infection, the nascent Coxiella phagosome fuses with the host endocytic pathway to form a large lysosome-like vacuole called the parasitophorous vacuole (PV). The PV membrane is rich in sterols, and drugs perturbing host cell cholesterol homeostasis inhibit PV formation and bacterial growth. Using cholesterol supplementation of a cholesterol-free cell model system, we found smaller PVs and reduced Coxiella growth as cellular cholesterol concentration increased. Further, we observed in cells with cholesterol a significant number of nonfusogenic PVs that contained degraded bacteria, a phenotype not observed in cholesterol-free cells. Cholesterol had no effect on axenic Coxiella cultures, indicating that only intracellular bacteria are sensitive to cholesterol. Live-cell microscopy revealed that both plasma membrane-derived cholesterol and the exogenous cholesterol carrier protein low-density lipoprotein (LDL) traffic to the PV. To test the possibility that increasing PV cholesterol levels affects bacterial survival, infected cells were treated with U18666A, a drug that traps cholesterol in lysosomes and PVs. U18666A treatment led to PVs containing degraded bacteria and a significant loss in bacterial viability. The PV pH was significantly more acidic in cells with cholesterol or cells treated with U18666A, and the vacuolar ATPase inhibitor bafilomycin blocked cholesterol-induced PV acidification and bacterial death. Additionally, treatment of infected HeLa cells with several FDA-approved cholesterol-altering drugs led to a loss of bacterial viability, a phenotype also rescued by bafilomycin. Collectively, these data suggest that increasing PV cholesterol further acidifies the PV, leading to Coxiella death. PMID:28246364
Kinetics of calcium oxalate crystal formation in urine.
Laube, Norbert; Klein, Florian; Bernsmann, Falk
2017-04-01
It is routinely observed that persons with increased urinary stone risk factors do not necessarily form uroliths. Furthermore, stone formers can present with urinalyses that do not reflect the clinical picture. We explain this discrepancy by differences in crystallization kinetics. In 1162 urines, crystallization of Ca-oxalate was induced according to the BONN-Risk-Index (BRI) method. The urine's relative light transmissivity (RLT) was recorded from 100 % at start of titration to 95 % due to nuclei formation and crystal growth. From the RLT changes, a measure of the thermodynamic inhibition threshold of crystal formation (BRI) and of crystal growth kinetics is derived ("turbidity slope" after crystallization onset). On average, subjects presenting with a low inhibition threshold, i.e., high BRI, also present significantly higher crystal growth rates compared with subjects in lower BRI classes. Only subjects in the highest BRI class show a lower growth rate than expected, probably due to a depletion of supersaturation by massive initial nucleation. With increasing thermodynamic risk of crystal formation (i.e., increasing BRI) due to an imbalance between inhibitors and promoters of crystal formation, an increase in the imbalance between inhibitors and promoters of crystal growth (i.e., increasing growth rate) is observed. Both lead to an increased urolith formation risk. Healthy subjects with increased BRI are an exception to this trend: their urine is thermodynamically prone to form stones, but they show a kinetic inhibition preventing nuclei from significant growth.
de Groot, Carolin; Müller-Goymann, Christel C
2016-12-01
Saponins are used in medicine due to their pharmacological and immunological effects. To better understand interactions of saponins with model membranes and natural membranes of, for example, erythrocytes, Langmuir film balance experiments are well established. For most saponins, a strong interaction with cholesterol was demonstrated in dependence of both the aglycone part and the sugar moieties and is suggested to be correlated with a strong hemolytic activity, high toxicity, and high surface activity, as was demonstrated for the steroid saponin digitonin. In general, changes in the sugar chain or in substituents of the aglycone result in a modification of the saponin properties. A promising saponin with regard to fairly low hemolytic activity and high adjuvant effect is α -tomatine, which still shows a high affinity for cholesterol. An interaction with cholesterol and lipids has also been proven for the Quillaja saponin from the bark of Quillaja saponaria Molina. This triterpene saponin was approved in marketed vaccines as an adjuvant due to the formation of immunostimulating complexes. Immunostimulating complexes consist of a Quillaja saponin, cholesterol, phospholipids, and a corresponding antigen. Recently, another saponin from Quillaja brasiliensis was successfully tested in immunostimulating complexes, too. Based on the results of interaction studies, the formation of drug delivery systems such as immunostimulating complexes or similar self-assembled colloids is postulated for a variety of saponins. Georg Thieme Verlag KG Stuttgart · New York.
Chemical and structural analysis of gallstones from the Indian subcontinent.
Ramana Ramya, J; Thanigai Arul, K; Epple, M; Giebel, U; Guendel-Graber, J; Jayanthi, V; Sharma, M; Rela, M; Narayana Kalkura, S
2017-09-01
Representative gallstones from north and southern parts of India were analyzed by a combination of physicochemical methods: X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), CHNS analysis, thermal analysis and Nuclear Magnetic Resonance (NMR) spectroscopy ( 1 H and 13 C). The stones from north Indian were predominantly consisting of cholesterol monohydrate and anhydrous cholesterol which was confirmed by XRD analysis. FTIR spectroscopy confirmed the presence of cholesterol and calcium bilirubinate in the south Indian gallstones. EDX spectroscopy revealed the presence of carbon, nitrogen, oxygen, calcium, sulfur, sodium and magnesium and chloride in both south Indian and north Indian gallstones. FTIR and NMR spectroscopy confirmed the occurrence of cholesterol in north Indian gallstones. The respective colour of the north Indian and south Indian gallstones was yellowish and black. The morphology of the constituent crystals of the north Indian and south Indian gallstones were platy and globular respectively. The appreciable variation in colour, morphology and composition of south and north Indian gallstones may be due to different food habit and habitat. Copyright © 2017 Elsevier B.V. All rights reserved.
Rodríguez-Carpena, Javier-Germán; Morcuende, David; Petrón, María Jesus; Estévez, Mario
2012-03-07
The effect of phenolic-rich extracts from avocado peel on the formation of cholesterol oxidation products (COPs) in porcine patties subjected to cooking and chill storage was studied. Eight COPs (7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, 20α-hydroxycholesterol, 25-hydroxycholesterol, cholestanetriol, 5,6β-epoxycholesterol, and 5,6α-epoxycholesterol) were identified and quantified by GC-MS. The addition of avocado extracts (∼600 GAE/kg patty) to patties significantly inhibited the formation of COPs during cooking. Cooked control (C) patties contained a larger variety and greater amounts of COPs than the avocado-treated (T) counterparts. COPs sharply increased in cooked patties during the subsequent chilled storage. This increase was significantly higher in C patties than in the T patties. Interestingly, the amount of COPs in cooked and chilled T patties was similar to those found in cooked C patties. The mechanisms implicated in cholesterol oxidation in a processed meat product, the protective effect of avocado phenolics, and the potential implication of lipid and protein oxidation are thoroughly described in the present paper.
Structure and function of lysosomal phospholipase A2 and lecithin:cholesterol acyltransferase
NASA Astrophysics Data System (ADS)
Glukhova, Alisa; Hinkovska-Galcheva, Vania; Kelly, Robert; Abe, Akira; Shayman, James A.; Tesmer, John J. G.
2015-03-01
Lysosomal phospholipase A2 (LPLA2) and lecithin:cholesterol acyltransferase (LCAT) belong to a structurally uncharacterized family of key lipid-metabolizing enzymes responsible for lung surfactant catabolism and for reverse cholesterol transport, respectively. Whereas LPLA2 is predicted to underlie the development of drug-induced phospholipidosis, somatic mutations in LCAT cause fish eye disease and familial LCAT deficiency. Here we describe several high-resolution crystal structures of human LPLA2 and a low-resolution structure of LCAT that confirms its close structural relationship to LPLA2. Insertions in the α/β hydrolase core of LPLA2 form domains that are responsible for membrane interaction and binding the acyl chains and head groups of phospholipid substrates. The LCAT structure suggests the molecular basis underlying human disease for most of the known LCAT missense mutations, and paves the way for rational development of new therapeutics to treat LCAT deficiency, atherosclerosis and acute coronary syndrome.
Real-time molecular scale observation of crystal formation.
Schreiber, Roy E; Houben, Lothar; Wolf, Sharon G; Leitus, Gregory; Lang, Zhong-Ling; Carbó, Jorge J; Poblet, Josep M; Neumann, Ronny
2017-04-01
How molecules in solution form crystal nuclei, which then grow into large crystals, is a poorly understood phenomenon. The classical mechanism of homogeneous crystal nucleation proceeds via the spontaneous random aggregation of species from liquid or solution. However, a non-classical mechanism suggests the formation of an amorphous dense phase that reorders to form stable crystal nuclei. So far it has remained an experimental challenge to observe the formation of crystal nuclei from five to thirty molecules. Here, using polyoxometallates, we show that the formation of small crystal nuclei is observable by cryogenic transmission electron microscopy. We observe both classical and non-classical nucleation processes, depending on the identity of the cation present. The experiments verify theoretical studies that suggest non-classical nucleation is the lower of the two energy pathways. The arrangement in just a seven-molecule proto-crystal matches the order found by X-ray diffraction of a single bulk crystal, which demonstrates that the same structure was formed in each case.
Inhibition of macrophage-derived foam cell formation by ezetimibe via the caveolin-1/MAPK pathway.
Qin, Li; Yang, Yun-Bo; Yang, Yi-Xin; Zhu, Neng; Liu, Zheng; Ni, Ya-Guang; Li, Shun-Xiang; Zheng, Xi-Long; Liao, Duan-Fang
2016-02-01
Ezetimibe, a selective inhibitor of intestinal cholesterol absorption, effectively reduces plasma cholesterol, but its effect on atherosclerosis is unclear. Foam cell formation has been implicated as a key mediator during the development of atherosclerosis. The purpose of this study was to investigate the effects of ezetimibe on foam cell formation and explore the underlying mechanism. The results presented here show that ezetimibe reduces atherosclerotic lesions in apolipoprotein E deficient (apoE-/-) mice by lowering cholesterol levels. Treatment of macrophages with Chol:MβCD resulted in foam cell formation, which was concentration-dependently inhibited by the presence of ezetimibe. Mechanically, ezetimibe treatment downregulated the expression of CD36 and scavenger receptor class B1 (SR-B1), but upregulated the expression of apoE and caveolin-1 in macrophage-derived foam cells, which kept consistent with our microarray results. Moreover, treatment with ezetimibe abrogated the increase of phospho-extracellular signal regulated kinase (ERK) 1/2 and their nuclear accumulation in foam cells. Inhibition of the MAPK pathway by the MEK inhibitor PD98059 attenuated the inhibitory effect of ezetimibe on the expression of p-ERK1/2 and caveolin-1. Taken together, these results showed that ezetimibe suppressed foam cell formation via the caveolin-1/MAPK signalling pathway, suggesting that inhibition of foam cell formation might be a novel mechanism underlying the anti-atherosclerotic effect of ezetimibe. © 2016 John Wiley & Sons Australia, Ltd.
Incidence of cholesterol in periapical biopsies among adolescent and elderly patients.
Slutzky-Goldberg, Iris; Baev, Valery; Volkov, Alexander; Zini, Avi; Tsesis, Igor
2013-12-01
Cholesterol clefts are common histologic findings in periapical biopsies; they have a reported incidence in periapical periodontitis of up to 44%. Cholesterol crystals are also recognized in advanced atherosclerotic plaques in humans. Male sex, genetic abnormalities, and age have been associated with advanced atherosclerotic lesions. Among these nonmodifiable risk factors, age is the most dominant. The aim of the study was to evaluate if age is also linked to cholesterol deposition in periapical periodontitis. The database of biopsy reports obtained between 2006 and 2009 was searched for specimens diagnosed as radicular cysts or periapical granulomas. Only data relating to biopsies obtained from adolescent (13-21 years old) and elderly (over 60 years old) patients were selected. The biopsies were examined by a pathologist under a light microscope (Zeiss, Jena, Germany) at magnifications of 40×-200×. The available material was scanned for the presence of cholesterol clefts and foamy cells in radicular cysts and granulomas. A total of 41 specimens were collected in the adolescent group and 48 specimens in the elderly group over a 4-year period. A higher incidence of cholesterol was found in the elderly group compared with that in the adolescent group (odds ratio = 6.857). The highly significant incidence of cholesterol deposits in periapical biopsies among elderly patients may be a possible cause for the lack of repair. The mechanism for cholesterol accumulation is probably similar to the process leading to atherosclerosis and coronary artery disease. Statin administration may be advantageous for the treatment of persistent lesions. A clinician should be aware of the risk for persistent lesions after endodontic treatment in elderly patients. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Box C/D small nucleolar RNA (snoRNA) U60 regulates intracellular cholesterol trafficking.
Brandis, Katrina A; Gale, Sarah; Jinn, Sarah; Langmade, Stephen J; Dudley-Rucker, Nicole; Jiang, Hui; Sidhu, Rohini; Ren, Aileen; Goldberg, Anna; Schaffer, Jean E; Ory, Daniel S
2013-12-13
Mobilization of plasma membrane (PM) cholesterol to the endoplasmic reticulum is essential for cellular cholesterol homeostasis. The mechanisms regulating this retrograde, intermembrane cholesterol transfer are not well understood. Because mutant cells with defects in PM to endoplasmic reticulum cholesterol trafficking can be isolated on the basis of resistance to amphotericin B, we conducted an amphotericin B loss-of-function screen in Chinese hamster ovary (CHO) cells using insertional mutagenesis to identify genes that regulate this trafficking mechanism. Mutant line A1 displayed reduced cholesteryl ester formation from PM-derived cholesterol and increased de novo cholesterol synthesis, indicating a deficiency in retrograde cholesterol transport. Genotypic analysis revealed that the A1 cell line contained one disrupted allele of the U60 small nucleolar RNA (snoRNA) host gene, resulting in haploinsufficiency of the box C/D snoRNA U60. Complementation and mutational studies revealed the U60 snoRNA to be the essential feature from this locus that affects cholesterol trafficking. Lack of alteration in predicted U60-mediated site-directed methylation of 28 S rRNA in the A1 mutant suggests that the U60 snoRNA modulates cholesterol trafficking by a mechanism that is independent of this canonical function. Our study adds to a growing body of evidence for participation of small noncoding RNAs in cholesterol homeostasis and is the first to implicate a snoRNA in this cellular function.
de Almeida, Rodrigo F M; Joly, Etienne
2014-01-01
To date, it is widely accepted that microdomains do form in the biological membranes of all eukaryotic cells, and quite possibly also in prokaryotes. Those sub-micrometric domains play crucial roles in signaling, in intracellular transport, and even in inter-cellular communications. Despite their ubiquitous distribution, and the broad and lasting interest invested in those microdomains, their actual nature and composition, and even the physical rules that regiment their assembly still remain elusive and hotly debated. One of the most often considered models is the raft hypothesis, i.e., the partition of lipids between liquid disordered and ordered phases (Ld and Lo, respectively), the latter being enriched in sphingolipids and cholesterol. Although it is experimentally possible to obtain the formation of microdomains in synthetic membranes through Ld/Lo phase separation, there is an ever increasing amount of evidence, obtained with a wide array of experimental approaches, that a partition between domains in Ld and Lo phases cannot account for many of the observations collected in real cells. In particular, it is now commonly perceived that the plasma membrane of cells is mostly in Lo phase and recent data support the existence of gel or solid ordered domains in a whole variety of live cells under physiological conditions. Here, we present a model whereby seeds comprised of oligomerised proteins and/or lipids would serve as crystal nucleation centers for the formation of diverse gel/crystalline nanodomains. This could confer the selectivity necessary for the formation of multiple types of membrane domains, as well as the stability required to match the time frames of cellular events, such as intra- or inter-cellular transport or assembly of signaling platforms. Testing of this model will, however, require the development of new methods allowing the clear-cut discrimination between Lo and solid nanoscopic phases in live cells.
Bali, Rachna; Savino, Laura; Ramirez, Diego A.; Tsvetkova, Nelly M.; Bagatolli, Luis; Tablin, Fern; Crowe, John H.; Leidy, Chad
2009-01-01
There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large domains. In contrast, some polarizable cells do show large regions with qualitative differences in lipid fluidity. It is important to ask more precisely, based on the current phase diagrams, under what conditions would large domains be expected to form in cells. In this work we study the thermotropic phase behavior of the platelet plasma membrane by FTIR, and compare it to a POPC/Sphingomyelin/Cholesterol model representing the outer leaflet composition. We find that this model closely reflects the platelet phase behavior. Previous work has shown that the platelet plasma membrane presents inhomogeneous distribution of DiI18:0 at 24°C, but not at 37°C, which suggests the formation of macroscopic lipid domains at low temperatures. We show by fluorescence microscopy, and by comparison with published phase diagrams, that the outer leaflet model system enters the macroscopic domain region only at the lower temperature. In addition, the low cholesterol content in platelets (~15 mol %), appears to be crucial for the formation of large domains during cooling. PMID:19341703
Tabares-Guevara, Jorge H.; Lara-Guzmán, Oscar J.; Londoño-Londoño, Julian A.; Sierra, Jelver A.; León-Varela, Yudy M.; Álvarez-Quintero, Rafael M.; Osorio, Edison J.; Ramirez-Pineda, José R.
2017-01-01
The accumulation of oxidized ApoB-100-containing lipoproteins in the vascular intima and its subsequent recognition by macrophages results in foam cell formation and inflammation, key events during atherosclerosis development. Agents targeting this process are considered potentially atheroprotective. Since natural biflavonoids exert antioxidant and anti-inflammatory effects, we evaluated the atheroprotective effect of biflavonoids obtained from the tropical fruit tree Garcinia madruno. To this end, the pure biflavonoid aglycones morelloflavone (Mo) and volkensiflavone (Vo), as well as the morelloflavone’s glycoside fukugiside (Fu) were tested in vitro in primary macrophages, whereas a biflavonoid fraction with defined composition (85% Mo, 10% Vo, and 5% Amentoflavone) was tested in vitro and in vivo. All biflavonoid preparations were potent reactive oxygen species (ROS) scavengers in the oxygen radical absorbance capacity assay, and most importantly, protected low-density lipoprotein particle from both lipid and protein oxidation. In biflavonoid-treated macrophages, the surface expression of the oxidized LDL (oxLDL) receptor CD36 was significantly lower than in vehicle-treated macrophages. Uptake of fluorescently labeled oxLDL and cholesterol accumulation were also attenuated in biflavonoid-treated macrophages and followed a pattern that paralleled that of CD36 surface expression. Fu and Vo inhibited oxLDL-induced ROS production and interleukin (IL)-6 secretion, respectively, whereas all aglycones, but not the glucoside Fu, inhibited the secretion of one or more of the cytokines IL-1β, IL-12p70, and monocyte chemotactic protein-1 (MCP-1) in lipopolysaccharide (LPS)-stimulated macrophages. Interestingly, in macrophages primed with low-dose LPS and stimulated with cholesterol crystals, IL-1β secretion was significantly and comparably inhibited by all biflavonoid preparations. Intraperitoneal administration of the defined biflavonoid fraction into ApoE−/− mice was atheroprotective, as evidenced by the reduction of the atheromatous lesion size and the density of T cells and macrophages infiltrating the aortic root; moreover, this treatment also lowered the circulating levels of cholesterol and the lipid peroxidation product malondialdehyde. These results reveal the potent atheroprotective effects exerted by biflavonoids on key events of the oxLDL–macrophage interphase: (i) atheroligand formation, (ii) atheroreceptor expression, (iii) foam cell transformation, and (iv) prooxidant/proinflammatory macrophage response. Furthermore, our results also evidence the antioxidant, anti-inflammatory, hypolipemiant, and atheroprotective effects of Garcinia madruno’s biflavonoids in vivo. PMID:28824646
The effect of simvastatin, aspirin, and their combination in reduction of atheroma plaque
NASA Astrophysics Data System (ADS)
Kurniati, Neng Fisheri; Permatasari, Anita
2015-09-01
Atherosclerosis is one of the risk factors of cardiovascular disease. Atherosclerosis is a chronic inflammatory disease caused by high level of cholesterol especially low density lipoprotein (LDL) and accumulation of neutrophil and macrophage in the artery wall. Thickness of aortic wall is an early stage of atherosclerosis plaque formation. Identification of atherosclerosis plaque formation was done by measuring level of total cholesterol, triglycerides, HDL, LDL, interleukin-18 (IL-18), myeloperoxidase (MPO) and measuring the thickness of aortic wall. Atherosclerosis's model induced by high fat diet and CCT (cholesterol, cholic acid, and propyltiouracil) oral administration. Rats induced cholesterol divided into positive control, simvastatin 25 mg/kg bw, aspirin 20 mg/kg bw, and combination simvastatin 25 mg/kg and aspirin 20 mg/kg bw group for 3 weeks. In the third week, therapy was given to atherosclerosis's model. Then, in the fourth and fifth week, therapy was given but induction of high cholesterol was stopped due to the massive loss of body weight. Total cholesterol, triglycerides, HDL, LDL, MPO, and IL-18 measured by uv-vis spectrophotometry and ELISA. In the end of therapy, aorta's rats was isolated to identify the thickness of aorta wall. In the fourth week, after 1 week of treatment, only combination group showed significantly higher total cholesterol, LDL and MPO compared to positive control group. Level of triglycerides and HDL in all groups did not significantly differ compared to positive control group. After 2 weeks continuing drug treatment, the level of total cholesterol, MPO, and IL-18 were decreased in all groups, and aspirin group showed the lowest level. The level of triglycerides was decreased in simvastatin and aspirin group, and aspirin group showed the lowest. Only combination group showed the lowest level of LDL. Based on histopathology result, the thickness of aortic wall was reduced in all groups and aspirin group showed the lowest.
NASA Astrophysics Data System (ADS)
Ohzeki, Katsuhisa; Hosoya, Yoichi
2007-07-01
A study was made on the probability of twin plane formation during the nucleation of AgBr and AgCl crystals. The growth condition was controlled to keep the number of the nuclei, neither decreasing owing to their dissolution, nor increasing owing to the formation of a new nucleus during the growth process. Under the condition, the nuclei were grown to have {1 1 1} faces on their surfaces by controlling pAg in a reaction solution and by use of growth modifier in case of AgCl crystal formation. The number of twin planes in each crystal was judged according to a conventional way on the basis of its morphology. The dependence of the number of twin planes per crystal on the probability of twin plain formation was in accordance with Poisson distribution, indicating the random formation of a twin plane on the {1 1 1} faces of a nucleus. The result that the ratio of number of AgCl crystals with parallel twin planes to all the multiply twinned crystals was about 10% supports the random formation of a twin plane and suggests that the twin plane formation took place on {1 1 1} surfaces at the possible eight corner of a nucleus. On the other hand, the ratio of the number of AgBr crystals with parallel twin planes to all the multiply twinned crystals was more than 50%. The result was explained by the anisotropic growth of a singly twinned nucleus according to the higher growth rate of {1 0 0} surfaces than that of {1 1 1} surfaces.
Souza, Hugo A L; Mariutti, Lilian R B; Bragagnolo, Neura
2017-05-01
A novel microwave-assisted direct saponification method for the simultaneous determination of cholesterol and cholesterol oxides in shrimp was developed and validated. Optimal saponification conditions, determined by means of an experimental design, were achieved using 500mg of sample and 20mL of 1mol/L KOH ethanol solution for 16min at 45°C at maximum power at 200W and magnetic stirring at 120rpm. Higher extraction of cholesterol oxides in a reduced saponification time (∼75 times) was achieved in comparison with the direct cold saponification method. The new method showed low detection (≤0.57μg/mL) and quantification (≤1.73μg/mL) limits, good repeatability (≤10.50% intraday and ≤8.56% interday) and low artifact formation (evaluated by using a deuterated cholesterol-D6 standard). Raw, salted and dried-salted shrimps were successfully analyzed by the validated method. The content of cholesterol oxides increased after salting and decreased after drying. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pol, Albert; Luetterforst, Robert; Lindsay, Margaret; Heino, Sanna; Ikonen, Elina; Parton, Robert G.
2001-01-01
Recent studies have indicated a role for caveolin in regulating cholesterol-dependent signaling events. In the present study we have analyzed the role of caveolins in intracellular cholesterol cycling using a dominant negative caveolin mutant. The mutant caveolin protein, cav-3DGV, specifically associates with the membrane surrounding large lipid droplets. These structures contain neutral lipids, and are accessed by caveolin 1–3 upon overexpression. Fluorescence, electron, and video microscopy observations are consistent with formation of the membrane-enclosed lipid rich structures by maturation of subdomains of the ER. The caveolin mutant causes the intracellular accumulation of free cholesterol (FC) in late endosomes, a decrease in surface cholesterol and a decrease in cholesterol efflux and synthesis. The amphiphile U18666A acts synergistically with cavDGV to increase intracellular accumulation of FC. Incubation of cells with oleic acid induces a significant accumulation of full-length caveolins in the enlarged lipid droplets. We conclude that caveolin can associate with the membrane surrounding lipid droplets and is a key component involved in intracellular cholesterol balance and lipid transport in fibroblasts. PMID:11238460
NASA Astrophysics Data System (ADS)
Bhatt, Jitkumar; Mondal, Dibyendu; Prasad, Kamalesh
2016-05-01
Deep eutectic solvents (DESs) obtained by the complexation of choline chloride (ChoCl) as hydrogen bond acceptor and hydrogen bond donors such as ethylene glycol (ChoCl-EG 1:2) and glycerol (ChoCl-Gly 1:2) were used as media for the formation of AgCl crystals. Although formation of AgCl crystals was observed in both the solvents but the rate of formation of crystals was faster in ChoCl-EG 1:2 at low temperature (4-5 °C). In the crystals, cholinium cations were found to be present with chloride ions bridged with Ag ions resulting generation of 1D network of AgCl2 anions.
Ding, Jiaxi; Jiang, DeChen; Kurczy, Michael; Nalepka, Jennifer; Dudley, Brian; Merkel, Erin I; Porter, Forbes D; Ewing, Andrew G; Winograd, Nicholas; Burgess, James; Molyneaux, Kathleen
2008-01-01
Background Primordial germ cells (PGCs) are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. Results We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR) resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. Conclusion In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival. PMID:19117526
Cholesterol Balance in Prion Diseases and Alzheimer’s Disease
Hannaoui, Samia; Shim, Su Yeon; Cheng, Yo Ching; Corda, Erica; Gilch, Sabine
2014-01-01
Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI) anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer’s disease (AD): whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD. PMID:25419621
Crystallization Pathways in Biomineralization
NASA Astrophysics Data System (ADS)
Weiner, Steve; Addadi, Lia
2011-08-01
A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.
Stewart, Sarah E; Bird, Catherina H; Tabor, Rico F; D'Angelo, Michael E; Piantavigna, Stefania; Whisstock, James C; Trapani, Joseph A; Martin, Lisandra L; Bird, Phillip I
2015-12-25
Perforin is an essential component in the cytotoxic lymphocyte-mediated cell death pathway. The traditional view holds that perforin monomers assemble into pores in the target cell membrane via a calcium-dependent process and facilitate translocation of cytotoxic proteases into the cytoplasm to induce apoptosis. Although many studies have examined the structure and role of perforin, the mechanics of pore assembly and granzyme delivery remain unclear. Here we have employed quartz crystal microbalance with dissipation monitoring (QCM-D) to investigate binding and assembly of perforin on lipid membranes, and show that perforin monomers bind to the membrane in a cooperative manner. We also found that cholesterol influences perforin binding and activity on intact cells and model membranes. Finally, contrary to current thinking, perforin efficiently binds membranes in the absence of calcium. When calcium is added to perforin already on the membrane, the QCM-D response changes significantly, indicating that perforin becomes membranolytic only after calcium binding. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Purification and ATPase activity of human ABCA1.
Takahashi, Kei; Kimura, Yasuhisa; Kioka, Noriyuki; Matsuo, Michinori; Ueda, Kazumitsu
2006-04-21
ATP-binding cassette protein A1 (ABCA1) plays a major role in cholesterol homeostasis and high density lipoprotein metabolism. Apolipoprotein A-I binds to ABCA1 and cellular cholesterol and phospholipids, mainly phosphatidylcholine, are loaded onto apoA-I to form pre-beta high density lipoprotein (HDL). It is proposed that ABCA1 translocates phospholipids and cholesterol directly or indirectly to form pre-beta HDL. To explore the mechanism of ABCA1-mediated pre-beta HDL formation, we expressed human ABCA1 in insect Sf9 cells and purified it. Trypsin limited-digestion of purified ABCA1 in the detergent-soluble form suggested that it retained conformation similar to ABCA1 expressed in the membranes of human fibroblast WI-38 cells. Purified ABCA1 showed robust ATPase activity when reconstituted in liposomes made of synthetic phosphatidylcholine. ABCA1 showed lower ATPase activity when reconstituted in liposomes containing phosphatidylserine, phosphatidylethanolamine, or phosphatidylglycerol and also showed weak specificity in acyl chain species. ATPase activity was reduced by the addition of cholesterol and decreased by 25% in the presence of 20% cholesterol. Beta-sitosterol and campesterol showed similar inhibitory effects but stigmasterol did not, suggesting structure-specific interaction between ABCA1 and sterols. Glibenclamide suppressed ABCA1 ATPase, suggesting that it inhibits apoA-I-dependent cellular cholesterol efflux by suppressing ABCA1 ATPase activity. These results suggest that the ATPase activity of ABCA1 is stimulated preferentially by phospholipids with choline head groups, phosphatidylcholine and sphingomyelin. This study with purified human ABCA1 provides the first biochemical basis of the mechanism for HDL formation mediated by ABCA1.
Ozone-derived Oxysterols Affect Liver X Receptor (LXR) Signaling
Kim, Hye-Young H.; Bauer, Rebecca N.; Fessler, Michael B.; Duncan, Kelly E.; Liu, Wei; Porter, Ned A.
2016-01-01
When inhaled, ozone (O3) interacts with cholesterols of airway epithelial cell membranes or the lung-lining fluid, generating chemically reactive oxysterols. The mechanism by which O3-derived oxysterols affect molecular function is unknown. Our data show that in vitro exposure of human bronchial epithelial cells to O3 results in the formation of oxysterols, epoxycholesterol-α and -β and secosterol A and B (Seco A and Seco B), in cell lysates and apical washes. Similarly, bronchoalveolar lavage fluid obtained from human volunteers exposed to O3 contained elevated levels of these oxysterol species. As expected, O3-derived oxysterols have a pro-inflammatory effect and increase NF-κB activity. Interestingly, expression of the cholesterol efflux pump ATP-binding cassette transporter 1 (ABCA1), which is regulated by activation of the liver X receptor (LXR), was suppressed in epithelial cells exposed to O3. Additionally, exposure of LXR knock-out mice to O3 enhanced pro-inflammatory cytokine production in the lung, suggesting LXR inhibits O3-induced inflammation. Using alkynyl surrogates of O3-derived oxysterols, our data demonstrate adduction of LXR with Seco A. Similarly, supplementation of epithelial cells with alkynyl-tagged cholesterol followed by O3 exposure causes observable lipid-LXR adduct formation. Experiments using Seco A and the LXR agonist T0901317 (T09) showed reduced expression of ABCA1 as compared with stimulation with T0901317 alone, indicating that Seco A-LXR protein adduct formation inhibits LXR activation by traditional agonists. Overall, these data demonstrate that O3-derived oxysterols have pro-inflammatory functions and form lipid-protein adducts with LXR, thus leading to suppressed cholesterol regulatory gene expression and providing a biochemical mechanism mediating O3-derived formation of oxidized lipids in the airways and subsequent adverse health effects. PMID:27703007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Yuka; Tada-Oikawa, Saeko; Ichihara, Gaku
Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocytemore » chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.« less
Characterization of Medicago truncatula reduced calcium oxalate crystal mutant alleles
USDA-ARS?s Scientific Manuscript database
Calcium oxalate crystal formation is common in plants. Formation of these crystals has been shown to function in plant defense, calcium regulation, and aluminum tolerance. Although calcium oxalate is common and plays important roles in plant development, our understanding of how these crystals form ...
Food crystallization and eggs.
USDA-ARS?s Scientific Manuscript database
Egg products can be utilized to control crystallization in a diverse realm of food products. Albumen and egg yolk can aid in the control of sugar crystal formation in candies. Egg yolk can enhance the textural properties and aid in the control of large ice crystal formation in frozen desserts. In...
Cholesterol effectively blocks entry of flavivirus.
Lee, Chyan-Jang; Lin, Hui-Ru; Liao, Ching-Len; Lin, Yi-Ling
2008-07-01
Japanese encephalitis virus (JEV) and dengue virus serotype 2 (DEN-2) are enveloped flaviviruses that enter cells through receptor-mediated endocytosis and low pH-triggered membrane fusion and then replicate in intracellular membrane structures. Lipid rafts, cholesterol-enriched lipid-ordered membrane domains, are platforms for a variety of cellular functions. In this study, we found that disruption of lipid raft formation by cholesterol depletion with methyl-beta-cyclodextrin or cholesterol chelation with filipin III reduces JEV and DEN-2 infection, mainly at the intracellular replication steps and, to a lesser extent, at viral entry. Using a membrane flotation assay, we found that several flaviviral nonstructural proteins are associated with detergent-resistant membrane structures, indicating that the replication complex of JEV and DEN-2 localizes to the membranes that possess the lipid raft property. Interestingly, we also found that addition of cholesterol readily blocks flaviviral infection, a result that contrasts with previous reports of other viruses, such as Sindbis virus, whose infectivity is enhanced by cholesterol. Cholesterol mainly affected the early step of the flavivirus life cycle, because the presence of cholesterol during viral adsorption greatly blocked JEV and DEN-2 infectivity. Flavirial entry, probably at fusion and RNA uncoating steps, was hindered by cholesterol. Our results thus suggest a stringent requirement for membrane components, especially with respect to the amount of cholesterol, in various steps of the flavivirus life cycle.
An extended chemical analysis of gallstone.
Chandran, P; Kuchhal, N K; Garg, P; Pundir, C S
2007-09-01
Chemical composition of gall stones is essential for aetiopathogensis of gallstone disease. We have reported quantitative chemical analysis of total cholesterol bilirubin, calcium, iron and inorganic phosphate in 120 gallstones from haryana. To extend this chemical analysis of gall stones by studying more cases and by analyzing more chemical constituents. A quantitative chemical analysis of total cholesterol, total bilirubin, fatty acids, triglycerides, phospholipids, bile acids, soluble proteins, sodium potassium, magnesium, copper, oxalate and chlorides of biliary calculi (52 cholesterol, 76 mixed and 72 pigment) retrieved from surgical operation of 200 patients from Haryana state was carried out. Total cholesterol as the major component and total bilirubin, phospholipids, triglycerides, bile acids, fatty acids (esterified), soluble protein, calcium, magnesium, iron, copper, sodium, potassium, inorganic phosphate, oxalate and chloride as minor components were found in all types of calculi. The cholesterol stones had higher content of total cholesterol, phospholipids, fatty acids (esterified), inorganic phosphate and copper compared to mixed and pigment stones. The mixed stones had higher content of iron and triglycerides than to cholesterol and pigment stones. The pigment stones were richer in total bilirubin, bile acids, calcium, oxalate, magnesium, sodium, potassium, chloride and soluble protein compared to cholesterol and mixed stones. Although total cholesterol was a major component of cholesterol, mixed and pigment gall stone in Haryana, the content of most of the other lipids, cations and anions was different in different gall stones indicating their different mechanism of formation.
Michihara, Akihiro; Mido, Mayuko; Matsuoka, Hiroshi; Mizutani, Yurika
2015-01-01
A lower serum cholesterol level was recently shown to be one of the causes of stroke in an epidemiological study. Spontaneously hypertensive rats stroke-prone (SHRSP) have lower serum cholesterol levels than normotensive Wistar-Kyoto rats (WKY). To elucidate the mechanisms responsible for the lower serum cholesterol levels in SHRSP, we determined whether the amounts of cholesterol biosynthetic enzymes or the receptor and transporter involved in cholesterol uptake and efflux in the liver were altered in SHRSP. When the mRNA levels of seven cholesterol biosynthetic enzymes were measured using real-time polymerase chain reaction (PCR), farnesyl pyrophosphate synthase and squalene epoxidase (SQE) levels in the liver of SHRSP were significantly lower than those in WKY. SQE protein levels were significantly reduced in tissues other than the brain of SHRSP. No significant differences were observed in low-density lipoprotein (LDL) receptor (uptake of serum LDL-cholesterol) or ATP-binding cassette transporter A1 (efflux of cholesterol from the liver/formation of high-density lipoprotein (HDL)) protein levels in the liver and testis between SHRSP and WKY, whereas scavenger receptor class B type 1 (SRB1: uptake of serum HDL-cholesterol) protein levels were higher in the livers of SHRSP. These results indicated that the lower protein levels of SQE and higher protein levels of SRB1 in the liver were involved in the reduced serum cholesterol levels in SHRSP.
Formation and electrical transport properties of pentacene nanorod crystal.
Akai-Kasaya, M; Ohmori, C; Kawanishi, T; Nashiki, M; Saito, A; Aono, M; Kuwahara, Y
2010-09-10
The monophasic formation of an uncharted pentacene crystal, the pentacene nanorod, has been investigated. The restricted formation of the pentacene nanorod on a bare mica surface reveals a peculiar surface catalytic crystal growth mode of the pentacene. We demonstrated the charge transport measurements through a single pentacene nanorod and analyzed the data using a periodic hopping conduction model. The results revealed that the pentacene nanorod has a periodic conductive node within their one-dimensional crystal.
Laird, Dougal F; Mucalo, Michael R; Yokogawa, Yoshiyuki
2006-03-15
An experimental study into calcium phosphate (CP) nucleation and growth on cholesterol and cholestanol surfaces from a supersaturated simulated body fluid (SBF) is presented with the overall aim of gaining some fundamental insights into the pathological calcifications associated with atherosclerosis. Soaking of pressed cholesterol disks at physiological temperature in SBF solutions was found to lead to CP nucleation and growth if the disks were surface roughened and if an SBF with concentrations of the calcium and hydrogen phosphate ions at 2.25x physiological concentrations was used. The CP phase deposited was shown via SEM micrographs to possess a florette type morphology akin to that observed in earlier reported studies. The use of recrystallised cholesterol and cholestanol microcrystals as substrates for soaking in SBF facilitated the observation of CP deposition. In general, cholesterol recrystallised from polar solvents like 95% ethanol as a cholesterol monohydrate phase which was a better substrate for CP growth than cholesterol recrystallised from more non-polar solvents (e.g., benzene) which produced anhydrous cholesterol phases. CP was also observed to form on recrystallised cholestanol microcrystals, a molecule closely related to cholesterol. Inductively coupled plasma optical emission spectrometry (ICP-OES) data gave confirmation that Ca:P mole ratios of the grown CP were 1.3-1.5 suggesting a mixed phase of octacalcium phosphate (OCP) and Ca-deficient HAp and that the CP coating grows (with time of soaking) on the substrates after nucleation in the SBF growth medium. Infrared (IR) spectra of the extracted coatings from the cholesterol substrates confirmed that the CP phase deposited is a semi crystalline HAp with either carbonate substituted into its structure or else co-deposited as calcium carbonate. Soaking experiments involving modified cholesterol substrates in which the OH group in the molecule was replaced with the oleiyl or phosphonate group showed no CP nucleation and growth. This observation illustrates the importance of the known epitaxial relationship between cholesterol and HAp (which theoretically predicts favourable deposition of one phase upon the other) and the consequences of its destruction (by chemical modification of the cholesterol). In the case of the phosphorylated cholesterol, failure of this substrate to nucleate CP phases may have also been caused by the reduction in concentration of free solution Ca2+ in the SBF medium by complexation with the phosphonate groups on the phosphorylated cholesterol. This would have reduced the ion product of Ca2+ and inorganic phosphate and lowered the degree of supersaturation in the SBF medium.
A study on inclusion formation mechanism in alpha-LiIO sub 3 crystals
NASA Technical Reports Server (NTRS)
Chen, W. C.; Yan, S. L.; Jia, S. Q.; Du, S. Y.
1985-01-01
The spatial distribution of inclusions in alpha-LiIO3 crystals by means of an argon laser beam scanning technique is studied. The effects of crystal dimensions and solution fluid flow on the inclusion formation in the alpha-LiIO3 crystals were observed. It was further shown that the fluid flow plays an important role in the formation of inclusions. The results obtained were further applied and verified by growing a perfect alpha-LiIO3 single crystal. An experimental foundation for further theoretical studies on the causes of inclusions may be provided.
Solution-grown crystals for neutron radiation detectors, and methods of solution growth
Zaitseva, Natalia; Carman, M Leslie; Payne, Steve
2014-10-28
An organic crystal according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. Methods of making such crystals are also provided.
Petersson, Erik V.; Nahar, Nurun; Dahlin, Paul; Broberg, Anders; Tröger, Rikard; Dutta, Paresh C.; Jonsson, Lisbeth; Sitbon, Folke
2013-01-01
Steroidal glycoalkaloids (SGA) are toxic secondary metabolites naturally occurring in the potato, as well as in certain other Solanaceous plant species, such as tomato, eggplant and pepper. To investigate the steroidal origin of SGA biosynthesis, cut potato shoots were fed cholesterol labelled with deuterium (D) in the sterol ring structure (D5- or D6-labelled), or side chain (D7-labelled), and analysed after three or five weeks. The labelled cholesterol and presence of D-labelled SGA were analysed by GC-MS and LC-MS/MS, respectively. When feeding D-labelled cholesterol solubilised in Tween-80, labelled cholesterol in free form became present in both leaves and stems, although the major part was recovered as steryl esters. Minor amounts of D-labelled SGA (α-solanine and α-chaconine) were identified in cholesterol-treated shoots, but not in blank controls, or in shoots fed D6-27-hydroxycholesterol. Solubilising the labelled cholesterol in methyl-β-cyclodextrin instead of Tween-80 increased the levels of labelled SGA up to 100-fold, and about 1 mole% of the labelled cholesterol was recovered as labelled SGA in potato leaves. Both side chain and ring structure D labels were retained in SGA, showing that the entire cholesterol molecule is converted to SGA. However, feeding side chain D7-labelled cholesterol resulted in D5-labelled SGA, indicating that two hydrogen atoms were released during formation of the SGA nitrogen-containing ring system. Feeding with D7-sitosterol did not produce any labelled SGA, indicating that cholesterol is a specific SGA precursor. In conclusion, we have demonstrated a superior performance of methyl-β-cyclodextrin for delivery of cholesterol in plant tissue feeding experiments, and given firm evidence for cholesterol as a specific sterol precursor of SGA in potato. PMID:24349406
Cohen, R D; Castellani, L W; Qiao, J H; Van Lenten, B J; Lusis, A J; Reue, K
1997-01-01
Transgenic mouse lines carrying several copies of the mouse apo A-IV gene were produced. Lipoprotein composition and function, and aortic lesion development were examined. Apo A-IV levels in the plasma of transgenic mice were elevated threefold compared with nontransgenic littermates on a chow diet, and sixfold in mice fed an atherogenic diet. Plasma concentrations of total cholesterol, HDL cholesterol, triglycerides, and free fatty acids were similar in transgenic and control mice fed a chow diet. However, with the atherogenic diet, male transgenic mice exhibited significantly higher levels of plasma triglycerides (P < 0.05), total cholesterol (P < 0.01), HDL cholesterol (P < 0.0001), and free fatty acids (P < 0.05), and lower levels of unesterified cholesterol (P < 0.05), than nontransgenic littermates. Expression of the apo A-IV transgene had a protective effect against the formation of diet-induced aortic lesions, with transgenics exhibiting lesion scores of approximately 30% those seen in control mice. HDL-sized lipoproteins isolated from transgenic mice fed the atherogenic diet promoted cholesterol efflux from cholesterol-loaded human monocytes more efficiently than comparable lipoproteins from nontransgenic counterparts. Plasma from transgenics also exhibited higher endogenous cholesterol esterification rates. Taken together, these results suggest that apo A-IV levels influence the metabolism and antiatherogenic properties of HDL. PMID:9109435
He, Jiangping; Zhang, Guangya; Pang, Qi; Yu, Cong; Xiong, Jie; Zhu, Jing; Chen, Fengling
2017-05-01
SIRT6 is a pivotal regulator of lipid metabolism. It is also closely connected to cardiovascular diseases, which are the main cause of death in diabetic patients. We observed a decrease in the expression of SIRT6 and key autophagy effectors (ATG5, LC3B, and LAMP1) in ox-LDL-induced foam cells, a special form of lipid-laden macrophages. In these cells, SIRT6 WT but not SIRT6 H133Y overexpression markedly reduced foam cell formation, as shown by Oil Red O staining, while inducing autophagy flux, as determined by both mRFP-GFP-LC3 labeling and transmission electron microscopy. Silencing the key autophagy initiation gene ATG5, reversed the autophagy-promoting effect of SIRT6 in ox-LDL-treated THP1 cells, as evidenced by an increase in foam cells. Cholesterol efflux assays indicated that SIRT6 overexpression in foam cells promoted cholesterol efflux, increased the levels of ABCA1 and ABCG1, and reduced miR-33 levels. By transfecting miR-33 into cells overexpressing SIRT6, we observed that reduced foam cell formation and autophagy flux induction were largely reversed. These data imply that SIRT6 plays an essential role in protecting against atherosclerosis by reducing foam cell formation through an autophagy-dependent pathway. © 2017 Federation of European Biochemical Societies.
Moon, Sung Sil
2014-01-01
This study investigated the effects of cooking methods on the digestibility of lipids and formation of cholesterol oxidation products (COPs) in pork, during in vitro human digestion. Pork patties were cooked using four different methods (oven cooking, pan frying, boiling, and microwaving), to an internal temperature of approximately 85℃. The digestibility of pork patties were then evaluated, using the in vitro human digestion model that simulated the composition (pH, minerals, surfaceactive components, and enzymes) of digestive juices in the human mouth, stomach, and small intestine. The total lipid digestibility was higher after microwave cooking, whereas pan-frying resulted in lower in vitro digestibility, compared to the other cooking methods. The microwaving method followed by in vitro digestion also showed significantly higher content of free fatty acids and thiobarbituric acid reactive substances (TBARS), compared to the other cooking methods; whereas, the pan frying and boiling methods showed the lowest. Cholesterol content was not significantly different among the cooked samples before, and after in vitro human digestion. The formation of COPs was significantly higher in the microwave-treated pork samples, compared to those cooked by the other methods, which was consistent with the trend for lipid peroxidation (TBARS). We propose that from the point of view of COPs formation and lipid oxidation, the pan-frying or boiling methods would be useful. PMID:26761168
Vejux, Anne; Samadi, Mohammad; Lizard, Gérard
2011-01-01
The development of cataract is associated with some lipid changes in human lens fibers, especially with increased accumulation and redistribution of cholesterol inside these cells. Some direct and indirect lines of evidence, also suggest an involvement of cholesterol oxide derivatives (also named oxysterols) in the development of cataract. Oxysterol formation can result either from nonenzymatic or enzymatic processes, and some oxysterols can induce a wide range of cytotoxic effects (overproduction of reactive oxygen species (ROS); phospholipidosis) which might contribute to the initiation and progression of cataract. Thus, the conception of molecules capable of regulating cholesterol homeostasia and oxysterol levels in human lens fibers can have some interests and constitute an alternative to surgery at least at early stages of the disease. PMID:21577274
The Smith-Lemli-Opitz syndrome
Kelley, R.; Hennekam, R.
2000-01-01
The Smith-Lemli-Opitz syndrome (SLOS) is one of the archetypical multiple congenital malformation syndromes. The recent discovery of the biochemical cause of SLOS and the subsequent redefinition of SLOS as an inborn error of cholesterol metabolism have led to important new treatment possibilities for affected patients. Moreover, the recent recognition of the important role of cholesterol in vertebrate embryogenesis, especially with regard to the hedgehog embryonic signalling pathway and its effects on the expression of homeobox genes, has provided an explanation for the abnormal morphogenesis in the syndrome. The well known role of cholesterol in the formation of steroid hormones has also provided a possible explanation for the abnormal behavioural characteristics of SLOS. Keywords: Smith-Lemli-Opitz syndrome; cholesterol metabolism; 7-dehydrocholesterol reductase; clinical history; management PMID:10807690
Cui, Yunfeng; Li, Zhonglian; Zhao, Erpeng; Zhang, Ju; Cui, Naiqiang
2012-01-01
Aims: We designed this study to get insight into the disorder of lipid metabolism during cholesterol gallstone formation and evaluate the effect of ursodeoxycholic acid on the improvement of bile lithogenicity and on expression of lipid related genes. Methods: Rabbit cholesterol gallstone models were induced by high cholesterol diet. Bile, blood and liver tissues were obtained from rabbits after 0, 1, 2, 3, 4 and 5 weeks. Bile and blood lipids were measured enzymatically. 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), cytochrome P450, family 7, subfamily A, polypeptide 1 (CYP7A1) and sterol carrier protein 2 (SCP2) mRNA expressions were detected by using quantitative real-time RT-PCR. Cholesterol saturation index (CSI) was calculated by using Carey table to represent the bile lithogenicity. Results: Rates of gallstone formation of the 4 and 5 week treatment groups were 100 %, but that of the ursodeoxycholic acid treatment group was only 33.3 %. Expression of HMGCR and SCP2 mRNA in the 4 week group was upregulated and that of CYP7A1 mRNA decreased as compared with the 0 week group. Ursodeoxycholic acid could significantly extend nucleation time of bile and lower CSI. Ursodeoxycholic acid could reduce the expression of SCP2, but couldn't influence expression of HMGCR and CYP7A1. Conclusions: Abnormal expression of HMGCR, CYP7A1 and SCP2 might lead to high lithogenicity of bile. Ursodeoxycholic acid could improve bile lipids and lower bile lithogenicity, thereby reducing the incidence of gallstones. So it might be a good preventive drug for cholesterol gallstones. PMID:27847447
Lavoie, Jean-Marc
2016-01-01
Plasma cholesterol level is determined by a complex dynamics that involves transport lipoproteins which levels are tightly dependent on how the liver and the intestine regulate cholesterol and biliary acid metabolism. Regulation of cholesterol and biliary acids by the liver and the intestine is in turn coupled to a large array of enzymes and transporters that largely influence the inflow and the outflow of cholesterol and biliary acids through these organs. The activity of the key regulators of cholesterol and biliary acids may be influenced by several external factors such as pharmacological drugs and the nutritional status. In recent years, more information has been gathered about the impact of estrogens on regulation of cholesterol in the body. Exposure to high levels of estrogens has been reported to promote cholesterol gallstone formation and women are twice as likely as men to develop cholesterol gallstones. The impact of estrogen withdrawal, such as experienced by menopausal women, is therefore of importance and more information on how the absence of estrogens influence cholesterol regulation is started to come out, especially through the use of animal models. An interesting alternative to metabolic deterioration due to estrogen deficiency is exercise training. The present review is intended to summarize the present information that links key regulators of cholesterol and biliary acid pathways in liver and intestine to the absence of estrogens in an animal model and to discuss the potential role of exercise training as an alternative. PMID:27621762
Keizer, Hiskias G
2012-11-05
The "cholesterol hypothesis" is the leading theory to explain the cause of atherosclerosis. The "cholesterol hypothesis" assumes that plasma (LDL) cholesterol is an important causal factor for atherosclerosis.However, data of at least seven placebo controlled randomized prospective trials with various cholesterol lowering drugs show that plasma cholesterol lowering does not necessarily lead to protection against cardiovascular disease. Therefore an alternative hypothesis for the etiology of cardiovascular disease is formulated. This alternative hypothesis, the "mevalonate hypothesis", assumes that after stimulation of the mevalonate pathway in endothelial cells by inflammatory factors, these cells start producing cholesterol and free radicals. In this hypothesis, only the latter play a role in the etiology of atherosclerosis by contributing to the formation of oxidized cholesterol which is a widely accepted causal factor for atherosclerosis.Regardless of how the mevalonate pathway is activated (by withdrawal of statin drugs, by inflammatory factors or indirectly by reduced intracellular cholesterol levels) in all these cases free radical production is observed as well as cardiovascular disease. Since in the "mevalonate hypothesis" cholesterol is produced at the same time as the free radicals causing atherosclerosis, this hypothesis provides an explanation for the correlation which exists between cardiovascular disease and plasma cholesterol levels. From an evolutionary perspective, concomitant cholesterol production and free radical production in response to inflammatory factors makes sense if one realizes that both activities potentially protect cells and organisms from infection by gram-negative bacteria.In conclusion, data have been collected which suggest that activation of the mevalonate pathway in endothelial cells is likely to be a causal factor for atherosclerosis. This "mevalonate hypothesis" provides a better explanation for results obtained from recent clinical studies with cholesterol lowering drugs than the "cholesterol hypothesis". Furthermore, this hypothesis explains how cholesterol can be correlated with cardiovascular disease without being a causal factor for it. Finally it provides a logical explanation for the etiology of this disease.
Vesicle Origami and the Influence of Cholesterol on Lipid Packing.
Tanasescu, Radu; Lanz, Martin A; Mueller, Dennis; Tassler, Stephanie; Ishikawa, Takashi; Reiter, Renate; Brezesinski, Gerald; Zumbuehl, Andreas
2016-05-17
The artificial phospholipid Pad-PC-Pad was analyzed in 2D (monolayers at the air/water interface) and 3D (aqueous lipid dispersions) systems. In the gel phase, the two leaflets of a Pad-PC-Pad bilayer interdigitate completely, and the hydrophobic bilayer region has a thickness comparable to the length of a single phospholipid acyl chain. This leads to a stiff membrane with no spontaneous curvature. Forced into a vesicular structure, Pad-PC-Pad has faceted geometry, and in its extreme form, tetrahedral vesicles were found as predicted a decade ago. Above the main transition temperature, a noninterdigitated Lα phase with fluid chains has been observed. The addition of cholesterol leads to a slight decrease of the main transition temperature and a gradual decrease in the transition enthalpy until the transition vanishes at 40 mol % cholesterol in the mixture. Additionally, cholesterol pulls the chains apart, and a noninterdigitated gel phase is observed. In monolayers, cholesterol has an ordering effect on liquid-expanded phases and disorders condensed phases. The wavenumbers of the methylene stretching vibration indicate the formation of a liquid-ordered phase in mixtures with 40 mol % cholesterol.
Mermelstein, Cláudia S; Portilho, Débora M; Mendes, Fábio A; Costa, Manoel L; Abreu, José Garcia
2007-03-01
Myogenic differentiation is a multistep process that begins with the commitment of mononucleated precursors that withdraw from cell cycle. These myoblasts elongate while aligning to each other, guided by the recognition between their membranes. This step is followed by cell fusion and the formation of long and striated multinucleated myotubes. We have recently shown that cholesterol depletion by methyl-beta-cyclodextrin (MbetaCD) induces myogenic differentiation by enhancing myoblast recognition and fusion. Here, we further studied the signaling pathways responsible for early steps of myogenesis. As it is known that Wnt plays a role in muscle differentiation, we used the chemical MbetaCD to deplete membrane cholesterol and investigate the involvement of the Wnt/beta-catenin pathway during myogenesis. We show that cholesterol depletion promoted a significant increase in expression of beta-catenin, its nuclear translocation and activation of the Wnt pathway. Moreover, we show that the activation of the Wnt pathway after cholesterol depletion can be inhibited by the soluble protein Frzb-1. Our data suggest that membrane cholesterol is involved in Wnt/beta-catenin signaling in the early steps of myogenic differentiation.
Kruth, Howar S
2013-01-01
Circulating low-density lipoprotein (LDL) that enters the blood vessel wall is the main source of cholesterol that accumulates within atherosclerotic plaques. Much of the deposited cholesterol accumulates within plaque macrophages converting these macrophages into cholesterol-rich foamy looking cells. Cholesterol accumulation in macrophages contributes to cholesterol retention within the vessel wall, and promotes vessel wall inflammation and thrombogenicity. Thus, how macrophages accumulate cholesterol and become foam cells has been the subject of intense investigation. It is generally believed that macrophages accumulate cholesterol only through scavenger receptor-mediated uptake of modified LDL. However, an alternative mechanism for macrophage foam cell formation that does not depend on LDL modification or macrophage receptors has been elucidated. By this alternative mechanism, macrophages show receptor-independent uptake of unmodified native LDL that is mediated by fluid-phase pinocytosis. In receptor-independent, fluid-phase pinocytosis, macrophages take up LDL as part of the fluid that they ingest during micropinocytosis within small vesicles called micropinosomes, and by macropinocytosis within larger vacuoles called macropinosomes. This produces cholesterol accumulation in macrophages to levels characteristic of macrophage foam cells in atherosclerotic plaques. Fluid-phase pinocytosis of LDL is a plausible mechanism that can explain how macrophages accumulate cholesterol and become disease-causing foam cells. Fluid-phase pinocytosis of LDL is a relevant pathway to target for modulating macrophage cholesterol accumulation in atherosclerosis. Recent studies show that phosphoinositide 3-kinase (PI3K), liver X receptors (LXRs), the macrophage colony-stimulating factor (M-CSF) receptor, and protein kinase C (PKC) mediate macrophage macropinocytosis of LDL, and thus, these may be relevant targets to inhibit macrophage cholesterol accumulation in atherosclerosis.
Brenner, D S; Drachenberg, C B; Papadimitriou, J C
2001-02-01
Hematoidin crystals (HC) are found in tissues where extravasated erythrocytes undergo degradation. Previous studies have determined that hematoidin is composed, in part, of a bilirubin-like pigment. In a previous study (Papadimitriou and Drachenberg, Ultrastruct. Pathol. 16, 413-421, 1992), we demonstrated that giant cell asteroid bodies (AB) are formed by membrane lipid bilayers. We evaluated three cases in which HC developed within splenic infarcts. The crystals were analyzed by light microscopy (LM), electron microscopy (EM), and X-ray microanalysis. A case of sarcoidosis with multiple epithelioid granulomas containing AB was studied for comparison. By LM the HC demonstrated intense, golden-color, fine threads, both intracellularly and extracellularly, in small and large clusters, and in radiating, star-shape patterns ranging in size from 2 to 200 microm. By EM the HC were composed of a core of empty clefts, consistent with dissolved lipids, suggestive of cholesterol crystals, and were surrounded by myelinoid membrane aggregates. The AB showed by LM significant morphological similarities with the intracellular HC. By EM, the AB were composed of a core of dense phospholipid bilayer tubes surrounded by a halo of myelinoid membranes. No accumulation of specific elements was found in either HC or AB by X-ray microanalysis. HC and AB show a similar star-shape morphology by both LM and EM. We postulate that this shape is due to the physicochemical properties of the accumulated lipids which originate from superfluous cell membranes created during cell fusion in the case of AB and after cellular (predominantly red cell) breakdown in the case of HC. The golden color of the HC likely results from adsorption of hydrophobic bilirubin-like pigments left over from erythrocyte breakdown into the accumulated lipids. Thus, this study shows two different (patho)physiological processes that lead to a markedly similar morphological end-product and provides further support to our proposed mechanism for AB formation.
Capyk, Jenna K.; Casabon, Israël; Gruninger, Robert; Strynadka, Natalie C.; Eltis, Lindsay D.
2011-01-01
Mycobacterium tuberculosis (Mtb), a significant global pathogen, contains a cholesterol catabolic pathway. Although the precise role of cholesterol catabolism in Mtb remains unclear, the Rieske monooxygenase in this pathway, 3-ketosteroid 9α-hydroxylase (KshAB), has been identified as a virulence factor. To investigate the physiological substrate of KshAB, a rhodococcal acyl-CoA synthetase was used to produce the coenzyme A thioesters of two cholesterol derivatives: 3-oxo-23,24-bisnorchol-4-en-22-oic acid (forming 4-BNC-CoA) and 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid (forming 1,4-BNC-CoA). The apparent specificity constant (kcat/Km) of KshAB for the CoA thioester substrates was 20–30 times that for the corresponding 17-keto compounds previously proposed as physiological substrates. The apparent KmO2 was 90 ± 10 μm in the presence of 1,4-BNC-CoA, consistent with the value for two other cholesterol catabolic oxygenases. The Δ1 ketosteroid dehydrogenase KstD acted with KshAB to cleave steroid ring B with a specific activity eight times greater for a CoA thioester than the corresponding ketone. Finally, modeling 1,4-BNC-CoA into the KshA crystal structure suggested that the CoA moiety binds in a pocket at the mouth of the active site channel and could contribute to substrate specificity. These results indicate that the physiological substrates of KshAB are CoA thioester intermediates of cholesterol side chain degradation and that side chain and ring degradation occur concurrently in Mtb. This finding has implications for steroid metabolites potentially released by the pathogen during infection and for the design of inhibitors for cholesterol-degrading enzymes. The methodologies and rhodococcal enzymes used to generate thioesters will facilitate the further study of cholesterol catabolism. PMID:21987574
Capyk, Jenna K; Casabon, Israël; Gruninger, Robert; Strynadka, Natalie C; Eltis, Lindsay D
2011-11-25
Mycobacterium tuberculosis (Mtb), a significant global pathogen, contains a cholesterol catabolic pathway. Although the precise role of cholesterol catabolism in Mtb remains unclear, the Rieske monooxygenase in this pathway, 3-ketosteroid 9α-hydroxylase (KshAB), has been identified as a virulence factor. To investigate the physiological substrate of KshAB, a rhodococcal acyl-CoA synthetase was used to produce the coenzyme A thioesters of two cholesterol derivatives: 3-oxo-23,24-bisnorchol-4-en-22-oic acid (forming 4-BNC-CoA) and 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid (forming 1,4-BNC-CoA). The apparent specificity constant (k(cat)/K(m)) of KshAB for the CoA thioester substrates was 20-30 times that for the corresponding 17-keto compounds previously proposed as physiological substrates. The apparent K(m)(O(2)) was 90 ± 10 μM in the presence of 1,4-BNC-CoA, consistent with the value for two other cholesterol catabolic oxygenases. The Δ(1) ketosteroid dehydrogenase KstD acted with KshAB to cleave steroid ring B with a specific activity eight times greater for a CoA thioester than the corresponding ketone. Finally, modeling 1,4-BNC-CoA into the KshA crystal structure suggested that the CoA moiety binds in a pocket at the mouth of the active site channel and could contribute to substrate specificity. These results indicate that the physiological substrates of KshAB are CoA thioester intermediates of cholesterol side chain degradation and that side chain and ring degradation occur concurrently in Mtb. This finding has implications for steroid metabolites potentially released by the pathogen during infection and for the design of inhibitors for cholesterol-degrading enzymes. The methodologies and rhodococcal enzymes used to generate thioesters will facilitate the further study of cholesterol catabolism.
Marshall, Joanna M; Flechtner, Alan D; La Perle, Krista M; Gunn, John S
2014-01-01
Chronic carriage of Salmonella Typhi is mediated primarily through the formation of bacterial biofilms on the surface of cholesterol gallstones. Biofilms, by definition, involve the formation of a bacterial community encased within a protective macromolecular matrix. Previous work has demonstrated the composition of the biofilm matrix to be complex and highly variable in response to altered environmental conditions. Although known to play an important role in bacterial persistence in a variety of contexts, the Salmonella biofilm matrix remains largely uncharacterized under physiological conditions. Initial attempts to study matrix components and architecture of the biofilm matrix on gallstone surfaces were hindered by the auto-fluorescence of cholesterol. In this work we describe a method for sectioning and direct visualization of extracellular matrix components of the Salmonella biofilm on the surface of human cholesterol gallstones and provide a description of the major matrix components observed therein. Confocal micrographs revealed robust biofilm formation, characterized by abundant but highly heterogeneous expression of polysaccharides such as LPS, Vi and O-antigen capsule. CsgA was not observed in the biofilm matrix and flagellar expression was tightly restricted to the biofilm-cholesterol interface. Images also revealed the presence of preexisting Enterobacteriaceae encased within the structure of the gallstone. These results demonstrate the use and feasibility of this method while highlighting the importance of studying the native architecture of the gallstone biofilm. A better understanding of the contribution of individual matrix components to the overall biofilm structure will facilitate the development of more effective and specific methods to disrupt these bacterial communities.
BSN723T Prevents Atherosclerosis and Weight Gain in ApoE Knockout Mice Fed a Western Diet.
Williams, Jarrod; Ensor, Charles; Gardner, Scott; Smith, Rebecca; Lodder, Robert
This study tests the hypothesis that BSN723T can prevent the development of hyperlipidemia and atherosclerosis in ApoE -/- knockout mice fed a Western (high fat, high cholesterol, and high sucrose) diet. BSN723T is a combination drug therapy consisting of D-tagatose and dihydromyricetin (BSN723). D-tagatose has an antihyperglycemic effect in animal and human studies and shows promise as a treatment for type 2 diabetes and obesity. Many claims regarding BSN723's pharmacological activities have been made including anti-cancer, anti-diabetic, anti-hypertensive, anti-inflammatory, and anti-atherosclerotic effects. To our knowledge this is the first study that combines D-tagatose and BSN723 for the treatment of hyperlipidemia and the prevention of atherosclerosis. ApoE-deficient mice were randomized into five groups with equivalent mean body weights. The mice were given the following diets for 8 weeks: Group 1 - Standard diet; Group 2 - Western diet; Group 3 - Western diet formulated with D-tagatose; Group 4 - Western diet formulated with BSN723; Group 5 - Western diet formulated with BSN723T. Mice were measured for weight gain, tissue and organ weights, total serum cholesterol and triglycerides and formation of atherosclerosis. The addition of D-tagatose, either alone or in combination with BSN723, prevented the increase in adipose tissue and weight gain brought on by the Western diet. Both D-tagatose and BSN723 alone reduced total cholesterol and the formation of atherosclerosis in the aorta compared to mice on the Western diet. Addition of BSN723 to D-tagatose (BSN723T) did not increase efficacy in prevention of increases in cholesterol or atherosclerosis compared to D-tagatose alone. Addition of either D-tagatose or BSN723 alone to a Western diet prevented weight gain, increases in total serum cholesterol and triglycerides, and the formation of atherosclerosis. However, there was no additive or synergistic effect on the measured parameters with the combination BSN723T treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedao, Xxx; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr; Colombier, Jean-Philippe
2014-04-28
The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.
Cannabinoids impair the formation of cholesteryl ester in cultured human cells.
Cornicelli, J A; Gilman, S R; Krom, B A; Kottke, B A
1981-01-01
The ability of cultured human fibroblasts to form cholesteryl esters from 14C-oleate is impaired by delta'-tetrahydrocannabinol, cannabidiol, and cannabinol, a group of natural products isolated from Cannabis sativa. This inhibition is compound and dose-related; 30 microM cannabidiol reduced esterification to less than 20% of the control values. The esterification of endogenous and exogenous cholesterol was affected, since inhibition was seen with either low density lipoproteins (200 micrograms/ml) or 25-hydroxycholesterol (5 micrograms/ml) as esterification stimuli. Cells treated with these compounds at doses of from 1 to 30 microM showed no impairment of protein synthesis, triglyceride or phospholipid formation, or ability to metabolize 125I-low density lipoproteins. An inhibition of cholesterol esterification was seen in human aortic medial cells. With increasing doses of these compounds, low density lipoproteins (25 micrograms/ml) became progressively less effective in suppressing HMG-CoA reductase in cultured human fibroblasts; with 30 microM cannabidiol the enzyme suppression was only 24% of that found in cells incubated with low density lipoproteins in the absence of drugs. Based on these data, we conclude that the cannabinoids "compartmentalize" cholesterol and, thus, make is unavailable for regulating cellular cholesterol metabolism. This may occur as a result of enhanced sterol efflux.
Lee, Kyeong; Goo, Ja-Il; Jung, Hwa Young; Kim, Minkyoung; Boovanahalli, Shanthaveerappa K; Park, Hye Ran; Kim, Mun-Ock; Kim, Dong-Hyun; Lee, Hyun Sun; Choi, Yongseok
2012-12-15
A novel series of benzimidazole derivatives was prepared and evaluated for their diacylglycerol acyltransferase (DGAT) inhibitory activity using microsome from rat liver. Among the newly synthesized compounds, furfurylamine containing benzimidazole carboxamide 10j showed the most potent DGAT inhibitory effect (IC(50)=4.4 μM) and inhibited triglyceride formation in HepG2 cells. Furthermore, compound 10j reduced body weight gain of Institute of Cancer Research mice on a high-fat diet and decreased levels of total triglyceride, total cholesterol, and LDL-cholesterol in the blood accompanied with a significant increase in HDL-cholesterol level. Copyright © 2012 Elsevier Ltd. All rights reserved.
Krawczyk, Marcin; Lütjohann, Dieter; Schirin-Sokhan, Ramin; Villarroel, Luis; Nervi, Flavio; Pimentel, Fernando; Lammert, Frank; Miquel, Juan Francisco
2012-05-01
In hepatocytes and enterocytes sterol uptake and secretion is mediated by Niemann-Pick C1-like 1 (NPC1L1) and ATP-binding cassette (ABC)G5/8 proteins, respectively. Whereas serum levels of phytosterols represent surrogate markers for intestinal cholesterol absorption, cholesterol precursors reflect cholesterol biosynthesis. Here we compare serum and biliary sterol levels in ethnically different populations of patients with gallstone disease (GSD) and stone-free controls to identify differences in cholesterol transport and synthesis between these groups. In this case-control study four cohorts were analyzed: 112 German patients with GSD and 152 controls; two distinct Chilean ethnic groups: Hispanics (100 GSD, 100 controls), and Amerindians (20 GSD, 20 controls); additionally an 8-year follow-up of 70 Hispanics was performed. Serum sterols were measured by gas chromatography / mass spectrometry. Gallbladder bile sterol levels were analyzed in cholesterol GSD and controls. Common ABCG5/8 variants were genotyped. Comparison of serum sterols showed lower levels of phytosterols and higher levels of cholesterol precursors in GSD patients than in controls. The ratios of phytosterols to cholesterol precursors were lower in GSD patients, whereas biliary phytosterol and cholesterol concentrations were elevated as compared with controls. In the follow-up study, serum phytosterol levels were significantly lower even before GSD was detectable by ultrasound. An ethnic gradient in the ratios of phytosterols to cholesterol precursors was apparent (Germans > Hispanics > Amerindians). ABCG5/8 variants did not fully explain the sterol metabolic trait of GSD in any of the cohorts. Individuals predisposed to GSD display increased biliary output of cholesterol in the setting of relatively low intestinal cholesterol absorption, indicating enhanced whole-body sterol clearance. This metabolic trait precedes gallstone formation and is a feature of ethnic groups at higher risk of cholesterol GSD. Copyright © 2012 American Association for the Study of Liver Diseases.
Thakur, Anil S.; Robin, Gautier; Guncar, Gregor; Saunders, Neil F. W.; Newman, Janet; Martin, Jennifer L.; Kobe, Bostjan
2007-01-01
Background Crystallization is a major bottleneck in the process of macromolecular structure determination by X-ray crystallography. Successful crystallization requires the formation of nuclei and their subsequent growth to crystals of suitable size. Crystal growth generally occurs spontaneously in a supersaturated solution as a result of homogenous nucleation. However, in a typical sparse matrix screening experiment, precipitant and protein concentration are not sampled extensively, and supersaturation conditions suitable for nucleation are often missed. Methodology/Principal Findings We tested the effect of nine potential heterogenous nucleating agents on crystallization of ten test proteins in a sparse matrix screen. Several nucleating agents induced crystal formation under conditions where no crystallization occurred in the absence of the nucleating agent. Four nucleating agents: dried seaweed; horse hair; cellulose and hydroxyapatite, had a considerable overall positive effect on crystallization success. This effect was further enhanced when these nucleating agents were used in combination with each other. Conclusions/Significance Our results suggest that the addition of heterogeneous nucleating agents increases the chances of crystal formation when using sparse matrix screens. PMID:17971854
Malabed, Raymond; Hanashima, Shinya; Murata, Michio; Sakurai, Kaori
2017-12-01
OSW-1 is a structurally unique steroidal saponin isolated from the bulbs of Ornithogalum saundersiae, and has exhibited highly potent and selective cytotoxicity in tumor cell lines. This study aimed to investigate the molecular mechanism for the membrane-permeabilizing activity of OSW-1 in comparison with those of other saponins by using various spectroscopic approaches. The membrane effects and hemolytic activity of OSW-1 were markedly enhanced in the presence of membrane cholesterol. Binding affinity measurements using fluorescent cholestatrienol and solid-state NMR spectroscopy of a 3-d-cholesterol probe suggested that OSW-1 interacts with membrane cholesterol without forming large aggregates while 3-O-glycosyl saponin, digitonin, forms cholesterol-containing aggregates. The results suggest that OSW-1/cholesterol interaction is likely to cause membrane permeabilization and pore formation without destroying the whole membrane integrity, which could partly be responsible for its highly potent cell toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.
Smart, Eric J; De Rose, Robert A; Farber, Steven A
2004-03-09
Modulation of cholesterol absorption in the intestine, the primary site of dietary cholesterol uptake in humans, can have profound clinical implications. We have undertaken a reverse genetic approach by disrupting putative cholesterol processing genes in zebrafish larvae by using morpholino (MO) antisense oligonucleotides. By using targeted MO injections and immunoprecipitation (IP) experiments coupled with mass spectrometry, we determined that annexin (ANX)2 complexes with caveolin (CAV)1 in the zebrafish and mouse intestine. The complex is heat stable and unaffected by SDS or reducing conditions. MO targeting of anx2b or cav1, which are both strongly expressed in the larval and adult zebrafish intestinal epithelium, prevents formation of the protein heterocomplex. Furthermore, anx2b MO injection prevents processing of a fluorescent cholesterol reporter and results in reduced sterol mass. Pharmacological treatment of mice with ezetimibe disrupts the heterocomplex in only hypercholesterolemic animals. These data suggest that ANX2 and CAV1 are components of an intestinal sterol transport complex.
Tansel, Berrin; Lunn, Griffin; Monje, Oscar
2018-03-01
Struvite (MgNH 4 PO 4 ·6H 2 O) forms in aqueous systems with high ammonia and phosphate concentrations. However, conditions that result into struvite formation are highly dependent on the ionic compositions, temperature, pH, and ion speciation characteristics. The primary ions involved in struvite formation have complex interactions and can form different crystals depending on the ionic levels, pH and temperature. Struvite as well as struvite analogues (with substitution of monovalent cations for NH 4 + or divalent cations for Mg 2+ ) as well as other crystals can form simultaneously and result in changes in crystal morphology during crystal growth. This review provides the results from experimental and theoretical studies on struvite formation and decomposition studies. Characteristics of NH 4 + or divalent cations for Mg 2+ were evaluated in comparison to monovalent and divalent ions for formation of struvite and its analogues. Struvite crystals forming in wastewater systems are likely to contain crystals other than struvite due to ionic interactions, pH changes, temperature effects and clustering of ions during nucleation and crystal growth. Decomposition of struvite occurs following a series of reactions depending on the rate of heating, temperature and availability of water during heating. Copyright © 2017 Elsevier Ltd. All rights reserved.
2016-01-01
Hemozoin is a unique biomineral that results from the sequestration of toxic free heme liberated as a consequence of hemoglobin degradation in the malaria parasite. Synthetic neutral lipid droplets (SNLDs) and phospholipids were previously shown to support the rapid formation of β-hematin, abiological hemozoin, under physiologically relevant pH and temperature, though the mechanism by which heme crystallization occurs remains unclear. Detergents are particularly interesting as a template because they are amphiphilic molecules that spontaneously organize into nanostructures and have been previously shown to mediate β-hematin formation. Here, 11 detergents were investigated to elucidate the physicochemical properties that best recapitulate crystal formation in the parasite. A strong correlation between the detergent’s molecular structure and the corresponding kinetics of β-hematin formation was observed, where higher molecular weight polar chains promoted faster reactions. The larger hydrophilic chains correlated to the detergent’s ability to rapidly sequester heme into the lipophilic core, allowing for crystal nucleation to occur. The data presented here suggest that detergent nanostructures promote β-hematin formation in a similar manner to SNLDs and phospholipids. Through understanding mediator properties that promote optimal crystal formation, we are able to establish an in vitro assay to probe this drug target pathway. PMID:27175104
Hildebrandt, Christian; Joos, Lea; Saedler, Rainer; Winter, Gerhard
2015-06-01
Polyethylene glycols (PEG) represent the most successful and frequently applied class of excipients used for protein crystallization. PEG auto-oxidation and formation of impurities such as peroxides and formaldehydes that foster protein drug degradation is known. However, their effect on mAb crystallization has not been studied in detail before. During the present study, a model IgG1 antibody (mAb1) was crystallized in PEG solutions. Aggregate formation was observed during crystallization and storage that was ascribed to PEG degradation products. Reduction of peroxide and formaldehyde levels prior to crystallization by vacuum and freeze-drying was investigated for its effect on protein degradation. Vacuum drying was superior in removal of peroxides but inferior in reducing formaldehyde residues. Consequently, double purification allowed extensive removal of both impurities. Applying of purified PEG led to 50% lower aggregate fractions. Surprisingly, PEG double purification or addition of methionine prior to crystallization prevented crystal formation. With increased PEG concentration or spiking with peroxides and formaldehydes, crystal formation could be recovered again. With these results, we demonstrate that minimum amounts of oxidizing impurities and thus in consequence chemically altered proteins are vital to initiate mAb1 crystallization. The present study calls PEG as good precipitant for therapeutic biopharmaceuticals into question. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Can Solution Supersaturation Affect Protein Crystal Quality?
NASA Technical Reports Server (NTRS)
Gorti, Sridhar
2013-01-01
The formation of large protein crystals of "high quality" is considered a characteristic manifestation of microgravity. The physical processes that predict the formation of large, high quality protein crystals in the microgravity environment of space are considered rooted in the existence of a "depletion zone" in the vicinity of crystal. Namely, it is considered reasonable that crystal quality suffers in earth-grown crystals as a result of the incorporation of large aggregates, micro-crystals and/or large molecular weight "impurities", processes which are aided by density driven convective flow or mixing at the crystal-liquid interface. Sedimentation and density driven convection produce unfavorable solution conditions in the vicinity of the crystal surface, which promotes rapid crystal growth to the detriment of crystal size and quality. In this effort, we shall further present the hypothesis that the solution supersaturatoin at the crystal surface determines the growth mechanism, or mode, by which protein crystals grow. It is further hypothesized that protein crystal quality is affected by the mechanism or mode of crystal growth. Hence the formation of a depletion zone in microgravity environment is beneficial due to inhibition of impurity incorporatoin as well as preventing a kinetic roughening transition. It should be noted that for many proteins the magnitude of neither protein crystal growth rates nor solution supersaturation are predictors of a kinetic roughening transition. That is, the kinetic roughening transition supersaturation must be dtermined for each individual protein.
Low-cost polarization microscopy for cholesterol crystals
NASA Astrophysics Data System (ADS)
Kim, Kyungmin; Cho, Seonghee; Kim, Taehoon; Park, Hyoeun; Kim, Jinmoo; Lee, Seunghoon; Kang, Yeonsu; Chang, Kiyuk; Kim, Chulhong
2018-02-01
Because cholesterol crystals (Chcs) are a major cause of atherosclerosis, imaging Chcs in tissues with high sensitivity and specificity is important in diagnosing and predicting atherosclerosis. Polarizing microscopy (PM) has been widely used to image crystalline materials in tissues, but it has been difficult to distinguish Chcs from other crystalline materials in tissues. Thus, various methods such as fluorescent dye staining, Raman spectroscopy, and two-photon microscopy (TPM) have been developed to image Chcs with high sensitivity and specificity. However, these methods require expensive equipment or complex processes. Therefore, we have developed a low-cost, easy-to-use PM system using an LED light source that can distinguish Chcs from other crystalline materials with high sensitivity and specificity. Due to the nature of the LED spectrum in our system, collagen is displayed in yellow and Chcs in blue. In addition, we have improved the sensitivity and specificity by creating an aqueous condition on the sample. In the aqueous state, signals of yellowish collagen fibers were reduced and signals of Chcs were highlighted. The Chcs detection capability of our system was verified compared with the TPM image. In addition, clinical feasibility was shown by comparison with existing histological methods.
Xie, Meimin; Kotecha, Vijay R; Andrade, Jon David P; Fox, James G; Carey, Martin C
2012-01-01
Cholesterol gallstones are associated with slow intestinal transit in humans as well as in animal models, but the molecular mechanism is unknown. We investigated in C57L/J mice whether the components of a lithogenic diet (LD; 1.0% cholesterol, 0.5% cholic acid and 17% triglycerides), as well as distal intestinal infection with Helicobacter hepaticus, influence small intestinal transit time. By quantifying the distribution of 3H-sitostanol along the length of the small intestine following intraduodenal instillation, we observed that, in both sexes, the geometric centre (dimensionless) was retarded significantly (P < 0.05) by LD but not slowed further by helicobacter infection (males, 9.4 ± 0.5 (uninfected), 9.6 ± 0.5 (infected) on LD compared with 12.5 ± 0.4 and 11.4 ± 0.5 on chow). The effect of the LD was reproduced only by the binary combination of cholesterol and cholic acid. We inferred that the LD-induced cholesterol enrichment of the sarcolemmae of intestinal smooth muscle cells produced hypomotility from signal-transduction decoupling of cholecystokinin (CCK), a physiological agonist for small intestinal propulsion in mice. Treatment with ezetimibe in an amount sufficient to block intestinal cholesterol absorption caused small intestinal transit time to return to normal. In most cholesterol gallstone-prone humans, lithogenic bile carries large quantities of hepatic cholesterol into the upper small intestine continuously, thereby reproducing this dietary effect in mice. Intestinal hypomotility promotes cholelithogenesis by augmenting formation of deoxycholate, a pro-lithogenic secondary bile salt, and increasing the fraction of intestinal cholesterol absorbed. PMID:22331417
Plant calcium oxalate crystal formation, function, and its impact on human health
USDA-ARS?s Scientific Manuscript database
Crystals of calcium oxalate have been observed among members from most taxonomic groups of photosynthetic organisms ranging from the smallest algae to the largest trees. The biological roles for calcium oxalate crystal formation in plant growth and development include high capacity calcium regulatio...
Werner, Hauke B; Krämer-Albers, Eva-Maria; Strenzke, Nicola; Saher, Gesine; Tenzer, Stefan; Ohno-Iwashita, Yoshiko; De Monasterio-Schrader, Patricia; Möbius, Wiebke; Moser, Tobias; Griffiths, Ian R; Nave, Klaus-Armin
2013-04-01
The formation of central nervous system myelin by oligodendrocytes requires sterol synthesis and is associated with a significant enrichment of cholesterol in the myelin membrane. However, it is unknown how oligodendrocytes concentrate cholesterol above the level found in nonmyelin membranes. Here, we demonstrate a critical role for proteolipids in cholesterol accumulation. Mice lacking the most abundant myelin protein, proteolipid protein (PLP), are fully myelinated, but PLP-deficient myelin exhibits a reduced cholesterol content. We therefore hypothesized that "high cholesterol" is not essential in the myelin sheath itself but is required for an earlier step of myelin biogenesis that is fully compensated for in the absence of PLP. We also found that a PLP-homolog, glycoprotein M6B, is a myelin component of low abundance. By targeting the Gpm6b-gene and crossbreeding, we found that single-mutant mice lacking either PLP or M6B are fully myelinated, while double mutants remain severely hypomyelinated, with enhanced neurodegeneration and premature death. As both PLP and M6B bind membrane cholesterol and associate with the same cholesterol-rich oligodendroglial membrane microdomains, we suggest a model in which proteolipids facilitate myelination by sequestering cholesterol. While either proteolipid can maintain a threshold level of cholesterol in the secretory pathway that allows myelin biogenesis, lack of both proteolipids results in a severe molecular imbalance of prospective myelin membrane. However, M6B is not efficiently sorted into mature myelin, in which it is 200-fold less abundant than PLP. Thus, only PLP contributes to the high cholesterol content of myelin by association and co-transport. Copyright © 2013 Wiley Periodicals, Inc.
Elghobashi-Meinhardt, Nadia
2014-10-21
Niemann-Pick Type C disease is characterized by disrupted lipid trafficking within the late endosomal (LE)/lysosomal (Lys) cellular compartments. Cholesterol transport within the LE/Lys is believed to take place via a concerted hand-off mechanism in which a small (131aa) soluble cholesterol binding protein, NPC2, transfers cholesterol to the N-terminal domain (NTD) of a larger (1278aa) membrane-bound protein, NPC1(NTD). The transfer is thought to occur through the formation of a stable intermediate complex NPC1(NTD)-NPC2, in which the sterol apertures of the two proteins align to allow passage of the cholesterol molecule. In the working model of the NPC1(NTD)-NPC2 complex, the sterol apertures are aligned, but the binding pockets are bent with respect to one another. In order for cholesterol to slide from one binding pocket to the other, a conformational change must occur in the proteins, in the ligand, or in both. Here, we investigate the possibility that the ligand undergoes a conformational change, or isomerization, to accommodate the bent transfer pathway. To understand what structural factors influence the isomerization rate, we calculate the energy barrier to cholesterol isomerization in both the NPC1(NTD) and NPC2 binding pockets. Here, we use a combined quantum mechanical/molecular mechanical (QM/MM) energy function to calculate the isomerization barrier within the native NPC1(NTD) and NPC2 binding pockets before protein-protein docking as well as in the binding pockets of the NPC1(NTD)-NPC2 complex after docking has occurred. The results indicate that cholesterol isomerization in the NPC2 binding pocket is energetically favorable, both before and after formation of the NPC1(NTD)-NPC2 complex. The NPC1(NTD) binding pocket is energetically unfavorable to conformational rearrangement of the hydrophobic ligand because it contains more water molecules near the ligand tail and amino acids with polar side chains. For three NPC1(NTD) mutants investigated, L175Q/L176Q, L175A/L176A, and E191A/Y192A, the isomerization barriers were all found to be higher than the barrier calculated in the NPC2 binding pocket. Our results indicate that cholesterol isomerization in the NPC2 binding pocket, either before or after docking, may ensure an efficient transfer of cholesterol to NPC1(NTD).
Marques, Maria Angela M.; Berrêdo-Pinho, Marcia; Rosa, Thabatta L. S. A.; Pujari, Venugopal; Lemes, Robertha M. R.; Lery, Leticia M. S.; Silva, Carlos Adriano M.; Guimarães, Ana Carolina R.; Atella, Georgia C.; Wheat, William H.; Brennan, Patrick J.; Crick, Dean C.; Belisle, John T.
2015-01-01
ABSTRACT Mycobacterium leprae induces the formation of lipid droplets, which are recruited to pathogen-containing phagosomes in infected macrophages and Schwann cells. Cholesterol is among the lipids with increased abundance in M. leprae-infected cells, and intracellular survival relies on cholesterol accumulation. The present study investigated the capacity of M. leprae to acquire and metabolize cholesterol. In silico analyses showed that oxidation of cholesterol to cholest-4-en-3-one (cholestenone), the first step of cholesterol degradation catalyzed by the enzyme 3β-hydroxysteroid dehydrogenase (3β-HSD), is apparently the only portion of the cholesterol catabolic pathway seen in Mycobacterium tuberculosis preserved by M. leprae. Incubation of bacteria with radiolabeled cholesterol confirmed the in silico predictions. Radiorespirometry and lipid analyses performed after incubating M. leprae with [4-14C]cholesterol or [26-14C]cholesterol showed the inability of this pathogen to metabolize the sterol rings or the side chain of cholesterol as a source of energy and carbon. However, the bacteria avidly incorporated cholesterol and, as expected, converted it to cholestenone both in vitro and in vivo. Our data indicate that M. leprae has lost the capacity to degrade and utilize cholesterol as a nutritional source but retains the enzyme responsible for its oxidation to cholestenone. Thus, the essential role of cholesterol metabolism in the intracellular survival of M. leprae is uncoupled from central carbon metabolism and energy production. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies. IMPORTANCE Our study focused on the obligate intracellular pathogen Mycobacterium leprae and its capacity to metabolize cholesterol. The data make an important contribution for those interested in understanding the mechanisms of mycobacterial pathogenesis, since they indicate that the essential role of cholesterol for M. leprae intracellular survival does not rely on its utilization as a nutritional source. Our findings reinforce the complexity of cholesterol's role in sustaining M. leprae infection. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies. PMID:26391209
Marques, Maria Angela M; Berrêdo-Pinho, Marcia; Rosa, Thabatta L S A; Pujari, Venugopal; Lemes, Robertha M R; Lery, Leticia M S; Silva, Carlos Adriano M; Guimarães, Ana Carolina R; Atella, Georgia C; Wheat, William H; Brennan, Patrick J; Crick, Dean C; Belisle, John T; Pessolani, Maria Cristina V
2015-12-01
Mycobacterium leprae induces the formation of lipid droplets, which are recruited to pathogen-containing phagosomes in infected macrophages and Schwann cells. Cholesterol is among the lipids with increased abundance in M. leprae-infected cells, and intracellular survival relies on cholesterol accumulation. The present study investigated the capacity of M. leprae to acquire and metabolize cholesterol. In silico analyses showed that oxidation of cholesterol to cholest-4-en-3-one (cholestenone), the first step of cholesterol degradation catalyzed by the enzyme 3β-hydroxysteroid dehydrogenase (3β-HSD), is apparently the only portion of the cholesterol catabolic pathway seen in Mycobacterium tuberculosis preserved by M. leprae. Incubation of bacteria with radiolabeled cholesterol confirmed the in silico predictions. Radiorespirometry and lipid analyses performed after incubating M. leprae with [4-(14)C]cholesterol or [26-(14)C]cholesterol showed the inability of this pathogen to metabolize the sterol rings or the side chain of cholesterol as a source of energy and carbon. However, the bacteria avidly incorporated cholesterol and, as expected, converted it to cholestenone both in vitro and in vivo. Our data indicate that M. leprae has lost the capacity to degrade and utilize cholesterol as a nutritional source but retains the enzyme responsible for its oxidation to cholestenone. Thus, the essential role of cholesterol metabolism in the intracellular survival of M. leprae is uncoupled from central carbon metabolism and energy production. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies. Our study focused on the obligate intracellular pathogen Mycobacterium leprae and its capacity to metabolize cholesterol. The data make an important contribution for those interested in understanding the mechanisms of mycobacterial pathogenesis, since they indicate that the essential role of cholesterol for M. leprae intracellular survival does not rely on its utilization as a nutritional source. Our findings reinforce the complexity of cholesterol's role in sustaining M. leprae infection. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies. Copyright © 2015 Marques et al.
Rosenson, Robert S
2016-05-01
Classical epidemiology has established the incremental contribution of the high-density lipoprotein (HDL) cholesterol measure in the assessment of atherosclerotic cardiovascular disease risk; yet, genetic epidemiology does not support a causal relationship between HDL cholesterol and the future risk of myocardial infarction. Therapeutic interventions directed toward cholesterol loading of the HDL particle have been based on epidemiological studies that have established HDL cholesterol as a biomarker of atherosclerotic cardiovascular risk. However, therapeutic interventions such as niacin, cholesteryl ester transfer protein inhibitors increase HDL cholesterol in patients treated with statins, but have repeatedly failed to reduce cardiovascular events. Statin therapy interferes with ATP-binding cassette transporter-mediated macrophage cholesterol efflux via miR33 and thus may diminish certain HDL functional properties. Unraveling the HDL puzzle will require continued technical advances in the characterization and quantification of multiple HDL subclasses and their functional properties. Key mechanistic criteria for clinical outcomes trials with HDL-based therapies include formation of HDL subclasses that improve the efficiency of macrophage cholesterol efflux and compositional changes in the proteome and lipidome of the HDL particle that are associated with improved antioxidant and anti-inflammatory properties. These measures require validation in genetic studies and clinical trials of HDL-based therapies on the background of statins. © 2016 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
van der Paal, Jonas; Verheyen, Claudia; Neyts, Erik C.; Bogaerts, Annemie
2017-01-01
In recent years, the ability of cold atmospheric pressure plasmas (CAPS) to selectively induce cell death in cancer cells has been widely established. This selectivity has been assigned to the reactive oxygen and nitrogen species (RONS) created in CAPs. To provide new insights in the search for an explanation for the observed selectivity, we calculate the transfer free energy of multiple ROS across membranes containing a varying amount of cholesterol. The cholesterol fraction is investigated as a selectivity parameter because membranes of cancer cells are known to contain lower fractions of cholesterol compared to healthy cells. We find that cholesterol has a significant effect on the permeation of reactive species across a membrane. Indeed, depending on the specific reactive species, an increasing cholesterol fraction can lead to (i) an increase of the transfer free energy barrier height and width, (ii) the formation of a local free energy minimum in the center of the membrane and (iii) the creation of extra free energy barriers due to the bulky sterol rings. In the context of plasma oncology, these observations suggest that the increased ingress of RONS in cancer cells can be explained by the decreased cholesterol fraction of their cell membrane.
Kertész, Attila; Bombicz, Mariann; Priksz, Daniel; Balla, Jozsef; Balla, Gyorgy; Gesztelyi, Rudolf; Varga, Balazs; Haines, David D.; Tosaki, Arpad; Juhasz, Bela
2013-01-01
The present study evaluates a hypothesis that diet-related hypercholesterolemia increases oxidative stress-related burden to cardiovascular tissue, resulting in progressively increased mortality, along with deterioration of electrophysiological and enzymatic function in rabbit myocardium. New Zealand white rabbits were divided into four groups, defined as follows: GROUP I, cholesterol-free rabbit chow for 12 weeks; GROUP II, cholesterol-free chow, 40 weeks; GROUP III, chow supplemented with 2% cholesterol, 12 weeks; GROUP IV, chow supplemented with 2% cholesterol, 40 weeks. At the 12 and 40 weeks time points, animals in each of the aforementioned cohorts were subjected to echocardiographic measurements, followed by sacrifice. Significant deterioration in major outcome variables measured in the present study were observed only in animals maintained for 40 weeks on 2% cholesterol-supplemented chow, with much lesser adverse effects noted in animals fed high cholesterol diets for only 12 weeks. It was observed that rabbits receiving high cholesterol diets for 40 weeks exhibited significantly increased mortality, worsened ejection fraction and general deterioration of cardiac functions, along with increased atherosclerotic plaque formation and infarct size. Additionally, myocardium of GROUP IV animals was observed to contain lower levels of heme oxygenase-1 (HO-1) and cytochrome c oxidase III (COX III) protein relative to the controls. PMID:24048247
Maturation of high-density lipoproteins
Shih, Amy Y.; Sligar, Stephen G.; Schulten, Klaus
2009-01-01
Human high-density lipoproteins (HDLs) are involved in the transport of cholesterol. The mechanism by which HDL assembles and functions is not well understood owing to a lack of structural information on circulating spherical HDL. Here, we report a series of molecular dynamics simulations that describe the maturation of discoidal HDL into spherical HDL upon incorporation of cholesterol ester as well as the resulting atomic level structure of a mature circulating spherical HDL particle. Sixty cholesterol ester molecules were added in a stepwise fashion to a discoidal HDL particle containing two apolipoproteins wrapped around a 160 dipalmitoylphosphatidylcholine lipid bilayer. The resulting matured particle, captured in a coarse-grained description, was then described in a consistent all-atom representation and analysed in chemical detail. The simulations show that maturation results from the formation of a highly dynamic hydrophobic core comprised of cholesterol ester surrounded by phospholipid and protein; the two apolipoprotein strands remain in a belt-like conformation as seen in the discoidal HDL particle, but with flexible N- and C-terminal helices and a central region stabilized by salt bridges. In the otherwise flexible lipoproteins, a less mobile central region provides an ideal location to bind lecithin cholesterol acyltransferase, the key enzyme that converts cholesterol to cholesterol ester during HDL maturation. PMID:19570799
Abnormal vascularization in mouse retina with dysregulated retinal cholesterol homeostasis
Omarova, Saida; Charvet, Casey D.; Reem, Rachel E.; Mast, Natalia; Zheng, Wenchao; Huang, Suber; Peachey, Neal S.; Pikuleva, Irina A.
2012-01-01
Several lines of evidence suggest a link between age-related macular degeneration and retinal cholesterol maintenance. Cytochrome P450 27A1 (CYP27A1) is a ubiquitously expressed mitochondrial sterol 27-hydroxylase that plays an important role in the metabolism of cholesterol and cholesterol-related compounds. We conducted a comprehensive ophthalmic evaluation of mice lacking CYP27A1. We found that the loss of CYP27A1 led to dysregulation of retinal cholesterol homeostasis, including unexpected upregulation of retinal cholesterol biosynthesis. Cyp27a1–/– mice developed retinal lesions characterized by cholesterol deposition beneath the retinal pigment epithelium. Further, Cyp27a1-null mice showed pathological neovascularization, which likely arose from both the retina and the choroid, that led to the formation of retinal-choroidal anastomosis. Blood flow alterations and blood vessel leakage were noted in the areas of pathology. The Cyp27a1–/– retina was hypoxic and had activated Müller cells. We suggest a mechanism whereby abolished sterol 27-hydroxylase activity leads to vascular changes and identify Cyp27a1–/– mice as a model for one of the variants of type 3 retinal neovascularization occurring in some patients with age-related macular degeneration. PMID:22820291
Aluminum induced crystallization of amorphous Ge thin films on insulating substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Ch. Kishan, E-mail: kisn@igcar.gov.in; Tah, T.; Sunitha, D. T.
2016-05-23
Aluminium (metal) induced crystallization of amorphous Ge in bilayer and multilayer Ge/Al thin films deposited on quartz substrate at temperature well below the crystallization temperature of bulk Ge is reported. The crystallization of poly-Ge proceeds via formations of dendritic crystalline Ge grains in the Al matrix. The observed phases were characterized by Raman spectroscopy and X-ray diffraction. The microstructure of Al thin film layer was found to have a profound influence on such crystallization process and formation of dendritic grains.
Preventive effects of heregulin-beta1 on macrophage foam cell formation and atherosclerosis.
Xu, Gang; Watanabe, Takuya; Iso, Yoshitaka; Koba, Shinji; Sakai, Tetsuo; Nagashima, Masaharu; Arita, Shigeko; Hongo, Shigeki; Ota, Hidekazu; Kobayashi, Youichi; Miyazaki, Akira; Hirano, Tsutomu
2009-08-28
Human heregulins, neuregulin-1 type I polypeptides that activate proliferation, differentiation, and survival of glial cells, neurons, and myocytes, are expressed in macrophage foam cells within human coronary atherosclerotic lesions. Macrophage foam cell formation, characterized by cholesterol ester accumulation, is modulated by scavenger receptor class A (SR-A), acyl-coenzyme A:cholesterol acyltransferase (ACAT)1, and ATP-binding cassette transporter (ABC)A1. The present study clarified the roles of heregulins in macrophage foam cell formation and atherosclerosis. Plasma heregulin-beta(1) levels were significantly decreased in 31 patients with acute coronary syndrome and 33 patients with effort angina pectoris compared with 34 patients with mild hypertension and 40 healthy volunteers (1.3+/-0.3, 2.0+/-0.4 versus 7.6+/-1.4, 8.2+/-1.2 ng/mL; P<0.01). Among all patients with acute coronary syndrome and effort angina pectoris, plasma heregulin-beta(1) levels were further decreased in accordance with the severity of coronary artery lesions. Expression of heregulin-beta(1) was observed at trace levels in intracoronary atherothrombosis obtained by aspiration thrombectomy from acute coronary syndrome patients. Heregulin-beta(1), but not heregulin-alpha, significantly reduced acetylated low-density lipoprotein-induced cholesterol ester accumulation in primary cultured human monocyte-derived macrophages by reducing SR-A and ACAT1 expression and by increasing ABCA1 expression at both mRNA and protein levels. Heregulin-beta(1) significantly decreased endocytic uptake of [(125)I]acetylated low-density lipoprotein and ACAT activity, and increased cholesterol efflux to apolipoprotein (Apo)A-I from human macrophages. Chronic infusion of heregulin-beta(1) into ApoE(-/-) mice significantly suppressed the development of atherosclerotic lesions. This study provided the first evidence that heregulin-beta(1) inhibits atherogenesis and suppresses macrophage foam cell formation via SR-A and ACAT1 downregulation and ABCA1 upregulation.
Parks, J S; Bullock, B C; Rudel, L L
1989-02-15
The size of low density lipoproteins (LDL) is strongly correlated with LDL cholesteryl ester (CE) content and coronary artery atherosclerosis in monkeys fed cholesterol and saturated fat. African green monkeys fed 11% (weight) fish oil diets have smaller LDL and less CE per LDL particle than lard-fed animals. We hypothesized that this might be due to a lower plasma lecithin:cholesterol acyltransferase (LCAT) activity in fish oil-fed animals. Using recombinant particles made of egg yolk lecithin-[14C]cholesterol-apoA-I as exogenous substrate, we found no difference in plasma LCAT activity (27 versus 28 nmol CE formed per h/ml) of fish oil- versus lard-fed animals, respectively; furthermore, no diet-induced difference in immunodetectable LCAT was found. However, plasma phospholipids from fish oil-fed animals were over 4-fold enriched in n-3 fatty acids in the sn-2 position compared to those of lard-fed animals. Additionally, the proportion of n-3 fatty acid-containing CE products formed by LCAT, relative to the available n-3 fatty acid in the sn-2 position of phospholipids, was less than one-tenth of that for linoleic acid. The overall rate of LCAT-catalyzed CE formation with phospholipid substrates from fish oil-fed animals was lower (5-50%) than with phospholipid substrates from lard-fed animals. These data show that n-3 fatty acids in phospholipids are not readily utilized by LCAT for formation of CE; rather, LCAT preferentially utilizes linoleic acid for CE formation. The amount of linoleic acid in the sn-2 position of plasma phospholipids is reduced and replaced with n-3 fatty acids in fish oil-fed animals. As a result, LCAT-catalyzed plasma CE formation in vivo is likely reduced in fish oil-fed animals contributing to the decreased cholesteryl ester content and smaller size of LDL particles in the animals of this diet group.
Formation of the molecular crystal structure during the vacuum sublimation of paracetamol
NASA Astrophysics Data System (ADS)
Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.
2015-04-01
The results from structural and thermal studies on the formation of molecular crystals during the vacuum sublimation of paracetamol from its vapor phase are given. It is established that the vapor-crystal phase transition proceeds in a complicated way as the superposition of two phase transitions: a first-order phase transition with a change in density, and a second-order phase transition with a change in ordering. It is shown that the latter is a smeared phase transition that proceeds with the formation of a pretransitional phase that is irreversibly dissipated during phase transformation, leading to the formation of crystals of the rhombic syngony. Data from differential scanning calorimetry and X-ray diffraction analysis are presented along with microphotographs.
Characterization of calcium oxalate defective (cod) 6 mutant from Medicago truncatula
USDA-ARS?s Scientific Manuscript database
Many plants invest a considerable amount of resources and energy into the formation of calcium oxalate crystals. A number of roles for crystal formation in plant growth and development have been assigned based on their prevalence, spatial distribution, and variety of crystal shapes. These assigned...
Fast growth of n-type 4H-SiC bulk crystal by gas-source method
NASA Astrophysics Data System (ADS)
Hoshino, Norihiro; Kamata, Isaho; Tokuda, Yuichiro; Makino, Emi; Kanda, Takahiro; Sugiyama, Naohiro; Kuno, Hironari; Kojima, Jun; Tsuchida, Hidekazu
2017-11-01
Fast growth of n-type 4H-SiC crystals was attempted using a high-temperature gas-source method. High growth rates exceeding 9 mm/h were archived at a seed temperature of 2550 °C, although the formation of macro-step bunching caused doping fluctuation and voids in the grown crystal. We investigated a trade-off between growth-rate enhancement and macro-step formation and how to improve the trade-off. By controlling the growth conditions, the growth of highly nitrogen-doped 4H-SiC crystals without the doping fluctuation and void formation were accomplished under a high growth rate exceeding 3 mm/h, maintaining the density of threading screw dislocations in the same level with the seed crystal. The influence of growth parameters on nitrogen incorporations into grown crystals was also surveyed.
Miao, Haiwei; Zeng, Honghui; Gong, Hui
2018-02-15
Macrophage foam cell formation is a key initiating event in the pathogenesis of atherosclerosis. This work was conducted to determine the role of microRNA (miR)-212 in the transformation of foam cells from macrophages. We examined the expression of miR-212 in atherosclerotic lesions in an apoE-deficient (apoE -/- ) mouse model. The effects of miR-212 overexpression and knockdown on lipid accumulation and cholesterol homeostasis in THP-1 macrophages after exposure to oxidized low-density lipoprotein (oxLDL). The mechanism underlying the activity of miR-212 was explored. It was found that miR-212 was downregulated in atherosclerotic lesions and macrophages from apoE -/- mice fed high-fat diet, compared to the equivalents from apoE -/- mice fed standard diet. Overexpression of miR-212 promoted lipid accumulation in oxLDL-treated THP-1 macrophages, whereas miR-212 depletion exerted an opposite effect. Macrophage cholesterol efflux to apolipoprotein A-I was significantly reduced by miR-212, which was accompanied by reduced ABCA1 expression. Mechanistically, miR-212 targeted sirtuin 1 (SIRT1) to repress the expression of ABCA1 in THP-1 macrophages. Rescue experiments confirmed that co-expression of SIRT1 attenuated lipid accumulation and restored cholesterol efflux in miR-212-overexpressing THP-1 macrophages. Collectively, miR-212 facilitates macrophage foam cell formation and suppresses ABCA1-dependent cholesterol efflux through downregulation of SIRT1. Targeting miR-212 may provide a potential therapeutic strategy for atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Ho, Ngoc Anh Thu; Dawes, Stephanie S.; Crowe, Adam M.; Casabon, Israël; Gao, Chen; Kendall, Sharon L.; Baker, Edward N.; Eltis, Lindsay D.; Lott, J. Shaun
2016-01-01
Cholesterol can be a major carbon source for Mycobacterium tuberculosis during infection, both at an early stage in the macrophage phagosome and later within the necrotic granuloma. KstR is a highly conserved TetR family transcriptional repressor that regulates a large set of genes responsible for cholesterol catabolism. Many genes in this regulon, including kstR, are either induced during infection or are essential for survival of M. tuberculosis in vivo. In this study, we identified two ligands for KstR, both of which are CoA thioester cholesterol metabolites with four intact steroid rings. A metabolite in which one of the rings was cleaved was not a ligand. We confirmed the ligand-protein interactions using intrinsic tryptophan fluorescence and showed that ligand binding strongly inhibited KstR-DNA binding using surface plasmon resonance (IC50 for ligand = 25 nm). Crystal structures of the ligand-free form of KstR show variability in the position of the DNA-binding domain. In contrast, structures of KstR·ligand complexes are highly similar to each other and demonstrate a position of the DNA-binding domain that is unfavorable for DNA binding. Comparison of ligand-bound and ligand-free structures identifies residues involved in ligand specificity and reveals a distinctive mechanism by which the ligand-induced conformational change mediates DNA release. PMID:26858250
Atherosclerosis in the Erythrocebus patas, an old world monkey.
Mahley, R. W.; Johnson, D. K.; Pucak, G. J.; Fry, D. L.
1980-01-01
Fifty monkeys of the species Erythrocebus patas were fed a control monkey chow, a semi-synthetic diet containing 25% lard, or a semisynthetic diet containing 25% lard and 0.5% cholesterol for 2 years. The patas monkeys had naturally occurring atherosclerosis that was greatly accelerated by feeding a diet containing cholesterol. The atherosclerosis involved the aorta, predominantly the abdominal portion, the coronary arteries, and various peripheral vessels. Histologically, the atherosclerosis was characterized by intimal proliferative lesions associated with intra- and extracellular lipid deposition. Complicated lesions that developed after 2 years on the cholesterol-containing diet were associated with lipid crystals, necrosis, mineralization, and encroachment upon the media. Adventitial reactions characterized by increased vascularity and the presence of inflammatory cells were seen. All of these observations have been described as components of the human atherosclerotic disease process. The similarity of the patas monkey atherosclerosis to human atherosclerosis, the relatively large size and easy handling of the animals, and the fact that previous studies have shown the lipoproteins of both control and cholesterol-fed monkeys to resemble human lipoproteins all contribute to making the patas monkey a useful model for the study of experimental atherosclerosis. Images Figure 1-5 Figure 6 Figure 7-10 Figure 11 Figure 12 PMID:6766672
Modulation of polyepoxysuccinic acid on crystallization of calcium oxalate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanqing; Tang, Yongming, E-mail: tangym@njtech.edu.cn; Xu, Jinqiu
The influence of polyepoxysuccinic acid (PESA) on the phase composition and crystal morphology of calcium oxalate was investigated in this paper. It was found that the presence of PESA inhibited the growth of the monoclinic calcium oxalate monohydrate (COM) crystal and promoted the nucleation of the tetragonal calcium oxalate dihydrate (COD). In addition, with the increase in PESA concentration, the aggregation of COD crystals was reduced but the particle size was increased. Under the conditions of low calcium-to-oxalate ratio and high CaOx concentration, PESA could not effectively stabilize the formation of COD. Based on molecular dynamic simulations, the adsorption ofmore » PESA on CaOx crystal faces was confirmed. - Graphical abstract: Introduction of PESA into crystallization solutions promotes the formation of calcium oxalate dehydrate and modifies the morphology of crystals. - Highlights: • PESA induces the formation of COD at low supersaturation. • Establishment of Ca-rich surface augments the adsorption of PESA. • At Ca/Ox=0.5 PESA cannot induce the formation of COD compared with Ca/Ox=2. • Interaction of PESA with COM faces is stronger than that with COD faces.« less
A Polymer Visualization System with Accurate Heating and Cooling Control and High-Speed Imaging
Wong, Anson; Guo, Yanting; Park, Chul B.; Zhou, Nan Q.
2015-01-01
A visualization system to observe crystal and bubble formation in polymers under high temperature and pressure has been developed. Using this system, polymer can be subjected to a programmable thermal treatment to simulate the process in high pressure differential scanning calorimetry (HPDSC). With a high-temperature/high-pressure view-cell unit, this system enables in situ observation of crystal formation in semi-crystalline polymers to complement thermal analyses with HPDSC. The high-speed recording capability of the camera not only allows detailed recording of crystal formation, it also enables in situ capture of plastic foaming processes with a high temporal resolution. To demonstrate the system’s capability, crystal formation and foaming processes of polypropylene/carbon dioxide systems were examined. It was observed that crystals nucleated and grew into spherulites, and they grew at faster rates as temperature decreased. This observation agrees with the crystallinity measurement obtained with the HPDSC. Cell nucleation first occurred at crystals’ boundaries due to CO2 exclusion from crystal growth fronts. Subsequently, cells were nucleated around the existing ones due to tensile stresses generated in the constrained amorphous regions between networks of crystals. PMID:25915031
Li, Shang; Zou, Rongfeng; Tu, Yaoquan
2017-01-01
Peptide drugs have been difficult to translate into effective therapies due to their low in vivo stability. Here, we report a strategy to develop peptide-based therapeutic nanoparticles by screening a peptide library differing by single-site amino acid mutations of lysine-modified cholesterol. Certain cholesterol-modified peptides are found to promote and stabilize peptide α-helix formation, resulting in selectively cell-permeable peptides. One cholesterol-modified peptide self-assembles into stable nanoparticles with considerable α-helix propensity stabilized by intermolecular van der Waals interactions between inter-peptide cholesterol molecules, and shows 68.3% stability after incubation with serum for 16 h. The nanoparticles in turn interact with cell membrane cholesterols that are disproportionately present in cancer cell membranes, inducing lipid raft-mediated endocytosis and cancer cell death. Our results introduce a strategy to identify peptide nanoparticles that can effectively reduce tumor volumes when administered to in in vivo mice models. Our results also provide a simple platform for developing peptide-based anticancer drugs. PMID:29163910
Mali, Nitin; Darandale, Sharad; Vavia, Pradeep
2013-12-01
Niosomes are reported to increase the skin permeation and bioavailability of topically applied drug molecules. However, very few studies were reported for nanometer-sized niosome vesicles. The aim of the present study was to prepare minoxidil-loaded niosomal formulation using ethanol injection method. Surfactant screening showed that only Span 60, Span 20, and Tween 20 with cholesterol have capability of nano size vesicle formation. The formed niosomes were characterized for entrapment efficiency, vesicle size, scanning electron microscope, and physical stability. By modulation of surfactant and cholesterol ratio maximum entrapment up to 34.70 ± 1.1 % with size of 470 ± 27 nm was obtained (Span 60/cholesterol ratio of 1:2). The vesicle size obtained was between 150 and 800 nm that was depending on cholesterol ratio and type of nonionic surfactant employed. The in vitro skin permeation study showed that an increase in cholesterol concentration in niosome vesicles increases minoxidil skin retention. Niosome formulation prepared with 1:2 ratio of Span 60 and cholesterol showed 17.21 ± 3.2 % skin retention of minoxidil, which is more than eightfold as compared to control minoxidil gel.
Solution-grown crystals for neutron radiation detectors, and methods of solution growth
Zaitseva, Natalia P; Hull, Giulia; Cherepy, Nerine J; Payne, Stephen A; Stoeffl, Wolfgang
2012-06-26
A method according to one embodiment includes growing an organic crystal from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. A method according to another embodiment includes growing an organic crystal from solution, the organic crystal being large enough to exhibit a detectable signal response signature for neutrons from a radioactive source. An organic crystal according to another embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source, wherein the organic crystal has a length of greater than about 1 mm in one dimension.
Role of Rab5 in the formation of macrophage-derived foam cell.
Chan, Lokwern; Hong, Jin; Pan, Junjie; Li, Jian; Wen, Zhichao; Shi, Haiming; Ding, Jianping; Luo, Xinping
2017-09-12
Foam cells play a key role in the occurrence and pathogenesis of atherosclerosis. Its formation starts with the ingestion of oxidized low-density lipoprotein (oxLDL). The process is associated with Ras related protein in brain 5 (Rab5) which plays a critical role in regulating endocytosis and early endosomal trafficking. Base on this, we presumed that Rab5 might participate in the maturation of foam cell. The aim of this study is to investigate the effect of Rab5 on macrophage cholesterol during the evolvement of macrophage when induced by oxLDL to the formation of foam cell. Immunohistochemistry was performed to analyze the distribution of macrophages and Rab5 in atherosclerotic plaque. RNA inteference study and transfection of inactive mutant (GFP-Rab5-S34N) and active mutant (GFP-Rab5-Q79L) in U937-derived macrophage were utilized to investigate the impact of Rab5 on the process of macrophage cholesterol, which could be detected by oil red O staining, determination of intracellular lipid content, filipin staining, nile red staining and the costaining of early endosome antigen-1 (EEA-1) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylin dicarbocyanine (Dil)-labelled oxLDL (Dil-oxLDL). Rab5 was found abundantly localized in macrophage rich areas of human atherosclerotic lesions. On the foam cell study, the expression of Rab5 was increased after the incubation of oxLDL. The inteference study indicated the depletion of Rab5 led to the decreases of oil red O staining areas, total cholesterol and cholesterol esters in U937-derived marophages. Moreover, the fluorescence intensity of filipin and nile red staining were lower in GFP-Rab5-S34N as compared with GFP-Rab5-Q79L. The confocal study demonstrated less Dil-oxLDL was internalized in GFP-Rab5-S34N as compared with GFP-Rab5-Q79L; the result showed also the decrease in colocalization of internalized Dil-oxLDL and EEA-1 for GFP-Rab5-S34N as compared with GFP-Rab5-Q79L. Rab5 plays an important role in modulating the intracellular cholesterol of macrophages and consequently mediating the formation of foam cells.
Regional differences in constituents of gall stones.
Ashok, M; Nageshwar Reddy, D; Jayanthi, V; Kalkura, S N; Vijayan, V; Gokulakrishnan, S; Nair, K G M
2005-01-01
The pathogenesis of pigment and mixed gall stone formation remains elusive. The elemental constituents of gall stones from southern states of Tamil Nadu, Kerala and Karnataka have been characterized. Our aim was to determine the elemental concentration of representative samples of pigment, mixed and cholesterol gall stones from Andhra Pradesh using proton-induced X-ray emission (PIXE) using a 3 MV horizontal pelletron accelerator. Pigment gall stones had significantly high concentrations of copper, iron and lead; chromium was absent. Except for iron all these elements were significantly low in cholesterol gall stones and intermediate levels were seen in mixed gall stones. Highest concentrations of chromium was seen in cholesterol and titanium in mixed gall stones respectively; latter similar to other southern states. Arsenic was distinctly absent in cholesterol and mixed gall stones. The study has identified differences in elemental components of the gall stones from Andhra Pradesh.
HOW DO STONES FORM? IS UNIFICATION OF THEORIES ON STONE FORMATION POSSIBLE?
Bird, Victoria Y.; Khan, Saeed R.
2017-01-01
Summary There are two basic pathways for formation of calcium based kidney stones. Most idiopathic calcium oxalate (CaOx) stones are formed in association with sub-epithelial plaques of calcium phosphate (CaP), known as Randall’s plaques, on renal papillary surfaces. Crystal formation and retention within the terminal collecting ducts, the ducts of Bellini, leading to the formation of Randall’s plugs, is the other pathway. Both pathways require supersaturation leading to crystallization, regulated by various crystallization modulators produced in response to changing urinary conditions. High supersaturation, as a result of a variety of genetic and environmental factors, leads to crystallization in the terminal collecting ducts, eventually plugging their openings into the renal pelvis. Stasis behind the plugs may lead to the formation of attached or unattached stones in the tubular lumen. Deposition of crystals on the plug surface facing the pelvic or tubular urine may result in stone formation on the Randall’s plugs. Kidneys of idiopathic stone formers may be subjected to oxidative stress as a result of increased urinary excretion of calcium/oxalate/phosphate and/or decrease in the production of functional crystallization inhibitors or in relation to co-morbidities such as hypertension, atherosclerosis, or acute kidney injury. We have proposed that production of reactive oxygen species (ROS) causes dedifferentiation of epithelial/endothelial cells into osteoblast type cells and deposition of CaP in the basement membrane of renal tubules or vessels. Growth, aggregation and melding of CaP crystals leads to the formation of plaque which grows by further calcification of interstitial collagen and membranous vesicles. Plaque becomes exposed to pelvic urine once the covering papillary epithelium is breached. Surface layers of CaP are replaced by CaOx through direct transformation or demineralization of CaP and mineralization of CaOx. Alternatively, or in addition, CaOx crystals nucleate directly on the plaque surface. Stone growth may also depend upon supersaturation in the pelvic urine, triggering further nucleation, growth and aggregation. PMID:28221139
Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation.
Nevin, K G; Rajamohan, T
2004-09-01
The present study was conducted to investigate the effect of consumption of virgin coconut oil (VCO) on various lipid parameters in comparison with copra oil (CO). In addition, the preventive effect of polyphenol fraction (PF) from test oils on copper induced oxidation of LDL and carbonyl formation was also studied. After 45 days of oil feeding to Sprague-Dawley rats, several lipid parameters and lipoprotein levels were determined. PF was isolated from the oils and its effect on in vitro LDL oxidation was assessed. VCO obtained by wet process has a beneficial effect in lowering lipid components compared to CO. It reduced total cholesterol, triglycerides, phospholipids, LDL, and VLDL cholesterol levels and increased HDL cholesterol in serum and tissues. The PF of virgin coconut oil was also found to be capable of preventing in vitro LDL oxidation with reduced carbonyl formation. The results demonstrated the potential beneficiary effect of virgin coconut oil in lowering lipid levels in serum and tissues and LDL oxidation by physiological oxidants. This property of VCO may be attributed to the biologically active polyphenol components present in the oil.
Xu, Shaohua; Yu, Jianqing J
2006-12-01
Astronauts lose 1-2% of their bone minerals per month during space flights. A systematic search for a countermeasure relies on a good understanding of the mechanism of bone formation at the molecular level. How collagen fibers, the dominant matrix protein in bones, are mineralized remains mysterious. Atomic force microscopy was carried out, in combination with immunostaining and Western blotting, on bovine tibia to identify unrecognized building blocks involved in bone formation and for an elucidation of the process of collagen calcification in bone formation. Before demineralization, tiles of hydroxyapatite crystals were found stacked along bundles of collagen fibers. These tiles were homogeneous in size and shape with dimensions 0.69 x 0.77 x 0.2 micro m(3). Demineralization dissolved these tiles and revealed small spheres with an apparent diameter around 145 nm. These spheres appeared to be lipid particles since organic solvents dissolved them. The parallel collagen bundles had widths mostly <2 micro m. Composition analysis of compact bones indicated a high content of apolar lipids, including triglycerides and cholesterol esters. Apolar lipids are known to form lipid droplets or lipoproteins, and these spheres are unlikely to be matrix vesicles as reported for collagen calcification in epiphyseal cartilages. Results from this study suggest that the layer of round lipid particles on collagen fibers mediates the mineral deposition onto the fibers. The homogeneous size of these lipid particles and the presence of apolipoprotein in demineralized bone tissue suggest the possibility that these particles might be of lipoprotein origin. More studies are needed to verify the last claim and to exclude the possibility that they are secreted lipid droplets.
Lorent, Joseph; Le Duff, Cécile S.; Quetin-Leclercq, Joelle; Mingeot-Leclercq, Marie-Paule
2013-01-01
The interactions of triterpenoid monodesmosidic saponins, α-hederin and δ-hederin, with lipid membranes are involved in their permeabilizing effect. Unfortunately, the interactions of these saponins with lipid membranes are largely unknown, as are the roles of cholesterol or the branched sugar moieties (two for α-hederin and one for δ-hederin) on the aglycone backbone, hederagenin. The differences in sugar moieties are responsible for differences in the molecular shape of the saponins and the effects on membrane curvature that should be the most positive for α-hederin in a transbilayer direction. In large unilamellar vesicles and monocyte cells, we showed that membrane permeabilization was dependent on the presence of membrane cholesterol and saponin sugar chains, being largest for α-hederin and smallest for hederagenin. In the presence of cholesterol, α-hederin induced the formation of nonbilayer phases with a higher rate of Brownian tumbling or lateral diffusion. A reduction of Laurdan's generalized polarization in relation to change in order of the polar heads of phospholipids was observed. Using giant unilamellar vesicles, we visualized the formation of wrinkled borders, the decrease in liposome size, budding, and the formation of macroscopic pores. All these processes are highly dependent on the sugars linked to the aglycone, with α-hederin showing a greater ability to induce pore formation and δ-hederin being more efficient in inducing budding. Hederagenin induced intravesicular budding but no pore formation. Based on these results, a curvature-driven permeabilization mechanism dependent on the interaction between saponin and sterols and on the molecular shape of the saponin and its ability to induce local spontaneous curvature is proposed. PMID:23530040
NASA Astrophysics Data System (ADS)
Al-Aqeeli, N.; Suryanarayana, C.; Hussein, M. A.
2013-10-01
Mechanical alloying of binary Nb-Zr powder mixtures was carried out to evaluate the formation of metastable phases in this immiscible system. The milled powders were characterized for their constitution and structure by X-ray diffraction and transmission electron microscopy methods. It was shown that an amorphous phase had formed on milling the binary powder mixture for about 10 h and that it had crystallized on subsequent milling up to 50-70 h, referred to as mechanical crystallization. Thermodynamic and structural arguments have been presented to explain the formation of the amorphous phase and its subsequent crystallization.
NASA Astrophysics Data System (ADS)
Bryukvina, L. I.; Martynovich, E. F.
2012-12-01
The specific features of light- and temperature-induced formation of metallic nanoparticles in γ-irradiated LiF and NaF crystals have been investigated. Atomic force microscope images of nanoparticles of different sizes and in different locations have been presented. The relation between the crystal processing regimes and properties of the nanoparticles formed has been revealed. The optical properties of the processed crystals have been analyzed. The thermo- and light-stimulated processes underlying the formation of metallic nanoparticles in aggregation of the color centers and their decay due to the recovery of the crystal lattice have been studied.
L-arginine prevents xanthoma development and inhibits atherosclerosis in LDL receptor knockout mice.
Aji, W; Ravalli, S; Szabolcs, M; Jiang, X C; Sciacca, R R; Michler, R E; Cannon, P J
1997-01-21
The potential antiatherosclerotic actions of NO were investigated in four groups of mice (n = 10 per group) lacking functional LDL receptor genes, an animal model of familial hypercholesterolemia. Group 1 was fed a regular chow diet. Groups 2 through 4 were fed a 1.25% high-cholesterol diet. In addition, group 3 received supplemental L-arginine and group 4 received L-arginine and N omega-nitro-L-arginine (L-NA), an inhibitor of NO synthase (NOS). Animals were killed at 6 months; aortas were stained with oil red O for planimetry and with antibodies against constitutive and inducible NOSs. Plasma cholesterol was markedly increased in the animals receiving the high-cholesterol diet. Xanthomas appeared in all mice fed the high-cholesterol diet alone but not in those receiving L-arginine. Aortic atherosclerosis was present in all mice on the high-cholesterol diet. The mean atherosclerotic lesion area was reduced significantly (P < .01) in the cholesterol-fed mice given L-arginine compared with those receiving the high-cholesterol diet alone. The mean atherosclerotic lesion area was significantly larger (P < .01) in cholesterol-fed mice receiving L-arginine + L-NA than in those on the high-cholesterol diet alone. Within the atherosclerotic plaques, endothelial cells immunoreacted for endothelial cell NOS; macrophages, foam cells, and smooth muscle cells immunostained strongly for inducible NOS and nitrotyrosine residues. The data indicate that L-arginine prevents xanthoma formation and reduces atherosclerosis in LDL receptor knockout mice fed a high-cholesterol diet. The abrogation of the beneficial effects of L-arginine by L-NA suggests that the antiatherosclerotic actions of L-arginine are mediated by NOS. The data suggest that L-arginine may be beneficial in familial hypercholesterolemia.
High Cholesterol Obviates a Prolonged Hemifusion Intermediate in Fast SNARE-Mediated Membrane Fusion
Kreutzberger, Alex J.B.; Kiessling, Volker; Tamm, Lukas K.
2015-01-01
Cholesterol is essential for exocytosis in secretory cells, but the exact molecular mechanism by which it facilitates exocytosis is largely unknown. Distinguishing contributions from the lateral organization and dynamics of membrane proteins to vesicle docking and fusion and the promotion of fusion pores by negative intrinsic spontaneous curvature and other mechanical effects of cholesterol have been elusive. To shed more light on this process, we examined the effect of cholesterol on SNARE-mediated membrane fusion in a single-vesicle assay that is capable of resolving docking and elementary steps of fusion with millisecond time resolution. The effect of cholesterol on fusion pore formation between synaptobrevin-2 (VAMP-2)-containing proteoliposomes and acceptor t-SNARE complex-containing planar supported bilayers was examined using both membrane and content fluorescent markers. This approach revealed that increasing cholesterol in either the t-SNARE or the v-SNARE membrane favors a mechanism of direct fusion pore opening, whereas low cholesterol favors a mechanism leading to a long-lived (>5 s) hemifusion state. The amount of cholesterol in the target membrane had no significant effect on docking of synaptobrevin vesicles. Comparative studies with α-tocopherol (vitamin E) show that the negative intrinsic spontaneous curvature of cholesterol and its presumed promotion of a very short-lived (<50 ms) lipid stalk intermediate is the main factor that favors rapid fusion pore opening at high cholesterol. This study also shows that this single-vesicle fusion assay can distinguish between hemifusion and full fusion with only a single lipid dye, thereby freeing up a fluorescence channel for the simultaneous measurement of another parameter in fast time-resolved fusion assays. PMID:26200867
β-COP as a Component of Transport Vesicles for HDL Apolipoprotein-Mediated Cholesterol Exocytosis
Ma, Weilie; Lin, Margarita; Ding, Hang; Lin, Guorong; Zhang, Zhizhen
2016-01-01
Objective HDL and its apolipoproteins protect against atherosclerotic disease partly by removing excess cholesterol from macrophage foam cells. But the underlying mechanisms of cholesterol clearance are still not well defined. We investigated roles of vesicle trafficking of coatomer β-COP in delivering cholesterol to the cell surface during apoA-1 and apoE-mediated lipid efflux from fibroblasts and THP-1 macrophages. Methods shRNA knockout, confocal and electron microscopy and biochemical analysis were used to investigate the roles of β-COP in apolipoprotein-mediated cholesterol efflux in fibroblasts and THP-1 macrophages. Results We showed that β-COP knockdown by lentiviral shRNA resulted in reduced apoA-1-mediated cholesterol efflux, while increased cholesterol accumulation and formation of larger vesicles were observed in THP-1 macrophages by laser scanning confocal microscopy. Immunogold electron microscopy showed that β-COP appeared on the membrane protrusion complexes and colocalized with apoA-1 or apoE during cholesterol efflux. This was associated with releasing heterogeneous sizes of small particles into the culture media of THP-1 macrophage. Western blotting also showed that apoA-1 promotes β-COP translocation to the cell membrane and secretion into culture media, in which a total of 17 proteins were identified by proteomics. Moreover, β-COP exclusively associated with human plasma HDL fractions. Conclusion ApoA-1 and apoE promoted transport vesicles consisting of β-COP and other candidate proteins to exocytose cholesterol, forming the protrusion complexes on cell surface, which were then released from the cell membrane as small particles to media. PMID:26986486
Method For Screening Microcrystallizations For Crystal Formation
Santarsiero, Bernard D. , Stevens, Raymond C. , Schultz, Peter G. , Jaklevic, Joseph M. , Yegian, Derek T. , Cornell, Earl W. , Nordmeyer, Robert A.
2003-10-07
A method is provided for performing array microcrystallizations to determine suitable crystallization conditions for a molecule, the method comprising: forming an array of microcrystallizations, each microcrystallization comprising a drop comprising a mother liquor solution whose composition varies within the array and a molecule to be crystallized, the drop having a volume of less than 1 microliter; storing the array of microcrystallizations under conditions suitable for molecule crystals to form in the drops in the array; and detecting molecule crystal formation in the drops by taking images of the drops.
Fujiwara, Yukio; Kiyota, Naoko; Hori, Masaharu; Matsushita, Sayaka; Iijima, Yoko; Aoki, Koh; Shibata, Daisuke; Takeya, Motohiro; Ikeda, Tsuyoshi; Nohara, Toshihiro; Nagai, Ryoji
2007-11-01
We recently identified esculeoside A, a new spirosolane-type glycoside, with a content in tomatoes that is 4-fold higher than that of lycopene. In the present study, we examined the effects of esculeoside A and esculeogenin A, a new aglycon of esculeoside A, on foam cell formation in vitro and atherogenesis in apoE-deficient mice. Esculeogenin A significantly inhibited the accumulation of cholesterol ester (CE) induced by acetylated low density lipoprotein (acetyl-LDL) in human monocyte-derived macrophages (HMDM) in a dose-dependent manner without inhibiting triglyceride accumulation, however, it did not inhibit the association of acetyl-LDL to the cells. Esculeogenin A also inhibited CE formation in Chinese hamster ovary cells overexpressing acyl-coenzymeA (CoA): cholesterol acyl-transferase (ACAT)-1 or ACAT-2, suggesting that esculeogenin A suppresses the activity of both ACAT-1 and ACAT-2. Furthermore, esculeogenin A prevented the expression of ACAT-1 protein, whereas that of SR-A and SR-BI was not suppressed. Oral administration of esculeoside A to apoE-deficient mice significantly reduced the levels of serum cholesterol, triglycerides, LDL-cholesterol, and the areas of atherosclerotic lesions without any detectable side effects. Our study provides the first evidence that purified esculeogenin A significantly suppresses the activity of ACAT protein and leads to reduction of atherogenesis.
Zhang, Jin-You; Wu, Yi; Zhao, Shuan; Liu, Zhen-Xing; Zeng, Shen-Ming; Zhang, Gui-Xue
2015-09-15
Progesterone is an important steroid hormone in the regulation of the bovine estrous cycle. The steroidogenic acute regulatory protein (StAR) is an indispensable component for transporting cholesterol to the inner mitochondrial membrane, which is one of the rate-limiting steps for progesterone synthesis. Low-density lipoprotein (LDL) supplies cholesterol precursors for progesterone formation, and the lysosomal degradation pathway of LDL is essential for progesterone biosynthesis in granulosa cells after ovulation. However, it is currently unknown how LDL and lysosomes coordinate the expression of the StAR gene and progesterone production in bovine granulosa cells. Here, we investigated the role of lysosomes in LDL-treated bovine granulosa cells. Our results reported that LDL induced expression of StAR messenger RNA and protein as well as expression of cholesterol side-chain cleavage cytochrome P-450 (CYP11A1) messenger RNA and progesterone production in cultured bovine granulosa cells. The number of lysosomes in the granulosa cells was also significantly increased by LDL; whereas the lysosomal inhibitor, chloroquine, strikingly abolished these LDL-induced effects. Our results indicate that LDL promotes StAR expression, synthesis of progesterone, and formation of lysosomes in bovine granulosa cells, and lysosomes participate in the process by releasing free cholesterol from hydrolyzed LDL. Copyright © 2015 Elsevier Inc. All rights reserved.
Unusual folded structures for a tethered squaraine-cholesterol derivative in Langmuir-Blodgett films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanescu, M.; Samha, H.; Perlstein, J.
2000-01-11
A squaraine-cholesterol diad, 1, which has been found to be a good gelator, has been studied in films at the air-water interface and in supported Langmuir-Blodgett films. Both experimental observations and simulations are consistent with a low-energy folded structure in which there are attractive noncovalent interactions between the squaraine chromophore and the steroid. Although different structures seem likely for 1 in both the crystal and organogels, the present studies suggest that the folded structure exists in both uncompressed and compressed films at the air-water interface and in supported LB films. In both environments the squaraine chromophore shows evidence of squaraine-squarainemore » aggregation; both J and H aggregates are indicated depending upon the conditions imposed upon the film.« less
Wagner, Lukas; Mundt, Laura E; Mathiazhagan, Gayathri; Mundus, Markus; Schubert, Martin C; Mastroianni, Simone; Würfel, Uli; Hinsch, Andreas; Glunz, Stefan W
2017-11-02
Relating crystallization of the absorber layer in a perovskite solar cell (PSC) to the device performance is a key challenge for the process development and in-depth understanding of these types of high efficient solar cells. A novel approach that enables real-time photo-physical and electrical characterization using a graphite-based PSC is introduced in this work. In our graphite-based PSC, the device architecture of porous monolithic contact layers creates the possibility to perform photovoltaic measurements while the perovskite crystallizes within this scaffold. The kinetics of crystallization in a solution based 2-step formation process has been analyzed by real-time measurement of the external photon to electron quantum efficiency as well as the photoluminescence emission spectra of the solar cell. With this method it was in particular possible to identify a previously overlooked crystallization stage during the formation of the perovskite absorber layer. This stage has significant influence on the development of the photocurrent, which is attributed to the formation of electrical pathways between the electron and hole contact, enabling efficient charge carrier extraction. We observe that in contrast to previously suggested models, the perovskite layer formation is indeed not complete with the end of crystal growth.
A first-principles core-level XPS study on the boron impurities in germanium crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, Jun; Yoshimoto, Yoshihide; Suwa, Yuji
2013-12-04
We systematically investigated the x-ray photoelectron spectroscopy (XPS) core-level shifts and formation energies of boron defects in germanium crystals and compared the results to those in silicon crystals. Both for XPS core-level shifts and formation energies, relationship between defects in Si and Ge is roughly linear. From the similarity in the formation energy, it is expected that the exotic clusters like icosahedral B12 exist in Ge as well as in Si.
Mudgil, Poonam; Dennis, Gary R; Millar, Thomas J
2005-02-15
Synthetic polymers are increasingly being used in situations where they are designed to interact with biological systems. As a result, it is important to investigate the interactions of the polymers with biochemicals. We have used cholesterol, as an example of an important biological surfactant component, to study its interactions with polystyrene. Mixed monolayers of cholesterol and one of two different molecular weight polystyrenes were formed at an air-water interface to investigate their interactions and to determine whether the size of the polystyrene affected the interaction. The pressure-area (pi-A) isocycles of mixed monolayers of cholesterol and polystyrene MW 2700 or polystyrene MW32700 showed that strongest attractive interactions occur at high surface pressures and in polystyrene rich films. The excess area and excess free energy of mixing were most negative at high surface pressures and at high mole fraction of polystyrene. The most stable mixed monolayers were formed with X(PS2700) = 0.9 and X(PS32700) = 0.09. Microscopic observation of the mixed monolayers of cholesterol and polystyrene showed the formation of stable islands in the cholesterol/polystyrene mixtures. These observations, the nature of the inflection points in the isocycles, and the anomalous changes in free energy lead us to conclude that there is a stable rearrangement of polystyrene into compact islands when it is mixed with cholesterol. Any excess cholesterol is excluded from these islands and remains as a separate film surrounding the islands.
Brown, Anna; Patel, Siddharth; Ward, Carl; Lorenz, Anna; Ortiz, Mauren; DuRoss, Allison; Wieghardt, Fabian; Esch, Amanda; Otten, Elsje G.; Heiser, Laura M.; Korolchuk, Viktor I.; Sun, Conroy; Sarkar, Sovan; Sahay, Gaurav
2016-01-01
2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1−/−) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1−/− cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders. PMID:27572704
NASA Astrophysics Data System (ADS)
Brown, Anna; Patel, Siddharth; Ward, Carl; Lorenz, Anna; Ortiz, Mauren; Duross, Allison; Wieghardt, Fabian; Esch, Amanda; Otten, Elsje G.; Heiser, Laura M.; Korolchuk, Viktor I.; Sun, Conroy; Sarkar, Sovan; Sahay, Gaurav
2016-08-01
2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1-/-) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1-/- cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders.
Wade, Kristin R.; Hotze, Eileen M.; Briles, David E.; Tweten, Rodney K.
2014-01-01
Streptococcus pneumoniae produces the pore-forming toxin pneumolysin (PLY), which is a member of the cholesterol-dependent cytolysin (CDC) family of toxins. The CDCs recognize and bind the 3β-hydroxyl group of cholesterol at the cell surface, which initiates membrane pore formation. The cholesterol transport lipoproteins, which carry cholesterol in their outer monolayer, are potential off-pathway binding targets for the CDCs and are present at significant levels in the serum and the interstitial spaces of cells. Herein we show that cholesterol carried specifically by the ApoB-100-containing lipoprotein particles (CH-ApoB-100) in the mouse, but not that carried by human or guinea pig particles, is a potent inhibitor of the PLY pore-forming mechanism. Cholesterol present in the outer monolayer of mouse ApoB-100 particles is recognized and bound by PLY, which stimulates premature assembly of the PLY oligomeric complex thereby inactivating PLY. These studies further suggest that the vast difference in the inhibitory capacity of mouse CH-ApoB-100 and that of the human and the guinea pig is due to differences in the presentation of cholesterol in the outer monolayer of their ApoB-100 particles. Therefore mouse CH-ApoB-100 represents a significant innate CDC inhibitor that is absent in humans, which may underestimate the contribution of CDCs to human disease when utilizing mouse models of disease. PMID:25188225
Influence of computational domain size on the pattern formation of the phase field crystals
NASA Astrophysics Data System (ADS)
Starodumov, Ilya; Galenko, Peter; Alexandrov, Dmitri; Kropotin, Nikolai
2017-04-01
Modeling of crystallization process by the phase field crystal method (PFC) represents one of the important directions of modern computational materials science. This method makes it possible to research the formation of stable or metastable crystal structures. In this paper, we study the effect of computational domain size on the crystal pattern formation obtained as a result of computer simulation by the PFC method. In the current report, we show that if the size of a computational domain is changed, the result of modeling may be a structure in metastable phase instead of pure stable state. The authors present a possible theoretical justification for the observed effect and provide explanations on the possible modification of the PFC method to account for this phenomenon.
Miyata, Kiyoshi; Atallah, Timothy L.; Zhu, X.-Y.
2017-01-01
Lead halide perovskites have been demonstrated as high performance materials in solar cells and light-emitting devices. These materials are characterized by coherent band transport expected from crystalline semiconductors, but dielectric responses and phonon dynamics typical of liquids. This “crystal-liquid” duality implies that lead halide perovskites belong to phonon glass electron crystals, a class of materials believed to make the most efficient thermoelectrics. We show that the crystal-liquid duality and the resulting dielectric response are responsible for large polaron formation and screening of charge carriers, leading to defect tolerance, moderate charge carrier mobility, and radiative recombination properties. Large polaron formation, along with the phonon glass character, may also explain the marked reduction in hot carrier cooling rates in these materials. PMID:29043296
Kleiner, Oleg; Ramesh, Jagannathan; Huleihel, Mahmoud; Cohen, Beny; Kantarovich, Keren; Levi, Chen; Polyak, Boris; Marks, Robert S; Mordehai, Jacov; Cohen, Zahavi; Mordechai, Shaul
2002-01-01
Background Cholelithiasis is the gallstone disease (GSD) where stones are formed in the gallbladder. The main function of the gallbladder is to concentrate bile by the absorption of water and sodium. GSD has high prevalence among elderly adults. There are three major types of gallstones found in patients, White, Black and Brown. The major chemical component of white stones is cholesterol. Black and brown stones contain different proportions of cholesterol and bilirubin. The pathogenesis of gallstones is not clearly understood. Analysis of the chemical composition of gallstones using various spectroscopic techniques offers clues to the pathogenesis of gallstones. Recent years has seen an increasing trend in the number of cases involving children. The focus of this study is on the analysis of the chemical composition of gallstones from child and adult patients using spectroscopic methods. Methods In this report, we present FTIR spectroscopic studies and fluorescence microscopic analysis of gallstones obtained from 67 adult and 21 child patients. The gallstones were removed during surgical operations at Soroka University Medical Center. Results Our results show that black stones from adults and children are rich in bilirubin. Brown stones are composed of varying amounts of bilirubin and cholesterol. Green stones removed from an adult, which is rare, was found to be composed mainly of cholesterol. Our results also indicated that cholesterol and bilirubin could be the risk factors for gallstone formation in adults and children respectively. Fluorescence micrographs showed that the Ca-bilirubinate was present in all stones in different quantities and however, Cu-bilirubinate was present only in the mixed and black stones. Conclusions Analysis based on FTIR suggest that the composition of black and brown stones from both children and adults are similar. Various layers of the brown stone from adults differ by having varying quantities of cholesterol and calcium carbonate. Ring patterns observed mainly in the green stone using fluorescence microscopy have relevance to the mechanism of the stone formation. Our preliminary study suggests that bilirubin and cholesterol are the main risk factors of gallstone disease. PMID:11872150
Xu, Qing; Bohnacker, Thomas; Wymann, Matthias P.; Kruth, Howard S.
2013-01-01
During atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates in macrophages to form foam cells. Macrophage uptake of LDL promotes foam cell formation but the mechanism mediating this process is not clear. The present study investigates the mechanism of LDL uptake for macrophage colony-stimulating factor (M-CSF)-differentiated murine bone marrow-derived macrophages. LDL receptor-null (LDLR−/−) macrophages incubated with LDL showed non-saturable accumulation of cholesterol that did not down-regulate for the 24 h examined. Incubation of LDLR−/− macrophages with increasing concentrations of 125I-LDL showed non-saturable macrophage LDL uptake. A 20-fold excess of unlabeled LDL had no effect on 125I-LDL uptake by wild-type macrophages and genetic deletion of the macrophage scavenger receptors CD36 and SRA did not affect 125I-LDL uptake, showing that LDL uptake occurred by fluid-phase pinocytosis independently of receptors. Cholesterol accumulation was inhibited approximately 50% in wild-type and LDLR−/− mice treated with LY294002 or wortmannin, inhibitors of all classes of phosphoinositide 3-kinases (PI3K). Time-lapse, phase-contrast microscopy showed that macropinocytosis, an important fluid-phase uptake pathway in macrophages, was blocked almost completely by PI3K inhibition with wortmannin. Pharmacological inhibition of the class I PI3K isoforms alpha, beta, gamma or delta did not affect macrophage LDL-derived cholesterol accumulation or macropinocytosis. Furthermore, macrophages from mice expressing kinase-dead class I PI3K beta, gamma or delta isoforms showed no decrease in cholesterol accumulation or macropinocytosis when compared with wild-type macrophages. Thus, non-class I PI3K isoforms mediated macropinocytosis in these macrophages. Further characterization of the components necessary for LDL uptake, cholesterol accumulation, and macropinocytosis identified dynamin, microtubules, actin, and vacuolar type H(+)-ATPase as contributing to uptake. However, Pak1, Rac1, and Src-family kinases, which mediate fluid-phase pinocytosis in certain other cell types, were unnecessary. In conclusion, our findings provide evidence that targeting those components mediating macrophage macropinocytosis with inhibitors may be an effective strategy to limit macrophage accumulation of LDL-derived cholesterol in arteries. PMID:23536783
The influence of bacteria on struvite crystal habit and its importance in urinary stone formation
NASA Astrophysics Data System (ADS)
Clapham, L.; McLean, R. J. C.; Nickel, J. C.; Downey, J.; Costerton, J. W.
1990-07-01
Infection-induced urinary stones form as a result of a urinary tract infection by urease-producing bacteria. These stones are not totally crystalline in nature but rather consist of an agglomeration of bacteria, organic matrix, and crystal of struvite (MgNH 4PO 4· 6H 2O). Crystal formation is related to the ability of the bacteria to effect an increase in the urine pH. Another equally important bacterial role lies in their formation of a 'biofilm' which later becomes the organic matrix constituent of the stone. Results of the present in vitro study indicate that crystals are formed more readily if produced within the bacterial biofilm than in the surrounding urine. It is proposed that supersaturation, due in part to a bacterial-induced pH increase and in part to the metal binding tendency of the biofilm, leads to crystal formation via a gel growth mechanism within the biofilm itself. In time further bacterial cell division, microcolony.
Evolution of dealloying induced strain in nanoporous gold crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen-Wiegart, Yu-chen Karen; Harder, Ross; Dunand, David C.
For this paper, we studied the evolution of dealloying-induced strain along the {111} in a Ag-Au nano-crystal in situ, during formation of nanoporous gold at the initial stage of dealloying using Bragg coherent x-ray diffractive imaging. The maximum strain magnitude in the crystal doubled in 10 s of dealloying. Although formation of nano-pores just began at the surface, the greatest strain is located 60-80 nm deep within the crystal. Dealloying induced a compressive strain in this region, indicating volume shrinkage occurred during pore formation. The crystal interior showed a small tensile strain, which can be explained by 'pulling' of themore » dealloyed region by the non-dealloyed region during volume reduction. A surface strain relaxation developed, attributed to atomic rearrangement during dealloying. This clearer understanding of the role of strain in the initial stages of formation of nanoporous gold by dealloying can be exploited for development of new sensors, battery electrodes, and materials for catalysis.« less
The Biophysics Microgravity Initiative
NASA Technical Reports Server (NTRS)
Gorti, S.
2016-01-01
Biophysical microgravity research on the International Space Station using biological materials has been ongoing for several decades. The well-documented substantive effects of long duration microgravity include the facilitation of the assembly of biological macromolecules into large structures, e.g., formation of large protein crystals under micro-gravity. NASA is invested not only in understanding the possible physical mechanisms of crystal growth, but also promoting two flight investigations to determine the influence of µ-gravity on protein crystal quality. In addition to crystal growth, flight investigations to determine the effects of shear on nucleation and subsequent formation of complex structures (e.g., crystals, fibrils, etc.) are also supported. It is now considered that long duration microgravity research aboard the ISS could also make possible the formation of large complex biological and biomimetic materials. Investigations of various materials undergoing complex structure formation in microgravity will not only strengthen NASA science programs, but may also provide invaluable insight towards the construction of large complex tissues, organs, or biomimetic materials on Earth.
Evolution of dealloying induced strain in nanoporous gold crystals
Chen-Wiegart, Yu-chen Karen; Harder, Ross; Dunand, David C.; ...
2017-04-10
For this paper, we studied the evolution of dealloying-induced strain along the {111} in a Ag-Au nano-crystal in situ, during formation of nanoporous gold at the initial stage of dealloying using Bragg coherent x-ray diffractive imaging. The maximum strain magnitude in the crystal doubled in 10 s of dealloying. Although formation of nano-pores just began at the surface, the greatest strain is located 60-80 nm deep within the crystal. Dealloying induced a compressive strain in this region, indicating volume shrinkage occurred during pore formation. The crystal interior showed a small tensile strain, which can be explained by 'pulling' of themore » dealloyed region by the non-dealloyed region during volume reduction. A surface strain relaxation developed, attributed to atomic rearrangement during dealloying. This clearer understanding of the role of strain in the initial stages of formation of nanoporous gold by dealloying can be exploited for development of new sensors, battery electrodes, and materials for catalysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taniguchi, Chisato; Ichimura, Aiko; Ohtani, Noboru, E-mail: ohtani.noboru@kwansei.ac.jp
The formation of basal plane stacking faults in heavily nitrogen-doped 4H-SiC crystals was theoretically investigated. A novel theoretical model based on the so-called quantum well action mechanism was proposed; the model considers several factors, which were overlooked in a previously proposed model, and provides a detailed explanation of the annealing-induced formation of double layer Shockley-type stacking faults in heavily nitrogen-doped 4H-SiC crystals. We further revised the model to consider the carrier distribution in the depletion regions adjacent to the stacking fault and successfully explained the shrinkage of stacking faults during annealing at even higher temperatures. The model also succeeded inmore » accounting for the aluminum co-doping effect in heavily nitrogen-doped 4H-SiC crystals, in that the stacking fault formation is suppressed when aluminum acceptors are co-doped in the crystals.« less
Rusanov, S E
2017-09-01
In this article is given the new insight about the affection of stress on the increase of level of low density lipoproteins (LDL) in the blood, which is connected with the disturbance of hydrodynamics in the bloodstream, the attention was paid to the cylindrical cholesterol plaque, and it's classification. The disturbance of hydrodynamics of blood under the stress leads to the formation of a cylindrical cholesterol plaque, which repeats the contour of the vessel, and leads to the ischemic disorders of the heart and brain. The cylindrical cholesterol plaque goes through several stages of development: friable, yielding, dense, old. In the case of destruction of friable, fresh cholesterol plaque, releases a big quantity of low-density lipoproteins. This leads to the pathological increase of level of LDL in the blood. In the case of long disturbance of hydrodynamics, occurs the formation of strong links between low-density lipoproteins. Yielding cholesterol plaque is formed. Further maturation of cylindrical cholesterol plaque, leads to it's densifying and damage. We may emphasize, that short periods of strong contraction and expansion of vessels lead to the increase of level of LDL in the blood. Self-dependent restoration of normal level of LDL in blood occurs in the case of restoration of pressure in the limits of numbers, which are specific for particular person, and which don't exceed the physiological standard. Among patients with long duration of stress, the duration of vasospasm increases. LDL, without having a possibility to crumble, begin to stick together and form the yielding cylindrical plaque. It is characterized by having of not so strong connection with the vascular wall, and maintains only at the expanse of iteration of the vascular wall, it has cylindrical shape, is elastic and yellow. The thickness and length of walls depends on the degree of cross-clamping during the time of formation of yielding cylindrical plaque. In the case of stopping of spasm, yielding cylindrical plaque can resolve slowly. Among hypotensive and individuals, which have normal pressure, the increase of level of LDL isn't noted. There aren't such investigations, where such link was noted. The increasing of level of LDL among these people (especially under the stress) can say about cases of short-term increase of pressure, which could be unnoticed. These patients require pressure monitoring and, accordingly, the adjustment of the state of stress and anger. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Golkar, Nasim; Samani, Soliman Mohammadi; Tamaddon, Ali Mohammad
2016-05-01
Aimed to prepare an enhanced gene delivery system with low cytotoxicity and high transfection efficiency, various cholesterol-conjugated derivates of low generation polyamidoamine (PAMAM) dendrimers were prepared. The conjugates were characterized by TNBS assay, FTIR, and 1H-NMR spectroscopy. Self-assembly of the dendrimer conjugates (G1-Chol, G2-Chol, and G3-Chol) was investigated by pyrene assay. Following formation of the complexes between enhanced green fluorescence protein plasmid and the dendrimer conjugates at various N (primary amine)/P (phosphate) mole ratios, plasmid condensation, biologic stability, cytotoxicity, and protein expression were investigated. The conjugates self-assembled into micellar dispersions with the critical micelle concentration values (<50 µg/ml) depending on the dendrimer generation and cholesterol/amine mole ratio. Cholesterol conjugation resulted in higher resistance of the condensed plasmid DNA in a competition assay with heparin sulfate. Also, the transfection efficiency was determined higher for the cholesterol conjugates than unmodified dendrimers in HepG2 cells, showing the highest for G2-Chol at 40 % degree of cholesterol modification (G2-Chol40 %) among various dendrimer generations. Interestingly, such conjugate showed a complete protection of plasmid against serum nucleases. Our results confirmed that the cholesterol conjugation to PAMAM dendrimers of low generations bearing little cytotoxicity improves their several physicochemical and biological characteristics required for an enhanced delivery of plasmid DNA into cells.
Hindered settling and the formation of layered intrusions
NASA Astrophysics Data System (ADS)
Bons, Paul D.; Baur, Albrecht; Elburg, Marlina A.; Lindhuber, Matthias J.; Marks, Michael A. W.; Soesoo, Alvar; van Milligen, Boudewijn P.; Walte, Nicolas P.
2015-04-01
Layered intrusions are characterized by (often repetitive) layering on a range of scales. Many explanations for the formation of such layering have been proposed over the past decades. We investigated the formation of "mats" by hindered crystal settling, a model that was first suggested by Lauder (1964). The interaction of sinking and rising crystals leads to the amplification of perturbations in crystal density within a magma chamber, a process similar to the formation of traffic jams in dense traffic (Bons et al., 2015). Once these "crystal traffic jams" form they constitute a barrier for further settling of crystals. Between these barriers, the magma evolves in a semi-closed system in which stratification may develop by gravitational sorting. Barriers, and therefore layers, form sequentially during inward cooling of the magma chamber. Barring later equilibration, mineralogical and geochemical trends within the layers are repetitive, but with variations due to the random process of initial perturbation formation. Layers can form in the transition between two end-member regimes: (1) in a fast cooling and/or viscous magma crystals cannot sink or float a significant distance and minerals are distributed homogeneously throughout the chamber; (2) in a slow cooling and/or low-viscosity magma crystals can quickly settle at the top and bottom of the chamber and crystals concentrations are never high enough to form "traffic jams". As a result, heavy and light minerals get fully separated in the chamber. Between these two end members, crystals can sink and float a significant distance, but not the whole height of the magma chamber before entrapment in "traffic jams". We illustrate the development of layers with numerical models and compare the results with the layered nepheline syenites (kakortokites) of the Ilímaussaq intrusion in SW Greenland. References: Bons, P.D., Baur, A., Elburg, M.A., Lindhuber, M.J., Marks, M.A.W., Soesoo, A., van Milligen, B.P., Walte, N.P. 2015. Layered intrusions and traffic jams. Geology 43, 71-74 Lauder, W. 1964. Mat formation and crystal settling in magma. Nature 202, 1100-1101.
Space-time crystals of trapped ions.
Li, Tongcang; Gong, Zhe-Xuan; Yin, Zhang-Qi; Quan, H T; Yin, Xiaobo; Zhang, Peng; Duan, L-M; Zhang, Xiang
2012-10-19
Spontaneous symmetry breaking can lead to the formation of time crystals, as well as spatial crystals. Here we propose a space-time crystal of trapped ions and a method to realize it experimentally by confining ions in a ring-shaped trapping potential with a static magnetic field. The ions spontaneously form a spatial ring crystal due to Coulomb repulsion. This ion crystal can rotate persistently at the lowest quantum energy state in magnetic fields with fractional fluxes. The persistent rotation of trapped ions produces the temporal order, leading to the formation of a space-time crystal. We show that these space-time crystals are robust for direct experimental observation. We also study the effects of finite temperatures on the persistent rotation. The proposed space-time crystals of trapped ions provide a new dimension for exploring many-body physics and emerging properties of matter.
Hascalovici, Jacob R; Song, Wei; Vaya, Jacob; Khatib, Soliman; Fuhrman, Bianca; Aviram, Michael; Schipper, Hyman M
2009-01-01
Up-regulation of heme oxygenase-1 (HO-1) and altered cholesterol (CH) metabolism are characteristic of Alzheimer-diseased neural tissues. The liver X receptor (LXR) is a molecular sensor of CH homeostasis. In the current study, we determined the effects of HO-1 over-expression and its byproducts iron (Fe(2+)), carbon monoxide (CO) and bilirubin on CH biosynthesis, CH efflux and oxysterol formation in cultured astroglia. HO-1/LXR interactions were also investigated in the context of CH efflux. hHO-1 over-expression for 3 days ( approximately 2-3-fold increase) resulted in a 30% increase in CH biosynthesis and a two-fold rise in CH efflux. Both effects were abrogated by the competitive HO inhibitor, tin mesoporphyrin. CO, released from administered CORM-3, significantly enhanced CH biosynthesis; a combination of CO and iron stimulated CH efflux. Free iron increased oxysterol formation three-fold. Co-treatment with LXR antagonists implicated LXR activation in the modulation of CH homeostasis by heme degradation products. In Alzheimer's disease and other neuropathological states, glial HO-1 induction may transduce ambient noxious stimuli (e.g. beta-amyloid) into altered patterns of glial CH homeostasis. As the latter may impact synaptic plasticity and neuronal repair, modulation of glial HO-1 expression (by pharmacological or other means) may confer neuroprotection in patients with degenerative brain disorders.
The laser radiation action on the crystal formation processes in the biological fluids
NASA Astrophysics Data System (ADS)
Malov, Alexander N.; Vaichas, Andrey A.; Novikova, Evgeniya A.
2016-11-01
The results of an experimental study of the laser radiation effect on the crystal`s formation in the volume of biological fluids that are complex multi-component solutions have been discussing. Are investigated white and natural bile in vitro. The qualitative changes were observed. Thus, at the bottom of the cell in which bile is not exposed to the laser radiation, the crystals are formed. In the irradiated bile gallstone has a thin layer of a homogeneous viscous colloidal liquid with very small, visible in polarized light crystalline formations was got. Irradiated laser bile's gallstone was covered evenly white deposit without surface defect unlike gallstone in bile without radiation exposure. A possible mechanism to explain the laser radiation action on the mineral formation in biological fluids and also practical application of this effect have been suggesting too.
Gälman, Cecilia; Miquel, Juan Francisco; Pérez, Rosa Maria; Einarsson, Curt; Ståhle, Lars; Marshall, Guillermo; Nervi, Flavio; Rudling, Mats
2004-03-01
Gallstone disease is an important, costly health-care problem in Western societies. It is still unclear whether hepatic lipid regulatory enzymes play primary or secondary roles in gallstone formation. In this study, the aim was to investigate whether the synthesis of bile acids and cholesterol is increased in gallstone disease and to test whether such a metabolic change, if present, might occur before gallstone formation. A total of 125 Chilean Hispanic women (80 without gallstones and 45 with gallstones) matched for age and body mass index were investigated, along with 40 Chilean Mapuche Indian women (20 without gallstones and 20 with gallstones), a population group in which the prevalence for gallstone disease is very high. Fasting blood plasma samples were assayed for 7 alpha-hydroxy-4-cholesten-3-one and lathosterol, 2 strong indicators for hepatic bile acid and body cholesterol synthesis, respectively. Plasma 7 alpha-hydroxy-4-cholesten-3-one levels, corrected for plasma cholesterol, were significantly increased by 50% in Hispanic women with gallstones as compared with gallstone-free Hispanics (P < 0.006). As compared with Hispanic women without gallstones, plasma 7 alpha-hydroxy-4-cholesten-3-one levels were increased by > or =100% (P < 0.002) in Mapuche Indian women, independently of whether gallstones were present. Plasma lathosterol, corrected for plasma cholesterol, was significantly increased by 22% in Hispanic women with gallstones and in Mapuche Indian women compared with Hispanic women. The results indicate that the synthesis of bile acids and cholesterol is induced in gallstone disease and precedes gallstone development. These inductions presumably occur as a response to an increased intestinal loss of bile acids.
Cavalera, Michele; Axling, Ulrika; Rippe, Catarina; Swärd, Karl; Holm, Cecilia
2017-06-01
Atherosclerosis is a disease in which atheromatous plaques develop inside arteries, leading to reduced or obstructed blood flow that in turn may cause stroke and heart attack. Rose hip is the fruit of plants of the genus Rosa, belonging to the Rosaceae family, and it is rich in antioxidants with high amounts of ascorbic acid and phenolic compounds. Several studies have shown that fruits, seeds and roots of these plants exert antidiabetic, antiobesity and cholesterol-lowering effects in rodents as well as humans. The aim of this study was to elucidate the mechanisms by which rose hip lowers plasma cholesterol and to evaluate its effects on atherosclerotic plaque formation. ApoE-null mice were fed either an HFD (CTR) or HFD with rose hip supplementation (RH) for 24 weeks. At the end of the study, we found that blood pressure and atherosclerotic plaques, together with oxidized LDL, total cholesterol and fibrinogen levels were markedly reduced in the RH group. Fecal cholesterol content, liver expression of Ldlr and selected reverse cholesterol transport (RCT) genes such as Abca1, Abcg1 and Scarb1 were significantly increased upon RH feeding. In the aorta, the scavenger receptor Cd36 and the proinflammatory Il1β genes were markedly down-regulated compared to the CTR mice. Finally, we found that RH increased nitric oxide-mediated dilation of the caudal artery. Taken together, these results suggest that rose hip is a suitable dietary supplement for preventing atherosclerotic plaques formation by modulating systemic blood pressure and the expression of RCT and inflammatory genes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Chirackal Manavalan, Anil Paul; Kober, Alexandra; Metso, Jari; Lang, Ingrid; Becker, Tatjana; Hasslitzer, Karin; Zandl, Martina; Fanaee-Danesh, Elham; Pippal, Jyotsna Brijesh; Sachdev, Vinay; Kratky, Dagmar; Stefulj, Jasminka; Jauhiainen, Matti; Panzenboeck, Ute
2014-01-01
Phospholipid transfer protein (PLTP) is a key protein involved in biogenesis and remodeling of plasma HDL. Several neuroprotective properties have been ascribed to HDL. We reported earlier that liver X receptor (LXR) activation promotes cellular cholesterol efflux and formation of HDL-like particles in an established in vitro model of the blood-brain barrier (BBB) consisting of primary porcine brain capillary endothelial cells (pBCEC). Here, we report PLTP synthesis, regulation, and its key role in HDL metabolism at the BBB. We demonstrate that PLTP is highly expressed and secreted by pBCEC. In a polarized in vitro model mimicking the BBB, pBCEC secreted phospholipid-transfer active PLTP preferentially to the basolateral (“brain parenchymal”) compartment. PLTP expression levels and phospholipid transfer activity were enhanced (up to 2.5-fold) by LXR activation using 24(S)-hydroxycholesterol (a cerebral cholesterol metabolite) or TO901317 (a synthetic LXR agonist). TO901317 administration elevated PLTP activity in BCEC from C57/BL6 mice. Preincubation of HDL3 with human plasma-derived active PLTP resulted in the formation of smaller and larger HDL particles and enhanced the capacity of the generated HDL particles to remove cholesterol from pBCEC by up to 3-fold. Pre-β-HDL, detected by two-dimensional crossed immunoelectrophoresis, was generated from HDL3 in pBCEC-derived supernatants, and their generation was markedly enhanced (1.9-fold) upon LXR activation. Furthermore, RNA interference-mediated PLTP silencing (up to 75%) reduced both apoA-I-dependent (67%) and HDL3-dependent (30%) cholesterol efflux from pBCEC. Based on these findings, we propose that PLTP is actively involved in lipid transfer, cholesterol efflux, HDL genesis, and remodeling at the BBB. PMID:24369175
BSN723T Prevents Atherosclerosis and Weight Gain in ApoE Knockout Mice Fed a Western Diet
Williams, Jarrod; Ensor, Charles; Gardner, Scott; Smith, Rebecca; Lodder, Robert
2016-01-01
Objective This study tests the hypothesis that BSN723T can prevent the development of hyperlipidemia and atherosclerosis in ApoE-/- knockout mice fed a Western (high fat, high cholesterol, and high sucrose) diet. BSN723T is a combination drug therapy consisting of D-tagatose and dihydromyricetin (BSN723). Background D-tagatose has an antihyperglycemic effect in animal and human studies and shows promise as a treatment for type 2 diabetes and obesity. Many claims regarding BSN723's pharmacological activities have been made including anti-cancer, anti-diabetic, anti-hypertensive, anti-inflammatory, and anti-atherosclerotic effects. To our knowledge this is the first study that combines D-tagatose and BSN723 for the treatment of hyperlipidemia and the prevention of atherosclerosis. Methods ApoE-deficient mice were randomized into five groups with equivalent mean body weights. The mice were given the following diets for 8 weeks: Group 1 - Standard diet; Group 2 - Western diet; Group 3 - Western diet formulated with D-tagatose; Group 4 - Western diet formulated with BSN723; Group 5 - Western diet formulated with BSN723T. Mice were measured for weight gain, tissue and organ weights, total serum cholesterol and triglycerides and formation of atherosclerosis. Results The addition of D-tagatose, either alone or in combination with BSN723, prevented the increase in adipose tissue and weight gain brought on by the Western diet. Both D-tagatose and BSN723 alone reduced total cholesterol and the formation of atherosclerosis in the aorta compared to mice on the Western diet. Addition of BSN723 to D-tagatose (BSN723T) did not increase efficacy in prevention of increases in cholesterol or atherosclerosis compared to D-tagatose alone. Conclusion Addition of either D-tagatose or BSN723 alone to a Western diet prevented weight gain, increases in total serum cholesterol and triglycerides, and the formation of atherosclerosis. However, there was no additive or synergistic effect on the measured parameters with the combination BSN723T treatment. PMID:27683620
F-aggregate centers formation in BaLiF3 crystals
NASA Astrophysics Data System (ADS)
Prado, L.; Gomes, L.; Baldochi, S. L.; Morato, S. P.; Vieira, N. D.
The kinetics of F-aggregate centers formation is investigated in the inverted fluoroperovskite of BaLiF3 submitted to electron-irradiation. By studies of the changes in the absorption spectra during storage of samples in the dark, at room temperature, it was possible to verify a surprising and interesting dependence on defect formation with the crystal growth direction. In spite of its cubic structure, crystals grown in the <100> and <111> directions and submitted to the same conditions of irradiation, showed in particular, to enhance the production of a defect absorbing at 630 nm in <100> crystals which we believe to correspond to F+2-centers in BaLiF3
Aberrated surface soliton formation in a nonlinear 1D and 2D photonic crystal
Lysak, Tatiana M.; Trykin, Evgenii M.
2018-01-01
We discuss a novel type of surface soliton—aberrated surface soliton—appearance in a nonlinear one dimensional photonic crystal and a possibility of this surface soliton formation in two dimensional photonic crystal. An aberrated surface soliton possesses a nonlinear distribution of the wavefront. We show that, in one dimensional photonic crystal, the surface soliton is formed at the photonic crystal boundary with the ambient medium. Essentially, that it occupies several layers at the photonic crystal boundary and penetrates into the ambient medium at a distance also equal to several layers, so that one can infer about light energy localization at the lateral surface of the photonic crystal. In the one dimensional case, the surface soliton is formed from an earlier formed soliton that falls along the photonic crystal layers at an angle which differs slightly from the normal to the photonic crystal face. In the two dimensional case, the soliton can appear if an incident Gaussian beam falls on the photonic crystal face. The influence of laser radiation parameters, optical properties of photonic crystal layers and ambient medium on the one dimensional surface soliton formation is investigated. We also discuss the influence of two dimensional photonic crystal configuration on light energy localization near the photonic crystal surface. It is important that aberrated surface solitons can be created at relatively low laser pulse intensity and for close values of alternating layers dielectric permittivity which allows their experimental observation. PMID:29558497
Wang, Zhao; Luo, Ting; Sheng, Ruilong; Li, Hui; Sun, Jingjing; Cao, Amin
2016-01-11
In this work, a series of diblock terpolymer poly(6-O-methacryloyl-D-galactopyranose)-b-poly(methacrylic acid-co-6-cholesteryloxy hexyl methacrylate) amphiphiles bearing attached galactose and cholesterol grafts denoted as the PMAgala-b-P(MAA-co-MAChol)s were designed and prepared, and these terpolymer amphiphiles were further exploited as a platform for intracellular doxorubicin (DOX) delivery. First, employing a sequential RAFT strategy with preliminarily synthesized poly(6-O-methacryloyl-1,2:3,4-di-O-isopropylidene-d-galactopyranose) (PMAIpGP) macro-RAFT initiator and a successive trifluoroacetic acid (TFA)-mediated deprotection, a series of amphiphilic diblock terpolymer PMAgala-b-P(MAA-co-MAChol)s were prepared, and were further characterized by NMR, Fourier transform infrared spectrometer (FTIR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and a dynamic contact angle testing instrument (DCAT). In aqueous media, spontaneous micellization of the synthesized diblock terpolymer amphiphiles were continuously examined by critical micellization concentration assay, dynamic light scattering (DLS), and transmission electron microscopy (TEM), and the efficacies of DOX loading by these copolymer micelles were investigated along with the complexed nanoparticle stability. Furthermore, in vitro DOX release of the drug-loaded terpolymer micelles were studied at 37 °C in buffer under various pH conditions, and cell toxicities of as-synthesized diblock amphiphiles were examined by MTT assay. Finally, with H1299 cells, intracellular DOX delivery and localization by the block amphiphile vectors were investigated by invert fluorescence microscopy. As a result, it was revealed that the random copolymerization of MAA and MAChol comonomers in the second block limited the formation of cholesterol liquid-crystal phase and enhanced DOX loading efficiency and complex nanoparticle stability, that ionic interactions between the DOX and MAA comonomer could be exploited to trigger efficient DOX release under acidic condition, and that the diblock terpolymer micellular vector could alter the DOX trafficking in cells. Hence, these suggest the pH-sensitive PMAgala-b-P(MAA-co-MAChol)s might be further exploited as a smart nanoplatform toward efficient antitumor drug delivery.
Sultan Alvi, Sahir; Ansari, Irfan A; Khan, Imran; Iqbal, Johar; Khan, M Salman
2017-07-01
Proprotein convertase subtilisin/kexin type 9 (PCSK-9) is a serine protease of the proprotien convertase (PC) family that has profound effects on plasma low density lipoprotein cholesterol (LDL-C) levels, the major risk factor for coronary heart disease (CHD), through its ability to mediate LDL receptor (LDL-R) protein degradation and reduced recycling to the surface of hepatocytes. Thus, the current study was premeditated not only to evaluate the role of lycopene in targeting the inhibition of PCSK-9 via modulation of genes involved in cholesterol homeostasis in HFD rats but also to examine a correlation between HFD induced inflammatory cascades and subsequent regulation of PCSK-9 expression. Besides the effect of lycopene on hepatic PCSK-9 gene expression, PPI studies for PCSK-9-Lycopene complex and EGF-A of LDL-R were also performed via molecular informatics approach to assess the dual mode of action of lycopene in LDL-R recycling and increased removal of circulatory LDL-C. We for the first time deciphered that lycopene treatment significantly down-regulates the expression of hepatic PCSK-9 and HMGR, whereas, hepatic LDL-R expression was significantly up-regulated. Furthermore, lycopene ameliorated inflammation stimulated expression of PCSK-9 via suppressing the expression of inflammatory markers. The results from our molecular informatics studies confirmed that lycopene, while occupying the active site of PCSK-9 crystal structure, reduces the affinity of PCSK-9 to complex with EGF-A of LDL-R, whereas, atorvastatin makes PCSK-9-EGF-A complex formation more feasible than both of PCSK-9-EGF-A alone and Lycopene-PCSK-9-EGF-A complex. Based on above results, it can be concluded that lycopene exhibits potent hypolipidemic activities via molecular mechanisms that are either identical (HMGR inhibition) or distinct from that of statins (down-regulation of PCSK-9 mRNA synthesis). To the best of our knowledge, this is the first report that lycopene has this specific biological property. Being a natural, safer and alternative therapeutic agent, lycopene could be used as a complete regulator of cholesterol homeostasis and ASCVD. Copyright © 2017 Elsevier Inc. All rights reserved.
Hoa, Michael; House, John W; Linthicum, Fred H
2012-08-01
(1) To assess the maintenance of drainage pathway patency in patients who undergo surgical management of cholesterol granulomas, (2) to review the histopathologic and radiologic changes associated with surgical drainage of petrous apex (PA) cholesterol granulomas, and (3) to provide histopathologic evidence regarding the exposed marrow theory of PA cholesterol granulomas. Retrospective case review and histopathologic analysis. Tertiary referral center. Records of 17 patients with surgically managed PA cholesterol granulomas were reviewed. Histopathologic analysis was performed on temporal bones of 11 patients with PA cholesterol granulomas from the Temporal Bone repository at the House Research Institute. Surgical drainage of PA cholesterol granulomas; follow-up radiologic imaging (computed tomography or magnetic resonance imaging), when available. Primary outcome is demonstrated maintenance of a PA outflow drainage pathway after the surgical drainage procedure as assessed by radiologic imaging, available histopathology, and/or recurrence of symptoms indicating failure of maintenance. Other measures include need for revision surgery and histopathology findings. A majority (65%) of patients exhibited maintenance of their PA drainage pathway. Histopathologic evidence suggests that the PA drainage pathway can be maintained for many years after surgical drainage. Recurrence of symptoms was related to obstruction of the drainage pathway by fibrous tissue and/or granulomatous tissue. Placement of a stent improved the patient's chance of remaining symptom-free, with recurrence of symptoms and revision surgery required in only 2 stent cases (18%) as compared with 83% of those with no stent (p ≤ 0.035). Histopathologic evidence for the exposed marrow theory of PA cholesterol granulomas was found. The majority of patients who undergo surgical drainage of PA cholesterol granulomas remain symptom-free after surgical drainage. Histopathologic analysis of temporal bone specimens provides evidence supporting the exposed marrow theory of PA cholesterol granuloma formation. Loss of patency of the PA drainage pathway may be an important predictor for symptomatic recurrence of PA cholesterol granulomas. Placement of a stent may decrease the likelihood of symptomatic recurrence.
ERIC Educational Resources Information Center
Whipple, Nona; Whitmore, Sherry
1989-01-01
Presents a many-faceted learning approach to the study of crystals. Provides instructions for performing activities including crystal growth and patterns, creating miniature simulations of crystal-containing rock formations, charcoal and sponge gardens, and snowflakes. (RT)
Hissa, Barbara; Pontes, Bruno; Roma, Paula Magda S; Alves, Ana Paula; Rocha, Carolina D; Valverde, Thalita M; Aguiar, Pedro Henrique N; Almeida, Fernando P; Guimarães, Allan J; Guatimosim, Cristina; Silva, Aristóbolo M; Fernandes, Maria C; Andrews, Norma W; Viana, Nathan B; Mesquita, Oscar N; Agero, Ubirajara; Andrade, Luciana O
2013-01-01
In a previous study we had shown that membrane cholesterol removal induced unregulated lysosomal exocytosis events leading to the depletion of lysosomes located at cell periphery. However, the mechanism by which cholesterol triggered these exocytic events had not been uncovered. In this study we investigated the importance of cholesterol in controlling mechanical properties of cells and its connection with lysosomal exocytosis. Tether extraction with optical tweezers and defocusing microscopy were used to assess cell dynamics in mouse fibroblasts. These assays showed that bending modulus and surface tension increased when cholesterol was extracted from fibroblasts plasma membrane upon incubation with MβCD, and that the membrane-cytoskeleton relaxation time increased at the beginning of MβCD treatment and decreased at the end. We also showed for the first time that the amplitude of membrane-cytoskeleton fluctuation decreased during cholesterol sequestration, showing that these cells become stiffer. These changes in membrane dynamics involved not only rearrangement of the actin cytoskeleton, but also de novo actin polymerization and stress fiber formation through Rho activation. We found that these mechanical changes observed after cholesterol sequestration were involved in triggering lysosomal exocytosis. Exocytosis occurred even in the absence of the lysosomal calcium sensor synaptotagmin VII, and was associated with actin polymerization induced by MβCD. Notably, exocytosis triggered by cholesterol removal led to the secretion of a unique population of lysosomes, different from the pool mobilized by actin depolymerizing drugs such as Latrunculin-A. These data support the existence of at least two different pools of lysosomes with different exocytosis dynamics, one of which is directly mobilized for plasma membrane fusion after cholesterol removal.
Roma, Paula Magda S.; Alves, Ana Paula; Rocha, Carolina D.; Valverde, Thalita M.; Aguiar, Pedro Henrique N.; Almeida, Fernando P.; Guimarães, Allan J.; Guatimosim, Cristina; Silva, Aristóbolo M.; Fernandes, Maria C.; Andrews, Norma W.; Viana, Nathan B.; Mesquita, Oscar N.; Agero, Ubirajara; Andrade, Luciana O.
2013-01-01
In a previous study we had shown that membrane cholesterol removal induced unregulated lysosomal exocytosis events leading to the depletion of lysosomes located at cell periphery. However, the mechanism by which cholesterol triggered these exocytic events had not been uncovered. In this study we investigated the importance of cholesterol in controlling mechanical properties of cells and its connection with lysosomal exocytosis. Tether extraction with optical tweezers and defocusing microscopy were used to assess cell dynamics in mouse fibroblasts. These assays showed that bending modulus and surface tension increased when cholesterol was extracted from fibroblasts plasma membrane upon incubation with MβCD, and that the membrane-cytoskeleton relaxation time increased at the beginning of MβCD treatment and decreased at the end. We also showed for the first time that the amplitude of membrane-cytoskeleton fluctuation decreased during cholesterol sequestration, showing that these cells become stiffer. These changes in membrane dynamics involved not only rearrangement of the actin cytoskeleton, but also de novo actin polymerization and stress fiber formation through Rho activation. We found that these mechanical changes observed after cholesterol sequestration were involved in triggering lysosomal exocytosis. Exocytosis occurred even in the absence of the lysosomal calcium sensor synaptotagmin VII, and was associated with actin polymerization induced by MβCD. Notably, exocytosis triggered by cholesterol removal led to the secretion of a unique population of lysosomes, different from the pool mobilized by actin depolymerizing drugs such as Latrunculin-A. These data support the existence of at least two different pools of lysosomes with different exocytosis dynamics, one of which is directly mobilized for plasma membrane fusion after cholesterol removal. PMID:24376622
Lapmanee, Sarawut; Charoenphandhu, Narattaphol; Aeimlapa, Ratchaneevan; Suntornsaratoon, Panan; Wongdee, Kannikar; Tiyasatkulkovit, Wacharaporn; Kengkoom, Kanchana; Chaimongkolnukul, Khuanjit; Seriwatanachai, Dutmanee; Krishnamra, Nateetip
2014-10-01
Type 2 diabetes mellitus (T2DM) often occurs concurrently with high blood cholesterol or dyslipidemia. Although T2DM has been hypothesized to impair bone microstructure, several investigations showed that, when compared to age-matched healthy individuals, T2DM patients had normal or relatively high bone mineral density (BMD). Since cholesterol and lipids profoundly affect the function of osteoblasts and osteoclasts, it might be cholesterol that obscured the changes in BMD and bone microstructure in T2DM. The present study, therefore, aimed to determine bone elongation, epiphyseal histology, and bone microstructure in non-obese T2DM Goto-Kakizaki rats treated with normal (GK-ND) and high cholesterol diet. We found that volumetric BMD was lower in GK-ND rats than the age-matched wild-type controls. In histomorphometric study of tibial metaphysis, T2DM evidently suppressed osteoblast function as indicated by decreases in osteoblast surface, mineral apposition rate, and bone formation rate in GK-ND rats. Meanwhile, the osteoclast surface and eroded surface were increased in GK-ND rats, thus suggesting an activation of bone resorption. T2DM also impaired bone elongation, presumably by retaining the chondrogenic precursor cells in the epiphyseal resting zone. Interestingly, several bone changes in GK rats (e.g., increased osteoclast surface) disappeared after high cholesterol treatment as compared to wild-type rats fed high cholesterol diet. In conclusion, high cholesterol diet was capable of masking the T2DM-induced osteopenia and changes in several histomorphometric parameters that indicated bone microstructural defect. Cholesterol thus explained, in part, why a decrease in BMD was not observed in T2DM, and hence delayed diagnosis of the T2DM-associated bone disease.
Simon, Karen A.; Shetye, Gauri S.; Englich, Ulrich; Wu, Lei; Luk, Yan-Yeung
2011-01-01
Crystallization of proteins is important for fundamental studies and biopharmaceutical development but remains largely an empirical science. Here, we report the use of organic salts that can form a class of unusual non-amphiphilic lyotropic liquid crystals to crystallize the protein lysozyme. Certain non-amphiphilic organic molecules with fused aromatic rings and two charges can assemble into stable thread-like noncovalent polymers that may further form liquid crystal phases in water, traditionally termed chromonic liquid crystals. Using five of these mesogenic molecules as additives to induce protein crystallization, we discover that molecules that can form liquid crystal phases in water are highly effective at inducing the crystal formation of lysozyme, even at concentrations significantly lower than that required for forming liquid crystal phases. This result reveals an example of inducing protein crystallization by the molecular assembly of the additives, and is consistent with a new mechanism by which the strong hydration of an assembly process provides a gradual means to compete for the water molecules to enable solvated proteins to form crystals. PMID:21786812
Crystal-free Formation of Non-Oxide Optical Fiber
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
Researchers at NASA Marshall Space Flight Center have devised a method for the creation of crystal-free nonoxide optical fiber preforms. Non-oxide fiber optics are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. However, some of these glasses are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. NASA has developed a new method of non-oxide fiber formation that uses axial magnetic fields to suppress crystallization. The resulting non-oxide fibers are crystal free and have lower signal attenuation rates than silica based optical fibers.
Clinical field-strength MRI of amyloid plaques induced by low-level cholesterol feeding in rabbits
Chen, Yuanxin; Bernas, Lisa; Kitzler, Hagen H.; Rogers, Kem A.; Hegele, Robert A.; Rutt, Brian K.
2009-01-01
Two significant barriers have limited the development of effective treatment of Alzheimer's disease. First, for many cases the aetiology is unknown and likely multi-factorial. Among these factors, hypercholesterolemia is a known risk predictor and has been linked to the formation of β-amyloid plaques, a pathological hallmark this disease. Second, standardized diagnostic tools are unable to definitively diagnose this disease prior to death; hence new diagnostic tools are urgently needed. Magnetic resonance imaging (MRI) using high field-strength scanners has shown promise for direct visualization of β-amyloid plaques, allowing in vivo longitudinal tracking of disease progression in mouse models. Here, we present a new rabbit model for studying the relationship between cholesterol and Alzheimer's disease development and new tools for direct visualization of β-amyloid plaques using clinical field-strength MRI. New Zealand white rabbits were fed either a low-level (0.125–0.25% w/w) cholesterol diet (n = 5) or normal chow (n = 4) for 27 months. High-resolution (66 × 66 × 100 µm3; scan time = 96 min) ex vivo MRI of brains was performed using a 3-Tesla (T) MR scanner interfaced with customized gradient and radiofrequency coils. β-Amyloid-42 immunostaining and Prussian blue iron staining were performed on brain sections and MR and histological images were manually registered. MRI revealed distinct signal voids throughout the brains of cholesterol-fed rabbits, whereas minimal voids were seen in control rabbit brains. These voids corresponded directly to small clusters of extracellular β-amyloid-positive plaques, which were consistently identified as iron-loaded (the presumed source of MR contrast). Plaques were typically located in the hippocampus, parahippocampal gyrus, striatum, hypothalamus and thalamus. Quantitative analysis of the number of histologically positive β-amyloid plaques (P < 0.0001) and MR-positive signal voids (P < 0.05) found in cholesterol-fed and control rabbit brains corroborated our qualitative observations. In conclusion, long-term, low-level cholesterol feeding was sufficient to promote the formation of extracellular β-amyloid plaque formation in rabbits, supporting the integral role of cholesterol in the aetiology of Alzheimer's disease. We also present the first evidence that MRI is capable of detecting iron-associated β-amyloid plaques in a rabbit model of Alzheimer's disease and have advanced the sensitivity of MRI for plaque detection to a new level, allowing clinical field-strength scanners to be employed. We believe extension of these technologies to an in vivo setting in rabbits is feasible and that our results support future work exploring the role of MRI as a leading imaging tool for this debilitating and life-threatening disease. PMID:19293239
Jiang, Lan; Han, Weina; Li, Xiaowei; Wang, Qingsong; Meng, Fantong; Lu, Yongfeng
2014-06-01
It is widely believed that laser-induced periodic surface structures (LIPSS) are independent of material crystal structures. This Letter reports an abnormal phenomenon of strong dependence of the anisotropic formation of periodic ripples on crystal orientation, when Si (100) is processed by a linearly polarized femtosecond laser (800 nm, 50 fs, 1 kHz). LIPSS formation sensitivity with a π/2 modulation is found along different crystal orientations with a quasi-cosinusoid function when the angle between the crystal orientation and polarization direction is changed from 0° to 180°. Our experiments indicate that it is much easier (or more difficult) to form ripple structures when the polarization direction is aligned with the lattice axis [011]/[011¯] (or [001]). The modulated nonlinear ionization rate along different crystal orientations, which arises from the direction dependence of the effective mass of the electron is proposed to interpret the unexpected anisotropic LIPSS formation phenomenon. Also, we demonstrate that the abnormal phenomenon can be applied to control the continuity of scanned ripple lines along different crystal orientations.
NASA Astrophysics Data System (ADS)
Messner, Mark C.; Rhee, Moono; Arsenlis, Athanasios; Barton, Nathan R.
2017-06-01
This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals. The model treats these dislocation mechanisms separately from elastic interactions among populations of dislocations, which the model represents through a conventional strength-interaction matrix. This split between elastic interactions and junction formation mechanisms more accurately reproduces the DD data and results in a multi-scale model that better represents the lower scale physics. The fitting procedure employs concepts of machine learning—feature selection by regularized regression and cross-validation—to develop a robust, physically accurate crystal model. The work also presents a method for ensuring the final, calibrated crystal model respects the physical symmetries of the crystal system. Calibrating the crystal model requires fitting two linear operators: one describing elastic dislocation interactions and another describing junction formation and annihilation dislocation reactions. The structure of these operators in the final, calibrated model reflect the crystal symmetry and slip system geometry of the DD simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klonis, Nectarios; Dilanian, Ruben; Hanssen, Eric
The malaria parasite pigment, hemozoin, is a crystal of ferriprotoporphyrin IX (FP-Fe(III)), a product of hemoglobin digestion. Hemozoin formation is essential for FP-Fe(III) detoxification in the parasite; it is the main target of quinoline antimalarials and can modulate immune and inflammation responses. To gain further insight into the likely mechanisms of crystal formation and hemozoin reactivity, we have reanalyzed the crystal structure data for {beta}-hematin and solved the crystal structure of Plasmodium falciparum hemozoin. The analysis reveals that the structures are very similar and highlights two previously unexplored modes of FP-Fe(III) self-association involving {pi}-{pi} interactions that may initiate crystal formationmore » and help to stabilize the extended structure. Hemozoin can be considered to be a crystal composed of {pi}-{pi} dimers stabilized by iron-carboxylate linkages. As a result, it is predicted that two surfaces of the crystal would consist of {pi}-{pi} dimers with Fe(III) partly exposed to solvent and capable of undergoing redox reactions. Accordingly, we demonstrate that the crystal possesses both general peroxidase activity and the ability to cause lipid oxidation.« less
NASA Astrophysics Data System (ADS)
Sharma, K. P.; Reddi, R. S. B.; Bhattacharya, S.; Rai, R. N.
2012-06-01
The solid-state reaction, which is solvent free and green synthesis, has been adopted to explore the novel compound. The phase diagram of 4-chloroaniline (CA) and 3-hydroxy-4-methoxybenzaldehyde (HMB) system shows the formation of a novel 1:1 molecular complex, and two eutectics on either sides of complex. Thermochemical studies of complex and eutectics have been carried out for various properties such as heat of fusion, entropy of fusion, Jackson's parameters, interfacial energy and excess thermodynamic functions. The formation of molecular complex was also studied by IR, NMR, elemental analysis and UV-Vis absorption spectra. The single crystal of molecular complex was grown and its XRD study confirms the formation of complex and identifies the crystal structure and atomic packing of crystal of complex. Transmission spectra of grown crystal of the complex show 70% transmittance efficiency with cut off wavelength 412 nm. The band gap and refractive index of the crystal of complex have also been studied.
Nordvang, Emily C; Borodina, Elena; Ruiz-Martínez, Javier; Fehrmann, Rasmus; Weckhuysen, Bert M
2015-01-01
The catalytic activity of large zeolite H-ZSM-5 crystals in methanol (MTO) and ethanol-to-olefins (ETO) conversions was investigated and, using operando UV/Vis measurements, the catalytic activity and deactivation was correlated with the formation of coke. These findings were related to in situ single crystal UV/Vis and confocal fluorescence micro-spectroscopy, allowing the observation of the spatiotemporal formation of intermediates and coke species during the MTO and ETO conversions. It was observed that rapid deactivation at elevated temperatures was due to the fast formation of aromatics at the periphery of the H-ZSM-5 crystals, which are transformed into more poly-aromatic coke species at the external surface, preventing the diffusion of reactants and products into and out of the H-ZSM-5 crystal. Furthermore, we were able to correlate the operando UV/Vis spectroscopy results observed during catalytic testing with the single crystal in situ results. PMID:26463581
Yakala, Gopala K; Wielinga, Peter Y; Suarez, Manuel; Bunschoten, Annelies; van Golde, Jolanda M; Arola, Lluis; Keijer, Jaap; Kleemann, Robert; Kooistra, Teake; Heeringa, Peter
2013-11-01
Dietary intake of cocoa and/or chocolate has been suggested to exhibit protective cardiovascular effects although this is still controversial. The aim of this study was to investigate the effects of chocolate supplementation on metabolic and cardiovascular parameters. Four groups of ApoE*3Leiden mice were exposed to the following diet regimens. Group 1: cholesterol-free control diet (CO). Group 2: high-dose (1.0% w/w) control cholesterol (CC). Group 3: CC supplemented chocolate A (CCA) and Group 4: CC supplemented chocolate B (CCB). Both chocolates differed in polyphenol and fiber content, CCA had a relatively high-polyphenol and low-fiber content compared to CCB. Mice fed a high-cholesterol diet showed increased plasma-cholesterol and developed atherosclerosis. Both chocolate treatments, particularly CCA, further increased plasma-cholesterol and increased atherosclerotic plaque formation. Moreover, compared to mice fed a high-cholesterol diet, both chocolate-treated groups displayed increased liver injury. Mice on high-cholesterol diet had elevated plasma levels of sVCAM-1, sE-selectin and SAA, which was further increased in the CCB group. Similar effects were observed for renal inflammation markers. The two chocolate preparations showed unfavorable, but different effects on cardiometabolic health in E3L mice, which dissimilarities may be related to differences in chocolate composition. We conclude that discrepancies reported on the effects of chocolate on cardiometabolic health may at least partly be due to differences in chocolate composition. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Cable, Morgan L.; Vu, Tuan H.; Hodyss, Robert; Choukroun, Mathieu; Malaska, Michael J.; Beauchamp, Patricia
2014-08-01
Benzene is found on Titan and is a likely constituent of the putative evaporite deposits formed around the hydrocarbon lakes. We have recently demonstrated the formation of a benzene-ethane co-crystal under Titan-like surface conditions. Here we investigate the kinetics of formation of this new structure as a function of temperature. We show that the formation process would reach completion under Titan surface conditions in ~18 h and that benzene precipitates from liquid ethane as the co-crystal. This suggests that benzene-rich evaporite basins around ethane/methane lakes and seas may not contain pure crystalline benzene, but instead benzene-ethane co-crystals. This co-crystalline form of benzene with ethane represents a new class of materials for Titan's surface, analogous to hydrated minerals on Earth. This new structure may also influence evaporite characteristics such as particle size, dissolution rate, and infrared spectral properties.
The effect of a solid surface on the segregation and melting of salt hydrates.
Zhang, Yu; Anim-Danso, Emmanuel; Dhinojwala, Ali
2014-10-22
Considering the importance of salt and water on earth, the crystallization of salt hydrates next to solid surfaces has important implications in physical and biological sciences. Heterogeneous nucleation is driven by surface interactions, but our understanding of hydrate formation near surfaces is limited. Here, we have studied the hydrate formation of three commonly prevalent salts, MgCl2, CaCl2, and NaCl, next to a sapphire substrate using surface sensitive infrared-visible sum frequency generation (SFG) spectroscopy. SFG spectroscopy can detect the crystallization and melting of salt hydrates at the interface by observing the changes in the intensity and the location of the cocrystallized water hydroxyl peaks (3200-3600 cm(-1)). The results indicate that the surface crystal structures of these three hydrates are similar to those in the bulk. For the NaCl solution, the brine solution is segregated next to the sapphire substrate after the formation of the ice phase. In contrast, the MgCl2 and CaCl2 surface hydrate crystals are interdispersed with nanometer-size ice crystals. The nanosize ice crystals melt at much lower temperatures than bulk ice crystals. For NaCl and MgCl2 solution, the NaCl hydrates prefer to crystallize next to the sapphire substrate instead of the ice crystals and MgCl2 hydrates.
Suzuki, Michio; Nakayama, Seiji; Nagasawa, Hiromichi; Kogure, Toshihiro
2013-02-01
Although the formation mechanism of calcite crystals in the prismatic layer has been studied well in many previous works, the initial state of calcite formation has not been observed in detail using electron microscopes. In this study, we report that the soft prismatic layer with transparent color (the thin prismatic layer) in the tip of the fresh shell of Pinctada fucata was picked up to observe the early calcification phase. A scanning electron microscope (SEM) image showed that the growth tip of the thin prismatic layer was covered by the periostracum, which was also where the initial formation of calcite crystals began. A cross-section containing the thin calcite crystals in the thin prismatic layer with the periostracum was made using a focused ion beam (FIB) system. In a transmission electron microscope (TEM) observation, the thin calcite crystal (thickness is about 1μm) on the periostracum was found to be a single crystal with the c-axis oriented perpendicular to the shell surface. On the other hand, many aggregated small particles consisting of bassanite crystals were observed in the periostracum suggesting the possibility that not only organic sulfate but also inorganic sulfates exist in the prismatic layer. These discoveries in the early calcification phase of the thin prismatic layer may help to clarify the mechanism of regulating the nucleation and orientation of the calcite crystal in the shell. Copyright © 2012 Elsevier Ltd. All rights reserved.
Condition of Si crystal formation by vaporizing Na from NaSi
NASA Astrophysics Data System (ADS)
Morito, Haruhiko; Karahashi, Taiki; Yamane, Hisanori
2012-09-01
NaSi was heated at various Na vapor pressures (pNa 0.1-1.2 atm) and temperatures (973-1173 K) to investigate the condition of Si crystal formation from NaSi by Na evaporation. Silicon single crystals 1-3 mm in diameter were grown by evaporation of Na from Na-Si melt at 1173 K and pNa=0.74 atm.
NASA Astrophysics Data System (ADS)
Piccinini, M.; Ambrosini, F.; Ampollini, A.; Bonfigli, F.; Libera, S.; Picardi, L.; Ronsivalle, C.; Vincenti, M. A.; Montereali, R. M.
2015-04-01
Proton beams of 3 MeV energy, produced by the injector of a linear accelerator for proton therapy, were used to irradiate at room temperature lithium fluoride crystals and polycrystalline thin films grown by thermal evaporation. The irradiation fluence range was 1011-1015 protons/cm2. The proton irradiation induced the stable formation of primary and aggregate color centers. Their formation was investigated by optical absorption and photoluminescence spectroscopy. The F2 and F3+ photoluminescence intensities, carefully measured in LiF crystals and thin films, show linear behaviours up to different maximum values of the irradiation fluence, after which a quenching is observed, depending on the nature of the samples (crystals and films). The Principal Component Analysis, applied to the absorption spectra of colored crystals, allowed to clearly identify the formation of more complex aggregate defects in samples irradiated at highest fluences.
NASA Astrophysics Data System (ADS)
Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun
2017-10-01
Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.
Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from themore » carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are potentially anti-atherogenic.« less
Gater, Deborah L; Widatalla, Namareq; Islam, Kinza; AlRaeesi, Maryam; Teo, Jeremy C M; Pearson, Yanthe E
2017-12-13
The transformation of normal macrophage cells into lipid-laden foam cells is an important step in the progression of atherosclerosis. One major contributor to foam cell formation in vivo is the intracellular accumulation of cholesterol. Here, we report the effects of various combinations of low-density lipoprotein, sterols, lipids and other factors on human macrophages, using an automated image analysis program to quantitatively compare single cell properties, such as cell size and lipid content, in different conditions. We observed that the addition of cholesterol caused an increase in average cell lipid content across a range of conditions. All of the sterol-lipid mixtures examined were capable of inducing increases in average cell lipid content, with variations in the distribution of the response, in cytotoxicity and in how the sterol-lipid combination interacted with other activating factors. For example, cholesterol and lipopolysaccharide acted synergistically to increase cell lipid content while also increasing cell survival compared with the addition of lipopolysaccharide alone. Additionally, ergosterol and cholesteryl hemisuccinate caused similar increases in lipid content but also exhibited considerably greater cytotoxicity than cholesterol. The use of automated image analysis enables us to assess not only changes in average cell size and content, but also to rapidly and automatically compare population distributions based on simple fluorescence images. Our observations add to increasing understanding of the complex and multifactorial nature of foam-cell formation and provide a novel approach to assessing the heterogeneity of macrophage response to a variety of factors.
Yang, Bin; Lv, Yin; Zhu, Jing-Yi; Han, Yun-Tao; Jia, Hui-Zhen; Chen, Wei-Hai; Feng, Jun; Zhang, Xian-Zheng; Zhuo, Ren-Xi
2014-08-01
The present work reports the construction of a drug delivery nanovehicle via a pH-sensitive assembly strategy for improved cellular internalization and intracellular drug liberation. Through spontaneous formation of boronate linkage in physiological conditions, phenylboronic acid-modified cholesterol was able to attach onto catechol-pending methoxypoly(ethylene glycol)-block-poly(l-lysine). This comb-type polymer can self-organize into a micellar nanoconstruction that is able to effectively encapsulate poorly water-soluble agents. The blank micelles exhibited negligible in vitro cytotoxicity, yet doxorubicin (DOX)-loaded micelles could effectively induce cell death at a level comparable to free DOX. Owing to the acid-labile feature of the boronate linkage, a reduction in environmental pH from pH 7.4 to 5.0 could trigger the dissociation of the nanoconstruction, which in turn could accelerate the liberation of entrapped drugs. Importantly, the blockage of endosomal acidification in HeLa cells by NH4Cl treatment significantly decreased the nuclear uptake efficiency and cell-killing effect mediated by the DOX-loaded nanoassembly, suggesting that acid-triggered destruction of the nanoconstruction is of significant importance in enhanced drug efficacy. Moreover, confocal fluorescence microscopy and flow cytometry assay revealed the effective internalization of the nanoassemblies, and their cellular uptake exhibited a cholesterol dose-dependent profile, indicating the contribution of introduced cholesterol functionality to the transmembrane process of the nanoassembly. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kardash, Maria E.; Dzuba, Sergei A., E-mail: dzuba@kinetics.nsc.ru
Lipid-cholesterol interactions are responsible for different properties of biological membranes including those determining formation in the membrane of spatial inhomogeneities (lipid rafts). To get new information on these interactions, electron spin echo (ESE) spectroscopy, which is a pulsed version of electron paramagnetic resonance (EPR), was applied to study 3β-doxyl-5α-cholestane (DCh), a spin-labeled analog of cholesterol, in phospholipid bilayer consisted of equimolecular mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine. DCh concentration in the bilayer was between 0.1 mol.% and 4 mol.%. For comparison, a reference system containing a spin-labeled 5-doxyl-stearic acid (5-DSA) instead of DCh was studied as well. The effects of “instantaneousmore » diffusion” in ESE decay and in echo-detected (ED) EPR spectra were explored for both systems. The reference system showed good agreement with the theoretical prediction for the model of spin labels of randomly distributed orientations, but the DCh system demonstrated remarkably smaller effects. The results were explained by assuming that neighboring DCh molecules are oriented in a correlative way. However, this correlation does not imply the formation of clusters of cholesterol molecules, because conventional continuous wave EPR spectra did not show the typical broadening due to aggregation of spin labels and the observed ESE decay was not faster than in the reference system. So the obtained data evidence that cholesterol molecules at low concentrations in biological membranes can interact via large distances of several nanometers which results in their orientational self-ordering.« less
Potential effect of ezetimibe against Mycobacterium tuberculosis infection in type II diabetes.
Tsai, I-Fang; Kuo, Chiu-Ping; Lin, Andrew B; Chien, Ming-Nan; Ho, Hsin-Tsung; Wei, Tsai-Yin; Wu, Chien-Liang; Lu, Yen-Ta
2017-04-01
Tuberculosis (TB) risk might be increased in patients with diabetes by factors other than hyperglycaemia, such as dyslipidaemia. Host lipids are essential energy sources used by mycobacteria to persist in a latent TB state. A potential therapy targeting cholesterol catabolism of mycobacteria has been proposed, but the potential of cholesterol-lowering drugs as anti-TB therapy is unclear. The purpose of this study was to determine the effects of ezetimibe, a 2-azetidinone cholesterol absorption inhibitor, on intracellular mycobacteria survival and dormancy. Intracellular mycobacteria survival was determined by measurements of ATP activity and colony-formation units (CFUs). Gene expression profiles of hypoxia-induced dormant Mycobacterium tuberculosis (Mtb) were analysed by real-time PCR. Flow cytometry and microscopy analysis were used to measure the lipid loads of human macrophages with or without ezetimibe treatment. QuantiFERON-TB Gold In-Tube (QFT-G-IT) assays were performed to diagnose latent TB infection. The levels of intracellular cholesterol/ triglyceride were measured by an enzymatic fluorometric method. Ezetimibe was capable of effectively lowering intracellular growth of Mtb and hypoxia-induced dormant Mtb. There was a significant decrease in Mtb growth in leucocytes from ezetimibe-treated patients with diabetes in terms of ATP levels of intracellular mycobacteria and CFU formation. Also, patients receiving ezetimibe therapy had a lower prevalence of latent TB and had lower intracellular lipid contents. Ezetimibe, which is a currently marketed drug, could hold promise as an adjunctive, host-directed therapy for TB. © 2016 Asian Pacific Society of Respirology.
Geider, S; Dussol, B; Nitsche, S; Veesler, S; Berthézène, P; Dupuy, P; Astier, J P; Boistelle, R; Berland, Y; Dagorn, J C; Verdier, J M
1996-07-01
A large proportion of urinary stones have calcium oxalate (CaOx) as the major mineral phase. In these stones, CaOx is generally associated with minor amounts of other calcium salts. Several reports showing the presence of calcium carbonate (CaCO3) and calcium phosphate in renal stones suggested that crystals of those salts might be present in the early steps of stone formation. Such crystals might therefore promote CaOx crystallization from supersaturated urine by providing an appropriate substrate for heterogeneous nucleation. That possibility was investigated by seeding a metastable solution of 45Ca oxalate with vaterite or calcite crystallites. Accretion of CaOx was monitored by 45Ca incorporation. We showed that (1) seeds of vaterite (the hexagonal polymorph of CaCO3) and calcite (the rhomboedric form) could initiate calcium oxalate crystal growth; (2) in the presence of lithostathine, an inhibitor of CaCO3 crystal growth, such accretion was not observed. In addition, scanning electron microscopy demonstrated that growth occurred by epitaxy onto calcite seeds whereas no special orientation was observed onto vaterite. It was concluded that calcium carbonate crystals promote crystallization of calcium oxalate and that inhibitors controlling calcium carbonate crystal formation in Henle's loop might play an important role in the prevention of calcium oxalate stone formation.
Effect of alkali ions (Na+, K+, Cs+) on reaction mechanism of CZTS nano-particles synthesis
NASA Astrophysics Data System (ADS)
Kumar, Suresh; Altosaar, Mare; Grossberg, Maarja; Mikli, Valdek
2018-04-01
The control of morphology, elemental composition and phase composition of Cu2ZnSnS4 (CZTS) nano-crystals depends on the control of complex formation and surface stabilization of nano-particles in solution-based synthesis in oleylamine. At temperatures ≥280 °C, the control of nano-crystal's morphology and homogenous growth is difficult because of fast poly-nuclear growth occurring at higher temperatures. In the present work the effect of oleylamine complex formation with different alkali ions (Na+, K+ and Cs+) on nano-crystals growth at synthesis temperature of 280 °C was studied. It was found that nano-powders synthesized in the presence of Na+ and K+ ions showed the formation of crystals of different sizes - small nano-particles (18 nm-30 nm), large aggregated crystals (few nm to 1 μm) and large single crystals (1 μm - 4 μm). The presence of Cs+ ions in the nano-powder synthesis in oleylamine-metal precursor-CsOH solution promoted growth of nano-crystals of homogenous size. It is proposed that the formed oleylamine-Cs complexes a) enhance the formation and stabilization of oleylamine-metal (Cu, Zn and Sn) complexes before the injection of sulphur precursor into the oleylamine-metal precursor solution and b) after addition of sulphur stabilize the fast nucleated nano-particles and promote diffusion limited growth.
The effect of sterol structure upon clathrin-mediated and clathrin-independent endocytosis.
Kim, Ji Hyun; Singh, Ashutosh; Del Poeta, Maurizio; Brown, Deborah A; London, Erwin
2017-08-15
Ordered lipid domains (rafts) in plasma membranes have been hypothesized to participate in endocytosis based on inhibition of endocytosis by removal or sequestration of cholesterol. To more carefully investigate the role of the sterol in endocytosis, we used a substitution strategy to replace cholesterol with sterols that show various raft-forming abilities and chemical structures. Both clathrin-mediated endocytosis of transferrin and clathrin-independent endocytosis of clustered placental alkaline phosphatase were measured. A subset of sterols reversibly inhibited both clathrin-dependent and clathrin-independent endocytosis. The ability of a sterol to support lipid raft formation was necessary for endocytosis. However, it was not sufficient, because a sterol lacking a 3β-OH group did not support endocytosis even though it had the ability to support ordered domain formation. Double bonds in the sterol rings and an aliphatic tail structure identical to that of cholesterol were neither necessary nor sufficient to support endocytosis. This study shows that substitution using a large number of sterols can define the role of sterol structure in cellular functions. Hypotheses for how sterol structure can similarly alter clathrin-dependent and clathrin-independent endocytosis are discussed. © 2017. Published by The Company of Biologists Ltd.
CO2 Plant Extracts Reduce Cholesterol Oxidation in Fish Patties during Cooking and Storage.
Tarvainen, Marko; Quirin, Karl-Werner; Kallio, Heikki; Yang, Baoru
2016-12-28
Cholesterol oxidation products (COPs) in foods may pose risks for human health. Suitable antioxidants can reduce the formation of COPs in industrial products. Consumer awareness of food additives has brought a need for more natural alternatives. This is the first study on the effects of supercritical CO 2 extracts of rosemary, oregano, and an antimicrobial blend of seven herbs, tested at two levels (1 and 3 g/kg fish), against cholesterol oxidation in patties made of a widely consumed fish species, Atlantic salmon (Salmo salar), during baking and storage. Cholesterol oxidation was reduced by the extracts as indicated by lowered levels of 7α-hydroxycholesterol, 7β-hydroxycholesterol, and 7-ketocholesterol, which were quantified by GC-MS. The total amount of COPs was smaller in all of the cooked samples containing the plant extracts (<1 μg/g extracted fat) than in the cooked control (14 μg/g). Furthermore, the plant extracts exhibited protective effects also during cold storage for up to 14 days.
Aspirin locally disrupts the liquid-ordered phase
NASA Astrophysics Data System (ADS)
Alsop, Richard J.; Himbert, Sebastian; Dhaliwal, Alexander; Schmalzl, Karin; Rheinstädter, Maikel C.
2018-02-01
Local structure and dynamics of lipid membranes play an important role in membrane function. The diffusion of small molecules, the curvature of lipids around a protein and the existence of cholesterol-rich lipid domains (rafts) are examples for the membrane to serve as a functional interface. The collective fluctuations of lipid tails, in particular, are relevant for diffusion of membrane constituents and small molecules in and across membranes, and for structure and formation of membrane domains. We studied the effect of aspirin (acetylsalicylic acid, ASA) on local structure and dynamics of membranes composed of dimyristoylphosphocholine (DMPC) and cholesterol. Aspirin is a common analgesic, but is also used in the treatment of cholesterol. Using coherent inelastic neutron scattering experiments and molecular dynamics (MD) simulations, we present evidence that ASA binds to liquid-ordered, raft-like domains and disturbs domain organization and dampens collective fluctuations. By hydrogen-bonding to lipid molecules, ASA forms `superfluid' complexes with lipid molecules that can organize laterally in superlattices and suppress cholesterol's ordering effect.
Influence of initial seed distribution on the pattern formation of the phase field crystals
NASA Astrophysics Data System (ADS)
Starodumov, Ilya; Galenko, Peter; Kropotin, Nikolai; Alexandrov, Dmitri V.
2017-11-01
The process of crystal growth can be expressed as a transition of atomic structure to a finally stable state or to a metastable state. In the Phase Field Crystal Model (PFC-model) these states are described by regular distributions of the atomic density. Getting the system into any metastable condition may be caused by the peculiarities of the computational domain, initial and boundary conditions. However, an important factor in the formation of the crystal structure can be the initial disturbance. In the report we show how different types of initial disturbance can change the finally stable state of crystal structure in equilibrium.
The effect of sulfated polysaccharides on the crystallization of calcite superstructures
NASA Astrophysics Data System (ADS)
Fried, Ruth; Mastai, Yitzhak
2012-01-01
Calcite with unique morphology and uniform size has been successfully synthesized in the presence of classes of polysaccharides based on carrageenans. In the crystallization of calcite, the choice of different carrageenans, (iota, lambda and kappa), as additives concedes systematic study of the influence of different chemical structures and particularly molecular charge on the formation of CaCO 3 crystals. The uniform calcite superstructures are formed by assemblies and aggregation of calcite crystals. The mechanism for the formation of calcite superstructures was studied by a variety of techniques, SEM, TEM, XRD, time-resolved conductivity and light scattering measurements, focusing on the early stages of crystals' nucleation and aggregation.
Kamtchueng Simo, Olivier; Ikhlef, Souade; Berrougui, Hicham; Khalil, Abdelouahed
2017-08-01
Reverse cholesterol transport (RCT), which is intimately linked to high-density lipoproteins (HDLs), plays a key role in cholesterol homeostasis and the prevention of atherosclerosis. The goal of the present study was to investigate the effect of aging and advanced glycation end products (AGEs) on RCT as well as on other factors that may affect the antiatherogenic property of HDLs. The transfer of macrophage-derived cholesterol to the plasma and liver and then to the feces for elimination was significantly lower in aged mice than in young mice. Chronic injection of d -galactose (D-gal) or AGEs also significantly reduced RCT (65.3% reduction in [ 3 H]cholesterol levels in the plasma of D-gal-treated mice after 48 h compared with control mice, P < 0.01). The injection of both D-gal and aminoguanidine hydrochloride increased [ 3 H]cholesterol levels in the plasma, although the levels were lower than those of control mice. The in vitro incubation of HDLs with dicarbonyl compounds increased the carbonyl and conjugated diene content of HDLs and significantly reduced PON1 paraoxonase activity (87.4% lower than control HDLs, P < 0.0001). Treating J774A.1 macrophages with glycated fetal bovine serum increased carbonyl formation (39.5% increase, P < 0.003) and reduced ABCA1 protein expression and the capacity of macrophages to liberate cholesterol (69.1% decrease, P < 0.0001). Our results showed, for the first time, that RCT is altered with aging and that AGEs contribute significantly to this alteration.
Modeling the Crystallization of Proteins
NASA Astrophysics Data System (ADS)
Liu, Hongjun; Kumar, Sanat; Garde, Shekhar
2007-03-01
We have used molecular dynamics and monte carlo simulations to understand the pathway to protein crystallization. We find that models which ignore the patchy nature of protein-protein interactions only crystallize inside the metastable gas-lqiuid coexistence region. In this regime they crystallize through the formation of a critical nucleus. In contrast, when patchiness is introduced we find that there is no need to be inside this metastable gas-liquid boundary. Rather, crystallization occurs through an intermediate which is composed of disordered aggregates. These are formed by patchy interactions. Further, there appears to be no need for the formation of a critical nucleus. Thus the pathways for crystallization are strongly controlled by the nature of protein-protein interactions, in good agreement with current experiments.
Crystallization and preliminary X-ray analysis of a low density lipoprotein from human plasma.
Prassl, R; Chapman, J M; Nigon, F; Sara, M; Eschenburg, S; Betzel, C; Saxena, A; Laggner, P
1996-11-15
Single crystals of human plasma low density lipoprotein (LDL), the major transport vehicle for cholesterol in blood, have been produced with a view to analysis of the three-dimensional structure by x-ray crystallography. Crystals with dimensions of approximately 200 x 100 x 50 microm have been reproducibly obtained from highly homogeneous LDL particle subspecies, isolated in the density ranges d = 1.0271-1. 0297 g/ml and d = 1.0297-1.0327 g/ml. Electron microscopic imaging of ultrathin-sectioned preparations of the crystals confirmed the existence of a regular, quasihexagonal arrangement of spherical particles of approximately 18 nm in diameter, thereby resembling the dimensions characteristic of LDL after dehydration and fixation. X-ray diffraction with synchrotron radiation under cryogenic conditions revealed the presence of well resolved diffraction spots, to a resolution of about 29 A. The diffraction patterns are indexed in terms of a triclinic lattice with unit cell dimensions of a = 16. 1 nm, b = 39.0 nm, c = 43.9 nm; alpha = 96.2 degrees, beta = 92.1 degrees, gamma = 102 degrees, and with space group P1.
Titov, V N; Kotlovskii, M Yu; Pokrovskii, A A; Kotlovskaia, O S; Osedko, A V; Titova, N M; Kotlovskii, Yu V; Digaii, A M
2015-04-01
The hypolipidemic effect of statins is realized by inhibition of synthesis of local pool of cholesterol spirit in endoplasmic net of hepatocytes. The cholesterol spirit covers all hydrophobic medium of triglycerides with polar mono layer of phosphatidylcholines and cholesterol spirit prior to secretion of lipoproteins of very low density into hydrophilic medium. The lesser mono layer between lipase enzyme and triglycerides substrate contains of cholesterol spirit the higher are the parameters of hydrolysis of palmitic and oleic lipoproteins of very low density. The sequence of effect of statins is as follows: blocking of synthesis in hepatocytes and decreasing of content of unesterified cholesterol spirit in blood plasma; activation of hydrolysis of triglycerides in palmitic and oleic lipoproteins of very low density; formation of ligand lipoproteins of very low density and their absorption by cells by force of apoB-100 endocytosis; decreasing in blood of content of polyenoic fatty acids, equimolar esterified by cholesterol spirit, polyethers of cholesterol spirit and decreasing of level of cholesterol spirit-lipoproteins of very low density. There is no way to eliminate aphysiological effect of disordered biological function of trophology (nutrition) on metabolism of fatty acids in population by means of pharmaceuticals intake. It is necessary to eliminate aphysiological effect of environment. To decrease rate of diseases of cardiovascular system one has to decrease in food content of saturated fatty acids and in the first instance palmitic saturated fatty acid, trans-form fatty acid, palmitoleic fatty acids up to physiological values and increase to the same degree the content of polyenoic fatty acids. The saturated fatty acids block absorption of polyenoic fatty acids by cells. The atherosclerosis is a deficiency of polyenoic fatty acids under surplus of palmitic saturated fatty acid.
Hennig, Christoph; Ikeda-Ohno, Atsushi; Kraus, Werner; Weiss, Stephan; Pattison, Philip; Emerich, Hermann; Abdala, Paula M; Scheinost, Andreas C
2013-10-21
Cerium(III) and cerium(IV) both form formate complexes. However, their species in aqueous solution and the solid-state structures are surprisingly different. The species in aqueous solutions were investigated with Ce K-edge EXAFS spectroscopy. Ce(III) formate shows only mononuclear complexes, which is in agreement with the predicted mononuclear species of Ce(HCOO)(2+) and Ce(HCOO)2(+). In contrast, Ce(IV) formate forms in aqueous solution a stable hexanuclear complex of [Ce6(μ3-O)4(μ3-OH)4(HCOO)x(NO3)y](12-x-y). The structural differences reflect the different influence of hydrolysis, which is weak for Ce(III) and strong for Ce(IV). Hydrolysis of Ce(IV) ions causes initial polymerization while complexation through HCOO(-) results in 12 chelate rings stabilizing the hexanuclear Ce(IV) complex. Crystals were grown from the above-mentioned solutions. Two crystal structures of Ce(IV) formate were determined. Both form a hexanuclear complex with a [Ce6(μ3-O)4(μ3-OH)4](12+) core in aqueous HNO3/HCOOH solution. The pH titration with NaOH resulted in a structure with the composition [Ce6(μ3-O)4(μ3-OH)4(HCOO)10(NO3)2(H2O)3]·(H2O)9.5, while the pH adjustment with NH3 resulted in [Ce6(μ3-O)4(μ3-OH)4(HCOO)10(NO3)4]·(NO3)3(NH4)5(H2O)5. Furthermore, the crystal structure of Ce(III) formate, Ce(HCOO)3, was determined. The coordination polyhedron is a tricapped trigonal prism which is formed exclusively by nine HCOO(-) ligands. The hexanuclear Ce(IV) formate species from aqueous solution is widely preserved in the crystal structure, whereas the mononuclear solution species of Ce(III) formate undergoes a polymerization during the crystallization process.
Manipulating crystallization with molecular additives.
Shtukenberg, Alexander G; Lee, Stephanie S; Kahr, Bart; Ward, Michael D
2014-01-01
Given the importance of organic crystals in a wide range of industrial applications, the chemistry, biology, materials science, and chemical engineering communities have focused considerable attention on developing methods to control crystal structure, size, shape, and orientation. Tailored additives have been used to control crystallization to great effect, presumably by selectively binding to particular crystallographic surfaces and sites. However, substantial knowledge gaps still exist in the fundamental mechanisms that govern the formation and growth of organic crystals in both the absence and presence of additives. In this review, we highlight research discoveries that reveal the role of additives, either introduced by design or present adventitiously, on various stages of formation and growth of organic crystals, including nucleation, dislocation spiral growth mechanisms, growth inhibition, and nonclassical crystal morphologies. The insights from these investigations and others of their kind are likely to guide the development of innovative methods to manipulate crystallization for a wide range of materials and applications.
Role of local assembly in the hierarchical crystallization of associating colloidal hard hemispheres
NASA Astrophysics Data System (ADS)
Lei, Qun-li; Hadinoto, Kunn; Ni, Ran
2017-10-01
Hierarchical self-assembly consisting of local associations of simple building blocks for the formation of complex structures widely exists in nature, while the essential role of local assembly remains unknown. In this work, by using computer simulations, we study a simple model system consisting of associating colloidal hemispheres crystallizing into face-centered-cubic crystals comprised of spherical dimers of hemispheres, focusing on the effect of dimer formation on the hierarchical crystallization. We found that besides assisting the crystal nucleation because of increasing the symmetry of building blocks, the association between hemispheres can also induce both reentrant melting and reentrant crystallization depending on the range of interaction. Especially when the interaction is highly sticky, we observe a novel reentrant crystallization of identical crystals, which melt only in a certain temperature range. This offers another axis in fabricating responsive crystalline materials by tuning the fluctuation of local association.
Pore configuration landscape of granular crystallization.
Saadatfar, M; Takeuchi, H; Robins, V; Francois, N; Hiraoka, Y
2017-05-12
Uncovering grain-scale mechanisms that underlie the disorder-order transition in assemblies of dissipative, athermal particles is a fundamental problem with technological relevance. To date, the study of granular crystallization has mainly focussed on the symmetry of crystalline patterns while their emergence and growth from irregular clusters of grains remains largely unexplored. Here crystallization of three-dimensional packings of frictional spheres is studied at the grain-scale using X-ray tomography and persistent homology. The latter produces a map of the topological configurations of grains within static partially crystallized packings. Using numerical simulations, we show that similar maps are measured dynamically during the melting of a perfect crystal. This map encodes new information on the formation process of tetrahedral and octahedral pores, the building blocks of perfect crystals. Four key formation mechanisms of these pores reproduce the main changes of the map during crystallization and provide continuous deformation pathways representative of the crystallization dynamics.
Pore configuration landscape of granular crystallization
Saadatfar, M.; Takeuchi, H.; Robins, V.; Francois, N.; Hiraoka, Y.
2017-01-01
Uncovering grain-scale mechanisms that underlie the disorder–order transition in assemblies of dissipative, athermal particles is a fundamental problem with technological relevance. To date, the study of granular crystallization has mainly focussed on the symmetry of crystalline patterns while their emergence and growth from irregular clusters of grains remains largely unexplored. Here crystallization of three-dimensional packings of frictional spheres is studied at the grain-scale using X-ray tomography and persistent homology. The latter produces a map of the topological configurations of grains within static partially crystallized packings. Using numerical simulations, we show that similar maps are measured dynamically during the melting of a perfect crystal. This map encodes new information on the formation process of tetrahedral and octahedral pores, the building blocks of perfect crystals. Four key formation mechanisms of these pores reproduce the main changes of the map during crystallization and provide continuous deformation pathways representative of the crystallization dynamics. PMID:28497794
Pore configuration landscape of granular crystallization
NASA Astrophysics Data System (ADS)
Saadatfar, M.; Takeuchi, H.; Robins, V.; Francois, N.; Hiraoka, Y.
2017-05-01
Uncovering grain-scale mechanisms that underlie the disorder-order transition in assemblies of dissipative, athermal particles is a fundamental problem with technological relevance. To date, the study of granular crystallization has mainly focussed on the symmetry of crystalline patterns while their emergence and growth from irregular clusters of grains remains largely unexplored. Here crystallization of three-dimensional packings of frictional spheres is studied at the grain-scale using X-ray tomography and persistent homology. The latter produces a map of the topological configurations of grains within static partially crystallized packings. Using numerical simulations, we show that similar maps are measured dynamically during the melting of a perfect crystal. This map encodes new information on the formation process of tetrahedral and octahedral pores, the building blocks of perfect crystals. Four key formation mechanisms of these pores reproduce the main changes of the map during crystallization and provide continuous deformation pathways representative of the crystallization dynamics.
Prevention of coronary heart disease: the role of essential fatty acids.
Sinclair, H. M.
1980-01-01
There are 2 classes of essential fatty acids (EFA), the linoleic (n-6) and linolenic (n-3). They are required for the glycerophosphatides (phospholipids) of cellular membranes; the transport and oxidation of cholesterol; the formation of prostaglandins. In deficiency of EFA, cellular membranes are imperfectly formed which causes increased susceptibility to various insults and increased permeability. Low-density lipoproteins (LDL) transport cholesterol mainly as cholesteryl linoleate and supply EFA to tissue. A relative deficiency of EFA (i.e. a high ratio in the body of non-EFA such as long-chain saturated fatty acids to EFA) causes an increase in plasma cholesterol. EFAs cause decreased aggregation of platelets. Atherosclerosis is not caused by increased aggregation of platelets, and can be prevalent in a population in which coronary thrombosis is rare. PMID:7465462
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christian, J. H.
2015-09-01
Nepheline (NaAlSiO₄) crystals can form during slow cooling of high-level waste (HLW) glass after it has been poured into a waste canister. Formation of these crystals can adversely affect the chemical durability of the glass. The tendency for nepheline crystallization to form in a HLW glass increases with increasing concentrations of Al₂O₃ and Na₂O.
Can Supersaturation Affect Protein Crystal Quality?
NASA Technical Reports Server (NTRS)
Gorti, Sridhar
2013-01-01
In quiescent environments (microgravity, capillary tubes, gels) formation of a depletion zone is to be expected, due either to limited sedimentation, density driven convection or a combination of both. The formation of a depletion zone can: Modify solution supersaturation near crystal; Give rise to impurity partitioning. It is conjectured that both supersaturation and impurity partitioning affect protein crystal quality and size. Further detailed investigations on various proteins are needed to assess above hypothesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellegrini, C.A.; Ryan, T.; Broderick, W.
1986-01-01
We studied gallbladder bile flow before, during, and after cholesterol gallstone formation in the prairie dog using infusion cholescintigraphy with /sup 99m/Tc-diethyl iminodiacetic acid. In 18 fasting animals partitioning of bile between gallbladder and intestine was determined every 15 min for 140 min, and gallbladder response to cholecystokinin (5 U/kg X h) was calculated from the gallbladder ejection fraction. Ten prairie dogs were then placed on a 0.4% cholesterol diet and 8 on a regular diet, and the studies were repeated 1, 2, and 6 wk later. The proportion of hepatic bile that entered the gallbladder relative to the intestinemore » varied from one 15-min period to the next, and averaged 28.2% +/- 5.1% at 140 min. Partial spontaneous gallbladder emptying (ejection fraction 11.5% +/- 5.6%) was intermittently observed. Neither the number nor the ejection fraction of spontaneous gallbladder contractions changed during gallstone formation. By contrast, the percent of gallbladder emptying in response to cholecystokinin decreased from 72.1% +/- 5% to 25.9% +/- 9.3% (p less than 0.025) in the first week and was 14.3% +/- 5.5% at 6 wk (p less than 0.01 from prediet values, not significant from first week). Gallbladder filling decreased from 28.2% +/- 5.1% to 6.7% +/- 3% (p less than 0.01), but this change was only observed after 6 wk, when gallstones had formed. This study shows that bile flow into the gallbladder during fasting is not constant; the gallbladder contracts intermittently; gallbladder emptying in response to exogenous cholecystokinin is altered very early during gallstone formation; and gallbladder filling remains unaffected until later stages, when gallstones have formed.« less
Megalin and cubilin in the human gallbladder epithelium.
Tsaroucha, Alexandra K; Chatzaki, Ekaterini; Lambropoulou, Maria; Despoudi, Kaliopi; Laftsidis, Prodromos; Charsou, Chara; Polychronidis, Alexandros; Papadopoulos, Nikolaos; Simopoulos, Constantinos E
2008-09-01
Although the role of cholesterol absorption by the gallbladder epithelium in gallstone formation is well established, the exact process is poorly understood. Potential candidates for regulation of transepithelial cholesterol transport are suggested to be two large membrane multiple ligand receptors, megalin and cubilin. We studied the expression of these two proteins in both acalculous and calculous human gallbladder epithelia. Adult human gallbladder tissues were received from 21 patients (9 men, 12 women) who had undergone cholecystectomy. The patients were divided into two groups: group A (calculous gallbladder group; 5 men, 6 women; mean age 64.4 +/- 11.1 years) with cholelithiasis, and group B (acalculous gallbladder group; 4 men, 6 women; mean age 55.3 +/- 16.1 years). In the gallbladder tissues megalin and cubilin expression was studied by immunohistochemistry and conventional RT-PCR, and gene expression levels were estimated by real-time RT-PCR. Both megalin and cubilin gene transcripts were found in total RNA preparations from acalculous gallbladder. In contrast, in preparations from calculous gallbladder, none or only one of the proteins was detected. Immunoreactive proteins were detected in the simple columnar acalculous gallbladder epithelium but not in the calculous gallbladder epithelium. Our results show different expression patterns of the two proteins in calculous gallbladders and acalculous gallbladders. In the latter both proteins are expressed, suggesting an association with gallstone formation and implying a putative role of the two proteins in cholesterol endocytosis. In other words, the presence of both proteins may be essential for the prevention of stone formation.
Studies on Aspirin Crystals Generated by a Modified Vapor Diffusion Method.
Mittal, Amit; Malhotra, Deepak; Jain, Preeti; Kalia, Anupama; Shunmugaperumal, Tamilvanan
2016-08-01
The objectives of the current investigation were (1) to study the influence of selected two different non-solvents (diethylether and dichloromethane) on the drug crystal formation of a model drug, aspirin (ASP-I) by the modified vapor diffusion method and (2) to characterize and compare the generated crystals (ASP-II and ASP-III) using different analytical techniques with that of unprocessed ASP-I. When compared to the classical vapor diffusion method which consumes about 15 days to generate drug crystals, the modified method needs only 12 h to get the same. Fourier transform-infrared spectroscopy (FT-IR) reveals that the internal structures of ASP-II and ASP-III crystals were identical when compared with ASP-I. Although the drug crystals showed a close similarity in X-ray diffraction patterns, the difference in the relative intensities of some of the diffraction peaks (especially at 2θ values of around 7.7 and 15.5) could be attributed to the crystal habit or crystal size modification. Similarly, the differential scanning calorimetry (DSC) study speculates that only the crystal habit modifications might occur but without involving any change in internal structure of the generated drug polymorphic form I. This is further substantiated from the scanning electron microscopy (SEM) pictures that indicated the formation of platy shape for the ASP-II crystals and needle shape for the ASP-III crystals. In addition, the observed slow dissolution of ASP crystals should indicate polymorph form I formation. Thus, the modified vapor diffusion method could routinely be used to screen and legally secure all possible forms of other drug entities too.
Tropical oils: nutritional and scientific issues.
Elson, C E
1992-01-01
Individually and in combination with other oils, the tropical oils impart into manufactured foods functional properties that appeal to consumers. The use of and/or labeling in the ingredient lists give the impression that these oils are used extensively in commercially processed foods. The estimated daily intake of tropical oils by adult males is slightly more than one fourth of a tablespoon (3.8 g), 75% of which consists of saturated fatty acids. Dietary fats containing saturated fatty acids at the beta-position tend to raise plasma total and LDL-cholesterol, which, of course, contribute to atherosclerosis and coronary heart disease. Health professionals express concern that consumers who choose foods containing tropical oils unknowingly increase their intake of saturated fatty acids. The saturated fatty acid-rich tropical oils, coconut oil, hydrogenated coconut oil, and palm kernel oil, raise cholesterol levels; studies demonstrating this effect are often confounded by a developing essential fatty acid deficiency. Palm oil, an essential fatty acid-sufficient tropical oil, raises plasma cholesterol only when an excess of cholesterol is presented in the diet. The failure of palm oil to elevate blood cholesterol as predicted by the regression equations developed by Keys et al. and Hegsted et al. might be due to the dominant alpha-position location of its constituent saturated fatty acids. If so, the substitution of interesterified artificial fats for palm oil in food formulations, a recommendation of some health professionals, has the potential of raising cholesterol levels. A second rationale addresses prospective roles minor constituents of palm oil might play in health maintenance. This rationale is founded on the following observations. Dietary palm oil does not raise plasma cholesterol. Single fat studies suggests that oils richer in polyunsaturated fatty acid content tend to decrease thrombus formation. Anomalously, palm oil differs from other of the more saturated fats in tending to decrease thrombus formation. Finally, in studies comparing palm oil with other fats and oils, experimental carcinogenesis is enhanced both by vegetable oils richer in linoleic acid content and by more highly saturated animal fats. The carotenoid constituents of red palm oil are potent dietary anticarcinogens. A second group of antioxidants, the tocotrienols, are present in both palm olein and red palm oil. These vitamin E-active constituents are potent suppressors of cholesterol biosynthesis; emerging data point to their anticarcinogenic and antithrombotic activities. This review does not support claims that foods containing palm oil have no place in a prudent diet.
Time lapse microscopy of temperature control during self-assembly of 3D DNA crystals
NASA Astrophysics Data System (ADS)
Conn, Fiona W.; Jong, Michael Alexander; Tan, Andre; Tseng, Robert; Park, Eunice; Ohayon, Yoel P.; Sha, Ruojie; Mao, Chengde; Seeman, Nadrian C.
2017-10-01
DNA nanostructures are created by exploiting the high fidelity base-pairing interactions of double-stranded branched DNA molecules. These structures present a convenient medium for the self-assembly of macroscopic 3D crystals. In some self-assemblies in this system, crystals can be formed by lowering the temperature, and they can be dissolved by raising it. The ability to monitor the formation and melting of these crystals yields information that can be used to monitor crystal formation and growth. Here, we describe the development of an inexpensive tool that enables direct observation of the crystal growth process as a function of both time and temperature. Using the hanging-drop crystallization of the well-characterized 2-turn DNA tensegrity triangle motif for our model system, its response to temperature has been characterized visually.
Single crystal, liquid crystal, and hybrid organic semiconductors
NASA Astrophysics Data System (ADS)
Twieg, Robert J.; Getmanenko, Y.; Lu, Z.; Semyonov, A. N.; Huang, S.; He, P.; Seed, A.; Kiryanov, A.; Ellman, B.; Nene, S.
2003-07-01
The synthesis and characterization of organic semiconductors is being pursued in three primary structure formats: single crystal, liquid crystal and organic-inorganic hybrid. The strategy here is to share common structures, synthesis methods and fabrication techniques across these formats and to utilize common characterization tools such as the time of flight technique. The single crystal efforts concentrate on aromatic and heteroaromatic compounds including simple benzene derivatives and derivatives of the acenes. The structure-property relationships due to incorporation of small substituents and heteroatoms are being examined. Crystals are grown by solution, melt or vapor transport techniques. The liquid crystal studies exploit their self-organizing properties and relative ease of sample preparation. Though calamitic systems tha deliver the largest mobilities are higher order smectics, even some unusual twist grain boundary phases are being studied. We are attempting to synthesize discotic acene derivatives with appropriate substitution patterns to render them mesogenic. The last format being examined is the hybrid organic-inorganic class. Here, layered materials of alternating organic and inorganic composition are designed and synthesized. Typical materials are conjugated aromatic compounds, usually functinalized with an amine or a pyridine and reacted with appropriate reactive metal derivatives to incorporate them into metal oxide or sulfide layers.
Effect of binder liquid type on spherical crystallization.
Maghsoodi, Maryam; Hajipour, Ali
2014-11-01
Spherical crystallization is a process of formation of agglomerates of crystals held together by binder liquid. This research focused on understanding the effect of type of solvents used as binder liquid on the agglomeration of crystals. Carbamazepine and ethanol/water were used respectively as a model drug and crystallization system. Eight solvents as binder liquid including chloroform, dichloromethane, isopropyl acetate, ethyl acetate, n-hexane, dimethyl aniline, benzene and toluene were examined to better understand the relationship between the physical properties of the binder liquid and its ability to bring about the formation of the agglomerates. Moreover, the agglomerates obtained from effective solvents as binder liquid were evaluated in term of size, apparent particle density and compressive strength. In this study the clear trend was observed experimentally in the agglomerate formation as a function of physical properties of the binder liquid such as miscibility with crystallization system. Furthermore, the properties of obtained agglomerates such as size, apparent particle density and compressive strength were directly related to physical properties of effective binder liquids. RESULTS of this study offer a useful starting point for a conceptual framework to guide the selection of solvent systems for spherical crystallization.
Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude
NASA Technical Reports Server (NTRS)
Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael
2014-01-01
A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier1,2 from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test3 conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.
Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude
NASA Technical Reports Server (NTRS)
Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.
2016-01-01
A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.
Ninagawa, Takako; Eguchi, Akemi; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira
2016-08-01
Intracellular ice crystal formation (IIF) causes several problems to cryopreservation, and it is the key to developing improved cryopreservation techniques that can ensure the long-term preservation of living tissues. Therefore, the ability to capture clear intracellular freezing images is important for understanding both the occurrence and the IIF behavior. The authors developed a new cryomicroscopic system that was equipped with a high-speed camera for this study and successfully used this to capture clearer images of the IIF process in the epidermal tissues of strawberry geranium (Saxifraga stolonifera Curtis) leaves. This system was then used to examine patterns in the location and formation of intracellular ice crystals and to evaluate the degree of cell deformation because of ice crystals inside the cell and the growing rate and grain size of intracellular ice crystals at various cooling rates. The results showed that an increase in cooling rate influenced the formation pattern of intracellular ice crystals but had less of an effect on their location. Moreover, it reduced the degree of supercooling at the onset of intracellular freezing and the degree of cell deformation; the characteristic grain size of intracellular ice crystals was also reduced, but the growing rate of intracellular ice crystals was increased. Thus, the high-speed camera images could expose these changes in IIF behaviors with an increase in the cooling rate, and these are believed to have been caused by an increase in the degree of supercooling. Copyright © 2016 Elsevier Inc. All rights reserved.
Raman spectroscopic imaging as complementary tool for histopathologic assessment of brain tumors
NASA Astrophysics Data System (ADS)
Krafft, Christoph; Bergner, Norbert; Romeike, Bernd; Reichart, Rupert; Kalff, Rolf; Geiger, Kathrin; Kirsch, Matthias; Schackert, Gabriele; Popp, Jürgen
2012-02-01
Raman spectroscopy enables label-free assessment of brain tissues and tumors based on their biochemical composition. Combination of the Raman spectra with the lateral information allows grading of tumors, determining the primary tumor of brain metastases and delineating tumor margins - even during surgery after coupling with fiber optic probes. This contribution presents exemplary Raman spectra and images collected from low grade and high grade regions of astrocytic gliomas and brain metastases. A region of interest in dried tissue sections encompassed slightly increased cell density. Spectral unmixing by vertex component analysis (VCA) and N-FINDR resolved cell nuclei in score plots and revealed the spectral contributions of nucleic acids, cholesterol, cholesterol ester and proteins in endmember signatures. The results correlated with the histopathological analysis after staining the specimens by hematoxylin and eosin. For a region of interest in non-dried, buffer immersed tissue sections image processing was not affected by drying artifacts such as denaturation of biomolecules and crystallization of cholesterol. Consequently, the results correspond better to in vivo situations. Raman spectroscopic imaging of a brain metastases from renal cell carcinoma showed an endmember with spectral contributions of glycogen which can be considered as a marker for this primary tumor.
Ma, Sulan; Li, Hongchun; Tian, Kangzhen; Ye, Shuji; Luo, Yi
2014-02-06
Cholesterol organization and transport within a cell membrane are essential for human health and many cellular functions yet remain elusive so far. Using cholesterol analogue 6-ketocholestanol (6-KC) as a model, we have successfully exploited sum frequency generation vibrational spectroscopy (SFG-VS) to track the organization and transport of cholesterol in a membrane by combining achiral-sensitive ssp (ppp) and chiral-sensitive psp polarization measurements. It is found that 6-KC molecules are aligned at the outer leaflet of the DMPC lipid bilayer with a tilt angle of about 10°. 6-KC organizes itself by forming an α-β structure at low 6-KC concentration and most likely a β-β structure at high 6-KC concentration. Among all proposed models, our results favor the so-called umbrella model with formation of a 6-KC cluster. Moreover, we have found that the long anticipated flip-flop motion of 6-KC in the membrane takes time to occur, at least much longer than previously thought. All of these interesting findings indicate that it is critical to explore in situ, real-time, and label-free methodologies to obtain a precise molecular description of cholesterol's behavior in membranes. This study represents the first application of SFG to reveal the cholesterol-lipid interaction mechanism at the molecular level.
NASA Astrophysics Data System (ADS)
Xu, Weixin; Wei, Guanghong; Su, Haibin; Nordenskiöld, Lars; Mu, Yuguang
2011-11-01
Disruption of the cellular membrane by the amyloidogenic peptide, islet amyloid polypeptide (IAPP), has been considered as one of the mechanisms of β-cell death during type 2 diabetes. The N-terminal region (residues 1-19) of the human version of IAPP is suggested to be primarily responsible for the membrane-disrupting effect of the full-length hIAPP peptide. However, the detailed assembly mode of hIAPP1-19 with membrane remains unclear. To gain insight into the interactions of hIAPP1-19 oligomer with the model membrane, we have employed coarse-grained molecular dynamics self-assembly simulations to study the aggregation of hIAPP1-19 fragments in the binary lipid made of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and anionic dipalmitoylphosphatidylserine (DPPS) in the presence and absence of different levels of cholesterol content. The membrane-destabilizing effect of hIAPP1-19 is found to be modulated by the presence of cholesterol. In the absence of cholesterol, hIAPP1-19 aggregates prefer to locate inside the bilayer, forming pore-like assemblies. While in the presence of cholesterol molecules, the lipid bilayer becomes more ordered and stiff, and the hIAPP1-19 aggregates are dominantly positioned at the bilayer-water interface. The action of cholesterol may suggest a possible way to maintain the membrane integrity by small molecule interference.
Energetics and structure of simvastatin.
Simões, Ricardo G; Bernardes, Carlos E S; Diogo, Hermínio P; Agapito, Filipe; Minas da Piedade, Manuel E
2013-07-01
The study of structure-energetics relationships for active pharmaceutical ingredients has received considerable attention in recent years, due to its importance for the effective production and safe use of drugs. In this work the widely prescribed cholesterol-lowering drug simvastatin was investigated by combining experimental (combustion calorimetry and differential scanning calorimetry, DSC) and computational chemistry (quantum chemistry and molecular dynamics calculations) results. The studies addressed the crystalline form stable at ambient temperature (form I) and the liquid and gaseous phases. Heat capacity determinations by DSC showed no evidence of polymorphism between 293 K and the fusion temperature. It was also found that the most stable molecular conformation in the gas phase given by the quantum chemistry calculations (B3LYP-D3/cc-pVTZ) is analogous to that observed in the crystal phase. The molecular dynamics simulations correctly captured the main structural properties of the crystalline phase known from published single crystal X-ray diffraction results (unit cell dimensions and volume). They also suggested that, while preferential conformations are exhibited by the molecule in the solid at 298.15 K, these preferences are essentially blurred upon melting. Finally, the experiments and calculations led to enthalpies of formation of simvastatin at 298.15 K, in the crystalline (form I) ΔfH(m)(o) (cr I) = -1238.4 ± 5.6 kJ · mol(-1), liquid ΔfH(m)(o) (l) = -1226.4 ± 5.7 kJ · mol(-1), and gaseous ΔfH(m)(o) (g) = -1063.0 ± 7.1 kJ · mol(-1) states.
ERIC Educational Resources Information Center
Schomaker, Verner; Lingafelter, E. C.
1985-01-01
Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)
Pan, Yongming; Xu, Jianqin; Chen, Cheng; Chen, Fangming; Jin, Ping; Zhu, Keyan; Hu, Chenyue W; You, Mengmeng; Chen, Minli; Hu, Fuliang
2018-01-01
Alzheimer's disease (AD) is the most common form of dementia characterized by aggregation of amyloid β (Aβ) and neuronal loss. One of the risk factors for AD is high cholesterol levels, which are known to promote Aβ deposition. Previous studies have shown that royal jelly (RJ), a product of worker bees, has potential neuroprotective effects and can attenuate Aβ toxicity. However, little is known about how RJ regulates Aβ formation and its effects on cholesterol levels and neuronal metabolic activities. Here, we investigated whether RJ can reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in an AD rabbit model induced by 2% cholesterol diet plus copper drinking water. Our results suggest that RJ significantly reduced the levels of plasma total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C), and decreased the level of Aβ in rabbit brains. RJ was also shown to markedly ameliorate amyloid deposition in AD rabbits from Aβ immunohistochemistry and thioflavin-T staining. Furthermore, our study suggests that RJ can reduce the expression levels of β-site APP cleaving enzyme-1 (BACE1) and receptor for advanced glycation end products (RAGE), and increase the expression levels of low density lipoprotein receptor-related protein 1 (LRP-1) and insulin degrading enzyme (IDE). In addition, we found that RJ remarkably increased the number of neurons, enhanced antioxidant capacities, inhibited activated-capase-3 protein expression, and enhanced neuronal metabolic activities by increasing N-acetyl aspartate (NAA) and glutamate and by reducing choline and myo-inositol in AD rabbits. Taken together, our data demonstrated that RJ could reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in AD rabbits, providing preclinical evidence that RJ treatment has the potential to protect neurons and prevent AD.
Rasheed, Adil; Tsai, Ricky; Cummins, Carolyn L
2018-05-08
The liver X receptors (LXRs; α/β) are nuclear receptors known to regulate cholesterol homeostasis and the production of select hematopoietic populations. The objective of this study was to determine the importance of LXRs and a high-fat high-cholesterol diet on global hematopoiesis, with special emphasis on endothelial progenitor cells (EPCs), a vasoreparative cell type that is derived from bone marrow hematopoietic stem cells. Wild-type and LXR double-knockout ( Lxr αβ -/- ) mice were fed a Western diet (WD) to increase plasma cholesterol levels. In WD-fed Lxr αβ -/- mice, flow cytometry and complete blood cell counts revealed that hematopoietic stem cells, a myeloid progenitor, and mature circulating myeloid cells were increased; EPC numbers were significantly decreased. Hematopoietic stem cells from WD-fed Lxr αβ -/- mice showed increased cholesterol content, along with increased myeloid colony formation compared with chow-fed mice. In contrast, EPCs from WD-fed Lxr αβ -/- mice also demonstrated increased cellular cholesterol content that was associated with greater expression of the endothelial lineage markers Cd144 and Vegfr2 , suggesting accelerated differentiation of the EPCs. Treatment of human umbilical vein endothelial cells with conditioned medium collected from these EPCs increased THP-1 monocyte adhesion. Increased monocyte adhesion to conditioned medium-treated endothelial cells was recapitulated with conditioned medium from Lxr αβ -/- EPCs treated with cholesterol ex vivo, suggesting cholesterol is the main component of the WD inducing EPC dysfunction. LXRs are crucial for maintaining the balance of hematopoietic cells in a hypercholesterolemic environment and for mitigating the negative effects of cholesterol on EPC differentiation/secretome changes that promote monocyte-endothelial adhesion. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Dietary fenugreek and onion attenuate cholesterol gallstone formation in lithogenic diet–fed mice
Reddy, Raghunatha R L; Srinivasan, Krishnapura
2011-01-01
An animal study was conducted to evaluate the antilithogenic effect of a combination of dietary fenugreek seeds and onion. Lithogenic conditions were induced in mice by feeding them a high (0.5%) cholesterol diet (HCD) for 10 weeks. Fenugreek (12%) and onion (2%) were included individually and in combination in this HCD. Fenugreek, onion and their combination reduced the incidence of cholesterol gallstones by 75%, 27% and 76%, respectively, with attendant reduction in total cholesterol content by 38–42%, 50–72% and 61–80% in serum, liver and bile respectively. Consequently, the cholesterol/phospholipid ratio was reduced significantly in serum, liver and bile. The cholesterol saturation index of bile was reduced from 4.14 to 1.38 by the combination of fenugreek and onion and to 2.33 by onion alone. The phospholipid and bile acid contents of the bile were also increased. Changes in the hepatic enzyme activities (3-hydroxy-3-methylglutaryl Coenzyme A reductase, cholesterol-7α-hydroxylase and cholesterol-27-hydroxylase) induced by HCD were countered by fenugreek, onion and their combination. Hepatic lipid peroxides were reduced by 19–22% and 39–45% with fenugreek, onion and their combination included in the diet along with the HCD. Increased accumulation of fat in the liver and inflammation of the gallbladder membrane produced by HCD were reduced by fenugreek, onion and their combination. The antilithogenic influence was highest with fenugreek alone, and the presence of onion along with it did not further increase this effect. There was also no additive effect of the two spices in the recovery of antioxidant molecules or in the antioxidant enzyme activities. PMID:21756271
Yuyama, Ken-ichi; Wu, Chi-Shiun; Sugiyama, Teruki; Masuhara, Hiroshi
2014-02-01
We present the laser trapping-induced crystallization of L-phenylalanine through high-concentration domain formation in H2O and D2O solutions which is achieved by focusing a continuous-wave (CW) near-infrared laser beam at the solution surface. Upon laser irradiation into the H2O solution, laser trapping of the liquid-like clusters increases the local concentration, accompanying laser heating, and a single plate-like crystal is eventually prepared at the focal spot. On the other hand, in the D2O solution, a lot of the monohydrate needle-like crystals are observed, not at the focal spot where the concentration is high enough to trigger crystal nucleation, but in the 0.5-1.5 mm range from the focal spot. The dynamics and mechanism of the amazing crystallization behaviour induced by laser trapping are discussed from the viewpoints of the concentration increase due to laser heating depending on solvent, the large high-concentration domain formation by laser trapping of liquid-like clusters, and the orientational disorder of molecules/clusters at the domain edge.
Nahon, Joya E; Hoekstra, Menno; Havik, Stefan R; Van Santbrink, Peter J; Dallinga-Thie, Geesje M; Kuivenhoven, Jan-Albert; Geerling, Janine J; Van Eck, Miranda
2018-05-05
Proteoglycan 4 (Prg4) has a high structural similarity with the established atherosclerosis-modulating proteoglycan versican, but its role in atherogenesis is still unknown. Therefore, the impact of Prg4 deficiency on macrophage function in vitro and atherosclerosis susceptibility in vivo was investigated. The presence and localization of Prg4 was studied in atherosclerotic lesions. Furthermore, the effect of Prg4 deficiency on macrophage foam cell formation, cholesterol efflux and lipopolysaccharide (LPS) response was determined. Finally, susceptibility for atherosclerotic lesion formation was investigated in bone marrow-specific Prg4 knockout (KO) mice. Prg4 mRNA expression was induced 91-fold (p<0.001) in murine initial atherosclerotic lesions and Prg4 protein co-localized with human lesional macrophages. Murine Prg4 KO macrophages showed increased foam cell formation (+2.1-fold, p<0.01). In parallel, the expression of the cholesterol efflux genes ATP-binding cassette transporter A1 and scavenger receptor type B1 was lower (-35%, p<0.05;-40%, p<0.05) in Prg4 KO macrophages. This translated into an impaired cholesterol efflux to high-density lipoprotein (-13%, p<0.001) and apolipoprotein A1 (-8%, p<0.05). Furthermore, Prg4 KO macrophages showed an impaired LPS-induced rise in TNFα secretion as compared to wild-type controls (-31%, p<0.001), indicating a reduced inflammatory response. Combined, these pro- and anti-atherogenic effects did not translate into a significant difference in atherosclerotic lesion formation upon bone marrow-specific deletion of Prg4 in low-density lipoprotein receptor KO mice. Prg4 is present in macrophages in both murine and human atherosclerotic lesions and critically influences macrophage function, but deletion of Prg4 in bone marrow-derived cells does not affect atherosclerotic lesion development. Copyright © 2018 Elsevier B.V. All rights reserved.
Nakata, Paul A
2015-01-01
The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill both these needs. As a step toward this development, this study investigates the effects of transforming a non-calcium oxalate crystal accumulating plant, Arabidopsis thaliana, into a crystal accumulating plant. Calcium oxalate crystal accumulating A. thaliana lines were generated by ectopic expression of a single bacterial gene encoding an oxalic acid biosynthetic enzyme. Biochemical and cellular studies suggested that the engineered A. thaliana lines formed crystals of calcium oxalate in a manner similar to naturally occurring crystal accumulating plants. The amount of calcium oxalate accumulated in leaves also reached levels similar to those measured in the leaves of Medicago truncatula in which the crystals are known to play a defensive role. Visual inspection of the different engineered lines, however, suggested a phenotypic consequence on plant growth and development with higher calcium oxalate concentrations. The restoration of a near wild-type plant phenotype through an enzymatic reduction of tissue oxalate supported this observation. Overall, this study is a first to provide initial insight into the potential consequences of engineering calcium oxalate crystal formation in non-crystal accumulating plants.
Polyethylene nano crystalsomes formed at a curved liquid/liquid interface.
Wang, Wenda; Staub, Mark C; Zhou, Tian; Smith, Derrick M; Qi, Hao; Laird, Eric D; Cheng, Shan; Li, Christopher Y
2017-12-21
Crystallization is incommensurate with nanoscale curved space due to the lack of three dimensional translational symmetry of the latter. Herein, we report the formation of single-crystal-like, nanosized polyethylene (PE) capsules using a miniemulsion solution crystallization method. The miniemulsion was formed at elevated temperatures using PE organic solution as the oil phase and sodium dodecyl sulfate as the surfactant. Subsequently, cooling the system stepwisely for controlled crystallization led to the formation of hollow, nanosized PE crystalline capsules, which are named as crystalsomes since they mimic the classical self-assembled structures such as liposome, polymersome and colloidosome. We show that the formation of the nanosized PE crystalsomes is driven by controlled crystallization at the curved liquid/liquid interface of the miniemulson droplet. The morphology, structure and mechanical properties of the PE crystalsomes were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and atomic force spectroscopy. Electron diffraction showed the single-crystal-like nature of the crystalsomes. The incommensurateness between the nanocurved interface and the crystalline packing led to reduced crystallinity and crystallite size of the PE crystalsome, as observed from the X-ray diffraction measurements. Moreover, directly quenching the emulsion below the spinodal line led to the formation of hierarchical porous PE crystalsomes due to the coupling of the PE crystallization and liquid/liquid phase separation. We anticipate that this unique crystalsome represents a new type of nanostructure that might be used as nanodrug carriers and ultrasound contrast agents.
On the origin of fiber calcite crystals in moonmilk deposits.
Cañaveras, Juan Carlos; Cuezva, Soledad; Sanchez-Moral, Sergio; Lario, Javier; Laiz, Leonila; Gonzalez, Juan Miguel; Saiz-Jimenez, Cesareo
2006-01-01
In this study, we show that moonmilk subaerial speleothems in Altamira Cave (Spain) consist of a network of fiber calcite crystals and active microbial structures. In Altamira moonmilks, the study of the typology and distribution of fiber crystals, extracellular polymeric substances, and microorganisms allowed us to define the initial stages of fiber crystal formation in recent samples as well as the variations in the microstructural arrangement in more evolved stages. Thus, we have been able to show the existence of a relationship among the different types of fiber crystals and their origins. This allowed us to outline a model that illustrates the different stages of formation of the moonmilk, developed on different substrata, concluding that microbes influence physicochemical precipitation, resulting in a variety of fiber crystal morphologies and sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belousov, Yu. M., E-mail: theorphys@phystech.edu
The formation of an ionized acceptor center by a negative muon in crystals with the diamond structure is considered. The negative muon entering a target is captured by a nucleus, forming a muonic atom {sub μ}A coupled to a lattice. The appearing radiation-induced defect has a significant electric dipole moment because of the violation of the local symmetry of the lattice and changes the phonon spectrum of the crystal. The ionized acceptor center is formed owing to the capture of an electron interacting with the electric dipole moment of the defect and with the radiation of a deformation-induced local-mode phonon.more » Upper and lower bounds of the formation rate of the ionized acceptor center in diamond, silicon, and germanium crystals are estimated. It is shown that the kinetics of the formation of the acceptor center should be taken into account when processing μSR experimental data.« less
Isolation and structural determination of squalene synthase inhibitor from Prunus mume fruit.
Choi, Sung-Won; Hur, Nam-Yoon; Ahn, Soon-Cheol; Kim, Dong-Seob; Lee, Jae-Kwon; Kim, Dae-Ok; Park, Seung-Kook; Kim, Byung-Yong; Baik, Moo-Yeol
2007-12-01
Squalene synthase plays an important role in the cholesterol biosynthetic pathway. Inhibiting this enzyme in hypercholesterolemia can lower not only plasma cholesterol but also plasma triglyceride levels. A squalene synthase inhibitor was screened from Prunus mume fruit, and then purified via sequential processes of ethanol extraction, HP-20 column chromatography, ethyl acetate extraction, silica gel column chromatography, and crystallization. The squalene synthase inhibitor was identified as chlorogenic acid with a molecular mass of 354 Da and a molecular formula of C16H18O9 based on UV spectrophotometry, 1H and 13C NMRs, and mass spectrometry. Chlorogenic acid inhibited the squalene synthase of pig liver with an IC50 level of 100 nM. Since chlorogenic acid was an effective inhibitor against the squalene synthase of an animal source, it may be a potential therapeutic agent for hypercholesterolemia.
Frame, Nicholas M.; Gursky, Olga
2016-01-01
Serum amyloid A is a major acute-phase plasma protein that modulates innate immunity and cholesterol homeostasis. We combine sequence analysis with x-ray crystal structures to postulate that SAA acts as an intrinsically disordered hub mediating interactions among proteins, lipids and proteoglycans. A structural model of lipoprotein-bound SAA monomer is proposed wherein two α-helices from the N-domain form a concave hydrophobic surface that binds lipoproteins. A C-domain, connected to the N-domain via a flexible linker, binds polar/charged ligands including cell receptors, bridging them with lipoproteins and re-routing cholesterol transport. Our model is supported by the SAA cleavage in the inter-domain linker to generate the 1–76 fragment deposited in reactive amyloidosis. This model sheds new light on functions of this enigmatic protein. PMID:26918388
ERIC Educational Resources Information Center
Lange, Catherine
2008-01-01
In this inquiry-based, integrative art and science activity, Grade 5-8 students use multicolored Epsom salt (magnesium sulfate) crystallizing solutions to reveal beautiful, cylindrical, 3-dimensional, needle-shaped structures. Through observations of the crystal art, students analyze factors that contribute to crystal size and formation, compare…
NASA Astrophysics Data System (ADS)
Saraev, Yu N.; Solodskiy, S. A.; Ulyanova, O. V.
2016-04-01
A new technology of low-frequency modulation of the arc current in MAG and MIG welding is presented. The technology provides control of thermal and crystallization processes, stabilizes the time of formation and crystallization of the weld pool. Conducting theoretical studies allowed formulating the basic criteria for obtaining strong permanent joints for high-duty structures, providing conditions for more equilibrium structure of the deposited metal and the smaller width of the HAZ. The stabilization of time of the formation and crystallization of the weld pool improves the formation of the weld and increases productivity in welding thin sheet metal.
Giuffre, Anthony J; Hamm, Laura M; Han, Nizhou; De Yoreo, James J; Dove, Patricia M
2013-06-04
Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy barriers to nucleation are PS-specific by a systematic relationship to PS charge density and substrate structure that is rooted in minimization of the competing substrate-crystal and substrate-liquid interfacial energies. Chitosan presents a low-energy barrier to nucleation because its near-neutral charge favors formation of a substrate-crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate-crystal interfaces. The findings support a directing role for PS in biomineral formation and demonstrate that substrate-crystal interactions are one end-member in a larger continuum of competing forces that regulate heterogeneous crystal nucleation.
Hamm, Laura M.; Han, Nizhou; De Yoreo, James J.; Dove, Patricia M.
2013-01-01
Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy barriers to nucleation are PS-specific by a systematic relationship to PS charge density and substrate structure that is rooted in minimization of the competing substrate–crystal and substrate–liquid interfacial energies. Chitosan presents a low-energy barrier to nucleation because its near-neutral charge favors formation of a substrate–crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate–crystal interfaces. The findings support a directing role for PS in biomineral formation and demonstrate that substrate–crystal interactions are one end-member in a larger continuum of competing forces that regulate heterogeneous crystal nucleation. PMID:23690577
Holographic data storage crystals for the LDEF
NASA Technical Reports Server (NTRS)
Callen, W. Russell; Gaylord, Thomas K.
1993-01-01
Crystals of lithium niobate were passively exposed to the space environment of the Long Duration Exposure Facility (LDEF). Three of the four crystals contained volume holograms. Although the crystals suffered the surface damage characteristic of that suffered by other components on the Georgia Tech tray, the crystals remained suitable for the formation of volume holograms.
Kefiran reduces atherosclerosis in rabbits fed a high cholesterol diet.
Uchida, Masashi; Ishii, Itsuko; Inoue, Chika; Akisato, Yoshie; Watanabe, Kenta; Hosoyama, Saori; Toida, Toshihiko; Ariyoshi, Noritaka; Kitada, Mitsukazu
2010-09-30
Kefiran is an exopolysaccharide produced by Lactobacillus kefiranofaciens, and has been proposed to have many health-promoting properties. We investigated the antiatherogenic effect of kefiran on rabbits fed a high-cholesterol diet. Male New Zealand White rabbits were fed a 0.5% cholesterol diet without (control group, n = 7) or with kefiran (kefiran group, n = 8) for eight weeks. The aorta was analyzed by histochemistry and atherosclerotic lesions were quantified. Lipids and sugars in serum were measured. Foam cell formation of RAW264.7 by βVLDL derived from both groups of rabbits was also investigated. Cholesterol, triglyceride and phospholipids levels of serum and lipoprotein fractions were not significantly different between these groups. Atherosclerotic lesions of the aorta in the kefiran group were statistically lower than those of the control group, with marked differences in the abdominal aorta. T-lymphocytes were not detectable in the aorta of the kefiran group. Cholesterol contents in stools were almost identical in both groups. Cholesterol content in the liver of the kefiran group was statistically lower than in the control group. Galactose content of βVLDL derived from the kefiran group was higher, and the lipid peroxidation level was much lower than in the control group. RAW264.7 macrophages treated with βVLDL from the kefiran group showed a more spherical shape and accumulated statistically lower cholesterol than macrophages treated with βVLDL from the control group. Orally derived kefiran is absorbed in the blood. Kefiran prevents the onset and development of atherosclerosis in hypercholesterolemic rabbits by anti-inflammatory and anti-oxidant actions.
Lin, Naibo; Liu, Xiang Yang
2015-11-07
This review examines how the concepts and ideas of crystallization can be extended further and applied to the field of mesoscopic soft materials. It concerns the structural characteristics vs. the macroscopic performance, and the formation mechanism of crystal networks. Although this subject can be discussed in a broad sense across the area of mesoscopic soft materials, our main focus is on supramolecular materials, spider and silkworm silks, and biominerals. First, the occurrence of a hierarchical structure, i.e. crystal network and domain network structures, will facilitate the formation kinetics of mesoscopic phases and boost up the macroscopic performance of materials in some cases (i.e. spider silk fibres). Second, the structure and performance of materials can be correlated in some way by the four factors: topology, correlation length, symmetry/ordering, and strength of association of crystal networks. Moreover, four different kinetic paths of crystal network formation are identified, namely, one-step process of assembly, two-step process of assembly, mixed mode of assembly and foreign molecule mediated assembly. Based on the basic mechanisms of crystal nucleation and growth, the formation of crystal networks, such as crystallographic mismatch (or noncrystallographic) branching (tip branching and fibre side branching) and fibre/polymeric side merging, are reviewed. This facilitates the rational design and construction of crystal networks in supramolecular materials. In this context, the (re-)construction of a hierarchical crystal network structure can be implemented by thermal, precipitate, chemical, and sonication stimuli. As another important class of soft materials, the unusual mechanical performance of spider and silkworm silk fibres are reviewed in comparison with the regenerated silk protein derivatives. It follows that the considerably larger breaking stress and unusual breaking strain of spider silk fibres vs. silkworm silk fibres can be interpreted according to the synergistically correlated hierarchical structures of the domain and crystal networks, which can be quantified by the hierarchical structural correlation and the four structural parameters. Based on the concept of crystal networks, the new understanding acquired will transfer the research and engineering of mesoscopic materials, particularly, soft functional materials, to a new phase.
Characterization of calcium oxalate defective (cod) 3 mutant from Medicago truncatula
USDA-ARS?s Scientific Manuscript database
Many plants invest a considerable amount of resources and energy into the formation of calcium oxalate crystals. Assigned roles for plant crystal formation include functions in defense, calcium regulation, and aluminum tolerance. From a human health standpoint, oxalate present in edible plant tiss...
Cho, Seonghee; Kim, Kyungmin; Kim, Taehoon; Park, Hyoeun; Kim, Jin-Moo; Lee, SeungHoon; Kang, YeonSu; Chang, Kiyuk; Kim, Chulhong
2018-04-19
Detection of cholesterol crystals (Chcs) in atherosclerosis disease is important for understanding the pathophysiology of atherosclerosis. Polarization microscopy (PM) has been in use traditionally for detecting Chcs, but they have difficulty in distinguishing Chcs with other crystalline materials in tissue, such as collagens. Thus, most studies using PM have been limited to studying cell-level samples. Although various methods have been proposed to detect Chcs with high specificity, most of them have low signal-to-noise ratios, a high system construction cost, and are difficult to operate due to a complex protocol. To address these problems, we have developed a simple and inexpensive universal serial bus (USB) PM system equipped with a 5700 K cool-white light-emitting diode (LED). In this system, Chcs are shown in a light blue color while collagen is shown in a yellow color. More importantly, the contrast between Chcs and collagens is improved by a factor of 2.3 under an aqueous condition in these PM images. These imaging results are well-matched with the ones acquired with two-photon microscopy (TPM). The system can visualize the features of atherosclerosis that cannot be visualized by the conventional hematoxylin and eosin and oil-red-o staining methods. Thus, we believe that this simple USB PM system can be widely used to identify Chcs in atherosclerosis.
Savva, Christos G.; Fernandes da Costa, Sérgio P.; Bokori-Brown, Monika; Naylor, Claire E.; Cole, Ambrose R.; Moss, David S.; Titball, Richard W.; Basak, Ajit K.
2013-01-01
NetB is a pore-forming toxin produced by Clostridium perfringens and has been reported to play a major role in the pathogenesis of avian necrotic enteritis, a disease that has emerged due to the removal of antibiotics in animal feedstuffs. Here we present the crystal structure of the pore form of NetB solved to 3.9 Å. The heptameric assembly shares structural homology to the staphylococcal α-hemolysin. However, the rim domain, a region that is thought to interact with the target cell membrane, shows sequence and structural divergence leading to the alteration of a phosphocholine binding pocket found in the staphylococcal toxins. Consistent with the structure we show that NetB does not bind phosphocholine efficiently but instead interacts directly with cholesterol leading to enhanced oligomerization and pore formation. Finally we have identified conserved and non-conserved amino acid positions within the rim loops that significantly affect binding and toxicity of NetB. These findings present new insights into the mode of action of these pore-forming toxins, enabling the design of more effective control measures against necrotic enteritis and providing potential new tools to the field of bionanotechnology. PMID:23239883
Electrodeless QCM-D for lipid bilayer applications.
Kunze, Angelika; Zäch, Michael; Svedhem, Sofia; Kasemo, Bengt
2011-01-15
An electrodeless quartz crystal microbalance with dissipation monitoring (QCM-D) setup is used to monitor the formation of supported lipid bilayers (SLBs) on bare quartz crystal sensor surfaces. The kinetic behavior of the formation of a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) SLB on SiO(2) surfaces is discussed and compared for three cases: (i) a standard SiO(2) film deposited onto the gold electrode of a quartz crystal, (ii) an electrodeless quartz crystal with a sputter-coated SiO(2) film, and (iii) an uncoated electrodeless quartz crystal sensor surface. We demonstrate, supported by imaging the SLB on an uncoated electrodeless surface using atomic force microscopy (AFM), that a defect-free, completely covering bilayer is formed in all three cases. Differences in the kinetics of the SLB formation on the different sensor surfaces are attributed to differences in surface roughness. The latter assumption is supported by imaging the different surfaces using AFM. We show furthermore that electrodeless quartz crystal sensors can be used not only for the formation of neutral SLBs but also for positively and negatively charged SLBs. Based on our results we propose electrodeless QCM-D to be a valuable technique for lipid bilayer and related applications providing several advantages compared to electrode-coated surfaces like optical transparency, longer lifetime, and reduced costs. Copyright © 2010 Elsevier B.V. All rights reserved.
Lipid Raft: A Floating Island Of Death or Survival
George, Kimberly S.; Wu, Shiyong
2012-01-01
Lipid rafts are microdomains of the plasma membrane enriched in cholesterol and sphingolipids, and play an important role in the initiation of many pharmacological agent-induced signaling pathways and toxicological effects. The structure of lipid rafts is dynamic, resulting in an ever-changing content of both lipids and proteins. Cholesterol, as a major component of lipid rafts, is critical for the formation and configuration of lipid rafts microdomains, which provide signaling platforms capable of activating both pro-apoptotic and anti-apoptotic signaling pathways. A change of cholesterol level can result in lipid rafts disruption and activate or deactivate raft-associated proteins, such as death receptor proteins, protein kinases, and calcium channels. Several anti-cancer drugs are able to suppress growth and induce apoptosis of tumor cells through alteration of lipid raft contents via disrupting lipid raft integrity. PMID:22289360
Huang, Qilin; An, Yarui; Tang, Linlin; Jiang, Xiaoli; Chen, Hua; Bi, Wenji; Wang, Zhongchuan; Zhang, Wen
2011-11-30
In this paper, a novel dual enzymatic-biosensor is described for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages (PMs) of diabetic mice to evaluate the risk of diabetes-accelerated atherosclerosis. The biosensor was constructed by a three-step method. First, a poly-thionine (PTH) film was assembled on the surface of glassy carbon electrode by cyclic voltammetric electropolymerization of thionine, which serves as an electron transfer mediator (ETM). Second, gold nanoparticles (GNPs) were covered on the surface of PTH facilitating the electron transfer between glucose oxidase (GOx), cholesterol oxidase (ChOx) and electrode. Finally, the enzymes, GOx, cholesterol esterase (ChE), and ChOx, were covalently attached to the PTH layer through a chitosan (CH) linker. The PTH coupled with GNPs provides good selectivity, high sensitivity and little crosstalk for the dual enzymatic-biosensor. The developed biosensor had good electrocatalytic activity toward the oxidations of glucose and cholesterol, exhibiting a linear range from 0.008 mM to 6.0 mM for glucose with a detection limit of 2.0 μM, and a linear range from 0.002 mM to 1.0 mM for cholesterol with a detection limit of 0.6 μM. The results of the diabetic mice demonstrated that the cholesterol level did not change obviously with the increase of glucose level in serum, while the cholesterol level was induced with the increase of the glucose level in PMs. Previous studies have shown that the large accumulation of cholesterol in macrophage could lead to macrophage foam cell formation, which is the hallmark of early atherosclerosis. This study provides useful further evidences for the development of diabetes-accelerated atherosclerosis. Copyright © 2011 Elsevier B.V. All rights reserved.
Cong, P.; Pricolo, V.; Biancani, P.
2010-01-01
The contraction of gallbladders (GBs) with cholesterol stones is impaired due to high cholesterol concentrations in caveolae compared with GBs with pigment stones. The reduced contraction is caused by a lower cholecystokinin (CCK)-8 binding to CCK-1 receptors (CCK-1R) due to caveolar sequestration of receptors. We aimed to examine the mechanism of cholesterol-induced sequestration of receptors. Muscle cells from human and guinea pig GBs were studied. Antibodies were used to examine CCK-1R, antigens of early and recycling endosomes, and total (CAV-3) and phosphorylated caveolar-3 protein (pCAV-3) by Western blots. Contraction was measured in muscle cells transfected with CAV3 mRNA or clathrin heavy-chain small-interfering RNA (siRNA). CCK-1R returned back to the bulk plasma membrane (PM) 30 min after CCK-8 recycled by endosomes, peaking at 5 min in early endosomes and at 20 min in recycling endosomes. Pretreatment with cholesterol-rich liposomes inhibited the transfer of CCK-1R and of CAV-3 in the endosomes by blocking CAV-3 phosphorylation. 4-Amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (inhibitor of tyrosine kinase) reproduced these effects by blocking pCAV-3 formation, increasing CAV-3 and CCK-1R sequestration in the caveolae and impairing CCK-8-induced contraction. CAV-3 siRNA reduced CAV-3 protein expression, decreased CCK-8-induced contraction, and accumulated CCK-1R in the caveolae. Abnormal concentrations of caveolar cholesterol had no effect on met-enkephalin that stimulates a δ-opioid receptor that internalizes through clathrin. We found that impaired muscle contraction in GBs with cholesterol stones is due to high caveolar levels of cholesterol that inhibits pCAV-3 generation. Caveolar cholesterol increases the caveolar sequestration of CAV-3 and CCK-1R caused by their reduced recycling to the PM. PMID:20558763
Edge facet dynamics during the growth of heavily doped n-type silicon by the Czochralski-method
NASA Astrophysics Data System (ADS)
Stockmeier, L.; Kranert, C.; Raming, G.; Miller, A.; Reimann, C.; Rudolph, P.; Friedrich, J.
2018-06-01
During the growth of [0 0 1]-oriented, heavily n-type doped silicon crystals by the Czochralski (CZ) method dislocation formation occurs frequently which leads to a reduction of the crystal yield. In this publication the evolution of the solid-liquid interface and the formation of the {1 1 1} edge facets are analyzed on a microscopic scale as possible reason for dislocation formation in heavily n-type doped [0 0 1]-oriented CZ crystals. A correlation between the length of the {1 1 1} edge facets and the curvature of the interface is found. They ultimately promote supercooled areas and interrupted growth kinetics, which increase the probability for dislocation formation at the boundary between the {1 1 1} edge facets and the atomically rough interface.
Chen, Linmu; Zhang, Jun; Deng, Xiao; Liu, Yan; Yang, Xi; Wu, Qiong; Yu, Chao
2017-09-23
The leading cause of morbidity and mortality is the result of cardiovascular disease, mainly atherosclerosis. The formation of macrophage foam cells by ingesting ox-LDL and focal retention in the subendothelial space are the hallmarks of the early atherosclerotic lesion. Lysophosphatidic acid (LPA), which is a low-molecular weight lysophospholipid enriched in oxidized LDL, exerts a range of effects on the cardiovascular system. Previous reports show that LPA increases the uptake of ox-LDL to promote the formation of foam cells. However, as the most active component of ox-LDL, there is no report showing whether LPA directly affects foam cell formation. The aim of this study was to investigate the effects of LPA on foam cell formation, as well as to elucidate the underlying mechanism. Oil red O staining and a Cholesterol/cholesteryl ester quantitation assay were used to evaluate foam cell formation in Raw264.7 macrophage cells. We utilized a Western blot and RT-PCR to investigate the relationship between LPA receptors and lipid transport related proteins. We found that LPA promoted foam cell formation, using 200 μM for 24 h. Meanwhile, the expression of the Scavenger receptor BI (SRBI), which promotes the efflux of free cholesterol, was decreased. Furthermore, the LPA 1/3 receptor antagonist Ki16425 significantly abolished the LPA effects, indicating that LPA 1/3 was involved in the foam cell formation and SRBI expression induced by LPA. Additionally, the LPA-induced foam cell formation was blocked with an AKT inhibitor. Our results suggest that LPA-enhanced foam cell formation is mediated by LPA 1/3 -AKT activation and subsequent SRBI expression. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Simonov, Vladimir; Vasiliev, Yurii; Kotlyarov, Alexey; Stupakov, Sergey
2016-04-01
Magmatic complexes in the Maimecha Kotui Province (Polar Siberia) attract attention of researchers because they contain ultramafic volcanic rocks - meimechites, being products of crystallization of the ultrabasic deep mantle melts (Sobolev et al., 1991, 2009, 2011; Ryabchikov et al., 2002; Vasiliev, Gora, 2014). Effusive meimechites together with intrusive dunites of the Guli massif form ancient (253-246 Ma) volcanic and plutonic association, in which also pyroxenites and alkaline rocks are situated. Conditions of formation of this association were established with the help of minerals and melt inclusions study. The cumulative structure of the Guli massif dunites consists of rather large (2-4 mm) olivine crystals and dividing them zones (0.5-0.7 mm), filled with fine grains of clinopyroxenes and ore minerals (magnetite, ilmenite and chromite). The extended forms of well faceted pyroxene crystals testify to their fast growth from melt between cumulative olivines. Thus, crystallization of clinopyroxenes and ore minerals leads to formation between olivines ore pyroxenites, which are presented in the Guli massif by independent bodies. Analysis of olivine, Cr-spinel and clinopyroxene compositions testify to similarity of conditions of the Guli massif dunites crystallization on the one hand with formation of platinum-bearing Uralian-Alaskan-type mafic-ultramafic complexes and with another - show participation of meimechite magma. Major element composition of melt inclusions in Cr-spinel has shown that dunites of the Guli massif were crystallized with participation of subalkaline picrite magmatic systems, that are relative to melts, responsible of formation of platinum-bearing mafic-ultramafic complexes and meimechites. Peculiarities of trace and rare-earth elements distribution in melt inclusions in Cr-spinel of dunites are actually similar to inclusions in olivine of meimechites. Overall, data on composition of inclusions directly testify to formation of considered dunites from ultrabasic melt close to meimechite magma. The affinity of melts, forming dunites and meimechites, is confirmed by computer simulations, shown high crystallization temperature of olivines from dunites (1590-1415°C) (Simonov et al., 2014, 2015), actually coinciding with data on olivines from meimechite - 1600-1420°C (Sobolev et al., 1991, 2009). A part of this ultrabasic melts was crystallized in the magma chambers (with formation of cumulative dunites) and another part - came up to a surface with formation of effusive meimechites. Presence in Cr-spinels from Guli massif dunites melt inclusions with rather large (up to 50 μm) well faceted olivine crystals, situated in the quenching fine-grained association of minerals (clinopyroxene, feldspar and nepheline), testifies to change of a quiet mode of crystallization by sharp falling of parameters of magma during olivine cumulation in the magma chamber, that resulted in appearance of alkaline rocks. As a whole, minerals and melt inclusions study testify to formation of volcanic and plutonic complexes in the Maimecha Kotui Province (Polar Siberia) as a result of evolution of primary deep mantle ultrabasic melts (similar by its chemical composition to meimechites) during cumulative processes in the magma chambers.
Parlo, R A; Coleman, P S
1986-04-29
Viable tissue slices from rat liver and Morris hepatoma 3924A were compared as to their ability to incorporate carbons from [U-14 C]pyruvate into newly synthesized cholesterol versus CO2. By 4 h, the tumor slice incubation had incorporated over 6-fold more pyruvate carbons into the sterol than into CO2, relative to the normal liver slice incubation, per g tissue protein. However, the presence of the mitochondrial citrate exchange carrier inhibitor 1,2,3-benzenetricarboxylate in the incubation inhibited the formation of [14C]cholesterol, while simultaneously leading to an increase in the rate of 14CO2 production in the tumor. In the normal liver system by contrast, benzenetricarboxylate also inhibited [14C]cholesterol formation, but had hardly any effect on the already high rate of 14CO2 production. The ability of benzenetricarboxylate to inhibit the rapid carbon flux from pyruvate to cholesterol, and to steer the metabolic flow of carbons toward oxidative decarboxylation via the Krebs cycle in whole, viable tumor tissue, indirectly emphasizes the importance of the mitochondrial citrate exchange carrier in supporting the decontrol of cholesterogenesis de novo in tumors by accelerating the supply of lipogenic precursor carbons to the tumor cytosol. These studies may be therefore interpreted as extensions, to the level of whole-cell metabolism, of the concept of a persistent 'truncated' Krebs cycle in the mitochondria of metastatic cancer tissue. This concept states, in part, that a rapid efflux of mitochondrially generated citrate would operate preferentially in tumors, and thus provide carbons continuously to the cytoplasmic compartment where the well-established deregulated pathway of cholesterogenesis occurs (Parlo, R.A. and Coleman, P.S. (1984) J. Biol. Chem. 259, 9997-10003; Coleman, P.S. and Lavietes, B.B. (1981) CRC Crit. Rev. Biochem. 11, 341-393).
Ferreira, Fernanda S; Sampaio, Geni R; Keller, Laura M; Sawaya, Alexandra C H F; Chávez, Davy W H; Torres, Elizabeth A F S; Saldanha, Tatiana
2017-12-01
The high temperatures used to fry fish may induce thermo-oxidation of cholesterol, forming cholesterol oxidation products (COPs). COPs have been associated to coronary heart diseases, atherosclerosis, and other chronic diseases. Air fryers are an alternative thermal process technology to fry foods without oil, and are considered a healthier cooking method. This study is the 1st to evaluate the formation of COPs and the degradation of polyunsaturated fatty acids (PUFAs) in air-fried sardine fillets. Furthermore, we evaluated the effect of fresh herbs added as natural antioxidants to sardines subjected to air frying. Parsley (Petroselinum crispum), chives (Allium schoenoprasum L.), and a mixture of both herbs (cheiro-verde) were added in quantities of 0%, 2%, and 4%. Air frying significantly decreased the content of essential PUFAs, and increased the levels of COPs from 61.2 (raw) to 283 μg/g (P < 0.05) in the control samples. However, the use of herbs as natural antioxidants proved to be effective reducing such levels of COPs in most samples. The addition of 4% of cheiro-verde in air-fried sardines presented the best protective effect against lipid oxidation. Fish is an important source of essential lipids. However, oxidized cholesterol products, which are formed during thermal processing, are potential hazards to human health. Air fryers present an alternative thermal process for frying food without oil, and this method of cooking is considered to be more convenient and healthier This study shows that the air frying increased the formation of cholesterol oxidation products and decreased the essential polyunsaturated fatty acids in sardine fillets. However, the lipid oxidation is significantly reduced by adding fresh herbs, such as parsley (Petroselinum crispum), chives (Allium schoenoprasum L.), or a mixture of both herbs (cheiro-verde) that are natural antioxidants. © 2017 Institute of Food Technologists®.
Guay, Valérie; Lamarche, Benoît; Charest, Amélie; Tremblay, André J; Couture, Patrick
2012-01-01
High-fat, low-carbohydrate diets have been shown to raise plasma cholesterol levels, an effect associated with the formation of large low-density lipoprotein (LDL) particles. However, the impact of dietary intervention on time-course changes in LDL particle size has not been investigated. To test whether a short-term dietary intervention affects LDL particle size, we conducted a randomized, double-blind, crossover study using an intensive dietary modification in 12 nonobese healthy men with normal plasma lipid profile. Participants were subjected to 2 isocaloric 3-day diets: high-fat diet (37% energy from fat and 50% from carbohydrates) and low-fat diet (25% energy from fat and 62% from carbohydrates). Plasma lipid levels and LDL particle size were assessed on fasting blood samples after 3 days of feeding on each diet. The LDL particles were characterized by polyacrylamide gradient gel electrophoresis. Compared with the low-fat diet, plasma cholesterol, LDL cholesterol, and high-density lipoprotein cholesterol were significantly increased (4.45 vs 4.78 mmol/L, P = .04; 2.48 vs 2.90 mmol/L, P = .005; and 1.29 vs 1.41 mmol/L, P = .005, respectively) following the 3-day high-fat diet. Plasma triglycerides and fasting apolipoprotein B-48 levels were significantly decreased after the high-fat diet compared with the low-fat diet (1.48 vs 1.01 mmol/L, P = .0003 and 9.6 vs 5.5 mg/L, P = .008, respectively). The high-fat diet was also associated with a significant increase in LDL particle size (255.0 vs 255.9 Å;P = .01) and a significant decrease in the proportion of small LDL particle (<255.0 Å) (50.7% vs 44.6%, P = .01). As compared with a low-fat diet, the cholesterol-raising effect of a high-fat diet is associated with the formation of large LDL particles after only 3 days of feeding. Copyright © 2012 Elsevier Inc. All rights reserved.
Loxoprofen Sodium, a Non-Selective NSAID, Reduces Atherosclerosis in Mice by Reducing Inflammation.
Hamaguchi, Masahide; Seno, Takahiro; Yamamoto, Aihiro; Kohno, Masataka; Kadoya, Masatoshi; Ishino, Hidetaka; Ashihara, Eishi; Kimura, Shinya; Tsubakimoto, Yoshinori; Takata, Hiroki; Yoshikawa, Toshikazu; Maekawa, Taira; Kawahito, Yutaka
2010-09-01
Recently, it is suggested that the use of nonsteroidal anti-inflammatory drugs (NSAID) may contribute to the occurrence of cardiovascular events, while the formation of atherosclerotic lesions is related to inflammation. Loxoprofen sodium, a non-selective NSAID, becomes active after metabolism in the body and inhibits the activation of cyclooxygenase. We fed apoE(-/-) mice a western diet from 8 to 16 weeks of age and administered loxoprofen sodium. We measured atherosclerotic lesions at the aortic root. We examined serum levels of cholesterol and triglycerides with HPLC, platelet aggregation, and urinary prostaglandin metabolites with enzyme immune assay. Atherosclerotic lesion formation was reduced to 63.5% and 41.5% as compared to the control in male and female apoE(-/-) mice treated with loxoprofen sodium respectively. Urinary metabolites of prostaglandin E(2), F(1α), and thromboxane B(2), and platelet aggregation were decreased in mice treated with loxoprofen sodium. Serum levels of cholesterol and triglycerides were not changed. We conclude that loxoprofen sodium reduced the formation of early to intermediate atherosclerotic lesions at the proximal aorta in mice mediated by an anti-inflammatory effect.
Detection of superlattice domain formation in ternary lipid mixtures using fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Mutlu, Burcin; Lopez, Stephanie; Vaughn, Mark; Huang, Juyang; Cheng, K.
2011-10-01
Multicomponent lipid bilayers represent an important model system for studying the structures and functions of cell membranes. At present, the lateral organization of lipid components, particularly the formation of regular distribution, in lipid membranes containing charged lipid, e.g., phosphatidylserine, is not clear. Using a ternary phosphatidylcholine/phosphatidylserine/cholesterol lipid bilayer system, the presence of ordered domain formation was examined by measuring the fluorescence anisotropy of the embedded fluorescent probe, 22-(N-(7-nitrobenz-2-oxa-1,3-diazol- 4-yl)amino)-23,24-bisnor-5-cholen-3β- ol (NBD-CHOL), with structure similar to that of a cholesterol, as a function of phospatidylserine composition. The plot of the anisotropy vs. phosphatidylserine revealed abrupt changes at certain critical compositions of phosphatidylserine. Some of these critical compositions agree favorably with those predicted by the headgroup superlattice model suggesting that the charged phosphatidylserine lipid molecules adopt a superlattice-like distribution in the lipid bilayer at some predicted compositions. The ordered distribution of charged lipids may play an important role in the regulation of the composition of the biological membranes.
NASA Technical Reports Server (NTRS)
Chu, T. L.
1975-01-01
The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.
Recovering and recycling uranium used for production of molybdenum-99
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reilly, Sean Douglas; May, Iain; Copping, Roy
A processes for recycling uranium that has been used for the production of molybdenum-99 involves irradiating a solution of uranium suitable for forming fission products including molybdenum-99, conditioning the irradiated solution to one suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina. Another process involves irradiation of a solid target comprising uranium, forming an acidic solution from the irradiated targetmore » suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina.« less
The effect of plum juice on the prevention of struvite calculus formation in vitro.
Zhu, Huaijun; Sun, Xizhao; Lu, Jianlin; Wang, Meihua; Fang, Yun; Ge, Weihong
2012-10-01
To evaluate the effect of plum juice on struvite calculus formation in vitro and to explore the effect of plum juice on urease-producing bacteria and urease activity. The compliance of available drugs is low for struvite calculus after surgical treatment and functional food may represent a good choice as an alternative therapy. Antibacterial activity was assessed using a microdilution antimicrobial susceptibility test. Urease activity was determined by measuring ammonia production. Struvite crystals were induced by Proteus mirabilis in artificial urine with natural and pH-adjusted plum juice. The optical density (OD)(600) and pH of artificial urine were examined, as well the shape and weights of crystals. Natural plum juice showed an antibacterial effect on urease-producing bacteria, whereas the pH-adjusted juice did not. A concentration-dependent inhibition on urease activity was found for both natural and pH-adjusted juice. Natural plum juice at a high concentration of 0.5% showed an obvious inhibition on the increase of OD(600) and pH of the artificial urine, and crystal formation was prevented by up to or more than 8 h, depending on the concentration of juice. Crystal weight in the natural plum juice groups was decreased in a concentration-dependent manner. The pH-adjusted plum juice did not show any effect on OD(600) and pH, although the presence of juice changed the crystal habit, indicating that the juice slowed the growth rate of crystals. Natural plum juice at high and moderate concentrations prevented the formation of P. mirabilis-induced crystals for up to 8 h in artificial urine. Although pH-adjusted and low-concentration natural juice did not prevent the occurrence of crystals, both types of juice slowed their growth rate.
NASA Technical Reports Server (NTRS)
Gvishiani, G. S.; Kobakhidze, N. G.
1980-01-01
Shifts in lipid, catecholamine, and blood coagulation systems following various periods (1, 2, 3, and 4 months) of experimentally induced atherosclerosis were studied. The same indices were studied in the tissues of the myocardium, liver, and brain stem-reticular formation after decapitation of the animals at the end of the experiment. Periodic motion restriction caused an increase in blood beta-lipoproteins in the rabbits at the beginning of the experiment. An increase in general cholesterol content and a decrease in the lecithincholesterol index were established at the end of the experiment. Myocardial beta-lipoprotein and brain stem reticular formation general cholesterol contents were elevated; catecholamine content was increased at the end of the experiment. In the initial months, free adrenaline basically increased, while in later months blood adrenaline decreased and blood noradrenaline increased.
Yu, Chengtao; Han, Lili; Bao, Jianna; Shan, Guorong; Bao, Yongzhong; Pan, Pengju
2016-08-18
The effects of poly(vinylidene fluoride) (PVDF) on the crystallization kinetics, competing formations of homocrystallites (HCs) and stereocomplexes (SCs), polymorphic crystalline structure, and HC-to-SC crystalline reorganization of the poly(l-lactic acid)/poly(d-lactic acid) (PLLA/PDLA) racemic mixture were investigated. Even though the PLLA/PDLA/PVDF blends are immiscible, blending with PVDF enhances the crystallization rate and SC formation of PLLA/PDLA components at different temperatures that are higher or lower than the melting temperature of the PVDF component; it also facilitates the HC-to-SC melt reorganization upon heating. The crystallization rate and degree of SC crystallinity (Xc,SC) of PLLA/PDLA components in nonisothermal crystallization increase after immiscible blending with PVDF. At different isothermal crystallization temperatures, the crystallization half-time of PLLA/PDLA components decreases; its spherulitic growth rate and Xc,SC increase as the mass fraction of PVDF increases from 0 to 0.5 in the presence of either a solidified or a molten PVDF phase. The HCs formed in primary crystallization of PLLA/PDLA components melt and recrystallize into SCs upon heating; the HC-to-SC melt reorganization is promoted after blending with PVDF. We proposed that the PVDF-promoted crystallization, SC formation, and HC-to-SC melt reorganization of PLLA/PDLA components in PLLA/PDLA/PVDF blends stem from the enhanced diffusion ability of PLLA and PDLA chains.
Osteopontin regulates adhesion of calcium oxalate crystals to renal epithelial cells.
Yasui, Takahiro; Fujita, Keiji; Asai, Kiyofumi; Kohri, Kenjiro
2002-02-01
The association of calcium crystals with renal tubular cells is an important factor during the formation of urinary stones. We previously reported the strong expression of osteopontin (OPN) on renal tubular cells in the stone-forming kidney, suggesting that OPN plays a role in the crystal-cell interaction. In the present study, we examined the biological consequences of inhibiting OPN expression at the translational level on the formation and adhesion of crystals. We synthesized antisense OPN expression vector (pTet-OPNas) using the tetracycline-regulated expression system. The pTet-OPNas was constructed using a mouse OPN cDNA sequence in an inverted (antisense) orientation. Two clones (NRK-52E/ASs) were identified by transfection of pTet-OPNas into NRK-52E cells and they showed a marked reduction of OPN synthesis in the absence of tetracycline. Calcium oxalate (CaOx) crystal suspension was spread homogeneously on top of the NRK-52E cells. After incubation, the association of CaOx crystals and cells was visualized by scanning electron microscopy. Intact NRK-52E cells, NRK-52E cells transfected with empty vector and tetracycline-treated antisense clones (NRK-52E/ASs), under identical conditions, were associated with CaOx crystals. In contrast, the expression of antisense OPN prevented the association of CaOx crystals with NRK-52E cells. Osteopontin plays a crucial role in the adhesion process of CaOx crystals to renal tubular cells in stone formation.
Das, Dipesh; Sabaraya, Indu V; Sabo-Attwood, Tara; Saleh, Navid B
2018-06-05
Carbon nanotubes are hybridized with metal crystals to impart multifunctionality into the nanohybrids (NHs). Simple but effective synthesis techniques are desired to form both zero-valent and oxides of different metal species on carbon nanotube surfaces. Sol-gel technique brings in significant advantages and is a viable technique for such synthesis. This study probes the efficacy of sol-gel process and aims to identify underlying mechanisms of crystal formation. Standard electron potential (SEP) is used as a guiding parameter to choose the metal species; i.e., highly negative SEP (e.g., Zn) with oxide crystal tendency, highly positive SEP (e.g., Ag) with zero-valent crystal-tendency, and intermediate range SEP (e.g., Cu) to probe the oxidation tendency in crystal formation are chosen. Transmission electron microscopy and X-ray diffraction are used to evaluate the synthesized NHs. Results indicate that SEP can be a reliable guide for the resulting crystalline phase of a certain metal species, particularly when the magnitude of this parameter is relatively high. However, for intermediate range SEP-metals, mix phase crystals can be expected. For example, Cu will form Cu₂O and zero-valent Cu crystals, unless the synthesis is performed in a reducing environment.
Crystallization of glass-forming liquids: Specific surface energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmelzer, Jürn W. P., E-mail: juern-w.schmelzer@uni-rostock.de; Abyzov, Alexander S.
2016-08-14
A generalization of the Stefan-Skapski-Turnbull relation for the melt-crystal specific interfacial energy is developed in terms of the generalized Gibbs approach extending its standard formulation to thermodynamic non-equilibrium states. With respect to crystal nucleation, this relation is required in order to determine the parameters of the critical crystal clusters being a prerequisite for the computation of the work of critical cluster formation. As one of its consequences, a relation for the dependence of the specific surface energy of critical clusters on temperature and pressure is derived applicable for small and moderate deviations from liquid-crystal macroscopic equilibrium states. Employing the Stefan-Skapski-Turnbullmore » relation, general expressions for the size and the work of formation of critical crystal clusters are formulated. The resulting expressions are much more complex as compared to the respective relations obtained via the classical Gibbs theory. Latter relations are retained as limiting cases of these more general expressions for moderate undercoolings. By this reason, the formulated, here, general relations for the specification of the critical cluster size and the work of critical cluster formation give a key for an appropriate interpretation of a variety of crystallization phenomena occurring at large undercoolings which cannot be understood in terms of the Gibbs’ classical treatment.« less
Takahashi, Kenji; Ohta, Masaru; Shoji, Yoshimichi; Kasai, Masayasu; Kunishiro, Kazuyoshi; Miike, Tomohiro; Kanda, Mamoru; Shirahase, Hiroaki
2010-08-01
To find a novel acyl-CoA: cholesterol acyltransferase inhibitor, a series of sulfamide derivatives were synthesized and evaluated. Compound 1d, in which carboxymethyl moiety at the 5-position of Pactimibe was replaced by a sulfamoylamino group, showed 150-fold more potent anti-foam cell formation activity (IC(50): 0.02 microM), 1.6-fold higher log D(7.0) (4.63), and a slightly lower protein binding ratio (93.2%) than Pactimibe. Compound 1i, in which the octyl chain at the 1-position in 1d was replaced by an ethoxyethyl, showed markedly low log D(7.0) (1.73) and maintained 3-fold higher anti-foam cell formation activity (IC(50): 1.0 microM), than Pactimibe. The plasma protein binding ratio (PBR) of 1i was much lower than that of Pactimibe (62.5% vs. 98.1%), and its partition ratio to the rabbit atherosclerotic aorta after oral administration was higher than that of Pactimibe. Compound 1i at 10 microM markedly inhibited cholesterol esterification in atherosclerotic rabbit aortas even when incubated with serum, while Pactimibe had little effect probably due to its high PBR. In conclusion, compound 1i is expected to more efficiently inhibit the progression of atherosclerosis than Pactimibe.
Stetsyshyn, Yurij; Raczkowska, Joanna; Budkowski, Andrzej; Awsiuk, Kamil; Kostruba, Andriy; Nastyshyn, Svyatoslav; Harhay, Khrystyna; Lychkovskyy, Edward; Ohar, Halyna; Nastishin, Yuriy
2016-10-11
Novel alignment coating with temperature-tuned anchoring for nematic liquid crystals (NLCs) was successfully fabricated in three step process, involving polymerization of poly(cholesteryl methacrylate) (PChMa) from oligoproxide grafted to the glass surface premodified with 3-aminopropyltriethoxysilane. Molecular composition, thickness, wettability of the PChMa coating and its alignment action for a NLC were examined with time of flight-secondary ion mass spectrometry, ellipsometry, contact angle measurements, polarization optical microscopy and commercially produced PolScope technique allowing for mapping of the optic axis and optical retardance within the microscope field view. We find that the PChMa coating provides a specific monotonous increase (decrease) in the tilt angle of the NLC director with respect to the substrates normal upon heating (cooling) referred to as anchoring tuning.
Faria E Souza, Belmira S; Carvalho, Helison O; Taglialegna, Talisson; Barros, Albenise Santana A; da Cunha, Edilson Leal; Ferreira, Irlon Maciel; Keita, Hady; Navarrete, Andres; Carvalho, José Carlos Tavares
2017-09-01
Dyslipidemia is caused by disturbances in lipid metabolism that lead to chronic elevations of serum lipids, especially low-density lipoprotein (LDL)-cholesterol and triglycerides, increasing the risk of metabolic syndrome, obesity, diabetes, atherogenic processes, and cardiovascular diseases. The oil from the fruits of Euterpe oleracea (OFEO) is rich in unsaturated fatty acids with potential for treating alterations in lipid metabolism. In this study, we aimed to investigate the effect of OFEO on hyperlipidemia induced by Cocos nucifera L. saturated fat (GSC) in Wistar rats. Chromatographic profile showed that unsaturated fatty acids account for 66.08% in OFEO, predominately oleic acid (54.30%), and saturated fatty acids (palmitic acid 31.6%) account for 33.92%. GSC-induced dyslipidemia resulted in an increase in total cholesterol, LDL-cholesterol, triglycerides, glucose, and liver and abdominal fat, as well as atherogenic processes in the thoracic aorta. OFEO treatment did not reduce hypertriglyceridemia, but did reduce total cholesterol and LDL-cholesterol, thus contributing to the antiatherogenic action of OFEO. OFEO treatment inhibited the formation of atheromatous plaques in the vascular endothelium of the treated rats, as well as those who were treated with simvastatin. The results obtained suggest that OFEO has an antiatherogenic effect in a rat model of dyslipidemia.
Bravo, Elena; Amrani, Souliman; Aziz, Mohammed; Harnafi, Hicham; Napolitano, Mariarosaria
2008-12-01
Macrophage lipid accumulation induced by low density lipoproteins (LDL) plays a pivotal role in atherosclerotic plaque development. Previous work showed that Ocimum basilicum extract, used as hypocholesterolemic agent by traditional medicine in Morocco, has hypolipidemic activity in rat acute hyperlipimidemia. This study investigated the effects of ethanolic extract of O. basilicum on lipid accumulation in human macrophages. As modification of LDL increase atherogenicity of the particles we evaluated the effects of the extract on LDL oxidation. The extract caused a dose-related increase of LDL-resistance to Cu(2+)-induced oxidation. Furthermore, at the dose of 60 microg/ml, significantly decreases the accumulation of macrophage lipid droplets induced by modified LDL evaluated as by red-oil staining. Cholesterol esterification and triacylglycerol synthesis in the cells were not affected. Macrophage treatment with 60 microg/ml, but not 20 microg/ml, of the extract reduced newly synthesized unesterified cholesterol by about 60% and decreased scavenger receptors activity by about 20-30%, evaluated by the internalization of cholesterol carried by [(3)H]CE-aggregated-LDL. The results suggest that O. basilicum ethanolic extract has the capability to reduce foam cell formation through the reduction of cholesterol synthesis and the modulation of the activity of surface scavenger receptors.
De novo synthesis of steroids and oxysterols in adipocytes.
Li, Jiehan; Daly, Edward; Campioli, Enrico; Wabitsch, Martin; Papadopoulos, Vassilios
2014-01-10
Local production and action of cholesterol metabolites such as steroids or oxysterols within endocrine tissues are currently recognized as an important principle in the cell type- and tissue-specific regulation of hormone effects. In adipocytes, one of the most abundant endocrine cells in the human body, the de novo production of steroids or oxysterols from cholesterol has not been examined. Here, we demonstrate that essential components of cholesterol transport and metabolism machinery in the initial steps of steroid and/or oxysterol biosynthesis pathways are present and active in adipocytes. The ability of adipocyte CYP11A1 in producing pregnenolone is demonstrated for the first time, rendering adipocyte a steroidogenic cell. The oxysterol 27-hydroxycholesterol (27HC), synthesized by the mitochondrial enzyme CYP27A1, was identified as one of the major de novo adipocyte products from cholesterol and its precursor mevalonate. Inhibition of CYP27A1 activity or knockdown and deletion of the Cyp27a1 gene induced adipocyte differentiation, suggesting a paracrine or autocrine biological significance for the adipocyte-derived 27HC. These findings suggest that the presence of the 27HC biosynthesis pathway in adipocytes may represent a defense mechanism to prevent the formation of new fat cells upon overfeeding with dietary cholesterol.
De Novo Synthesis of Steroids and Oxysterols in Adipocytes*
Li, Jiehan; Daly, Edward; Campioli, Enrico; Wabitsch, Martin; Papadopoulos, Vassilios
2014-01-01
Local production and action of cholesterol metabolites such as steroids or oxysterols within endocrine tissues are currently recognized as an important principle in the cell type- and tissue-specific regulation of hormone effects. In adipocytes, one of the most abundant endocrine cells in the human body, the de novo production of steroids or oxysterols from cholesterol has not been examined. Here, we demonstrate that essential components of cholesterol transport and metabolism machinery in the initial steps of steroid and/or oxysterol biosynthesis pathways are present and active in adipocytes. The ability of adipocyte CYP11A1 in producing pregnenolone is demonstrated for the first time, rendering adipocyte a steroidogenic cell. The oxysterol 27-hydroxycholesterol (27HC), synthesized by the mitochondrial enzyme CYP27A1, was identified as one of the major de novo adipocyte products from cholesterol and its precursor mevalonate. Inhibition of CYP27A1 activity or knockdown and deletion of the Cyp27a1 gene induced adipocyte differentiation, suggesting a paracrine or autocrine biological significance for the adipocyte-derived 27HC. These findings suggest that the presence of the 27HC biosynthesis pathway in adipocytes may represent a defense mechanism to prevent the formation of new fat cells upon overfeeding with dietary cholesterol. PMID:24280213
Porotto, Matteo; Rockx, Barry; Yokoyama, Christine C; Talekar, Aparna; Devito, Ilaria; Palermo, Laura M; Liu, Jie; Cortese, Riccardo; Lu, Min; Feldmann, Heinz; Pessi, Antonello; Moscona, Anne
2010-10-28
In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.
Campos, Laise M; Rios, Eduardo A; Midlej, Victor; Atella, Georgia C; Herculano-Houzel, Suzana; Benchimol, Marlene; Mermelstein, Claudia; Costa, Manoel Luís
2015-06-01
In vitro studies show that cholesterol is essential to myogenesis. We have been using zebrafish to overcome the limitations of the in vitro approach and to study the sub-cellular structures and processes involved during myogenesis. We use simvastatin--a drug widely used to prevent high levels of cholesterol and cardiovascular disease--during zebrafish skeletal muscle formation. Simvastatin is an efficient inhibitor of cholesterol synthesis that has various myotoxic consequences. Here, we employed simvastatin concentrations that cause either mild or severe morphological disturbances to observe changes in the cytoskeleton (intermediate filaments and microfilaments), extracellular matrix and adhesion markers by confocal microscopy. With low-dose simvastatin treatment, laminin was almost normal, and alpha-actinin was reduced in the myofibrils. With high simvastatin doses, laminin and vinculin were reduced and appeared discontinuous along the septa, with almost no myofibrils, and small amounts of desmin accumulating close to the septa. We also analyzed sub-cellular alterations in the embryos by electron microscopy, and demonstrate changes in embryo and somite size, septa shape, and in myofibril structure. These effects could be reversed by the addition of exogenous cholesterol. These results contribute to the understanding of the mechanisms of action of simvastatin in muscle cells in particular, and in the study of myogenesis in general. © The Author(s) 2015.
Campos, Laise M.; Rios, Eduardo A.; Midlej, Victor; Atella, Georgia C.; Herculano-Houzel, Suzana; Benchimol, Marlene; Mermelstein, Claudia; Costa, Manoel Luís
2015-01-01
In vitro studies show that cholesterol is essential to myogenesis. We have been using zebrafish to overcome the limitations of the in vitro approach and to study the sub-cellular structures and processes involved during myogenesis. We use simvastatin—a drug widely used to prevent high levels of cholesterol and cardiovascular disease—during zebrafish skeletal muscle formation. Simvastatin is an efficient inhibitor of cholesterol synthesis that has various myotoxic consequences. Here, we employed simvastatin concentrations that cause either mild or severe morphological disturbances to observe changes in the cytoskeleton (intermediate filaments and microfilaments), extracellular matrix and adhesion markers by confocal microscopy. With low-dose simvastatin treatment, laminin was almost normal, and alpha-actinin was reduced in the myofibrils. With high simvastatin doses, laminin and vinculin were reduced and appeared discontinuous along the septa, with almost no myofibrils, and small amounts of desmin accumulating close to the septa. We also analyzed sub-cellular alterations in the embryos by electron microscopy, and demonstrate changes in embryo and somite size, septa shape, and in myofibril structure. These effects could be reversed by the addition of exogenous cholesterol. These results contribute to the understanding of the mechanisms of action of simvastatin in muscle cells in particular, and in the study of myogenesis in general. PMID:25786435
Abderrazak, Amna; Couchie, Dominique; Mahmood, Dler Faieeq Darweesh; Elhage, Rima; Vindis, Cécile; Laffargue, Muriel; Matéo, Véronique; Büchele, Berthold; Ayala, Monica Rubio; El Gaafary, Menna; Syrovets, Tatiana; Slimane, Mohamed-Naceur; Friguet, Bertrand; Fulop, Tamas; Simmet, Thomas; El Hadri, Khadija; Rouis, Mustapha
2015-03-24
This study was designed to evaluate the effect of arglabin on the NLRP3 inflammasome inhibition and atherosclerotic lesion in ApoE2Ki mice fed a high-fat Western-type diet. Arglabin was purified, and its chemical identity was confirmed by mass spectrometry. It inhibited, in a concentration-dependent manner, interleukin (IL)-1β and IL-18, but not IL-6 and IL-12, production in lipopolysaccharide and cholesterol crystal-activated cultured mouse peritoneal macrophages, with a maximum effect at ≈50 nmol/L and EC50 values for both cytokines of ≈ 10 nmol/L. Lipopolysaccharide and cholesterol crystals did not induce IL-1β and IL-18 production in Nlrp3(-/-) macrophages. In addition, arglabin activated autophagy as evidenced by the increase in LC3-II protein. Intraperitoneal injection of arglabin (2.5 ng/g body weight twice daily for 13 weeks) into female ApoE2.Ki mice fed a high-fat diet resulted in a decreased IL-1β plasma level compared with vehicle-treated mice (5.2±1.0 versus 11.7±1.1 pg/mL). Surprisingly, arglabin also reduced plasma levels of total cholesterol and triglycerides to 41% and 42%, respectively. Moreover, arglabin oriented the proinflammatory M1 macrophages into the anti-inflammatory M2 phenotype in spleen and arterial lesions. Finally, arglabin treatment markedly reduced the median lesion areas in the sinus and whole aorta to 54% (P=0.02) and 41% (P=0.02), respectively. Arglabin reduces inflammation and plasma lipids, increases autophagy, and orients tissue macrophages into an anti-inflammatory phenotype in ApoE2.Ki mice fed a high-fat diet. Consequently, a marked reduction in atherosclerotic lesions was observed. Thus, arglabin may represent a promising new drug to treat inflammation and atherosclerosis. © 2015 American Heart Association, Inc.
Arunima, S; Rajamohan, T
2012-11-01
Effect of virgin coconut oil (VCO) on lipid levels and regulation of lipid metabolism compared with copra oil (CO), olive oil (OO), and sunflower oil (SFO) has been reported. Male Sprague-Dawley rats were fed different oils at 8% level for 45 days along with synthetic diet. Results showed that VCO feeding significantly lowered (P < 0.05) levels of total cholesterol, LDL+ VLDL cholesterol, Apo B and triglycerides in serum and tissues compared to rats fed CO, OO and SFO, while HDL-cholesterol and Apo A1 were significantly (P < 0.05) higher in serum of rats fed VCO than other groups. Hepatic lipogenesis was also down regulated in VCO fed rats, which was evident from the decreased activities of enzymes viz., HMG CoA reductase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase and malic enzyme. In addition, VCO significantly (P < 0.05) increased the activities of lipoprotein lipase, lecithin cholesterol acyl transferase and enhanced formation of bile acids. Results demonstrated hypolipidemic effect of VCO by regulating the synthesis and degradation of lipids.
How Do Elevated Triglycerides and Low HDL-Cholesterol Affect Inflammation and Atherothrombosis?
Welty, Francine K.
2015-01-01
This review article summarizes recent research into the mechanisms as to how elevated levels of triglyceride (TG) and low levels of high- density- lipoprotein cholesterol (HDL-C) contribute to inflammation and atherosclerosis. Evidence supports the role of TG-rich lipoproteins in signaling mechanisms via apolipoproteins C-III and free fatty acids leading to activation of NFKβ, VCAM-1 and other inflammatory mediators which lead to fatty streak formation and advanced atherosclerosis. Moreover, the cholesterol content in TG-rich lipoproteins has been shown to predict CAD risk better than LDL-C. In addition to reverse cholesterol transport, HDL has many other cardioprotective effects which include regulating immune function. The “functionality” of HDL appears more important than the level of HDL-C. Insulin resistance and central obesity underlie the pathophysiology of elevated TG and low HDL-C in metabolic syndrome and type 2 diabetes. Lifestyle recommendations including exercise and weight loss remain first line therapy in ameliorating insulin resistance and the adverse signaling processes from elevated levels of TG-rich lipoproteins and low HDL-C. PMID:23881582
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chun; Ge, Beihai; He, Chao
2014-07-18
Highlights: • Mfn2 decreases cellular lipid accumulation by activating cholesterol transporters. • PPARγ is involved in the Mfn2-mediated increase of cholesterol transporter expressions. • Inactivation of ERK1/2 and p38 is involved in Mfn2-induced PPARγ expression. - Abstract: Mitofusin 2 (Mfn2) inhibits atherosclerotic plaque formation, but the underlying mechanism remains elusive. This study aims to reveal how Mfn2 functions in the atherosclerosis. Mfn2 expression was found to be significantly reduced in arterial atherosclerotic lesions of both mice and human compared with healthy counterparts. Here, we observed that Mfn2 increased cellular cholesterol transporter expression in macrophages by upregulating peroxisome proliferator-activated receptor-γ, anmore » effect achieved at least partially by inhibiting extracellular signal-regulated kinase1/2 (ERK1/2) and p38 mitogen-activated protein kinases (MAPKs) pathway. These findings provide insights into potential mechanisms of Mfn2-mediated alterations in cholesterol transporter expression, which may have significant implications for the treatment of atherosclerotic heart disease.« less
Conical refraction and formation of multiring focal image with Laguerre-Gauss light beams.
Peet, Viktor
2011-08-01
For a light beam focused through a biaxial crystal along one of its optical axes, the effect of internal conical refraction in the crystal leads to the formation in the focal image plane of two bright rings separated by a dark ring. It is shown that, with circularly polarized Laguerre-Gauss LG(0)(ℓ) beams entering the crystal, this classical double-ring pattern is transformed into a multiring one consisting of ℓ+2 bright rings. © 2011 Optical Society of America
The formation of the dolomite-analogue norsethite: Reaction pathway and cation ordering
NASA Astrophysics Data System (ADS)
Pimentel, Carlos; Pina, Carlos M.
2014-10-01
Reaction pathways and cation ordering mechanisms involved in the formation of the mineral dolomite in nature still remain poorly understood. This is mainly due to the experimental problems posed by the synthesis of dolomite at ambient conditions, which preclude monitoring its formation in reasonable time scales. However, processes leading to the crystallization of fully-ordered dolomite-like structures can be studied by conducting experiments with mineral analogues, which are more readily precipitated. In this paper we present a study of the formation of the dolomite-analogue norsethite [BaMg(CO3)2] from a slurry which was aged at room temperature during 14 days. We found that norsethite forms by two dissolution-crystallization reactions from an initial amorphous nano-sized precipitate. The first reaction produces a mineral assemblage composed by witherite [BaCO3], northupite [Na3Mg(CO3)2Cl] and norsethite. The second dissolution-crystallization process leads to the almost complete depletion of witherite and northupite in favor of norsethite. While the composition of norsethite crystals rapidly reaches a Ba/Mg = 1 ratio, X-ray diffraction peaks indicate an increase in the crystallinity of those crystals during the first 48 h of reaction. Simultaneously, Ba-Mg cation ordering increases, as shown by the evolution of intensity ratios of certain superstructure and structure reflections. Altogether, these results demonstrate that the formation of fully-ordered norsethite occurs by a sequence of solvent-mediated processes which involve a number of precursors. Our study also suggests that similar processes might lead to the formation of dolomite in natural environments.
NASA Astrophysics Data System (ADS)
Walter, Nathan; Zhang, Yang
Nucleation and crystal growth are understood to be activated processes involving the crossing of free-energy barriers. Attempts to capture the entire crystallization process over long timescales with molecular dynamic simulations have met major obstacles because of molecular dynamics' temporal constraints. Herein, we circumvent this temporal limitation by using a brutal-force, metadynamics-like, adaptive basin-climbing algorithm and directly sample the free-energy landscape of a model liquid Argon. The algorithm biases the system to evolve from an amorphous liquid like structure towards an FCC crystal through inherent structure, and then traces back the energy barriers. Consequently, the sampled timescale is macroscopically long. We observe that the formation of a crystal involves two processes, each with a unique temperature-dependent energy barrier. One barrier corresponds to the crystal nucleus formation; the other barrier corresponds to the crystal growth. We find the two processes dominate in different temperature regimes. Compared to other computation techniques, our method requires no assumptions about the shape or chemical potential of the critical crystal nucleus. The success of this method is encouraging for studying the crystallization of more complex
Unusual Crystallization Behavior Close to the Glass Transition
NASA Astrophysics Data System (ADS)
Desgranges, Caroline; Delhommelle, Jerome
2018-03-01
Using molecular simulations, we shed light on the mechanism underlying crystal nucleation in metal alloys and unravel the interplay between crystal nucleation and glass transition, as the conditions of crystallization lie close to this transition. While decreasing the temperature of crystallization usually results in a lower free energy barrier, we find an unexpected reversal of behavior for glass-forming alloys as the temperature of crystallization approaches the glass transition. For this purpose, we simulate the crystallization process in two glass-forming Copper alloys, Ag6 Cu4 , which has a positive heat of mixing, and CuZr, characterized by a large negative heat of mixing. Our results allow us to identify this unusual behavior as directly correlated with a nonmonotonic temperature dependence for the formation energy of connected icosahedral structures, which are incompatible with crystalline order and impede the development of the crystal nucleus, leading to an unexpectedly larger free energy barrier at low temperature. This, in turn, promotes the formation of a predominantly closed-packed critical nucleus, with fewer defects, thereby suggesting a new way to control the structure of the crystal nucleus, which is of key importance in catalysis.
Rodríguez-Navarro, Carlos; Ruiz-Agudo, Encarnación; Harris, Joe; Wolf, Stephan E
2016-11-01
Recent research has shown that biominerals and their biomimetics (i) typically form via an amorphous precursor phase, and (ii) commonly display a nanogranular texture. Apparently, these two key features are closely related, underlining the fact that the formation of biominerals and their biomimetics does not necessarily follow classical crystallization routes, and leaves a characteristic nanotextural imprint which may help to disclose their origins and formation mechanisms. Here we present a general overview of the current theories and models of nonclassical crystallization and their applicability for the advance of our current understanding of biomineralization and biomimetic mineralization. We pay particular attention to the link between nonclassical crystallization routes and the resulting nanogranular textures of biomimetic CaCO 3 mineral structures. After a general introductory section, we present an overview of classical nucleation and crystal growth theories and their limitations. Then, we introduce the Ostwald's step rule as a general framework to explain nonclassical crystallization. Subsequently, we describe nonclassical crystallization routes involving stable prenucleation clusters, dense liquid and solid amorphous precursor phases, as well as current nonclassical crystal growth models. The latter include oriented attachment, mesocrystallization and the new model based on the colloidal growth of crystals via attachment of amorphous nanoparticles. Biomimetic examples of nanostructured CaCO 3 minerals formed via these nonclassical routes are presented which help us to show that colloid-mediated crystal growth can be regarded as a wide-spread growth mechanism. Implications of these observations for the advance in the current understanding on the formation of biomimetic materials and biominerals are finally outlined. Copyright © 2016 Elsevier Inc. All rights reserved.
Chin, Christopher R.; Savidis, George; Brass, Abraham L.; Melikyan, Gregory B.
2014-01-01
Interferon-induced transmembrane proteins (IFITMs) inhibit infection of diverse enveloped viruses, including the influenza A virus (IAV) which is thought to enter from late endosomes. Recent evidence suggests that IFITMs block virus hemifusion (lipid mixing in the absence of viral content release) by altering the properties of cell membranes. Consistent with this mechanism, excess cholesterol in late endosomes of IFITM-expressing cells has been reported to inhibit IAV entry. Here, we examined IAV restriction by IFITM3 protein using direct virus-cell fusion assay and single virus imaging in live cells. IFITM3 over-expression did not inhibit lipid mixing, but abrogated the release of viral content into the cytoplasm. Although late endosomes of IFITM3-expressing cells accumulated cholesterol, other interventions leading to aberrantly high levels of this lipid did not inhibit virus fusion. These results imply that excess cholesterol in late endosomes is not the mechanism by which IFITM3 inhibits the transition from hemifusion to full fusion. The IFITM3's ability to block fusion pore formation at a post-hemifusion stage shows that this protein stabilizes the cytoplasmic leaflet of endosomal membranes without adversely affecting the lumenal leaflet. We propose that IFITM3 interferes with pore formation either directly, through partitioning into the cytoplasmic leaflet of a hemifusion intermediate, or indirectly, by modulating the lipid/protein composition of this leaflet. Alternatively, IFITM3 may redirect IAV fusion to a non-productive pathway, perhaps by promoting fusion with intralumenal vesicles within multivesicular bodies/late endosomes. PMID:24699674
Investigation of the cluster formation in lithium niobate crystals by computer modeling method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voskresenskii, V. M.; Starodub, O. R., E-mail: ol-star@mail.ru; Sidorov, N. V.
The processes occurring upon the formation of energetically equilibrium oxygen-octahedral clusters in the ferroelectric phase of a stoichiometric lithium niobate (LiNbO{sub 3}) crystal have been investigated by the computer modeling method within the semiclassical atomistic model. An energetically favorable cluster size (at which a structure similar to that of a congruent crystal is organized) is shown to exist. A stoichiometric cluster cannot exist because of the electroneutrality loss. The most energetically favorable cluster is that with a Li/Nb ratio of about 0.945, a value close to the lithium-to-niobium ratio for a congruent crystal.
Takashima, Yohei; Miras, Haralampos N; Glatzel, Stefan; Cronin, Leroy
2016-06-14
We report examples of crystal surface modification of polyoxometalate open frameworks whereby the use of pyrrole or aniline as monomers leads to the formation of the corresponding polymers via an oxidative polymerization process initiated by the redox active POM scaffolds. Guest-exchange experiments demonstrate that the polymers can finely tune the guest exchange rate and their structural integrity is retained after the surface modifications. In addition, the formation of polyoxometalate-based self-fabricating tubes by the dissolution of Keggin-based network crystals were also modulated by the polymers, allowing a new type of hybrid inorganic polymer with an organic coating to be fabricated.
Crystallization processes in pharmaceutical technology and drug delivery design
NASA Astrophysics Data System (ADS)
Shekunov, B. Yu; York, P.
2000-04-01
Crystallization is a major technological process for particle formation in pharmaceutical industry and, in addition, plays an important role in defining the stability and drug release properties of the final dosage forms. Industrial and regulatory aspects of crystallization are briefly reviewed with reference to solid-state properties of pharmaceuticals. Crystallization, incorporating wider definition to include precipitation and solid-state transitions, is considered in terms of preparation of materials for direct compression, formation of amorphous, solvated and polymorphic forms, chiral separation of drugs, production of materials for inhalation drug delivery and injections. Finally, recent developments in supercritical fluid particle technology is considered in relationship to the areas discussed.
Formation mechanism of self-assembled polarization-dependent periodic nanostructures in β-Ga2O3
NASA Astrophysics Data System (ADS)
Nakanishi, Y.; Shimotsuma, Y.; Sakakura, M.; Shimizu, M.; Miura, K.
2018-02-01
We have successfully observed self-assembled periodic nanostructures inside Si single crystal and GaP crystal, by the femtosecond double-pulse irradiation. These results experimentally indicate that the self-assembly of the periodic nanostructures inside semiconductors triggered by ultrashort pulses irradiation are possibly associated with a direct or an indirect band gap. More recently we have also empirically classified the photoinduced bulk nanogratings into the following three types: (1) structural deficiency, (2) compressed structure, (3) partial crystallization. We have still a big question about what material properties are involved in the bulk nanograting structure formation. In this study, to expand the selectivity of the material for bulk nanograting formation, we have employed β-Ga2O3 crystals (indirect bandgap Eg 4.8 eV) as a sample for femtosecond laser irradiation. The nanograting structure inside β-Ga2O3 crystal was aligned perpendicular to the laser polarization direction. Such phenomenon is similar to the nanograting in SiO2 glass (Eg 9 eV). Moreover, to clarify the band structure, we have also investigate the photoinduced structure in Sn doped β-Ga2O3 crystals, which exhibit direct bandgap according to the first principle calculation.
Direct observation of nanowire growth and decomposition.
Rackauskas, Simas; Shandakov, Sergey D; Jiang, Hua; Wagner, Jakob B; Nasibulin, Albert G
2017-09-26
Fundamental concepts of the crystal formation suggest that the growth and decomposition are determined by simultaneous embedding and removal of the atoms. Apparently, by changing the crystal formation conditions one can switch the regimes from the growth to decomposition. To the best of our knowledge, so far this has been only postulated, but never observed at the atomic level. By means of in situ environmental transmission electron microscopy we monitored and examined the atomic layer transformation at the conditions of the crystal growth and its decomposition using CuO nanowires selected as a model object. The atomic layer growth/decomposition was studied by varying an O 2 partial pressure. Three distinct regimes of the atomic layer evolution were experimentally observed: growth, transition and decomposition. The transition regime, at which atomic layer growth/decomposition switch takes place, is characterised by random nucleation of the atomic layers on the growing {111} surface. The decomposition starts on the side of the nanowire by removing the atomic layers without altering the overall crystal structure, which besides the fundamental importance offers new possibilities for the nanowire manipulation. Understanding of the crystal growth kinetics and nucleation at the atomic level is essential for the precise control of 1D crystal formation.
ZnO thin film as MSG for sensitive biosensor
NASA Astrophysics Data System (ADS)
Iftimie, N.; Savin, A.; Steigmann, R.; Faktorova, D.; Salaoru, I.
2016-08-01
In this paper, we investigate the cholesterol sensors consisting of a mixture of cholesterol oxidase (ChOx) and zinc oxide (ZnO) nanoparticles were grown on ITO/glass substrates by vacuum thermal evaporation method and their sensing characteristics are examined in air. Also, the interest in surface waves appeared due to evanescent waves in the metallic strip grating in sub-wavelength regime. Before testing the transducer with metamaterials lens in the sub-wavelength regime, a simulation of the evanescent wave's formation has been performed at the edge of Ag strips, with thicknesses in the range of micrometers.
IR Spectroscopy and X-Ray Phase Analysis of the Chemical Composition of Gallstones
NASA Astrophysics Data System (ADS)
Pichugina, A. A.; Tsyro, L. V.; Unger, F. G.
2018-01-01
The composition of the inorganic and organic parts of gallstones was investigated by x-ray phase analysis and IR spectroscopy. Cholesterol, bilirubin, calcium bilirubinate, calcium carbonate, and calcium hydrogen phosphate are all found in gallstones. The major component is cholesterol. A gallstone was separated into layers and the inorganic part was separated out by annealing. Inorganic compounds were found to predominate in the outer layer of the gallstone, which is related to the mechanism of its formation. The inorganic part contains calcium carbonate, present in both the calcite and waterite modifications.
Polyisoprenoid epoxides stimulate the biosynthesis of coenzyme Q and inhibit cholesterol synthesis.
Bentinger, Magnus; Tekle, Michael; Brismar, Kerstin; Chojnacki, Tadeusz; Swiezewska, Ewa; Dallner, Gustav
2008-05-23
In our search for compounds that up-regulate the biosynthesis of coenzyme Q (CoQ), we discovered that irradiation of CoQ with ultraviolet light results in the formation of a number of compounds that influence the synthesis of mevalonate pathway lipids by HepG2 cells. Among the compounds that potently stimulated CoQ synthesis while inhibiting cholesterol synthesis, derivatives of CoQ containing 1-4 epoxide moieties in their polyisoprenoid side chains were identified. Subsequently, chemical epoxidation of all-trans-polyprenols of different lengths revealed that the shorter farnesol and geranylgeraniol derivatives were without effect, whereas the longer derivatives of solanesol enhanced CoQ and markedly reduced cholesterol biosynthesis. In contrast, none of the modified trans-trans-poly-cis-polyprenols exerted noticeable effects. Tocotrienol epoxides were especially potent in our system; those with one epoxide moiety in the side-chain generally up-regulated CoQ biosynthesis by 200-300%, whereas those with two such moieties also decreased cholesterol synthesis by 50-90%. Prolonged treatment of HepG2 cells with tocotrienol epoxides for 26 days elevated their content of CoQ by 30%. In addition, the levels of mRNA encoding enzymes involved in CoQ biosynthesis were also elevated by the tocotrienol epoxides. The site of inhibition of cholesterol synthesis was shown to be oxidosqualene cyclase. In conclusion, epoxide derivatives of certain all-trans-polyisoprenoids cause pronounced stimulation of CoQ synthesis and, in some cases, simultaneous reduction of cholesterol biosynthesis by HepG2 cells.
Rotllan, Noemí; Llaverías, Gemma; Julve, Josep; Jauhiainen, Matti; Calpe-Berdiel, Laura; Hernández, Cristina; Simó, Rafael; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles
2011-02-01
Gemfibrozil and fenofibrate, two of the fibrates most used in clinical practice, raise HDL cholesterol (HDLc) and are thought to reduce the risk of atherosclerotic cardiovascular disease. These drugs act as PPARα agonists and upregulate the expression of genes crucial in reverse cholesterol transport (RCT). In the present study, we determined the effects of these two fibrates on RCT from macrophages to feces in vivo in human apoA-I transgenic (hApoA-ITg) mice. [(3)H]cholesterol-labeled mouse macrophages were injected intraperitoneally into hApoA-ITg mice treated with intragastric doses of fenofibrate, gemfibrozil or a vehicle solution for 17days, and radioactivity was determined in plasma, liver and feces. Fenofibrate, but not gemfibrozil, enhanced [(3)H]cholesterol flux to plasma and feces of female hApoA-ITg mice. Fenofibrate significantly increased plasma HDLc, HDL phospholipids, hApoA-I levels and phospholipid transfer protein activity, whereas these parameters were not altered by gemfibrozil treatment. Unlike gemfibrozil, fenofibrate also induced the generation of larger HDL particles, which were more enriched in cholesteryl esters, together with higher potential to generate preβ-HDL formation and caused a significant increase in [(3)H]cholesterol efflux to plasma. Our findings demonstrate that fenofibrate promotes RCT from macrophages to feces in vivo and, thus, highlight a differential action of this fibrate on HDL. Copyright © 2010 Elsevier B.V. All rights reserved.
Phase selection during crystallization of undercooled liquid eutectic lead-tin alloys
NASA Technical Reports Server (NTRS)
Fecht, H. J.
1991-01-01
During rapid solidification substantial amounts of undercooling are in general required for formation of metastable phases. Crystallization at varying levels of undercooling and melting of metastable phases were studied during slow cooling and heating of emulsified PB-Sn alloys. Besides the experimental demonstration of the reversibility of metastable phase equilibra, two different principal solidification paths have been identified and compared with the established metastable phase diagram and predictions from classical nucleation theory. The results suggest that the most probable solidification path is described by the 'step rule' resulting in the formation of metastable phases at low undercooling, whereas the stable eutectic phase mixture crystallizes without metastable phase formation at high undercooling.
Chromatographic study of formation conditions of rhombododecahedral diamond crystals
NASA Astrophysics Data System (ADS)
Zhimulev, E. I.; Sonin, V. M.; Chepurov, A. I.; Tomilenko, A. A.
2009-06-01
The results of chromatographic study of the formation of rhombododecahedral diamonds synthesized in the Fe-Ni-(Ti)-C system at 5.5-6.0 GPa and 1350-1450°C are presented, including crystals with rounded surfaces of the rhombododecahedron with parallel striation, which are morphological analogues of natural diamonds abundant at various kimberlite, lamproite, and placer deposits. Chromatography was performed at 150°C with mechanical breakup of diamonds. The stable release of methane when diamonds of habit {110} are crushed is established. It is concluded that the appearance of the habit rhombododecahedron may be related not only to the effect of temperature and pressure on crystal growth but also to reductive conditions of crystallization. At the same time, the appearance of significant amounts of hydrocarbons in the system probably results in stopping of the growth of faces {110} and {100} and, instead, formation of specific surfaces that are composed of microscopic accessories faced by planes {111}.
Ring-shaped stain patterns driven by solute reactive mesogens in liquid crystal solution
NASA Astrophysics Data System (ADS)
Cha, Tae Woon; Bulliard, Xavier; Choi, Sang Gun; Lee, Hyoung Sub; Kong, Hyang-Shik; Han, Sang Youn
2014-07-01
We report on the formation of ring-shaped stain patterns in a polymer-stabilized patterned vertical alignment mode liquid crystal display (LCD) during the cell filling process. Through the interpretation of the formation mechanism, an effective way to control its development is provided. Systematic trace of the reactive mesogens reveals that the formation of patterns is strongly related to the segregation of solute mesogens in the stain area. These undesirable patterns can be avoided or controlled by reducing the drop volume at each droplet using an inkjet printing technique, meaning that the printing technique could be a useful solution in display technology. For the formation of ring-shaped patterns, the dragging of reactive mesogens during the spreading of the liquid crystal solution plays a key role in the closed LCD cell.
NASA Astrophysics Data System (ADS)
Fong-Ngern, Kedsarin; Thongboonkerd, Visith
2016-10-01
To search for a strategy to prevent kidney stone formation/recurrence, this study addressed the role of α-enolase on apical membrane of renal tubular cells in mediating calcium oxalate monohydrate (COM) crystal adhesion. Its presence on apical membrane and in COM crystal-bound fraction was confirmed by Western blotting and immunofluorescence staining. Pretreating MDCK cells with anti-α-enolase antibody, not isotype-controlled IgG, dramatically reduced cell-crystal adhesion. Immunofluorescence staining also confirmed the direct binding of purified α-enolase to COM crystals at {121} > {100} > {010} crystal faces. Coating COM crystals with urinary proteins diminished the crystal binding capacity to cells and purified α-enolase. Moreover, α-enolase selectively bound to COM, not other crystals. Chemico-protein interactions analysis revealed that α-enolase interacted directly with Ca2+ and Mg2+. Incubating the cells with Mg2+ prior to cell-crystal adhesion assay significantly reduced crystal binding on the cell surface, whereas preincubation with EDTA, a divalent cation chelator, completely abolished Mg2+ effect, indicating that COM and Mg2+ competitively bind to α-enolase. Taken together, we successfully confirmed the role of α-enolase as a COM crystal receptor to mediate COM crystal adhesion at apical membrane of renal tubular cells. It may also serve as a target for stone prevention by blocking cell-crystal adhesion and stone nidus formation.
Phase-field study of grain boundary tracking behavior in crack-seal microstructures
NASA Astrophysics Data System (ADS)
Ankit, Kumar; Nestler, Britta; Selzer, Michael; Reichardt, Mathias
2013-12-01
In order to address the growth of crystals in veins, a multiphase-field model is used to capture the dynamics of crystals precipitating from a super-saturated solution. To gain a detailed understanding of the polycrystal growth phenomena in veins, we investigate the influence of various boundary conditions on crystal growth. In particular, we analyze the formation of vein microstructures resulting from the free growth of crystals as well as crack-sealing processes. We define the crystal symmetry by considering the anisotropy in surface energy to simulate crystals with flat facets and sharp corners. The resulting growth competition of crystals with different orientations is studied to deduce a consistent orientation selection rule in the free-growth regime. Using crack-sealing simulations, we correlate the grain boundary tracking behavior depending on the relative rate of crack opening, opening trajectory, initial grain size, and wall roughness. Further, we illustrate how these parameters induce the microstructural transition between blocky (crystals growing anisotropically) to fibrous morphology (isotropic) and formation of grain boundaries. The phase-field simulations of crystals in the free-growth regime (in 2D and 3D) indicate that the growth or consumption of a crystal is dependent on the orientation difference with neighboring crystals. The crack-sealing simulation results (in 2D and 3D) reveal that crystals grow isotropically and grain boundaries track the opening trajectory if the wall roughness is high, opening increments are small, and crystals touch the wall before the next crack increment starts. Further, we find that within the complete crack-seal regime, anisotropy in surface energy results in the formation of curved/oscillating grain boundaries (instead of straight) when the crack-opening velocity is increased and wall roughness is not sufficiently high. Additionally, the overall capability of phase-field method to simulate large-scale polycrystal growth in veins (in 3D) is demonstrated enumerating the main advantages of adopting the novel approach.
Qin, Li; Yang, Yun-bo; Yang, Yi-xin; Zhu, Neng; Gong, Yong-zhen; Zhang, Cai-ping; Li, Shun-xiang; Liao, Duan-fang
2014-01-01
Aim: To investigate the mechanisms of anti-atherosclerotic action of ezetimibe in rat vascular smooth muscle cells (VSMCs) in vitro. Methods: VSMCs of SD rats were cultured in the presence of Chol:MβCD (10 μg/mL) for 72 h, and intracellular lipid droplets and cholesterol levels were evaluated using Oil Red O staining, HPLC and Enzymatic Fluorescence Assay, respectively. The expression of caveolin-1, sterol response element-binding protein-1 (SREBP-1) and ERK1/2 were analyzed using Western blot assays. Translocation of SREBP-1 and ERK1/2 was detected with immunofluorescence. Results: Treatment with Chol:MβCD dramatically increased the cellular levels of total cholesterol (TC), cholesterol ester (CE) and free cholesterol (FC) in VSMCs, which led to the formation of foam cells. Furthermore, Chol:MβCD treatment significantly decreased the expression of caveolin-1, and stimulated the expression and nuclear translocation of SREBP-1 in VSMCs. Co-treatment with ezetimibe (3 μmol/L) significantly decreased the cellular levels of TC, CE and FC, which was accompanied by elevation of caveolin-1 expression, and by a reduction of SREBP-1 expression and nuclear translocation. Co-treatment with ezetimibe dose-dependently decreased the expression of phosphor-ERK1/2 (p-ERK1/2) in VSMCs. The ERK1/2 inhibitor PD98059 (50 μmol/L) altered the cholesterol level and the expression of p-ERK1/2, SREBP-1 and caveolin-1 in the same manner as ezetimibe did. Conclusion: Ezetimibe suppresses cholesterol accumulation in rat VSMCs in vitro by regulating SREBP-1 and caveolin-1 expression, possibly via the MAPK signaling pathway. PMID:25087996
The Effect of Radiation "Memory" in Alkali-Halide Crystals
NASA Astrophysics Data System (ADS)
Korovkin, M. V.; Sal'nikov, V. N.
2017-01-01
The exposure of the alkali-halide crystals to ionizing radiation leads to the destruction of their structure, the emergence of radiation defects, and the formation of the electron and hole color centers. Destruction of the color centers upon heating is accompanied by the crystal bleaching, luminescence, and radio-frequency electromagnetic emission (REME). After complete thermal bleaching of the crystal, radiation defects are not completely annealed, as the electrons and holes released from the color centers by heating leave charged and locally uncompensated defects. Clusters of these "pre centers" lead to electric microheterogeneity of the crystal, the formation of a quasi-electret state, and the emergence of micro-discharges accompanied by radio emission. The generation of REME associated with residual defectiveness, is a manifestation of the effect of radiation "memory" in dielectrics.
Patterns of calcium oxalate monohydrate crystallization in complex biological systems
NASA Astrophysics Data System (ADS)
Golovanova, O. A.; Korol'kov, V. V.; Kuimova, M. V.
2017-01-01
The paper presents the features of calcium oxalate crystallization in the presence of additives revealed through experimental modeling. The patterns of phase formation are shown for the Ca2+ - C2O4 2- - H2O and Ca2+ - C2O4 2- - PO4 3- - H2O systems with the components and pH of the saline varying over a wide concentrations range. The effect of additives on crystallization of calcium oxalate monohydrate was investigated. It was found that the ionic strength and magnesium ions are inhibitors, and calcium oxalate and hydroxyapatite crystals are catalysts of calcium oxalate monohydrate crystallization. The basic calcium phosphate (apatite) was found to be most thermodynamically stable, which indicates its special role in kidney stone formation since it is found in virtually all stones.
NASA Technical Reports Server (NTRS)
Becia, Piotr; Wiegel, Michaela E. K.
2004-01-01
A research carried out under Award Number NAG8-1487 was aimed at to the design, conduct and analysis of experiments directed at the identification and control of gravitational effects on crystal growth, segregation and defect formation in the Sillenite system: bismuth silicate (Bi(12)SiO(20)). Correlation analyses was conducted in order to establish the influence of gravity related defects introduced during crystal growth on critical, application specific properties. Achievement of the states objective was conducted during the period from Feb. 01, 1998 to Dec. 31, 2003 with the following anticipated milestones: 1. Establishment of capabilities for (a) reproducible Czochralski and Bridgman-type growth of BSO single crystals and (b) for comprehensive analysis of crystalline and chemical defects as well as for selective property characterization of grown crystals (year 1). 2. Design and execution of critical space growth experiment(s) based on analyses of prefatory space results (experiments aimed at establishing the viability of planned approaches and procedures) and on unresolved issues related to growth, segregation and defect formation associated with conventional growth in Bridgman geometries. Comparative analysis of growth under conventional and under mu-g conditions; identification of gravity related defect formation during conventional Bridgman growth and formulation of approaches for their control (years 2 and 3). Development of charge confinement system which permits growth interface demarcation (in a mu-g environment) as well as minimization of confinement related stress and contamination during growth; design of complementary mu-g growth experiments aimed at quantitative mu-g growth and segregation analyses (year 4). 3. Conduct of quantitative mu-g growth experiments directed at: (a) identification and control of gravity related crystalline and chemical defect formation during single crystal growth of Bi(12)SiO(20) and at (b) defect engineering -the development of approaches to the controlled generation during crystal growth of specified point defects in homogeneous distribution (year 5). The proposed research places focus on a class of materials which have outstanding electrical and optical properties but have so far failed to reach their potential, primarily because of our inability to control adequately their stoichiometry and crystal defect formation as well as confinement related contamination and lattice stress.
Forisome Based Smart Materials
2015-03-31
different temperature and humidity conditions to stimulate crystal formation and we were able to generate crystals (Fig. 3). Staing of crystal...natural forisomes to dope the solution with a nucleation site unfortunately without success. SEO proteins have 11 cysteines that may form sulfide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Xuefeng; Yang, Yunhuang; Neville, T.
2007-06-12
Apolipoprotein A-I (apoAI, 243-residues) is the major protein component of the high-density lipoprotein (HDL) that has been a hot subject of interests because of its anti-atherogenic properties. This important property of apoAI is related to its roles in reverse cholesterol transport pathway. Upon lipid-binding, apoAI undergoes conformational changes from lipid-free to several different HDL-associated states (1). These different conformational states regulate HDL formation, maturation and transportation. Two initial conformational states of apoAI are lipid-free apoAI and apoAI/preβHDL that recruit phospholipids and cholesterol to form HDL particles. In particular, lipid-free apoAI specifically binds to phospholipids to form lipid-poor apoAI, including apoAI/preβ-HDLmore » (~37 kDa). As a unique class of lipid poor HDL, both in vitro and in vivo evidence demonstrates that apoAI/preβ-HDLs are the most effective acceptors specifically for free cholesterol in human plasma and serves as the precursor of HDL particles (2). Here we report a complete backbone spectral assignment of human apoAI/preβHDL. Secondary structure prediction using backbone NMR parameters indicates that apoAI/preβHDL displays a two-domain structure: the N-terminal four helix-bundle domain (residues 1-186) and the C-terminal flexible domain (residues 187-243). A structure of apoAI/preβ-HDL is the first lipid-associated structure of apoAI and is critical for us to understand how apoAI recruits cholesterol to initialize HDL formation. BMRB deposit with accession number: 15093.« less
Sozański, Tomasz; Kucharska, Alicja Z; Dzimira, Stanisław; Magdalan, Jan; Szumny, Dorota; Matuszewska, Agnieszka; Nowak, Beata; Piórecki, Narcyz; Szeląg, Adam; Trocha, Małgorzata
2018-04-25
Cornelian cherry (Cornus mas L.) is a plant growing in southeast Europe, in the past used in folk medicine. There are many previous publications showing the preventive effects of (poly)phenolic compounds, especially anthocyanins, on cardiovascular diseases, but there is a lack of studies comparing the effects of (poly)phenolics and other constituents of fruits. We have attempted to determine if iridoids and anthocyanins from cornelian cherry fruits may affect the formation of atherosclerotic plaques in the aorta as well as lipid peroxidation and oxidative stress in the livers of cholesterol-fed rabbits. Fractions of iridoids and anthocyanins were analyzed using the high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) methods. Loganic acid (20 mg/kg b.w.) and a mixture of anthocyanins (10 mg/kg b.w.) were administered orally for 60 days to rabbits fed with 1% cholesterol. Histopathological samples of the aortas and the livers were stained with hematoxylin and eosin. Lipid peroxidation (malondialdehyde - MDA) and redox status (glutathione - GSH, glutathione peroxidase - Gpx and superoxide dismutase - SOD) were analyzed using spectrophotometrical methods. Both loganic acid (an iridoid) and a mixture of anthocyanins diminished the formation of atherosclerotic plaques in the aorta. Both substances also diminished lipid peroxidation, measured as a decrease of MDA, and attenuated oxidative stress, measured as an increase of GSH in the livers depleted by cholesterol feeding. Unexpectedly, cholesterol feeding decreased the Gpx activity in the liver, which was reversed by both investigated substances. We have shown that both iridoids and anthocyanins help prevent fed-induced atherosclerosis, and the consumption of fruits rich in these substances may elicit beneficial effects on the cardiovascular system.
17β-estradiol suppresses the macrophage foam cell formation associated with SOCS3.
Liang, X; He, M; Chen, T; Wu, Y; Tian, Y; Zhao, Y; Shen, Y; Liu, Y; Yuan, Z
2013-06-01
Evidence from clinical trials and animal experiments has shown that estrogen has anti-atherosclerotic effects when administered to young women or experimental animals. The mechanisms involve the modulation of vascular inflammation, growth factor expression, and oxidative stress injured arteries. However, whether estrogen modulates the foam cell formation in plaque remains unknown. Here, we investigated the effects of 17β-estradiol (E2) on cholesterol efflux in vivo and in vitro. ApoE null mice underwent an ovariectomy at 5(th) week of age and then were treated with E2 or vehicle for the following 8 weeks. Compared with the vehicle-treated mice, the serum total cholesterol level, atherosclerotic plaque size, and lipid deposits were decreased and meanwhile ATP-binding cassette transporter A1 (ABCA1) expression in the plaque was increased in mice with E2 treatment. E2 also increased suppressor of cytokine signaling 3 (SOCS3) expression in the atherosclerotic plaques and in RAW264.7 cells. In vitro, E2 treatment reversed janus kinase/signal transducers and activators of transcription (JAK/STAT)-inhibited ABCA1 expression in RAW264.7 cells but had no effect on ABCA1 expression in SOCS3 knockdown cells. SOCS3 overexpression elevated ABCA1 expression through the inhibition of JAK2/STAT3 phosphorylation. Finally, we also found that E2 enhanced the cholesterol efflux to apoA I in RAW264.7 cells. In summary, E2 reduces atherosclerosis in ApoE null mice associated with upregulating ABCA1 expression and modulating the cholesterol efflux, which are dependent on SOCS3 upregulation. These results provide new insight into the athero-protective effects of estrogen. © Georg Thieme Verlag KG Stuttgart · New York.
Subbaiah, P V; Subramanian, V S; Liu, M
1998-07-01
Although dietary trans unsaturated fatty acids (TUFA) are known to decrease plasma HDL, the underlying mechanisms for this effect are unclear. We tested the hypothesis that the decreased HDL is due to an inhibition of lecithin:cholesterol acyltransferase (LCAT), the enzyme essential for the formation of HDL, by determining the activity of purified LCAT in the presence of synthetic phosphatidylcholine (PC) substrates containing TUFA. Both human and rat LCATs exhibited significantly lower activity (-37% to -50%) with PCs containing 18:1t or 18:2t, when compared with the PCs containing corresponding cis isomers. TUFA-containing PCs also inhibited the enzyme activity competitively, when added to egg PC substrate. The inhibition of LCAT activity was not due to changes in the fluidity of the substrate particle. However, the inhibition depended on the position occupied by TUFA in the PC, as well as on the paired fatty acid. Thus, for human LCAT, 18:1t was more inhibitory when present at sn-2 position of PC, than at sn-1, when paired with 16:0. In contrast, when paired with 20:4, 18:1t was more inhibitory at sn-1 position of PC. Both human and rat LCATs, which are normally specific for the sn-2 acyl group of PC, exhibited an alteration in their positional specificity when 16:0-18:1t PC or 16:1t-20:4 PC was used as substrate, deriving 26-86% of the total acyl groups for cholesterol esterification from the sn-1 position. These results show that the trans fatty acids decrease high density lipoprotein through their inhibition of lecithin: cholesterol acyltransferase (LCAT) activity, and also alter LCAT's positional specificity, inducing the formation of more saturated cholesteryl esters, which are more atherogenic.
Kok, Tineke; Wolters, Henk; Bloks, Vincent W; Havinga, Rick; Jansen, Peter L M; Staels, Bart; Kuipers, Folkert
2003-01-01
Fatty acids are natural ligands of the peroxisome proliferator-activated receptor alpha (PPARalpha). Synthetic ligands of this nuclear receptor, i.e., fibrates, induce the hepatic expression of the multidrug resistance 2 gene (Mdr2), encoding the canalicular phospholipid translocator, and affect hepatobiliary lipid transport. We tested whether fasting-associated fatty acid release from adipose tissues alters hepatic transporter expression and bile formation in a PPARalpha-dependent manner. A 24-hour fasting/48-hour refeeding schedule was used in wild-type and Pparalpha((-/-)) mice. Expression of genes involved in the control of bile formation was determined and related to secretion rates of biliary components. Expression of Pparalpha, farnesoid X receptor, and liver X receptor alpha genes encoding nuclear receptors that control hepatic bile salt and sterol metabolism was induced on fasting in wild-type mice only. The expression of Mdr2 was 5-fold increased in fasted wild-type mice and increased only marginally in Pparalpha((-/-)) mice, and it normalized on refeeding. Mdr2 protein levels and maximal biliary phospholipid secretion rates were clearly increased in fasted wild-type mice. Hepatic expression of the liver X receptor target genes ATP binding cassette transporter a1 (Abca1), Abcg5, and Abcg8, implicated in hepatobiliary cholesterol transport, was induced in fasted wild-type mice only. However, the maximal biliary cholesterol secretion rate was reduced by approximately 50%. Induction of Mdr2 expression and function is part of the PPARalpha-mediated fasting response in mice. Fasting also induces expression of the putative hepatobiliary cholesterol transport genes Abca1, Abcg5, and Abcg8, but, nonetheless, maximal biliary cholesterol excretion is decreased after fasting.
Paquay, Stefan; Both, Gert-Jan; van der Schoot, Paul
2017-07-01
When colloidal particles form a crystal phase on a spherical template, their packing is governed by the effective interaction between them and the elastic strain of bending the growing crystal. For example, if growth commences under appropriate conditions, and the isotropic crystal that forms reaches a critical size, growth continues via the incorporation of defects to alleviate elastic strain. Recently, it was experimentally found that, if defect formation is somehow not possible, the crystal instead continues growing in ribbons that protrude from the original crystal. Here we report on computer simulations in which we observe both the formation of ribbons at short interaction ranges and packings that incorporate defects if the interaction is longer-ranged. The ribbons only form above some critical crystal size, below which the nucleus is disk-shaped. We find that the scaling of the critical crystal size differs slightly from the one proposed in the literature, and we argue that this is because the actual morphology transition is caused by the competition between line tension and elastic stress, rather than the competition between chemical potential and elastic stress.
NASA Astrophysics Data System (ADS)
Paquay, Stefan; Both, Gert-Jan; van der Schoot, Paul
2017-07-01
When colloidal particles form a crystal phase on a spherical template, their packing is governed by the effective interaction between them and the elastic strain of bending the growing crystal. For example, if growth commences under appropriate conditions, and the isotropic crystal that forms reaches a critical size, growth continues via the incorporation of defects to alleviate elastic strain. Recently, it was experimentally found that, if defect formation is somehow not possible, the crystal instead continues growing in ribbons that protrude from the original crystal. Here we report on computer simulations in which we observe both the formation of ribbons at short interaction ranges and packings that incorporate defects if the interaction is longer-ranged. The ribbons only form above some critical crystal size, below which the nucleus is disk-shaped. We find that the scaling of the critical crystal size differs slightly from the one proposed in the literature, and we argue that this is because the actual morphology transition is caused by the competition between line tension and elastic stress, rather than the competition between chemical potential and elastic stress.
Vascular Calcification and Stone Disease: A New Look towards the Mechanism
Yiu, Allen J.; Callaghan, Daniel; Sultana, Razia; Bandyopadhyay, Bidhan C.
2015-01-01
Calcium phosphate (CaP) crystals are formed in pathological calcification as well as during stone formation. Although there are several theories as to how these crystals can develop through the combined interactions of biochemical and biophysical factors, the exact mechanism of such mineralization is largely unknown. Based on the published scientific literature, we found that common factors can link the initial stages of stone formation and calcification in anatomically distal tissues and organs. For example, changes to the spatiotemporal conditions of the fluid flow in tubular structures may provide initial condition(s) for CaP crystal generation needed for stone formation. Additionally, recent evidence has provided a meaningful association between the active participation of proteins and transcription factors found in the bone forming (ossification) mechanism that are also involved in the early stages of kidney stone formation and arterial calcification. Our review will focus on three topics of discussion (physiological influences—calcium and phosphate concentration—and similarities to ossification, or bone formation) that may elucidate some commonality in the mechanisms of stone formation and calcification, and pave the way towards opening new avenues for further research. PMID:26185749
Nacre biomineralisation: A review on the mechanisms of crystal nucleation.
Nudelman, Fabio
2015-10-01
The wide diversity of biogenic minerals that is found in nature, each with its own morphology, mechanical properties and composition, is remarkable. In order to produce minerals that are optimally adapted for their function, biomineralisation usually occurs under strict cellular control. This control is exerted by specialised proteins and polysaccharides that assemble into a 3-dimensional organic matrix framework, forming a microenvironment where mineral deposition takes place. Molluscs are unique in that they use a striking variety of structural motifs to build their shells, each made of crystals with different morphologies and different calcium carbonate polymorphs. Much of want is known about mollusc shell formation comes from studies on the nacreous layer, or mother-of-pearl. In this review, we discuss two existing models on the nucleation of aragonite crystals during nacre formation: heteroepitaxial nucleation and mineral bridges. The heteroepitaxial nucleation model is based on the identification of chemical functional groups and aragonite-nucleating proteins at the centre of crystal imprints. It proposes that during nacre formation, each aragonite tablet nucleates independently on a nucleation site that is formed by acidic proteins and/or glycoproteins adsorbed on the chitin scaffold. The mineral bridges model is based on the identification of physical connections between the crystals in a stack, which results in a large number of crystals across several layers sharing the same crystallographic orientation. These observations suggest that there is one nucleation event per stack of tablets. Once the first crystal nucleates and reaches the top interlamellar matrix, it continues growing through pores, giving rise to the next layer of nacre, subsequently propagating into a stack. We compare both models and propose that they work in concert to control crystal nucleation in nacre. De novo crystal nucleation has to occur at least once per stack of aligned crystals, and is induced by nucleation sites. We suggest that further growth is controlled both by mineral bridges and nucleation sites. Finally, we discuss the role of amorphous calcium carbonate precursor in nacre formation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pan, Yongming; Xu, Jianqin; Chen, Cheng; Chen, Fangming; Jin, Ping; Zhu, Keyan; Hu, Chenyue W.; You, Mengmeng; Chen, Minli; Hu, Fuliang
2018-01-01
Alzheimer’s disease (AD) is the most common form of dementia characterized by aggregation of amyloid β (Aβ) and neuronal loss. One of the risk factors for AD is high cholesterol levels, which are known to promote Aβ deposition. Previous studies have shown that royal jelly (RJ), a product of worker bees, has potential neuroprotective effects and can attenuate Aβ toxicity. However, little is known about how RJ regulates Aβ formation and its effects on cholesterol levels and neuronal metabolic activities. Here, we investigated whether RJ can reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in an AD rabbit model induced by 2% cholesterol diet plus copper drinking water. Our results suggest that RJ significantly reduced the levels of plasma total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C), and decreased the level of Aβ in rabbit brains. RJ was also shown to markedly ameliorate amyloid deposition in AD rabbits from Aβ immunohistochemistry and thioflavin-T staining. Furthermore, our study suggests that RJ can reduce the expression levels of β-site APP cleaving enzyme-1 (BACE1) and receptor for advanced glycation end products (RAGE), and increase the expression levels of low density lipoprotein receptor-related protein 1 (LRP-1) and insulin degrading enzyme (IDE). In addition, we found that RJ remarkably increased the number of neurons, enhanced antioxidant capacities, inhibited activated-capase-3 protein expression, and enhanced neuronal metabolic activities by increasing N-acetyl aspartate (NAA) and glutamate and by reducing choline and myo-inositol in AD rabbits. Taken together, our data demonstrated that RJ could reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in AD rabbits, providing preclinical evidence that RJ treatment has the potential to protect neurons and prevent AD. PMID:29556189
Amran, Adel A.; Zakaria, Zaiton; Othman, Faizah; Das, Srijit; Al-Mekhlafi, Hesham M.; Raj, Santhana; Nordin, Nor-Anita MM
2012-01-01
Previous research has shown the beneficial effects of aqueous extract of Piper sarmentosum (P.s) on atherosclerosis. The first stage in atherosclerosis is the formation of foam cell. The aim of this study was to investigate the effect of the methanol extract of P.s on fatty streaks by calculating neointimal foam cell infiltration in rabbits fed with high cholesterol diet. Thirty six male New Zealand white rabbits were divided equally into six groups: (i) C: control group fed normal rabbit chow; (ii) CH: cholesterol diet (1 % cholesterol); (iii) PM1: 1 % cholesterol with methanol extract of P.s (62.5 mg/kg); (iv) PM2: 1 % cholesterol with methanol extract of P.s (125 mg/kg); (v) PM3: 1 % cholesterol with methanol extract of P.s (250 mg/kg); (vi) SMV group fed 1 % cholesterol supplemented with Simvistatin drug (1.2 mg/kg). All animals were treated for 10 weeks. At the end of the treatment, the rabbits were fasted and sacrificed and the aortic tissues were collected for histological studies to measure the area of the neointimal foam cell infiltration using software. The thickening of intima ratio of atherosclerosis and morphological changes by scanning electron microscope were measured. The results showed that the atherosclerotic group had significantly bigger area of fatty streak compared to the control group. The area of fatty streak in the abdominal aorta was significantly reduced in the treatment groups which were similar with the SMV group. Similarly, there was a reduction in the number of foam cell in the treatment groups compared to the atherosclerotic group as seen under scanning microscope. In conclusion, histological study demonstrated that the methanol extract of the P.s could reduce the neointimal foam cell infiltration in the lumen of the aorta and the atherosclerotic lesion. PMID:27366140
Dong, Pengzhi; Pan, Lanlan; Zhang, Xiting; Zhang, Wenwen; Wang, Xue; Jiang, Meixiu; Chen, Yuanli; Duan, Yajun; Wu, Honghua; Xu, Yantong; Zhang, Peng; Zhu, Yan
2017-02-23
Hawthorn (Crataegus pinnatifida Bunge) leave have been used to treat cardiovascular diseases in China and Europe. Hawthorn leave flavonoids (HLF) are the main part of extraction. Whether hawthorn leave flavonoids could attenuate the development of atherosclerosis and the possible mechanism remain unknown. High-fat diet (HFD) mixed with HLF at concentrations of 5mg/kg and 20mg/kg were administered to apolipoprotein E (apoE) knock out mice. 16 weeks later, mouse serum was collected to determine the lipid profile while the mouse aorta dissected was prepared to measure the lesion area. Hepatic mRNA of genes involved in lipid metabolism were determined. Peritoneal macrophages were collected to study the impact of HLF on cholesterol efflux, formation of foam cell and the expression of ATP binding cassette transporter A1 (ABCA1). Besides, in vivo reverse cholesterol transport (RCT) was conducted. HLF attenuated the development of atherosclerosis that the mean atherosclerotic lesion area in en face aortas was reduced by 23.1% (P<0.05). In mice fed with 20mg/kg HLF, Total cholesterol (TC) level was decreased by 18.6% and very low density lipoprotein cholesterol plus low density lipoprotein cholesterol (VLDLc+LDLc) level were decreased by 23.1% whereas high density lipoprotein cholesterol (HDLc) and triglyceride (TG) levels were similar compared to that of the control group. Peroxisome proliferator activated receptor alpha (PPARα) mRNA was increased by 31.2% (P<0.05) and 60.9% (P<0.05) in mice fed with 5mg/kg and 20mg/kg HLF respectively. Sterol regulatory element binding protein-1c (SREBP-1c) was decreased by 59.3% in the group of 20mg/kg. Carnitine palmitoyl transferase 1 (CPT-1) mRNA level of 20mg/kg group was induced 66.7% (P<0.05). Superoxide dismutase 1 and 2 (SOD1 and SOD2) mRNA were induced 25.4% (P<0.05) and 71.4% (P<0.05) while induced by 36.3% (P<0.05) and 73.2% (P<0.05) in group of 20mg/kg. Glutathione peroxidase 3 (Gpx3) mRNA in the group of 20mg/kg was induced by 96.7% (P<0.05). Hepatic hydroxymethylglutaryl CoA reductase (HMG-CoAR) expression was as same level as the control group while LDL receptor (LDLR) mRNA and protein were induced by 84.2% (P<0.05) and 98.8% (P<0.05) in group of 20mg/kg. HLF inhibit the formation of foam cell by 27.9% (P<0.05) in the dosage of 25μg/ml, and 33.3% (P<0.05) in the dosage of 50μg/ml. HLF increased the reverse cholesterol transport (RCT) in vivo. Hawthorn leave flavonoids can slow down the development of atherosclerosis in apoE knockout mice via induced expression of genes involved in antioxidant activities, inhibition of the foam cell formation and promotion of RCT in vivo, which implies the potential use in the prevention of atherosclerosis. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Formation of contour optical traps using a four-channel liquid crystal focusing device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korobtsov, A V; Kotova, S P; Losevsky, N N
2014-12-31
The capabilities and specific features of the formation and dynamic control of so-called contour optical traps using a fourchannel liquid crystal modulator are studied theoretically and experimentally. Circular, elliptical and C-shaped traps are formed. Trapping and confinement of absorbing micro-objects by the formed traps are demonstrated. (optical traps)
NASA Astrophysics Data System (ADS)
Golod, V. M.; Sufiiarov, V. Sh
2017-04-01
Gas atomization is a high-performance process for manufacturing superfine metal powders. Formation of the powder particles takes place primarily through the fragmentation of alloy melt flow with high-pressure inert gas, which leads to the formation of non-uniform sized micron-scale particles and subsequent their rapid solidification due to heat exchange with gas environment. The article presents results of computer modeling of crystallization process, simulation and experimental studies of the cellular-dendrite structure formation and microsegregation in different size particles. It presents results of adaptation of the approach for local nonequilibrium solidification to conditions of crystallization at gas atomization, detected border values of the particle size at which it is possible a manifestation of diffusionless crystallization.
Controlling Disulfide Bond Formation and Crystal Growth from 2-Mercaptobenzoic Acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowland, Clare E.; Cantos, P. M.; Toby, B. H.
2011-03-02
We report disulfide bond formation from 2-mercaptobenzoic acid (2-MBA) under hydrothermal conditions as a function of pH. Under acidic conditions, 2-MBA remains unchanged. Upon increasing pH, however, we observe 50% oxidation to 2,2'-disulfanediyldibenzoic acid (2,2'-DSBA), which is isolated as a cocrystal of both the thiol and disulfide molecules. At neutral pH, we observe complete oxidation and concurrent crystal growth. The pH sensitivity of this system allows targeting crystals of specific composition from simple building units through a straightforward pH manipulation.
Initial stage of nucleation-mediated crystallization of a supercooled melt
NASA Astrophysics Data System (ADS)
Chernov, A. A.; Pil'nik, A. A.; Islamov, D. R.
2016-09-01
The kinetic model of nucleation-mediated crystallization of a supercooled melt is presented in this work. It correctly takes into account the change in supercooling of the initial phase in the process of formation and evolution of a new phase. The model makes it possible to find the characteristic time of the process, time course of the crystal phase volume, solidified material microstructure. The distinctive feature of the model is the use of the "forbidden" zones in the volume where the formation of new nucleation centers is suppressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serafimovich, P. G.; Stepikhova, M. V., E-mail: mst@ipm.sci-nnov.ru; Kazanskiy, N. L.
2016-08-15
The production technology of a photonic-crystal cavity formed as a group of holes in a silicon strip waveguide by ion-beam etching is described. The parasitic effect associated with hole conicity which develops upon hole formation by the given technology is studied. Numerical simulation shows that the hole-conicity induced decrease in the cavity quality factor can be compensated with consideration for the hole volume. The influence of the waveguide thickness on the resonance wavelength and quality factor of the photonic-crystal cavity is analyzed.
NASA Astrophysics Data System (ADS)
Djikaev, Yuri S.; Ruckenstein, Eli
2017-04-01
Using the formalism of classical thermodynamics in the framework of the classical nucleation theory, we derive an expression for the reversible work W* of formation of a binary crystal nucleus in a liquid binary solution of non-stoichiometric composition (incongruent crystallization). Applied to the crystallization of aqueous nitric acid droplets, the new expression more adequately takes account of the effects of nitric acid vapor compared to the conventional expression of MacKenzie, Kulmala, Laaksonen, and Vesala (MKLV) [J. Geophys. Res.: Atmos. 102, 19729 (1997)]. The predictions of both MKLV and modified expressions for the average liquid-solid interfacial tension σls of nitric acid dihydrate (NAD) crystals are compared by using existing experimental data on the incongruent crystallization of aqueous nitric acid droplets of composition relevant to polar stratospheric clouds (PSCs). The predictions for σls based on the MKLV expression are higher by about 5% compared to predictions based on our modified expression. This results in similar differences between the predictions of both expressions for the solid-vapor interfacial tension σsv of NAD crystal nuclei. The latter can be obtained by using the method based on the analysis of experimental data on crystal nucleation rates in aqueous nitric acid droplets; it exploits the dominance of the surface-stimulated mode of crystal nucleation in small droplets and its negligibility in large ones. Applying that method to existing experimental data, our expression for the free energy of formation provides an estimate for σsv of NAD in the range ≈92 dyn/cm to ≈100 dyn/cm, while the MKLV expression predicts it in the range ≈95 dyn/cm to ≈105 dyn/cm. The predictions of both expressions for W* become identical for the case of congruent crystallization; this was also demonstrated by applying our method for determining σsv to the nucleation of nitric acid trihydrate crystals in PSC droplets of stoichiometric composition.
Anisotropy of Single-Crystal Silicon in Nanometric Cutting.
Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun
2017-12-01
The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.
Controlling the physical form of mannitol in freeze-dried systems.
Mehta, Mehak; Bhardwaj, Sunny P; Suryanarayanan, Raj
2013-10-01
A potential drawback with the use of mannitol as a bulking agent is its existence as mannitol hemihydrate (MHH; C₆H₁₄O₆·0.5H₂O) in the lyophile. Once formed during freeze-drying, MHH dehydration may require secondary drying under aggressive conditions which can be detrimental to the stability of thermolabile components. If MHH is retained in the lyophile, the water released by MHH dehydration during storage has the potential to cause product instability. We systematically identified the conditions under which anhydrous mannitol and MHH crystallized in frozen systems with the goal of preventing MHH formation during freeze-drying. When mannitol solutions were cooled, the temperature of solute crystallization was the determinant of the physical form of mannitol. Based on low temperature X-ray diffractometry (using both laboratory and synchrotron sources), MHH formation was observed when solute crystallization occurred at temperatures ≤ -20 °C, while anhydrous mannitol crystallized at temperatures ≤ -10 °C. The transition temperature (anhydrate - MHH) appears to be ∼-15 °C. The use of a freeze-dryer with controlled ice nucleation technology enabled anhydrous mannitol crystallization at ∼-5 °C. Thus, ice crystallization followed by annealing at temperatures ≤ -10 °C can be an effective strategy to prevent MHH formation. Copyright © 2013 Elsevier B.V. All rights reserved.
Scanning electron microscope study of Apollo 15 green glass
NASA Technical Reports Server (NTRS)
Mckay, D. S.; Clanton, U. S.; Ladle, G.
1973-01-01
Apollo 15 green glass droplets and related forms show a variety of low velocity impact features which occurred at the time of formation of the droplets. Composite forms, which consist of a crystallized core on which mounds of glass adhere, indicate a sequence of core formation and crystallization, followed by impact of molten droplets. The complicated and time dependent texture and morphology of the green glass forms are best explained by formation in a volcanic lava fountain rather than by meteorite impact.
Starch characteristics influencing resistant starch content of cooked buckwheat groats
USDA-ARS?s Scientific Manuscript database
Enzyme resistant starch (RS), owing to its health benefits such as colon cancer inhibition, reduced glycemic response, reduced cholesterol level, prevention of gall stone formation and obesity, has received an increasing attention from consumers and food manufacturers, whereas intrinsic and extrinsi...
Protein Crystallization: Specific Phenomena and General Insights on Crystallization Kinetics
NASA Technical Reports Server (NTRS)
Rosenberger, F.
1998-01-01
Experimental and simulation studies of the nucleation and growth kinetics of proteins have revealed phenomena that are specific for macromolecular crystallization, and others that provide a more detailed understanding of solution crystallization in general. The more specific phenomena, which include metastable liquid-liquid phase separations and gelation prior to solid nucleation, are due to the small ratio of the intermolecular interaction-range to the size of molecules involved. The apparently more generally applicable mechanisms include the cascade-like formation of macrosteps, as an intrinsic morphological instability that roots in the coupled bulk transport and nonlinear interface kinetics in systems with mixed growth rate control. Analyses of this nonlinear response provide (a) criteria for the choice of bulk transport conditions to minimize structural defect formation, and (b) indications that the "slow" protein crystallization kinetics stems from the mutual retardation of growth steps.
Wang, Helen H.; Lammert, Frank; Schmitz, Anne; Wang, David Q.-H.
2010-01-01
Background Cholesterol gallstone disease is a complex genetic trait and induced by multiple but as yet unknown genes. A major Lith gene, Lith1 was first identified on chromosome 2 in gallstone-susceptible C57L mice compared with resistant AKR mice. Abcb11, encoding the canalicular bile salt export pump in the hepatocyte, co-localizes with the Lith1 QTL region and its hepatic expression is significantly higher in C57L mice than in AKR mice. Material and methods To investigate whether Abcb11 influences cholesterol gallstone formation, we created an Abcb11 transgenic strain on the AKR genetic background and fed these mice with a lithogenic diet for 56 days. Result We excluded functionally relevant polymorphisms of the Abcb11 gene and its promoter region between C57L and AKR mice. Overexpression of Abcb11 significantly promoted biliary bile salt secretion and increased circulating bile salt pool size and bile salt-dependent bile flow rate. However, biliary cholesterol and phospholipid secretion, as well as gallbladder size and contractility were comparable in transgenic and wild-type mice. At 56 days on the lithogenic diet, cholesterol saturation indexes of gallbladder biles and gallstone prevalence rates were essentially similar in these two groups of mice. Conclusion Overexpression of Abcb11 augments biliary bile salt secretion, but does not affect cholelithogenesis in mice. PMID:20456485
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Porotto; B Rockx; C Yokoyama
2011-12-31
In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viralmore » and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.« less
NASA Astrophysics Data System (ADS)
Melanie, Hakiki; Susilowati, Agustine; Maryati, Yati
2017-01-01
Inulin hydrolysate is a result of inulin hydrolysis by inulinase enzyme of Scopulariopsis sp.-CBS1 fungi isolated from dahlia tuber skin in the formation of fructooligosaccharides (FOS) as dietary fiber. Inulin hydrolysate fermented by Bifidobacterium breve has a potential as cholesterol binder in digestive system due to dietary fiber content in inulin. This study was conducted to evaluate the best cholesterol binding capacity by the variation of lactic acid bacteria (LAB) culture concentration of 10%, 20% and 30% (v/v), respectively. Fermentation process were conducted with inulin hydrolysate concentration of 25% (w/v), skim milk 7,5% (w/v) and various LAB culture concentration at 40 °C for 0, 12, 24, 36 and 48 hours. The results showed that the variation of LAB culture concentrations affect the cholesterol binding ability in fermented inulin hydrolysate. The fermentation process with 10% LAB culture concentration at 40°C for 48 hours resulted in the highest cholesterol binding capacity (CBC) of 13,69 mg/g at pH 7and 14,44 mg/g at pH 2 with composition of total acids of 0,787%, soluble dietary fiber of 0,396%, insoluble dietary fiber of 5,47%, total solids of 14,476%, total sugars of 472,484 mg/mL, reducing sugar of 92 mg/mL and total plate count (TPC) of 7,278 log CFU/mL, respectively.
Menéndez-Carreño, M; Ansorena, D; Milagro, F I; Campión, J; Martínez, J A; Astiasarán, I
2008-04-01
Cholesterol oxidation products (COPs) have been considered as specific in vivo markers of oxidative stress. In this study, an increased oxidative status was induced in Wistar rats by feeding them a high-fat diet (cafeteria diet). Another group of animals received the same diet supplemented with a combination of two different antioxidants, ascorbic acid (100 mg/kg rat/day) and sodium selenite (200 microg/kg rat/day) and a third group fed on a control diet. Total and individual COPs analysis of the different diets showed no differences among them. At the end of the experimental trial, rats were sacrificed and serum cholesterol, triglycerides and COPs were measured. None of the diets induced changes in rats body weight, total cholesterol and triglycerides levels. Serum total COPs in rats fed on the high-fat diet were 1.01 microg/ml, two times the amount of the control rats (0.47 microg/ml). When dietary antioxidant supplementation was given, serum total COPs concentration (0.44 microg/ml) showed the same levels than those of the rats on control diet. 7beta-hydroxycholesterol, formed non-enzymatically via cholesterol peroxidation in the presence of reactive oxygen species, showed slightly lower values in the antioxidant-supplemented animals compared to the control ones. This study confirms the importance of dietary antioxidants as protective factors against the formation of oxysterols.
Macromolecular crystallization in microgravity generated by a superconducting magnet.
Wakayama, N I; Yin, D C; Harata, K; Kiyoshi, T; Fujiwara, M; Tanimoto, Y
2006-09-01
About 30% of the protein crystals grown in space yield better X-ray diffraction data than the best crystals grown on the earth. The microgravity environments provided by the application of an upward magnetic force constitute excellent candidates for simulating the microgravity conditions in space. Here, we describe a method to control effective gravity and formation of protein crystals in various levels of effective gravity. Since 2002, the stable and long-time durable microgravity generated by a convenient type of superconducting magnet has been available for protein crystal growth. For the first time, protein crystals, orthorhombic lysozyme, were grown at microgravity on the earth, and it was proved that this microgravity improved the crystal quality effectively and reproducibly. The present method always accompanies a strong magnetic field, and the magnetic field itself seems to improve crystal quality. Microgravity is not always effective for improving crystal quality. When we applied this microgravity to the formation of cubic porcine insulin and tetragonal lysozyme crystals, we observed no dependence of effective gravity on crystal quality. Thus, this kind of test will be useful for selecting promising proteins prior to the space experiments. Finally, the microgravity generated by the magnet is compared with that in space, considering the cost, the quality of microgravity, experimental convenience, etc., and the future use of this microgravity for macromolecular crystal growth is discussed.
Reuter, Sascha; Hofmann, Anna M; Busse, Karsten; Frey, Holger; Kressler, Jörg
2011-03-01
Langmuir films of multifunctional, hydrophilic polyethers containing a hydrophobic cholesterol group (Ch) were studied by surface pressure-mean molecular area (π-mmA) measurements and Brewster angle microscopy (BAM). The polyethers were either homopolymers or diblock copolymers of linear poly(glycerol) (lPG), linear poly(glyceryl glycidyl ether) (lPGG), linear poly(ethylene glycol) (lPEG), or hyperbranched poly(glycerol) (hbPG). Surface pressure measurements revealed that the homopolymers lPG and hbPG did not stay at the water surface after spreading and solvent evaporation, in contrast to lPEG. Because of the incorporation of the Ch group in the polymer structure, stable Langmuir films were formed by Ch-lPG(n), Ch-lPGG(n), and Ch-hbPG(n). The Ch-hbPG(n), Ch-lPEG(n), Ch-lPEG(n)-b-lPG(m), Ch-lPEG(n)-b-lPGG(m), and Ch-lPEG(n)-b-hbPG(m) systems showed an extended plateau region assigned to a phase transition involving the Ch groups. Typical hierarchically ordered morphologies of the LB films on hydrophilic substrates were observed for all Ch-initiated polymers. All LB films showed that Ch of the Ch-initiated homopolymers is able to crystallize. This strong tendency of self-aggregation then triggers further dewetting effects of the respective polyether entities. Fingerlike morphologies are observed for Ch-lPEG(69), since the lPEG(69) entity is able to undergo crystallization after transfer onto the silicon substrate.
Lin, Changpo; Tang, Xiao; Xu, Lirong; Qian, Ruizhe; Shi, Zhenyu; Wang, Lixin; Cai, Tingting; Yan, Dong; Fu, Weiguo; Guo, Daqiao
2017-07-10
The clock genes are involved in regulating cardiovascular functions, and their expression disorders would lead to circadian rhythm disruptions of clock-controlled genes (CCGs), resulting in atherosclerotic plaque formation and rupture. Our previous study revealed the rhythmic expression of clock genes were attenuated in human plaque-derived vascular smooth muscle cells (PVSMCs), but failed to detect the downstream CCGs expressions and the underlying molecular mechanism. In this study, we examined the difference of CCGs rhythmic expression between human normal carotid VSMCs (NVSMCs) and PVSMCs. Furthermore, we compared the cholesterol and triglycerides levels between two groups and the link to clock genes and CCGs expressions. Seven health donors' normal carotids and 19 carotid plaques yielded viable cultured NVSMCs and PVSMCs. The expression levels of target genes were measured by quantitative real-time PCR and Western-blot. The intracellular cholesterol and triglycerides levels were measured by kits. The circadian expressions of apoptosis-related genes and fibrinolytic-related genes were disordered. Besides, the cholesterol levels were significant higher in PVSMCs. After treated with cholesterol or oxidized low density lipoprotein (ox-LDL), the expressions of clock genes were inhibited; and the rhythmic expressions of clock genes, apoptosis-related genes and fibrinolytic-related genes were disturbed in NVSMCs, which were similar to PVSMCs. The results suggested that intracellular high cholesterol content of PVSMCs would lead to the disorders of clock genes and CCGs rhythmic expressions. And further studies should be conducted to demonstrate the specific molecular mechanisms involved.
Musman, Julien; Paradis, Stéphanie; Panel, Mathieu; Pons, Sandrine; Barau, Caroline; Caccia, Claudio; Leoni, Valerio; Ghaleh, Bijan; Morin, Didier
2017-10-15
A major cause of cell death during myocardial ischemia-reperfusion is mitochondrial dysfunction. We previously showed that the reperfusion of an ischemic myocardium was associated with an accumulation of cholesterol into mitochondria and a concomitant strong generation of auto-oxidized oxysterols. The inhibition of mitochondrial accumulation of cholesterol abolished the formation of oxysterols and prevented mitochondrial injury at reperfusion. The aim of this study was to investigate the impact of hypercholesterolemia on sterol and oxysterol accumulation in rat cardiac cytosols and mitochondria and to analyse the effect of the translocator protein ligand 4'-chlorodiazepam on this accumulation and mitochondrial function. Hypercholesterolemic ZDF fa/fa rats or normocholesterolemic lean rats were submitted to 30min of coronary artery occlusion followed by 15min reperfusion where cardiac cytosols and mitochondria were isolated. Hypercholesterolemia increased the cellular cardiac concentrations of cholesterol, cholesterol precursors and oxysterols both in cytosol and mitochondria in non-ischemic conditions. It also amplified the accumulation of all these compounds in cardiac cells and the alteration of mitochondrial function with ischemia-reperfusion. Administration of 4'-chlorodiazepam to ZDF fa/fa rats had no effect on the enhancement of sterols and oxysterols observed in the cytosols but inhibited cholesterol transfer to the mitochondria. It also alleviated the mitochondrial accumulation of all the investigated sterols and oxysterols. This was associated with a restoration of oxidative phosphorylation and a prevention of mitochondrial transition pore opening. The inhibition of cholesterol accumulation with TSPO ligands represents an interesting strategy to protect the mitochondria during ischemia-reperfusion in hypercholesterolemic conditions. Copyright © 2017 Elsevier Inc. All rights reserved.
Growth of Cadmium-Zinc Telluride Crystals by Controlled Seeding Contactless Physical Vapor Transport
NASA Technical Reports Server (NTRS)
Palosz, W.; Grasza, K.; Gillies, D.; Jerman, G.
1996-01-01
Bulk crystals of cadmium-zinc telluride, 23 mm in diameter and up to 45 grams in weight were grown. Controlled seed formation procedure was used to limit the number of grains in the crystal. Most uniform distribution of ZnTe in the crystals was obtained using excess (Cd + Zn) pressure in the ampoule.
Surface roughness and packaging tightness affect calcium lactate crystallization on Cheddar cheese.
Rajbhandari, P; Kindstedt, P S
2014-01-01
Calcium lactate crystals that sometimes form on Cheddar cheese surfaces are a significant expense to manufacturers. Researchers have identified several postmanufacture conditions such as storage temperature and packaging tightness that contribute to crystal formation. Anecdotal reports suggest that physical characteristics at the cheese surface, such as roughness, cracks, and irregularities, may also affect crystallization. The aim of this study was to evaluate the combined effects of surface roughness and packaging tightness on crystal formation in smoked Cheddar cheese. Four 20-mm-thick cross-section slices were cut perpendicular to the long axis of a retail block (~300g) of smoked Cheddar cheese using a wire cutting device. One cut surface of each slice was lightly etched with a cheese grater to create a rough, grooved surface; the opposite cut surface was left undisturbed (smooth). The 4 slices were vacuum packaged at 1, 10, 50, and 90kPa (very tight, moderately tight, loose, very loose, respectively) and stored at 1°C. Digital images were taken at 1, 4, and 8 wk following the first appearance of crystals. The area occupied by crystals and number of discrete crystal regions (DCR) were quantified by image analysis. The experiment was conducted in triplicate. Effects of storage time, packaging tightness, surface roughness, and their interactions were evaluated by repeated-measures ANOVA. Surface roughness, packaging tightness, storage time, and their 2-way interactions significantly affected crystal area and DCR number. Extremely heavy crystallization occurred on both rough and smooth surfaces when slices were packaged loosely or very loosely and on rough surfaces with moderately tight packaging. In contrast, the combination of rough surface plus very tight packaging resulted in dramatic decreases in crystal area and DCR number. The combination of smooth surface plus very tight packaging virtually eliminated crystal formation, presumably by eliminating available sites for nucleation. Cut-and-wrap operations may significantly influence the crystallization behavior of Cheddar cheeses that are saturated with respect to calcium lactate and thus predisposed to form crystals. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Subramanian, V S; Goyal, J; Miwa, M; Sugatami, J; Akiyama, M; Liu, M; Subbaiah, P V
1999-07-09
To determine the relative importance of platelet-activating factor-acetylhydrolase (PAF-AH) and lecithin-cholesterol acyltransferase (LCAT) in the hydrolysis of oxidized phosphatidylcholines (OXPCs) to lyso-phosphatidylcholine (lyso-PC), we studied the formation and metabolism of OXPCs in the plasma of normal and PAF-AH-deficient subjects. Whereas the loss of PC following oxidation was similar in the deficient and normal plasmas, the formation of lyso-PC was significantly lower, and the accumulation of OXPC was higher in the deficient plasma. Isolated LDL from the PAF-AH-deficient subjects was more susceptible to oxidation, and stimulated adhesion molecule synthesis in endothelial cells, more than the normal LDL. Oxidation of 16:0-[1-14C]-18:2 PC, equilibrated with plasma PC, resulted in the accumulation of labeled short- and long-chain OXPCs, in addition to the labeled aqueous products. The formation of the aqueous products decreased by 80%, and the accumulation of short-chain OXPC increased by 110% in the deficient plasma, compared to the normal plasma, showing that PAF-AH is predominantly involved in the hydrolysis of the truncated OXPCs. Labeled sn-2-acyl group from the long-chain OXPC was not only hydrolyzed to free fatty acid, but was preferentially transferred to diacylglycerol, in both the normal and deficient plasmas. In contrast, the acyl group from unoxidized PC was transferred only to cholesterol, showing that the specificity of LCAT is altered by OXPC. It is concluded that, while PAF-AH carries out the hydrolysis of mainly truncated OXPCs, LCAT hydrolyzes and transesterifies the long-chain OXPCs.
Loxoprofen Sodium, a Non-Selective NSAID, Reduces Atherosclerosis in Mice by Reducing Inflammation
Hamaguchi, Masahide; Seno, Takahiro; Yamamoto, Aihiro; Kohno, Masataka; Kadoya, Masatoshi; Ishino, Hidetaka; Ashihara, Eishi; Kimura, Shinya; Tsubakimoto, Yoshinori; Takata, Hiroki; Yoshikawa, Toshikazu; Maekawa, Taira; Kawahito, Yutaka
2010-01-01
Recently, it is suggested that the use of nonsteroidal anti-inflammatory drugs (NSAID) may contribute to the occurrence of cardiovascular events, while the formation of atherosclerotic lesions is related to inflammation. Loxoprofen sodium, a non-selective NSAID, becomes active after metabolism in the body and inhibits the activation of cyclooxygenase. We fed apoE−/− mice a western diet from 8 to 16 weeks of age and administered loxoprofen sodium. We measured atherosclerotic lesions at the aortic root. We examined serum levels of cholesterol and triglycerides with HPLC, platelet aggregation, and urinary prostaglandin metabolites with enzyme immune assay. Atherosclerotic lesion formation was reduced to 63.5% and 41.5% as compared to the control in male and female apoE−/− mice treated with loxoprofen sodium respectively. Urinary metabolites of prostaglandin E2, F1α, and thromboxane B2, and platelet aggregation were decreased in mice treated with loxoprofen sodium. Serum levels of cholesterol and triglycerides were not changed. We conclude that loxoprofen sodium reduced the formation of early to intermediate atherosclerotic lesions at the proximal aorta in mice mediated by an anti-inflammatory effect. PMID:20838569
Aggarwal, Kanu Priya; Narula, Shifa; Kakkar, Monica
2013-01-01
Urinary stone disease is an ailment that has afflicted human kind for many centuries. Nephrolithiasis is a significant clinical problem in everyday practice with a subsequent burden for the health system. Nephrolithiasis remains a chronic disease and our fundamental understanding of the pathogenesis of stones as well as their prevention and cure still remains rudimentary. Regardless of the fact that supersaturation of stone-forming salts in urine is essential, abundance of these salts by itself will not always result in stone formation. The pathogenesis of calcium oxalate stone formation is a multistep process and essentially includes nucleation, crystal growth, crystal aggregation, and crystal retention. Various substances in the body have an effect on one or more of the above stone-forming processes, thereby influencing a person's ability to promote or prevent stone formation. Promoters facilitate the stone formation while inhibitors prevent it. Besides low urine volume and low urine pH, high calcium, sodium, oxalate and urate are also known to promote calcium oxalate stone formation. Many inorganic (citrate, magnesium) and organic substances (nephrocalcin, urinary prothrombin fragment-1, osteopontin) are known to inhibit stone formation. This review presents a comprehensive account of the mechanism of renal stone formation and the role of inhibitors/promoters in calcium oxalate crystallisation. PMID:24151593
Scanning electron microscope view of iron crystal
NASA Technical Reports Server (NTRS)
1972-01-01
A scanning electron microscope photograph of iron crystals which grow in a small vug or cavity in a recrystallized breccia (fragmented rock) from the Apollo 15 Hadley-Apennino lunar landing site. The largest crystal is three microns across. Perfectly developed crystals such as these indicate slow formation from a hot vapor as the rock was cooling. The crystals are resting on an interlocking lattice of pyroxene (calsium-magnesium-iron silicate).
Scanning electron microscope view of iron crystal
1972-11-10
A scanning electron microscope photograph of iron crystals which grow in a small vug or cavity in a recrystallized breccia (fragmented rock) from the Apollo 15 Hadley-Apennino lunar landing site. The largest crystal is three microns across. Perfectly developed crystals such as these indicate slow formation from a hot vapor as the rock was cooling. The crystals are resting on an interlocking lattice of pyroxene (calsium-magnesium-iron silicate).
Damai, Rajani S; Sankhala, Rajeshwer S; Anbazhagan, Veerappan; Swamy, Musti J
2010-11-01
The effect of PDC-109 binding to dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) and supported membranes was investigated by (31)P NMR spectroscopy and atomic force microscopy. Additionally, the effect of cholesterol on the binding of PDC-109 to phosphatidylcholine (PC) membranes was studied. Binding of PDC-109 to MLVs of DMPC and DPPG induced the formation of an isotropic signal in their (31)P NMR spectra, which increased with increasing protein/lipid ratio and temperature, consistent with protein-induced disruption of the MLVs and the formation of small unilamellar vesicles or micelles but not inverse hexagonal or cubic phases. Incorporation of cholesterol in the DMPC MLVs afforded a partial stabilization of the lamellar structure, consistent with previous reports of membrane stabilization by cholesterol. AFM results are consistent with the above findings and show that addition of PDC-109 leads to a complete breakdown of PC membranes. The fraction of isotropic signal in (31)P NMR spectra of DPPG in the presence of PDC-109 was less than that of DMPC under similar conditions, suggesting a significantly higher affinity of the protein for PC. Confocal microscopic studies showed that addition of PDC-109 to human erythrocytes results in a disruption of the plasma membrane and release of hemoglobin into the solution, which was dependent on the protein concentration and incubation time.
de Ménorval, Marie-Amélie; Mir, Lluis M; Fernández, M Laura; Reigada, Ramon
2012-01-01
Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca(2+)) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations.
Rahman, Shaikh M; Baquero, Karalee C; Choudhury, Mahua; Janssen, Rachel C; de la Houssaye, Becky A; Sun, Ming; Miyazaki-Anzai, Shinobu; Wang, Shu; Moustaid-Moussa, Naima; Miyazaki, Makoto; Friedman, Jacob E
2016-07-01
Atherosclerosis is both a chronic inflammatory disease and a lipid metabolism disorder. C/EBPβ is well documented for its role in the development of hematopoietic cells and integration of lipid metabolism. However, C/EBPβ's role in atherosclerotic progression has not been examined. We assessed the impact of hematopoietic CEBPβ deletion in ApoE(-/-) mice on hyperlipidemia, inflammatory responses and lesion formation in the aorta. ApoE(-/-) mice were reconstituted with bone marrow cells derived from either WT or C/EBPβ(-/-) mice and placed on low fat or high fat/high cholesterol diet for 11 weeks. Hematopoietic C/EBPβ deletion in ApoE(-/-) mice reduced blood and hepatic lipids and gene expression of hepatic stearoyl CoA desaturase 1 and fatty acid synthase while expression of ATP binding cassette transporter G1, cholesterol 7-alpha-hydroxylase, and liver X receptor alpha genes were significantly increased. ApoE(-/-) mice reconstituted with C/EBPβ(-/-) bone marrow cells also significantly reduced blood cytokine levels and reduced lesion area in aortic sinuses compared with ApoE(-/-) mice reconstituted with WT bone marrow cells. Silencing of C/EBPβ in RAW264.7 macrophage cells prevented oxLDL-mediated foam cell formation and inflammatory cytokine secretion in conditioned medium. C/EBPβ in hematopoietic cells is crucial to regulate diet-induced inflammation, hyperlipidemia and atherosclerosis development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
de Ménorval, Marie-Amélie; Mir, Lluis M.; Fernández, M. Laura; Reigada, Ramon
2012-01-01
Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca2+) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations. PMID:22848583
Formation of metal nanoparticles in MgF2, CaF2 and BaF2 crystals under the electron beam irradiation
NASA Astrophysics Data System (ADS)
Bochkareva, Elizaveta S.; Sidorov, Alexander I.; Yurina, Uliana V.; Podsvirov, Oleg A.
2017-07-01
It is shown experimentally that electron beam action with electrons energies of 50 and 70 keV on MgF2, CaF2 and BaF2 crystals results in local formation in the crystal near-surface layer of Mg, Ca or Ba nanoparticles which possess plasmon resonance. In the case of MgF2 spheroidal nanoparticles are formed, in the cases of CaF2 and BaF2 - spherical. The formation of metal nanoparticles is confirmed by computer simulation in dipole quasistatic approximation. The dependence of absorption via electron irradiation dose is non-linear. It is caused by the increase of nanoparticles concentration and by the increase of nanoparticles sizes during irradiation. In the irradiated zones of MgF2 crystals, for irradiation doses less than 80 mC/cm2, the intense luminescence in a visible range appears. The practical application of fabricated composite materials for multilevel optical information recording is discussed.
Proteomic Analysis of Bacillus thuringiensis Strain 4.0718 at Different Growth Phases
Li, Xiaohui; Ding, Xuezhi; Xia, Liqiu; Sun, Yunjun; Yuan, Can; Yin, Jia
2012-01-01
The growth process of Bacillus thuringiensis Bt4.0718 strain was studied using proteomic technologies. The proteins of Bt whole cells at three phases—middle vegetative, early sporulation, and late sporulation—were extracted with lysis buffer, followed with separation by 2-DE and identified by MALDI-TOF/TOF MS. Bioactive factors such as insecticidal crystal proteins (ICPs) including Cry1Ac(3), Cry2Aa, and BTRX28, immune inhibitor (InhA), and InhA precursor were identified. InhA started to express at the middle vegetative phase, suggesting its contribution to the survival of Bt in the host body. At the early sporulation phase, ICPs started their expression. CotJC, OppA, ORF1, and SpoIVA related to the formation of crystals and spores were identified, the expression characteristics of which ensured the stable formation of crystals and spores. This study provides an important foundation for further exploration of the stable expression of ICPs, the smooth formation of crystals, and the construction of recombinant strains. PMID:22649324
Guria, Amit K.; Dey, Koushik; Sarkar, Suresh; Patra, Biplab K.; Giri, Saurav; Pradhan, Narayan
2014-01-01
Programming the reaction chemistry for superseding the formation of Sm2O3 in a competitive process of formation and dissolution, the crystal growth patterns are varied and two different nanostructures of Sm2O3 in 2D confinement regime are designed. Among these, the regular and self-assembled square platelets nanostructures exhibit paramagnetic behavior analogous to the bulk Sm2O3. But, the other one, 2D flower like shaped nanostructure, formed by irregular crystal growth, shows superparamagnetism at room temperature which is unusual for bulk paramagnet. It has been noted that the variation in the crystal growth pattern is due to the difference in the binding ability of two organic ligands, oleylamine and oleic acid, used for the synthesis and the magnetic behavior of the nanostructures is related to the defects incorporated during the crystal growth. Herein, we inspect the formation chemistry and plausible origin of contrasting magnetism of these nanostructures of Sm2O3. PMID:25269458
Cholesterol photo-oxidation: A chemical reaction network for kinetic modeling.
Barnaba, Carlo; Rodríguez-Estrada, Maria Teresa; Lercker, Giovanni; García, Hugo Sergio; Medina-Meza, Ilce Gabriela
2016-12-01
In this work we studied the effect of polyunsaturated fatty acids (PUFAs) methyl esters on cholesterol photo-induced oxidation. The oxidative routes were modeled with a chemical reaction network (CRN), which represents the first application of CRN to the oxidative degradation of a food-related lipid matrix. Docosahexaenoic acid (DHA, T-I), eicosapentaenoic acid (EPA, T-II) and a mixture of both (T-III) were added to cholesterol using hematoporphyrin as sensitizer, and were exposed to a fluorescent lamp for 48h. High amounts of Type I cholesterol oxidation products (COPs) were recovered (epimers 7α- and 7β-OH, 7-keto and 25-OH), as well as 5β,6β-epoxy. Fitting the experimental data with the CRN allowed characterizing the associated kinetics. DHA and EPA exerted different effects on the oxidative process. DHA showed a protective effect to 7-hydroxy derivatives, whereas EPA enhanced side-chain oxidation and 7β-OH kinetic rates. The mixture of PUFAs increased the kinetic rates several fold, particularly for 25-OH. With respect to the control, the formation of β-epoxy was reduced, suggesting potential inhibition in the presence of PUFAs. Copyright © 2016 Elsevier Inc. All rights reserved.
Gillespie, Mark A; Gold, Elizabeth S; Ramsey, Stephen A; Podolsky, Irina; Aderem, Alan; Ranish, Jeffrey A
2015-01-01
LXR–cofactor complexes activate the gene expression program responsible for cholesterol efflux in macrophages. Inflammation antagonizes this program, resulting in foam cell formation and atherosclerosis; however, the molecular mechanisms underlying this antagonism remain to be fully elucidated. We use promoter enrichment-quantitative mass spectrometry (PE-QMS) to characterize the composition of gene regulatory complexes assembled at the promoter of the lipid transporter Abca1 following downregulation of its expression. We identify a subset of proteins that show LXR ligand- and binding-dependent association with the Abca1 promoter and demonstrate they differentially control Abca1 expression. We determine that NCOA5 is linked to inflammatory Toll-like receptor (TLR) signaling and establish that NCOA5 functions as an LXR corepressor to attenuate Abca1 expression. Importantly, TLR3–LXR signal crosstalk promotes recruitment of NCOA5 to the Abca1 promoter together with loss of RNA polymerase II and reduced cholesterol efflux. Together, these data significantly expand our knowledge of regulatory inputs impinging on the Abca1 promoter and indicate a central role for NCOA5 in mediating crosstalk between pro-inflammatory and anti-inflammatory pathways that results in repression of macrophage cholesterol efflux. PMID:25755249
Chiba, Tomohiro; Sakurada, Tsuyoshi; Watanabe, Rie; Yamaguchi, Kohji; Kimura, Yasuhisa; Kioka, Noriyuki; Kawagishi, Hirokazu; Matsuo, Michinori; Ueda, Kazumitsu
2014-01-01
Hypercholesterolemia is one of the key risk factors for coronary heart disease, a major cause of death in developed countries. Suppression of NPC1L1-mediated dietary and biliary cholesterol absorption is predicted to be one of the most effective ways to reduce the risk of hypercholesterolemia. In a screen for natural products that inhibit ezetimibe glucuronide binding to NPC1L1, we found a novel compound, fomiroid A, in extracts of the mushroom Fomitopsis nigra. Fomiroid A is a lanosterone derivative with molecular formula C30H48O3. Fomiroid A inhibited ezetimibe glucuronide binding to NPC1L1, and dose-dependently prevented NPC1L1-mediated cholesterol uptake and formation of esterified cholesterol in NPC1L1-expressing Caco2 cells. Fomiroid A exhibited a pharmacological chaperone activity that corrected trafficking defects of the L1072T/L1168I mutant of NPC1L1. Because ezetimibe does not have such an activity, the binding site and mode of action of fomiroid A are likely to be distinct from those of ezetimibe. PMID:25551765
NASA Technical Reports Server (NTRS)
Grasza, K.; Palosz, W.; Curreri, Peter A. (Technical Monitor)
2002-01-01
An in-situ study of the morphology of the solid-vapor interface during iodine crystal growth was done. The conditions for terrace growth, flat faces formation and retraction, competition between sources of steps, formation of protrusions, surface roughening, and defect overgrowth are demonstrated and discussed.
Chloride influence on the formation of lanthanum hexaboride: An in-situ diffraction study
Mattox, Tracy M.; Groome, Chloe; Doran, Andrew; ...
2018-01-31
LaB 6 has been a material of interest for decades due to its thermionic emission, plasmonic properties, and low work function, and researchers continue to discover new properties even now. In order to meet growing interest in customizing these properties, it is important to gain better control over the system and a better understanding of the fundamental mechanism of LaB 6 crystal growth and formation. Traditional synthetic methods require very high temperatures, at which point crystallization happens too quickly to be readily studied. Our discovery that LaB 6 may be made using lower temperatures has made it possible to slowmore » down crystal formation enough for lattice growth to be observed. Here, we report an in situ diffraction study of the reaction between LaCl 3 and NaBH 4 . In observing the evolution of the (1 1 1), (1 1 0), and (2 0 0) lattice planes of LaB 6, we have discovered that the Cl of LaCl3 has a strong influence on crystal formation, and that excess Cl, temperature and heating rate may all be used as tools to control the LaB 6 final product.« less
Chloride influence on the formation of lanthanum hexaboride: An in-situ diffraction study
NASA Astrophysics Data System (ADS)
Mattox, Tracy M.; Groome, Chloe; Doran, Andrew; Beavers, Christine M.; Urban, Jeffrey J.
2018-03-01
LaB6 has been a material of interest for decades due to its thermionic emission, plasmonic properties, and low work function, and researchers continue to discover new properties even now. In order to meet growing interest in customizing these properties, it is important to gain better control over the system and a better understanding of the fundamental mechanism of LaB6 crystal growth and formation. Traditional synthetic methods require very high temperatures, at which point crystallization happens too quickly to be readily studied. Our discovery that LaB6 may be made using lower temperatures has made it possible to slow down crystal formation enough for lattice growth to be observed. We report here an in situ diffraction study of the reaction between LaCl3 and NaBH4. In observing the evolution of the (1 1 1), (1 1 0), and (2 0 0) lattice planes of LaB6, we have discovered that the Cl of LaCl3 has a strong influence on crystal formation, and that excess Cl, temperature and heating rate may all be used as tools to control the LaB6 final product.
Chloride influence on the formation of lanthanum hexaboride: An in-situ diffraction study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattox, Tracy M.; Groome, Chloe; Doran, Andrew
LaB 6 has been a material of interest for decades due to its thermionic emission, plasmonic properties, and low work function, and researchers continue to discover new properties even now. In order to meet growing interest in customizing these properties, it is important to gain better control over the system and a better understanding of the fundamental mechanism of LaB 6 crystal growth and formation. Traditional synthetic methods require very high temperatures, at which point crystallization happens too quickly to be readily studied. Our discovery that LaB 6 may be made using lower temperatures has made it possible to slowmore » down crystal formation enough for lattice growth to be observed. Here, we report an in situ diffraction study of the reaction between LaCl 3 and NaBH 4 . In observing the evolution of the (1 1 1), (1 1 0), and (2 0 0) lattice planes of LaB 6, we have discovered that the Cl of LaCl3 has a strong influence on crystal formation, and that excess Cl, temperature and heating rate may all be used as tools to control the LaB 6 final product.« less
Entropy-driven crystal formation on highly strained substrates
Savage, John R.; Hopp, Stefan F.; Ganapathy, Rajesh; Gerbode, Sharon J.; Heuer, Andreas; Cohen, Itai
2013-01-01
In heteroepitaxy, lattice mismatch between the deposited material and the underlying surface strongly affects nucleation and growth processes. The effect of mismatch is well studied in atoms with growth kinetics typically dominated by bond formation with interaction lengths on the order of one lattice spacing. In contrast, less is understood about how mismatch affects crystallization of larger particles, such as globular proteins and nanoparticles, where interparticle interaction energies are often comparable to thermal fluctuations and are short ranged, extending only a fraction of the particle size. Here, using colloidal experiments and simulations, we find particles with short-range attractive interactions form crystals on isotropically strained lattices with spacings significantly larger than the interaction length scale. By measuring the free-energy cost of dimer formation on monolayers of increasing uniaxial strain, we show the underlying mismatched substrate mediates an entropy-driven attractive interaction extending well beyond the interaction length scale. Remarkably, because this interaction arises from thermal fluctuations, lowering temperature causes such substrate-mediated attractive crystals to dissolve. Such counterintuitive results underscore the crucial role of entropy in heteroepitaxy in this technologically important regime. Ultimately, this entropic component of lattice mismatched crystal growth could be used to develop unique methods for heterogeneous nucleation and growth of single crystals for applications ranging from protein crystallization to controlling the assembly of nanoparticles into ordered, functional superstructures. In particular, the construction of substrates with spatially modulated strain profiles would exploit this effect to direct self-assembly, whereby nucleation sites and resulting crystal morphology can be controlled directly through modifications of the substrate. PMID:23690613
2003-05-07
KENNEDY SPACE CENTER, FLA. - The crystals visible in this laboratory dish were part of an experiment carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal
NASA Astrophysics Data System (ADS)
Guo, Changyan; Zhang, Haobin; Wang, Xiaochuan; Xu, Jinjiang; Liu, Yu; Liu, Xiaofeng; Huang, Hui; Sun, Jie
2013-09-01
Co-crystallization is an effective way to improve performance of the high explosive 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20). A new CL-20/caprolactam (CPL) cocrystal has been prepared by a rapid solvent evaporation method, and the crystal structure investigations show that the cocrystal is formed by strong intermolecular hydrogen bond interaction. The cocrystal can only be prepared with low moisture content of the air, because water in the air has a profound effect on the cocrystal formation, and it can lead to crystal form conversion of CL-20, but not the formation of cocrystal. The CL20/CPL explosive possess very low sensitivity, and may be used as additive in explosives formulation to desensitize other high explosives.
Interaction of Aspirin (Acetylsalicylic Acid) with Lipid Membranes
Barrett, Matthew A.; Zheng, Songbo; Roshankar, Golnaz; Alsop, Richard J.; Belanger, Randy K. R.; Huynh, Chris; Kučerka, Norbert; Rheinstädter, Maikel C.
2012-01-01
We studied the interaction of Aspirin (acetylsalicylic acid) with lipid membranes using x-ray diffraction for bilayers containing up to 50 mol% of aspirin. From 2D x-ray intensity maps that cover large areas of reciprocal space we determined the position of the ASA molecules in the phospholipid bilayers and the molecular arrangement of the molecules in the plane of the membranes. We present direct experimental evidence that ASA molecules participate in saturated lipid bilayers of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) and preferably reside in the head group region of the membrane. Up to 50 mol% ASA molecules can be dissolved in this type of bilayer before the lateral membrane organization is disturbed and the membranes are found to form an ordered, 2D crystal-like structure. Furthermore, ASA and cholesterol were found to co-exist in saturated lipid bilayers, with the ASA molecules residing in the head group region and the cholesterol molecules participating in the hydrophobic membrane core. PMID:22529913
Ultra compact spectrometer apparatus and method using photonic crystals
NASA Technical Reports Server (NTRS)
Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor); Gunapala, Sarath D. (Inventor)
2009-01-01
The present invention is directed to methods of photonic crystal formation, and to methods and apparatus for using such photonic crystals, particularly in conjunction with detector arrays. Photonic crystal parameters and detector array parameters are compared to optimize the selection and orientation of a photonic crystal shape. A photonic crystal is operatively positioned relative to a plurality of light sensors. The light sensors can be separated by a pitch distance and positioned within one half of the pitch distance of an exit surface of the photonic crystals.
Human LDL Structural Diversity Studied by IR Spectroscopy
Fernández-Higuero, José A.; Salvador, Ana M.; Martín, Cesar; Milicua, José Carlos G.; Arrondo, José L. R.
2014-01-01
Lipoproteins are responsible for cholesterol traffic in humans. Low density lipoprotein (LDL) delivers cholesterol from liver to peripheral tissues. A misleading delivery can lead to the formation of atherosclerotic plaques. LDL has a single protein, apoB-100, that binds to a specific receptor. It is known that the failure associated with a deficient protein-receptor binding leads to plaque formation. ApoB-100 is a large single lipid-associated polypeptide difficulting the study of its structure. IR spectroscopy is a technique suitable to follow the different conformational changes produced in apoB-100 because it is not affected by the size of the protein or the turbidity of the sample. We have analyzed LDL spectra of different individuals and shown that, even if there are not big structural changes, a different pattern in the intensity of the band located around 1617 cm−1 related with strands embedded in the lipid monolayer, can be associated with a different conformational rearrangement that could affect to a protein interacting region with the receptor. PMID:24642788
Wang, Xiao Qun; Yang, Ke; He, Yu Song; Lu, Lin; Shen, Wei Feng
2011-06-01
Excessive formation of advanced glycation end products (AGE) and lipid accumulation in macrophages play a pivotal role in the progression of atherosclerosis in diabetes mellitus. This study aimed to determine the molecular link between AGE-induced fatty acid binding protein 4 (FABP4) expression and macrophage lipid accumulation. AGE-BSA markedly increased macrophage FABP4 expression via engagement of RAGE, a 35-kDa transmembrane receptor that is able to bind extracellular AGE and responsible for the corresponding signal transduction, whereas knockdown of RAGE significantly reversed the FABP4 up-regulation. This effect was further paralleled with elevated intracellular total cholesterol and triacylglycerol levels. Finally, administration of FABP4 inhibitor totally abolished the increased lipid contents in response to AGE-BSA. These results indicate that FABP4 up-regulation is responsible for the enhanced macrophage lipid accumulation by AGE, which may underlie the accelerated formation of foam cells and development of atherosclerotic cardiovascular diseases in diabetic patients.
NASA Astrophysics Data System (ADS)
Hur, Min-Jae; Han, Xue-Feng; Choi, Ho-Gil; Yi, Kyung-Woo
2017-09-01
The quality of sapphire single crystals used as substrates for LED production is largely influenced by two defects: dislocation density and bubbles trapped in the crystal. In particular, the dislocation density has a higher value in sapphire grown by the Czochralski (CZ) method than by other methods. In the present study, we predict a decreased value for the convexity and thermal gradient at the crystal front (CF) through the use of an additional heater in an induction-heated CZ system. In addition, we develop a solute concentration model by which the location of bubble formation in CZ growth is calculated, and the results are compared with experimental results. We further calculate the location of bubble entrapment corresponding with the use of an additional heater. We find that sapphire crystal growth with an additional heater yields a decreased thermal gradient at the CF, together with decreased CF convexity, improved energy efficiency, and improvements in terms of bubble formation location.
1291 cases of cholelithiasis treated with electric shock on otoacupoints.
Zhang, Y; Zhang, L; Yang, H; Zhang, H; Zhu, Y
1991-06-01
Since 1985, the authors began to use electric shock on otoacupoints of varying electric resistance for the treatment of cholelithiasis. The instrument used was the Channel Therapeutic Instrument made in China, and the otoacupoints of varying electric resistance were Sympathetic, Pancreas--Gall Bladder, Stomach, Liver, Sanjiao, Endocrine, and Ermigen. In the 1291 cases treated, the total effective rate was 99.69%, the rate of calculus excretion was 91.32%, and the rate of total excretion was 19.51%. The composition of the calculi was cholesterol crystals (31.25%), bilirubin crystals (28.17%), and mixed crystals (40.58%). The largest calculus excreted was an extrahepatic biliary duct calculus of 1.75 cm X 1.5 cm; the largest number of calculi excreted was 152 cholecystic stones 0.3 cm X 0.5 cm in size. In 100 random cases, the biliary system was shown to manifest vigorous dilations and constrictions under Ultrasonic B-scan when the relevant otoacupoints were stimulated with electric shock. Among the 78 control cases, no cholecystic stones were excreted, inspite of the Magnesium Sulfate, Folium Cassiae and fatty meals administered to many cases with constipation.
Direct observation of mineral–organic composite formation reveals occlusion mechanism
Cho, Kang Rae; Kim, Yi -Yeoun; Yang, Pengcheng; ...
2016-01-06
Manipulation of inorganic materials with organic macromolecules enables organisms to create biominerals such as bones and seashells, where occlusion of biomacromolecules within individual crystals generates superior mechanical properties. Current understanding of this process largely comes from studying the entrapment of micron-size particles in cooling melts. Here, by investigating micelle incorporation in calcite with atomic force microscopy and micromechanical simulations, we show that different mechanisms govern nanoscale occlusion. By simultaneously visualizing the micelles and propagating step edges, we demonstrate that the micelles experience significant compression during occlusion, which is accompanied by cavity formation. This generates local lattice strain, leading to enhancedmore » mechanical properties. Furthermore, these results give new insight into the formation of occlusions in natural and synthetic crystals, and will facilitate the synthesis of multifunctional nanocomposite crystals.« less
NASA Astrophysics Data System (ADS)
Sullivan, S.; Nenes, A.
2015-12-01
Measurements of the in-cloud ice nuclei concentration can be three or four orders of magnitude less than those of the in-cloud ice crystal number concentration. Different secondary formation processes, active after initial ice nucleation, have been proposed to explain this discrepancy, but their relative importance, and even the exact physics of each mechanism, are still unclear. We construct a simple bin microphysics model (2IM) including depositional growth, the Hallett-Mossop process, ice-ice collisions, and ice-ice aggregation, with temperature- and supersaturation-dependent efficiencies for each process. 2IM extends the time-lag collision model of Yano and Phillips to additional bins and incorporates the aspect ratio evolution of Jensen and Harrington. Model output and measured ice crystal size distributions are compared to answer three questions: (1) how important is ice-ice aggregation relative to ice-ice collision around -15°C, where the Hallett-Mossop process is no longer active; (2) what process efficiencies lead to the best reproduction of observed ice crystal size distributions; and (3) does ice crystal aspect ratio affect the dominant secondary formation process. The resulting parameterization is intended for eventual use in larger-scale mixed-phase cloud schemes.
Use of Capillaries for Macromolecular Crystallization in a Cryogenic Dewar
NASA Technical Reports Server (NTRS)
Ciszak, Ewa; Hammons, Aaron S.; Hong, Young Soo
2002-01-01
The enhanced gaseous nitrogen (EGN) dewar is a cryogenic dry shipper with a sealed cylinder inserted inside along with a temperature monitoring device, and is intended for macromolecular crystallization experiments on the International Space Station. Within the dewar, each crystallization experiment is contained as a solution within a plastic capillary tube. The standard procedure for loading samples in these tubes has involved rapid freezing of the precipitant and biomolecular solution, e.g., protein, directly in liquid nitrogen; this method, however, often resulted in uncontrolled formation of air voids, These air pockets, or bubbles, can lead to irreproducible crystallization results. A novel protocol has been developed to prevent formation of bubbles, and this has been tested in the laboratory as well as aboard the International Space Station during a 42-day long mission of July/August 2001. The gain or loss of mass from solutions within the plastic capillaries revealed that mass transport occurred among separated tubes, and that this mass transport was dependent upon the hygroscopic character of the solution contained in any given tube. The surface area of the plastic capillary tube also related to the observed mass transport. Furthermore, the decreased mass of solutions of-protein correlated to observed formation of protein crystals.
Kim, Chae-Wook; Yun, Jun-Won; Bae, Il-Hong; Lee, Joon-Seok; Kang, Hyun-Jin; Joo, Kyung-Mi; Jeong, Hye-Jin; Chung, Jin-Ho; Park, Young-Ho; Lim, Kyung-Min
2010-01-01
After the outbreak of acute renal failure associated with melamine-contaminated pet food, many attempts have been made to uncover the mechanism underlying the renal toxicity caused by melamine and melamine-related compounds. Using rat models, we investigated the renal crystal formation following the ingestion of a melamine-cyanuric acid mixture (M+CA, 1:1) to gain insight into the M+CA-induced renal toxicity. M+CA did not induce toxicity in precision-cut kidney slices, suggesting that M+CA does not have a direct nephrotoxicity. On the contrary, oral administration of M+CA for 3 days induced nephrotoxicity as determined by increased serum blood urea nitrogen and creatinine, reduced creatinine clearance, and enlarged kidneys in the animals treated with 50 mg/kg M+CA (melamine, 25 mg/kg, and cyanuric acid, 25 mg/kg; 2 of 10 animals) and 100 mg/kg M+CA (9 of 9 animals). While urine crystals were found in all animals treated with M+CA (25-100 mg/kg), histological examination revealed that renal crystals could be observed only in the kidneys of animals showing signs of nephrotoxicity. Remarkably, at 50 mg/kg M+CA, crystals were observed mainly in the medulla region of the kidney, while at 100 mg/kg, crystals were disseminated throughout the cortex and medulla regions. To further investigate the crystal formation by M+CA, matrix-assisted laser desorption/ionization quadrupole time-of-flight (MALDI-Q-TOF) imaging mass spectrometry detecting melamine distribution through monitoring the product ion (m/z 85, M + H) from melamine (m/z 127, M + H) was developed to directly obtain the image of melamine distribution in the kidney. The distribution image of melamine in kidney tissue confirmed that dense points of melamine were located only in the medulla region at 50 mg/kg M+CA, while at 100 mg/kg, they were disseminated widely from the cortex to medulla. These results demonstrated that M+CA ingestion could lead to crystal formation in kidney tubules along the osmotic gradient and that renal crystal formation is closely linked with M+CA-induced nephrotoxicity.
Reverse Micelle Based Synthesis of Microporous Materials in Microgravity
NASA Technical Reports Server (NTRS)
Dutta, Prabir K.
1995-01-01
Formation of zincophosphates from zinc and phosphate containing reverse micelles (water droplets in hexane) has been examined. The frameworks formed resemble that made by conventional hydrothermal synthesis. Dynamics of crystal growth are however quite different, and form the main focus of this study. In particular, the formation of zincophosphate with the sodalite framework was examined in detail. The intramicellar pH was found to have a strong influence on crystal growth. Crystals with a cubic morphology were formed directly from the micelles, without an apparent intermediate amorphous phase over a period of four days by a layer-bylayer growth at the intramicellar pH of 7.6. At a pH of 6.8, an amorphous precipitate rapidly sediments in hours. Sodalite was eventually formed from this settled phase via surface diffusion and reconstruction within four days. With a rotating cell, it was possible to minimize sedimentation and crystals were found to grow epitaxially from the spherical, amorphous particles. Intermediate pH's of 7.2 led to formation of aggregated sodalite crystals prior to settling, again without any indication of an intermediate amorphous phase. These diverse pathways were possible due to changes in intramicellar supersaturation conditions by minor changes in pH. In contrast, conventional syntheses in this pH range all proceeded by similar crystallization pathways through an amorphous gel. This study establishes that synthesis of microporous frameworks is not only possible in reverse micellar systems, but they also allow examination of possible crystallization pathways.