Science.gov

Sample records for cholesterol esterase activity

  1. Cholesterol esterase inhibitory activity of bioactives from leaves of Mangifera indica L

    PubMed Central

    Gururaja, G. M.; Mundkinajeddu, Deepak; Dethe, Shekhar M.; Sangli, Gopala K.; Abhilash, K.; Agarwal, Amit

    2015-01-01

    Background: In the earlier studies, methanolic extract of Mangifera indica L leaf was exhibited hypocholesterol activity. However, the bioactive compounds responsible for the same are not reported so far. Objective: To isolate the bioactive compounds with hypocholesterol activity from the leaf extract using cholesterol esterase inhibition assay which can be used for the standardization of extract. Materials and Methods: The leaf methanolic extract of M. indica (Sindoora variety) was partitioned with ethyl acetate and chromatographed on silica gel to yield twelve fractions and the activity was monitored by using cholesterol esterase inhibition assay. Active fractions were re-chromatographed to yield individual compounds. Results and Discussion: A major compound mangiferin present in the extract was screened along with other varieties of mango leaves for cholesterol esterase inhibition assay. However, the result indicates that compounds other than mangiferin may be active in the extract. Invitro pancreatic cholesterol esterase inhibition assay was used for bioactivity guided fractionation (BAGF) to yield bioactive compound for standardization of extract. Bioactivity guided fractionation afford the active fraction containing 3b-taraxerol with an IC50 value of 0.86μg/ml. Conclusion: This study demonstrates that M. indica methanol extract of leaf have significant hypocholesterol activity which is standardized with 3b-taraxerol, a standardized extract for hypocholesterol activity resulted in development of dietary supplement from leaves of Mangifera indica. PMID:26692750

  2. 3 Benzyl-6-chloropyrone: a suicide inhibitor of cholesterol esterase

    SciTech Connect

    Saint, C.; Gallo, I.; Kantorow, M.; Bailey, J.M.

    1986-05-01

    Cholesterol, absorbed from the intestine, appears in lymph as the ester. Cholesterol esterase is essential for this process, since depletion of the enzyme blocks and repletion restores, absorption. Selective inhibitors of cholesterol esterase may thus prove useful in reducing cholesterol uptake. A series of potential suicide substrates were synthesized which, following cleavage by the enzyme, would attack the putative nucleophile in the active site. One of these, 3-benzyl-6-chloropyrone (3BCP), inhibited both synthesis and hydrolysis of /sup 14/C-cholesteryl oleate with an I/sub 50/ of approximately 150 ..mu..M. The inactivation was time-dependent and characteristic of a suicide mechanism. The ..cap alpha.. pyrone structure (lactone analog) is cleaved by a serine-hydroxyl in the active site. This generates an enoyl chloride which inactivates the imidazole believed to play a part in the catalytic function of the enzyme. Inhibition by 3BCP is selective for cholesterol esterase. The activity of pancreatic lipase as not affected by concentrations up to 1 mM.

  3. Hormone-sensitive lipase is a cholesterol esterase of the intestinal mucosa.

    PubMed

    Grober, Jacques; Lucas, Stéphanie; Sörhede-Winzell, Maria; Zaghini, Isabelle; Mairal, Aline; Contreras, Juan-Antonio; Besnard, Philippe; Holm, Cecilia; Langin, Dominique

    2003-02-21

    The identity of the enzymes responsible for lipase and cholesterol esterase activities in the small intestinal mucosa is not known. Because hormone-sensitive lipase (HSL) catalyzes the hydrolysis of acylglycerols and cholesteryl esters, we sought to determine whether HSL could be involved. HSL mRNA and protein were detected in all segments of the small intestine by Northern and Western blot analyses, respectively. Immunocytochemistry experiments revealed that HSL was expressed in the differentiated enterocytes of the villi and was absent in the undifferentiated cells of the crypt. Diacylglycerol lipase and cholesterol esterase activities were found in the different segments. Analysis of gut from HSL-null mice showed that diacylglycerol lipase activity was unchanged in the duodenum and reduced in jejunum. Neutral cholesterol esterase activity was totally abolished in duodenum, jejunum, and ileum of HSL-null mice. Analysis of HSL mRNA structure showed two types of transcripts expressed in equal amounts with alternative 5'-ends transcribed from two exons. This work demonstrates that HSL is expressed in the mucosa of the small intestine. The results also reveal that the enzyme participates in acylglycerol hydrolysis in jejunal enterocytes and cholesteryl ester hydrolysis throughout the small intestine. PMID:12482847

  4. Enzyme induced biodegradation of polycarbonate-polyurethanes: dose dependence effect of cholesterol esterase.

    PubMed

    Tang, Y W; Labow, R S; Santerre, J P

    2003-05-01

    The current study has investigated the influence of esterase activity (80-400units/ml) on the biodegradation of polycarbonate-urethanes (PCNUs) by cholesterol esterase (CE), with a particular interest in studying the influence of different hard segment structures and their contribution to sensitizing the polymer towards enzyme catalyzed hydrolysis. Polycarbonate based polyurethanes were synthesized with varying hard segment content as well as hard segment chemistry based on three different diisocyanates, 1,6-hexane diisocyanate (HDI), 4,4'-methylene bisphenyl diisocyanate (MDI) and 4,4-methylene biscyclohexyl diisocyanate (HMDI). The effect of different chemistry on surface contact angle was measured in order to define the relative chemical nature of the surfaces. The enzyme dose response was found to be lower when hard segment content in the polymer was high. There was a very strong dependence on enzyme concentration for polyurethanes with different hard segment chemistry, despite the fact that the nature of the hydrolysable polycarbonate segment remained the same. The PCNU which showed the most dramatic dependence on enzyme concentration was synthesized with HMDI. At low enzyme concentration (80units/ml) this material was the most stable of the polymers while at elevated CE concentration (400units/ml) the polymer underwent a catastrophic breakdown. The findings suggested that protein binding on the surfaces was saturated even though enzyme degradation did not achieve saturation on any of the surfaces. The role of protein binding in modulating the hydrolytic action of the enzymes at different activity levels highlights a need for further study in this area.

  5. Potential human cholesterol esterase inhibitor design: benefits from the molecular dynamics simulations and pharmacophore modeling studies.

    PubMed

    John, Shalini; Thangapandian, Sundarapandian; Lee, Keun Woo

    2012-01-01

    Human pancreatic cholesterol esterase (hCEase) is one of the lipases found to involve in the digestion of large and broad spectrum of substrates including triglycerides, phospholipids, cholesteryl esters, etc. The presence of bile salts is found to be very important for the activation of hCEase. Molecular dynamic simulations were performed for the apoform and bile salt complexed form of hCEase using the co-ordinates of two bile salts from bovine CEase. The stability of the systems throughout the simulation time was checked and two representative structures from the highly populated regions were selected using cluster analysis. These two representative structures were used in pharmacophore model generation. The generated pharmacophore models were validated and used in database screening. The screened hits were refined for their drug-like properties based on Lipinski's rule of five and ADMET properties. The drug-like compounds were further refined by molecular docking simulation using GOLD program based on the GOLD fitness score, mode of binding, and molecular interactions with the active site amino acids. Finally, three hits of novel scaffolds were selected as potential leads to be used in novel and potent hCEase inhibitor design. The stability of binding modes and molecular interactions of these final hits were re-assured by molecular dynamics simulations. PMID:22292952

  6. Three-dimensional structure of homodimeric cholesterol esterase-ligand complex at 1.4 Å resolution

    SciTech Connect

    Pletnev, V.; Addlagatta, A.; Wawrzak, Z.; Duax, W.

    2010-03-08

    The three-dimensional structure of a Candida cylindracea cholesterol esterase (ChE) homodimer (534 x 2 amino acids) in complex with a ligand of proposed formula C{sub 23}H{sub 48}O{sub 2} has been determined at 1.4 {angstrom} resolution in space group P1 using synchrotron low-temperature data. The structure refined to R = 0.136 and R{sub free} = 0.169 and has revealed new stereochemical details in addition to those detected for the apo- and holo-forms at 1.9 and 2.0 {angstrom} resolution, respectively [Ghosh et al. (1995), Structure, 3, 279-288]. The cholesterol esterase structure is a dimer with four spatially separated interfacial contact areas and two symmetry-related pairs of openings to an internal intradimer cavity. Hydrophobic active-site gorges in each subunit face each other across a central interfacial cavity. The ChE subunits have carbohydrate chains attached to their Asn314 and Asn351 residues, with two ordered N-acetyl-D-glucosoamine moieties visible at each site. The side chains of 14 residues have two alternative conformations with occupancy values of 0.5 {+-} 0.2. For each subunit the electron density in the enzyme active-site gorge is well modeled by a C{sub 23}-chain fatty acid.

  7. Phenol esterase activity of porcine skin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The alkyl esters of plant-derived phenols may serve as slow-release sources for cutaneous delivery of antioxidants. The ability of skin esterases to hydrolyze phenolic esters was examined. Esters of tyrosol and hydroxytyrosol were prepared from decanoic and lipoic acids. Ferulic acid was esterified ...

  8. Absence of "A"-esterase activity in the serum of a patient with Tangier disease.

    PubMed

    Mackness, M I; Peuchant, E; Dumon, M F; Walker, C H; Clerc, M

    1989-12-01

    The levels of apolipoprotein A-I, A-II and B in subjects who are homozygous or heterozygous for Tangier disease are reported and compared with the amount of "A"-esterase in the serum. The "A"-esterases hydrolyse toxic organophosphate pesticides and are currently classified by the nomenclature committee of the International Union of Biochemistry as arylesterases (EC 3.1.1.2) although recent evidence has cast doubt on this classification. The apolipoprotein data are consistent with previous data reported for a number of Tangier patients. The homozygote has a marked reduction in apo A-I and A-II levels and a 30% reduction in apo B. The heterozygotes have about a 50% reduction of apo A-I, a slight reduction in apo A-II and no change in apo B. These apolipoprotein values correspond to a marked reduction in HDL cholesterol for the homozygote and substantial reductions in the heterozygotes. The "A"-esterase activity is zero in one homozygote while heterozygotes have about 5% of the levels in control subjects. Arylesterase activity appears to be essentially normal. The data thus support previous observations that the HDL "A"-esterase activity is greatly reduced in those conditions where HDL apo A-I is markedly reduced, e.g., in "Fish-eye" Disease.

  9. Electrophoretic and densitometric analysis of esterase activity as an indicator of mercury toxicity

    SciTech Connect

    Benton, M.J.; Guttman, S.I.

    1995-12-31

    In an earlier experiment, esterase activity as determined by starch gel electrophoresis was absent in larval caddisflies (Nectopsyche albida) that succumbed to mercury exposure, but was present in control larvae. To test the effects of mercury exposure duration on esterase activity, additional larval N. albida were exposed under conditions identical to those in the earlier experiment, and esterase activity was determined by electrophoresis of several live individuals every 12 hours. To test the effects of mercury concentration on esterase activity, homogenates of unexposed N. albida were electrophoresed, and esterase activity was determined using esterase-specific stains spiked with various concentrations of mercury. Following both experiments, esterase activity was quantified by laser densitometry of stained electrophoresis gels, Results indicate that: (1) inorganic mercury inhibited esterase activity, (2) inhibition increased with exposure time, and (3) inhibition increased with mercury concentration. Esterase inhibition may be a causal factor in mortality related to mercury exposure. Quantification of esterase activity by densitometry of electrophoretic gels may be an alternative method of rapid toxicity assessment.

  10. Plasma B-esterase activities in European raptors.

    PubMed

    Roy, Claudie; Grolleau, Gérard; Chamoulaud, Serge; Rivière, Jean-Louis

    2005-01-01

    B-esterases are serine hydrolases composed of cholinesterases, including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and carboxylesterase (CbE). These esterases, found in blood plasma, are inhibited by organophosphorus (OP) and carbamate (CB) insecticides and can be used as nondestructive biomarkers of exposure to anticholinesterase insecticides. Furthermore, B-esterases are involved in detoxification of these insecticides. In order to establish the level of these enzymes and to have reference values for their normal activities, total plasma cholinesterase (ChE), AChE and BChE activities, and plasma CbE activity were determined in 729 European raptors representing 20 species, four families, and two orders. The diurnal families of the Falconiforme order were represented by Accipitridae and Falconidae and the nocturnal families of the Strigiforme order by Tytonidae and Strigidae. Intraspecies differences in cholinesterase activities according to sex and/or age were investigated in buzzards (Buteo buteo), sparrowhawks (Accipiter nisus), kestrels (Falco tinnunculus), barn owls (Tyto alba), and tawny owls (Strix aluco). Sex-related differences affecting ChE and AChE activities were observed in young kestrels (2-3-mo-old) and age-related differences in kestrels (ChE and AChE), sparrowhawks (AChE), and tawny owls (ChE, AChE, and BChE). The interspecies analysis yielded a negative correlation between ChE activity and body mass taking into account the relative contribution of AChE and BChE to ChE activity, with the exception of the honey buzzard (Pernis apivorus). The lowest ChE activities were found in the two largest species, Bonelli's eagle (Hieraaetus fasciatus) and Egyptian vulture (Neophron percnopterus) belonging to the Accipitridae family. The highest ChE activities were found in the relatively small species belonging to the Tytonidae and Strigidae families and in honey buzzard of the Accipitridae family. Species of the Accipitridae, Tytonidae, and

  11. Esterase Activity and Intracellular Localization in Reconstructed Human Epidermal Cultured Skin Models

    PubMed Central

    Katayanagi, Mishina; Hashimoto, Fumie

    2015-01-01

    Background Reconstructed human epidermal culture skin models have been developed for cosmetic and pharmaceutical research. Objective This study evaluated the total and carboxyl esterase activities (i.e., Km and Vmax, respectively) and localization in two reconstructed human epidermal culture skin models (LabCyte EPI-MODEL [Japan Tissue Engineering] and EpiDerm [MatTek/Kurabo]). The usefulness of the reconstruction cultured epidermis was also verified by comparison with human and rat epidermis. Methods Homogenized epidermal samples were fractioned by centrifugation. p-nitrophenyl acetate and 4-methylumbelliferyl acetate were used as substrates of total esterase and carboxyl esterase, respectively. Results Total and carboxyl esterase activities were present in the reconstructed human epidermal culture skin models and were localized in the cytosol. Moreover, the activities and localization were the same as those in human and rat epidermis. Conclusion LabCyte EPI-MODEL and EpiDerm are potentially useful for esterase activity prediction in human epidermis. PMID:26082583

  12. Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media

    DOEpatents

    Arnold, Frances H.; Moore, Jeffrey C.

    1998-01-01

    A method for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase.

  13. Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media

    DOEpatents

    Arnold, Frances H.; Moore, Jeffrey C.

    1999-01-01

    A method for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase.

  14. Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media

    DOEpatents

    Arnold, F.H.; Moore, J.C.

    1998-04-21

    A method is disclosed for isolating and identifying modified para-nitrobenzyl esterases. These enzymes exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase. 43 figs.

  15. Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media

    DOEpatents

    Arnold, F.H.; Moore, J.C.

    1999-05-25

    A method is disclosed for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase. 43 figs.

  16. Active membrane cholesterol as a physiological effector.

    PubMed

    Lange, Yvonne; Steck, Theodore L

    2016-09-01

    Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily.

  17. Distribution of esterase activity in porcine ear skin, and the effects of freezing and heat separation.

    PubMed

    Lau, Wing Man; Ng, Keng Wooi; Sakenyte, Kristina; Heard, Charles M

    2012-08-20

    Porcine ear skin is widely used to study skin permeation and absorption of ester compounds, whose permeation and absorption profiles may be directly influenced by in situ skin esterase activity. Importantly, esterase distribution and activity in porcine ear skin following common protocols of skin handling and storage have not been characterised. Thus, we have compared the distribution and hydrolytic activity of esterases in freshly excised, frozen, heated and explanted porcine ear skin. Using an esterase staining kit, esterase activity was found to be localised in the stratum corneum and viable epidermis. Under frozen storage and a common heating protocol of epidermal sheet separation, esterase staining in the skin visibly diminished. This was confirmed by a quantitative assay using HPLC to monitor the hydrolysis of aspirin, in freshly excised, frozen or heated porcine ear skin. Compared to vehicle-only control, the rate of aspirin hydrolysis was approximately three-fold higher in the presence of freshly excised skin, but no different in the presence of frozen or heated skin. Therefore, frozen and heat-separated porcine ear skin should not be used to study the permeation of ester-containing permeants, in particular co-drugs and pro-drugs, whose hydrolysis or degradation can be modulated by skin esterases.

  18. Differences in Esterase Activity to Aspirin and p-Nitrophenyl Acetate among Human Serum Albumin Preparations.

    PubMed

    Tatsumi, Akitoshi; Okada, Masaya; Inagaki, Yoshihiro; Inoue, Sachiyo; Hamaguchi, Tsuneo; Iwakawa, Seigo

    2016-01-01

    Human serum albumin (HSA) has two major ligand-binding sites, sites I and II, and also hydrolyzes some compounds at both sites. In the present study, we investigated differences in esterase activity among HSA preparations, and also the effects of warfarin, indomethacin, and naproxen on the hydrolytic activities of HSA to aspirin and p-nitrophenyl acetate. The esterase activities of HSA to aspirin or p-nitrophenyl acetate were measured from the pseudo-first-order formation rate constant (kobs) of salicylic acid or p-nitrophenol by HSA. Inter-lot variations were observed in the esterase activities of HSA to aspirin and p-nitrophenyl acetate; however, the esterase activity of HSA to aspirin did not correlate with that to p-nitrophenyl acetate. The inhibitory effects of warfarin and indomethacin on the esterase activity of HSA to aspirin were stronger than that of naproxen. In contrast, the inhibitory effect of naproxen on the esterase activity of HSA to p-nitrophenyl acetate was stronger than those of warfarin and indomethacin. These results suggest that the administration of different commercial HSA preparations and the co-administration with site I or II high-affinity binding drugs may change the pharmacokinetic profiles of drugs that are hydrolyzed by HSA. PMID:27476944

  19. Chaperone-like activities of {alpha}-synuclein: {alpha}-Synuclein assists enzyme activities of esterases

    SciTech Connect

    Ahn, Misun; Kim, SeungBum; Kang, Mira; Ryu, Yeonwoo . E-mail: ywryu@ajou.ac.kr; Doohun Kim, T. . E-mail: doohunkim@ajou.ac.kr

    2006-08-11

    {alpha}-Synuclein, a major constituent of Lewy bodies (LBs), has been implicated to play a critical role in the pathogenesis of Parkinson's disease (PD), although the physiological function of {alpha}-synuclein has not yet been known. Here we have shown that {alpha}-synuclein, which has no well-defined secondary or tertiary structure, can protect the enzyme activity of microbial esterases against stress conditions such as heat, pH, and organic solvents. In particular, the flexibility of {alpha}-synuclein and its C-terminal region seems to be important for complex formation, but the structural integrity of the C-terminal region may not be required for stabilization of enzyme activity. In addition, atomic force microscopy (AFM) and in vivo enzyme assays showed highly specific interactions of esterases with {alpha}-synuclein. Our results indicate that {alpha}-synuclein not only protects the enzyme activity of microbial esterases in vitro, but also can stabilize the active conformation of microbial esterases in vivo.

  20. The search of the target of promotion: Phenylbenzoate esterase activities in hen peripheral nerve

    SciTech Connect

    Moretto, A. . E-mail: angelo.moretto@icps.it; Nicolli, A.; Lotti, M.

    2007-03-15

    Certain esterase inhibitors, such as carbamates, phosphinates and sulfonyl halides, do not cause neuropathy as some organophosphates, but they may exacerbate chemical or traumatic insults to axons. This phenomenon is called promotion of axonopathies. Given the biochemical and toxicological characteristics of these compounds, the hypothesis was made that the target of promotion is a phenyl valerate (PV) esterase similar to neuropathy target esterase (NTE), the target of organophosphate induced delayed polyneuropathy. However, attempts to identify a PV esterase in hen peripheral nerve have been, so far, unsuccessful. We tested several esters, other than PV, as substrates of esterases from crude homogenate of the hen peripheral nerve. The ideal substrate should be poorly hydrolysed by NTE but extensively by enzyme(s) that are insensitive to non-promoters, such as mipafox, and sensitive to promoters, such as phenyl methane sulfonyl fluoride (PMSF). When phenyl benzoate (PB) was used as substrate, about 65% of total activity was resistant to the non-promoter mipafox (up to 0.5 mM, 20 min, pH 8.0), that inhibits NTE and other esterases. More than 90% of this resistant activity was sensitive to the classical promoter PMSF (1 mM, 20 min, pH 8.0) with an IC{sub 50} of about 0.08 mM (20 min, pH 8.0). On the contrary, the non-promoter p-toluene sulfonyl fluoride caused only about 10% inhibition at 0.5 mM. Several esterase inhibitors including, paraoxon, phenyl benzyl carbamate, di-n-butyl dichlorovinyl phosphate and di-isopropyl fluorophosphate, were tested both in vitro and in vivo for inhibition of this PB activity. Mipafox-resistant PMSF-sensitive PB esterase activity(ies) was inhibited by promoters but not by non promoters and neuropathic compounds.

  1. Glucuronoyl esterases are active on polymeric substrate, methyl esterified glucuronoxylan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alkali extracted beechwood glucuronoxylan methyl ester prepared by esterification of 4-O-methyl-D-glucuronic acid side residues by methanol was found to serve as substrate of microbial glucuronoyl esterases from Ruminococcus flavefaciens, Schizophyllum commune and Trichoderma reesei. The enzymatic d...

  2. Esterase Active in Polar Organic Solvents from the Yeast Pseudozyma sp. NII 08165.

    PubMed

    Alex, Deepthy; Shainu, Anju; Pandey, Ashok; Sukumaran, Rajeev K

    2014-01-01

    Esterases/lipases active in water miscible solvents are highly desired in biocatalysis where substrate solubility is limited and also when the solvent is desired as an acyl acceptor in transesterification reactions, as with the case of biodiesel production. We have isolated an esterase from the glycolipid producing yeast-Pseudozyma sp. NII 08165 which in its crude form was alkali active, thermo stable, halo tolerant and also capable of acting in presence of high methanol concentration. The crude enzyme which maintained 90% of its original activity after being treated at 70°C was purified and the properties were characterized. The partially purified esterase preparation had temperature and pH optima of 60°C and 8.0 respectively. The enzyme retained almost complete activity in presence of 25% methanol and 80% activity in the same strength of ethanol. Conditions of enzyme production were optimized, which lead to 9 fold increase in the esterase yield. One of the isoforms of the enzyme LIP1 was purified to homogeneity and characterized. Purified LIP1 had a K m and V max of 0.01 and 1.12, respectively. The purified esterase lost its thermo and halo tolerance but interestingly, retained 97% activity in methanol. PMID:24800063

  3. Esterase Active in Polar Organic Solvents from the Yeast Pseudozyma sp. NII 08165

    PubMed Central

    Shainu, Anju; Pandey, Ashok; Sukumaran, Rajeev K.

    2014-01-01

    Esterases/lipases active in water miscible solvents are highly desired in biocatalysis where substrate solubility is limited and also when the solvent is desired as an acyl acceptor in transesterification reactions, as with the case of biodiesel production. We have isolated an esterase from the glycolipid producing yeast-Pseudozyma sp. NII 08165 which in its crude form was alkali active, thermo stable, halo tolerant and also capable of acting in presence of high methanol concentration. The crude enzyme which maintained 90% of its original activity after being treated at 70°C was purified and the properties were characterized. The partially purified esterase preparation had temperature and pH optima of 60°C and 8.0 respectively. The enzyme retained almost complete activity in presence of 25% methanol and 80% activity in the same strength of ethanol. Conditions of enzyme production were optimized, which lead to 9 fold increase in the esterase yield. One of the isoforms of the enzyme LIP1 was purified to homogeneity and characterized. Purified LIP1 had a Km and Vmax of 0.01 and 1.12, respectively. The purified esterase lost its thermo and halo tolerance but interestingly, retained 97% activity in methanol. PMID:24800063

  4. The Chlamydia trachomatis CT149 protein exhibits esterase activity in vitro and catalyzes cholesteryl ester hydrolysis when expressed in HeLa cells

    PubMed Central

    Peters, Jan; Onguri, Vijaya; Nishimoto, Satoru K.; Marion, Tony N.; Byrne, Gerald I.

    2012-01-01

    Chlamydia, like other intracellular bacteria, are auxotrophic for a variety of essential metabolites and obtain cholesterol and fatty acids from their eukaryotic host cell, however not many Chlamydia-specific enzymes have been identified that are involved in lipid metabolism. In silico analysis of one candidate C. trachomatis enzyme, annotated as a conserved putative hydrolase (CT149), identified two lipase/esterase GXSXG motifs, and a potential cholesterol recognition/interaction amino acid consensus (CRAC) sequence. His-tag purified recombinant CT149 exhibited ester hydrolysis activity in a nitrophenyl acetate-based cell-free assay system. When cholesteryl linoleate was used as substrate, ester hydrolysis occurred and production of cholesterol was detected by high performance liquid chromatography. Exogenous expression of transfected CT149 in HeLa cells resulted in a significant decrease of cytoplasmic cholesteryl esters within 48 hrs. These results demonstrate that CT149 has cholesterol esterase activity and is likely to contribute to the hydrolysis of eukaryotic cholesteryl esters during intracellular chlamydial growth. PMID:22940277

  5. [Erythropoietin-forming and esterase activity of rat kidney subcellular fractions during stimulation of erythropoiesis].

    PubMed

    Novikov, N M; Voronkov, S F; Voloshchenko, L G; Mikhaĭlova, S N

    1977-01-01

    Stimulation of erythropoiesis in rats (hemolytic-phenylhydrazine and acute posthemorrhagic anemia, effect of hypoxic hypoxia) was accompanied by an increased erythropoietine-formating activity in kidney microsomes and light mitochondria. The phenomenon correlated with an increased esterase activity in hypotonic supernatant of kidney homogenate mainly due to the enzymatic fraction, corresponding to alpha2-globulin by its mobility. Histochemical examination of kidney showed that the most distinct alterations in the esterase activity were observed in epithelial cells of nephron proximal part and in capillary endothelium.

  6. Tissue-specific inhibition and recovery of esterase activities in Lumbricus terrestris experimentally exposed to chlorpyrifos.

    PubMed

    Vejares, Sandra González; Sabat, Pablo; Sanchez-Hernandez, Juan C

    2010-04-01

    Exposure and effect assessment of organophosphate (OP) pesticides generally involves the use of cholinesterase (ChE) inhibition. In earthworm, this enzyme activity is often measured in homogenates from the whole organism. Here we examine the tissue-specific response of ChE and carboxylesterase (CE) activities in Lumbricus terrestris experimentally exposed to chlorpyrifos-spiked field soils. Esterases were measured in different gut segments and in the seminal vesicles of earthworms following acute exposure (2 d) to the OP and during 35d of a recovery period. We found that inhibition of both esterase activities was dependent on the tissue. Cholinesterase activity decreased in the pharynx, crop, foregut and seminal vesicles in a concentration-dependent way, whereas CE activity (4-nitrophenyl valerate) was strongly inhibited in these tissues. Gizzard CE activity was not inhibited by the OP, even an increase of enzyme activity was evident during the recovery period. These results suggest that both esterases should be determined jointly in selected tissues of earthworms. Moreover, the high levels of gut CE activity and its inhibition and recovery dynamic following OP exposure suggest that this esterase could play an important role as an enzymatic barrier against OP uptake from the ingested contaminated soil. PMID:20045489

  7. Protein kinase activators alter glial cholesterol esterification

    SciTech Connect

    Jeng, I.; Dills, C.; Klemm, N.; Wu, C.

    1986-05-01

    Similar to nonneural tissues, the activity of glial acyl-CoA cholesterol acyltransferase is controlled by a phosphorylation and dephosphorylation mechanism. Manipulation of cyclic AMP content did not alter the cellular cholesterol esterification, suggesting that cyclic AMP is not a bioregulator in this case. Therefore, the authors tested the effect of phorbol-12-myristate 13-acetate (PMA) on cellular cholesterol esterification to determine the involvement of protein kinase C. PMA has a potent effect on cellular cholesterol esterification. PMA depresses cholesterol esterification initially, but cells recover from inhibition and the result was higher cholesterol esterification, suggesting dual effects of protein kinase C. Studies of other phorbol analogues and other protein kinase C activators such as merezein indicate the involvement of protein kinase C. Oleoyl-acetyl glycerol duplicates the effect of PMA. This observation is consistent with a diacyl-glycerol-protein kinase-dependent reaction. Calcium ionophore A23187 was ineffective in promoting the effect of PMA. They concluded that a calcium-independent and protein C-dependent pathway regulated glial cholesterol esterification.

  8. Chemotactic activity from rabbit peritoneal neutrophils. Lack of identity with N-acetyl-DL-phenylalanine beta-napthyl esterase.

    PubMed

    Tsung, P K; Showell, H J; Kegeles, S W; Becker, E L

    1976-08-12

    The chemotactic and N-acetyl-DL-phenylalanine beta-naphthyl esterase activities of rabbit peritoneal neutrophils are separable from each other by both DEAE cellulose and Sephadex G-100 column chromatography. Partially purified esterase obtained from DEAE-cellulose chromatography had molecular weight of 70 000. However, the partially purified fraction contained chemotactic activities with major activity in molecular weight of 28000 and minor activities in the molecular weights of 45000, 21900, 14500 and 10500. Esterase activity is inhibited by 10(-7) M p-nitrophenylethyl-5-chloropentylphosphonate but chemotactic activity is not.

  9. Esterase activity of carbonic anhydrases serves as surrogate for selecting antibodies blocking hydratase activity.

    PubMed

    Uda, Narasimha Rao; Seibert, Volker; Stenner-Liewen, Frank; Müller, Philipp; Herzig, Petra; Gondi, Gabor; Zeidler, Reinhard; van Dijk, Marc; Zippelius, Alfred; Renner, Christoph

    2015-12-01

    Carbonic anhydrase 9 (CA9) and carbonic anhydrase 12 (CA12) were proposed as potential targets for cancer therapy more than 20 years ago. However, to date, there are only very few antibodies that have been described to specifically target CA9 and CA12 and also block the enzymatic activity of their targets. One of the early stage bottlenecks in identifying CA9- and CA12-inhibiting antibodies has been the lack of a high-throughput screening system that would allow for rapid assessment of inhibition of the targeted carbon dioxide hydratase activity of carbonic anhydrases. In this study, we show that measuring the esterase activity of carbonic anhydrase offers a robust and inexpensive screening method for identifying antibody candidates that block both hydratase and esterase activities of carbonic anhydrase's. To our knowledge, this is the first implementation of a facile surrogate-screening assay to identify potential therapeutic antibodies that block the clinically relevant hydratase activity of carbonic anhydrases. PMID:25775095

  10. Effect of 17alpha-ethinylestradiol on activity of rat liver enzymes for synthesis and hydrolysis of cholesterol esters

    SciTech Connect

    Nikitin, Yu.P.; Dushkin, M.I.; Dolgov, A.V.; Gordienko, I.A.

    1987-01-01

    Administration of estrogens is known to lower the concentration of cholesterol esters in the blood vessel wall and may delay the development of arteriosclerosis. It is also known that under the influence of estrogens the redistribution of concentrations of free cholesterol and cholesterol esters takes place in rats between the blood and liver as a result of the intensification of receptor-dependent uptake of low-density lipoproteins by the hepatocytes. The mechanisms of this intracellular redistribution, however, have been inadequately studied. The purpose of this paper is to study the effects of 17alpha-ethinylestradiol on the activity of lysosomal and cytoplasmic cholesterol esterases, acyl-CoA-cholesterol-O-acyltransferase, lysosomal acid phosphatase, and beta-D-galactosidase. The activity was measured by using cholesterol (1-C 14)-oleate as the substrate. The influence of the estradiol is found to be based on cholesterol redistribution between the blood and liver. Accumulation of free cholesterol in the liver under these conditions stimulates bile acid formation. Depression of cholesterol ester synthesis as a result of direct inhibition of the acyltransferase by the estradiol is found to possibly contribute to the fall in the cholesterol level in the body. Liquid scintillation counting was used to measure distribution and accumulation.

  11. Inhibition of monocyte esterase activity by organophosphate insecticides.

    PubMed

    Lee, M J; Waters, H C

    1977-11-01

    Organophosphate insecticides, such as Vapona, Naled, and Rabon, are highly potent inhibitors of an enzyme found in human monocytes. The enzyme, a specific monocyte esterase, could be inhibited by Vapona in blood samples via airborne contamination at levels easily achieved from commercial slow-release insecticide strips. Fifty percent inhibition (I50)--as measured on the Hemalog D (Technicon Corp.)--occurred at solution concentrations of 0.22, 1.5, and 2.6 X 10(-6) g/liter for Vapona, Rabon, and Naled, respectively. Parathion (a thiophosphate) and Baygon (a carbamate) were less potent, with I50 values of 3.7 X 10(-5) and 1.5 X 10(-4) g/liter, respectively. Dursban (another thiophosphate) and Carbaryl (a carbamate) showed only marginal inhibition. Eserine, malathion, nicotine and pyrethrum had no inhibitory effect up to 0.5 g/liter. The occurrence of this effect in vivo has not yet been shown, nor is it clear what the implications of such an effect would be. The inhibition of this enzyme by airborne contaminants, however, may interfere with the proper functioning of the Hemalog D. PMID:907842

  12. Esterases activity in the axolotl Ambystoma mexicanum exposed to chlorpyrifos and its implication to motor activity.

    PubMed

    Robles-Mendoza, Cecilia; Zúñiga-Lagunes, Sebastian R; Ponce de León-Hill, Claudia A; Hernández-Soto, Jesús; Vanegas-Pérez, Cecilia

    2011-10-01

    The axolotl Ambystoma mexicanum is a neotenic salamander considered a good biological model due to its ability to regenerate limbs, tail, brain and heart cells. Nevertheless, severe reduction of A. mexicanum wild populations in the lacustrine area of Xochimilco, the natural habitat of the axolotl, could be related to several environmental pressures as the presence of organophosphate pesticides (OPPs), intensively applied in agricultural activities in Xochimilco. Thus the aim of this study was to evaluate the effect of environmentally realistic chlorpyrifos (CPF) concentrations, a OPP commonly used in this zone, on esterases activity (acetylcholinesterase and carboxylesterase) and bioconcentration of CPF and to relate them with the motor activity of A. mexicanum juveniles. Axolotls were exposed 48 h to 0.05 and 0.1mg CPF/L, and the responses were evaluated at the end of the CPF exposure. Results suggest that CPF is bioconcentrated into axolotls and that the CPF internal concentrations are related with the observed inhibition activity of AChE (>50%) and CbE (≈ 50%). CPF concentration responsible of the inhibition of the 50% of AChE activity (IC50) was estimated in 0.04 mg CPF/L; however IC50 for CbE activity was not possible to calculate since inhibition levels were lower than 50%, results that suggest a higher resistance of CbE enzymatic activity to CPF. However, motor activity was a more sensitive endpoint to CPF poisoning since time that axolotls spent active and walking, frequency and speed of swimming, frequency of prey attack were reduced >90% of control groups. The motor activity alterations in the axolotl could be related with the registered esterases inhibition. Thus important alterations on axolotls were identified even at short time and low concentrations of CPF exposure. Also, it was possible to link biochemical responses as esterases activity with higher levels of biological organization as behavior. This study provides tools for the regulation of the

  13. Application of glutaraldehyde for the staining of esterase-active cells with carboxyfluorescein diacetate.

    PubMed

    Morono, Yuki; Takano, Suguru; Miyanaga, Kazuhiko; Tanji, Yasunori; Unno, Hajime; Hori, Katsutoshi

    2004-03-01

    Staining of esterase-active bacteria with carboxyfluorescein diacetate (CFDA) has been used to evaluate the viability of various types of cell. However, the outer membrane of Gram-negative bacteria prevents CFDA from permeating into the cell. Although EDTA can increase the permeability of the outer membrane allowing CFDA to enter the cells, it was experimentally confirmed that there is still considerable difficulty in visualizing viable cells due to passive diffusion of carboxyfluorescein (CF), a hydrolyzed product of CFDA, out of the cells. We found that glutaraldehyde enhances the discriminative recognition of esterase-active Gram-negative bacteria under microscopic observation by improving the efficacy of staining. We believe the successful staining in the presence of glutaraldehyde is due to two separate effects: an increase in the permeability of CFDA into the cell and prevention of leakage of CF out of the cell.

  14. An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination.

    PubMed

    Manjunatha, Revanasiddappa; Shivappa Suresh, Gurukar; Melo, Jose Savio; D'Souza, Stanislaus F; Venkatesha, Thimmappa Venkatarangaiah

    2012-09-15

    Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been covalently immobilized onto functionalized graphene (FG) modified graphite electrode. Enzymes modified electrodes were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). FG accelerates the electron transfer from electrode surface to the immobilized ChOx, achieving the direct electrochemistry of ChOx. A well defined redox peak was observed, corresponding to the direct electron transfer of the FAD/FADH(2) of ChOx. The electron transfer coefficient (α) and electron transfer rate constant (K(s)) were calculated and their values are found to be 0.31 and 0.78 s(-1), respectively. For the free cholesterol determination, ChOx-FG/Gr electrode exhibits a sensitive response from 50 to 350 μM (R=-0.9972) with a detection limit of 5 μM. For total cholesterol determination, co-immobilization of ChEt and ChOx on modified electrode, i.e. (ChEt/ChOx)-FG/Gr electrode showed linear range from 50 to 300 μM (R=-0.9982) with a detection limit of 15 μM. Some common interferents like glucose, ascorbic acid and uric acid did not cause any interference, due to the use of a low operating potential. The FG/Gr electrode exhibits good electrocatalytic activity towards hydrogen peroxide (H(2)O(2)). A wide linear response to H(2)O(2) ranging from 0.5 to 7 mM (R=-0.9967) with a sensitivity of 443.25 μA mM(-1) cm(-2) has been obtained. PMID:22967556

  15. Environmental Factors Modulating the Stability and Enzymatic Activity of the Petrotoga mobilis Esterase (PmEst).

    PubMed

    Lopes, Jose L S; Yoneda, Juliana S; Martins, Julia M; DeMarco, Ricardo; Jameson, David M; Castro, Aline M; Bossolan, Nelma R S; Wallace, B A; Araujo, Ana P U

    2016-01-01

    Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst) were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM) and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/β protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required. PMID:27351338

  16. Environmental Factors Modulating the Stability and Enzymatic Activity of the Petrotoga mobilis Esterase (PmEst)

    PubMed Central

    Martins, Julia M.; DeMarco, Ricardo; Jameson, David M.; Castro, Aline M.; Bossolan, Nelma R. S.; Wallace, B. A.; Araujo, Ana P. U.

    2016-01-01

    Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst) were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM) and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/β protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required. PMID:27351338

  17. The Structural Basis of Cholesterol Activity in Membranes

    SciTech Connect

    Olsen, Brett N.; Bielska, Agata; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-10-15

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.

  18. Feruloyl esterase activity is influenced by bile, probiotic intestinal adhesion and milk fat.

    PubMed

    Mukdsi, M C Abeijón; Argañaraz Martínez, E; Chaia, A Perez; Medina, R B

    2016-09-01

    Cinnamoyl esterases (CE) are microbial and mammalian intestinal enzymes able to release antioxidant hydroxycinnamic acids from their non-digestible ester-linked forms naturally present in vegetable foods. Previous findings showed that oral administration of Lactobacillus fermentum CRL1446 increased intestinal CE activity and improved oxidative status in mice. The aim of this work was to evaluate the in vitro CE activity of L. fermentum CRL1446 and the effect of bile on this activity, as well as strain resistance to simulated gastrointestinal tract (GIT) conditions and its ability to adhere to intestinal epithelium and influence its basal CE activity. L. fermentum CRL1446 and L. fermentum ATCC14932 (positive control for CE activity) were able to hydrolyse different synthetic hydroxycinnamates, with higher specificity toward methyl ferulate (3,853.73 and 899.19 U/g, respectively). Feruloyl esterase (FE) activity was mainly intracellular in L. fermentum CRL1446 and cell-surface associated in L. fermentum ATCC14932. Both strains tolerated simulated GIT conditions and were able to adhere ex vivo to intestinal epithelium. Pre-incubation of L. fermentum strains with bile increased FE activity in both whole cells and supernatants (~2-fold), compared to controls, suggesting that cells were permeabilised by bile, allowing more substrate to enter the cell and/or leakage of FE enzymes. Three-fold higher FE activities were detected in intestinal tissue fragments with adhered L. fermentum CRL1446 cells compared to control fragments (without bacteria), indicating that this strain provides exogenous FE activity and could stimulate esterase activity in the intestinal mucosa. Finally, we found that milk fat had a negative effect on FE activity of intestinal tissue, in absence or presence of adhered L. fermentum. These results help explaining the increase in intestinal FE activity previously observed in mice fed with L. fermentum CRL1446, and support the potential use of this strain

  19. Novel Redox-Dependent Esterase Activity (EC 3.1.1.2) for DJ-1: Implications for Parkinson's Disease.

    PubMed

    Vázquez-Mayorga, Emmanuel; Díaz-Sánchez, Ángel G; Dagda, Ruben K; Domínguez-Solís, Carlos A; Dagda, Raul Y; Coronado-Ramírez, Cynthia K; Martínez-Martínez, Alejandro

    2016-01-01

    Mutations the in human DJ-1 (hDJ-1) gene are associated with early-onset autosomal recessive forms of Parkinson's disease (PD). hDJ-1/parkinsonism associated deglycase (PARK7) is a cytoprotective multi-functional protein that contains a conserved cysteine-protease domain. Given that cysteine-proteases can act on both amide and ester substrates, we surmised that hDJ-1 possessed cysteine-mediated esterase activity. To test this hypothesis, hDJ-1 was overexpressed, purified and tested for activity towards 4-nitrophenyl acetate (pNPA) as µmol of pNPA hydrolyzed/min/mg·protein (U/mg protein). hDJ-1 showed maximum reaction velocity esterase activity (Vmax = 235.10 ± 12.00 U/mg protein), with a sigmoidal fit (S0.5 = 0.55 ± 0.040 mM) and apparent positive cooperativity (Hill coefficient of 2.05 ± 0.28). A PD-associated mutant of DJ-1 (M26I) lacked activity. Unlike its protease activity which is inactivated by reactive oxygen species (ROS), esterase activity of hDJ-1 is enhanced upon exposure to low concentrations of hydrogen peroxide (<10 µM) and plateaus at elevated concentrations (>100 µM) suggesting that its activity is resistant to oxidative stress. Esterase activity of DJ-1 requires oxidation of catalytic cysteines, as chemically protecting cysteines blocked its activity whereas an oxido-mimetic mutant of DJ-1 (C106D) exhibited robust esterase activity. Molecular docking studies suggest that C106 and L126 within its catalytic site interact with esterase substrates. Overall, our data show that hDJ-1 contains intrinsic redox-sensitive esterase activity that is abolished in a PD-associated mutant form of the hDJ-1 protein. PMID:27556455

  20. Structure and activity of the cold-active and anion-activated carboxyl esterase OLEI01171 from the oil-degrading marine bacterium Oleispira antarctica

    PubMed Central

    Lemak, Sofia; Tchigvintsev, Anatoli; Petit, Pierre; Flick, Robert; Singer, Alexander U.; Brown, Greg; Evdokimova, Elena; Egorova, Olga; Gonzalez, Claudio F.; Chernikova, Tatyana N.; Yakimov, Michail M.; Kube, Michael; Reinhardt, Richard; Golyshin, Peter N.; Savchenko, Alexei; Yakunin, Alexander F.

    2014-01-01

    The uncharacterized α/β-hydrolase protein OLEI01171 from the psychrophilic marine bacterium Oleispira antarctica belongs to the PF00756 family of putative esterases, which also includes human esterase D. In the present paper we show that purified recombinant OLEI01171 exhibits high esterase activity against the model esterase substrate α-naphthyl acetate at 5 – 30°C with maximal activity at 15–20°C. The esterase activity of OLEI01171 was stimulated 3–8-fold by the addition of chloride or several other anions (0.1–1.0 M). Compared with mesophilic PF00756 esterases, OLEI01171 exhibited a lower overall protein thermostability. Two crystal structures ofOLEI01171 were solved at 1.75 and 2.1 Å resolution and revealed a classical serine hydrolase catalytic triad and the presence of a chloride or bromide ion bound in the active site close to the catalytic Ser148.Both anions were found to co-ordinate a potential catalytic water molecule located in the vicinity of the catalytic triad His257. The results of the present study suggest that the bound anion perhaps contributes to the polarization of the catalytic water molecule and increases the rate of the hydrolysis of an acyl-enzyme intermediate. Alanine replacement mutagenesis of OLEI01171 identified ten amino acid residues important for esterase activity. The replacement of Asn225 by lysine had no significant effect on the activity or thermostability of OLEI01171, but resulted in a detectable increase of activity at 35–45°C. The present study has provided insight into the molecular mechanisms of activity of a cold-active and anion-activated carboxyl esterase. PMID:22519667

  1. Conserved tyrosine 182 residue in hyperthermophilic esterase EstE1 plays a critical role in stabilizing the active site.

    PubMed

    Truongvan, Ngoc; Chung, Hye-Shin; Jang, Sei-Heon; Lee, ChangWoo

    2016-03-01

    An aromatic amino acid, Tyr or Trp, located in the esterase active site wall, is highly conserved, with hyperthermophilic esterases showing preference for Tyr and lower temperature esterases showing preference for Trp. In this study, we investigated the role of Tyr(182) in the active site wall of hyperthermophilic esterase EstE1. Mutation of Tyr to Phe or Ala had a moderate effect on EstE1 thermal stability. However, a small-to-large mutation such as Tyr to His or Trp had a devastating effect on thermal stability. All mutant EstE1 enzymes showed reduced catalytic rates and enhanced substrate affinities as compared with wild-type EstE1. Hydrogen bond formation involving Tyr(182) was unimportant for maintaining EstE1 thermal stability, as the EstE1 structure is already adapted to high temperatures via increased intramolecular interactions. However, removal of hydrogen bond from Tyr(182) significantly decreased EstE1 catalytic activity, suggesting its role in stabilization of the active site. These results suggest that Tyr is preferred over a similarly sized Phe residue or bulky His or Trp residue in the active site walls of hyperthermophilic esterases for stabilizing the active site and regulating catalytic activity at high temperatures. PMID:26838013

  2. Entamoeba histolytica: soluble and membrane-associated neutral sphingomyelinase-C and other unidentified esterase activity.

    PubMed

    Vargas-Villarreal, Javier; Palacios-Corona, Rebeca; Hernández-Luna, Carlos; Mata-Cárdenas, Benito David; Torres de la Cruz, Victor M; Cortés-Gutiérrez, Elva I; González-Salazar, Francisco; Garza-González, Jesús Norberto; Escobedo-Guajardo, Brenda Leticia; Said-Fernández, Salvador

    2010-08-01

    Sphingomyelinase (SMase) activity was measured in Entamoeba histolytica particulate and soluble subcellular fractions. The effects on SMase of incubation time, total protein concentration, pH, and several divalent cations were determined. SMase-C and other unidentified esterase activity were detected in soluble and particulate fractions. SMase-C was 94.5-96.0% higher than the unidentified esterase activity. Soluble and insoluble SMase-C specific activities increased with protein dose and incubation time. Soluble and insoluble SMase-C activities were maximum at pH 7.5 and were dependent on Mg(2+), Mn(2+), or Co(2+), and inhibited by Zn(2+), Hg(2+), Ca(2+), and EDTA. SMase-C was active in the pH range of 3-10 and its maximum activity was at pH 7.5. The soluble and insoluble SMases have remarkably similar physicochemical properties, strongly suggesting that E. histolytica has just one isoform of neutral SMase-C that had not been described before and might be essential for E. histolytica metabolism or virulence. PMID:20350542

  3. Biochemical studies on a versatile esterase that is most catalytically active with polyaromatic esters

    PubMed Central

    Martínez-Martínez, Mónica; Lores, Iván; Peña-García, Carlina; Bargiela, Rafael; Reyes-Duarte, Dolores; Guazzaroni, María-Eugenia; Peláez, Ana Isabel; Sánchez, Jesús; Ferrer, Manuel

    2014-01-01

    Herein, we applied a community genomic approach using a naphthalene-enriched community (CN1) to isolate a versatile esterase (CN1E1) from the α/β-hydrolase family. The protein shares low-to-medium identity (≤ 57%) with known esterase/lipase-like proteins. The enzyme is most active at 25–30°C and pH 8.5; it retains approximately 55% of its activity at 4°C and less than 8% at ≥ 55°C, which indicates that it is a cold-adapted enzyme. CN1E1 has a distinct substrate preference compared with other α/β-hydrolases because it is catalytically most active for hydrolysing polyaromatic hydrocarbon (phenanthrene, anthracene, naphthalene, benzoyl, protocatechuate and phthalate) esters (7200–21 000 units g−1 protein at 40°C and pH 8.0). The enzyme also accepts 44 structurally different common esters with different levels of enantio-selectivity (1.0–55 000 units g−1 protein), including (±)-menthyl-acetate, (±)-neomenthyl acetate, (±)-pantolactone, (±)-methyl-mandelate, (±)-methyl-lactate and (±)-glycidyl 4-nitrobenzoate (in that order). The results provide the first biochemical evidence suggesting that such broad-spectrum esterases may be an ecological advantage for bacteria that mineralize recalcitrant pollutants (including oil refinery products, plasticizers and pesticides) as carbon sources under pollution pressure. They also offer a new tool for the stereo-assembly (i.e. through ester bonds) of multi-aromatic molecules with benzene rings that are useful for biology, chemistry and materials sciences for cases in which enzyme methods are not yet available. PMID:24418210

  4. Biochemical studies on a versatile esterase that is most catalytically active with polyaromatic esters.

    PubMed

    Martínez-Martínez, Mónica; Lores, Iván; Peña-García, Carlina; Bargiela, Rafael; Reyes-Duarte, Dolores; Guazzaroni, María-Eugenia; Peláez, Ana Isabel; Sánchez, Jesús; Ferrer, Manuel

    2014-03-01

    Herein, we applied a community genomic approach using a naphthalene-enriched community (CN1) to isolate a versatile esterase (CN1E1) from the α/β-hydrolase family. The protein shares low-to-medium identity (≤ 57%) with known esterase/lipase-like proteins. The enzyme is most active at 25-30°C and pH 8.5; it retains approximately 55% of its activity at 4°C and less than 8% at ≥ 55°C, which indicates that it is a cold-adapted enzyme. CN1E1 has a distinct substrate preference compared with other α/β-hydrolases because it is catalytically most active for hydrolysing polyaromatic hydrocarbon (phenanthrene, anthracene, naphthalene, benzoyl, protocatechuate and phthalate) esters (7200-21 000 units g(-1) protein at 40°C and pH 8.0). The enzyme also accepts 44 structurally different common esters with different levels of enantio-selectivity (1.0-55 000 units g(-1) protein), including (±)-menthyl-acetate, (±)-neomenthyl acetate, (±)-pantolactone, (±)-methyl-mandelate, (±)-methyl-lactate and (±)-glycidyl 4-nitrobenzoate (in that order). The results provide the first biochemical evidence suggesting that such broad-spectrum esterases may be an ecological advantage for bacteria that mineralize recalcitrant pollutants (including oil refinery products, plasticizers and pesticides) as carbon sources under pollution pressure. They also offer a new tool for the stereo-assembly (i.e. through ester bonds) of multi-aromatic molecules with benzene rings that are useful for biology, chemistry and materials sciences for cases in which enzyme methods are not yet available.

  5. Trichodermin esterase activity and trichodermin resistance in Mucor racemosus.

    PubMed Central

    Fonzi, W A; Sypherd, P S

    1986-01-01

    Mucor racemosus exhibited inducible phenotypic resistance toward the protein synthesis inhibitor trichodermin. Induction of resistance was elicited by exposure to trichodermin or to cycloheximide. Both adapted and nonadapted cells took up [14C]trichodermin from the medium. Trichodermin was found to be rapidly deacetylated to trichodermol upon entering the cell. Adapted cells deacetylated the drug more rapidly than nonadapted cells both in vivo and in vitro. The trichodermol resulting from deacetylation appeared in the medium, but the growth of adapting cells began well before the total conversion of trichodermin to trichodermol. Based on these data and the observation that trichodermol was a poor inhibitor of Mucor, adaptation appears to result from deacylation of the active antibiotic. Images PMID:3707105

  6. Crystal structures of Ophiostoma piceae sterol esterase: structural insights into activation mechanism and product release.

    PubMed

    Gutiérrez-Fernández, Javier; Vaquero, María Eugenia; Prieto, Alicia; Barriuso, Jorge; Martínez, María Jesús; Hermoso, Juan A

    2014-09-01

    Sterol esterases are able to efficiently hydrolyze both sterol esters and triglycerides and to carry out synthesis reactions in the presence of organic solvents. Their high versatility makes them excellent candidates for biotechnological purposes. Sterol esterase from fungus Ophiostoma piceae (OPE) belongs to the family abH03.01 of the Candida rugosa lipase-like proteins. Crystal structures of OPE were solved in this study for the closed and open conformations. Enzyme activation involves a large displacement of the conserved lid, structural rearrangements of loop α16-α17, and formation of a dimer with a large opening. Three PEG molecules are placed in the active site, mimicking chains of the triglyceride substrate, demonstrating the position of the oxyanion hole and the three pockets that accommodate the sn-1, sn-2 and sn-3 fatty acids chains. One of them is an internal tunnel, connecting the active center with the outer surface of the enzyme 30 Å far from the catalytic Ser220. Based on our structural and biochemical results we propose a mechanism by which a great variety of different substrates can be hydrolyzed in OPE paving the way for the construction of new variants to improve the catalytic properties of these enzymes and their biotechnological applications. PMID:25108239

  7. Crystal structures of Ophiostoma piceae sterol esterase: structural insights into activation mechanism and product release.

    PubMed

    Gutiérrez-Fernández, Javier; Vaquero, María Eugenia; Prieto, Alicia; Barriuso, Jorge; Martínez, María Jesús; Hermoso, Juan A

    2014-09-01

    Sterol esterases are able to efficiently hydrolyze both sterol esters and triglycerides and to carry out synthesis reactions in the presence of organic solvents. Their high versatility makes them excellent candidates for biotechnological purposes. Sterol esterase from fungus Ophiostoma piceae (OPE) belongs to the family abH03.01 of the Candida rugosa lipase-like proteins. Crystal structures of OPE were solved in this study for the closed and open conformations. Enzyme activation involves a large displacement of the conserved lid, structural rearrangements of loop α16-α17, and formation of a dimer with a large opening. Three PEG molecules are placed in the active site, mimicking chains of the triglyceride substrate, demonstrating the position of the oxyanion hole and the three pockets that accommodate the sn-1, sn-2 and sn-3 fatty acids chains. One of them is an internal tunnel, connecting the active center with the outer surface of the enzyme 30 Å far from the catalytic Ser220. Based on our structural and biochemical results we propose a mechanism by which a great variety of different substrates can be hydrolyzed in OPE paving the way for the construction of new variants to improve the catalytic properties of these enzymes and their biotechnological applications.

  8. Synergistic Enhancement of Cellobiohydrolase Performance on Pretreated Corn Stover by Addition of Xylanase and Esterase Activities

    SciTech Connect

    Selig, M. J.; Knoshaug E. P.; Adney, W. S.; Himmel, M. E.; Decker, S. R.

    2007-11-01

    Significant increases in the depolymerization of corn stover cellulose by cellobiohydrolase I (Cel7A) from Trichoderma reesei were observed using small quantities of non-cellulolytic cell wall-degrading enzymes. Purified endoxylanase (XynA), ferulic acid esterase (FaeA), and acetyl xylan esterase (Axe1) all enhanced Cel7A performance on corn stover subjected to hot water pretreatment. In all cases, the addition of these activities improved the effectiveness of the enzymatic hydrolysis in terms of the quantity of cellulose converted per milligram of total protein. Improvement in cellobiose release by the addition of the non-cellulolytic enzymes ranged from a 13-84% increase over Cel7A alone. The most effective combinations included the addition of both XynA and Axe1, which synergistically enhance xylan conversions resulting in additional synergistic improvements in glucan conversion. Additionally, we note a direct relationship between enzymatic xylan removal in the presence of XynA and the enhancement of cellulose hydrolysis by Cel7A.

  9. Monitoring Lipase/Esterase Activity by Stopped Flow in a Sequential Injection Analysis System Using p-Nitrophenyl Butyrate

    PubMed Central

    Pliego, Jorge; Mateos, Juan Carlos; Rodriguez, Jorge; Valero, Francisco; Baeza, Mireia; Femat, Ricardo; Camacho, Rosa; Sandoval, Georgina; Herrera-López, Enrique J.

    2015-01-01

    Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05–1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed. PMID:25633600

  10. Monitoring lipase/esterase activity by stopped flow in a sequential injection analysis system using p-nitrophenyl butyrate.

    PubMed

    Pliego, Jorge; Mateos, Juan Carlos; Rodriguez, Jorge; Valero, Francisco; Baeza, Mireia; Femat, Ricardo; Camacho, Rosa; Sandoval, Georgina; Herrera-López, Enrique J

    2015-01-01

    Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05-1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed. PMID:25633600

  11. [Regulation of glucosamine synthetase activity by cholesterol and hydrocortisone].

    PubMed

    Sharaev, P N; Ivanov, V G; Bogdanov, N G

    1988-09-01

    The effects of cholesterol and hydrocortisone (cortisol) on the activity of purified glucosamine synthetase from rat liver was studied in vitro. It was found that the enzyme activity is increased by cholesterol and inhibited by hydrocortisone. These steroids block the allosteric effect of vitamin K1 on the enzyme. There is evidence testifying to the allosteric type of cholesterol and hydrocortisone effects on glucosamine synthetase. PMID:3203113

  12. Lactobacillus fermentum CRL1446 Ameliorates Oxidative and Metabolic Parameters by Increasing Intestinal Feruloyl Esterase Activity and Modulating Microbiota in Caloric-Restricted Mice

    PubMed Central

    Russo, Matias; Fabersani, Emanuel; Abeijón-Mukdsi, María C.; Ross, Romina; Fontana, Cecilia; Benítez-Páez, Alfonso; Gauffin-Cano, Paola; Medina, Roxana B.

    2016-01-01

    The purpose of this study was to determine whether the administration of the feruloyl esterase (FE)-producing strain Lactobacillus fermentum CRL1446 enhances metabolic and oxidative parameters in caloric-restricted (CR) mice. Balb/c male mice were divided into ad libitum fed Group (ALF Group), CR diet Group (CR Group) and CR diet plus L. fermentum Group (CR-Lf Group). CR diet was administered during 45 days and CRL1446 strain was given in the dose of 108 cells/mL/day/mouse. FE activity was determined in intestinal mucosa and content at Day 1, 20 and 45. Triglyceride, total cholesterol, glucose, thiobarbituric acid reactive substances (TBARS) levels and glutathione reductase activity were determined in plasma. Gut microbiota was evaluated by high-throughput sequencing of 16S rRNA gene amplicons. At Day 45, total intestinal FE activity in CR-Lf Group was higher (p = 0.020) than in CR and ALF groups and an improvement in both metabolic (reductions in triglyceride (p = 0.0025), total cholesterol (p = 0.005) and glucose (p < 0.0001) levels) and oxidative (decrease of TBARS levels and increase of plasmatic glutathione reductase activity (p = 0.006)) parameters was observed, compared to ALF Group. CR diet increased abundance of Bacteroidetes and CRL1446 administration increased abundance of Bifidobacterium and Lactobacillus genus. L. fermentun CRL1446 exerted a bifidogenic effect under CR conditions. PMID:27399766

  13. Lactobacillus fermentum CRL1446 Ameliorates Oxidative and Metabolic Parameters by Increasing Intestinal Feruloyl Esterase Activity and Modulating Microbiota in Caloric-Restricted Mice.

    PubMed

    Russo, Matias; Fabersani, Emanuel; Abeijón-Mukdsi, María C; Ross, Romina; Fontana, Cecilia; Benítez-Páez, Alfonso; Gauffin-Cano, Paola; Medina, Roxana B

    2016-01-01

    The purpose of this study was to determine whether the administration of the feruloyl esterase (FE)-producing strain Lactobacillus fermentum CRL1446 enhances metabolic and oxidative parameters in caloric-restricted (CR) mice. Balb/c male mice were divided into ad libitum fed Group (ALF Group), CR diet Group (CR Group) and CR diet plus L. fermentum Group (CR-Lf Group). CR diet was administered during 45 days and CRL1446 strain was given in the dose of 10⁸ cells/mL/day/mouse. FE activity was determined in intestinal mucosa and content at Day 1, 20 and 45. Triglyceride, total cholesterol, glucose, thiobarbituric acid reactive substances (TBARS) levels and glutathione reductase activity were determined in plasma. Gut microbiota was evaluated by high-throughput sequencing of 16S rRNA gene amplicons. At Day 45, total intestinal FE activity in CR-Lf Group was higher (p = 0.020) than in CR and ALF groups and an improvement in both metabolic (reductions in triglyceride (p = 0.0025), total cholesterol (p = 0.005) and glucose (p < 0.0001) levels) and oxidative (decrease of TBARS levels and increase of plasmatic glutathione reductase activity (p = 0.006)) parameters was observed, compared to ALF Group. CR diet increased abundance of Bacteroidetes and CRL1446 administration increased abundance of Bifidobacterium and Lactobacillus genus. L. fermentun CRL1446 exerted a bifidogenic effect under CR conditions. PMID:27399766

  14. Correlation of leukocyte esterase activity and bacterial isolation from body fluids.

    PubMed Central

    Smalley, D L; Bradley, M E

    1984-01-01

    We evaluated 230 body fluid samples, of which 131 were peritoneal effluents and 99 were other body fluids. Of these, 63 dialysates were culture positive, and 54 (85.7%) of these 63 were leukocyte esterase positive. Of 99 other body fluids, 8 were both culture positive and leukocyte esterase positive. PMID:6520224

  15. Bioassay technique using nonspecific esterase activities of Tetrahymena pyriformis for screening and assessing cytotoxicity of xenobiotics

    SciTech Connect

    Bogaerts, P.; Senaud, J.; Bohatier, J. |

    1998-08-01

    A simple and rapid test for screening and assessing the cytotoxicity of xenobiotics was developed with Tetrahymena pyriformis. The method estimates the activities of nonspecific esterases of a cell by concentrating within it a specific amount of fluorescence associated with fluorescein dye. The 2-h median effective concentration (EC50) values of 10 inorganic and eight organic substances are presented and compared to those of three other bioassays: the conventional T. pyriformis proliferation rate 9-h median inhibitory concentrations, the Microtox 30-min EC50s, and the Daphnia magna 4-methylumbelliferyl {beta}-D galactoside 1-h EC50s. A highly significant correlation was found between the results obtained with the fluorescein diacetate test and those obtained with the growth inhibition and Microtox tests. This in vivo enzymatic test showed high sensitivity to all compounds tested except Cr{sup 6+} and sodium dodecyl sulfate.

  16. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling.

    PubMed

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-25

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol. PMID:27545348

  17. Analysing deltamethrin susceptibility and pyrethroid esterase activity variations in sylvatic and domestic Triatoma infestans at the embryonic stage

    PubMed Central

    Santo-Orihuela, Pablo Luis; Carvajal, Guillermo; Picollo, María Inés; Vassena, Claudia Viviana

    2013-01-01

    The aim of the present work was to study the deltamethrin susceptibility of eggs from Triatoma infestans populations and the contribution of pyrethroid esterases to deltamethrin degradation. Insects were collected from sylvatic areas, including Veinte de Octubre and Kirus-Mayu (Bolivia) and from domiciliary areas, including El Palmar (Bolivia) and La Pista (Argentina). Deltamethrin susceptibility was determined by dose-response bioassays. Serial dilutions of deltamethrin (0.0005-1 mg/mL) were topically applied to 12-day-old eggs. Samples from El Palmar had the highest lethal dose ratio (LDR) value (44.90) compared to the susceptible reference strain (NFS), whereas the Veinte de Octubre samples had the lowest value (0.50). Pyrethroid esterases were evaluated using 7-coumaryl permethrate (7-CP) on individually homogenised eggs from each population and from NFS. The El Palmar and La Pista samples contained 40.11 and 36.64 pmol/min/mg protein, respectively, and these values were statistically similar to NFS (34.92 pmol/min/mg protein) and different from Kirus-Mayu and Veinte de Octubre (27.49 and 22.69 pmol/min/mg protein, respectively). The toxicological data indicate that the domestic populations were resistant to deltamethrin, but no statistical contribution of 7-CP esterases was observed. The sylvatic populations had similar LDR values to NFS, but lower 7-CP esterase activities. Moreover, this is the first study of the pyrethroid esterases on T. infestans eggs employing a specific substrate (7-CP). PMID:24402155

  18. Species differences in avian serum B esterases revealed by chromatofocusing and possible relationships of esterase activity to pesticide toxicity.

    PubMed

    Thompson, H M; Mackness, M I; Walker, C H; Hardy, A R

    1991-04-15

    Serum cholinesterase (BChE) and carboxylesterase (CbE) activities were investigated in ten species of birds. Multiple forms of serum BChE and CbE were also separated by chromatofocusing. Higher CbE activity and a wider range of CbE and BChE forms were present in the sera of omnivorous/herbivorous birds than carnivores. Omnivores/herbivores studied were the starling, house sparrow, tree sparrow, pigeon, partridge and magpie. Serum CbE activities of these species ranged from 0.46 to 2.93 mumol/min/mL with 2-6 forms separated by chromatofocusing. 0-6 forms of BChE were separated by the same method. The serum CbE activities of the little owl, tawny owl, barn owl and razorbill ranged from 0.19 to 0.58 mumoles/min/mL with 0-2 forms separated by chromatofocusing. No ChE forms were present within the pH gradient. These results may be significant in contributing to the understanding of the selective toxicity of organophosphorus and carbamate pesticides.

  19. Isolation and characterization of an enzyme with esterase activity from Micropolyspora faeni.

    PubMed Central

    Bannerman, E N; Nicolet, J

    1976-01-01

    The isolation and the characterization of one of the enzymes of Micropolyspora faeni that hydrolyzes the substrate N-benzoyl-DL-phenylalanine-beta-naphthyl ester and that seems to be of medical importance are described. This enzyme (enzyme 1) was isolated with an 86-fold purification by using the following seven steps: ammonium sulfate precipitation, gel filtration through Sephadex G-150, heat treatment, chromatography on diethylaminoethyl-cellulose, rechromatography on diethylaminoethyl-Sephadex, gel filtration through Sephadex G-200, and affinity chromatography. Enzyme 1 has a molecular weight of approximately 500,000 and maximum activity at pH 7.8 to 8.0 and at 20 degrees C. The enzyme is stable between pH 7.5 and 10.5 and at temperatures up to 60 degrees C. Its activity is not inhibited by ethylenediaminetetraacetic acid. It is, however, sensitive to diisopropyl phosphofluoride and phenylmethyl sulfonyl fluoride. These properties and the ability to hydrolyze the esters of phenylalanine, tyrosine, and tryptophan without endopeptidasic activity and no marked proteolytic activity suggest that the enzyme is an esterase. Images PMID:9899

  20. Identification of novel esterase-active enzymes from hot environments by use of the host bacterium Thermus thermophilus

    PubMed Central

    Leis, Benedikt; Angelov, Angel; Mientus, Markus; Li, Haijuan; Pham, Vu T. T.; Lauinger, Benjamin; Bongen, Patrick; Pietruszka, Jörg; Gonçalves, Luís G.; Santos, Helena; Liebl, Wolfgang

    2015-01-01

    Functional metagenomic screening strategies, which are independent of known sequence information, can lead to the identification of truly novel genes and enzymes. Since E. coli has been used exhaustively for this purpose as a host, it is important to establish alternative expression hosts and to use them for functional metagenomic screening for new enzymes. In this study we show that Thermus thermophilus HB27 is an excellent screening host and can be used as an alternative provider of truly novel biocatalysts. In a previous study we constructed mutant strain BL03 with multiple markerless deletions in genes for major extra- and intracellular lipolytic activities. This esterase-diminished strain was no longer able to grow on defined minimal medium supplemented with tributyrin as the sole carbon source and could be used as a host to screen for metagenomic DNA fragments that could complement growth on tributyrin. Several thousand single fosmid clones from thermophilic metagenomic libraries from heated compost and hot spring water samples were subjected to a comparative screening for esterase activity in both T. thermophilus strain BL03 and E. coli EPI300. We scored a greater number of active esterase clones in the thermophilic bacterium than in the mesophilic E. coli. From several thousand functionally screened clones only two thermostable α/β-fold hydrolase enzymes with high amino acid sequence similarity to already characterized enzymes were identifiable in E. coli. In contrast, five further fosmids were found that conferred lipolytic activities in T. thermophilus only. Four open reading frames (ORFs) were found which did not share significant similarity to known esterase enzymes but contained the conserved GXSXG motif regularly found in lipolytic enzymes. Two of the genes were expressed in both hosts and the novel thermophilic esterases, which based on their primary structures could not be assigned to known esterase or lipase families, were purified and

  1. Combined activation of methyl paraben by light irradiation and esterase metabolism toward oxidative DNA damage.

    PubMed

    Okamoto, Yoshinori; Hayashi, Tomohiro; Matsunami, Shinpei; Ueda, Koji; Kojima, Nakao

    2008-08-01

    Methyl paraben (MP) is often used as a preservative in foods, drugs, and cosmetics because of its high reliability in safety based on the rapid excretion and nonaccumulation following administration. Light irradiation sometimes produces unexpected activity from chemicals such as MP; furthermore, there is ample opportunity for MP to be exposed to sunlight. Here, we investigated whether MP shows DNA damage after sunlight irradiation. Two major photoproducts, p-hydroxybenzoic acid (PHBA) and 3-hydroxy methyl paraben (MP-3OH), were detected after sunlight irradiation to an aqueous MP solution. Both photoproducts were inactive in the in vitro DNA damage assay that measures oxidized guanine formed in calf thymus DNA in the presence of divalent copper ion, a known mediator of oxidative DNA damage. Simulated MP metabolism using dermal tissues after light irradiation produced these two photoproducts, which reacted with a microsomal fraction (S9) of the skin. A metabolite from MP-3OH, not PHBA, caused distinct DNA damage in the in vitro assay. This active metabolite was identified as protocatechuic acid, a hydrolyzed MP-3OH product. In addition, NADH, a cellular reductant, enhanced DNA damage by approximately five times. These results suggest that reactive oxygen species generated by the redox cycle via metal ion and catechol autoxidation are participating in oxidative DNA damage. This study reveals that MP might cause skin damage involving carcinogenesis through the combined activation of sunlight irradiation and skin esterases.

  2. Cloning, expression and characterization of a novel cold-active and organic solvent-tolerant esterase from Monascus ruber M7.

    PubMed

    Guo, Hailun; Zhang, Yan; Shao, Yanchun; Chen, Wanping; Chen, Fusheng; Li, Mu

    2016-07-01

    Cold active esterases are a class of important biocatalysts that exhibit high activity at low temperatures. In this study, a search for putative cold-active esterase encoding genes from Monascus ruber M7 was performed. A cold-active esterase, named Lip10, was isolated, cloned, purified, and characterized. Amino acid sequence analysis reveals that Lip10 contained a conserved sequence motif Gly(173)-Xaa-Ser(175)-Xaa-Gly(177) that is also present in the majority of esterases and lipases. Phylogenetic analysis indicated that Lip10 was a novel microbial esterase. The lip10 gene was cloned and heterologously expressed in Escherichia coli BL21(DE3), resulting in the expression of an active and soluble protein that constituted 40 % of the total cell protein content. Lip10 maintained almost 50 % of its maximal activity at 4-10 °C, with optimal activity at 40 °C. Furthermore, Lip10 retained 184-216 % of its original activity, after incubation in 50 % (v/v) hydrophobic organic solvents for 24 h. The enzyme also exhibited high activity under alkaline conditions and good tolerance to metal ions in the reaction mixture. These results indicate that Lip10 may have potential uses in chemical synthesis and food processing industrial applications as an esterase. PMID:27209523

  3. A Lactobacillus plantarum Esterase Active on a Broad Range of Phenolic Esters

    PubMed Central

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca

    2015-01-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. PMID:25746986

  4. A Lactobacillus plantarum esterase active on a broad range of phenolic esters.

    PubMed

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca; Muñoz, Rosario

    2015-05-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments.

  5. Activity and dynamics of an enzyme, pig liver esterase, in near-anhydrous conditions

    SciTech Connect

    Lopez, Murielle; Kurkal-Siebert, V; Dunn, Rachel V.; Tehei, M; Finney, J.L.; Smith, Jeremy C; Daniel, R. M.

    2010-10-01

    Water is widely assumed to be essential for life, although the exact molecular basis of this requirement is unclear. Water facilitates protein motions, and although enzyme activity has been demonstrated at low hydrations in organic solvents, such nonaqueous solvents may allow the necessary motions for catalysis. To examine enzyme function in the absence of solvation and bypass diffusional constraints we have tested the ability of an enzyme, pig liver esterase, to catalyze alcoholysis as an anhydrous powder, in a reaction system of defined water content and where the substrates and products are gaseous. At hydrations of 3 ( 2) molecules of water per molecule of enzyme, activity is several orders-of-magnitude greater than nonenzymatic catalysis. Neutron spectroscopy indicates that the fast ( nanosecond) global anharmonic dynamics of the anhydrous functional enzyme are suppressed. This indicates that neither hydration water nor fast anharmonic dynamics are required for catalysis by this enzyme, implying that one of the biological requirements of water may lie with its role as a diffusion medium rather than any of its more specific properties.

  6. Biochemical characterization of a halotolerant feruloyl esterase from Actinomyces spp.: refolding and activity following thermal deactivation.

    PubMed

    Hunt, Cameron J; Tanksale, Akshat; Haritos, Victoria S

    2016-02-01

    Ferulic acid esterases (FAE, EC. 3.1.1.73) hydrolyse the linkage between hemicellulose and lignin and thus have potential for use in mild enzymatic pretreatment of biomass as an alternative to thermochemical approaches. Here, we report the characterization of a novel FAE (ActOFaeI) obtained from the bacterium, Actinomyces sp. oral which was recombinantly expressed in Escherichia coli BL21 in two forms: with and without its putative signal peptide. The truncated form was found to have <10 % relative activity compared to the full length and was more prone to aggregation after purification. The enzyme with retained peptide demonstrated 2 to 4-fold higher activity against methyl caffeate and methyl p-coumarate, with specific activities of 477.6 and 174.4 U mg(-1) respectively, than the equivalent activities of the benchmark FAE from Aspergillus niger A and B. ActOFaeI retained activity over a broad pH range with a maximum at 9 but >90 % relative activity at pH 6.5 and an optimum reaction temperature of 30 °C. ActOFaeI increased activity by 15% in high salt conditions (1000 mMNaCl) and its thermal unfolding temperature improved from 41.5 °C in standard buffer to 74 °C in the presence of 2500 mM sodium malonate. ActOFaeI also released ferulic acid from destarched wheat bran when combined with a xylanase preparation. After treatment above the thermal denaturation temperature followed by cooling to room temperature, ActOFaeI demonstrated spontaneous refolding into an active state. ActOFaeI displays many useful characteristics for enzymatic pretreatment of lignocellulose and contributes to our understanding of this important family.

  7. Low HDL cholesterol, aggression and altered central serotonergic activity.

    PubMed

    Buydens-Branchey, L; Branchey, M; Hudson, J; Fergeson, P

    2000-03-01

    Many studies support a significant relation between low cholesterol levels and poor impulse, aggression and mood control. Evidence exists also for a causal link between low brain serotonin (5-HT) activity and these behaviors. Mechanisms linking cholesterol and hostile or self-destructive behavior are unknown, but it has been suggested that low cholesterol influences 5-HT function. This study was designed to explore the relationship between plasma cholesterol, measures of impulsivity and aggression, and indices of 5-HT function in personality disordered cocaine addicts. Thirty-eight hospitalized male patients (age 36.8+/-7.1) were assessed with the DSM-III-R, the Buss-Durkee Hostility Inventory (BDHI), the Barratt Impulsiveness Scale (BIS) and the Brown-Goodwin Assessment for Life History of Aggression. Fasting basal cholesterol (total, LDL and HDL) was determined 2 weeks after cocaine discontinuation. On the same day 5-HT function was assessed by neuroendocrine (cortisol and prolactin) and psychological (NIMH and 'high' self-rating scales) responses following meta-chlorophenylpiperazine (m-CPP) challenges. Reduced neuroendocrine responses, 'high' feelings and increased 'activation-euphoria' following m-CPP have been interpreted as indicating 5-HT alterations in a variety of psychiatric conditions. Significantly lower levels of HDL cholesterol were found in patients who had a history of aggression (P=0.005). Lower levels of HDL cholesterol were also found to be significantly associated with more intense 'high' and 'activation-euphoria' responses as well as with blunted cortisol responses to m-CPP (P=0.033, P=0.025 and P=0.018, respectively). This study gives further support to existing evidence indicating that in some individuals, the probability of exhibiting impulsive and violent behaviors may be increased when cholesterol is low. It also suggests that low cholesterol and alterations in 5-HT activity may be causally related.

  8. Identification and characterization of barley mutants lacking glycine decarboxylase and carboxyl esterase activities

    SciTech Connect

    Blackwell, R.; Lewis, K.; Lea, P. )

    1990-05-01

    A barley mutant has been isolated, from a selection of fifty air-sensitive seed-lines, using a standard gel stain technique which lacks carboxyl esterase activity, but has normal levels of carbonic anhydrase. In addition, two barley mutants lacking the ability to convert glycine to serine in the mitochondria, have been characterized. Both plants accumulate glycine in air and are unable to metabolize ({sup 14}C)glycine in the short-term. When ({sup 14}C)glycine was supplied over 2h LaPr 85/55 metabolized 90%, whereas the second mutant (LaPr 87/30) metabolized 10%. Results indicate that the mutation in LaPr 85/55 is almost certainly in the glycine transporter into the mitochondrion. The mutation in LaPr 87/30 has been shown, using western blotting, to be in both the P and H proteins, two of four proteins which comprise glycine decarboxylase (P, H, T and L).

  9. Novel Redox-Dependent Esterase Activity (EC 3.1.1.2) for DJ-1: Implications for Parkinson’s Disease

    PubMed Central

    Vázquez-Mayorga, Emmanuel; Díaz-Sánchez, Ángel G.; Dagda, Ruben K.; Domínguez-Solís, Carlos A.; Dagda, Raul Y.; Coronado-Ramírez, Cynthia K.; Martínez-Martínez, Alejandro

    2016-01-01

    Mutations the in human DJ-1 (hDJ-1) gene are associated with early-onset autosomal recessive forms of Parkinson’s disease (PD). hDJ-1/parkinsonism associated deglycase (PARK7) is a cytoprotective multi-functional protein that contains a conserved cysteine-protease domain. Given that cysteine-proteases can act on both amide and ester substrates, we surmised that hDJ-1 possessed cysteine-mediated esterase activity. To test this hypothesis, hDJ-1 was overexpressed, purified and tested for activity towards 4-nitrophenyl acetate (pNPA) as µmol of pNPA hydrolyzed/min/mg·protein (U/mg protein). hDJ-1 showed maximum reaction velocity esterase activity (Vmax = 235.10 ± 12.00 U/mg protein), with a sigmoidal fit (S0.5 = 0.55 ± 0.040 mM) and apparent positive cooperativity (Hill coefficient of 2.05 ± 0.28). A PD-associated mutant of DJ-1 (M26I) lacked activity. Unlike its protease activity which is inactivated by reactive oxygen species (ROS), esterase activity of hDJ-1 is enhanced upon exposure to low concentrations of hydrogen peroxide (<10 µM) and plateaus at elevated concentrations (>100 µM) suggesting that its activity is resistant to oxidative stress. Esterase activity of DJ-1 requires oxidation of catalytic cysteines, as chemically protecting cysteines blocked its activity whereas an oxido-mimetic mutant of DJ-1 (C106D) exhibited robust esterase activity. Molecular docking studies suggest that C106 and L126 within its catalytic site interact with esterase substrates. Overall, our data show that hDJ-1 contains intrinsic redox-sensitive esterase activity that is abolished in a PD-associated mutant form of the hDJ-1 protein. PMID:27556455

  10. Histochemical studies on genetical control of hormonal enzyme inducibility in the mouse. I. Non-specific esterase activity and regional histology of the epididymis.

    PubMed Central

    Blecher, S R; Kirkeby, S

    1978-01-01

    As a base line for future cell genetical studies the authors record the distribution of non-specific esterase reaction in the various histologically distinguishable cell types of the mouse epididymis. The findings are correlated with previous descriptions of the lobar structure of the organ. Assuming the sequence of lobes of the head to be as implied in these classical descriptions, the esterase activity of the epithelial cells gradates between strong to weak several times along the length of the epididymal duct. The relationship of the lobes to each other, as seen in transverse sections, is described. Methodological studies using different fixatives indicate that apparent similarity of esterase reaction at different sites may camouflage an underlying difference in the nature of the esterases at these sites. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:564339

  11. Amyloid precursor protein controls cholesterol turnover needed for neuronal activity

    PubMed Central

    Pierrot, Nathalie; Tyteca, Donatienne; D'auria, Ludovic; Dewachter, Ilse; Gailly, Philippe; Hendrickx, Aurélie; Tasiaux, Bernadette; Haylani, Laetitia El; Muls, Nathalie; N'Kuli, Francisca; Laquerrière, Annie; Demoulin, Jean-Baptiste; Campion, Dominique; Brion, Jean-Pierre; Courtoy, Pierre J; Kienlen-Campard, Pascal; Octave, Jean-Noël

    2013-01-01

    Perturbation of lipid metabolism favours progression of Alzheimer disease, in which processing of Amyloid Precursor Protein (APP) has important implications. APP cleavage is tightly regulated by cholesterol and APP fragments regulate lipid homeostasis. Here, we investigated whether up or down regulation of full-length APP expression affected neuronal lipid metabolism. Expression of APP decreased HMG-CoA reductase (HMGCR)-mediated cholesterol biosynthesis and SREBP mRNA levels, while its down regulation had opposite effects. APP and SREBP1 co-immunoprecipitated and co-localized in the Golgi. This interaction prevented Site-2 protease-mediated processing of SREBP1, leading to inhibition of transcription of its target genes. A GXXXG motif in APP sequence was critical for regulation of HMGCR expression. In astrocytes, APP and SREBP1 did not interact nor did APP affect cholesterol biosynthesis. Neuronal expression of APP decreased both HMGCR and cholesterol 24-hydroxylase mRNA levels and consequently cholesterol turnover, leading to inhibition of neuronal activity, which was rescued by geranylgeraniol, generated in the mevalonate pathway, in both APP expressing and mevastatin treated neurons. We conclude that APP controls cholesterol turnover needed for neuronal activity. PMID:23554170

  12. Serum cholesterol selectively regulates glucocorticoid sensitivity through activation of JNK.

    PubMed

    Yang, Nan; Caratti, Giorgio; Ince, Louise M; Poolman, Toryn M; Trebble, Peter J; Holt, Cathy M; Ray, David W; Matthews, Laura C

    2014-11-01

    Glucocorticoids (Gc) are potent anti-inflammatory agents with wide clinical application. We have previously shown that increased serum concentration significantly attenuates regulation of a simple Gc-responsive reporter. We now find that glucocorticoid receptor (GR) regulation of some endogenous transactivated but not transrepressed genes is impaired, suggesting template specificity. Serum did not directly affect GR expression, activity or trafficking, implicating GR crosstalk with other signalling pathways. Indeed, a JNK inhibitor completely abolished the serum effect. We identified the Gc modulating serum component as cholesterol. Cholesterol loading mimicked the serum effect, which was readily reversed by JNK inhibition. Chelation of serum cholesterol with methyl-β-cyclodextrin or inhibition of cellular cholesterol synthesis with simvastatin potentiated the Gc response. To explore the effect in vivo we used ApoE(-/-) mice, a model of hypercholesterolaemia. Consistent with our in vitro studies, we find no impact of elevated cholesterol on the expression of GR, or on the hypothalamic-pituitary-adrenal axis, measured by dexamethasone suppression test. Instead we find selective Gc resistance on some hepatic target genes in ApoE(-/-) mice. Therefore, we have discovered an unexpected role for cholesterol as a selective modulator of Gc action in vivo. Taken together these findings reveal a new environmental constraint on Gc action with relevance to both inflammation and cancer.

  13. Cholesterol oxidase catalyzed oxidation of cholesterol in mixed lipid monolayers: effects of surface pressure and phospholipid composition on catalytic activity.

    PubMed

    Grönberg, L; Slotte, J P

    1990-04-01

    The catalytic activity of cholesterol oxidase from Streptomyces sp. in mixed monolayers of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), N-oleoylsphingomyelin (O-SPM), and cholesterol (CHL) has been determined at lateral surface pressures between 10 and 30 mN/m. The highest cholesterol oxidase activity (determined at 37 degrees C) was observed at surface pressures around 20 mN/m in a POPC/CHL monolayer (50:50 mol %). Above and below this surface pressure, the enzyme activity decreased markedly. A similar optimal activity vs surface pressure relationship was observed also for an O-SPM/CHL monolayer (50:50 mol %). The activity of cholesterol oxidase toward cholesterol in the O-SPM/CHL monolayer was, however, less than in the corresponding POPC mixed monolayer. The surface activity of cholesterol oxidase decreased markedly when the temperature was lowered to 20 degrees C, and hardly any enzyme activity was observed in an O-SPM/CHL monolayer at 25 mN/m or above. With a monolayer containing POPC/O-SPM/CHL (42:18:40 mol %), maximal cholesterol oxidase activity was observed at the lowest surface pressure tested (i.e., 10 mN/m), and the catalytic activity decreased markedly with increasing lateral surface pressures in the monolayer. The results of this study show (i) that the activity of cholesterol oxidase in general is highly dependent on the lateral surface pressure in the substrate membranes and (ii) that sphingomyelin, by interacting tightly with cholesterol, can prevent or restrain the accessibility of cholesterol for oxidation by cholesterol oxidase.

  14. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage

    NASA Astrophysics Data System (ADS)

    Alfonso-García, Alba; Pfisterer, Simon G.; Riezman, Howard; Ikonen, Elina; Potma, Eric O.

    2016-06-01

    We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell.

  15. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage.

    PubMed

    Alfonso-García, Alba; Pfisterer, Simon G; Riezman, Howard; Ikonen, Elina; Potma, Eric O

    2016-06-01

    We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell.

  16. Isolation of acetyl esterase mutants of Bacillus subtilis 168.

    PubMed Central

    Higerd, T B

    1977-01-01

    Five mutants of Bacillus subtilis 168 defective in an intracellular esterase activity were identified. By polyacrylamide gel electrophoresis, four of the mutants were shown to lack esterase B activity, and the fifth lacked esterase A activity. All of the back-crossed esterase mutants were able to sporulate at wild-type frequency and produce exoprotease(s) and antibiotic(s). No difference in motility could be attributed to the esterase mutation. PBS1 transduction analysis showed all the esterase B mutations to be linked to the hisA marker. Images PMID:402361

  17. Enhancement of acetyl xylan esterase activity on cellulose acetate through fusion to a family 3 cellulose binding module.

    PubMed

    Mai-Gisondi, Galina; Turunen, Ossi; Pastinen, Ossi; Pahimanolis, Nikolaos; Master, Emma R

    2015-11-01

    The current study investigates the potential to increase the activity of a family 1 carbohydrate esterase on cellulose acetate through fusion to a family 3 carbohydrate binding module (CBM). Specifically, CtCBM3 from Clostridium thermocellum was fused to the carboxyl terminus of the acetyl xylan esterase (AnAXE) from Aspergillus nidulans, and active forms of both AnAXE and AnAXE-CtCBM3 were produced in Pichia pastoris. CtCBM3 fusion had negligible impact on the thermostability or regioselectivity of AnAXE; activities towards acetylated corncob xylan, 4-methylumbelliferyl acetate, p-nitrophenyl acetate, and cellobiose octaacetate were also unchanged. By contrast, the activity of AnAXE-CtCBM3 on cellulose acetate increased by two to four times over 24 h, with greater differences observed at earlier time points. Binding studies using microcrystalline cellulose (Avicel) and a commercial source of cellulose acetate confirmed functional production of the CtCBM3 domain; affinity gel electrophoresis using acetylated xylan also verified the selectivity of CtCBM3 binding to cellulose. Notably, gains in enzyme activity on cellulose acetate appeared to exceed gains in substrate binding, suggesting that fusion to CtCBM3 increases functional associations between the enzyme and insoluble, high molecular weight cellulosic substrates.

  18. Determination of fungal activity in modified wood by means of micro-calorimetry and determination of total esterase activity

    PubMed Central

    Verma, Pradeep; Dyckmans, Jens; Militz, Holger

    2008-01-01

    Beech and pine wood blocks were treated with 1,3-dimethylol-4,5-dihydroxyethylen urea (DMDHEU) to increasing weight percent gains (WPG). The resistance of the treated specimens against Trametes versicolor and Coniophora puteana, determined as mass loss, increased with increasing WPG of DMDHEU. Metabolic activity of the fungi in the wood blocks was assessed as total esterase activity (TEA) based on the hydrolysis of fluorescein diacetate and as heat or energy production determined by isothermal micro-calorimetry. Both methods revealed that the fungal activity was related with the WPG and the mass loss caused by the fungi. Still, fungal activity was detected even in wood blocks of the highest WPG and showed that the treatment was not toxic to the fungi. Energy production showed a higher consistency with the mass loss after decay than TEA; higher mass loss was more stringently reflected by higher heat production rate. Heat production did not proceed linearly, possibly due to the inhibition of fungal activity by an excess of carbon dioxide. PMID:18542949

  19. Insecticide resistance status, esterase activity, and electromorphs from mosquito populations of Culex quinquefasciatus Say (Diptera: Culicidae), in Houston (Harris County), Texas.

    PubMed

    Pietrantonio, P V; Gibson, G; Nawrocki, S; Carrier, F; Knight, W P

    2000-06-01

    Culex quinquefasciatus Say is a vector of St. Louis encephalitis (SLE) in Texas. This disease is endemic and prevalent in the Houston area. Disease prevention through mosquito control is mainly targeted against adults by application of a resmethrin-piperonyl butoxide formulation (Scourge). Immature mosquitoes were collected from eight areas in Harris County during 1998. The susceptibility status of these populations to Scourge, malathion, and resmethrin, the latter alone or with an esterase inhibitor as a synergist, was determined using a bottle assay with females. The population structure was investigated by electrophoretic analysis of esterases and their activity. Individual females were also analyzed for esterase activity by plate assay and for isoenzyme pattern by native PAGE. Bioassays indicated high levels of resistance to malathion in all areas. In addition, the effectiveness of Scourge in mosquitoes from area 51 deteriorated throughout the season. A localized, distinctive esterase pattern and activity level was observed in mosquitoes from different areas. Overall, the frequency of esterases Est alpha 2 (A2)/Est beta 2 (B2) was higher than that of Est beta 1 (B1). Altogether, these results indicate the onset of a fragile situation for mosquito control that should be further analyzed to effectively maintain the SLE prevention program for Harris County.

  20. Temephos resistance and esterase activity in the mosquito Aedes aegypti in Havana, Cuba increased dramatically between 2006 and 2008.

    PubMed

    Bisset, J A; Rodríguez, M M; Ricardo, Y; Ranson, H; Pérez, O; Moya, M; Vázquez, A

    2011-09-01

    Aedes aegypti (L.) (Diptera: Culicidae) control programmes in Cuba rely on the application of the organophosphate temephos for larval control. Hence, the monitoring of resistance to this insecticide is an essential component of such programmes. Here, 15 field populations from different municipalities of Havana City were assayed for resistance to temephos. High levels of resistance were detected in all strains and resistance ratios were highly correlated with esterase activity (P = 0.00001). Populations from three municipalities were tested in both 2006 and 2008; resistance and esterase activities both significantly increased during this 2-year period. Synergist studies demonstrated that neither glutathione transferases nor monooxygenases were associated with the increase in resistance to temephos in this period. The duration of the efficacy of commercial formulations of temephos in controlling Ae. aegypti populations in Havana City was reduced by the high level of temephos resistance observed; hence these data are of clear operational significance for the dengue control programme in Cuba. New integrated strategies to avoid further increases in temephos resistance in Cuba are necessary.

  1. Isolation and characterization of EstC, a new cold-active esterase from Streptomyces coelicolor A3(2).

    PubMed

    Brault, Guillaume; Shareck, François; Hurtubise, Yves; Lépine, François; Doucet, Nicolas

    2012-01-01

    The genome sequence of Streptomyces coelicolor A3(2) contains more than 50 genes coding for putative lipolytic enzymes. Many studies have shown the capacity of this actinomycete to store important reserves of intracellular triacylglycerols in nutrient depletion situations. In the present study, we used genome mining of S. coelicolor to identify genes coding for putative, non-secreted esterases/lipases. Two genes were cloned and successfully overexpressed in E. coli as His-tagged fusion proteins. One of the recombinant enzymes, EstC, showed interesting cold-active esterase activity with a strong potential for the production of valuable esters. The purified enzyme displayed optimal activity at 35°C and was cold-active with retention of 25% relative activity at 10°C. Its optimal pH was 8.5-9 but the enzyme kept more than 75% of its maximal activity between pH 7.5 and 10. EstC also showed remarkable tolerance over a wide range of pH values, retaining almost full residual activity between pH 6-11. The enzyme was active toward short-chain p-nitrophenyl esters (C2-C12), displaying optimal activity with the valerate (C5) ester (k(cat)/K(m) = 737±77 s(-1) mM(-1)). The enzyme was also very active toward short chain triglycerides such as triacetin (C2:0) and tributyrin (C4:0), in addition to showing good primary alcohol and organic solvent tolerance, suggesting it could function as an interesting candidate for organic synthesis of short-chain esters such as flavors.

  2. Role of the N terminus in enzyme activity, stability and specificity in thermophilic esterases belonging to the HSL family.

    PubMed

    Mandrich, Luigi; Merone, Luigia; Pezzullo, Margherita; Cipolla, Laura; Nicotra, Francesco; Rossi, Mosè; Manco, Giuseppe

    2005-01-21

    A superposition between the structures of Alicyclobacillus acidocaldarius esterase 2 (EST2) and Burkholderia cepacia lipase, the latter complexed with a phosphonate inhibitor, allowed us to hypothesize for the EST2 N terminus a role in restricting the access to the active site and therefore in modulating substrate specificity. In order to test this hypothesis we generated by site-directed mutagenesis some truncated versions of EST2 and its double mutant M211S/R215L (S/L) at the N terminus. In parallel, an analysis of the Sulfolobus solfataricus P2 genome allowed us to identify a gene coding for a putative esterase of the HSL family having a natural deletion of the corresponding region. The product of this gene and the above-mentioned EST2 mutants were expressed in Escherichia coli, purified and characterised. These studies support the notion that the N terminus affects substrate specificity other than several other enzyme parameters. Although the deletions afforded a tenfold and 550-fold decrease in catalytic efficiency towards the best substrate pNP-hexanoate at 50 degrees C for EST2 and S/L, respectively, the analysis of the specific activities with different triacylglycerols with respect to pNP-hexanoate showed that their ratios were higher for deleted versus non-deleted enzymes, on all tested substrates. In particular, the above ratios for glyceryl tridecanoate were 30-fold and 14-fold higher in S/L and EST2 deleted forms, respectively, compared with their full-length versions. This behaviour was confirmed by the analysis of the S.solfataricus esterase, which showed similar specific activities on pNP-hexanoate and triacylglycerols; in addition, higher activities on the latter substrates were observed in comparison with EST2, S/L and their deleted forms. Finally, a dramatic effect on thermophilicity and thermostability in the EST2 deleted forms was observed. This is the first report highlighting the importance of the "cap" domain in the HSL family, since the N

  3. Induction of cutinolytic esterase activity during saprophytic growth of cucurbit pathogens, Fusarium solani f. sp. cucurbitae races one and two (Nectria haematococca MPI and MPV, respectively).

    PubMed

    Hawthorne, B T; Rees-George, J; Crowhurst, R N

    2001-01-15

    Cutins from fruit of Cucurbita maxima and Cucurbita moschata cultivars, apple and a C(16) alcohol (hexadecanol) were used to induce cutinolytic esterase activity during saprophytic growth of strains of the two cucurbit pathogens, Fusarium solani f. sp. cucurbitae, race 1 (Nectria haematococca mating population (MPI) and F. solani f. sp. cucurbitae, race 2 (MPV). Four strains of MPV and 11 strains of MPI were were included in the study. Although we were primarily interested in the two cucurbit pathogens (MPI and MPV), six strains of the pea pathogen F. solani f. sp. pisi (MPVI) were included to provide a comparison since most of the knowledge on cutinase activity in N. haematococca has come from a study of that group. Cutinolytic esterase was induced in all strains from both MPV and MPVI but was not detected in any of the 11 strains from MPI regardless of the induction conditions. The amount of cutinolytic esterase activity induced in the MPV strains differed according to the strain and both the source and the amount of cutin used in the induction medium. Information on the influence of cutin source and pH on the induction of cutinolytic esterase activity during saprophytic growth of strains from MPV demonstrates that the gene is regulated differently from that in MPVI.

  4. Extracellular production of Streptomyces lividans acetyl xylan esterase A in Escherichia coli for rapid detection of activity.

    PubMed

    Nisole, Audrey; Lussier, François-Xavier; Morley, Krista L; Shareck, François; Kazlauskas, Romas J; Dupont, Claude; Pelletier, Joelle N

    2006-04-01

    Acetyl xylan esterase A (AxeA) from Streptomyces lividans belongs to a large family of industrially relevant polysaccharide esterases. AxeA and its truncated form containing only the catalytically competent domain, AxeA(tr), catalyze both the deacetylation of xylan and the N-deacetylation of chitosan. This broad substrate specificity lends additional interest to their characterization and production. Here, we report three systems for extracellular production of AxeA(tr): secretion from the native host S. lividans with the native signal peptide, extracellular production in Escherichia coli with the native signal peptide, and in E. coli with the OmpA signal peptide. Over five to seven days of a shake flask culture, the native host S. lividans with the native signal peptide secreted AxeA(tr) into the extracellular medium in high yield (388 mg/L) with specific activity of 19 U/mg corresponding to a total of 7000 U/L. Over one day of shake flask culture, E. coli with the native secretion signal peptide produced 84-fold less in the extracellular medium (4.6 mg/L), but the specific activity was higher (100 U/mg) corresponding to a total of 460 U/L. A similar E. coli culture using the OmpA signal peptide, produced 10mg/L with a specific activity of 68 U/mg, corresponding to a total of 680 U/L. In 96-well microtiter plates, extracellular production with E. coli gave approximately 30 and approximately 86 microg/mL in S. lividans. Expression in S. lividans with the native signal peptide is best for high level production, while expression in E. coli using the OmpA secretion signal peptide is best for high-throughput expression and screening of variants in microtiter plate format.

  5. Cholesterol 7 alpha-hydroxylase activity is increased by dietary modification with psyllium hydrocolloid, pectin, cholesterol and cholestyramine in rats.

    PubMed

    Matheson, H B; Colón, I S; Story, J A

    1995-03-01

    Sources of dietary fiber known to alter cholesterol metabolism and/or bile acid pool size were fed to rats, and activity of the rate-limiting step in bile acid synthesis, cholesterol 7 alpha-hydroxylase, was measured. In the first experiment, semipurified diets containing 5% cellulose, psyllium hydrocolloid, pectin or oat bran as dietary fiber sources or 2% cholestyramine were fed to groups of 10 male Wistar rats for 4 wk. In the second experiment, groups of six rats were fed diets containing 5% cellulose, rice bran, oat bran or psyllium with and without 0.25% cholesterol. In the first experiment, the activity of cholesterol 7 alpha-hydroxylase (pmol.min-1.mg protein-1) was highest in the cholestyramine-treated group (95.6 +/- 3.6), followed by groups fed psyllium (35.5 +/- 3.5) or pectin (36.0 +/- 4.5), which exhibited more than twice the enzyme activity of groups fed cellulose (16.9 +/- 1.9) or oat bran (12.3 +/- 2.0). In the second experiment, feeding cholesterol resulted in significantly higher enzyme activity when cellulose (65%), oat bran (118%) and rice bran (60%) were fed, but no difference in activity was observed when cholesterol was added to the psyllium-containing diet. Higher activity of cholesterol 7 alpha-hydroxylase when pectin or psyllium rather than cellulose was fed may explain the almost twofold higher bile acid pool sizes previously reported in response to feeding either of these fibers. These data support the hypothesis that the hypocholesterolemic effect of soluble fibers is modulated through increased synthesis and therefore pool size of bile acids.

  6. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation.

    PubMed

    Ramya, Shanivarsanthe Leelesh; Venkatesan, Thiruvengadam; Srinivasa Murthy, Kottilingam; Jalali, Sushil Kumar; Verghese, Abraham

    2016-01-01

    Diamondback moth (DBM), Plutella xylostella (Linnaeus), is a notorious pest of brassica crops worldwide and is resistant to all groups of insecticides. The insect system harbors diverse groups of microbiota, which in turn helps in enzymatic degradation of xenobiotic-like insecticides. The present study aimed to determine the diversity of gut microflora in DBM, quantify esterase activity and elucidate their possible role in degradation of indoxacarb. We screened 11 geographic populations of DBM in India and analyzed them for bacterial diversity. The culturable gut bacterial flora underwent molecular characterization with 16S rRNA. We obtained 25 bacterial isolates from larvae (n=13) and adults (n=12) of DBM. In larval gut isolates, gammaproteobacteria was the most abundant (76%), followed by bacilli (15.4%). Molecular characterization placed adult gut bacterial strains into three major classes based on abundance: gammaproteobacteria (66%), bacilli (16.7%) and flavobacteria (16.7%). Esterase activity from 19 gut bacterial isolates ranged from 0.072 to 2.32μmol/min/mg protein. Esterase bands were observed in 15 bacterial strains and the banding pattern differed in Bacillus cereus - KC985225 and Pantoea agglomerans - KC985229. The bands were characterized as carboxylesterase with profenofos used as an inhibitor. Minimal media study showed that B. cereus degraded indoxacarb up to 20%, so it could use indoxacarb for metabolism and growth. Furthermore, esterase activity was greater with minimal media than control media: 1.87 versus 0.26μmol/min/mg protein. Apart from the insect esterases, bacterial carboxylesterase may aid in the degradation of insecticides in DBM. PMID:26991291

  7. Flexibility and Stability Trade-Off in Active Site of Cold-Adapted Pseudomonas mandelii Esterase EstK.

    PubMed

    Truongvan, Ngoc; Jang, Sei-Heon; Lee, ChangWoo

    2016-06-28

    Cold-adapted enzymes exhibit enhanced conformational flexibility, especially in their active sites, as compared with their warmer-temperature counterparts. However, the mechanism by which cold-adapted enzymes maintain their active site stability is largely unknown. In this study, we investigated the role of conserved D308-Y309 residues located in the same loop as the catalytic H307 residue in the cold-adapted esterase EstK from Pseudomonas mandelii. Mutation of D308 and/or Y309 to Ala or deletion resulted in increased conformational flexibility. Particularly, the D308A or Y309A mutant showed enhanced substrate affinity and catalytic rate, as compared with wild-type EstK, via enlargement of the active site. However, all mutant EstK enzymes exhibited reduced thermal stability. The effect of mutation was greater for D308 than Y309. These results indicate that D308 is not preferable for substrate selection and catalytic activity, whereas hydrogen bond formation involving D308 is critical for active site stabilization. Taken together, conformation of the EstK active site is constrained via flexibility-stability trade-off for enzyme catalysis and thermal stability. Our study provides further insights into active site stabilization of cold-adapted enzymes. PMID:27259687

  8. Molecular cloning and characterization of a new cold-active esterase from a deep-sea metagenomic library.

    PubMed

    Fu, Chengzhang; Hu, Yongfei; Xie, Feng; Guo, Hui; Ashforth, Elizabeth Jane; Polyak, Steven W; Zhu, Baoli; Zhang, Lixin

    2011-05-01

    A clone which conferred lipolytic activity at low temperature was identified from a fosmid library constructed from a South China Sea marine sediment sample. The gene responsible, estF, consisted of 1,080 bp that encoded 359 amino acid residues, with a typical N-terminal signal peptide of 28 amino acid residues. A phylogenetic analysis of amino acid sequence with other lipolytic enzymes revealed that EstF and seven closely related putative lipolytic enzymes comprised a unique clade in the phylogenetic tree. Moreover, these hypothetic esterases showed unique conservative sites in the amino acid sequence. The recombinant EstF was overexpressed and purified, and its biochemical properties were partially characterized. The optimal substrate for EstF to hydrolyze among a panel of p-nitrophenyl esters (C2 to C16) was p-nitrophenyl butyrate (C4), with a K(m) of 0.46 mM. Activity quickly decreased with substrates containing an acyl chain length longer than 10 carbons. We found that EstF was active in the temperature range of 0-60°C, showed the best activity at 50°C, but was unstable at 60°C. It exhibited a high level of activity in the pH range of 7.0-10.0 showing the highest activity at pH 9.0.

  9. Probiotic Ferulic Acid Esterase Active Lactobacillus fermentum NCIMB 5221 APA Microcapsules for Oral Delivery: Preparation and in Vitro Characterization.

    PubMed

    Tomaro-Duchesneau, Catherine; Saha, Shyamali; Malhotra, Meenakshi; Coussa-Charley, Michael; Kahouli, Imen; Jones, Mitchell L; Labbé, Alain; Prakash, Satya

    2012-02-16

    Probiotics possess potential therapeutic and preventative effects for various diseases and metabolic disorders. One important limitation for the oral delivery of probiotics is the harsh conditions of the upper gastrointestinal tract (GIT) which challenge bacterial viability and activity. One proposed method to surpass this obstacle is the use of microencapsulation to improve the delivery of bacterial cells to the lower GIT. The aim of this study is to use alginate-poly-L-lysine-alginate (APA) microcapsules to encapsulate Lactobacillus fermentum NCIMB 5221 and characterize its enzymatic activity and viability through a simulated GIT. This specific strain, in previous research, was characterized for its inherent ferulic acid esterase (FAE) activity which could prove beneficial in the development of a therapeutic for the treatment and prevention of cancers and metabolic disorders. Our findings demonstrate that the APA microcapsule does not slow the mass transfer of substrate into and that of the FA product out of the microcapsule, while also not impairing bacterial cell viability. The use of simulated gastrointestinal conditions led to a significant 2.5 log difference in viability between the free (1.10 × 104 ± 1.00 × 103 cfu/mL) and the microencapsulated (5.50 × 106 ± 1.00 × 105 cfu/mL) L. fermentum NCIMB 5221 following exposure. The work presented here suggests that APA microencapsulation can be used as an effective oral delivery method for L. fermentum NCIMB 5221, a FAE-active probiotic strain.

  10. Effects of juvenile hormone (JH) analog insecticides on larval development and JH esterase activity in two spodopterans.

    PubMed

    El-Sheikh, El-Sayed A; Kamita, Shizuo G; Hammock, Bruce D

    2016-03-01

    Juvenile hormone analog (JHA) insecticides are biological and structural mimics of JH, a key insect developmental hormone. Toxic and anti-developmental effects of the JHA insecticides methoprene, fenoxycarb, and pyriproxyfen were investigated on the larval and pupal stages of Spodoptera littoralis and Spodoptera frugiperda. Bioassays showed that fenoxycarb has the highest toxicity and fastest speed of kill in 2nd instar S. littoralis. All three JHAs affected the development of 6th instar (i.e., final instar) and pupal S. frugiperda. JH esterase (JHE) is a critical enzyme that helps to regulate JH levels during insect development. JHE activity in the last instar S. littoralis and S. frugiperda was 11 and 23 nmol min(-1) ml(-1) hemolymph, respectively. Methoprene and pyriproxyfen showed poor inhibition of JHE activity from these insects, whereas fenoxycarb showed stronger inhibition. The inhibitory activity of fenoxycarb, however, was more than 1000-fold lower than that of OTFP, a highly potent inhibitor of JHEs. Surprisingly, topical application of methoprene, fenoxycarb or pyriproxyfen on 6th instars of S. littoralis and S. frugiperda prevented the dramatic reduction in JHE activity that was found in control insects. Our findings suggest that JHAs may function as JH agonists that play a disruptive role or a hormonal replacement role in S. littoralis and S. frugiperda. PMID:26969437

  11. Potato tuber pectin structure is influenced by pectin methyl esterase activity and impacts on cooked potato texture

    PubMed Central

    Ross, Heather A.; Wright, Kathryn M.; McDougall, Gordon J.; Roberts, Alison G.; Chapman, Sean N.; Morris, Wayne L.; Hancock, Robert D.; Stewart, Derek; Tucker, Gregory A.; James, Euan K.; Taylor, Mark A.

    2011-01-01

    Although cooked potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase activity (PME) as a potential factor impacting on textural properties. In this study, tuber PME isoform and gene expression profiles have been determined in potato germplasm with differing textural properties as assessed using an amended wedge fracture method and a sloughing assay, revealing major differences between the potato types. Differences in pectin structure between potato types with different textural properties were revealed using monoclonal antibodies specific for different pectic epitopes. Chemical analysis of tuber pectin clearly demonstrated that, in tubers containing a higher level of total PME activity, there was a reduced degree of methylation of cell wall pectin and consistently higher peak force and work done values during the fracture of cooked tuber samples, demonstrating the link between PME activity, the degree of methylation of cell wall pectin, and cooked tuber textural properties. PMID:20855456

  12. Cholesterol regulatory effects and antioxidant activities of protein hydrolysates from zebra blenny (Salaria basilisca) in cholesterol-fed rats.

    PubMed

    Ktari, Naourez; Belguith-Hadriche, Olfa; Ben Amara, Ibtissem; Ben Hadj, Aïda; Turki, Mouna; Makni-Ayedi, Fatma; Boudaouara, Tahia; El Feki, Abdelfattah; Boualga, Ahmed; Ben Salah, Riadh; Nasri, Moncef

    2015-07-01

    This study aims to explore the hypocholesterolemic effects and antioxidative activities of zebra blenny protein hydrolysates (ZBPHs) in rats fed with a hypercholesterolemic diet. The rats were fed during eight weeks a standard laboratory diet (normal rats), a high-cholesterol diet (HCD) (1%) or a HCD and orally treated with ZBPHs or undigested zebra blenny proteins (UZBPs) (400 mg per kg per day). Results showed that a hypercholesterolemic diet induced the increase of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). Treatment with ZBPHs increased the level of high-density lipoprotein cholesterol (HDL-C) and decreased significantly the levels of TC, TG, and LDL-C. In addition, ZBPH treatment showed significant normalization of thiobarbituric acid-reactive substance (TBARS) levels as well as catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities in renal and hepatic tissues. Furthermore, ZBPHs may also exert significant protective effects on liver and kidney functions, evidenced by a marked decrease in the level of serum urea, uric acid, creatinine, alkaline phosphatase (ALP), and alanine aminotransferase (ALAT). Histological studies confirmed that ZBPHs effectively protected the livers and kidneys against hypercholesterolemia-mediated oxidative damage. Therefore, the study strengthens the hypothesis that ZBPHs can be used as novel antioxidants and hypocholesterolemic compounds against hyperlipidemia induced atherosclerosis. PMID:26065510

  13. Anti-cancer activity of the cholesterol exporter ABCA1 gene

    PubMed Central

    Smith, Bradley; Land, Hartmut

    2012-01-01

    Summary The ABCA1 protein mediates the transfer of cellular cholesterol across the plasma membrane to apolipoprotein A-I. Loss-of-function mutations in the ABCA1 gene induce Tangier disease and familial hypoalphalipoproteinemia, both cardio-vascular conditions characterized by abnormally low levels of serum cholesterol, increased cholesterol in macrophages and subsequent formation of vascular plaque. Increased intra-cellular cholesterol levels are also frequently found in cancer cells. Here we demonstrate anti-cancer activity of ABCA1 efflux function, which is compromised following inhibition of ABCA1 gene expression by oncogenic mutations or cancer-specific ABCA1 loss-of-function mutations. In concert with elevated cholesterol synthesis found in cancer cells, ABCA1 deficiency allows for increased mitochondrial cholesterol, inhibits release of mitochondrial cell death-promoting molecules and thus facilitates cancer cell survival, overall suggesting that elevated mitochondrial cholesterol is essential to the cancer phenotype. PMID:22981231

  14. Characterization of esterases from Cucurbita pepo cv. "Eskandrani".

    PubMed

    Fahmy, Afaf S; Abo-Zeid, Amal Z; Mohamed, Tarek M; Ghanem, Hala M; Borai, Ibrahim H; Mohamed, Saleh A

    2008-01-01

    Two of the six esterases identified in Cucurbita pepo cv. "Eskandrani" were purified to homogeneity using two chromatography steps: anion exchange and gel filtration. The molecular weights of C. pepo esterases EIc and EII were 50,000 +/- 1500 and 68,000 +/- 1900 Da from gel filtration and 47,000 and 66,000 Da from SDS/PAGE, respectively, suggesting a monomeric structure for both enzymes. Esterases EIc and EII had K(m) values of 1.22 and 1.56 mM and pH optima at 9.0 and 8.0, respectively. The substrate specificity of C. pepo esterases EIc and EII were determined for a number of p-nitrophenyl esters, where their affinity toward these substrates were decreased as carbon atom number increased. Esterases EIc and EII had the same temperature optima, 40 degrees C. Thermal stability studies of esterases EIc and EII indicated that half maximal activities of EIc and EII esterases were reached at 55 degrees C and 50 degrees C, while they lost 45%, 51% and 70%, 77% of their activities after 30 and 90 min of incubation at 40 degrees C, respectively. The effect of different metal cations and inhibitors were examined. The inhibition studies revealed that the active sites of the two esterases contain serine and cysteine residues. The characteristics of C. pepo esterases are closely similar to those of microbial esterases used in food processing and food industry. PMID:17321740

  15. Effects of statins and cholesterol on memory functions in mice.

    PubMed

    Ghodke, Ravindra M; Tour, Nagesh; Devi, Kshama

    2012-12-01

    Studies on influence of lipid lowering therapies have generated wide controversial results on the role of cholesterol on memory function. However recent studies revealed that cholesterol lowering treatment substantially reduce the risk of dementia. The objectives of this study were to analyze the effect of statins on memory function and to establish the relationship between increase/decrease in cholesterol synthesis, total cholesterol level and memory function in animals. We examined the relationship between biosynthesis of cholesterol and memory function using two statins (lipophilic simvastatin and hydrophilic pravastatin) and high cholesterol diet in mice for 15 days and 4 months. Memory performance was evaluated with two different behavioral tests and various biochemical parameters such as serum cholesterol, whole brain cholesterol, brain 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) activity and brain acetylcholine esterase (AChE) activity. We found that statin treatment for 4 months, but not for 15 days, showed significant improvement in memory function whereas high cholesterol diet showed significant impairment of memory. However long-term statin treatment showed significant decrease in serum cholesterol level as well as brain AChE level. Moreover high cholesterol diet showed significant decrease in memory function with an increase in serum cholesterol level as well as brain AChE level. There is no direct correlation between brain cholesterol level, as well as HMG-CoA activity with memory function regulation. However there is definite link between plasma cholesterol level and AChE level. A long-standing plasma cholesterol alteration may be essential to regulate memory function which in turn might be mediated through AChE modulated pathway.

  16. Cloning, Purification and Characterization of Acetyl Xylane Esterase from Anoxybacillus flavithermus DSM 2641(T) with Activity on Low Molecular-Weight Acetates.

    PubMed

    Eminoğlu, Ayşenur; Ülker, Serdar; Sandallı, Cemal

    2015-08-01

    Family 4 carbohydrate esterases (CE-4) have deacetylate different forms of acetylated poly/oligosaccharides in nature. This family is recognized with a specific polysaccharide deacetylase domain assigned as NodB homology domain in their secondary structure. Most family 4 carbohydrate esterases have been structurally and biochemically characterized. However, this is the first study about the enzymological function of pdaB-like CE4s from thermophilic bacterium Anoxybacillus flavithermus DSM 2641(T). A. flavithermus WK1 genome harbors five putative CE4 family genes. One of them is 762 bp long and encodes a protein of 253 amino acids in length and it was used as reference sequence in this study. It was described as acetyl xylane esterase (AXE) in genome project and this AfAXE gene was amplified without signal sequence and cloned. The recombinant protein was expressed in E. coli BL21 (DE3), purified by nickel affinity chromatography and its purity was visualized on SDS-PAGE. The activity of the recombinant enzyme was shown by zymogram analysis with α-naphtyl acetate as a substrate. The enzyme was characterized spectrophotometrically using chromogenic p-nitrophenyl acetate. Optimum temperature and pH were determined as 50 °C and 7.5, respectively. Km and Vmax were determined as 0.43 mM and 3333.33 U/mg, respectively under optimum conditions. To our knowledge this is the first enzymological characterization of a pdaB-like family 4 carbohydrate esterase from the members of Anoxybacillus genus.

  17. Leukocyte Esterase Activity in Vaginal Fluid of Pregnant and Non-Pregnant Women With Vaginitis/Vaginosis and in Controls

    PubMed Central

    Novikova, Natalia; Niklasson, Ola; Bekassy, Zoltan; Skude, Lennart

    2003-01-01

    Objectives: To determine the leukocyte esterase (LE) activity in vaginal lavage fluid of women with acute and recurrent vulvovaginal candidosis (VVC and RVVC respectively), bacterial vaginosis (BV), and in pregnant and non-pregnant women without evidence of the three conditions. Also to compare the result of LE tests in women consulting at different weeks in the cycle and trimesters of pregnancy.The LE activity was correlated to vaginal pH, number of inflammatory cells in stained vaginal smears, type of predominating vaginal bacteria and presence of yeast morphotypes. Methods: One hundred and thirteen women with a history of RVVC, i.e. with at least four attacks of the condition during the previous year and who had consulted with an assumed new attack of the condition, were studied. Furthermore, we studied 16 women with VVC, 15 women with BV, and 27 women attending for control of cytological abnormalities, who all presented without evidence of either vaginitis or vaginosis. Finally, 73 pregnant women were investigated. The LE activity in vaginal fluid during different weeks in the cycle of 53 of the women was measured. Results: In the non-pregnant women, an increased LE activity was found in 96, 88, 73 and 56% of those with RVVC, VVC and BV and in the non-VVC/BV cases, respectively. In 73% of pregnant women in the second trimester, and 76% of those in the third, the LE test was positive. In all groups of non-pregnant women tested, the LE activity correlated with the number of leukocytes in vaginal smears, but it did not in those who were pregnant. There was no correlation between LE activity and week in cycle. The vaginal pH showed no correlation to LE activity in any of the groups studied. Conclusions: The use of commercial LE dipsticks has a limited value in the differential diagnosis of RVVC, VVCand BV. There is no correlation between the LE activity in vaginal secretion on one hand and vaginal pH, week in the menstrual cycle and trimester in pregnancy on the

  18. Cloning, expression, and biochemical characterization of a cold-active GDSL-esterase of a Pseudomonas sp. S9 isolated from Spitsbergen island soil.

    PubMed

    Wicka, Monika; Wanarska, Marta; Krajewska, Ewelina; Pawlak-Szukalska, Anna; Kur, Józef; Cieśliński, Hubert

    2016-01-01

    An estS9 gene, encoding an esterase of the psychrotolerant bacterium Pseudomonas sp. S9 was cloned and sequenced. The deduced sequence revealed a protein of 636 amino acid residues with a molecular mass of 69 kDa. Further amino acid sequence analysis revealed that the EstS9 enzyme contained a G-D-S-L motif centered at a catalytic serine, an N-terminal catalytic domain and a C-terminal autotransporter domain. Two recombinant E. coli strains for production of EstS9N (a two domain enzyme) and EstS9Δ (a one domain enzyme) proteins were constructed, respectively. Both recombinant proteins were successfully produced as inclusion bodies and then purified under denaturing conditions. However, because of the low enzymatic activity of the refolded EstS9Δ protein, only the EstS9N protein was further characterized. The purified and refolded EstS9N protein was active towards short-chain p-nitrophenyl esters (C2-C8), with optimal activity for the butyrate (C4) ester. With p-nitrophenyl butyrate as the substrate, the enzyme displayed optimal activity at 35°C and pH 9.0. Additionally, the EstS9N esterase retained ~90% of its activity from 25-40°C and ~40% of its activity at 10°C. Moreover, analysis of its kinetic parameters (Km, kcat, kcat/Km) toward p-nitrophenyl butyrate determined at 15°C and 25°C confirmed that the EstS9 enzyme is cold-adapted. To the best of our knowledge, EstS9 is the third characterized cold-active GDSL-esterase and the first one confirmed to contain an autotransporter domain characteristic for enzymes secreted by the type V secretion system.

  19. Isolation and purification of human biliary vesicles with potent cholesterol-nucleation-promoting activity.

    PubMed

    Miquel, J F; Rigotti, A; Rojas, E; Brandan, E; Nervi, F

    1992-02-01

    1. Cholesterol nucleation is a critical step in the formation of cholesterol gallstones. This nucleation takes place after aggregation and fusion of cholesterol-rich biliary vesicles, a process probably modulated by biliary proteins. The present study was conducted to identify specific proteins associated with native cholesterol-rich biliary vesicles and to explore their effect on the cholesterol-nucleation time of supersaturated artificial bile. 2. Hepatic bile was obtained from six patients with cholesterol gallstone disease. Biliary vesicles were isolated by ultracentrifugation and were purified by gel filtration chromatography. A small amount of protein (less than 1% by weight) remained associated with the purified cholesterol-rich biliary vesicles. The electrophoretic profile of these proteins was remarkably similar in all six patients, showing the presence of at least six polypeptides (of molecular mass from 52 to 200 kDa), five of them having carbohydrate residues (except the 52 kDa one). The effect of reconstituted biliary vesicle solutions, containing their specific vesicular proteins, on cholesterol-nucleation time was studied by mixing the vesicle solution with artificial supersaturated bile. A potent cholesterol-pronucleating activity, reflected in a 20-70% reduction in nucleation time, was present in the biliary vesicle solutions compared with control solutions having a similar lipid composition. The pronucleating activity disappeared on heating and was not detected in the micellar fraction containing the major proportion of biliary proteins. 3. These results indicate that cholesterol-rich biliary vesicles containing a unique and defined glycoprotein profile can be isolated and purified from human hepatic bile. The potent cholesterol-pronucleating activity of the biliary vesicles from patients with gallstones was unrelated to their lipid composition or cholesterol content.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site.

    PubMed

    Sayer, Christopher; Finnigan, William; Isupov, Michail N; Levisson, Mark; Kengen, Servé W M; van der Oost, John; Harmer, Nicholas J; Littlechild, Jennifer A

    2016-01-01

    A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions. PMID:27160974

  1. Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site

    PubMed Central

    Sayer, Christopher; Finnigan, William; Isupov, Michail N.; Levisson, Mark; Kengen, Servé W. M.; van der Oost, John; Harmer, Nicholas J.; Littlechild, Jennifer A.

    2016-01-01

    A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions. PMID:27160974

  2. Activation of acyl-CoA cholesterol acyltransferase: redistribution in microsomal fragments of cholesterol and its facilitated movement by methyl-beta-cyclodextrin.

    PubMed

    Cheng, D; Tipton, C L

    1999-03-01

    Acyl-CoA cholesterol acyltransferase (ACAT) (EC 2.3.1.26) in the yolk sac membrane of chicken eggs plays an important role in the transport of lipids, which serve as both structural components and as an energy source during embryogenesis. ACAT from the yolk sac membrane of chicken eggs 16 d after fertilization has higher activity and better stability than its mammalian liver counterpart. During our study of the avian enzyme, ACAT was found to be activated up to twofold during storage at 4 degrees C. The activation was investigated, and data suggest that redistribution of cholesterol within microsomal vesicles leads to the increase. Methyl-beta-cyclodextrin (MbetaCD) increases activation an additional twofold, possibly by facilitating the movement of cholesterol within microsomal fragments and allowing redistribution of cholesterol in lipid bilayers to a greater extent. Treatment of microsomes with MbetaCD removes cholesterol from the membranes. Controlled amounts of cholesterol can be restored to the membranes by mixing them with cholesterol-phosphatidylcholine liposomes in the presence of MbetaCD. Under these conditions, the plot of ACAT vs. cholesterol mole fraction in the liposomes is sigmoidal. The finding that MbetaCD can enhance cholesterol transfer between liposomes and microsomes and reduce the limitation of slow movement of nonpolar molecules in aqueous media should make cyclodextrins more useful in in vitro studies of apolar molecule transport between membrane vesicles.

  3. Novel choline esterase based sensor for monitoring of organophosphorus pollutants

    SciTech Connect

    Wilkins, E.S.; Ghindilis, A.L.; Atanasov, P.

    1996-12-31

    Organophosphorus compounds are significant major environmental pollutants due to their intensive use as pesticides. The modern techniques based on inhibition of choline esterase enzyme activity are discussed. Potentiometric electrodes based on detection of choline esterase inhibition by analytes has been developed. The detection of choline esterase activity is based on the novel principle of molecular transduction. Immobilized peroxidase acting as the molecular transducer, catalyzes the electroreduction of hydrogen peroxide by direct (mediatorless) electron transfer. The sensing element consists of a carbon based electrode containing an assembly of co-immobilized enzymes: choline esterase, choline oxidase and peroxidase.

  4. Excess cholesterol induces mouse egg activation and may cause female infertility

    PubMed Central

    Yesilaltay, Ayce; Dokshin, Gregoriy A.; Busso, Dolores; Wang, Li; Galiani, Dalia; Chavarria, Tony; Vasile, Eliza; Quilaqueo, Linda; Orellana, Juan Andrés; Walzer, Dalia; Shalgi, Ruth; Dekel, Nava; Albertini, David F.; Rigotti, Attilio; Page, David C.; Krieger, Monty

    2014-01-01

    The HDL receptor scavenger receptor, class B type I (SR-BI) controls the structure and fate of plasma HDL. Female SR-BI KO mice are infertile, apparently because of their abnormal cholesterol-enriched HDL particles. We examined the growth and meiotic progression of SR-BI KO oocytes and found that they underwent normal germinal vesicle breakdown; however, SR-BI KO eggs, which had accumulated excess cholesterol in vivo, spontaneously activated, and they escaped metaphase II (MII) arrest and progressed to pronuclear, MIII, and anaphase/telophase III stages. Eggs from fertile WT mice were activated when loaded in vitro with excess cholesterol by a cholesterol/methyl-β-cyclodextrin complex, phenocopying SR-BI KO oocytes. In vitro cholesterol loading of eggs induced reduction in maturation promoting factor and MAPK activities, elevation of intracellular calcium, extrusion of a second polar body, and progression to meiotic stages beyond MII. These results suggest that the infertility of SR-BI KO females is caused, at least in part, by excess cholesterol in eggs inducing premature activation and that cholesterol can activate WT mouse eggs to escape from MII arrest. Analysis of SR-BI KO female infertility raises the possibility that abnormalities in cholesterol metabolism might underlie some cases of human female infertility of unknown etiology. PMID:25368174

  5. A novel cold active esterase derived from Colombian high Andean forest soil metagenome.

    PubMed

    Jiménez, Diego Javier; Montaña, José Salvador; Alvarez, Diana; Baena, Sandra

    2012-01-01

    In order to search new lipolytic enzymes and conduct bioprospecting of microbial communities from high Andean forest soil, a metagenomic library of approximately 20,000 clones was constructed in Escherichia coli using plasmid p-Bluescript II SK+. The library covered 80 Mb of the metagenomic DNA mainly from Proteobacteria, Actinobacteria and Acidobacteria. Two clones with lipolytic activity in tributyrin as a substrate were recovered. Clone BAA3G2 (pSK-estGX1) was selected and the entire 4.6 Kb insert sequence was determined. The sequence had a GC content of 70.6% and could be derived from an undescribed Actinobacteria genome. One open reading frame encoded a polypeptide of 210 amino acids (gene estGX1) with a molecular mass of 22.4 kDa that contained the pentapeptide G-P-S-G-G near the N-terminus essential for lipase activity and the putative catalytic triad was identified, also a putative ribosomal binding site located 18 bp upstream the estGX1 ATG start codon was identified. The phylogenetic analysis suggested that the protein belonged to a new lipase family. The secreted enzyme showed a preference for short length fatty acids, with specific activity against p-nitrophenyl-butyrate (0.142 U/mg of total protein), it was cold active with relative activity of 30% at 10°C and moderately thermo active with relative activity of 80% at 50°C and had a pH optimum of 8.0 at 40°C. PMID:22806812

  6. Cholesterol 26-hydroxylase activity of hamster liver mitochondria: Isotope ratio analysis using deuterated 26-hydroxycholesterol

    SciTech Connect

    Kok, E.; Javitt, N.B. )

    1990-04-01

    Deuterated 26-hydroxycholesterol prepared from diosgenin by modifications of existing methods permitted the determination of mitochondrial cholesterol 26-hydroxylase using endogenous cholesterol as the substrate. Enzyme activity in a group of Syrian hamsters was found to be 10.3 +/- 3.7 pmol.min-1.mg protein-1.

  7. Effects of an Aerobic Activity Program on the Cholesterol Levels of Adolescents.

    ERIC Educational Resources Information Center

    Looney, Marilyn A.; Rimmer, James H.

    1997-01-01

    Reports a study that examined the effects of a 15-week aerobic activity program on high school students' cholesterol levels. Analysis of control and participating students indicated that there were significant reductions in total cholesterol in the training group. There were no significant differences between groups in high density lipoprotein…

  8. Esterases and putative lipases from tropical isolates of Aureobasidium pullulans.

    PubMed

    Kudanga, Tukayi; Mwenje, Eddie; Mandivenga, Faith; Read, John S

    2007-04-01

    Esterases and lipases have been studied in a number of fungi, though very little is known about esterases from Aureobasidium pullulans especially from the African tropics. In this study, forty-two Zimbabwean isolates were screened for lipase activity on tributyrin agar. Extracellular esterase activities of seven selected isolates were studied under varying conditions using para-nitrophenol acetate as substrate. Twenty isolates (48%) showed lipolytic activity; sixteen showed negative results for lipase activity while the rest showed weak activities. Esterase activities in broth cultures ranged from 0.011-0.223 mmol/microg protein/min while activities ranged from 1.5-12.8 U/ml under solid state fermentation. The esterases were optimally active at pH 7.6-8.0, showed a temperature optimum of 35 degrees C and retained more than 50% activity at temperatures up to 60 degrees C and at pH 4.0-7.0 after 150 min. Enzyme production was optimal after 5-6 days with diammonium hydrogen phosphate as nitrogen source. Isolates showed variations in preference for carbon source for esterase production. The A. pullulans esterases differed from most fungal esterases in that they are optimally active in alkaline conditions and are active over a broad pH range. PMID:17440916

  9. Associations between Restriction Site Polymorphism and Enzyme Activity Variation for Esterase 6 in Drosophila Melanogaster

    PubMed Central

    Game, A. Y.; Oakeshott, J. G.

    1990-01-01

    Thirty-five nucleotide polymorphisms were found in a 21.5-kbp region including the Est6 locus among 42 isoallelic lines extracted from a single natural population of Drosophila melanogaster. The heterozygosity per nucleotide pair was estimated to be 0.010 overall, but was lower in sequences hybridizing to transcripts than in those not hybridizing to transcripts. Eleven of 36 pairwise comparisons among the nine most common polymorphisms showed significant gametic disequilibrium. Four of these polymorphisms were also significantly associated with the major EST6-F/EST6-S allozyme polymorphism. Significant disequilibrium was generally restricted to polymorphisms less than 1-2 kbp apart. Previously reported measures of EST6 activity in virgin adult females proved not to be significantly associated with any of the six most common nucleotide polymorphisms located in the Est6 coding region or the 1.5 kbp immediately 5'. However, the 11 haplotypes for five of these polymorphisms that lie in the 1.5-kbp 5' region could explain about half of the previously reported variation among the lines for both EST6 activity and the amount of EST6 protein in virgin adult males. One particular polymorphism, for a RsaI site 530 bp 5' of the initiation codon, could explain 21% of the male activity variation among lines. This site is embedded in a large palindrome and we suggest that sequences including or close to this site may be involved in the regulation of EST6 synthesis in the ejaculatory duct of the adult male. PMID:1981760

  10. Endophytic fungi producing of esterases: Evaluation in vitro of the enzymatic activity using pH indicator

    PubMed Central

    Lisboa, Helen Cristina Fávero; Biasetto, Carolina Rabal; de Medeiros, João Batista; Araújo, Ângela Regina; Silva, Dulce Helena Siqueira; Teles, Helder Lopes; Trevisan, Henrique Celso

    2013-01-01

    A sensitive and efficient colorimetric method was optimized for detection of esterase enzymes produced by endophytic fungi for development of High-Throughput Screening (HTS). The fungi were isolated and obtained previously from plant species of Cerrado and Atlantic Forest located in areas of environmental preservation in the State of Sao Paulo / Brazil, as part of the project “Chemical and biological prospecting endophytic fungi associated to plant species of Cerrado and Atlantic Forest”. The compounds ethyl butyrate, ethyl acetate and methyl propionate were used as standards esters which were hydrolyzed by extracellular enzyme from endophytic fungi (EC. 3.1.1.1 - carboxyl-esterases) for production of carboxylic acids. Thus, the reduction of the pH increases the protonated indicator concentration (bromothymol blue), changing the color of the reaction medium (from blue to yellow), that can be observed and measured by spectrophotometry at 616 nm. The methodology with acid-base indicator was performed on 13 microorganisms, aiming Periconia atropurpurea as a potential source of esterase for biotransformation of short chain esters. The results also evidenced that this methodology showed to be efficient, fast, cheap, having low consumption of reagents and easy development, and can be applied to screen carboxylic-ester hydrolases in a large number of microorganisms. PMID:24516461

  11. Salicylate improves macrophage cholesterol homeostasis via activation of Ampk[S

    PubMed Central

    Fullerton, Morgan D.; Ford, Rebecca J.; McGregor, Chelsea P.; LeBlond, Nicholas D.; Snider, Shayne A.; Stypa, Stephanie A.; Day, Emily A.; Lhoták, Šárka; Schertzer, Jonathan D.; Austin, Richard C.; Kemp, Bruce E.; Steinberg, Gregory R.

    2015-01-01

    Atherosclerosis stems from imbalances in lipid metabolism and leads to maladaptive inflammatory responses. The AMP-activated protein kinase (Ampk) is a highly conserved serine/threonine kinase that regulates many aspects of lipid and energy metabolism, although its specific role in controlling macrophage cholesterol homeostasis remains unclear. We sought to address this question by testing the effects of direct Ampk activators in primary bone marrow-derived macrophages from Ampk β1-deficient (β1−/−) mice. Macrophages from Ampk β1−/− mice had enhanced lipogenic capacity and diminished cholesterol efflux, although cholesterol uptake was unaffected. Direct activation of Ampk β1 via salicylate (the unacetylated form of aspirin) or A-769662 (a small molecule activator), decreased the synthesis of FAs and sterols in WT but not Ampk β1−/− macrophages. In lipid-laden macrophages, Ampk activation decreased cholesterol content (foam cell formation) and increased cholesterol efflux to HDL and apoA-I, effects that occurred in an Ampk β1-dependent manner. Increased cholesterol efflux was also associated with increased gene expression of the ATP binding cassette transporters, Abcg1 and Abca1. Moreover, in vivo reverse cholesterol transport was suppressed in mice that received Ampk β1−/− macrophages compared with the WT control. Our data highlight the therapeutic potential of targeting macrophage Ampk with new or existing drugs for the possible reduction in foam cell formation during the early stages of atherosclerosis. PMID:25773887

  12. Electrochemiluminescence imaging for parallel single-cell analysis of active membrane cholesterol.

    PubMed

    Zhou, Junyu; Ma, Guangzhong; Chen, Yun; Fang, Danjun; Jiang, Dechen; Chen, Hong-Yuan

    2015-08-18

    Luminol electrochemiluminescence (ECL) imaging was developed for the parallel measurement of active membrane cholesterol at single living cells, thus establishing a novel electrochemical detection technique for single cells with high analysis throughput and low detection limit. In our strategy, the luminescence generated from luminol and hydrogen peroxide upon the potential was recorded in one image so that hydrogen peroxide at the surface of multiple cells could be simultaneously analyzed. Compared with the classic microelectrode array for the parallel single-cell analysis, the plat electrode only was needed in our ECL imaging, avoiding the complexity of electrode fabrication. The optimized ECL imaging system showed that hydrogen peroxide as low as 10 μM was visible and the efflux of hydrogen peroxide from cells could be determined. Coupled with the reaction between active membrane cholesterol and cholesterol oxidase to generate hydrogen peroxide, active membrane cholesterol at cells on the electrode was analyzed at single-cell level. The luminescence intensity was correlated with the amount of active membrane cholesterol, validating our system for single-cell cholesterol analysis. The relative high standard deviation on the luminescence suggested high cellular heterogeneities on hydrogen peroxide efflux and active membrane cholesterol, which exhibited the significance of single-cell analysis. This success in ECL imaging for single-cell analysis opens a new field in the parallel measurement of surface molecules at single cells.

  13. Condensed complexes, rafts, and the chemical activity of cholesterol in membranes

    PubMed Central

    Radhakrishnan, Arun; Anderson, Thomas G.; McConnell, Harden M.

    2000-01-01

    Epifluorescence microscopy studies of mixtures of phospholipids and cholesterol at the air–water interface often exhibit coexisting liquid phases. The properties of these liquids point to the formation of “condensed complexes” between cholesterol and certain phospholipids, such as sphingomyelin. It is found that monolayers that form complexes can incorporate a low concentration of a ganglioside GM1. This glycolipid is visualized by using a fluorescently labeled B subunit of cholera toxin. Three coexisting liquid phases are found by using this probe together with a fluorescent phospholipid probe. The three liquid phases are identified as a phospholipid-rich phase, a cholesterol-rich phase, and a condensed complex-rich phase. The cholera toxin B labeled ganglioside GM1 is found exclusively in the condensed complex-rich phase. Condensed complexes are likely present in animal cell membranes, where they should facilitate the formation of specialized domains such as rafts. Condensed complexes also have a major effect in determining the chemical activity of cholesterol. It is suggested that this chemical activity plays an essential role in the regulation of cholesterol biosynthesis. Gradients in the chemical activity of cholesterol should likewise govern the rates and direction of intracellular intermembrane cholesterol transport. PMID:11050164

  14. Performance of Spodoptera litura Fabricius on different host plants: influence of nitrogen and total phenolics of plants and mid-gut esterase activity of the insect.

    PubMed

    Ghumare, S S; Mukherjee, S N

    2003-08-01

    Five host plants [castor, Ricinus communis (Carolus Linnaeus); cotton, Gossypium hirsutm (Carolus Linnaeus); tomato, Lycopersicum esculentum (Philip Miller); mint, Mentha arvensis (Carolus Linnaeus) and cabbage, Brassica oleracea (Carolus Linnaeus)] belonging to different families were used to study the performance of the Asian armyworm, Spodoptera litura larvae. Highest consumption of food and dry weight gain was observed in larvae fed on castor. Mint did not support optimum larval growth because of low digestibility and low efficiency of conversion of digested food to body matter. Dry weight gain ranged from 26.64 mg on mint to 86.80 mg in castor. These differences tend to be related to nitrogen and total phenolics content of the leaf tissues; however, the most clear-cut correlation is an inverse one between the host plant preference and the ratio of total phenolics to nitrogen in the leaf tissues. Mid-gut esterase activity in larvae showed an increasing trend with the increase in total phenolics: nitrogen ratio in the test plants and the order of mid-gut esterase activity in larvae was mint > cabbage > cotton > tomato > castor.

  15. Performance of Spodoptera litura Fabricius on different host plants: influence of nitrogen and total phenolics of plants and mid-gut esterase activity of the insect.

    PubMed

    Ghumare, S S; Mukherjee, S N

    2003-08-01

    Five host plants [castor, Ricinus communis (Carolus Linnaeus); cotton, Gossypium hirsutm (Carolus Linnaeus); tomato, Lycopersicum esculentum (Philip Miller); mint, Mentha arvensis (Carolus Linnaeus) and cabbage, Brassica oleracea (Carolus Linnaeus)] belonging to different families were used to study the performance of the Asian armyworm, Spodoptera litura larvae. Highest consumption of food and dry weight gain was observed in larvae fed on castor. Mint did not support optimum larval growth because of low digestibility and low efficiency of conversion of digested food to body matter. Dry weight gain ranged from 26.64 mg on mint to 86.80 mg in castor. These differences tend to be related to nitrogen and total phenolics content of the leaf tissues; however, the most clear-cut correlation is an inverse one between the host plant preference and the ratio of total phenolics to nitrogen in the leaf tissues. Mid-gut esterase activity in larvae showed an increasing trend with the increase in total phenolics: nitrogen ratio in the test plants and the order of mid-gut esterase activity in larvae was mint > cabbage > cotton > tomato > castor. PMID:15248492

  16. Design of Fexofenadine Prodrugs Based on Tissue-Specific Esterase Activity and Their Dissimilar Recognition by P-Glycoprotein.

    PubMed

    Ohura, Kayoko; Nakada, Yuichiro; Kotani, Shunsuke; Imai, Teruko

    2015-09-01

    The aim of this study was to develop a suitable prodrug for fexofenadine (FXD), a model parent drug, that is resistant to intestinal esterase but converted to FXD by hepatic esterase. Carboxylesterases (CESs), human carboxylesterase 1 (hCE1) and human carboxylesterase 2 (hCE2), are the major esterases in human liver and intestine, respectively. These two CESs show quite different substrate specificities, and especially, hCE2 poorly hydrolyzes prodrugs with large acyl groups. FXD contains a carboxyl group and is poorly absorbed because of low membrane permeability and efflux by P-glycoprotein (P-gp). Therefore, two potential FXD prodrugs, ethyl-FXD and 2-hydroxyethyl-FXD, were synthesized by substitution of the carboxyl group in FXD. Both derivatives were resistant to intestinal hydrolysis, indicating their absorption as intact prodrugs. Ethyl-FXD was hydrolyzed by hepatic hCE1, but 2-hydroxyethyl-FXD was not. Both derivatives showed high membrane permeability in human P-gp-negative LLC-PK1 cells. In LLC-GA5-COL300 cells overexpressing human P-gp, ethyl-FXD was transported by P-gp, but its efflux was easily saturated. Whereas 2-hydroxyethyl-FXD showed more efficient P-gp-mediated transport than FXD. Although the structure of 2-hydroxyethyl-FXD only differs from ethyl-FXD by substitution of a hydroxyl group, 2-hydroxyethyl-FXD is unsuitable as a prodrug. However, ethyl-FXD is a good candidate prodrug because of good intestinal absorption and hepatic conversion by hCE1.

  17. Liver X Receptor β and Peroxisome Proliferator-Activated Receptor δ regulate cholesterol transport in cholangiocytes

    PubMed Central

    Xia, Xuefeng; Jung, Dongju; Webb, Paul; Zhang, Aijun; Zhang, Bin; Li, Lifei; Ayers, Stephen D.; Gabbi, Chiara; Ueno, Yoshiyuki; Gustafsson, Jan-Åke; Alpini, Gianfranco; Moore, David D.; LeSage, Gene D.

    2012-01-01

    Nuclear receptors (NRs) play crucial roles in regulation of hepatic cholesterol synthesis, metabolism and conversion to bile acids, but their actions in cholangiocytes have not been examined. In this study, we investigated the roles of NRs in cholangiocyte physiology and cholesterol metabolism and flux. We examined the expression of NRs and other genes involved in cholesterol homeostasis in freshly isolated and cultured rodent cholangiocytes and found that these cells express a specific subset of NRs which includes Liver X Receptor β (LXRβ) and Peroxisome Proliferator-Activated Receptor δ (PPARδ). Activation of LXRβ and/or PPARδ in cholangiocytes induces ATP-binding cassette cholesterol transporter A1 (ABCA1) and increases cholesterol export at the basolateral compartment in polarized cultured cholangiocytes. In addition, PPARδ induces Niemann Pick C1 Like L1 (NPC1L1), which imports cholesterol into cholangiocytes and is expressed on the apical cholangiocyte membrane, via specific interaction with a PPRE within the NPC1L1 promoter. Based on these studies, we propose that (i) LXRβ and PPARδ coordinate NPC1L1/ABCA1 dependent vectorial cholesterol flux from bile through cholangiocytes and (ii) manipulation of these processes may influence bile composition with important applications in cholestatic liver disease and gallstone disease, serious health concerns for humans. PMID:22729460

  18. Estrogen induces two distinct cholesterol crystallization pathways by activating ERα and GPR30 in female mice

    PubMed Central

    de Bari, Ornella; Wang, Tony Y.; Liu, Min; Portincasa, Piero; Wang, David Q-H.

    2015-01-01

    To distinguish the lithogenic effect of the classical estrogen receptor α (ERα) from that of the G protein-coupled receptor 30 (GPR30), a new estrogen receptor, on estrogen-induced gallstones, we investigated the entire spectrum of cholesterol crystallization pathways and sequences during the early stage of gallstone formation in gallbladder bile of ovariectomized female wild-type, GPR30(−/−), ERα(−/−), and GPR30(−/−)/ERα(−/−) mice treated with 17β-estradiol (E2) at 6 µg/day and fed a lithogenic diet for 12 days. E2 disrupted biliary cholesterol and bile salt metabolism through ERα and GPR30, leading to supersaturated bile and predisposing to the precipitation of cholesterol monohydrate crystals. In GPR30(−/−) mice, arc-like and tubular crystals formed first, followed by classical parallelogram-shaped cholesterol monohydrate crystals. In ERα(−/−) mice, precipitation of lamellar liquid crystals, typified by birefringent multilamellar vesicles, appeared earlier than cholesterol monohydrate crystals. Both crystallization pathways were accelerated in wild-type mice with the activation of GPR30 and ERα by E2. However, cholesterol crystallization was drastically retarded in GPR30(−/−)/ERα(−/−) mice. We concluded that E2 activates GPR30 and ERα to produce liquid crystalline versus anhydrous crystalline metastable intermediates evolving to cholesterol monohydrate crystals from supersaturated bile. GPR30 produces a synergistic lithogenic action with ERα to enhance E2-induced gallstone formation. PMID:26152119

  19. Estrogen induces two distinct cholesterol crystallization pathways by activating ERα and GPR30 in female mice.

    PubMed

    de Bari, Ornella; Wang, Tony Y; Liu, Min; Portincasa, Piero; Wang, David Q-H

    2015-09-01

    To distinguish the lithogenic effect of the classical estrogen receptor α (ERα) from that of the G protein-coupled receptor 30 (GPR30), a new estrogen receptor, on estrogen-induced gallstones, we investigated the entire spectrum of cholesterol crystallization pathways and sequences during the early stage of gallstone formation in gallbladder bile of ovariectomized female wild-type, GPR30((-/-)), ERα((-/-)), and GPR30((-/-))/ERα((-/-)) mice treated with 17β-estradiol (E2) at 6 µg/day and fed a lithogenic diet for 12 days. E2 disrupted biliary cholesterol and bile salt metabolism through ERα and GPR30, leading to supersaturated bile and predisposing to the precipitation of cholesterol monohydrate crystals. In GPR30((-/-)) mice, arc-like and tubular crystals formed first, followed by classical parallelogram-shaped cholesterol monohydrate crystals. In ERα((-/-)) mice, precipitation of lamellar liquid crystals, typified by birefringent multilamellar vesicles, appeared earlier than cholesterol monohydrate crystals. Both crystallization pathways were accelerated in wild-type mice with the activation of GPR30 and ERα by E2. However, cholesterol crystallization was drastically retarded in GPR30((-/-))/ERα((-/-)) mice. We concluded that E2 activates GPR30 and ERα to produce liquid crystalline versus anhydrous crystalline metastable intermediates evolving to cholesterol monohydrate crystals from supersaturated bile. GPR30 produces a synergistic lithogenic action with ERα to enhance E2-induced gallstone formation.

  20. Peptides from cowpea present antioxidant activity, inhibit cholesterol synthesis and its solubilisation into micelles.

    PubMed

    Marques, Marcelo Rodrigues; Soares Freitas, Rosana Aparecida Manólio; Corrêa Carlos, Amanda Caroline; Siguemoto, Érica Sayuri; Fontanari, Gustavo Guadagnucci; Arêas, José Alfredo Gomes

    2015-02-01

    In previous studies, it was reported that the protein isolated from the cowpea interferes favourably in lipid metabolism, and reduces cholesterol synthesis. The present study investigated the role of cowpea peptide fractions in the micellar solubilisation of cholesterol, in the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) activity, and in the in vitro antioxidant capacity, considering the effects of thermal processing. The protein was isolated from the raw and cooked beans and digested to simulate human digestion. The peptides from the protein isolate of raw bean with molecular mass lower than 3kDa reduced 89% of the HMGCR enzymatic reaction velocity. The cooked cowpeas were more effective in inhibiting the micellar solubility of cholesterol than the raw ones but not the antioxidant activity. This is the first report that cowpea peptides inhibit cholesterol homeostasis in vitro in two distinct routes, and act as an antioxidant.

  1. Determination of acid alpha-naphthyl acetate esterase enzyme activity in peripheral blood leukocytes of gazelles (Gazella subgutturosa).

    PubMed

    Altunay, H; Harem, I S; Harem, M K; Asti, R N; Kurtdede, N

    2008-12-01

    We examined gazelle peripheral blood leucocytes using the alpha-Naphthyl acetate esterase (ANAE) staining technique (pH 5.8). Our purpose was to determine the percentage of ANAE positive lymphocytes. The proportion of ANAE positive T-lymphocytes was 72%. T-lymphocytes showed an ANAE positive reaction, but eosinophilic granulocytes and monocytes also showed a positive reaction. By contrast, no reaction was detected in B-lymphocytes, neutrophil granulocytes or platelets. The reaction observed in T-lymphocytes was a red-brown coloration, usually 1-2 granules, but enough granules to fill the cytoplasm were detected rarely. As a result of ANAE enzyme staining, we concluded that the staining technique can be used as a cytochemical marker for gazelle T-lymphocytes. PMID:19085516

  2. Dietary cholesterol promotes AOM-induced colorectal cancer through activating the NLRP3 inflammasome.

    PubMed

    Du, Qianming; Wang, Qing; Fan, Huimin; Wang, Jianing; Liu, Xiuting; Wang, Hong; Wang, Yajing; Hu, Rong

    2016-04-01

    Prolonged ingestion of a cholesterol-enriched diet induces chronic, auto-inflammatory responses resulting in significant health problems including colorectal cancer. Inflammasomes are thought to mediate intestinal homeostasis, and their dysregulation contributes to inflammatory bowel diseases and colitis-associated cancer (CAC). However, in vitro and in vivo information regarding the inflammation-inducing and tumor-promoting effect of cholesterol is lacking. Here we show that the cholesterol promoted colon carcinogenesis in azoxymethane (AOM)-treated mice through activating the NLRP3 inflammasome. High cholesterol diet (HCD) significantly increased inflammatory responses and tumor burden. Cholesterol crystals, detected in the colon of mice fed with HCD, also promoted NLRP3 inflammasome activation in macrophages, as indicated by elevated expression of cleaved caspase-1, formation of NLRP3-ASC-caspase-1 complex assembly, and higher IL-1β secretion. Importantly, cholesterol was found to inhibit the activity of AMPKα in macrophages, leading to a significant production of mitochondrial ROS, which in turn activated the NLRP3 inflammasome. Moreover, crystal uptake and cathepsin B accounted for cholesterol crystal-induced inactivation of AMPKα. Finally, HCD-induced increase in IL-1β secretion, macrophage infiltration and tumor burden was diminished by the deletion of NLRP3 in AOM-treated mice. Taken together, our findings demonstrate that the pro-inflammatory and cancer-promoting effects of HCD are mediated by the activation of NLRP3 inflammasome. Our study extended our knowledge on how dietary choices can influence processes involved in chronic inflammatory disorders and colorectal cancer. PMID:26921636

  3. Cholesterol-mediated activation of P-glycoprotein: distinct effects on basal and drug-induced ATPase activities.

    PubMed

    Belli, Sara; Elsener, Priska M; Wunderli-Allenspach, Heidi; Krämer, Stefanie D

    2009-05-01

    Cholesterol promotes basal and verapamil-induced ATPase activity of P-glycoprotein (P-gp). We investigated whether these effects are related to each other and to the impact of the sterol on bilayer fluidity and verapamil membrane affinity. P-gp was reconstituted in egg-phosphatidylcholine (PhC) liposomes with or without cholesterol, 1,2-dipalmitoyl-phosphatidylcholine (DPPC), alpha-tocopherol (alpha-Toc) or 2,2,5,7,8-pentamethyl-6-chromanol (PMC). Basal and verapamil-induced ATPase activities were studied with an enzymatic assay. Membrane fluidity was characterized with diphenyl-hexatriene anisotropy measurements and membrane affinity by equilibrium dialysis. DPPC (70% mol/mol) decreased the fluidity of PhC bilayers to the same level as 20% cholesterol. PMC (20%) and alpha-Toc (20%) decreased the fluidity to lesser extents. alpha-Toc and PMC, but not DPPC increased the verapamil membrane affinity. While 20% cholesterol strikingly enhanced the basal ATPase activity, none of the other constituents had a similar effect. In contrast, verapamil stimulation of P-gp ATPase activity was not only enabled by cholesterol but also by alpha-Toc and DPPC. PMC had no effect. In conclusion, cholesterol exerts distinct effects on basal and verapamil-induced ATPase activity. The influence on basal ATPase activity is sterol-specific while its effect on verapamil-induced ATPase activity is unspecific and not related to its influence on membrane fluidity and on verapamil membrane affinity.

  4. Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes.

    PubMed

    Hayat, Akhtar; Haider, Waqar; Raza, Yousuf; Marty, Jean Louis

    2015-10-01

    A sensitive and selective colorimetric method based on the incorporation of zinc oxide nanoparticles (ZnO NPs) on the surface of carbon nanotubes (CNTs) was shown to posses synergistic peroxidase like activity for the detection of cholesterol. The proposed nanocomposite catalyzed the oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) in the presence of hydrogen peroxide (H2O2) to produce a green colored product which can be monitored at 405 nm. H2O2 is the oxidative product of cholesterol in the presence of cholesterol oxidase. Therefore, the oxidation of cholesterol can be quantitatively related to the colorimetric response by combining these two reactions. Under the optimal experimental conditions, the colorimetric response was proportional to the concentration of cholesterol in the range of 0.5-500 nmol/L, with a detection limit of 0.2 nmol/L. The applicability of the proposed assays was demonstrated for the determination of cholesterol in milk powder samples with good recovery results. PMID:26078143

  5. Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes.

    PubMed

    Hayat, Akhtar; Haider, Waqar; Raza, Yousuf; Marty, Jean Louis

    2015-10-01

    A sensitive and selective colorimetric method based on the incorporation of zinc oxide nanoparticles (ZnO NPs) on the surface of carbon nanotubes (CNTs) was shown to posses synergistic peroxidase like activity for the detection of cholesterol. The proposed nanocomposite catalyzed the oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) in the presence of hydrogen peroxide (H2O2) to produce a green colored product which can be monitored at 405 nm. H2O2 is the oxidative product of cholesterol in the presence of cholesterol oxidase. Therefore, the oxidation of cholesterol can be quantitatively related to the colorimetric response by combining these two reactions. Under the optimal experimental conditions, the colorimetric response was proportional to the concentration of cholesterol in the range of 0.5-500 nmol/L, with a detection limit of 0.2 nmol/L. The applicability of the proposed assays was demonstrated for the determination of cholesterol in milk powder samples with good recovery results.

  6. Cholesterol synthesis inhibitors protect against platelet-activating factor-induced neuronal damage

    PubMed Central

    Bate, Clive; Rumbold, Louis; Williams, Alun

    2007-01-01

    Background Platelet-activating factor (PAF) is implicated in the neuronal damage that accompanies ischemia, prion disease and Alzheimer's disease (AD). Since some epidemiological studies demonstrate that statins, drugs that reduce cholesterol synthesis, have a beneficial effect on mild AD, we examined the effects of two cholesterol synthesis inhibitors on neuronal responses to PAF. Methods Primary cortical neurons were treated with cholesterol synthesis inhibitors (simvastatin or squalestatin) prior to incubation with different neurotoxins. The effects of these drugs on neuronal cholesterol levels and neuronal survival were measured. Immunoblots were used to determine the effects of simvastatin or squalestatin on the distribution of the PAF receptor and an enzyme linked immunoassay was used to quantify the amounts of PAF receptor. Results PAF killed primary neurons in a dose-dependent manner. Pre-treatment with simvastatin or squalestatin reduced neuronal cholesterol and increased the survival of PAF-treated neurons. Neuronal survival was increased 50% by 100 nM simvastatin, or 20 nM squalestatin. The addition of mevalonate restored cholesterol levels, and reversed the protective effect of simvastatin. Simvastatin or squalestatin did not affect the amounts of the PAF receptor but did cause it to disperse from within lipid rafts. Conclusion Treatment of neurons with cholesterol synthesis inhibitors including simvastatin and squalestatin protected neurons against PAF. Treatment caused a percentage of the PAF receptors to disperse from cholesterol-sensitive domains. These results raise the possibility that the effects of statins on neurodegenerative disease are, at least in part, due to desensitisation of neurons to PAF. PMID:17233902

  7. Improved assay for cholesterol 7 alpha-hydroxylase activity using phospholipid liposome solubilized substrate

    SciTech Connect

    Junker, L.H.; Story, J.A.

    1985-10-01

    A persistent problem in measurement of cholesterol 7 alpha-hydroxylase (7 alpha-OHase) activity by isotope incorporation has been solubilization of cholesterol substrate. Solubilization with Tween 20, for example, resulted in a 75% reduction in 7 alpha-OHase activity after a 60 min incubation of substrate with microsomes. Incorporation of cholesterol substrate into small, unilamellar phospholipid vesicles (liposomes) prevented this effect, resulting in a 50% increase in activity over the same 60 min incubation at optimal concentrations. Using cholesterol in liposomes as substrate, standard assay conditions were determined to be: preparation of liposomes with 180 microM cholesterol substrate and 0.5 mg phospholipid/assay; incubation of these liposomes with 0.5 mg microsomal protein at 37 C for 60 min; addition of a NADPH generating system to start the reaction, and incubation at 37 C for 30 min before stopping the reaction and determining the amount of 7 alpha-hydroxycholesterol formed. This method provides a sensitive and reliable alternative to methods which require more sophisticated equipment and allows total control of substrate concentration in a form readily accessible to the enzyme.

  8. Reduced cholesterol levels impair Smoothened activation in Smith-Lemli-Opitz syndrome.

    PubMed

    Blassberg, Robert; Macrae, James I; Briscoe, James; Jacob, John

    2016-02-15

    Smith-Lemli-Opitz syndrome (SLOS) is a common autosomal-recessive disorder that results from mutations in the gene encoding the cholesterol biosynthetic enzyme 7-dehydrocholesterol reductase (DHCR7). Impaired DHCR7 function is associated with a spectrum of congenital malformations, intellectual impairment, epileptiform activity and autism spectrum disorder. Biochemically, there is a deficit in cholesterol and an accumulation of its metabolic precursor 7-dehydrocholesterol (7DHC) in developing tissues. Morphological abnormalities in SLOS resemble those seen in congenital Sonic Hedgehog (SHH)-deficient conditions, leading to the proposal that the pathogenesis of SLOS is mediated by aberrant SHH signalling. SHH signalling is transduced through the transmembrane protein Smoothened (SMO), which localizes to the primary cilium of a cell on activation and is both positively and negatively regulated by sterol molecules derived from cholesterol biosynthesis. One proposed mechanism of SLOS involves SMO dysregulation by altered sterol levels, but the salient sterol species has not been identified. Here, we clarify the relationship between disrupted cholesterol metabolism and reduced SHH signalling in SLOS by modelling the disorder in vitro. Our results indicate that a deficit in cholesterol, as opposed to an accumulation of 7DHC, impairs SMO activation and its localization to the primary cilium.

  9. Reduced cholesterol levels impair Smoothened activation in Smith–Lemli–Opitz syndrome

    PubMed Central

    Blassberg, Robert; Macrae, James I.; Briscoe, James; Jacob, John

    2016-01-01

    Smith–Lemli–Opitz syndrome (SLOS) is a common autosomal-recessive disorder that results from mutations in the gene encoding the cholesterol biosynthetic enzyme 7-dehydrocholesterol reductase (DHCR7). Impaired DHCR7 function is associated with a spectrum of congenital malformations, intellectual impairment, epileptiform activity and autism spectrum disorder. Biochemically, there is a deficit in cholesterol and an accumulation of its metabolic precursor 7-dehydrocholesterol (7DHC) in developing tissues. Morphological abnormalities in SLOS resemble those seen in congenital Sonic Hedgehog (SHH)-deficient conditions, leading to the proposal that the pathogenesis of SLOS is mediated by aberrant SHH signalling. SHH signalling is transduced through the transmembrane protein Smoothened (SMO), which localizes to the primary cilium of a cell on activation and is both positively and negatively regulated by sterol molecules derived from cholesterol biosynthesis. One proposed mechanism of SLOS involves SMO dysregulation by altered sterol levels, but the salient sterol species has not been identified. Here, we clarify the relationship between disrupted cholesterol metabolism and reduced SHH signalling in SLOS by modelling the disorder in vitro. Our results indicate that a deficit in cholesterol, as opposed to an accumulation of 7DHC, impairs SMO activation and its localization to the primary cilium. PMID:26685159

  10. 4-Hydroxy-N-propyl-1,8-naphthalimide esters: New fluorescence-based assay for analysing lipase and esterase activity.

    PubMed

    Nalder, Tim D; Ashton, Trent D; Pfeffer, Frederick M; Marshall, Susan N; Barrow, Colin J

    2016-01-01

    Research using 1,8-naphthalimide derivatives has expanded rapidly in recent years owing to their cell-permeable nature, ability to target certain cellular locations and fluorescent properties. Here we describe the synthesis of three new esters of 4-hydroxy-N-propyl-1,8-naphthalimide (NAP) and the development of a simple and sensitive assay protocol to measure the activity of carboxylester hydrolases. The NAP fluorophore was esterified with short (butyrate), medium (octanoate) and long (palmitate) chain fatty acids. The esters were spectroscopically characterised and their properties investigated for their suitability as assay substrates. The esters were found to be relatively stable under the conditions of the assay and levels of spontaneous hydrolysis were negligible. Non-specific hydrolysis by proteins such as bovine serum albumin was also minimal. A simple and rapid assay methodology was developed and used to analyse a range of commercially available enzymes that included enzymes defined as lipases, esterases and phospholipases. Clear differences were observed between the enzyme classes with respect to the hydrolysis of the various chain length esters, with lipases preferentially hydrolysing the medium chain ester, whereas esterases reacted more favourably with the short ester. The assay was found to be highly sensitive with the fluorophore detectable to the low nM range. These esters provide alternate substrates from established coumarin-based fluorophores, possessing distinctly different excitation (447 nm) and emission (555 nm) optima. Absorbing at 440-450 nm also offers the flexibility of analysis by UV-visible spectrophotometry. This represents the first instance of a naphthalimide-derived compound being used to analyse these enzymes.

  11. New Extremophilic Lipases and Esterases from Metagenomics

    PubMed Central

    López-López, Olalla; Cerdán, Maria E; González Siso, Maria I

    2014-01-01

    Lipolytic enzymes catalyze the hydrolysis of ester bonds in the presence of water. In media with low water content or in organic solvents, they can catalyze synthetic reactions such as esterification and transesterification. Lipases and esterases, in particular those from extremophilic origin, are robust enzymes, functional under the harsh conditions of industrial processes owing to their inherent thermostability and resistance towards organic solvents, which combined with their high chemo-, regio- and enantioselectivity make them very attractive biocatalysts for a variety of industrial applications. Likewise, enzymes from extremophile sources can provide additional features such as activity at extreme temperatures, extreme pH values or high salinity levels, which could be interesting for certain purposes. New lipases and esterases have traditionally been discovered by the isolation of microbial strains producing lipolytic activity. The Genome Projects Era allowed genome mining, exploiting homology with known lipases and esterases, to be used in the search for new enzymes. The Metagenomic Era meant a step forward in this field with the study of the metagenome, the pool of genomes in an environmental microbial community. Current molecular biology techniques make it possible to construct total environmental DNA libraries, including the genomes of unculturable organisms, opening a new window to a vast field of unknown enzymes with new and unique properties. Here, we review the latest advances and findings from research into new extremophilic lipases and esterases, using metagenomic approaches, and their potential industrial and biotechnological applications. PMID:24588890

  12. An esterase gene from Lactobacillus casei cotranscribed with genes encoding a phosphoenolpyruvate:sugar phosphotransferase system and regulated by a LevR-like activator and sigma54 factor.

    PubMed

    Yebra, María J; Viana, Rosa; Monedero, Vicente; Deutscher, Josef; Pérez-Martínez, Gaspar

    2004-01-01

    A new esterase-encoding gene was found in the draft genome sequence of Lactobacillus casei BL23 (CECT5275). It is located in an operon together with genes encoding the EIIA, EIIB, EIIC, and EIID proteins of a mannose class phosphoenolpyruvate:sugar phosphotransferase system. After overproduction in Escherichia coli and purification, the esterase could hydrolyze acetyl sugars, hence the operon was named esu for esterase-sugar uptake genes. Upstream of the genes encoding the EII components (esuABCD) and the esterase (esuE), two genes transcribed in the opposite sense were found which encode a Bacillus subtilis LevR-like transcriptional activator (esuR) and a sigma54-like transcriptional factor (rpoN). As compared with the wild-type strain, elevated fructose phosphorylation was detected in L. casei mutants constitutively expressing the esu operon. However, none of the many sugars tested could induce the esu operon. The fact that EsuE exhibits esterase activity on acetyl sugars suggests that this operon could be involved in the uptake and metabolism of esterified sugars. Expression of the esu operon is similar to that of the B. subtilis lev operon: it contains a -12,-24 consensus promoter typical of sigma54-regulated genes, and EsuR and RpoN are essential for its transcription which is negatively regulated by EIIB(Esu). The esuABCDE transcription unit represents the first sigma54-regulated operon in lactobacilli. Furthermore, replacement of His852 in the phosphoenolpyruvate:sugar phosphotransferase system regulation domain II of EsuR with Ala indicated that the transcription activator function of EsuR is inhibited by EIIB(Esu)-mediated phosphorylation at His852. PMID:15925903

  13. Requirement for pectin methyl esterase and preference for fragmented over native pectins for wall-associated kinase-activated, EDS1/PAD4-dependent stress response in Arabidopsis.

    PubMed

    Kohorn, Bruce D; Kohorn, Susan L; Saba, Nicholas J; Martinez, Victoriano Meco

    2014-07-01

    The wall-associated kinases (WAKs) have a cytoplasmic protein kinase domain that spans the plasma membrane and binds pectin in the extracellular matrix of plants. WAKs are required for cell expansion during Arabidopsis seedling development but are also an integral part of the response to pathogens and stress that present oligogalacturonides (OGs), which subsequently bind to WAKs and activate a MPK6 (mitogen-activated protein kinase)-dependent pathway. It was unclear how WAKs distinguish native pectin polymers and OGs to activate one or the other of these two pathways. A dominant allele of WAK2 constitutively activates the stress response, and we show here that the effect is dependent upon EDS1 and PAD4, transcriptional activators involved in the pathogen response. Moreover, the WAK2 dominant allele is suppressed by a null allele of a pectin methyl esterase (PME3) whose activity normally leads to cross-linking of pectins in the cell wall. Although OGs activate a transcriptional response in wild type, the response is enhanced in a pme3/pme3 null, consistent with a competition by OG and native polymers for activation of WAKs. This provides a plausible mechanism for WAKs to distinguish an expansion from a stress pathway.

  14. Measurement of lecithin-cholesterol acyltransferase activity with the use of a Peptide-proteoliposome substrate.

    PubMed

    Vaisman, Boris L; Remaley, Alan T

    2013-01-01

    Lecithin-cholesterol acyltransferase (LCAT) is the major enzyme responsible for the esterification of free cholesterol on plasma lipoproteins, which is a key step in the reverse cholesterol transport pathway. The measurement of plasma LCAT activity not only is important in the diagnosis of patients with genetic or acquired LCAT deficiency but is also valuable in calculating cardiovascular risk, as well as in research studies of lipoprotein metabolism. In this chapter, we describe a convenient LCAT assay based on the use of an apoA-I mimetic peptide. The proteoliposome substrate used in this assay for LCAT is easily made with the peptide and can be stored by deep freezing without significant loss of activity. PMID:23912995

  15. Wnt/beta-catenin pathway activation and myogenic differentiation are induced by cholesterol depletion.

    PubMed

    Mermelstein, Cláudia S; Portilho, Débora M; Mendes, Fábio A; Costa, Manoel L; Abreu, José Garcia

    2007-03-01

    Myogenic differentiation is a multistep process that begins with the commitment of mononucleated precursors that withdraw from cell cycle. These myoblasts elongate while aligning to each other, guided by the recognition between their membranes. This step is followed by cell fusion and the formation of long and striated multinucleated myotubes. We have recently shown that cholesterol depletion by methyl-beta-cyclodextrin (MbetaCD) induces myogenic differentiation by enhancing myoblast recognition and fusion. Here, we further studied the signaling pathways responsible for early steps of myogenesis. As it is known that Wnt plays a role in muscle differentiation, we used the chemical MbetaCD to deplete membrane cholesterol and investigate the involvement of the Wnt/beta-catenin pathway during myogenesis. We show that cholesterol depletion promoted a significant increase in expression of beta-catenin, its nuclear translocation and activation of the Wnt pathway. Moreover, we show that the activation of the Wnt pathway after cholesterol depletion can be inhibited by the soluble protein Frzb-1. Our data suggest that membrane cholesterol is involved in Wnt/beta-catenin signaling in the early steps of myogenic differentiation.

  16. Trans Fatty Acid Derived Phospholipids Show Increased Membrane Cholesterol and Reduced Receptor Activation as Compared to Their Cis Analogs

    PubMed Central

    Niu, Shui-Lin; Mitchell, Drake C.; Litman, Burton J.

    2005-01-01

    The consumption of trans fatty acid (TFA) is linked to the elevation of LDL cholesterol and is considered to be a major health risk factor for coronary heart disease. Despite several decades of extensive research on this subject, the underlying mechanism of how TFA modulates serum cholesterol levels remains elusive. In this study, we examined the molecular interaction of TFA-derived phospholipid with cholesterol and the membrane receptor rhodopsin in model membranes. Rhodopsin is a prototypical member of the G-protein coupled receptor family. It has a well-characterized structure and function and serves as a model membrane receptor in this study. Phospholipid–cholesterol affinity was quantified by measuring cholesterol partition coefficients. Phospholipid–receptor interactions were probed by measuring the level of rhodopsin activation. Our study shows that phospholipid derived from TFA had a higher membrane cholesterol affinity than their cis analogues. TFA phospholipid membranes also exhibited a higher acyl chain packing order, which was indicated by the lower acyl chain packing free volume as determined by DPH fluorescence and the higher transition temperature for rhodopsin thermal denaturation. The level of rhodopsin activation was diminished in TFA phospholipids. Since membrane cholesterol level and membrane receptors are involved in the regulation of cholesterol homeostasis, the combination of higher cholesterol content and reduced receptor activation associated with the presence of TFA–phospholipid could be factors contributing to the elevation of LDL cholesterol. PMID:15766276

  17. Biochemical characterization and structural analysis of a new cold-active and salt-tolerant esterase from the marine bacterium Thalassospira sp.

    PubMed

    De Santi, Concetta; Leiros, Hanna-Kirsti S; Di Scala, Alessia; de Pascale, Donatella; Altermark, Bjørn; Willassen, Nils-Peder

    2016-05-01

    A gene encoding an esterase, ThaEst2349, was identified in the marine psychrophilic bacterium Thalassospira sp. GB04J01. The gene was cloned and overexpressed in E. coli as a His-tagged fusion protein. The recombinant enzyme showed optimal activity at 45 °C and the thermal stability displayed a retention of 75 % relative activity at 40 °C after 2 h. The optimal pH was 8.5 but the enzyme kept more than 75 % of its maximal activity between pH 8.0 and 9.5. ThaEst2349 also showed remarkable tolerance towards high concentrations of salt and it was active against short-chain p-nitrophenyl esters, displaying optimal activity with the acetate. The enzyme was tested for tolerance of organic solvents and the results are suggesting that it could function as an interesting candidate for biotechnological applications. The crystal structure of ThaEst2349 was determined to 1.69 Å revealing an asymmetric unit containing two chains, which also is the biological unit. The structure has a characteristic cap domain and a catalytic triad comprising Ser158, His285 and Asp255. To explain the cold-active nature of the enzyme, we compared it against thermophilic counterparts. Our hypothesis is that a high methionine content, less hydrogen bonds and less ion pairs render the enzyme more flexible at low temperatures. PMID:27016194

  18. Structural and functional analysis of a low-temperature-active alkaline esterase from South China Sea marine sediment microbial metagenomic library.

    PubMed

    Hu, Yongfei; Liu, Yinghui; Li, Jing; Feng, Yanbin; Lu, Na; Zhu, Baoli; Xue, Song

    2015-11-01

    A low-temperature-active alkaline esterase, Est12, from a marine sediment metagenomic fosmid library was identified. Est12 prefers short- and middle-chain p-nitrophenol esters as substrate with optimum temperature and pH value of 50 °C and 9.0, respectively, and nearly 50 % of maximum activity retained at 5 °C. The hydrolysis activity of Est12 was stable at 40 °C. Ca(2+) especially activated the activity of Est12 to about 151 % of the control. DEPC and PMSF inhibited the activity of Est12 to 34 and 25 %, respectively. In addition, Est12 was more tolerable to methanol compared to other organic solvents tested. The crystal structure of Est12 at 1.39 Å resolution showed that the cap domain which is composed of an α-helix and a flexible region resulted in a relatively wide spectrum of substrate, with p-nitrophenol caproate as the preferred one. Furthermore, the flexible cap domain and the high percentage of Gly, Ser, and Met may play important roles in the adaptation of Est12 to low temperature.

  19. The Structure of a Novel Thermophilic Esterase from the Planctomycetes Species, Thermogutta terrifontis Reveals an Open Active Site Due to a Minimal ‘Cap’ Domain

    PubMed Central

    Sayer, Christopher; Szabo, Zalan; Isupov, Michail N.; Ingham, Colin; Littlechild, Jennifer A.

    2015-01-01

    A carboxyl esterase (TtEst2) has been identified in a novel thermophilic bacterium, Thermogutta terrifontis from the phylum Planctomycetes and has been cloned and over-expressed in Escherichia coli. The enzyme has been characterized biochemically and shown to have activity toward small p-nitrophenyl (pNP) carboxylic esters with optimal activity for pNP-acetate. The enzyme shows moderate thermostability retaining 75% activity after incubation for 30 min at 70°C. The crystal structures have been determined for the native TtEst2 and its complexes with the carboxylic acid products propionate, butyrate, and valerate. TtEst2 differs from most enzymes of the α/β-hydrolase family 3 as it lacks the majority of the ‘cap’ domain and its active site cavity is exposed to the solvent. The bound ligands have allowed the identification of the carboxyl pocket in the enzyme active site. Comparison of TtEst2 with structurally related enzymes has given insight into how differences in their substrate preference can be rationalized based upon the properties of their active site pockets. PMID:26635762

  20. Cholesteryl ester transfer protein activity and atherogenic parameters in rabbits supplemented with cholesterol and garlic powder.

    PubMed

    Kwon, Myung-Ja; Song, Young-Sun; Choi, Myung-Sook; Park, Sang-Joon; Jeong, Kyu-Shik; Song, Yeong-Ok

    2003-05-16

    The current study was conducted to examine the effect of garlic supplementation on CETP activity, along with its anti-atherosclerotic effect in cholesterol-fed rabbits. Rabbits were fed a 1% cholesterol diet for 12 weeks, including a 1% garlic powder supplement. The garlic-supplemented group exhibited significantly lower CETP activity than the control group during the experimental period (P < 0.05). Among the atherogenic parameters, the total cholesterol, TG, LDL-C, VLDL-C, and atherogenic index were all significantly lower in the garlic group than in the control group during the experimental period (P < 0.05), whereas the HDL-C concentration was significantly higher in the garlic group than in the control group after 12 weeks (P < 0.05). Atherosclerotic lesion area in the aorta arch was also significantly lower in the garlic group (P < 0.05). In the morphological examination, the garlic-supplemented group exhibited far fewer fat droplet deposits than the control group. Furthermore, the garlic supplement also lowered the aortic and hepatic cholesterol, and triglyceride. Accordingly, the current results suggest that garlic exerts hypocholesterolemic and/or antiatherogenic and that plasma CETP activity might be a risk marker related with atherogenesis. As such, the inhibition of CETP activity may delay the progression of atherosclerosis, thereby supporting the atherogenicity of CETP and the inhibitory activity of garlic supplementation against CETP. PMID:12706483

  1. Thiol-independent activity of a cholesterol-binding enterohemolysin produced by enteropathogenic Escherichia coli.

    PubMed

    Figueirêdo, P M S; Catani, C F; Yano, T

    2003-11-01

    Enterohemolysin produced by Escherichia coli associated with infant diarrhea showed characteristics similar to those of thiol-activated hemolysins produced by Gram-positive bacteria, including inactivation by cholesterol, lytic activity towards eukaryotic cells and thermoinstability. However, enterohemolysin activity was not inactivated by oxidation or by SH group-blocking agents (1 mM HgCl2, 1 mM iodoacetic acid) and the hemolysin (100 microg/ml) was not lethal to mice, in contrast to the lethality of the thiol-activated hemolysin family to animals. Earlier reports showed that intravenous injection of partially purified streptolysin O preparations (0.2 microg) was rapidly lethal to mice. These results suggest that E. coli enterohemolysin is not a thiol-activated hemolysin, despite its ability to bind cholesterol, probably due to the absence of free thiol-group(s) that characterize the active form of the thiol-activated hemolysin molecule.

  2. Association of lecithin-cholesterol acyltransferase activity measured as a serum cholesterol esterification rate and low-density lipoprotein heterogeneity with cardiovascular risk: a cross-sectional study.

    PubMed

    Tani, Shigemasa; Takahashi, Atsuhiko; Nagao, Ken; Hirayama, Atsushi

    2016-06-01

    The cholesterol-esterifying enzyme, lecithin-cholesterol acyltransferase (LCAT), is believed to play a key role in reverse cholesterol transport. However, recent investigations have demonstrated that higher LCAT activity levels increase the formation of triglyceride (TG)-rich lipoproteins (TRLs) and atherogenesis. We hypothesized that higher LCAT activity measured as a serum cholesterol esterification rate by the endogenous substrate method might increase the formation of TRLs and thereby alter low-density lipoprotein (LDL) heterogeneity. The estimated LDL particle size [relative LDL migration (LDL-Rm)] was measured by polyacrylamide gel electrophoresis with the LipoPhor system (Joko, Tokyo, Japan) in 538 consecutive patients with at least risk factor for atherosclerosis. Multivariate regression analysis after adjustments for traditional risk factors identified elevated TRL-related marker (TG, remnant-like particle cholesterol, apolipoprotein C-II, and apolipoprotein C-III) levels as independent predictors of smaller-sized LDL particle size, both in the overall subject population and in the subset of patients with serum LDL cholesterol levels of <100 mg/dL. Area under the receiver operating characteristic curve of the LCAT activity (0.79; sensitivity 60 %; specificity 84.8 %) was observed for the evaluation of the indicators of an LDL-Rm value of ≥0.40, which suggests the presence of large amounts of small-dense LDL. The results lend support to the hypothesis that increased LCAT activity may be associated with increased formation of TRLs, leading to a reduction in LDL particle size. Therefore, to reduce the risk of atherosclerotic cardiovascular disease, it may be of importance to pay attention not only to a quantitative change in the serum LDL-C, but also to the LCAT activity which is possibly associated with LDL heterogeneity. PMID:25894629

  3. [Role of Human Orphan Esterases in Drug-induced Toxicity].

    PubMed

    Fukami, Tatsuki

    2015-01-01

    Esterases hydrolyze compounds containing ester, amide, and thioester bonds, causing prodrug activation or detoxification. Among esterases, carboxylesterases have been studied in depth due to their ability to hydrolyze a variety of drugs. However, there are several drugs for which the involved esterase(s) is unknown. We found that flutamide, phenacetin, rifamycins (rifampicin, rifabutin, and rifapentine), and indiplon are hydrolyzed by arylacetamide deacetylase (AADAC), which is highly expressed in human liver and gastrointestinal tissues. Flutamide hydrolysis is considered associated with hepatotoxicity. Phenacetin, a prodrug of acetaminophen, was withdrawn due to side effects such as methemoglobinemia and renal failure. It was demonstrated in vitro and in vivo using mice that AADAC is responsible for phenacetin hydrolysis, which leads to methemoglobinemia. In addition, it was shown that AADAC-mediated hydrolysis attenuates the cytotoxicity of rifamycins. Thus AADAC plays critical roles in drug-induced toxicity. Another orphan esterase, α/β hydrolase domain containing 10 (ABHD10), was found responsible for deglucuronidation of acyl-glucuronides including mycophenolic acid acyl-glucuronide and probenecid acyl-glucuronide. Because acyl-glucuronides appear associated with toxicity, ABHD10 would function as a detoxification enzyme. The roles of orphan esterases are becoming increasingly understood. Further studies will facilitate our knowledge of the pharmacologic and toxicological significance of orphan esterases in drug therapy. PMID:26521872

  4. Immobilization of a novel cold active esterase onto Fe3O4∼cellulose nano-composite enhances catalytic properties.

    PubMed

    Rahman, Mohammad Asadur; Culsum, Umma; Kumar, Ashok; Gao, Haofeng; Hu, Nan

    2016-06-01

    A novel esterase, EstH was cloned, purified and characterized from the marine bacterium Zunongwangia sp. The purified EstH showed optimum activity at 30°C and pH 8.5 with ∼50% of original activity at 0°C. EstH was stable in high salt conditions (0-4.5M NaCl). To improve the characteristics and explore the possibilities for application, a new immobilization matrix, Fe3O4∼cellulose nano-composite, was prepared and was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Interestingly the optimal temperature of immobilized EstH elevated to 35°C. Compared to its free form, immobilized EstH showed better temperature stability (48.5% compared to 22.40% at 50°C after 30min), prolonged half-life (32h compared to 18h), higher storage stability (∼71% activity compared to ∼40% after 50days of storage), improved pH tolerance (∼73% activity at pH 4 and 10), and, more importantly, reusability (∼50% activity after 8 repetitive cycles of usage). Enzyme kinetics showed an increase in the Vmax (from 35.76 to 51.14μM/min) and Kcat (from 365s(-1) to 520s(-1)) after immobilization. The superior catalytic properties of immobilized EstH suggest its great potential in biotechnology and industrial processes. PMID:26976070

  5. Characterization of a Feruloyl Esterase from Lactobacillus plantarum

    PubMed Central

    Esteban-Torres, María; Reverón, Inés; Mancheño, José Miguel; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is frequently found in the fermentation of plant-derived food products, where hydroxycinnamoyl esters are abundant. L. plantarum WCFS1 cultures were unable to hydrolyze hydroxycinnamoyl esters; however, cell extracts from the strain partially hydrolyze methyl ferulate and methyl p-coumarate. In order to discover whether the protein Lp_0796 is the enzyme responsible for this hydrolytic activity, it was recombinantly overproduced and enzymatically characterized. Lp_0796 is an esterase that, among other substrates, is able to efficiently hydrolyze the four model substrates for feruloyl esterases (methyl ferulate, methyl caffeate, methyl p-coumarate, and methyl sinapinate). A screening test for the detection of the gene encoding feruloyl esterase Lp_0796 revealed that it is generally present among L. plantarum strains. The present study constitutes the description of feruloyl esterase activity in L. plantarum and provides new insights into the metabolism of hydroxycinnamic compounds in this bacterial species. PMID:23793626

  6. Positive effect of dietary lutein and cholesterol on the undirected song activity of an opportunistic breeder

    PubMed Central

    Pinxten, Rianne; Zaid, Erika; Eens, Marcel

    2016-01-01

    Song is a sexually selected trait that is thought to be an honest signal of the health condition of an individual in many bird species. For species that breed opportunistically, the quantity of food may be a determinant of singing activity. However, it is not yet known whether the quality of food plays an important role in this respect. The aim of the present study was to experimentally investigate the role of two calorie-free nutrients (lutein and cholesterol) in determining the expression of a sexually selected behavior (song rate) and other behaviors (locomotor activity, self-maintenance activity, eating and resting) in male zebra finches (Taeniopygia guttata). We predicted that males supplemented with lutein and cholesterol would sing at higher rates than controls because both lutein and cholesterol have important health-related physiological functions in birds and birdsong mirrors individual condition. To control for testosterone secretion that may upregulate birdsong, birds were exposed to a decreasing photoperiod. Our results showed that control males down-regulated testosterone in response to a decreasing photoperiod, while birds treated with lutein or cholesterol maintained a constant singing activity. Both lutein- and cholesterol-supplemented groups sang more than control groups by the end of the experiment, indicating that the quality of food can affect undirected song irrespective of circulating testosterone concentrations. None of the other measured behaviors were affected by the treatment, suggesting that, when individuals have full availability of food, sexually selected song traits are more sensitive to the effect of food quality than other behavioral traits. Overall the results support our prediction that undirected song produced by male zebra finches signals access to high-quality food. PMID:27761321

  7. Membrane Cholesterol Affects Stimulus-Activity Coupling in Type 1, but not Type 2, CCK Receptors: Use of Cell Lines with Elevated Cholesterol

    PubMed Central

    Harikumar, Kaleeckal G.; Potter, Ross M.; Patil, Achyut; Echeveste, Valerie

    2013-01-01

    The lipid microenvironment of membrane proteins can affect their structure, function, and regulation. We recently described differential effects of acute modification of membrane cholesterol on the function of type 1 and 2 cholecystokinin (CCK) receptors. We now explore the regulatory impact of chronic cholesterol modification on these receptors using novel receptor-bearing cell lines with elevated membrane cholesterol. Stable CCK1R and CCK2R expression was established in clonal lines of 25RA cells having gain-of-function in SCAP [sterol regulatory element binding protein (SREBP) cleavage-activating protein] and SRD15 cells having deficiencies in Insig-1 and Insig-2 enzymes affecting HMG CoA reductase and SREBP. Increased cholesterol in the plasma membrane of these cells was directly demonstrated, and receptor binding and signaling characteristics were shown to reflect predicted effects on receptor function. In both environments, both types of CCK receptors were internalized and recycled normally in response to agonist occupation. No differences in receptor distribution within the membrane were appreciated at the light microscopic level in these CHO-derived cell lines. Fluorescence anisotropy was studied for these receptors occupied by fluorescent agonist and antagonist, as well as when tagged with YFP. These studies demonstrated increased anisotropy of the agonist ligand occupying the active state of the CCK1R in a cholesterol-enriched environment, mimicking fluorescence of the uncoupled, inactive state of this receptor, while there was no effect of increasing cholesterol on fluorescence at the CCK2R. These cell lines should be quite useful for examining the functional characteristics of potential drugs that might be used in an abnormal lipid environment. PMID:23306829

  8. Sequence-specific apolipoprotein A-I effects on lecithin:cholesterol acyltransferase activity.

    PubMed

    Dergunov, Alexander D

    2013-06-01

    Existing kinetic data of cholesteryl ester formation by lecithin:cholesterol acyltransferase in discoidal high-density lipoproteins with 34 mutations of apoA-I that involved all putative helices were grouped by cluster analysis into four noncoincident regions with mutations both without any functional impairment and with profound isolated (V- and K-mutations) or common (VK-mutations) effect on V(max)(app) and K(m)(app). Data were analyzed with a new kinetic model of LCAT activity at interface that exploits the efficiency of LCAT binding to the particle, particle dimensions, and surface concentrations of phosphatidylcholine and cholesterol. V-mutations with major location in the central part and C-domain affected the second-order rate constant of cholesteryl ester formation at the solvolysis of acyl-enzyme intermediate by cholesterol as nucleophile. The central region in apoA-I sequence is suggested to influence the proper positioning of cholesterol molecule toward LCAT active center with major contribution of arginine residue(s). K-mutations with major location in N-domain may affect binding and stability of enzyme-phosphatidylcholine complex. VK-mutations may possess mixed effects; the independent binding measurement may segregate individual steps. PMID:23516040

  9. Xylella fastidiosa esterase rather than hydroxynitrile lyase.

    PubMed

    Torrelo, Guzman; Ribeiro de Souza, Fayene Zeferino; Carrilho, Emanuel; Hanefeld, Ulf

    2015-03-01

    In 2009, we reported that the product of the gene SCJ21.16 (XFa0032) from Xylella fastidiosa, a xylem-restricted plant pathogen that causes a range of diseases in several important crops, encodes a protein (XfHNL) with putative hydroxynitrile lyase activity. Sequence analysis and activity tests indicated that XfHNL exhibits an α/β-hydrolase fold and could be classified as a member of the family of FAD-independent HNLs. Here we provide a more detailed sequence analysis and new experimental data. Using pure heterologously expressed XfHNL we show that this enzyme cannot catalyse the cleavage/synthesis of mandelonitrile and that this protein is in fact a non-enantioselective esterase. Homology modelling and ligand docking simulations were used to study the active site and support these results. This finding could help elucidate the common ancestor of esterases and hydroxynitrile lyases with an α/β -hydrolase fold. PMID:25684099

  10. Effects of exogenous fatty acids and cholesterol on aminopeptidase activities in rat astroglia.

    PubMed

    Ramírez-Expósito, M J; García, M J; Mayas, M D; Ramírez, M; Martínez-Martos, J M

    2002-12-01

    Several studies have addressed the interaction between fatty acids and lipids with central nervous system peptides. Because aminopeptidases (AP) are involved in the regulation of neuropeptides, this work studies several AP expressed in cultured astroglia, after exogenous addition of oleic and linoleic fatty acids and cholesterol to the culture medium. Alanyl-AP, arginyl-AP, cystyl-AP, leucyl-AP, tyrosyl-AP and pyroglutamyl-AP activities were analysed in whole cells using the corresponding aminoacyl-beta-naphthylamides as substrates. Oleic acid inhibits alanyl-AP, cystyl-AP and leucyl-AP activities, whereas linoleic acid inhibits alanyl-AP, arginyl-AP and tyrosyl-AP activities. Neither oleic acid nor linoleic acid modifies pyroglutamyl-AP activity. In contrast, cholesterol increases arginyl-AP, cystyl-AP, leucyl-AP, tyrosyl-AP and pyroglutamyl-AP activities, although it does not modify alanyl-AP activity. The changes reported here suggest that oleic and linoleic fatty acids and cholesterol can modulate peptide activities via their degradation route involving aminopeptidases; each of them being differentially regulated.

  11. Inhibiting cholesterol degradation induces neuronal sclerosis and epileptic activity in mouse hippocampus.

    PubMed

    Chali, Farah; Djelti, Fathia; Eugene, Emmanuel; Valderrama, Mario; Marquer, Catherine; Aubourg, Patrick; Duykaerts, Charles; Miles, Richard; Cartier, Nathalie; Navarro, Vincent

    2015-05-01

    Elevations in neuronal cholesterol have been associated with several degenerative diseases. An enhanced excitability and synchronous firing in surviving neurons are among the sequels of neuronal death in these diseases and also in some epileptic syndromes. Here, we attempted to increase neuronal cholesterol levels, using a short hairpin RNA to suppress expression of the enzyme cytochrome P450 family 46, subfamily A, polypeptide 1 gene (CYP46A1). This protein hydroxylates cholesterol and so facilitates transmembrane extrusion. A short hairpin RNA CYP46A1construction coupled to the adeno-associated virus type 5 was injected focally and unilaterally into mouse hippocampus. It was selectively expressed first in neurons of the cornu ammonis (hippocampus) (CA)3a region. Cytoplasmic and membrane cholesterol increased, and the neuronal soma volume increased and then decreased before pyramidal cells died. As CA3a pyramidal cells died, interictal electroencephalographic (EEG) events occurred during exploration and non-rapid eye movement sleep. With time, neuronal death spread to involve pyramidal cells and interneurons of the CA1 region. CA1 neuronal death was correlated with a delayed local expression of phosphorylated tau. Astrocytes were activated throughout the hippocampus and microglial activation was specific to regions of neuronal death. CA1 neuronal death was correlated with distinct aberrant EEG activity. During exploratory behaviour and rapid eye movement sleep, EEG oscillations at 7-10 Hz (theta) could accelerate to 14-21 Hz (beta) waves. They were accompanied by low-amplitude, high-frequency oscillations of peak power at ~300 Hz and a range of 250-350 Hz. Although episodes of EEG acceleration were not correlated with changes in exploratory behaviour, they were followed in some animals by structured seizure-like discharges. These data strengthen links between increased cholesterol, neuronal sclerosis and epileptic behaviour.

  12. Inhibiting cholesterol degradation induces neuronal sclerosis and epileptic activity in mouse hippocampus.

    PubMed

    Chali, Farah; Djelti, Fathia; Eugene, Emmanuel; Valderrama, Mario; Marquer, Catherine; Aubourg, Patrick; Duykaerts, Charles; Miles, Richard; Cartier, Nathalie; Navarro, Vincent

    2015-05-01

    Elevations in neuronal cholesterol have been associated with several degenerative diseases. An enhanced excitability and synchronous firing in surviving neurons are among the sequels of neuronal death in these diseases and also in some epileptic syndromes. Here, we attempted to increase neuronal cholesterol levels, using a short hairpin RNA to suppress expression of the enzyme cytochrome P450 family 46, subfamily A, polypeptide 1 gene (CYP46A1). This protein hydroxylates cholesterol and so facilitates transmembrane extrusion. A short hairpin RNA CYP46A1construction coupled to the adeno-associated virus type 5 was injected focally and unilaterally into mouse hippocampus. It was selectively expressed first in neurons of the cornu ammonis (hippocampus) (CA)3a region. Cytoplasmic and membrane cholesterol increased, and the neuronal soma volume increased and then decreased before pyramidal cells died. As CA3a pyramidal cells died, interictal electroencephalographic (EEG) events occurred during exploration and non-rapid eye movement sleep. With time, neuronal death spread to involve pyramidal cells and interneurons of the CA1 region. CA1 neuronal death was correlated with a delayed local expression of phosphorylated tau. Astrocytes were activated throughout the hippocampus and microglial activation was specific to regions of neuronal death. CA1 neuronal death was correlated with distinct aberrant EEG activity. During exploratory behaviour and rapid eye movement sleep, EEG oscillations at 7-10 Hz (theta) could accelerate to 14-21 Hz (beta) waves. They were accompanied by low-amplitude, high-frequency oscillations of peak power at ~300 Hz and a range of 250-350 Hz. Although episodes of EEG acceleration were not correlated with changes in exploratory behaviour, they were followed in some animals by structured seizure-like discharges. These data strengthen links between increased cholesterol, neuronal sclerosis and epileptic behaviour. PMID:25847620

  13. Fusion of the OsmC domain from esterase EstO confers thermolability to the cold-active xylanase Xyn8 from Pseudoalteromonas arctica.

    PubMed

    Elleuche, Skander; Piascheck, Henning; Antranikian, Garabed

    2011-03-01

    The OsmC-region (osmotically induced protein family) of the two-domain esterase EstO from the psychrotolerant bacterium Pseudoalteromonas arctica has been shown to increase thermolability. In an attempt to test if these properties can be conferred to another enzyme, we genetically fused osmC to the 3'-region of the family 8 xylanase encoding gene xyn8 from P. arctica. The chimeric open reading frame xyn8-OsmC was cloned and the chimeric protein was purified after heterologous expression in Escherichia coli. Xyn8 and Xyn8-OsmC showed cold-adapted properties (more than 60% activity at 0°C) using birchwood xylan as the preferred substrate. Maximal catalytic activity is slightly shifted from 15°C (Xyn8) to 20°C for Xyn8-OsmC. Thermostability of Xyn8-OsmC is significantly changed in comparison to wild-type Xyn8. The OsmC-fusion variant showed an apparent decrease in thermostability between 40 and 45°C, while both proteins are highly instable at 50°C.

  14. A Method for Fast Assessment of OP/CB Exposure in the Japanese Quail (Coturnix coturnix japonica) Using Combined Esterases Enzyme Activity as Biomarkers

    PubMed Central

    Abass, Kasim Sakran

    2014-01-01

    The aims of this study were to investigate the presence of different esterase activities in plasma and liver for Japanese quail and to combine determination of both carboxylesterase and cholinesterase as biochemical biomarker in order to identify the effects of carbamate and organophosphate compounds exposure. Carboxylesterase exhibits larger sensitivity to carbamate and organophosphate compounds than to cholinesterase and is present at higher levels. This permitted nature and distribution of carboxylesterase or cholinesterase to be measured. One predominant toxicological form of enzyme level constant in its patterns of motivation and inhibition with cholinesterase was identified in plasma with an apparent Michaelis constant for butyrylthiocholine iodide of 0.394 mM. Carboxylesterase activity in liver was considered by its preferential hydrolysis of the S-phenyl thioacetate. A concentration dependent decrease of carboxylesterase and cholinesterase has demonstrated during in vitro incubation of malathion, parathion, and trichlorfon in the range 0.125–2 mM, while with methomyl was in the range 0.25–4 mM. When quail (n = 15) was exposed orally for 48 h to concentrations of carbamate or organophosphate compounds of 3–200 mg/kg, the percentage inhibition of cholinesterase was in each case larger than that of carboxylesterase and reached statistical significance (P < 0.05) at lower concentrations. PMID:24527206

  15. Cholesterol-Lowering Potentials of Lactic Acid Bacteria Based on Bile-Salt Hydrolase Activity and Effect of Potent Strains on Cholesterol Metabolism In Vitro and In Vivo

    PubMed Central

    Lin, Pei-Pei; Hsieh, You-Miin; Zhang, Zi-yi; Wu, Hui-Ching; Huang, Chun-Chih

    2014-01-01

    This study collected different probiotic isolates from animal and plant sources to evaluate the bile-salt hydrolase activity of probiotics in vitro. The deconjugation potential of bile acid was determined using high-performance liquid chromatography. HepG2 cells were cultured with probiotic strains with high BSH activity. The triglyceride (TG) and apolipoprotein B (apo B) secretion by HepG2 cells were evaluated. Our results show that the BSH activity and bile-acid deconjugation abilities of Pediococcus acidilactici NBHK002, Bifidobacterium adolescentis NBHK006, Lactobacillus rhamnosus NBHK007, and Lactobacillus acidophilus NBHK008 were higher than those of the other probiotic strains. The cholesterol concentration in cholesterol micelles was reduced within 24 h. NBHK007 reduced the TG secretion by 100% after 48 h of incubation. NBHK002, NBHK006, and NBHK007 could reduce apo B secretion by 33%, 38%, and 39%, respectively, after 24 h of incubation. The product PROBIO S-23 produced a greater decrease in the total concentration of cholesterol, low-density lipoprotein, TG, and thiobarbituric acid reactive substance in the serum or livers of hamsters with hypercholesterolemia compared with that of hamsters fed with a high-fat and high-cholesterol diet. These results show that the three probiotic strains of lactic acid bacteria are better candidates for reducing the risk of cardiovascular disease. PMID:25538960

  16. Regulation of the high-affinity choline transporter activity and trafficking by its association with cholesterol-rich lipid rafts.

    PubMed

    Cuddy, Leah K; Winick-Ng, Warren; Rylett, Rebecca Jane

    2014-03-01

    The sodium-coupled, hemicholinium-3-sensitive, high-affinity choline transporter (CHT) is responsible for transport of choline into cholinergic nerve terminals from the synaptic cleft following acetylcholine release and hydrolysis. In this study, we address regulation of CHT function by plasma membrane cholesterol. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts in both SH-SY5Y cells and nerve terminals from mouse forebrain. Treatment of SH-SY5Y cells expressing rat CHT with filipin, methyl-β-cyclodextrin (MβC) or cholesterol oxidase significantly decreased choline uptake. In contrast, CHT activity was increased by addition of cholesterol to membranes using cholesterol-saturated MβC. Kinetic analysis of binding of [(3)H]hemicholinium-3 to CHT revealed that reducing membrane cholesterol with MβC decreased both the apparent binding affinity (KD) and maximum number of binding sites (Bmax ); this was confirmed by decreased plasma membrane CHT protein in lipid rafts in cell surface protein biotinylation assays. Finally, the loss of cell surface CHT associated with lipid raft disruption was not because of changes in CHT internalization. In summary, we provide evidence that CHT association with cholesterol-rich rafts is critical for transporter function and localization. Alterations in plasma membrane cholesterol cholinergic nerve terminals could diminish cholinergic transmission by reducing choline availability for acetylcholine synthesis. The sodium-coupled choline transporter CHT moves choline into cholinergic nerve terminals to serve as substrate for acetylcholine synthesis. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts, and decreasing membrane cholesterol significantly reduces both choline uptake activity and cell surface CHT protein levels. CHT association with cholesterol-rich rafts is critical for its function, and alterations in plasma membrane cholesterol could diminish cholinergic

  17. Plasma-derived human C1-esterase inhibitor does not prevent mechanical ventilation-induced pulmonary complement activation in a rat model of Streptococcus pneumoniae pneumonia.

    PubMed

    de Beer, F M; Aslami, H; Hoeksma, J; van Mierlo, G; Wouters, D; Zeerleder, S; Roelofs, J J T H; Juffermans, N P; Schultz, M J; Lagrand, W K

    2014-11-01

    Mechanical ventilation has the potential to cause lung injury, and the role of complement activation herein is uncertain. We hypothesized that inhibition of the complement cascade by administration of plasma-derived human C1-esterase inhibitor (C1-INH) prevents ventilation-induced pulmonary complement activation, and as such attenuates lung inflammation and lung injury in a rat model of Streptococcus pneumoniae pneumonia. Forty hours after intratracheal challenge with S. pneumoniae causing pneumonia rats were subjected to ventilation with lower tidal volumes and positive end-expiratory pressure (PEEP) or high tidal volumes without PEEP, after an intravenous bolus of C1-INH (200 U/kg) or placebo (saline). After 4 h of ventilation blood, broncho-alveolar lavage fluid and lung tissue were collected. Non-ventilated rats with S. pneumoniae pneumonia served as controls. While ventilation with lower tidal volumes and PEEP slightly amplified pneumonia-induced complement activation in the lungs, ventilation with higher tidal volumes without PEEP augmented local complement activation more strongly. Systemic pre-treatment with C1-INH, however, failed to alter ventilation-induced complement activation with both ventilation strategies. In accordance, lung inflammation and lung injury were not affected by pre-treatment with C1-INH, neither in rats ventilated with lower tidal volumes and PEEP, nor rats ventilated with high tidal volumes without PEEP. Ventilation augments pulmonary complement activation in a rat model of S. pneumoniae pneumonia. Systemic administration of C1-INH, however, does not attenuate ventilation-induced complement activation, lung inflammation, and lung injury. PMID:24760631

  18. [Purification and characterization of esterase from Morganella morganii ZJB-09203].

    PubMed

    Zheng, Renchao; Wang, Tianzhen; Li, Xiaojun; Zheng, Yuguo

    2014-01-01

    Enantioselective hydrolysis of 2-carboxyethyl-3-cyano-5-methylhexanoic acid (CNDE) is the key step in chemoenzymatic synthesis of pregabalin. We purified an intracellular carboxyl esterase from Morganella morganii ZJB-09203, which exhibited high enantioselectivity and activity towards CNDE. The carboxyl esterase was purified to electrophoretic homogeneity by ammonium sulfate fraction precipitation, Phenyl Sepharose 6 FF hydrophobic interaction chromatography, anion exchange with DEAE Sephadex A-50 and Bio-Scale CHT column. The purified enzyme was a monomer with molecular mass of 68 kDa determined by SDS-PAGE and gel chromatography. Substrate specificity of the enzyme towards p-nitrophenyl esters suggested that the purified enzyme was an esterase. The optimal reaction pH for CNDE hydrolysis was 9.0, and optimal temperature was 45 degrees C. The esterase was stable between pH 7.0 and 9.0, and at 40 degrees C. The enzyme activity was enhanced by Ca2+, Cu2+ and Mn2+, whereas strongly inhibited by Co2+, Fe3+, Ni2+ and EDTA. Meanwhile, we investigated the kinetic parameters of the esterase towards p-nitrophenyl esters and effect of CNDE concentration on conversion. The present study reported the esterase capable of stereospecific hydrolysis of CNDE for the first time. Our research will provide foundations for industrial production of Pregabalin using the new biocatalyst.

  19. Enzymatic activity of cholesterol oxidase immobilized onto polymer nanoparticles mediated by Congo red.

    PubMed

    Silva, Rubens A; Carmona-Ribeiro, Ana Maria; Petri, Denise F S

    2013-10-01

    Poly(ethylene glycol), PEG, decorated polystyrene (PS) nanoparticles were synthesized and characterized by means of dynamic light scattering (DLS), zeta (ζ) potential measurements, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The adsorption of Congo red (CR) onto PS/PEG particles was evidenced by the decrease of ζ potential values and increase in the particles mean diameter in comparison to bare particles. Cholesterol oxidase (ChOx), the main enzyme in the oxidation of cholesterol, adsorbed onto PS/PEG and PS/PEG/CR particles, as revealed by the increase in the particles mean size and spectrophotometry. The enzymatic activity of free and immobilized ChOx was determined as a function of time by means of a coupled reaction with horseradish peroxidase. The activity of free ChOx decreased with time, while the activity of immobilized ChOx increased with time; after 1h reaction the latter was half of the former. Freeze-drying the ChOx covered PS/PEG/CR particles allowed their storage for at least one month under room conditions without loss of enzymatic activity. Conjugation effects between CR and ChOx or cholesterol evidenced by circular dichroism and spectrophotometry rendered a conformational state of ChOx, such that the enzymatic action was favored. ChOx adsorbed onto PS/PEG presents no enzymatic activity, probably due to ChOx denaturation or unfavorable orientation. Freeze-dried and freshly prepared dispersions of ChOx immobilized onto PS/PEG/CR particles yielded linear response in the cholesterol concentration range of 100mgdL(-1) (lowest limit of normal blood concentration) to 300mgdL(-1) (high risk level).

  20. The conversion of C'IS to C'1 esterase by plasmin and trypsin.

    PubMed

    Ratnoff, O D; Naff, G B

    1967-02-01

    The formation of C'1 esterase from C'1, the first component of complement, may be brought about by the action of plasmin or trypsin upon C'1s, a subcomponent of C'1. These enzymes also decrease the esterolytic activity of C'1 esterase. The formation of C'1 esterase was demonstrated by measuring the appearance of an agent or agents with esterolytic properties and the capacity to inactivate C'2 and C'4, attributes of C'1 esterase. The activity of the agent which evolved was blocked by serum inhibitor of C'1 esterase. The implications of these observations, that the formation of C'1 esterase during complement fixation is mediated by proteolytic processes, are under study. The possible inhibition of C'1q by soybean trypsin inhibitor is in agreement with this hypothesis.

  1. Hypolipidemic activity of okra is mediated through inhibition of lipogenesis and upregulation of cholesterol degradation.

    PubMed

    Wang, Hong; Chen, Gu; Ren, Dandan; Yang, Shang-Tian

    2014-02-01

    Little is known about the hypolipidemic activity of okra; therefore, we investigated the hypolipidemic activity of okra and its interaction with gene expression of several key components involved in lipid homeostasis. Male C57BL/6 mice were randomly divided into three groups and fed with hyperlipidemic diet or two hyperlipidemic diets supplemented with 1% or 2% okra powder for eight weeks. Results demonstrated that okra dose-dependently decreased serum and hepatic total cholesterol and triglyceride, and enhanced fecal excretion of bile acids. Gene expression analysis revealed that okra upregulated cholesterol 7α-hydroxylase (CYP7A1) expression, downregulated expression of sterol regulatory element-binding protein 1c (SREBP1c) and fatty acid synthase (FAS), with no effect on sterol regulatory element-binding protein 2 (SREBP2), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), low-density lipoprotein receptor (LDLR) and carnitine palmitoyltransferase-1A (CPT1A). It was suggested that hypolipidemic activity of okra was mediated most likely by upregulation of cholesterol degradation through CYP7A1 and by inhibition of lipogenesis through SREBP1c and FAS. Okra raw and fractionated polysaccharide showed strong bile acid binding capacity in vitro, which may contribute to the hypolipidemic activity observed. In conclusion, okra has potential application in the management of hyperlipidemia and its associated metabolic disorders.

  2. Effect of unesterified cholesterol on the activity of cholesteryl ester transfer protein.

    PubMed Central

    Rajaram, O V; Chan, R Y; Sawyer, W H

    1994-01-01

    Cholesteryl ester transfer protein (CETP) catalyses the transfer of cholesteryl ester from high-density lipoprotein to triacylglycerol-rich lipoproteins and the transfer of triacylglycerols in the reverse direction. The activity of CETP has been studied using a continuous fluorescence assay which measures the excimer fluorescence of cholesteryl 1-pyrene decanoate in a synthetic donor microemulsion as the indicator of cholesteryl ester transfer. Emulsions were composed of cholesteryl oleate and egg phosphatidylcholine and had an average particle size of 14 +/- 1 nm as calculated from the molar volume of the components. The effect of changing the physical state of the emulsion surface was examined by including unesterified cholesterol in the donor and acceptor particles. The rate of CETP-induced transfer of the fluorescent cholesteryl ester between microemulsion particles increased when unesterified cholesterol was present at concentrations up to 17 mol% relative to phospholipid. The presence of cholesterol also changed the exchange kinetics from an apparent single-exponential to a double-exponential phenomenon. Binding of CETP to the emulsion surface was accompanied by an enhancement of fluorescence which was used to measure the binding equilibria. The enhancement of exchange due to the presence of cholesterol did not correlate with any increased binding of CETP to the emulsion surface. The presence of unesterified cholesterol in the donor did not affect the rate of transfer of the fluorescent cholesteryl ester when unlabelled emulsion was replaced by high-density lipoprotein as the acceptor. The studies demonstrate the use of microemulsions of defined size and composition for the study of the mechanism of action of CETP. PMID:7998976

  3. What's Cholesterol?

    MedlinePlus

    ... Most cholesterol is LDL (low-density lipoprotein) cholesterol. LDL cholesterol is more likely to clog blood vessels because ... Here's a way to remember the difference: the LDL cholesterol is the bad kind, so call it "lousy" ...

  4. Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators.

    PubMed

    Rogers, Maximillian A; Liu, Jay; Song, Bao-Liang; Li, Bo-Liang; Chang, Catherine C Y; Chang, Ta-Yuan

    2015-07-01

    Cholesterol is essential to the growth and viability of cells. The metabolites of cholesterol include: steroids, oxysterols, and bile acids, all of which play important physiological functions. Cholesterol and its metabolites have been implicated in the pathogenesis of multiple human diseases, including: atherosclerosis, cancer, neurodegenerative diseases, and diabetes. Thus, understanding how cells maintain the homeostasis of cholesterol and its metabolites is an important area of study. Acyl-coenzyme A:cholesterol acyltransferases (ACATs, also abbreviated as SOATs) converts cholesterol to cholesteryl esters and play key roles in the regulation of cellular cholesterol homeostasis. ACATs are most unusual enzymes because (i) they metabolize diverse substrates including both sterols and certain steroids; (ii) they contain two different binding sites for steroidal molecules. In mammals, there are two ACAT genes that encode two different enzymes, ACAT1 and ACAT2. Both are allosteric enzymes that can be activated by a variety of sterols. In addition to cholesterol, other sterols that possess the 3-beta OH at C-3, including PREG, oxysterols (such as 24(S)-hydroxycholesterol and 27-hydroxycholesterol, etc.), and various plant sterols, could all be ACAT substrates. All sterols that possess the iso-octyl side chain including cholesterol, oxysterols, various plant sterols could all be activators of ACAT. PREG can only be an ACAT substrate because it lacks the iso-octyl side chain required to be an ACAT activator. The unnatural cholesterol analogs epi-cholesterol (with 3-alpha OH in steroid ring B) and ent-cholesterol (the mirror image of cholesterol) contain the iso-octyl side chain but do not have the 3-beta OH at C-3. Thus, they can only serve as activators and cannot serve as substrates. Thus, within the ACAT holoenzyme, there are site(s) that bind sterol as substrate and site(s) that bind sterol as activator; these sites are distinct from each other. These features form

  5. Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): enzymes with multiple sterols as substrates and as activators

    PubMed Central

    Rogers, Maximillian A.; Liu, Jay; Song, Bao-Liang; Li, Bo-Liang; Chang, Catherine C.Y.; Chang, Ta-Yuan

    2016-01-01

    Cholesterol is essential to the growth and viability of cells. The metabolites of cholesterol include: steroids, oxysterols, and bile acids, all of which play important physiological functions. Cholesterol and its metabolites have been implicated in the pathogenesis of multiple human diseases, including: atherosclerosis, cancer, neurodegenerative diseases, and diabetes. Thus, understanding how cells maintain the homeostasis of cholesterol and its metabolites is an important area of study. Acyl-coenzyme A:cholesterol acyltransferases (ACATs, also abbreviated as SOATs) converts cholesterol to cholesteryl esters and play key roles in the regulation of cellular cholesterol homeostasis. ACATs are most unusual enzymes because (i) they metabolize diverse substrates including both sterols and certain steroids; (ii) they contain two different binding sites for steroidal molecules. In mammals, there are two ACAT genes that encode two different enzymes, ACAT1 and ACAT2. Both are allosteric enzymes that can be activated by a variety of sterols. In addition to cholesterol, other sterols that possess the 3-beta OH at C-3, including PREG, oxysterols (such as 24(S)-hydroxycholesterol and 27-hydroxycholesterol, etc.), and various plant sterols, could all be ACAT substrates. All sterols that possess the iso-octyl side chain including cholesterol, oxysterols, various plant sterols could all be activators of ACAT. PREG can only be an ACAT substrate because it lacks the isooctyl side chain required to be an ACAT activator. The unnatural cholesterol analogs epi-cholesterol (with 3-alpha OH in steroid ring B) and ent-cholesterol (the mirror image of cholesterol) contain the iso-octyl side chain but do not have the 3-beta OH at C-3. Thus, they can only serve as activators and cannot serve as substrates. Thus, within the ACAT holoenzyme, there are site(s) that bind sterol as substrate and site(s) that bind sterol as activator; these sites are distinct from each other. These features form

  6. SPTLC1 binds ABCA1 to negatively regulate trafficking and cholesterol efflux activity of the transporter.

    PubMed

    Tamehiro, Norimasa; Zhou, Suiping; Okuhira, Keiichiro; Benita, Yair; Brown, Cari E; Zhuang, Debbie Z; Latz, Eicke; Hornemann, Thorsten; von Eckardstein, Arnold; Xavier, Ramnik J; Freeman, Mason W; Fitzgerald, Michael L

    2008-06-10

    ABCA1 transport of cholesterol and phospholipids to nascent HDL particles plays a central role in lipoprotein metabolism and macrophage cholesterol homeostasis. ABCA1 activity is regulated both at the transcriptional level and at the post-translational level. To explore mechanisms involved in the post-translational regulation of the transporter, we have used affinity purification and mass spectrometry to identify proteins that bind ABCA1 and influence its activity. Previously, we demonstrated that an interaction between beta1-syntrophin stimulated ABCA1 activity, at least in part, be slowing the degradation of the transporter. This work demonstrates that one subunit of the serine palmitoyltransferase enzyme, SPTLC1, but not subunit 2 (SPTLC2), is copurified with ABCA1 and negatively regulates its function. In human THP-I macrophages and in mouse liver, the ABCA1-SPTLC1 complex was detected by co-immunoprecipitation, demonstrating that the interaction occurs in cellular settings where ABCA1 activity is critical for HDL genesis. Pharmacologic inhibition of SPTLC1 with myriocin, which resulted in the disruption of the SPTLC1-ABCA1 complex, and siRNA knockdown of SPTLC1 expression both stimulated ABCA1 efflux by nearly 60% ( p < 0.05). In contrast, dominant-negative mutants of SPTLC1 inhibited ABCA1 efflux, indicating that a reduced level of sphingomyelin synthesis could not explain the effect of myriocin on ABCA1 activity. In 293 cells, the SPTLC1 inhibition of ABCA1 activity led to the blockade of the exit of ABCA1 from the endoplasmic reticulum. In contrast, myriocin treatment of macrophages increased the level of cell surface ABCA1. In composite, these results indicate that the physical interaction of ABCA1 and SPTLC1 results in reduction of ABCA1 activity and that inhibition of this interaction produces enhanced cholesterol efflux. PMID:18484747

  7. Production, Purification, and Properties of Extracellular Carboxyl Esterases from Bacillus subtilis NRRL 365

    PubMed Central

    Meghji, K.; Ward, O. P.; Araujo, A.

    1990-01-01

    Bacillus subtilis NRRL 365 produced high extracellular carboxyl esterase activity in submerged culture media containing wheat bran, corn steep liquor, and salts. Supplementation of this medium with glucose reduced esterase activity to 37% of that in the unsupplemented control. Esterase activity was purified by ammonium sulfate fractionation, DEAE-Sephadex A-50 ion-exchange chromatography with sodium chloride gradient elution, and preparative polyacrylamide gel electrophoresis. The resultant purified components, esterases I and II, manifested single bands following silver staining of polyacrylamide gel electrophoresis gels and had final specific activities of 80 and 520 U/mg, respectively. Molecular weights for components I and II were 36,000 and 105,000 to 110,000, respectively. Esterases I and II both had a pH optimum of 8.0, with relative activities of 10 and 85%, respectively, at pH 9.0. Kms with p-nitrophenylacetate were 0.91 mM for esterase I and 0.67 mM for esterase II. In general, patterns of enzyme inhibition were similar for both components. Differences were observed in the relative activities of esterases I and II towards p-nitrophenyl esters of acetate, propionate, and butyrate; Activity ratios for components I and II were 100:94:48 and 100:36:23, respectively. The purified components did not hydrolyze long-chain triglycerides and did not manifest proteolytic activity. Images PMID:16348375

  8. Redistribution of Cholesterol in Model Lipid Membranes in Response to the Membrane-Active Peptide Alamethicin

    NASA Astrophysics Data System (ADS)

    Heller, William; Qian, Shuo

    2013-03-01

    The cellular membrane is a heterogeneous, dynamic mixture of molecules and macromolecules that self-assemble into a tightly-regulated functional unit that provides a semipermeable barrier between the cell and its environment. Among the many compositional differences between mammalian and bacterial cell membranes that impact its physical properties, one key difference is cholesterol content, which is more prevalent in mammals. Cholesterol is an amphiphile that associates with membranes and serves to maintain its fluidity and permeability. Membrane-active peptides, such as the alpha-helical peptide alamethicin, interact with membranes in a concentration- and composition-dependent manner to form transmembrane pores that are responsible for the lytic action of the peptide. Through the use of small-angle neutron scattering and deuterium labeling, it was possible to observe a redistribution of the lipid and cholesterol in unilamellar vesicles in response to the presence of alamethicin at a peptide-to-lipid ratio of 1/200. The results demonstrate that the membrane remodeling powers of alamethicin reach beyond the membrane thinning effect to altering the localization of specific components in the bilayer, complementing the accepted two-state mechanism of pore formation. Research was supported by U. S. DOE-OBER (CSMB; FWP ERKP291) and the U. S. DOE-BES Scientific User Facilities Division (ORNL's SNS and HFIR).

  9. Identification of a Secreted Lipolytic Esterase in Propionibacterium freudenreichii, a Ripening Process Bacterium Involved in Emmental Cheese Lipolysis▿ †

    PubMed Central

    Dherbécourt, J.; Falentin, H.; Jardin, J.; Maillard, M.-B.; Baglinière, F.; Barloy-Hubler, F.; Thierry, A.

    2010-01-01

    Lipolysis plays an important role in the formation of cheese flavor. In Emmental cheese, the main part of lipolysis has been associated with the presence of Propionibacterium freudenreichii, a species used as a ripening culture. Our aim was to identify the most probable lipolytic esterase(s) involved in cheese lipolysis by P. freudenreichii. Since cheese lipolysis mainly occurs during P. freudenreichii growth, we hypothesized that P. freudenreichii possesses secreted lipolytic esterase(s). For 12 putative esterase genes previously identified from the genome of P. freudenreichii CIRM1, the level of expression was quantified by real-time reverse transcriptase (RT)-PCR, and the subcellular localization of esterases was predicted in silico. The esterase activity in extracellular and intracellular extracts of P. freudenreichii was characterized by zymography, and the extracellular esterases were identified by mass spectrometry. Finally, the best candidate was overexpressed in the same strain. All of the 12 genes encoding putative esterases were expressed. Esterase PF#279 was predicted to be secreted in the medium, PF#774 to be surface exposed, and the 10 remaining putative esterases to be intracellular. Zymography revealed that esterase activities in culture supernatant differed from the ones detected in intracellular extracts. PF#279 was identified as the sole esterase present in culture supernatant. Transformed P. freudenreichii CIRM1 clones overexpressing PF#279 showed 5 to 8 times more lipolytic activity on milk fat than the wild-type strain. Combining in silico, biochemical, and genetic approaches, we showed that PF#279 is the sole secreted esterase in P. freudenreichii and is active on milk fat. Therefore, it is likely a key component in cheese lipolysis by P. freudenreichii. PMID:20038704

  10. 3-d structure-based amino acid sequence alignment of esterases, lipases and related proteins

    SciTech Connect

    Gentry, M.K.; Doctor, B.P.; Cygler, M.; Schrag, J.D.; Sussman, J.L.

    1993-05-13

    Acetylcholinesterase and butyrylcholinesterase, enzymes with potential as pretreatment drugs for organophosphate toxicity, are members of a larger family of homologous proteins that includes carboxylesterases, cholesterol esterases, lipases, and several nonhydrolytic proteins. A computer-generated alignment of 18 of the proteins, the acetylcholinesases, butyrylcholinesterases, carboxylesterases, some esterases, and the nonenzymatic proteins has been previously presented. More recently, the three-dimensional structures of two enzymes enzymes in this group, acetylcholinesterase from Torpedo californica and lipase from Geotrichum candidum, have been determined. Based on the x-ray structures and the superposition of these two enzymes, it was possible to obtain an improved amino acid sequence alignment of 32 members of this family of proteins. Examination of this alignment reveals that 24 amino acids are invariant in all of the hydrolytic proteins, and an additional 49 are well conserved. Conserved amino acids include those of the active site, the disulfide bridges, the salt bridges, in the core of the proteins, and at the edges of secondary structural elements. Comparison of the three-dimensional structures makes it possible to find a well-defined structural basis for the conservation of many of these amino acids.

  11. Relationship between bioavailability and hypocholesterolemic activity of YM17E, an inhibitor of ACAT, in cholesterol-fed rats.

    PubMed

    Uchida, T; Aoyama, K; Watanabe, T; Higuchi, S

    1998-03-01

    The relationship between bioavailability and the serum cholesterol-lowering effect of YM17E, an ACAT inhibitor was investigated. Serum cholesterol levels in cholesterol-fed rats decreased after both oral and intravenous administration of YM17E. Marked inhibition of cholesterol absorption was observed after oral administration, but not after intravenous administration. YM17E and its five active metabolites were primarily distributed in the liver after intravenous administration, but in small intestine and liver after oral administration. Hepatic ACAT activity in cholesterol-fed rats was inhibited by intravenous administration. Cholesteryl ester input into plasma by Triton WR-1339 treatment to the rats was inhibited by intravenous administration of YM17E. Plasma clearance of 125I-LDL in cholesterol-fed rats increased after YM17E treatment suggesting a decrease in LDL production. These results indicate that the hypocholesterolemic effect of intravenous YM17E was due to hepatic ACAT inhibition, not an inhibition of intestinal cholesterol absorption. The contribution of ACAT inhibition in small intestine and liver on the pharmacological effect could be explained by plasma inhibitor concentration after oral or intravenous administration of YM17E. From these results, it is concluded that the change in bioavailability of ACAT inhibitors change the mechanism of hypocholesterolemic effects, shifting the relative contributions of small intestinal and hepatic ACAT inhibition. PMID:9568741

  12. Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos

    USGS Publications Warehouse

    Wheelock, C.E.; Eder, K.J.; Werner, I.; Huang, H.; Jones, P.D.; Brammell, B.F.; Elskus, A.A.; Hammock, B.D.

    2005-01-01

    Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 ??g/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 ??g/l), but not a low dose (1.2 ??g/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were ???30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was

  13. Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos

    PubMed Central

    Wheelock, Craig E.; Eder, Kai J.; Werner, Inge; Huang, Huazhang; Jones, Paul D.; Brammell, Benjamin F.; Elskus, Adria A.; Hammock, Bruce D.

    2006-01-01

    Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 μg/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 μg/l), but not a low dose (1.2 μg/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were ∼30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was

  14. A comparison of multiple esterases as biomarkers of organophosphate exposure and effect in two earthworm species.

    PubMed

    Henson-Ramsey, Heather; Schneider, Ashley; Stoskopf, Michael K

    2011-04-01

    Two different earthworm species, Eisenia fetida and Lumbricus terrestris, were exposed to 5 μg/cm(2) of malathion to evaluate their usefulness as sentinels of organophosphate exposure and to assess three different esterases, as biomarkers of malathion exposure and effect. Tissue xenobiotic burdens and esterase activity were determined for each species and each esterase in order to assess variability. E. fetida exhibited 4-fold less variability in tissue burdens than did L. terrestris and had less variable basal esterase activities. An attempt was made to correlate malathion and malaoxon tissue burdens with esterase activity post-exposure. There was no malaoxon present in the earthworm tissues. No significant correlations were determined by comparing acetylcholinesterase, butyrylcholinesterase, nor carboxylesterase activities with malathion burdens. PMID:21404045

  15. The Wood Rot Ascomycete Xylaria polymorpha Produces a Novel GH78 Glycoside Hydrolase That Exhibits α-l-Rhamnosidase and Feruloyl Esterase Activities and Releases Hydroxycinnamic Acids from Lignocelluloses

    PubMed Central

    Nghi, Do Huu; Bittner, Britta; Kellner, Harald; Jehmlich, Nico; Ullrich, René; Pecyna, Marek J.; Nousiainen, Paula; Sipilä, Jussi; Huong, Le Mai; Hofrichter, Martin

    2012-01-01

    Soft rot (type II) fungi belonging to the family Xylariaceae are known to substantially degrade hardwood by means of their poorly understood lignocellulolytic system, which comprises various hydrolases, including feruloyl esterases and laccase. In the present study, several members of the Xylariaceae were found to exhibit high feruloyl esterase activity during growth on lignocellulosic materials such as wheat straw (up to 1,675 mU g−1) or beech wood (up to 80 mU g−1). Following the ester-cleaving activity toward methyl ferulate, a hydrolase of Xylaria polymorpha was produced in solid-state culture on wheat straw and purified by different steps of anion-exchange and size-exclusion chromatography to apparent homogeneity (specific activity, 2.2 U mg−1). The peptide sequence of the purified protein deduced from the gene sequence and verified by de novo peptide sequencing shows high similarity to putative α-l-rhamnosidase sequences belonging to the glycoside hydrolase family 78 (GH78; classified under EC 3.2.1.40). The purified enzyme (98 kDa by SDS-PAGE, 103 kDa by size-exclusion chromatography; pI 3.7) converted diverse glycosides (e.g., α-l-rhamnopyranoside and α-l-arabinofuranoside) but also natural and synthetic esters (e.g., chlorogenic acid, hydroxycinnamic acid glycoside esters, veratric acid esters, or p-nitrophenyl acetate) and released free hydroxycinnamic acids (ferulic and coumaric acid) from arabinoxylan and milled wheat straw. These catalytic properties strongly suggest that X. polymorpha GH78 is a multifunctional enzyme. It is the first fungal enzyme that combines glycosyl hydrolase with esterase activities and may help this soft rot fungus to degrade lignocelluloses. PMID:22544251

  16. Novel organic solvent-tolerant esterase isolated by metagenomics: insights into the lipase/esterase classification.

    PubMed

    Berlemont, Renaud; Spee, Olivier; Delsaute, Maud; Lara, Yannick; Schuldes, Jörg; Simon, Carola; Power, Pablo; Daniel, Rolf; Galleni, Moreno

    2013-01-01

    in order to isolate novel organic solvent-tolerant (OST) lipases, a metagenomic library was built using DNA derived from a temperate forest soil sample. A two-step activity-based screening allowed the isolation of a lipolytic clone active in the presence of organic solvents. Sequencing of the plasmid pRBest recovered from the positive clone revealed the presence of a putative lipase/esterase encoding gene. The deduced amino acid sequence (RBest1) contains the conserved lipolytic enzyme signature and is related to the previously described OST lipase from Lysinibacillus sphaericus 205y, which is the sole studied prokaryotic enzyme belonging to the 4.4 α/β hydrolase subgroup (abH04.04). Both in vivo and in vitro studies of the substrate specificity of RBest1, using triacylglycerols or nitrophenyl-esters, respectively, revealed that the enzyme is highly specific for butyrate (C4) compounds, behaving as an esterase rather than a lipase. The RBest1 esterase was purified and biochemically characterized. The optimal esterase activity was observed at pH 6.5 and at temperatures ranging from 38 to 45 °C. Enzymatic activity, determined by hydrolysis of p-nitrophenyl esters, was found to be affected by the presence of different miscible and non-miscible organic solvents, and salts. Noteworthy, RBest1 remains significantly active at high ionic strength. These findings suggest that RBest1 possesses the ability of OST enzymes to molecular adaptation in the presence of organic compounds and resistance of halophilic proteins.

  17. Niemann-Pick Type C2 Protein Mediates Hepatic Stellate Cells Activation by Regulating Free Cholesterol Accumulation

    PubMed Central

    Twu, Yuh-Ching; Lee, Tzong-Shyuan; Lin, Yun-Lian; Hsu, Shih-Ming; Wang, Yuan-Hsi; Liao, Chia-Yu; Wang, Chung-Kwe; Liang, Yu-Chih; Liao, Yi-Jen

    2016-01-01

    In chronic liver diseases, regardless of their etiology, the development of fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. Hepatic stellate cells (HSCs) are the main profibrogenic cells that promote the pathogenesis of liver fibrosis, and so it is important to identify the molecules that regulate HSCs activation and liver fibrosis. Niemann-Pick type C2 (NPC2) protein plays an important role in the regulation of intracellular cholesterol homeostasis by directly binding with free cholesterol. However, the roles of NPC2 in HSCs activation and liver fibrosis have not been explored in detail. Since a high-cholesterol diet exacerbates liver fibrosis progression in both rodents and humans, we propose that the expression of NPC2 affects free cholesterol metabolism and regulates HSCs activation. In this study, we found that NPC2 is decreased in both thioacetamide- and carbon tetrachloride-induced liver fibrosis tissues. In addition, NPC2 is expressed in quiescent HSCs, but its activation status is down-regulated. Knockdown of NPC2 in HSC-T6 cells resulted in marked increases in transforming growth factor-β1 (TGF-β1)-induced collagen type 1 α1 (Col1a1), α-smooth muscle actin (α-SMA) expression, and Smad2 phosphorylation. In contrast, NPC2 overexpression decreased TGF-β1-induced HSCs activation. We further demonstrated that NPC2 deficiency significantly increased the accumulation of free cholesterol in HSCs, increasing Col1a1 and α-SMA expression and activating Smad2, and leading to sensitization of HSCs to TGF-β1 activation. In contrast, overexpression of NPC2 decreased U18666A-induced free cholesterol accumulation and inhibited the subsequent HSCs activation. In conclusion, our study has demonstrated that NPC2 plays an important role in HSCs activation by regulating the accumulation of free cholesterol. NPC2 overexpression may thus represent a new treatment strategy for liver fibrosis. PMID:27420058

  18. Antioxidant effect of Ebselen (PZ 51): peroxidase mimetic activity on phospholipid and cholesterol hydroperoxides vs free radical scavenger activity.

    PubMed

    Maiorino, M; Roveri, A; Ursini, F

    1992-06-01

    The selenocompound Ebselen (PZ 51) is a potent inhibitor of lipid peroxidation. This antioxidant effect has been previously attributed both to a peroxidase mimetic activity and to a free radical scavenging capability. In the present paper the latter is ruled out by competition kinetic analysis based on the inhibition of carotenoid bleaching by hydroperoxyl radicals. Furthermore, evidence is reported indicating that Ebselen exhibits a peroxidase activity extended to cholesterol and cholesterol ester hydroperoxides, besides phospholipid hydroperoxides. According to this, we propose that the unique mechanism of the antioxidant capacity of Ebselen is the reduction of lipid hydroperoxides present in liposomes or lipoproteins, eventually leading to the prevention of hydroperoxide-dependent peroxidation. PMID:1586168

  19. Cholesterol crystallization-promoting activity of aminopeptidase-N isolated from the vesicular carrier of biliary lipids.

    PubMed

    Núñez, L; Amigo, L; Rigotti, A; Puglielli, L; Mingrone, G; Greco, A V; Nervi, F

    1993-08-23

    Different hydrophobic glycoproteins are associated to native biliary vesicles, which are the major carrier of biliary cholesterol. Some of these proteins promote cholesterol crystallization, a key step in cholesterol gallstone formation. This study was specifically conducted to identify the 130 kDa biliary vesicle-associated glycoprotein and to determine its in vitro effect on the cholesterol crystal formation time. The 130 kDa vesicular glycoprotein was identified as aminopeptidase-N by amino acid sequencing and specific enzymatic assay. Polyclonal antibodies raised against aminopeptidase-N allowed us to determine its concentration in human hepatic bile, which varied from 17.3 to 57.6 micrograms/ml. Aminopeptidase-N showed a concentration-dependent cholesterol crystallization activity when it was added to supersaturated model bile at a concentration range usually found in native bile. Because of this promoting effect on in vitro cholesterol crystal formation, we suggest that biliary aminopeptidase-N may play a critical role in the pathogenesis of cholesterol gallstone disease.

  20. About Cholesterol

    MedlinePlus

    ... High Blood Pressure Tools & Resources Stroke More About Cholesterol Updated:Aug 10,2016 It may surprise you ... our bodies to keep us healthy. What is cholesterol and where does it come from? Cholesterol is ...

  1. Zinc Metalloproteinase ProA Directly Activates Legionella pneumophila PlaC Glycerophospholipid:cholesterol Acyltransferase*

    PubMed Central

    Lang, Christina; Rastew, Elena; Hermes, Björn; Siegbrecht, Enrico; Ahrends, Robert; Banerji, Sangeeta; Flieger, Antje

    2012-01-01

    Enzymes secreted by Legionella pneumophila, such as phospholipases A (PLAs) and glycerophospholipid:cholesterol acyltransferases (GCATs), may target host cell lipids and therefore contribute to the establishment of Legionnaires disease. L. pneumophila possesses three proteins, PlaA, PlaC, and PlaD, belonging to the GDSL family of lipases/acyltransferases. We have shown previously that PlaC is the major GCAT secreted by L. pneumophila and that the zinc metalloproteinase ProA is essential for GCAT activity. Here we characterized the mode of PlaC GCAT activation and determined that ProA directly processes PlaC. We further found that not only cholesterol but also ergosterol present in protozoa was palmitoylated by PlaC. Such ester formations were not induced by either PlaA or PlaD. PlaD was shown here to possess lysophospholipase A activity, and interestingly, all three GDSL enzymes transferred short chain fatty acids to sterols. The three single putative catalytic amino acids (Ser-37, Asp-398, and His-401) proved essential for all PlaC-associated PLA, lysophospholipase A, and GCAT activities. A further four cysteine residues are important for the PLA/GCAT activities as well as their oxidized state, and we therefore conclude that PlaC likely forms at least one disulfide loop. Analysis of cleavage site and loop deletion mutants suggested that for GCAT activation deletion of several amino acids within the loop is necessary rather than cleavage at a single site. Our data therefore suggest a novel enzyme inhibition/activation mechanism where a disulfide loop inhibits PlaC GCAT activity until the protein is exported to the external space where it is ProA-activated. PMID:22582391

  2. Cloning, overexpression in Escherichia coli, and characterization of a thermostable fungal acetylxylan esterase from Talaromyces emersonii.

    PubMed

    Waters, Deborah M; Murray, Patrick G; Miki, Yuta; Martínez, Angel T; Tuohy, Maria G; Faulds, Craig B

    2012-05-01

    The gene encoding an acetylxylan esterase (AXE1) from the thermophilic ascomycete Talaromyces emersonii was cloned, expressed in Escherichia coli, and characterized. This form of AXE1, rTeAXE1, exhibits increased thermostability and activity at a higher temperature than other known fungal acetyl esterases, thus having huge potential application in biomass bioconversion to high value chemicals or biofuels. PMID:22407679

  3. Quercetin increases macrophage cholesterol efflux to inhibit foam cell formation through activating PPARγ-ABCA1 pathway

    PubMed Central

    Sun, Liqiang; Li, En; Wang, Feng; Wang, Tao; Qin, Zhiping; Niu, Shaohui; Qiu, Chunguang

    2015-01-01

    The accumulation of cholesterol in macrophages could induce the formation of foam cells and increase the risk of developing atherosclerosis. We wonder if quercetin, one of flavonoids with anti-inflammation functions in different cell types, could elevate the development of foam cells formation in atherosclerosis. We treated foam cells derived from oxLDL induced THP-1 cells with quercetin, and evaluated the foam cells formation, cholesterol content and apoptosis of the cells. We found that quercetin induced the expression of ABCA1 in differentiated THP-1 cells, and increased the cholesterol efflux from THP-1 cell derived foam cells. Eventually, cholesterol level and the formation of foam cell derived from THP-1 cells decreased after quercetin treatment. In addition, quercetin activated PPARγ-LXRα pathway to upregulate ABCA1 expression through increasing protein level of PPARγ and its transcriptional activity. Inhibition of PPARγ activity by siRNA knockdown or the addition of chemical inhibitor, GW9662, abolished quercetin induced ABCA1 expression and cholesterol efflux in THP-1 derived macrophages. Our data demonstrated that quercetin increased cholesterol efflux from macrophages through upregulating the expressions of PPARγ and ABCA1. Taken together, increasing uptake of quercetin or quercetin-rich foods would be an effective way to lower the risk of atherosclerosis. PMID:26617799

  4. Cholesterol synthesis inhibitor RO 48-8071 suppresses transcriptional activity of human estrogen and androgen receptor.

    PubMed

    Mafuvadze, Benford; Liang, Yayun; Hyder, Salman M

    2014-10-01

    Breast cancer cells express enzymes that convert cholesterol, the synthetic precursor of steroid hormones, into estrogens and androgens, which then drive breast cancer cell proliferation. In the present study, we sought to determine whether oxidosqualene cyclase (OSC), an enzyme in the cholesterol biosynthetic pathway, may be targeted to suppress progression of breast cancer cells. In previous studies, we showed that the OSC inhibitor RO 48-8071 (RO) may be a ligand which could potentially be used to control the progression of estrogen receptor-α (ERα)-positive breast cancer cells. Herein, we showed, by real-time PCR analysis of mRNA from human breast cancer biopsies, no significant differences in OSC expression at various stages of disease, or between tumor and normal mammary cells. Since the growth of hormone-responsive tumors is ERα-dependent, we conducted experiments to determine whether RO affects ERα. Using mammalian cells engineered to express human ERα or ERβ protein, together with an ER-responsive luciferase promoter, we found that RO dose-dependently inhibited 17β-estradiol (E2)-induced ERα responsive luciferase activity (IC50 value, ~10 µM), under conditions that were non-toxic to the cells. RO was less effective against ERβ-induced luciferase activity. Androgen receptor (AR) mediated transcriptional activity was also reduced by RO. Notably, while ERα activity was reduced by atorvastatin, the HMG-CoA reductase inhibitor did not influence AR activity, showing that RO possesses broader antitumor properties. Treatment of human BT-474 breast cancer cells with RO reduced levels of estrogen-induced PR protein, confirming that RO blocks ERα activity in tumor cells. Our findings demonstrate that an important means by which RO suppresses hormone-dependent growth of breast cancer cells is through its ability to arrest the biological activity of ERα. This warrants further investigation of RO as a potential therapeutic agent for use against hormone

  5. Activation of epithelial proliferation induced by Eimeria acervulina infection in the duodenum may be associated with cholesterol metabolism

    PubMed Central

    Sun, Lili; Dong, Haibo; Zhang, Zhenchao; Liu, Jie; Hu, Yun; Ni, Yingdong; Grossmann, Roland; Zhao, Ruqian

    2016-01-01

    Cell proliferation in the intestine is commonly occurred during infection and inflammation to replace damaged enterocytes, and cholesterol as an essential constituent of cell membrane, is required for cell proliferation and growth. Here we found that coccidium-challenged (CC) chickens showed severe damages in intestinal structure, a significant increase of cell proliferation, and an activation of genes expression involved in the innate immune response. Compared to control (CON), CC chickens showed a marked decrease of cholesterol (Tch) level in the circulating system, but a significant increase in local duodenum epithelium. Increase of LDLR protein combined with a significant decrease of CYP27A1 protein expression in duodenum epithelium may contribute to intestinal cholesterol accumulation in CC chickens. Moreover, we found miRNAs targeting to CYP27A1 gene participating in post-transcriptional regulation. Hence, these results provide a new insight for the intervention of epithelial proliferation and cholesterol metabolism in the gastrointestinal tracts. PMID:27050279

  6. Cholesterol-Enriched Domain Formation Induced by Viral-Encoded, Membrane-Active Amphipathic Peptide.

    PubMed

    Hanson, Joshua M; Gettel, Douglas L; Tabaei, Seyed R; Jackman, Joshua; Kim, Min Chul; Sasaki, Darryl Y; Groves, Jay T; Liedberg, Bo; Cho, Nam-Joon; Parikh, Atul N

    2016-01-01

    The α-helical (AH) domain of the hepatitis C virus nonstructural protein NS5A, anchored at the cytoplasmic leaflet of the endoplasmic reticulum, plays a role in viral replication. However, the peptides derived from this domain also exhibit remarkably broad-spectrum virocidal activity, raising questions about their modes of membrane association. Here, using giant lipid vesicles, we show that the AH peptide discriminates between membrane compositions. In cholesterol-containing membranes, peptide binding induces microdomain formation. By contrast, cholesterol-depleted membranes undergo global softening at elevated peptide concentrations. Furthermore, in mixed populations, the presence of ∼100 nm vesicles of viral dimensions suppresses these peptide-induced perturbations in giant unilamellar vesicles, suggesting size-dependent membrane association. These synergistic composition- and size-dependent interactions explain, in part, how the AH domain might on the one hand segregate molecules needed for viral assembly and on the other hand furnish peptides that exhibit broad-spectrum virocidal activity.

  7. Profiling and functional classification of esterases in olive (Olea europaea) pollen during germination

    PubMed Central

    Rejón, Juan D.; Zienkiewicz, Agnieszka; Rodríguez-García, María Isabel; Castro, Antonio J.

    2012-01-01

    Background and Aims A pollen grain contains a number of esterases, many of which are released upon contact with the stigma surface. However, the identity and function of most of these esterases remain unknown. In this work, esterases from olive pollen during its germination were identifided and functionally characterized. Methods The esterolytic capacity of olive (Olea europaea) pollen was examined using in vitro and in-gel enzymatic assays with different enzyme substrates. The functional analysis of pollen esterases was achieved by inhibition assays by using specific inhibitors. The cellular localization of esterase activities was performed using histochemical methods. Key Results Olive pollen showed high levels of non-specific esterase activity, which remained steady after hydration and germination. Up to 20 esterolytic bands were identified on polyacrylamide gels. All the inhibitors decreased pollen germinability, but only diisopropyl fluorophosphate (DIFP) hampered pollen tube growth. Non-specific esterase activity is localized on the surface of oil bodies (OBs) and small vesicles, in the pollen intine and in the callose layer of the pollen tube wall. Acetylcholinesterase (AChE) activity was mostly observed in the apertures, exine and pollen coat, and attached to the pollen tube wall surface and to small cytoplasmic vesicles. Conclusions In this work, for the first time a systematic functional characterization of esterase enzymes in pollen from a plant species with wet stigma has been carried out. Olive pollen esterases belong to four different functional groups: carboxylesterases, acetylesterases, AChEs and lipases. The cellular localization of esterase activity indicates that the intine is a putative storage site for esterolytic enzymes in olive pollen. Based on inhibition assays and cellular localization of enzymatic activities, it can be concluded that these enzymes are likely to be involved in pollen germination, and pollen tube growth and penetration of

  8. Antibodies to cholesterol.

    PubMed Central

    Swartz, G M; Gentry, M K; Amende, L M; Blanchette-Mackie, E J; Alving, C R

    1988-01-01

    Cholesterol-dependent complement activation has been proposed as a factor that might influence the pathogenesis of atherosclerosis. Although antibodies to cholesterol conjugates have been reported, cholesterol is widely regarded as a poorly immunogenic substance. Monoclonal IgM complement-fixing antibodies to cholesterol were obtained in the present study after immunizing mice with liposomes containing high amounts of cholesterol (71 mol % relative to phosphatidylcholine) and lipid A as an adjuvant. Clones were selected for the ability of secreted antibodies to react with liposomes containing 71% cholesterol but not with liposomes containing 43% cholesterol. The antibodies also reacted with crystalline cholesterol in a solid-phase enzyme-linked immunosorbent assay. Binding of monoclonal antibodies to the surface of crystalline cholesterol was demonstrated by electron microscopy by utilizing a second antibody (anti-IgM) labeled with colloidal gold. The immunization period required to induce monoclonal antibodies was very short (3 days) and a high fraction of the hybrid cells (at least 70%) were secreting detectable antibodies to cholesterol. The results demonstrate that cholesterol can be a highly immunogenic molecule and that complement-fixing antibodies to cholesterol can be readily obtained. Images PMID:3162316

  9. Design and production of peptides mimicking the active site of serine esterases with covalent binding to the organophosphorous poison soman. Annual report, 1 July 1984-30 June 1985

    SciTech Connect

    Seltzman, H.H.

    1985-12-09

    The objective of this research program is to design, synthesize, and test peptides and peptide mimics that will scavange soman in vivo and thereby provide protection against this CW agent. The test compounds were designed to mimic the active site of serine esterases (AChE), which are the natural targets of soman, enabling them to react with soman and thus protect endogenous AChE. Cyclodextrins derivatized with peptide functional groups and their equivalents such as imidazole, histamine, ethylene diamine, diethylene triamine, catechol, and ethane dithiol were synthesized for testing. The synthesis of precursors to cyclohexapeptides containing histidine, serine, and aspartic acid, which are amino acids that have been implicated in the active site of numerous esterases, were pursued. Testing of the ability of alpha-, beta, and gamma-cyclodextrins to protect AChE frominactivation by soman was carried out in vitro. From this group of compounds, beta-cyclodextrin was observed to preserve the activity of AChE in a dose response manner achieving a 72.1% preservation of activity when present in 200,000 fold excess versus soman after only ten minutes incubation time (beta-cyclodextrin + soman). Neither alpha, nor gamma-cyclodextrin showed any protective effect at the same doses. The test results suggest that beta cyclodextrin is uniquely suited to scavange soman. Improved scavanging might be achieved with the modified cyclodextrins prepared above for testing.

  10. Serum specific vasopressin-degrading activity is related to blood total cholesterol levels in men but not in women.

    PubMed

    Ramírez-Expósito, María Jesús; Arrazola, Marcelina; Carrera-González, María Pilar; Arias de Saavedra, José Manuel; Sánchez-Agesta, Rafael; Mayas, María Dolores; Martínez-Martos, José Manuel

    2012-07-01

    The role of vasopressin (AVP) in the pathophysiology of cardiovascular disease is controversial, but this peptide hormone is elevated in heart failure and some forms of hypertension. Also, AVP has vasoconstrictor, mitogenic, hyperplasic and renal fluid retaining properties which, by analogy with angiotensin II, may have deleterious effects when present in chronic excess. Furthermore, cholesterol blood levels are also associated with hypertension, although the underlying mechanism is not known. Here we analyze the relationship between blood total cholesterol levels and serum vasopressin- degrading cystyl-aminopeptidase activity (AVP-DA) in healthy humans, and the differences between men and women. Linear correlation coefficients were calculated to test relationships between AVP-DA and blood total cholesterol levels. Sex differences were observed for AVP-DA, being this activity higher in men than in women. According to the linear model of the regression analysis, AVP-DA showed a significant negative correlation with blood total cholesterol levels in men, whereas no correlation was observed in women. Several studies in humans demonstrate the existence of greater plasma AVP concentrations in normal men compared to normal women, which could explain the gender-differences observed in the present work in relation with AVP-DA. However, AVP-DA is related to blood cholesterol levels only in men, although in our hands, women showed higher blood cholesterol levels than men. This could indicate that the risk of high cholesterol-related hypertension is more probable in men than in women. Although AVP-DA misregulation could be involved in the pathogenesis of hypertension, its relation with cholesterol levels appears only in men, but not in women.

  11. Influence of dietary intake and physical activity on annual rhythm of human blood cholesterol concentrations.

    PubMed

    Blüher, M; Hentschel, B; Rassoul, F; Richter, V

    2001-05-01

    Seasonal variation in the plasma total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C) have been repeatedly reported, with contradictory results regarding the pattern of seasonal variation of these parameters. Furthermore, it is still not well established whether the variation is due to changes in the nutrition or changes in physical activity depending on the season. The aim of this study was therefore to determine plasma TC and HDL-C in different groups of healthy participants: 19 vegetarians with a constant diet independent of the season, 14 athletes with almost constant physical activity over the year, and 114 controls in the age groups 20-26 years (mean age 24 + 1.5 years) and 40-48 years (mean age 44.3 + 2.1 years). Over 2 years, blood samples were collected every 2-3 months and were analyzed for plasma TC and HDL-C. At all visits, body mass index (BMI) and waist-to-hip ratio (WHR) were calculated, and nutrition and physical activity profiles were obtained. The seasonal model was calculated using object-oriented software for the analysis of longitudinal data in S (OSWALD); multiple regression analysis was used to determine the influence of age, gender, diet, and physical activity on seasonal changes of the lipid parameters. In all groups, we found an annual rhythm of the plasma TC and HDL-C concentrations, which can be mathematically described by a sine curve with a maximum in winter and a minimum in summer. This rhythm was independent of the age, gender, BMI, diet, or physical activity. The observed seasonal differences between the maximum and the minimum were about 5%-10% for TC and about 5%-8% for HDL-C concentration. These differences were greater than the determined circadian (TC 3.5%, HDL-C 4%) and day-to-day changes for TC and HDL-C (coefficient of variation <5% for both). In conclusion, annual rhythm of TC and HDL-C is not primarily induced by seasonal differences in dietary intake or physical activity. Therefore, the annual rhythm in

  12. The association of physical activity and cholesterol concentrations across different combinations of central adiposity and body mass index

    PubMed Central

    Loprinzi, Paul D.; Addoh, Ovuokerie

    2016-01-01

    Background: The purpose of this study was to investigate if those who are physically active,compared to physically inactive, have better cholesterol profiles across different combinations of body mass index (BMI) and waist circumference (WC). Methods: Data from the 1999-2006 National Health and Nutrition Examination Survey (NHANES) were used (N = 16 095). Cholesterol parameters included total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), TC/HDL-C ratio, triglycerides and at herogenic index(Log10 [triglycerides/HDL-C]). Physical activity (PA) was assessed via self-report, with BMI and WC objectively measured. Cholesterol concentrations of 6 combinations of BMI and WC were evaluated among active and inactive participants. Multivariable linear regression analysis was utilized. Results: Findings were not consistent across sex. There was little evidence to suggest an association of PA on TC across varying BMI and WC combinations. For example, among those who had an obese BMI and high WC, inactive participants did not have different TC level when compared to active participants (β = -1.2; 95% CI: -3.9-1.5, P = 0.38). There was evidence to suggest a favorable association of PA on HDL-C, triglycerides and at herogenic index across varying BMI and WC combinations. For example, among those who had an obese BMI and high WC, inactive (vs. active) participants had a lower HDL-C (βadjusted = -1.6, P < 0.01). When considering either gender, there was sufficient evidence to suggest a favorable association of PA on at least one of the evaluated cholesterol parameters for each of the BMI/WC combinations with the exception of normal BMI and high WC. Conclusion: Except for those having normal weight central obesity, PA is favorably associated with cholesterol parameters across various combinations of BMI and WC. PMID:27579256

  13. Capsaicinoids but not their analogue capsinoids lower plasma cholesterol and possess beneficial vascular activity.

    PubMed

    Huang, Weihuan; Cheang, Wai San; Wang, Xiaobo; Lei, Lin; Liu, Yuwei; Ma, Ka Ying; Zheng, Fangrui; Huang, Yu; Chen, Zhen-Yu

    2014-08-20

    Capsaicinoids exist in chili peppers, whereas capsinoids are present in some sweet peppers. The present study investigated the effects of capsaicinoids and capsinoids on plasma lipids, relaxation of the aorta, atherosclerotic plaque development, and fecal sterol excretion in hamsters fed a high-cholesterol diet. Five groups of male hamsters were given the control diet or one of the four experimental diets containing 1.3 mmol of capsaicinoids (NL), 2.6 mmol of capsaicinoids (NH), 1.3 mmol of capsinoids (OL), or 2.6 mmol of capsinoids (OH), respectively. Results showed capsaicinoids but not capsinoids could decrease plasma total cholesterol (TC), reduce the formation of atherosclerotic plaque, and relax the aortic artery. This was accompanied by a 28-175% increase in fecal excretion of acidic sterols in hamsters fed the diets containing capsaicinoids. Similarly, capsaicinoids but not capsinoids could decrease the pad weights of epididymal and prerenal adipose tissues. It was concluded that capsaicinoids but not capsinoids could favorably modulate plasma lipids and possess beneficial vascular activity. PMID:25078570

  14. Capsaicinoids but not their analogue capsinoids lower plasma cholesterol and possess beneficial vascular activity.

    PubMed

    Huang, Weihuan; Cheang, Wai San; Wang, Xiaobo; Lei, Lin; Liu, Yuwei; Ma, Ka Ying; Zheng, Fangrui; Huang, Yu; Chen, Zhen-Yu

    2014-08-20

    Capsaicinoids exist in chili peppers, whereas capsinoids are present in some sweet peppers. The present study investigated the effects of capsaicinoids and capsinoids on plasma lipids, relaxation of the aorta, atherosclerotic plaque development, and fecal sterol excretion in hamsters fed a high-cholesterol diet. Five groups of male hamsters were given the control diet or one of the four experimental diets containing 1.3 mmol of capsaicinoids (NL), 2.6 mmol of capsaicinoids (NH), 1.3 mmol of capsinoids (OL), or 2.6 mmol of capsinoids (OH), respectively. Results showed capsaicinoids but not capsinoids could decrease plasma total cholesterol (TC), reduce the formation of atherosclerotic plaque, and relax the aortic artery. This was accompanied by a 28-175% increase in fecal excretion of acidic sterols in hamsters fed the diets containing capsaicinoids. Similarly, capsaicinoids but not capsinoids could decrease the pad weights of epididymal and prerenal adipose tissues. It was concluded that capsaicinoids but not capsinoids could favorably modulate plasma lipids and possess beneficial vascular activity.

  15. Measurement of bile acid synthesis in man by release of 14CO2 from [26-14C]cholesterol: comparison to isotope dilution and assessment of optimum cholesterol specific activity.

    PubMed

    Mitchell, J C; Stone, B G; Duane, W C

    1992-01-01

    Bile acid synthesis can be measured as release of 14CO2 from [26-14C]cholesterol divided by cholesterol specific activity, but this method has not been validated in human subjects. We made twelve comparisons of this CO2 method to standard isotope dilution in six normal subjects and found a mean discrepancy of 6%. Linear regression analysis of one value with respect to the other revealed a correlation coefficient of 0.83 (P less than 0.01), a Y-intercept close to zero (-4.98) and a slope close to 1 (1.06), suggesting good correspondence between the two methods. To assess the potential for error arising from use of serum cholesterol to estimate specific activity of cholesterol used for bile acid synthesis, we compared synthesis measured using serum free cholesterol specific activity to that measured using bile cholesterol specific activity, which is known to be near isotopic equilibrium with the precursor pool used for bile acid synthesis. Synthesis calculated in these two ways differed by less than 10%. The data indicate that the CO2 method using either serum or bile cholesterol specific activity provides a valid estimate of bile acid synthesis in man.

  16. Identification of the active-site serine in human lecithin: cholesterol acyltransferase

    SciTech Connect

    Farooqui, J.; Wohl, R.C.; Kezdy, F.J.; Scanu, A.M.

    1987-05-01

    Lecithin:cholesterol acyltransferase (LCAT) from human plasma reacts stoichiometrically with diisopropylphosphorofluoridate (DFP) resulting in the complete loss of transacylase activity. Purified LCAT was covalently labeled with (TH) DFP and the labeled protein was reduced and carboxymethylated. Cyanogen bromide cleavage followed by gel permeation chromatography yielded a peptide of 4-5 KDa (LCAT CNBr-III) containing most of the radioactive label. Preliminary studies comparing the amino acid composition of the LCAT-CNBr-III with the sequence of LCAT indicate that this peptide corresponds to fragment 168-220. Automated Edman degradation of the radioactive peptide recovered a radioactive PTC-amino acid at cycle 14. Of all predicted CNBr fragments only peptide 168-220 contained a serine at residue 14 from the amino terminus of the peptide. The authors conclude that serine 181 is the active site serine of LCAT.

  17. The activation of cultured keratinocytes by cholesterol depletion during reconstruction of a human epidermis is reminiscent of monolayer cultures.

    PubMed

    De Vuyst, Évelyne; Giltaire, Séverine; Lambert de Rouvroit, Catherine; Chrétien, Aline; Salmon, Michel; Poumay, Yves

    2015-05-01

    Transient cholesterol depletion from plasma membranes of human keratinocytes has been shown to reversibly activate signalling pathways in monolayer cultures. Consecutive changes in gene expression have been characterized in such conditions and were interestingly found to be similar to transcriptional changes observed in keratinocytes of atopic dermatitis (AD) patients. As an inflammatory skin disease, AD notably results in altered histology of the epidermis associated with a defective epidermal barrier. To further investigate whether the activation of keratinocytes obtained by cholesterol depletion could be responsible for some epidermal alterations reported in AD, this study was undertaken to analyse cholesterol depletion in stratified cultures of keratinocytes, i.e. a reconstructed human epidermis (RHE). RHE contains heterogeneous populations of keratinocytes, either proliferating or progressively differentiating and stratifying towards the creation of a cornified barrier. Cholesterol depletion induced in this model was found reversible and resulted in activation of signalling pathways similar to those previously identified in monolayers. In addition, selected changes in the expression of several genes suggested that keratinocytes in RHE respond to cholesterol depletion as monolayers. However, preserved histology and barrier function indicate that some additional activation, likely from the immune system, is required to obtain epidermal alterations such as the ones found in AD.

  18. Cholesterol mediates chitosan activity on phospholipid monolayers and Langmuir-Blodgett films.

    PubMed

    Pavinatto, Felippe J; Pacholatti, Cauê P; Montanha, Erica A; Caseli, Luciano; Silva, Heurison S; Miranda, Paulo B; Viitala, Tapani; Oliveira, Osvaldo N

    2009-09-01

    The polysaccharide chitosan has been largely used in many biological applications as a fat and cholesterol reducer, bactericide agent, and wound healing material. While the efficacy for some of such uses is proven, little is known about the molecular-level interactions involved in these applications. In this study, we employ mixed Langmuir and Langmuir-Blodgett (LB) films of negatively charged dimyristoyl phosphatidic acid (DMPA) and cholesterol as cell membrane models to investigate the role of cholesterol in the molecular-level action of chitosan. Chitosan does not remove cholesterol from the monolayer. The interaction with chitosan tends to expand the DMPA monolayer due to its interpenetration within the film. On the other hand, cholesterol induces condensation of the DMPA monolayer. The competing effects cause the surface pressure isotherms of mixed DMPA-cholesterol films on a chitosan subphase to be unaffected by the cholesterol mole fraction, due to distinct degrees of chitosan penetration into the film in the presence of cholesterol. By combining polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and sum-frequency generation spectroscopy (SFG), we showed that chitosan induces order into negatively charged phospholipid layers, whereas the opposite occurs for cholesterol. In conclusion, chitosan has its penetration in the film modulated by cholesterol, and electrostatic interactions with negatively charged phospholipids, such as DMPA, are crucial for the action of chitosan.

  19. Mechanism of action of Neisseria gonorrhoeae O-acetylpeptidoglycan esterase, an SGNH serine esterase.

    PubMed

    Pfeffer, John M; Weadge, Joel T; Clarke, Anthony J

    2013-01-25

    O-Acetylpeptidoglycan esterase from Neisseria gonorrhoeae functions to release O-acetyl groups from the C-6 position of muramoyl residues in O-acetylated peptidoglycan, thereby permitting the continued metabolism of this essential cell wall heteropolymer. It has been demonstrated to be a serine esterase with sequence similarity to the family CE-3 carbohydrate esterases of the CAZy classification system. In the absence of a three-dimensional structure for any Ape, further knowledge of its structure and function relationship is dependent on modeling and kinetic studies. In this study, we predicted Neisseria gonorrhoeae Ape1a to be an SGNH hydrolase with an adopted α/β-hydrolase fold containing a central twisted four-stranded parallel β-sheet flanked by six α-helices with the putative catalytic triad, Asp-366, His-369, and Ser-80 appropriately aligned within a pocket. The role of eight invariant and highly conserved residues localized to the active site was investigated by site-directed replacements coupled with kinetic characterization and binding studies of the resultant engineered enzymes. Based on these data and theoretical considerations, Gly-236 and Asn-268 were identified as participating at the oxyanion hole to stabilize the tetrahedral species in the reaction mechanism, whereas Gly-78, Asp-79, His-81, Asn-235, Thr-267, and Val-368 are proposed to position appropriately the catalytic residues and participate in substrate binding. PMID:23209280

  20. Cholesterol ester hydrolase in pig liver is activated by cyclic AMP-dependent protein kinase

    SciTech Connect

    Chen, J.J.S.; Dubin, E.; Margolis, S.

    1986-05-01

    To examine whether hepatic neutral cholesterol ester hydrolase (CEH) is regulated by phosphorylation, the authors have assayed CEH activity from pig liver cytosol by measuring /sup 14/C-oleate release from labeled cholesteryl oleate at pH 7.4. When pig liver cytosol was incubated with 2 mM Mg and 0.5 mM ATP, CEH activity was increased (141 +/- 8% of control, mean +/- SEM). Addition of 25..mu..M cyclic AMP (cAMP) further activated CEH activity (164 +/- 4% of control) as compared to incubation with Mg and ATP (p < 0.02). In the presence of 5 mM EDTA or in the absence of either Mg or ATP, no activation of CEH was observed. The activation was completely abolished by further incubation of activated cytosol with E. coli alkaline phosphatase. Activation of CEH activity was partially prevented by the addition of protein kinase inhibitor (p < 0.02) and this effect was completely reversed in the presence of exogenous cAMP-dependent protein kinase (p < 0.05). To examine further the role of the cAMP-dependent protein kinase, CEH activity was purified 240-fold by 35% (NH/sub 4/)/sub 2/SO/sub 4/ precipitation and Sepharose 4B chromatography. Incubation of partially purified CEH fractions with Mg, ATP and cAMP did not increase CEH activity. Addition of exogenous cAMP-dependent protein kinase activated CEH activity of partially purified fractions. The authors observations indicate that pig liver CEH is activated by phosphorylation mediated by cAMP-dependent protein kinase.

  1. ACTIVATING PERIPHERAL ARTERIAL DISEASE PATIENTS TO REDUCE CHOLESTEROL: A RANDOMIZED TRIAL

    PubMed Central

    McDermott, Mary M.; Reed, George; Greenland, Philip; Mazor, Kathy M.; Pagoto, Sherry; Ockene, Judith K.; Graff, Rex; Merriam, Philip A.; Leung, Kathy; Manheim, Larry; Kibbe, Melina R.; Olendzki, Barbara; Pearce, William H.; Ockene, Ira S.

    2011-01-01

    Background Peripheral arterial disease patients are less likely than other high-risk patients to achieve ideal low density lipoprotein cholesterol (LDL-cholesterol) levels. This randomized controlled trial assessed whether a telephone counseling intervention, designed to help peripheral arterial disease patients request more intensive cholesterol lowering therapy from their physician, achieves lower LDL-cholesterol levels than two control conditions. Methods 355 peripheral arterial disease participants with baseline LDL-cholesterol ≥ 70 mg/dl were enrolled. The primary outcome was change in LDL-cholesterol level at twelve-month follow-up. There were three parallel arms: telephone counseling intervention, attention control condition, and usual care. The intervention consisted of patient-centered counseling, delivered every six weeks, encouraging participants to request increases in cholesterol-lowering therapy from their physician. The attention control condition consisted of telephone calls every six weeks providing information only. The usual care condition participated in baseline and follow-up testing. Results At 12-month follow-up, participants in the intervention improved their LDL-cholesterol level, compared to those in attention control (−18.4 mg/dl vs. −6.8 mg/dl, p= 0.010) but not compared to those in usual care (−18.4 mg/dl vs. −11.1 mg/dl, p= 0.208). Intervention participants were more likely to start a cholesterol-lowering medication or increase their cholesterol-lowering medication dose than those in the attention control (54% vs. 18%, p=0.001) and usual care (54% vs. 31%, P<0.001) conditions. Conclusion Telephone counseling that helped peripheral arterial disease patients request more intensive cholesterol-lowering therapy from their physician achieved greater LDL-cholesterol declines than an attention control arm that provided health information alone. PMID:21605733

  2. Multifaceted activity of listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes.

    PubMed

    Seveau, Stephanie

    2014-01-01

    The cholesterol-dependent cytolysins (CDCs) are a large family of pore-forming toxins that are produced by numerous Gram-positive bacterial pathogens. These toxins are released in the extracellular environment as water-soluble monomers or dimers that bind to cholesterol-rich membranes and assemble into large pore complexes. Depending upon their concentration, the nature of the host cell and membrane (cytoplasmic or intracellular) they target, the CDCs can elicit many different cellular responses. Among the CDCs, listeriolysin O (LLO), which is a major virulence factor of the facultative intracellular pathogen Listeria monocytogenes, is involved in several stages of the intracellular lifecycle of the bacterium and displays unique characteristics. It has long been known that following L. monocytogenes internalization into host cells, LLO disrupts the internalization vacuole, enabling the bacterium to replicate into the host cell cytosol. LLO is then used by cytosolic bacteria to spread from cell to cell, avoiding bacterial exposure to the extracellular environment. Although LLO is continuously produced during the intracellular lifecycle of L. monocytogenes, several processes limit its toxicity to ensure the survival of infected cells. It was previously thought that LLO activity was limited to mediating vacuolar escape during bacterial entry and cell to cell spreading. This concept has been challenged by compelling evidence suggesting that LLO secreted by extracellular L. monocytogenes perforates the host cell plasma membrane, triggering important host cell responses. This chapter provides an overview of the well-established intracellular activity of LLO and the multiple roles attributed to LLO secreted by extracellular L. monocytogenes.

  3. Lecithin cholesterol acyltransferase (LCAT) activity as a predictor for ketosis and parturient haemoglobinuria in Egyptian water buffaloes.

    PubMed

    Ghanem, Mohamed M; El-Deeb, Wael M

    2010-02-01

    Lecithin cholesterol acyltransferase (LCAT) activity was measured in 48 Egyptian water buffaloes four weeks pre-parturient. The activity was significantly low in 37 buffaloes (77.1%). Four weeks post-partum, clinical examination revealed that 23 buffaloes had the clinical signs of ketosis (K) while 14 had the clinical signs of parturient-haemoglobinuria (PHU). Serum samples were collected from 5 buffaloes of each group (K and PHU) besides 5 clinically healthy buffaloes with normal LCAT (control). Glucose level was significantly reduced in K and PHU groups while the phosphorous (P) level was significantly reduced in PHU group compared to control. There were significant reductions in the total cholesterol, free cholesterol, triglycerides, total protein and albumin in K and PHU groups; whereas, significant increases in AST, GGT, non-esterified fatty acids (NEFA) and beta-hydroxybutyric acid (BHBA) in K and PHU groups were detected. Therefore, LCAT could be a predictor for metabolic disorders in Egyptian water buffaloes.

  4. Structural features determining thermal adaptation of esterases.

    PubMed

    Kovacic, Filip; Mandrysch, Agathe; Poojari, Chetan; Strodel, Birgit; Jaeger, Karl-Erich

    2016-02-01

    The adaptation of microorganisms to extreme living temperatures requires the evolution of enzymes with a high catalytic efficiency under these conditions. Such extremophilic enzymes represent valuable tools to study the relationship between protein stability, dynamics and function. Nevertheless, the multiple effects of temperature on the structure and function of enzymes are still poorly understood at the molecular level. Our analysis of four homologous esterases isolated from bacteria living at temperatures ranging from 10°C to 70°C suggested an adaptation route for the modulation of protein thermal properties through the optimization of local flexibility at the protein surface. While the biochemical properties of the recombinant esterases are conserved, their thermal properties have evolved to resemble those of the respective bacterial habitats. Molecular dynamics simulations at temperatures around the optimal temperatures for enzyme catalysis revealed temperature-dependent flexibility of four surface-exposed loops. While the flexibility of some loops increased with raising the temperature and decreased with lowering the temperature, as expected for those loops contributing to the protein stability, other loops showed an increment of flexibility upon lowering and raising the temperature. Preserved flexibility in these regions seems to be important for proper enzyme function. The structural differences of these four loops, distant from the active site, are substantially larger than for the overall protein structure, indicating that amino acid exchanges within these loops occurred more frequently thereby allowing the bacteria to tune atomic interactions for different temperature requirements without interfering with the overall enzyme function.

  5. Membrane cholesterol plays an important role in enteropathogen adhesion and the activation of innate immunity via flagellin-TLR5 signaling.

    PubMed

    Zhou, Mingxu; Duan, Qiangde; Li, Yinchau; Yang, Yang; Hardwidge, Philip R; Zhu, Guoqiang

    2015-08-01

    Lipid rafts are cholesterol- and sphingolipid-rich ordered microdomains distributed in the plasma membrane that participates in mammalian signal transduction pathways. To determine the role of lipid rafts in mediating interactions between enteropathogens and intestinal epithelial cells, membrane cholesterol was depleted from Caco-2 and IPEC-J2 cells using methyl-β-cyclodextrin. Cholesterol depletion significantly reduced Escherichia coli and Salmonella enteritidis adhesion and invasion into intestinal epithelial cells. Complementation with exogenous cholesterol restored bacterial adhesion to basal levels. We also evaluated the role of lipid rafts in the activation of Toll-like receptor 5 signaling by bacterial flagellin. Depleting membrane cholesterol reduced the ability of purified recombinant E. coli flagellin to activate TLR5 signaling in intestinal cells. These data suggest that both membrane cholesterol and lipid rafts play important roles in enteropathogen adhesion and contribute to the activation of innate immunity via flagellin-TLR5 signaling.

  6. An organic-solvent-tolerant esterase from thermophilic Bacillus licheniformis S-86.

    PubMed

    Torres, Sebastián; Martínez, M Alejandra; Pandey, Ashok; Castro, Guillermo R

    2009-01-01

    A thermophile, halotolerant and organic-solvent-tolerant esterase producer Bacillus sp. S-86 strain previously isolated was found to belong to Bacillus licheniformis species through morphological, biochemical, 16S rRNA gene sequence analyses and rDNA intergenic spacers amplification (ITS-PCR). The strain can grow at 55 degrees C in presence of C2-C7 alkanols (log P=-0.86 to 2.39), and NaCl concentrations up to 15% (w/v). This bacterium showed optimal growth and esterase production at 50 degrees C. Two different molecular weight esterase activities were detected in zymographic assays. PMSF inhibited type I esterase activity, showing no inhibitory effect on type II esterase activity. B. licheniformis S-86 was able to grow in presence of hydroxylic organic-solvents like propan-2-ol, butan-1-ol and 3-methylbutan-1-ol. At a sub-lethal concentration of these solvents (392 mmoll(-1) propan-2-ol; 99 mmol l(-1) butan-1-ol, 37 mmol l(-1) 3-methylbutan-1-ol), adequate to produce 50% cell growth inhibition at 50 degrees C, an increment between 1.9 and 2.3 times was observed in type I esterase production, and between 2.2 and 3.1 times in type II esterase production. PMID:18723341

  7. Esterase and lipase in camel tick Hyalomma dromedarii (Acari: Ixodidae) during embryogenesis.

    PubMed

    Fahmy, Afaf S; Abdel-Gany, Somia S; Mohamed, Tarek M; Mohamed, Saleh A

    2004-02-01

    Esterase and lipase activity showed significant changes during embryogenesis of camel tick Hyalomma dromedarii. From the elution profile of chromatography on DEAE-cellulose, six forms of H. dromedarii esterase (El to EVI) can be distinguished. Esterase EIII was purified to homogeneity after chromatography on Sepharose 6B. The molecular mass of esterase EIII was 45 kDa for the native enzyme and represented a monomer of 45 kDa by SDS-PAGE. Esterase EIII had an acidic pI at 5.3. Lipase activity was detected in the same DEAE-cellulose peaks (LI to LVI) of H. dromedarii esterases. The highest lipase activity was exhibited by lipase LIII. Esterase EIII and lipase LIII were compared with respect to Michaelis constant, substrate specificity, temperature optimum, heat stability, pH optimum, effect of metal ions and inhibitors. This study suggests that H. dromedarii lipolytic enzymes may play a central role in the interconversion of lipovitellins during embryogenesis. PMID:14990212

  8. Purification and properties of an esterase from organophosphate-resistant strain of the mosquito Culex quinquefasciatus.

    PubMed Central

    Merryweather, A T; Crampton, J M; Townson, H

    1990-01-01

    Organophosphate-resistant and -susceptible strains of Culex quinquefasciatus (mosquito) have been compared on the basis of their esterase activities. The homozygous resistant strain (Dar) shows two highly active esterases after starch-gel electrophoresis, of Rm 0.2 and 0.4, which are absent from susceptible strains (Apo, Mon), and which previous selection studies have shown to be inseparable from organophosphate resistance. After SDS/polyacrylamide-gel electrophoresis and silver staining of total C. quinquefasciatus proteins, a 62 kDa band is observed in strain Dar at high concentrations, and in susceptible strains in trace amounts. After Western blotting, this 62 kDa protein is recognized by antisera raised against the two esterases eluted from starch gels. After chromatofocusing of Dar proteins, the 62 kDa protein is seen to be associated with esterase activity, and of a similar pI to that observed for esterases after isoelectric focusing. Post-translational modification is not required for recognition of the 62 kDa putative esterase, since the protein is immunoprecipitated by the anti-esterase serum from products of translation of Dar mRNA in vitro. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 6. Fig. 7. PMID:2178604

  9. Angiogenin activates phospholipase C and elicits a rapid incorporation of fatty acid into cholesterol esters in vascular smooth muscle cells

    SciTech Connect

    Moore, F.; Riordan, J.F. )

    1990-01-09

    Angiogenin activates the phosphoinositide-specific phospholipase C (PLC) in cultured rat aortic smooth muscle cells to yield a transient (30 s) peak of 1,2-diacylglycerol (DG) and inositol trisphosphate. Within 1 min, the DG level falls below that of the control and remains so for at least 20 min. A transient increase in monoacylglycerol indicates that depletion of DG may be the consequence of hydrolysis by DG lipase. In addition to these changes in second messengers, a rapid increase in incorporating of radiolabeled tracer into cellular cholesterol esters is observed. Stimulated cholesterol ester labeling is inhibited by preincubation with either the DG lipase inhibitor RHC 80267 or the acyl coenzyme A:cholesterol acyltransferase inhibitor Sandoz 58035. Cells prelabeled with ({sup 3}H)arachidonate show a sustained increase in labeling of cholesterol esters following exposure to angiogenin. In contrast, cells prelabeled with ({sup 3}H)oleate show only a transient elevation that returns to the basal level by 5 min. This suggests initial cholesterol esterification by oleate followed by arachidonate that is released by stimulation of the PLC/DG lipase pathway.

  10. Cholesterol (image)

    MedlinePlus

    Cholesterol is a soft, waxy substance that is present in all parts of the body including the ... and obtained from animal products in the diet. Cholesterol is manufactured in the liver and is needed ...

  11. Case report: A novel apolipoprotein A-I missense mutation apoA-I (Arg149Ser)Boston associated with decreased lecithin-cholesterol acyltransferase activation and cellular cholesterol efflux.

    PubMed

    Anthanont, Pimjai; Asztalos, Bela F; Polisecki, Eliana; Zachariah, Benoy; Schaefer, Ernst J

    2015-01-01

    We report a novel heterozygous apolipoprotein A-I (apoA-I) missense mutation (c.517C>A, p.Arg149Ser, designated as apoA-IBoston) in a 67-year-old woman and her 2 sons, who had mean serum high-density lipoprotein (HDL) cholesterol, apoA-I, and apoA-I in very large α-1 HDL that were 10%, 35%, and 16% of normal, respectively (all P < .05). The percentage of HDL cholesterol in the esterified form was also significantly (P < .05) reduced to 52% of control values. Cholesteryl ester tranfer protein (CETP) activity was normal. The mean global, adenosine triphosphate (ATP)-binding cassette transporter A1 and scavenger receptor B type I-mediated cellular cholesterol efflux capacity in apoB-depleted serum from affected family members were 41%, 37%, 47%, 54%, and 48% of control values, respectively (all P < .05). lecithin-cholesterol acyltransferase (LCAT) activity in plasma was 71% of controls, whereas in the cell-based assay, it was 73% of control values (P < .05). The data indicate that this novel apoA-I missense is associated with markedly decreased levels of HDL cholesterol and very large α-1 HDL, as well as decreased serum cellular cholesterol efflux and LCAT activity, but not with premature coronary heart disease, similar to other apoA-I mutations that have been associated with decreased LCAT activity.

  12. Case report: A novel apolipoprotein A-I missense mutation apoA-I (Arg149Ser)Boston associated with decreased lecithin-cholesterol acyltransferase activation and cellular cholesterol efflux.

    PubMed

    Anthanont, Pimjai; Asztalos, Bela F; Polisecki, Eliana; Zachariah, Benoy; Schaefer, Ernst J

    2015-01-01

    We report a novel heterozygous apolipoprotein A-I (apoA-I) missense mutation (c.517C>A, p.Arg149Ser, designated as apoA-IBoston) in a 67-year-old woman and her 2 sons, who had mean serum high-density lipoprotein (HDL) cholesterol, apoA-I, and apoA-I in very large α-1 HDL that were 10%, 35%, and 16% of normal, respectively (all P < .05). The percentage of HDL cholesterol in the esterified form was also significantly (P < .05) reduced to 52% of control values. Cholesteryl ester tranfer protein (CETP) activity was normal. The mean global, adenosine triphosphate (ATP)-binding cassette transporter A1 and scavenger receptor B type I-mediated cellular cholesterol efflux capacity in apoB-depleted serum from affected family members were 41%, 37%, 47%, 54%, and 48% of control values, respectively (all P < .05). lecithin-cholesterol acyltransferase (LCAT) activity in plasma was 71% of controls, whereas in the cell-based assay, it was 73% of control values (P < .05). The data indicate that this novel apoA-I missense is associated with markedly decreased levels of HDL cholesterol and very large α-1 HDL, as well as decreased serum cellular cholesterol efflux and LCAT activity, but not with premature coronary heart disease, similar to other apoA-I mutations that have been associated with decreased LCAT activity. PMID:26073399

  13. A soluble and active form of Wnt-3a protein is involved in myogenic differentiation after cholesterol depletion.

    PubMed

    Portilho, Débora M; Martins, Eliane R; Costa, Manoel L; Mermelstein, Cláudia S

    2007-12-22

    Cholesterol is one of the major lipids of plasma membranes. Recently, we have shown that cholesterol depletion by methyl-beta-cyclodextrin (M beta CD) induces the activation of the Wnt/beta-catenin pathway and enhances myogenic differentiation. Here, we show that M beta CD-conditioned media accelerates myogenesis in a similar way as M beta CD does, suggesting that the effects induced by M beta CD could be caused by soluble factors present in the culture medium. Soluble Wnt-3 protein is significantly enhanced in M beta CD-conditioned medium. Wnt-3a-enriched media induces myogenesis as much as M beta CD does, whereas Wnt-5a-enriched media inhibits. We suggest that Wnt-3a is involved in the myogenic induction observed after cholesterol depletion.

  14. Regiospecific Ester Hydrolysis by Orange Peel Esterase - An Undergraduate Experiment.

    NASA Astrophysics Data System (ADS)

    Bugg, Timothy D. H.; Lewin, Andrew M.; Catlin, Eric R.

    1997-01-01

    A simple but effective experiment has been developed to demonstrate the regiospecificity of enzyme catalysis using an esterase activity easily isolated from orange peel. The experiment involves the preparation of diester derivatives of para-, meta- and ortho-hydroxybenzoic acid (e.g. methyl 4-acetoxy-benzoic acid). The derivatives are incubated with orange peel esterase, as a crude extract, and with commercially available pig liver esterase and porcine pancreatic lipase. The enzymatic hydrolysis reactions are monitored by thin layer chromatography, revealing which of the two ester groups is hydrolysed, and the rate of the enzyme-catalysed reaction. The results of a group experiment revealed that in all cases hydrolysis was observed with at least one enzyme, and in most cases the enzymatic hydrolysis was specific for production of either the hydroxy-ester or acyl-acid product. Specificity towards the ortho-substituted series was markedly different to that of the para-substituted series, which could be rationalised in the case of pig liver esterase by a published active site model.

  15. Comparison of mesophilic and thermophilic feruloyl esterases: characterization of their substrate specificity for methyl phenylalkanoates.

    PubMed

    Topakas, Evangelos; Christakopoulos, Paul; Faulds, Craig B

    2005-02-23

    The active sites of feruloyl esterases from mesophilic and thermophilic sources were probed using methyl esters of phenylalkanoic acids. Only 13 out of 26 substrates tested were significant substrates for all the enzymes. Lengthening or shortening the aliphatic side chain while maintaining the same aromatic substitutions completely abolished activity for both enzymes, which demonstrates the importance of the correct distance between the aromatic group and the ester bond. Maintaining the phenylpropanoate structure but altering the substitutions of the aromatic ring demonstrated that the type-A esterase from the mesophilic fungus Fusarium oxysporum (FoFaeA) showed a preference for methoxylated substrates, in contrast to the type-B esterase from the same source (FoFaeB) and the thermophilic type-B (StFaeB) and type-C (StFaeC) from Sporotrichum thermophile, which preferred hydroxylated substrates. All four esterases hydrolyzed short chain aliphatic acid (C2-C4) esters of p-nitrophenol, but not the C12 ester of laurate. All the feruloyl esterases were able to release ferulic acid from the plant cell wall material in conjunction with a xylanase, but only the type-A esterase FoFaeA was effective in releasing the 5,5' form of diferulic acid. The thermophilic type-B esterase had a lower catalytic efficiency than its mesophilic counterpart, but released more ferulic acid from plant cell walls.

  16. Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2[S

    PubMed Central

    Oninla, Vincent O.; Breiden, Bernadette; Babalola, Jonathan O.; Sandhoff, Konrad

    2014-01-01

    During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747–1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion. PMID:25339683

  17. Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2.

    PubMed

    Oninla, Vincent O; Breiden, Bernadette; Babalola, Jonathan O; Sandhoff, Konrad

    2014-12-01

    During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747-1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion.

  18. Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2.

    PubMed

    Oninla, Vincent O; Breiden, Bernadette; Babalola, Jonathan O; Sandhoff, Konrad

    2014-12-01

    During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747-1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion. PMID:25339683

  19. In vitro comparison of rat and chicken brain neurotoxic esterase

    SciTech Connect

    Novak, R.; Padilla, S.

    1986-04-01

    A systematic comparison was undertaken to characterize neurotoxic esterase (NTE) from rat and chicken brain in terms of inhibitor sensitivities, pH optima, and molecular weights. Paraoxon titration of phenyl valerate (PV)-hydrolyzing carboxylesterases showed that rat esterases were more sensitive than chicken to paraoxon inhibition at concentrations less than or equal to microM and superimposable with chicken esterases at concentrations of 2.5-1000 microM. Mipafox titration of the paraoxon-resistant esterases at a fixed paraoxon concentration of 100 microM (mipafox concentration: 0-1000 microM) resulted in a mipafox I50 of 7.3 microM for chicken brain NTE and 11.6 microM for rat brain NTE. NTE (i.e., paraoxon-resistant, mipafox-sensitive esterase activity) comprised 80% of chicken and 60% of rat brain paraoxon-resistant activity with the specific activity of chicken brain NTE approximately twice that of rat brain NTE. The pH maxima for NTE from both species was similar showing broad, slightly alkaline optima from pH 7.9 to 8.6. (/sup 3/H)Diisopropyl phosphorofluoridate (DFP)-labeled NTE from the brains of both species had an apparent mol wt of 160,000 measured by sodium dodecyl sulfate polyacrylamide gel electrophoresis. In conclusion, NTE from both species was very similar, with the mipafox I50 for rat NTE within the range of reported values for chicken and human NTE, and the inhibitor parameters of the chicken NTE assay were applicable for the rat NTE assay.

  20. Cholesterol and triglycerides lowering activities of caraway fruits in normal and streptozotocin diabetic rats.

    PubMed

    Lemhadri, A; Hajji, L; Michel, J-B; Eddouks, M

    2006-07-19

    The purpose of this study was to examine the effect of single and repeated oral administration of the aqueous extract of Carum carvi L. fruits at a dose of (20mg/kg) on lipid metabolism in normal and streptozotocin-induced diabetic rats (STZ). After a single oral administration, Carum carvi extract produced a significant decrease on triglycerides levels in normal rats (p<0.05). In STZ diabetic rats, cholesterol levels were decreased significantly 6h after Carum carvi treatment (p<0.05). On the other hand, repeated oral administration of Carum carvi extract exhibited a significant hypotriglyceridemic and hypocholesterolemic activities in both normal (p<0.01 and <0.001 respectively) and STZ diabetic rats (p<0.001) 15 days after Carum carvi treatment. We conclude that the aqueous extract of Carum carvi (20mg/kg) exhibits a potent lipid lowering activity in both normal and severe hyperglycemic rats after repeated oral administration of Carum carvi aqueous extract.

  1. Repeated Administration of a Mutant Cocaine Esterase: Effects on Plasma Cocaine Levels, Cocaine-Induced Cardiovascular Activity, and Immune Responses in Rhesus Monkeys

    PubMed Central

    Collins, Gregory T.; Brim, Remy L.; Noon, Kathleen R.; Narasimhan, Diwahar; Lukacs, Nicholas W.; Sunahara, Roger K.; Woods, James H.

    2012-01-01

    Previous studies have demonstrated the capacity of a long-acting mutant form of a naturally occurring bacterial double mutant cocaine esterase (DM CocE) to antagonize the reinforcing, discriminative, convulsant, and lethal effects of cocaine in rodents and reverse the increases in mean arterial pressure (MAP) and heart rate (HR) produced by cocaine in rhesus monkeys. This study was aimed at characterizing the immunologic responses to repeated dosing with DM CocE and determining whether the development of anti-CocE antibodies altered the capacity of DM CocE to reduce plasma cocaine levels and ameliorate the cardiovascular effects of cocaine in rhesus monkeys. Under control conditions, intravenous administration of cocaine (3 mg/kg) resulted in a rapid increase in the plasma concentration of cocaine (n = 2) and long-lasting increases in MAP and HR (n = 3). Administration of DM CocE (0.32 mg/kg i.v.) 10 min after cocaine resulted in a rapid hydrolysis of cocaine with plasma levels below detection limits within 5 to 8 min. Elevations in MAP and HR were significantly reduced within 25 and 50 min of DM CocE administration, respectively. Although slight (10-fold) increases in anti-CocE antibodies were observed after the fourth administration of DM CocE, these antibodies did not alter the capacity of DM CocE to reduce plasma cocaine levels or ameliorate cocaine's cardiovascular effects. Anti-CocE titers were transient and generally dissipated within 8 weeks. Together, these results suggest that highly efficient cocaine esterases, such as DM CocE, may provide a novel and effective therapeutic for the treatment of acute cocaine intoxication in humans. PMID:22518021

  2. Repeated administration of a mutant cocaine esterase: effects on plasma cocaine levels, cocaine-induced cardiovascular activity, and immune responses in rhesus monkeys.

    PubMed

    Collins, Gregory T; Brim, Remy L; Noon, Kathleen R; Narasimhan, Diwahar; Lukacs, Nicholas W; Sunahara, Roger K; Woods, James H; Ko, Mei-Chuan

    2012-07-01

    Previous studies have demonstrated the capacity of a long-acting mutant form of a naturally occurring bacterial double mutant cocaine esterase (DM CocE) to antagonize the reinforcing, discriminative, convulsant, and lethal effects of cocaine in rodents and reverse the increases in mean arterial pressure (MAP) and heart rate (HR) produced by cocaine in rhesus monkeys. This study was aimed at characterizing the immunologic responses to repeated dosing with DM CocE and determining whether the development of anti-CocE antibodies altered the capacity of DM CocE to reduce plasma cocaine levels and ameliorate the cardiovascular effects of cocaine in rhesus monkeys. Under control conditions, intravenous administration of cocaine (3 mg/kg) resulted in a rapid increase in the plasma concentration of cocaine (n = 2) and long-lasting increases in MAP and HR (n = 3). Administration of DM CocE (0.32 mg/kg i.v.) 10 min after cocaine resulted in a rapid hydrolysis of cocaine with plasma levels below detection limits within 5 to 8 min. Elevations in MAP and HR were significantly reduced within 25 and 50 min of DM CocE administration, respectively. Although slight (10-fold) increases in anti-CocE antibodies were observed after the fourth administration of DM CocE, these antibodies did not alter the capacity of DM CocE to reduce plasma cocaine levels or ameliorate cocaine's cardiovascular effects. Anti-CocE titers were transient and generally dissipated within 8 weeks. Together, these results suggest that highly efficient cocaine esterases, such as DM CocE, may provide a novel and effective therapeutic for the treatment of acute cocaine intoxication in humans. PMID:22518021

  3. BacMam production of active recombinant lecithin-cholesterol acyltransferase: Expression, purification and characterization.

    PubMed

    Romanow, William G; Piper, Derek E; Fordstrom, Preston; Thibault, Stephen; Zhou, Mingyue; Walker, Nigel P C

    2016-09-01

    Lecithin-cholesterol acyltransferase (LCAT) is a key enzyme in the esterification of cholesterol and its subsequent incorporation into the core of high density lipoprotein (HDL) particles. It is also involved in reverse cholesterol transport (RCT), the mechanism by which cholesterol is removed from peripheral cells and transported to the liver for excretion. These processes are involved in the development of atherosclerosis and coronary heart disease (CHD) and may have therapeutic implications. This work describes the use of baculovirus as a transducing vector to express LCAT in mammalian cells, expression of the recombinant protein as a high-mannose glycoform suitable for deglycosylation by Endo H and its purification to homogeneity and characterization. The importance of producing underglycosylated forms of secreted glycoproteins to obtain high-resolution crystal structures is discussed. PMID:26363122

  4. Polyoxygenated Cholesterol Ester Hydroperoxide Activates TLR4 and SYK Dependent Signaling in Macrophages

    PubMed Central

    Choi, Soo-Ho; Yin, Huiyong; Ravandi, Amir; Armando, Aaron; Dumlao, Darren; Kim, Jungsu; Almazan, Felicidad; Taylor, Angela M.; McNamara, Coleen A.; Tsimikas, Sotirios; Dennis, Edward A.; Witztum, Joseph L.; Miller, Yury I.

    2013-01-01

    Oxidation of low-density lipoprotein (LDL) is one of the major causative mechanisms in the development of atherosclerosis. In previous studies, we showed that minimally oxidized LDL (mmLDL) induced inflammatory responses in macrophages, macropinocytosis and intracellular lipid accumulation and that oxidized cholesterol esters (OxCEs) were biologically active components of mmLDL. Here we identified a specific OxCE molecule responsible for the biological activity of mmLDL and characterized signaling pathways in macrophages in response to this OxCE. Using liquid chromatography – tandem mass spectrometry and biological assays, we identified an oxidized cholesteryl arachidonate with bicyclic endoperoxide and hydroperoxide groups (BEP-CE) as a specific OxCE that activates macrophages in a TLR4/MD-2-dependent manner. BEP-CE induced TLR4/MD-2 binding and TLR4 dimerization, phosphorylation of SYK, ERK1/2, JNK and c-Jun, cell spreading and uptake of dextran and native LDL by macrophages. The enhanced macropinocytosis resulted in intracellular lipid accumulation and macrophage foam cell formation. Bone marrow-derived macrophages isolated from TLR4 and SYK knockout mice did not respond to BEP-CE. The presence of BEP-CE was demonstrated in human plasma and in the human plaque material captured in distal protection devices during percutaneous intervention. Our results suggest that BEP-CE is an endogenous ligand that activates the TLR4/SYK signaling pathway. Because BEP-CE is present in human plasma and human atherosclerotic lesions, BEP-CE-induced and TLR4/SYK-mediated macrophage responses may contribute to chronic inflammation in human atherosclerosis. PMID:24376657

  5. Semisynthesis and quantitative structure-activity relationship (QSAR) study of some cholesterol-based hydrazone derivatives as insecticidal agents.

    PubMed

    Yang, Chun; Shao, Yonghua; Zhi, Xiaoyan; Huan, Qu; Yu, Xiang; Yao, Xiaojun; Xu, Hui

    2013-09-01

    In continuation of our program aimed at the discovery and development of natural-product-based insecticidal agents, four series of novel cholesterol-based hydrazone derivatives were synthesized, and their insecticidal activity was tested against the pre-third-instar larvae of oriental armyworm, Mythimna separata (Walker) in vivo at 1mg/mL. All the derivatives showed the better insecticidal activity than their precursor cholesterol. Quantitative structure-activity relationship (QSAR) model demonstrated that six descriptors such as RDF085v, Mor06u, Mor11u, Dv, HATS0v and H-046, are likely to influence the insecticidal activity of these compounds. Among them, two important ones are the Mor06u and RDF085v.

  6. Esterase activity (EA), total oxidant status (TOS) and total antioxidant capacity (TAC) in gills of Mytilus galloprovincialis exposed to pollutants: Analytical validation and effects evaluation by single and mixed heavy metal exposure.

    PubMed

    Franco, Lorena; Romero, Diego; García-Navarro, José A; Teles, Mariana; Tvarijonaviciute, Asta

    2016-01-15

    The aims of the present study were to optimize and validate methods for esterase activity (EA), total oxidant status (TOS) and total antioxidant capacity (TAC) determination in mussel' gills, and to establish the relationships between these biomarkers and Pb, Cd and Cu pollution, in single form and ternary mixture. Two different buffers for sample homogenization, the need of ultracentrifugation, and analytical validation were evaluated. Coefficients of variation, when buffer without additives and ultracentrifugation were used, were <15%, and recovery were 97%-109% in all cases. The EA response tends to decrease with treatments, TOS decreased significantly in Cd and ternary groups, while TAC tended to increase in treatments with Pb, Cd and ternary groups. In conclusion, the methods for EA, TOS and TAC measurements in gills of mussel were precise and accurate and could be interesting resources in biomonitoring programmes.

  7. Chronic Activation of FXR in Transgenic Mice Caused Perinatal Toxicity and Sensitized Mice to Cholesterol Toxicity

    PubMed Central

    Cheng, Qiuqiong; Inaba, Yuka; Lu, Peipei; Xu, Meishu; He, Jinhan; Zhao, Yueshui; Guo, Grace L.; Kuruba, Ramalinga; de la Vega, Rona; Evans, Rhobert W.; Li, Song

    2015-01-01

    The nuclear receptor farnesoid X receptor (FXR) (nuclear receptor subfamily 1, group H, member 4, or NR1H4) is highly expressed in the liver and intestine. Previous reports have suggested beneficial functions of FXR in the homeostasis of bile acids, lipids, and glucose, as well as in promoting liver regeneration and inhibiting carcinogenesis. To investigate the effect of chronic FXR activation in vivo, we generated transgenic mice that conditionally and tissue specifically express the activated form of FXR in the liver and intestine. Unexpectedly, the transgenic mice showed several intriguing phenotypes, including partial neonatal lethality, growth retardation, and spontaneous liver toxicity. The transgenic mice also displayed heightened sensitivity to a high-cholesterol diet-induced hepatotoxicity but resistance to the gallstone formation. The phenotypes were transgene specific, because they were abolished upon treatment with doxycycline to silence the transgene expression. The perinatal toxicity, which can be rescued by a maternal vitamin supplement, may have resulted from vitamin deficiency due to low biliary bile acid output as a consequence of inhibition of bile acid formation. Our results also suggested that the fibroblast growth factor-inducible immediate-early response protein 14 (Fn14), a member of the proinflammatory TNF family, is a FXR-responsive gene. However, the contribution of Fn14 induction in the perinatal toxic phenotype of the transgenic mice remains to be defined. Because FXR is being explored as a therapeutic target, our results suggested that a chronic activation of this nuclear receptor may have an unintended side effect especially during the perinatal stage. PMID:25719402

  8. High-throughput screening method for lipases/esterases.

    PubMed

    Mateos-Díaz, Eduardo; Rodríguez, Jorge Alberto; de Los Ángeles Camacho-Ruiz, María; Mateos-Díaz, Juan Carlos

    2012-01-01

    High-throughput screening (HTS) methods for lipases and esterases are generally performed by using synthetic chromogenic substrates (e.g., p-nitrophenyl, resorufin, and umbelliferyl esters) which may be misleading since they are not their natural substrates (e.g., partially or insoluble triglycerides). In previous works, we have shown that soluble nonchromogenic substrates and p-nitrophenol (as a pH indicator) can be used to quantify the hydrolysis and estimate the substrate selectivity of lipases and esterases from several sources. However, in order to implement a spectrophotometric HTS method using partially or insoluble triglycerides, it is necessary to find particular conditions which allow a quantitative detection of the enzymatic activity. In this work, we used Triton X-100, CHAPS, and N-lauroyl sarcosine as emulsifiers, β-cyclodextrin as a fatty acid captor, and two substrate concentrations, 1 mM of tributyrin (TC4) and 5 mM of trioctanoin (TC8), to improve the test conditions. To demonstrate the utility of this method, we screened 12 enzymes (commercial preparations and culture broth extracts) for the hydrolysis of TC4 and TC8, which are both classical substrates for lipases and esterases (for esterases, only TC4 may be hydrolyzed). Subsequent pH-stat experiments were performed to confirm the preference of substrate hydrolysis with the hydrolases tested. We have shown that this method is very useful for screening a high number of lipases (hydrolysis of TC4 and TC8) or esterases (only hydrolysis of TC4) from wild isolates or variants generated by directed evolution using nonchromogenic triglycerides directly in the test.

  9. High-throughput screening method for lipases/esterases.

    PubMed

    Mateos-Díaz, Eduardo; Rodríguez, Jorge Alberto; de Los Ángeles Camacho-Ruiz, María; Mateos-Díaz, Juan Carlos

    2012-01-01

    High-throughput screening (HTS) methods for lipases and esterases are generally performed by using synthetic chromogenic substrates (e.g., p-nitrophenyl, resorufin, and umbelliferyl esters) which may be misleading since they are not their natural substrates (e.g., partially or insoluble triglycerides). In previous works, we have shown that soluble nonchromogenic substrates and p-nitrophenol (as a pH indicator) can be used to quantify the hydrolysis and estimate the substrate selectivity of lipases and esterases from several sources. However, in order to implement a spectrophotometric HTS method using partially or insoluble triglycerides, it is necessary to find particular conditions which allow a quantitative detection of the enzymatic activity. In this work, we used Triton X-100, CHAPS, and N-lauroyl sarcosine as emulsifiers, β-cyclodextrin as a fatty acid captor, and two substrate concentrations, 1 mM of tributyrin (TC4) and 5 mM of trioctanoin (TC8), to improve the test conditions. To demonstrate the utility of this method, we screened 12 enzymes (commercial preparations and culture broth extracts) for the hydrolysis of TC4 and TC8, which are both classical substrates for lipases and esterases (for esterases, only TC4 may be hydrolyzed). Subsequent pH-stat experiments were performed to confirm the preference of substrate hydrolysis with the hydrolases tested. We have shown that this method is very useful for screening a high number of lipases (hydrolysis of TC4 and TC8) or esterases (only hydrolysis of TC4) from wild isolates or variants generated by directed evolution using nonchromogenic triglycerides directly in the test. PMID:22426713

  10. Esterase and Malate Dehydrogenase Phenotypes in Portuguese Populations of Meloidogyne Species

    PubMed Central

    Pais, Célia S.; de O. Abrantes, Isabel M.

    1989-01-01

    Nonspecific esterases and malate dehydrogenases of 1-5 females from 40 root-knot nematode populations from Portugal were analyzed by electrophoresis in 0.4-mm-thick polyacrylamide gels. Fourteen major bands of esterase activity were detected, corresponding to 10 distinct phenotypes, Meloidogyne javanica and M. hapla had distinct species-specific phenotypes. Two phenotypes occurred in M. arenaria. The most variability was found among M. incognita populations. Of the remaining two phenotypes, one was associated with M. hispanica and the other belonged to a new species. Three malate dehydrogenase phenotypes were discerned on the basis of particular combinations of the eight main bands of activity found. As previously found, esterases were more useful than malate dehydrogenases in identification of the major Meloidogyne species. The host plant had no effect on the nematode esterase or malate dehydrogenase phenotypes. PMID:19287618

  11. Cholesterol enhances amyloid {beta} deposition in mouse retina by modulating the activities of A{beta}-regulating enzymes in retinal pigment epithelial cells

    SciTech Connect

    Wang, Jiying; Ohno-Matsui, Kyoko; Morita, Ikuo

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells in vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A{beta}, whereas

  12. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity

    PubMed Central

    Shewell, Lucy K.; Harvey, Richard M.; Higgins, Melanie A.; Day, Christopher J.; Hartley-Tassell, Lauren E.; Chen, Austen Y.; Gillen, Christine M.; James, David B. A.; Alonzo, Francis; Torres, Victor J.; Walker, Mark J.; Paton, Adrienne W.; Paton, James C.; Jennings, Michael P.

    2014-01-01

    The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a Kd of 1.88 × 10−5 M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism. PMID:25422425

  13. Production and purification of a solvent-resistant esterase from Bacillus licheniformis S-86.

    PubMed

    Torres, Sebastián; Baigorí, Mario D; Pandey, Ashok; Castro, Guillermo R

    2008-12-01

    New thermophilic and organic-solvent-tolerant Bacillus licheniformis S-86 strain is able to produce two active and solvent-stable esterases. Production of type I and II esterases was substantially enhanced when oils and surfactants were supplied as carbon sources. Grape oil (0.1% v/v) and Tween 20 to 60 (0.1% v/v) had enhanced enzyme production between 1.6- and 2.2-folds. Type II esterase was purified to homogeneity in a five-step procedure. This esterase was purified 76.7-fold with a specific activity of 135 U mg(-1). Molecular mass of the enzyme was estimated to be 38.4 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Type II esterase was active mostly on esters with short acyl chains, which allowed to classify the enzyme as a carboxylesterase with a K (m) of 80.2 mmol l(-1) and a V (max) of 256.4 micromol min(-1) mg(-1) for p-nitrophenyl acetate. Also, B. licheniformis S-86 type II esterase displayed activity in presence of water-miscible organic solvents at 50% concentration and stability after 1-h incubation. PMID:18543118

  14. Cellular cholesterol accumulation modulates high fat high sucrose (HFHS) diet-induced ER stress and hepatic inflammasome activation in the development of non-alcoholic steatohepatitis.

    PubMed

    Bashiri, Amir; Nesan, Dinushan; Tavallaee, Ghazaleh; Sue-Chue-Lam, Ian; Chien, Kevin; Maguire, Graham F; Naples, Mark; Zhang, Jing; Magomedova, Lilia; Adeli, Khosrow; Cummins, Carolyn L; Ng, Dominic S

    2016-07-01

    Non-alcoholic steatohepatitis (NASH), is the form of non-alcoholic fatty liver disease posing risk to progress into serious long term complications. Human and pre-clinical models implicate cellular cholesterol dysregulation playing important role in its development. Mouse model studies suggest synergism between dietary cholesterol and fat in contributing to NASH but the mechanisms remain poorly understood. Our laboratory previously reported the primary importance of hepatic endoplasmic reticulum cholesterol (ER-Chol) in regulating hepatic ER stress by comparing the responses of wild type, Ldlr-/-xLcat+/+ and Ldlr-/-xLcat-/- mice, to a 2% high cholesterol diet (HCD). Here we further investigated the roles of ER-Chol and ER stress in HFHS diet-induced NASH using the same strains. With HFHS diet feeding, both WT and Ldlr-/-xLcat+/+ accumulate ER-Chol in association with ER stress and inflammasome activation but the Ldlr-/-xLcat-/- mice are protected. By contrast, all three strains accumulate cholesterol crystal, in correlation with ER-Chol, albeit less so in Ldlr-/-xLcat-/- mice. By comparison, HCD feeding per se (i) is sufficient to promote steatosis and activate inflammasomes, and (ii) results in dramatic accumulation of cholesterol crystal which is linked to inflammasome activation in Ldlr-/-xLcat-/- mice, independent of ER-Chol. Our data suggest that both dietary fat and cholesterol each independently promote steatosis, cholesterol crystal accumulation and inflammasome activation through distinct but complementary pathways. In vitro studies using palmitate-induced hepatic steatosis in HepG2 cells confirm the key roles by cellular cholesterol in the induction of steatosis and inflammasome activations. These novel findings provide opportunities for exploring a cellular cholesterol-focused strategy for treatment of NASH. PMID:27090939

  15. Characterization and structural modeling of a new type of thermostable esterase from Thermotoga maritima.

    PubMed

    Levisson, Mark; van der Oost, John; Kengen, Servé W M

    2007-06-01

    A bioinformatic screening of the genome of the hyperthermophilic bacterium Thermotoga maritima for ester-hydrolyzing enzymes revealed a protein with typical esterase motifs, though annotated as a hypothetical protein. To confirm its putative esterase function the gene (estD) was cloned, functionally expressed in Escherichia coli and purified to homogeneity. Recombinant EstD was found to exhibit significant esterase activity with a preference for short acyl chain esters (C4-C8). The monomeric enzyme has a molecular mass of 44.5 kDa and optimal activity around 95 degrees C and at pH 7. Its thermostability is relatively high with a half-life of 1 h at 100 degrees C, but less stable compared to some other hyperthermophilic esterases. A structural model was constructed with the carboxylesterase Est30 from Geobacillus stearothermophilus as a template. The model covered most of the C-terminal part of EstD. The structure showed an alpha/beta-hydrolase fold and indicated the presence of a typical catalytic triad consisting of a serine, aspartate and histidine, which was verified by site-directed mutagenesis and inhibition studies. Phylogenetic analysis showed that EstD is only distantly related to other esterases. A comparison of the active site pentapeptide motifs revealed that EstD should be grouped into a new family of esterases (Family 10). EstD is the first characterized member of this family. PMID:17466017

  16. Influenza C virus esterase: analysis of catalytic site, inhibition, and possible function.

    PubMed Central

    Vlasak, R; Muster, T; Lauro, A M; Powers, J C; Palese, P

    1989-01-01

    The active site serine of the acetylesterase of influenza C virus was localized to amino acid 71 of the hemagglutinin-esterase protein by affinity labeling with 3H-labeled diisopropylfluorophosphate. This serine and the adjacent amino acids (Phe-Gly-Asp-Ser) are part of a consensus sequence motif found in serine hydrolases. Since comparative analysis failed to reveal esterase sequence similarities with other serine hydrolases, we suggest that this viral enzyme is a serine hydrolase constituting a new family of serine esterases. Furthermore, we found that the influenza C virus esterase was inhibited by isocoumarin derivatives, with 3,4-dichloroisocoumarin being the most potent inhibitor. Addition of this compound prevented elution of influenza C virus from erythrocytes and inhibited virus infectivity, possibly through inhibition of virus entry into cells. Images PMID:2495370

  17. Exposure to a Cutinase-like Serine Esterase Triggers Rapid Lysis of Multiple Mycobacterial Species*

    PubMed Central

    Yang, Yong; Bhatti, Alexandra; Ke, Danxia; Gonzalez-Juarrero, Mercedes; Lenaerts, Anne; Kremer, Laurent; Guerardel, Yann; Zhang, Peijun; Ojha, Anil K.

    2013-01-01

    Mycobacteria are shaped by a thick envelope made of an array of uniquely structured lipids and polysaccharides. However, the spatial organization of these molecules remains unclear. Here, we show that exposure to an esterase from Mycobacterium smegmatis (Msmeg_1529), hydrolyzing the ester linkage of trehalose dimycolate in vitro, triggers rapid and efficient lysis of Mycobacterium tuberculosis, Mycobacterium bovis BCG, and Mycobacterium marinum. Exposure to the esterase immediately releases free mycolic acids, while concomitantly depleting trehalose mycolates. Moreover, lysis could be competitively inhibited by an excess of purified trehalose dimycolate and was abolished by a S124A mutation affecting the catalytic activity of the esterase. These findings are consistent with an indispensable structural role of trehalose mycolates in the architectural design of the exposed surface of the mycobacterial envelope. Importantly, we also demonstrate that the esterase-mediated rapid lysis of M. tuberculosis significantly improves its detection in paucibacillary samples. PMID:23155047

  18. Influenza C virus esterase: analysis of catalytic site, inhibition, and possible function

    SciTech Connect

    Vlasak, R.; Muster, T.; Lauro, A.M.; Powers, J.C.; Palese, P.

    1989-05-01

    The active site serine of the acetylesterase of influenza C virus was localized to amino acid 71 of the hemagglutinin-esterase protein by affinity labeling with /sup 3/H-labeled diisopropylfluorophosphate. This serine and the adjacent amino acids (Phe-Gly-Asp-Ser) are part of a consensus sequence motif found in serine hydrolases. Since comparative analysis failed to reveal esterase sequence similarities with other serine hydrolases, the authors suggest that this viral enzyme is a serine hydrolase constituting a new family of serine esterases. Furthermore, they found that the influenza C virus esterase was inhibited by isocoumarin derivatives, with 3,4-dichloroisocoumarin being the most potent inhibitor. Addition of this compound prevented elution of influenza C virus from erythrocytes and inhibited virus infectivity, possibly through inhibition of virus entry into cells.

  19. Anti-hyperlipidemic activity of spider brake (Pteris multifida) with rats fed a high cholesterol diet.

    PubMed

    Wang, Tzu-Ching; Lin, Chun-Ching; Lee, Hou-I; Yang, Clinton; Yang, Chi-Ching

    2010-02-01

    This study evaluates the possible potency of the anti-hyperlipidemic effect of spider brake [(Pteris multifida Poiret (Pteridaceae)]. We investigated this by feeding the hyperlipidemic Sprague-Dawley rats, caused by a high cholesterol diet, with lyophilized powder of spider brake (LSB) and compared the result with the rats fed with beta-sitosterol. The results indicated that the administration of lyophilized powder of spider brake (LSB) lowered the hyperlipidemic level on rats. The relative weights of the liver, adipose tissue, and relative adipose tissue of 10% substitutions of LSB group (LSB-10) showed a significant decrease (P < 0.05) by 6%, 15.9%, and 14.3% in contrast to the untreated counterparts (control), respectively. A significantly lower (P < 0.05) plasma TG, low density lipoprotein cholesterol, low density lipoprotein cholesterol/high density lipoprotein cholesterol ratio, liver CH, and TG contents were also observed in LSB-10 compared to the untreated counterparts (by 36.8%, 21%, 18.7%, 10.2% and 14.3% reduction, respectively). Simultaneously, the wet fecal weight, dry fecal weight, nitrogen compounds, excretion of neutral steroids, and bile acids significantly (P < 0.05) increased by 9.6%, 10.6%, 23.7%, 9.7%, and 3.4% respectively. The results showed that LSB could cause not only a reduction in CH and TG, but also could increase the excretion of lipids and metabolic by-products via the intestinal tract.

  20. The Serratia marcescens bioH gene encodes an esterase.

    PubMed

    Akatsuka, Hiroyuki; Kawai, Eri; Sakurai, Naoki; Omori, Kenji

    2003-01-01

    The 3.9 kb chromosomal DNA was cloned from Serratia marcescens Sr41, which confers on Escherichia coli cells a phenotype of clear halo formation on tributyrin agar plates. Three complete open reading frames (ORFs) were identified in the inserted DNA, and one ORF was demonstrated to encode a 28 kDa protein of 255 amino acids related to esterase activity. Interestingly, the ORF was 70% identical to a product of the E. coli bioH gene, which lies at a locus separated from the bioABFCD operon and acts in the early steps of the biotin synthetic pathway before pimeloyl-CoA synthesis. This gene complemented a bioH-deficient mutation of E. coli. From the sequence analysis, BioH is presumed to be a serine hydrolase, which belongs to the alpha/beta hydrolase-fold family comprising a wide variety of hydrolases including esterases. A catalytic triad composed of a nucleophilic residue (Ser80), an acidic residue (Asp206), and histidine (His234) was conserved in BioH, and the nucleophilic residue Ser, a catalytic center, was situated in the consensus sequence of G-X-S-X-G-G, a nucleophile elbow. Although the enzymatic function of BioH is not yet elucidated, the bioH gene products from S. marcescens and E. coli show esterase activity, which may imply the hydrolysis of a precursor leading to pimeloyl-CoA ester. The esterase activity of BioH and its CoA binding activity recently reported agree with a current hypothesis of pimeloyl-CoA ester synthesis from CoA and acylester derivatives including an acyl-carrier protein.

  1. Inhibition of angiotensin-1-converting enzyme activity by two varieties of ginger (Zingiber officinale) in rats fed a high cholesterol diet.

    PubMed

    Akinyemi, Ayodele Jacob; Ademiluyi, Adedayo Oluwaseun; Oboh, Ganiyu

    2014-03-01

    Angiotensin-1-converting enzyme (ACE) inhibitors are widely used in the treatment of cardiovascular diseases. This study sought to investigate the inhibitory effect of two varieties of ginger (Zingiber officinale) commonly consumed in Nigeria on ACE activity in rats fed a high cholesterol diet. The inhibition of ACE activity of two varieties of ginger (Z. officinale) was investigated in a high cholesterol (2%) diet fed to rats for 3 days. Feeding high cholesterol diets to rats caused a significant (P<.05) increase in the ACE activity. However, there was a significant (P<.05) inhibition of ACE activity as a result of supplementation with the ginger varieties. Rats that were fed 4% white ginger had the greatest inhibitory effect as compared with a control diet. Furthermore, there was a significant (P<.05) increase in the plasma lipid profile with a concomitant increase in malondialdehyde (MDA) content in rat liver and heart tissues. However, supplementing the diet with red and white ginger (either 2% or 4%) caused a significant (P<.05) decrease in the plasma total cholesterol, triglyceride, very low density lipoprotein-cholesterol, and low-density lipoprotein-cholesterol levels, and in MDA content in the tissues. Conversely, supplementation caused a significant (P<.05) increase in plasma high-density lipoprotein-cholesterol level when compared with the control diet. Nevertheless, rats fed 4% red ginger had the greatest reduction as compared with control diet. In conclusion, both ginger varieties exhibited anti-hypercholesterolemic properties in a high cholesterol diet fed to rats. This activity of the gingers may be attributed to its ACE inhibitory activity. However, white ginger inhibited ACE better in a high cholesterol diet fed to rats than red ginger. Therefore, both gingers could serve as good functional foods/nutraceuticals in the management/treatment of hypertension and other cardiovascular diseases.

  2. Palmitoylation Strengthens Cholesterol-dependent Multimerization and Fusion Activity of Human Cytomegalovirus Glycoprotein B (gB).

    PubMed

    Patrone, Marco; Coroadinha, Ana Sofia; Teixeira, Ana P; Alves, Paula M

    2016-02-26

    Herpesviruses are a large order of animal enveloped viruses displaying a virion fusion mechanism of unusual complexity. Their multipartite machinery has a conserved core made of the gH/gL ancillary complexes and the homo-trimeric fusion protein glycoprotein B (gB). Despite its essential role in starting the viral infection, gB interaction with membrane lipids is still poorly understood. Here, evidence is provided demonstrating that human cytomegalovirus (HCMV) gB depends on the S-palmitoylation of its endodomain for an efficient interaction with cholesterol-rich membrane patches. We found that, unique among herpesviral gB proteins, the HCMV fusion factor has a Cys residue in the C-terminal region that is palmitoylated and mediates methyl-β-cyclodextrin-sensitive self-association of purified gB. A cholesterol-dependent virus-like particle trap assay, based on co-expression of the HIV Gag protein, confirmed that this post-translational modification is functional in the context of cellular membranes. Mutation of the palmitoylated Cys residue to Ala or inhibition of protein palmitoylation decreased HCMV gB export via Gag particles. Moreover, purified gBC777A showed an increased kinetic sensitivity in a cholesterol depletion test, demonstrating that palmitoyl-gB limits outward cholesterol diffusion. Finally, gB palmitoylation was required for full fusogenic activity in human epithelial cells. Altogether, these results uncover the palmitoylation of HCMV gB and its role in gB multimerization and activity.

  3. Intrauterine growth restriction combined with a maternal high-fat diet increases hepatic cholesterol and low-density lipoprotein receptor activity in rats.

    PubMed

    Zinkhan, Erin K; Zalla, Jennifer M; Carpenter, Jeanette R; Yu, Baifeng; Yu, Xing; Chan, Gary; Joss-Moore, Lisa; Lane, Robert H

    2016-07-01

    Intrauterine growth restriction (IUGR) and maternal consumption of a high-saturated-fat diet (HFD) increase the risk of hypercholesterolemia, a leading cause of morbidity and mortality. Many pregnant women eat a HFD, thus exposing the fetus to a HFD in utero. The cumulative effect of in utero exposure to IUGR and a HFD on offspring cholesterol levels remains unknown. Furthermore, little is known about the mechanism through which IUGR and maternal HFD consumption increase cholesterol. We hypothesize that IUGR combined with a maternal HFD would increase offspring serum and hepatic cholesterol accumulation via alteration in levels of key proteins involved in cholesterol metabolism. To test our hypothesis we used a rat model of surgically induced IUGR and fed the dams a regular diet or a HFD HFD-fed dams consumed the same kilocalories as regular diet-fed dams, with no difference between surgical intervention groups. In the offspring, IUGR combined with a maternal HFD increased hepatic cholesterol levels, low-density lipoprotein (LDL) receptor protein levels, and Ldlr activity in female rat offspring at birth and both sexes at postnatal day 14 relative to non-IUGR offspring both from regular diet- and HFD-fed dams. These findings suggest that IUGR combined with a maternal HFD increases hepatic cholesterol accumulation via increased LDL cholesterol uptake into the liver with resulting persistent increases in hepatic cholesterol accumulation.

  4. Increase in cholesterol sulfotransferase activity during in vitro squamous differentiation of rabbit tracheal epithelial cells and its inhibition by retinoic acid.

    PubMed

    Rearick, J I; Albro, P W; Jetten, A M

    1987-09-25

    It has previously been demonstrated that rabbit tracheal epithelial cells in primary culture undergo terminal differentiation at confluence to yield cornified cells much in analogy to epidermal keratinocytes and that one biochemical marker of this process seems to be the accumulation of cholesterol sulfate by the cells. The current work addresses the possible causes of this accumulation. Our studies show that the stimulation of cholesterol sulfate is paralleled by an increased activity of the biosynthetic enzyme cholesterol sulfotransferase. Squamous differentiated cells exhibited 20- to 30- fold higher levels of this enzyme activity than that in undifferentiated cells. As with other markers of squamous cell differentiation, the increase in cholesterol sulfotransferase can be prevented by the inclusion of retinoids in the cell culture medium. Inhibition of sulfotransferase levels can be observed at concentration of retinoic acid as low as 10(-11) M. The enzyme activity is optimal at pH 7 in buffers containing 0.2 M NaCl and 0.01% Triton X-100. Apparent Michaelis constants for the substrates 3'-phosphoadenosine-5'-phosphosulfate and cholesterol are 1 microM and 0.6 mM, respectively. Our results indicate that the increase in cholesterol sulfotransferase is the proximate cause for the accumulation of cholesterol sulfate in rabbit tracheal epithelial cells during squamous cell differentiation.

  5. Differences in X-Chromosome Transcriptional Activity and Cholesterol Metabolism between Placentae from Swine Breeds from Asian and Western Origins

    PubMed Central

    Bischoff, Steve R.; Tsai, Shengdar Q.; Hardison, Nicholas E.; Motsinger-Reif, Alison A.; Freking, Bradley A.; Nonneman, Dan J.; Rohrer, Gary A.; Piedrahita, Jorge A.

    2013-01-01

    To gain insight into differences in placental physiology between two swine breeds noted for their dissimilar reproductive performance, that is, the Chinese Meishan and white composite (WC), we examined gene expression profiles of placental tissues collected at 25, 45, 65, 85, and 105 days of gestation by microarrays. Using a linear mixed model, a total of 1,595 differentially expressed genes were identified between the two pig breeds using a false-discovery rate q-value ≤0.05. Among these genes, we identified breed-specific isoforms of XIST, a long non-coding RNA responsible X-chromosome dosage compensation in females. Additionally, we explored the interaction of placental gene expression and chromosomal location by DIGMAP and identified three Sus scrofa X chromosomal bands (Xq13, Xq21, Xp11) that represent transcriptionally active clusters that differ between Meishan and WC during placental development. Also, pathway analysis identified fundamental breed differences in placental cholesterol trafficking and its synthesis. Direct measurement of cholesterol confirmed that the cholesterol content was significantly higher in the Meishan versus WC placentae. Taken together, this work identifies key metabolic pathways that differ in the placentae of two swine breeds noted for differences in reproductive prolificacy. PMID:23383161

  6. Add-on rosiglitazone therapy improves plasminogen activity and high-density lipoprotein cholesterol in type 2 diabetes mellitus.

    PubMed

    Mustaffa, Nazri; Ibrahim, Suhairi; Abdullah, Wan Zaidah; Yusof, Zurkurnai

    2011-09-01

    Rosiglitazone is an oral hypoglycaemic agent of the thiazolidinedione group. This study aimed to assess changes in the diabetic prothrombotic state via plasminogen activity and changes in surrogate markers of atherosclerotic burden via ankle-brachial pressure index (ABPI) measurements after rosiglitazone was added to a pre-existing type 2 diabetes mellitus treatment regime. A nonblinded interventional study was designed. Fifty-nine patients were enrolled. Rosiglitazone-naïve patients were prescribed oral rosiglitazone 4 mg daily for 10 weeks. ABPI, plasminogen activity, glycosylated haemoglobin (HbA1c) and fasting lipid profile were measured pretreatment and post-treatment. Forty-eight patients completed the study. At the end of this study, mean plasminogen activity improvement was nearly 16% (P<0.05), mean ABPI improvement was 0.01 (P=0.439), mean HbA1c reduction was 0.51% (P<0.05), mean total cholesterol (TC) increase was 0.36 mmol/l (P<0.05), mean high-density lipoprotein cholesterol (HDL-C) increase was 0.15 mmol/l (P<0.05) and mean low-density lipoprotein cholesterol increased by 0.19 mmol/l (P=0.098). Rosiglitazone significantly improved plasminogen activity. There was also significant HbA1c reduction, and rise in both TC and HDL-C. Thus, rosiglitazone potentially improves the atherosclerotic burden and prothrombotic state. In future, more studies are needed to confirm the relationship between rosiglitazone, fibrinolytic system and atheromatous reduction in type 2 diabetes mellitus. PMID:21537159

  7. Covalent attachment of cholesterol oxidase and horseradish peroxidase on perlite through silanization: activity, stability and co-immobilization.

    PubMed

    Torabi, Seyed-Fakhreddin; Khajeh, Khosro; Ghasempur, Salehe; Ghaemi, Nasser; Siadat, Seyed-Omid Ranaei

    2007-08-31

    In the present work, co-immobilization of cholesterol oxidase (COD) and horseradish peroxidase (POD) on perlite surface was attempted. The surface of perlite were activated by 3-aminopropyltriethoxysilane and covalently bonded with COD and POD via glutaraldehyde. Enzymes activities have been assayed by spectrophotometric technique. The stabilities of immobilized COD and POD to pH were higher than those of soluble enzymes and immobilization shifted optimum pH of enzymes to the lower pH. Heat inactivation studies showed improved thermostability of the immobilized COD for more than two times, but immobilized POD was less thermostable than soluble POD. Also activity recovery of immobilized COD was about 50% since for immobilized POD was 11%. The K(m) of immobilized enzymes was found slightly lower than that of soluble enzymes. Immobilized COD showed inhibition in its activity at high cholesterol concentration which was not reported for soluble COD before. Co-immobilized enzymes retained 65% of its initial activity after 20 consecutive reactor batch cycles.

  8. Cholesterol and Ion Channels

    PubMed Central

    Levitan, Irena; Fang, Yun; Rosenhouse-Dantsker, Avia; Romanenko, Victor

    2010-01-01

    A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K+ channels, voltage-gated K+ channels, Ca+2 sensitive K+ channels, voltage-gated Na+ channels, N-type voltage-gated Ca+2 channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na+ channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K+ channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed. PMID:20213557

  9. The Secreted Esterase of Propionibacterium freudenreichii Has a Major Role in Cheese Lipolysis

    PubMed Central

    Abeijón Mukdsi, María Claudia; Falentin, Hélène; Maillard, Marie-Bernadette; Chuat, Victoria; Medina, Roxana Beatriz; Parayre, Sandrine

    2014-01-01

    Free fatty acids are important flavor compounds in cheese. Propionibacterium freudenreichii is the main agent of their release through lipolysis in Swiss cheese. Our aim was to identify the esterase(s) involved in lipolysis by P. freudenreichii. We targeted two previously identified esterases: one secreted esterase, PF#279, and one putative cell wall-anchored esterase, PF#774. To evaluate their role in lipolysis, we constructed overexpression and knockout mutants of P. freudenreichii CIRM-BIA1T for each corresponding gene. The sequences of both genes were also compared in 21 wild-type strains. All strains were assessed for their lipolytic activity on milk fat. The lipolytic activity observed matched data previously reported in cheese, thus validating the relevance of the method used. The mutants overexpressing PF#279 or PF#774 released four times more fatty acids than the wild-type strain, demonstrating that both enzymes are lipolytic esterases. However, inactivation of the pf279 gene induced a 75% reduction in the lipolytic activity compared to that of the wild-type strain, whereas inactivation of the pf774 gene did not modify the phenotype. Two of the 21 wild-type strains tested did not display any detectable lipolytic activity. Interestingly, these two strains exhibited the same single-nucleotide deletion at the beginning of the pf279 gene sequence, leading to a premature stop codon, whereas they harbored a pf774 gene highly similar to that of the other strains. Taken together, these results clearly demonstrate that PF#279 is the main lipolytic esterase in P. freudenreichii and a key agent of Swiss cheese lipolysis. PMID:24242250

  10. Hypolipidemic activity of a hydroalcoholic extract of Cyperus scariosus Linn. root in guinea pigs fed with a high cholesterol diet.

    PubMed

    Chawda, Hiren M; Mandavia, Divyesh R; Parmar, Pravin H; Baxi, Seema N; Tripathi, Chandrabhanu R

    2014-11-01

    Lipid-lowering and antioxidant activities of a hydroalcoholic extract of Cyperus scariosus Linn. root (HCS) were evaluated in guinea pigs fed with a high cholesterol diet. Serum lipid profile (total cholesterol, triglycerides, LDL-C, VLDL-C, and HDL-C), atherogenic indices and serum enzymes (ALT, AST, ALP, LDH, and CK-MB) were performed in each group at 0 days and at the end of 60 days. Histological study of liver and kidney was done in groups 1, 2, 5, 6 and 7. The total phenolic and flavonoid content in HCS and its antioxidant activity were evaluated by the DPPH assay. Both doses of HCS decreased serum lipid profile and atherogenic indices (P < 0.05). HCS has lipid lowering, immunosuppressive and antioxidant properties, and mays have value in atherosclerosis prevention. The higher dose of HCS also reduced serum AST, ALP, and LDH levels and rosuvastatin increased AST and ALP levels (P < 0.05). Histology of the liver showed decreased lipid accumulation and improvement in hepatocytes in HCS-treated animals. The antioxidant activity of HCS may be responsible for its lipid lowering and cytoprotective action. HCS had significant lipid lowering and antioxidant activity, which; may be due to the phenolic compounds. HCS may be a safe and cost effective alternative to current statin therapy for patients with dyslipidaemia. PMID:25480512

  11. A novel esterase from a marine metagenomic library exhibiting salt tolerance ability.

    PubMed

    Fang, Zemin; Li, Jingjing; Wang, Quan; Fang, Wei; Peng, Hui; Zhang, Xuecheng; Xiao, Yazhong

    2014-06-28

    A putative lipolytic enzyme gene, named as est9x, was obtained from a marine microbial metagenome of the South China Sea. Sequence analysis showed that Est9X shares lower than 27% sequence identities with the characterized lipolytic enzymes, but possesses a catalytic triad highly conserved in lipolytic enzymes of the α/β hydrolase superfamily. By phylogenetic tree construction, Est9X was grouped into a new lipase/esterase family. To understand Est9X protein in depth, it was recombinantly expressed, purified, and biochemically characterized. Within potential hydrolytic activities, only lipase/esterase activity was detected for Est9X, confirming its identity as a lipolytic enzyme. When using p-nitrophenol esters with varying lengths of fatty acid as substrates, Est9X exhibited the highest activity to the C2 substrate, indicating it is an esterase. The optimal activity of Est9X occurred at a temperature of 65°C, and Est9X was pretty stable below the optimum temperature. Distinguished from other salttolerant esterases, Est9X's activity was tolerant to and even promoted by as high as 4 M NaCl. Our results imply that Est9X is a unique esterase and could be a potential candidate for industrial application under extreme conditions.

  12. MD-2 binds cholesterol.

    PubMed

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I

    2016-02-19

    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis.

  13. Recombinant sterol esterase from Ophiostoma piceae: an improved biocatalyst expressed in Pichia pastoris

    PubMed Central

    2012-01-01

    Background The ascomycete Ophiostoma piceae produces a sterol esterase (OPE) with high affinity towards p-nitrophenol, glycerol and sterol esters. Its hydrolytic activity on natural mixtures of triglycerides and sterol esters has been proposed for pitch biocontrol in paper industry since these compounds produce important economic losses during paper pulp manufacture. Results Recently, this enzyme has been heterologously expressed in the methylotrophic yeast Pichia pastoris, and the hydrolytic activity of the recombinant protein (OPE*) studied. After the initial screening of different clones expressing the enzyme, only one was selected for showing the highest production rate. Different culture conditions were tested to improve the expression of the recombinant enzyme. Complex media were better than minimal media for production, but in any case the levels of enzymatic activity were higher (7-fold in the best case) than those obtained from O. piceae. The purified enzyme had a molecular mass of 76 kDa, higher than that reported for the native enzyme under SDS-PAGE (60 kDa). Steady-state kinetic characterization of the recombinant protein showed improved catalytic efficiency for this enzyme as compared to the native one, for all the assayed substrates (p-nitrophenol, glycerol, and cholesterol esters). Different causes for this were studied, as the increased glycosylation degree of the recombinant enzyme, their secondary structures or the oxidation of methionine residues. However, none of these could explain the improvements found in the recombinant protein. N-terminal sequencing of OPE* showed that two populations of this enzyme were expressed, having either 6 or 8 amino acid residues more than the native one. This fact affected the aggregation behaviour of the recombinant protein, as was corroborated by analytical ultracentrifugation, thus improving the catalytic efficiency of this enzyme. Conclusion P. pastoris resulted to be an optimum biofactory for the

  14. Dual Mutation Events in the Haemagglutinin-Esterase and Fusion Protein from an Infectious Salmon Anaemia Virus HPR0 Genotype Promote Viral Fusion and Activation by an Ubiquitous Host Protease

    PubMed Central

    Fourrier, Mickael; Lester, Katherine; Markussen, Turhan; Falk, Knut; Secombes, Christopher J.; McBeath, Alastair; Collet, Bertrand

    2015-01-01

    In Infectious salmon anaemia virus (ISAV), deletions in the highly polymorphic region (HPR) in the near membrane domain of the haemagglutinin-esterase (HE) stalk, influence viral fusion. It is suspected that selected mutations in the associated Fusion (F) protein may also be important in regulating fusion activity. To better understand the underlying mechanisms involved in ISAV fusion, several mutated F proteins were generated from the Scottish Nevis and Norwegian SK779/06 HPR0. Co-transfection with constructs encoding HE and F were performed, fusion activity assessed by content mixing assay and the degree of proteolytic cleavage by western blot. Substitutions in Nevis F demonstrated that K276 was the most likely cleavage site in the protein. Furthermore, amino acid substitutions at three sites and two insertions, all slightly upstream of K276, increased fusion activity. Co-expression with HE harbouring a full-length HPR produced high fusion activities when trypsin and low pH were applied. In comparison, under normal culture conditions, groups containing a mutated HE with an HPR deletion were able to generate moderate fusion levels, while those with a full length HPR HE could not induce fusion. This suggested that HPR length may influence how the HE primes the F protein and promotes fusion activation by an ubiquitous host protease and/or facilitate subsequent post-cleavage refolding steps. Variations in fusion activity through accumulated mutations on surface glycoproteins have also been reported in other orthomyxoviruses and paramyxoviruses. This may in part contribute to the different virulence and tissue tropism reported for HPR0 and HPR deleted ISAV genotypes. PMID:26517828

  15. Molecular cloning and characterization of a new and highly thermostable esterase from Geobacillus sp. JM6.

    PubMed

    Zhu, Yanbing; Zheng, Wenguang; Ni, Hui; Liu, Han; Xiao, Anfeng; Cai, Huinong

    2015-10-01

    A new lipolytic enzyme gene was cloned from a thermophile Geobacillus sp. JM6. The gene contained 750 bp and encoded a 249-amino acid protein. The recombinant enzyme was expressed and purified from Escherichia coli BL21 (DE3) with a molecular mass of 33.6 kDa. Enzyme assays using p-nitrophenyl esters with different acyl chain lengths as the substrates confirmed its esterase activity, yielding the highest activity with p-nitrophenyl butyrate. When p-nitrophenyl butyrate was used as a substrate, the optimum reaction temperature and pH for the enzyme were 60 °C and pH 7.5, respectively. Geobacillus sp. JM6 esterase showed excellent thermostability with 68% residual activity after incubation at 100 °C for 18 h. A theoretical structural model of strain JM6 esterase was developed with a monoacylglycerol lipase from Bacillus sp. H-257 as a template. The predicted core structure exhibits an α/β hydrolase fold, and a putative catalytic triad (Ser97, Asp196, and His226) was identified. Inhibition assays with PMSF indicated that serine residue is involved in the catalytic activity of strain JM6 esterase. The recombinant esterase showed a relatively good tolerance to the detected detergents and denaturants, such as SDS, Chaps, Tween 20, Tween 80, Triton X-100, sodium deoxycholate, urea, and guanidine hydrochloride.

  16. Effects of fenofibrate on lipid profiles, cholesterol ester transfer activity, and in-stent intimal hyperplasia in patients after elective coronary stenting

    PubMed Central

    2010-01-01

    Background The association between modulation of detailed lipoprotein profiles and cholesterol ester transfer (CET) activity by peroxisome proliferator-activated receptor (PPAR)-a agonists in patients with coronary artery disease remains unclear. We assessed lipid profiles, plasma CET activity, and in-stent intimal hyperplasia after fenofibrate treatment in patients who underwent elective coronary stenting. Methods Forty-three consecutive patients who underwent elective coronary stenting were randomized to the fenofibrate group (300 mg/day for 25 weeks, n = 22) or the control group (n = 21). At baseline and follow up, CET activity and lipoprotein profiles were measured, and quantitative coronary angiography was performed. Results In the fenofibrate group, the levels of large very low-density lipoprotein cholesterol, and small low-density lipoprotein (LDL) cholesterol decreased and those of small high-density lipoprotein (HDL) cholesterol increased. Besides, CET activity decreased independent of the effect of fenofibrate on total and LDL cholesterol. The reduction of CET activity significantly correlated with the increase in LDL particle size (r = 0.47, P = 0.03) and the decrease of triglycerides in large HDL subclasses (r = 0.48, P = 0.03). Although there were no significant differences in restenosis parameters between the two groups, low CET activity significantly correlated with the inhibition of neointimal hyperplasia (r = 0.56, P = 0.01). Conclusions Fenofibrate inhibited CET activity and thereby improved atherogenic lipoprotein profiles, and reduced intimal hyperplasia after coronary stenting. PMID:20973966

  17. Diversity of hydrolases from hydrothermal vent sediments of the Levante Bay, Vulcano Island (Aeolian archipelago) identified by activity-based metagenomics and biochemical characterization of new esterases and an arabinopyranosidase.

    PubMed

    Placido, Antonio; Hai, Tran; Ferrer, Manuel; Chernikova, Tatyana N; Distaso, Marco; Armstrong, Dale; Yakunin, Alexander F; Toshchakov, Stepan V; Yakimov, Michail M; Kublanov, Ilya V; Golyshina, Olga V; Pesole, Graziano; Ceci, Luigi R; Golyshin, Peter N

    2015-12-01

    A metagenomic fosmid expression library established from environmental DNA (eDNA) from the shallow hot vent sediment sample collected from the Levante Bay, Vulcano Island (Aeolian archipelago) was established in Escherichia coli. Using activity-based screening assays, we have assessed 9600 fosmid clones corresponding to approximately 350 Mbp of the cloned eDNA, for the lipases/esterases/lactamases, haloalkane and haloacid dehalogenases, and glycoside hydrolases. Thirty-four positive fosmid clones were selected from the total of 120 positive hits and sequenced to yield ca. 1360 kbp of high-quality assemblies. Fosmid inserts were attributed to the members of ten bacterial phyla, including Proteobacteria, Bacteroidetes, Acidobateria, Firmicutes, Verrucomicrobia, Chloroflexi, Spirochaetes, Thermotogae, Armatimonadetes, and Planctomycetes. Of ca. 200 proteins with high biotechnological potential identified therein, we have characterized in detail three distinct α/β-hydrolases (LIPESV12_9, LIPESV12_24, LIPESV12_26) and one new α-arabinopyranosidase (GLV12_5). All LIPESV12 enzymes revealed distinct substrate specificities tested against 43 structurally diverse esters and 4 p-nitrophenol carboxyl esters. Of 16 different glycosides tested, the GLV12_5 hydrolysed only p-nitrophenol-α-(L)-arabinopyranose with a high specific activity of about 2.7 kU/mg protein. Most of the α/β-hydrolases were thermophilic and revealed a high tolerance to, and high activities in the presence of, numerous heavy metal ions. Among them, the LIPESV12_24 was the best temperature-adapted, retaining its activity after 40 min of incubation at 90 °C. Furthermore, enzymes were active in organic solvents (e.g., >30% methanol). Both LIPESV12_24 and LIPESV12_26 had the GXSXG pentapeptides and the catalytic triads Ser-Asp-His typical to the representatives of carboxylesterases of EC 3.1.1.1. PMID:26266751

  18. Increased acetylcholine esterase activity produced by the administration of an aqueous extract of the seed kernel of Thevetia peruviana and its role on acute and subchronic intoxication in mice

    PubMed Central

    Marroquín-Segura, Rubén; Calvillo-Esparza, Ricardo; Mora-Guevara, José Luis Alfredo; Tovalín-Ahumada, José Horacio; Aguilar-Contreras, Abigail; Hernández-Abad, Vicente Jesús

    2014-01-01

    Background: The real mechanism for Thevetia peruviana poisoning remains unclear. Cholinergic activity is important for cardiac function regulation, however, the effect of T. peruviana on cholinergic activity is not well-known. Objective: To study the effect of the acute administration of an aqueous extract of the seed kernel of T. peruviana on the acetylcholine esterase (AChE) activity in CD1 mice as well its implications in the sub-chronic toxicity of the extract. Materials and Methods: A dose of 100 mg/kg of the extract was administered to CD1 mice and after 7 days, serum was obtained for ceruloplasmin (CP) quantitation and liver function tests. Another group of mice received a 50 mg/kg dose of the extract 3 times within 1 h time interval and AChE activity was determined for those animals. Heart tissue histological preparation was obtained from a group of mice that received a daily 50 mg/kg dose of the extract by a 30-days period. Results: CP levels for the treated group were higher than those for the control group (Student's t-test, P ≤ 0.001). AChE activity in the treated group was significantly higher than the control group (Tukey test, control vs. T. peruviana, P ≤ 0.001). Heart tissue histological preparations showed leukocyte infiltrates and necrotic areas, consistent with infarcts. Conclusion: The increased levels of AChE and the hearth tissue infiltrative lesions induced by the aqueous seed kernel extract of T. peruviana explains in part the poisoning caused by this plant, which can be related to an inflammatory process. PMID:24914300

  19. Interaction between human serum esterases and environmental metal compounds.

    PubMed

    Hernández, Antonio F; Gil, Fernando; Leno, Esther; López, Olga; Rodrigo, Lourdes; Pla, Antonio

    2009-07-01

    Paraoxonase-1 (PON1) and cholinesterase (BChE) are two of the major human serum esterases. Although most of variation in PON1 activity results from genetic factors, there is growing evidence that environmental chemicals also modulate its activity. The aim of this study was to investigate whether environmental exposure to metal compounds has any influence on those esterases. A cross-sectional study was conducted in a representative sample of the general population of Andalusia, South of Spain. PON1 activity against different substrates (paraoxon, phenylacetate, diazoxon and dihydrocoumarin) and BChE were measured in serum from 536 healthy subjects. Potential associations of these esterases with metal compounds, age, sex and body mass index as well as life-style habits (smoking, alcohol drinking and food habits) were explored. Multiple linear regression analysis showed that blood lead levels were significantly associated with increased PON1 in serum regardless of the substrate used for the assay. Mercury also showed a significant and direct association with PON1 towards paraoxon and phenylacetate. In turn, cadmium and zinc levels were significantly associated with a decreased PON1 activity (zinc was associated with all PON1 activities and cadmium with PON1 towards paraoxon and diazoxon). Arsenic, nickel and manganese failed to be significantly associated with any of the PON1 activities assayed. PON1 192R alloform predicted significantly higher levels of arsenic and lead. BChE, however, was inversely associated with serum levels of manganese and zinc. These results suggest that PON1 and BChE activities are modulated by background exposure to metal compounds, which may have implications in public health given the defensive role played by both enzyme proteins against environmental toxicants. The potential underlying mechanisms merit further investigation.

  20. Solid-state fermentation as a potential technique for esterase/lipase production by halophilic archaea.

    PubMed

    Martin del Campo, Martha; Camacho, Rosa M; Mateos-Díaz, Juan C; Müller-Santos, Marcelo; Córdova, Jesus; Rodríguez, Jorge A

    2015-11-01

    Halophilic archaea are extremophiles, adapted to high-salt environments, showing a big biotechnological potential as enzyme, lipids and pigments producers. Four inert supports (perlite, vermiculite, polyurethane foam and glass fiber) were employed for solid-state fermentation (SSF) of the halophilic archaeon Natronococcus sp. TC6 to investigate biomass and esterase production. A very low esterase activity and high water activity were observed when perlite, vermiculite and polyurethane were used as supports. When glass fiber was employed, an important moisture loss was observed (8.6%). Moreover, moisture retention was improved by mixing polyurethane and glass fiber, resulting in maximal biomass and esterase production. Three halophilic archaea: Natronococcus sp. TC6, Halobacterium sp. NRC-1 and Haloarcula marismortui were cultured by submerged fermentation (SmF) and by SSF; an improvement of 1.3- to 6.2-fold was observed in the biomass and esterase production when SSF was used. Growth was not homogeneous in the mixture, but was predominant in the glass fiber thus was probably because the glass fiber provides a holder to the cells, while the polyurethane acts as an impregnation medium reservoir. To the best of our knowledge, this work is the first report on haloarchaea cultivation by SSF aiming biomass and esterase/lipase activity production.

  1. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.

    PubMed

    Privé, Florence; Newbold, C Jamie; Kaderbhai, Naheed N; Girdwood, Susan G; Golyshina, Olga V; Golyshin, Peter N; Scollan, Nigel D; Huws, Sharon A

    2015-07-01

    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78% following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses. PMID:25575887

  2. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.

    PubMed

    Privé, Florence; Newbold, C Jamie; Kaderbhai, Naheed N; Girdwood, Susan G; Golyshina, Olga V; Golyshin, Peter N; Scollan, Nigel D; Huws, Sharon A

    2015-07-01

    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78% following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses.

  3. Solid-state fermentation as a potential technique for esterase/lipase production by halophilic archaea.

    PubMed

    Martin del Campo, Martha; Camacho, Rosa M; Mateos-Díaz, Juan C; Müller-Santos, Marcelo; Córdova, Jesus; Rodríguez, Jorge A

    2015-11-01

    Halophilic archaea are extremophiles, adapted to high-salt environments, showing a big biotechnological potential as enzyme, lipids and pigments producers. Four inert supports (perlite, vermiculite, polyurethane foam and glass fiber) were employed for solid-state fermentation (SSF) of the halophilic archaeon Natronococcus sp. TC6 to investigate biomass and esterase production. A very low esterase activity and high water activity were observed when perlite, vermiculite and polyurethane were used as supports. When glass fiber was employed, an important moisture loss was observed (8.6%). Moreover, moisture retention was improved by mixing polyurethane and glass fiber, resulting in maximal biomass and esterase production. Three halophilic archaea: Natronococcus sp. TC6, Halobacterium sp. NRC-1 and Haloarcula marismortui were cultured by submerged fermentation (SmF) and by SSF; an improvement of 1.3- to 6.2-fold was observed in the biomass and esterase production when SSF was used. Growth was not homogeneous in the mixture, but was predominant in the glass fiber thus was probably because the glass fiber provides a holder to the cells, while the polyurethane acts as an impregnation medium reservoir. To the best of our knowledge, this work is the first report on haloarchaea cultivation by SSF aiming biomass and esterase/lipase activity production. PMID:26369647

  4. [Effect of protein-vitamin deficiency on the enzyme activity of lipolysis and the synthesis of cholesterol esters during hypokinesia].

    PubMed

    Koshkenbaev, B Kh; Tazhibaev, Sh S; Maksimenko, V B; Sisemalieva, Zh S

    1985-01-01

    Balanced diet during 60-day hypokinesia leads to inhibition of lipoprotein lypase (LPLA) and liver triglyceride lypase (L-TGLA) activity of the rat blood serum. The level of very low density lipoproteins (VLDLP) grows, and suppression of lecithin-cholesteryl-acyltransferase (LCAT) activity is accompanied by reduction of the share of cholesterol derivatives with polyunsaturated fatty acids. Combined effects of protein-vitamin insufficiency and hypokinesia result in parversion of the lipolysis processes, that manifests in prevalence of L-TGLA over LPLA. The levels of VLDLP increase, and growth of LCAT activity is acompanied by the growth of cholesteryl linoleate share and level. Hypokinesia combined with the studied experimental diets was found to lead to increase of the free fatty acid level and to decrease of the blood serum levels of phospholipids and triglycerides.

  5. Lipid-lowering activity of Cow urine ark in guinea pigs fed with a high cholesterol diet

    PubMed Central

    Manubhai, Chawda Hiren; Rasiklal, Mandavia Divyesh; Natvarlal, Baxi Seema; Kishorbhai, Vadgama Vishalkumar; Rajkishor, Tripathi ‎Chandrabhanu

    2014-01-01

    Objectives: Cow urine ark (CUA), known as “Amrita” as mentioned in Ayurveda, contains‎ anti-hyperglycemic and antioxidant effects. Therefore, we designed the present study to evaluate the lipid ‎lowering activity of CUA and its possible implication in metabolic syndrome.‎ Materials and Methods: Thirty guinea pigs of either sex were divided into five groups: Group 1 and 2 serving as a vehicle ‎and sham control, received normal and high fat diet for 60 days respectively; Group 3, 4 and 5 ‎received high fat diet for 60 days with CUA 0.8 ml/kg, 1.6 ml/kg and rosuvastatin (1.5 mg/kg) on the‎last 30 days of study period, respectively. Serum lipid profile (total cholesterol, triglycerides, LDL-‎C, VLDL-C, HDL-C, total Cholesterol/HDL-C) and serum enzymes (ALT, AST, ALP, LDH and CK-MB) ‎were performed in each group at the beginning and end of the study. Histological study of liver and ‎kidney was done in each group. Results: CUA (0.8 ml/kg) significantly decreased the serum triglycerides and VLDL-C, but CUA (1.6 ml/kg) ‎decreased the total serum Cholesterol, triglycerides and VLDL-C (p < 0.05). Higher dose (1.6 ml/kg) of ‎CUA also increased HDL-C level, significantly (p < 0.05). CUA reduced serum AST, ALP and LDH ‎level, which was statistically significant as well, while it also decreased the accumulation of lipid in hepatocytes as ‎compared to sham control.‎ Conclusions: CUA reduced triglycerides, increased HDL-C and found to be hepatoprotective in ‎animals that are on a high fat diet. PMID:25386398

  6. A novel feruloyl esterase from rumen microbial metagenome: Gene cloning and enzyme characterization in the release of mono- and diferulic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A feruloyl esterase (FAE) gene was isolated from a rumen microbial metagenome, cloned into E. coli, and expressed in active form. The enzyme (RuFae4) was classified as a Type D feruloyl esterase based on its action on synthetic substrates and ability to release diferulates. The RuFae4 alone releas...

  7. An esterase on the outer membrane of Pseudomonas aeruginosa for the hydrolysis of long chain acyl esters.

    PubMed

    Ohkawa, I; Shiga, S; Kageyama, M

    1979-09-01

    A new esterase activity which hydrolyzes palmitoyl-CoA was found in the membrane fraction of Pseudomonas aeruginosa. All the 11 strains of P. aeruginosa tested possessed this esterase activity. The esterase was constitutive and was fully active on the intact cell bodies toward substrates in the medium. It was located on the outer membrane of the cell envelope, and was not released into the culture medium. This activity was designated as OM (outer membrane) esterase. OM esterase was solubilized from the cell envelope with EDTA-Triton X-100 and purified 690-fold. It was a minor component of the outer membrane. Its molecular weight was approximately 55,000. The activity was rather stable to heat, a wide range of pH, and treatment with detergents and organic solvents. No cofactors were required. The pH optimum of the reaction was 8.5. Among various acyl-CoAs, only long chain (C12--C18) thioesters were hydrolyzed. OM esterase also hydrolyzed some kinds of oxy-esters such as p-nitrophenyl acyl esters, monoacyl esters of sucrose and Tween 80 (polyoxyethylene sorbitan monooleate). On the other hand, triglycerides, phospholipids, or hydrophobic monoesters were not hydrolyzed at all. Thus, this enzyme seems to have specificity for long chain acyl esters with hydrophilic groups, whether thio- or oxy-ester. Mutants deficient in this esterase activity were isolated. These mutants were unable to grow on Tween 80 as a sole carbon source. This suggests a possible role of OM esterase in the utilization of acyl esters as carbon sources.

  8. Phenolic acid esterases, coding sequences and methods

    DOEpatents

    Blum, David L.; Kataeva, Irina; Li, Xin-Liang; Ljungdahl, Lars G.

    2002-01-01

    Described herein are four phenolic acid esterases, three of which correspond to domains of previously unknown function within bacterial xylanases, from XynY and XynZ of Clostridium thermocellum and from a xylanase of Ruminococcus. The fourth specifically exemplified xylanase is a protein encoded within the genome of Orpinomyces PC-2. The amino acids of these polypeptides and nucleotide sequences encoding them are provided. Recombinant host cells, expression vectors and methods for the recombinant production of phenolic acid esterases are also provided.

  9. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation.

    PubMed

    Murphy, Lynea A; Moore, Tanya; Nesnow, Stephen

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  10. Robust passive and active efflux of cellular cholesterol to a designer functional mimic of high density lipoprotein

    PubMed Central

    Luthi, Andrea J.; Lyssenko, Nicholas N.; Quach, Duyen; McMahon, Kaylin M.; Millar, John S.; Vickers, Kasey C.; Rader, Daniel J.; Phillips, Michael C.; Mirkin, Chad A.; Thaxton, C. Shad

    2015-01-01

    The ability of HDL to support macrophage cholesterol efflux is an integral part of its atheroprotective action. Augmenting this ability, especially when HDL cholesterol efflux capacity from macrophages is poor, represents a promising therapeutic strategy. One approach to enhancing macrophage cholesterol efflux is infusing blood with HDL mimics. Previously, we reported the synthesis of a functional mimic of HDL (fmHDL) that consists of a gold nanoparticle template, a phospholipid bilayer, and apo A-I. In this work, we characterize the ability of fmHDL to support the well-established pathways of cellular cholesterol efflux from model cell lines and primary macrophages. fmHDL received cell cholesterol by unmediated (aqueous) and ABCG1- and scavenger receptor class B type I (SR-BI)-mediated diffusion. Furthermore, the fmHDL holoparticle accepted cholesterol and phospholipid by the ABCA1 pathway. These results demonstrate that fmHDL supports all the cholesterol efflux pathways available to native HDL and thus, represents a promising infusible therapeutic for enhancing macrophage cholesterol efflux. fmHDL accepts cholesterol from cells by all known pathways of cholesterol efflux: unmediated, ABCG1- and SR-BI-mediated diffusion, and through ABCA1. PMID:25652088

  11. Biochemical Characterization of a First Fungal Esterase from Rhizomucor miehei Showing High Efficiency of Ester Synthesis

    PubMed Central

    Liu, Yu; Xu, Haibo; Yan, Qiaojuan; Yang, Shaoqing; Duan, Xiaojie; Jiang, Zhengqiang

    2013-01-01

    Background Esterases with excellent merits suitable for commercial use in ester production field are still insufficient. The aim of this research is to advance our understanding by seeking for more unusual esterases and revealing their characterizations for ester synthesis. Methodology/Principal Findings A novel esterase-encoding gene from Rhizomucor miehei (RmEstA) was cloned and expressed in Escherichia coli. Sequence analysis revealed a 975-bp ORF encoding a 324-amino-acid polypeptide belonging to the hormone-sensitive lipase (HSL) family IV and showing highest similarity (44%) to the Paenibacillus mucilaginosus esterase/lipase. Recombinant RmEstA was purified to homogeneity: it was 34 kDa by SDS-PAGE and showed optimal pH and temperature of 6.5 and 45°C, respectively. The enzyme was stable to 50°C, under a broad pH range (5.0–10.6). RmEstA exhibited broad substrate specificity toward p-nitrophenol esters and short-acyl-chain triglycerols, with highest activities (1,480 U mg−1 and 228 U mg−1) for p-nitrophenyl hexanoate and tributyrin, respectively. RmEstA efficiently synthesized butyl butyrate (92% conversion yield) when immobilized on AOT-based organogel. Conclusion RmEstA has great potential for industrial applications. RmEstA is the first reported esterase from Rhizomucor miehei. PMID:24204998

  12. Selective induction of xenobiotic metabolizing esterases/amidases of liver by methaqualone consumption.

    PubMed

    Kaur, S; Ali, B

    1983-08-01

    The present investigation reports the influence of po and ip methaqualone administration on the hydrolytic metabolism of acetylsalicylic acid, procaine, p-nitrophenylacetate, acetanilid, and butyrylcholine in the liver, kidney, and brain of male rats. Oral administration of methaqualone (60 mg/kg/day) to rats for 20 days caused 41.0, 46.5, and 55.0% stimulation of acetylsalicyclic acid esterase I, acetylsalicyclic acid esterase II, and acetanilid N-deacetylase, respectively, in the liver. Under such conditions, the activities of other esterases remained unaffected. The responses of tissue esterases to ip methaqualone treatment (40 mg/kg/day for 6 days) were similar to those observed after po methaqualone administration. Since a single po dose of methaqualone failed to produce any alteration in the rate of metabolism of acetylsalicylic acid, procaine, p-nitrophenylacetate, acetanilid, and butyrylcholine within 20 hr, it may be interpreted that the stimulation of acetylsalicylic acid and acetanilid metabolism is possibly due to selective enhanced de novo synthesis of the enzymes/isozymes necessary for the hydrolysis of the two drugs. The ability of the kidney and brain to metabolize the esters/amides was not modified by po or ip methaqualone pretreatment suggesting the possibility of noninducible forms of renal and neuronal esterases/amidases.

  13. The classification of esterases: an important gene family involved in insecticide resistance--a review.

    PubMed

    Montella, Isabela Reis; Schama, Renata; Valle, Denise

    2012-06-01

    The use of chemical insecticides continues to play a major role in the control of disease vector populations, which is leading to the global dissemination of insecticide resistance. A greater capacity to detoxify insecticides, due to an increase in the expression or activity of three major enzyme families, also known as metabolic resistance, is one major resistance mechanisms. The esterase family of enzymes hydrolyse ester bonds, which are present in a wide range of insecticides; therefore, these enzymes may be involved in resistance to the main chemicals employed in control programs. Historically, insecticide resistance has driven research on insect esterases and schemes for their classification. Currently, several different nomenclatures are used to describe the esterases of distinct species and a universal standard classification does not exist. The esterase gene family appears to be rapidly evolving and each insect species has a unique complement of detoxification genes with only a few orthologues across species. The examples listed in this review cover different aspects of their biochemical nature. However, they do not appear to contribute to reliably distinguish among the different resistance mechanisms. Presently, the phylogenetic criterion appears to be the best one for esterase classification. Joint genomic, biochemical and microarray studies will help unravel the classification of this complex gene family.

  14. Insecticidal properties of genetically engineered baculoviruses expressing an insect juvenile hormone esterase gene.

    PubMed Central

    Eldridge, R; O'Reilly, D R; Hammock, B D; Miller, L K

    1992-01-01

    Exploring the possibility of enhancing the properties of baculoviruses as biological control agents of insect pests, we tested the effect of expressing an insect gene (jhe) encoding juvenile hormone esterase. Juvenile hormone esterase inactivates juvenile hormone, which regulates the outcome of an insect molt. A cDNA encoding the juvenile hormone esterase of Heliothis virescens was inserted into the genome of Autographa californica nuclear polyhedrosis virus such that the gene was expressed under the control of a strong, modified viral promoter. This virus, however, naturally encodes an ecdysteroid UDP-glucosyltransferase which inactivates ecdysone, the hormone which initiates molting. Since ecdysteroid UDP-glucosyltransferase could mask the effects of jhe expression by blocking molting entirely, jhe-expressing viruses in which the ecdysteroid UDP-glucosyltransferase gene was deleted or disrupted were constructed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of proteins from infected cells revealed several intracellular proteins and two major secreted proteins which reacted with antibodies to authentic juvenile hormone esterase. Western blot analysis coupled with tunicamycin treatment indicated that differential glycosylation was responsible for the multiple products. Hemolymph of recombinant virus-infected fourth-instar Trichoplusia ni larvae contained levels of juvenile hormone esterase activity 40-fold higher than maximal levels found in uninfected larvae. However, little or no difference in developmental characteristics, weight gain, or time of mortality was observed between insects infected with the jhe-expressing viruses and control viruses. Images PMID:1622228

  15. Women and Cholesterol

    MedlinePlus

    ... Blood Pressure Tools & Resources Stroke More Women and Cholesterol Updated:Apr 1,2016 The female sex hormone ... Glossary Related Sites Nutrition Center My Life Check Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  16. Cholesterol IQ Quiz

    MedlinePlus

    ... Pressure High Blood Pressure Tools & Resources Stroke More Cholesterol IQ Quiz Updated:Feb 2,2015 Begin the quiz Cholesterol • Home • About Cholesterol Introduction Good vs. Bad Cholesterol ...

  17. Beta2-adrenergic activity modulates vascular tone regulation in lecithin:cholesterol acyltransferase knockout mice.

    PubMed

    Manzini, S; Pinna, C; Busnelli, M; Cinquanta, P; Rigamonti, E; Ganzetti, G S; Dellera, F; Sala, A; Calabresi, L; Franceschini, G; Parolini, C; Chiesa, G

    2015-11-01

    Lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with hypoalphalipoproteinemia, generally a predisposing factor for premature coronary heart disease. The evidence of accelerated atherosclerosis in LCAT-deficient subjects is however controversial. In this study, the effect of LCAT deficiency on vascular tone and endothelial function was investigated in LCAT knockout mice, which reproduce the human lipoprotein phenotype. Aortas from wild-type (Lcat(wt)) and LCAT knockout (Lcat(KO)) mice exposed to noradrenaline showed reduced contractility in Lcat(KO) mice (P<0.005), whereas acetylcholine exposure showed a lower NO-dependent relaxation in Lcat(KO) mice (P<0.05). Quantitative PCR and Western blotting analyses suggested an adequate eNOS expression in Lcat(KO) mouse aortas. Real-time PCR analysis indicated increased expression of β2-adrenergic receptors vs wild-type mice. Aorta stimulation with noradrenaline in the presence of propranolol, to abolish the β-mediated relaxation, showed the same contractile response in the two mouse lines. Furthermore, propranolol pretreatment of mouse aortas exposed to L-NAME prevented the difference in responses between Lcat(wt) and Lcat(KO) mice. The results indicate that LCAT deficiency leads to increased β2-adrenergic relaxation and to a consequently decreased NO-mediated vasodilation that can be reversed to guarantee a correct vascular tone. The present study suggests that LCAT deficiency is not associated with an impaired vascular reactivity. PMID:26254103

  18. Activity of 3-Ketosteroid 9α-Hydroxylase (KshAB) Indicates Cholesterol Side Chain and Ring Degradation Occur Simultaneously in Mycobacterium tuberculosis*

    PubMed Central

    Capyk, Jenna K.; Casabon, Israël; Gruninger, Robert; Strynadka, Natalie C.; Eltis, Lindsay D.

    2011-01-01

    Mycobacterium tuberculosis (Mtb), a significant global pathogen, contains a cholesterol catabolic pathway. Although the precise role of cholesterol catabolism in Mtb remains unclear, the Rieske monooxygenase in this pathway, 3-ketosteroid 9α-hydroxylase (KshAB), has been identified as a virulence factor. To investigate the physiological substrate of KshAB, a rhodococcal acyl-CoA synthetase was used to produce the coenzyme A thioesters of two cholesterol derivatives: 3-oxo-23,24-bisnorchol-4-en-22-oic acid (forming 4-BNC-CoA) and 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid (forming 1,4-BNC-CoA). The apparent specificity constant (kcat/Km) of KshAB for the CoA thioester substrates was 20–30 times that for the corresponding 17-keto compounds previously proposed as physiological substrates. The apparent KmO2 was 90 ± 10 μm in the presence of 1,4-BNC-CoA, consistent with the value for two other cholesterol catabolic oxygenases. The Δ1 ketosteroid dehydrogenase KstD acted with KshAB to cleave steroid ring B with a specific activity eight times greater for a CoA thioester than the corresponding ketone. Finally, modeling 1,4-BNC-CoA into the KshA crystal structure suggested that the CoA moiety binds in a pocket at the mouth of the active site channel and could contribute to substrate specificity. These results indicate that the physiological substrates of KshAB are CoA thioester intermediates of cholesterol side chain degradation and that side chain and ring degradation occur concurrently in Mtb. This finding has implications for steroid metabolites potentially released by the pathogen during infection and for the design of inhibitors for cholesterol-degrading enzymes. The methodologies and rhodococcal enzymes used to generate thioesters will facilitate the further study of cholesterol catabolism. PMID:21987574

  19. Evolution of a new function in an esterase: simple amino acid substitutions enable the activity present in the larger paralog, BioH.

    PubMed

    Flores, Humberto; Lin, Steven; Contreras-Ferrat, Gabriel; Cronan, John E; Morett, Enrique

    2012-08-01

    Gene duplication and divergence are essential processes for the evolution of new activities. Divergence may be gradual, involving simple amino acid residue substitutions, or drastic, such that larger structural elements are inserted, deleted or rearranged. Vast protein sequence comparisons, supported by some experimental evidence, argue that large structural modifications have been necessary for certain catalytic activities to evolve. However, it is not clear whether these activities could not have been attained by gradual changes. Interestingly, catalytic promiscuity could play a fundamental evolutionary role: a preexistent secondary activity could be increased by simple amino acid residue substitutions that do not affect the enzyme's primary activity. The promiscuous profile of the enzyme may be modified gradually by genetic drift, making a pool of potentially useful activities that can be selected before duplication. In this work, we used random mutagenesis and in vivo selection to evolve the Pseudomonas aeruginosa PAO1 carboxylesterase PA3859, a small protein, to attain the function of BioH, a much larger paralog involved in biotin biosynthesis. BioH was chosen as a target activity because it provides a highly sensitive selection for evolved enzymatic activities by auxotrophy complementation. After only two cycles of directed evolution, mutants with the ability to efficiently complement biotin auxotrophy were selected. The in vivo and in vitro characterization showed that the activity of one of our mutant proteins was similar to that of the wild-type BioH enzyme. Our results demonstrate that it is possible to evolve enzymatic activities present in larger proteins by discrete amino acid substitutions.

  20. Enzymatic Quantification of Cholesterol and Cholesterol Esters from Silicone Hydrogel Contact Lenses

    PubMed Central

    Pucker, Andrew D.; Thangavelu, Mirunalni

    2010-01-01

    Purpose. The purpose of this work was to develop an enzymatic method of quantification of cholesterol and cholesterol esters derived from contact lenses, both in vitro and ex vivo. Methods. Lotrafilcon B (O2 Optix; CIBA Vision, Inc., Duluth, GA) and galyfilcon A (Acuvue Advance; Vistakon, Inc., Jacksonville, FL) silicone hydrogel contact lenses were independently incubated in cholesterol oleate solutions varying in concentrations. After incubation, the lenses were removed and underwent two separate 2:1 chloroform-methanol extractions. After in vitro studies, 10 human subjects wore both lotrafilcon B and galyfilcon A contact lenses for 7 days. The lenses also underwent two separate 2:1 chloroform-methanol extractions. All in vitro and ex vivo samples were quantified with a cholesterol esterase enzymatic reaction. Results. Calibration curves from quantifications of in vitro contact lens samples soaked in successively decreasing concentrations of cholesterol oleate yielded coefficients of determination (R2) of 0.99 (lotrafilcon B) and 0.97 (galyfilcon A). For in vitro contact lens samples, galyfilcon A was associated with an average cholesterol oleate extraction of 39.85 ± 48.65 μg/lens, whereas lotrafilcon B was associated with 5.86 ± 3.36 μg/lens (P = 0.05) across both extractions and all incubation concentrations. For ex vivo contact lens samples, there was significantly more cholesterol and cholesterol esters deposited on galyfilcon A (5.77 ± 1.87 μg/lens) than on lotrafilcon B (2.03 ± 1.62 μg/lens; P = 0.0005). Conclusions. This is an efficient and simple method of quantifying total cholesterol extracted from silicone hydrogel contact lenses and, potentially, the meibum and/or tear film. Certain silicone hydrogel materials demonstrate more affinity for cholesterol and its esters than do others. PMID:20089871

  1. Cholesterol depletion induces autophagy

    SciTech Connect

    Cheng, Jinglei; Ohsaki, Yuki; Tauchi-Sato, Kumi; Fujita, Akikazu; Fujimoto, Toyoshi . E-mail: tfujimot@med.nagoya-u.ac.jp

    2006-12-08

    Autophagy is a mechanism to digest cells' own components, and its importance in many physiological and pathological processes is being recognized. But the molecular mechanism that regulates autophagy is not understood in detail. In the present study, we found that cholesterol depletion induces macroautophagy. The cellular cholesterol in human fibroblasts was depleted either acutely using 5 mM methyl-{beta}-cyclodextrin or 10-20 {mu}g/ml nystatin for 1 h, or metabolically by 20 {mu}M mevastatin and 200 {mu}M mevalonolactone along with 10% lipoprotein-deficient serum for 2-3 days. By any of these protocols, marked increase of LC3-II was detected by immunoblotting and by immunofluorescence microscopy, and the increase was more extensive than that caused by amino acid starvation, i.e., incubation in Hanks' solution for several hours. The induction of autophagic vacuoles by cholesterol depletion was also observed in other cell types, and the LC3-positive membranes were often seen as long tubules, >50 {mu}m in length. The increase of LC3-II by methyl-{beta}-cyclodextrin was suppressed by phosphatidylinositol 3-kinase inhibitors and was accompanied by dephosphorylation of mammalian target of rapamycin. By electron microscopy, autophagic vacuoles induced by cholesterol depletion were indistinguishable from those seen after amino acid starvation. These results demonstrate that a decrease in cholesterol activates autophagy by a phosphatidylinositol 3-kinase-dependent mechanism.

  2. The mouse CCR2 gene is regulated by two promoters that are responsive to plasma cholesterol and peroxisome proliferator-activated receptor {gamma} ligands

    SciTech Connect

    Chen Yiming; Green, Simone R.; Ho, Jessica; Li, Andrew; Almazan, Felizidad; Quehenberger, Oswald . E-mail: oquehenberger@ucsd.edu

    2005-06-24

    We have previously shown that the expression of monocyte CCR2, the receptor for monocyte chemoattractant protein-1, is induced by plasma cholesterol. The present study examines the mechanisms that regulate monocyte CCR2 expression in hypercholesterolemia using a mouse model. Our data demonstrate that in the mouse, CCR2 expression in circulating monocytes is controlled by two promoters P1 and P2. The two distinct transcripts, which encode the same protein, are produced by alternative splicing in the 5'-untranslated region. Both promoters are constitutively active, but only P2 is stimulated by cholesterol. However, both promoters are repressed by peroxisome proliferator-activated receptor {gamma}.

  3. Recovery of polyphenols from red grape pomace and assessment of their antioxidant and anti-cholesterol activities.

    PubMed

    Ferri, Maura; Bin, Sofia; Vallini, Veronica; Fava, Fabio; Michelini, Elisa; Roda, Aldo; Minnucci, Giordano; Bucchi, Giacomo; Tassoni, Annalisa

    2016-05-25

    The present work aimed at the recovery and characterization of polyphenolic compounds extracted from red grape pomace (Vitis vinifera L.), a winemaking by-product. Polyphenolic compounds of wet (WP) and dried (DP) red pomace were recovered by enzymatic digestions and ethanol-based extractions. Fungamyl and Celluclast enzymes were found to be the most effective in enhancing polyphenol release from WP. WP samples showed the highest capacity of releasing polyphenols with 2h control 24°C and 2h 1% Celluclast resulting as the best treatments. A significantly lower amount of polyphenols was recovered from DP most probably as a consequence of the pomace drying. The best extracts contained high amounts of total polyphenols, flavonoids, tannins and anthocyanins and exerted antioxidant and cholesterol-lowering activities. The results support the possibility of exploiting the extracts coming from grape processing by-products as ingredients for functional and innovative products in the nutraceutical, pharmaceutical or cosmetic fields.

  4. Immunoelectron microscopic demonstration of an esterase on the outer membrane of Xanthomonas maltophilia.

    PubMed Central

    Debette, J; Prensier, G

    1989-01-01

    Xanthomonas maltophilia (later synonym of Pseudomonas maltophilia), an ubiquitous species, is known to show proteolytic and lipolytic activities. A cell-bound esterase which hydrolyzes beta-naphthyl acetate during growth has been extracted from a strain isolated from soil. Because of its strongly hydrophobic character, the enzyme could be efficiently solubilized only by Triton X-100. This nonionic detergent must be added in polyacrylamide gels to permit migration. Polyclonal rabbit antibodies raised against the Triton-soluble esterase complex were used to localize the enzyme at the ultrastructural level. Electron microscopy of cell sections of this organism and immunogold labeling demonstrated that the enzyme was located on the outer membrane. Such an envelope-bound esterase may produce assimilable substrates for X. maltophilia which can grow in various environments. Images PMID:2495761

  5. Esterases immobilized on aminosilane modified magnetic nanoparticles as a catalyst for biotransformation reactions.

    PubMed

    Alex, Deepthy; Mathew, Abraham; Sukumaran, Rajeev K

    2014-09-01

    Magnetite nanoparticles were prepared by reacting ferrous and ferric salts in presence of aqueous ammonia. The magnetic nanoparticles (MNPs) were amino functionalized by treating with 3-aminopropyl triethoxy silane (APTES) and was coupled with glutaraldehyde. A novel solvent tolerant esterase from Pseudozyma sp. NII 08165 was immobilized on the MNPs through covalent bonding to the glutaraldehyde. The magnetite nanoparticles had a size range of 10-100 nm, confirmed by DLS. Lipases immobilized on MNPs were evaluated for biotransformation reactions including synthesis of ethyl acetate and transesterification of vegetable oil for producing biodiesel. The MNP immobilized esterase had prolonged shelf life and there was no loss in enzyme activity. PMID:24968816

  6. Esterases immobilized on aminosilane modified magnetic nanoparticles as a catalyst for biotransformation reactions.

    PubMed

    Alex, Deepthy; Mathew, Abraham; Sukumaran, Rajeev K

    2014-09-01

    Magnetite nanoparticles were prepared by reacting ferrous and ferric salts in presence of aqueous ammonia. The magnetic nanoparticles (MNPs) were amino functionalized by treating with 3-aminopropyl triethoxy silane (APTES) and was coupled with glutaraldehyde. A novel solvent tolerant esterase from Pseudozyma sp. NII 08165 was immobilized on the MNPs through covalent bonding to the glutaraldehyde. The magnetite nanoparticles had a size range of 10-100 nm, confirmed by DLS. Lipases immobilized on MNPs were evaluated for biotransformation reactions including synthesis of ethyl acetate and transesterification of vegetable oil for producing biodiesel. The MNP immobilized esterase had prolonged shelf life and there was no loss in enzyme activity.

  7. The role of calcium in the hydrolysis of the organophosphate paraoxon by human serum A-esterase.

    PubMed

    Vitarius, J A; Sultatos, L G

    1995-01-01

    Human serum A-esterase is a calcium-dependent enzyme that hydrolyzes the organophosphate paraoxon by an Ordered Uni Bi kinetic mechanism. Incubation of various concentrations of calcium chloride with human serum A-esterase resulted in corresponding changes in appk3 and appE for the reaction, while appk2 was unaffected. Carboxyglutamic acid (CAG) prevented calcium chloride from altering appk3, but not appE. Similarly CAG reduced the calcium-stimulated nonenzymatic hydrolysis of paraoxon, as well as the calcium-stimulated de-phosphorylation of chymotrypsin phosphorylated by paraoxon. These results suggest that calcium plays two roles in the hydrolysis of paraoxon by A-esterase. Firstly, calcium is required in order to maintain an active site. In this capacity calcium might participate directly in the catalytic reaction, or it might be required in order to maintain the appropriate confirmation of the active site. And secondly, free calcium (or calcium weakly associated with A-esterase) facilitates the removal of diethyl phosphate from A-esterase, probably by polarizing the P = O bond of the diethyl phosphate-A-esterase intermediate, thereby rendering phosphorus more susceptible to nucleophilic attack by hydroxide ions. PMID:7823759

  8. The ferulic acid esterases of Chrysosporium lucknowense C1: purification, characterization and their potential application in biorefinery.

    PubMed

    Kühnel, S; Pouvreau, L; Appeldoorn, M M; Hinz, S W A; Schols, H A; Gruppen, H

    2012-01-01

    Three ferulic acid esterases from the filamentous fungus Chrysosporium lucknowense C1 were purified and characterized. The enzymes were most active at neutral pH and temperatures up to 45 °C. All enzymes released ferulic acid and p-coumaric acid from a soluble corn fibre fraction. Ferulic acid esterases FaeA1 and FaeA2 could also release complex dehydrodiferulic acids and dehydrotriferulic acids from corn fibre oligomers, but released only 20% of all ferulic acid present in sugar beet pectin oligomers. Ferulic acid esterase FaeB2 released almost no complex ferulic acid oligomers from corn fibre oligomers, but 60% of all ferulic acid from sugar beet pectin oligomers. The ferulic acid esterases were classified based on both, sequence similarity and their activities toward synthetic substrates. The type A ferulic acid esterases FaeA1 and FaeA2 are the first members of the phylogenetic subfamily 5 to be biochemically characterized. Type B ferulic acid esterase FaeB2 is a member of subfamily 6.

  9. Branched nanotrees with immobilized acetylcholine esterase for nanobiosensor applications

    NASA Astrophysics Data System (ADS)

    Risveden, Klas; Dick, Kimberly A.; Bhand, Sunil; Rydberg, Patrik; Samuelson, Lars; Danielsson, Bengt

    2010-02-01

    A novel lab-on-a-chip nanotree enzyme reactor is demonstrated for the detection of acetylcholine. The reactors are intended for use in the RISFET (regional ion sensitive field effect transistor) nanosensor, and are constructed from gold-tipped branched nanorod structures grown on SiNx-covered wafers. Two different reactors are shown: one with simple, one-dimensional nanorods and one with branched nanorod structures (nanotrees). Significantly higher enzymatic activity is found for the nanotree reactors than for the nanorod reactors, most likely due to the increased gold surface area and thereby higher enzyme binding capacity. A theoretical calculation is included to show how the enzyme kinetics and hence the sensitivity can be influenced and increased by the control of electrical fields in relation to the active sites of enzymes in an electronic biosensor. The possible effects of electrical fields employed in the RISFET on the function of acetylcholine esterase is investigated using quantum chemical methods, which show that the small electric field strengths used are unlikely to affect enzyme kinetics. Acetylcholine esterase activity is determined using choline oxidase and peroxidase by measuring the amount of choline formed using the chemiluminescent luminol reaction.

  10. A halotolerant type A feruloyl esterase from Pleurotus eryngii.

    PubMed

    Nieter, Annabel; Haase-Aschoff, Paul; Linke, Diana; Nimtz, Manfred; Berger, Ralf G

    2014-03-01

    An extracellular feruloyl esterase (PeFaeA) from the culture supernatant of Pleurotus eryngii was purified to homogeneity using cation exchange, hydrophobic interaction, and size exclusion chromatography. The length of the complete coding sequence of PeFaeA was determined to 1668 bp corresponding to a protein of 555 amino acids. The catalytic triad of Ser-Glu-His demonstrated the uniqueness of the enzyme compared to previously published FAEs. The purified PeFaeA was a monomer with an estimated molecular mass of 67 kDa. Maximum feruloyl esterase (FAE) activity was observed at pH 5.0 and 50 °C, respectively. Metal ions (5 mM), except Hg(2+), had no significant influence on the enzyme activity. Substrate specificity profiling characterized the enzyme as a type A FAE preferring bulky natural substrates, such as feruloylated saccharides, rather than small synthetic ones. Km and kcat of the purified enzyme for methyl ferulate were 0.15 mM and 0.85 s(-1). In the presence of 3 M NaCl activity of the enzyme increased by 28 %. PeFaeA alone released only little ferulic acid from destarched wheat bran (DSWB), whereas after addition of Trichoderma viride xylanase the concentration increased more than 20 fold. PMID:24607359

  11. Insecticidal and acetylcholine esterase inhibition activity of Asteraceae plant essential oils and their constituents against adults of the German cockroach (Blattella germanica).

    PubMed

    Yeom, Hwa-Jeong; Jung, Chan-Sik; Kang, Jaesoon; Kim, Junheon; Lee, Jae-Hyeon; Kim, Dong-Soo; Kim, Hyun-Seok; Park, Pil-Sun; Kang, Kyu-Suk; Park, Il-Kwon

    2015-03-01

    The fumigant and contact toxicities of 16 Asteraceae plant essential oils and their constituents against adult male and female Blattella germanica were examined. In a fumigant toxicity test, tarragon oil exhibited 100% and 90% fumigant toxicity against adult male German cockroaches at 5 and 2.5 mg/filter paper, respectively. Fumigant toxicities of Artemisia arborescens and santolina oils against adult male German cockroaches were 100% at 20 mg/filter paper, but were reduced to 60% and 22.5% at 10 mg/filter paper, respectively. In contact toxicity tests, tarragon and santolina oils showed potent insecticidal activity against adult male German cockroaches. Components of active oils were analyzed using gas chromatography, gas chromatography-mass spectrometry, or nuclear magnetic resonance spectrometer. Among the identified compounds from active essential oils, estragole demonstrated potent fumigant and contact toxicity against adult German cockroaches. β-Phellandrene exhibited inhibition of male and female German cockroach acetylcholinesterase activity with IC50 values of 0.30 and 0.28 mg/mL, respectively.

  12. Lipases and esterases from extremophiles: overview and case example of the production and purification of an esterase from Thermus thermophilus HB27.

    PubMed

    Fuciños, Pablo; González, Roberto; Atanes, Estrella; Sestelo, Ana Belén Fernández; Pérez-Guerra, Nelson; Pastrana, Lorenzo; Rúa, María Luisa

    2012-01-01

    Extremophiles are organisms that have evolved to exist in a variety of extreme environments. They fall into a number of different classes that include thermophiles, halophiles, acidophiles, alkalophiles, psychrophiles, and barophiles (piezophiles). Extremophiles have the potential to produce uniquely valuable biocatalysts that function under conditions in which usually the enzymes of their nonextremophilic counterparts could not. Among novel enzymes isolated from extremophilic microorganisms, hydrolases, and particularly lipases and esterases are experiencing a growing demand. Lipases (EC 3.1.1.3) and esterases (EC 3.1.1.1) catalyze the cleavage of ester bounds in aqueous media and the reverse reaction in organic solvents. Both lipolytic enzymes have relevant applications in food, dairy, detergent, biofuel, and pharmaceutical industries. Here, we summarize the properties of lipases and esterases from the main extremophile groups: thermophiles and hyperthermophiles, psychrophiles, halophiles, alkalophiles/acidophiles, and solvent-resistant microorganisms.We report the biomass and lipolytic activity production by Thermus thermophilus HB27 in 5-L stirred-tank bioreactor at 70°C. Suitability of thermal spring water for culture media formulation is shown. In addition, a protocol to isolate and purify a cell-bound esterase from this microorganism is described.

  13. Lipases and esterases from extremophiles: overview and case example of the production and purification of an esterase from Thermus thermophilus HB27.

    PubMed

    Fuciños, Pablo; González, Roberto; Atanes, Estrella; Sestelo, Ana Belén Fernández; Pérez-Guerra, Nelson; Pastrana, Lorenzo; Rúa, María Luisa

    2012-01-01

    Extremophiles are organisms that have evolved to exist in a variety of extreme environments. They fall into a number of different classes that include thermophiles, halophiles, acidophiles, alkalophiles, psychrophiles, and barophiles (piezophiles). Extremophiles have the potential to produce uniquely valuable biocatalysts that function under conditions in which usually the enzymes of their nonextremophilic counterparts could not. Among novel enzymes isolated from extremophilic microorganisms, hydrolases, and particularly lipases and esterases are experiencing a growing demand. Lipases (EC 3.1.1.3) and esterases (EC 3.1.1.1) catalyze the cleavage of ester bounds in aqueous media and the reverse reaction in organic solvents. Both lipolytic enzymes have relevant applications in food, dairy, detergent, biofuel, and pharmaceutical industries. Here, we summarize the properties of lipases and esterases from the main extremophile groups: thermophiles and hyperthermophiles, psychrophiles, halophiles, alkalophiles/acidophiles, and solvent-resistant microorganisms.We report the biomass and lipolytic activity production by Thermus thermophilus HB27 in 5-L stirred-tank bioreactor at 70°C. Suitability of thermal spring water for culture media formulation is shown. In addition, a protocol to isolate and purify a cell-bound esterase from this microorganism is described. PMID:22426723

  14. Enhancement of Experimental Cutaneous Leishmaniasis by Leishmania Molecules Is Dependent on Interleukin-4, Serine Protease/Esterase Activity, and Parasite and Host Genetic Backgrounds ▿

    PubMed Central

    Silva, Virgínia M. G.; Larangeira, Daniela F.; Oliveira, Pablo R. S.; Sampaio, Romina B.; Suzart, Paula; Nihei, Jorge S.; Teixeira, Márcia C. A.; Mengel, José O.; dos-Santos, Washington L. C.; Pontes-de-Carvalho, Lain

    2011-01-01

    Most inbred strains of mice, like the BALB/c strain, are susceptible to Leishmania amazonensis infections and resistant to Leishmania braziliensis infections. This parasite-related difference could result from the activity of an L. amazonensis-specific virulence factor. In agreement with this hypothesis, it is shown here that the intravenous injection of BALB/c mice with L. amazonensis amastigote extract (LaE) but not the L. braziliensis extract confers susceptibility to L. braziliensis infection. This effect was associated with high circulating levels of IgG1 anti-L. amazonensis antibodies and with an increase in interleukin-4 (IL-4) production and a decrease in gamma interferon production by draining lymph node cells. Moreover, the effect was absent in IL-4-knockout mice. The biological activity in the LaE was not mediated by amphiphilic molecules and was inhibited by pretreatment of the extract with irreversible serine protease inhibitors. These findings indicate that the LaE contains a virulence-related factor that (i) enhances the Leishmania infection by promoting Th2-type immune responses, (ii) is not one of the immunomodulatory Leishmania molecules described so far, and (iii) is either a serine protease or has an effect that depends on that protease activity. In addition to being Leishmania species specific, the infection-enhancing activity was also shown to depend on the host genetic makeup, as LaE injections did not affect the susceptibility of C57BL/6 mice to L. braziliensis infection. The identification of Leishmania molecules with infection-enhancing activity could be important for the development of a vaccine, since the up- or downmodulation of the immune response against a virulence factor could well contribute to controlling the infection. PMID:21173308

  15. Serum lipoprotein composition, lecithin cholesterol acyltransferase and tissue lipase activities in pregnant diabetic rats and their offspring receiving enriched n-3 PUFA diet.

    PubMed

    Soulimane-Mokhtari, N A; Guermouche, B; Saker, M; Merzouk, S; Merzouk, H; Hichami, A; Madani, S; Khan, N A; Prost, J

    2008-03-01

    The effects of dietary n-3 polyunsaturated fatty acids on lipoprotein concentrations and on lipoprotein lipase (LPL), hepatic triglyceride lipase (HTGL) and lecithin cholesterol acyltransferase (LCAT) activities were studied in streptozotocin-induced diabetic rats during pregnancy and in their macrosomic offspring from birth to adulthood. Pregnant diabetic and control rats were fed Isio-4 diet (vegetable oil) or EPAX diet (concentrated marine omega-3 EPA/DHA oil), the same diets were consumed by pups at weaning. Compared with control rats, diabetic rats showed, during pregnancy, a significant elevation in very low density lipoprotein (VLDL) and low and high density lipoprotein (LDL-HDL(1))-triglyceride, cholesterol and apoprotein B100 concentrations and a reduction in apoprotein A-I levels. HTGL activity was high while LPL and LCAT activities were low in these rats. The macrosomic pups of Isio-4-fed diabetic rats showed a significant enhancement in triglyceride and cholesterol levels at birth and during adulthood with a concomitant increase in lipase and LCAT activities. EPAX diet induces a significant diminution of VLDL and LDL-HDL(1) in mothers and in their macrosomic pups, accompanied by an increase in cholesterol and apoprotein A-I levels in HDL(2-3) fraction. It also restores LPL, HTGL and LCAT activities to normal range. EPAX diet ameliorates considerably lipoprotein disorders in diabetic mothers and in their macrosomic offspring. PMID:18436977

  16. Effect of sardine proteins on hyperglycaemia, hyperlipidaemia and lecithin:cholesterol acyltransferase activity, in high-fat diet-induced type 2 diabetic rats.

    PubMed

    Benaicheta, Nora; Labbaci, Fatima Z; Bouchenak, Malika; Boukortt, Farida O

    2016-01-14

    Type 2 diabetes (T2D) is a major risk factor of CVD. The effects of purified sardine proteins (SP) were examined on glycaemia, insulin sensitivity and reverse cholesterol transport in T2D rats. Rats fed a high-fat diet (HFD) for 5 weeks, and injected with a low dose of streptozotocin, were used. The diabetic rats were divided into four groups, and they were fed casein (CAS) or SP combined with 30 or 5% lipids, for 4 weeks. HFD-induced hyperglycaemia, insulin resistance and hyperlipidaemia in rats fed HFD, regardless of the consumed protein. In contrast, these parameters lowered in rats fed SP combined with 5 or 30% lipids, and serum insulin values reduced in SP v. CAS. HFD significantly increased total cholesterol and TAG concentrations in the liver and serum, whereas these parameters decreased with SP, regardless of lipid intake. Faecal cholesterol excretion was higher with SP v. CAS, combined with 30 or 5% lipids. Lecithin:cholesterol acyltransferase (LCAT) activity and HDL3-phospholipids (PL) were higher in CAS-HF than in CAS, whereas HDL2-cholesteryl esters (CE) were lower. Otherwise, LCAT activity and HDL2-CE were higher in the SP group than in the CAS group, whereas HDL3-PL and HDL3-unesterified cholesterol were lower. Moreover, LCAT activity lowered in the SP-HF group than in the CAS-HF group, when HDL2-CE was higher. In conclusion, these results indicate the potential effects of SP to improve glycaemia, insulin sensitivity and reverse cholesterol transport, in T2D rats.

  17. Effect of sardine proteins on hyperglycaemia, hyperlipidaemia and lecithin:cholesterol acyltransferase activity, in high-fat diet-induced type 2 diabetic rats.

    PubMed

    Benaicheta, Nora; Labbaci, Fatima Z; Bouchenak, Malika; Boukortt, Farida O

    2016-01-14

    Type 2 diabetes (T2D) is a major risk factor of CVD. The effects of purified sardine proteins (SP) were examined on glycaemia, insulin sensitivity and reverse cholesterol transport in T2D rats. Rats fed a high-fat diet (HFD) for 5 weeks, and injected with a low dose of streptozotocin, were used. The diabetic rats were divided into four groups, and they were fed casein (CAS) or SP combined with 30 or 5% lipids, for 4 weeks. HFD-induced hyperglycaemia, insulin resistance and hyperlipidaemia in rats fed HFD, regardless of the consumed protein. In contrast, these parameters lowered in rats fed SP combined with 5 or 30% lipids, and serum insulin values reduced in SP v. CAS. HFD significantly increased total cholesterol and TAG concentrations in the liver and serum, whereas these parameters decreased with SP, regardless of lipid intake. Faecal cholesterol excretion was higher with SP v. CAS, combined with 30 or 5% lipids. Lecithin:cholesterol acyltransferase (LCAT) activity and HDL3-phospholipids (PL) were higher in CAS-HF than in CAS, whereas HDL2-cholesteryl esters (CE) were lower. Otherwise, LCAT activity and HDL2-CE were higher in the SP group than in the CAS group, whereas HDL3-PL and HDL3-unesterified cholesterol were lower. Moreover, LCAT activity lowered in the SP-HF group than in the CAS-HF group, when HDL2-CE was higher. In conclusion, these results indicate the potential effects of SP to improve glycaemia, insulin sensitivity and reverse cholesterol transport, in T2D rats. PMID:26507559

  18. A thermoactive uropygial esterase from chicken: purification, characterisation and synthesis of flavour esters.

    PubMed

    Fendri, Ahmed; Louati, Hanen; Sellami, Mohamed; Gargouri, Héla; Smichi, Nabil; Zarai, Zied; Aissa, Imen; Miled, Nabil; Gargouri, Youssef

    2012-06-01

    A lipolytic activity was located in the chicken uropygial glands, from which a carboxylesterase (CUE) was purified. Pure CUE has an apparent molecular mass of 50 kDa. The purified esterase displayed its maximal activity (200 U/mg) on short-chain triacylglycerols (tributyrin) at a temperature of 50°C. No significant lipolytic activity was found when medium chain (trioctanoin) or long chain (olive oil) triacylglycerols were used as substrates. The enzyme retained 75% of its maximal activity when incubated during 2h at 50°C. The NH(2)-terminal amino acid sequence showed similarities with the esterase purified recently from turkey pharyngeal tissue. Esterase activity remains stable after its incubation during 30 min in presence of organic solvents such as hexane or butanol. CUE is a serine enzyme since it was inactivated by phenylmethanesulphonyl fluoride (PMSF), a serine-specific inhibitor. The purified enzyme, which tolerates the presence of some organic solvent and a high temperature, can be used in non-aqueous synthesis reactions. Hence, the uropygial esterase immobilised onto CaCO(3) was tested to produce the isoamyl and the butyl acetate (flavour esters). Reactions were performed at 50°C in presence of hexane. High synthesis yields of 91 and 67.8% were obtained for isoamyl and butyl acetate, respectively. PMID:22531158

  19. Comparison of fungal carbohydrate esterases of family CE16 on artificial and natural substrates.

    PubMed

    Puchart, Vladimír; Agger, Jane W; Berrin, Jean-Guy; Várnai, Anikó; Westereng, Bjørge; Biely, Peter

    2016-09-10

    The enzymatic conversion of acetylated hardwood glucuronoxylan to functional food oligomers, biochemicals or fermentable monomers requires besides glycoside hydrolases enzymes liberating acetic acid esterifying position 2 and/or 3 in xylopyranosyl (Xylp) residues. The 3-O-acetyl group at internal Xylp residues substituted by MeGlcA is the only acetyl group of hardwood acetylglucuronoxylan and its fragments not attacked by acetylxylan esterases of carbohydrate esterase (CE) families 1, 4, 5 and 6 and by hemicellulolytic acetyl esterases classified in CE family 16. Monoacetylated aldotetraouronic acid 3″-Ac(3)MeGlcA(3)Xyl3, generated from the polysaccharide by GH10 endoxylanases, appears to be one of the most resistant fragments. The presence of the two substituents on the non-reducing-end Xylp residue prevents liberation of MeGlcA by α-glucuronidase of family GH67 and blocks the action of acetylxylan esterases. The Ac(3)MeGlcA(3)Xyl3 was isolated from an enzymatic hydrolysate of birchwood acetylglucuronoxylan and characterized by (1)H NMR spectroscopy as a mixture of two positional isomers, 3″-Ac(3)MeGlcA(3)Xyl3 and 4″-Ac(3)MeGlcA(3)Xyl3, the latter being the result of acetyl group migration. The mixture was used as a substrate for three members of CE16 family of fungal origin. Trichoderma reesei CE16 esterase, inactive on polymeric substrate, deacetylated both isomers. Podospora anserina and Aspergillus niger esterases, active on acetylglucuronoxylan, deesterified effectively only the 4″-isomer. The results indicate catalytic diversity among CE16 enzymes, but also their common and unifying catalytic ability to exo-deacetylate positions 3 and 4 on non-reducing-end Xylp residues, which is an important step in plant hemicellulose saccharification. PMID:27439201

  20. Sterol Regulatory Element-Binding Protein 2 Couples HIV-1 Transcription to Cholesterol Homeostasis and T Cell Activation ▿§

    PubMed Central

    Taylor, Harry E.; Linde, Michael E.; Khatua, Atanu K.; Popik, Waldemar; Hildreth, James E. K.

    2011-01-01

    Cholesterol plays an essential role in the life cycle of several enveloped viruses. Many of these viruses manipulate host cholesterol metabolism to facilitate their replication. HIV-1 infection of CD4+ T cells activates the sterol regulatory element-binding protein 2 (SREBP2) transcriptional program, which includes genes involved in cholesterol homeostasis. However, the role of SREBP2-dependent transcription in HIV-1 biology has not been fully examined. Here, we identify TFII-I, a gene critical for HIV-1 transcription in activated T cells, as a novel SREBP2 target gene. We found TFII-I expression increased after HIV-1 infection or activation of human primary CD4+ T cells. We show that inhibition of SREBP2 activity reduced TFII-I induction in response to these stimuli. More importantly, small interfering RNA (siRNA)-mediated gene silencing of either SREBP2 or TFII-I significantly reduced HIV-1 production in CD4+ T cells. We also found that TFII-I potentiates Tat-dependent viral gene expression, consistent with a role at the level of HIV-1 transcription. Collectively, our results demonstrate for the first time that HIV-1 transcription in T cells is linked to cholesterol homeostasis through control of TFII-I expression by SREBP2. PMID:21613400

  1. Gene Cloning and Nucleotide Sequencing and Properties of a Cocaine Esterase from Rhodococcus sp. Strain MB1

    PubMed Central

    Bresler, Matthew M.; Rosser, Susan J.; Basran, Amrik; Bruce, Neil C.

    2000-01-01

    A strain of Rhodococcus designated MB1, which was capable of utilizing cocaine as a sole source of carbon and nitrogen for growth, was isolated from rhizosphere soil of the tropane alkaloid-producing plant Erythroxylum coca. A cocaine esterase was found to initiate degradation of cocaine, which was hydrolyzed to ecgonine methyl ester and benzoate; both of these esterolytic products were further metabolized by Rhodococcus sp. strain MB1. The structural gene encoding a cocaine esterase, designated cocE, was cloned from Rhodococcus sp. strain MB1 genomic libraries by screening recombinant strains of Rhodococcus erythropolis CW25 for growth on cocaine. The nucleotide sequence of cocE corresponded to an open reading frame of 1,724 bp that codes for a protein of 574 amino acids. The amino acid sequence of cocaine esterase has a region of similarity with the active serine consensus of X-prolyl dipeptidyl aminopeptidases, suggesting that the cocaine esterase is a serine esterase. The cocE coding sequence was subcloned into the pCFX1 expression plasmid and expressed in Escherichia coli. The recombinant cocaine esterase was purified to apparent homogeneity and was found to be monomeric, with an Mr of approximately 65,000. The apparent Km of the enzyme (mean ± standard deviation) for cocaine was measured as 1.33 ± 0.085 mM. These findings are of potential use in the development of a linked assay for the detection of illicit cocaine. PMID:10698749

  2. Antioxidative Activity after Rosuvastatin Treatment in Patients with Stable Ischemic Heart Disease and Decreased High Density Lipoprotein Cholesterol

    PubMed Central

    Park, Do-Sim; Park, Hyun Young; Rhee, Sang Jae; Kim, Nam-Ho; Oh, Seok Kyu; Jeong, Jin-Won

    2016-01-01

    Background and Objectives The clinical significance of statin-induced high-density lipoprotein cholesterol (HDL-C) changes is not well known. We investigated whether rosuvastatin-induced HDL-C changes can influence the anti-oxidative action of high-density lipoprotein particle. Subjects and Methods A total of 240 patients with stable ischemic heart disease were studied. Anti-oxidative property was assessed by paraoxonase 1 (PON1) activity. We compared the lipid profile and PON1 activity at baseline and at 8 weeks after rosuvastatin 10 mg treatment. Results Rosuvastatin treatment increased the mean HDL-C concentration by 1.9±9.2 mg/dL (6.4±21.4%). HDL-C increased in 138 patients (57.5%), but decreased in 102 patients (42.5%) after statin treatment. PON1 activity increased to 19.1% in all patients. In both, the patients with increased HDL-C and with decreased HDL-C, PON1 activity significantly increased after rosuvastatin treatment (+19.3% in increased HDL-C responder; p=0.018, +18.8% in decreased HDL-C responder; p=0.045 by paired t-test). Baseline PON1 activity modestly correlated with HDL-C levels (r=0.248, p=0.009); however, the PON1 activity evaluated during the course of the treatment did not correlate with HDL-C levels (r=0.153, p=0.075). Conclusion Rosuvastatin treatment improved the anti-oxidative properties as assessed by PON1 activity, regardless of on-treatment HDL-C levels, in patients with stable ischemic heart disease. PMID:27275167

  3. Fruit/Vegetable Intake and Physical Activity among Adults with High Cholesterol

    ERIC Educational Resources Information Center

    Fang, Jing; Keenan, Nora L.; Dai, Shifan

    2011-01-01

    Objectives: To determine whether hypercholesterolemic adults followed healthy eating and appropriate physical activity. Methods: Using the 2007 Behavioral Risk Factor Surveillance System, we measured greater than or equal to 5 servings of fruits and vegetables/day and "Healthy People 2010" recommended physical activity. Results: Of 363,667 adults…

  4. In situ localization of the genetic locus encoding the lysosomal acid lipase/cholesteryl esterase (LIPA) deficient in wolman disease to chromosome 10q23. 2-q23. 3

    SciTech Connect

    Anderson, R.A.; Rao, N.; Byrum, R.S.; Rothschild, C.B.; Bowden, D.W.; Hayworth, R.; Pettenati, M. )

    1993-01-01

    Human acid lipase/cholesteryl esterase (EC 3.1.1.13) is a 46-kDa glycoprotein required for the lysosomal hydrolysis of cholesteryl esters and triglycerides that cells acquire through the receptor-mediated endocytosis of low-density lipoproteins. This activity is essential in the provision of free cholesterol for cell metabolism as well as for the feedback signal that modulates endogenous cellular cholesterol production. The extremely low level of lysosomal acid lipase in patients afflicted with the hereditary, allelic lysosomal storage disorders Woman disease (WD) and cholesteryl ester storage disease (CESD) (MIM Number 278000 (6)) is associated with the massive intralysosomal lipid storage and derangements in the regulation of cellular cholesterol production (10). Both WD and CESD cells lack a specific acid lipase isoenzyme and it is thought that the different mutations associated with WD and CESD are in the structural gene for this isoenzyme, LIPA. Analysis of the activity of the acid lipase isoenzyme in cell extracts from human-Chinese hamster somatic cell hybrids (4, 11) demonstrated the concordant segregation of the gene locus for lysosomal acid lipase with the glutamate oxaloacetate transaminase-1 (GOT1) enzyme marker for human chromosome 10 which was subsequently localized to 10q24.1 q25.1 (8). 11 refs., 1 figs.

  5. Electrochemical biosensor for carbofuran pesticide based on esterases from Eupenicillium shearii FREI-39 endophytic fungus.

    PubMed

    Grawe, Gregory Ferreira; de Oliveira, Tássia Regina; de Andrade Narciso, Esther; Moccelini, Sally Katiuce; Terezo, Ailton José; Soares, Marcos Antonio; Castilho, Marilza

    2015-01-15

    In this work, a biosensor was constructed by physical adsorption of the isolated endophytic fungus Eupenicillium shearii FREI-39 esterase on halloysite, using graphite powder, multi-walled carbon nanotubes and mineral oil for the determination of carbofuran pesticide by inhibition of the esterase using square-wave voltammetry (SWV). Specific esterase activities were determined each 2 days over a period of 15 days of growth in four different inoculation media. The highest specific activity was found on 6th day, with 33.08 U on PDA broth. The best performance of the proposed biosensor was obtained using 0.5 U esterase activity. The carbofuran concentration response was linear in the range from 5.0 to 100.0 µg L(-1) (r=0.9986) with detection and quantification limits of 1.69 µg L(-1) and 5.13 µg L(-1), respectively. A recovery study of carbofuran in spiked water samples showed values ranging from 103.8±6.7% to 106.7±9.7%. The biosensor showed good repeatability and reproducibility and remained stable for a period of 20 weeks. The determination of carbofuran in spiked water samples using the proposed biosensor was satisfactory when compared to the chromatographic reference method. The results showed no significant difference at the 95% confidence level with t-test statistics. The application of enzymes from endophytic fungi in constructing biosensors broadens the biotechnological importance of these microorganisms.

  6. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats.

    PubMed

    Zhang, Min; Xie, Zongkai; Gao, Weina; Pu, Lingling; Wei, Jingyu; Guo, Changjiang

    2016-03-01

    Quercetin, a common member of the flavonoid family, is widely present in plant kingdom. Despite that quercetin is implicated in regulating cholesterol metabolism, the molecular mechanism is poorly understood. We hypothesized that quercetin regulates cholesterol homeostasis through regulating the key enzymes involved in hepatic cholesterol metabolism. To test this hypothesis, we compared the profile of key enzymes and transcription factors involved in the hepatic cholesterol metabolism in rats with or without quercetin supplementation. Twenty male Wistar rats were randomly divided into control and quercetin-supplemented groups. Serum total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total bile acids in feces and bile were measured. Hepatic enzymatic activities were determined by activity assay kit and high-performance liquid chromatography-based analyses. The messenger RNA (mRNA) and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. The results showed that the activity of hepatic cholesterol 7α-hydroxylase, a critical enzyme in the conversion of cholesterol to bile acids, was significantly elevated by quercetin. The expression of cholesterol 7α-hydroxylase, as well as liver X receptor α, an important transcription factor, was also increased at both mRNA and protein levels by quercetin. However, quercetin exposure had no impact on the activity of hepatic HMG-CoA reductase, a rate-limiting enzyme in the biosynthesis of cholesterol. We also found that quercetin treatment significantly increased ATP binding cassette transporter G1 mRNA and protein expression in the liver, suggesting that quercetin may increase hepatic cholesterol efflux. Collectively, the results presented here indicate that quercetin regulates hepatic cholesterol metabolism mainly through the pathways that promote cholesterol-to-bile acid conversion and

  7. Glucomannan and glucomannan plus spirulina added to pork significantly block dietary cholesterol effects on lipoproteinemia, arylesterase activity, and CYP7A1 expression in Zucker fa/fa rats.

    PubMed

    González-Torres, Laura; Vázquez-Velasco, Miguel; Olivero-David, Raúl; Bastida, Sara; Benedí, Juana; González, Rafaela Raposo; González-Muñoz, Ma José; Sánchez-Muniz, Francisco J

    2015-12-01

    Zucker fa/fa rats easily develop dyslipidemia and obesity. Restructured pork (RP) is a suitable matrix for including functional ingredients. The effects of glucomannan- RP or glucomannan plus spirulina-enriched RP on plasma lipid/lipoprotein levels, cytochrome P450 7A1 (CYP7A1) expression, and arylesterase activity in growing fa/fa rats fed high-energy, high-fat cholesterol-enriched diets were tested. Groups of six rats each received diet containing 15% control-RP (C), 15% glucomannan-RP diet (G), 15% glucomannan + spirulina-RP diet (GS), and same diets enriched with 2.4% cholesterol and 0.49% cholic acid (cholesterol-enriched control (HC), cholesterol-enriched glucomannan (HG), and cholesterol-enriched glucomannan + spirulina (HGS) diets) over a 7-week period. C diet induced obesity, severe hyperglycemia, moderate hypercholesterolemia, and hypertriglyceridemia. Those facts were not significantly modified by G or GS diets. G diet increased CYP7A1 expression but decreased the total cholesterol/high density lipoproteins (HDL)-cholesterol ratio (p < 0.05) vs. C diet. GS vs. G diet increased (p < 0.05) CYP7A1 expression. HC vs. C diet reduced food intake, body weight gain, and plasma glucose (p < 0.01) but increased cholesterolemia (p < 0.01), lipidemia (plasma cholesterol plus triglycerides) (p < 0.001), cholesterol/triglyceride ratio in very low density lipoproteins (VLDL), and HDL (p < 0.05), cholesterol transported by VLDL and intermediate density lipoproteins (IDL) + low density lipoproteins (LDL), total cholesterol/HDL-cholesterol ratio and CYP7A1 expression (at least p < 0.05). HG and HGS diets vs. HC noticeably reduced lipidemia (p < 0.001), normalized VLDL and IDL + LDL lipid composition, and increased CYP7A1 expression (p < 0.01) but did not modify the cholesterol/HDL-cholesterol ratio. HGS vs. HG decreased triglyceridemia, the triglyceride-glucose (TyG) index and increased arylesterase/HDL-cholesterol activity (p < 0

  8. A cluster of at least three esterase genes in Lucilia cuprina includes malathion carboxylesterase and two other esterases implicated in resistance to organophosphates

    SciTech Connect

    Smyth, K.A. |; Russell, R.J.; Oakeshott, J.G.

    1994-12-01

    Three distinct malathion carboxylesterase (MCE) phenotypes have been identified among strains of Lucilia cuprina. The high-activity phenotype shows 1.6- and 3.3-fold more MCE specific activity than the intermediate- and low-activity phenotypes, respectively. Flies with high MCE activity are 1000-fold more resistant to malathion than flies with either low or intermediate MCE phenotypes, which are equally susceptible. High and low MCE specific activity are allelic and encoded by the Rmal gene on chromosome 4. Rmal is clustered within one map unit of two other esterase genes, Rop1 and E9, which are implicated in resistance to other organophosphate insecticides. Intermediate MCE specific activity is also inherited within the cluster, although its allelism to Rmal, Rop1, or E9 is unclear. The cluster does not contain the gene for the hemolymph esterase E4, which maps 6.1 map units from Rop1, on the other side of the bubbled wing marker. The cluster appears to be homologous to part of a tandem array of 11 esterase genes on chromosome 3R of Drosophila melanogaster. 41 refs., 4 figs., 2 tabs.

  9. Regulation of biliary cholesterol secretion in the rat. Role of hepatic cholesterol esterification.

    PubMed Central

    Nervi, F; Bronfman, M; Allalón, W; Depiereux, E; Del Pozo, R

    1984-01-01

    Although the significance of the enterohepatic circulation of bile salts in the solubilization and biliary excretion of cholesterol is well established, little is known about the intrahepatic determinants of biliary cholesterol output. Studies were undertaken to elucidate some of these determinants in the rat. Feeding 1% diosgenin for 1 wk increased biliary cholesterol output and saturation by 400%. Bile flow, biliary bile salt, phospholipid and protein outputs remained in the normal range. When ethynyl estradiol (EE) was injected into these animals, biliary cholesterol output decreased to almost normal levels under circumstances of minor changes in the rates of biliary bile salt and phospholipid outputs. Similarly, when chylomicron cholesterol was intravenously injected into diosgenin-fed animals, biliary cholesterol output significantly decreased as a function of the dose of chylomicron cholesterol administered. Relative rates of hepatic cholesterol synthesis and esterification were measured in isolated hepatocytes. Although hepatic cholesterogenesis increased 300% in diosgenin-fed animals, the contribution of newly synthesized cholesterol to total biliary cholesterol output was only 19 +/- 9%, compared with 12 +/- 6% in control and 15 +/- 5% in diosgenin-fed and EE-injected rats. The rate of oleate incorporation into hepatocytic cholesterol esters was 30% inhibited in diosgenin-fed rats. When EE was injected into these animals, the rate of cholesterol esterification increased to almost 300%. To investigate further the interrelationship between hepatic cholesterol esterification and biliary cholesterol output, we studied 21 diosgenin-fed rats. Six of them received in addition EE and 10 received chylomicron cholesterol. The relationships between biliary cholesterol output as a function of both microsomal acyl-CoA:cholesterol acyltransferase (ACAT) activity and hepatic cholesterol ester concentration were significantly correlated in a reciprocal manner. From these

  10. Uncovering divergent evolution of α/β-hydrolases: a surprising residue substitution needed to convert Hevea brasiliensis hydroxynitrile lyase into an esterase.

    PubMed

    Nedrud, David M; Lin, Hui; Lopez, Gilsinia; Padhi, Santosh K; Legatt, Graig A; Kaz-Lauskas, Romas J

    2014-11-01

    Hevea brasiliensis hydroxynitrile lyase (HbHNL) and salicylic acid binding protein 2 (SABP2, an esterase) share 45% amino acid sequence identity, the same protein fold, and even the same catalytic triad of Ser-His-Asp. However, they catalyze different reactions: cleavage of hydroxynitriles and hydrolysis of esters, respectively. To understand how other active site differences in the two enzymes enable the same catalytic triad to catalyze different reactions, we substituted amino acid residues in HbHNL with the corresponding residues from SABP2, expecting hydroxynitrile lyase activity to decrease and esterase activity to increase. Previous mechanistic studies and x-ray crystallography suggested that esterase activity requires removal of an active site lysine and threonine from the hydroxynitrile lyase. The Thr11Gly Lys236Gly substitutions in HbHNL reduced hydroxynitrile lyase activity for cleavage of mandelonitrile 100-fold, but increased esterase activity only threefold to kcat ~ 0.1 min(-1) for hydrolysis of p-nitrophenyl acetate. Adding a third substitution - Glu79His - increased esterase activity more than tenfold to kcat ~ 1.6 min(-1). The specificity constant (kcat/KM) for this triple substitution variant versus wild type HbHNL shifted more than one million-fold from hydroxynitrile lyase activity (acetone cyanohydrin substrate) to esterase activity (p-nitrophenyl acetate substrate). The contribution of Glu79His to esterase activity was surprising since esterases and lipases contain many different amino acids at this position, including glutamate. Saturation mutagenesis at position 79 showed that 13 of 19 possible amino acid substitutions increased esterase activity, suggesting that removal of glutamate, not addition of histidine, increased esterase activity. Molecular modeling indicates that Glu79 disrupts esterase activity in HbHNL when its negatively charged side chain distorts the orientation of the catalytic histidine. Naturally occurring glutamate at the

  11. Uncovering divergent evolution of α/β-hydrolases: a surprising residue substitution needed to convert Hevea brasiliensis hydroxynitrile lyase into an esterase

    PubMed Central

    Nedrud, David M.; Lin, Hui; Lopez, Gilsinia; Padhi, Santosh K.; Legatt, Graig A.

    2014-01-01

    Hevea brasiliensis hydroxynitrile lyase (HbHNL) and salicylic acid binding protein 2 (SABP2, an esterase) share 45% amino acid sequence identity, the same protein fold, and even the same catalytic triad of Ser-His-Asp. However, they catalyze different reactions: cleavage of hydroxynitriles and hydrolysis of esters, respectively. To understand how other active site differences in the two enzymes enable the same catalytic triad to catalyze different reactions, we substituted amino acid residues in HbHNL with the corresponding residues from SABP2, expecting hydroxynitrile lyase activity to decrease and esterase activity to increase. Previous mechanistic studies and x-ray crystallography suggested that esterase activity requires removal of an active site lysine and threonine from the hydroxynitrile lyase. The Thr11Gly Lys236Gly substitutions in HbHNL reduced hydroxynitrile lyase activity for cleavage of mandelonitrile 100-fold, but increased esterase activity only threefold to kcat ~ 0.1 min−1 for hydrolysis of p-nitrophenyl acetate. Adding a third substitution – Glu79His – increased esterase activity more than tenfold to kcat ~ 1.6 min−1. The specificity constant (kcat/KM) for this triple substitution variant versus wild type HbHNL shifted more than one million-fold from hydroxynitrile lyase activity (acetone cyanohydrin substrate) to esterase activity (p-nitrophenyl acetate substrate). The contribution of Glu79His to esterase activity was surprising since esterases and lipases contain many different amino acids at this position, including glutamate. Saturation mutagenesis at position 79 showed that 13 of 19 possible amino acid substitutions increased esterase activity, suggesting that removal of glutamate, not addition of histidine, increased esterase activity. Molecular modeling indicates that Glu79 disrupts esterase activity in HbHNL when its negatively charged side chain distorts the orientation of the catalytic histidine. Naturally occurring glutamate at

  12. Uncovering divergent evolution of α/β-hydrolases: a surprising residue substitution needed to convert Hevea brasiliensis hydroxynitrile lyase into an esterase.

    PubMed

    Nedrud, David M; Lin, Hui; Lopez, Gilsinia; Padhi, Santosh K; Legatt, Graig A; Kaz-Lauskas, Romas J

    2014-11-01

    Hevea brasiliensis hydroxynitrile lyase (HbHNL) and salicylic acid binding protein 2 (SABP2, an esterase) share 45% amino acid sequence identity, the same protein fold, and even the same catalytic triad of Ser-His-Asp. However, they catalyze different reactions: cleavage of hydroxynitriles and hydrolysis of esters, respectively. To understand how other active site differences in the two enzymes enable the same catalytic triad to catalyze different reactions, we substituted amino acid residues in HbHNL with the corresponding residues from SABP2, expecting hydroxynitrile lyase activity to decrease and esterase activity to increase. Previous mechanistic studies and x-ray crystallography suggested that esterase activity requires removal of an active site lysine and threonine from the hydroxynitrile lyase. The Thr11Gly Lys236Gly substitutions in HbHNL reduced hydroxynitrile lyase activity for cleavage of mandelonitrile 100-fold, but increased esterase activity only threefold to kcat ~ 0.1 min(-1) for hydrolysis of p-nitrophenyl acetate. Adding a third substitution - Glu79His - increased esterase activity more than tenfold to kcat ~ 1.6 min(-1). The specificity constant (kcat/KM) for this triple substitution variant versus wild type HbHNL shifted more than one million-fold from hydroxynitrile lyase activity (acetone cyanohydrin substrate) to esterase activity (p-nitrophenyl acetate substrate). The contribution of Glu79His to esterase activity was surprising since esterases and lipases contain many different amino acids at this position, including glutamate. Saturation mutagenesis at position 79 showed that 13 of 19 possible amino acid substitutions increased esterase activity, suggesting that removal of glutamate, not addition of histidine, increased esterase activity. Molecular modeling indicates that Glu79 disrupts esterase activity in HbHNL when its negatively charged side chain distorts the orientation of the catalytic histidine. Naturally occurring glutamate at the

  13. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation

    SciTech Connect

    Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  14. Influence of High-fat and High-cholesterol Diet on Major CYP Activities in the Liver.

    PubMed

    Suzuki, Sachina; Sato, Yoko; Umegaki, Keizo; Chiba, Tsuyoshi

    2016-01-01

    We previously reported that a high-fat and high-cholesterol (HFHC) diet for 12 weeks induced non-alcoholic steatohepatitis (NASH) and influenced major CYP subtype gene expression levels and activities in a mouse model. In the present study, we determined the effects of the HFHC diet on CYP expression levels and activities prior to the establishment of NASH. When male C57BL/6J mice were fed the HFHC or a normal chow diet (Control) ad libitum for 4 weeks, body weights were significantly lower, whereas liver weights and hepatic lipid contents were significantly higher in the HFHC group than in the Control group. Under these conditions, hepatic microsomal luciferin-H (human CYP2C9 substrate) hydroxylation activity was significantly lower in the HFHC group than in the Control group. In order to investigate drug efficacy in mice fed the HFHC diet, an intraperitoneal glucose tolerance test was conducted with or without a pretreatment with tolbutamide (a CYP2C substrate) after 4 weeks of feeding. The plasma glucose-lowering effects of tolbutamide were attenuated in the HFHC group even though luciferin-H hydroxylation activity was suppressed in this group. The reason for this discrepancy was attributed to the mRNA expression levels of Cyp2c44 being lower and those of Cyp2c29 and Cyp2c66, which are involved in the metabolism of tolbutamide, being higher in the HFHC group than in the Control group. These results indicate that the expression of Cyp2c in the liver is influenced by the HFHC diet prior to the establishment of NASH and its regulation differed among the subtypes examined. PMID:27592832

  15. Hypolipidemic and antioxidant activity of aqueous extract of fruit of Withania coagulans (Stocks) Dunal in cholesterol-fed hyperlipidemic rabbit model.

    PubMed

    Shukla, Kirtikar; Dikshit, Piyush; Shukla, Rimi; Sharma, Sonal; Gambhir, Jasvinder K

    2014-09-01

    Withania coagulans (family: Solanaceae, English: Indian Cheese Maker, Hindi: Doda Paneer) fruit is known for its ethanopharmacological significance in health care system of India. Diet rich in high-fat is an important risk factor for diabetes, atherosclerosis and macro and microvascular complications. Treatment with aqueous extract of fruit of W. coagulans (aqWC; 250 mg/kg body weight) in cholesterol-fed animals resulted in significant decrease in the levels of total cholesterol, triacylglycerol, low density lipoprotein, tissue lipid content and acetyl CoA carboxylase activity whereas, the level of high density lipoprotein and activity of HMGCoA reductase also recovered partially. Treatment with aqWC also significantly decreased plasma lipid peroxide levels and increased reduced glutathione and superoxide dismutase activities. These results suggest that the aqueous extract of W. coagulans has potent lipid lowering and antioxidant activities.

  16. All about Cholesterol

    MedlinePlus

    ... are several kinds of fats in your blood. • LDL cholesterol is sometimes called “bad” cholesterol. It can narrow ... medicine to manage blood fats. They help lower LDL cholesterol. They also help lower your risk for a ...

  17. Low Serum High Density Lipoprotein Cholesterol Concentration is an Independent Predictor for Enhanced Inflammation and Endothelial Activation

    PubMed Central

    Wan Ahmad, Wan Nor Hanis; Sakri, Farah; Mokhsin, Atiqah; Rahman, Thuhairah; Mohd Nasir, Nadzimah; Abdul-Razak, Suraya; Md Yasin, Mazapuspavina; Mohd Ismail, Aletza; Ismail, Zaliha; Nawawi, Hapizah

    2015-01-01

    Background Inflammation, endothelial activation and oxidative stress have been established as key events in the initiation and progression of atherosclerosis. High-density lipoprotein cholesterol (HDL-c) is protective against atherosclerosis and coronary heart disease, but its association with inflammation, endothelial activation and oxidative stress is not well established. Objectives (1) To compare the concentrations of biomarkers of inflammation, endothelial activation and oxidative stress in subjects with low HDL-c compared to normal HDL-c; (2) To examine the association and correlation between HDL-c and these biomarkers and (3) To determine whether HDL-c is an independent predictor of these biomarkers. Methods 422 subjects (mean age±SD = 43.2±11.9years) of whom 207 had low HDL-c concentrations (HDL-c <1.0mmol/L and <1.3mmol/L for males and females respectively) and 215 normal controls (HDL-c ≥1.0 and ≥1.3mmol/L for males and females respectively) were recruited in this study. The groups were matched for age, gender, ethnicity, smoking status, diabetes mellitus and hypertension. Fasting blood samples were collected for analysis of biomarkers of inflammation [high-sensitivity C-reactive protein (hsCRP) and Interleukin-6 (IL-6)], endothelial activation [soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1), soluble Intercellular Adhesion Molecule-1 (sICAM-1) and E-selectin)] and oxidative stress [F2-Isoprostanes, oxidized Low Density Lipoprotein (ox-LDL) and Malondialdehyde (MDA)]. Results Subjects with low HDL-c had greater concentrations of inflammation, endothelial activation and oxidative stress biomarkers compared to controls. There were negative correlations between HDL-c concentration and biomarkers of inflammation (IL-6, p = 0.02), endothelial activation (sVCAM-1 and E-selectin, p = 0.029 and 0.002, respectively), and oxidative stress (MDA and F2-isoprostane, p = 0.036 and <0.0001, respectively). Multiple linear regression analysis showed HDL-c as an

  18. Association of esterases with insecticide resistance in Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Gordon, Jennifer R; Ottea, James

    2012-06-01

    The southern house mosquito, Culex quinquefasciatus Say, is a competent vector of human disease and an important target of mosquito abatement programs. However, these management programs have been compromised by development of insecticide resistance. In the current study, susceptibilities to naled and resmethrin, two adulticides used in mosquito abatement, were monitored using a topical and contact bioassay, respectively, in five field- collected populations of C. quinquefasciatus (MARC, HOOD1, HOOD2, MINLOVE, and THIB). Frequencies of resistance, measured as survival after treatment with discriminating concentrations (i.e., sufficient to kill > 90% of a reference susceptible strain) were high (88.0-96.8%) in all field collections treated with naled, but were variable (3.3-94.2%) with resmethrin. In addition, esterase activities in mosquitoes from these collections were quantified using alpha-naphthyl acetate and ranged from 1.08 to 3.39 micromol alpha-naphthol produced min(-1) mg prot(-1). Heightened activities were associated with decreased insecticide susceptibility in HOOD1, THIB, and MINLOVE but not HOOD2. Esterases were visualized using native polyacrylamide gel electrophoresis, and intra- and interstrain differences in banding patterns were detected. In addition, esterases from MINLOVE mosquitoes were more numerous and intensely staining when compared with those from a laboratory-susceptible strain. Finally, naled synergized the toxicity of resmethrin in populations with decreased insecticide susceptibility and increased esterase activity by 2.5-(MINLOVE) to three-fold (THIB). Results from this study will allow management strategies for populations of C. quinquefasciatus to be optimized, and provide a foundation for further studies exploring use of esterase inhibitors as synergists of pyrethroid toxicity. PMID:22812138

  19. Targeting cancer using cholesterol conjugates

    PubMed Central

    Radwan, Awwad A.; Alanazi, Fares K.

    2013-01-01

    Conjugation of cholesterol moiety to active compounds for either cancer treatment or diagnosis is an attractive approach. Cholesterol derivatives are widely studied as cancer diagnostic agents and as anticancer derivatives either in vitro or in vivo using animal models. In largely growing studies, anticancer agents have been chemically conjugated to cholesterol molecules, to enhance their pharmacokinetic behavior, cellular uptake, target specificity, and safety. To efficiently deliver anticancer agents to the target cells and tissues, many different cholesterol–anticancer conjugates were synthesized and characterized, and their anticancer efficiencies were tested in vitro and in vivo. PMID:24493968

  20. Gel-electrophoretic identification of hen brain neurotoxic esterase, labelled with tritiated di-isopropyl phosphorofluoridate.

    PubMed Central

    Williams, D G; Johnson, M K

    1981-01-01

    The particulate fraction from hen brain was labelled with [3H]di-isopropyl phosphorofluoridate (DiPF) and separated by polyacrylamide-gel electrophoresis. Four radioactive protein bands (1--4) of molecular weights 155000, 92000, 60000, and 30000 were resolved. Most of the labelling of bands 2, 3 and 4 was inhibited by preincubation with Paraoxon. The residue in band 4 was sensitive to pH 5.2. Successive treatments with Paraoxon and pH 5.2 resulted in the abolition of bands 3 and 4. Bands 1 and 2 contained one and two polypeptides respectively, whose labelling was sensitive to Mipafox, but one, in band 2, was sensitive to higher concentrations of Paraoxon. The concentrations of the other two polypeptides were 6.7 and 1.95 pmol of DiPF bound/g of brain in bands 1 and 2 respectively. Both were as sensitive to Mipafox as neurotoxic esterase and were also sensitive to phenyl benzylcarbamate. 4-Nitrophenyl di-n-pentylphosphinate given in vivo inhibited neurotoxic esterase and the labelling of the band-1 polypeptide by 82% and 84% respectively, but inhibited the labelling of the band 2 polypeptide by 51%. The phosphinate in vitro produced 98% inhibition of the labelling of the band-1 polypeptide, with only 26% inhibition of the band-2 polypeptide, under conditions sufficient to inhibit neurotoxic esterase totally. Both neurotoxic esterase and the band-1 polypeptide were found in the forebrain at 1.74-fold their concentration in the rest of the brain, whereas the band-2 polypeptide was uniformly distributed. The evidence indicates that the Mipafox-sensitive polypeptide in band 1 is the [3H]DiPF-labelled active-site subunit of neurotoxic esterase. The catalytic-centre activity of the enzyme for phenyl valerate hydrolysis was found to be 2.6 x 10(5) min-1. PMID:7340807

  1. Preliminary probiotic and technological characterization of Pediococcus pentosaceus strain KID7 and in vivo assessment of its cholesterol-lowering activity.

    PubMed

    Damodharan, Karthiyaini; Lee, Young Sil; Palaniyandi, Sasikumar A; Yang, Seung Hwan; Suh, Joo-Won

    2015-01-01

    The study was aimed to characterize the probiotic properties of a Pediococcus pentosaceus strain, KID7, by in vitro and in vivo studies. The strain possessed tolerance to oro-gastrointestinal transit, adherence to the Caco-2 cell line, and antimicrobial activity. KID7 exhibited bile salt hydrolase activity and cholesterol-lowering activity, in vitro. In vivo cholesterol-lowering activity of KID7 was studied using atherogenic diet-fed hypercholesterolemic mice. The experimental animals (C57BL/6J mice) were divided into 4 groups viz., normal diet-fed group (NCD), atherogenic diet-fed group (HCD), atherogenic diet- and KID7-fed group (HCD-KID7), and atherogenic diet- and Lactobacillus acidophilus ATCC 43121-fed group (HCD-L.ac) as positive control. Serum total cholesterol (T-CHO) level was significantly decreased by 19.8% in the HCD-KID7 group (P < 0.05), but not in the HCD-L.ac group compared with the HCD group. LDL cholesterol levels in both HCD-KID7 and HCD-L.ac groups were decreased by 35.5 and 38.7%, respectively, compared with HCD group (both, P < 0.05). Glutamyl pyruvic transaminase (GPT) level was significantly lower in the HCD-KID7 and HCD-L.ac groups compared to HCD group and was equivalent to that of the NCD group. Liver T-CHO levels in the HCD-KID7 group were reduced significantly compared with the HCD group (P < 0.05) but not in the HCD-L.ac group. Analysis of expression of genes associated with lipid metabolism in liver showed that low-density lipoprotein receptor (LDLR), cholesterol-7α-hydroxylase (CYP7A1) and apolipoprotein E (APOE) mRNA expression was significantly increase in the HCD-KID7 group compared to the HCD group. Furthermore, KID7 exhibited desired viability under freeze-drying and subsequent storage conditions with a combination of skim milk and galactomannan. P. pentosaceus KID7 could be a potential probiotic strain, which can be used to develop cholesterol-lowering functional food after appropriate human clinical trials. PMID:26300852

  2. Preliminary probiotic and technological characterization of Pediococcus pentosaceus strain KID7 and in vivo assessment of its cholesterol-lowering activity

    PubMed Central

    Damodharan, Karthiyaini; Lee, Young Sil; Palaniyandi, Sasikumar A.; Yang, Seung Hwan; Suh, Joo-Won

    2015-01-01

    The study was aimed to characterize the probiotic properties of a Pediococcus pentosaceus strain, KID7, by in vitro and in vivo studies. The strain possessed tolerance to oro-gastrointestinal transit, adherence to the Caco-2 cell line, and antimicrobial activity. KID7 exhibited bile salt hydrolase activity and cholesterol-lowering activity, in vitro. In vivo cholesterol-lowering activity of KID7 was studied using atherogenic diet-fed hypercholesterolemic mice. The experimental animals (C57BL/6J mice) were divided into 4 groups viz., normal diet-fed group (NCD), atherogenic diet-fed group (HCD), atherogenic diet- and KID7-fed group (HCD-KID7), and atherogenic diet- and Lactobacillus acidophilus ATCC 43121-fed group (HCD-L.ac) as positive control. Serum total cholesterol (T-CHO) level was significantly decreased by 19.8% in the HCD-KID7 group (P < 0.05), but not in the HCD-L.ac group compared with the HCD group. LDL cholesterol levels in both HCD-KID7 and HCD-L.ac groups were decreased by 35.5 and 38.7%, respectively, compared with HCD group (both, P < 0.05). Glutamyl pyruvic transaminase (GPT) level was significantly lower in the HCD-KID7 and HCD-L.ac groups compared to HCD group and was equivalent to that of the NCD group. Liver T-CHO levels in the HCD-KID7 group were reduced significantly compared with the HCD group (P < 0.05) but not in the HCD-L.ac group. Analysis of expression of genes associated with lipid metabolism in liver showed that low-density lipoprotein receptor (LDLR), cholesterol-7α-hydroxylase (CYP7A1) and apolipoprotein E (APOE) mRNA expression was significantly increase in the HCD-KID7 group compared to the HCD group. Furthermore, KID7 exhibited desired viability under freeze-drying and subsequent storage conditions with a combination of skim milk and galactomannan. P. pentosaceus KID7 could be a potential probiotic strain, which can be used to develop cholesterol-lowering functional food after appropriate human clinical trials. PMID:26300852

  3. Cholesterol inhibits the nuclear entry of estrogen receptor activation factor (E-RAF) and its dimerization with the nonactivated estrogen receptor (naER) in goat uterus.

    PubMed

    Thampan, R V; Zafar, A; Imam, N S; Sreeja, S; Suma, K; Vairamani, M

    2000-04-01

    An alternative form of estrogen receptor isolated from goat uterus, the nonactivated estrogen receptor (naER), has no DNA-binding function, although it is closely similar to the classical estrogen receptor (ER) in its hormone binding affinity and specificity. The naER dimerizes with a DNA binding protein, estrogen receptor activation factor (E-RAF). The heterodimer binds to the DNA. Assays carried out during the purification of E-RAF showed that an endogenous inhibitor that is heat stable and dialyzable bound to the E-RAF and prevented the formation of the heterodimer. The inhibitor has been isolated and purified. GC-MS analysis identifies this molecule to be cholesterol. Circular dichroism measurement has shown that the high-affinity binding of cholesterol to E-RAF results in subtle changes in the secondary and the tertiary structure of the protein. The E-RAF with altered conformation fails to dimerize with the naER. Instead of facilitating E-RAF entry into the nucleus, dimerization with the naER prevents it. Similarly, cholesterol binding blocks the nuclear entry of the protein, showing that E-RAF with altered conformation is incapable of interaction with the nuclear pore complex/membrane proteins. The naER-E-RAF heterodimer remains at the nuclear periphery, incapable of further transport. These results indicate the possibility that the dimerization between naER and the E-RAF takes place only within the nuclear compartment. The observation that cholesterol binding prevents nuclear entry of the E-RAF reflects the similarity of E-RAF with the sterol regulatory element (SRE) binding protein that enters the nucleus and binds to SRE only when the intracellular level of cholesterol remains low. PMID:10760947

  4. Cholesterol inhibits the nuclear entry of estrogen receptor activation factor (E-RAF) and its dimerization with the nonactivated estrogen receptor (naER) in goat uterus.

    PubMed

    Thampan, R V; Zafar, A; Imam, N S; Sreeja, S; Suma, K; Vairamani, M

    2000-04-01

    An alternative form of estrogen receptor isolated from goat uterus, the nonactivated estrogen receptor (naER), has no DNA-binding function, although it is closely similar to the classical estrogen receptor (ER) in its hormone binding affinity and specificity. The naER dimerizes with a DNA binding protein, estrogen receptor activation factor (E-RAF). The heterodimer binds to the DNA. Assays carried out during the purification of E-RAF showed that an endogenous inhibitor that is heat stable and dialyzable bound to the E-RAF and prevented the formation of the heterodimer. The inhibitor has been isolated and purified. GC-MS analysis identifies this molecule to be cholesterol. Circular dichroism measurement has shown that the high-affinity binding of cholesterol to E-RAF results in subtle changes in the secondary and the tertiary structure of the protein. The E-RAF with altered conformation fails to dimerize with the naER. Instead of facilitating E-RAF entry into the nucleus, dimerization with the naER prevents it. Similarly, cholesterol binding blocks the nuclear entry of the protein, showing that E-RAF with altered conformation is incapable of interaction with the nuclear pore complex/membrane proteins. The naER-E-RAF heterodimer remains at the nuclear periphery, incapable of further transport. These results indicate the possibility that the dimerization between naER and the E-RAF takes place only within the nuclear compartment. The observation that cholesterol binding prevents nuclear entry of the E-RAF reflects the similarity of E-RAF with the sterol regulatory element (SRE) binding protein that enters the nucleus and binds to SRE only when the intracellular level of cholesterol remains low.

  5. Purification and characterization of an extracellular esterase with organic solvent tolerance from a halotolerant isolate, Salimicrobium sp. LY19

    PubMed Central

    2013-01-01

    Background Halotolerant bacteria are excellent sources for selecting novel enzymes. Being intrinsically stable and active under high salinities, enzymes from these prokaryotes have evolved to function optimally under extreme conditions, making them robust biocatalysts with potential applications in harsh industrial processes. Results A halotolerant strain LY19 showing lipolytic activity was isolated from saline soil of Yuncheng Salt Lake, China. It was identified as belonging to the genus of Salimicrobium by 16S rRNA gene sequence analysis. The extracellular enzyme was purified to homogeneity with molecular mass of 57 kDa by SDS-PAGE. Substrate specificity test revealed that the enzyme preferred short-chain p-nitrophenyl esters and exhibited maximum activity towards p-nitrophenyl butyrate (p-NPB), indicating an esterase activity. The esterase was highly active and stable over broad temperature (20°C-70°C), pH (7.0-10.0) and NaCl concentration (2.5%-25%) ranges, with an optimum at 50°C, pH 7.0 and 5% NaCl. Significant inhibition of the esterase was shown by ethylenediaminetetraacetic acid (EDTA), phenylmethylsulfonyl fluoride (PMSF) and phenylarsine oxide (PAO), which indicated that it was a metalloenzyme with serine and cysteine residues essential for enzyme activity. Moreover, the esterase displayed high activity and stability in the presence of hydrophobic organic solvents with log Pow ≥ 0.88 than in the absence of an organic solvent or in the presence of hydrophilic solvents. Conclusions Results from the present study indicated the novel extracellular esterase from Salimicrobium sp. LY19 exhibited thermostable, alkali-stable, halotolerant and organic solvent-tolerant properties. These features led us to conclude that the esterase may have considerable potential for industrial applications in organic synthesis reactions. PMID:24325447

  6. Heterologous Expression of Two Ferulic Acid Esterases from Penicillium funiculosum

    NASA Astrophysics Data System (ADS)

    Knoshaug, Eric P.; Selig, Michael J.; Baker, John O.; Decker, Stephen R.; Himmel, Michael E.; Adney, William S.

    Two recombinant ferulic acid esterases from Penicillium funiculosum produced in Aspergillus awamori were evaluated for their ability to improve the digestibility of pretreated corn stover. The genes, faeA and faeB, were cloned from P. funiculosum and expressed in A. awamori using their native signal sequences. Both enzymes contain a catalytic domain connected to a family 1 carbohydrate-binding module by a threonine-rich linker peptide. Interestingly, the carbohydrate binding-module is N-terminal in FaeA and C-terminal in FaeB. The enzymes were purified to homogeneity using column chromatography, and their thermal stability was characterized by differential scanning microcalorimetry. We evaluated both enzymes for their potential to enhance the cellulolytic activity of purified Trichoderma reesei Cel7A on pretreated corn stover.

  7. Heterologous Expression of Two Ferulic Acid Esterases from Penicillium Funiculosum

    SciTech Connect

    Knoshaug, E. P.; Selig, M. J.; Baker, J. O.; Decker, S. R.; Himmel, M. E.; Adney, W. S.

    2008-01-01

    Two recombinant ferulic acid esterases from Penicillium funiculosum produced in Aspergillus awamori were evaluated for their ability to improve the digestibility of pretreated corn stover. The genes, faeA and faeB, were cloned from P. funiculosum and expressed in A. awamori using their native signal sequences. Both enzymes contain a catalytic domain connected to a family 1 carbohydrate-binding module by a threonine-rich linker peptide. Interestingly, the carbohydrate binding-module is N-terminal in FaeA and C-terminal in FaeB. The enzymes were purified to homogeneity using column chromatography, and their thermal stability was characterized by differential scanning microcalorimetry. We evaluated both enzymes for their potential to enhance the cellulolytic activity of purified Trichoderma reesei Cel7A on pretreated corn stover.

  8. Esterase variation at three loci in meat ants.

    PubMed

    Halliday, R B

    1979-01-01

    The meat ant (Iridomyrmex purpureus) occurs in a number of color forms, with uncertain taxonomic status. Gel electrophresis of meat ant extracts, followed by nonspecific esterase staining, reveals several zones of activity. Allelic variation at three loci is proposed to account for variation in some of these zones. Two of the loci (Es-1, Es-2) appear to have recessive null alleles, whose frequencies have been estimated by the method of maximum likelihood. Geographic variation in allele frequency is attributed to behavioral and geographic subdivision of the population. Apparent disturbances in segregation ratios and deviations from Hardy-Weinberg equilibrium can be accounted for if it is argued that some nests contain more than one queen. Differences in gene frequency between sympatric populations of the red and blue forms of I. purpureus are observed, confirming their reproductive is isolation and sibling species status.

  9. β-Glucuronidase-coupled assays of glucuronoyl esterases.

    PubMed

    Fraňová, Lucia; Puchart, Vladimír; Biely, Peter

    2016-10-01

    Glucuronoyl esterases (GEs) are microbial enzymes with potential to cleave the ester bonds between lignin alcohols and xylan-bound 4-O-methyl-d-glucuronic acid in plant cell walls. This activity renders GEs attractive research targets for biotechnological applications. One of the factors impeding the progress in GE research is the lack of suitable substrates. In this work, we report a facile preparation of methyl esters of chromogenic 4-nitrophenyl and 5-bromo-4-chloro-3-indolyl β-D-glucuronides for qualitative and quantitative GE assay coupled with β-glucuronidase as the auxiliary enzyme. The indolyl derivative affording a blue indigo-type product is suitable for rapid and sensitive assay of GE in commercial preparations as well as for high throughput screening of microorganisms and genomic and metagenomic libraries. PMID:27452816

  10. Effect of serum lipoproteins and cholesterol on an exogenous pulmonary surfactant. ESR analysis of structural changes and their relation with surfactant activity.

    PubMed

    Martínez Sarrasague, María; Cimato, Alejandra; Piehl, Lidia; Brites, Fernando; Facorro, Graciela

    2013-12-01

    The study of structural changes in the surfactant may help to understand the mechanisms by which the surfactant is inactivated by serum. Here, we compared the in vitro effects of serum, albumin, lipoproteins (VLDL, LDL, HDL) and cholesterol on the dynamic and structural properties of surfactant suspensions by electronic spin resonance and surface tension measurements. Our results showed that albumin seems to be responsible for macrostructure disaggregation and increased rigidity in the hydrophobic region, but it did not affect surfactant activity. Fluidity in the polar area seems to be critical for proper physiological activity, and the changes induced by serum observed in this area would be generated by HDL or cholesterol, but the amount of cholesterol transferred by serum is not significant. Statistical analysis showed that surfactant activity correlated with the fluidity in the polar area but not with that in the hydrophobic region. We obtained strong evidence that among all the serum components tested, HDL is the one that causes the structural changes that compromise surfactant performance.

  11. Fabrication and Optimization of ChE/ChO/HRP-AuNPs/c-MWCNTs Based Silver Electrode for Determining Total Cholesterol in Serum.

    PubMed

    Lata, Kusum; Dhull, Vikas; Hooda, Vikas

    2016-01-01

    The developed method used three enzymes comprised of cholesterol esterase, cholesterol oxidase, and peroxidase for fabrication of amperometric biosensor in order to determine total cholesterol in serum samples. Gold nanoparticles (AuNPs) and carboxylated multiwall carbon nanotubes (cMWCNTs) were used to design core of working electrode, having covalently immobilized ChO, ChE, and HRP. Polyacrylamide layer was finally coated on working electrode in order to prevent enzyme leaching. Chemically synthesised Au nanoparticles were subjected to transmission electron microscopy (TEM) for analysing the shape and size of the particles. Working electrode was subjected to FTIR and XRD. The combined action of AuNP and c-MWCNT showed enhancement in electrocatalytic activity at a very low potential of 0.27 V. The pH 7, temperature 40°C, and response time of 20 seconds, respectively, were observed. The biosensor shows a broad linear range from 0.5 mg/dL to 250 mg/dL (0.01 mM-5.83 mM) with minimum detection limit being 0.5 mg/dL (0.01 mM). The biosensor showed reusability of more than 45 times and was stable for 60 days. The biosensor was successfully tested for determining total cholesterol in serum samples amperometrically with no significant interference by serum components. PMID:26885393

  12. Fabrication and Optimization of ChE/ChO/HRP-AuNPs/c-MWCNTs Based Silver Electrode for Determining Total Cholesterol in Serum

    PubMed Central

    Lata, Kusum; Dhull, Vikas

    2016-01-01

    The developed method used three enzymes comprised of cholesterol esterase, cholesterol oxidase, and peroxidase for fabrication of amperometric biosensor in order to determine total cholesterol in serum samples. Gold nanoparticles (AuNPs) and carboxylated multiwall carbon nanotubes (cMWCNTs) were used to design core of working electrode, having covalently immobilized ChO, ChE, and HRP. Polyacrylamide layer was finally coated on working electrode in order to prevent enzyme leaching. Chemically synthesised Au nanoparticles were subjected to transmission electron microscopy (TEM) for analysing the shape and size of the particles. Working electrode was subjected to FTIR and XRD. The combined action of AuNP and c-MWCNT showed enhancement in electrocatalytic activity at a very low potential of 0.27 V. The pH 7, temperature 40°C, and response time of 20 seconds, respectively, were observed. The biosensor shows a broad linear range from 0.5 mg/dL to 250 mg/dL (0.01 mM–5.83 mM) with minimum detection limit being 0.5 mg/dL (0.01 mM). The biosensor showed reusability of more than 45 times and was stable for 60 days. The biosensor was successfully tested for determining total cholesterol in serum samples amperometrically with no significant interference by serum components. PMID:26885393

  13. The Structural Basis of Cholesterol Accessibility in Membranes

    PubMed Central

    Olsen, Brett N.; Bielska, Agata A.; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-01-01

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity. PMID:24138860

  14. MEK1/2 inhibitors activate macrophage ABCG1 expression and reverse cholesterol transport-An anti-atherogenic function of ERK1/2 inhibition.

    PubMed

    Zhang, Ling; Chen, Yuanli; Yang, Xiaoxiao; Yang, Jie; Cao, Xingyue; Li, Xiaoju; Li, Luyuan; Miao, Qing Robert; Hajjar, David P; Duan, Yajun; Han, Jihong

    2016-09-01

    Expression of ATP-binding cassette transporter G1 (ABCG1), a molecule facilitating cholesterol efflux to HDL, is activated by liver X receptor (LXR). In this study, we investigated if inhibition of ERK1/2 can activate macrophage ABCG1 expression and functions. MEK1/2 inhibitors, PD98059 and U0126, increased ABCG1 mRNA and protein expression, and activated the natural ABCG1 promoter but not the promoter with the LXR responsive element (LXRE) deletion. Inhibition of ABCG1 expression by ABCG1 siRNA did enhance the formation of macrophage/foam cells and it attenuated the inhibitory effect of MEK1/2 inhibitors on foam cell formation. MEK1/2 inhibitors activated macrophage cholesterol efflux to HDL in vitro, and they enhanced reverse cholesterol transport (RCT) in vivo. ApoE deficient (apoE(-/-)) mice receiving U0126 treatment had reduced sinus lesions in the aortic root which was associated with activated macrophage ABCG1 expression in the lesion areas. MEK1/2 inhibitors coordinated the RXR agonist, but not the LXR agonist, to induce ABCG1 expression. Furthermore, induction of ABCG1 expression by MEK1/2 inhibitors was associated with activation of SIRT1, a positive regulator of LXR activity, and inactivation of SULT2B1 and RIP140, two negative regulators of LXR activity. Taken together, our study suggests that MEK1/2 inhibitors activate macrophage ABCG1 expression/RCT, and inhibit foam cell formation and lesion development by multiple mechanisms, supporting the concept that ERK1/2 inhibition is anti-atherogenic. PMID:27365310

  15. Antiatherogenic activity of extracts of Argania spinosa L. pericarp: beneficial effects on lipid peroxidation and cholesterol homeostasis.

    PubMed

    Berrougui, Hicham; Cherki, Mounia; Koumbadinga, Geremy Abdull; Isabelle, Maxim; Douville, Jasmin; Spino, Claude; Khalil, Abdelouahed

    2007-09-01

    Prevention of lipoprotein oxidation by natural compounds may prevent atherosclerosis via reducing early atherogenesis. In this study, we investigated for the first time the beneficial properties of methanolic extract of argania pericarp (MEAP) towards atherogenesis by protecting human low-density lipoprotein (LDL) against oxidation while promoting high-density lipoprotein (HDL)-mediated cholesterol efflux. By measuring the formation of malondialdehyde (MDA) and conjugated diene as well as the lag phase and the progression rate of lipid peroxidation, the MEAP was found to possess an inhibitory effect. In addition, MEAP reduced the rate of disappearance of alpha-tocopherol as well as the apoB electrophoretic mobility in a dose-dependent manner. These effects are related to the free radical scavenging and copper-chelating effects of MEAP. In terms of cell viability, MEAP has shown a cytotoxic effect (0-40 microg/mL). Incubation of 3H-cholesterol-loaded J774 macrophages with HDL in the presence of increasing concentrations of MEAP enhanced HDL-mediated cholesterol efflux independently of ABCA1 receptor pathways. Our findings suggest that argania seed pericarp provides a source of natural antioxidants that inhibit LDL oxidation and enhance cholesterol efflux and thus can prevent development of cardiovascular diseases. PMID:18066138

  16. Rapid labeling of lipoproteins in plasma with radioactive cholesterol. Application for measurement of plasma cholesterol esterification

    SciTech Connect

    Yen, F.T.; Nishida, T. )

    1990-02-01

    In order to efficiently and rapidly label lipoproteins in plasma with ({sup 3}H)cholesterol, micelles consisting of lysophosphatidylcholine (lysoPC) and ({sup 3}H)cholesterol (molar ratio, 50:1) were prepared. When trace amounts of these micelles were injected into plasma, ({sup 3}H)cholesterol rapidly equilibrated among the plasma lipoproteins, as compared to ({sup 3}H)cholesterol from an albumin-stabilized emulsion. The distributions of both ({sup 3}H)cholesterol and unlabeled free cholesterol in plasma lipoproteins were similar in labeled plasma samples. This method of labeling can be used for the measurement of cholesterol esterification, or lecithin:cholesterol acyltransferase activity, in small amounts (20-40 microliters) of plasma samples.

  17. Black pepper and piperine reduce cholesterol uptake and enhance translocation of cholesterol transporter proteins.

    PubMed

    Duangjai, Acharaporn; Ingkaninan, Kornkanok; Praputbut, Sakonwun; Limpeanchob, Nanteetip

    2013-04-01

    Black pepper (Piper nigrum L.) lowers blood lipids in vivo and inhibits cholesterol uptake in vitro, and piperine may mediate these effects. To test this, the present study aimed to compare actions of black pepper extract and piperine on (1) cholesterol uptake and efflux in Caco-2 cells, (2) the membrane/cytosol distribution of cholesterol transport proteins in these cells, and (3) the physicochemical properties of cholesterol micelles. Piperine or black pepper extract (containing the same amount of piperine) dose-dependently reduced cholesterol uptake into Caco-2 cells in a similar manner. Both preparations reduced the membrane levels of NPC1L1 and SR-BI proteins but not their overall cellular expression. Micellar cholesterol solubility of lipid micelles was unaffected except by 1 mg/mL concentration of black pepper extract. These data suggest that piperine is the active compound in black pepper and reduces cholesterol uptake by internalizing the cholesterol transporter proteins.

  18. Prosopis farcta beans increase HDL cholesterol and decrease LDL cholesterol in ostriches (Struthio camelus).

    PubMed

    Omidi, Arash; Ansari nik, Hossein; Ghazaghi, Mahmood

    2013-02-01

    Ten blue-neck male ostriches (Struthio camelus) were fed Prosopis farcta beans throughout a 30-day experiment. Blood samples were collected from ostriches on days 0 and 30 to measure levels of high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglyceride, total serum protein, albumin, globulin, cholesterol, calcium, inorganic phosphorus, the activity of aspartate aminotransferase, alanine aminotransferase, and γ-glutamyl transferase (γ-GT). From days 0 to 30, HDL cholesterol, total protein, and globulins levels increased significantly whereas LDL cholesterol, inorganic phosphorus, and γ-GT activity decreased significantly.

  19. A non-modular type B feruloyl esterase from Neurospora crassa exhibits concentration-dependent substrate inhibition.

    PubMed Central

    Crepin, Valerie F; Faulds, Craig B; Connerton, Ian F

    2003-01-01

    Feruloyl esterases, a subclass of the carboxylic acid esterases (EC 3.1.1.1), are able to hydrolyse the ester bond between the hydroxycinnamic acids and sugars present in the plant cell wall. The enzymes have been classified as type A or type B, based on their substrate specificity for aromatic moieties. We show that Neurospora crassa has the ability to produce multiple ferulic acid esterase activities depending upon the length of fermentation with either sugar beet pulp or wheat bran substrates. A gene identified on the basis of its expression on sugar beet pulp has been cloned and overexpressed in Pichia pastoris. The gene encodes a single-domain ferulic acid esterase, which represents the first report of a non-modular type B enzyme (fae-1 gene; GenBank accession no. AJ293029). The purified recombinant protein has been shown to exhibit concentration-dependent substrate inhibition (K(m) 0.048 mM, K (i) 2.5 mM and V(max) 8.2 units/mg against methyl 3,4-dihydroxycinnamate). The kinetic behaviour of the non-modular enzyme is discussed in terms of the diversity in the roles of the feruloyl esterases in the mobilization of plant cell wall materials and their respective modes of action. PMID:12435269

  20. A New Strategy for Fluorogenic Esterase Probes Displaying Low Levels of Non-specific Hydrolysis.

    PubMed

    Kim, Sungwoo; Kim, Hyunjin; Choi, Yongdoo; Kim, Youngmi

    2015-06-26

    A new design for fluorescence probes of esterase activity that features a carboxylate-side pro-fluorophore is demonstrated with boron dipyrromethene (BODIPY)-based probes 1 a and 1 b. Because the design relies on the enzyme-catalyzed hydrolysis of an ester group that is not electronically activated, these probes exhibit a stability to background hydrolysis that is far superior to classical alcohol-side profluorophore-based probes, large signal-to-noise ratios, reduced sensitivity to pH variations, and high enzymatic reactivity. The utility of probe 1 a was established with a real-time fluorescence imaging experiment of endogenous esterase activity that does not require washing of the extracellular medium. PMID:26033618

  1. Treatment with PPARα Agonist Clofibrate Inhibits the Transcription and Activation of SREBPs and Reduces Triglyceride and Cholesterol Levels in Liver of Broiler Chickens

    PubMed Central

    Zhang, Lijun; Li, Chunyan; Wang, Fang; Zhou, Shenghua; Shangguan, Mingjun; Xue, Lina; Zhang, Bianying; Ding, Fuxiang; Hui, Dequan; Liang, Aihua; He, Dongchang

    2015-01-01

    PPARα agonist clofibrate reduces cholesterol and fatty acid concentrations in rodent liver by an inhibition of SREBP-dependent gene expression. In present study we investigated the regulation mechanisms of the triglyceride- and cholesterol-lowering effect of the PPARα agonist clofibrate in broiler chickens. We observed that PPARα agonist clofibrate decreases the mRNA and protein levels of LXRα and the mRNA and both precursor and nuclear protein levels of SREBP1 and SREBP2 as well as the mRNA levels of the SREBP1 (FASN and GPAM) and SREBP2 (HMGCR and LDLR) target genes in the liver of treated broiler chickens compared to control group, whereas the mRNA level of INSIG2, which inhibits SREBP activation, was increased in the liver of treated broiler chickens compared to control group. Taken together, the effects of PPARα agonist clofibrate on lipid metabolism in liver of broiler chickens involve inhibiting transcription and activation of SREBPs and SREBP-dependent lipogenic and cholesterologenic gene expression, thereby resulting in a reduction of the triglyceride and cholesterol levels in liver of broiler chickens. PMID:26693219

  2. Est10: A Novel Alkaline Esterase Isolated from Bovine Rumen Belonging to the New Family XV of Lipolytic Enzymes

    PubMed Central

    Rodríguez, María Cecilia; Loaces, Inés; Amarelle, Vanesa; Senatore, Daniella; Iriarte, Andrés; Fabiano, Elena; Noya, Francisco

    2015-01-01

    A metagenomic fosmid library from bovine rumen was used to identify clones with lipolytic activity. One positive clone was isolated. The gene responsible for the observed phenotype was identified by in vitro transposon mutagenesis and sequencing and was named est10. The 367 amino acids sequence harbors a signal peptide, the conserved secondary structure arrangement of alpha/beta hydrolases, and a GHSQG pentapeptide which is characteristic of esterases and lipases. Homology based 3D-modelling confirmed the conserved spatial orientation of the serine in a nucleophilic elbow. By sequence comparison, Est10 is related to hydrolases that are grouped into the non-specific Pfam family DUF3089 and to other characterized esterases that were recently classified into the new family XV of lipolytic enzymes. Est10 was heterologously expressed in Escherichia coli as a His-tagged fusion protein, purified and biochemically characterized. Est10 showed maximum activity towards C4 aliphatic chains and undetectable activity towards C10 and longer chains which prompted its classification as an esterase. However, it was able to efficiently catalyze the hydrolysis of aryl esters such as methyl phenylacetate and phenyl acetate. The optimum pH of this enzyme is 9.0, which is uncommon for esterases, and it exhibits an optimal temperature at 40°C. The activity of Est10 was inhibited by metal ions, detergents, chelating agents and additives. We have characterized an alkaline esterase produced by a still unidentified bacterium belonging to a recently proposed new family of esterases. PMID:25973851

  3. Esterase patterns of species in the Drosophila buzzatii cluster.

    PubMed

    Lapenta, A S; de Campos Bicudo, H E; Ceron, C R; Cordeiro, J A

    1995-01-01

    A comparative analysis was made of the esterase isoenzyme patterns of eight iso-female lines, four of Drosophila serido (B31 D1, A55, B59, Q1, B50Q3), two of D. koepferae (B20D2 and B25D7), one of D. seriema (A95) and one of D. buzzatii (Buz). In all, 43 bands in the spectrum of esterase isoenzymes were detected by electrophoresis in polyacrylamide gels. They showed variations in specific reactions with alpha and beta-naphthyl acetate, number of patterns yielded in their intra-isofemale line combinations, frequencies of such combinations and the thickness and staining degree of some bands, in different individuals, lines and species. Among bands detected exclusively in males, seven may be considered sex-specific (5 alpha-esterases and 2 beta-esterases). These male-specific alpha-esterases have in common the inability to cleave beta-naphthyl acetate in the absence of alpha-naphthyl, denoting a possible common function. The similarity index (SI) and analysis of dependence were calculated in an attempt to quantify the differentiation of the iso-female lines studied, on the basis of esterase bands. SI mean value allowed the separation of the isofemale lines into five classes. Each species had its own pattern of esterase bands, but some bands were shared. A divergence hypothesis for the isofemale lines and the species is discussed.

  4. Crystallization and preliminary X-ray diffraction analysis of the glucuronoyl esterase catalytic domain from Hypocrea jecorina

    SciTech Connect

    Wood, S. J.; Li, X.-L.; Cotta, M. A.; Biely, P.; Duke, N. E. C.; Schiffer, M.; Pokkuluri, P. R.

    2008-04-01

    The catalytic domain of the glucuronoyl esterase from H. jecorina was overexpresssed, purified and crystallized in space group P2{sub 1}2{sub 1}2{sub 1}. X-ray diffraction data were collected to 1.9 Å resolution. The catalytic domain of the glucuronoyl esterase from Hypocrea jecorina (anamorph Trichoderma reesei) was overexpresssed, purified and crystallized by the sitting-drop vapor-diffusion method using 1.4 M sodium/potassium phosphate pH 6.9. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1} and X-ray diffraction data were collected to 1.9 Å resolution. This is the first enzyme with glucoronoyl esterase activity to be crystallized; its structure will be valuable in lignocellulose-degradation research.

  5. Coffee intake can promote activity of antioxidant enzymes with increasing MDA level and decreasing HDL-cholesterol in physically trained rats.

    PubMed

    Choi, Eun-Young; Jang, Jin-Young; Cho, Youn-Ok

    2010-08-01

    This study investigated the effect of coffee intake and exercise on the antioxidative activity and plasma cholesterol profile of physically trained rats while they were exercising. Forty eight rats were under either the control diet with water (C) or control diet with coffee (CF) and at the same time they were given physical training for 4 weeks. In terms of physical training, the rats were exercised on a treadmill for 30 minutes everyday. At the end of 4 weeks, animals in each dietary group were subdivided into 3 groups: before-exercise (BE); during-exercise (DE); after-exercise (AE). Animals in the DE group were exercised on a treadmill for one hour, immediately before being sacrificed. Animals in the AE group were allowed to take a rest for one hour after exercise. TG levels were significantly high in coffee intake group than in control group. Also TG level of AE group was significantly higher than that of BE group. Exercise and coffee-exercise interaction effects were significant in total cholesterol (P = 0.0004, 0.0170). The AE of coffee intake group showed highest total cholesterol levels. HDL-cholesterol was significantly lower in coffee intake group than in control group. Coffee, exercise, and coffee-exercise interaction effects were significant in SOD (P = 0.0001, 0.0001, and 0.0001). The AE and BE of coffee intake group showed higher SOD levels than the other four groups. Catalase activities were significantly higher in coffee intake group than control group. No significant main effect was found in GSH/GSSG. Coffee, exercise, and coffee-exercise interaction effects were significant in MDA levels (P = 0.0464, 0.0016, and 0.0353). The DE and AE of coffee intake group and the DE of control group showed higher MDA levels than the BE of control group. Therefore, coffee intake can promote activities of antioxidant enzyme but it also increases MDA and decreases HDL-cholesterol in physically trained rats.

  6. Coffee intake can promote activity of antioxidant enzymes with increasing MDA level and decreasing HDL-cholesterol in physically trained rats

    PubMed Central

    Choi, Eun-Young; Jang, Jin-Young

    2010-01-01

    This study investigated the effect of coffee intake and exercise on the antioxidative activity and plasma cholesterol profile of physically trained rats while they were exercising. Forty eight rats were under either the control diet with water (C) or control diet with coffee (CF) and at the same time they were given physical training for 4 weeks. In terms of physical training, the rats were exercised on a treadmill for 30 minutes everyday. At the end of 4 weeks, animals in each dietary group were subdivided into 3 groups: before-exercise (BE); during-exercise (DE); after-exercise (AE). Animals in the DE group were exercised on a treadmill for one hour, immediately before being sacrificed. Animals in the AE group were allowed to take a rest for one hour after exercise. TG levels were significantly high in coffee intake group than in control group. Also TG level of AE group was significantly higher than that of BE group. Exercise and coffee-exercise interaction effects were significant in total cholesterol (P = 0.0004, 0.0170). The AE of coffee intake group showed highest total cholesterol levels. HDL-cholesterol was significantly lower in coffee intake group than in control group. Coffee, exercise, and coffee-exercise interaction effects were significant in SOD (P = 0.0001, 0.0001, and 0.0001). The AE and BE of coffee intake group showed higher SOD levels than the other four groups. Catalase activities were significantly higher in coffee intake group than control group. No significant main effect was found in GSH/GSSG. Coffee, exercise, and coffee-exercise interaction effects were significant in MDA levels (P = 0.0464, 0.0016, and 0.0353). The DE and AE of coffee intake group and the DE of control group showed higher MDA levels than the BE of control group. Therefore, coffee intake can promote activities of antioxidant enzyme but it also increases MDA and decreases HDL-cholesterol in physically trained rats. PMID:20827343

  7. A molecular defect causing fish eye disease: an amino acid exchange in lecithin-cholesterol acyltransferase (LCAT) leads to the selective loss of alpha-LCAT activity.

    PubMed Central

    Funke, H; von Eckardstein, A; Pritchard, P H; Albers, J J; Kastelein, J J; Droste, C; Assmann, G

    1991-01-01

    Epidemiological as well as biochemical evidence of recent years has established that a low plasma level of high density lipoprotein-cholesterol is a predictor for the risk of coronary artery disease. However, there is a heterogeneous group of rare familial disorders, characterized by severe high density lipoprotein deficiency, in which the predicted increased risk is not clearly apparent. One such disorder has been called fish eye disease to reflect the massive corneal opacification seen in these patients. In this report, we describe the biochemical and genetic presentation of two German fish eye disease homozygotes and their family members. Vertical transmission of a decrease in the specific activity of lecithin-cholesterol acyltransferase (EC 2.3.1.43) indicated that this enzyme was a candidate gene for harboring the defect responsible for this disorder. Direct sequencing of DNA segments amplified by the polymerase chain reaction (PCR) that encode the exons of the lecithin-cholesterol acyltransferase gene led to the identification of a homozygous mutation resulting in the substitution of threonine at codon 123 for an isoleucine residue in both individuals. Family analysis in an extended pedigree was used to establish a causal relationship between this mutation and the biochemical phenotype for fish eye disease. The homozygous presence of this mutation in two phenotypically homozygous members of an unrelated Dutch family with fish eye disease further supports this finding. Images PMID:2052566

  8. Crystallization and preliminary X-ray diffraction analysis of the glucuronoyl esterase catalytic domain from Hypocrea jecorina.

    SciTech Connect

    Wood, S. J.; Li, X. -L.; Cotta, M. A.; Biely, P.; Duke, N. E. C.; Schiffer, M.; Pokkuluri, P. R.; Biosciences Division; National Center for Agricultural Utilization Research; Slovak Academy of Sciences

    2008-01-01

    The catalytic domain of the glucuronoyl esterase from Hypocrea jecorina (anamorph Trichoderma reesei) was overexpresssed, purified and crystallized by the sitting-drop vapor-diffusion method using 1.4 M sodium/potassium phosphate pH 6.9. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1} and X-ray diffraction data were collected to 1.9 {angstrom} resolution. This is the first enzyme with glucoronoyl esterase activity to be crystallized; its structure will be valuable in lignocellulose-degradation research.

  9. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARɣ and LXRα pathways

    PubMed Central

    Chinetti-Gbaguidi, Giulia; Baron, Morgane; Bouhlel, Mohamed Amine; Vanhoutte, Jonathan; Copin, Corinne; Sebti, Yasmine; Derudas, Bruno; Mayi, Thérèse; Bories, Gael; Tailleux, Anne; Haulon, Stéphane; Zawadzki, Christophe; Jude, Brigitte; Staels, Bart

    2011-01-01

    Rationale A crucial step in atherogenesis is the infiltration of the sub-endothelial space of large arteries by monocytes where they differentiate into macrophages and transform into lipid-loaded foam cells. Macrophages are heterogeneous cells which adapt their response to environmental cytokines. Th1 cytokines promote monocyte differentiation into M1 macrophages, while Th2 cytokines trigger an “alternative” M2 phenotype. Objective We previously reported the presence of CD68+MR+ M2 macrophages in human atherosclerotic plaques. However, the function of these plaque CD68+MR+ macrophages is still unknown. Methods and Results Histological analysis revealed that CD68+MR+ locate far from the lipid core of the plaque and contain smaller lipid droplets compared to CD68+MR− macrophages. IL-4 polarized CD68+MR+ display a reduced capacity to handle and efflux cellular cholesterol due to low expression levels of the nuclear receptor Liver X Receptor (LXR)α and its target genes, ABCA1 and ApoE, caused by the high 15-lipoxygenase activity in CD68+MR+ macrophages. By contrast, CD68+MR+ highly express opsonins and receptors involved in phagocytosis resulting in high phagocytic activity. In M2 macrophages, Peroxisome Proliferator-Activated receptor (PPAR)γ activation enhances the phagocytic, but not the cholesterol trafficking pathways. Conclusions These data identify a distinct macrophage sub-population with a low susceptibility to become foam cells, but high phagocytic activity due to different regulatory activities of the PPARγ-LXRα pathways. PMID:21350215

  10. Cholesterol-Independent Suppression of Lymphocyte Activation, Autoimmunity, and Glomerulonephritis by Apolipoprotein A-I in Normocholesterolemic Lupus-Prone Mice.

    PubMed

    Black, Leland L; Srivastava, Roshni; Schoeb, Trenton R; Moore, Ray D; Barnes, Stephen; Kabarowski, Janusz H

    2015-11-15

    Apolipoprotein (Apo)A-I, the major lipid-binding protein of high-density lipoprotein, can prevent autoimmunity and suppress inflammation in hypercholesterolemic mice by attenuating lymphocyte cholesterol accumulation and removing tissue-oxidized lipids. However, whether ApoA-I mediates immune-suppressive or anti-inflammatory effects under normocholesterolemic conditions and the mechanisms involved remain unresolved. We transferred bone marrow from systemic lupus erythematosus (SLE)-prone Sle123 mice into normal, ApoA-I-knockout (ApoA-I(-/-)) and ApoA-I-transgenic (ApoA-I(tg)) mice. Increased ApoA-I in ApoA-I(tg) mice suppressed CD4(+) T and B cell activation without changing lymphocyte cholesterol levels or reducing major ApoA-I-binding oxidized fatty acids. Unexpectedly, oxidized fatty acid peroxisome proliferator-activated receptor γ ligands 13- and 9-hydroxyoctadecadienoic acid were increased in lymphocytes of autoimmune ApoA-I(tg) mice. ApoA-I reduced Th1 cells independently of changes in CD4(+)Foxp3(+) regulatory T cells or CD11c(+) dendritic cell activation and migration. Follicular helper T cells, germinal center B cells, and autoantibodies were also lower in ApoA-I(tg) mice. Transgenic ApoA-I also improved SLE-mediated glomerulonephritis. However, ApoA-I deficiency did not have the opposite effects on autoimmunity or glomerulonephritis, possibly as the result of compensatory increases in ApoE on high-density lipoprotein. We conclude that, although compensatory mechanisms prevent the proinflammatory effects of ApoA-I deficiency in normocholesterolemic mice, increasing ApoA-I can attenuate lymphocyte activation and autoimmunity in SLE independently of cholesterol transport, possibly through oxidized fatty acid peroxisome proliferator-activated receptor γ ligands, and it can reduce renal inflammation in glomerulonephritis.

  11. The mitochondrial environment is required for activity of the cholesterol side-chain cleavage enzyme, cytochrome P450scc.

    PubMed Central

    Black, S M; Harikrishna, J A; Szklarz, G D; Miller, W L

    1994-01-01

    Steroidogenesis is initiated by the conversion of cholesterol to pregnenolone by mitochondrial cytochrome P450scc [cholesterol, reduced-adrenal-ferredoxin:oxygen oxidoreductase (side-chain-cleaving); EC 1.14.15.6]. Several subsequent steroidal conversions occur in the endoplasmic reticulum (ER), but the last step in the production of glucocorticoids and mineralocorticoids again occurs in the mitochondria. Although cellular compartmentalization of steroidogenic enzymes appears to be a feature of all steroidogenic pathways, some reports indicate that cholesterol can be converted to pregnenolone outside the mitochondria. To investigate whether P450scc can function outside the mitochondria, we constructed vectors producing P450scc and various fusion enzymes of P450scc with electron-transport proteins and directed their expression to either the ER or the mitochondria. Whether targeted to mitochondria or to the ER, plasmid vectors encoding P450scc and fusion proteins of P450scc with either mitochondrial or microsomal electron-transport proteins produced immunodetectable protein. When expressed in mitochondria, all of these constructions converted 22-hydroxycholesterol to pregnenolone, but when expressed in the ER none of them produced pregnenolone. These results show that P450scc can function only in the mitochondria. Furthermore, it appears to be the mitochondrial environment that is required, rather than the specific mitochondrial electron-transport intermediates. Images PMID:8041774

  12. A Chlorogenic Acid Esterase with a Unique Substrate Specificity from Ustilago maydis

    PubMed Central

    Haase-Aschoff, Paul; Kelle, Sebastian; Linke, Diana; Krings, Ulrich; Popper, Lutz; Berger, Ralf G.

    2014-01-01

    An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM−1 s−1, 7.63 mM−1 s−1, 3.83 mM−1 s−1 and 3.75 mM−1 s−1, respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme. PMID:25548041

  13. A chlorogenic acid esterase with a unique substrate specificity from Ustilago maydis.

    PubMed

    Nieter, Annabel; Haase-Aschoff, Paul; Kelle, Sebastian; Linke, Diana; Krings, Ulrich; Popper, Lutz; Berger, Ralf G

    2015-03-01

    An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM(-1) s(-1), 7.63 mM(-1) s(-1), 3.83 mM(-1) s(-1) and 3.75 mM(-1) s(-1), respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme.

  14. Heterologous Expression and Biochemical Characterisation of Fourteen Esterases from Helicoverpa armigera

    PubMed Central

    Li, Yongqiang; Coppin, Chris W.; Devonshire, Alan L.; Scott, Colin; East, Peter; Russell, Robyn J.; Oakeshott, John G.

    2013-01-01

    Esterases have recurrently been implicated in insecticide resistance in Helicoverpa armigera but little is known about the underlying molecular mechanisms. We used a baculovirus system to express 14 of 30 full-length esterase genes so far identified from midgut cDNA libraries of this species. All 14 produced esterase isozymes after native PAGE and the isozymes for seven of them migrated to two regions of the gel previously associated with both organophosphate and pyrethroid resistance in various strains. Thirteen of the enzymes obtained in sufficient yield for further analysis all showed tight binding to organophosphates and low but measurable organophosphate hydrolase activity. However there was no clear difference in activity between the isozymes from regions associated with resistance and those from elsewhere in the zymogram, or between eight of the isozymes from a phylogenetic clade previously associated with resistance in proteomic and quantitative rtPCR experiments and five others not so associated. By contrast, the enzymes differed markedly in their activities against nine pyrethroid isomers and the enzymes with highest activity for the most insecticidal isomers were from regions of the gel and, in some cases, the phylogeny that had previously been associated with pyrethroid resistance. Phospholipase treatment confirmed predictions from sequence analysis that three of the isozymes were GPI anchored. This unusual feature among carboxylesterases has previously been suggested to underpin an association that some authors have noted between esterases and resistance to the Cry1Ac toxin from Bacillus thuringiensis. However these three isozymes did not migrate to the zymogram region previously associated with Cry1Ac resistance. PMID:23799064

  15. Cholesterol testing and results

    MedlinePlus

    ... VLDL cholesterol) Lipoproteins are made of fat and protein. They carry cholesterol, triglycerides, and other fats, called ... Pencina MJ, Navar-Boggan AM, D'Agostino RB Sr, Williams K, Neely B, Sniderman AD, Peterson ED. ...

  16. Switching Catalysis from Hydrolysis to Perhydrolysis in Pseudomonas fluorescens Esterase

    SciTech Connect

    Yin, D.; Bernhardt, P; Morley, K; Jiang, Y; Cheeseman, J; Purpero, V; Schrag, J; Kazlauskas, R

    2010-01-01

    Many serine hydrolases catalyze perhydrolysis, the reversible formation of peracids from carboxylic acids and hydrogen peroxide. Recently, we showed that a single amino acid substitution in the alcohol binding pocket, L29P, in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. (2005) Angew. Chem., Int. Ed. 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two X-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of {var_epsilon}-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction, hydrolysis of peracetic acid to acetic acid and hydrogen peroxide, occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed 2-fold higher k{sub cat}, but K{sub m} also increased so the specificity constant, k{sub cat}/K{sub m}, remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate) but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of {var_epsilon}-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the

  17. Identification and characterization of a novel salt-tolerant esterase from a Tibetan glacier metagenomic library.

    PubMed

    De Santi, Concetta; Ambrosino, Luca; Tedesco, Pietro; Zhai, Lei; Zhou, Cheng; Xue, Yanfen; Ma, Yanhe; de Pascale, Donatella

    2015-01-01

    A salt-tolerant esterase, designated H9Est, was identified from a metagenomic library of the Karuola glacier. H9Est gene comprised 1071 bp and encoded a polypeptide of 357 amino acids with a molecular mass of 40 kDa. Sequence analysis revealed that H9Est belonged to the family IV of bacterial lypolitic enzyme. H9Est was overexpressed in Escherichia coli and the purified enzyme showed hydrolytic activity towards p-nitrophenyl esters with carbon chain from 2 to 8. The optimal esterase activity was at 40°C and pH 8.0 and the enzyme retained its activity towards some miscible organic solvents such as polyethylene glycol. A three-dimensional model of H9Est revealed that S200, D294, and H324 formed the H9Est catalytic triad. Circular Dichroism spectra and molecular dynamic simulation indicated that the esterase had a wide denaturation temperature range and flexible loops that would be beneficial for H9Est performance at low temperatures while retaining heat-resistant features. PMID:25920073

  18. Characterization of two metagenome-derived esterases that reactivate chloramphenicol by counteracting chloramphenicol acetyltransferase.

    PubMed

    Tao, Weixin; Lee, Myung Hwan; Yoon, Mi-Young; Kim, Jin-Cheol; Malhotra, Shweta; Wu, Jing; Hwang, Eul Chul; Lee, Seon-Woo

    2011-12-01

    Function-driven metagenomic analysis is a powerful approach to screening for novel biocatalysts. In this study, we investigated lipolytic enzymes selected from an alluvial soil metagenomic library, and identified two novel esterases, EstDL26 and EstDL136. EstDL26 and EstDL136 reactivated chloramphenicol from its acetyl derivates by counteracting the chloramphenicol acetyltransferase (CAT) activity in Escherichia coli. These two enzymes showed only 27% identity in amino acid sequence to each other; however both preferentially hydrolyzed short-chain p-nitrophenyl esters (< or =C5) and showed mesophilic properties. In vitro, EstDL136 catalyzed the deacetylation of 1- and 3- acetyl and 1,3-diacetyl derivates; in contrast, EstDL26 was not capable of the deacetylation at C1, indicating a potential regioselectivity. EstDL26 and EstDL136 were similar to microbial hormone-sensitive lipase (HSL), and since chloramphenicol acetate esterase (CAE) activity was detected from two other soil esterases in the HSL family, this suggests a distribution of CAE among the soil microorganisms. The isolation and characterization of EstDL26 and EstDL136 in this study may be helpful in understanding the diversity of CAE enzymes and their potential role in releasing active chloramphenicol in the producing bacteria. PMID:22210605

  19. Esterases of Varroa destructor (Acari: Varroidae), parasitic mite of the honeybee.

    PubMed

    Dmitryjuk, Małgorzata; Żołtowska, Krystyna; Frączek, Regina; Lipiński, Zbigniew

    2014-04-01

    Varroa destructor is an ectoparasite that causes serious damage to the population of the honeybee. Increasing resistance of the parasite to acaricides is related, among others, to metabolic adaptations of its esterases to facilitate decomposition of the chemicals used. Esterases are a large heterogeneous group of enzymes that metabolize a number of endogenous and exogenous substrates with ester binding. The aim of the present study was to determine the activity of esterases in the body extracts (BE) and excretion/secretion products (E/SP) of the mite. The enzymes contained in the E/SP should originate mainly from the salivary glands and the alimentary system and they may play a particularly important role in the first line of defence of the mite against acaricides. Activity of cholinesterases (ChEs) [acetylcholinesterase (AChE) and butyrylcholinesterase], carboxylesterases (CEs) and phosphatases [alkaline phosphatase (AP) and acid phosphatase (AcP)] was investigated. The activity of all the enzymes except AChE was higher in the E/SP than in the BE. ChEs from the BE and from the E/SP reacted differently on eserine, a ChE inhibitor. Eserine inhibited both enzymes from the BE, increased decomposition of acetylcholine, but did not influence hydrolysis of butyrylcholine by the E/SP. Activity of the CEs from the BE in relation to the esters of carboxylic acids can be presented in the following series: C10 > C12 > C14 > C8 > C2 > C4 = C16, while activity of the CEs from the E/SP was: C4 > C8 > C2 > C14 > C10 > C12 > C16. The inhibitor of CEs, triphenyl phosphate, reduced the activity of esterases C2–C8 and C14–C16; however, it acted in the opposite way to CEs C10 and C12. The activity of both phosphatases was higher in the E/SP than in the BE (AcP about twofold and AP about 2.6-fold); the activities of AP and AcP in the same material were similar. Given the role of esterases in resistance to pesticides, further studies are necessary to obtain complete biochemical

  20. Cholesterol and Plants

    ERIC Educational Resources Information Center

    Behrman, E. J.; Gopalan, Venkat

    2005-01-01

    There is a widespread belief among the public and even among chemist that plants do not contain cholesterol. This wrong belief is the result of the fact that plants generally contain only small quantities of cholesterol and that analytical methods for the detection of cholesterol in this range were not developed until recently.

  1. Avoiding Christmas cholesterol.

    PubMed

    1991-12-01

    Judging from your response to our September feature on cholesterol testing providing dietary advice has become of paramount importance to OHNs. The Flora Project for Heart Disease Prevention offers information on the risk factors of high cholesterol and has become a major noninstitutional authority on coronary heart disease. With Yuletide in sight The Flora Project offers advice on a cholesterol-clear Christmas.

  2. An enzyme thermistor-based assay for total and free cholesterol.

    PubMed

    Raghavan, V; Ramanathan, K; Sundaram, P V; Danielsson, B

    1999-11-01

    A method to evaluate the free (FC) and total cholesterol (TC) in human serum, bile and gallstone extract using an enzyme thermistor (ET)-based flow injection analysis (FIA) is presented. The cholesterol in high-density (HDL-C) and low density lipoprotein (LDL-C) have also been evaluated. A heparin functionalized Sepharose column was employed for the isolation of HDL and LDL fractions from serum. The estimation of cholesterol and its esters was based on their reaction with cholesterol oxidase (CO), cholesterol esterase (CE) and catalase (CAT). Three different enzyme columns, i.e. co-immobilized CO/CAT (column A), only CE (column B) and co-immobilized CO/CE/CAT (column C) were prepared by cross-linking the enzymes on glass beads using glutaraldehyde. Column A was used for estimating FC and column C was used for estimating total cholesterol (cholesterol plus esterified cholesterol). Column B was used as a pre-column which could be switched 'in' or 'out' in conjunction with column A for the estimation of TC or FC, respectively. A calibration between 1.0 and 8.0 mmol/l for FC and 0. 25 and 4.0 mmol/l for TC was obtained. For more than 2000 assays with the ET device a C.V. of less than 4% was obtained. The assay time was approximately 4 min per assay. The cholesterol estimations on the ET correlated well with similar estimations using a commercially available cholesterol diagnostic kit.

  3. α-Synuclein-induced synapse damage in cultured neurons is mediated by cholesterol-sensitive activation of cytoplasmic phospholipase A2.

    PubMed

    Bate, Clive; Williams, Alun

    2015-01-01

    The accumulation of aggregated forms of the α-synuclein (αSN) is associated with the pathogenesis of Parkinson's disease (PD) and Dementia with Lewy Bodies. The loss of synapses is an important event in the pathogenesis of these diseases. Here we show that aggregated recombinant human αSN, but not βSN, triggered synapse damage in cultured neurons as measured by the loss of synaptic proteins. Pre-treatment with the selective cytoplasmic phospholipase A2 (cPLA2) inhibitors AACOCF3 and MAFP protected neurons against αSN-induced synapse damage. Synapse damage was associated with the αSN-induced activation of synaptic cPLA2 and the production of prostaglandin E2. The activation of cPLA2 is the first step in the generation of platelet-activating factor (PAF) and PAF receptor antagonists (ginkgolide B or Hexa-PAF) also protect neurons against αSN-induced synapse damage. αSN-induced synapse damage was also reduced in neurons pre-treated with the cholesterol synthesis inhibitor (squalestatin). These results are consistent with the hypothesis that αSN triggered synapse damage via hyperactivation of cPLA2. They also indicate that αSN-induced activation of cPLA2 is influenced by the cholesterol content of membranes. Inhibitors of this pathway that can cross the blood brain barrier may protect against the synapse damage seen during PD. PMID:25761116

  4. Novel ferulate esterase from Gram-positive lactic acid bacteria and analyses of the recombinant enzyme produced in E. coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a plate containing ethyl ferulate as sole carbon source, various bacteria cultures were screened for ferulate esterase (FAE). Among a dozen of species showing positive FAE, one Lactobacillus fermentum strain NRRL 1932 demonstrated the strongest activity. Using a published sequence of ferulate ...

  5. Novel feruloyl esterase from Lactobacillus fermentum NRRL B-1932 and analysis of the recombinant enzyme produced in Escherichia coli.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using agar plates containing ethyl ferulate as the sole carbon source, 33 Lactobacillus strains were screened for feruloyl esterase (FE) activity. Among a dozen species showing a clearing zone on the opaque plate containing ethyl ferulate, Lactobacillus fermentum NRRL B-1932 demonstrated the stronge...

  6. Cloning, expression and characterization of a novel esterase from a South China Sea sediment metagenome

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Li, Fuchao; Chen, Huaxin; Zhao, Jin; Yan, Jinfei; Jiang, Peng; Li, Ronggui; Zhu, Baoli

    2015-07-01

    Lipolytic enzymes, including esterases and lipases, represent a group of hydrolases that catalyze the cleavage and formation of ester bonds. A novel esterase gene, scsEst01, was cloned from a South China Sea sediment metagenome. The scsEst01 gene consisted of 921 bp encoding 307 amino acid residues. The predicted amino acid sequence shared less than 90% identity with other lipolytic enzymes in the NCBI nonredundant protein database. ScsEst01 was successfully co-expressed in Escherichia coli BL21 (DE3) with chaperones (dnaK-dnaJ-grpE) to prevent the formation of inclusion bodies. The recombinant protein was purified on an immobilized metal ion affinity column containing chelating Sepharose charged with Ni2+. The enzyme was characterized using p -nitrophenol butyrate as a substrate. ScsEst01 had the highest lipolytic activity at 35°C and pH 8.0, indicative of a meso-thermophilic alkaline esterase. ScsEst01 was thermostable at 20°C. The lipolytic activity of scsEst01 was strongly increased by Fe2+, Mn2+ and 1% Tween 80 or Tween 20.

  7. Plasma Cholesterol-Lowering Activity of Lard Functionalized with Mushroom Extracts Is Independent of Niemann-Pick C1-like 1 Protein and ABC Sterol Transporter Gene Expression in Hypercholesterolemic Mice.

    PubMed

    Caz, Víctor; Gil-Ramírez, Alicia; Santamaría, Mónica; Tabernero, María; Soler-Rivas, Cristina; Martín-Hernández, Roberto; Marín, Francisco R; Reglero, Guillermo; Largo, Carlota

    2016-03-01

    Interest in food matrices supplemented with mushrooms as hypocholesterolemic functional foods is increasing. This study was to (i) investigate the hypocholesterolemic activity of lard functionalized with mushroom extracts (LF) including fungal β-glucans, water-soluble polysaccharides, or ergosterol and (ii) examine the LF influence on transcriptional mechanisms involved in cholesterol metabolism. mRNA levels of 17 cholesterol-related genes were evaluated in jejunum, cecum, and liver of high cholesterol-fed mice. The four tested LFs decreased plasma cholesterol by 22-42%, HDLc by 18-40%, and LDLc by 27-51%, and two of them increased mRNA levels of jejunal Npc1l1 and Abcg5 and hepatic Npc1l1. mRNA levels of other cholesterol-related genes were unchanged. These findings suggest that LF may have potential as a dietary supplement for counteracting diet-induced hypercholesterolemia and could be a source for the development of novel cholesterol-lowering functional foods. However, the cholesterol-lowering effect was unrelated to transcriptional changes, suggesting that post-transcriptional mechanisms could be involved.

  8. Biochemical Characterization of a Family 15 Carbohydrate Esterase from a Bacterial Marine Arctic Metagenome

    PubMed Central

    De Santi, Concetta; Willassen, Nils Peder

    2016-01-01

    Background The glucuronoyl esterase enzymes of wood-degrading fungi (Carbohydrate Esterase family 15; CE15) form part of the hemicellulolytic and cellulolytic enzyme systems that break down plant biomass, and have possible applications in biotechnology. Homologous enzymes are predicted in the genomes of several bacteria, however these have been much less studied than their fungal counterparts. Here we describe the recombinant production and biochemical characterization of a bacterial CE15 enzyme denoted MZ0003, which was identified by in silico screening of a prokaryotic metagenome library derived from marine Arctic sediment. MZ0003 has high similarity to several uncharacterized gene products of polysaccharide-degrading bacterial species, and phylogenetic analysis indicates a deep evolutionary split between these CE15s and fungal homologs. Results MZ0003 appears to differ from previously-studied CE15s in some aspects. Some glucuronoyl esterase activity could be measured by qualitative thin-layer chromatography which confirms its assignment as a CE15, however MZ0003 can also hydrolyze a range of other esters, including p-nitrophenyl acetate, which is not acted upon by some fungal homologs. The structure of MZ0003 also appears to differ as it is predicted to have several large loop regions that are absent in previously studied CE15s, and a combination of homology-based modelling and site-directed mutagenesis indicate its catalytic residues deviate from the conserved Ser-His-Glu triad of many fungal CE15s. Taken together, these results indicate that potentially unexplored diversity exists among bacterial CE15s, and this may be accessed by investigation of the microbial metagenome. The combination of low activity on typical glucuronoyl esterase substrates, and the lack of glucuronic acid esters in the marine environment suggest that the physiological substrate of MZ0003 and its homologs is likely to be different from that of related fungal enzymes. PMID:27433797

  9. Simultaneous determination of curcumin diethyl disuccinate and its active metabolite curcumin in rat plasma by LC-MS/MS: Application of esterase inhibitors in the stabilization of an ester-containing prodrug.

    PubMed

    Ratnatilaka Na Bhuket, Pahweenvaj; Niwattisaiwong, Nuansri; Limpikirati, Patanachai; Khemawoot, Phisit; Towiwat, Pasarapa; Ongpipattanakul, Boonsri; Rojsitthisak, Pornchai

    2016-10-15

    Four esterase inhibitors, ethylenediamine tetraacetic acid disodium (Na2EDTA), sodium fluoride (NaF), bis(4-nitrophenyl) phosphate (BNPP) and phenylmethanesulfonyl fluoride (PMSF), were evaluated for their inhibitory effects on enzymatic hydrolysis of labile phenolate esters in curcumin diethyl disuccinate (CDD), a prodrug of curcumin (CUR), in rat plasma. BNPP and PMSF at 10mM exhibited stabilization by preventing degradation of CDD. BNPP at a final concentration of 10mM was subsequently selected to prevent ex vivo metabolism of CDD throughout LC-MS/MS analysis of CDD and CUR in rat plasma. A simple protein precipitation technique using acetonitrile as a precipitating agent was used to extract CDD, CUR and dimethylcurcumin (DMC), an internal standard, from rat plasma. Chromatographic separation was performed on a Halo C8 column (4.6×50mm, 2.7μm) using an isocratic mobile phase containing acetonitrile-0.2% formic acid in water (73:27v/v) with a flow rate of 0.4mLmin(-1). An AB SCIEX QTRAP(®) 6500 mass spectrometer was operated using a positive ion electrospray mode for ionization and detection of analytes and internal standard. Calibration curves for CDD and CUR were established using 50μL of rat plasma over the concentration range of 1-500ngmL(-1). The developed method was fully validated according to US Food and Drug Administration (FDA) guidelines for selectivity, sensitivity, linearity, accuracy, precision, dilution integrity, recovery, matrix effect, and stability. The validated method was applied to evaluate the pharmacokinetics of CDD and CUR in rats after a single intravenous dose of 40mgkg(-1). The method using BNPP as an esterase inhibitor was successful in determining the remaining CDD in rat plasma. The pharmacokinetic results indicate that CDD in rats is converted instantaneously to CUR after intravenous administration and a higher CUR plasma concentration at 5min is achieved in comparison with direct intravenous injection of CUR. PMID:27595650

  10. Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm

    SciTech Connect

    Harholt, Jesper; Bach, Inga C; Lind-Bouquin, Solveig; Nunan, Kylie J.; Madrid, Susan M.; Brinch-Pedersen, Henrik; Holm, Preben B.; Scheller, Henrik V.

    2009-12-08

    Endo-xylanase (from Bacillus subtilis) or ferulic acid esterase (from Aspergillus niger) were expressed in wheat under the control of the endosperm specific 1DX5 glutenin promoter. Constructs both with and without the endoplasmic reticulum retention signal KDEL were used. Transgenic plants were recovered in all four cases but no qualitative differences could be observed whether KDEL was added or not. Endo-xylanase activity in transgenic grains was increased between two and three fold relative to wild type. The grains were shriveled and had a 25-33% decrease in mass. Extensive analysis of the cell walls showed a 10-15% increase in arabinose to xylose ratio, a 50% increase in the proportion of water extractable arabinoxylan, and a shift in the MW of the water extractable arabinoxylan from being mainly larger than 85 kD to being between 2 kD and 85 kD. Ferulic acid esterase expressing grains were also shriveled and the seed weight was decreased by 20-50%. No ferulic acid esterase activity could be detected in wild type grains whereas ferulic acid esterase activity was detected in transgenic lines. The grain cell walls had 15-40% increase in water unextractable arabinoxylan and a decrease in monomeric ferulic acid between 13 and 34%. In all the plants the observed changes are consistent with a plant response that serves to minimize the effect of the heterologously expressed enzymes by increasing arabinoxylan biosynthesis and cross-linking.

  11. Apolipoprotein A-I configuration and cell cholesterol efflux activity of discoidal lipoproteins depend on the reconstitution process.

    PubMed

    Cuellar, Luz Ángela; Prieto, Eduardo Daniel; Cabaleiro, Laura Virginia; Garda, Horacio Alberto

    2014-01-01

    Discoidal high-density lipoproteins (D-HDL) are critical intermediates in reverse cholesterol transport. Most of the present knowledge of D-HDL is based on studies with reconstituted lipoprotein complexes of apolipoprotein A-I (apoA-I) obtained by cholate dialysis (CD). D-HDL can also be generated by the direct microsolubilization (DM) of phospholipid vesicles at the gel/fluid phase transition temperature, a process mechanistically similar to the "in vivo" apoAI lipidation via ABCA1. We compared the apoA-I configuration in D-HDL reconstituted with dimyristoylphosphatidylcholine by both procedures using fluorescence resonance energy transfer measurements with apoA-I tryptophan mutants and fluorescently labeled cysteine mutants. Results indicate that apoA-I configuration in D-HDL depends on the reconstitution process and are consistent with a "double belt" molecular arrangement with different helix registry. As reported by others, a configuration with juxtaposition of helices 5 of each apoAI monomer (5/5 registry) predominates in D-HDL obtained by CD. However, a configuration with helix 5 of one monomer juxtaposed with helix 2 of the other (5/2 registry) would predominate in D-HDL generated by DM. Moreover, we also show that the kinetics of cholesterol efflux from macrophage cultures depends on the reconstitution process, suggesting that apoAI configuration is important for this HDL function. PMID:24201377

  12. Identification of petrogenic produced water components as acetylcholine esterase inhibitors.

    PubMed

    Froment, Jean; Langford, Katherine; Tollefsen, Knut Erik; Bråte, Inger Lise N; Brooks, Steven J; Thomas, Kevin V

    2016-08-01

    Effect-directed analysis (EDA) was applied to identify acetylcholine esterase (AChE) inhibitors in produced water. Common produced water components from oil production activities, such as polycyclic aromatic hydrocarbons (PAHs), alkylphenols, and naphthenic acids were tested for AChE inhibition using a simple mixture of PAHs and naphthenic acids. Produced water samples collected from two offshore platforms in the Norwegian sector of the North Sea were extracted by solid phase extraction and fractionated by open-column liquid solid chromatography and high-performance liquid chromatography (HPLC) before being tested using a high-throughput and automated AChE assay. The HPLC fractions causing the strongest AChE inhibition were analysed by gas chromatography coupled to a high-resolution time-of-flight mass spectrometry (GC-HR-ToF-MS). Butylated hydroxytoluene and 4-phenyl-1,2-dihydronaphthalene were identified as two produced water components capable of inhibiting AChE at low concentrations. In order to assess the potential presence of such compounds discharged into aquatic ecosystems, AChE activity in fish tissues was measured. Saithe (Pollachius virens) caught near two offshore platforms showed lower enzymatic activity than those collected from a reference location. Target analysis of saithe did not detected the presence of these two putative AChE inhibitors and suggest that additional compounds such as PAHs, naphthenic acids and yet un-identified compounds may also contribute to the purported AChE inhibition observed in saithe. PMID:27176761

  13. Organophosphorus compound esterase profiles as predictors of therapeutic and toxic effects.

    PubMed

    Makhaeva, Galina F; Radchenko, Eugene V; Palyulin, Vladimir A; Rudakova, Elena V; Aksinenko, Alexey Yu; Sokolov, Vladimir B; Zefirov, Nikolay S; Richardson, Rudy J

    2013-03-25

    Certain organophosphorus compounds (OPCs) inhibit various serine esterases (EOHs) via phosphorylation of their active site serines. We focused on 4 EOHs of particular toxicological interest: acetylcholinesterase (AChE: acute neurotoxicity; cognition enhancement), butyrylcholinesterase (BChE: inhibition of drug metabolism and/or stoichiometric scavenging of EOH inhibitors; cognition enhancement), carboxylesterase (CaE: inhibition of drug metabolism and/or stoichiometric scavenging of EOH inhibitors), and neuropathy target esterase (NTE: delayed neurotoxicity, OPIDN). The relative degree of inhibition of these EOHs constitutes the "esterase profile" of an OPC and serves as a major determinant of its net physiological effects. Thus, understanding and controlling the esterase profile of OPC activity and selectivity toward these 4 target enzymes is a significant undertaking. In the present study, we analyzed the inhibitor properties of 52 OPCs against the 4 EOHs, along with pairwise and multitarget selectivities between them, using 2 QSAR approaches: Hansch modeling and Molecular Field Topology Analysis (MFTA). The general formula of the OPCs was (RO)(2)P(O)X, where R = alkyl, X = - SCH(Hal)COOEt (Hal = Cl, Br), -SCHCl(2), -SCH(2)Br, -OCH(CF(3))R(1) (R(1) = C(6)H(5), CF(3), COOEt, COOMe). The Hansch model showed that increasing neuropathic potential correlated with rising R hydrophobicity; moreover, OPC binding to scavenger EOHs (BChE and CaE) had different effects on potential acute and delayed neurotoxicity. Predicted protective roles of BChE and CaE against acute toxicity were enhanced with increasing hydrophobicity, but projected protection against OPIDN was decreased. Next, Molecular Field Topology Analysis (MFTA) models were built, considering atomic descriptors, e.g., effective charge, van der Waals radius of environment, and group lipophilicity. Activity/selectivity maps confirmed predictions from Hansch models and revealed other structural factors affecting

  14. An immunomodulating fatty acid analogue targeting mitochondria exerts anti-atherosclerotic effect beyond plasma cholesterol-lowering activity in apoe(-/-) mice.

    PubMed

    Vik, Rita; Busnelli, Marco; Parolini, Cinzia; Bjørndal, Bodil; Holm, Sverre; Bohov, Pavol; Halvorsen, Bente; Brattelid, Trond; Manzini, Stefano; Ganzetti, Giulia S; Dellera, Federica; Nygård, Ottar K; Aukrust, Pål; Sirtori, Cesare R; Chiesa, Giulia; Berge, Rolf K

    2013-01-01

    Tetradecylthioacetic acid (TTA) is a hypolipidemic antioxidant with immunomodulating properties involving activation of peroxisome proliferator-activated receptors (PPARs) and proliferation of mitochondria. This study aimed to penetrate the effect of TTA on the development of atherosclerotic lesions in apolipoprotein (apo)-E(-/-) mice fed a high-fat diet containing 0.3% TTA for 12 weeks. These mice displayed a significantly less atherosclerotic development vs control. Plasma cholesterol was increased by TTA administration and triacylglycerol (TAG) levels in plasma and liver were decreased by TTA supplementation, the latter, probably due to increased mitochondrial fatty acid oxidation and reduced lipogenesis. TTA administration also changed the fatty acid composition in the heart, and the amount of arachidonic acid (ARA) and eicosapentaenoic acid (EPA) was reduced and increased, respectively. The heart mRNA expression of inducible nitric oxidase (NOS)-2 was decreased in TTA-treated mice, whereas the mRNA level of catalase was increased. Finally, reduced plasma levels of inflammatory mediators as IL-1α, IL-6, IL-17, TNF-α and IFN-γ were detected in TTA-treated mice. These data show that TTA reduces atherosclerosis in apoE(-/-) mice and modulates risk factors related to atherosclerotic disorders. TTA probably acts at both systemic and vascular levels in a manner independent of changes in plasma cholesterol, and triggers TAG catabolism through improved mitochondrial function. PMID:24324736

  15. Structure and properties of the esterase from non-LTR retrotransposons suggest a role for lipids in retrotransposition.

    PubMed

    Schneider, Anna M; Schmidt, Steffen; Jonas, Stefanie; Vollmer, Benjamin; Khazina, Elena; Weichenrieder, Oliver

    2013-12-01

    Non-LTR retrotransposons are mobile genetic elements and play a major role in eukaryotic genome evolution and disease. Similar to retroviruses they encode a reverse transcriptase, but their genomic integration mechanism is fundamentally different, and they lack homologs of the retroviral nucleocapsid-forming protein Gag. Instead, their first open reading frames encode distinct multi-domain proteins (ORF1ps) presumed to package the retrotransposon-encoded RNA into ribonucleoprotein particles (RNPs). The mechanistic roles of ORF1ps are poorly understood, particularly of ORF1ps that appear to harbor an enzymatic function in the form of an SGNH-type lipolytic acetylesterase. We determined the crystal structures of the coiled coil and esterase domains of the ORF1p from the Danio rerio ZfL2-1 element. We demonstrate a dimerization of the coiled coil and a hydrolytic activity of the esterase. Furthermore, the esterase binds negatively charged phospholipids and liposomes, but not oligo-(A) RNA. Unexpectedly, the esterase can split into two dynamic half-domains, suited to engulf long fatty acid substrates extending from the active site. These properties indicate a role for lipids and membranes in non-LTR retrotransposition. We speculate that Gag-like membrane targeting properties of ORF1ps could play a role in RNP assembly and in membrane-dependent transport or localization processes. PMID:24003030

  16. Improved enantioselectivity of thermostable esterase from Archaeoglobus fulgidus toward (S)-ketoprofen ethyl ester by directed evolution and characterization of mutant esterases.

    PubMed

    Kim, Jinyeong; Kim, Seungbum; Yoon, Sangyoung; Hong, Eunsoo; Ryu, Yeonwoo

    2015-08-01

    Thermostable esterases have potential applications in various biotechnology industries because of their resistance to high temperature and organic solvents. In a previous study, we isolated an esterase from Archaeoglobus fulgidus DSM 4304 (Est-AF), which showed high thermostability but low enantioselectivity toward (S)-ketoprofen ethyl ester. (R)-ketoprofenor (S)-ketoprofenis produced by esterase hydrolysis of the ester bond of (R,S)-ketoprofen ethyl ester and (S)-ketoprofen has better pharmaceutical activity and lower side effects than (R)-ketoprofen. Therefore, we have generated mutants of Est-AF that retained high thermostability whilst improving enantioselectivity. A library of Est-AF mutants was created by error-prone polymerase chain reaction, and mutants with improved enantioselectivity were isolated by site-saturation mutagenesis. The regions of Est-AF containing amino acid mutations were analyzed by homology modeling of its three-dimensional structure, and structure-based explanations for the changes in enantioselectivity are proposed. Finally, we isolated two mutants showing improved enantioselectivity over Est-AF (ee% = -16.2 ± 0.2 and E = 0.7 ± 0.0): V138G (ee% = 35.9 ± 1.0 and E = 3.0 ± 0.1) and V138G/L200R (ee% = 89.2 ± 0.2 and E = 19.5 ± 0.5). We also investigated various characteristics of these mutants and found that the mutants showed similar thermostability and resistance to additives or organic solvents to Est-AF, without a significant trade-off between activity and stability.

  17. A cold-adapted esterase of a novel marine isolate, Pseudoalteromonas arctica: gene cloning, enzyme purification and characterization.

    PubMed

    Al Khudary, Rami; Venkatachalam, Ramprasath; Katzer, Moritz; Elleuche, Skander; Antranikian, Garabed

    2010-05-01

    A gene encoding an esterase (estO) was identified and sequenced from a gene library screen of the psychrotolerant bacterium Pseudoalteromonas arctica. Analysis of the 1,203 bp coding region revealed that the deduced peptide sequence is composed of 400 amino acids with a predicted molecular mass of 44.1 kDa. EstO contains a N-terminal esterase domain and an additional OsmC domain at the C-terminus (osmotically induced family of proteins). The highly conserved five-residue motif typical for all alpha/beta hydrolases (G x S x G) was detected from position 104 to 108 together with a putative catalytic triad consisting of Ser(106), Asp(196), and His(225). Sequence comparison showed that EstO exhibits 90% amino acid identity with hypothetical proteins containing similar esterase and OsmC domains but only around 10% identity to the amino acid sequences of known esterases. EstO variants with and without the OsmC domain were produced and purified as His-tag fusion proteins in E. coli. EstO displayed an optimum pH of 7.5 and optimum temperature of 25 degrees C with more than 50% retained activity at the freezing point of water. The thermostability of EstO (50% activity after 5 h at 40 degrees C) dramatically increased in the truncated variant (50% activity after 2.5 h at 90 degrees C). Furthermore, the esterase displays broad substrate specificity for esters of short-chain fatty acids (C(2)-C(8)).

  18. Cholesterol homeostasis in cardiovascular disease and recent advances in measuring cholesterol signatures.

    PubMed

    Seo, Hong Seog; Choi, Man Ho

    2015-09-01

    Despite the biochemical importance of cholesterol, its abnormal metabolism has serious cellular consequences that lead to endocrine disorders such as cardiovascular disease (CVD). Nevertheless, the impact of blood cholesterol as a CVD risk factor is still debated, and treatment with cholesterol-lowering drugs remains controversial, particularly in older patients. Although, the prevalence of CVD increases with age, the underlying mechanisms for this phenomenon are not well understood, and metabolic changes have not been confirmed as predisposing factors of atherogenesis. The quantification of circulating biomarkers for cholesterol homeostasis is therefore warranted, and reference values for cholesterol absorption and synthesis should be determined in order to establish CVD risk factors. The traditional lipid profile is often derived rather than directly measured and lacks a universal standard to interpret the results. In contrast, mass spectrometry-based cholesterol profiling can accurately measure free cholesterol as a biologically active component. This approach allows to detect alterations in various metabolic pathways that control cholesterol homeostasis, by quantitative analysis of cholesterol and its precursors/metabolites as well as dietary sterols. An overview of the mechanism of cholesterol homeostasis under different physiological conditions may help to identify predictive biomarkers of concomitant atherosclerosis and conventional CVD risk factors.

  19. Biochemical Characterization and Relative Expression Levels of Multiple Carbohydrate Esterases of the Xylanolytic Rumen Bacterium Prevotella ruminicola 23 Grown on an Ester-Enriched Substrate ▿ †

    PubMed Central

    Kabel, Mirjam A.; Yeoman, Carl J.; Han, Yejun; Dodd, Dylan; Abbas, Charles A.; de Bont, Jan A. M.; Morrison, Mark; Cann, Isaac K. O.; Mackie, Roderick I.

    2011-01-01

    We measured expression and used biochemical characterization of multiple carbohydrate esterases by the xylanolytic rumen bacterium Prevotella ruminicola 23 grown on an ester-enriched substrate to gain insight into the carbohydrate esterase activities of this hemicellulolytic rumen bacterium. The P. ruminicola 23 genome contains 16 genes predicted to encode carbohydrate esterase activity, and based on microarray data, four of these were upregulated >2-fold at the transcriptional level during growth on an ester-enriched oligosaccharide (XOSFA,Ac) from corn relative to a nonesterified fraction of corn oligosaccharides (AXOS). Four of the 16 esterases (Xyn10D-Fae1A, Axe1-6A, AxeA1, and Axe7A), including the two most highly induced esterases (Xyn10D-Fae1A and Axe1-6A), were heterologously expressed in Escherichia coli, purified, and biochemically characterized. All four enzymes showed the highest activity at physiologically relevant pH (6 to 7) and temperature (30 to 40°C) ranges. The P. ruminicola 23 Xyn10D-Fae1A (a carbohydrate esterase [CE] family 1 enzyme) released ferulic acid from methylferulate, wheat bran, corn fiber, and XOSFA,Ac, a corn fiber-derived substrate enriched in O-acetyl and ferulic acid esters, but exhibited negligible activity on sugar acetates. As expected, the P. ruminicola Axe1-6A enzyme, which was predicted to possess two distinct esterase family domains (CE1 and CE6), released ferulic acid from the same substrates as Xyn10D-Fae1 and was also able to cleave O-acetyl ester bonds from various acetylated oligosaccharides (AcXOS). The P. ruminicola 23 AxeA1, which is not assigned to a CE family, and Axe7A (CE7) were found to be acetyl esterases that had activity toward a broad range of mostly nonpolymeric acetylated substrates along with AcXOS. All enzymes were inhibited by the proximal location of other side groups like 4-O-methylglucuronic acid, ferulic acid, or acetyl groups. The unique diversity of carbohydrate esterases in P. ruminicola 23

  20. Esterase mediated resistance against synthetic pyrethroids in field populations of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) in Punjab districts of India.

    PubMed

    Singh, Nirbhay Kumar; Rath, Shitanshu S

    2014-08-29

    Detection of resistance levels against cypermethrin and deltamethrin, the most commonly used synthetic pyrethroids (SP), in Rhipicephalus (Boophilus) microplus collected from thirteen districts of Punjab (India) was carried out using adult immersion test. The regression graphs of probit mortality of ticks plotted against log values of concentrations of drugs were utilized for the determination of slope of mortality, lethal concentration for 50% (LC50), 95% (LC95) and resistance factor (RF). On the basis of the data generated on variables (mortality, egg mass weight, reproductive index and percentage inhibition of oviposition) the resistance levels were categorized. Against cypermethrin RFs of 1.48-11.22 were recorded in 12 isolates whereas, one isolate was susceptible. Resistance factors against deltamethrin were 2.4-38.54 and all 13 isolates were found to be resistant. Quantitative analysis of general esterase activity (measured by the production of the metabolite naphthol) revealed a range of 3.34 ± 0.30-13.75 ± 1.33 and 1.31 ± 0.15-8.09 ± 0.68 μmol/min/mg protein for α and β-esterase activity, respectively in different field isolates. Further, multiple pairwise comparisons of the mean values with susceptible strain (Tukey, P = 0.05) revealed significant elevated levels of both α-esterase and β-esterase in nine tick isolates resistant to both deltamethrin and cypermethrin. The data generated on acaricide resistant status and esterase mediated mechanism in ticks will help in formulating tick control strategy for the region.

  1. Characterization of EST3: a metagenome-derived esterase with suitable properties for biotechnological applications.

    PubMed

    Maester, Thaís Carvalho; Pereira, Mariana Rangel; Machado Sierra, E G; Balan, Andrea; de Macedo Lemos, Eliana Gertrudes

    2016-07-01

    Metagenomic libraries from diverse environments have been extensive sources of many lipases and esterases; nevertheless, most of these enzymes remain biochemically uncharacterized. We previously built a metagenomic fosmid library from a microbial consortium specialized for diesel oil degradation and tested it for lipolytic activity. In the present study, we identified the PL14.H10 clone that was subcloned and sequenced, which enabled the identification of the EST3 protein. This enzyme exhibited 74 % amino acid identity with the uncharacterized alpha/beta hydrolase from Parvibaculum lavamentivorans [GenBank: WP012110575.1] and was classified into lipolytic enzyme family IV. Biochemical characterization revealed that EST3 presents high activity in a wide range of temperature with highest activity from 41 to 45 °C. Also, this thermostable esterase acts from mild acidic to alkaline conditions with an optimum pH of 6.0. The enzyme exhibited activity against p-nitrophenyl esters of different chain lengths and highest catalytic efficiency against p-nitrophenyl caprylate. The activity of the protein was increased in the presence of 0.5 mM of Mn(+2), Li(+), EDTA, and 1 % of CTAB and exhibited half of the activity in the presence of 10 % methanol and ethanol. Moreover, the homology model of EST3 was built and compared to other esterases, revealing a substrate channel that should fit a wide range of substrates. Taken together, the data presented in this work reveal the unique and interesting characteristics of EST3 that might be explored for further use in biotechnological applications.

  2. Actively-targeted polyion complex micelles stabilized by cholesterol and disulfide cross-linking for systemic delivery of siRNA to solid tumors.

    PubMed

    Oe, Yusuke; Christie, R James; Naito, Mitsuru; Low, Stewart A; Fukushima, Shigeto; Toh, Kazuko; Miura, Yutaka; Matsumoto, Yu; Nishiyama, Nobuhiro; Miyata, Kanjiro; Kataoka, Kazunori

    2014-09-01

    For small interfering RNA (siRNA)-based cancer therapies, we report an actively-targeted and stabilized polyion complex micelle designed to improve tumor accumulation and cancer cell uptake of siRNA following systemic administration. Improvement in micelle stability was achieved using two stabilization mechanisms; covalent disulfide cross-linking and non-covalent hydrophobic interactions. The polymer component was designed to provide disulfide cross-linking and cancer cell-targeting cyclic RGD peptide ligands, while cholesterol-modified siRNA (Chol-siRNA) provided additional hydrophobic stabilization to the micelle structure. Dynamic light scattering confirmed formation of nano-sized disulfide cross-linked micelles (<50 nm in diameter) with a narrow size distribution. Improved stability of Chol-siRNA-loaded micelles (Chol-siRNA micelles) was demonstrated by resistance to both the dilution in serum-containing medium and counter polyion exchange with dextran sulfate, compared to control micelles prepared with Chol-free siRNA (Chol-free micelles). Improved stability resulted in prolonged blood circulation time of Chol-siRNA micelles compared to Chol-free micelles. Furthermore, introduction of cRGD ligands onto Chol-siRNA micelles significantly facilitated accumulation of siRNA in a subcutaneous cervical cancer model following systemic administration. Ultimately, systemically administered cRGD/Chol-siRNA micelles exhibited significant gene silencing activity in the tumor, presumably due to their active targeting ability combined with the enhanced stability through both hydrophobic interactions of cholesterol and disulfide cross-linking. PMID:24930854

  3. Home-Use Tests - Cholesterol

    MedlinePlus

    ... this test does: This is a home-use test kit to measure total cholesterol. What cholesterol is: Cholesterol is a fat (lipid) in your blood. High-density lipoprotein (HDL) ("good" cholesterol) helps protect your heart, but low-density lipoprotein (LDL) ("bad" cholesterol) can clog the arteries of your ...

  4. Diurnal variation in cholesterol 7α-hydroxylase activity is determined by the -203A>C polymorphism of the CYP7A1 gene

    PubMed Central

    Vlachová, Miluše; Blahová, Tereza; Lánská, Věra; Leníček, Martin; Piťha, Jan; Vítek, Libor; Kovář, Jan

    2016-01-01

    Aim To determine whether the promoter polymorphism -203A>C of cholesterol-7α-hydroxylase encoding gene (CYP7A1) affects diurnal variation in CYP7A1 enzyme activity. Methods The study included 16 healthy male volunteers – 8 homozygous for -203A and 8 homozygous for the -203C allele of CYP7A1. Three 15-hour examinations (from 7am to 10pm) were carried out for each of the participants: after one-day treatment with cholestyramine; after one-day treatment with chenodeoxycholic acid (CDCA); and a control examination without any treatment. The plasma concentration of 7α-hydroxy-4-cholesten-3-one (C4), a marker of CYP7A1 activity, was determined in all the experiments at 90-min intervals. Results CYP7A1 activity was up-regulated after treatment with cholestyramine and suppressed after treatment with CDCA. There were no differences between -203A and -203C allele carriers in the response of enzyme activity to both drugs. In the control experiment, -203A allele carriers displayed diurnal variation in enzyme activity, whereas CYP7A1 activity did not change in -203C allele carriers. These results were confirmed by modeling the dynamics of C4 using polynomial regression. Conclusion The promoter polymorphism of the CYP7A1 gene has a pronounced impact on diurnal variation in CYP7A1 activity. PMID:27106353

  5. Children and Cholesterol

    MedlinePlus

    ... a coronary artery procedure; or who suffered a heart attack or sudden cardiac death before age 55. Those with a parent who has a history of high total cholesterol levels (240 mg/dL or higher). Talk to your child’s pediatrician ... Risk Calculator Printable Cholesterol Information Sheets Heart360 Health ...

  6. Cholesterol and Affective Morbidity

    PubMed Central

    Fiedorowicz, Jess G.; Palagummi, Narasimha M.; Behrendtsen, Ole; Coryell, William H.

    2009-01-01

    Depression and mania have been linked with low cholesterol though there has been limited prospective study of cholesterol and subsequent course of affective illness. We studied the relationship between fasting total cholesterol and subsequent depressive and manic symptoms. A total of 131 participants from a prospective cohort study were identified as having had a fasting total cholesterol evaluation at intake. Participants were predominantly inpatients at index visit and were followed for a median of 20 and up to 25 years. Cholesterol was modeled with age, gender, and index use of a mood stabilizer in linear regression to assess its influence on subsequent depressive symptom burden in participants with unipolar disorder as well as depressive and manic symptom burden in participants with bipolar disorder. Among bipolar participants (N=65), low cholesterol predicted a higher proportion of follow-up weeks with manic, but not depressive symptoms. Cholesterol did not appear to predict depressive symptom burden among participants with unipolar depression (N=66). Lower cholesterol levels may predispose individuals with bipolar disorder to a greater burden of manic symptomatology and may provide some insight into the underlying neurobiology. PMID:19969372

  7. Cholesterol and Your Child

    MedlinePlus

    ... traveling together are called lipoproteins . Two kinds — low-density lipoprotein (LDL) and high-density lipoprotein (HDL) — are the ones that most of us have heard about. Low-density lipoproteins , or "bad cholesterol," are the primary cholesterol ...

  8. Electrochemical oxidation of cholesterol

    PubMed Central

    2015-01-01

    Summary Indirect cholesterol electrochemical oxidation in the presence of various mediators leads to electrophilic addition to the double bond, oxidation at the allylic position, oxidation of the hydroxy group, or functionalization of the side chain. Recent studies have proven that direct electrochemical oxidation of cholesterol is also possible and affords different products depending on the reaction conditions. PMID:25977713

  9. Genetically engineered Oenococcus oeni strains to highlight the impact of estA2 and estA7 esterase genes on wine ester profile.

    PubMed

    Darsonval, M; Alexandre, H; Grandvalet, C

    2016-12-01

    Besides deacidifying wine, Oenococcus oeni bring significant changes in the chemical composition of wine by releasing esters by the action of their own esterases. The impact of O. oeni esterases remains relatively unexplored. Four esterase genes were identified from O. oeni genome (estA2, estA7, estC, and estB). The dual objective of this study was, first to use a genetic tool enabling the expression of esterase genes in enological conditions and, second, to investigate the impact of O. oeni esterase gene expression during winemaking on wine aromatic profile. Both estA2 and estA7 genes were successfully cloned and expressed in O. oeni and recombinant strains were inoculated in Aligoté wine to initiate malolactic fermentation (MLF). Ester profile of experimental wine was established by SPME-GC-MS. EstA2 caused significant decreases in the concentrations of isoamyl acetate, ethyl hexanoate, isobutyl acetate, and hexyl acetate, by 42.7%, 23.4%, 51.5%, and 28.9%, respectively. EstA2 has preferential hydrolytic activity toward acetate esters from higher alcohols. EstA7 has synthetic activity toward hexyl acetate with a significant 22.7% increase. This study reports the first efficient expression system enabling the production of a functional protein in O. oeni in enological conditions. PMID:27554142

  10. The solid phase synthesis of a protein activator for lecithin-cholesterol acyltransferase corresponding to human plasma apoC-I.

    PubMed Central

    Sigler, G F; Soutar, A K; Smith, L C; Gotto, A M; Sparrow, J T

    1976-01-01

    Apolipoprotein C-I, a protein constituent of the very low density lipoproteins of human plasma, consists of a single chain of 57 amino acids. The total synthesis of a protein corresponding to apolipoprotein C-I in physical properties and compositions was accomplished by solid phase techniques employing a modified polystrene incorporating spacer groups between the point of attachment of the first residue and the polymer matrix. The synthetic apoprotein was shown to activate lecithin:cholesterol acyltransferase to the same extent as the native protein. Comparative lipid-binding studies with dimyristoyl phosphatidylcholine gave complexes for native and synthetic apoprotein which floated at the same density after ultracentrifugation in KBr gradients and had virtually the same lipid:protein ratios. Images PMID:179085

  11. The solid phase synthesis of a protein activator for lecithin-cholesterol acyltransferase corresponding to human plasma apoC-I.

    PubMed

    Sigler, G F; Soutar, A K; Smith, L C; Gotto, A M; Sparrow, J T

    1976-05-01

    Apolipoprotein C-I, a protein constituent of the very low density lipoproteins of human plasma, consists of a single chain of 57 amino acids. The total synthesis of a protein corresponding to apolipoprotein C-I in physical properties and compositions was accomplished by solid phase techniques employing a modified polystrene incorporating spacer groups between the point of attachment of the first residue and the polymer matrix. The synthetic apoprotein was shown to activate lecithin:cholesterol acyltransferase to the same extent as the native protein. Comparative lipid-binding studies with dimyristoyl phosphatidylcholine gave complexes for native and synthetic apoprotein which floated at the same density after ultracentrifugation in KBr gradients and had virtually the same lipid:protein ratios. PMID:179085

  12. What Your Cholesterol Levels Mean

    MedlinePlus

    ... Pressure Tools & Resources Stroke More What Your Cholesterol Levels Mean Updated:Aug 17,2016 How’s your cholesterol? Time to get it checked! Keeping your cholesterol levels healthy is a great way to keep your ...

  13. Peptide mediators of cholesterol efflux

    DOEpatents

    Bielicki, John K.; Johansson, Jan

    2013-04-09

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  14. Cellular function of neuropathy target esterase in lysophosphatidylcholine action

    SciTech Connect

    Vose, Sarah C.; Fujioka, Kazutoshi; Gulevich, Alex G.; Lin, Amy Y.; Holland, Nina T.; Casida, John E.

    2008-11-01

    Neuropathy target esterase (NTE) plays critical roles in embryonic development and maintenance of peripheral axons. It is a secondary target of some organophosphorus toxicants including analogs of insecticides and chemical warfare agents. Although the mechanistic role of NTE in vivo is poorly defined, it is known to hydrolyze lysophosphatidylcholine (LPC) in vitro and may protect cell membranes from cytotoxic accumulation of LPC. To determine the cellular function of NTE, Neuro-2a and COS-7 cells were transfected with a full-length human NTE-containing plasmid yielding recombinant NTE (rNTE). We find the same inhibitor sensitivity and specificity profiles for rNTE assayed with LPC or phenyl valerate (a standard NTE substrate) and that this correlation extends to the LPC hydrolases of human brain, lymphocytes and erythrocytes. All of these LPC hydrolases are therefore very similar to each other in respect to a conserved inhibitor binding site conformation. NTE is expressed in brain and lymphocytes and contributes to LPC hydrolase activities in these tissues. The enzyme or enzymes responsible for erythrocyte LPC hydrolase activity remain to be identified. We also show that rNTE protects Neuro-2a and COS-7 cells from exogenous LPC cytotoxicity. Expression of rNTE in Neuro-2a cells alters their phospholipid balance (analyzed by liquid chromatography-mass spectrometry with single ion monitoring) by lowering LPC-16:0 and LPC-18:0 and elevating glycerophosphocholine without a change in phosphatidylcholine-16:0/18:1 or 16:0/18:2. NTE therefore serves an important function in LPC homeostasis and action.

  15. A feruloyl esterase (FAE) characterized by relatively high thermostability from the edible mushroom Russula virescens.

    PubMed

    Wang, Li; Zhang, Rui; Ma, Zengqiang; Wang, Hexiang; Ng, Tzibun

    2014-01-01

    A monomeric feruloyl esterase (FAE) with a molecular mass of 62 kDa was acquired from fresh fruiting bodies of the edible mushroom Russula virescens. The isolation procedure involved ion exchange chromatography on CM-cellulose, Q-Sepharose, and SP-Sepharose and finally fast protein liquid chromatography-gel filtration on Superdex 75. Two amino acid sequences were obtained after tryptic digestion, and they both showed some homology with the esterase of some fungi. Maximal activity was observed at pH 5.0 and at 50 °C. The enzyme displayed relatively high thermostability as evidenced by over 70 % residual activity at 70 °C and about 34 % residual activity at 80 °C. The K m and V max for this enzyme on methyl ferulate were 0.19 mM and 1.65 U/mg proteins, respectively. The purified FAE prefers methyl ferulate over methyl caffeate and is least active on methyl p-coumarate. The FAE activity was not significantly affected by the presence of cations such as Mn(2+), Ca(2+), Cd(2+), Zn(2+), Mg(2+), Cu(2+), and K(+) ions but inhibited by Al(3+), Hg(2+), Fe(2+), and Pb(2+) ions at a tested concentration of 2. 5 mM.

  16. Inactive lipoprotein lipase (LPL) alone increases selective cholesterol ester uptake in vivo, whereas in the presence of active LPL it also increases triglyceride hydrolysis and whole particle lipoprotein uptake.

    PubMed

    Merkel, Martin; Heeren, Jörg; Dudeck, Wiebke; Rinninger, Franz; Radner, Herbert; Breslow, Jan L; Goldberg, Ira J; Zechner, Rudolf; Greten, Heiner

    2002-03-01

    We have previously shown that transgenic expression of catalytically inactive lipoprotein lipase (LPL) in muscle (Mck-N-LPL) enhances triglyceride hydrolysis as well as whole particle lipoprotein and selective cholesterol ester uptake. In the current study, we have examined whether these functions can be performed by inactive LPL alone or require the presence of active LPL expressed in the same tissue. To study inactive LPL in the presence of active LPL in the same tissue, the Mck-N-LPL transgene was bred onto the heterozygous LPL-deficient (LPL1) background. At 18 h of age, Mck-N-LPL reduced triglycerides by 35% and markedly increased muscle lipid droplets. In adult mice, it reduced triglycerides by 40% and increased lipoprotein particle uptake into muscle by 60% and cholesterol ester uptake by 110%. To study inactive LPL alone, the Mck-N-LPL transgene was bred onto the LPL-deficient (LPL0) background. These mice die at approximately 24 h of age. At 18 h of age, in the absence of active LPL, inactive LPL expression did not diminish triglycerides nor did it result in the accumulation of muscle lipid droplets. To study inactive LPL in the absence of active LPL in the same tissue in adult animals, the Mck-N-LPL transgene was bred onto mice that only expressed active LPL in the heart (LPL0/He-LPL). In this case, Mck-N-LPL did not reduce triglycerides or increase the uptake of lipoprotein particles but did increase muscle uptake of chylomicron and very low density lipoprotein cholesterol ester by 40%. Thus, in the presence of active LPL in the same tissue, inactive LPL augments triglyceride hydrolysis and increases whole particle triglyceride-rich lipoprotein and selective cholesterol ester uptake. In the absence of active LPL in the same tissue, inactive LPL only mediates selective cholesterol ester uptake.

  17. Identification of a novel carbohydrate esterase from Bjerkandera adusta: structural and function predictions through bioinformatics analysis and molecular modeling.

    PubMed

    Cuervo-Soto, Laura I; Valdés-García, Gilberto; Batista-García, Ramón; del Rayo Sánchez-Carbente, María; Balcázar-López, Edgar; Lira-Ruan, Verónica; Pastor, Nina; Folch-Mallol, Jorge Luis

    2015-03-01

    A new gene from Bjerkandera adusta strain UAMH 8258 encoding a carbohydrate esterase (designated as BacesI) was isolated and expressed in Pichia pastoris. The gene had an open reading frame of 1410 bp encoding a polypeptide of 470 amino acid residues, the first 18 serving as a secretion signal peptide. Homology and phylogenetic analyses showed that BaCesI belongs to carbohydrate esterases family 4. Three-dimensional modeling of the protein and normal mode analysis revealed a breathing mode of the active site that could be relevant for esterase activity. Furthermore, the overall negative electrostatic potential of this enzyme suggests that it degrades neutral substrates and will not act on negative substrates such as peptidoglycan or p-nitrophenol derivatives. The enzyme shows a specific activity of 1.118 U mg(-1) protein on 2-naphthyl acetate. No activity was detected on p-nitrophenol derivatives as proposed from the electrostatic potential data. The deacetylation activity of the recombinant BaCesI was confirmed by measuring the release of acetic acid from several substrates, including oat xylan, shrimp shell chitin, N-acetylglucosamine, and natural substrates such as sugar cane bagasse and grass. This makes the protein very interesting for the biofuels production industry from lignocellulosic materials and for the production of chitosan from chitin.

  18. Identification of a novel carbohydrate esterase from Bjerkandera adusta: structural and function predictions through bioinformatics analysis and molecular modeling.

    PubMed

    Cuervo-Soto, Laura I; Valdés-García, Gilberto; Batista-García, Ramón; del Rayo Sánchez-Carbente, María; Balcázar-López, Edgar; Lira-Ruan, Verónica; Pastor, Nina; Folch-Mallol, Jorge Luis

    2015-03-01

    A new gene from Bjerkandera adusta strain UAMH 8258 encoding a carbohydrate esterase (designated as BacesI) was isolated and expressed in Pichia pastoris. The gene had an open reading frame of 1410 bp encoding a polypeptide of 470 amino acid residues, the first 18 serving as a secretion signal peptide. Homology and phylogenetic analyses showed that BaCesI belongs to carbohydrate esterases family 4. Three-dimensional modeling of the protein and normal mode analysis revealed a breathing mode of the active site that could be relevant for esterase activity. Furthermore, the overall negative electrostatic potential of this enzyme suggests that it degrades neutral substrates and will not act on negative substrates such as peptidoglycan or p-nitrophenol derivatives. The enzyme shows a specific activity of 1.118 U mg(-1) protein on 2-naphthyl acetate. No activity was detected on p-nitrophenol derivatives as proposed from the electrostatic potential data. The deacetylation activity of the recombinant BaCesI was confirmed by measuring the release of acetic acid from several substrates, including oat xylan, shrimp shell chitin, N-acetylglucosamine, and natural substrates such as sugar cane bagasse and grass. This makes the protein very interesting for the biofuels production industry from lignocellulosic materials and for the production of chitosan from chitin. PMID:25586442

  19. Dietary Fat and Cholesterol

    MedlinePlus

    ... Gynecology Medical Conditions Nutrition & Fitness Emotional Health Dietary Fat and Cholesterol Posted under Health Guides . Updated 23 ... warm What are the different types of dietary fat? The four main types of fat found in ...

  20. Get Your Cholesterol Checked

    MedlinePlus

    ... is checked with a blood test called a lipid profile. During the test, a nurse will take ... blood tests that can check cholesterol, but a lipid profile gives the most information. Find out more ...

  1. High Blood Cholesterol

    MedlinePlus

    ... of cholesterol is called plaque. Plaque Buildup Can Lead to… Click for more information Artherosclerosis. Over time, ... disease (CHD). Angina. The buildup of plaque can lead to chest pain called angina. Angina is a ...

  2. Common Misconceptions about Cholesterol

    MedlinePlus

    ... most (and preferably all) days; and stressing the importance of avoiding tobacco products. Learn more about cholesterol ... Privacy Policy Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Low Blood Pressure ...

  3. Cholesterol and Statins

    MedlinePlus

    ... the liver makes ldl & hdl In the liver, triglycerides, cholesterol, and proteins form together to make LDL ... This is especially important for individuals with high triglyceride and/or low HDL levels who are overweight ...

  4. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  5. Cholesterol Asymmetry in Synaptic Plasma Membranes

    PubMed Central

    Wood, W. Gibson; Igbavboa, Urule; Müller, Walter E.; Eckert, Gunter P.

    2010-01-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: 1) chronic ethanol consumption; 2) statins; 3) aging; and 4) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density-lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, p-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. PMID:21214553

  6. Perturbed cholesterol homeostasis in aging spinal cord.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2016-09-01

    The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging.

  7. Cholesterol-sensitive Modulation of Transcytosis

    PubMed Central

    Leyt, Julieta; Melamed-Book, Naomi; Vaerman, Jean-Pierre; Cohen, Shulamit; Weiss, Aryeh M.

    2007-01-01

    Cholesterol-rich membrane domains (e.g., lipid rafts) are thought to act as molecular sorting machines, capable of coordinating the organization of signal transduction pathways within limited regions of the plasma membrane and organelles. The significance of these domains in polarized postendocytic sorting is currently not understood. We show that dimeric IgA stimulates the incorporation of its receptor into cholesterol-sensitive detergent-resistant membranes confined to the basolateral surface/basolateral endosomes. A fraction of human transferrin receptor was also found in basolateral detergent-resistant membranes. Disrupting these membrane domains by cholesterol depletion (using methyl-β-cyclodextrin) before ligand-receptor internalization caused depolarization of traffic from endosomes, suggesting that cholesterol in basolateral lipid rafts plays a role in polarized sorting after endocytosis. In contrast, cholesterol depletion performed after ligand internalization stimulated cargo transcytosis. It also stimulated caveolin-1 phosphorylation on tyrosine 14 and the appearance of the activated protein in dimeric IgA-containing apical organelles. We propose that cholesterol depletion stimulates the coupling of transcytotic and caveolin-1 signaling pathways, consequently prompting the membranes to shuttle from endosomes to the plasma membrane. This process may represent a unique compensatory mechanism required to maintain cholesterol balance on the cell surface of polarized epithelia. PMID:17392516

  8. Perturbed cholesterol homeostasis in aging spinal cord.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2016-09-01

    The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging. PMID:27459933

  9. 2,3,22,23-tetrahydroxyl-2,6,10,15,19,23-hexamethyl-6,10,14,18-tetracosatetraene, an acyclic triterpenoid isolated from the seeds of Alpinia katsumadai, Inhibits acyl-CoA : cholesterol acyltransferase activity.

    PubMed

    Choi, Soon-Yong; Lee, Moon Hee; Choi, Jung Ho; Kim, Young Kook

    2012-01-01

    In order to isolate a cholesterol-lowering compound from Alpinia katsumadai, an inhibitor for acyl-CoA : cholesterol acyltransferase (ACAT), an enzyme responsible for the cholesterol ester formation in liver, was purified, its chemical structure was determined, and in vivo and in vitro inhibition activities were performed. In a high fat diet mouse model, we discovered that the ethanol extract of Alpinia katsumadai reduced plasma cholesterol, triglyceride, and low density lipoprotein (LDL) levels. An acyclic triterpenoid showing ACAT inhibitory activity was isolated from the extract of seeds of A. katsumadai. By NMR spectroscopic analysis of its (1)H-NMR, (13)C-NMR, (1)H-(1)H correlation spectroscopy, heteronuclear multiple bond connectivity (HMBC), hetero multiquantum coherence (HMQC) and nuclear Overhauser effect, chemical structure of 2,3,22,23-tetrahydroxyl-2,6,10,15,19,23-hexamethyl-6,10,14,18-tetracosatetraene (1), were elucidated. The acyclic triterpenoid was found to be responsible for the ACAT inhibition activities of rat liver microsomes with IC(50) values of 47.9 µM. It also decreased cholesteryl ester formation with IC(50) values of 26 µM in human hepatocyte HepG2 cell. The experimental study revealed that the ethanol extract of A. katsumadai has a hypolipemic effect in high fat diet mice, and the isolated acyclic triterpenoid has ACAT inhibition activity, showing a potential novel therapeutic approach for the treatment of hyperlipidemia and atherosclerosis.

  10. Molecular cloning, overexpression and characterization of a novel feruloyl esterase from a soil metagenomic library.

    PubMed

    Sang, Shu Li; Li, Gang; Hu, Xiao Peng; Liu, Yu Huan

    2011-01-01

    The gene estF27, encoding a protein with feruloyl esterase activity, was cloned through functional screening from a soil metagenomic library and expressed in Escherichiacoli BL21 (DE3) with high solubility. Sequence analysis showed that estF27 encoded a protein of 291 amino acids with a predicted molecular mass of 31.16 kDa. According to the substrate specificity, EstF27 was classified as a type A feruloyl esterase. EstF27 displayed optimal activity at 40°C and pH 6.8. This enzyme was stable in a broad pH range of 5.0-10.0 over 24 h, and retained more than 50% of its activity after 96 or 120 h incubation in the presence of 3 M KCl or 5 M NaCl. The enzyme activity was slightly enhanced by the addition of Mg(2+) and Fe(3+) at a low concentration, and completely inhibited by Cu(2+). In the enzymatic hydrolysis of destarched wheat bran, EstF27 could release ferulic acid from it in the presence of xylanase from Thermomyces lanuginosus. Given its alkalitolerance, halotolerance and highly soluble expression, EstF27 is a promising candidate for industrial applications.

  11. A membrane-bound esterase PA2949 from Pseudomonas aeruginosa is expressed and purified from Escherichia coli.

    PubMed

    Kovacic, Filip; Bleffert, Florian; Caliskan, Muttalip; Wilhelm, Susanne; Granzin, Joachim; Batra-Safferling, Renu; Jaeger, Karl-Erich

    2016-05-01

    Pseudomonas aeruginosa strain 1001 produces an esterase (EstA) that can hydrolyse the racemic methyl ester of β-acetylthioisobutyrate to produce the (D)-enantiomer, which serves as a precursor of captopril, a drug used for treatment of hypertension. We show here that PA2949 from P. aeruginosa PA01, a homologue of EstA, can efficiently be expressed in an enzymatically active form in E. coli. The enzyme is membrane-associated as demonstrated by cell fractionation studies. PA2949 was purified to homogeneity after solubilisation with the nonionic detergent, Triton X-100, and was shown to possess a conserved esterase catalytic triad consisting of Ser137-His258-Asp286. Our results should allow the development of an expression and purification strategy to produce this biotechnologically relevant esterase in a pure form with a high yield.

  12. A membrane-bound esterase PA2949 from Pseudomonas aeruginosa is expressed and purified from Escherichia coli.

    PubMed

    Kovacic, Filip; Bleffert, Florian; Caliskan, Muttalip; Wilhelm, Susanne; Granzin, Joachim; Batra-Safferling, Renu; Jaeger, Karl-Erich

    2016-05-01

    Pseudomonas aeruginosa strain 1001 produces an esterase (EstA) that can hydrolyse the racemic methyl ester of β-acetylthioisobutyrate to produce the (D)-enantiomer, which serves as a precursor of captopril, a drug used for treatment of hypertension. We show here that PA2949 from P. aeruginosa PA01, a homologue of EstA, can efficiently be expressed in an enzymatically active form in E. coli. The enzyme is membrane-associated as demonstrated by cell fractionation studies. PA2949 was purified to homogeneity after solubilisation with the nonionic detergent, Triton X-100, and was shown to possess a conserved esterase catalytic triad consisting of Ser137-His258-Asp286. Our results should allow the development of an expression and purification strategy to produce this biotechnologically relevant esterase in a pure form with a high yield. PMID:27419054

  13. Purification and Properties of an Esterase from the Yeast Saccharomyces cerevisiae and Identification of the Encoding Gene

    PubMed Central

    Degrassi, Giuliano; Uotila, Lasse; Klima, Raffaella; Venturi, Vittorio

    1999-01-01

    We purified an intracellular esterase that can function as an S-formylglutathione hydrolase from the yeast Saccharomyces cerevisiae. Its molecular mass was 40 kDa, as determined by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was 5.0 by isoelectric focusing. The enzyme activity was optimal at 50°C and pH 7.0. The corresponding gene, YJLO68C, was identified by its N-terminal amino acid sequence and is not essential for cell viability. Null mutants have reduced esterase activities and grow slowly in the presence of formaldehyde. This enzyme may be involved in the detoxification of formaldehyde, which can be metabolized to S-formylglutathione by S. cerevisiae. PMID:10427036

  14. Direct Regulation of Prokaryotic Kir Channel by Cholesterol*

    PubMed Central

    Singh, Dev K.; Rosenhouse-Dantsker, Avia; Nichols, Colin G.; Enkvetchakul, Decha; Levitan, Irena

    2009-01-01

    Our earlier studies have shown that channel activity of Kir2 subfamily of inward rectifiers is strongly suppressed by the elevation of cellular cholesterol. The goal of this study is to determine whether cholesterol suppresses Kir channels directly. To achieve this goal, purified prokaryotic Kir (KirBac1.1) channels were incorporated into liposomes of defined lipid composition, and channel activity was assayed by 86Rb+ uptake. Our results show that 86Rb+ flux through KirBac1.1 is strongly inhibited by cholesterol. Incorporation of 5% (mass cholesterol/phospholipid) cholesterol into the liposome suppresses 86Rb+ flux by >50%, and activity is completely inhibited at 12–15%. However, epicholesterol, a stereoisomer of cholesterol with similar physical properties, has significantly less effect on KirBac-mediated 86Rb+ uptake than cholesterol. Furthermore, analysis of multiple sterols suggests that cholesterol-induced inhibition of KirBac1.1 channels is mediated by specific interactions rather than by changes in the physical properties of the lipid bilayer. In contrast to the inhibition of KirBac1.1 activity, cholesterol had no effect on the activity of reconstituted KscA channels (at up to 250 μg/mg of phospholipid). Taken together, these observations demonstrate that cholesterol suppresses Kir channels in a pure protein-lipid environment and suggest that the interaction is direct and specific. PMID:19740741

  15. Crystal structure of human esterase D: a potential genetic marker of retinoblastoma

    SciTech Connect

    Wu, Dong; Li, Yang; Song, Gaojie; Zhang, David; Shaw, Neil; Liu, Zhi-Jie

    2009-07-10

    Retinoblastoma (RB), a carcinoma of the retina, is caused by mutations in the long arm of chromosome 13, band 13q14. The esterase D (ESD) gene maps at a similar location as the RB gene locus and therefore serves as a potential marker for the prognosis of retinoblastoma. Because very little is known about the structure and function of ESD, we determined the 3-dimensional structure of the enzyme at 1.5 {angstrom} resolution using X-ray crystallography. ESD shows a single domain with an {alpha}/{beta}-hydrolase fold. A number of insertions are observed in the canonical {alpha}/{beta}-hydrolase fold. The active site is located in a positively charged, shallow cleft on the surface lined by a number of aromatic residues. Superimposition studies helped identify the typical catalytic triad residues -- Ser-153, His264, and Asp230 -- involved in catalysis. Mutagenesis of any of the catalytic triad residues to alanine abolished the enzyme activity. Backbone amides of Leu54 and Met150 are involved in the formation of the oxyanion hole. Interestingly, a M150A mutation increased the enzyme activity by 62%. The structure of human ESD determined in this study will aid the elucidation of the physiological role of the enzyme in the human body and will assist in the early diagnosis of retinoblastoma. Wu, D., Li, Y., Song, G., Zhang, D., Shaw, N., Liu, Z. J. Crystal structure of human esterase D: a potential genetic marker of retinoblastoma.

  16. [Characters of two gravity-related esterases in carrot callus cells].

    PubMed

    Guan, P Z; Fei, C K; Yin, J; Liu, M; Zhao, Q; Cai, W M

    1999-01-01

    On the basis of identification of two gravity-related esterases (grEST1 and grEST2) in carrot callus cells (Cai et al. 1998), we continued the study of the characteristics of these two esterases. They have the very special characteristic of SDS resistance. Their activities could be inhibited partially by deoxycholate. beta-Phenylpropionic acid, AgNO3 and CuSO4 had no inhibitory effect on their activities. The activities of grEST1 and grEST2 could be decreased by ascorbic acid and cysteine, and the influence by cysteine was particularly obvious. The molecular weights of grEST1 and grEST2 were shown to be near the ranges of 49-66 kD and 43-59 kD respectively by non-denaturing electrophoresis containing deoxycholate, Triton X-100 and SDS respectively, and the isoelectric points were approximately pH 5.4 and 4.9 respectively. Besides, grEST1 and grEST2 were found in the fraction precipitating at value between 30% and 40% saturation with (NH4)2SO4.

  17. Mevinolin, an inhibitor of cholesterol biosynthesis, drastically depresses Ca2+ channel activity and uncouples excitation from contraction in cardiac cells in culture.

    PubMed Central

    Renaud, J F; Schmid, A; Romey, G; Nano, J L; Lazdunski, M

    1986-01-01

    Mevinolin (MK803), a potent inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) (Ki, 30 X 10(-9) M), depressed de novo synthesis of cholesterol in 11-day chicken embryonic cardiac cells cultured in lipoprotein-deficient serum (LPDS). Cardiac cells exposed to different concentrations of mevinolin for 1-3 days presented different electrophysiological and mechanical properties: The resting membrane potential, the rate of increase, and the shape of the action potential and contractile properties were changed at concentrations as low as 0.1 microM mevinolin. At a concentration of 1 microM mevinolin, the cardiac cells became quiescent and electrical stimulation induced action potentials of short duration without contraction. Isoproterenol and Bay K8644 were unable to restore excitability and contraction. Although the number of receptors for the tritiated Ca2+ channel blocker nitrendipine was the same in control and in mevinolin-treated cells, voltage-clamp data on isolated cardiac cells and 45Ca2+ flux experiments on monolayers showed that most of the slow Ca2+ channel activity was lost in mevinolin-treated cells. These results suggest that the disappearance of Ca2+ channel activity is most probably at the origin of the loss of cardiac contractility. PMID:2429325

  18. The role of mitogen-activated protein kinases and sterol receptor coactivator-1 in TGF-β-regulated expression of genes implicated in macrophage cholesterol uptake

    PubMed Central

    Salter, Rebecca C.; Foka, Pelagia; Davies, Thomas S.; Gallagher, Hayley; Michael, Daryn R.; Ashlin, Tim G.; Ramji, Dipak P.

    2016-01-01

    The anti-atherogenic cytokine TGF-β inhibits macrophage foam cell formation by suppressing the expression of key genes implicated in the uptake of modified lipoproteins. We have previously shown a critical role for p38 MAPK and JNK in the TGF-β-mediated regulation of apolipoprotein E expression in human monocytes. However, the roles of these two MAPK pathways in the control of expression of key genes involved in the uptake of modified lipoproteins in human macrophages is poorly understood and formed the focus of this study. TGF-β activated both p38 MAPK and JNK, and knockdown of p38 MAPK or c-Jun, a key downstream target of JNK action, demonstrated their requirement in the TGF-β-inhibited expression of several key genes implicated in macrophage lipoprotein uptake. The potential role of c-Jun and specific co-activators in the action of TGF-β was investigated further by studies on the lipoprotein lipase gene. c-Jun did not directly interact with the minimal promoter region containing the TGF-β response elements and a combination of transient transfection and knock down assays revealed an important role for SRC-1. These studies provide novel insights into the mechanisms underlying the TGF-β-mediated inhibition of macrophage gene expression associated with the control of cholesterol homeostasis. PMID:27687241

  19. A New Family of Carbohydrate Esterases Is Represented by a GDSL Hydrolase/Acetylxylan Esterase from Geobacillus stearothermophilus*

    PubMed Central

    Alalouf, Onit; Balazs, Yael; Volkinshtein, Margarita; Grimpel, Yael; Shoham, Gil; Shoham, Yuval

    2011-01-01

    Acetylxylan esterases hydrolyze the ester linkages of acetyl groups at positions 2 and/or 3 of the xylose moieties in xylan and play an important role in enhancing the accessibility of xylanases to the xylan backbone. The hemicellulolytic system of the thermophilic bacterium Geobacillus stearothermophilus T-6 comprises a putative acetylxylan esterase gene, axe2. The gene product belongs to the GDSL hydrolase family and does not share sequence homology with any of the carbohydrate esterases in the CAZy Database. The axe2 gene is induced by xylose, and the purified gene product completely deacetylates xylobiose peracetate (fully acetylated) and hydrolyzes the synthetic substrates 2-naphthyl acetate, 4-nitrophenyl acetate, 4-methylumbelliferyl acetate, and phenyl acetate. The pH profiles for kcat and kcat/Km suggest the existence of two ionizable groups affecting the binding of the substrate to the enzyme. Using NMR spectroscopy, the regioselectivity of Axe2 was directly determined with the aid of one-dimensional selective total correlation spectroscopy. Methyl 2,3,4-tri-O-acetyl-β-d-xylopyranoside was rapidly deacetylated at position 2 or at positions 3 and 4 to give either diacetyl or monoacetyl intermediates, respectively; methyl 2,3,4,6-tetra-O-acetyl-β-d-glucopyranoside was initially deacetylated at position 6. In both cases, the complete hydrolysis of the intermediates occurred at a much slower rate, suggesting that the preferred substrate is the peracetate sugar form. Site-directed mutagenesis of Ser-15, His-194, and Asp-191 resulted in complete inactivation of the enzyme, consistent with their role as the catalytic triad. Overall, our results show that Axe2 is a serine acetylxylan esterase representing a new carbohydrate esterase family. PMID:21994937

  20. HDL Function, Dysfunction, and Reverse Cholesterol Transport

    PubMed Central

    Fisher, Edward A.; Feig, Jonathan E.; Hewing, Bernd; Hazen, Stanley L.; Smith, Jonathan D.

    2012-01-01

    Although high HDL-cholesterol levels are associated with decreased cardiovascular risk in epidemiological studies, recent genetic and pharmacological findings have raised doubts about the beneficial effects of HDL. Raising HDL levels in animal models by infusion or over expression of apolipoprotein A-I has shown clear vascular improvements, such as delayed atherosclerotic lesion progression and accelerated lesion regression, along with increased reverse cholesterol transport. Inflammation and other factors, such as myeloperoxidase mediated oxidation, can impair HDL production and HDL function, in regard to its reverse cholesterol transport, antioxidant, and anti-inflammatory activities. Thus, tests of HDL function, which have not yet been developed as routine diagnostic assays, may prove useful and be a better predictor of cardiovascular risk than HDL-cholesterol levels. PMID:23152494

  1. Cholesterol-dependent increases in glucosylceramide synthase activity in Niemann-Pick disease type C model cells: Abnormal trafficking of endogenously formed ceramide metabolites by inhibition of the enzyme.

    PubMed

    Hashimoto, Naohiro; Matsumoto, Ikiru; Takahashi, Hiromasa; Ashikawa, Hitomi; Nakamura, Hiroyuki; Murayama, Toshihiko

    2016-11-01

    Sphingolipids such as sphingomyelin and glycosphingolipids (GSLs) derived from glucosylceramide (GlcCer), in addition to cholesterol, accumulate in cells/neurons in Niemann-Pick disease type C (NPC). The activities of acid sphingomyelinase and lysosomal glucocerebrosidase (GCase), which degrade sphingomyelin and GlcCer, respectively, are down-regulated in NPC cells, however, changes in GlcCer synthase activity have not yet been elucidated. We herein demonstrated for the first time that GlcCer synthase activity for the fluorescent ceramide, 4-nitrobenzo-2-oxa-1,3-diazole-labeled C6-ceramide (NBD-ceramide) increased in intact NPC1((-/-)) cells and cell lysates without affecting the protein levels. In NBD-ceramide-labeled NPC1((-/-)) cells, NBD-fluorescence preferentially accumulated in the Golgi complex and vesicular specks in the cytoplasm 40 and 150 min, respectively, after labeling, while a treatment for 48 h with the GlcCer synthase inhibitors, N-butyldeoxynojirimycin (NB-DNJ) and 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, accelerated the appearance of vesicular specks emitting NBD-fluorescence within 40 min. The treatment of NPC1((-/-)) cells with NB-DNJ for 48 h additionally increased the levels of cholesterol, but not those of sphingomyelin. Increases in the activity of GlcCer synthase and formation of vesicular specks emitting NBD-fluorescence in NPC1((-/-)) cells were dependent on cholesterol. LacCer taken up by endocytosis, which accumulated in the Golgi complex in normal cells, accumulated in vesicular specks after 10 and 40 min in NPC1((-/-)) cells, and this response was not accelerated by the NB-DNJ treatment, but was restored by the depletion of cholesterol. The cellular roles for enhanced GlcCer synthesis and increased levels of cholesterol in the trafficking of NBD-ceramide metabolites in NPC1((-/-)) cells have been discussed.

  2. Identification and characterization of an esterase involved in malathion resistance in the head louse Pediculus humanus capitis.

    PubMed

    Kwon, Deok Ho; Kim, Ju Hyeon; Kim, Young Ho; Yoon, Kyong Sup; Clark, J Marshall; Lee, Si Hyeock

    2014-06-01

    Enhanced malathion carboxylesterase (MCE) activity was previously reported to be involved in malathion resistance in the head louse Pediculus humanus capitis (Gao et al., 2006 [8]). To identify MCE, the transcriptional profiles of all five esterases that had been annotated to be catalytically active were determined and compared between the malathion-resistant (BR-HL) and malathion-susceptible (KR-HL) strains of head lice. An esterase gene, designated HLCbE3, exhibited approximately 5.4-fold higher transcription levels, whereas remaining four esterases did not exhibit a significant increase in their transcription in BR-HL, indicating that HLCbE3 may be the putative MCE. Comparison of the entire cDNA sequences of HLCbE3 revealed no sequence differences between the BR-HL and KR-HL strains and suggested that no single nucleotide polymorphism is associated with enhanced MCE activity. Two copies of the HLCbE3 gene were observed in BR-HL, implying that the over-transcription of HLCbE3 is due to the combination of a gene duplication and up-regulated transcription. Knockdown of HLCbE3 expression by RNA interference in the BR-HL strain led to increases in malathion susceptibility, confirming the identity of HLCbE3 as a MCE responsible for malathion resistance in the head louse. Phylogenetic analysis suggested that HLCbE3 is a typical dietary esterase and belongs to a clade containing various MCEs involved in malathion resistance. PMID:24974112

  3. Characterization of a novel highly thermostable esterase from the Gram-positive soil bacterium Streptomyces lividans TK64.

    PubMed

    Wang, Baojuan; Wang, Ao; Cao, Zhengyu; Zhu, Guoping

    2016-05-01

    A novel esterase gene (estW) from soil bacterium Streptomyces lividans TK64 was successfully cloned using a pair of homologous primers. The estW gene encoded a protein (EstW) of 289 amino acid residues with a predicted molecular weight of 31.43 kDa. Sequence alignment revealed that EstW show relatively high levels of homology to other lipolytic enzymes characterized from Streptomyces and phylogenetic analysis suggested EstW belongs to the bacterial lipase/esterase family I. The estW gene was expressed at a high level in Escherichia coli and the recombinant enzyme was purified to homogeneity. The purified EstW was characterized via hydrolysis of various p-nitrophenyl esters and the best substrate was found to be p-nitrophenyl acetate (pNPA). Maximal activity of the recombinant protein was observed at pH 8.0 and 50 °C with pNPA as the substrate. The calculated activation energy (Ea ) of the esterase reaction was 9.12 kcal/mol. Half-life of EstW at 95 °C was approximately 12.5 H, making it the most thermostable esterase among all of the known lipolytic enzymes from Streptomyces, and the thermostability of EstW was similar to those of some enzymes characterized from the thermophilic bacteria. EstW exhibited relatively high tolerance to several detergents and required no cations for its maximal activity. The unique properties of EstW, namely its high thermostability and stability in the presence of organic solvents, may render it a potential candidate for industrial applications.

  4. Glutaraldehyde cross-linking of immobilized thermophilic esterase on hydrophobic macroporous resin for application in poly(ε-caprolactone) synthesis.

    PubMed

    Wang, Min; Shi, Hui; Wu, Di; Han, Haobo; Zhang, Jianxu; Xing, Zhen; Wang, Shuang; Li, Quanshun

    2014-01-01

    The immobilized thermophilic esterase from Archaeoglobus fulgidus was successfully constructed through the glutaraldehyde-mediated covalent coupling after its physical adsorption on a hydrophobic macroporous resin, Sepabeads EC-OD. Through 0.05% glutaraldehyde treatment, the prevention of enzyme leaching and the maintenance of catalytic activity could be simultaneously realized. Using the enzymatic ring-opening polymerization of ε-caprolactone as a model, effects of organic solvents and reaction temperature on the monomer conversion and product molecular weight were systematically investigated. After the optimization of reaction conditions, products were obtained with 100% monomer conversion and Mn values lower than 1010 g/mol. Furthermore, the cross‑linked immobilized thermophilic esterase exhibited an excellent operational stability, with monomer conversion values exceeding 90% over the course of 12 batch reactions, still more than 80% after 16 batch reactions. PMID:25006789

  5. Directed evolution of an esterase: screening of enzyme libraries based on pH-indicators and a growth assay.

    PubMed

    Bornscheuer, U T; Altenbuchner, J; Meyer, H H

    1999-10-01

    In order to resolve a sterically hindered 3-hydroxy ethyl ester, which was not accepted as substrate by 20 wild-type hydrolases, a directed evolution of an esterase from Pseudomonas fluorescens (PFE) was performed. Mutations were introduced using the mutator strain Epicurian coli XL1-Red. Enzyme libraries derived from seven mutation cycles were assayed on minimal media agar plates supplemented with pH indicators (neutral red and crystal violet), thus allowing the identification of active esterase variants by the formation of a red color caused by a pH decrease due to the released acid. A further selection criteria was introduced by using the corresponding glycerol estar, because release of the carbon source glycerol facilitates growth on minimal media. By this strategy, one double mutant (A209D and L181V) of PFE was identified, which hydrolyzed the 3-hydroxy ethyl ester in a stereoselective manner (25% ee for the remaining ester, E approximate to 5).

  6. Functional Analysis of Esterase TCE2 Gene from Tetranychus cinnabarinus (Boisduval) involved in Acaricide Resistance

    PubMed Central

    Shi, Li; Wei, Peng; Wang, Xiangzun; Shen, Guangmao; Zhang, Jiao; Xiao, Wei; Xu, Zhifeng; Xu, Qiang; He, Lin

    2016-01-01

    The carmine spider mite, Tetranychus cinnabarinus is an important pest of crops and vegetables worldwide, and it has the ability to develop resistance against acaricides rapidly. Our previous study identified an esterase gene (designated TCE2) over-expressed in resistant mites. To investigate this gene’s function in resistance, the expression levels of TCE2 in susceptible, abamectin-, fenpropathrin-, and cyflumetofen-resistant strains were knocked down (65.02%, 63.14%, 57.82%, and 63.99%, respectively) via RNA interference. The bioassay data showed that the resistant levels to three acaricides were significantly decreased after the down-regulation of TCE2, indicating a correlation between the expression of TCE2 and the acaricide-resistance in T. cinnabarinus. TCE2 gene was then re-engineered for heterologous expression in Escherichia coli. The recombinant TCE2 exhibited α-naphthyl acetate activity (483.3 ± 71.8 nmol/mg pro. min−1), and the activity of this enzyme could be inhibited by abamectin, fenpropathrin, and cyflumetofen, respectively. HPLC and GC results showed that 10 μg of the recombinant TCE2 could effectively decompose 21.23% fenpropathrin and 49.70% cyflumetofen within 2 hours. This is the first report of a successful heterologous expression of an esterase gene from mites. This study provides direct evidence that TCE2 is a functional gene involved in acaricide resistance in T. cinnabarinus. PMID:26725309

  7. Membrane cholesterol modulates galanin-GalR2 interaction.

    PubMed

    Pang, L; Graziano, M; Wang, S

    1999-09-14

    The neuropeptide galanin mediates a number of diverse physiological and pathophysiological actions via interaction with membrane-bound receptors. The role that membrane cholesterol plays in modulating the interaction between galanin and one of the three cloned galanin receptor subtypes (GalR2) expressed in Chinese hamster ovary (CHO) cells was examined. Reduction of membrane cholesterol by treatment with methyl-beta-cyclodextrin (CD) or by culturing cells in lipoprotein-deficient serum markedly decreased galanin binding to the receptor. Addition of cholesterol back to CD-treated, cholesterol-depleted membranes restored galanin binding to control levels. Hill analysis suggests that the GalR2 binds multiple molecules of cholesterol (n >/= 3) in a positively cooperative manner. This interaction appears to be cholesterol-specific as only cholesterol and a limited number of cholesterol analogues were able to rescue galanin binding. The inability of some of these analogues to rescue the binding activity also suggests that binding of galanin to GalR2 is independent of membrane fluidity as, like cholesterol, cholesterol analogues generally rigidize membranes. In addition, treatment of the membranes with other modulators of membrane fluidity, e.g. ethanol, did not affect galanin binding to the GalR2. In contrast, treatment of membranes, with filipin, a molecule that clusters cholesterol within the membranes, or with cholesterol oxidase resulted in markedly reduced galanin binding. Incubation of membranes with 100 microM GTP-gamma-S did not alter the IC(50) for CD in the prebinding assay treatment suggesting that the effect of cholesterol was independent of G protein interaction. Preincubation of intact cells with CD also drastically impaired the ability of galanin to activate intracellular inositol phosphate accumulation in GalR2-transfected CHO cells. These data detail a new mechanism for the regulation of galanin receptor signaling which may link altered functions of Gal

  8. Cholesterol Absorption and Metabolism.

    PubMed

    Howles, Philip N

    2016-01-01

    Inhibitors of cholesterol absorption have been sought for decades as a means to treat and prevent cardiovascular diseases (CVDs) associated with hypercholesterolemia. Ezetimibe is the one clear success story in this regard, and other compounds with similar efficacy continue to be sought. In the last decade, the laboratory mouse, with all its genetic power, has become the premier experimental model for discovering the mechanisms underlying cholesterol absorption and has become a critical tool for preclinical testing of potential pharmaceutical entities. This chapter briefly reviews the history of cholesterol absorption research and the various gene candidates that have come under consideration as drug targets. The most common and versatile method of measuring cholesterol absorption is described in detail along with important considerations when interpreting results, and an alternative method is also presented. In recent years, reverse cholesterol transport (RCT) has become an area of intense new interest for drug discovery since this process is now considered another key to reducing CVD risk. The ultimate measure of RCT is sterol excretion and a detailed description is given for measuring neutral and acidic fecal sterols and interpreting the results. PMID:27150091

  9. An enzyme thermistor-based assay for total and free cholesterol.

    PubMed

    Raghavan, V; Ramanathan, K; Sundaram, P V; Danielsson, B

    1999-11-01

    A method to evaluate the free (FC) and total cholesterol (TC) in human serum, bile and gallstone extract using an enzyme thermistor (ET)-based flow injection analysis (FIA) is presented. The cholesterol in high-density (HDL-C) and low density lipoprotein (LDL-C) have also been evaluated. A heparin functionalized Sepharose column was employed for the isolation of HDL and LDL fractions from serum. The estimation of cholesterol and its esters was based on their reaction with cholesterol oxidase (CO), cholesterol esterase (CE) and catalase (CAT). Three different enzyme columns, i.e. co-immobilized CO/CAT (column A), only CE (column B) and co-immobilized CO/CE/CAT (column C) were prepared by cross-linking the enzymes on glass beads using glutaraldehyde. Column A was used for estimating FC and column C was used for estimating total cholesterol (cholesterol plus esterified cholesterol). Column B was used as a pre-column which could be switched 'in' or 'out' in conjunction with column A for the estimation of TC or FC, respectively. A calibration between 1.0 and 8.0 mmol/l for FC and 0. 25 and 4.0 mmol/l for TC was obtained. For more than 2000 assays with the ET device a C.V. of less than 4% was obtained. The assay time was approximately 4 min per assay. The cholesterol estimations on the ET correlated well with similar estimations using a commercially available cholesterol diagnostic kit. PMID:10556661

  10. Highly Selective Anti-Cancer Activity of Cholesterol-Interacting Agents Methyl-β-Cyclodextrin and Ostreolysin A/Pleurotolysin B Protein Complex on Urothelial Cancer Cells

    PubMed Central

    Resnik, Nataša; Repnik, Urška; Kreft, Mateja Erdani; Sepčić, Kristina; Maček, Peter; Turk, Boris; Veranič, Peter

    2015-01-01

    Cholesterol content can vary distinctly between normal and cancer cells, with elevated levels in cancer cells. Here, we investigated cholesterol sequestration with methyl-β-cyclodextrin (MCD), and pore-formation with the ostreolysin A/pleurotolysin B (OlyA/PlyB) protein complex that binds to cholesterol/sphingomyelin-rich membrane domains. We evaluated the effects on viability of T24 invasive and RT4 noninvasive human urothelial cancer cells and normal porcine urothelial (NPU) cells. Cholesterol content strongly correlated with cancerous transformation, as highest in the T24 high-grade invasive urothelial cancer cells, and lowest in NPU cells. MCD treatment induced prominent cell death of T24 cells, whereas OlyA/PlyB treatment resulted in greatly decreased viability of the RT4 low-grade noninvasive carcinoma cells. Biochemical and transmission electron microscopy analyses revealed that MCD and OlyA/PlyB induce necrotic cell death in these cancer cells, while viability of NPU cells was not significantly affected by either treatment. We conclude that MCD is more toxic for T24 high-grade invasive urothelial cancer cells, and OlyA/PlyB for RT4 low-grade noninvasive urothelial cancer cells, and neither is toxic for NPU cells. The cholesterol and cholesterol/sphingomyelin-rich membrane domains in urothelial cancer cells thus constitute a selective therapeutic target for elimination of urothelial cancer cells. PMID:26361392

  11. Highly Selective Anti-Cancer Activity of Cholesterol-Interacting Agents Methyl-β-Cyclodextrin and Ostreolysin A/Pleurotolysin B Protein Complex on Urothelial Cancer Cells.

    PubMed

    Resnik, Nataša; Repnik, Urška; Kreft, Mateja Erdani; Sepčić, Kristina; Maček, Peter; Turk, Boris; Veranič, Peter

    2015-01-01

    Cholesterol content can vary distinctly between normal and cancer cells, with elevated levels in cancer cells. Here, we investigated cholesterol sequestration with methyl-β-cyclodextrin (MCD), and pore-formation with the ostreolysin A/pleurotolysin B (OlyA/PlyB) protein complex that binds to cholesterol/sphingomyelin-rich membrane domains. We evaluated the effects on viability of T24 invasive and RT4 noninvasive human urothelial cancer cells and normal porcine urothelial (NPU) cells. Cholesterol content strongly correlated with cancerous transformation, as highest in the T24 high-grade invasive urothelial cancer cells, and lowest in NPU cells. MCD treatment induced prominent cell death of T24 cells, whereas OlyA/PlyB treatment resulted in greatly decreased viability of the RT4 low-grade noninvasive carcinoma cells. Biochemical and transmission electron microscopy analyses revealed that MCD and OlyA/PlyB induce necrotic cell death in these cancer cells, while viability of NPU cells was not significantly affected by either treatment. We conclude that MCD is more toxic for T24 high-grade invasive urothelial cancer cells, and OlyA/PlyB for RT4 low-grade noninvasive urothelial cancer cells, and neither is toxic for NPU cells. The cholesterol and cholesterol/sphingomyelin-rich membrane domains in urothelial cancer cells thus constitute a selective therapeutic target for elimination of urothelial cancer cells. PMID:26361392

  12. Cholesterol-dependent cytolysins.

    PubMed

    Gilbert, Robert J C

    2010-01-01

    The cholesterol-dependent cytolysins (CDCs) are part of a large family of pore-forming proteins that include the human proteins perforin and the complement membrane attack complex. The activity of all family members is focused on membranes, but the proteins are themselves involved in a diverse range of phenomena. An overview of some of these phenomena is provided here, along with an historical perspective of CDCs themselves and how our understanding of their mechanism of action has developed over the years. The way in which pore formation depends on specific characteristics of the membrane under attack as well as of the protein doing the attacking is emphasised. The cholesterol-dependent cytolysins (CDCs) have been the focus of a renewed keen research interest for over ten years now. Their importance has been even further enhanced by the homology now identified between them and the membrane attack complex/perforin (MACPF) family of proteins, which includes several components of the complement cascade as well as perforin itself. In this chapter I aim to provide an overview of our understanding of the interaction between CDCs and other members of what is now called the MACPF/CDC superfamily, with their target membranes. CDCs (also in the past known as thiol-activated toxins or cholesterol-binding toxins) were originally identified from four Gram-positive bacterial genera (Clostridium, Listeria, Bacillus and Streptococcus). Well-known examples include listeriolysin, perfringolysin, streptolysin and pneumoysin. Listeriolysin from L. monocytogenes is responsible for the escape of bacteria from the phagosome to colonise the cytoplasm and has been applied as a protein adjuvant in the development of vaccines against cancer and tuberculosis, for example. Perfringolysin from C. perfringens (Fig. 1A) has become perhaps the most studied CDC4 and has an important role in pathology associated with infection (gangrene). Streptolysin from S. pyogenes is another intensely studied

  13. Penicillium brasilianum as an enzyme factory; the essential role of feruloyl esterases for the hydrolysis of the plant cell wall.

    PubMed

    Panagiotou, Gianni; Olavarria, Reyes; Olsson, Lisbeth

    2007-06-30

    The production of arabinoxylan-degrading enzymes by the fungus Penicillium brasilianum, grown on different carbon and nitrogen sources as well as different environmental conditions was investigated. Highest feruloyl esterase (225 mU/ml) and alpha-L-arabinofuranosidase (211 mU/ml) activities were obtained when P. brasilianum was grown on sugar beet pulp, whereas maximum xylanase (17 U/ml) activity was found during growth on oat spelt xylan. Yeast extract was the preferable nitrogen source for the production of all the three enzymes. Further optimization of the production of the crude enzyme mixture was examined by experimental design using a D-optimal quadratic model. Investigation of the microbial regulation of enzyme production showed that the presence of free ferulic acid further stimulated the production and pointing to that the fungal regulatory mechanism involved a coordinated production and secretion of feruloyl esterase, xylanase and alpha-L-arabinofuranosidase. Since agroindustrial by-products are a potential source of phenolic acids, crude enzyme mixtures of P. brasilianum were tested for their hydrolysis abilities against eight complex or model substrates. While total release of phenolic acids and pentoses was not observed, the synergistic enhancement of hydrolysis in the presence of feruloyl esterase was clearly demonstrated.

  14. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages

    PubMed Central

    Lanuti, Mirko; Talamonti, Emanuela; Maccarrone, Mauro; Chiurchiù, Valerio

    2015-01-01

    The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacological activation of GPR55 by its selective agonist O-1602 increased CD36- and SRB-I-mediated lipid accumulation and blocked cholesterol efflux by downregulating ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, as well as enhanced cytokine- and pro-metalloprotease-9 (pro-MMP-9)-induced proinflammatory responses in foam cells. Treatment with cannabidiol, a selective antagonist of GPR55, counteracted these pro-atherogenic and proinflammatory O-1602-mediated effects. Our data suggest that GPR55 could play deleterious role in ox-LDL-induced foam cells and could be a novel pharmacological target to manage atherosclerosis and other related cardiovascular diseases. PMID:25970609

  15. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages.

    PubMed

    Lanuti, Mirko; Talamonti, Emanuela; Maccarrone, Mauro; Chiurchiù, Valerio

    2015-01-01

    The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacological activation of GPR55 by its selective agonist O-1602 increased CD36- and SRB-I-mediated lipid accumulation and blocked cholesterol efflux by downregulating ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, as well as enhanced cytokine- and pro-metalloprotease-9 (pro-MMP-9)-induced proinflammatory responses in foam cells. Treatment with cannabidiol, a selective antagonist of GPR55, counteracted these pro-atherogenic and proinflammatory O-1602-mediated effects. Our data suggest that GPR55 could play deleterious role in ox-LDL-induced foam cells and could be a novel pharmacological target to manage atherosclerosis and other related cardiovascular diseases. PMID:25970609

  16. Tissue distribution, characterization and in vitro inhibition of B-esterases in the earwig Forficula auricularia.

    PubMed

    Malagnoux, Laure; Capowiez, Yvan; Rault, Magali

    2014-10-01

    Earwigs are important natural enemies of numerous pests in pome fruit orchards worldwide. Studying the effects of agricultural practices on these biological control agents is important for understanding its vulnerability in the field. The aim of this study was to characterize the B-esterase activities in the European earwig Forficula auricularia and to evaluate in vitro its sensitivity to organophosphate and carbamate pesticides. Acetylcholinesterase (AChE) activity was mainly measured with 1.5 mM acetylthiocholine as the substrate in the microsomal fraction of earwig heads (70% of total AChE activity). Carboxylesterase (CbE) activities were measured with three substrates [5 mM 4-nitrophenyl acetate (4-NPA), 1mM 4-nitrophenyl valerate (4-NPV), and 2 mM α-naphtyl acetate (α-NA)] to examine different isoenzymes, which were present mainly in the cytosolic fraction (about 70-88% of total activities) of all earwig tissues. CbE activity was higher than AChE activity, especially with α-NA, then 4-NPA and lastly 4-NPV. Chlorpyrifos-oxon an organophosphate, and carbaryl a carbamate pesticide, inhibited AChE and CbE activities in a concentration-dependent manner. Earwig CbE activities showed a stronger sensitivity to organophosphate than AChE, with the strongest effect for chlorpyrifos-oxon on male carboxylesterase activities. CbE and AChE showed about the same sensitivity to carbamate pesticides regardless of sex. These results suggest that B-type esterases in the European earwig F.auricularia are suitable biomarkers of pesticide exposure.

  17. Increased hepatic cholesterol esterification with essential fatty acid deficiency (EFAD): relationship to plasma lipoprotein (LP) cholesterol content

    SciTech Connect

    Ney, D.M.; Ziboh, V.A.; Schneeman, B.O.

    1986-03-01

    EFAD in the rat is associated with hepatic accumulation of esterified cholesterol and altered distribution of cholesterol between plasma and hepatic tissue. Little is known regarding the impact of EFAD on LP composition. To determine the relationship between hepatic cholesterol esterification and plasma lP composition in control (C) and EFAD male Wistar rats, the authors induced EFAD with continuous intragastric (IG) infusion of EFA-free solutions containing 3.5% of calories as triolein for 7 and 14 days. C animals received IG infusion of solutions containing 3.5% of calories as linoleic acid. Data in the EFAD groups reveal: (i) marked decreases in hepatic EFAs and increases in monoenoic acids; (ii) progressive increases in hepatic content of triglyceride and esterified cholesterol with 7 and 14 days of feeding; (iii) assay of acyl CoA:cholesterol acyltransferase activity in hepatic tissue using /sup 14/C-cholesterol demonstrates an increase in hepatic cholesterol esterification when compared to C animals. Increased hepatic cholesterol esterification correlates with elevated levels of esterified cholesterol in plasma VLDL and HDL particles. These data indicate that the elevated levels of cholesterol esters in LP particles is due, at least in part, to increased hepatic cholesterol esterification with EFAD.

  18. Citrus aurantium L. essential oil exhibits anxiolytic-like activity mediated by 5-HT1A-receptors and reduces cholesterol after repeated oral treatment

    PubMed Central

    2013-01-01

    Background The current treatments for anxiety disorders and depression have multiple adverse effects in addition to a delayed onset of action, which has prompted efforts to find new substances with potential activity in these disorders. Citrus aurantium was chosen based on ethnopharmacological data because traditional medicine refers to the Citrus genus as useful in diminishing the symptoms of anxiety or insomnia, and C. aurantium has more recently been proposed as an adjuvant for antidepressants. In the present work, we investigated the biological activity underlying the anxiolytic and antidepressant effects of C. aurantium essential oil (EO), the putative mechanism of the anxiolytic-like effect, and the neurochemical changes in specific brain structures of mice after acute treatment. We also monitored the mice for possible signs of toxicity after a 14-day treatment. Methods The anxiolytic-like activity of the EO was investigated in a light/dark box, and the antidepressant activity was investigated in a forced swim test. Flumazenil, a competitive antagonist of benzodiazepine binding, and the selective 5-HT1A receptor antagonist WAY100635 were used in the experimental procedures to determine the mechanism of action of the EO. To exclude false positive results due to motor impairment, the mice were submitted to the rotarod test. Results The data suggest that the anxiolytic-like activity observed in the light/dark box procedure after acute (5 mg/kg) or 14-day repeated (1 mg/kg/day) dosing was mediated by the serotonergic system (5-HT1A receptors). Acute treatment with the EO showed no activity in the forced swim test, which is sensitive to antidepressants. A neurochemical evaluation showed no alterations in neurotransmitter levels in the cortex, the striatum, the pons, and the hypothalamus. Furthermore, no locomotor impairment or signs of toxicity or biochemical changes, except a reduction in cholesterol levels, were observed after treatment with the EO. Conclusion

  19. In vivo exposure of young adult male rats to methoxychlor reduces serum testosterone levels and ex vivo Leydig cell testosterone formation and cholesterol side-chain cleavage activity.

    PubMed

    Murono, Eisuke P; Derk, Raymond C; Akgul, Yucel

    2006-02-01

    Methoxychlor (MC) was developed as a replacement for the banned pesticide DDT. After in vivo administration, it is metabolized in the liver to 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), which is proposed to be the active agent. Both MC and HPTE have been shown to exhibit weak estrogenic and antiandrogenic activities, and they are thought to exert their effects through estrogen and androgen receptors, respectively. Although in vitro studies using cultured rat Leydig cells have reported that HPTE inhibits both basal and hCG-stimulated testosterone formation, the response of circulating testosterone levels to in vivo MC has been more variable. Therefore, the current studies evaluated whether the daily in vivo administration of MC (0, 5, 40 and 200 mg/kg body weight) for a short duration (days 54-60 of age) by gavage altered serum testosterone levels and ex vivo Leydig cell testosterone formation in young adult male rats. These results demonstrate that both fluid-retained and fluid-expressed seminal vesicle weights declined to 44 and 60% of control, respectively, in the 200 mg/kg MC-exposed animals. Similarly, serum testosterone and dehydroepiandrosterone levels declined to 41 and 45% of control, respectively, in the 200 mg/kg MC-exposed animals; however, serum LH and FSH levels were unaffected. Ex vivo Leydig cell basal testosterone formation over 4h declined to 49% of control in animals exposed to 200 mg/kg MC, and ex vivo Leydig cell P450 cholesterol side-chain cleavage activity declined to 79 and 50% of control in animals exposed to 40 and 200 mg/kg of MC, respectively, supporting previous in vitro studies which demonstrated the sensitivity of this step to MC.

  20. Cholesterol biosynthesis and ER stress in peroxisome deficiency.

    PubMed

    Faust, Phyllis L; Kovacs, Werner J

    2014-03-01

    Cholesterol biosynthesis is a multi-step process involving more than 20 enzymes in several subcellular compartments. The pre-squalene segment of the cholesterol/isoprenoid biosynthetic pathway is localized in peroxisomes. This review intends to highlight recent findings illustrating the important role peroxisomes play in cholesterol biosynthesis and maintenance of cholesterol homeostasis. Disruption of the Pex2 gene leads to peroxisome deficiency and widespread metabolic dysfunction. The Pex2(-/-) mouse model for Zellweger syndrome enabled us to evaluate the role of peroxisomes in cholesterol biosynthesis. These studies have shown that Pex2(-/-) mice exhibit low levels of cholesterol in plasma and liver. Pex2(-/-) mice were unable to maintain normal cholesterol homeostasis despite activation of SREBP-2, the master transcriptional regulator of cholesterol biosynthesis, and increased protein levels and activities of cholesterol biosynthetic enzymes. The SREBP-2 pathway remained activated even after normalization of hepatic cholesterol levels in response to bile acid feeding as well as in extrahepatic tissues and the liver of neonatal and longer surviving Pex2 mutants, where cholesterol levels were normal. Several studies have shown that endoplasmic reticulum (ER) stress can dysregulate lipid metabolism via SREBP activation independently of intracellular cholesterol concentration. We demonstrated that peroxisome deficiency activates endoplasmic reticulum stress pathways in Pex2(-/-) mice, especially the integrated stress response mediated by PERK and ATF4 signaling, and thereby leads to dysregulation of the SREBP-2 pathway. Our findings suggest that functional peroxisomes are necessary to prevent chronic ER stress and dysregulation of the endogenous sterol response pathway. The constitutive activation of ER stress pathways might contribute to organ pathology and metabolic dysfunction in peroxisomal disorder patients.

  1. Overexpression of esterase D in kidney from trisomy 13 fetuses

    SciTech Connect

    Loughna, S.; Moore, G. ); Gau, G.; Blunt, S. ); Nicolaides, K. )

    1993-10-01

    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses and has been compared with normal age- and sex-matched fetal tissues, by using northern analysis. More than a twofold increase in expression of esterase D was found in the kidney of two trisomy 13 fetuses, with normal levels in a third. Overexpression was not seen in the muscle tissues from these fetuses. 34 refs., 3 figs., 2 tabs.

  2. Structural studies of a thermophilic esterase from a new Planctomycetes species, Thermogutta terrifontis.

    PubMed

    Sayer, Christopher; Isupov, Michail N; Bonch-Osmolovskaya, Elizaveta; Littlechild, Jennifer A

    2015-08-01

    Thermogutta terrifontis esterase (TtEst), a carboxyl esterase identified in the novel thermophilic bacterium T. terrifontis from the phylum Planctomycetes, has been cloned and over-expressed in Escherichia coli. The enzyme has been characterized biochemically and shown to have activity towards small p-nitrophenyl (pNP) carboxylic esters, with optimal activity for pNP-propionate. The enzyme retained 95% activity after incubation for 1 h at 80 °C. The crystal structures of the native TtEst and its complexes with the substrate analogue D-malate and the product acetate have been determined to high resolution. The bound ligands have allowed the identification of the carboxyl and alcohol binding pockets in the enzyme active site. Comparison of TtEst with structurally related enzymes provides insight into how differences in their catalytic activity can be rationalized based upon the properties of the amino acid residues in their active site pockets. The mutant enzymes L37A and L251A have been constructed to extend the substrate range of TtEst towards the larger butyrate and valerate pNP-esters. These mutant enzymes have also shown a significant increase in activity towards acetate and propionate pNP esters. A crystal structure of the L37A mutant was determined with the butyrate product bound in the carboxyl pocket of the active site. The mutant structure shows an expansion of the pocket that binds the substrate carboxyl group, which is consistent with the observed increase in activity towards pNP-butyrate. PMID:26011036

  3. Leukocyte esterase urine strips for the screening of men with urethritis--use in developing countries.

    PubMed Central

    Tyndall, M W; Nasio, J; Maitha, G; Ndinya-Achola, J O; Plummer, F A; Sellors, J W; Luinstra, K E; Jang, D; Mahony, J B; Chernesky, M A

    1994-01-01

    BACKGROUND AND OBJECTIVES--The leukocyte esterase (LE) strip is a useful tool for the screening of men with urethritis. In developing countries, where laboratory facilities are limited, and sexually transmitted diseases endemic, simple and inexpensive diagnostic tests which perform well, would be of great value. METHODS--Men presenting with urethritis to a referral clinic for sexually transmitted diseases in Nairobi, Kenya participated in this cohort analytical study. First-void urine was collected for LE dipstick testing as part of the diagnostic work-up. The results of the dipstick measurement were compared with the laboratory detection of Chlamydia trachomatis and Neisseria gonorrhoeae. RESULTS--Of 200 men with symptoms of urethritis, 33 (17%) had a pathogen detected from the urethra or the urine. Chlamydia was detected in urine by PCR in 22 (11%), and gonorrhoea was cultured from the urethra in 11 (6%). Esterase activity (trace or greater) had a sensitivity of 76%, a specificity of 80%, a positive predictive value of 42% and a negative predictive value of 94% for the presence of chlamydia or gonorrhoea. CONCLUSIONS--The use of the LE dipstick for the screening of men with symptomatic urethritis can improve diagnostic accuracy and reduce the amount of empiric antimicrobial therapy. The low detection rate of chlamydia in these men with a clinical diagnosis of nongonococcal urethritis needs further study. PMID:8300096

  4. Purification and characterization of an esterase involved in cellulose acetate degradation by Neisseria sicca SB.

    PubMed

    Moriyoshi, K; Ohmoto, T; Ohe, T; Sakai, K

    1999-10-01

    An esterase catalyzing the hydrolysis of acetyl ester moieties in cellulose acetate was purified 1,110-fold to electrophoretic homogeneity from the culture supernatant of Neisseria sicca SB, which can assimilate cellulose acetate as the sole carbon and energy source. The purified enzyme was a monomeric protein with a molecular mass of 40 kDa and the isoelectric point was 5.3. The pH and temperature optima of the enzyme were 8.0-8.5 and 45 degrees C. The enzyme catalyzed the hydrolysis of acetyl saccharides, p-nitrophenyl esters of short-chain fatty acids, and was slightly active toward aliphatic and aromatic esters. The K(m) and Vmax for cellulose acetate (degree of substitution, 0.88) and p-nitrophenyl acetate were 0.0162% (716 microM as acetyl content in the polymer) and 36.0 microM, and 66.8 and 39.1 mumol/min/mg, respectively. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate, which indicated that the enzyme was a serine esterase.

  5. Identification of two novel esterases from a marine metagenomic library derived from South China Sea.

    PubMed

    Chu, Xinmin; He, Haoze; Guo, Changquan; Sun, Baolin

    2008-09-01

    The demand for novel biocatalysts is increasing in modern biotechnology, which greatly stimulates the development of powerful tools to explore the genetic resources in the environment. Metagenomics, a culture independent strategy, provides an access to valuable genetic resources of the uncultured microbes. In this study, two novel esterase genes designated as estA and estB, which encoded 277- and 328-amino-acid peptides, respectively, were isolated from a marine microbial metagenomic library by functional screening, and the corresponding esterases EstA and EstB were biochemically characterized. Amino acid sequence comparison and phylogenetic analysis indicated that EstA together with other putative lipolytic enzymes was closely related to family III, and EstB with its relatives formed a subfamily of family IV. Site-directed mutagenesis showed that EstA contained classical catalytic triad made up of S146-D222-H255, whereas EstB contained an unusual catalytic triad which consisted of S-E-H, an important feature of the subfamily. EstA exhibited habitat-specific characteristics such as its high level of stability in the presence of various divalent cations and at high concentrations of NaCl. EstB displayed remarkable activity against p-nitrophenyl esters and was highly stable in 30% methanol, ethanol, dimethylformamide, and dimethyl sulfoxide, making EstB a potential candidate for industrial applications.

  6. Preparation and Properties of Novel Dentin Adhesives with Esterase Resistance

    PubMed Central

    Park, Jong-Gu; Ye, Qiang; Topp, Elizabeth M.; Kostoryz, Elisabet L.; Wang, Yong; Kieweg, Sarah L.; Spencer, Paulette

    2012-01-01

    A new methacrylate monomer, trimethylolpropane mono allyl ether dimethacrylate (TMPEDMA), was synthesized and evaluated. This branched methacrylate was designed to increase esterase-resistance when incorporated into conventional HEMA (2-hydroxyethyl methacrylate)/BisGMA (2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane) dental adhesives. The new adhesives, HEMA/BisGMA/TMPEDMA in a 45/30/25 (w/w) ratio were formulated with H2O at 0 (A0T) and 8 wt % water (A8T) and compared with control adhesives (HEMA/BisGMA, 45/55 (w/w), at 0 (A0) and 8 wt % (A8) water). Camphoroquinone (CQ), 2-(dimethylamino) ethyl methacrylate and diphenyliodonium hexafluorophosphate were used as photoinitiators. The new adhesives showed a degree of conversion comparable with the control and improved modulus and glass transition temperature (Tg). Exposure of photopolymerized discs to porcine liver esterase for up to eight days showed that the net cumulative methacrylic acid (MAA) release in adhesives formulated with the new monomer and 8% water (A8T: 182 μg/mL) was dramatically (P < 0.05) decreased in comparison to the control (A8: 361.6 μg/mL). The results demonstrate that adhesives made with the new monomer and cured in water to simulate wet bonding are more resistant to esterase than conventional HEMA/BisGMA adhesive. PMID:22919119

  7. Mitochondrial regulation of macrophage cholesterol homeostasis.

    PubMed

    Graham, Annette

    2015-12-01

    This review explores the relationship between mitochondrial structure and function in the regulation of macrophage cholesterol metabolism and proposes that mitochondrial dysfunction contributes to loss of the elegant homeostatic mechanisms which normally maintain cellular sterol levels within defined limits. Mitochondrial sterol 27-hydroxylase (CYP27A1) can generate oxysterol activators of liver X receptors which heterodimerise with retinoid X receptors, enhancing the transcription of ATP binding cassette transporters (ABCA1, ABCG1, and ABCG4), that can remove excess cholesterol via efflux to apolipoproteins A-1, E, and high density lipoprotein, and inhibit inflammation. The activity of CYP27A1 is regulated by the rate of supply of cholesterol substrate to the inner mitochondrial membrane, mediated by a complex of proteins. The precise identity of this dynamic complex remains controversial, even in steroidogenic tissues, but may include steroidogenic acute regulatory protein and the 18 kDa translocator protein, together with voltage-dependent anion channels, ATPase AAA domain containing protein 3A, and optic atrophy type 1 proteins. Certainly, overexpression of StAR and TSPO proteins can enhance macrophage cholesterol efflux to apoA-I and/or HDL, while perturbations in mitochondrial function, or changes in the expression of mitochondrial fusion proteins, alter the efficiency of cholesterol efflux. Molecules which can sustain or improve mitochondrial function or increase the activity of the protein complex involved in cholesterol transfer may have utility in resolving the problem of dysregulated macrophage cholesterol homeostasis, a condition which may contribute to inflammation, atherosclerosis, nonalcoholic steatohepatitis, osteoblastic bone resorption, and some disorders of the central nervous system.

  8. Development of mediator-type biosensor to wirelessly monitor whole cholesterol concentration in fish.

    PubMed

    Takase, Mai; Murata, Masataka; Hibi, Kyoko; Huifeng, Ren; Endo, Hideaki

    2014-04-01

    We developed a wireless monitoring system to monitor fish condition by tracking the change in whole cholesterol concentration. The whole cholesterol concentration of fish is a source of steroid hormones or indicator of immunity level, which makes its detection important for tracking physiological condition of fish. Wireless monitoring system comprises of mediator-type biosensor and wireless transmission device. Biosensor is implantable to fish body, and transmission device is so light, in that fish is allowed to swim freely during monitoring. Cholesterol esterase and oxidase were fixated on to the detection site of biosensor and used to detect the whole cholesterol concentration. However, cholesterol oxidase incorporates oxidation-reduction reaction of oxygen for detection, which concentration fluctuates easily due to change in environmental condition. Meanwhile, mediator-type biosensor enables monitoring of whole cholesterol concentration by using mediator to substitute that oxidation-reduction reaction of oxygen. Characteristic of fabricated mediator-type biosensor was tested. The sensor output current of mediator-type biosensor remained stable compared to output current of non-mediator-type biosensor under fluctuating oxygen concentration of 0-8 ppm, which implied that this sensor is less affected by change in dissolved oxygen concentration. That biosensor was then implanted into fish for wireless monitoring. As a result, approximately 48 h of real-time monitoring was successful.

  9. Est16, a New Esterase Isolated from a Metagenomic Library of a Microbial Consortium Specializing in Diesel Oil Degradation

    PubMed Central

    Pereira, Mariana Rangel; Mercaldi, Gustavo Fernando; Maester, Thaís Carvalho; Balan, Andrea; de Macedo Lemos, Eliana Gertrudes

    2015-01-01

    Lipolytic enzymes have attracted attention from a global market because they show enormous biotechnological potential for applications such as detergent production, leather processing, cosmetics production, and use in perfumes and biodiesel. Due to the intense demand for biocatalysts, a metagenomic approach provides methods of identifying new enzymes. In this study, an esterase designated as Est16 was selected from 4224 clones of a fosmid metagenomic library, revealing an 87% amino acid identity with an esterase/lipase (accession number ADM63076.1) from an uncultured bacterium. Phylogenetic studies showed that the enzyme belongs to family V of bacterial lipolytic enzymes and has sequence and structural similarities with an aryl-esterase from Pseudomonas fluorescens and a patented Anti-Kazlauskas lipase (patent number US20050153404). The protein was expressed and purified as a highly soluble, thermally stable enzyme that showed a preference for basic pH. Est16 exhibited activity toward a wide range of substrates and the highest catalytic efficiency against p-nitrophenyl butyrate and p-nitrophenyl valerate. Est16 also showed tolerance to the presence of organic solvents, detergents and metals. Based on molecular modeling, we showed that the large alpha-beta domain is conserved in the patented enzymes but not the substrate pocket. Here, it was demonstrated that a metagenomic approach is suitable for discovering the lipolytic enzyme diversity and that Est16 has the biotechnological potential for use in industrial processes. PMID:26214846

  10. Est16, a New Esterase Isolated from a Metagenomic Library of a Microbial Consortium Specializing in Diesel Oil Degradation.

    PubMed

    Pereira, Mariana Rangel; Mercaldi, Gustavo Fernando; Maester, Thaís Carvalho; Balan, Andrea; Lemos, Eliana Gertrudes de Macedo

    2015-01-01

    Lipolytic enzymes have attracted attention from a global market because they show enormous biotechnological potential for applications such as detergent production, leather processing, cosmetics production, and use in perfumes and biodiesel. Due to the intense demand for biocatalysts, a metagenomic approach provides methods of identifying new enzymes. In this study, an esterase designated as Est16 was selected from 4224 clones of a fosmid metagenomic library, revealing an 87% amino acid identity with an esterase/lipase (accession number ADM63076.1) from an uncultured bacterium. Phylogenetic studies showed that the enzyme belongs to family V of bacterial lipolytic enzymes and has sequence and structural similarities with an aryl-esterase from Pseudomonas fluorescens and a patented Anti-Kazlauskas lipase (patent number US20050153404). The protein was expressed and purified as a highly soluble, thermally stable enzyme that showed a preference for basic pH. Est16 exhibited activity toward a wide range of substrates and the highest catalytic efficiency against p-nitrophenyl butyrate and p-nitrophenyl valerate. Est16 also showed tolerance to the presence of organic solvents, detergents and metals. Based on molecular modeling, we showed that the large alpha-beta domain is conserved in the patented enzymes but not the substrate pocket. Here, it was demonstrated that a metagenomic approach is suitable for discovering the lipolytic enzyme diversity and that Est16 has the biotechnological potential for use in industrial processes.

  11. CHOLESTEROL AND CHOLESTEROL ESTER CONTENT OF BOVINE COLOSTRUM

    PubMed Central

    Shope, Richard E.; Gowen, John W.

    1928-01-01

    The total amount of cholesterol found in colostrum and milk is comparatively low. The amount of cholesterol found in colostrum declines at an ever decreasing rate as milk secretion develops until at 48 hours the cholesterol is nearly the same as that found in milk 3 months or 7 months after parturition. The morning milk differs from the evening milk in that the cholesterol bound as ester is greater in amount. PMID:19869468

  12. Cholesterol: Up in Smoke.

    ERIC Educational Resources Information Center

    Raloff, Janet

    1991-01-01

    Discussed is the contribution cooked meat makes to air pollution. The dozens of compounds, including cholesterol, that are released when a hamburger is grilled are described. The potential effects of these emissions on humans and the urban environment are discussed. (KR)

  13. Cholesterol, inflammasomes, and atherogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasma cholesterol levels have been strongly associated with atherogenesis, underscoring the role of lipid metabolism in defining cardiovascular disease risk. However, atherosclerotic plaque is highly dynamic and contains elements of both the innate and adaptive immune system that respond to the abe...

  14. Niacin for cholesterol

    MedlinePlus

    ... this page, please enable JavaScript. Niacin is a B-vitamin. When taken as a prescription in larger doses, ... A.M. Editorial team. Related MedlinePlus Health Topics B Vitamins Cholesterol Browse the Encyclopedia A.D.A.M., ...

  15. The Lp_3561 and Lp_3562 Enzymes Support a Functional Divergence Process in the Lipase/Esterase Toolkit from Lactobacillus plantarum

    PubMed Central

    Esteban-Torres, María; Reverón, Inés; Santamaría, Laura; Mancheño, José M.; de las Rivas, Blanca; Muñoz, Rosario

    2016-01-01

    Lactobacillus plantarum species is a good source of esterases since both lipolytic and esterase activities have been described for strains of this species. No fundamental biochemical difference exists among esterases and lipases since both share a common catalytic mechanism. L. plantarum WCFS1 possesses a protein, Lp_3561, which is 44% identical to a previously described lipase, Lp_3562. In contrast to Lp_3562, Lp_3561 was unable to degrade esters possessing a chain length higher than C4 and the triglyceride tributyrin. As in other L. plantarum esterases, the electrostatic potential surface around the active site in Lp_3561 is predicted to be basic, whereas it is essentially neutral in the Lp_3562 lipase. The fact that the genes encoding both proteins were located contiguously in the L. plantarum WCFS1 genome, suggests that they originated by tandem duplication, and therefore are paralogs as new functions have arisen during evolution. The presence of the contiguous lp_3561 and lp_3562 genes was studied among L. plantarum strains. They are located in a 8,903 bp DNA fragment that encodes proteins involved in the catabolism of sialic acid and are predicted to increase bacterial adaptability under certain growth conditions. PMID:27486450

  16. The Lp_3561 and Lp_3562 Enzymes Support a Functional Divergence Process in the Lipase/Esterase Toolkit from Lactobacillus plantarum.

    PubMed

    Esteban-Torres, María; Reverón, Inés; Santamaría, Laura; Mancheño, José M; de Las Rivas, Blanca; Muñoz, Rosario

    2016-01-01

    Lactobacillus plantarum species is a good source of esterases since both lipolytic and esterase activities have been described for strains of this species. No fundamental biochemical difference exists among esterases and lipases since both share a common catalytic mechanism. L. plantarum WCFS1 possesses a protein, Lp_3561, which is 44% identical to a previously described lipase, Lp_3562. In contrast to Lp_3562, Lp_3561 was unable to degrade esters possessing a chain length higher than C4 and the triglyceride tributyrin. As in other L. plantarum esterases, the electrostatic potential surface around the active site in Lp_3561 is predicted to be basic, whereas it is essentially neutral in the Lp_3562 lipase. The fact that the genes encoding both proteins were located contiguously in the L. plantarum WCFS1 genome, suggests that they originated by tandem duplication, and therefore are paralogs as new functions have arisen during evolution. The presence of the contiguous lp_3561 and lp_3562 genes was studied among L. plantarum strains. They are located in a 8,903 bp DNA fragment that encodes proteins involved in the catabolism of sialic acid and are predicted to increase bacterial adaptability under certain growth conditions.

  17. The Lp_3561 and Lp_3562 Enzymes Support a Functional Divergence Process in the Lipase/Esterase Toolkit from Lactobacillus plantarum.

    PubMed

    Esteban-Torres, María; Reverón, Inés; Santamaría, Laura; Mancheño, José M; de Las Rivas, Blanca; Muñoz, Rosario

    2016-01-01

    Lactobacillus plantarum species is a good source of esterases since both lipolytic and esterase activities have been described for strains of this species. No fundamental biochemical difference exists among esterases and lipases since both share a common catalytic mechanism. L. plantarum WCFS1 possesses a protein, Lp_3561, which is 44% identical to a previously described lipase, Lp_3562. In contrast to Lp_3562, Lp_3561 was unable to degrade esters possessing a chain length higher than C4 and the triglyceride tributyrin. As in other L. plantarum esterases, the electrostatic potential surface around the active site in Lp_3561 is predicted to be basic, whereas it is essentially neutral in the Lp_3562 lipase. The fact that the genes encoding both proteins were located contiguously in the L. plantarum WCFS1 genome, suggests that they originated by tandem duplication, and therefore are paralogs as new functions have arisen during evolution. The presence of the contiguous lp_3561 and lp_3562 genes was studied among L. plantarum strains. They are located in a 8,903 bp DNA fragment that encodes proteins involved in the catabolism of sialic acid and are predicted to increase bacterial adaptability under certain growth conditions. PMID:27486450

  18. Esterase and glutathione S-transferase levels associated with synthetic pyrethroid resistance in Hyalomma anatolicum and Rhipicephalus microplus ticks from Punjab, India.

    PubMed

    Nandi, Abhijit; Jyoti; Singh, Harkirat; Singh, Nirbhay Kumar

    2015-05-01

    Larval packet test was used for assessment of resistance status against cypermethrin and deltamethrin in Hyalomma anatolicum and Rhipicephalus microplus from various districts of Punjab (India). Among the various field isolates of H. anatolicum susceptible status was recorded against cypermethrin in all isolates, whereas against deltamethrin resistance status (level I-III) was recorded. In R. microplus lower resistance levels (I-II) were recorded against cypermethrin in comparison to deltamethrin (level I-IV). Quantitative analysis of general esterase activity revealed a range of 4.21 ± 0.46 to 6.05 ± 0.55 and 2.23 ± 0.23 to 2.66 ± 0.24 µmol/min/mg protein for α- and β-esterase activity, respectively, in different field isolates of H. anatolicum and the increase in comparison to susceptible was not significant (P > 0.05). In contrast to H. anatolicum, the α- and β-esterase activity in all field isolates (except Jalandhar) of R. microplus was higher (range of 3.89 ± 0.26 to 10.85 ± 0.47 and 1.75 ± 0.08 to 5.87 ± 0.29 µmol/min/mg protein, respectively) (P < 0.001). The glutathione-S-transferase (GST) activity in field isolates of H. anatolicum and R. microplus was in the range of 0.01 ± 0.001 to 0.03 ± 0.001 and 0.02 ± 0.0003 to 0.03 ± 0.001 mM/mg/min. The enzyme ratios (α-and β-esterase and GST) and RR95 against deltamethrin of H. anatolicum isolates were correlated (P < 0.05), whereas in R. microplus only α-and β-esterase and RR50 against deltamethrin were correlated (P < 0.05).

  19. A proposed architecture for lecithin cholesterol acyl transferase (LCAT): identification of the catalytic triad and molecular modeling.

    PubMed Central

    Peelman, F.; Vinaimont, N.; Verhee, A.; Vanloo, B.; Verschelde, J. L.; Labeur, C.; Seguret-Mace, S.; Duverger, N.; Hutchinson, G.; Vandekerckhove, J.; Tavernier, J.; Rosseneu, M.

    1998-01-01

    The enzyme cholesterol lecithin acyl transferase (LCAT) shares the Ser/Asp-Glu/His triad with lipases, esterases and proteases, but the low level of sequence homology between LCAT and these enzymes did not allow for the LCAT fold to be identified yet. We, therefore, relied upon structural homology calculations using threading methods based on alignment of the sequence against a library of solved three-dimensional protein structures, for prediction of the LCAT fold. We propose that LCAT, like lipases, belongs to the alpha/beta hydrolase fold family, and that the central domain of LCAT consists of seven conserved parallel beta-strands connected by four alpha-helices and separated by loops. We used the conserved features of this protein fold for the prediction of functional domains in LCAT, and carried out site-directed mutagenesis for the localization of the active site residues. The wild-type enzyme and mutants were expressed in Cos-1 cells. LCAT mass was measured by ELISA, and enzymatic activity was measured on recombinant HDL, on LDL and on a monomeric substrate. We identified D345 and H377 as the catalytic residues of LCAT, together with F103 and L182 as the oxyanion hole residues. In analogy with lipases, we further propose that a potential "lid" domain at residues 50-74 of LCAT might be involved in the enzyme-substrate interaction. Molecular modeling of human LCAT was carried out using human pancreatic and Candida antarctica lipases as templates. The three-dimensional model proposed here is compatible with the position of natural mutants for either LCAT deficiency or Fish-eye disease. It enables moreover prediction of the LCAT domains involved in the interaction with the phospholipid and cholesterol substrates. PMID:9541390

  20. Cholesterol transport in model membranes

    NASA Astrophysics Data System (ADS)

    Garg, Sumit; Porcar, Lionel; Butler, Paul; Perez-Salas, Ursula

    2010-03-01

    Physiological processes distribute cholesterol unevenly within the cell. The levels of cholesterol are maintained by intracellular transport and a disruption in the cell's ability to keep these normal levels will lead to disease. Exchange rates of cholesterol are generally studied in model systems using labeled lipid vesicles. Initially donor vesicles have all the cholesterol and acceptor vesicles are devoid of it. They are mixed and after some time the vesicles are separated and cholesterol is traced in each vesicle. The studies performed up to date have significant scatter indicating that the methodologies are not consistent. The present work shows in-situ Time-Resolved SANS studies of cholesterol exchange rates in unsaturated PC lipid vesicles. Molecular dynamics simulations were done to investigate the energetic and kinetic behavior of cholesterol in this system. This synergistic approach will provide insight into our efforts to understand cholesterol traffic.